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Preface of the Editor

Pulse techniques have a long history. Eminent scientists have to be remembered

along the pathways of development of modern pulse techniques that are now so

frequently used in research and analytical laboratories: Frederick Gardner Cottrell

(1877–1948), Mirko Kalousek (1915–1996), Geoffrey Cecil Barker (1915–2000),

Robert Allen Osteryoung (1927–2004), to name but a few. Now there are so many

different varieties of pulse techniques available that it is difficult to keep an

overview and to choose the most appropriate for a certain problem. The authors

of this monograph, Ángela Molina and Joaquı́n González from the Universidad de

Murcia, Spain, have undertaken the titanic venture to present a comprehensive and

at the same time clearly arranged and systematic survey of pulse techniques. Both

authors were best prepared for this task as they have contributed numerous theo-

retical and experimental studies to this field of electrochemical measuring tech-

niques. The result is the most up-to-date monograph on the theory and application

of pulse techniques––a unique book as it has never been written before. I am sure

that this monograph will become and remain a first-choice standard work for many

years to come.

Greifswald, Germany Fritz Scholz

March 2015
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1.1 Introduction

The main purpose of this opening chapter is to provide a brief review of different

concepts involved in the study of the current–potential response of electrochemical

processes. This is necessary for a better understanding of some aspects of the

responses of the different electrochemical techniques analyzed in the following

chapters.
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The electrostatic aspects of electrochemical systems will be introduced first

and the electrochemical potential as a key concept is presented (Sects. 1.2–1.4).

The electrochemical equilibrium is discussed and Nernst’s equation and standard

and formal electrode potentials are introduced (Sect. 1.5). The study of electro-

chemical interfaces under equilibrium ends with the phenomenological and theo-

retical treatment of the electrical double layer (Sect. 1.6).

The analysis of the kinetics of the charge transfer is presented in Sect. 1.7 for the

Butler–Volmer and Marcus–Hush formalisms, and in the latter, the extension to the

Marcus–Hush–Chidsey model and a discussion on the adiabatic character of the

charge transfer process are also included. The presence of mass transport and its

influence on the current–potential response are discussed in Sect. 1.8.

Finally, some practical questions such as the three-electrode setup, the influ-

ence of the ohmic drop, the RC time constant, and a short discussion on the

nomenclature of the potential perturbations used in this techniques are addressed

in Sects. 1.9 and 1.10.

1.2 Outer, Surface, and Inner Potentials

Electrochemistry deals with charged particles that have both electrical and chem-

ical properties. Since electrochemical interfaces are usually referred as electrified

interfaces, it is clear that potential differences, charge densities, dipole moments,

and electric currents occur at these interfaces. The electrical properties of systems

containing charged species are very important for understanding how they behave

at interfaces. Therefore, it is important to have a precise definition of the electro-

static potential of a phase [1–6]. Note that what really matters in electrochemical

systems is not the value of the potential but its difference at a given interface,

although it is illustrative to discuss its main properties.

The potential of a charged species can be divided into different contributions to

account for the different arrangements of charges (free charges, oriented dipoles,

etc.) that can be found. In order to evaluate these different contributions, a thought

experiment can be proposed in which a test charge located at the vacuum at an

infinite distance from a given phase is brought inside this phase [3].

The outer or external potential, ψ , of an electrified material phase is defined as

the energy required to move this unit test charge from the infinite to a point just

outside the phase, with this energy being induced only by the free electrostatic

charges, i.e., this potential is purely determined by the charge in the phase and is not

influenced by the redistribution of the charge at the surface and the so-called image

effects [3, 4, 7]. A distance of about 1 μm fulfills the above requirement and at the

same time is not too large to prevent the weakening of the interactions with the

charges in the phase. Only the ψ potential and correspondingly Δψ can be experi-

mentally measured [3].

For example, assuming that the phase is an isolated sphere of radius R, the
potential experienced by a test positive charge Q is (see Fig. 1.1)
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ψ ¼ Q

4πε0 Rþ rð Þ ð1:1Þ

with ε0 being the vacuum electric permittivity and r the coordinate that defines the
movement of the charge.

The surface potential χ of a solid phase is defined as the energy required to move

the unit test charge from the infinite toward the anisotropic zone resulting from the

surface to the electronic gas which expands beyond the lattice and causes the

formation of a dipolar layer although other explanations are possible. During this

hypothetical experiment, the charge in the phase turns to zero. Therefore, the

potential has nothing to do with the charge of the phase [3, 8].

In the case of a liquid phase, the χ potential is associated with the net preferential
orientation of dipoles at the surface. This arrangement is equivalent to a charge

separation and a potential difference occurs across the surface dipole layer. The

estimation of χ remains unsolved [8].

The inner potential, ϕ, is the sum of the outer and surface potential:

ϕ ¼ ψ þ χ ð1:2Þ

and is related to the energy required to move the unit test charge to a point inside the

phase (ϕ is related to the electric field strength E in the interior of the phase by

�∇ϕ ¼ E with ∇ being the gradient operator).

Concerning the potential differences, that corresponding to the outer potentials

between two phases α and β is known as the Volta potential difference defined as

αΔβψ ¼ ψβ � ψα ð1:3Þ

This is a measurable quantity which is usually called the contact potential

difference [4, 6]. The equivalent potential difference for the inner potentials is

known as the Galvani potential difference1,

Fig. 1.1 Radial distribution

of potential for a metal

sphere of radius R carrying

a positive charge Q,
illustrating the contributions

of the outer potential and

the surface potential. The

inner potential is constant

inside the sphere

1 It may be convenient to regard the Galvani potential difference between two phases in contact as

being due to two effects: the orientation of dipoles in the interface between them and the separation

of independently mobile charged species across the phase boundary in an analogous way to that

discussed for the separation of ϕ into outer and surface potentials [5, 6].
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αΔβϕ ¼ ϕβ � ϕα ð1:4Þ

1.3 Thermodynamics of Electrochemical Processes

The chemical potential of a species “i” in a phase with “m” species is defined as the

derivative of the internal energyU of this phase with respect to the number of moles

of species “i” (ni), at constant values of the extensive variables V, S, and the number

of moles of the remaining species in the absence of electrical and magnetic fields,

μi ¼
∂U
∂ni

� �
V,S,n j 6¼i

ð1:5Þ

As the condition of constant entropy is difficult to achieve, it is more convenient

to fix other variables.

The variation of internal energy can be written in a general way as

dU ¼ �PdV þ TdSþ
X
i

μidni ð1:6Þ

and the Gibbs and Helmholtz energies G and A, respectively, are given by

G ¼ U þ PV � TS ð1:7Þ
A ¼ U � TS ð1:8Þ

By deriving Eqs. (1.7) and (1.8), and inserting into the result that corresponding

to dU (Eq. (1.6)), the expression of the chemical potential given by Eq. (1.5) can be

also written as

μi ¼
∂A
∂ni

� �
T,V,n j 6¼i

ð1:9Þ

μi ¼
∂G
∂ni

� �
T,P,n j 6¼i

ð1:10Þ

The chemical potential is defined as the change of energy of a phase when an

additional mol of particles of species i is introduced at fixed V and S, T and V, or
T and P. The most usual definition of the chemical potential is the necessary work to

introduce one mole of species i from the infinite to a phase at fixed T and P (i.e., as

given in Eq. (1.10)).
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μi is usually expressed as

μi ¼ μ��Oi þ RTlnai ð1:11Þ

where μ��Oi is the standard chemical potential independent of the concentration and

dependent on temperature and total pressure and ai is the activity of the component

“i” in the phase.

When a chemical change is produced at the equilibrium, it holdsX
i

viμi ¼ 0 ð1:12Þ

with vi being the stoichiometric coefficient of species “i” participating in the

chemical change which takes positive and negative values for products and reac-

tants, respectively.

In electrochemical systems, some of the participating species are charged and

the charge transfer process across an interface is a heterogeneous process. Under

these conditions, the Gibbs energy is denoted by eG and the following is fulfilled for

a given phase of the system:

deG ¼ �SdT þ VdPþ
X
i

μidni þ Fϕ
X
i

zidni ð1:13Þ

where zi is the charge of species “i” and ϕ is the inner potential of the phase. On the

basis of the previously introduced chemical potential (see Eq. 1.10), the electro-

chemical potential can be defined as

eμi ¼ ∂eG
∂ni

 !
T,P,n j6¼i

¼ μi þ ziFϕ ð1:14Þ

that is, the necessary work to introduce one mole of charged species i from the

infinite to a phase with inner potential ϕ at fixed T and P.
From Eqs. (1.13) and (1.14), at constant P and T, one obtains

deG ¼X
i

eμidni ¼ dζ
X
i

vieμi ð1:15Þ

where ζ being the degree of reaction progress. From this equation, the variation of

free energy of an electrochemical reaction ΔeG can be defined as

ΔeG ¼ ∂eG
∂ζ

 !
P,T

¼
X
i

vieμi ð1:16Þ

When a chemical change involving charge species is produced in an electro-

chemical system, under equilibrium conditions the following condition holds:
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ΔeG ¼X
i

vieμi ¼ 0 ð1:17Þ

where eμi is the electrochemical potential of species “i” in the corresponding phase.

When this species is present in two phases α and β in contact, at the equilibrium, the

electrochemical potentials of “i” in both phases are equal, which leads to

μαi þ ziFϕ
α ¼ μβi þ ziFϕ

β ð1:18Þ

1.3.1 Interface Between Two Metals in Contact

The significance of Eq. (1.18) is that, at the contact between two different phases,

for example two different metals, a certain Galvani potential difference exists,

which is generated by the difference between the chemical potential of the electrons

in each metal. So, for example, if an interface Cu–Fe is considered and the

equilibrium is assumed,

eμCue� ¼ eμFee� ð1:19Þ

From Eq. (1.14)

μCue� � FϕCu ¼ μFee� � FϕFe ð1:20Þ

is deduced, which can be written as

CuΔFeϕ ¼
CuΔFeμe�

F
ð1:21Þ

If the contact between two identical metals M and M0 is considered, it holds

MΔM
0
ϕ ¼ 0 since μMe� ¼ μM

0

e� at equilibrium. Under nonequilibrium conditions, the

above does not hold (i.e.,μMe� 6¼ μM
0

e� ) and
MΔM

0
ϕ is the measured potential difference

between the two identical terminals of a suitable voltammeter.

1.4 Electrochemical Potential of the Electron

In the case of electrons from a metal, the electrochemical potential is the work

necessary to add one mole of electrons to the metal

eμM
e� ¼ μMe� � FϕM ¼ μMe� � F χM þ ψM

� � ð1:22Þ

where χM and ψM are the surface and external potentials of the metal, respectively.

μMe� is the chemical potential of the electrons on the metal defined as the sum of the
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bulk potential energy of the free electrons on the metal resulting from electron–ion

and electron–electron interactions Vb
e, which is a negative quantity, and of the

kinetic Fermi energy εFe (see Fig. 1.2) [5, 9–11]

μMe� ¼ NA V b
e þ εFe

� � ð1:23Þ

with NA being the Avogadro’s number. The surface potential energy V s
e is related

with the surface potential χM, V s
e ¼ FχM. The total potential energy Ve is a

stabilizing negative energy,Ve ¼ V b
e þ V s

e . The electron work functionΦ
M
e� given by

ΦM
e� ¼ � Ve þ εFe

� � ð1:24Þ

is the opposite value of the minimum work required to transfer an electron from the

Fermi energy level of a metal across a surface to infinity carrying no net charge,

μMe� ¼ �NAΦ
M
e� þ FχM ð1:25Þ

Note that

�αM
e� ¼ � μMe� � FχM

� � ¼ NAΦ
M
e� ð1:26Þ

with αM
e� being the real potential of electrons at the metal, defined as the electro-

chemical potential of electrons when the metal is not charged (i.e., when ψM ¼ 0).

The work function of different metals, ΦM
e� , is given in Table 1.1

Obviously, different metals would have different chemical potentials and that

would account for differentΦM
e� values. In the case of a given metal,ΦM

e� depends on

its surface structure at atomic level, since the differences between the work function

arise from different dipole layer surfaces.

Fig. 1.2 Schematic view of

the energy diagram for

electrons in a non-charged

metal
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1.5 Nernst’s Equation and Standard Electrode Potentials

For a chemical reaction in solution

aAþ bBÆcCþ dD ð1:IÞ

the variation of Gibbs free energy is given by

ΔG ¼ ΔG��O þ RTln
a c
Ca

d
D

a a
Aa

b
B

� �
ð1:27Þ

At the equilibrium at constant temperature and pressure ΔG ¼ 0 and

Keq ¼ exp
�ΔG��O
RT

� �
¼ a c

Ca
d
D

a a
Aa

b
B

� �
eq

ð1:28Þ

In the case of a redox reaction in a single electrode–solution interface

OzO solð Þ þ ne� Mð ÞÆRzR solð Þ ð1:IIÞ

with

Table 1.1 Values of the

work function for

polycrystalline metal surfaces

[11, 12]

Metal ΦM
e� (eV) Metal ΦM

e� (eV) Metal ΦM
e� (eV)

Ag 4.30 In 3.80 Rh 4.75

Al 4.25 Ir 4.70 Ru 4.60

Au 4.30 La 3.39 Sb 4.08

Ba 2.49 Li 2.38 Sc 3.30

Be 3.92 Mg 3.64 Sm 2.70

Bi 4.40 Mn 3.83 Sn 4.38

Ca 2.80 Mo 4.30 Sr 2.35

Cd 4.10 Na 2.35 Ta 4.12

Ce 3.20 Nb 3.99 Te 4.73

Co 4.41 Nd 3.07 Th 3.41

Cr 4.58 Ni 4.50 Ti 3.95

Cs 1.81 Os 4.70 Tl 4.00

Cu 4.40 Pb 4.00 U 3.74

Fe 4.31 Pd 4.80 V 4.12

Ga 3.96 Pr 2.54 W 4.54

Hf 3.53 Pt 5.32 Zn 4.24

Hg 4.52 Rb 2.16 Zr 3.90

K 2.22 Re 5.00
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n ¼ zO � zR ð1:29Þ

According to Eq. (1.16), under constant temperature and pressure it holds

ΔeG ¼ eμ sol
R � eμ sol

O � neμM
e� ð1:30Þ

where superscripts “sol” and “M” refer to the solution and metallic phases, respec-

tively. By inserting Eqs. (1.11) and (1.14) into Eq. (1.30), one obtains

ΔeG ¼ μ��O,solR þ RTlna sol
R þ zRFϕ

sol � μ��O,solO � RTlna sol
O � zOFϕ

sol

� n μMe� � FϕM
� � ð1:31Þ

Equation (1.31) can be rewritten as

ΔeG ¼ ΔG��O þ RTln
a sol
R

a sol
O

� �
þ nF ϕM � ϕsol� � ð1:32Þ

with

ΔG��O ¼ μ��O,solR � μ��O,solO � nμMe� ð1:33Þ

which is constant at a given temperature and a pressure of 1 bar. Equation (1.32)

illustrates the major characteristic of redox reactions, i.e., the direct relation

between the Galvani potential difference between the solution and the electrode

and the concentrations of the species in solution.

At the equilibrium ΔeG ¼ 0 and [9]

a sol
R

a sol
O

¼ exp
�ΔG��O � nF ϕM � ϕsol� �

RT

 !
ð1:34Þ

A comparison of Eqs. (1.28) and (1.34) indicates that for a redox reaction at the

interface electrode–solution under equilibrium the Galvani potential difference at

the interface is a function of the activities of species O and R in the solution and it is

not possible to fix this potential difference and these activities in an independent

way. In contrast, in a chemical equilibrium the concentrations of all reactant species

are fixed.

The standard potential E��O is the equilibrium potential (that is, the difference of

Galvani potentials between the electrode and the solution phase) of an electrode

under standard state conditions, i.e., with the relative activities of the different

components being equal to the unity at a pressure of 1 bar and a temperature T, and
for the reaction Scheme (1.II) it is given by
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E��O ¼ �ΔG��O

nF
¼ ϕM � ϕsol� �

aR¼aO¼1 ð1:35Þ

By inserting Eq. (1.35) into Eq. (1.34) the well-known Nernst equation is

deduced

E ¼ ϕM � ϕsol ¼ E��O � RT

nF
ln
a sol
R

a sol
O

ð1:36Þ

The productnF ϕM � ϕsol� �
is the work necessary to transfer nmoles of electrons

from the bulk of the metal to the bulk of solution.

Unfortunately, it is impossible to measure an absolute value of ϕM � ϕsol� �
in a

single electrode–solution interface. To measure this potential difference, it is necessary

to build an electrochemical cell with two electrodes. The electrode at which the redox

reaction of interest proceeds is called the “working” electrode and the second electrode

is needed to close the electrical circuit, and is called a “reference” electrode. The

electrode potentials are measured between the working and reference electrodes by

using a high impedance voltammeter to guarantee that there is no current flow through

the circuit [7, 13].

When the standard hydrogen electrode (SHE) is employed as reference electrode

(see Fig. 1.3) with a pressure of 1 bar and activity of protons unity, its standard

potential for the reduction of protons in aqueous acidic media is taken as zero, i.e.,

E��OHþ=H2

h i
SHE
¼ 0 V ð1:37Þ

In this case the reaction taking place is

Hþ sð Þ þ e� Ptð ÞÆ1

2
H2 gð Þ ð1:IIIÞ

Fig. 1.3 The standard

hydrogen electrode
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Under equilibrium conditions it is fulfilled

�eμ sol
Hþ � eμPte� þ 1

2
μgH2
¼ 0 ð1:38Þ

By inserting the definition of chemical and electrochemical potentials (Eqs. 1.11

and 1.14) into Eq. (1.38), one obtains

F ϕPt � ϕsol� � ¼ μ��O,sol
Hþ � 1

2
μ
��O,g
H2
þ μPte� þ RTln a sol

Hþ
p��O

fH2

� �1=2
 !

ð1:39Þ

with fH2
and p��O being the fugacity and the reference pressure of 1 bar. Under standard

conditions, the last term in the right-hand side of Eq. (1.39) vanishes and one obtains

E��OHþ=H2

h i
SHE
¼ 1

F
μ��O,sol
Hþ � 1

2
μ
��O,g
H2
þ μPte�

� �
¼ 0 V ð1:40Þ

In order to determine the standard potentials of other redox couples, electro-

chemical cells are built in which one of the redox reactions corresponds to the

reaction Scheme (1.III). As an example, let us consider the following electrochem-

ical cell (see Fig. 1.4):

CuLjPtjHþ, H2 . . . jj . . .O;RjMjCuR ð1:41Þ

The potential difference of the cell is defined as the difference between the Galvani

potentials at the right (R) and left (L) terminals named here as the copper wires,

E ¼ ϕCu
R � ϕCuL

� �
¼ ϕCu

R � ϕsol
� �

� ϕCu
L � ϕsol

� �
ð1:42Þ

Fig. 1.4 Electrochemical cell for the measure of the electrode potential on the SHE scale
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where it has been assumed that both solutions have the same inner potential. Note also

that in this case the potential difference has been established between the terminals

of the two electrodes and it does not corresponds to the difference in Galvani

potentials between the working electrode phase and the solution which contains

species O or R. In this particular case, we are interested in the difference

ϕCu
R � ϕsol

� �
. The following electrochemical equilibria are established:

– At the contacts between pure metals (M|CuR and CuL|Pt), the electrochemical

potential of the electrons in the two phases are equal

eμCuRe� ¼ eμM
e�eμPte� ¼ eμCuLe�

�
ð1:43Þ

– At the platinum electrode the reaction Scheme (1.III) takes place and Eq. (1.38)

holds.

– In the same way, at the working electrode the process OzO sð Þ þ ne� Mð Þ Ð RzR sð Þ
occurs and

�eμ sol
O � neμM

e� þ eμ sol
R ¼ 0 ð1:44Þ

By applying the definition of electrochemical potential to conditions (1.38),

(1.43), and (1.44) (and taking into account Eq. (1.11)), one obtains

F ϕCu
R � ϕM

� �
¼ μCuRe� � μMe�

F ϕPt � ϕCuL
� �

¼ μPte� � μCu
L

e�

nF ϕM � ϕsol� � ¼ μ��O,solO � μ��O,solR þ nμMe� þ RTln
a sol
O

a sol
R

F ϕsol � ϕPt� � ¼ �μ��O,sol
Hþ þ 1

2
μ
��O,g
H2
� μPte� � RTln a s

Hþ
p��O

fH2

� �1=2
 !

9>>>>>>>>>>>=>>>>>>>>>>>;
ð1:45Þ

The total potential difference between the copper wires can be obtained by

combining Eq. (1.45),

nFE ¼ nF ϕCu
R � ϕCuL

� �
¼ nF ϕCu

R � ϕsol
� �

� ϕCu
L � ϕsol

� �h i
¼ μ��O,solO � μ��O,solR þ RTln

a sol
O

a sol
R

�nμ��O,sol
Hþ þ 1

2
nμ
��O,g
H2
� nRTln a sol

Hþ
p��O

fH2

� �1=2
 ! ð1:46Þ

In the simplest case in which the activities of species O and R are equal

to the unity and the SHE reference electrode is considered, the measured potential
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difference given by Eq. (1.46) is the standard potential E��O of the redox couple

O/R,

E��O ¼ ϕCu
R � ϕsol

� �
aR¼aO¼1

� ϕCu
L � ϕsol

� �
SHE
¼ E��OO,R vs: SHE ð1:47Þ

If the activities of species O and R are different from the unity, the Nernst’s
equation is obtained,

E ¼ E��OO,R þ
RT

nF
ln

a sol
O

a sol
R

� �
ð1:48Þ

The standard potentials for some redox couples in aqueous solution appear in

Table 1.2. More information about formal potentials of a great number of electro-

chemical systems can be found in [14, 15].

Table 1.2 Selected standard

potentials in aqueous solution

(298 K) [13–15]

Redox reaction E��OO,R
Auþ þ e� Ð Au 1.830

Au3þ þ 3e� Ð Au 1.520

Cl2 þ 2e� Ð 2Cl� 1.358

O2 þ 4Hþ þ 4e� Ð 2H2O 1.229

Agþ þ e� Ð Ag 0.799

Fe3þ þ e� Ð Fe2þ 0.771

O2 þ 2Hþ þ 2e� Ð H2O2 0.695

I2 þ 2e� Ð I� 0.535

Cuþ þ e� Ð Cu 0.520

O2 þ 2H2Oþ 4e� Ð 4OH� 0.401

Cu2þ þ e� Ð Cuþ 0.159

Hþ þ e� Ð 1
2
H2 0.000

Fe3þ þ 3e� Ð Fe �0:040
Co2þ þ 2e� Ð Co �0:277
Cr3þ þ 3e� Ð Cr �0:400
Cd2þ þ 2e� Ð Cd �0:402
Fe2þ þ 2e� Ð Fe �0:440
Zn2þ þ 2e� Ð Zn �0.76
H2Oþ e� Ð 1

2
H2 þ OH� �0:828

Mn2þ þ 2e� Ð Mn �1:180
Al3þ þ 3e� Ð Al �1:676
Mg2þ þ 2e� Ð Mg �2:356
Naþ þ e� Ð Na �2:714
Kþ þ e� Ð K �2:925
Liþ þ e� Ð Li �3:045
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When other reference electrodes are used as, for example, the saturated Calomel

electrode (SCE), a constant quantity needs to be added to the right-hand side of

Nernst’s equation which reflects the difference between the SCE and the SHE

electrodes, i.e., in this case the standard potential is

E��O ¼ ϕCu
R � ϕsol

� �
aR¼aO¼1

� ϕCu
L � ϕsol

� �
SCE
� ϕCu

L � ϕsol
� �

SHE

h i
ð1:49Þ

The election of the appropriate reference electrode for a given electrochemical

system is conditioned by different factors (like the solvent or the temperature). The

most important characteristic of a reference electrode is that it should provide a

constant and reproducible potential difference when connected to the other semi-

cell unit. For a detailed list of different reference electrodes, see [15–17].

1.5.1 Formal Electrode Potentials

It is very rare for the activities of all species involved in an electrode reaction to be

constrained to be the unity. In general, the electrode potential is influenced by these

activities in the form given by the Nernst’s equation (Eq. 1.36). When the reactants

or products are in solution, the Nernst’s equation can be approximated by replacing

the activities by the concentrations, but this can be a very rough approximation in

the case of ions. The usual procedure, given that the activity coefficients are almost

always unknown, is to incorporate them into the E��O term writing, for example

E ¼ E��O � RT

nF
ln
a sol
R

a sol
O

¼ E��O � RT

nF
ln
γR
γO
� RT

nF
ln
c solR

c solO

¼ E��O
0

c �
RT

nF
ln
c solR

c solO

ð1:50Þ

with E��O
0

c being the formal (or conditional) electrode potential,

E��O
0

c ¼ E��O � RT

nF
ln
γR
γO

ð1:51Þ

The term “conditional” indicates that its determination is related to specific

conditions, which usually deviate from standard conditions. In general, formal

potentials may deviate from standard potentials by between a few and hundreds of

mV. These deviations are caused not only because of non-unity activity coefficients

but also because of the presence of chemical equilibria (see for example [18]).
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1.6 Electrical Double Layer

An interface is the region between two phases where the structure and composition

is different from that in the bulk of the phases. The thickness of this region extends a

few molecular diameters into each phase. When a potential is applied to an interface

(i.e., electrode–solution), it presents a resistance to accept current generation (or,

vice versa, when a current is applied to the potential change). If the effective

resistance is low, the interface is permeable to the charge carriers and is known

as “non-polarizable.” In the contrary case, the interface is impermeable to the

charge carriers and we are speaking of a “polarizable” interface (the limiting

cases of null and infinite resistance correspond to ideally non-polarizable and

ideally polarizable interfaces [3, 7, 13]). These behaviors are schematized in

Fig. 1.5.

The electrical behavior of a metal–solution interface is similar to that shown by

the equivalent circuit in Fig. 1.6 formed by a capacitor and a resistor connected in

parallel. If the resistance is small, the potential changes across the capacitor are

Fig. 1.5 Current–potential plot for polarizable and non-polarizable interphases

Fig. 1.6 Equivalent circuit for a two-electrode cell. A single interface is usually represented by

the elements in the dashed rectangle. Cdl, RF, and Rs denote the double-layer capacitance, the

Faradaic resistance, and the solution resistance, respectively
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compensated by the charge transfer through the low-resistance whereas the capac-

itor changes up to applied potential if the resistance is high.

A “non-polarizable” electrode–solution interface is a reversible electrode.

Therefore, the potential is determined by the composition of the solution based

on the Nernst equation (given by Eq. 1.36). So, for example, for the copper

electrode in a solution of CuSO4 the potential is given by

E ¼ E��O þ RT

2F
ln a sol

Cu2þ ð1:52Þ

withE��O being the standard potential of the coupleCu2þ=Cuwith respect to the SHE
and a sol

Cu2þ the activity of the cupric ions in solution.

In general, an electrical double layer exists whenever two conducting phases

meet at an interface that is impermeable to the charge [2, 7, 10].2 Here, the

electrode–electrolyte interface is considered when it behaves as ideally polarizable,

that is, by supposing that the electrode potential is kept in a range in which no, or

only negligible, electrochemical reactions occur [2]. This interface can be described

as a capacitor so the charge can be accumulated on the metal side using an external

voltage source which gives rise to the establishment of equal and opposite charge in

the solution side. The properties of the electrical double layer are characterized by

the electrostatic equilibrium.

The surface tension σ is a special intensive property of the interface related to an
energy per unit area and it depends on the temperature, the composition of the

adjacent phases and of the shape of the interface. The surface tension of a liquid is

in a direct relation with the magnitude of the intermolecular forces.

The liquid metal mercury–solution interface presents the advantage that it

approaches closest to an ideal polarizable interface and, therefore, it adopts the

potential difference applied between it and a non-polarizable interface. For this

reason, the mercury–solution interface has been extensively selected to carry out

measurements of the surface tension dependence on the applied potential. In the

case of other metal–solution interfaces, the thermodynamic study is much more

complex since the changes in the interfacial area are determined by the increase of

the number of surface atoms (plastic deformation) or by the increase of the

interatomic lattice spacing (elastic deformation) [2, 4].

The thermodynamic treatment of an interface generally considers a system

composed of the interface (γ) and two adjacent homogeneous phases (α and β).
The extensive properties of the systems must be ascribed to these three regions, for

example, the Gibbs free energy G and the number of moles of a species in the

system fulfill

2 This double layer may also form in systems as, for example, the interface between two metals of

different nature (with different work functions) or between two immiscible electrolytes and even

when one of the two phases is an insulator or a semiconductor [7, 10].
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G ¼ Gα þ Gβ þ Gγ

ni ¼ nαi þ nβi þ n γi
ð1:53Þ

By assuming that the interface has no volume (Gibbs convention), the following

equations can be written:

dGα ¼ �SαdTþ VαdPþ
X
i

μαi dn
α
i

dGβ ¼ �SβdTþ VβdPþ
X
i

μβi dn
β
i

dGγ ¼ �SγdTþ σdAγ þ
X
i

μγi dn
γ
i

ð1:54Þ

where σdAγ is the necessary work to increase the interface area, Aγ.
Under constant temperature conditions, Eq. (1.54) for the interface becomes

dGγ ¼ σdAγ þ
X
i

μγi dn
γ
i ð1:55Þ

As the Gibbs energy is a first-order homogenous function of the extensive

variables Aγ and nγi , the application of Euler’s theorem yields

Gγ ¼ σAγ þ
X
i

μγi n
γ
i ð1:56Þ

By differentiation Eq. (1.56) and comparing the result with (1.55), one obtainsX
i

n γi dμ
γ
i þ Aγdσ ¼ 0 ð1:57Þ

By solving the surface tension and denoting surface excess of species i,

Γi ¼ n γi =A
γ , the Gibbs’s isotherm is obtained:

�dσ ¼
X
i

Γidμ
γ
i ð1:58Þ

This equation will be applied to an electrochemical cell formed by a polarizable

and non-polarizable interface in line with the scheme

Hg KCl aqueousð Þj Hg2Cl2j Hg0j ð1:59Þ

For the thermodynamic study of the mercury–solution interface, the electro-

chemical potential will be used in Gibbs’s isotherm instead of the chemical poten-

tial, due to the presence of charged species. In the metal side of the interface, the

components are the electrons in excess and the mercury metal whereas in solution

the two ions of the electrolyte and the solvent must be considered in the sum,
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�dσ ¼
X
i

Γideμi
¼ ΓHgdμHg þ Γe�deμe� þ ΓKþdeμKþ þ ΓCl�deμCl� þ ΓWdμW ð1:60Þ

Equation (1.60) is only valid for liquid–liquid interfaces. The term

corresponding to electron is related to the charge density in the metal, qM

Γe�deμe� ¼ �FΓe�dϕ
Hg ¼ qMdϕHg ð1:61Þ

The charge excess in solution, qs, is related with the surface excess of cations and
anions in solution,

qs ¼ �qM ¼ FΓKþ � FΓCl� ð1:62Þ

At the non-polarizable interface the electrochemical equilibrium holds (with the

reaction being 2Hg
0 þ 2Cl�ÆHg2Cl2 þ 2e�; see scheme (1.59)). So,

μHg2Cl2 þ 2eμHg0e� ¼ 2μHg0 þ 2eμCl�
2deμHg0e� ¼ �2FdϕHg

0 ¼ 2deμCl�
)

ð1:63Þ

The chemical potential of the electrolyte in solution is given by

μKCl ¼ eμKþ þ eμCl� ð1:64Þ

The ionic terms in Eq. (1.60) can be rewritten as

ΓKþdeμKþ þ ΓCl�deμCl� ¼ ΓKþdμ
KCl � ΓKþdeμCl� þ ΓCl�deμCl� ¼

¼ ΓKþdμ
KCl � qs

F
deμCl� ¼ ΓKþdμ

KCl þ qM

F
deμCl� ð1:65Þ

Equation (1.60), taking into account (1.61)–(1.65) and that dμHg ¼ 0, becomes

�dσ ¼ qM dϕHg � dϕHg
0� �
þ ΓKþdμ

KCl þ ΓWdμW ð1:66Þ

dϕHg � dϕHg
0� �

is the Galvani potential difference between two phases of identical

composition and it can be experimentally measured. It will be denoted as E�
because the non-polarizable electrode responds to the activity of the anions in

solution.

In line with the Gibbs–Duhem equation,

xsdμ
KCl þ xWdμ

W ¼ 0 ð1:67Þ
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where xi is the molar fraction of species i (with i¼KCl for the electrolyte and i¼W

for the solvent), the last two terms in the right-hand side of Eq. (1.66) can be written as

ΓKþdμ
KCl þ ΓWdμW ¼ ΓKþ �

xKCl
xW
ΓW

� �
dμKCl ¼ Γ Wð Þ

Kþ dμKCl ð1:68Þ

whereΓ Wð Þ
Kþ ¼ ΓKþ � xKCl=xWð ÞΓWð Þ is the relative surface excess of ionsKþ [4, 13,

19, 20]. The relative excess is independent of the particular choice of the dividing

surface in the Gibbs model for the interface [14]. Only relative excesses can be

experimentally measured. The final form of Eq. (1.66) is

�dσ ¼ qMdE� þ Γ Wð Þ
Kþ dμKCl ð1:69Þ

If the non-polarizable electrode is sensitive to the cation of the electrolyte

(consider, for example, the cell Cu|Hg|KCl (ac.)|K(Hg)|Cu0), a similar result

would be obtained

�dσ ¼ qMdEþ þ Γ Wð Þ
Cl� dμ

KCl ð1:70Þ

In general, the result for a 1–1 electrolyte is

�dσ ¼ qMdE� þ Γ Wð Þ
� dμelectrolyte ð1:71Þ

The election of a reference electrode sensitive to one of the ions of the electro-

lyte leads to the appearance in Eq. (1.71) of the surface excess of the other.

Equation (1.71) is usually named as Lippman’s electrocapillary equation.

The surface charge of the metal qM is

qM ¼ � ∂σ
∂E�

� �
μelectrolyte

ð1:72Þ

In agreement with Eq. (1.72), at the potential of the electrocapillary maximum

qM ¼ qs ¼ 0, i.e., the free net charge on the interface is null. For this reason, this

potential is called the zero charge potential (PZC, Ez), and its determination is of

great interest in the thermodynamic study of the interface (see Figs. 1.7 and 1.8).

From the surface tension data obtained for different electrolyte concentrations,

the relative ionic surface excesses can be determined. Thus, for the cell Hg|

KCl (aqueous)|Hg2Cl2|Hg
0, from Eq. (1.69), the cation excess is given by

Γ Wð Þ
Kþ ¼ �

∂σ
∂μKCl

� �
E�

¼ � ∂σ
RT∂lnaKCl

� �
E�

ð1:73Þ
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where aKCl is the electrolyte activity. The cationic surface excess is proportional to
the cationic density charge in solution which for a 1–1 electrolyte is

qþ ¼ FΓ Wð Þ
Kþ ð1:74Þ

Fig. 1.7 Surface tension of

mercury in contact with

aqueous solutions of the salt

named. T¼ 291 K.

Abscissas are measured

relative to a “rational” scale

in which the potential

difference between the

mercury and a capillary-

inactive electrolyte is

arbitrarily set equal to zero

at the electrocapillary

maximum. Taken from [19]

with permission

Fig. 1.8 Electronic charge

on mercury surface in

contact with one-normal

solutions (with respect to

anion charge) aqueous

solutions of the salts named.

T¼ 298 K. Taken from [19]

with permission
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The corresponding anionic charge can be obtained from the electroneutrality

condition,

q� ¼ qs � qþ ¼ �qM � qþ ð1:75Þ

which leads to the anionic excess

Γ Wð Þ
� ¼ �q�

F
ð1:76Þ

Other interesting properties are the differential (Cd) and integral (Ci) capacitances,

defined as

Cd ¼ � ∂2σ

∂E2
�

 !
μelectrolyte

¼ ∂qM

∂E�

� �
μelectrolyte

ð1:77Þ

Ci ¼ qM

E� EZ

¼

ð E
EZ

CddEð E
EZ

dE

ð1:78Þ

Except in special cases, the differential capacitance Cd is the most useful

magnitude (see Fig. 1.9) since it is that measured with impedance techniques,

although the integral capacitance is of interest as average data [13, 19].

Equations (1.72)–(1.78) provide relationships between characteristic parameters

of the interface (qM, qs, Cd, Ci, and surface concentrations of ionic species) and

macroscopic magnitudes such as the surface tension, the applied potential and the

bulk concentration of electrolyte. However, they provide no information about the

double-layer structure. Next, some theoretical models about the structural and

geometrical description of the electrical double layer are discussed briefly.

1.6.1 Models for the Electrical Double Layer

The first double-layer model was developed by Helmholtz more than 100 years ago

[4, 13, 19, 21]. This model postulates the double layer as two charged phases, the

polarized metal electrode (if the non-electrolytic phase is a metal or electronic

conductor) and other parallel layer with the ions of the solution separated by a

distance “d.”3

3 The capacitance of the Helmholtz parallel plate capacitor per surface unit is given byCH ¼ εrε0=d,
where εr is the dielectric constant or the relative electric permittivity of the Hemholtz layer and ε0 the
electrical permittivity of free space (ε0 ¼ 8:854� 10�12 C2 J�1 m�1) [3, 4].
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However, unlike ordinary capacitors, the experimental observations show that

the ratio q/Δϕ varies with the potential imposed and, therefore, in contrast to what

Helmholtz predicted, asymmetric electrocapillary curves with respect to the surface

tension σ edge as in Fig. 1.7 are obtained.

Later, the Gouy–Chapman–Stern model [2, 19, 22–24] describes the interface in

the absence of specific adsorption by assuming that the ions can approach the

Fig. 1.9 Differential capacitance of the electrical double layer between mercury and aqueous

solutions of the salts named. T¼ 298 K. Taken from [18] with permission
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electrode surface only up to the Outer Helmholtz Plane (OHP; see Fig. 1.10), from

which a diffuse layer is spread into the solution. This layer is in electrostatic and

osmotic equilibrium with the ions obeying a Boltzmann’s distribution law (in which

the energy terms are purely electrostatic). It is also assumed that the ions of this

diffuse layer interact with the electric field as point charges in a continuous

dielectric and that the electrical potential depends only on the distance at the

OHP, defined as the plane of the closest approach of non-specifically adsorbed

ions (see Fig. 1.10). The Gouy–Chapman capacitance per surface unit for a z–z
electrolyte is given by

Fig. 1.10 Schematic view of the electrical double layer in agreement with the Gouy–Chapman–

Stern–Grahame models. The metallic electrode has a negative net charge and the solvated cations

define the inner limit of the diffuse later at the Helmholtz outer plane (OHP). There are anions

adsorbed at the electrode which are located at the inner Helmholtz plane (IHP). The presence of

such anions is stabilized by the corresponding “images” at the electrode in such a way that each

adsorbed ion establishes the presence of a surface dipole at the interface
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CG-Ch ¼ εrε0
LD

cosh
ze0 ϕ

OHP � ϕz
� �

2kT

 !
ð1:79Þ

where ϕOHP is the electrode potential at the OHP, ϕz is the potential of zero charge

and LD is the well-known Debye length obtained from the Debye–Hückel theory for

electrolyte solutions given by

LD ¼ εrε0kT

2 ze0ð Þ2n0

 !1=2

ð1:80Þ

with n0 being the number of ions in the bulk of the solution, e0 the electron charge,

and k and T the Boltzmann’s constant and the temperature.

Mathematically, the interface can be described as two capacitors in series:

1

Cd

¼ 1

Cinn

þ 1

CG-Ch

ð1:81Þ

Cinn is the capacitance due to the inner layer, which can be experimentally

obtained from the plot of 1/Cd (with Cd being the capacitance measured at a

given charge density) for several electrolyte concentrations versus the calculated

1/CG ‐Ch at a constant surface charge density (Parsons and Zobel plot) [2]. If this

plot is not linear, this is an indication that specific adsorption occurs.

At low electrolyte concentrations (� 10�3 M solutions), theCG ‐Ch term dominates

and the inner term can be neglected in Eq. (1.81). Thus, the Gouy–Chapman model

agrees well with the experimental values of the double-layer capacitance of

non-adsorbing electrolytes. Contrarily, for high electrolyte concentrations the exten-

sion of the space charged layer in solution is small and theCinn term becomes dominant

(see Fig. 1.11). The inner capacitance Cinn depends strongly on the charge density of

the metal (showing a maximum at the PZC), and it is extremely sensitive to the nature

E-EPZC / V
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Fig. 1.11 Behavior of Cd as

a function of the electrolyte

concentration for the Stern’s
model of the electrical

double layer, calculated

from Eq. (1.81) for a 1:1

electrolyte.

Cinn ¼ 345 μF cm�2. The
concentration of the

electrolyte (in M) appears

on the curves
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of the metal and the solvent. Several models have been proposed to explain this

behavior. All of them coincide in that Cinn contains contributions from both the

metal and the solution at the interface [2, 25]. Thus, the finite size of ions and solvent

molecules confers a complex structure to the interface. The decrease of Cinn at

potentials far from the PZC can be caused by a dielectric saturation leading to a

decrease of the dielectric permittivity.On the other hand, the dependence of the surface

potential of the metal χ on the charge density causes an increase of the capacitance.
A simple model for the metal called jellium has been used to explain this last

effect [25]. The model describes the metal as positively charged ions and negative

charged electrons. The ionic charge gives rise to a constant positive background

charge which drops to zero at the metal surface whereas the electrons are

modeled as a quantum-mechanical plasma which interacts with the positive

charge and with other external fields. The resulting electronic charge distribution

generates a surface dipole moment which leads to a surface potential of the order

of several volts. The electric field in the double layer distorts this electronic

distribution in the metal and changes the surface potential χ, leading to an

increase of the capacitance.

1.6.2 Specific Adsorption

Specific adsorption occurs when the concentration of a species at the interface is greater

than one would expect on the basis of electrostatic interactions only [2, 4, 13]. It is

usually caused by chemical interactions between the adsorbate and the electrode

(chemisorption) although in some cases it is due to weaker interactions such as

intermolecular forces (physisorption). The interaction of the adsorbate with the elec-

trode needs to be stronger than that of the solvent. So, adsorption involves, at least, a

partial desolvation of the electrode (anions are more likely to be adsorbed than cations).

Due to its chemical nature, chemisorption occurs at specific places of the electrode

surface.

The amount of adsorbed species is given in terms of the coverage or fraction of

the electrode surface covered by the adsorbate, θ. The relationship between the

coverage and the concentration in solution of a species under equilibrium condi-

tions is called an “adsorption isotherm.” The ones most employed in electro-

chemistry are the Langmuir and Frumkin isotherms, deduced from statistical

consideration and assuming absence or presence of interactions between the

adsorbed molecules in the former and the latter, respectively.

In the discussion of the differentmodels for the structure of double layer developed

up to this point, no specific interactions have been considered. However, specific

adsorption is a common phenomena in electrochemistry. Since the interactions

implied have to be very short range in nature, the chemisorbed species are strongly

bound to the electrode surface with the locus of their centers being the inner Helm-

holtz plane (IHP, see Fig. 1.10), or compact part of the double layer.
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Experimental evidence of the presence of specific adsorption can be found from

thermodynamic measures both from the values of relative excesses or from the

shift of the PZC with the electrolyte concentrations [19]. Currently, this presence

can be determined from the combination of electrochemical and spectroscopic

methods [4].

Specific adsorption can greatly alter the potential profile in the interfacial region.

If we consider the presence of adsorbed ions at the IHP and assume that the solution

is concentrated such that the potential drop in the diffuse layer beyond the OHP can

be neglected, the total potential difference across the interface could be divided into

two components, one from the metal to the IHP and the other from the IHP to the

OHP,

ϕM � ϕsol ¼ ϕM � ϕIHP� �þ ϕIHP � ϕOHP� � ð1:82Þ

Each of those potential drops can be written in terms of the corresponding

integral capacitance Ci (see Eq. 1.78),

ϕM � ϕIHP ¼ qM

CM!IHP
i

ϕIHP � ϕOHP ¼ qM þ qad

CIHP!OHP
i

9>>>>=>>>>; ð1:83Þ

with qad being the charge due to the adsorbed ions. By combining Eqs. (1.82) and

(1.83), one obtains

ϕM � ϕsol ¼ qM

C inn
i

þ qad

CIHP!OHP
i

ð1:84Þ

with Cinn
i being the integral capacitance of the inner layer given by

1

C inn
i

¼ 1

CM!IHP
i

þ 1

CIHP!OHP
i

ð1:85Þ

The changes in the potential profile of the interfacial region because specific

adsorption do indeed affect the electrode kinetics of charge transfer processes,

particularly when these have an inner sphere character [13, 26] (see Fig. 1.12).

When this influence leads to an improvement of the current response of these

processes, the global effect is called “electrocatalysis.”
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1.7 Kinetics of the Charge Transfer

Let us consider the kinetics of a one-electron transfer between a metal electrode and

a molecule in solution via an outer-sphere mechanism (no strong interaction

between the electroactive species and the electrode takes place; see Fig. 1.12) and

with no bond breaking or formation:

Oþ e� Æ
kred

kox
R ð1:IVÞ

Fig. 1.12 Schematic view of outer-sphere and inner-sphere reactions. IHP and OHP refer to the

inner and outer Helmholtz planes, respectively
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A distinguishing aspect in electrode kinetics is that the heterogeneous rate

constants, kred and kox, can be controlled externally by the difference between the

inner potential in the metal electrode (ϕM) and in solution (ϕsol); that is, through the
interfacial potential difference E ¼ ϕM � ϕsol. With the help of an appropriate

electrode setup (typically, a three-electrode arrangement and a potentiostat), the

E-value can be varied in order to distort the electrochemical equilibrium and favor

the electro-oxidation or electro-reduction reactions. Thus, the molar electrochem-

ical Gibbs energy of reaction Scheme (1.IV), as derived from the electrochemical

potentials of the reactant and product species, can be written as (see Eqs. 1.32 and

1.33 with n¼ 1)

ΔeG ¼ ΔG��O þ RTln
a sol
R

a sol
O

� �
þ F ϕM � ϕsol� � ð1:86Þ

where superscript “sol” refers to the values of the activities in solution.

Under electrochemical equilibrium conditions (ΔeG ¼ 0), the interfacial poten-

tial difference is given by the Nernst equation (see Eqs. 1.34 and 1.36):

EEq ¼ ϕM � ϕsol� �
Eq
¼ �ΔG��O

F
� RT

F
ln

a sol
R

a sol
O

� �
¼ E��O � RT

F
ln

a sol
R

a sol
O

� �
ð1:87Þ

where ΔG��O is the reaction standard Gibbs energy and E��O the standard potential of

the redox couple, which contains the nonelectrical terms of the free energy. As

stated in Sect. 1.5.1, it is more practical to work in terms of concentrations so

Eq. (1.87) can be rewritten as

EEq ¼ ϕM � ϕsol� �
Eq
¼ E��O

0

c �
RT

F
ln

c solR

c solO

� �
ð1:88Þ

with E��O
0

c being the formal potential given by Eq. (1.51). It is important to highlight

that the values of the interfacial potential at the working electrode (E) as well as the

standard and formal redox potentials (E��O and E��O
0

c ) are relative to the potential of a

reference electrode.

Attending to Eq. (1.87), the expression for the reaction Gibbs energy (1.86) can

be rewritten as

ΔeG ¼ F ϕM � ϕsol� �� ϕM � ϕsol� �
Eq

h i
¼ F E� EEq

� � ð1:89Þ

From the above expression, it is evident that when the applied potential is more

negative than EEq, the interfacial electrochemical equilibrium is broken and the

electro-reduction of the oxidized species is thermodynamically favorable.
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It is found that heterogeneous electron transfer reactions follow first-order

kinetics with respect to the interfacial concentrations of the electroactive species,

csO and csR, such that4

vred ¼ kredc
s
O

vox ¼ koxc
s
R

ð1:90Þ

where it is considered that the electron transfer takes place at a fixed distance

corresponding to the distance of closest approach to the electrode surface (i.e., the

Outer Helmholtz Plane) though electron tunneling is effective in a range of several

angstroms [27].

The overall rate of the resulting electro-reduction process, v, is given by

v ¼ kredc
s
O � koxc

s
R ð1:91Þ

which is directly related to the measured current as follows:

I

FA
¼ kredc

s
O � koxc

s
R ð1:92Þ

Within a transition-state framework (Fig. 1.13) with the transition state being the

same for the reduction “Oþ e� ! R” and oxidation “R! Oþ e�” reactions for a
given E-value and the barrier being overcome by sufficient thermal activation, the

expressions for the rate constants as a function of the activation energies for the

∼ ∼

∼
∼

Fig. 1.13 Influence of the

applied potential E on the

energy barrier of the

heterogeneous electron

transfer process:

Oþ e� Ð R. The gray line

corresponds to E ¼ E��O
0

c and

the blue line to E < E��O
0

c ,

where the electrochemical

potential of the electron is

increased by the amount

F E� E��O
0

c

� �
. The energy of

the oxidized and reduced

species is supposed to be

unaffected by the change

in E

4 It will be assumed in this section that the mass transport is much more rapid than the redox

kinetics, such that the activities or concentrations of species O and R at the electrode–solution

interface can be considered as identical to their bulk values (i.e., a s
i ¼ a sol

i and c si ¼ c soli with i¼O,

R). The influence of the mass transport on the current–potential response is treated in Sect. 1.8.
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electro-reduction and electro-oxidation reactions (ΔeG{
red and ΔeG{

ox, respectively)

are given by

kred ¼ Aredexp �ΔeG{
red

RT

 !

kox ¼ Aoxexp �ΔeG{
ox

RT

 ! ð1:93Þ

with the activation energies being related through the standard reaction Gibbs

energy as follows:

ΔeG{
red � ΔeG{

ox ¼ F E� E��O
0

c

� �
ð1:94Þ

As discussed below, any proper description of the system needs to consider the

continuum of electronic levels in the metal (see Sect. 1.7.2.1). Therefore, one can

act on the activation barriers, and hence, on the electrode kinetics, by varying the

applied potential difference, E. For example, when the electrode potential is set to a

value smaller than the formal potential (see Fig. 1.13), the Gibbs energy of the

electrons (and therefore that of the “reactants” Oþ e� ) is increased by

F E� E��O
0

c

� �			 			 according to (1.89) under standard conditions. As a result, the

energy barrier for the electro-oxidation process is reduced with respect to the barrier

for the electro-reduction.

At the equilibrium potential, E ¼ EEq, the electro-oxidation and electro-

reduction rates are equal (kredc
s
O ¼ koxc

s
R) such that

kred EEq

� �
kox EEq

� � ¼ c sR
c sO

ð1:95Þ

Attending to the definitions of the rate constants (1.93), to Eq. (1.94), and to the

Nernst relationship (1.88), Eq. (1.95) leads to Ared ¼ Aox ¼ A.
Let us now consider a second particular case where the applied potential

corresponds to the formal potential. According to Eq. (1.94), the activation energies

are equal when E ¼ E��O
0

c :

ΔeG{
red E��O

0

c

� �
¼ ΔeG{

ox E��O
0

c

� �
¼ ΔeG{ E��O

0

c

� �
ð1:96Þ

such that, assuming that the pre-exponential factor is potential independent, the

value of the rate constants is also the same:

30 1 Some Fundamental Concepts



kred E��O
0

c

� �
¼ kox E��O

0

c

� �
¼ A exp �

ΔeG{ E��O
0

c

� �
RT

0@ 1A ¼ k0 ð1:97Þ

where k0 is the standard heterogeneous rate constant corresponding to the rate

constant of the reduction/oxidation reactions at the formal potential. The k0-value
informs about the speed of the electrode reaction: the smaller k0, the more sluggish

the electron transfer.

Finally, from the definition for k0, the expressions for the rate constants (1.93)

can be written as

kred ¼ k0exp �
ΔeG{

red Eð Þ � ΔeG{ E��O
0

c

� �
RT

0@ 1A8<:
9=;

kox ¼ k0exp �
ΔeG{

ox Eð Þ � ΔeG{ E��O
0

c

� �
RT

0@ 1A8<:
9=;

ð1:98Þ

Accordingly, the potential dependence of the electrode kinetics is determined by

the variation of the activation energy with E, which is established by the “position”
of the transition state on the energy profile in Fig. 1.13. This key aspect has been

addressed in different ways by the different kinetic models developed. In the

following sections, the two main models employed in interfacial electrochemistry

will be reviewed.

1.7.1 The Butler–Volmer Model

In the phenomenological Butler–Volmer model (BV) [28, 29], the effect of the

applied potential E on the energy of the transition state is assumed to be between

that of the oxidized and reduced states, although no molecular description of the

activation process is proposed. Accordingly, the activation energies for the reduc-

tion and oxidation reactions can be written as:

ΔeG{BV
red Eð Þ ¼ ΔeG{ E��O

0

c

� �
þ αF E� E��O

0

c

� �
ΔeG{BV

ox Eð Þ ¼ ΔeG{ E��O
0

c

� �
� βF E� E��O

0

c

� � ð1:99Þ

where α and β are the cathodic and anodic transfer coefficients (0 < α < 1 and 0

< β < 1), respectively. The α and β values are supposed to be potential independent
in the BV formalism and they fulfill that αþ β ¼ 1 (as concluded from Eq. (1.94)).

According to Eq. (1.99), the activation energies for the reduction and oxidation
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processes in BV are predicted to vary linearly with the applied potential and the

magnitude of this variation is parameterized by the transfer coefficients:

α ¼ 1

F

∂ΔeG{BV
red Eð Þ
∂E

β ¼ �1
F

∂ΔeG{BV
ox Eð Þ
∂E

ð1:100Þ

By substitution of the expressions for the activation energies (1.99) in Eq. (1.98),

the well-known equations for the BV rate constants are finally obtained:

kBVred ¼ k0exp �
αF E� E��O

0

c

� �
RT

8<:
9=;

kBVox ¼ k0exp
1� αð ÞF E� E��O

0

c

� �
RT

8<:
9=;

ð1:101Þ

Accordingly, the BV model predicts an exponential variation of the electro-

chemical heterogeneous rate constants with the applied potential. Thus, as shown in

Fig. 1.14, the cathodic rate constant increases when the applied potential E is more

negative with respect to the formal potential whereas the opposite behavior is

predicted for the oxidation rate constant. Note that according to the BV model,

the heterogeneous rate constants can be increased (or decreased) unlimitedly by

applying larger overpotentials. As discussed below, this is a key difference with

respect to the Marcus–Hush model. Figure 1.14 also illustrates that the variation of

the rate constants with the applied potential depends on the value of the transfer

coefficient which can be defined as

-800 -600 -400 -200 0 200 400 600 800
-20

-10

0

10

20

kred kox

decreasing 

decreasing 

 

Fig. 1.14 Variation of the

reduction and oxidation rate

constants with the applied

potential according to the

Butler–Volmer kinetic

model
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α ¼ � RT

F

∂ln kBVred
k0

� �
∂E

¼ 1� RT

F

∂ln kBVox
k0

� �
∂E

ð1:102Þ

Thus, the plots ln kBVred=k
0

� �
vs E� E��O

0

c

� �
and ln kBVox =k

0
� �

vs E� E��O
0

c

� �
are

only symmetrical with respect to E� E��O
0

c

� �
when α ¼ 0:5 so it is fulfilled that

kα¼0:5red E� E��O
0

c

� �
¼ kα¼0:5ox � E� E��O

0

c

� �� �
. For α 6¼ 0:5, this relationship does not

hold and the abovementioned plots are asymmetric.

The BV model is largely employed in interfacial electrochemistry and it has

been satisfactorily applied over the years to describe and classify the kinetics of

many redox systems with simple expressions for the rate constants (Eq. 1.101) and

in terms of only three parameters (k0, α, and E��O
0

c ). Nevertheless, BV has some

drawbacks. BV is an empirical model and so offers very limited physical insights

into the electron transfer event and the nature of the system. This restricts the

possibility of making predictions and obtaining molecular information of the

system from electrochemical measurements. Moreover, experimental deviations

have been reported from the ad infinitum, exponential variations of the rate

constants with the overpotential predicted by BV, which are more apparent in the

case of surface-confined redox systems [30].

1.7.2 The Marcus–Hush Model

Microscopic models of electron transfer processes aim to provide a connection

between the nature of the system and the electron transfer event that is lacking in

BV. This enables us to rationalize experimental data in terms of the molecular

properties of the system as well as to make predictions. Such approaches include

“first-principles” basis for the calculation of the corresponding energy surface and

the identification of the fundamental factors behind the activation barrier and the

“meaning” of the reaction coordinate.

The Marcus–Hush model [31, 32] tackles the above questions by the harmonic

oscillator approximation for the internal energy of the reactant and product states

and by applying the Franck–Condon principle and the law of conservation of

energy. Figure 1.15 displays the quadratic variation of the Gibbs energy of reactants

and products with the reaction coordinate, q, as described in the Marcus theory

[31, 33]. This dependence can be identified with the change in the Gibbs free energy

because in this model there is no change in the entropy. For the sake of clarity, a

single, global reaction coordinate q is considered that combines the vibrational and

solvent coordinates (lengths and angles of chemical bonds and orientation of solvent

dipole) affected upon the electron transfer, which otherwise lead to a many-

dimensional energy surface [34].

The Franck–Condon principle establishes that the atomic nuclei are effectively

immobile on the electron tunneling, that is, the nuclear motions can be
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approximated as “frozen” such that the nuclear configurations do not change. Also,

given that the “electronic transition” is radiationless, energy conservation requires

that the energies of the initial and final states are the same. From the above two

considerations, it is concluded that the electron transfer can only occur at the

intersection between the two Gibbs energy curves where the oxidized and reduced

states have the same configuration and energy. Accordingly, the activation barrier

arises from the need for rearrangement of the structure of the electroactive species

and their “surroundings” to the configuration of the transition state where the

electron transfer event is possible.

Assuming that the degree of adiabaticity is small enough (i.e., the resonance

energy is small), the activation energy for the reaction can be calculated from the

intersection of the two parabolas in Fig. 1.15. The difference between the Gibbs

energy of the oxidized and reduced systems as a function of the reaction coordinate

(q) is given by

eGred qð Þ � eGox qð Þ ¼
¼ F E� E��O

0

c

� �
þ k

2
q� qRð Þ2 � q� qOð Þ2

n o ð1:103Þ

where qO and qR refer to the equilibrium configurations of the oxidized and reduced

states, respectively. Also, it has been assumed that the force constants of the

harmonic oscillators approximating the behavior of the oxidized and reduced

species take the same value k in accordance with the most commonly used,

symmetric version of the Marcus theory [30]. Otherwise, different force constants

can be included in the theoretical treatment by using of the asymmetric Marcus

theory [32, 34].

As discussed above, at the transition state (q ¼ q{) it is fulfilled that eGred q{
� �

¼ eGox q{
� �

such that from Eq. (1.103) it can be deduced that

Reaction coordinate

G
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 e
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y

O + e- R

λ

0( )F E E ′−

†

†
( )†

redG EΔ ( )†
oxG EΔ

( )0† EG ′Δ( )0† EG ′Δ

Fig. 1.15 Schematic of the

energy curves in the

Marcus–Hush model with a

single, global reaction

coordinate q such that the

potential energy hyper-

surface reduces to two

parabolas and the activation

energy can be calculated

from the intersection point

between them. The

electronic coupling

(Sect. 1.7.2.2) and the

continuum of electronic

levels in the metal electrode

(Sect. 1.7.2.1) are not

shown
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q{ ¼
F E� E��O

0

c

� �
k qR � qOð Þ þ

qR � qO
2

ð1:104Þ

and finally the well-known expression for the activation energy within the (sym-

metric) Marcus–Hush kinetic formalism (MH):

ΔeG{MH
red Eð Þ ¼ λ

4
1þ

F E� E��O
0

c

� �
λ

0@ 1A2

ΔeG{MH
ox Eð Þ ¼ λ

4
1�

F E� E��O
0

c

� �
λ

0@ 1A2 ð1:105Þ

where λ ¼ k qR � qOð Þ2=2
� �

is the so-called reorganization energy, which value is

the hypothetical energy required to give the reactant (and its environment) the

equilibrium nuclear configuration of the product (and its environment), without

electron transfer. As can be deduced from Fig. 1.15, the λ-value is related to the

curvature of the Gibbs energy curves so larger λ-values mean tighter parabolas.

Note that according to (1.105) the MH model predicts a quadratic relationship

between the activation energy and the applied potential in contrast with the linear

relationship proposed in the BV model (Eq. 1.99). This leads to different variations

of the electrochemical rate constants with the applied potential as will be discussed

below.

The reorganization energy is a key concept introduced in the MH formalism to

understand and predict the electron transfer kinetics given that the λ-value informs

about the magnitude of the structural and solvation changes induced by the electron

transfer reaction. Two contributions to λ are commonly separated: the inner-sphere

reorganization energy (λi) associated with changes in the intramolecular vibrations

and the outer-sphere reorganization energy (λo) that arises from changes in solva-

tion, such that

λ ¼ λi þ λo ð1:106Þ

The inner component can be estimated from molecular theory by summing over

the normal vibrational modes of the species [30, 33, 34]:

λi ¼ 1

2

X
j

k j qR � qOð Þ2j ð1:107Þ

where kj are the force constants for each oscillator.
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With respect to the solvation energy, this is usually approximated by modeling

the reactants and products as spheres and the solvent as a dielectric continuum

(Born theory), which in the case of an interface electron transfer gives rise to the

following expression [30, 36]:

λo ¼ e2

8π ε0

1

a0
� 1

2d

� �
1

εop
� 1

εs

� �
ð1:108Þ

where “e” is the elementary charge, ε0 the permittivity of free space, a0 the radius of
the reactant, εop the optical permittivity, εs the static permittivity, and d the distance
from the reactant to the metal surface.

1.7.2.1 The Marcus–Hush–Chidsey Formalism (MHC)

Before considering the expressions for the rate constants, it is convenient to introduce

a refinement [37] that has been ignored so far. It has been assumed that the electron

transfer only involves the electronic state corresponding to the Fermi level of the

electrode. However, the continuum of electronic levels (ε) must be considered such

that energy levels around the Fermi one can participate and the overall rate of electron

transfer is a sum of the rates for each electronic state, weighted by the probability of

occupancy/vacancy according to the Fermi–Dirac distribution:

kred ¼ A

ð1
�1

exp �ΔeG{
red xð Þ
RT

 !
1þ exp �xð Þ dx

kox ¼ A

ð1
�1

exp �ΔeG{
ox xð Þ
RT

 !
1þ exp xð Þ dx

ð1:109Þ

where the pre-exponential factor A has been approximated to be the same for all the

energy levels andΔeG{MH

red=ox xð Þ is the activation energy for each electronic level such
that

ΔeG{MH
red ðxÞ
RT

¼ Λ
4

1þ ηþ x

Λ

� �2
ΔeG{MH

ox ðxÞ
RT

¼ Λ
4

1� ηþ x

Λ

� �2 ð1:110Þ

with η ¼ F E� E��O
0

c

� �
=RT, x ¼ F ε� Eð Þ=RT , and Λ being the dimensionless

reorganization energy: Λ ¼ Fλ=RT. By introducing the standard heterogeneous

rate constant, k0, as the common value of the oxidation and reduction rate constants
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at the formal potential the following expressions for the heterogeneous rate con-

stants are finally obtained [30]:

kMHC
red ¼ k0

Sred η;Λð Þ
Sred 0;Λð Þ ¼ k0e�η=2

Iðη,ΛÞ
Ið0,ΛÞ

kMHC
ox ¼ k0

Sox η;Λð Þ
Sox 0;Λð Þ ¼ k0eþη=2

Iðη,ΛÞ
Ið0,ΛÞ

ð1:111Þ

which depend on Λ and η (Eq. (1.110)). Sred/ox(η,Λ) and I(η,Λ) are integrals of the
form:

Sred=ox η;Λð Þ ¼
ð1
�1

exp �
ΔeG{MH

red=ox xð Þ
RT

" #
1þ exp �xð Þ dx

I η,Λð Þ ¼
ð1
�1

exp �ðx� ηÞ
2

4Λ

" #
2 coshðx=2Þ dx

ð1:112Þ

As in BV, the MHC model describes the electrode kinetics as a function of three

parameters: the formal potential, the standard heterogeneous rate constant, and the

reorganization energy. Nevertheless, important differences can be observed

between the two kinetic models with respect to the variation of the rate constants

with the applied potential. Whereas in BV rate constants vary exponentially and

continuously with E� E��O
0

c

� �
(Fig. 1.14), MHC predicts a limiting value for the

rate constants at large overpotentials (Fig. 1.16a). Thus, at potentials close to the

formal potential the ln kred=ox=k
0

� �
vs E� E��O

0

c

� �
curves obtained in MHC tend to

(a) (b)

Fig. 1.16 (a) Variation of the reduction and oxidation rate constants with the applied potential

according to the Marcus–Hush–Chidsey kinetic model. (b) Variation of the transfer coefficient

with the applied potential in the Marcus–Hush–Chidsey model. Gray solid lines correspond to the
values predicted by the BV model for α ¼ 0:5
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those in BV for α ¼ 0:5 as shown in Fig. 1.16a. As the applied potential becomes

more negative, the cathodic rate constant begins to level off and it eventually

reaches a plateau. An analogous behavior is observed for the anodic rate constant

when the applied potential takes very positive values with respect to E��O
0

c . Note that

as the reorganization energy is smaller, the “leveling off” takes place at lower

overpotentials and the plateau value is smaller. Consequently, differences between

the predictions of the BV and MHC models are expected to be more apparent at

large overpotentials and for systems with small reorganization energies.

Note that the curved ln kred=ox=k
0

� �
vs E� E��O

0

c

� �
plots imply that the transfer

coefficient, defined as α ¼ � RT ∂ln kMHC
red =k0

� �
=∂E

� �
=F (Eq. 1.102), is potential

dependent unlike what is assumed in BV. Thus, Fig. 1.16b shows that the MHC

model predicts that the transfer coefficient takes the value 0.5 at the formal

potential, larger than 0.5 at positive potentials (with respect to E��O
0

c ), and smaller

than 0.5 at negative potentials. This potential dependence of the transfer coefficient

is more significant for small λ-values.
With respect to the effect of the reorganization energy on the rate constants,

Fig. 1.16 shows that this is clearly different from that of the BV transfer coefficient.

Thus, the λ-value has the same influence on the variation of the cathodic and anodic

rate constants with the applied potential. Thus, independently of the value of the

reorganization energy, it is fulfilled that kMHC
red E� E��O

0

c

� �
¼ kMHC

ox � E� E��O
0

c

� �� �
[38]. This has important implications with respect to the shape of the voltammetric

response predicted by the different models. Thus, the MHC model has been proven,

theoretically and experimentally, to be unable to fit the voltammetric response of

redox systems that show BV transfer coefficients significantly different from 0.5

[30]. In such cases, as well as in the analysis of surface-confined redox systems, the

use of the asymmetric Marcus–Hush theory has been recommended [35] which

considers that the force constants for the redox species can be different leading to

Gibbs energy curves of different curvatures.

1.7.2.2 Adiabaticity and the Pre-exponential Factor

So far the attention has been on the nuclear reorganization barrier. Nevertheless,

other important factors previously “hidden” in the pre-exponential factor (and

ultimately in the standard rate constant) have to be considered, namely, the funda-

mental question of the magnitude of the electronic interaction between

electroactive molecules and energy levels in the electrode (i.e., the degree of
adiabaticity) and its variation with the tunneling medium (electrode–solution

interface), the tunneling distance, and the electrode material. Thus, within the

transition-state formalism, the rate constant for electron transfer can be expressed

as the product of three factors [39–42]:

kred=ox ¼ vnκnκel ð1:113Þ
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vn is the effective nuclear vibration frequency that takes the system through

the transition state region (the frequency of nuclear-barrier crossing), which

depends on intramolecular and/or solvent vibrational modes and, accordingly, it

takes values within the range vn¼ 1012�1014 s�1 [40, 42]. κn refers to the nuclear

reorganization discussed in previous sections, which within the MHC formalism

can be expressed as:

κn ¼
ð1
�1

exp � ΔeG{
red=ox

xð Þ
RT

 !
1þ exp �xð Þ dx ð1:114Þ

Finally, κel is the electronic transmission coefficient that accounts for the prob-

ability of electron transfer upon reaching the configuration of the transition state.

Note that it has been assumed that the electronic interaction between the redox

species and the energy levels in the electrode is independent of the energy of such

level x, so the electronic and nuclear factors can be treated separately.

As illustrated in Fig. 1.17, the electronic interaction between the reactant and the

electrode surface gives rise to the splitting of the energy curves at the intersection

(non-crossing). The extent of the splitting is characterized by the electronic cou-

pling element HAB (see below) and defines the probability of electron transfer when

passing over the energy barrier. Thus, when the resonance energy is small (non-
adiabatic reactions), there is little probability that the system will proceed from the

initial to the final state (κel ! 0), but will predominantly remain in the same diabatic

curve and end up at the starting point: reactant. On the other hand, as the electronic

interaction is stronger (adiabatic reactions), the probability of electron transfer

increases and it tends to unity as HAB is larger (see below). Therefore, apart from

the reorganization energy-related factors discussed in previous sections, the degree

of adiabaticity is a key aspect in understanding and predicting the electrode kinetics

so adiabatic processes are faster than the corresponding non-adiabatic ones.

The effect of the reaction adiabaticity on the electronic transmission coefficient can

be estimated by making use of an extension of the Landau–Zener formalism [43–47]:

Fig. 1.17 Splitting of the

Gibbs energy curves at the

intersection region as a

result of the electronic

interaction between

electronic states
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κel ¼
2 1� exp � vel

2vn

� �h i
2� exp � vel

2vn

� � ð1:115Þ

where vel is the electron tunneling frequency, which for electrode reactions can be

defined as [46]:

vel ¼ 4π2ρM

h
ffiffiffiffiffiffiffiffiffiffi
4π λFRT

q H2
AB ð1:116Þ

with ρM being the density of electronic levels in the electrode and h is the Planck

constant. The effective average of the electronic coupling element, HAB, decreases

exponentially with the electron transfer distance, r:

HAB ¼ H0,ABexp �βr
2

r � rOHPð Þ
� �

ð1:117Þ

where H0,AB is the electronic coupling element at the distance of closest approach,

rOHP, and βr is the decay constant for electronic coupling that depends on the

tunneling medium and takes values of the order of 108 cm�1. This reinforces the
idea that adiabaticity is a gradual property that can be “varied,” for example,

through the distance of closest approach that affects the H0,AB-value [47, 48].

Therefore, the degree of adiabaticity is ascribed not only to the electrode process

itself but also to the characteristics of the electrode j solution interface and the

electrode material.

When considering the case of electroactive species in solution, the electron

transfer reaction takes place over a range of several angstroms and the hetero-

geneous rate constant can be written as [46]:

kred=ox ¼ vnκn

ð1
r0

κeldr ð1:118Þ

which is well approximated by

kred=ox � vnκn
βr

ln 1þ 4π2ρMH
2
0,AB

vnh
ffiffiffiffiffiffiffiffiffiffi
4π λFRT

q
0B@

1CA ð1:119Þ

Thus, in the non-adiabatic regime it is fulfilled that 4π2ρMH
2
0,AB=vnh

ffiffiffiffiffiffiffiffiffiffi
4π λFRT

q� �
<< 1

and the rate constant is given by
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knon-adiared=ox �
κn
βr

4π2ρMH
2
0,AB

h
ffiffiffiffiffiffiffiffiffiffi
4π λFRT

q ð1:120Þ

whereas in the adiabatic regime, 4π2ρMH
2
0,AB=vnh

ffiffiffiffiffiffiffiffiffiffi
4π λFRT

q� �
>> 1, the probability

of electron transfer at the transition state tends to unity (κel ! 1, as inferred from

Eq. (1.115)) and the rate constant will become independent of the electronic

coupling and the factors that determine it such as the electronic structure of the

electrode:

k adia
red=ox � vnκn ð1:121Þ

It is interesting to analyze the transition between the non-adiabatic and adiabatic

regimes in terms of the standard heterogeneous rate constant, k0, given that this is

the parameter commonly referred to in kinetic studies. Considering that k0 is

defined as the value of the reduction and oxidation rate constants at the formal

potential, its value can be calculated from (1.119) for κn ¼ κn E ¼ E��O
0

c

� �
.

Figure 1.18 shows the variation of k0 with the strength of the electronic interac-

tion for typical values of the reorganization energy (λ) and the effective nuclear

vibration frequency (νn). It has been assumed that the resonance energy is small

enough (in comparison with the reorganization energy) for the value of the acti-

vation energy not to be significantly smaller than that predicted by theMarcus theory

(Sect. 1.7.2). Indeed, this is the case for most outer-sphere reactions.

As predicted by Eq. (1.120), Fig. 1.18 illustrates how the standard rate constant

is independent of νn in the non-adiabatic regime where it is determined by the

strength of the electronic interaction: the stronger the interaction, the faster the

electrode reaction. For weakly adiabatic systems, the increase of the rate constant

Fig. 1.18 Variation of the

standard heterogeneous rate

constant, k0, with the

electronic coupling element

for different vn and λ values.
The effect of the electronic

interaction on the activation

energy has been ignored

[2, 49]. βr ¼ 108cm�1,
ρM ¼ 0:3 eV�1, T ¼ 298 K

1.7 Kinetics of the Charge Transfer 41



levels off, tending to a plateau in the adiabatic region provided that the lowering of
the energy barrier due to the electronic coupling is negligible [2]. Under such a

regime, the rate of electron transfer is predicted to be independent of the electronic

coupling and limited by the effective nuclear frequency (Eq. 1.121). When the

electronic coupling further increases and the decrease of the activation energy is not

negligible, this effect is to be included in (1.114) such that the rate constant takes

values larger than the limit corresponding to the plateau shown in Fig. 1.18 [50].

1.8 Mass Transport

Since electrode reactions tend to make the composition in the nearby solution

different from that further away, heterogeneity in the solution almost always exist

in electrochemical systems. Mass transport arises as the response of the system to

recover the initial homogeneity.

The essential quantity that is considered in the description of mass transport is

the flux for species “i” (which is, in fact, a vector) that describes the flow in a given

direction in space (moles per area and time units (see Fig. 1.19) [50–52],

Ji ¼ 1

A

dni
dt

ð1:122Þ

with A being the area that cross species “i.” The flux can be also defined as the

product of the local concentration by the velocity of species “i,”

Ji ¼ civi ð1:123Þ

In the absence of convection, the change in the flux with the position in the

system may be related to the time derivative of the number of moles by applying

Gauss’ theorem [4],

Fig. 1.19 Flux of a species

“i” in the direction x
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�dni
dt
¼
þ
JidA ð1:124Þ

where A is the surface area covering a given volume from which species i is flowing

out and�dni=dt is the rate of loss of this species (in moles per second). The surface

integral can be related with the volume integral of the divergence of the flux,ð
V

divJidV ¼
þ
JidA ð1:125Þ

Assuming mass conservation and absence of chemical reactions, it can be

written that

dni
dt
¼
ð
V

∂ci
∂t

dV ð1:126Þ

and by combining Eqs. (1.124)–(1.126)

∂ci
∂t
¼ �divJi ð1:127Þ

This result is called the continuity equation for mass [4, 52]. The cause of the

flux is called a “driving force”, which is not used in the Newtonian sense, but

instead names any source of perturbation. In the case of mass transport, this cause is

typically a gradient (of concentration, electrical potential, or density).

The general equation that relates forces and fluxes is given by Onsager’s theory.
For a single force X, it establishes a linear dependence between fluxes and forces

that can be written as

Ji ¼ LiX ð1:128Þ

with Li being called as the phenomenological coefficient for the force X.5

Equation (1.128) can be expressed in terms of the velocity of species i (see

Eq. 1.123), by assuming that this velocity is proportional to the driving force,

vi ¼ uiX ð1:129Þ

with the proportionality constant being named absolute “mobility” (if X is a force

per mole, ui has units of velocity per mole divided by driving force).

By taking into account the relationship between the velocity and the force given

by (1.129), Eq. (1.123) can be written as

5 If X is a force per mole, the units of Li are mol2 N�1 m�2 s�1 in the I.S.
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Ji ¼ ciuiX ð1:130Þ

This general relationship between the flux and the force is known as Teorell’s
equation [4, 53].

In the absence of convection, a charged species i in an electrolytic solution

moves under the influence of a driving force which is, at constant temperature and

pressure, the minus gradient of the electrochemical potential, i.e., X ¼ �∇eμi (see
Eqs. (1.11) and (1.14) for the definition of eμi), with ∇ being the gradient operator

which, for a single Cartesian coordinate, is∇ ¼ ∂=∂x. Since eμi has dimensions of

energy per mole, where the energy is a force times a length,∇eμi has dimensions of a

force per mole. Note that the gradient of the electrochemical potential includes

electric and chemical “forces” acting on an ionic species since

X ¼ �∇eμi ¼ �∇μi � ziF∇ϕ ð1:131Þ

By inserting Eq. (1.131) into Eq. (1.130), the following expression for the flux is

obtained:

Ji ¼ �ciui∇eμi ¼ �ciui∇μi � ciuiziF∇ϕ ð1:132Þ

Assuming that, under usual electrochemical conditions, the activity coefficient

of species “i” does not vary significantly in the solution, the first term of the right-

hand side can be written as (see also Eq. 1.11)

ciui∇μi ¼ ciuiRT∇lnci ¼ uiRT∇ci ð1:133Þ

and Eq. (1.132) becomes

Ji ¼ �uiRT∇ci � ciuiziF∇ϕ ð1:134Þ

In the case of charged species, it is usual to define a charge mobility for the ions,

uci , which is related with the absolute mobility by

u c
i ¼ zij jFui ð1:135Þ

The charge mobility has units of velocity divided by electric field, m2 V�1 s�1

(see Table 1.3 for values of the mobility of several ions in aqueous solution and [52]

for the case of nonaqueous solutions). By inserting Eq. (1.135) into Eq. (1.134), one

obtains

Ji ¼ �u c
i

RT

zij jF∇ci � ci
zi
zij ju

c
i ∇ϕ ð1:136Þ

Equations (1.134) or (1.136) are called the Nernst–Planck equation [4, 13, 50,

52]. In the deduction of this equation it has been assumed that the flux of a species i
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is only caused by the corresponding driving force (∇eμi) and, therefore, there is no
coupling with other forces.

The expression for the flux given by Eqs. (1.134) and (1.136) clearly shows that

it presents two components. The first, originated by a gradient of concentration, is

called the diffusive flux (first term in the right-hand side of Eq. (1.136)), and the

second, due to a gradient of electric potential, is called migrational flux (second

term in the right-hand side of Eq. (1.136)).

The diffusive flux appears as a consequence of a gradient of concentration and is

given as (see Eq. 1.136),

Jdiffusion, i ¼ �u c
i

RT

zij jF∇ci ð1:137Þ

which, taking into account the Nernst–Einstein relationship between the ionic

charge mobility and the diffusion coefficient6

Table 1.3 Values of the

charge mobility of different

ions in aqueous solution

[4, 14, 51]

Ion u c
i � 109 / m2 V�1 s�1

Liþ 40.1

Naþ 51.9

Zn2þ 54.7

Mg2þ 54.9

F� 57.4

Ca2þ 61.6

Sr2þ 62.5

Ba2þ 65.9

Kþ 76.2

NHþ4 76.2

Cl� 79.1

I� 79.6

Csþ 80.0

Rbþ 80.6

Br� 80.9

OH� 205.2

H3O
þ 362.2

6Note that, from the relationship between the ionic mobility and the diffusion coefficient given by

Eq. (1.138), it is possible to rewrite Eq. (1.132) as Ji ¼ � Dici
RT ∇eμi (see also Eq. (1.135)).
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u c
i ¼

zij jF
RT

Di ð1:138Þ

becomes

Jdiffusion, i ¼ �Di∇ci ð1:139Þ

which is called Fick’s first law [52, 55]. The minus sign in this equation indicates

that the flux of species i takes place in the opposite direction of the concentration

gradient. It also possible to make an estimation of the size of the ion by imagining it

as a small sphere of radius rion and using the Stokes–Einstein relationship,

rion ¼ kBT

6πςDi

ð1:140Þ

with kB and ς being the Boltzmann’s constant and the viscosity of the solvent,

respectively.

Concerning the migration component of the overall flux, in line with Eq. (1.136),

for a z:z electrolyte it is given in terms of charge per area and time as

Jmigration, i ¼ �ci zi
zij ju

c
i ∇ϕ ð1:141Þ

Since the flux can be written as the product of concentration times the velocity

(Eq. 1.123), the expression of the migration velocity is (see Eqs. 1.129 and 1.135)

vmigration, i ¼ � zi
zij ju

c
i ∇ϕ ð1:142Þ

The charge mobility of an ion represents the speed that acquires the ion per unit

of electric field. The electric migration current corresponding to the ionic move-

ment of a single kind of charge is equal to the flux of charge, i.e., to the rate at which

the charge cross any plane normal to the flow (see Eq. 1.141) [56]

Imigration, i ¼ ziFAJmigration, i ¼ �FA zij jciu c
i ∇ϕ ð1:143Þ

Equation (1.143) is valid for a single carrier. The total migration current is

obtained as

Imigration ¼
X
ions

Imigration, i ¼ �FA∇ϕ
X
ions

zij jciu c
i ð1:144Þ

The fraction of the total ionic current carried by one particular species is known

as the transport number,
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ti ¼ zij jciu c
iX

ions

zij jciu c
i

¼ F
zij jciu c

i

κ
ð1:145Þ

with

κ ¼ F
X
ions

zij jciu c
i ð1:146Þ

being the conductivity of the media.

The ionic mobility is related to the molar ionic conductivity of the ion λi

u c
i ¼

λi
zij jF ð1:147Þ

The molar conductivity of the solution of a z:z electrolyte of concentration c is
defined as

Λ ¼ κ
c
¼ F zþj ju c

þ þ z�j ju c
�

� � ¼ Fz u c
þ þ u c

�
� � ð1:148Þ

The molar conductivity depends on the concentration in agreement with the

Kohlrauch’s law,

Λ ¼ Λ0 � S
ffiffiffi
c
p ð1:149Þ

with Λ0 being the molar conductivity at infinite dilution [4] and S a proportionality

constant which depends more on the stoichiometry of the electrolyte than on its

specific identity. Equation (1.149) is valid for concentrations below 0.05 M.

A theoretical approach for explaining the relationship between S and the charac-
teristics of the electrolyte was provided by Onsager on the basis of the model of ions

plus ionic cloud developed in the Debye–Hückel theory, obtaining [4]

S ¼ αΛ0 þ β0 ð1:150Þ

with

α ¼ 82:045� 104

εTð Þ3=2
ð1:151Þ

β0 ¼
8:2487

ς
ffiffiffiffiffiffiffi
εrT
p ð1:152Þ

Sometimes, the conductivity of the solution may decrease due to the formation

of electroneutral ion pairs. Under these conditions, the Fuoss–Onsager equation can

be used to calculate the molar conductivity (Λ) of associated electrolytes [57]:
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Λ ¼ Λ0 � S
ffiffiffiffiffiffi
cθ
p

þ E
0
cθln 6E1cθð Þ þ Lcθ � Ka cθ f

2
�Λ ð1:153Þ

with

E
0 ¼ E1Λ0 � E2 ð1:154Þ

E1 ¼ 2:942� 1012

εrTð Þ3

E2 ¼ 0:4333� 108

ς εrTð Þ2

9>>>=>>>; ð1:155Þ

L ¼ L1 þ L2 bð Þ ð1:156Þ
L1 ¼ 3:202E1Λ0 � 3:42E2 þ αβ0 ð1:157Þ

L2 bð Þ ¼ 2E1Λ0h bð Þ þ 44E2

3b
� 2E

0
lnb ð1:158Þ

h bð Þ ¼ 2b2 þ 2b� 1

b3
ð1:159Þ

b ¼ 16:7102� 10�6

εrTa0
ð1:160Þ

where c is the electrolyte concentration, Λ0 the molar conductivity at infinite

dilution c � 0ð Þ, θ the degree of dissociation, Ka the association constant based

on activities, f� the mean molar activity coefficient of ions, and a0 the distance of
closest approach. Moreover, εr and ς are the relative permittivity and viscosity of

the pure solvent and T is the absolute temperature (K).

The results provided by Eq. (1.153) can be improved by using the Fuoss–Hsia

equation modified by Fernandez-Prini (for 1:1 electrolytes [58–60]):

Λ ¼ Λ0 � S
ffiffiffiffiffiffi
cθ
p

þ Ecθln cθð Þ þ J1cθ � J2 cθð Þ3=2 � Ka cθ f
2
�Λ ð1:161Þ

with

E ¼ κ
2a20b

2

24c
Λ0 � κa0bβ0

16
ffiffiffi
c
p ð1:162Þ

J1 ¼ δ1Λ0 þ δ2 ð1:163Þ
J2 ¼ δ3Λ0 þ δ4 ð1:164Þ

κ ¼ 50:2901� 1010
ffiffiffi
c
pffiffiffiffiffiffiffi

εrT
p ð1:165Þ

δ1 ¼ κa0bð Þ2
24c

" #
1:8147þ 2ln

κa0ffiffiffi
c
p
� �

þ 2 2b2 þ 2b� 1
� �

b3

" #
ð1:166Þ
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δ2 ¼ αβ0 þ β0
κa0ffiffiffi
c
p
� �

� β0
κa0b

16
ffiffiffi
c
p

� �
1:5337þ 4

3b
þ 2ln

κa0ffiffiffi
c
p
� �� �

ð1:167Þ

δ3 ¼ b2 κa0ð Þ3
24c3=2

" #
0:6094þ 4:4748

b
þ 3:8284

b2

� �
ð1:168Þ

δ4 ¼ β0 κa0bð Þ2
24c

2 2b2 þ 2b� 1
� �

b3
� 1:9384

" #
þ αβ0

κa0ffiffiffi
c
p þ β0 κa0ð Þ2

c

� β0b κa0ð Þ2
16c

1:5405þ 2:2761

b

� �
� β20κa0b

16Λ0
ffiffiffi
c
p

� �
4

3b
� 2:2194

� � ð1:169Þ

1.8.1 Minimization of the Migration Component

The migration contribution to the flux of species “i” can be minimized by the

addition of an inert (or supporting) electrolyte in a concentration of two orders of

magnitude higher than that of species “i.” These electrolyte supports ions should be

electrochemically and chemically inert but increase the ionic strength of the

solution. Therefore, they cause a strong decrease of the transport number of species

“i.” Indeed (see Eq. 1.145),

ciu
c
i ¼

κti
zij jF ð1:170Þ

and on inserting Eq. (1.170) into Eq. (1.136) and taking into account (1.138), one

obtains

Ji ¼ � ziκti

zij j2F
∇ϕ� Di∇ci ð1:171Þ

Under these conditions, the first addend of the right-hand side of Eq. (1.171)

is negligible compared to the second, and it can be assumed that

Jmigration, i << Jdiffusion, i.
The addition of the inert electrolyte affords other advantages. The most impor-

tant point is that the conductivity of the solution increases (and thus the ohmic drop

decreases through a decrease of the resistance of the cell, Rcell; see Sect. 1.9).

Moreover, the diffuse double layer narrows, being formed mainly by the ions of the

inert electrolyte (with a sharp potential drop over a very short distance from the

electrode surface). This makes the capacitance more reproducible and the Frumkin

effects less obtrusive. Activity coefficients of the electroactive species are also less

variable (and, therefore, quantities like formal potentials and rate constants), since
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the ionic strength of the solution is virtually uniform and constant. Moreover,

natural convection becomes less troublesome because the density of a concentrated

ionic solution is less affected by small changes in the concentration of electroactive

species than in a pure solvent.

It should taken into account that the effects of the supporting electrolyte can also

be adverse, for example, reaction mechanisms can be drastically altered (the ions of

the supporting electrolyte may complicate the electroactive species through ionic

association processes). However, except in specific cases, the advantages indicated

make the addition of supporting electrolyte in excess a standard procedure.

1.8.2 Temporal Evolution

On inserting the expression of the flux given by Eq. (1.136) into the continuity

equation for mass given by Eq. (1.127) and taking into account Eq. (1.138), an

expression for the temporal evolution of the concentration of species i is obtained:

∂ci
∂t
¼ �divJi ¼ Di∇2ci þ Di

ziF

RT
∇ϕ∇ci ð1:172Þ

For the deduction of this expression, it has been assumed that Poisson’s equation

holds (i.e.,∇2ϕ ¼ 0). If the migration contribution can be suppressed (for example,

due to the addition of supporting electrolyte), Eq. (1.172) simplifies to Fick’s
second law:

∂ci
∂t
¼ Di∇2ci ð1:173Þ

with∇2 being the Nabla operator for mass transport by diffusion whose expression

for usual electrode geometries is given in Table 2.2.

An example of the concentration profiles of the oxidized species O, calculated

for different times and corresponding to the application of a constant potential

under linear diffusion conditions, is shown in Fig. 1.20. The electrode reaction at

the interface leads to the depletion of species O at the solution region adjacent to the

electrode surface. As the time increases, the layer in the solution affected by the

diffusive mass transport becomes thicker, which indicates that linear diffusion is

unable to restore the initial situation (for a more detailed discussion on concen-

tration profiles and their relation with the current, see Sects. 2.2.1 and 2.2.2).

1.8.3 Convection

There is a third type of mass transport in electrochemical experiments: convection.

This can involve the macroscopic or microscopic motion of the solution in which
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the electroactive species are dissolved. Macroscopic motions may arise either

because of forced hydrodynamic regimes (such in the case of Dropping Mercury

Electrode or the Rotating Disc Electrode) or because of the appearance of density

gradients due to strong composition changes generated by the electrochemical

reactions [52]. In any case, the expression of the convection flux is

Jconvection, i ¼ civconvection ð1:174Þ

where vconvection is related to the motion of the solution. For an incompressible fluid,

the expression of the velocity profile is obtained by two differential equations: the

continuity equation:

div vconvectionð Þ ¼ 0 ð1:175Þ

and the Navier–Stokes equation:

dvconvection
dt

¼ �1
ρ
∇P� ς∇2vconvection � f
� � ð1:176Þ

where ρ and ς are the density and viscosity of the fluid, P is the pressure, and f is the
force/volume exerted on an element of fluid by gravity [13, 52]. Two different

types of flow are considered in hydrodynamic problems. When the flow involves

chaotic motion, it is called as turbulent. On the other hand, if the flow occurs as if

separate layers of the fluid have steady and characteristic velocities, it is called

laminar flow. Under these conditions, the convection flux is proportional to the

pressure gradient. Thus, in the case of a fluid moving through a tube with uniform

circular cross section of radius R, the convective flux is given by the Poiseuille’s
equation:

x / cm
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Fig. 1.20 Concentration

profile of the oxidized

species resulting from the

application of a constant

potential with E << E��O
0

c

under linear diffusion

conditions (∇2 ¼ ∂2
=∂x2)

(see Eq. (2.19) in Sect. 2.2).

The value of the different

times (in seconds) is

indicated on the curves.

DO ¼ 10�5 cm2 s�1
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Jconvection, i ¼ civconvection ¼ �ci R
2

8ς

dP

dx
ð1:177Þ

and the velocity profile defined by Eq. (1.177) is typically parabolic [51].

When the three diffusion, migration, and convection fluxes are considered, the

temporal evolution of the concentration of a species “i” is given as (see also

Eq. 1.175)

∂ci
∂t
¼ �divJi ¼ Di∇2ci þ Di

ziF

RT
∇ϕ∇ci � vconvection∇ci ð1:178Þ

When the migration of species i can be suppressed, Eq. (1.178) becomes

∂ci
∂t
¼ Di∇2ci � vconvection∇ci ð1:179Þ

which, for electrochemical forced hydrodynamic experiments (with the exception

of Dropping Mercury Electrode), is considered only under steady-state conditions

(i.e., ∂ci=∂t ¼ 0 ). As an example, the stationary solution corresponding to the

Rotating Disc Electrode is presented in Sect. 2.8.

1.8.4 Mass Transport Coefficient

Mass transport gives rise to the appearance of concentration profiles of an

electroactive species O like those shown in Fig. 1.20, obtained for the application

of a constant potential to a macroelectrode. From this figure it can be seen that there

is a region adjacent to the electrode surface where the concentration of species O is

different from its bulk value, c�O, and, therefore, mass transport takes place. In the

following discussion, diffusion will be the only transport mode considered. The

thickness of this “diffusion layer,” δreal, can be accurately calculated from the

concentration profile as the distance from the electrode surface to a point in solution

at which the following condition holds:

cO x ¼ δrealð Þ
c*O

¼ 1� error ð1:180Þ

with “error” being the arbitrary tolerance limit considered, for example 0.01.

Another widely used concept in this context is the Nernst’s diffusion layer

[56, 61], whose thickness δNernst is defined as the distance at which the linear

concentration profile (obtained from the tangent to the concentration profile curve

at the electrode surface; see broken line in Fig. 1.21) takes its bulk value. Given that

the term “Nernst” can be misinterpreted in relation to the degree of reversibility of

the electrode process, δNernst will be referred to hereinafter as the thickness of the
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“linear diffusion layer,” and it will be denoted by δG (with subscript G relative to

the electrode geometry).7 As can be seen in Fig. 1.21, the thickness of the linear

layer is a rough estimation of the real thickness. Anyway, δG provides valuable

information related to the nature of the electrode process and the diffusion field.

Thus, in relation to the geometrical aspects of diffusion, it can be compared to the

diameter of a macroelectrode or the maximal diffusion length in an electrochemical

cell in order to discuss the validity conditions for the approximation of semi-infinite

linear diffusion of electroactive species. Concerning the characteristics of the

electrode process, in the case of coupled chemical reactions, the relative thickness

of the diffusion and reaction layers is necessary to establish the conditions where

steady-state behavior can be reached as well as to quantify the chemical contri-

bution to the electrochemical response [62–65].

In a general way, the measured current IG when a constant or time variable

potential perturbation is applied to a simple charge transfer reaction at an electrode

of a given geometry G can be defined from the equivalence between the gradient

at the electrode surface and the difference between bulk (c�O) and surface (csO)
concentrations divided by the diffusion layer thickness, δG, of the concentration

profile of electroactive species O or R [62],

IG

FAG

¼ DO

∂cO q; tð Þ
∂qN

� �
qs
¼ DO

ΔcO
δG,O

¼ �DR

∂cR q; tð Þ
∂qN

� �
qs
¼ �DR

ΔcR
δG,R

ð1:181Þ
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Fig. 1.21 Concentration

profile of species O and

linear and real diffusion

layers (the last with a

maximum error of 1 %)

obtained by the application

of a constant potential with

E << E��O
0

c to a

macroelectrode

7Note that the concept of “transport layer” can be extended to other transport modes such as

convection. Indeed, in the presence of convection, this concept is associated with the simple idea

that the solution can be divided into two parts, a thin layer close to the electrode surface with only

diffusion, on the one hand, and the bulk solution where the stirring ensures a perfect mixing, and

therefore uniform concentration, on the other [52].
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with

ΔcO ¼ c*O � c sO
ΔcR ¼ c*R � c sR

�
ð1:182Þ

q is a set of coordinates on which the concentrations depend, qN is the normal

coordinate value at the electrode surface and qs is its value at any electrode surface,
DO and DR are the diffusion coefficients of oxidized and reduced species, respec-

tively, and AG is the electrode area.

δG is, in general, a complex function dependent on the nature of the electrode

reaction, the potential, and the time (see Sects. 2.2.2 and 3.2.1.2). However, in the

case of a reversible electrochemical process, the surface concentration csO is only

dependent on the applied potential, i.e. ΔcO ¼ ΔcO Eð Þ, and is independent of the

electrode geometry and time. Thus, under potentiostatic conditions (see Sect.

2.2.2.2), δG is independent of the applied potential.

Closely related to the diffusion layer term is the mass transfer coefficient mi. In a

general way, this coefficient is the proportionality constant between the mass

transfer flux and the concentration difference between the electrode surface and

the bulk of the solution. From the current expression given by Eq. (1.181), one can

write

IG

FAG

¼ mOΔcO ¼ �mRΔcR ð1:183Þ

where8

mi ¼ Di

δG, i
i ¼ O; R ð1:184Þ

The mass transport coefficient is, in general, a complex time and potential-

dependent function through the linear diffusion layer thickness, δG, i. Only under

certain conditions does this dependence disappear (as, for example, for nernstian

processes under potentiostatic conditions, or at potential values far from E��O
0

c , see

below).

Equations (1.183) and (1.184) point to the existence of maximum or limiting

currents that can be obtained under mass transport control conditions. These

limiting currents correspond to the case of null surface concentrations of the

electroactive species, i.e., for Δci ¼ c*i ,

8 In some references, it appears the term “resistance to the mass transfer,” Rmt,i, defined as

Rmt, i ¼ 1=mi.
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IGd,c
FAG

¼ mO,1c*O

IGd,a
FAG

¼ �mR,1c*R

) ð1:185Þ

where mi,1 (i¼O, R) is a potential-independent expression for the mass transport

coefficient of species “i” (i.e., corresponding to potentialsE! �1, with the upper

sign corresponding to cathodic limiting currents and the lower to anodic ones). The

expressions of mi,1 for different experimental situations are given in Table 1.4.

Note that the only difference betweenmO,1 andmR,1 and also between mO and mR

is the diffusion coefficient.

For nernstian processes, and under steady-state conditions whenDO ¼ DR ¼ D,
the expressions of coefficients fulfill, regardless of the electrode geometry,

mi ¼ mi,1 ¼ m ð1:186Þ

Under reversible conditions and electrode geometries different from the planar

one when DO 6¼ DR, the mass transport coefficient is a complex function of both

diffusion coefficients and, in general, the expressions of mi and mi,1 do not

coincide. The only case in which mi ¼ mi,1 when the diffusion coefficients of

species O and R are assumed as different is that corresponding to nernstian

processes under planar diffusion (macroelectrodes).

Table 1.4 Mass transport coefficients mi,1 for different experimental conditions. The values of

mi,1 correspond to the application of a constant potential. The expressions corresponding to the

Rotating Disc Electrode (convective mass transport) under stationary conditions and to Dropping

Mercury Electrode with the expanding plane model (diffusive–convective mass transport) have

also been included

Experimental situation mi,1 ¼ Di=δG, i,E!�1 Character

Macroelectrode
ffiffiffiffi
Di

πt

q
Transient

(Sect. 2.2)

Spherical electrode of radius rs Di
1
rs
þ 1ffiffiffiffiffiffiffi

πDit
p

� �
Transient

(Sect. 2.5)

Spherical microelectrode of radius rs Di

rs
Stationary

(Sect. 2.7)

Disc electrode of radius rd 4

π

Di

rd
0:7854þ 0:44315

rdffiffiffiffiffiffiffi
Dit
p þ

�
þ 0:2146 exp �0:39115 rdffiffiffiffiffiffiffi

Dit
p

� �� Transient

(Sect. 2.7)

Disc microelectrode of radius rd 4
π
Di

rs
Stationary

(Sect. 2.7)

Rotating disc electrode of angular

velocity ω
0:62D

2=3
i ω1=2 ς=ρð Þ�1=2 Stationary

(Sect. 2.8)

Dropping Mercury Electrode with the

expanding plane model

ffiffi
7
3

q ffiffiffiffi
Di

πt

q
Transient

(Sect. 2.4.1)

ς and ρ are the viscosity and density of the solvent
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By solving the expressions of csO and csR in Eqs. (1.183) and (1.185) and inserting

them into the current–potential relationship given by (1.92), one obtains

IG ¼ kred
mO

mO

mO,1
IGd,c � IG

� �
� kox
mR

IG � IGd,a
mR

mR,1

� �
ð1:187Þ

where kred and kox are given by Eq. (1.101) for the Butler–Volmer model and by

Eq. (1.111) for the Marcus–Hush–Chidsey one. Since for both models it is fulfilled

that kox ¼ eηkred, Eq. (1.187) can be written as

IG ¼ kred
mO

mO

mO,1
IGd,c � IG

� �
� mO

mR

eη IG � IGd,a
mR

mR,1

� �� �
ð1:188Þ

If a Butler–Volmer formalism is assumed (see Eq. 1.101) for the sake of

simplicity, the expression of the current–potential relationship can be rewritten as

IG ¼ k0

mO

e�αη
mO

mO,1
IGd,c � IG

� �
� mO

mR

e 1�αð Þη IG � IGd,a
mR

mR,1

� �� �
ð1:189Þ

In agreement with Eq. (1.189), the reversibility degree exhibited by the current–

potential response will be determined not only by the value of the rate constants but

also by the ratio Ri ¼ k0=mi (with k0 being the heterogeneous rate constant for the

charge transfer reaction). Thus, for high values of Ri Eq. (1.189) becomes

eη ¼ mR

mO

� � mO

mO,1
IGd,c � IG

IG � IGd,a
mR

mR,1

ð1:190Þ

whereas for low values of Ri the totally irreversible limits of Eq. (1.189) are

obtained

IG ¼
IGd,c

mO

mO,1
1þ mO

kred

E << E��O
0

c

IG ¼
IGd,a

mR

mR,1
1þ mR

kox

E >> E��O
0

c

ð1:191Þ

Therefore, the ratio Ri ¼ k0=mi allows us to define a “reversibility criteria” for a

given current–potential response once the expression of the mass transport coeffi-

cient is obtained (see Sects. 3.2.1.4 and 5.3.2). Note that electrochemical reversi-

bility thus considered is not only defined in terms of the intrinsic characteristic of

the process (i.e., the particular value of the heterogeneous rate constant and other
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kinetic parameters like the charge transfer coefficient or the reorganization energy)

but also in terms of extrinsic parameters like the electrode geometry, the nature of

the perturbation, and the mass transport modes involved.

By solving the expression of the current in Eq. (1.188), one obtains

IG ¼
kred
mO,1

IGd,c þ kox
mR,1

IGd,a

1þ kred
mO
þ kox

mR

ð1:192Þ

This expression of the current–potential relationship is totally general. For each

particular situation, the expressions of the rate constants (through a given kinetic

model) and of the limiting currents and mass transport coefficients should be

provided to analyze the influence of the different factors that can control the

global rate.

The current potential relationship can be written in terms of the inverse of the

current. For example, in the case in which c*R ¼ 0 (IGd,a ¼ 0), Eqs. (1.181)–(1.184)

and (1.192) become

1

IG
¼ 1

FAGc*Okred
þ 1þ mO

mR
eη

FAGc*OmO

ð1:193Þ

The first term in the right-hand side of Eq. (1.193) accounts for the pure kinetic

resistance of the process (which has been called as “activation” term), whereas the

second combines the influence of the potential and of the mass transport through the

limiting current (see Eqs. 1.184 and 1.185). The overall behavior of the current–

potential response can be seen in Fig. 1.22.

Thus, for the activation zone the current can be approximated by the first term:

IG ffi FAGc
*
Okred ð1:194Þ

which indicates that it is the resistance of the redox conversion (through the rate

constant k0) which determines the current at this region. Under these conditions, the

depletion of the oxidized species at the electrode surface is negligible and the

surface concentration is identical to its bulk value. The relationship between the

logarithm of the current and the potential is linear (this is called a “Tafel analysis”)

and it allows the determination of the kinetic parameters of the electrode reaction.

For more negative potentials, the current (solid line) deviates from the activation

control (given by the dashed line which corresponds to a pure kinetic behavior9) and

begins to be influenced by the mass transport (second term in Eq. (1.193), which in

practice means that c si 6¼ c*i ), until for certain potentials at which the mass transport

controls the overall current (eη ! 0 and kred !1) and under these conditions

9 for which the current is given by IG ¼ FAG kredc
*
O � koxc

*
R

� �
.
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IG ¼ IGd,c ¼ FAGc
*
OmO,1 ¼ FAGc

*
O

DO

δG,O,E!�1
ð1:195Þ

The mass transport limiting current is the maximum current (or rate) that the

process can achieve. In order to increase its value, an increase of the electrode area,

bulk concentration, or mass transport coefficient is needed. In the last case, this

means a decrease of the diffusion layer thickness which can be done, for example,

by forced convection.

For a more detailed discussion on the importance of the diffusion layer for

different electrochemical techniques, see Sects. 2.2.2, 3.2.1.2, and 5.2.3.3.

1.9 Three-Electrode Systems. Ohmic Drop, Resistance

of the Cell, and RC Time Constant

The measured potential difference in an electrochemical cell is the sum of several

potential differences. When a current flows through the cell, these potential differ-

ences are affected to different degrees with the total change in cell potential being

the sum of all these changes. In a cell with two electrodes, denoted as working

(W) and reference (R), the change in the overall potential δE is given by

δE ¼
X

interfaces

Δϕ þ IRcell ¼ WΔsolϕþ solΔRϕþ IRcell ð1:196Þ

The working electrode–solution interface is that corresponding to the electrode

process under study and the reference electrode–solution interface is needed to

close the current flow through the cell. The term IRcell denotes the Ohmic drop, with

Rcell being the resistance of the cell which can be calculated for certain geometries

(see below) although, when important enough, it is usually measured and

Potential

C
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re
nt

Id,c

Mass 
transport
control

Mixed
control

"Activation"
control

No response 
(infinte

resistance)

G

Fig. 1.22 Schematic

current–potential response

for the reduction of species

O calculated from the

Butler–Volmer expression

(Eqs. 1.92 and 1.101,

dashed line) and from the

general expression which

includes mass transport

influence (Eq. 1.193, solid
line)
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compensated electronically [51, 65]. In practice, the potential difference should be

related directly with the term WΔsolϕ.
The usual strategy is to use a second highly non-polarizable electrode (i.e., a

Reference electrode) in such a way that the term solΔRϕwill be negligible compared

to that of the working electrode. Under conditions of low ohmic drop, Eq. (1.196)

becomes

δE ffi WΔsolϕ ð1:197Þ

A better way of measuring changes in potential at the metal–solution interface of

the working electrode is to use a three-electrode system in the way shown in

Fig. 1.23, in which, together with the working and reference electrodes, a third

electrode called a counter electrode is added. In this experimental setup, an external

device called a potentiostat–galvanostat is used to pass a constant or time-variable

current through the working and counter electrodes or to establish a potential

difference (which can be constant or a function of time) between the working and

counter electrodes. Note that in this scheme the current flowing between the

working and reference electrodes (i.e., the part of the circuit which defines the

changes in potential) is essentially zero.10 Under these conditions, the potential

difference at the reference electrode can be considered as constant, irrespective of

the current passing through the working and reference electrodes. This allows to

ensure that the changes in the potential difference between working and reference

are only related to phenomena taking place at the working electrode and, although

the difference WΔsolϕ cannot be measured, the changes in this difference can be

directly determined. Note that the three-electrode configuration described can be

simplified in the case in which the values of the current would be small (for

example, in the case of microelectrodes, see Sects. 2.7 and 5.4), since in this case

the pass of current through the reference electrode would not alter its

non-polarizable condition and therefore the counter electrode could be suppressed.

The three-electrode configuration must be modified in the case of the studies of

ionic and electronic transfers taking place at membranes or liquid–liquid interfaces

(see Sect. 2.3 for more details).

For current to flow across a cell, ions must move through the ionic conductor and to

maintain this motion requires an electric field. The field is supplied by a difference of

electrical potentials within the ionic conductor between the surface adjacent to the

working electrode and the adjacent to the counter electrode. By considering Ohm’s
law [51]

10Although in a three-electrode configuration the potential difference at the third electrode may

change greatly, this fact does not affect the measure of the potential difference between the

working and reference electrodes. Indeed, the only limitation that affects the counter electrode

is that it should be much larger than the working electrode.
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IG

AG xð Þ ¼ �κ
dϕ

dx
ð1:198Þ

the ohmic overpotential, which considers the potential difference between the

solution adjacent to the working electrode and at the point where the reference

electrode is placed as a consequence of the electric field mentioned above, is given

by

ΔϕOhm ¼ ϕW � ϕR ¼
ðW
R

dϕ ¼ � IG

κ

ðW
R

dx

AG xð Þ ð1:199Þ

where κ is the electrical conductivity of the ionic conductor. The symbol “x”
denotes the length coordinate measured from the working electrode in the direction

of the current flow and AG(x) is the area of the equipotential surface at that distance
for a given electrode geometry. In order to carry out the integration that appears in

Eq. (1.199), it is necessary to specify the geometry of the cell. In the case of simple

geometries, this integral is easily determined.

Equation (1.199) can be rewritten as

ΔϕOhm ¼ IGRG
cell ð1:200Þ

where

Fig. 1.23 Scheme of a

three-electrode

electrochemical setup and

frontal view of a Dropping

Mercury Electrode with the

three electrodes indicated
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RG
cell ¼ �

1

κ

ðW
R

dx

A xð Þ ð1:201Þ

The expressions of RG
cell for different electrode geometries are given in Table 1.5

Note that for the case of spherical and disc electrodes, when x >> rG (with rG being

the electrode radius for both geometries), the resistance of the cell becomes

constant. In spite of the similarity between the expressions for Rspherical
cell and Rdisc

cell ,

an important difference arises in the case of disc electrodes versus spherical or

hemispherical ones, and that is that the current density of the latter is uniform

through the surface whereas in the case of the disc the current density (i.e., the flux

of species) is not homogeneous and, indeed, is very high near the edge of the disc

(see Sect. 2.7).

The evolution of RG
cellAG versus the distance between the working and reference

electrodes has been plotted in Fig. 1.24 for the four geometries presented in

Table 1.5. From the curves in this figure, it can be seen that spherical and disc

geometries are the best at reducing the value of RG
cellAG and, therefore, of the ohmic

drop (see Eq. 1.200). This improvement becomes more evident as the electrode size

decreases (see Sects. 2.7 and 5.4).

Returning to the three-electrode setup, it could seem that no ohmic drop would

affect the measurement of the potential difference between the working and refer-

ence electrodes, since there is practically no current flow between both electrodes.

However, this is not totally true. The reference electrode is located at a given

distance from the working electrode surface, and, as a result of this separation, the

potential difference measured contains a part of the ohmic drop in the solution

which is called residual ohmic drop, IRu (with I being the current and Ru the

uncompensated resistance). For more details concerning the minimization of the

ohmic distortion of the current–potential response, see Sects. 1.8 and 5.4.

It can be assumed, at least approximately, that the current for any electrochem-

ical technique can be expressed as the sum of a pure faradaic current because of the

Table 1.5 Expressions for the resistance of the cell in different electrode geometries calculated

from Eq. (1.201). x is the distance between the working electrode surface and the reference

electrode [7, 51, 67]

Electrode geometry RG
cell/Ω

RG
cell for large

x >> qG*

Plane electrode (channel cell with constant section,

A xð Þ ¼ A

x
κA

x
κA

Spherical electrode of radius rs (A rð Þ ¼ 4πr2s )
1

4πκ
x

rs xþrsð Þ
1

4πκ
1
rs

Cylindrical electrode of radius rs and length

z (A rð Þ ¼ 2πrcz)
1

2πκzln 1þ x
rc

� �
1

2πκzln
x
rc

� �
Small disc electrode of radius rd 1

4κ
1
rd

*qG is the characteristic dimension of the electrode
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charge transfer process plus a charging current relative to the process of charge of

the double layer (see Sect. 1.6):

I ¼ Ifaradaic þ Ic ð1:202Þ

The particular form of the charging current will depend on the potential pertur-

bation. For the application of a potential jump from a rest potential to a constant

value E, ΔE ¼ E� Erest, it is given by [12]:

Ic ¼ ΔE
Ru

e
� τ

RuCd

� �
ð1:203Þ

with Cd being the double-layer differential capacitance. Note that the product RuCd

has dimension of time and it is usually denoted as the RC time constant of the cell.

This time constant establishes a practical limit for carrying out the measurement of

the current in order to avoid the influence of the charging current. An illustration of

this is seen in Fig. 1.25 in which the faradaic limiting current obtained by the

application of a constant potential at a macroelectrode (given by Eq. 2.28), the

charging current calculated from Eq. (1.203) for a time constant RuCd ¼ 4 ms, and

the sum of the both have been plotted.

As can be seen in this Figure, for times close to zero, the total current is much

higher than the pure faradaic current, since at this time the charging current cannot

be neglected. From a practical point of view, under these conditions, times above

5RuCd are required for a measurement of a current without the contribution of the

charging component (see the region on the right side of Fig. 1.25). Nevertheless, at

long experimental times there is a progressive involvement of convection into the

mass transport.

Fig. 1.24 Cell resistance as

a function of the distance

between the working and

reference electrodes.

κ ¼ 20 mS cm�1 . The
values of the electrode

radius are

rc ¼ rs ¼ rd ¼ 0:01 cm
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However, it is important to take into account that the influence of the charging

current depends on the potential perturbation (for a more detailed discussion

concerning multipulse techniques, see Sect. 5.2.3.4).

1.10 Pulse Versus Step

There has been some controversy in the electrochemical literature concerning the

use of the terms “pulse” and “step” in relation to the potential perturbation used in

different potential controlled techniques, with no clear distinction between pulses

and steps [66]. A brief description of both types of perturbation is provided in this

section and a short discussion on the nomenclature is presented.

The term “pulse” has different meanings, but in signal processing it refers to “a

rapid, transient change in the amplitude of a signal from a baseline value to a higher

or lower value, followed by a rapid return to the baseline value” (see

Fig. 1.26a) [68].

In agreement with the above definition, a potential pulse of a given amplitude

presents a short duration τ and it returns to its original baseline value, Erest.

A step is defined as a constant perturbation of variable duration (it is not

imperative that its duration is short; see Fig. 1.26b).

When a sequence of potential pulses and steps is considered (Fig. 1.26c and d),

no restrictions are imposed on the return to a given preestablished value as a

baseline in the case of steps (see Fig. 1.26d), whereas for pulses this return takes

place after the application of each individual perturbation (Fig. 1.26d).

Once the differences between both types of potential perturbation are clarified, a

question arises about the nature of potential-controlled techniques: attending to the

nature of the perturbation, are they pulse potential or step potential techniques? If the

pulse definition is applied in a strict sense, only Single Pulse Voltammetry is a true

pulse technique (see Scheme 2.1), whereas the rest of double and multipotential

techniques are indeed multistep techniques (see Sects. 4.1, 5.1 and 7.1).
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Fig. 1.25 Temporal

evolution of the faradaic

limiting current obtained by

the application of a constant

potential at a

macroelectrode I planed, c ¼ FA

c*O
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=πt

p
(dashed line,

Eq. 2.28), the charging

current Ic (dashed-dotted
line, Eq. 1.203), and the

sum of both (solid line).

A ¼ 0:1 cm2, c*O ¼ 1 mM,

DO ¼ 10�5 cm2 s�1,
Ru ¼ 0:2 kΩ, Cd ¼ 20 μF,
ΔE ¼ 0:1 V
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However, in the electrochemical literature the terms “pulse techniques” and

“multipulse techniques” are well established and commonly used to define a set

of potential-controlled techniques. In order to maintain this nomenclature, the

definition of “pulse” referred to the potential perturbation should be considered as

equivalent to that given for a step potential, i.e., without any restriction on the

duration of the perturbation and the return to a given resting potential. This will be

the criterion followed throughout this book.

There is another characteristic that all these techniques present: the current is

sampled at a given moment during the application of any individual potential of the

sequence (typically at the end of each applied potential), so the response is a

discrete collection of pairs of data (potential–current). Conversely, in the case of

techniques like Linear Sweep Voltammetry or Cyclic Voltammetry, the current is

recorded continuously (see Sect. 5.1).11

In conclusion, in Pulse and Multipulse techniques the perturbation is given as an

arbitrary sequence of constant potentials without any a priori restriction on the

duration of each individual potential of the sequence or on the particular waveform

employed, and the current is sampled at a pre-fixed time.

a b

c d

Fig. 1.26 Single potential pulse (a) and step (b) perturbations from a rest value of amplitude

E and duration τ. Arbitrary sequence of multiple potential pulses (c) and steps (d)

11 Under these conditions, the potential perturbation is a continuous function of time.
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29. Erdey-Grúz T, Volmer M (1930) Z Phys Chem 150A:203–213

30. Henstridge M, Laborda E, Rees NV, Compton RG (2012) Electrochim Acta 84:12–20

31. Marcus RA (1956) J Chem Phys 24:966–978

32. Hush NS (1958) J Chem Phys 28:962–972

33. Marcus RA (1965) J Chem Phys 43:679
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Chapter 2

Single Pulse Voltammetry: Reversible

Electrochemical Reactions
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2.1 Introduction

In a single potential step voltammetric technique, several constant potentials

(of increasing amplitude) are applied with a time length t1. When stationary

electrodes are used, the time interval between two consecutive potentials must be

much greater than t1 for the initial conditions to be restored (Scheme 2.1). If a Static

Mercury Drop Electrode (SMDE) is used, the initial conditions are simply restored

by making the drop fall. The measured current at a fixed time value t ¼ t1 is plotted
discretely versus the corresponding potential steps [1–3]. The resulting current–

potential curve has a sigmoidal shape whose position and slope depend on the
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Á. Molina, J. González, Pulse Voltammetry in Physical Electrochemistry
and Electroanalysis, Monographs in Electrochemistry,

DOI 10.1007/978-3-319-21251-7_2

67



reversibility of the electrode process and the wave height is independent of the

electron transfer rate. At each fixed potential value, the current–time variation

(which has a typical cottrellian behavior for reversible processes at planar elec-

trodes when considering diffusive transport only) can be registered. If the length

time is in the range 2–200 ms, the electrochemical technique is called Normal Pulse

Voltammetry (NPV), originally known as Normal Pulse Polarography (NPP). This

technique was introduced by Barker [5–7] and it was originally designed for the

Dropping Mercury Electrode (DME), in which the potential pulse is applied at the

end of the life of the drop, with the current being dependent on the relation between

the pulse time and the drop lifetime. The main reason for measuring the current at

the end of short time intervals is to eliminate the capacitative component (see Sect.

1.9) in order to optimize the sensitivity. Today the DME electrode is scarcely used

and most electrochemical techniques are used at stationary electrodes

A complete comprehension of Single Pulse electrochemical techniques is

fundamental for the study of more complex techniques that will be analyzed

in the following chapters. Hence, the concept of “half-wave potential,” for

example, will be defined here and then characterized in all electrochemical

techniques [1, 3, 8]. Moreover, when very small electrodes are used, a stationary

current–potential response is reached. This is independent of the conditions of

the system prior to each potential step and even of the way the current–potential

was obtained (i.e., by means of a controlled potential technique or a controlled

current one) [9, 10]. So, the stationary solutions deduced in this chapter for the

current–potential curves for single potential step techniques are applicable to

any multipotential step or sweep technique such as Staircase Voltammetry or

Cyclic Voltammetry. Moreover, many of the functional dependences shown in

this chapter for different diffusion fields are maintained in the following chap-

ters when multipulse techniques are described if the superposition principle can

be applied.

TIME

PO
TE

N
TI

AL

...Erest t1

Scheme 2.1 Potential–

time waveform for Single

Potential Pulse

Voltammetry. Erest is a

potential at which no

faradaic processes take

place at the electrode. Black
dots indicate the times at

which the current is

sampled and vertical dashed
lines correspond to the

recovery of the initial

equilibrium conditions
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2.1.1 Reversible Electrode Reaction

For an electrode reaction to be considered reversible, it is necessary to compare the

rate of the charge transfer process and the rate of the mass transport of electroactive

species. When the mass transport rate is slower than the charge transfer one, the

electrode reaction is controlled by the transport rate and can be considered as

electrochemically reversible in that the surface concentration fulfills the Nernst

equation when a given potential is applied to the electrode. In Electrochemistry,

knowledge of the behavior of reversible electrode processes is very important, since

these can be used as a benchmark for more complex systems (see Chap. 5 in [1] and

Sect. 1.8.4 for a detailed discussion).

There are many examples of reversible (or nernstian) behavior.1 For example,

the redox conversions of a great number of metallic complexes such as Ferrocene,

Ru NH3ð Þ3þ6 , or metallic cations like Tlþ (see Eq. (2.1) for the redox reactions in

detail2). It is important to highlight that the reversible behavior can also be obtained

in many cases by acting on suitable experimental parameters in the particular

electrochemical technique used. Under the appropriate experimental conditions,

the characterization of these types of processes can be applied to many systems.

FcÆ Fcþ þ e�

Ru NH3ð Þ3þ6 þ e�ÆRu NH3ð Þ2þ6
Tlþ þ e�ÆTl Hgð Þ

ð2:1Þ

2.2 Planar Electrodes

From a practical point of view, a macroelectrode can be considered as an electrode

whose characteristic dimension L is much greater than the diffusion layer thickness

(i.e., in generalL
 ffiffiffiffiffi
Dt
p

, with D being the diffusion coefficient of the electroactive

species). For such an electrode, the geometry becomes irrelevant and it can be

considered as an infinite planar electrode for which, if the solution contains a great

amount of supporting electrolyte, the mass transport is governed by semi-infinite

linear diffusion (i.e., it can be assumed that mass transport occurs only in the

dimension x normal to the electrode surface) [11]. For this reason, throughout this

book, macroelectrodes will be referred as “planar electrodes.”

We consider an electrochemical reversible reaction

Oþ e�ÆR ð2:IÞ

1 An electrochemical reaction is called “reversible” or nernstian when the Nernst’s equation can be
applied to the surface concentrations of electroactive species for any value of the applied potential

(see Sect. 1.7).
2 The reduction of Tlþ takes place at a mercury electrode so the metals are amalgamated into the

electrode.
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The calculation of the concentration profiles of species O and R (cO(x, t) and
cR(x, t)) and of the current when a potential E is applied requires solving of the

following diffusion equations:

∂cO
∂t
¼ DO

∂2
cO

∂x2

∂cR
∂t
¼ DR

∂2
cR

∂x2

9>>>=>>>; ð2:2Þ

where Di is the diffusion coefficient of species i (¼O, R).

The boundary value problem (bvp) is

t > 0, x!1
t ¼ 0, x � 0

�
cO ¼ c*O, cR ¼ c*R ð2:3Þ

with c�O and c�R being the bulk concentrations of species O and R.

The initial condition (t ¼ 0) expresses the homogeneity of the solution at the

beginning of the experiment, and the semi-infinite condition (x!1) implies that

the potential perturbation is not effective far from the electrode.

When the experiment begins, at the electrode surface ( t > 0, x ¼ 0) the flux

balance implies

DO

∂cO
∂x

� �
x¼0
¼ �DR

∂cR
∂x

� �
x¼0

ð2:4Þ

Moreover, if nernstian behavior for the charge transfer reaction is assumed, the

following condition holds:

cs, rO ¼ eη cs, rR ð2:5Þ

with

η ¼ F

RT
E� E��O

0

c

� �
ð2:6Þ

and cs;rO and cs;rR are the surface concentrations of species O and R, i.e., the values of

the concentration profiles at x ¼ 0. Superscript “r” denotes that the electrochemical

reaction is reversible.E��○
0

c is the formal potential of the redox couple O/R (see Sect.

1.5.1).

The current, according to Faraday law and Fick’s first law, is given by

Iplane ¼ FADO

∂cO
∂x

� �
x¼0
¼ �FADR

∂cR
∂x

� �
x¼0

ð2:7Þ

This problem can be easily solved by introducing the new variable,
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spi ¼
x

2
ffiffiffiffiffiffi
Dit
p i ¼ O, R ð2:8Þ

where superscript “p” denotes that the parameter s corresponds to planar diffusion.

By introducing spi parameter into Eq. (2.2), Fick’s second law takes the form:

d2ci

d spi
� �2 þ 2 spi

dci
dspi
¼ 0 i ¼ O, R ð2:9Þ

and the boundary value problem (Eqs. 2.3–2.5) becomes

spi !1 :

ci ¼ c*i i ¼ O, R ð2:10Þ

spi ¼ 0 :

ffiffiffiffiffiffiffi
DO

p dcO
dspO

� �
sp
O
¼0
¼ � ffiffiffiffiffiffi

DR

p dcR
dspR

� �
sp
R
¼0

ð2:11Þ

cO spO ¼ 0
� � ¼ eη cR spR ¼ 0ð Þ ð2:12Þ

Equation (2.11) refers to the flux conservation and Eq. (2.12) to the establish-

ment of the nernstian equilibrium. Note that under these conditions, the original

problem in terms of variables x and t has been transformed into a one-variable

problem (spi ), that is, cO and cR can be expressed only as functions of the variables

spO and spR, respectively (which include distance and time variables), because they

diffuse with different diffusion coefficients DO and DR. This problem can now be

solved by making yi ¼ dci=ds
p
i , and Eq. (2.9) becomes

dyi
dsi
þ 2spi yi ¼ 0 i ¼ O, R ð2:13Þ

whose direct integration leads to

yi ¼ yi 0ð Þe� sp
ið Þ2 ð2:14Þ

or,

dci
dspi

� �
¼ dci

dspi

� �
sp
i
¼0
e� sp

ið Þ2 ð2:15Þ

By integrating (2.15), one obtains
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ci s
p
i

� � ¼ ci s
p
i ¼ 0

� �þ dci
dspi

� �
sp
i
¼0

ffiffiffi
π
p
2

erf spi
� �

i ¼ O, R ð2:16Þ

By introducing condition (2.10) in Eq. (2.16), it can be deduced for spi !1 that

dci
dspi

� �
sp
i
¼0
¼ 2ffiffiffi

π
p c*i � ci s

p
i ¼ 0

� �� � ð2:17Þ

So, Eq. (2.16) becomes

ci s
p
i

� � ¼ ci s
p
i ¼ 0

� �þ c*i � ci s
p
i ¼ 0

� �� �
erf spi
� � ð2:18Þ

which can be written more conveniently as

cO x; tð Þ ¼ cO spO
� � ¼ c*O þ cO spO ¼ 0

� �� c*O
� �

erfc spO
� �

cR x; tð Þ ¼ cR spRð Þ ¼ c*R þ cR spR ¼ 0ð Þ � c*R
� �

erfc spRð Þ
�

ð2:19Þ

with erf(z) being the Error function of “z” given by erf zð Þ ¼ 2=
ffiffiffi
π
p ð z

0

e�u
2

du, and

erfc zð Þ ¼ 1� erf zð Þ.
From Eqs. (2.11), (2.12), and (2.17), the surface concentrations cO spO ¼ 0

� �
¼ cs, rO and cR spR ¼ 0ð Þ ¼ cs, rR are obtained,

cs, rO ¼
eη γc*O þ c*R
� �
1þ γeη

cs, rR ¼
γc*O þ c*R
1þ γeη

9>>=>>; ð2:20Þ

with

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ð2:21Þ

From Eq. (2.20), it is fulfilled thatffiffiffiffiffiffiffi
DO

p
cs, rO þ

ffiffiffiffiffiffi
DR

p
cs, rR ¼

ffiffiffiffiffiffiffi
DO

p
c*O þ

ffiffiffiffiffiffi
DR

p
c*R ð2:22Þ

2.2.1 Concentration Profiles

Equations (2.19) show the concentration profiles for species O and R. The linear

concentration profiles of these species correspond to the lines tangent to ci(x, t) at
the electrode surface (i.e., at x ¼ 0) and are given by
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ci x; tð Þ ¼ c*i � cs, ri

δ rp, i
xþ cs, ri i ¼ O, R ð2:23Þ

From Eqs. (2.4), (2.8), (2.17), and (2.19),

∂ci
∂x

� �
x¼0
¼ dci

dspi

� �
sp
i
¼0

∂spi
∂x

� �
x¼0
¼ c*i � cs, riffiffiffiffiffiffiffiffiffi

πDit
p i ¼ O, R ð2:24Þ

Hence, by comparing Eqs. (2.23) and (2.24) it can be deduced that Nernst

diffusion layer for a planar electrode, δrp;i, is defined as

δ rp, i ¼
ffiffiffiffiffiffiffiffiffi
πDit
p ð2:25Þ

In Fig. 2.1, we have plotted the transient accurate concentration profiles for

species O, cO(x, t) (Eq. 2.19), and the linear concentration profiles (Eq. (2.23)) at a
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Fig. 2.1 Concentration

profiles of species O at a
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E� E��○
0

c

� �
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Reproduced with

permission [12]
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fixed time and different potential values (Fig. 2.1a), and at a fixed potential and

different times (Fig. 2.1b).

From Fig. 2.1a, it can be observed that the Nernst diffusion layer, defined by the

abscissa at which the concentration reaches the value c�O in the linear concentration

profile, is independent of the potential in all the cases in spite of their having been

obtained under transient conditions. This is in agreement with Eqs. (2.20) and

(2.25), which show that the dependence on the electrode potential is only in the

surface concentrations.

Figure 2.1b shows the time dependence of the concentration profiles. It can also

be observed that the perturbed region of the solution adjacent to the electrode

surface grows with time and the relative difference between the linear diffusion

layer and the accurate diffusion layer (determined as the value x for which cO
reaches the 99 % of its bulk value) is greater for shorter times [12].

2.2.2 Current–Time Curves (Chronoamperometry)
and Current–Potential Curves (Voltammetry)

By inserting Eq. (2.24) in (2.7), the following expression for the current is obtained:

Iplane ¼ FADO

c*O � cs, rO

� �ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p ¼ �FADR

c*R � cs, rR

� �ffiffiffiffiffiffiffiffiffiffi
πDRt
p ð2:26Þ

By taking into account Eq. (2.20), the current given by (2.26) becomes

Iplane ¼ FA

ffiffiffiffiffiffiffi
DO

πt

r
c*O � c*Re

η
� �
1þ γeη ð2:27Þ

with η given by Eq. (2.6).

Note that the reversible I(E, t) response is expressed as a product of a potential-

dependent function ( c*O � c*Re
η

� �
= 1þ γeηð Þ) and a time-dependent function (FAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DO= πtð Þ
p

). This behavior is characteristic of reversible electrode processes. In the

next sections the current–time curves at fixed potential (Chronoamperograms) and

current–potential curves at a fixed time (Voltammograms) will be analyzed.

2.2.2.1 Chronoamperometry

Expressions for the cathodic and anodic diffusion-controlled limiting currents, Iplaned;c

and Iplaned;a , can be easily obtained from Eq. (2.27) by making eη ! 0 and eη !1
(i.e., E� E��○

0

c and E
 E��○
0

c ), respectively. For a simple charge transfer the

diffusion-controlled limiting current can also be defined as the current at which

the electrode reaction is forced by the applied potential to the point that the surface
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concentrations of electroactive reactant species fall to zero and then the current is

only limited by the diffusion transport. Hence, Iplaned;c and Iplaned;a can also be obtained

by making cs, rO ¼ 0 and cs, rR ¼ 0, respectively, in Eq. (2.26),

I planed, c ¼ FA

ffiffiffiffiffiffiffi
DO

πt

r
c*O

I planed, a ¼ �FA
ffiffiffiffiffiffi
DR

πt

r
c*R

9>>=>>; ð2:28Þ

These two equations are known as the Cottrell equations [13]. Equations (2.27) and

(2.28) show that the current decays with the square root of time for any value of the

applied potential, which only acts as a scale factor, as illustrated in Fig. 2.2. These

equations predict very high current at short times, although in practice, the measured

current at very short times is influenced both by the intrinsic limitations of the

potentiostat and by the cell time constant, with the time needed for the fulfillment of

Eqs. (2.27) and (2.28) being higher than RuCdl (with Ru and Cdl being the

uncompensated resistance of the cell and the double-layer capacitance; see Sects. 1.6

and 1.9). For sufficiently longer times, deviations from the cottrellian behavior are

expected because of the natural convection, that is, the movement of the solution due to

density differences, and edge effects, due to nonlinear diffusion at the electrode border.

The measurement of limiting currents is probably the simplest and most widely

applicable method for measuring the diffusion coefficients of redox species. In

agreement with Cottrell’s equation, the value of Di can be obtained from the plot of
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Fig. 2.2 Current–time curves for the application of a constant potential to a planar electrode.

DO¼DR¼ 10�5 cm2 s�1, c*O ¼ c*R ¼ 1 mM, A¼ 0.031 cm2, T¼ 298 K. The values of E� E��○
0

c

� �
in mV are: red,�25; green,�50; blue,�75; black,�100. The inner figure corresponds to the plot
of the logarithm of the current versus the logarithm of time
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the lograrithm of the limiting current versus the logarithm of time (see inner black

curve in Fig. 2.2), by using the relation

Di ¼ πe
2�intercept

FAc*i
� �2 ð2:29Þ

Additionally, a slope equal to ½ confirms the validity of Eq. (2.28). Note that the

Cottrell equation considers planar diffusion as the sole form of mass transport.

However, in practice, purely planar diffusion is only achieved with very large or

shielding electrodes. Deviations from cottrellian behavior at short times (double-

layer current) and long times (convection,3 edge effects4) would restrict the appli-

cability of the above equation (see Fig. 2.3).

2.2.2.2 Voltammetry

At a fixed time, the current–potential curve obtained from several potential step

experiments has the sigmoidal shape shown in Fig. 2.4. This curve shows some

interesting points:

– The potential corresponding to a current Iplane ¼ I planed, c þ I planed,a

� �
=2, is called

“reversible half-wave potential,” Er
1=2, in planar geometry. This parameter can

deviate from the formal potential because it is affected by the diffusion coeffi-

cients of the electroactive couple and also by the electrode geometry and size

(i.e., it is affected by the kinetics of the mass transport); see Fig. 2.21.

To find this point, it is necessary to combine Eqs. (2.26) and (2.28),

cs, rO

c*O
¼ 1� Iplane

I planed,c

cs, rR

c*R
¼ 1� Iplane

I planed,a

9>>>>>=>>>>>;
ð2:30Þ

By inserting Eq. (2.30) in the Nernst condition (Eq. 2.5), one obtains (see also

Chap. 7 of [3]),

E ¼ E��○
0

c þ
RT

F
ln

DR

DO

� �1=2

þ RT

F
ln

I planed,c � Iplane

Iplane � I planed,a

 !
ð2:31Þ

So, for Iplane ¼ I planed,c þ I planed, a

� �
=2,

3Natural convection associated to temperature or density gradients or vibrations is present in the

usual experiments [14–16].
4 Enhancement of the diffusion flux at the edge of an inlaid electrode.
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E ¼ E r
1=2 ¼ E��○

0

c þ
RT

F
ln

DR

DO

� �1=2

ð2:32Þ

– Another important point of the I–E curve is the crossing potential or “equili-

brium potential” for which the current takes a null value, Iplane ¼ 0 (see Fig. 2.4a).

By inserting this condition in Eq. (2.27),
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Fig. 2.3 Experimental

current–time curve (a) and

logarithmic curves (b) for

the application of a constant

potential to a graphite disc

electrode of radius 0.5 mm

(planar electrode) for the

reduction of Fe CNð Þ3�6 .

c*
Fe CNð Þ3�6

¼ 2 mM,

A¼ 0.0078 cm2, T¼ 298 K.

E¼�0.1 V vs. Ag/AgCl,

KCl (saturated). From the

logarithmic analysis in (b)

(restricted to the Cottrellian

region, i.e., the red line), the
following values have been

obtained: slope: �0.48,
intercept: �0.475. The
diffusion coefficient of

Fe CNð Þ3�6 obtained by

applying Eq. (2.29) is

1.15� 10�6 cm2 s�1
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EEq ¼ E��○
0

c þ
RT

F
ln

c*O
c*R

� �
ð2:33Þ

Otherwise the I–E–t response (Eqs. 2.26 or 2.27), when only the oxidized

species O is initially present in the electrolytic solution, is simplified to

a

b

Fig. 2.4 Current–potential curve corresponding to the application of constant potentials to a

planar macroelectrode, calculated from Eq. (2.27) with c*R=c
*
O ¼ 0:5 (a) and 0 (b). t¼ 0.1 s,

A¼ 0.031 cm2, DO ¼ 10�5 cm2 s�1, γ ¼ 1:2
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Iplane ¼ FA

ffiffiffiffiffiffiffi
DO

πt

r
c*O

1þ γeη ¼ FADO

c*O � cs, rO

� �ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p ¼ FADR

cs, rRffiffiffiffiffiffiffiffiffiffi
πDRt
p ð2:34Þ

Under these conditions only a cathodic wave is obtained (see Fig. 2.4b) and

Eq. (2.31) takes the simpler form:

E ¼ E r
1=2 þ

RT

F
ln

I planed,c � Iplane

Iplane

 !
ð2:35Þ

with the normalized current–potential curve having the following time-independent

expression:

Iplane

I planed, c

¼ 1

1þ e
F
RT E�E r

1=2

� � ¼ 1

1þ γeη ð2:36Þ

This is a consequence of the form of the reversible I–E–t response.

Note that the plot of E vs. ln I planed,c � Iplane
� �

= Iplane � I planed,a

� �� �
(or vs.

ln I planed, c � Iplane
� �

=Iplane
� �

when R species is not initially present) is linear with a

slope 26 mV (if T¼ 298 K) and intercept equal to Er
1=2. This slope is characteristic

of reversible charge transfer processes. There are other reversibility criteria based

on the difference between potentialsE r
3=4 � E r

1=4, corresponding to the currents I
plane

¼ 3=4ð ÞI planed,c and Iplane ¼ 1=4ð ÞI planed,c , with this difference being 56.4 mV (See

Chap. 5 of [2]; [17] and Fig. 2.4b).

The analysis of the E vs. ln I planed,c � Iplane
� �

= Iplane � I planed, a

� �� �
curve provides not

only a reversibility criteria (from the measurement of the slope of the resulting linear

plots), but also provides direct evidence that only one electron has been transferred and

a direct measurement of the reversible half-wave potential, Er
1=2, which is a funda-

mental parameter of the redox system in a given supporting electrolyte solution. Er
1=2

is closely related to the formal potential (Eq. 2.32) and affected by the diffusion

coefficients of the oxidized and reduced species. The half-wave potential varies with

the size and shape of the electrode used because it depends on the characteristics of

mass transport considered (see Fig. 2.21 in Sect. 2.6).

2.2.3 Stoichiometric Coefficients Different From the Unity

A variation of reaction Scheme (2.I) is considered here by assuming other stoichio-

metries, in line with the reaction scheme [1, 2]:
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vOOþ ne�ÆvRR ð2:IIÞ

where n is the number of electrons transferred and vO and vR the stoichiometric

coefficients of species O and R, respectively.

The mass transport and the initial conditions are also given by Eqs. (2.2) and

(2.3), but the surface conditions are now

t > 0, x ¼ 0 :

DO

vO

∂cO
∂x

� �
x¼0
¼ �DR

vR

∂cR
∂x

� �
x¼0

ð2:37Þ

cs, rO

� �vO ¼ eη cs, rRð ÞvR ð2:38Þ

where η is given by Eq. (2.6).

As previous sections, by using the variable spi (Eq. 2.8), the differential equation
system (2.2) and the surface conditions (2.37) and (2.38) become dependent only on

spi variable: ffiffiffiffiffiffiffi
DO

p
vO

∂cO
∂spO

� �
sp
O
¼0
¼ �

ffiffiffiffiffiffi
DR

p
vR

∂cR
∂spR

� �
sp
R
¼0

ð2:39Þ

cO spO ¼ 0
� �� �vO ¼ eη cR spO ¼ 0

� �� �vR ð2:40Þ

Therefore, the surface fluxes and concentration profiles of species i (i¼O, R) are

also expressed by Eqs. (2.16)–(2.18). From Eqs. (2.17), (2.39), and (2.40), it is

possible to obtain the expression for the relationship between the potential and the

surface concentration of species O:

E ¼ E��O
0

c þ
RT

nF
ln

cs, rO

� �vO
vR
vO
γ

� �vR
c*O � cs, rO

� �vR
0B@

1CA ð2:41Þ

with γ given by Eq. (2.21).

The expression of the current is

Iplane ¼ FADOffiffiffiffiffiffiffiffiffiffiffi
πDOt
p c*O � cs, rO

� �
vO

ð2:42Þ

with the limiting current being

I planed, c ¼
FADOffiffiffiffiffiffiffiffiffiffiffi
πDOt
p c*O

vO
ð2:43Þ

By solving cs;rO and c�O in Eqs. (2.42) and (2.43) and inserting them into (2.41), it

is obtained
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E ¼ E��O
0

c þ
RT

nF
ln

vO
vO

vRγð ÞvR
ffiffiffiffi
πt
p

FA
ffiffiffiffiffiffiffi
DO

p
� �vO�vR I planed, c � Iplane

� �vO
I planed,c

� �vR
0B@

1CA ð2:44Þ

Equation (2.44) transforms into (2.31) for the case vO ¼ vR ¼ 1 (with Id,a ¼ 0).

The expression of the half-wave potential is obtained by making Iplane ¼ I planed,c =2 in

(2.44),

E r
1=2 ¼ E��O

0

c þ vR
RT

nF
ln

DR

DO

� �1=2

þ RT

nF
ln

c*O
� �vO�vR

2vO�vR vR
vO

� �vR
0B@

1CA ð2:45Þ

From these expressions of the half-wave potential it can be inferred that, under

these conditions, it depends on the bulk concentration of oxidized species and on

the particular values of vO and vR.

2.3 Ion Transfer Through Liquid Membranes

The study of the ion transfer through artificial liquid membrane systems is impor-

tant for the elucidation of the ion transfer through biological membranes. In this

respect, the Interface between two inmiscible electrolyte solutions (ITIES) consti-

tutes a biomimetic medium suitable for studying several fundamental processes,

ranging from biocatalysis to cellular respiration of photosynthesis, and many others

[18–22]. The first studies of liquid/liquid interfaces (L/L) under the application of

an external potential were carried out by Gavach et al. [23], laying the basis for the

current electrochemical treatments of ITIES.

The membrane system considered here is composed of two aqueous solutions w1

and w2, separated by a liquid membrane M, and it involves two aqueous solution/

membrane interfaces: w1/M (outer interface) and M/w2 (inner interface). If the

different ohmic drops (and the potentials caused by mass transfers within w1, M,

and w2) can be neglected, the membrane potential, EM, defined as the potential

difference between w1 and w2, is caused by ion transfers taking place at both L/L

interfaces. The current associated with the ion transfer across the L/L interfaces is

governed by the same mass transport limitations as redox processes on a metal

electrode/solution interface. Provided that the ion transport is fast, it can be

considered that it is governed by the same diffusion equations, and the electro-

chemical methodology can be transposed en bloc [18, 24]. With respect to the

experimental cell used for electrochemical studies with these systems, it is neces-

sary to consider three sources of resistance, i.e., both the two aqueous and the

nonaqueous solutions, with both ITIES sandwiched between them. Therefore, a

potentiostat with two reference electrodes is usually used.
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The ion transport through membrane systems can be studied in two forms:

(a) By using a common ion in the organic membrane and in one of the aqueous

phases, such that it can be assumed that the external polarization is only effective

at one interface of the membrane, and the current corresponding to a given

applied potential is only determined by the transfer of the target ion at one of

the interfaces, since the other acts as a reference interface (see Scheme 2.2a).

(b) In the case of a very hydrophobic supporting electrolyte in the membrane for

which it is not possible to have a common ion in the electrolyte of the aqueous

phases, a design like that shown in Scheme 2.2b is used. In this situation, both

liquid/liquid interfaces in the membrane system are polarized (and the charge

transfer reactions are linked to each other through the fulfillment of the

electroneutrality of the membrane). These polarization phenomena can be

described in terms of the individual electrochemical processes occurring at

the two interfaces, which are coupled by virtue of the same intensity of

electrical current (in order to maintain the electroneutrality of this system).

Moreover, Kihara et al. demonstrated that the useful potential window that this

system provides is much wider than that available when only one interface w1/

M is polarized [25–27].

2.3.1 One-Polarized Interface Systems

Many of the systems used for electrochemical studies of ion transfer processes

taking place at the ITIES are systems of a single polarized interface. In these kinds

of systems, the polarization phenomenon is only effective at the sample solution/

b Two polarized interfaces

a One polarized interface

aqueous phase (w2)aqueous phase (w1) membrane (M)

C+A–, X+A–

X+(w1)

B+ (w2)

E1 E2

X+ (M)

B+ (M)

B+Y– B+A–

c = 0 c = dc ® -¥ c ® ¥

aqueous phase (w2)aqueous phase (w1) membrane (M)

B+A–, X+A–

X+(w1)

R+ (w2)

E1 E2

X+ (M)

R+ (M)

R+Y– B+A–

c = 0 c = dc ® –¥ c ® ¥

Scheme 2.2 A schematic

view of the systems with

one (a) and two (b)

polarized liquid/liquid

interfaces: outer (w1/M) and

inner (M/w2)
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membrane interface, since the potential drop through the other interface is kept

constant whatever the nature of this interface (i.e., either liquid/liquid or solid/

liquid [28]). In the specific case of a membrane system that separates two aqueous

solutions, the non-polarizable interface is achieved by adding a sufficiently high

concentration of a common ion in the membrane and inner aqueous solution, by

choosing as supporting electrolyte two salts of this common ion with lipophilic and

hydrophilic counterions, respectively.

Let us consider the transfer of a cation Xþ between the aqueous phase (w1) and

the organic phase (M),

Xþ w1ð Þ Æ Xþ Mð Þ ð2:IIIÞ

The distribution of the cation Xþ between both phases in contact leads to the

development of a potential drop across the interface,

Δw1

M ϕ ¼ ϕ w1ð Þ � ϕ Mð Þ ð2:46Þ

where ϕ (p) is the inner potential of the phase p (¼w1 or M). This equilibrium

potential difference, when Xþ is the only ion that can be transferred, obeys the

Nernst equation:

Δw1

M ϕ ¼ Δw1

M ϕ
��○
Xþ þ

RT

F
ln

aM
Xþ

aw1

Xþ

 !
¼ Δw1

M ϕ
��○0
Xþ þ

RT

F
ln

cM
Xþ

cw1

Xþ

 !
ð2:47Þ

with Δw1

M ϕ
��○0
Xþ being the formal ion transfer potential given by

Δw1

M ϕ
��○0
Xþ ¼ Δw1

M ϕ
��○
Xþ þ

RT

F
ln

f MXþ

fw1

Xþ

 !
ð2:48Þ

where R, T, and F have their usual meaning and ap
Xþ , f

p

Xþ , and c
p

Xþ are the activity,

activity coefficient, and concentration, respectively, of the ion Xþ in the phase p

(¼w1 or M). Δw1

M ϕ
��○
Xþ is the standard ion transfer potential, which is related to the

standard Gibbs energy of the transfer of Xþ,

Δw1

M ϕ
��○
Xþ ¼

ΔM
w1
G��○Xþ
F

ð2:49Þ

The standard Gibbs energy of the ion transfer is a direct measurement of

lipophilicity, and is related to the standard partition coefficient of the ion in the

biphasic system through the following equation:

PXþ ¼ exp �ΔM
w1
G��○Xþ

RT

 !
ð2:50Þ

From the transposition of the theory for NPV to the study of the uptake of a

target ionXþ from an aqueous sample solution to a liquid membrane, the theoretical
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equations obtained with the semi-infinite diffusion model can be used to quantify

the current response of the ion transfer. The major difference between ionic transfer

through and membrane and electronic transfer at a solid electrode is that the

boundary condition corresponding to the flux conservation is given by

Dw1

Xþ
∂cw1

Xþ

∂x

� �
x¼0
¼ DM

Xþ
∂cM

Xþ

∂x

� �
x¼0

ð2:51Þ

since the concentration of ionXþ decreases from the aqueous bulk to the membrane

surface (i.e., for �1 � x � 0) and decreases from the membrane surface to the

membrane bulk (i.e., for 0 � x � 1). However, as the planar diffusion operator is

symmetrical with respect to the x-coordinate, this change does not affect the

solution of the differential diffusion equations. So, the equation for the current in

NPV of a reversible ion transfer can be written as

I

Id
¼ γeη

1þ γeη
E ¼ E r

1=2 þ
RT

F
ln

I

Id � I

� �
9>>=>>; ð2:52Þ

where

E r
1=2 ¼ Δw1

M ϕ
��○0
Xþ þ

RT

F
ln

1

γ

� �
ð2:53Þ

Id ¼ FA c*Xþ

ffiffiffiffiffiffiffiffiffi
Dw1

Xþ

π t

s
ð2:54Þ

η ¼ F

RT
E� Δw1

M ϕ
��○0
Xþ

� �
ð2:55Þ

γ ¼ DM
Xþ

Dw1

Xþ

 !1=2

ð2:56Þ

with Δw1

M ϕ
��○0
Xþ being given by Eq. (2.48). From Eq. (2.52), Er

1=2 can be easily

determined and also the standard ion transfer potential Δw1

M ϕ
��○
Xþ once the diffusion

coefficients are known. Table 2.1 shows the values of Δw1

M ϕ
��○
Xþ for some ionic liquid

cations.

2.3.2 Two-Polarized Interfaces Systems

In these kinds of systems, the polarization phenomenon is effective at the two

interfaces involved. Specifically, in membrane systems comprising two ITIES, this

84 2 Single Pulse Voltammetry: Reversible Electrochemical Reactions



behavior is achieved when the membrane contains a hydrophobic supporting

electrolyte and the sample aqueous solution (the inner one) contains hydrophilic

supporting electrolytes, and there is no common ion between any of the adjacent

phases. In this case, the potential drop cannot be controlled individually and the

processes taking place at both interfaces are linked to each other by virtue of the

same electrical current intensity. Systems of two-polarized interfaces have shown a

series of peculiarities that can be advantageous when studying ion transfer pro-

cesses. Indeed, they provide a potential window about twice that of one-polarized

interface systems, the signals of cations and anions with similar standard ion

transfer potential values appear widely separated when these systems are used,

and the half-wave potential of the ions in these systems is influenced by their

concentration.

In Scheme 2.2b interface w1/M is the outer or working interface, and interface

M/w2 is the inner interface (not a reference interface).

The theoretical characterization of the response of this kind of membrane

systems in electrochemical techniques is very interesting for determining thermo-

dynamics and transport parameters of ions.

According to Scheme 2.2b, to solve this problem we must find the following

unknown variables.

– At interface w1/M: The concentration profiles of the target cation at both sides of

this interface (cw1

Xþ and cM
Xþ) and the potential drop E1.

– At interface M/w2: The concentration profiles of the cation R+ of the supporting

electrolyte of the membrane at both sides of this interface (cM
Rþ and c

w2

Rþ) and the

potential drop E2. Note that it has been assumed that Rþ is being transferred at

the inner interface, coupled with the transfer of Xþ at the outer one, in order to

maintain electroneutrality.

Table 2.1 Standard ion transfer potentials of different N,N-alkylimidazolium and 1-butyl-4-

methylpyridinium ionic liquid cations [29]

Cation type R Δw
Mϕ
��○
Xþ (mV) ΔM

w1
G��○Xþ (kJ/mol)

N N
RH3C

+
C4H9 �24.2 �2.33
C6H5 �53.2 �5.13
C6H13 �93.2 �8.99
C8H17 �162.5 �15.68

N N
RH3C

+

CH3

C4H9 �35.2 �3.39

N
RH3C

C4H9 �51.5 �4.97
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c*
Xþ and c*

Rþ are the initial concentrations of the target ion in aqueous phase w1

and of the electrolyte cation Rþ in the membrane, respectively.

Indeed, this is a problem with five unknown variables, the four concentrations

above indicated and one of the potential differences at the two interfaces, E1 or E2,

since they can be reduced to one potential difference because EM ¼ E1 � E2 is

known. Four differential equations and the additional condition of equality of the

fluxes of the target ion Xþ and the cation Rþ at the outer and inner interfaces,

respectively, will be used to obtain the explicit I/EM curve and the concentration

profiles of all the species.

Interface w1/M or Outer Interface

The differential equations and the boundary value problem (bvp) which can be

fulfilled by cw1

Xþ and c
M
Xþ if the thickness of the membrane is greater than the diffusion

layer of Xþ into the membrane are:

∂cw1

Xþ

∂t
¼ Dw1

Xþ
∂2

cw1

Xþ

∂x2
ð2:57Þ

∂cM
Xþ

∂t
¼ DM

Xþ
∂2

cM
Xþ

∂x2
ð2:58Þ

in phase w1:

t ¼ 0, x < 0

t � 0, x! �1
�

cw1

Xþ ¼ c*Xþ ð2:59Þ

in phase M:

t ¼ 0, 0 < x < d
t � 0, x! d

�
cMXþ ¼ 0 ð2:60Þ

t > 0, x ¼ 0 :

cMXþ ¼ eη1 cw1

Xþ ð2:61Þ

Dw1

Xþ
∂cw1

Xþ

∂x

� �
x¼0
¼ DM

Xþ
∂cM

Xþ

∂x

� �
x¼0

ð2:62Þ

with

η1 ¼
F

RT
E1 � Δw1

M ϕ
��○0
Xþ

� �
ð2:63Þ

and E1 is unknown.
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Interface M/w2 or Inner Interface

∂cw2

Rþ

∂t
¼ Dw2

Rþ
∂2

cw2

Rþ

∂x2
ð2:64Þ

∂cM
Rþ

∂t
¼ DM

Rþ
∂2

cM
Rþ

∂x2
þ migration term ð2:65Þ

Inside the membrane, the transport of Rþ takes place by diffusion and ionic

migration and is described by a very complex differential equation. However, since

the current is controlled by the diffusion of the target ion Xþ and since c*
Rþ in

membrane is high enough, it will be assumed that the Rþ concentration is constant

in all the membranes, i.e., in 0 < x < d. Therefore, Eq. (2.65) can be changed for

the following condition:

cMRþ x; tð Þ ¼ c*Rþ ð2:66Þ

in phase M:

t ¼ 0, 0 < x < d
t � 0, x! d

�
cMRþ ¼ c*Rþ ð2:67Þ

in phase w2:

t ¼ 0, x � d
t � 0, x!1

�
cw2

Rþ ¼ 0 ð2:68Þ

t > 0, x ¼ d : cMRþ ¼ eη2 cw2

Rþ ð2:69Þ

or, according with (2.66):

c*Rþ ¼ eη2 cw2

Rþ ð2:70Þ

where

η2 ¼
F

RT
E2 � ΔM

w2
ϕ��○

0

Rþ

� �
ð2:71Þ

and E2 is unknown.

The solutions of both problems are simple due to their separate character, with

each of them corresponding to the response of reversible charge transfer processes,

in such a way that the following is obtained for interface w1/M:

I1 ¼ FA

ffiffiffiffiffiffiffiffiffi
Dw1

Xþ

πt

s
c*Xþ � cw1

Xþ 0ð Þ� � ð2:72Þ
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and

E1 ¼ Δw1

M ϕ
��○0
Xþ þ

RT

F
ln

1

γ1

� �
þ RT

F
ln

I1
Id � I1

� �
ð2:73Þ

with

Id ¼ FA

ffiffiffiffiffiffiffiffiffi
Dw1

Xþ

πt

s
c*Xþ ð2:74Þ

γ1 ¼
ffiffiffiffiffiffiffiffiffi
DM

Xþ

Dw1

Xþ

s
ð2:75Þ

For the interface M/w2:

I2 ¼ FA

ffiffiffiffiffiffiffiffiffi
Dw2

Rþ

πt

s
cw2

Rþ dð Þ ð2:76Þ

By taking into account that the transfer ofRþ through M/w2 interface also occurs

reversibly, and that the current through both interfaces is the same, i.e., I1 ¼ I2 ¼ I,
it can be deduced:

E2 ¼ ΔM
w2
ϕ��○

0

Xþ þ
RT

F
ln

c*
Rþ

γ2c
*
Xþ

 !
þ RT

F
ln

Id
I

� �
ð2:77Þ

with

γ2 ¼
ffiffiffiffiffiffiffiffiffi
Dw1

Xþ

Dw2

Rþ

s
ð2:78Þ

By subtracting equations for E1 and E2,

EM ¼ E2 � E1 ¼ EM
1=2 þ

RT

F
ln

2 INð Þ2
1� IN

 !
ð2:79Þ

where:

IN ¼ I tð Þ
Id tð Þ ð2:80Þ

EM
1=2 ¼ EM,��○0 þ RT

F
ln

1

λ

� �
ð2:81Þ
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λ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2

RþD
M
Xþ

q
Dw1

Xþ

c*
Rþ

c*
Xþ

ð2:82Þ

EM,��○0 ¼ Δw1

M ϕ
��○0
Xþ � ΔM

w2
ϕ��○

0

Rþ ð2:83Þ

Equation (2.79) provides the expression of the membrane potential EM (applied

potential) as a function of the normalized current IN at this potential (measured

current, which is not known). So, by working out the current from the above

equation we deduce the following explicit expression for the current obtained in

single potential step voltammetry as a function of the applied potential:

I ¼ FA

ffiffiffiffiffiffiffiffiffi
DW

Xþ

πt

s
c*Xþg ηð Þ ð2:84Þ

where g(η) is the function that contains the dependence on the applied potential for

this kind of membrane systems and it is also fundamental in the current–potential

response deduced for any voltammetric technique [30],

g ηð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2e2η þ 8λeη

p
� λeη

4

η ¼ F

RT
EM � EM,��○0
� �

9>>=>>; ð2:85Þ

If coupled to the transfer of the target cation, through the outer interface, the anion

of the supporting electrolyte of w2 is transferred through the inner one; Eqs. (2.84)

and (2.85) are still valid for changing λ for λ�,

λ� ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DM

RþD
M
Xþ

q
Dw1

Xþ

c*
Rþ

c*
Xþ

ð2:86Þ

By comparing this solution with that obtained for only one polarized L/L

interface (Eq. 2.52), it can be observed that both are formally similar if we change

g(η) function for the sigmoidal function γeη= 1þ γeηð Þ. The different behavior of

both responses is shown in Fig. 2.5, which corresponds to the transfer of a target

cation Xþ from water to a plasticized polymeric membrane in a system of one and

two L/L polarized interfaces (dashed and solid line, respectively). It can be seen in

Figure 2.5a that when the two interfaces are polarized, the I/E curve behaves in a

similar way to that corresponding to an irreversible process with only one interface.

Figure 2.5b also shows how the I/E curve corresponding to the applied potential

(or the membrane potential) is the sum of the curves corresponding to the outer and

inner potentials.

Note finally that in the case of two-polarized interface systems, the plots of the

membrane potential EM versus ln 2 INð Þ2= 1� INð Þ
� �

are linear with a slope equal to

RT/F and an intercept EM
1=2.

2.3 Ion Transfer Through Liquid Membranes 89



2.3.3 Electron Transfer at the Liquid/Liquid Interface

In this section, we will consider the transfer of electrons between an oxidized

species O1 in an aqueous phase and a reduced species R1 in an organic phase, as

illustrated in reaction Scheme 2.3

The global process can be written as

Oxw
1 þ Ro

2 Æ Rw
1 þ Oxo

2 ð2:IVÞ
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IN

0.0
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EM / mV
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0.6

0.8
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one polarisable interface

two polarisable interfaces

EM

E1

a

b

2E-

EM
, E1     ,                 / mVM

1/2E- M
1/2E- -- M

2 1/2E E(        )

Fig. 2.5 (a) Normalized

current–potential curves

corresponding to a system

with two polarizable liquid/

liquid interfaces (solid line;
see Eq. (2.84)) and to a

system with one polarizable

interface (dashed line; see
Eq. (2.52)). (b) IN/E

M (solid
line), IN/E1 (dashed line),
and IN= �E2ð Þ (dotted line)
calculated from Eqs. (2.84),

(2.73), and (2.77),

respectively.

Δw1

M ϕ
��○0
Xþ ¼ �224 mV,

ΔM
w2
ϕ��○

0

Rþ ¼ �304 mV,

Dw1

Xþ ¼ Dw2

Rþ ¼ 10�5 cm2 s�1,
DM

Xþ ¼ 10�8 cm2 s�1,
c*
Xþ ¼ 0:1mM,

c*
Rþ ¼ 50 mM, T¼ 298.15 K.

Reproduced with permission

[30]
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To solve the mass transport equations corresponding to this process, it is

necessary to consider the arrival of two reactants in different phases at the surface

and the departure of the two products from it, so four differential equations should

be considered [31]: two for the aqueous phase,

∂cOx1
∂t
¼ DO1

∂2
cOx1
∂x2

∂cR1

∂t
¼ DR1

∂2
cR1

∂x2

9>>=>>; ð2:87Þ

and two for the organic one,

∂cOx2
∂t
¼ DO2

∂2
cOx2
∂x2

∂cR2

∂t
¼ DR2

∂2
cR2

∂x2

9>>=>>; ð2:88Þ

The boundary value problem is the following:

t ¼ 0, 8x

cOx1 ¼ c*Ox1
cR1
¼ c*R1

cOx2 ¼ c*Ox2
cR2
¼ c*R2

9>>>=>>>; ð2:89Þ

t > 0, x! �1

cOx1 ¼ c*Ox1
cR1
¼ c*R1

�
ð2:90Þ

Scheme 2.3 A schematic

view of an heterogeneous

redox reaction at a liquid/

liquid interface
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t > 0, x!1
cO2
¼ c*O2

cR2
¼ c*R2

�
ð2:91Þ

t > 0, x ¼ 0

DOx1

∂cOx1
∂x

� �
x¼0
þ DR1

∂cR1
∂x

� �
x¼0
¼ 0

DOx2

∂cOx2
∂x

� �
x¼0
þ DR2

∂cR2
∂x

� �
x¼0
¼ 0

9=; ð2:92Þ

The solutions to the four differential equations given by Eqs. (2.87) and (2.88)

can be obtained easily by introducing the spi parameter defined in Eq. (2.8). Once

this parameter is inserted in the above equations, the following general solution for

the concentration profiles is obtained by following a similar procedure to that

described in Sect. 2.2:

ci x; tð Þ ¼ c*i þ ci 0ð Þ � c*i
� �

erfc spi
� �

with i ¼ Ox1, R1, Ox2, and R2

ð2:93Þ

Note that erfc xð Þ ¼ 1� erf xð Þ for x > 0 and erfc xð Þ ¼ 1þ erf xð Þ for x < 0.

From this equation, it is possible to calculate the surface gradients of the four

species. If we assume that the diffusion coefficients of all of them are equal

DOx1 ¼ DR1
¼ DOx2 ¼ DR2

¼ Dð Þ, then,

∂cOx1
∂x

� �
x¼0
¼ �

cOx1 0ð Þ � c*Ox1

� �
ffiffiffiffiffiffiffiffi
πDt
p

∂cR1
∂x

� �
x¼0
¼ �

cR1
0ð Þ � c*R1

� �
ffiffiffiffiffiffiffiffi
πDt
p

∂cOx2
∂x

� �
x¼0
¼

cOx2 0ð Þ � c*Ox2

� �
ffiffiffiffiffiffiffiffi
πDt
p

∂cR2
∂x

� �
x¼0
¼

cR2
0ð Þ � c*R2

� �
ffiffiffiffiffiffiffiffi
πDt
p

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð2:94Þ

The current is given by the following relationship:

I ¼ FAD
∂cOx1
∂x

� �
x¼0

ð2:95Þ

Taking into account Eqs. (2.92), (2.94), and (2.95), we get the following

expressions for the surface concentrations of the four species in terms of the

current:
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cOx1 0ð Þ ¼ �I

FA

ffiffiffiffi
D

πt

r þ c*Ox1

cR1
0ð Þ ¼ I

FA

ffiffiffiffi
D

πt

r þ c*R1

cOx2 0ð Þ ¼ I

FA

ffiffiffiffi
D

πt

r þ c*Ox2

cR2
0ð Þ ¼ �I

FA

ffiffiffiffi
D

πt

r þ c*R2

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

ð2:96Þ

The equivalent of the Nernst equation for the above process at the interface is

Δw
o ϕ ¼ Δw

o ϕ
��○0 þ RT

F
ln

cR1
0ð ÞcOx2 0ð Þ

cOx1 0ð ÞcR2
0ð Þ

� �
ð2:97Þ

which can be rewritten as

eη ¼ cR1
0ð ÞcOx2 0ð Þ

cOx1 0ð ÞcR2
0ð Þ ¼

IN þ c*R1
c*
Ox1

� �
IN þ

c*
Ox2

c*
Ox1

� �
�IN þ 1ð Þ �IN þ

c*
R2

c*
Ox1

� �
0BB@

1CCA ð2:98Þ

with

η ¼ F

RT
Δw

o ϕ� Δw
o ϕ
��○0

� �
ð2:99Þ

IN ¼ I

FAc*Ox1

ffiffiffi
D
πt

q ð2:100Þ

By working out the current in terms of the potential, the following quadratic

equation is obtained:

I2N eη � 1ð Þ � IN eη 1þ βð Þ þ αþ γ½ 
 þ eηβ � αγ ¼ 0 ð2:101Þ
with

α ¼ c*R1

c*Ox1

β ¼ c*R2

c*Ox1

γ ¼ c*O2

c*Ox1

9>>>>>>>>>>>=>>>>>>>>>>>;
ð2:102Þ
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Finally, the current corresponds to the following root of Eq. (2.101):

IN ¼
eη 1þ βð Þ þ αþ γ½ 
 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eη 1þ βð Þ þ αþ γ½ 
2 � 4 eη � 1ð Þ eηβ � αγð Þ

q
2 eη � 1ð Þ

ð2:103Þ

Figure 2.6 plots the NPV response of a redox reaction at a liquid/liquid interface

for different values of the ratio of concentrations α, β, and γ (see Eq. 2.102). As can
be seen in these curves, the presence of the products of the redox reaction at the

aqueous phase R1 leads to a shift of the response toward more positive potentials

(curve b), whereas the presence of species O2 allows the attainment of negative

currents for negative values of Δw
o ϕ� Δw

o ϕ
��○0 .

2.4 Dropping Mercury Electrode (DME)

Although nowadays the DME electrode is scarcely employed, it is of a great

historical importance since it allowed the development of the first voltammetrical

technique, Polarography, designed by Jaroslav Heyrovský (Fig. 2.7). A DME

consists of a glass capillary of 0.05–0.1 mm of internal diameter from which

mercury flows forming spherical drops (see Fig. 2.8). This electrode has two

characteristic parameters: the flow rate m (mass of mercury per unit of time) and

the drop life time t1. By assuming that the electrode has spherical shape at any

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

I N

-1.0

-0.5

0.0

0.5

1.0

w w
o o  / V′Δ − Δ ○φ φ

a

b

c

Fig. 2.6 Normalized current–potential curves corresponding to a heterogeneous redox reaction at

a liquid/liquid interface calculated from Eqs. (2.102) and (2.103). The values of coefficients α, β,
and γ are: (a) 0, 1, and 0; (b) 1, 1, and 0; (c) 1, 1, and 1
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Fig. 2.7 A portrait of

Jarovslav Heyrovský, Nobel

Prize for Chemistry in 1959

“for his discovery and

development of the

polarographic methods of

analysis.” Source: archiv

ÚFCH J. Heyrovského AV

ČR, v.v.i. http://www.jh-

inst.cas.cz

Fig. 2.8 A schematic view

of a Dropping Mercury

Electrode
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moment, the radius and the area of the drop at any instant during its growth are (see

Chap. 2 of [3]):

rDME ¼ 3mt

4πρ

� �1=3

ð2:104Þ

A tð Þ ¼ 4πr2DME ¼ 4π
3mt

4π � 13:6

� �2=3

¼ 0:85m2=3t2=3 ð2:105Þ

with 0 � t � t1, ρ being the mercury density in g cm�3, m being expressed in g s�1,
t in s, and the area in cm2.

The DME presents special features derived from its homogeneous and isotropic

drops, small size, and periodical renewed surface so that the current on each drop

rises from zero to its maximum value toward the end of the drop life. Moreover, it is

well known that mercury has the highest overpotential for hydrogen evolution,

which enables polarization of the electrode to very negative potentials.

Two different ways of operating with a DME will be described in this section. In

the first, called “dc Polarography” (dcP), the potential step is applied from the

beginning of the drop life with electrolysis taking place during the whole drop life.

The other way consists of applying a potential pulse only at the end of the drop life

for a short time called pulse time (1–200 ms), after which the potential returns to the

initial value. This last technique is called Normal Pulse Polarography (NPP). In the

first technique, the voltage varies linearly with time very slowly from an initial

value, so it can be considered almost constant for each drop during the whole drop

life. The polarographic potential–current curve presents regular oscillations due to

the repetitive drop growth and fall. This feature prompted the application of

dumping systems, and thus most of the theoretical expressions have been derived

for mean currents. As will be seen below, for reversible electrode processes,

the instantaneous current during a single drop varies with t1/6 following an

“Ilkovičian” behavior.

2.4.1 dc Polarography

Theoretically, the modeling of the electrochemical response corresponding to the

application of a constant potential to a single drop presents an additional compli-

cation over stationary electrodes due to the convection caused by the growth of the

mercury drop toward the solution. Under these conditions the temporal variation of

the concentration of electroactive species is related both to the diffusion component

and to convection. This problem was solved by Koutecký by using the expanding

sphere electrode model (see Eq. 2.119), although the first model that treated this

electrode was proposed by Ilkovič [32], and is known as the “expanding plane”

model, and assumes linear diffusion in the way,
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∂ci
∂t
¼ Di

∂2
ci

∂x2
� vx

∂ci
∂x

i ¼ O, R ð2:106Þ

with the term vx∂ci=∂x being related to the convection through the velocity of the

solution, vx (see Sect. 1.8.3). The basic assumption of the model is that the growth

of the drop can be described as the movement of an expanding plane toward the

solution, so the convection velocity would be only observed in the normal direction

to the plane, vx. Its expression is vx ¼ �2x=3t, such that the mass transport equation

becomes [3, 32–34]:

∂ci
∂t
¼ Di

∂2
ci

∂x2
þ 2x

3t

∂ci
∂x

i ¼ O, R ð2:107Þ

The applicability of this model is restricted to longer times, i.e., drops of large

radius ( rDME � 0.05 cm for t¼ 1 s). Although this equation is logically more

complex than that corresponding to stationary planar electrodes, it can be easily

solved in a similar way to that described in Sect. 2.2 (Eqs. 2.8–2.19) by making the

following variable change:

sDME
i ¼

ffiffiffi
7

3

r
x

2
ffiffiffiffiffiffi
Dit
p ¼

ffiffiffi
7

3

r
spi i ¼ O, R ð2:108Þ

By including this new variable in the differential equation system (2.107) and in

the initial and limiting conditions, these are transformed into a one-variable prob-

lem (sDME
i ) of identical form to that given by Eqs. (2.9)–(2.12) for static planar

electrodes; that is, cO and cR can be expressed as functions of only one variable,

sDME
O and sDME

R , respectively. Thus, by following the same procedure indicated by

Eqs. (2.13)–(2.18), one obtains expressions for the concentration profiles:

cO x; tð Þ ¼ cO sDME
O

� � ¼ c*O þ cs, rO � c*O
� �

erfc sDME
O

� �
cR x; tð Þ ¼ cR sDME

R

� � ¼ c*R þ cs, rR � c*R
� �

erfc sDME
R

� �
)

ð2:109Þ

As can be seen, these expressions are formally identical to those deduced for a

planar electrode (compare Eqs. (2.109) and (2.19)), with the only difference being

the definition of the dimensionless variable: spi for planar electrodes and sDME
i for

DME. Under these conditions, surface concentrations are also given by Eq. (2.20)

and condition (2.22) is also fulfilled.

According to Fick’s law the current is

IDME
dcP ¼ FA tð ÞDO

∂cO
∂x

� �
x¼0
¼ �FA tð ÞDR

∂cR
∂x

� �
x¼0

ð2:110Þ
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with A(t) given by Eq. (2.105). Inserting Eq. (2.109) in Eq. (2.110), gives the

following expression for the current:

IDME
dcP ¼ FA tð ÞDO

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3πDOt

r
c*O � cs, rO

� � ¼ �FA tð ÞDR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3πDRt

r
c*R � cs, rR

� � ð2:111Þ
with cs;rO and cs;rR being the surface concentrations deduced for a plane electrode

given by Eq. (2.20).

From Eq. (2.105), (2.111) can be written as

IDME
dcP ¼ 4π 3m

4πρ

� �2=3
FDOt

2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3πDOt

r
c*O � cs, rO

� � ¼
¼ �4π 3m

4πρ

� �2=3
FDRt

2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
7

3πDRt

r
c*R � cs, rR

� � ð2:112Þ

and on inserting Eq. (2.20) in (2.112),

IDME
dcP ¼ 4π

3m

4πρ

� �2=3

FDOt
1=6

ffiffiffiffiffiffiffiffiffiffiffiffi
7

3πDO

r
c*O � c*Re

η
� �
1þ γeη ð2:113Þ

If we consider that the current I is in A, the concentrations c�i are in mol cm�3,
the diffusion coefficient DO is in cm2 s�1, the mercury density ρ in g cm�3, the
mercury flow m in g s�1, and time t in s, Eq. (2.113) becomes

IDME
dcP ¼ 0:732FD

1=2
O m2=3 c*O � c*Re

η
� �
1þ γeη t1=6 ð2:114Þ

From this equation, cathodic and anodic limits are deduced by making eη ! 0

and eη !1, respectively, giving rise to the well-known Ilkovič equations [32–34]:

IDME
d,c ¼ 0:732FD

1=2
O m2=3c*Ot

1=6

IDME
d,a ¼ �0:732FD1=2

R m2=3c*Rt
1=6

)
ð2:115Þ

Figure 2.9 plots the time variation of the limiting current IDME
d;c given by the

Eq. (2.115) for five drops. As can be seen in this Figure, the current increases with

time until t ¼ t1 when the drop falls and, logically, the current also falls to zero.

Note that for the DME it is fulfilled that

IDME
dcP

IDME
d,c

¼ 1� c*R=c
*
O

� �
eη

� �
1þ γeη ð2:116Þ

which can be rewritten as

E ¼ E r
1=2 þ

RT

F
ln

IDME
d,c � IDME

dcP

IDME
dcP � IDME

d,a

 !
ð2:117Þ
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Observe that Eqs. (2.116) and (2.117) are identical to (2.27), (2.28) and (2.31)

deduced for planar electrodes.

From Eq. (2.111), it can be deduced that the Nernst diffusion layer for a DME is

δ rDME, i ¼
ffiffiffiffiffiffiffiffiffiffiffi
3

7
πDit

r
¼

ffiffiffi
3

7

r
δ rp, i i ¼ O, R ð2:118Þ

By using the expanding sphere electrode model for the DME, Koutecký obtained

the following expression for the instantaneous limiting current [35–37]:

IDME
dcP ¼ 0:732FD

1=2
O m2=3c*Ot

1=6 1þ 3:9
D

1=2
O t1=6

m1=3
þ 1:5

D
1=2
O t1=6

m1=3

 !2

þ . . .

8<:
9=;
ð2:119Þ

2.4.2 Normal Pulse Polarography (NPP)

In this technique, the DME is kept at an initial potential E1 during a time t1 at which
the electrode reaction cannot occur and then it is polarized by a potential pulse of

increasing amplitude, E2. The measurement of the current during a short pulse time

t2 at the end of the drop life confers important advantages on NPP over dcP in

relation to the elimination of double-layer effects. In any case, this technique is

actually a single potential step technique in which the perturbation shown in

t / s
0 1 2 3 4 5

I(t
) /

 m
A

20
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...

Drop fall

Fig. 2.9 Current–time curves for a DME calculated from Eq. (2.115). m¼ 0.1 g s�1,
DO ¼ 10�5 cm2 s�1, t1¼ 1 s, c*O ¼ 1 mM
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Scheme 2.1 is applied to the DME for a very short time interval, t2, before which the

electrode has an area proportional to t
2=3
1 .

The differential diffusion equations system to solve when a potential pulse

E is applied and the corresponding boundary value problem (bvp) when the

expanding plane model for the DME is considered are:

∂ci
∂t2
¼ Di

∂2
ci

∂x2
þ 2x

3 t1 þ t2ð Þ
∂ci
∂x

i ¼ O and R ð2:120Þ

t2 � 0 , x!1
t2 ¼ 0 , x � 0

�
cO ¼ c*O, cR ¼ c*R ð2:121Þ

t2 > 0 , x � 0

DO

∂cO
∂x

� �
x¼0
¼ �DR

∂cR
∂x

� �
x¼0

ð2:122Þ

cs, rO ¼ eη cs, rR ð2:123Þ

where t1 is the constant time previous to the application of the potential pulse and t2
the variable pulse time, the total time drop life is t ¼ t1 þ t2, and c

s;r
O and cs;rR are the

surface concentrations deduced for a plane electrode given by Eqs. (2.20).

This problem was addressed by Brikmann and Loss [38] and solved later by

Galvez and Serna [39]. More recently, a compact expression as a function of the

ratio (t2/t) for the pulse polarographic wave when the two species are initially

present in the solution was obtained [40, 41]. Under these conditions, the current

can be expressed as

IDME
NPP ¼ FA tð Þ c*O � c*Re

η
� �
1þ γeη

ffiffiffiffiffiffiffi
DO

πt2

r
h αð Þ ð2:124Þ

with

h αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

7=3ð Þα
1� 1� αð Þ 7=3ð Þ

s
α ¼ t2

t1 þ t2

9>>>=>>>; ð2:125Þ

Note that if t1 ! 0 (i.e., t2 ! t and α! 1), h αð Þ ! ffiffiffiffiffiffiffiffi
7=3

p
such that Eq. (2.124)

presents an ilkovičian behavior (see 2.114):

IDME
NPP t1 ! 0ð Þ ¼ FA0 t

2=3 c*O � c*Re
η

� �
1þ γeη

ffiffiffiffiffiffiffi
DO

πt

r ffiffiffi
7

3

r

¼ FA0

ffiffiffiffiffiffiffiffiffi
7DO

3π

r
t1=6

c*O � c*Re
η

� �
1þ γeη ð2:126Þ

where A0 ¼ 4π 3m= 4πρð Þð Þ2=3.
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On the other hand, if t2 � t1 (i.e., α! 0), h! 1, Eq. (2.124) transforms into

IDME
NPP t2 � t1ð Þ ¼ FA

c*O � c*Re
η

� �
1þ γeη

ffiffiffiffiffiffiffi
DO

πt2

r
ð2:127Þ

with A ¼ A0t
2=3
1 being constant. The above equation is simply the current–potential

relationship corresponding to a planar electrode with the potential pulse time being

t2 (see Eq. 2.27). Therefore, it presents a cotrellian behavior.

In all the above cases, it is possible to rewrite the current–potential expression as

E ¼ E r
1=2 þ

RT

F
ln

Id,c � IDME
NPP

IDME
NPP � Id,a

� �
ð2:128Þ

which is identical to that obtained in a static planar electrode (see Eq. 2.31).

The sensitivity of NPP is greater than that of dcP because the ratio

IDME
NPP =IDME

dcP ffi 3t=7t2ð Þ1=2 is much greater than unity, provided that t
 t2. Moreover,

the pulse current greatly exceeds the charging current as compared to dc current,

since the charging current for a DME is given by [1–3]:

IDME
c ¼ 0:567Ci EPZC � Eð Þm2=3t�2=3 / t�2=3 ð2:129Þ

where Ci is the integral capacity and EPZC is the potential of zero charge (see Sect.

1.6). Note that Ci is given in F cm�1, m in g s�1, E in V, and the current Ic in A. So,
for NPP it is fulfilled that

IDME
NPP þ IDME

c / t�1=2 þ t�2=3 ffi t�1=2 ð2:130Þ

The NPP current–potential curves calculated from Eq. (2.124) for t1 ¼ 1 s and

different values of t2 have been plotted in Fig. 2.10. As can be seen from these

curves, the decrease of the potential pulse time t2 leads to an increase of the

response (and therefore of its sensitivity), whereas it does not affect the location

of the current–potential curve.

2.5 Spherical Electrodes

When the electrode does not have macrometric dimensions (i.e., for a radius smaller

than 0.05 cm for a time of experiment of 1 s), the geometry becomes fundamental.

In this section, special detail will be paid to spherical geometry. The use of

spherical electrodes such that the Static Mercury Drop Electrode (SMDE) offers

important advantages over solid electrodes on account of its smooth and
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homogeneous surface and because of the large hydrogen overpotential. This elec-

trode is extensively used in Stripping Analysis by preconcentration of the metal into

the small volume of the mercury electrode by cathodic deposition at controlled time

and potential [42, 43]. Nowadays gold spherical electrodes and microelectrodes are

also widely used [44, 45]. Moreover, the electrode potential can be used to induce

uptake or release of species in individual spherical droplets or arrays of droplets and

in the monitorization of processes in and around biological cells. In all these

examples, the spherical geometry plays an important role [46, 47].

In this section, it will be highlighted that, for nonplanar geometry, finding

analytical solutions when the diffusion coefficients of oxidized and reduced species

are different is much more complicated than in the planar case, since under these

conditions the surface concentrations are time dependent even for reversible pro-

cesses. However, this situation is of great interest when the ion is transferred

between two different phases as in the case of ion transfer between conventional

solvents and liquid membranes, or in amalgamation processes. When room tem-

perature ionic liquids (RTILs) are used as solvents, significant differences in the

diffusion coefficients of oxidized and reduced species can be also found [48–50],

since the electrostatic interactions of the solute with the solvent play an important

role in its transport properties, so the different charge of the electroactive species

has a significant influence on the magnitude of the diffusion coefficient [49, 51].
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t2=0.01 s

c
'E

Fig. 2.10 NPP current–potential curves calculated from Eq. (2.124) for a DMEwithm¼ 0.1 g s�1,
DO ¼ DR ¼ 10�5 cm2 s�1, c*O ¼ 1 mM, c*R ¼ 0, t1¼ 1 s, and different values of t2 indicated in

the figure
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2.5.1 Unequal Diffusion Coefficients (DO 6¼ DR)

Under these conditions, the diffusion equations to solve are the following:

∂cO
∂t
¼ DO

∂2
cO

∂r2
þ 2

r

∂cO
∂r

 !
∂cR
∂t
¼ DR

∂2
cR

∂r2
þ 2

r

∂cR
∂r

 !
9>>>>=>>>>; ð2:131Þ

The boundary value problem (bvp) by considering that the reduced species is

initially present in the solution (solution soluble product) or in the electrode

(amalgam formation), and that diffusion coefficients of both species are different, is

t � 0 , r !1
t ¼ 0 , r � rs

�
cO ¼ c*O, cR ¼ c*R ð2:132Þ

for solution soluble product, and

t � 0 , r !1
t ¼ 0 , r � rs

�
cO ¼ c*O, cR ¼ 0 ð2:133Þ

t � 0 , r ! �1
t ¼ 0 , r � rs

�
cO ¼ 0, cR ¼ c*R ð2:134Þ

for amalgam formation

t � 0 , r � rs :

DO

∂cO
∂r

� �
r¼rs
¼ �DR

∂cR
∂r

� �
r¼rs

ð2:135Þ

cs, spheO ¼ eη cs, spheR ð2:136Þ

with η given by Eq. (2.6) and rs being the radius of the spherical electrode. In the

following and in Eq. (2.135), the upper sign refers to solution soluble product and

the lower one to amalgam formation.

By following the procedure indicated in Appendix A, an analytical expression

for the current can be deduced:

Isphe

FAsDOc*O
¼ 1� c*R=c

*
O

� �
eη

1þ γeη
� �

1ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p þ 1

rs
� eηγ γ � 1ð Þ
rs γ2eη � 1ð Þ



þ

þ eη γ � 1ð Þ2
rs γ2eη � 1ð Þ 1þ γeηð ÞH ξð Þ

)
ð2:137Þ

2.5 Spherical Electrodes 103



with

H ξð Þ ¼ e ξ=2ð Þ2erfc ξ=2ð Þ ð2:138Þ

ξ ¼ 2
ffiffiffiffiffiffiffiffi
DRt
p

γ2eη � 1ð Þ
rs 1þ γeηð Þ ð2:139Þ

and the time-dependent surface concentrations cs;spheO and cs;spheR are

cs, spheO ¼ cs, rO �
eηγ γ � 1ð Þ c*O � cs, rO

� �
γ2eη � 1ð Þ H ξð Þ � 1½ 


cs, spheR ¼ cs, rR þ
γ � 1ð Þ c*R � cs, rR

� �
γ2eη � 1ð Þ H ξð Þ � 1½ 


9>>=>>; ð2:140Þ

cs;rO and cs;rR are the time-independent surface concentrations found in planar elec-

trodes (Eq. 2.20), and As¼ 4πr2s .
Note that the finite electrode volume has not been considered to deduce

Eq. (2.137), i.e., we have used the so-called Koutecký approximation (see Eq.

(2.134) and [52]). Therefore, when amalgamation takes place, these equations

with the lower sign cannot be used for very small spherical electrodes for which

numerical treatments considering null flux at the center of the electrode are needed.

According to Eq. (2.140), the presence of amalgam has no effect on the

voltammetric response of planar electrodes since, under these conditions rs !1
(ξ! 0; see Eq. (2.139)) and H ξð Þ ! 1 (see also Eq. 2.20).

To obtain Eqs. (2.137) and (2.140), the Dimensionless Parameter Method

(DPM) has been used as described in Appendix A and expressions of the concen-

tration profiles have been obtained [52]. In the 1960s, a compact analytical solution

for the I–E response was obtained by using the Laplace transform method when the

oxidized species was the only present in the electrolytic solution, i.e., for a cathodic

wave [53, 54], and non-explicit expressions for the concentration profiles and

surface concentrations were obtained.

The time variation of the surface concentration of the oxidized species for

different values of γ at a potential corresponding to E� E��○
0

c ¼ �0:05 V can be

seen in Fig. 2.11. It is clear that for the radii considered the surface concentrations

of the oxidized species vary with time for γ < 0:7 and γ > 1:41, respectively, while
remaining almost constant for other values of γ. It is also observed that the further γ
is from the unity, the longer it takes to reach a constant value.

In Fig. 2.12, the analytical current–time curves under anodic and cathodic limiting

current conditions calculated from Eq. (2.137) (Fig. 2.12a and b, respectively) when

species R is soluble in the electrolytic solution (solid curves) and when species R is

amalgamated in the electrode (dotted lines) are plotted. In Fig. 2.12a, the amalgam-

ation effect on the anodic limiting current has been analyzed. As expected, when

species R is soluble in the electrolytic solution, the absolute value of the current

density increases when the electrode radius decreases because of the enhancement of
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the diffusive mass transport. On the other hand, for a given electrode radius the

amalgam formation leads to a decrease in the absolute value of the current density,

and this decrease is more significant when the electrode radius becomes smaller and/or

the electrolysis time is longer. Thus, the radius influence is inverted in relation to the

solution soluble product case, so a decrease in electrode radius leads to a decrease in

the absolute value of the current density (see Fig. 2.12a, dotted lines). This behavior is

due to the diffusion of R taking place inside the spherical electrode. As expected, the

cathodic limiting current (see Fig. 2.12b) is not influenced by the amalgam formation,

since it is only dependent on the species O behavior.

The analytical equations obtained allow us to study the anodic–cathodic wave.

The current–potential curves for γ ¼ 0:7 are plotted in Fig. 2.13 for three values of

the electrode radius and for two different initial conditions: when species O is the

only one present (Fig. 2.13a), and when both species are present in the system

(Fig. 2.13b).

In the first case, when only species O is initially present in the electrolytic

solution (Fig. 2.13a), it is observed that the amalgamation of species R leads to a

shift of the wave to more negative potential values, and this shift is greater the more

spherical the electrode, i.e., when the duration of the experiment increases or the

electrode radius decreases. In the second case (Fig. 2.13b), both species are initially

present in the system so we can study the anodic–cathodic wave. In the anodic

branch of the wave, the amalgamation produces a decrease in the absolute value of

the current. As is to be expected, the null current potential, crossing potential, or

equilibrium potential (EEq) is not affected by the diffusion rates (DO andDR), by the

electrolysis time, by the electrode geometry (rs), nor by the behavior of species R
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Fig. 2.11 Temporal evolution of the surface concentrations of oxidized species calculated from

Eq. (2.140). Two electrode radius values are considered: rs ¼ 5� 10�3 cm (solid curves) and rs
¼ 5� 10�4 cm (dashed curves), and different γ values indicated in the figure.

E� E��○
0

c ¼ �0:05 V, c*O ¼ c*R ¼ 1 mM, DO ¼ 10�5 cm2 s�1
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(soluble in the electrolytic solution or in the electrode) (see Eq. 2.33). On the other

hand, the half-wave reversible potential is affected by the diffusional behavior of

species O and R and the following is observed for a solution soluble product:

E r
1=2

			
sphe

>¼
<
E r
1=2

			
plane

if γ
<¼
>
1 ð2:141Þ

Note that in this case the determination of the half-wave potential can be made

by fitting experimental date to the Eq. (2.137) since Eq. (2.31) is not fulfilled under
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Fig. 2.12 Influence of the electrode radius on the current–time curves under anodic (a) and

cathodic (b) limiting conditions (Eq. 2.137) when species R is soluble in the electrolytic solution

(solid curves) and when it is amalgamated in the electrode (dashed curves). The electrode radius

values (in cm) are: rs ¼ 5� 10�2 (red curves), rs ¼ 10�2 (blue curves), and rs ¼ 5� 10�3 (green
curves). c*O ¼ c*R ¼ 1 mM, DO ¼ DR ¼ 10�5 cm2 s�1. (The dashed green curve has been calcu-

lated numerically for t > 0:5 s). Reproduced with permission [52]
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these conditions and the plots E vs. ln I sphed,c � Isphe
� �

= Isphe � I sphed, a

� �� �
cannot be

used as in the case of planar electrodes. This is because under the above conditions

the current presents a complex expression which cannot be written as the product of

a function of the potential by a function of time, as in the case of the electrodes

mentioned above.
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Fig. 2.13 Influence of the c�R/c
�
O ratio on the anodic–cathodic waves when species R is

soluble in the electrolytic solution (solid curves) (Eq. (2.137) considering the upper sign) and

when it is amalgamated in the electrode (dotted curves) (Eq. (2.137) considering the lower sign).

Isphe, ssd, c ¼ FAsDOc
*
O=rs (see Eq. 2.148). Three electrode sphericity values

ffiffiffiffiffiffiffiffi
DR t
p

=rs
� �

are consi-

dered: 0.071 (green curves), 0.214 (blue curves), and 0.451 (red curves), and two different initial

concentration ratios: c*O ¼ 1 mM, c*R ¼ 0 (a), c*O ¼ c*R ¼ 1 mM (b).DO ¼ 10�5 cm2 s�1, γ ¼ 0:7.
Reproduced with permission [52]
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2.5.2 Equal Diffusion Coefficients (DO ¼ DR)

When both diffusion coefficients are equal (DO ¼ DR ¼ D), and both species are

soluble in the electrolytic solution (taking only the upper sign in Eq. (2.135)),

Eqs. (2.137) and (2.140) drastically simplify to the following [1–4, 40, 41, 55, 56]:

Isphe

FAsDc*O
¼ 1� c*R=c

*
O

� �
eη

1þ eη

� �
1ffiffiffiffiffiffiffiffi
πDt
p þ 1

rs


 �
ð2:142Þ

cs, spheO

			
γ¼1
¼ cs, rO

		
γ¼1 ¼

eη c*O þ c*R
� �
1þ eη

cs, spheR

			
γ¼1
¼ cs, rR

		
γ¼1 ¼

c*O þ c*R
1þ eη

9>>=>>; ð2:143Þ

and the concentration profiles are given by the following equations:

cO r; tð Þ ¼ c*O þ
rs
r

cs, rO � c*O
� �

erfc
r � rs

2
ffiffiffiffiffi
Dt
p

� �
cR r; tð Þ ¼ c*R þ

rs
r

cs, rR � c*R
� �

erfc
r � rs

2
ffiffiffiffiffi
Dt
p

� �
9>>=>>; ð2:144Þ

Appendix B describes in detail the solution of this problem as an application of

the Laplace’s Transform method and Eqs. (2.142)–(2.144) have also been deduced.

As can be inferred from Eq. (2.143), under these conditions the surface concen-

trations of both species are time independent, so the current given by Eq. (2.142)

can be written as

Isphe ¼ FAsDO c*O � cs, rO

� � 1ffiffiffiffiffiffiffiffi
πDt
p þ 1

rs


 �
¼ �FAsDR c*R � cs, rR

� � 1ffiffiffiffiffiffiffiffi
πDt
p þ 1

rs


 �
ð2:145Þ

From Eq. (2.145), it is clear that the diffusion layer thickness in spherical

diffusion is (compare Eqs. (2.145) and (2.26)) [12],

δ rsphe ¼
1

1ffiffiffiffiffiffi
πDt
p þ 1

rs

n o ð2:146Þ

which is independent of the applied potential, as in the case of planar diffusion.

In Fig. 2.14 we have plotted the transient accurate concentration profiles for

species O, cO(r, t) (Eq. 2.144) and the linear concentration profiles

cO r; tð Þ ¼ c*
O
�cs, r

O

δ rsphe
r � rsð Þ þ cs, rO

� �
at a fixed time and different potentials

(Fig. 2.14a), and at a fixed potential and different times (Fig. 2.14b).

108 2 Single Pulse Voltammetry: Reversible Electrochemical Reactions



When compared with the linear concentration profiles of Fig. 2.1a, it can be

observed that, in agreement with Eq. (2.146) for spherical electrodes, the Nernst

diffusion layer is, under these conditions, independent of the potential in all the

cases. As for the time dependence of the profiles shown in Fig. 2.14b, it can be

seen that the Nernst diffusion layer becomes more similar to the electrode size

at larger times. Analogous behavior can be observed when the electrode radius

decreases.

Expressions for the cathodic and anodic limiting currents can also be easily

obtained for spherical electrodes by making eη ! 0 and eη !1 in Eq. (2.142),

I sphed, c ¼ FAsDc
*
O

1ffiffiffiffiffiffiffiffi
πDt
p þ 1

rs

� �
I sphed, a ¼ �FAsDc

*
R

1ffiffiffiffiffiffiffiffi
πDt
p þ 1

rs

� �
9>>=>>; ð2:147Þ
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profiles of a spherical

electrode for the application
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Reproduced with

permission [12]
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The time evolution of the cathodic limiting current (Eq. 2.147) has been plotted

in Fig. 2.15 together with that obtained for a planar electrode (Eq. 2.28) and the

constant steady-state limiting current for a spherical electrode given by

Isphe, ssd, c ¼ FAsDc
*
O

1

rs
ð2:148Þ

From this figure, it can be seen that the current decays with time as in the planar

case although this decrease leads to a constant value, Isphe;ssd;c , different from zero,

which will be achieved sooner as the electrode radius diminishes. The current for

times close to zero is identical to that obtained in a planar electrode given to the

prevalence of the term 1=
ffiffiffiffiffiffiffiffi
πDt
p

over the inverse of the radius. For longer times,

the opposite happens and the term 1/rs is dominant.

In order to obtain values for the diffusion coefficient at spherical electrodes, a

logarithmic plot of the current versus time would lead to nonlinear dependence (see

Eq. 2.147). In this case a plot of the current versus1=
ffiffi
t
p

is more appropriate (see inner

curve in Fig. 2.15) and this plot also allows the determination of the electrode radius

by combining the values of the slope (FAsc
*
O

ffiffiffiffiffiffiffiffiffi
D=π

p
) and intercept (FAsDc

�
O)/rs

Finally, from Eq. (2.145), it is clear that the half-wave potential, which under

these conditions (DO ¼ DR) coincides with the formal potential E��○
0

c , can be easily
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Fig. 2.15 (Solid line) Current–time curves for the application of a constant potential to a spherical

electrode calculated from Eq. (2.142). DO ¼ DR ¼ 10�5 cm2 s�1, c*O ¼ c*R ¼ 1 mM,

rs ¼ 0:001 cm, E� E��○
0

c

� � ¼ �0:2 V, T¼ 298 K. (Dashed line) Current–time curves for the

application of a constant potential to a planar electrode of the same area as the spherical one

calculated from Eq. (2.28). (Dotted line) Steady-state limiting current for a spherical electrode

calculated from Eq. (2.148). The inner figure corresponds to the plot of the current of the spherical

electrode versus 1=
ffiffi
t
p
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obtained from the linear analysis of the potential versus

ln I sphed, c � Isphe
� �

= Isphe � I sphed,a

� �� �
curves like in the case of a planar electrode

or a DME with the expanding plane model since, as in these cases, the current

presents the potential and time dependences in separate terms.

2.6 Other Electrodes Geometries

This section addresses other electrode geometries, both uniformly accessible (like

cylindrical electrodes) and non-uniformly accessible (like discs and bands) (see

Scheme 2.4). Cylindrical electrodes are the best example of electrodes where one

dimension (the radius) is much smaller than the other (the length). Under these

conditions, edge effects on the current can be considered as negligible and diffusion

is mainly radial and therefore only dependent on the distance r to the center of the

cylinder [10]. In relation with disc and band electrodes, it is important to highlight

that the mass transport of species in solution requires a much more complex

mathematical treatment due to their nonuniform accessibility. The theoretical

modeling of the mass transport at these electrodes shows that the current is an

average quantity resulting from an average mass flux over the electrode surface [10,

57, 58]. Hence, in the case of disc electrodes, depending on the electrode size, the

current will be the result of mixed mass transport, with a predominant component

that could change from linear (large sizes or short times) to radial (small sizes or

long times). This nonuniform accessibility leads to more efficient mass transport to

the electrode edge and to a shielding effect of this at the center of the electrode (see

Fig. 2.16). Even so, this electrode remains the most popular and practical due to its

easy manufacture in a wide range of sizes, and the easy and controlled cleaning of

its surface [58, 59].

For the sake of simplicity only electrode processes in which the oxidized and

reduced species are soluble in the electrolytic solution and have equal diffusion

coefficients will be considered.

Under these conditions, the differential equation systems for the diffusion mass

transport of species O and R is given by

∂cO
∂t
¼ D∇2cO

∂cR
∂t
¼ D∇2cR

9>=>; ð2:149Þ

where ∇2 is the Laplacian operator given by any equation of Table 2.2. When the

flux is conserved in the electrode surface, the following solution for the sum of

concentrations of species O and R is obtained (see Appendix in reference [60]):

cO q; tð Þ þ cR q; tð Þ ¼ c*O þ c*R ð2:150Þ
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Scheme 2.4 Most common

electrode and

microelectrode geometries

and their diffusion fields

r/rd

0.0 0.2 0.4 0.6 0.8 1.0

J N

0

2

4

6

8

10Fig. 2.16 Evolution of the

normalized flux at z ¼ 0, JN
¼ ∂ci=∂zð Þz¼0= 2c*i =πrd

� �
versus (r/rd) for a disc
electrode calculated from

Eq. (C.18) of Appendix C

(see Scheme 2.5)
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with q and t referring to spatial coordinates and time values, respectively. Equation

(2.150) is, of course, fulfilled at the electrode surface, i.e., for q ¼ qs, with qs being
the coordinates at the surface of the electrode.5 For nernstian processes, at qs:

cs, rO ¼ eηcs, rR ð2:151Þ

The combination of Eqs. (2.150) and (2.151) transforms the problem of two

variables cO and cR into two separate problems of only one variable with constant

surface conditions,

∂cO
∂t
¼ D∇2cO

t � 0, q!1
t ¼ 0, q � qs

�
cO q; tð Þ ¼ c*O

t � 0, q ¼ qs cs, rO ¼
eη c*O þ c*R
� �
1þ eη

9>>>>>>=>>>>>>;
ð2:152Þ

∂cR
∂t
¼ D∇2cR

t � 0, q!1
t ¼ 0, q � qs

�
cR q; tð Þ ¼ c*R

t � 0, q ¼ qs cs, rR ¼
c*O þ c*R
� �
1þ eη

9>>>>>>=>>>>>>;
ð2:153Þ

with η being given in Eq. (2.6).

The two diffusional problems above are very similar to those corresponding to a

process under limiting current conditions but with cs, rO 6¼ 0 and/or cs, rR 6¼ 0.

Table 2.2 Expressions for

the diffusion mass transport

operators given by Fick’s
second law

Electrode geometry Laplacian operator ∇2

Planar ∂2

∂x2

 !
Spherical ∂2

∂r2
þ 2

r

∂
∂r

 !
Cylindrical ∂2

∂r2
þ 1

r

∂
∂r

 !
Band ∂2

∂x2
þ ∂2

∂z2

 !
Disc ∂2

∂r2
þ 1

r

∂
∂r
þ ∂2

∂z2

 !

5 For a cartesian set of coordinates, like those used for band electrodes, q denotes coordinates x, y,
and z, whereas for a cylindrical set of coordinates, like those corresponding to disc electrodes,

q denotes coordinates r and z. In both cases, qs refers to z¼ 0.
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Note that at uniformly accessible electrodes, spheres and cylinders, the mass

flux is identical at all the points of its surface, whereas at non-uniformly accessible

ones, discs and bands, the mass flux varies through the radius and the width,

respectively. Therefore, in these cases, the surface gradient should be calculated

by integrating the flux over the electrode surface such that the current is given by

(see Scheme 2.5):

Idisc

F
¼ 2AdDc

*
O

1

rd

ðR¼1
R¼0

∂CO

∂Z

� �
z¼0

RdR ð2:154Þ

Iband

F
¼ 2AbDc

*
O

1

w

ðX¼1=2
X¼0

∂CO

∂Z

� �
z¼0

dX ð2:155Þ

with CO ¼ cO=c
*
O, R ¼ r=rd, X ¼ x=w and Z ¼ z=rd (disc) or Z ¼ z=w (band).

It has been verified that the current obtained when a potential step is applied only

differs from the corresponding to the limiting cathodic or anodic currents in the

constant terms c*O � cs, rO

� �
and c*R � cs, rR

� �
instead of c�O and c�R, respectively (with

cs;ri being the surface concentration of species i). From Eqs. (2.152) and (2.153), the

surface concentrations are independent of the electrode geometrical characteristics

under nernstian conditions [60]. Hence, the average current can be expressed

independently of the electrode geometry as the product of a function of the applied

potential (c*O � cs, rO ) and a function of time and the electrode geometry fG(t, qG)
(with qG being the characteristic dimension of the electrode), which is given in

Table 2.3 for each particular geometry:

IG ¼ FAGD� c*O � cs, rO

� �� fG t; qGð Þ ¼
¼ �FAGD� c*R � cs, rR

� �� fG t; qGð Þ ð2:156Þ

with

c*O � cs, rO ¼ � c*R � cs, rR

� � ¼ c*O � eηc*R
1þ eη

ð2:157Þ

where AG is the electrode area and qG the characteristic dimension of the electrode

(Table 2.3).

The cathodic and anodic limiting currents for an electrode of a given geometry

can be obtained by imposing η! �1 on (2.156) and (2.157)

Scheme 2.5 Disc and band

electrodes and relevant

coordinates for each

geometry (disc area,

Ad ¼ πr2d; band area,

Ab ¼ wl)
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IGd,c ¼ FAGD� c*O � fG t; qGð Þ
IGd,a ¼ �FAGD� c*R � fG t; qGð Þ

�
ð2:158Þ

In order to highlight the non-uniformity of the concentration distribution around

the disc, Fig. 2.17 shows the concentration profiles of oxidized species

corresponding to the application of a potential step to a disc electrode for three

values of rd (500, 50, and 5 μm), and two values of the applied potential (E ¼ E��○
0

c

and an E value corresponding to limiting current) for a time t¼ 0.5 s. From this

figure, it can be deduced that, although the concentration profiles are logically

affected by the applied potential, the Nernst diffusion layer thicknesses are inde-

pendent of it. It can also be observed from this figure that the solution region

adjacent to the electrode surface disturbed by the mass transport is much lower than

the disc radius for higher values of rd. Moreover, in this case (see curves with

rd¼ 500 μm in Fig. 2.17a and b), the dominant mass transport is that corresponding

to planar diffusion, i.e., practically all the flux at the surface takes place at the

normal coordinate z, with the exception of r values close to the edge of the disc.

This gives rise to a planar front for δd, as seen in Fig. 2.17a and b. As the disc radius
decreases (see Fig. 2.17c–f), the linear diffusion layer thickness becomes compa-

rable to or even higher than rd, showing a continuous variation between the center

and the edge of the disc. For a radius rd ¼ 5 μm (see Fig. 2.17e and f), the radial

mass transport becomes dominant in the whole response.

A consequence of the temporal independence of the surface concentrations is

that under transient conditions, the relation IG/IGd;c and the curve E/

Table 2.3 Expressions for functions fG(t, qG) and fG,micro for the four electrode geometries

considered. qG ¼ rd for discs; qG ¼ rs for spheres or hemispheres; qG ¼ rc for cylinders; and qG
¼ w for bands. Note that functions fG(t, qG) and fG,micro have dimensions of 1/length

Electrode Function fG(t, qG) fG,micro

Disc (radius rd,

Area Ad ¼ πr2d)
4

π

1

rd
0:7854þ 0:44315

rdffiffiffiffiffi
Dt
p þ

�
þ 0:2146exp �0:39115 rdffiffiffiffiffi

Dt
p

� ��
4

π

1

rd

Sphere (radius

rs, As¼ 4πr2s )

1

rs
þ 1ffiffiffiffiffiffiffiffi

πDt
p 1

rs
Band (height w,
length l,
Ab¼wl)

1

w
þ 1ffiffiffiffiffiffiffiffi

πDt
p if Dt=w2 < 0:4

0:25

ffiffiffiffiffi
π

Dt

r
exp �0:4

ffiffiffiffiffiffiffiffi
πDt
p

w

� �
þ π

w ln 5:2945þ 5:9944
ffiffiffiffi
Dt
p
w

� �
if Dt=w2 � 0:4

1

w

2π
ln 64Dt=w2½ 


Cylinder (radius

rc, length l,
Ac¼ 2πrcl )

1ffiffiffiffiffiffiffiffi
πDt
p exp �0:1

ffiffiffiffiffiffiffiffi
πDt
p

rc

� �
þ 1

rc ln 5:2945þ 1:4986
ffiffiffiffi
Dt
p
rc

� � 1

rc

2

ln 4Dt=rc2½ 
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ln IGd,c � IG
� �

= IG � IGd,a
� �� �

at a fixed time are independent of the electrode

geometry,

IG

IGd,c
¼ 1� eη c*R=c

*
O

� �
1þ eη

ð2:159Þ

or,

E� E��○
0

c ¼
RT

F
ln

IGd,c � IG

IG � IGd,a

 !
ð2:160Þ

The analysis of the current–time curves at electrodes or microelectrodes of

different geometries has also a great interest in detecting the presence of small

particles or nanoparticles at its surface or even single nanoparticles events through

the current due to the electro-oxidation (or reduction) of the particles (see Fig. 2.18)

or to a electrocatalytic reaction on the nanoparticle surface when this comes into

contact with the electrode and transiently sticks to it [62–65].

In Fig. 2.19, we have plotted the IG=IGd,c
� �� E� E��○

0

c

� �
curves for discs,

spheres, bands, and cylinders calculated from Eqs. (2.156) and (2.159) when both

species are initially present in the solution in order to show that, for a given process,

this ratio is independent of the size and geometry of the electrode considered and

independent of the transient or stationary character of the response. On the basis of
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Fig. 2.17 Concentration profiles of oxidized species in reaction Scheme (I) corresponding to the

application of a potential step to a disc electrode for three values of rd (μm): 500 (a, b), 50 (c, d),

and 5 (e, f), and two values of the applied potential: E ¼ E��○
0

c (a, c, and e) and E ¼ E��○
0

c � 0:256 V

(b, d, and f). CO ¼ cO=c
*
O, R ¼ r=rd, and Z ¼ z=rd. These profiles have been numerically obtained

by following the procedure described in reference [61] for a time t¼ 0.5 s and

DO ¼ DR ¼ 10�5 cm2 s�1. T¼ 298.15 K. Reproduced with permission [59]

116 2 Single Pulse Voltammetry: Reversible Electrochemical Reactions



a 2.0

1.5

1.0

0.5

0.0

2.01.51.00.50.0

t / s

I /
 n

A

b

2.01.51.0

2.0

1.5

1.0

0.5

0.5

t / s

I /
 n

A

Fig. 2.18 Chronoamperometric profiles showing oxidative faradaic transients of gold

nanoparticles at potentials of (a) 0.8 V and (b) 1.1 V at a Glassy Carbon microelectrode of

11 μm of radius. Reproduced from reference [62] with permission

(a)

(b)

Fig. 2.19 (a) IG=IGd,c
� �� E� E��○

0

c

� �
curves and (b) E� E��○

0

c

� �
� ln IGd,c � IG

� �
= IG � IGd,a
� �� �

for discs, spheres, bands, and cylinders calculated from Eqs. (2.159) and (2.160) when both species

are initially present in the solution and c*R=c
*
O ¼ 1
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these results, it is clear that the analysis of the curve E/ln IGd,c � IG
� �

= IG � IGd,a
� �� �

is

identical to that carried out in the case of planar or spherical electrodes (see for

example Eq. 2.31). So, whatever the geometry considered, by combining

Eq. (2.156) and

IG ¼ FAGD
∂cO
∂qN

� �
qs

ð2:161Þ

with qN being the normal coordinate value at the electrode surface, the Nernst

diffusion layer δrG is easily determined as a function of time, size, and geometry

(compare Eq. (2.156) with Eqs. (2.26) and (2.145)):

δ rG ¼
c*O � cs, rO

IG=FAGDc*O
¼ 1

fG t; qGð Þ ð2:162Þ

with fG(t, qG) given in Table 2.3.

Note that if the electrode is not uniformly accessible such as disc and band

electrodes, the diffusion layer thickness given by Eq. (2.162) has an average

character [59], and in this case it will be denoted δ
r

G.

The temporal evolution of δ
r

disc tð Þ and δ rband tð Þ, calculated from Eq. (2.162) and

Table 2.3 for disc (solid lines) and band (solid-dotted lines) electrodes of three sizes

(r0 ¼ 500, 50, and 5 μm, with r0 being equal to rd or w/2, respectively), has been
plotted in Fig. 2.20. We have compared these curves with those obtained for

spherical (dashed lines) and cylindrical (dotted lines) electrodes considering

rd¼ rs¼ rc (with δrsphe(t) and δ
r
cyl(t) being calculated from equations in Table 2.3).

From these curves it can be seen that the Nernst diffusion layer, δrG, increases
with time in all cases. Moreover, Fig. 2.20a shows how these curves are all

coincident at short times and only small differences appear between the couples

“bands and cylinders” and “spheres and discs” at times longer than 0.2 s. This

indicates that for this electrode size and time below 0.2 s, the prevalent diffusion

field is planar, so the electrode geometry becomes irrelevant. As the electrode size

decreases (Fig. 2.20b and c), so does the temporal dependence of δrG and the

different curves begin to separate until they reach a steady state in the case of

discs and spheres, or a pseudo-steady state in the case of bands and cylinders

(Fig. 2.20c). Note that the ratio between the diffusion layers corresponding to

small discs and spheres δr;micro
disc and δr;micro

sphe tends to the value π/4 (see also Sect. 2.7).

It is worth highlighting that, when different diffusion coefficients are consi-

dered, the half-wave potential depends on the characteristics of the diffusive field

(geometry and size of the electrode), as indicated in Sect. 2.5.1. The variation of the

half-wave potential E
1=2
r with the electrode radius for cylindrical and spherical

electrodes for γ ¼ 3 (numerically calculated) has been plotted in Fig. 2.21. The
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Fig. 2.20 Temporal

evolution of δ
r

disc tð Þ and
δ
r

band tð Þ, calculated from

equations in Table 2.3 for

disc (solid lines) and band

(solid-dotted lines)
electrodes of three sizes

(r0¼ 500, 50, and 5 μm,

with r0 being equal to rd or
w/2). These curves have
been compared with those

obtained for spherical

(dashed lines) and
cylindrical (dotted lines)
electrodes considering rd ¼
rs ¼ rc (with δrsphe(t) and

δrcyl(t) is calculated from

equations in Table 2.3).

Reproduced with

permission [59]
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half-wave potential of planar electrodes is also shown for comparison. As can be

seen, the stationary value of E r
1=2 ¼ E��○

0

c þ RT=Fð Þln 1=γ2ð Þ (see Appendix C and

Eq. (2.167)) is reached for spherical electrodes for values of R0 ¼0.01, whereas for

cylindrical ones a steady-state value is not reached.

2.7 Microelectrodes. Steady-State Voltammetry

A microelectrode is usually defined as an electrode with at least one characteristic

dimension (rG) on the micrometer scale (of tens of micrometers or less). As is well

known, the progressive decreasing of the electrode size produces an enhancement of

the mass transport between the electrode surface and the bulk of the solution. This

leads to important advantages in electrochemistry like fast establishment of station-

ary response (i.e., independent of time), improved ratio of faradaic to charging

currents, decrease of the ohmic drop, short response times, and others derived from

its small size: electroanalytical measurements in living organisms, microscopic

sensors and arrays, among others. The currents observed at microelectrodes typi-

cally lie in the pA to nA range, and are much smaller than those measured with

conventional electrodes of milimetric dimensions. It is only since the 1980s that

very small electrodes and appropriate instruments to measure such low currents

accurately have been available (see [9, 66, 67]). The scarce ohmic drop permits the

study of electrochemical processes in high resistance solvents, low supported

solutions, solids, and gases. Moreover, the effect of convective flux on mass

transport is greatly reduced because the rate of diffusional transport can be several

orders of magnitude larger than that attainable at a macro or planar electrode and

other modes of transport are masked by the large diffusional contribution. More

recently, nanoelectrodes have been developed with their characteristic dimension of

a few tens of nanometers, which is comparable to the diffuse double-layer thickness.

This can lead to deviations from the classic voltammetric theory [68, 69].
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Fig. 2.21 Evolution of the

half-wave potential with the

electrode size for spherical

(white dots) and cylindrical

(black dots) electrodes. The
value of Er

1=2 for a planar

electrode has been included

for comparison (dashed
line). r0 ¼ rs for a spherical
electrode and r0 ¼ rc for a
cylindrical one.

DO ¼ 10�5 cm2 s�1,
γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DO=DR

p ¼ 3
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In this section, we will show that the stationary responses obtained at micro-

electrodes are independent of whether the electrochemical technique employed was

under controlled potential conditions or under controlled current conditions, and

therefore, they show a universal behavior. In other words, the time independence of

the I/E curves yields unique responses independently of whether they were obtained

from a voltammetric experiment (by applying any variable on time potential), or

from chronopotentiometry (by applying any variable on time current). Hence, the

equations presented in this section are applicable to any multipotential step or

sweep technique such as Staircase Voltammetry or Cyclic Voltammetry.

Special attention should be paid to spherical geometry, since the mathematical

treatment of spherical microelectrodes is the simplest and exemplifies very well the

attainment of the steady state observed at microelectrodes of more complex shapes.

Indeed, spherical or hemispherical microelectrodes, although difficult to manufac-

ture, are the paragon of mathematical model for diffusion at microelectrodes, to the

point that the behavior of other geometries is always compared against them.

The expression for the current of a reversible electrode process corresponding to

a microelectrode of a given geometry will be deduced from Eq. (2.156) by making

qG �
ffiffiffiffiffiffiffiffi
πDt
p

. Under these conditions, a stationary current–potential response will

be attained only if fG,micro, defined as

fG,micro ¼ fG t; qGð Þ½ 
qG� ffiffiffiffiffiffi
πDt
p ð2:163Þ

reaches a constant value. The expressions for fG,micro corresponding to micro-

hemispheres, microdiscs, microcylinders, and microbands are given in Table 2.3.

The condition fG,micro ¼ constant is only attained at disc and hemispherical

electrodes (see Table 2.3). In both cases, the function fG(t, qG) becomes inde-

pendent of time when qG �
ffiffiffiffiffiffiffiffiffi
πDt
p

.

For a spherical electrode, by making rs �
ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p

in Eq. (2.137) (which has

been deduced for unequal diffusion coefficients), and considering that both species

are soluble in the electrolytic solution (upper sign), one obtains

Imicrosphere, ss ¼ FAsD
c*O � cr, sO

rs
¼ FAsD

c*O � eηc*R
1þ γ2eη

1

rs
ð2:164Þ

or

E ¼ Er,micro
1=2 þ RT

F
ln

Imicrosphere, ss
d, c � I

I � Imicrosphere, ss
d, a

 !
ð2:165Þ

where cr;sO is given by Eq. (C.11) and

Imicrosphere, ss
d, c ¼ FAsDOc

*
O

1

rs

Imicrosphere, ss
d, a ¼ �FAsDRc

*
R

1

rs

9>=>; ð2:166Þ
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The reversible half-wave potential is given by

Er,microsphe

1=2 ¼ E��○
0

c þ
RT

F
ln

1

γ2

� �
ð2:167Þ

with Er;microsphe

1=2 being the half-wave potential deduced for a microsphere or

microhemisphere. As can be expected, the expression for Imicrosphere;ss
d;c given by

Eq. (2.166) coincides with that of Isphe;ssd;c for a spherical electrode given by Eq. (2.148).

In the case of an ultramicrodisc, the above equations become

Imicrodisc, ss
d, c ¼ 4FrdDOc

*
O

Imicrodisc, ss
d, a ¼ �4FrdDRc

*
R

)
ð2:168Þ

It has been verified numerically that, when DO 6¼DR, the stationary current-

potential response of a microdisc presents the same half wave potential as that

observed for a microsphere, which is given by Eq. (2.167) (see [70] and Appendix C).

Therefore, the stationary I–E response can be written as (Table 2.3)

Imicrodisc, ss ¼ FAdDO

c*O � cr, sO
rd

4

π
¼ FAdDO

c*O � eηc*R
1þ γ2eη

4

πrd
ð2:169Þ

where cr;sO is given by Eq. (C.20).

The current densities (i ¼ I=A) obtained for disc and microspheres of the same

radius for reversible electrode processes at any value of the applied potential follow

the equivalence relationship given by [70, 71]:

imicrodisc, ss

imicrosphere, ss
¼ 4

π
ð2:170Þ

In the case of microcyclinders and microbands, fG,micro is time dependent

(Table 2.3) and only a pseudo-stationary response can be achieved. This is because

all the microelectrode dimensions have to fall in the range of the microns to attain a

true steady state. The expressions for the pseudo-stationary current–potential

responses when the diffusion coefficients of species O and R fulfills DO ¼ DR are:

Imicrocylinder, pss ¼ FAcD
c*O � eηc*R
1þ eη

1

rc

2

ln 4Dt
r2c

h i ð2:171Þ

Imicroband, pss ¼ FAbD
c*O � eηc*R
1þ eη

1

w

2π

ln 64Dt
w2

� � ð2:172Þ
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Nevertheless, it is possible to obtain a constant relationship between the current

at both microelectrodes for certain geometrical conditions. Thus, for microbands

and microhemicylinders fulfilling rc ¼ w=4, a constant ratio is obtained, but in this

case it is necessary to use the same experimental timescale [10]:

Imicroband, pss

Imicrohemicylinder, pss
¼ 1 ð2:173Þ

The solutions of the stationary diffusion equations for spherical and disc micro-

electrodes are deduced in Appendix C.

It is also of interest to consider the case of a microsphere at a non-electroactive

substrate because it is used as a model for spherical nanoparticles (of radius rnp and
area Anp) impacting on a surface [72, 73]. For this case the average stationary

current is given by [74]:

Inp, ss ¼ AnpDF
c*O � cr, sO

rnp
ln2 ð2:174Þ

Note that, on the basis of Eqs. (2.164), (2.169), and (2.174), it can be concluded

that for all these electrode geometries for which it is possible to achieve a true

stationary response, Eq. (2.165) could be used by changing Imicrosphere;ss
d;c by the

corresponding stationary limiting current for the geometry considered. Therefore,

in all the previous cases it is fulfilled,

E ¼ Er,microG
1=2 þ RT

F
ln

ImicroG
d,c � ImicroG

ImicroG � ImicroG
d,a

 !
ð2:175Þ

The advantages derived from the use of microelectrodes will be discussed in

Sect. 5.4.

2.8 Rotating Disc Electrode

A rotating disc electrode (RDE) is a conductive disc of the material of interest

embedded in an inert non-conductive polymer or resin that can be attached to an

electric motor which has very fine control of the electrode’s rotation rate. During

the experiment, the electrode rotates in the solution under study, thus inducing a

flux of redox analyte to the electrode [75].

The modeling of the electrochemical response corresponding to the application

of a constant potential to an RDE is similar to that discussed in the case of a DME

since in this electrode it is imperative to consider the convection caused by the

rotation of the electrode. This problem was solved by Levich under stationary

conditions [76]. To do this, the starting point is the diffusive–convective differential

2.8 Rotating Disc Electrode 123

http://dx.doi.org/10.1007/978-3-319-21251-7_5


equation that describes the mass transport in the normal direction to the electrode

surface (see Fig. 2.22),

∂ci
∂t
¼ Di

∂2
ci

∂x2
� vx

∂ci
∂x

i ¼ O, R ð2:176Þ

The convection velocity for an RDE is given by the following expression:

vx ¼ �0:51ω3=2v�1=2x2 ð2:177Þ

in which ω is the angular rotation speed (in Hz) and v the kinematic viscosity

(in m2 s�1).
Under steady-state conditions, i.e., when ∂ci=∂t ¼ 0, Eq. (2.176) simplifies to

d2ci
dx2
¼ � x2

B

dci
dx

i ¼ O, R

B ¼ Di

0:51ω3=2v�1=2

9>>>=>>>; ð2:178Þ

By making the change of variable y ¼ dci=dx, Eq. (2.178) is easily integrated

and the following expression is obtained:

dci
dx
¼ dci

dx

� �
x¼0

e�
x2

3B i ¼ O, R ð2:179Þ

Integrating once more, the concentration profile,

ci xð Þ � ci 0ð Þ ¼ dci
dx

� �
x¼0

ðx
0

e�
u2

3Bdu i ¼ O, R ð2:180Þ

Fig. 2.22 Polar coordinates

for the rotating disc

electrode

124 2 Single Pulse Voltammetry: Reversible Electrochemical Reactions



By taking the infinite limit (x!1) in the above equation, it becomes

c*i � ci 0ð Þ ¼ dci
dx

� �
x¼0

ð1
0

e�
u2

3Bdu ¼

¼ dci
dx

� �
x¼0

3Bð Þ1=3Γ 3=4ð Þ ¼ 1:29B1=3 dci
dx

� �
x¼0

ð2:181Þ

with Γ(x) being the Euler Gamma function. By combining Eqs. (2.180) and (2.181)

the following expression for the concentration profile is deduced:

ci xð Þ � ci 0ð Þ ¼ c*i � ci 0ð Þ
1:29B1=3

ðx
0

e�u
3=3Bdu i ¼ O, R ð2:182Þ

Moreover, the current is given by

IRDE ¼ FADO

dcO
dx

� �
x¼0
¼ c*O � cO 0ð Þ

1:29B1=3
¼

¼ 0:620FAD
2=3
O ω1=2v�1=6 c*O � cO 0ð Þ� � ð2:183Þ

which simplifies to the well-known Levich’s equation for limiting conditions (i.e.,

cO(0)¼ 0):

IRDEd,c ¼ 0:620FAD
2=3
O ω1=2v�1=6c*O ð2:184Þ

From Eqs. (2.183) and (2.184), it is possible to rewrite the expression of the

surface concentrations in terms of the current, and the cathodic and anodic limiting

currents are as follows:

cO 0ð Þ
c*O
¼ 1� IRDE

IRDEd,c

cR 0ð Þ
c*R
¼ 1� IRDE

IRDEd, a

9>>>=>>>; ð2:185Þ

with IRDEd;a being identical to that given in Eq. (2.184) by changing DO and c�O by DR

and c�R and of negative sign. By combining Eq. (2.185) with the nernstian condition

eη ¼ cO 0ð Þ=cR 0ð Þ, with η given by Eq. (2.6), the following relationship between

current and potential is given by

E ¼ Er,RDE
1=2 þ RT

F
ln

IRDEd, c � IRDE

IRDE � IRDEd, a

 !
ð2:186Þ
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which is formally identical to that obtained at planar electrodes (Eq. 2.31), but the

half-wave potential is

Er,RDE
1=2 ¼ E��○

0

c þ
RT

F
ln

DR

DO

� �2=3

ð2:187Þ

2.9 Thin Layer Voltammetry

This section analyzes the response of a charge transfer process under conditions of

finite linear diffusion which corresponds to a thin layer cell. This type of cell can

be achieved by miniaturization process for obtaining a very high Area/Volume

ratio, i.e., a maximum distance between the working and counter electrodes that is

even smaller than the diffusion layer [31]. In these cells it is easy to carry out a

bulk electrolysis of the electroactive species even with no convection. Two differ-

ent cell configurations can be described: a cell with two working electrodes or a

working electrode versus an electro-inactive wall separated at distance l (see

Fig. 2.23).

If we consider a thin layer cell where the electrode process given in reaction

Scheme (I) takes place, the mass transport differential equation is given by Eq. (2.2)

and the boundary conditions corresponding to limiting current are as follows:

t ¼ 0, 0 � x � l cO ¼ c*O, cR ¼ 0 ð2:188Þ

t > 0

Fig. 2.23 Diagram of a thin

layer cell with a single or

two working electrodes
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cO 0; tð Þ ¼ cO l; tð Þ ¼ 0
∂cO
∂x

� �
x¼l=2

¼ 0

)
two working electrodes ð2:189Þ

cO 0; tð Þ ¼ 0
∂cO
∂x

� �
x¼l
¼ 0

)
one working electrode ð2:190Þ

The solution to Eq. (2.2) can be deduced by using Laplace transformmethod (see

Appendix B), by obtaining the following expression:

cO x; pð Þ ¼ cO x; 0ð Þ
p
þ a1e

ffiffiffiffi
p

DO

p
x þ a2e

�
ffiffiffiffi
p

DO

p
x ð2:191Þ

In order to determine the values of constants a1 and a2, the derivative of

Eq. (2.191) is equated to zero at the corresponding distance (x ¼ l=2 or x ¼ l) in
line with Eqs. (2.189) and (2.190):

a1e

ffiffiffiffi
p

DO

p
δ � a2e

�
ffiffiffiffi
p

DO

p
δ ¼ 0 ð2:192Þ

where δ ¼ l=2 for the two electrodes cell and δ ¼ l for the one electrode cell. By

combining Eq. (2.192) and condition cO 0; pð Þ ¼ 0, one obtains

a1 ¼ �c
*
O

p

e
�
ffiffiffiffi
p

DO

p
δ

e

ffiffiffiffi
p

DO

p
δ þ e

�
ffiffiffiffi
p

DO

p
δ

ð2:193Þ

a2 ¼ �c
*
O

p

e

ffiffiffiffi
p

DO

p
δ

e

ffiffiffiffi
p

DO

p
δ þ e

�
ffiffiffiffi
p

DO

p
δ

ð2:194Þ

The Laplace transform of the current is given by

I
TLV

pð Þ ¼ FADO

∂cO
∂x

� �
x¼0
¼ FADO

ffiffiffiffiffiffiffi
p

DO

r
a1 � a2½ 
 ð2:195Þ

which, by taking into account Eqs. (2.193) and (2.194), becomes [31]:

I
TLV

pð Þ ¼ FAc*O

ffiffiffiffiffiffiffi
DO

p

s
e

ffiffiffiffi
p

DO

p
δ � e

�
ffiffiffiffi
p

DO

p
δ

e

ffiffiffiffi
p

DO

p
δ þ e

�
ffiffiffiffi
p

DO

p
δ
¼ FA

ffiffiffiffiffiffiffi
DO

p

s
tan h

ffiffiffiffiffiffiffi
p

DO

r
δ

� �
ð2:196Þ

As indicated in reference [77] the inverse transform of Eq. (2.196) leads to

ITLV

Id, c
¼ 4λ

X1
m¼1

exp � 2m� 1ð Þ2πλ2
h i

ð2:197Þ
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with

λ ¼

ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p

l
two working electrodesffiffiffiffiffiffiffiffiffiffiffi

πDOt
p

2l
one working electrode

8>>><>>>: ð2:198Þ

and Id,c being the diffusion-controlled limiting current (see Eq. 2.28). Equation

(2.197) simplifies in two asymptotic cases. When λ! 0 (i.e., l
 ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p

), the term

4λ
X1
m¼1

exp � 2m� 1ð Þ2πλ2
h i

! 1 in such a way the current becomes identical to Id,c

(that is, the expression corresponding to the semi-infinite approach). In the contrary,

i.e., for λ!1 (and l� ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p

), the current expression simplifies to [31],

ITLVλ!1 ¼ FAc*Ol� Dirac tð Þ ð2:199Þ

This result indicates that as l decreases the current takes a very high value at

times close to zero and it diminishes very fast (i.e., species O is consumed

instantaneously). In order to check the values of parameter λ for which the response
evolves from the cottrellian behavior to that given by Eq. (2.199), the behavior of

the ratio (ITLV/Id,c) versus λ has been plotted in Fig. 2.24. From this figure, it can be

seen that for λ � 0:46 the current is identical to that obtained with the Cottrell

equation (with a maximum relative difference of 5 %). For higher values of λ, the
ratio decreases until for λ � 1:21 the current behaves in line with Eq. (2.199) (with a
maximum relative difference of 5 %). In practice, that means that the current will be

similar to that obtained at a “semi-infinite” cell for times close to zero and it will

decrease with time faster, the smaller the value of l (i.e., the faster λ increases) due

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

I TL
V

/I d,
c

0.0

0.2

0.4

0.6

0.8

1.0

Cottrell-like 
behavior Dirac-like 

behavior

Fig. 2.24 Variation of the

ratio (ITLV/Id,c) versus λ
calculated from Eq. (2.197)
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to a faster depletion of the oxidized species, which can be seen in Fig. 2.25. For

example, for a fixed time of one second, the current obtained for a separation

between electrodes of 150 μm is undistinguishable from that obtained under

semi-infinite linear diffusion whereas it drops 48 % from the cottrellian value

when the distance is l¼ 75 μm. This decrease reaches 91 % for the narrower cell

(l¼ 50 μm), for which, at this time, the current is very close to zero.
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Chapter 3

Single Pulse Voltammetry: Non-reversible

and Complex Electrochemical Reactions
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3.1 Introduction

This chapter addresses more complex electrode processes than one-electron revers-

ible electrochemical reactions in single potential pulse techniques. The concepts

given here set the basis for tackling the current–potential response in multipotential

pulse electrochemical techniques (see Chaps. 4–7), which are more powerful, but

also present greater theoretical complexity.

In Sect. 3.2, non-reversible charge transfer reactions will be studied, with

emphasis on their most characteristic aspects, such as the dependence of the half-

wave potential on the heterogeneous charge transfer rate constant and the time of

the application of the potential, as well as the size and geometric characteristics of

the working electrode.

Multi-electron (multistep) electrode processes will be studied in Sect. 3.3,

underlining the key role of the difference of the formal potentials between each

two consecutive electrochemical steps on the current–potential curves and also the

comproportionation/disproportionation reactions that take place in the vicinity of

the electrode surface. In the case of two-step reactions, interesting aspects of the

current–potential curves will be discussed and related to the surface concentrations

of the participating species.

In Sect. 3.4, the current–potential curves corresponding to electrode processes

complicated with homogeneous chemical reactions will be analyzed, highlighting

the analogies and differences between the theoretical treatments of the different

reaction schemes corresponding to first-order catalytic, CE, and EC mechanisms.

These three reaction schemes will be treated rigorously and with different

approaches of approximation. Also working curves will be given to obtain equilib-

rium and chemical rate constants in each case. ECE mechanism and some more

complex reaction schemes will also be discussed.

All general typical variables considered in this chapter for a particular reaction

scheme, for example the half-wave potential, are of fundamental interest for its

characterization in any electrochemical technique. Moreover, as indicated in the

previous chapter, all the current–potential expressions deduced here under station-

ary conditions (when microelectrodes are used) are applicable to any multipotential

step or sweep electrochemical techniques like Staircase Voltammetry or Cyclic

Voltammetry.

3.2 Quasi-reversible and Irreversible Electrochemical

Reactions

In the preceding chapter, single pulse voltammetry and chronoamperometry were

applied to the study of reversible electrode reactions of species in solution. Under

these conditions, the surface concentrations fulfill Nernst equation and are

independent of the duration of the experiment, regardless of the diffusion field
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geometry, if the diffusion coefficients are identical, and depend only on the applied

potential.

In this section, a non-reversible electrode reaction will be addressed. An exact

definition of a slow charge transfer process is not possible because the charge

transfer reaction can be reversible, quasi-reversible, or irreversible depending on

the duration of the experiment and the mass transport rate. So, an electrode reaction

can be slow or non-reversible when the mass transport rate has a value such that the

measured current is lower than that corresponding to a reversible process because

the rate of depletion of the surface species at the electrode surface is less than the

diffusion rate at which it reaches the surface. Under these conditions, the potential

values that reduce the O species and oxidize the R species become more negative

and more positive, respectively, than those predicted by Nernst equation.

A reversible criterion will be presented in order to clearly establish the exper-

imental conditions for which a charge transfer process can be considered as

reversible, quasi-reversible, or fully irreversible. Note that this criterion can be

easily extended to any electrochemical technique. This section also analyzes the

response of non-reversible electrode processes at microelectrodes, which does not

depend on the electrochemical technique employed, as stated in Chap. 2.

3.2.1 Planar Electrodes

A non-reversible electrochemical reaction that occurs on a planar electrode is

considered according to the reaction scheme:

Oþ e� !
kred

kox
R ð3:IÞ

The mass transport of the different species in solution is described by the

diffusive differential equation system:

∂cO
∂t
¼ DO

∂2
cO

∂x2
∂cR
∂t
¼ DR

∂2
cR

∂x2

ð3:1Þ

The boundary conditions for a non-reversible electrochemical reaction are

t � 0, x!1
t ¼ 0, x � 0

�
cO ¼ c*O, cR ¼ c*R ð3:2Þ
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t > 0, x ¼ 0 :

DO

∂cO
∂x

� �
x¼0
¼ � DR

∂cR
∂x

� �
x¼0

ð3:3Þ

DO

∂cO
∂x

� �
x¼0
¼ kredc

s
O � koxc

s
R ð3:4Þ

Taking into account the relationship between the oxidation and reduction rate con-

stants (i.e., kox ¼ krede
η with η ¼ F E� E��○

0
c

� �
=RT; see Sect. 1.7) whatever the kinetic

model considered, Eq. (3.4) becomes

DO

∂cO
∂x

� �
x¼0
¼ kred c sO � eηc sR

� � ð3:5Þ

where csO and csR are the surface concentrations of species O and R.

The above problem is solved using the dimensionless parameter method devel-

oped by Koutecký [1–3] (the Laplace transform method has been addressed in

reference [4]). First, we insert the dimensionless diffusion parameter

s p
i i ¼ O, Rð Þ:

s p
i ¼

x

2
ffiffiffiffiffiffi
Dit
p ð3:6Þ

such that the boundary value problem becomes

s p
i !1

cO ¼ c*O; cR ¼ c*R ð3:7Þ
s p
i ¼ 0 :

∂cO
∂s p

O

� �
s p

O
¼0
¼ � 1

γ
∂cR
∂s p

R

� �
s p

R
¼0

ð3:8Þ

∂cO
∂s p

O

� �
s p

O
¼0
¼ 2kred

ffiffiffiffiffiffiffi
t

DO

r
c sO � eηc sR
� � ð3:9Þ

where

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p
ð3:10Þ

Surface condition (3.9) indicates that the surface concentrations of species O

and R, csO and csR, are not only functions of variable s
p
i (i ¼ O, R), as in the case of

Nernstian charge transfer processes, but also time dependent, since their

corresponding derivatives at s p
i ¼ 0 are too.
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Both surface conditions (3.8) and (3.9) suggest the inclusion of a new time-

dependent dimensionless variable:

χ ¼ 2k red

ffiffiffiffiffiffiffi
t

DO

r
1þ γeηð Þ ð3:11Þ

Inserting variables spi and χ in Eq. (3.1) gives the differential equation system in

Eq. (D.1) of Appendix D, and by following the procedure described in Appendices

A and D, the expressions for the concentration profiles are obtained (see Eqs. (D.19)

and (D.20)). By making s p
i ¼ 0 in these equations, the following expressions for the

surface concentrations are deduced:

cO 0; χð Þ ¼ c sO χð Þ ¼ c*O 1þ 1� c*R=c
*
O

� �
eη

1þ γeη
� �

H χð Þ � 1ð Þ
� �

ð3:12Þ

cR 0; χð Þ ¼ c sR χð Þ ¼ c*R 1� γ

c*R=c
*
O

� � 1� c*R=c
*
O

� �
eη

1þ γeη
� �

H χð Þ � 1ð Þ
" #

ð3:13Þ

where H χð Þ ¼ e χ=2ð Þ2erfc χ=2ð Þ (see also Eq. (2.138)).

In what follows, the Butler–Volmer formalism for the electrode kinetics will be

assumed (unless otherwise indicated), so the expressions for the rate constants are

(see Sect. 1.7.1):

kred ¼ k0e�αη

kox ¼ krede
η

�
ð3:14Þ

with η ¼ F E� E��○
0

c

� �
=RT, and k0 and α being the standard heterogeneous rate

constant and charge transfer coefficient. Note that k0 is the value of the reduction

and oxidation rate constants at the formal potential E��○
0

c .

3.2.1.1 Concentration Profiles

The concentration profiles are very sensitive to the kinetics of the electrode

reaction. In this context, the determination of the diffusion layer thickness is of

great importance in the study of non-reversible charge transfer processes. This

magnitude can be defined as the thickness of the region adjacent to the electrode

surface where the concentration of electro-active species differs from its bulk value,

and it can be accurately calculated from the concentration profiles. In the previous

chapter, the extensively used concept of “Nernst diffusion layer” (δ), defined as the
distance at which the linear concentration profile (obtained from the straight line

tangent to the concentration profile curve at the electrode surface) takes its bulk

value, has been explained. In this chapter, we will refer to it as “linear diffusion

layer” since the term “Nernst” can be misunderstood when non-reversible processes
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are treated. An analytical expression for the linear diffusion layer thickness is

provided in Eq. (3.22).

The variation with time of the transient concentration profiles (cO(x, t)/c
�
O vs. x)

and the linear concentration profiles (cO x; tð Þ ¼ c*O � c sO
� �

=δqrp,O

� �
xþ c sO vs. x is

shown in Fig. 3.1, with δqrp;O being the linear diffusion layer thickness, see below) of

species O when a potential stepE ¼ E��○
0

c � 0:10 V is applied for different values of

the standard heterogeneous rate constant k0 and supposing that only species O is

initially present in the electrolytic solution. The superscript “qr” in the diffusion

layer δ denotes that it corresponds to quasi-reversible processes.

As can be observed from these curves, the rate of variation of linear and real

diffusion layer thickness with time increases with k0, being maximum for

k0 � 0:1 cm s�1, which corresponds to the reversible case. From Fig. 3.1a, it can

be seen that for reversible processes the surface concentration is independent of

time in agreement with Eq. (2.20) (see also Fig. 2.1 in Sect. 2.2.1). However, for

non-reversible processes (Fig. 3.1b and c), the time has an important effect on the

surface concentration, such that csO decreases as t increases, with this behavior being
more marked for intermediate k0 values (quasi-reversible processes). So, for

k0 ¼ 10�3 cm s�1, the surface concentration decreases by 19 % from t¼ 0.1 to

0.4 s, whereas for k0 ¼ 10�4 cm s�1 it only varies 7 %. It is also worth noting that

for the reversible case (Fig. 3.1a), the diffusion control (c sO ! 0) has practically

been reached at the selected potential.

3.2.1.2 Current–Time Curves (Chronoamperometry) and Current–

Potential Curves (Voltammetry)

From Eq. (D.19) of Appendix D and (E.6) of Appendix E, the following expression

for the current is obtained:

Iplane

FADO

¼ 1

2
ffiffiffiffiffiffiffiffi
DOt
p ∂cO

∂s p
O

� �
s p

O
¼0
¼ c*Offiffiffiffiffiffiffiffiffiffiffi

πDOt
p 1� c*R=c

*
O

� �
eη

1þ γeη
� �

F χð Þ ð3:15Þ

where F function is defined as (see Appendix E):

F xð Þ ¼
X
j¼0

�1ð Þ jYj
h¼0

ph

xð Þ jþ1 ¼ ffiffiffi
π
p

x=2ð Þexp x=2ð Þ2erfc x=2ð Þ ð3:16Þ

By comparing Eq. (3.15) with Eq. (2.27), it can be written that

Iplane

I planerev

¼ F χð Þ ð3:17Þ
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Fig. 3.1 Real concentration profiles (solid lines) and linear concentration profiles (dashed lines)
of the oxidized species at a planar electrode for the application of a potential step, calculated from
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or (see Eq. (2.28))

Iplane

I planed,c

¼ 1� c*R=c
*
O

� �
eη

1þ γeη F χð Þ ð3:18Þ

with χ given in Eq. (3.11) and

I planerev ¼ FA

ffiffiffiffiffiffiffi
DO

πt

r
c*O � c*Re

η
� �
1þ γeη ð3:19Þ

I planed,c ¼ FA

ffiffiffiffiffiffiffi
DO

πt

r
c*O ð3:20Þ

The main characteristics of function F are outlined in Appendix E.

Equations (3.17) and (3.18) hold for electrochemical reactions of any reversibil-

ity degree. By comparing these equations with Eq. (3.19) corresponding to a

reversible process, it can be inferred that the current for a non-reversible process

is expressed as the reversible current modulated by F function (that contains the

kinetic influence through the dimensionless parameter χ), which increases with χ
from zero to the unity (see Fig. E.1 of Appendix E). Hence, small values of χ cause
a strong kinetic influence and large values of χ give rise to a reversible behavior.

The faradaic current corresponding to any charge transfer process depends on

the surface gradient ∂cO=∂xð Þx¼0, which can be expressed as the ratio of the

difference between the bulk and surface concentrations of the oxidized species

and the linear diffusion layer, δqrp;O,

Iplane

FADO

¼ c*O � c sO
δqrp,O

ð3:21Þ

By solving for δqrp;O in Eq. (3.21) and substituting the expressions of the surface

concentrations and the current given by Eqs. (3.12) and (3.18), one has [3]:

δqrp,O ¼ G χð Þδ rp,O ð3:22Þ

with

G χð Þ ¼ 1

F χð Þ �
1

χ
ffiffiffi
π
p

=2
ð3:23Þ

Fig. 3.1 (continued) Eq. (D.19) E� E��○
0

c ¼ �0:1 V, α ¼ 0:5, DO¼ 10�5 cm2 s�1, γ ¼ 1.

T¼ 298 K. The values of time and of the heterogeneous rate constant k0 are on the curves. Dotted
lines mark the values of the linear diffusion layer. Reproduced with permission from reference [3]
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δ rp,O ¼
ffiffiffiffiffiffiffiffiffiffiffi
πDOt

p
ð3:24Þ

and F(χ) given by Eq. (3.16).

From Eq. (3.22), it can be deduced that function G defines the ratio δqrp;O/ δ
r
p;O as a

function of parameter χ, and leads to the following limits:

2

π
� δqrp,O

δ rp,O
� 1 ð3:25Þ

Note that δqrp;O, unlike the reversible case, depends on the applied potential, and

the more irreversible the process, the smaller the diffusion layer (except under

limiting current conditions where the thickness is independent of the electrode

kinetics).

For fully irreversible reduction reactions (small values of k0), the enhancement

of kred leads to a progressive decrease of kox as the potential becomes less than E��○
0

c

such that, under conditions for which the current is measurable, it is fulfilled that

kred 
 kox. Under these conditions, kox=kredð Þ ¼ eη ! 0, and from Eqs. (3.11) and

(3.18),

Iplane

I planed, c

¼ F χirrev
� � ð3:26Þ

can be easily deduced, where

χirrev ¼ 2k red

ffiffiffiffiffiffiffi
t

DO

r
ð3:27Þ

From Eqs. (3.26) and (3.27), the expression of the half-wave potential for a

totally irreversible reaction can be easily deduced since, for E ¼ E irrev
1=2 ,

Iplane

I planed,c

¼ 1

2
¼ F χ irrev1=2

� �
ð3:28Þ

with

χ irrev1=2 ¼ 2k0
ffiffiffiffiffiffiffi
t

DO

r
e
�αFRT E irrev

1=2
�E��○0c

� �
ð3:29Þ

Equation (3.28) holds for χ irrev1=2 ¼ 0:865. By taking logarithms and solving for

Eirrev
1=2 , one obtains [4, 5],
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E irrev
1=2 ¼ E��○

0
c þ

RT

αF
ln 2:309k0

ffiffiffiffiffiffiffi
t

DO

r� �
ð3:30Þ

It is important to highlight that the current for a quasi-reversible or fully

irreversible electrode process cannot be expressed as a product of functions

depending on the different variables, i.e., applied potential and time (or k0
ffiffiffiffiffiffiffiffiffiffi
t=DO

p
).

Unfortunately, the dimensionless parameter χ is influenced by time, by the kinetic

constants and by the applied potential.

3.2.1.2.1 Chronoamperometry

The expression for the current of a non-reversible process given by Eq. (3.18)

allows us to obtain those corresponding to cathodic and anodic diffusion-controlled

limiting currents, Iplaned;c and Iplaned;a given by Eq. (2.28) by making eη ! 0 and

eη !1, respectively (i.e., χ !1; see Eqs. (3.11) and (3.14), and Appendix E).

The dependence on time of the current when a constant potential is applied to a

plane electrode for different values of the heterogeneous rate constant k0 ranging
from reversible to totally irreversible processes is shown in Fig. 3.2.

From these curves, it can be seen that the current decreases with time in all cases,

and more pronounced the higher the rate constant. Moreover, for values of

k0 � 10�2 cm s�1, the response becomes independent of the kinetics, i.e., the

reversible limit has been reached. The rate constant is related to the kinetic

t / s
0.0 0.2 0.4 0.6 0.8 1.0

I pl
an

e / μ
A
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140

a
b

c

d

e, f

Fig. 3.2 Current–time curves calculated from Eq. (3.18) for a plane electrode with

E� E��○
0

c ¼ �0:15 V. A¼ 0.031 cm2, c*O ¼ 1 mM, c*R ¼ 0, DO ¼ 10�5 cm2 s�1, γ ¼ 1. The

values of the heterogeneous rate constant k0 (in cm s�1) are: (a) 10�4; (b) 2:5� 10�4; (c) 5� 10�4;
(d) 10�3; (e) 10�2; and (f) 0.1. The current corresponding to a reversible process, given by

Eq. (2.27), has been included for comparison (black dots)
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activation that the charge process requires to give rise to measurable values of the

current. In this sense it can be seen that, whereas for reversible processes the current

tends to infinity when the time tends to zero (see Eq. (2.28)), in the case of

non-reversible processes, the current takes a constant value at t! 0, which

decreases with the rate constant. This value can be obtained from the series

expansion of function F given in Appendix E for small values of χ (see Eq. (E.6))

Iplane
� �

t�1
ffi 1� c*R=c

*
O

� �
eη

1þ γeη FAc*O kred þ γkoxð Þ 1� 2ffiffiffi
π
p kred þ γkoxð Þ

ffiffiffiffiffiffiffi
t

DO

r� �
ð3:31Þ

so for t! 0 the second term in the brackets of the right-hand side vanishes and the

current takes the constant value 1� c*R=c
*
O

� �
eη

� �
FAc*O kred þ γkoxð Þ= 1þ γeηð Þ,

which for a totally irreversible process simplifies to FAkredc
�
O.

3.2.1.2.2 Voltammetry

The shape and location of the current–potential curves are strongly dependent on

the kinetics of the electrode reaction through the dimensionless rate constant,

defined as

κ0plane ¼ k0
ffiffiffiffiffiffiffiffiffiffi
t=DO

p
ð3:32Þ

This dimensionless rate constant contains typical parameters of the process (i.e.,

the heterogeneous rate constant k0, the diffusion coefficient, and the experiment

time), thus reflecting that the behavior of the process is the result of a combination

of intrinsic (kinetics and diffusion) and extrinsic (time window) effects. The effect

of κ0plane in the voltammograms obtained when both species (a) or only oxidized

species O (b) are initially present can be seen in Fig. 3.3.

The curves in Fig. 3.3a for electrochemical processes of different reversibility

degree show how κ0plane affects the voltammograms. Note that a decrease of the

dimensionless rate constant leads to gentler current–potential curves. In this sense,

irreversible processes spread into broader intervals of potential. This can be quan-

tified by calculating the width of the potential region needed to go from, for

example, (1/4)(Iplane/Iplaned;c ) to (3/4)(Iplane/Iplaned;c ) (i.e., the difference Eirr
3=4 � Eirr

1=4 ).

For a reversible process, this region has a width of 56 mV (see Eq. (2.36) and

Fig. 2.4 of Sect. 2.2.2.2), whereas for a totally irreversible one (i.e., κ0plane � 0:01) it

is of 90 mV (see Eq. (3.26) and Fig. 3.4). Moreover, for values of κ0plane � 0:01, the

shape of the anodic and cathodic waves remains unchanged although they move

toward positive and negative potentials, respectively. This shift is due to the fact

that the lower κ0plane is, the higher the values of η necessary for χ to have a value for
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F χð Þ 6¼ 0. In other words, the electrode reaction presents a stronger kinetic resis-

tance the smaller κ0plane is, and, as a consequence, higher η values are required to

obtain measurable anodic and cathodic currents.

It is also worth pointing out that a similar result to that shown in Fig. 3.3 is

obtained if we analyze the effect of the time in the response of a quasi-reversible

charge transfer process, i.e., for a given value of the rate constant k0, a decrease of

the time leads to a decrease of the dimensionless rate constant κ0plane and therefore to

a higher irreversible character of the process. This fact can be used to ascertain at a

glance if a particular electrode process behaves in a reversible or non-reversible

way, since in the first case no influence of time on the normalized current is

observed (see Eq. (2.36)).

3.2.1.3 Approximate Treatment

This approximate procedure is similar to that used in references [6–8] applied to the

Dropping Mercury Electrode. In this treatment, it is assumed that the concentrations

of oxidized and reduced species at the electrode surface can be written in the form

given by Eq. (2.30), i.e.,

c sO ¼ c*O
I planed,c � Iplane

I planed, c

 !
ð3:33Þ

c sR ¼ c*R
I planed, a � Iplane

I planed,a

 !
ð3:34Þ

with Iplaned;c and Iplaned;a given by Eq. (2.28) of Sect. 2.2.2.1.

As the current for a non-nernstian process is

Iplane

FA
¼ kredc

s
O � koxc

s
R ð3:35Þ

by inserting Eqs. (3.33), (3.34), and (2.28) in (3.35), the following expression for

the current is deduced:

Iplane ¼
ffiffiffiffi
πt
p

kred
I plane
d,cffiffiffiffiffi
DO

p þ kox
I plane
d,affiffiffiffiffi
DR

p

 �

1þ kred
ffiffiffiffiffi
πt
DO

q
þ kox

ffiffiffiffiffi
πt
DR

q ð3:36Þ

By considering that the current for a reversible process, after arranging

Eq. (2.31) of Sect. 2.2.2.2 and taking into account that eη ¼ kox=kred, it can be

written as
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I planerev ¼ kred
ffiffiffiffiffiffi
DR

p
Id,c þ kox

ffiffiffiffiffiffiffi
DO

p
Id,a

kred
ffiffiffiffiffiffi
DR

p þ kox
ffiffiffiffiffiffiffi
DO

p ð3:37Þ

From Eqs. (3.36) and (3.37), we get

Iplane

I planerev

¼
ffiffiffiffi
πt
p

kredffiffiffiffiffi
DO

p þ koxffiffiffiffiffi
DR

p
n o

1þ ffiffiffiffi
πt
p

kredffiffiffiffiffi
DO

p þ koxffiffiffiffiffi
DR

p
n o ð3:38Þ

It is important to note that Eq. (3.38) obtained with this treatment (based on the

consideration that the diffusion layer corresponding to a non-nernstian electrode

process coincides with that corresponding to a reversible one) can also be directly

deduced from Eq. (3.17) if F(χ) is replaced by its simplified form given by

Eq. (E.10) (which is valid for χ � 0:185 and χ � 19:7 with an error smaller than

5 %; see Appendix E):

Iplane

I planerev

¼ F χð Þ �
ffiffiffi
π
p

=2ð Þχ
1þ ffiffiffi

π
p

=2ð Þχ ð3:39Þ

So, for an irreversible cathodic electrode reaction ( kred 
 kox, eη ! 0 ),

Eq. (3.38) or (3.39) leads to

Iplane

I planed,c

¼
ffiffiffiffiffi
πt
DO

q
kred

1þ
ffiffiffiffiffi
πt
DO

q
kred

ð3:40Þ

By expressing kred in terms of the potential through the Butler–Volmer relation

(kred ¼ k0e�αη), it is easily deduced that under suitable conditions in which Eq. (3.40)

is applicable, the potential varies linearly with ln I planed, c � Iplane
� �

=Iplane
� �

:

E ¼ E1=2 þ RT

αF
ln

I planed,c � Iplane

Iplane

 !
ð3:41Þ

with

E1=2 ¼ E��○
0

c þ
RT

αF
ln

ffiffiffi
π
p
κ0p

� �
ð3:42Þ

Note that the expression of E1/2 in Eq. (3.42) differs from that obtained from the

rigorous expression of E1/2 for a fully irreversible electrode process given in

Eq. (3.30) (with this difference being RTln 2:309=
ffiffiffi
π
pð Þ= αFð Þ ¼ 13:6 mV for

α ¼ 0:5 and T¼ 298 K).
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3.2.1.4 Reversibility Criteria

At this point, a question arises concerning the reversibility degree of the charge

transfer process. It was stated in Sect. 3.2 that an exact definition of a slow charge

transfer process is not possible. However, is it possible to give a criterion for clearly

defining when the electrode process behaves in a reversible or non-reversible way?

Attending to the above discussion and to that in Sect. 3.2, this question could be

answered by considering the relation between the heterogeneous rate constant and

the mass transport coefficient for the oxidized species, mO, defined as the ratio

between the surface flux and the difference of bulk and surface concentrations (see

Sect. 1.8.4 and references [4, 9, 10]), i.e.,

mO ¼ Iplane=FA

c*O � c sO
¼ DO

δqrp,O
ð3:43Þ

Note that the usual definition of the mass transfer coefficient is related to limiting

diffusion conditions or nernstian conditions (mO,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=πt

p
for a planar elec-

trode; see Sect. 1.8.4). The definition given in Eq. (3.43) is general for any

reversibility degree of the electrode process at planar electrodes.

In order to discriminate between reversible and non-reversible regimes, the

behavior of the following relation R0 at the formal potential should be examined:

R0 ¼ k0

m0
O

¼ k0 δqrp,O χ0ð Þ
DO

ð3:44Þ

with χ0 and m0
O being the value of χ and mO at E ¼ E��○

0
c . By taking into account

Eqs. (3.11), (3.14), and (3.22)–(3.24), R0 can be written as

R0 ¼ χ0
ffiffiffi
π
p

2 1þ γð ÞG χ0
� � ð3:45Þ

By assuming that a reversible process corresponds to R0 > 10 and a fully

irreversible one to R0 < 0:05 (i.e., the heterogeneous rate constant is ten times

higher or 20 times smaller than the mass transport coefficient, respectively), in the

interval 0:05 � R0 � 10 the process can be considered as quasi-reversible. The

variation of log(R0) with log(χ0) for γ ¼ 1 has been plotted in Fig. 3.5, and the three

regions have been delimited. From the above criterion, a totally irreversible process

is characterized by a value of χ0 < 0:17 (which corresponds to a dimensionless rate

constant κ0plane < 0:042), and a reversible behavior is attained for χ0 > 23:6 (i.e.,

κ0plane > 5:9).

The figure also includes the variation of the ratio k0=mO,1 ¼ ffiffiffi
π
p
κ0plane with log

(χ0) (dashed line) for comparison. Thus, it can be seen that in the reversible limit,

there is a coincidence with the criterion used here, but in the irreversible one, this
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relation leads to a value of χ0 ¼ 0:113 (i.e., κ0plane < 0:03 if γ ¼ 1). This smaller

value of κ0plane is a consequence of the use of the linear diffusion layer for reversible

processes instead of that obtained for processes of any reversibility given by

Eq. (3.22) (which fulfills δqrp,O= δ p,O
� �

� 1).

The criterion discussed above is based on the dependence of the surface con-

centration of the oxidized species with the reversibility degree of the electrode

process. So, for a totally irreversible process, the rate of depletion of the surface

concentration csO is much smaller than the mass transport rate process, and there-

fore, at the formal potential its value should be coincident with the bulk concen-

tration c sO χ0ð Þ=c*O;ffi 1
� �

. In contrast, for reversible electrode reactions,

c sO χ0ð Þ=c*O ¼ 0:5 (see Eq. (2.20) of Sect. 2.2 for c*R ¼ 0 and γ ¼ 1). In order to

verify this behavior, the variation of the surface concentration of species O at the

formal potential calculated as a function of χ0 has been plotted in Fig. 3.5b.

From this figure, it can be deduced that at the irreversible limit (i.e., χ0 ¼ 0:17),

c sO χ0ð Þ=c*O ¼ 0:955 (around 5 % error), whereas for the reversible limit (χ0 ¼ 23:6),

it is c sO χ0ð Þ=c*O ¼ 0:524 (around 5 % error). Both results confirm the accuracy of the

chosen limits of χ0.
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Fig. 3.5 Variation of log

(R0) (a) and of the surface

concentration of oxidized

species csO(χ
0) (b) with log

(χ0) calculated from

Eqs. (3.45) and (3.12) with

c*R ¼ 0, respectively. The

variation of the ratioffiffiffi
π
p
κ0plane with log(χ0)

(dashed line) has been
included in Fig. 3.5a for

comparison
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Note that any reversibility criterion can change with the geometry and size of the

electrode considered since the expression of the mass transport coefficient depends

on these features.

3.2.1.5 Determination of Kinetic Parameters

The characterization of a non-reversible electrode process is logically more com-

plex than that of a reversible one since it implies knowledge of thermodynamic

(formal potential) and kinetic (heterogeneous rate constant and charge transfer

coefficient) parameters of the process under study.

There are various approaches for determining the kinetic parameters of

non-reversible processes. The most common correspond to totally irreversible

processes since the expression of the current given by Eq. (3.26) is simpler than

that obtained for the general case (Eq. 3.18). Below we present the main features of

three ways of determining these parameters.

(a) Determination of kred at any potential value

In agreement with Eq. (3.26), for a totally irreversible process, from a plot

of the normalized current Iplane/Iplaned;c vs. χirrev (i.e., Fig. E.1 in Appendix E), it

is possible to determine the values of parameter χirrev corresponding to each

potential by using the corresponding values of F function. Once the values of

χirrev have been obtained, from Eq. (3.27), kred at each potential follows

immediately. A logarithmic plot of the potential versus ln(kred) will allow us

to obtain the values of α from the slope and of k0 from the intercept if the

formal potential is known (see Eq. (3.14)).

(b) Tomeš criterion [11]

As in the reversible case, together with the irreversible half-wave potential,

the difference between potentials corresponding to a current Iplane ¼ 3=4ð Þ
I planed,c and Iplane ¼ 1=4ð ÞI planed, c ,Eirr

3=4 � Eirr
1=4, can be used to determine the charge

transfer coefficient. Thus, for a quasi-reversible process, this difference is

higher than the 56.4 mV value typical of a reversible monoelectronic charge

transfer, reaching the value 45/α mV for a fully irreversible process (see also

Fig. 3.4). By combining this difference with the irreversible half-wave poten-

tial given by Eq. (3.30), it is possible to obtain k0 when the formal potential is

known.

(c) Linearized current–potential curves.

The easiest way to obtain thermodynamic information of a reversible

electrode process comes from the plots of the potential versus

ln I planed,c � Iplane
� �

=Iplane
� �

, which are linear in agreement with Eq. (2.35) of

Sect. 2.2.2.2, and whose intercept coincides with the reversible half-wave

potential. In the case of non-reversible processes, it could be thought that

these plots would not be linear since this linearity is a direct consequence of
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the separation between potential and time dependences in the expression of

the reversible current, which does not occur in the case of fully irreversible

processes (see Eq. (3.26)). In order to check if this linearity could also be

observed for non-reversible processes at planar electrodes, a set of E� ln

I planed, c � Iplane
� �

=Iplane
� �

curves calculated for different values of the dimen-

sionless rate constant κ0plane covering all the reversibility degrees of the process

is plotted in Fig. 3.6. The plots in this figure for non-reversible processes (i.e.,

κ0plane < 1) deviate from linearity, but can be decomposed into three different

linear regions corresponding to different potential intervals (which are related

with the corresponding values of χ through Eq. (3.11)). The particular case

corresponding to κ0plane ¼ 0:1 is analyzed in detail in Fig. 3.7. The zone labeled

1 corresponds to positive potentials and high values of χ (i.e., F χð Þ � 1; see

Appendix E), for which the process behaves as reversible and the

E� ln I planed,c � Iplane
� �

=Iplane
� �

plot in this region is coincident with that

obtained for a reversible process (black dots in Fig. 3.6), thus presenting as

intercept the reversible half-wave potential Er
1=2 (red dot on Fig. 3.7b). This

potential region corresponds to the foot of non-reversible voltammograms (red

line in Fig. 3.7) and it will only be useful for quasi-reversible processes (1 >

κ0plane > 0:1) since for irreversible ones it appears at very positive potentials at

which the current obtained is indistinguishable from the background current

(Fig. 3.7a). For more negative potentials (zone 2 of the voltammogram; see

also blue line in Fig. 3.7b), a second zone with a linear dependence of the

potential with ln I planed,c � Iplane
� �

=Iplane
� �

appears. This zone corresponds to

small values of χ for which the approximate Eq. (3.40) can be used with small

error (see Appendix E). Therefore,
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E ffi E��○
0

c þ
RT

αF
ln

ffiffiffi
π
p
κ0plane

� �
þ RT

αF
ln

I planed,c � Iplane

Iplane

 !
ð3:46Þ

is fulfilled.

Note that the range of potentials for which Eq. (3.46) can be applied becomes

broader as the rate constant decreases. By using Eq. (3.46), the rate constant k0 can

be determined from the intercept of these plots (E��○
0

c þ RT ln
ffiffiffi
π
p
κ0plane

� �
= αFð Þ ),

shown as a blue dot in Fig. 3.7b, if the formal potential is known (with negligible

errors in the rate constant for κ0plane � 10�2).
Finally, for currents close to the diffusion-limiting current (very cathodic poten-

tials), a new linear region appears (labeled 3 in Fig. 3.7) which, for α ¼ 0:5,
presents the same slope as the reversible region. The linear dependence found

here can be identified using a truncated asymptotic expansion of function F given

by Eq. (E.9) of Appendix E
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curves (b) calculated from

Eq. (3.18) for κ0plane ¼ 0:1.

c*R ¼ 0, α ¼ 0:5
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F χð Þ � 1� 2

χ2
, χ > 3:6 ð3:47Þ

By inserting Eq. (3.47) into Eq. (3.26) it is found that

E ffi E��○
0

c þ
RT

αF
ln

ffiffiffi
2
p
κ0plane

� �
þ RT

2αF
ln

I planed,c � Iplane

Iplane

 !
ð3:48Þ

Under these conditions, for α¼ 0.5 the slope coincides with that corresponding

to a reversible process and the intercept is E��○
0

c þ 2RT=Fð Þln ffiffiffi
2
p
κ0plane

� �
(marked as

a green dot in Fig. 3.7b). As the current values for this region are close to Iplaned;c , the

limiting current needs to be obtained with high accuracy. From a practical point of

view, only region 2 will provide good normalized current values for the linear

analysis of the non-reversible current potential curves. The usefulness of zones

1 and 3 depends on the accuracy of the experimental values for the current response

and on the degree of reversibility of the process. This behavior reflects

the complexity of the current–potential response associated with non-reversible

processes and the great difficulties involved in the analysis of the kinetic and

thermodynamic parameters. For this reason, the common way to proceed in the

analysis of the current potential curves of a non-reversible electrode reaction

involves the use of numerical fitting procedures to determine the characteristics

parameters of the process under study.

3.2.2 Dropping Mercury Electrode

3.2.2.1 dc Polarography

The study of non-reversible processes with dc Polarography was solved by

Koutecký [1, 6] by using the dimensionless parameter method and finding the

following expression for the current:

IDME
dcP

IDME
rev

¼ F χDMEð Þ ð3:49Þ

where IDME
rev is given by Eq. (2.113) and F(χDME) is the so-called Koutecký function.

This function is given in equation (E.1) of Appendix E (z¼ 2/3) by

χDME ¼
ffiffiffi
3

7

r
2k red

ffiffiffiffiffiffiffi
t

DO

r
1þ γeηð Þ ¼

ffiffiffi
3

7

r
χ ð3:50Þ
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γ and χ are given by Eqs. (3.10) and (3.11). Different approximations to F(χDME)

are discussed in Appendix E.

The characteristics of the current–potential curves (polarograms) are similar to

that discussed in Sect. 3.2.1.2.2 for planar electrodes.

For an irreversible process, the half-wave potential is

EDME, irrev
1=2 ¼ E��○

0
c þ

RT

αF
ln 1:33k0

ffiffiffiffiffiffiffi
t

DO

r� �
ð3:51Þ

3.2.2.2 Normal Pulse Polarography

The measured current at a short pulse time at the end of the drop life is given by

IDME
NPP ¼ FA t1 þ t2ð Þ

ffiffiffiffiffiffiffi
DO

πt2

r
c*O

G α; χð Þ
1þ γeη ð3:52Þ

where

A t1 þ t2ð Þ ¼ 4π
3m

4πρ

� �2=3

t1 þ t2ð Þ2=3 ð3:53Þ

α ¼ t2
t1 þ t2

ð3:54Þ

χ ¼ 2k red

ffiffiffiffiffiffiffi
t2
DO

r
1þ γeηð Þ ð3:55Þ

G(α, χ) is defined by Eqs. (A4)–(A5) in reference [12], and m and ρ are the flux
and density of the mercury, respectively.

The behavior of the normalized normal pulse polarograms at different pulse time

values is shown in Fig. 3.8, which clearly shows the influence of the pulse time on

Fig. 3.8 NPP curves

obtained for different values

of t2 for

DO ¼ 10�5 cm2 s�1,
T¼ 298 K, α ¼ 0:5,

t1 ¼ 1 s, k0 (in cm s�1):
(A) 10�2; (B) 10�4. t2 (in s):

(1) 0.001; (2) 0.02;

(3) 1. Reproduced with

permission [12]
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the reversibility of the process, with the current potential curve being as more

irreversible the smaller the value of t2.

3.2.3 Spherical Electrodes and Microelectrodes

As shown in Chap. 2, attaining analytical explicit solutions is considerably more

complex for nonplanar geometries. This section studies quasi-reversible and irre-

versible processes when a potential step is applied to a spherical electrode, since

this solution will be very useful for discussing the behavior of these electrode

reactions when steady-state conditions are addressed in the next section. Moreover,

the treatment of other electrode geometries seldom leads to explicit analytical

solutions and it is necessary in most cases to use numerical treatments.

Section 2.5 and Appendix A show (see Eqs. (A.27)–(A.32)) how the change of

variable

ui r; tð Þ ¼ ci r; tð Þr
c*O rs

i ¼ O, R ð3:56Þ

is very useful when the spherical diffusion operator is considered, and how this

change of variable notably simplifies the mass transport equations, although it

complicates the boundary conditions. In the case of a non-reversible process, the

boundary value problem becomes

∂uO r; tð Þ
∂t

¼ DO

∂2
uO r; tð Þ
∂r2

∂uR r; tð Þ
∂t

¼ DR

∂2
uR r; tð Þ
∂r2

9>>=>>; ð3:57Þ

t ¼ 0; r � rs
t > 0; r !1

�
uO r; tð Þ ¼ r

rs
; uR r; tð Þ ¼ c*R

c*O

r

rs
ð3:58Þ

t > 0; r ¼ rs

DO

∂uO r; tð Þ
∂r

� �
r¼rs
� uO rs; tð Þ

rs

 !
¼ �DR

∂uR r; tð Þ
∂r

� �
r¼rs
� uR rs; tð Þ

rs

 !
ð3:59Þ

DO

∂uO r; tð Þ
∂r

� �
r¼rs
� uO rs; tð Þ

rs

 !
¼ kreduO rs; tð Þ � koxuR rs; tð Þ ð3:60Þ

This problem was solved by Delmastro and Smith by using the Laplace trans-

form method, assuming that only oxidized species O was initially present in the

solution [13], and they reported the following analytical solution:
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Isphe¼FAsc
*
O

DO

D

� �1=2
kred

1

a�b



a�D

1=2
O þD

1=2
R

rs
þD

1=2
O D

1=2
R

r2sa

" #
exp a2tð Þerfc at1=2

� ��
1

a�b
b�D

1=2
O þD

1=2
R

rs
þD

1=2
O D

1=2
R

r2sb

" #
exp b2t
� �

erfc bt1=2
� �

þD
1=2
O D

1=2
R

r2sab

)
ð3:61Þ

where

2a ¼ D
1=2
O þ D

1=2
R

rs
þ λ� D

1=2
O þ D

1=2
R

rs
þ λ

" #( 2

� 4
D

1=2
O D

1=2
R

r2s
þ

"

k0
D

1=2
R e�αη þ D

1=2
O e 1�αð Þη

� �
rsD

1=2

35 ð3:62Þ

2b ¼ D
1=2
O þ D

1=2
R

rs
þ λþ D

1=2
O þ D

1=2
R

rs
þ λ

" #( 2

� 4
D

1=2
O D

1=2
R

r2s
þ

"

k0
D

1=2
R e�αη þ D

1=2
O e 1�αð Þη

� �
D1=2rs

35 ð3:63Þ

λ ¼ k0
e�αη þ e 1�αð Þη� �

D1=2
ð3:64Þ

D ¼ D1�α
O Dα

R ð3:65Þ

By supposing that both oxidized and reduced species are initially present in the

electrolytic solution and that diffusion coefficients of O and R are equal (DO ¼ DR

¼ D), the current takes the form [14]:

Isphe

I sphed,c

¼ κsphe 1� c*R=c
*
O

� �
eη

� �
ϑ 1þ eηð Þ 1þ κsphe 1þ 2ffiffiffi

π
p ϑ

χs

� �
H χsð Þ

� �
ð3:66Þ

with

H χsð Þ ¼ 2F χsð Þ=
ffiffiffi
π
p
χs

� � ¼ eχ
2
s=4erfc χs=2ð Þ ð3:67Þ

ϑ ¼ 1þ k0rs
D

1þ eη

eαη
ð3:68Þ

χs ¼
2
ffiffiffiffiffi
Dt
p

rs
ϑ ð3:69Þ

κsphe ¼ κ0sphee�αη 1þ eηð Þ ð3:70Þ
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κ0sphe ¼
k0rs
D

1þ rsffiffiffiffiffiffi
πDt
p ð3:71Þ

I sphed, c ¼ FADc*O
1

rs
þ 1ffiffiffiffiffiffiffiffi

πDt
p

� �
ð3:72Þ

Equation (3.66) coincides with (3.61) if c*R ¼ 0 and DO ¼ DR.

The expression for the current given in Eq. (3.66) can be simplified by consid-

ering the approximate expression of the F function given in Eq. (E.10):

Isphe

I sphed,c

ffi κsphe 1� c*R=c
*
O

� �
eη

� �
ϑ 1þ eηð Þ 1þ κsphe

1þ ϑffiffi
π
p

=2ð Þ χs
1þ ffiffiffi

π
p

=2ð Þ χs

" #" #
ð3:73Þ

For spherical microelectrodes, it is fulfilled that χs 
 1 and H χsð Þ ! 0 (see

Eqs. (3.67)–(3.69)) so the second term in the brackets of Eqs. (3.66) or (3.73) can be

neglected, and the following time-independent response is deduced [15, 16]:

Isphe, ss ¼ Isphe, ssd, c

κ0sphe, sse
�αη 1� c*R=c

*
O

� �
eη

� �
1þ κ0sphe, sse�αη 1þ eηð Þ
� � ð3:74Þ

with

κ0sphe, ss ¼
k0rs
D

ð3:75Þ

Isphe, ssd, c ¼ FAsDc
*
O

1

rs
ð3:76Þ

Equation (3.74) is only applicable to microspheres and microhemispheres, i.e.,

under steady-state conditions for which χs 
 1 and rs �
ffiffiffiffiffiffiffiffi
πDt
p

ϑ= ϑ� 1ð Þ in

Eq. (3.66). These conditions relate the electrode radius not only to
ffiffiffiffiffiffiffiffi
πDt
p

, like for

a reversible charge transfer process (see Sect. 2.7), but also to the kinetic parameters

k0 and α, and the applied potential E.
In order to analyze the degree of accuracy of Eqs. (3.73) and (3.74), the current–

potential curves calculated with rigorous (3.66) (solid lines), approximate quasi-

stationary (3.73) (dotted lines), and stationary (3.74) (dashed lines) equations have

been plotted in Fig. 3.9 for different values of the electrode radius and two values of

k0. From this figure, it can be observed that a decrease of the electrode size

facilitates the fulfillment of the Eq. (3.73) for a given value of k0 such that the

approximate quasi-stationary solution can be used instead of the rigorous one with

an error smaller than 5 % for rs < 50 μm if k0 ¼ 10�3 cm s�1 and t ¼ 1 s.

Equation (3.74) is valid for any value of k0 if rs < 3 μm.

The influence of the kinetics on the voltammograms corresponding to spherical

electrodes is conditioned by different variables, and is linked to the electrode size.
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This mixed influence can be observed from the expression of χs (Eqs. 3.68 and

3.69). In order to analyze the influence of the electrode size, Fig. 3.10a shows the

current–potential curves obtained for a charge transfer process with different values

of the dimensionless rate constant κ0sphe for a fixed k
0 ¼ 10�4 cm s�1 in NPV with a

time pulse t ¼ 0:1 s (i.e., for different values of the electrode radius ranging from

100 to 1 μm). As a limiting case useful for comparison, the current–potential
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response at a planar electrode has been included (black dots). From these curves, it

is clear that a decrease of the dimensionless rate constant κ0sphe given by Eq. (3.71)

mainly affects the irreversible half-wave potential of the responses leading to a shift

of the current–potential curves toward more cathodic potentials. This effect can be

explained by taking into account that the location of the voltammogram is directly

related to κ0sphe, which presents the limits:

κ0sphe ¼
k0rsD

1þ rsffiffiffiffiffiffi
πDt
p

planar electrodes

rs 

ffiffiffiffiffiffiffiffi
πDt
p� �

κ0sphe ffi
ffiffiffi
π
p
κ0plane ¼ k0

ffiffiffiffi
πt

D

r
microelectrodes

rs �
ffiffiffiffiffiffiffiffi
πDt
p� �

κ0sphe ffi κ0sphe, ss ¼ k0
rs
D

8>>>><>>>>: ð3:77Þ
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For spherical electrodes, κ0sphe plays an analogous role to κ
0
p (given by Eq. (3.32))

for planar electrodes, i.e., it contains characteristic parameters of the system (the

heterogeneous rate constant k0, the diffusion coefficient, the time of the experiment,

and the electrode radius). According to Eq. (3.77), κ0sphe tends to κ
0
plane multiplied byffiffiffi

π
p

when rs 

ffiffiffiffiffiffiffiffi
πDt
p

(i.e., for rs � 36
ffiffiffiffiffi
Dt
p

for an error lower than 5 %), and κ0sphe
ffi κ0sphe, ss ¼ k0rs=D when rs �

ffiffiffiffiffiffiffiffi
πDt
p

(i.e., for rs � 0:1
ffiffiffiffiffi
Dt
p

for an error lower than

5 %). These two limiting behaviors are clearly seen in Fig. 3.11.

Concerning the determination of kinetic parameters of the voltammograms of

quasi-reversible and irreversible electrode processes, Fig. 3.10b shows the exis-

tence of different linear zones in a similar way to that observed for planar electrodes

(see Fig. 3.6). For practical purposes, it is helpful to use spherical microelectrodes,

for which a broader linear region is obtained under steady-state conditions, since

the process behaves as more irreversible as the radius decreases. For fully irrevers-

ible charge transfers, Eq. (3.74) simplifies to

Isphe, ss ¼ Isphe, ssd, c

κ0sphe, sse
�αη

1þ κ0sphe, sse�αη
ð3:78Þ

which can be rewritten as

E ¼ E��○
0

c þ
RT

αF
ln κ0sphe, ss

� �
þ RT

αF
ln

Isphe, ssd, c � Isphe, ss

Isphe, ss

 !
ð3:79Þ

Equation (3.79) allows us to obtain α and k0 values from the slope and intercept

of the plots of Fig. 3.10b, once the formal potential E��○
0

c is known.

In order to gain a deeper understanding of the particularities of non-reversible

processes at spherical electrodes, it is useful to define the linear diffusion layer
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line, Eq. (3.75)) and that of
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thickness in an analogous way to that discussed for the case of planar electrodes

(see Sect. 3.2.1.2):

δqrsphe ¼
c*O � c sO

Isphe= FAsDð Þ ð3:80Þ

By considering that the current Isphe is given by Eq. (3.66) and that the surface

concentration of species O when diffusion coefficients are equal is

c sO ¼ c*O 1þ
κsphe 1þ 2ffiffi

π
p ϑ
χs

� �
1� c*R=c

*
O

� �
eη

� �
1þ κsphe 1þ 2ffiffi

π
p ϑ
χs

� �� �
1þ eηð Þ

H χsð Þ � 1ð Þ
24 35 ð3:81Þ

it is found that

δqrsphe ¼ rs
1� H χsð Þ

1þ κsphe 1þ 2ffiffi
π
p ϑ
χs

� �
H χsð Þ

24 35 ¼ rs 1� H χsð Þð Þ
1� H χsð Þ þ 2ffiffi

π
p ϑ
χs
F χsð Þ

ð3:82Þ

with H(χs), χs, κsphe, and ϑ given in Eqs. (3.67)–(3.70) and F(χs) by Eq. (3.16).

Note that for reversible processes (k0 !1, χs !1, H ! 0, and F! 1),

δqrsphe ! δ rsphe ¼ 1=
ffiffiffiffiffiffiffiffi
πDt
p þ 1=rs

� ��1
(see Eq. (2.146) of Sect. 2.5.2).

For spherical microelectrodes (rs �
ffiffiffiffiffiffiffiffi
πDt
p

), H χsð Þ ! 0 and Eqs. (3.81) and

(3.82) convert into

c sO ¼
c*O þ κ0sphe, sse 1�αð Þη c*O þ c*R

� �
1þ κ0sphe, sse�αη 1þ eηð Þ ð3:83Þ

δqrsphe ffi rs ð3:84Þ

with κ0sphe;ss given by Eq. (3.75).

The influence of the electrode radius (through rs=
ffiffiffiffiffiffiffiffi
πDt
p

) and kinetics (through

k0
ffiffiffiffiffiffiffiffi
t=D

p
) on the ratio δqrsphe/δ

r
sphe for E� E��○

0
c ¼ �150 mV is summarized in

Fig. 3.12. As mentioned in Sect. 3.2.1.2 and in reference [17], δqrsphe/δ
r
sphe is equal

to 2/π at planar electrodes (i.e., macroelectrodes) for totally irreversible systems

( k0
ffiffiffiffiffiffiffiffi
t=D

p
< 5� 10�3 within 2 % error). For smaller electrodes and/or faster

processes, δqrsphe/δ
r
sphe is greater, approaching a limiting value of 1. This value is

attained for reversible processes or when microelectrodes are used, given that in the

latter situation the thickness of the linear diffusion layer is δqrsphe ffi rs independently

of the reversibility degree.

On the basis of the above, in an analogous way to that discussed for planar

electrodes in Sect. 3.2.1.4, a reversibility criterion can be also defined for spherical
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electrodes relied on R0
sphe, defined as the ratio between the heterogeneous rate

constant and the mass transport coefficient m0 ¼ D=δqrsphe, calculated at the formal

potential:

R0
sphe ¼

k0

m0
¼ k0 δqrsphe, 0

D
ð3:85Þ

with δqrsphe;0 defined by Eq. (3.82) at E ¼ E��○
0

c .

For microelectrodes, the ratio R0
sphe becomes (see Eq. (3.84)):

R0
micro ¼ κ0sphe, ss ¼

k0 rs
DO

ð3:86Þ

which is independent of the potential.

As indicated in Sect. 3.2.1.4, it will be assumed that an irreversible process

corresponds toR0
sphe < 0:05 and a reversible one toR0

sphe > 10. On the basis of these

limits, it is clear that the lower the electrode radius, the higher the value of k0

needed to consider the process reversible is. For example, for D ¼ 10�5 cm2 s�1,
reversible processes are observed in microelectrodes for k0 � 10�4=rs. This means

that for rs ¼ 10�3 cma value of k0 � 0:1 cm s�1 is enough, whereas for rs ¼ 10�5

cm it is necessary for k0 � 10 cm s�1. This behavior is in agreement with the

enhanced irreversibility observed for microelectrodes, as discussed above. The

accuracy of this approach is based on the dependence of the surface concentration

of the oxidized species with the reversibility degree. Under these conditions, at
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the electrode kinetics

(through the dimensionless

parameter k0
ffiffiffiffiffiffiffiffi
t=D

p
) and the

electrode size (through rs=ffiffiffiffiffiffiffiffi
πDt
p

).

E� E��Oc
0 ¼ �150 mV,

α ¼ 0:5, t ¼ 1 s,

D ¼ 10�5cm2 s�1.
Reproduced with

permission of reference [17]
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E ¼ E��○
0

c (and assuming c*R ¼ 0), the surface concentration of species O for a

microsphere or a microhemisphere is easily deduced from Eq. (3.81):

c sO E ¼ E��○
0

c

� �
micro
¼ c*O

1þ κ0sphe, ss
1þ 2κ0sphe, ss

ð3:87Þ

For a totally irreversible process, it should be fulfilled that c sO ffi c*O (see

Eq. (3.81)) whereas for a reversible one c sO ¼ c*O=2 (see Eq. (2.143) of Sect.

2.5.2). These assumptions are satisfied with an error of less than 5 % for the values

of R0
micro considered above.

In reference [18], the authors show the expression for the stationary current

obtained at uniformly accessible electrodes in the case in which species R is not

initially present in the solution (i.e., c*R ¼ 0). In the case of spherical electrodes, it

can be written:

Isphe, ss

Isphe, ssd, c

¼ 1

Θþ 1
κred;sphe;ss

ð3:88Þ

with

Θ ¼ 1þ γ2eη ð3:89Þ
κred;sphe;ss ¼ κ0sphe, sse�αη ð3:90Þ

and η ¼ F E� E��○
0

c

� �
=RT, γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DO=DR

p
, and κ0sphe, ss is given in Eq. (3.75).

If the potential E1/p is considered, where I
sphe, ss=Isphe, ssd, c ¼ 1=p, it is fulfilled that

Θ1= p þ 1=κred;sphe;ss;1=p ¼ p ð3:91Þ

Writing Eq. (3.91) for p¼ 2, 4, and 4/3 (half-wave potential, E1/2, quartile

potential, E1/4, and three-quartile potential, E3/4, respectively), and combining

these expressions yields

Θ1=2 ¼
3þ ε1=4 � 2εα

1=4

ε1=4 � εα1=4
ð3:92Þ

and

εα1=4 1� 3ε3=4
� �þ 3εα3=4 ε1=4 � 3

� �þ 9ε3=4 � ε1=4 ¼ 0 ð3:93Þ

with

ε1= p ¼ exp
F

RT
E1= p � E1=2

� �� �
ð3:94Þ

162 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions

http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2


Solving Eq. (3.93) numerically, Bard and Mirkin presented a table with the

values of α, k0, and ΔE��○0 ¼ E��○
0

c � E1=2 for different pairs of values of E1=4 � E1=2

and E1=2 � E3=4.

3.2.4 Microdiscs. Steady-State Voltammetry

In this section, microdisc electrodes will be discussed since the disc is the most

important geometry for microelectrodes (see Sect. 2.7). Note that discs are not

uniformly accessible electrodes so the mass flux is not the same at different points

of the electrode surface. For non-reversible processes, the applied potential controls

the rate constant but not the surface concentrations, since these are defined by the

local balance of electron transfer rates and mass transport rates at each point of the

surface. This local balance is characteristic of a particular electrode geometry and

will evolve along the voltammetric response. For this reason, it is difficult (if not

impossible) to find analytical rigorous expressions for the current analogous to that

presented above for spherical electrodes. To deal with this complex situation,

different numerical or semi-analytical approaches have been followed [19–

25]. The expression most employed for analyzing stationary responses at disc

microelectrodes was derived by Oldham [20], and takes the following form when

equal diffusion coefficients are assumed:

Imicrodisc, ss ¼ Imicrodisc, ss
d, c

1

1þ eηð Þ 1þ 1
κ0
disc, ss
π

� �
e�αη 1þ eηð Þ

κ0disc, ss
�
2
π

�
e�αη 1þ eηð Þ þ 3

κ0disc, ss
�
4
π

�
e�αη 1þ eηð Þ þ 3π

264
375
�1

ð3:95Þ

with

κ0disc, ss ¼
k0rd
D

π

4
ð3:96Þ

Imicrodisc, ss
d, c ¼ 4FDc*Ord ð3:97Þ

In references [20, 25], Oldham establishes that this empirical solution presents a

maximum error of 0.3 % versus numerical simulations.

In view of the expressions of the stationary current–potential responses of

microspherical and microdisc electrodes (Eqs. (3.74) and (3.95), respectively), it

is clear that an equivalence relationship between disc and hemispherical microelec-

trodes, like that shown for fast charge transfer processes (see Eq. (2.170) of Sect.

2.7), cannot be established in this case.

For discs and bands, it is very difficult to obtain analytical expressions for the

steady-state current, although at first sight the theory for steady-state voltammetry
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appears simple. When the electrochemical processes are kinetically non-reversible,

analytical treatments become very challenging and have hitherto been carried out

on a one-by-one basis for each particular electrode geometry of interest. This is why

numerical procedures are usually employed for the analysis of these responses.

However, an approximate yet accurate alternative general approach can be used.

This approach is based on the fact that when the boundary values of the concen-

trations of electro-active species at the electrode surface and in the bulk are

constant, the solution for the diffusion equation at any electrode geometry can be

written as [26]:

ci q; tð Þ ¼ c*i þ c si � c*i
� �

f q; tð Þ i ¼ O, R ð3:98Þ

where q denotes the required coordinates for the electrode geometry considered and

csi and c�i are the constant values of the concentration of species i at the electrode

surface and at the bulk, respectively. f(q, t) is a continuous function dependent on

the particular electrode geometry and on time, t. Equation (3.98) can be rigorously

applied in the study of a charge transfer process under transient conditions provided

that the charge transfer is reversible and the diffusion coefficients of species O and

R are equal (see Eq. (2.144) of Sect. 2.5.2). When either assumption is not fulfilled

this equation is not strictly valid, since in this case csi depends on time. As the

electrode size diminishes, the electrochemical response of the system tends to

become stationary or quasi-stationary such that both the average surface concen-

trations1 of electro-active species and the average normal surface gradient become

independent of time even for non-reversible electrode processes. Under these

conditions, Eq. (3.98) may be again applicable in an approximate way. This is of

great interest since, on the basis of this reasoning, it is possible to obtain general,

albeit approximate, simple analytical solutions for microelectrodes of different

geometries when the steady state is reached.

So, in the case of microdiscs under steady-state conditions, the following general

expression for the current can be written:

Imicrodisc, ss

FAd

¼ 4

π
D

c*O � ec s
O

� �
rd

¼ kred þ koxð Þec s
O � koxc

* ð3:99Þ

with ec s
O being the average surface concentration, Ad the microdisc area, and

c* ¼ c*O þ c*R.
By operating on Eq. (3.99), it is possible to obtain an expression for the average

surface concentration of oxidized species:

1 Note that surface concentrations under stationary conditions are not uniform on the disc surface,

varying from the center to the edge of the disc. Under these conditions, only the average surface

concentrations are constant. For nonstationary conditions even the average surface concentrations

are time dependent.
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ec s
O ¼ c*O

1þ κ0disc, sse 1�αð Þη

1þ κ0disc, sse�αη 1þ eηð Þ ð3:100Þ

where κ0disc is given in Eq. (3.96).

The general expression for the current can be written in the general way:

Imicrodisc, ss

Imicrodisc, ss
d, c

¼ κ
0
disc, sse

�αη 1� c*R=c
*
O

� �
eη

� �
1þ κ0disc, sse�αη 1þ eηð Þ ð3:101Þ

with Imicrodisc;ss
d;c given by Eq. (3.97) and κ0disc;ss being the dimensionless rate constant

for a microdisc given by Eq. (3.96).

In order to determine the accuracy of the solution proposed in Eq. (3.101) for the

case of a microdisc electrode, in Fig. 3.13 numerical results are compared with this

equation and also with the Oldham Eq. (3.95). Fully reversible, κ0disc, ss ¼ 1000π=4,

quasi-reversible, κ0disc, ss ¼ π=4, and fully irreversible, κ0disc, ss ¼ 0:001π=4, hetero-
geneous kinetics were considered under steady-state behavior. It is seen that, for

fully reversible kinetics, both equations give almost identical results which are in

good agreement with the simulated values. As the kinetics becomes less reversible,

however, the results given by the two equations diverge from each other, with the

simulated result lying between them. The maximum error in the Oldham equation is

0.5 %, and for Eq. (3.101), the maximum error is 3.6 %.

Fig. 3.13 Simulated (white dots) and analytical steady-state voltammograms for the reduction of

a single electro-active species at a microdisc electrode for reversible, quasi-reversible, and

irreversible kinetics calculated from Eqs. (3.101) (solid line) and (3.95) (dashed line).

I=Ilim ¼ Imicrodisc, ss=Imicrodisc, ss
d, c . The values of κ0disc;ss appear on the curves. In all cases, α¼ 0.5,

and DO¼DR. Reproduced with permission of reference [26]
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3.2.5 General Expression for the Stationary Current–
Potential Response at Microelectrodes

Although Eq. (3.101) has been written for microdiscs, it can be applied to any

particular electrode geometry by changing Imicrodisc;ss
d;c and κ0disc;ss for the

corresponding steady-state limiting current and dimensionless rate constant. Thus,

the general expression for the current–potential response at a microelectrode of

geometry G is

IG,ss

IG,ssd, c

¼ κ
0
G, sse

�αη 1� c*R=c
*
O

� �
eη

� �
1þ κ0G, sse�αη 1þ eηð Þ ð3:102Þ

Another situation of interest in which this equation is applicable is that of a

single conductive sphere (or nanoparticle) on an electro-inactive surface (np) since

it can be considered as a model system for the study of the voltammetric behavior of

spherical nanoparticles adhered to a support [26, 27]. In this last case, the expres-

sion for the current–potential curve is identical to Eq. (3.101) by using

Inp, ssd, c ¼ FAnpDc
*
O

ln 2ð Þ
rnp

ð3:103Þ

and

κ0np, ss ¼
k0rnp
Dln 2ð Þ ð3:104Þ

with rnp and Anp being the radius and area of the nanoparticle. For this particular

geometry, Eq. (3.102) has a maximum error of 2.6 % [26].

In Eq. (3.102), G¼ s for microspheres, G¼ d for microdiscs, and G¼ np for

single conductive spheres. Moreover, the expressions of κ0sphe;ss (microspheres) and

κ0disc;ss (microdiscs) are given in Eqs. (3.75) and (3.96), respectively.

Equation (3.102) can be rewritten as [15, 20, 25] (see also Sect. 1.8.4):

1

IG,ss
¼ 1

Ikin
þ 1

IG,ssd, c

þ 1

IGd,N
ð3:105Þ

with

Ikin ¼ AGFc
*
Okred for any geometry ð3:106Þ

Imicrodisc
d,N ¼ 4FDc*Orde

�η

Imicrosphere
d,N ¼ 2πFDc*Orse

�η

Inpd,N ¼ 4πln 2ð ÞFDc*Ornpe�η

9>=>; ð3:107Þ
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and IG;ssd;c given by Eqs. (3.76), (3.97), and (3.103) for microspheres, microdiscs, and

single conductive spheres, respectively.

Equations (3.105)–(3.107) point out the existence of three different polarization

causes. So, Ikin is a kinetically controlled current which is independent of the

diffusion coefficient and of the geometry of the diffusion field, i.e., it is a pure

kinetic current. The other two currents have a diffusive character, and, therefore,

depend on the geometry of the diffusion field. IG;ssd;c corresponds to the maximum

current achieved for very negative potentials and IGd;N is a current controlled by

diffusion and by the applied potential which has no physical meaning since it

exceeds the limiting diffusion current IG;ssd;c when the applied potential is lower

than the formal potential (E < E��○
0

c ). This behavior is indicated by Oldham in the

case of spherical microelectrodes [15, 20, 25].

3.2.6 Comparison Between Marcus–Hush and Butler–
Volmer Kinetics

Up to now, the treatment of non-reversible electrode process has focused on the

usual Butler–Volmer kinetics for which the rate constants take the form (see Sect.

1.7.1):

kBVred ¼ k0e�αη

kBVox ¼ k0e 1�αð Þη

�
ð3:108Þ

where η ¼ F E� E��○
0

c

� �
=RT and α and 1� αð Þ are the transfer coefficients that are

related to the symmetry of the energy barrier, that is, if the transition state is reactant

or product like. As has been indicated in Sect. 1.7.2, together with Butler–Volmer

approach the symmetric Marcus–Hush one is the most employed kinetic schemes.

For this model, the expressions of the heterogeneous rate constants are [28, 29]:

kMH
red ¼ k0e�η=2

I η;Λð Þ
I 0;Λð Þ

kMH
ox ¼ k0eη=2

I η;Λð Þ
I 0;Λð Þ

9>>=>>; ð3:109Þ

where Λ ¼ λF=RT, with λ being the reorganization energy, and I(η, Λ) is an

integral of the form:

I η;Λð Þ ¼
ð1
�1

exp
� ε�ηð Þ2

4Λ

h i
2 cosh ε=2ð Þdε ð3:110Þ
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where ε is an integral variable. The value of the reorganization energy (λ) corre-
sponds to the energy necessary to adjust the configurations of the reactant and

solvent to those of the product state. At the limit Λ!1 Eqs. (3.109) reduce to

(3.108) when α ¼ 1=2, i.e., the effectiveness of Butler–Volmer formalism as an

approximation of the Marcus–Hush one improves as Λ increases.

In this section, both approaches will be compared in chronoamperometry under

limiting current conditions at spherical electrodes and microelectrodes. As is well

known, for spherical electrodes and taking into account the Butler–Volmer model,

the value of the diffusion-controlled reduction current at large overpotentials,

Isphe;BVd;c , is given by the following expression (see Eq. (2.147) of Sect. 2.5.2):

Isphe,BVd, c ¼ FAsDO c
*
O

1ffiffiffiffiffiffiffiffiffiffiffi
πDO t
p þ 1

rs

� �
ð3:111Þ

which is exclusively controlled by the diffusion transport of species O toward

the electrode surface and independent of the electrochemical reversibility of the

process.

When the Marcus–Hush treatment is considered, the reduction rate constant is

not predicted to increase continuously with the applied potential, but rather a

maximum value exists. A simple expression for this value of the rate constant

was given in reference [29]:

kMH
max ¼ k0

ffiffiffiffiffiffiffiffiffiffi
4πΛ
p

exp Λ=4ð Þ
π � π3

4 Λþ4:31ð Þ
2:5 � Λ � 80ð Þ ð3:112Þ

By inserting Eq. (3.112) in (3.66) under limiting current conditions at spherical

electrodes (i.e., E� E��○
0

c ) and taking into account that now ϑ ¼ 1þ KMH
max and

κsphe ¼ KMH
max= 1þ rs=

ffiffiffiffiffiffiffiffi
πDt
p� �

, the following solution is derived:

Isphe,MH
d,c

FAsDOc*O
1

rs

¼

¼ KMH
max

1þ KMH
max

� �
1þ KMH

maxexp

ffiffiffiffiffiffiffiffi
DOt
p
rs

1þ KMH
max

� �� �2

erfc

ffiffiffiffiffiffiffiffi
DOt
p
rs

1þ KMH
max

� �� �" #
ð3:113Þ

where KMH
max ¼ kMH

maxrs=DO. Note that the value of the dimensionless heterogeneous

rate constant KMH
max increases with the standard rate constant k0, the reorganization

energy, and the electrode radius, and it decreases with the diffusion coefficient. This

expression leads to accurate results (error smaller than 1 % with respect to
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Eq. (3.109) for the rate constants) in a wide range of values of the reorganization

energy, 2:5 � Λ � 80.

According to Eq. (3.113), the limiting current depends not only on the diffusion

transport but also on the electrode kinetics, so it is a function of the reorganization

energy and the heterogeneous rate constant. These parameters set the discrepancy in

the value of the limiting current between the two kinetic models such that greater

differences are expected for small k0 and/or λ values, short t values, and small

electrode radius.

Under steady-state conditions, the expressions for the limiting current simplify

to

Isphe, ss,BVd,c ¼ FADO c
*
O

rs
ð3:114Þ

Isphe, ss,MH
d,c ¼ Isphe, ss,BVd, c

KMH
max

1þ KMH
max

� �
ð3:115Þ

The difference between the BV and MH expressions is the term KMH
max=1þ KMH

max,

which tends to unity for large KMH
max values, so both solutions coincide. Otherwise,

this term is smaller than the unity and the stationary current predicted by Marcus–

Hush is less than by Butler–Volmer; the smaller the electrode radius (i.e., the

smaller the KMH
max value), the greater the difference between both solutions.

In Fig. 3.14a, the dimensionless limiting current Iplaned;c (t)/Iplaned;c (tp) (where tp is the

total duration of the potential step) at a planar electrode is plotted versus 1=
ffiffi
t
p

under

the Butler–Volmer (solid line) and Marcus–Hush (dashed lines) treatments for a

fully irreversible process with k0 ¼ 10�4 cm s�1, where the differences between

both models are more apparent according to the above discussion. Regarding the

BV model, a unique curve is predicted independently of the electrode kinetics with

a slope unity and a null intercept. With respect to the MH model, for typical values

of the reorganization energy (λ ¼ 0:5� 1 eV,Λ � 20� 40 [4]), the variation of the

limiting current with time compares well with that predicted by Butler–Volmer

kinetics. On the other hand, for small λ values (Λ < 20) and short times, differences

between the BV and MH results are observed such that the current expected

with the MH model is smaller. In addition, a nonlinear dependence of Iplaned;c (t)/

Iplaned;c (tp) with 1=
ffiffi
t
p

is predicted, and any attempt at linearization would result in

poor correlation coefficient and a slope smaller than unity and non-null

intercept.

The differences between BV and MH also have implications in the concentra-

tion profiles of the electro-active species. Thus, whereas the BV model predicts a

zero surface concentration of the oxidized species at the electrode surface, in

the Marcus–Hush model the surface concentration of species O also depends

on the electrode kinetics such that for small values of the heterogeneous
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rate constant and reorganization energy, this is not zero (see Fig. 3.14b); the

smaller the reorganization energy, the greater the surface concentration of the

reacting species.

(a)
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Ι lim
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Fig. 3.14 Single potential step chronoamperometry at large overpotentials. (a) Variation of

the limiting current with time; (b) concentration profiles at the end of the pulse. Planar electrode.

Ilim tð Þ=Ilim t p
� � ¼ I planed, c tð Þ=I planed, c t p

� �
for the two kinetic models considered. k0 ¼ 10�4 cm=s.

Reproduced with permission of reference [30]. In this Figure λ*¼Λ.
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3.3 Multi-electron Electrochemical Reactions

There are a number of molecules for which two- or more electron transfers

can be detected (i.e., stepwise processes). For molecules capable of giving

two-electron transfer reactions (EE mechanism; see reaction scheme (3.II)), the

addition of the second electron occurs, in the more typical case, with greater

difficulty than the first, so the single pulse voltammogram presents two well-

separated waves because of the difference between the two formal potentials

defined as

ΔE��○
0

c ¼ E��○
0

c, 2 � E��○
0

c, 1 ð3:116Þ

is negative enough (i.e., ΔE��○0c � �200 mV; see below). This behavior is very

common in electrochemical reactions of alkylviologens and metallocenes where the

first electron transfer does not give rise to large changes in the molecule and the

second electron transfer is thermodynamically more difficult than the first [4, 31]. In

any case this behavior leads to a very stable intermediate redox state of the

molecule. Under these conditions, one can speak of a “normal” potential difference

[31, 32], repulsive or negative interactions [4, 33, 34], or high anti-cooperativity

degree between the two charge transfers [35].

For ΔE��○0c � �71:2 mV, one wave is observed in the current–potential curve.

Under these conditions, low anti-cooperativity degree �71:2 � ΔE��○0c < �35:6 mV
� �

[35], cooperativity and attractive (or positive) interactions (ΔE��○0c > �35:6 mV)

[4, 33, 35], and “inverted” potential difference (ΔE��○0c > 0 mV) [31, 32] denomi-

nations are used for an increasingly unstable intermediate (see below). This last

denomination refers to the fact that, after the first transfer, there is an important

change in the molecular structure that leads to a modification of the frontier orbitals

or, alternatively, there are changes in solvation or ion pairing formation. Examples

of the potential inversion are the case of several reversible electrode reductions in

aqueous solutions of ions asCd2þ þ 2e� !Cd, Molybdenum polyoxometalates, and

a number of aromatic species like derivatives of tetraphenylethylene [31, 36]. In this

last case, the structural changes accompanying the inclusion of electrons into the

sterically congested neutral species lead to the LUMO energy of this decreasing. In

the same way the SOMO energy of the radical anion diminishes as it adopts the

structure of the di-anion [37]. This behavior could justify the inversion of the formal

potentials in these species (see Fig. 3.15).

In this section, the electrochemical behavior of an EE mechanism with two

reversible electron transfer reactions will be studied. It will also be shown that for

this electrode process (given in reaction scheme (3.II)) in both cases, i.e., normal

ordering and potential inversion, the disproportionation/comproportionation reac-

tion (3) can take place in the diffusion layer.
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O1 þ e� !O2 E��○
0

c,1 1ð Þ
O2 þ e� !O3 E��○

0
c,2 2ð Þ

2O2 !
k1

k2
O1 þ O3 K ¼ k1

k2
¼ e

FΔE��○0c
RT 3ð Þ

ð3:IIÞ

Reaction Scheme (3.II) E��○
0

c, j with j ¼ 1, 2 are the formal potentials of each

electron transfer step. k1, k2, and K are the rate and equilibrium constants, respec-

tively, of the disproportionation reaction (3).

Reaction (3) has no effect on the electrochemical response when both electron

transfers are reversible, diffusion is the only transport mechanism, the diffusion

coefficients of all species are equal and there are no solution phase reactions in the

vicinity of the electrode surface other than disproportionation/comproportionation

ones (although it cannot be ignored for obtaining the concentration profiles). It will

be shown in this section that this behavior occurs independently of the electro-

chemical technique employed and also of the geometry and size of the electrode

[30, 33]. Under these conditions, experimental methods other than electrochemical

must be used to characterize the kinetics of the disproportionation reaction in

reaction scheme (3.II). Reaction (3) can be detected from electrochemical mea-

surements when diffusion coefficients are not identical (although these effects are

not very significant), when the concentration of supporting electrolyte becomes

small enough to have to consider mass transport by electrical migration, when other

homogeneous chemical reactions take place, or when one or both electron transfers

are quasi-reversible [31, 38, 39].

Fig. 3.15 Orbital energies

for the neutral and radical

anion forms of

tetraphenylethylene, each in

two different structures.

Note the lowering of the

LUMO energy of the

neutral form when it is

converted to the structure of

the radical anion and also

the lowering of the SOMO

energy of the radical anion

as it adopts the structure of

the di-anion. Reproduced

from reference [37] with

permission
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3.3.1 Two-Electron Electrochemical Reactions at Planar
Electrodes

The reduction of a soluble molecule O1 with initial concentration c
*
O1
to the different

two oxidation states O2 and O3, as shown in reaction scheme (3.II), is considered

under the above mentioned conditions in which, as can be seen below, reaction

(3) has no effect on the electrochemical response. Thus, when a constant potential is

applied, the formulation of the problem is as follows [33, 34, 39]:

∂cO1

∂t
¼ DO1

∂2
cO1

∂x2
þ k1c

2
O2
� k2cO1

cO3
að Þ

∂cO2

∂t
¼ DO2

∂2
cO2

∂x2
� 2k1c

2
O2
þ 2k2cO1

cO3
bð Þ

∂cO3

∂t
¼ DO3

∂2
cO3

∂x2
þ k1c

2
O2
� k2cO1

cO3
cð Þ

9>>>>>>=>>>>>>;
ð3:117Þ

t � 0 , x!1
t ¼ 0 , x � 0

�
cO1
¼ c*O1

, cO2
¼ 0, cO3

¼ 0 ð3:118Þ

t > 0 , x ¼ 0

DO1

∂cO1

∂x

� �
x¼0
þ DO2

∂cO2

∂x

� �
x¼0
þ DO3

∂cO3

∂x

� �
x¼0
¼ 0 ð3:119Þ

c sO1
¼ eη1c sO2

ð3:120Þ
c sO2
¼ eη2c sO3

ð3:121Þ
with

η j ¼
F

RT
E� E��○

0
c, j

� �
j ¼ 1, 2 ð3:122Þ

From Eqs. (3.120)–(3.122), it can be deduced that

c sO1

c sO3

¼ eη
2 ð3:123Þ

with

η ¼ F

RT
E� E

��○0
c

� �
ð3:124Þ

and E
��○0
c being the average formal potential defined as

E
��○0
c ¼

E��○
0

c,1 þ E��○
0

c, 2

2
ð3:125Þ
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and the current is given by (see Eq. (3.119)):

IEE,plane

FA
¼ DO1

∂cO1

∂x

� �
x¼0
� DO3

∂cO3

∂x

� �
x¼0

¼ 2DO1

∂cO1

∂x

� �
x¼0
þ DO2

∂cO2

∂x

� �
x¼0

ð3:126Þ

An analytical solution has not been found for this problem, which has, instead,

been solved numerically in a number of papers [40, 41]. However, if the diffusion

coefficients of the different oxidation states O1, O2, and O3 are equal, i.e.,

DO1
¼ DO2

¼ DO3
¼ D, important simplifications can be made as indicated in

[34, 39].

In this situation, the addition of equations (a), (b), and (c) in (3.117) gives rise to

∂Y
∂t
¼ D

∂2
Y

∂x2
ð3:127Þ

t � 0 , x!1
t ¼ 0 , x � 0

�
Y ¼ c*O1

ð3:128Þ

t > 0 , x ¼ 0 :

∂Y
∂x

� �
x¼0
¼ 0 ð3:129Þ

where

Y ¼ cO1
x; tð Þ þ cO2

x; tð Þ þ cO3
x; tð Þ ð3:130Þ

The solution of this simple problem leads to the following solution, indepen-

dently of the electrode geometry (see below):

cO1
x; tð Þ þ cO2

x; tð Þ þ cO3
x; tð Þ ¼ c*O1

ð3:131Þ

By combining Eq. (3.131) for x ¼ 0 with surface conditions (3.120)–(3.121), the

following expressions for the surface concentrations are found:

c sO1
¼ eη1eη2

1þ eη2 þ eη1eη2
c*O1

c sO2
¼ eη2

1þ eη2 þ eη1eη2
c*O1

c sO3
¼ 1

1þ eη2 þ eη1eη2
c*O1

9>>>>>>>=>>>>>>>;
ð3:132Þ
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which can be rewritten in terms of the average formal potential as

c sO1
¼

ffiffiffiffi
K
p

e2ηffiffiffiffi
K
p þ eη þ ffiffiffiffi

K
p

e2η
c*O1

c sO2
¼ eηffiffiffiffi

K
p
þ eηþ ffiffiffiKp e2η

c*O1

c sO3
¼

ffiffiffiffi
K
pffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η
c*O1

9>>>>>>>>>=>>>>>>>>>;
ð3:133Þ

with

K ¼ e
FΔE��○0c

RT ð3:134Þ

It is notable that surface concentrations are only dependent on the applied

potential and independent of the time and of the values of k1 and k2. Therefore,
they are independent of the existence of the disproportionation/comproportionation

in solution (see reaction scheme (3.II)).

The following linear combination is now considered:

W ¼ 2cO1
x; tð Þ þ cO2

x; tð Þ ð3:135Þ

which fulfills

∂W
∂t
¼ D

∂2
W

∂x2
ð3:136Þ

with the boundary conditions

t � 0 , x!1
t ¼ 0 , x � 0

�
W ¼ W* ¼ 2c*O1

ð3:137Þ

t > 0 , x ¼ 0

Ws ¼ 2c sO1
þ c sO2

¼ 2
ffiffiffiffi
K
p

e2η þ eηffiffiffiffi
K
p þ eη þ ffiffiffiffi

K
p

e2η
c*O1

ð3:138Þ

By following an identical procedure to that indicated in Sect. 2.2, it can be easily

demonstrated that the solution of this other simple problem is

W x; tð Þ ¼ W* þ Ws �W*
� �

erfc sð Þ ð3:139Þ

with s given by Eq. (2.8) of Sect. 2.2, such that the current corresponding to

a two-electron electrochemical reaction (EE mechanism) is given by (see Eqs.

(3.126) and (3.135)):
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IEE,plane

FAD
¼ ∂W

∂x

� �
x¼0
¼ W* �Wsffiffiffiffiffiffiffiffi

πDt
p ¼ c*O1ffiffiffiffiffiffiffiffi

πDt
p 2

ffiffiffiffi
K
p þ eηffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η
ð3:140Þ

This equation can be written in a normalized way:

IEE,plane

I planed, c

¼ 2
ffiffiffiffi
K
p þ eηffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η
ð3:141Þ

with I planed, c ¼ FAc*O1

ffiffiffiffiffiffiffiffiffiffi
D=πt

p
(Eq. 3.20), being the diffusion-controlled limiting

current for a single charge transfer.

Equation (3.140) shows that the electrochemical response of an EE mechanism

depends on the difference between the formal potentialsΔE��○0c and is not influenced

by the homogeneous reaction. This behavior is shown in Fig. 3.16 where the current

for an EE mechanism versus E� E��○
0

c, 1 (Fig. 3.16a) and versus E� E
��○0
c (Fig. 3.16b)
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Fig. 3.16 Current for an

EE mechanism vs. E� E��○
0

c,1

(a) and vs. E� E
��○0
c (b)

calculated from Eq. (3.141)

for different values of ΔE��○0c

(shown in the curves). (b)

Includes the response of two

independent E mechanisms

for the values of ΔE��○0c

(in mV) �200, �142.4, and
�71.2 (dashed red curves),

for ΔE��○0c ¼ 0 mV (dashed
green curve), calculated

from Eq. (20) in reference

[42], and also for a simple

di-electronic charge transfer

(dashed blue curve)
calculated from Eq. (2.34)

of Sect. 2.2.2.2. I planed, c ¼ FA

c*O1

ffiffiffiffiffiffiffiffiffiffi
D=πt

p
(Eq. 3.20)
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has been plotted for different values ofΔE��○0c . In all the cases, the current–potential

curves are symmetrical with respect to the average formal potential E
��○0
c as

shown in Fig. 3.16b (i.e., all of them present a symmetry center located at the

point (IEE,plane=I planed,c ¼ 1, E
��○0
c ).

As can be observed in this figure (see also Table 3.1), for

ΔE��○0c � �142:4 mV K ¼ 1=28
� �

, the normal pulse voltagram presents two well-

resolved waves whose half-wave potentials exactly match with the corresponding

formal potentialsE��○
0

c, 1 andE
��○0
c,2 (for �142:4 < ΔE��○0c < �71:2� �

mV, two non-well-

resolved waves are observed, whose half-wave potentials are not coincident

with the corresponding individual formal potentials, Fig. 3.16a. ForΔE��○0c � �71:2
mV K � 1=24

� �
, only one wave is obtained with the half-wave potential being

E1=2
r ¼ E

��○0
c (thus, atΔE��○0c ¼ �71:2 mVthe transition two waves!one wave takes

place).

ForΔE��○c 0 ¼ �35:6 mV (K ¼ 1=22), one wave with identical shape to that of an
E process but with double height is observed. Finally, for very positive values of

ΔE��○c 0 (see curves withΔE
��○
c
0 ¼ 200 mVin Fig. 3.16a and b), the response of the EE

mechanism is indistinguishable from that obtained for a single charge transfer of

two electrons (see dashed blue curve).

The voltammetric response of the EE mechanism can be compared with those

for two independent reversible charge transfers (two reversible independent E

processes or E + E mechanism) with identical bulk concentrations of oxidized

species (c*) by assuming that the diffusion coefficients of all species are equal,

that is,

Table 3.1 Analytical expressions for the roots with physical meaning of the second derivative of

the current of an EE mechanism given by Eq. (3.141) [43]

EI ¼ E
��○0
c þ

RT

F
ln �4

ffiffiffiffi
K
p
þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4K � 1ð Þ 16K � 1ð Þp
2
ffiffiffiffi
K
p

 !

EII ¼ E
��○0
c þ

RT

F
ln �4

ffiffiffiffi
K
p
þ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4K � 1ð Þ 16K � 1ð Þp
2
ffiffiffiffi
K
p

 !
9>>>>=>>>>;K < 1=16ð Þ ΔE��○0c < �71:2 mV

� �
Note that

EI ¼ E��○
0

c,1

EII ¼ E��○
0

c,2

)
for K � 1=256ð Þ ΔE��○0c � �142:4 mV

� �
EI and EII coincide with the reversible half-wave potentials of the individual waves, Er

1=2;1 and Er
1=2;2,

respectively

EIII ¼ E
��○0
c For K

< 1=16ð Þ ΔE��○0c < �71:2 mV
� �

EIII corresponds to the inflexion point between the two waves

� 1=16ð Þ ΔE��○0c � �71:2 mV
� �

EIII corresponds to the half-wave potential of the single wave

8>><>>:
EI ¼ EII ¼ EIII ¼ E

��○0
c for K ¼ 1=16ð Þ ΔE��○0c ¼ �71:2 mV

� �
Transition 2 waves—1 wave
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O1 þ e� !O2 E��○
0

c, 1 1ð Þ
O3 þ e� !O4 E��○

0
c, 2 2ð Þ

O1 þ O4 !O2 þ O3 3ð Þ
ð3:IIIÞ

with cO1
þ cO2

¼ cO3
þ cO4

¼ c*. Under these conditions, it is fulfilled that

E ¼ E��○
0

c, 1 ) c sO1
¼ c sO2

¼ c*=2

E ¼ E��○
0

c, 2 ) c sO3
¼ c sO4

¼ c*=2
ð3:142Þ

Conditions (3.142) are independent of the difference between the formal poten-

tials of both processes 1 and 2,ΔE��○0c ¼ E��○
0

c,2 � E��○
0

c,1. In Fig. 3.16b, it can be seen the

coincidence between the responses of EE and E +E mechanisms for

ΔE��○c 0 < �71:2 mV (two waves in the voltagram; see dashed red lines). The EE

mechanism with ΔE��○c 0 ¼ �35:6 mV behaves as two independent E mechanisms

with ΔE��○c 0 ¼ 0 mV (see dashed green curve in Fig. 3.16b).

In order to clarify the influence of ΔE��○c 0 on the electrochemical response of an

EE mechanism, in Fig. 3.17 the dependence of the normalized surface concentra-

tions of species O1, O2, and O3 ( c sOi
=c*O1

i¼ 1, 2, 3) with E� E
��○
c
0 given by

Eq. (3.133) has been plotted for the same values of ΔE��○c 0 appearing in Fig. 3.16.
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Fig. 3.17 Variation of the normalized surface concentrations c sO1
=c*O1

(solid lines), c sO2
=c*O1

(dashed-dotted lines), and c sO3
=c*O1

(dotted lines) corresponding to a reversible EE mechanism,

withE� E
��○0
c ðmVÞ (Eq. 3.133) for different values ofΔE��○0c (shown in the Figure).PE��○0c,1

,PE��○0c,2
, and

P
E
��○0
c

denote the cross points. Reproduced with permission of [43]
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In this figure, three characteristic cross points for the surface concentrations can

be observed: PE��○0c,1
(c sO1
¼ c sO2

, Eq. (3.120)), PE��○0c,2
(c sO2
¼ c sO3

, Eq. (3.121)), and P
E
��○
c
0

(c sO1
¼ c sO3

, Eq. (3.123)), located respectively (see dotted vertical lines) at E ¼ E��○
0

c, 1

E� E
��○0
c ¼ �ΔE��○

0
c =2

� �
,E ¼ E��○

0
c,2 E� E

��○0
c ¼ ΔE��○0c =2

� �
, andE ¼ E

��○0
c , regardless

of the difference between the formal potentials ΔE��○0c . Note that when ΔE��○0c

increases from �200 mV (Fig. 3.17a) to 200 mV (Fig. 3.17f), the values of the

normalized surface concentrations at PE��○0c,1
and PE��○0c,2

vary between 0.5 (i.e., as

corresponds to a simple E mechanism) and 0, and contrarily, between 0 and 0.5 at

P
E
��○0
c

.

Thus, the behavior of the IEE,plane=I planed, c

� �
� E� E

��○0
c

� �
curves in Fig. 3.16 can

be understood in terms of the surface concentrations, taking into account that the

values of c sO2
=c*O1

� �
E
��○0
c

and c sO1
þ c sO3

� �
=c*O1

� �
E
��○0
c

are indicative of the percentage

of character E1e�E1e� and of character E2e� , respectively, of the EE mechanism

[43]. Indeed, for ΔE��○0c � �200 mV, c sO2
=c*O1

� �
E
��○0
c

ffi 1 (see Fig. 3.17a), and this

limiting situation corresponds to a genuine 100 % E1e�E1e� mechanism with a

totally stable intermediate (0 % character E2e� ), i.e., two totally separate waves

appear in the voltagram with the half-wave potential of each individual wave being

coincident with the formal potential of each process (Fig. 3.16a). For ΔE��○0c ¼ �
142:4 mV (Fig. 3.17b), a less stable intermediate leads to the appearance of two

non-totally separate waves in the response (89 % character E1e�E1e� and 11 %

character E2e� ), although the half-wave potential of each individual wave remains

coincident with the formal potential of each process. For ΔE��○0c ¼ �71:2 mV

(Fig. 3.17c), it is fulfilled that c sO2
=c*O1

� �
E
��○0
c

¼ 0:666 (66.7 % character E1e�E1e� ),

i.e., the transition two waves–one wave in the voltagram takes place, but the

intermediate O2 is still stable.

Note that for ΔE��○0c � �71:2 mV, c sOi
=c*O1

� �
ffi 0:5 with i¼ 1, 2, at the cross

point PE��○0c,1
and i ¼ 2, 3 at PE��○0c,2

, and, therefore, the EE mechanism practically

behaves like the E +E mechanism (see dashed red lines in Fig. 3.16b).

The value ΔE��○0c ¼ �35:6 mV has the particular interest of corresponding to a

50 % of character E1e�E1e� and E2e� . At the average formal potential E
��○0
c , the

intermediate species reaches half of its maximum value and, hence, at this ΔE��○0c

species O2 may or may not gain a second electron (and as a direct consequence, for

higher ΔE��○0c it will be considered that the intermediate species is no more stable at

the average formal potential). So, this ΔE��○0c could be considered as the boundary

between anti-cooperative and cooperative behavior of both electron transfer reac-

tions [35, 43]. Indeed, it is well known that the voltamogram of an EE mechanism

under these conditions is identical to that of an E mechanism multiplied by a factor
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2 (as the case of two independent monoelectronic charge transfers with identical

formal potentials, ΔE��○0c ¼ 0 ; see dashed green curves in Fig. 3.16b). For

ΔE��○0c ¼ 0 mV (Fig. 3.17e), PE��○0c,1
, PE��○0c,2

, and P
E
��○0
c

become coincident and

c sO2
=c*O1

� �
E
��○0
c

¼ 0:333 (66.7 % character E2e� ). For ΔE��○
0

c � 200 mV (Fig. 3.17f),

the intermediate practically disappears and c sO1
=c*O1

� �
E
��○0
c

¼ c sO3
=c*O1

� �
E
��○0
c

¼ 0:5.

Thus, the typical behavior of surface concentrations for a two-electron E mecha-

nism is observed (100 % character E2e� ), and hence the corresponding typical

voltagram is obtained (see dashed blue curve in Fig. 3.16b).

In line with the above discussion, the term “effective electron number”, neff,
defined as

neff ¼ 1þ% character E2e�=100ð Þ ¼ 2 c sO2
=c*O1

� �
E
��○0
c

ð3:143Þ

is introduced. Thus, neff ¼ 1 for ΔE��○0c � �200 mV, neff ¼ 1:333 for

ΔE��○0c ¼ �71:2 mV, neff ¼ 1:5 for ΔE��○0c ¼ �35:6 mV, and neff ¼ 2 for ΔE��○0c

� 200 mV [43].

Table 3.1 shows the analytical expressions for the roots with physical meaning

of the second derivative of the current expression given by Eq. (3.141) with respect

to the potential (EI, EII, and EIII), which correspond to the inflexion points of the

current–potential curves shown in Fig. 3.16, given as a function of K.

3.3.2 Two-Electron Electrochemical Reactions at Different
Electrode Geometries

When nonplanar geometries are considered for the reaction scheme (3.II), the

following diffusive-kinetic differential equations must be solved:

∂cO1

∂t
¼ DO1

∇2cO1
þ k1c

2
O2
� k2cO1

cO3
að Þ

∂cO2

∂t
¼ DO2

∇2cO2
� 2k1c

2
O2
þ 2k2cO1

cO3
bð Þ

∂cO3

∂t
¼ DO3

∇2cO3
þ k1c

2
O2
� k2cO1

cO3
cð Þ

9>>>>>=>>>>>;
ð3:144Þ

where∇2 is the Laplacian operator for the geometry considered given in Table 2.2

of Sect. 2.6. If only species O1 is initially present with a concentration c*O1
, the

boundary value problem is

t ¼ 0, q � qs

t > 0, q!1
�

cO1
¼ c*O1

; cO2
¼ cO3

¼ 0 ð3:145Þ
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t > 0, q ¼ qs :

DO1

∂cO1
∂qN

� �
qs
þ DO2

∂cO2
∂qN

� �
qs
þ DO3

∂cO3
∂qN

� �
qs
¼ 0 ð3:146Þ

c sO1
¼ eη1c sO2

c sO2
¼ eη2c sO3

�
ð3:147Þ

where ηj ( j¼ 1, 2) is given in Eq. (3.122), qs is the value of the coordinates at the
electrode surface, and qN is the normal coordinate value at the electrode surface.

By assuming that the diffusion coefficients of the different oxidation states O1,

O2, and O3 are equal, i.e.,DO1
¼ DO2

¼ DO3
¼ D, functionY ¼ cO1

q; tð Þ þ cO2
q; tð Þ

þcO3
q; tð Þ can be used to solve the above problem and the general solution given by

Eq. (3.131) remains valid, independently of the electrode geometry. By combining

Eq. (3.131) with the nernstian conditions (3.147), identical expressions to those

given by Eqs. (3.132) or (3.133) are obtained for the surface concentrations. Under

these conditions, the current can be written, regardless of the electrode geometry

(see Eq. (3.126)) as

IEE,G

FAGD
¼ ∂W

∂qN

� �
qs

ð3:148Þ

where

W ¼ 2cO1
q; tð Þ þ cO2

q; tð Þ ð3:149Þ

and AG is the electrode area in the corresponding geometry. The current can be

expressed as a product of two functions which depend on the potential and on time

and electrode geometry, respectively, as occurs for a reversible E process (see

Eq. (2.156) of Sect. 2.6) [44–46]:

IEE,G ¼ FAGD fG t; qGð Þ W* �Ws
� � ð3:150Þ

with fG(t, qG) given in Table 2.3 of Sect. 2.6 for each geometry and (see Eq. 3.140)

W* �Ws ¼ c*O1

2
ffiffiffiffi
K
p þ eηffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η
ð3:151Þ

Equation (3.150) can be also written in a dimensionless form as

IEE,G

IGd,c
¼ W* �Ws

c*O1

ð3:152Þ

with IGd;c being the diffusion-controlled limiting current for the geometry considered

given by
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IGd,c ¼ FAGDc
*
O1

fG t; qGð Þ ð3:153Þ

Note that function fG(t, qG) is identical to that appearing in the case of an E

mechanism. Moreover, Eqs. (3.151) and (3.152) are identical to that corresponding

to a planar electrode (Eq. 3.141).

In the case of non-uniformly accessible electrodes, the currents given by

Eqs. (3.150) or (3.153) are an average current [46].

3.3.2.1 Microelectrodes. Steady-State Voltammetry

The current for a reversible EE mechanism can achieve a stationary feature when

microelectrodes are used since in these conditions the function fG(t, qG) that appears
in Eq. (3.150) transforms into fG,micro given in Table 2.3 of Sect. 2.6. For micro-

electrode geometries for which fG,micro is constant, the current–potential responses

have a stationary character, which for microdiscs and microspheres can be written

as [16]:

IEE,microdisc, ss ¼ FAdDc*O1

4

π

1

rd

2
ffiffiffiffi
K
p
þ eηffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η

IEE,microsphere, ss ¼ FAsDc*O1

1

rs

2
ffiffiffiffi
K
p
þ eηffiffiffiffi

K
p þ eη þ ffiffiffiffi

K
p

e2η

ð3:154Þ

In Fig. 3.18, it is shown the response of an EE mechanism at microdiscs and

microspheres for different values of ΔE��○0c .

Obviously the equivalence relationship for microspheres and microdiscs

established for a single charge transfer process (see Eq. (2.170) of Sect. 2.7) also

holds in this case (Fig. 3.18).
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Fig. 3.18 Current density–

potential curves for

two-electron transfer

processes at disc (solid line)
and spherical (dashed line)
microelectrodes of the same

radius. The values of the

difference between the

formal potentials of the

redox centers, ΔE��○0c (in V),

are indicated on the curves.

These curves have been

calculated with Eq. (3.154)

by assuming

rG ¼ rd ¼ rs ¼ 5 μm,

t ¼ 1 s. D ¼ 10�5 cm2 s�1.
T¼ 298 K
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For microelectrodes like microbands or microcylinders for which fG,micro is

not constant, only pseudo-stationary behavior can be achieved.

3.3.3 Non-reversible Two-Electron Electrochemical
Reactions

The treatment of non-reversible two-electron electrochemical reactions is much

more complex than the reversible one. The general scheme of the process is

O1 þ e� !O2 E��○c, 1
0, k01, α1 1ð Þ

O2 þ e� !O3 E��○c, 2
0, k02, α2 2ð Þ

2O2 !
k1

k2
O1 þ O3 Keq ¼ k1

k2
¼ e

FΔE��○0c
RT 3ð Þ

ð3:IVÞ

with k0j and αj, j ¼ 1, 2, being the rate constants and charge transfer coefficients of

the step j.
Even in the simplest situation for which α1 ¼ α2 ¼ 0:5, the global behavior of

the response depends upon three parameters, the difference between the formal

potentials ΔE��○0c , and the rate constants of both steps k01 and k02. Thus, the observed
current–potential curves are the result of the interaction of thermodynamic and

kinetic effects so the appearance of two or one waves would not be due solely to

thermodynamic stability or instability of the intermediate species but also to a

kinetic stabilization or destabilization of the same [4, 31]. This can be seen in

Fig. 3.19 in which the current–potential curves of an EE process with ΔE��○0c ¼ 0

mV taking place at a planar electrode with a reversible first step

κ0plane, 1 ¼ k01
ffiffiffiffiffiffiffiffi
t=D

p ¼ 1
� �

and a second step with different reversibility degree
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Fig. 3.19 Current–

potential responses for an

EE mechanism at a plane

electrode calculated by

following the numerical

procedure described in

reference [47]

ΔE��○0c ¼ 0 mV.

κ0plane,1 ¼ k01
ffiffiffiffiffiffiffiffi
t=D

p ¼ 1 and

α1 ¼ α2 ¼ 0:5. The values

of κ0plane,2 ¼ k02
ffiffiffiffiffiffiffiffi
t=D

p
appear

on the curves
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have been plotted. The voltammogram for a second reversible step shows a single

wave in line with results shown in Fig. 3.16. As the second charge transfer becomes

more irreversible, the increasing kinetic stabilization of the intermediate leads to

the appearance of a second wave that shifts toward more negative potentials as

κ0plane,2 ¼ k02
ffiffiffiffiffiffiffiffi
t=D

p
decreases.

Moreover, the current–potential curves are affected by the disproportionation

reaction; therefore, other variables (the rate constant for the disproportionation

reaction) must be taken into account. Since experimental results for many interesting

systems show clear evidence of slow kinetics, ad hoc simulation procedures have

typically been used for the analysis of the resulting current–potential curves [31, 38,

41, 48]. As an example, in reference [38], it is reported that a clear compropor-

tionation influence is observed for an EE mechanism with normal ordering of

potentials and an irreversible second charge transfer step. In this case, the second

wave is clearly asymmetric, showing a sharp rise near its base. This result was

observed experimentally for the reduction of 7,7,8,8-tetracyanoquinodimethane in

acetonitrile at platinum electrodes (see Fig. 3.20). In order to fit the experimental

results, a comproportionation rate constant kcomp ¼ 108 M�1 s�1 should be

introduced.

References [40, 41] report the chronoamperometric analysis of the response of an

EE mechanism with non-reversible charge transfer processes including the consid-

eration of a fast comproportionation step [40], indicating that strong differences in

the diffusion coefficients of the different species are needed to cause a clear

influence of the comproportionation process in the electrochemical response.

Fig. 3.20 Normal Pulse Voltammograms for the reduction of 6:9� 10�4 M tetracyanoquino-

dimethane (TCNQ) in acetonitrile with 0.10 NBu4NPF6 at 293 K (platinum disc electrode with

diameter 0.31 cm). Pulse duration: 0.050 s. Lines are simulations with the following input

parameters: E��○c,1
0 ¼ �0:107 V, ΔE��○0c ¼ �0:551 V, k01 ¼ 104 cm s�1 , α1 ¼ 0:5, α2 ¼ 0:35,

k02 ¼ 6:5� 10�3 cm s�1 , diffusion coefficients of neutral, anion, and di-anion are: 1:44� 10�5,
1:35� 10�5, and 9:1� 10�6 cm2 s�1 , respectively. Reproduced from reference [38] with

permission

184 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions



3.3.4 General Solution for Multi-electron Electrochemical
Reactions

In this section, the results corresponding to an EE process are generalized for a

multi-electron electrochemical reaction of k steps (multi-E process) in agreement

with the reaction scheme:

step formal potential

1 O1 þ e� !O2 E��○c,1
0

2 O2 þ e� !O3 E��○c,2
0

⋮ ⋮
j O j þ e� !O jþ1 E��○c, j

0

⋮ ⋮
k Ok þ e� !Okþ1 E��○c,k

0

ð3:VÞ

where E��○c, j
0 ( j ¼ 1, 2, . . . , k) is the formal potential of each step. The above general

reaction scheme must be considered together with k � 1ð Þ homogeneous chemical

reactions of disproportionation, coupled to the k heterogeneous steps of the elec-

trochemical process given in scheme (3.V):2

reaction

1 2O2 !
k1

k�1
O1 þ O3

2 2O3 !
k2

k�2
O2 þ O4

⋮ ⋮

j 2O jþ1 !
k j

k� j

O j þ O jþ2

⋮ ⋮

k � 1 2Ok  !
kk�1

k� k�1ð Þ
Ok�1 þ Okþ1

ð3:VIÞ

whose equilibrium constants, Kj j ¼ 1, 2, . . . , k � 1ð Þ, are determined by the

difference between the formal potential of the redox couples implied in each

chemical reaction:

K j ¼
ceq,O j

ceq,O jþ2

c2eq,O jþ1

¼ exp
E��○c, jþ1

0 � E��○c, j
0

� �
RT

0@ 1A
¼ exp

ΔE��○c, j
0

RT

 !
j ¼ 1, 2, . . . , k � 1ð Þ ð3:155Þ

2 For sake of simplicity, only homogeneous, independent chemical reactions are considered in

scheme (3.VI)
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In the vicinity of the electrode, the homogeneous chemical reactions inevitably

take place since, when the electrode process given in reaction scheme (3.V) occurs,

all species Oi i ¼ 1, 2, . . . , k þ 1ð Þ are being generated at the electrode surface.

By considering the chemical reactions of reaction scheme (3.VI), the differential

equation system that describes the mass transport of the k þ 1ð Þ species involved is

∂cO1

∂t
¼DO1

∇2cO1
�k�1cO1

cO3
þk1c2O2

∂cO2

∂t
¼DO2

∇2cO2
þ2k�1cO1

cO3
�2k1c2O2

�k�2cO2
cO4
þk2c2O3

⋮
∂cOi

∂t
¼DOi

∇2cOi
þ2k� i�1ð ÞcOi�1cOiþ1�2k i�1ð Þc2Oi

�k� i�2ð ÞcOi�2cOi
þk i�2ð Þc2Oi�1

�k�icOi
cOiþ2þkic2iþ1

⋮
∂cOk

∂t
¼DOk

∇2cOk
þ2k� k�1ð ÞcOk�1cOkþ1�2k k�1ð Þc2Ok

�k� k�2ð ÞcOk�2cOk
þk k�2ð Þc2Ok�1

∂cOkþ1

∂t
¼DOk

∇2cOkþ1�k� k�1ð ÞcOk�1cOkþ1þk k�1ð Þc2Ok

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;
ð3:156Þ

where cOi
i¼1,2,...,kþ1ð Þ are the concentration of each species Oi, and kj and k� j

j¼1,2,...,k�1ð Þ the rate constants corresponding to the jth chemical step in reaction

scheme (3.VI). The expressions for the laplacian operator ∇2 corresponding to the

most usual electrode geometries are given in Table 2.2 of Sect. 2.6.

As discussed in Sects. 3.3.1 and 3.3.2, the presence of disproportionation

reactions has no effect on the current when all the heterogeneous steps are revers-

ible and the diffusion coefficients of each species Oi are assumed to be equal. To

test this, it should be first considered that the initial and limiting conditions for the

stepwise process given in reaction scheme (3.V) are

t ¼ 0, q � qs

t > 0, q!1
�

cO1
¼ c*O1

, cOi
¼ 0 i ¼ 2, . . . , k þ 1ð Þ ð3:157Þ

t > 0, q ¼ qs

Xkþ1
i¼1

∂cOi
q; tð Þ

∂qN

� �
qs
¼ 0 ð3:158Þ

c sOi
¼ e

F
RT E�E��○0c, ið Þc sOiþ1 i ¼ 1, 2, . . . , kð Þ ð3:159Þ

where qs denotes the value of the coordinates at the electrode surface and qN is the

normal coordinate value at the electrode surface.
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The expression of the total current is the sum of the partial currents

corresponding to the different steps is:

Imulti-E,G ¼
Xk
j¼1

Imulti-E,G
j ð3:160Þ

The partial currents Imulti - E;G
j are calculated by taking into account that for

reaction scheme (3.V) the following relationships hold:

Imulti-E,G
1

FAG

¼ D
∂cO1
∂qN

� �
qs

Imulti-E,G
2 � Imulti-E,G

1

FAG

¼ D
∂cO2

∂qN

� �
qs

⋮
Imulti-E,G
k � Imulti-E,G

k�1
FAG

¼ D
∂cOk

∂qN

� �
qs

Imulti-E,G
k

FAG

¼ �D ∂cOkþ1

∂qN

� �
qs

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

ð3:161Þ

From Eq. (3.161), it is deduced that for the jth step the partial current can be

written as

Imulti-E,G
j ¼ FAGD

Xj

i¼1

∂cOi

∂qN

� �
qs

ð3:162Þ

and by combining Eqs. (3.160) and (3.162), the following expression for the current

is deduced:

Imulti-E,G ¼ FAGD
Xk
j¼1

k � jþ 1ð Þ ∂cO j

∂qN

� �
qs

ð3:163Þ

Equations (3.158) and (3.163) suggest the inclusion of the linear combinations:

Y q; tð Þ ¼
Xkþ1
j¼1

cO j
q; tð Þ ð3:164Þ

W q; tð Þ ¼
Xk
j¼1

k � jþ 1ð ÞcO j
q; tð Þ ð3:165Þ
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for which the differential equations that described the mass transport become

∂Y q; tð Þ
∂t

¼ D∇2Y q; tð Þ
∂W q; tð Þ

∂t
¼ D∇2W q; tð Þ

9>=>; ð3:166Þ

From Eqs. (3.157), (3.158), and (3.166), it can be easily demonstrated that

Y q; tð Þ ¼ c*O1
8 q, t ð3:167Þ

The current can be written as

Imulti-E,G ¼ FAGD
∂W q; tð Þ
∂qN

� �
qs

ð3:168Þ

and it is not sensitive to the presence of coupled reactions to the charge transfer

processes under the above conditions.

The surface concentrations of species Oi with i ¼ 1, 2, . . . , k þ 1ð Þ are

obtained by combining Eqs. (3.159) and (3.167) [42]:

csOi
¼ c*O1

Yk
h¼i

eηh

1þ
Xk
m¼1

Yk
h¼m

eηh

i ¼ 1, 2, . . . , k

c sOkþ1 ¼ c*O1

1

1þ
Xk
m¼1

Yk
h¼m

eηh

9>>>>>>>>>>>=>>>>>>>>>>>;
ð3:169Þ

with

η j ¼
F

RT
E� E��○c, j

0
� �

j ¼ 1, 2, . . . , k ð3:170Þ

As in the case of an EE process, the total current for a molecule capable of

producing k electron transfers (reaction scheme (3.V)) can be expressed as a

product of two functions which depend on the potential and on time and electrode

geometry, respectively:

Imulti-E,G ¼ FAGDc*O1
fG t; qGð Þ W* �Ws

� � ð3:171Þ

with
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W* �Ws ¼ c*O1

k þ
Xk�1
s¼1

s
Yk

m¼sþ1
eηm

 !

1þ
Xk
s¼1

Yk
m¼s

eηm

ð3:172Þ

and fG(t, qG) given in Table 2.3 of Sect. 2.6 with qG being the characteristic

dimension of the electrode considered.

3.4 First-Order Chemical Reactions Coupled to Charge

Transfer Processes

In the previous sections, only fast or slow charge transfer reactions (one-electron or

multi-electron) have been considered. As occurs with a chemical reaction, an

electrochemical reaction can be complicated by the coupling of homogeneous

chemical reactions where one or both electro-active species participate. In this

section, only some of the more important electrode reaction schemes are studied.

Of course, many more reaction schemes than those we discuss below could be

considered by adding chemical homogeneous reactions or varying the reversibility

degree of the electron transfer reaction, but in this book only the more usual

reaction schemes will be treated in order to discuss the elucidation of the different

mechanisms by using electrochemical methods.

Sometimes the oxidized species can exist in two forms in chemical equilibrium,

with one of them electro-inactive in the potential range where the electrochemical

process occurs. This type of reaction pathway is known as a CE mechanism because

a homogeneous chemical reaction (C) precedes the heterogeneous electrochemical

process (E). If the chemical step is of first or pseudo-first order, the process can be

expressed by the reaction scheme:

B !
k1

k2
Cþ e� ! D ð3:VIIÞ

Examples of these reactions are the reduction of the non-hydrated form of

formaldehyde or that of acetic acid in aqueous solution at a mercury electrode [9]

as well as the reduction of many inorganic ions in their complexed forms

[49]. Among organic species there are also many examples of this reaction scheme

like the reduction of benzoic acid at room temperature ionic liquids [50] or that of

the oxidation of ferrocenecarboxylate in the presence of a β-cyclodextrin host (see

Fig. 3.21) [51].

Sometimes the electrochemical reaction product is not stable and it reacts with

any species present in the solution to produce a non-electro-active species at the
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potential range where the electrochemical process occurs. This reaction scheme

(pseudo-first-order EC mechanism) is

Aþ e� ! B  !
k1

k2
C ð3:VIIIÞ

Examples of these processes are the oxidation of p-aminophenol at platinum

electrodes in aqueous acidic solution, the reduction of dopamine at glassy carbon

electrodes or that of the cation 2,6-diphenylpyrylium in acetonitrile [9]. Another

interesting example arises from the facilitated ion transfer of amines from aqueous

to organic media in the presence of crown ethers like the dibenzo-18-crown-6 [52,

53] (see Fig. 3.22).

In a catalytic process, the product of an electrochemical reaction B reduces an

electro-inactive species Z and is regenerated to its oxidized state C, in line with the

following reaction scheme:

Cþ e� ! B

Bþ Z !
k
0
1

k
0
2

Cþ P
ð3:IXaÞ

Fig. 3.21 CE mechanism

for the oxidation of

ferrocenecarboxylate in the

presence of a β-cyclodextrin
host. Reproduced with

permission of reference [51]

Fig. 3.22 Interaction

between DB18C6 and alkyl-

ammonium cations [52]
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where species Z is present in a large excess so the reaction is of pseudo-first order,

with the pseudo-first-order rate constants being k1 ¼ k
0
1c

*
Z and k2 ¼ k

0
2c

*
P. It can be

considered that the redox couple C/B is a catalyst and Z is the species that is

catalytically reduced. In this reaction scheme, the direct reduction of species Z at

the electrode surface occurs with great difficulty, and is facilitated through its

reaction with species B. In most cases, homogeneous reaction in scheme (IXa) is

irreversible and can be written as

Cþ e� ! B

Bþ Z !k
0
1
Cþ P

ð3:IXbÞ

In this case, the above process is called EC’ mechanism. Examples of this

reaction scheme are the reduction of Ti(IV) in the presence of Hydroxylamine,

the reduction of Fe3+ in the presence of H2O2 (Fenton reaction) [2, 4, 6], or the

mediated reduction of oxygen via the reduced form of methyl viologen at a boron

doped diamond electrode [54].

Multistep electrode reactions can also be complicated by homogeneous chemical

reactions. The most studied case is that the product of a first electron transfer

undergoes a homogeneous chemical transformation with an electro-inactive species

present in a large excess; under these conditions, the reaction scheme is that

corresponding to a pseudo-first-order ECE mechanism given by

O1 þ e� ! R1 E��Oc,1
0

R1  !
k1

k2
O2

O2 þ e� ! R2 E��Oc,2
0

ð3:XÞ

Examples of this mechanism are the reduction of o-nitrophenol, p-nitrosophenol,
uranium complexes, and tocopherols, among many others [55], and also proteins

containing two redox sites including the possibility of an intramolecular electron

transfer [35].

In single step voltammetry, the existence of chemical reactions coupled to the

charge transfer can affect the half-wave potential E1/2 and the limiting current Il.
For an in-depth characterization of these processes, we will study them more

extensively under planar diffusion and, then, under spherical diffusion and so

their characteristic steady state current potential curves. These are applicable to

any electrochemical technique as previously discussed (see Sect. 2.7). In order to

distinguish the different behavior of catalytic, CE, and EC mechanisms (the ECE

process will be analyzed later), the boundary conditions of the three processes will

be given first in a comparative way to facilitate the understanding of their similar-

ities and differences, and then they will be analyzed and solved one by one. The

first-order catalytic mechanism will be described first, because its particular reac-

tion scheme makes it easier to study.
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Boundary Value Problem for Catalytic, CE, and EC Mechanisms

If we consider a planar electrode and assume that the chemical reaction in reaction

schemes (3.VII)–(3.IXa, 3.IXb) is of first or pseudo-first order, the differential

equation systems that should be solved together with the initial and surface con-

centrations in the three reaction schemes considered are given in Table 3.2.

Table 3.2 Boundary value problem corresponding to Catalytic, CE, and EC mechanisms

Mass transport differential equations

Catalytic CE EC

δ̂pcB¼�k1cBþk2cC
δ̂pcC¼k1cB�k2cC

�
(3.173a)

δ̂ pcB ¼ �k1cB þ k2cC
δ̂ pcC ¼ k1cB � k2cC
δ̂ pcD ¼ 0

9=;
(3.173b)

δ̂ pcA ¼ 0

δ̂ pcB ¼ �k1cB þ k2cC
δ̂ pcC ¼ k1cB � k2cC

9=;
(3.173c)

Initial and boundary conditions

t ¼ 0, x � 0

t > 0, x!1
�

cB ¼ c*B

cC ¼ c*C; K ¼ c*B
c*C

9=;
(3.174a)

cC ¼ c*C

cB ¼ c*B; K ¼ c*B
c*C

cD ¼ 0

9>>=>>; (3.174b)

cA ¼ c*A
cB ¼ cC ¼ 0

�
(3.174c)

t > 0, x ¼ 0,

DC
∂cC
∂x

� �
x¼0
¼ �DB

∂cB
∂x

� �
x¼0

(3.175a)

c sC ¼ eη c sB (3.176a)

DC
∂cC
∂x

� �
x¼0
¼ �DD

∂cD
∂x

� �
x¼0

(3.175b)

DB
∂cB
∂x

� �
x¼0
¼ 0 (3.176b)

c sC ¼ eη c sD (3.177b)

DA
∂cA
∂x

� �
x¼0
¼ �DB

∂cB
∂x

� �
x¼0

(3.175c)

DC
∂cC
∂x

� �
x¼0
¼ 0 (3.176c)

c sA ¼ eη c sB (3.177c)

with η ¼ F E� E��○
0

c

� �
=RT and E��○

0
c being the formal potential of the electro-active couple on each

of the three mechanisms. Note that conditions (3.176b) and (3.176c) are related with the fact that

species B and C are electro-inactive in the CE and EC mechanisms, respectively. K in

Eqs. (3.174a) and (3.174b) is the inverse of the equilibrium constant, Keq

In Eqs. (3.173a)–(3.173c), δ̂ p is the mass transport operator corresponding to

linear diffusion given by

δ̂ p ¼ ∂
∂t
� Di

∂2

∂x2
with i ¼ A, B, C, or Dð Þ ð3:178Þ

In order to ease the resolution of these problems, it is useful to assume that all

diffusion coefficients are equal and make the following variable changes:

ζ ¼ cB þ cC ð3:179Þ
ϕ ¼ cB � KcCð Þeχ ð3:180Þ
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with

χ ¼ k1 þ k2ð Þt ð3:181Þ

By inserting Eqs. (3.179) and (3.180) into (3.173a)–(3.173c), it is fulfilled that

δ̂ pζ ¼ 0 ð3:182Þ
δ̂ pϕ ¼ 0 ð3:183Þ

and

cC ¼ ζ � ϕe
�χ

1þ K
ð3:184Þ

cB ¼ Kζ þ ϕe�χ
1þ K

ð3:185Þ

Now we will insert Eqs. (3.179)–(3.183) in the boundary value problem of the

three reaction schemes considered. The first-order catalytic mechanism will be

considered first.

3.4.1 Catalytic Mechanism

By inserting Eq. (3.179) into Eq. (3.174a)–(3.175a) and assuming that DB ¼ DC

¼ D it is obtained that

t ¼ 0, x � 0

t > 0, x!1
�

ζ ¼ ζ* ¼ c*C 1þ Kð Þ,K ¼ c*B
c*C
¼ 1

Keq

ð3:186aÞ

t > 0, x ¼ 0;

∂ζ
∂x

� �
x¼0
¼ 0 ð3:187aÞ

Equation (3.182) with conditions (3.186a)–(3.187a) implies that

ζ x; tð Þ ¼ cB x; tð Þ þ cC x; tð Þ ¼ ζ* 8 x, t ð3:188aÞ

Moreover, from Eqs. (3.176a) and (3.188a), it is easily deduced that

c sB ¼
ζ*

1þ eη
ð3:189aÞ
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c sC ¼
ζ*eη

1þ eη
ð3:190aÞ

It is clear that the resolution of this problem is reduced to solving the differential

Eq. (3.183) with the following boundary conditions:

t ¼ 0, x � 0

t > 0, x!1
�

ϕ ¼ 0 ð3:191aÞ

t > 0, x ¼ 0,3

e�χϕs ¼ 1� Keη

1þ eη
ζ* ð3:192aÞ

with ϕs the value of variable ϕ given by Eq. (3.180) at the electrode surface.

Equation (3.192a) has been obtained by inserting Eqs. (3.184), (3.185), and

(3.188a) into Eq. (3.176a).

Rigorous Solution

The current corresponding to the catalytic mechanism is given by (see Eqs. (3.184)

and (3.188a)):

Icat, plane

FAD
¼ ∂cC

∂x

� �
x¼0
¼ � e�χ

1þ K

∂ϕ
∂x

� �
x¼0

ð3:193aÞ

This problem was solved in Chronoamperometry in references [56, 57] and in

Polarography in reference [58–62] (see Appendix D)

Icat, plane

FADζ*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ
e� χffiffiffiffiffiffi
π χ
p þ erf

ffiffiffiffi
χ
p� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2
D

r" #
ð3:194aÞ

From Eq. (3.194a) it can be deduced that forE� E��Oc
0 (i.e., eη ! 0), the cathodic

limiting current is

Icat, planel, c

FADζ*
¼ 1

1þ K

e� χffiffiffiffiffiffi
π χ
p þ erf

ffiffiffiffi
χ
p� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2
D

r" #
ð3:195aÞ

whereas for E
 E��Oc
0 (i.e., eη !1), the anodic limiting current is

Icat, planel, a

FADζ*
¼ �K

1þ K

e� χffiffiffiffiffiffi
π χ
p þ erf

ffiffiffiffi
χ
p� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2
D

r" #
ð3:196aÞ

3 Note that, according with Eq. (3.180)–(3.181), surface condition (3.192a) is independent on time,

since it can be written as c sB � Kc sC¼ 1�Keη
1þeη ζ

�:
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Note that

Icat, planel, a

			 			
Icat, planel, c

¼ K ¼ 1

Keq

ð3:197aÞ

Moreover, from Eqs. (3.194a)–(3.196a), it is deduced that

E ¼ E��Oc
0 þ RT

F
ln

Icat, planel, c � Icat, plane

Icat, plane � Icat, planel, a

 !
ð3:198aÞ

Kinetic Steady-State Conditions (kss)

This treatment makes the assumption that the equilibrium perturbation given by

ϕss ¼ cB � KcC ð3:199aÞ

is independent of time. So, by inserting Eq. (3.199a) in Eq. (3.183), one has

∂ϕss
∂t
¼ 0 ¼ D

∂2ϕss
∂x2

� k1 þ k2ð Þϕss ð3:200aÞ

The solution to Eq. (3.200a) is [2, 63, 64]:

ϕss ¼ ϕ s
sse
�
ffiffiffiffiffiffiffi
k1þk2

D

p
x ð3:201aÞ

with ϕsss being the value of ϕss at the electrode surface, which is easily obtained by

combining Eqs. (3.189a), (3.190a), and (3.199a):

ϕ s
ss ¼

1� Keη

1þ eη
ζ* ð3:202aÞ

From Eqs. (3.193a), (3.199a), and (3.201a), we deduce the stationary (indepen-

dent of time) kinetic current, which can be written as

Icat, plane, ss

FAD
¼ � 1

1þ K

ϕss 1ð Þ � ϕ s
ss

δr
ð3:203aÞ

with ϕss 1ð Þ being the value of ϕss at the bulk, which in line with Eq. (3.201a) is

ϕss 1ð Þ ¼ 0, and δr the reaction layer thickness for a planar electrode given by [6,

65–67]:

δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

k1 þ k2

r
ð3:204aÞ
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Therefore, Eq. (3.203a) can be rewritten as

Icat,plane, ss

FADζ*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ
1

δr
ð3:205aÞ

If the homogeneous reaction is irreversible K ! 0, ζ* ¼ c*C 1þ Kð Þ ! c*C, and
Eq. (3.205a) simplifies to

Icat, plane, ss

FADζ*
¼ 1

1þ eη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
ð3:206aÞ

Note that from Eq. (3.194a) under transient conditions or from Eq. (3.205a)

corresponding to a stationary response, it is easily deduced that the variation of the

potential with ln Icat,planel, c � Icat, plane
� �

= Icat,plane � Icat, planel, a

� �� �
is linear as in the

case of a reversible single charge transfer reaction (E mechanism), although here

the cathodic limiting current increases with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2
p

(see Eqs. (3.194a) and

(3.206a)).

3.4.2 CE Mechanism

To solve this problem using the variables ζ and ϕ given by Eqs. (3.179) and (3.180)

when assuming that all diffusion coefficients are equal (DB ¼ DC ¼ DD ¼ D), the
following differential equation system must be tackled:

δ̂ pζ ¼ 0 ð3:186bÞ
δ̂ pϕ ¼ 0 ð3:187bÞ
δ̂ pcD ¼ 0 ð3:188bÞ

with the following boundary conditions (see Eqs. (3.174b)–(3.177b) and (3.184)–

(3.185)):

t ¼ 0, x � 0

t > 0, x!1
�

ζ ¼ ζ* ¼ c*C 1þ Kð Þ, K ¼ c*B
c*C
¼ 1

Keq

ϕ ¼ 0 cD ¼ 0

ð3:189bÞ

t > 0, x ¼ 0,

D
∂ζ
∂x

� �
x¼0
¼ �D ∂cD

∂x

� �
x¼0

ð3:190bÞ
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�K ∂ζ
∂x

� �
x¼0
¼ e�χ

∂ϕ
∂x

� �
x¼0

ð3:191bÞ

ζs � ϕse�χ ¼ 1þ Kð Þeηc sD ð3:192bÞ

with the current given by (see Eqs. (3.176b) and (3.179)):

ICE,plane

FAD
¼ ∂ζ

∂x

� �
x¼0

ð3:193bÞ

Rigorous Solution

Finding the rigorous solution of the problem is much more complicated than that

corresponding to a catalytic mechanism (see reaction scheme 3.VII), and it is given

by [68]:

ICE,plane

I planed,c ζ*
� � ¼ 1

1þ Kð Þ 1þ eηð Þ 1þ KSCE

1þ Kð Þ 1þ eηð Þ
� �

ð3:194bÞ

with

I planed,c ζ*
� � ¼ FAζ*

ffiffiffiffi
D

πt

r
ð3:195bÞ

SCE ¼
X1
j¼1
εCEj χ

j ð3:196bÞ

where χ is given by Eq. (3.181) and the coefficients εCEj of the functional series SCE

are defined in Appendix D in a recurrent way (see Eq. (D.61)).

In order to try to get a simpler response, it is advisable to use the kinetic steady-

state approximation.

Kinetic Steady-State Conditions (kss)

In this case, the variables ζ given by Eq. (3.179) and ϕss (see Eq. (3.199a)) are used.
So, Eqs. (3.186b) and (3.188b) are still satisfied and

δ̂ pϕss ¼ � k1 þ k2ð Þϕss ð3:197bÞ

The boundary conditions are

t ¼ 0, x � 0

t > 0, x!1
�

ζ ¼ ζ* ϕss ¼ 0 cD ¼ 0 ð3:198bÞ

t > 0, x ¼ 0,
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D
∂ζ
∂x

� �
x¼0
¼ �D ∂cD

∂x

� �
x¼0

ð3:199bÞ

�K ∂ζ
∂x

� �
x¼0
¼ ∂ϕss

∂x

� �
x¼0

ð3:200bÞ

ζs � ϕ s
ss ¼ 1þ Kð Þeηc sD ð3:201bÞ

The kinetic steady-state assumption implies that the equilibrium perturbation

function ϕss is independent of time, so

∂ϕss
∂t
¼ 0 ð3:202bÞ

Therefore, the solution of Eq. (3.197b) with this restriction is

ϕss ¼ ϕ s
sse
�
ffiffiffiffiffiffiffi
k1þk2

D

p
x ð3:203bÞ

By inserting Eq. (3.203b) into (3.200b) and (3.201b), these boundary conditions

become

ζs � K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

k1 þ k2

r
∂ζ
∂x

� �
x¼0
¼ 1þ Kð Þeηc sD ð3:204bÞ

To summarize, this problem has now been reduced to the following one,

depending on the variables ζ and cD:

δ̂ pζ ¼ 0 ð3:205bÞ
δ̂ pcD ¼ 0 ð3:206bÞ

t ¼ 0, x � 0

t > 0, x!1
�

ζ ¼ ζ* cD ¼ 0 ð3:207bÞ

t > 0, x ¼ 0,

D
∂ζ
∂x

� �
x¼0
¼ �D ∂cD

∂x

� �
x¼0

ð3:208bÞ

∂ζ
∂x

� �
x¼0
¼ 1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
ζs � 1þ Kð Þeηc sD
� � ð3:209bÞ

Note that Eq. (3.209b) is merely manipulation of Eq. (3.204b).

It is important to highlight that “by chance” the problem given by Eqs. (3.205b)–

(3.209b) is identical to that previously solved for a non-reversible process (see
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Eq. (3.5)) by changing
ffiffiffiffiffiffiffiffiffi
k=D

p
=K by kred/DO, 1þ Kð Þeη by eη, and ζs and csD by csO

and csR.
So it is very easy to verify that the current of a CE mechanism under kinetic

steady-state conditions is given by [63–65]:

ICE,plane, kss

I planed,c ζ*
� � ¼ F χCEkss

� �
1þ 1þ Kð Þeη ð3:210bÞ

with

χCEkss ¼
2
ffiffiffi
χ
p
K

1þ 1þ Kð Þeη½ 
 ð3:211bÞ

and F function and Iplaned;c (ζ*) given by Eqs. (3.16) and (3.195b), respectively. The

solution given by Eq. (3.210b) only coincides with the rigorous one Eq. (3.194b)

when χ > 5 for any value of K.

As can be seen in Eq. (3.211b), χCEkss is influenced not only by the rate constants of
the chemical step but also by the equilibrium constant (Keq ¼ 1=K ), since any

significant influence of the chemical reaction requires large values of χ and small

equilibrium constants (i.e., large K values).

The limiting current is deduced from Eqs. (3.210b) and (3.211b) by making

eη ! 0

ICE,plane, kssl, c

I planed,c ζ*
� � ¼ F

2
ffiffiffiffi
χ
p
K

� �
ð3:212bÞ

with χ given by Eq. (3.181).

As 0 � F � 1, as indicated in Appendix E, the limiting current of a CE

mechanism is always less than that obtained for a single charge transfer reaction.

Equations (3.210b)–(3.212b) indicate that under kinetic steady-state conditions

the single pulse voltammograms obtained for a CE mechanism depend on the

kinetic constants and time, unlike to that deduced for a catalytic mechanism, for

which a time-independent current–potential curve was obtained under these condi-

tions (see Eqs. (3.205a)–(3.206a)).

Kinetic Steady-State Conditions by Assuming a Purely Diffusive Behavior

for Species ζ and D (Diffusive-Kinetic Steady State, dkss)

In this section, new assumptions are introduced which will be fundamental for the

general definition and understanding of reaction and diffusion layers. We will

consider that variable ϕss retains the form given by Eq. (3.203b) deduced under

kinetic steady-state approximation (i.e., by supposing that∂ϕss=∂t ¼ ∂ cB � KcCð Þ=
∂t ¼ 0). In relation to the variables ζ and cD, it is assumed that their profiles have

the same form as that for species that would only suffer diffusion and would keep

time-independent values at the electrode surface, i.e., [63]:
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ζ ¼ ζ* þ ζs � ζ*� �
erfc

x

2
ffiffiffiffiffi
Dt
p

� �
ð3:213bÞ

cD ¼ c sDerfc
x

2
ffiffiffiffiffi
Dt
p

� �
ð3:214bÞ

By inserting Eqs. (3.203b), (3.213b), and (3.214b) into Eqs. (3.199b)–(3.201b),

the following expression for the current is deduced:

ICE,plane, dkss

FAD
¼ ∂ζ

∂x

� �
x¼0
¼ ζ

* � ζs
δ

ð3:215bÞ

or

ICE,plane,dkss

FAD
¼ �1

K

∂ϕss
∂x

� �
x¼0
¼ �1

K

ϕss 1ð Þ � ϕ s
ss

δr
ð3:216bÞ

with ϕss 1ð Þ ¼ 0, and δ and δr are the diffusion and reaction layer thickness for

planar electrodes, respectively, with (see also Eq. (2.25) of Sect. 2.2.1):

δ ¼
ffiffiffiffiffiffiffiffi
πDt
p

ð3:217bÞ

and δr given in Eq. (3.204a).

The expressions of ζs or ϕsss can be obtained from conditions (3.199b)–(3.201b)

and the current for a CE mechanism can be written as

ICE,plane,dkss

I planed, c ζ*
� � ¼ 1

K δr=δð Þ þ 1þ 1þ Kð Þeηð Þ ð3:218bÞ

and the cathodic limiting current (eη ! 0) is

ICE,plane,dkssl, c

I planed, c ζ*
� � ¼ 1

K δr=δð Þ þ 1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π k1 þ k2ð Þtp

K þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π k1 þ k2ð Þtp ð3:219bÞ

The expression of the current given by Eqs. (3.218b) or (3.219b) only coincides

with the rigorous one (Eq. 3.194b) for χCE > 10 with an error smaller than 5 %.

From Eqs. (3.218b) and (3.219b), it is easily deduced that under these conditions

the applied potential varies linearly with ln ICE,plane,dkssl, c � ICE,plane,dkss
� �

=
�

ICE,plane,dkssÞ:

E ¼ ECE
1=2 þ

RT

F
ln

ICE,plane,dkssl, c � ICE,plane,dkss

ICE,plane,dkss

 !
ð3:220bÞ
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being

ECE
1=2 ¼ E��Oc

0 þ RT

F
ln

1þ K δr=δð Þ
1þ K

� �
ð3:221bÞ

3.4.3 EC Mechanism

In this case (see reaction scheme (3.VIII)), the following problem should be solved:

δ̂ pcA ¼ 0 ð3:186cÞ
δ̂ pζ ¼ 0 ð3:187cÞ
δ̂ pϕ ¼ 0 ð3:188cÞ

with the following boundary conditions (see Eqs. (3.174c)–(3.177c) and (3.179)–

(3.181)):

t ¼ 0, x � 0

t > 0, x!1
�

cA ¼ c*A ζ ¼ 0 ϕ ¼ 0 ð3:189cÞ

t > 0, x ¼ 0;

D
∂cA
∂x

� �
x¼0
¼ �D ∂ζ

∂x

� �
x¼0

ð3:190cÞ

∂ζ
∂x

� �
x¼0
¼ e�χ

∂ϕ
∂x

� �
x¼0

ð3:191cÞ

Kζs þ ϕse�χ ¼ 1þ Kð Þc sA
eη

ð3:192cÞ

and the current is

IEC,plane

FAD
¼ ∂cA

∂x

� �
x¼0

ð3:193cÞ

By comparing the problem given by Eqs. (3.186b)–(3.193b) for a CE mechanism

with Eqs. (3.186c)–(3.193c) for an EC mechanism, it can be easily inferred that the

current corresponding to the EC process can be deduced with a similar procedure to

that followed for a CE one (see Appendix D). So, the solution is:
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Rigorous Solution

IEC,plane

I planed,c c*A
� � ¼ 1

1þ eη
1þ eηSEC

1þ Kð Þ 1þ eηð Þ
� �

ð3:194cÞ

with

I planed,c c*A
� � ¼ FAc*A

ffiffiffiffi
D

πt

r
ð3:195cÞ

SEC ¼
X1
j¼1
εECj χ

j ð3:196cÞ

where χ is given in Eq. (3.181) and the expression of coefficients εECj is given in

Appendix D (see Eq. (D.63)).

Contrarily to the CE mechanism, in this case the current–potential curve is more

affected by the chemical reaction the higher the rate and the equilibrium constants χ
and Keq ¼ 1=K.

Kinetic Steady State (kss)

In this case, the following expression for the current is obtained:

IEC,plane, kss

I planed, c c*A
� � ¼ 1þ Kð ÞF χECkss

� �
1þ K þ Keη

ð3:197cÞ

with Iplaned;c given by Eq. (3.195c). Function F is given in Appendix E and

χECkss ¼
2
ffiffiffi
χ
p
eη

1þ K þ Keη½ 
 ð3:198cÞ

Kinetic Steady State Assuming Purely Diffusive Behavior for A and ζ Species

(Diffusive-Kinetic Steady State, dkss)

Under these conditions, the current is

IEC,plane,dkss

I planed, c c*A
� � ¼ 1þ K

1þ K þ eη K þ δr=δð Þ ð3:199cÞ

or

E ¼ EEC
1=2 þ

RT

F
ln

IEC,plane,dkssl, c � IEC,plane,dkss

IEC,plane,dkss

 !
ð3:200cÞ
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being

EEC
1=2 ¼ E��Oc

0 þ RT

F
ln

1þ K

K þ δr=δð Þ
� �

ð3:201cÞ

where δ and δr are given in Eqs. (3.217b) and (3.204a), respectively.

From Eqs. (3.194c), (3.197c), and (3.199c) corresponding to rigorous and

approximate treatments, it can be deduced that under limiting conditions (i.e., E

� E��Oc
0 or eη ! 0), the expression for the current coincides with that corresponding

to a single charge transfer process (E mechanism):

IEC,planel, c c*A
� � ¼ I planed,c c*A

� � ð3:202cÞ

with Iplaned;c (c�A) given by Eq. (3.195c).

An important particular situation of an EC mechanism corresponds to the case

K ¼ 0 Keq !1
� �

, for which the chemical reaction has its greatest influence.

Under these conditions, Eqs. (3.199c) and (3.201c) transform, respectively, to

IEC,plane

I planed,c c*A
� � ¼ 1

1þ eη δr=δð Þ ð3:203cÞ

EEC
1=2 ¼ E��Oc

0 þ RT

F
ln

δ

δr

� �
¼ E��Oc

0 þ RT

2F
ln πk1tð Þ ð3:204cÞ

Under these conditions, EEC
1=2 is dependent on k1, and is shifted toward more

anodic potentials as k1 increases.

3.4.4 Comparison of the Disturbed Regions by Catalytic, CE,
and EC Mechanisms

In this section, the different behavior of processes with coupled noncatalytic

homogeneous reactions (CE and EC mechanisms) is discussed in comparison

with a catalytic process. We will consider that the chemical kinetics is fast enough

and in the case of CE and EC mechanisms K ¼ c*B=c
*
C

� �
fulfills K 
 1 so that the

kinetic steady-state and even diffusive-kinetic steady-state approximation can be

applied.

Indeed, from Eq. (3.205a) for a catalytic process (under kss conditions) and

Eqs. (3.218b) and (3.199c) for CE and EC processes (under the more restrictive

dkss conditions), it can be inferred that a true stationary (independent of time)

current–potential response for a catalytic reaction (reaction scheme (3.IXa, 3.IXb))

can be reached even for large electrodes (planar diffusion), whereas for CE and EC
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processes (schemes (3.VII) and (3.VIII)), it is not possible to find a true stationary

current–potential response under these conditions, as is shown from Eqs. (3.218b)

and (3.199c) obtained under the dkss assumption (this is also impossible for an E

process). This different behavior is outlined in Scheme 3.1 [63].

This different behavior can be explained by considering that for a CE mecha-

nism (the reasoning is similar for an EC one), C species is required by the chemical

reaction whose equilibrium is distorted in the reaction layer (whose thickness in the

simplified dkss treatment is δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

) and by the electrochemical

reaction, which is limited by the diffusion layer (of thickness δ ¼ ffiffiffiffiffiffiffiffi
πDt
p

). For a

catalytic mechanism, C species is also required for both the chemical and the

electrochemical reactions, but this last stage gives the same species B, which is

demanded by the chemical reaction such that only in the reaction layer do the

concentrations of species B and C take values significantly different from those of

the bulk of the solution. In summary, the catalytic mechanism can reach a true

steady-state current–potential response under planar diffusion because its perturbed

zone is restricted to the reaction layer δr, which is independent of time, whereas the

distortion of CE (or EC) mechanism is extended until the diffusion layer δ, which
depends on time, and a stationary current–potential response will not be reached

under these conditions.

It is interesting to point out that if we write Eqs. (3.218b) and (3.199c)

corresponding to CE and EC processes as

ICE,plane, dkss

FADζ*
¼ 1

K δr=δð Þ þ 1þ 1þ Kð Þeηð Þ
1

δ
ð3:222Þ

IEC,plane,dkss

FADc*A
¼ 1þ Kð Þ

1þ K þ eη K þ δr=δð Þð Þ
1

δ
ð3:223Þ

Scheme 3.1 Steady-state diffusion and reaction layers for CE and catalytic mechanisms
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by making δ ¼ δr (and c*D ¼ c*B in Eq. (3.222) and c*A ¼ c*C in Eq. (3.223)), both

equations convert to that corresponding to a catalytic mechanism with K¼ 0 when

diffusion and reaction layers become coincident, i.e.,

ICE,plane, dkss
		
c*
D
¼c*

B

¼ IEC,plane, dkss
		
c*
A
¼c*

C

¼ Icat,plane, kss if δ! δr ð3:224Þ

3.4.5 Comparison Between the Current–Potential Curves
Corresponding to Catalytic, CE, and EC Mechanisms

Before studying the influence of the different kinetic parameters on the single

potential step or normal pulse voltammograms corresponding to these three reac-

tion mechanisms, it is of great interest to point out some features of these curves,

which can be directly deduced from the equations presented in the previous sections

corresponding to the dependence of the limiting current and of the half-wave

potential with the characteristic parameters when diffusion coefficients of species

B and C are assumed equal.

The single pulse voltammograms of a pseudo-first-order catalytic process are

easily characterized by the increase of the limiting current with the time or the

chemical kinetic constants, whereas its half-wave potential remains unchanged.

For a pseudo-first-order CE mechanism, both the limiting current (which is

always less than that corresponding to an E mechanism) and the half-wave potential

are affected by the equilibrium and rate constants.

In the case of a pseudo-first-order EC mechanism, only the half-wave potential

depends on time and the equilibrium and rate constants, with the limiting current

remaining unaltered with the variation of these parameters—identical to that

corresponding to an E mechanism.

The influence of the ratio K ¼ c*B=c
*
C on the normalized single pulse

voltammograms corresponding to χ ¼ k1 þ k2ð Þt ¼ 30 for the three mechanisms

(note that K is the inverse of the equilibrium constant, i.e., K ¼ 1=Keq

� �
) can be

seen in Fig. 3.23. An increase of K does not affect the location of the

voltammograms in the potential axis in the case of the catalytic mechanism

(Fig. 3.23a), whereas it causes a shift of the current–potential curves for both CE

and EC mechanisms toward more negative potentials (Fig. 3.23b and c).

Concerning the influence of K ¼ 1=Keq

� �
in the limiting currents, for a catalytic

mechanism the increase of this ratio leads to a decrease of the cathodic limiting

current and to an increase of the anodic one in absolute value (in line with

Eqs. (3.195a) and (3.196a)). The cathodic limiting current of the CE mechanism

also decreases with the increase of K (see Eq. (3.212b)), whereas it does not affect

that corresponding to an EC mechanism (see Eq. (3.202c)). In the case of a CE

mechanism, the behavior corresponding to a simple charge transfer without chem-

ical complications (dotted line in Figure b) refers to the sum of concentrations of

species B and C (labile equilibrium) for K ! 0 and only to the concentration of
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Fig. 3.23 Influence of K ¼ 1=Keq

� �
on the normalized voltammograms corresponding to a

catalytic (a, Eqs. (3.194a) and (3.195b)), CE (b, Eqs. (3.194b) and (3.195b)), and EC mechanism
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species C (non-labile equilibrium) for K 
 1 [69]. An EC mechanism behaves like

an E process only if K 
 1 (see Fig. 3.23c).

The variation of the normalized single pulse voltammograms of the three

reaction mechanisms with χ for K¼ 1 (CE mechanism, Figure b) and K¼ 0

(catalytic and EC mechanism, Figures a and c, respectively) is plotted in

Fig. 3.24. From these curves, it can be observed that an increase of χ does not

affect the location of the voltammetric responses of a catalytic process (Fig. 3.24a),

whereas it causes a slight shift toward more negative potentials in the case of a CE

process (Fig. 3.24b) and a more notable shift toward more positive potentials for an

EC one (Fig. 3.24c). The influence of χ in the limiting current is restricted to

catalytic and CE mechanism (since it does not affect the limiting current of the EC

one), being stronger in the former case since Icat;planel;c /Iplaned;c (ζ*) is proportional to
ffiffiffi
χ
p

(see Eqs. (3.225) and (3.226)).

3.4.6 Determination of Kinetic Parameters

From the Limiting Currents

In the case of a catalytic mechanism, the normalized limiting current Icat;planel;c /Iplaned;c

(ζ*) is

Icat,planeN ¼ Icat,planel, c

I planed, c ζ*
� � ¼ e� χffiffiffiffiffiffi

π χ
p þ erf

ffiffiffiffi
χ
p� �� � ffiffiffiffiffiffi

π χ
p� �

1

1þ K
ð3:225Þ

with I planed,c ζ*
� � ¼ FAζ*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= πtð Þp

and χ given by Eq. (3.181). So, a set of plots of

Icat;planeN vs.
ffiffiffi
χ
p

for different values of K can be used as working curves to determine

k1 and k2 from experimental values of Icat;planeN once the value of D is known

(see Fig. 3.25). The value of K can be obtained by linear extrapolation of these

curves to χ ! 0 (see dashed lines) [4]. Note that for χ > 1:5 the kinetic steady

state is applicable and these plots are linear since the term e� χ=
ffiffiffiffiffiffi
π χ
p þ erf

ffiffiffiffi
χ
p� �� �

! 1 and

Icat,planeN

			
χ>1:5

ffi
ffiffiffiffiffi
πχ
p
1þ K

ð3:226Þ

For a CE mechanism, the curves ICE,planeN ¼ ICE,planel, c =I planed, c ζ*
� �

vs. χ calculated

from Eqs. (3.194b) and (3.195b) are plotted in Fig. 3.26.

⁄�

Fig. 3.23 (continued) (c, Eqs. (3.194c) and (3.195c)). The values of K ¼ 1=Keq appear on the

curves. χ ¼ 30. T¼ 293.15 K. Dotted lines in Figures b and c correspond to a charge transfer

without chemical complications (E mechanism; see Eq. (2.36))
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Fig. 3.24 Influence of χ on the normalized voltammograms corresponding to a catalytic (a,

Eqs. (3.194a) and (3.195b)), CE (b, Eqs. (3.194b) and (3.195b)), and EC mechanism (c,
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⁄�

Fig. 3.24 (continued) Eqs. (3.194c) and (3.195c)). The values of χ appear on the curves. For the

catalytic and EC mechanism K ¼ 1=Keq ¼ 0 and for the CE one K ¼ 1=Keq ¼ 1. T¼ 293.15 K.

Dotted lines in Figure c correspond to a charge transfer without chemical complications

(E mechanism, see Eq. (2.36))
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calculated from Eq. (3.225) with K ¼ 1=Keq. E� E��Oc
0 ¼ �0:3 V, T¼ 298.15 K. Dashed lines

correspond to the limiting behavior of the normalized current given by Eq. (3.226). A vertical

dotted line has been plotted at χ ¼ 1:5
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Fig. 3.26 Variation of the normalized current of a CE mechanism versus χ calculated from

Eqs. (3.194b) under limiting current conditions and (3.195b). The values of K ¼ 1=Keq are on

the curves.E� E��Oc
0 ¼ �0:3 V, T¼ 298.15 K.Dashed lines correspond to the behavior of a simple

charge transfer without chemical complications (E mechanism; see Eq. (2.36))
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From these curves, by knowing the experimental values of ICE;planeN , it is possible

to determine k1 and k2 once K is known. Moreover the lower bound of the

equilibrium constant of the chemical reaction can be determined (note that if

ICE,planeN t! 0ð Þ � 0:5, K � 1). The value of K can be also calculated by extrapo-

lation of these curves for small values of χ (i.e., for χ ! 0) since ICE,planeN t! 0ð Þ
¼ 1= 1þ Kð Þ [68].

The limiting current of an EC mechanism is independent of χ and its value

cannot be used to obtain the parameters of the chemical reaction.

From the Half-Wave Potentials

The variation of the half-wave potentials with
ffiffiffi
χ
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2ð Þtp
for CE (see

Eq. (3.221b)) and EC (see Eq. (3.201c)) mechanisms is plotted in Fig. 3.27. From

this figure, it can be seen that the half-wave potential shifts toward more anodic

(EC) or cathodic (CE) potentials when χ increases, respectively, whereas the half-
wave potentials of catalytic and E mechanisms are independent of χ.

3.4.7 Spherical Electrodes

Catalytic Mechanism

As discussed in Sect. 3.4.1, finding the single step voltammetric curve of this

mechanism is much easier than finding those corresponding to EC and CE mech-

anisms in planar electrodes because the surface concentrations of the participating

species are independent of time. In this case, finding the voltammogram for a

(c)1/2

10 15 20 25 30 35
-0.06

-0.05

-0.04

0.06

0.08

0.10

0.12

CE mechanism

EC mechanism

CE O EC O
1/2 c 1/2 c  / VE E , E E¢ ¢- -

Fig. 3.27 Variation of the half-wave potential with
ffiffiffi
χ
p

for a CE (Eq. 3.221b) and EC (Eq. 3.201c)

mechanism. K¼ 0 (EC mechanism) and K¼ 10 (CE mechanism) with K ¼ 1=Keq

� �

210 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions



spherical electrode of any size is not very difficult and is given in references [59, 63,

64, 70], and the current can be written as

Icat, sphe

FAsDζ
*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
e� χffiffiffiffiffiffi
π χ
p þ erf

ffiffiffiffi
χ
p� �� �

þ 1

rs

" #
ð3:227Þ

with χ given in Eq. (3.181) and rs being the electrode radius.

Under kinetic steady-state conditions ( χ > 1:5), Eq. (3.227) becomes

Icat, sphe,kss

FAsDζ
*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
þ 1

rs

 !
ð3:228Þ

By comparing Eq. (3.228) with (3.205a) for planar electrodes, it can be easily

inferred that the reaction layer in this case is

δ spher ¼ 1ffiffiffiffiffiffiffiffiffi
k1þk2
D

q
þ 1

rs

ð3:229Þ

CE and EC Mechanisms

Finding rigorous analytical expressions for the single potential step

voltammograms of these reaction mechanisms in a spherical diffusion field is not

easy. However, they can be found in reference [63, 64, 71–73] for the complete

current–potential curve of CE and EC mechanisms. The solutions of CE and EC

processes under kinetic steady state can be found in references [63, 64] and the

expression of the limiting current in reference [74]. Both rigorous and kinetic

steady state solutions are too complex to be treated within the scope of this book.

Thus, the analysis of these processes in spherical diffusion will be restricted to the

application of diffusive-kinetic steady-state treatment.

For this purpose, we will consider a CE mechanism (reaction scheme (3.VII)),

since the derivation of the expressions for an EC process can be carried out by

following a similar procedure to that of a CE process. In this case, as previously, we

will consider that the pseudo-species ζ ¼ cB þ cCð Þ and species cD have a purely

diffusive behavior. So, it is also supposed that ∂ϕss=∂t ¼ 0 (ϕss ¼ cB � KcC ),
which fulfills, in a spherical diffusion field:

∂2ϕss
∂r2

þ 2

r

∂ϕss
∂r
¼ k1 þ k2

D
ϕss ð3:230Þ

The solution of this differential equation is

ϕss ¼
rs
r
ϕ s
ss e
�
ffiffiffiffiffiffiffi
k1þk2

D

p
r�rsð Þ ð3:231Þ
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then,

∂ϕss
∂r

� �
¼ �rs

r
ϕ s
ss e�

ffiffiffiffiffiffiffi
k1þk2

D

p
r�rsð Þ 1

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r" #
ð3:232Þ

which takes the following expression at the electrode surface:

∂ϕss
∂r

� �
r¼rs
¼ �ϕ

s
ss

δ spher

ð3:233Þ

with δspher given by Eq. (3.229).

Moreover, it is assumed that in spherical diffusion the concentration profiles of ζ
and cD are given by (see Eq. (2.144) of Sect. 2.5.2):

ζ ¼ ζ* � rs
r
ζ* � ζs� �

erfc
r � rs

2
ffiffiffiffiffi
Dt
p

� �
ð3:234Þ

cD ¼ c sD
rs
r
erfc

r � rs

2
ffiffiffiffiffi
Dt
p

� �
ð3:235Þ

then,

∂ζ
∂r

� �
r¼rs
¼ ζ

* � ζs
δsphe

ð3:236Þ

∂cD
∂r

� �
r¼rs
¼ � c sD

δsphe
ð3:237Þ

with δsphe being the diffusion layer thickness for spherical electrodes (see

Eq. (2.146) of Sect. 2.5.2):

δsphe ¼ 1
1
rs
þ 1ffiffiffiffiffiffi

πDt
p ð3:238Þ

By inserting Eqs. (3.231)–(3.238) in the surface conditions of a CE process (see

Eqs. (3.174b)–(3.177b)) and considering spherical diffusion, it is easily deduced that

ICE,sphe,dkss

I sphed,c ζ*
� � ¼ 1

K δ spher =δsphe
� �þ 1þ 1þ Kð Þeηð Þ ð3:239Þ

IEC, sphe,dkss

I sphed,c c*A
� � ¼ 1þ K

1þ K þ eη K þ δ spher =δsphe
� � ð3:240Þ
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with

I sphed,c c*
� � ¼ FAsDc

* 1

rs
þ 1ffiffiffiffiffiffiffiffi

πDt
p

� �
ð3:241Þ

with c* ¼ ζ* or c* ¼ c*A in Eqs. (3.239) and (3.240), respectively.

By comparing Eqs. (3.239) and (3.240)with Eqs. (3.218b) and (3.199c) previously

deduced for planar electrodes, it can be verified that they are identical if we change in

Eqs. (3.239) and (3.240) δspher for δr and δ
sphe for δ. So, all equations deduced for

planar electrodes under dkss conditions can be transferred to spherical diffusion

merely by making these changes. This is also applicable to a catalytic mechanism

under kinetic steady-state conditions (compare Eqs. (3.205a) and (3.228)).

Microspherical Electrodes (Total Steady State)

If the electrode radius rs is restricted to the intervalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

=10 � rs �
ffiffiffiffiffiffiffiffi
πDt
p

=20, the spherical diffusion and reaction layer

thicknesses given by Eq. (3.229) or (3.238) simplifies to

δmicrosphe ¼ rs
δmicrosphe
r ¼ δ spher

�
ð3:242Þ

Under these conditions, the voltammetric response of a catalytic mechanism

given by Eq. (3.228) remains valid since it is independent of time. This expression

can be normalized by the diffusion-controlled limiting current at microspheres:

Icat, sphe

Imicrosphe
d, c ζ*

� � ¼ 1� Keη

1þ Kð Þ 1þ eηð Þ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
þ 1

 !
ð3:243Þ

with

Imicrosphe
d, c ζ*

� � ¼ 4πFrsDζ
* ð3:244Þ

Equation (3.243) shows that for pseudo-first-order catalytic mechanism, the

normalized current varies linearly with the radius for any value of the applied

potential and the term k1 þ k2ð Þ can be calculated from the slope provided the

equilibrium constant and the diffusion coefficients are known.

The current–potential curves corresponding to CE and EC mechanisms become

independent of time under these conditions, and Eqs. (3.239)–(3.240) can be used

by changing δsphe for δmicrosphe.

So, the half-wave potentials for thesemechanisms at sphericalmicroelectrodes are
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ECE
1=2 ¼ E��Oc

0 þ RT

F
ln

1þ K δ spher =rs
� �
1þ K

 !
ð3:245Þ

EEC
1=2 ¼ E��Oc

0 þ RT

F
ln

1þ K

K þ δ spher =rs
� � !

ð3:246Þ

The solutions found under these conditions are equivalent to the simultaneous

establishment of the three assumptions:

∂ζ
∂t

� �
¼ ∂cD

∂t

� �
¼ ∂ϕss

∂t

� �
¼ 0 ð3:247Þ

for a CE mechanism and

∂ζ
∂t

� �
¼ ∂cA

∂t

� �
¼ ∂ϕss

∂t

� �
¼ 0 ð3:248Þ

for an EC mechanism.

The use of microelectrodes under total steady-state conditions is very advanta-

geous in determining kinetic constants of very fast chemical reactions. To show

this, in Fig. 3.28, we show the time influence at different values of rs on the

normalized limiting current of a CE mechanism (Eq. 3.249) compared with the

time-independent solution (dashed lines and Eq. (3.250)):

ICE, sphe,dkssl, c

I sphed, c ζ*
� � ¼ 1

K δ spher =δsphe
� �þ 1

ð3:249Þ

with the time-independent solution given by (δsphe ! rs):

ICE,microsphe
l, c

Imicro
d,c ζ*

� � ¼ 1

K δ spher =rs
� �þ 1

ð3:250Þ

and Isphed;c (ζ*) and Imicrosphe
d;c (ζ*) given by Eqs. (3.241) and (3.244), respectively.

It is clearly shown in this figure that time has a great effect on the current and that

this influence decreases with rs. Figure 3.28b (K ¼ 102 and k1 þ k2 ¼ 102 s�1 )
shows that Eq. (3.250) can be applied for t ¼ 1 s only if rs < 10�3 cm.

Both Eqs. (3.243) and (3.250) for catalytic and CE mechanisms, respectively,

convert into that corresponding to an E process when k1 þ k2ð Þ � D=r2s , since
under these conditions the chemical reaction is masked and the use of microelec-

trodes is not appropriate for determining kinetic rate constants.

The analysis of the EC and CE mechanisms under steady-state conditions at

other microelectrode geometries is much more complex. In the case of microdiscs,
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Fig. 3.28 Time influence at different values of rs on the normalized limiting current of a CE

mechanism (Eqs. 3.249 and 3.241) compared with the time-independent solution (dashed lines and
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some authors have proposed approximate equations analogous to those given in

Eqs. (3.239) and (3.240) by taking as valid the analogy between the disc and sphere

radius, i.e., by making the change rs ¼ πrd=4 in the expressions of the diffusion and
reaction layers given by Eqs. (3.229) and (3.238) (see [76, 77] and Sect. 2.7). Under

these conditions, the approximate expressions of the reaction and diffusion layers

are

δdiscr ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
þ 4

π

1

rd

δmicrodisc ¼ π
4
rd

9>>>>=>>>>; ð3:251Þ

3.4.8 ECE Mechanism and Other More Complex Reaction
Schemes

When there is a chemical reaction between two electrochemical steps, the mecha-

nism is called ECE. This process, when the second electrochemical step is further

reduced, is also denoted E
!
CE
!
and can be schematized

O1 þ e� ! R1 E��Oc,1
0

R1 !
k1

k2
O2

O2 þ e� ! R2 E��Oc,2
0

ð3:XIÞ

As in the case of two electrochemical steps (EE mechanism), the following

reaction occurs:

O2 þ R1 !
k
0
1

k
0
2

O1 þ R2 ð3:XIIÞ

If E��Oc,2
0 > E��Oc,1

0, then the disproportionation step (3.XII) is thermodynamically

viable. The source of the second electron transfer may then be either the second

Fig. 3.28 (continued) Eqs. (3.250) and (3.244)). Three values of k1 þ k2ð Þ (in s�1) are considered:
1 (a); 102 (b); and 104 (c). r0 is the radius of the spherical electrode. Time values are indicated on

the curves. K ¼ 1=Keq ¼ 102. Taken from [75] with permission
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electron transfer reaction (ECE mechanism) or the chemical reaction (3.XII)

(DISP1 mechanism if the intermediate chemical reaction in (3.XI) is rate limiting,

or the DISP2 mechanism if reaction (3.XII) is rate limiting). While DISP2

is distinguished from the other mechanisms with relative ease, discrimination

between ECE and DISP1 is more difficult [78, 79] At high concentrations of

supporting electrolyte, careful analysis of voltammetric wave shape over a range

of scan rates can in some circumstances be used [80].

Throughout this book, a negligible interference of reaction (3.XII) is considered.

The reader can find an extensive analysis of its influence on the response in

references [79, 81].

If the second electrochemical step corresponds to the oxidation of the chemical

reaction product, this process is called parallel ECE mechanism and is denoted

E
!
CE
 
.

The voltammetric response for the reaction scheme (3.XI) depends on the

difference between the formal potentials of both electrochemical steps, ΔE��○0c , and

on the equilibrium and kinetic constants of the intermediate chemical reaction. If

ΔE��○0c ¼ E��○c,2
0 � E��○c,1

0 � 0 (i.e., E��○c,2
0 is much more negative than E��○c,1

0), two well-

resolved waves are observed, with the first corresponding to the EC process:

O1 þ e� ! R1 E��Oc,1
0

R1  !
k1

k2
O2

ð3:XIIIÞ

giving rise to a first plateau of current independent of the chemical reaction which is

defined by the diffusion-controlled current of the first electron transfer. The limiting

current corresponding to the second wave is obviously less than that which would

correspond to the diffusion-controlled current of the second electron transfer, since

it is conditioned by the chemical reaction. However, this limiting current, while

presenting certain similarities, does not coincide exactly with that deduced for a CE

mechanism, because for an irreversible chemical reaction (K¼ 0), the second

limiting current of an E
!
CE
!

process is less than the diffusion-controlled current

except for very large values of χ ¼ k1 t, contrary to that predicted for a CE

mechanism, since the second wave depends on the previous step, as can be seen

in Fig. 3.29.

The limiting current corresponding to the second electron transfer of an E
!
CE
!

mechanism is given by [82]:

IE
!
CE
!
, plane

l, c

I planed, c ζ*
� � ¼ 1þ SCEl

1þ K
ð3:252Þ
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with SCEl being coincident with the series corresponding to a CE mechanism only

under limiting current conditions (see Eq. (3.196b) in Sect. 3.4.2). The limiting

current of a CE process is

ICE,planel, c

I planed,c ζ*
� � ¼ 1

1þ K
1þ KSCEl

1þ K

� �
ð3:253Þ

Second-Order Catalytic Mechanism

The theoretical study of other electrode processes as a reduction followed by a

dimerization of the reduced form or a second-order catalytic mechanism (when the

concentration of species Z in scheme (3.IXa, 3.IXb) is not too high) requires the

direct use of numerical procedures to obtain their voltammetric responses, although

approximate solutions for a second-order catalytic mechanism have been given

[83–85]. An approximate analytical expression for the normalized limiting current

of this last mechanism with an irreversible chemical reaction is obtained in refer-

ence [86] for spherical microelectrodes, and is given by

Icat,microsphe
l, c

Imicrosphe
d, c ζ*

� � ¼ 1� k1r
2
s c

*
C

2D
þ 1

2

k1r
2
sc

*
C

D

� �2

þ 4k1r
2
s c

*
Z

D

" #1=2
ð3:254Þ

with k1 being the rate constant of the irreversible chemical reaction.

3.4.9 Catalytic Mechanism at Disc Electrodes

The special characteristics of the first-order catalytic mechanism make it possible to

obtain an explicit analytical expression for its transient voltammetric response at
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Fig. 3.29 Influence of χ on
the normalized

voltammograms

corresponding to an ECE

mechanism (see Eqs. (40)–

(42) in reference [82]). The

values of χ appear on the

curves. K ¼ 1=Keq ¼ 0,

T¼ 298.15 K,

ΔE��Oc 0 ¼ �0:200 V. Dotted
lines correspond to simple

EE mechanism (calculated

from Eq. (3.133))
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disc microelectrodes [87, 88]. Indeed, by considering a nernstian behavior for the

electrochemical reaction, the surface concentrations are constant and only depend

on the applied potential, and the current can be written as

Icat, disc

FAdDζ
*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ f
cat
disc rd; χð Þ ð3:255Þ

being

f catdisc rd; χð Þ ¼ 1

rd
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
Tdisc χ; ξð Þ ð3:256Þ

with

Tdisc χ; ξð Þ ¼ T χð Þ þ 0:2732

ffiffiffi
χ
p
ξ

ðξ2
0

exp �0:39115ffiffiffi
u
p � χ

ξ2
u

� �
duþ

þ 0:2732
ξffiffiffi
χ
p exp � χ � 0:39115

ξ

� � ð3:257Þ

T χð Þ ¼ e�χffiffiffiffiffi
πχ
p þ erf

ffiffiffiffi
χ
p� � ð3:258Þ

ξ ¼
ffiffiffiffiffi
Dt
p

rd
ð3:259Þ

with χ given in Eq. (3.181) and rd being the radius of the disc electrode.

Steady-State Conditions

Inserting the condition χ > 1:5 in Eqs. (3.255)–(3.258), one obtains

Icat,microdisc

FAdDζ
*
¼ 1�Keη

1þeηð Þ 1þKð Þ�

� 1

rd
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1þk2
D

r
þ0:5465

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1þk2
D

r ffiffiffi
χ
p
ξ

ð1
0

u exp �0:39115ffiffiffi
u
p � χ

ξ2
u2

� �
du

( )
ð3:260Þ

When the condition k1þk2ð Þ�D=r2d is fulfilled, the enhancement of the

diffusion transport freezes the chemical reaction, so the response is that

corresponding to a simple charge transfer process and therefore does not contain

any information about the chemical kinetics. So, Eq. (3.260) under these conditions

becomes

Icat,microdisc

FAdDζ
*

				
k1þk2ð Þ�D=r2

d

¼ 1� K eη

1þ eηð Þ 1þ Kð Þ
4

πrd
ð3:261Þ
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It is interesting to highlight that Eqs. (3.255), (3.260), and (3.261) deduced in

this section fulfill that

Icat, disc

Icat, discl, c ζ*
� � ¼ 1� Keη

1þ eηð Þ 1þ Kð Þ ð3:262Þ

since the applied potential only affects the surface concentrations which are inde-

pendent of time.

For a second-order catalytic mechanism with an irreversible chemical reaction,

an approximate analytical solution has been reported [86]:

Icat,microdisc
l

Imicrodisc
d, c ζ*

� � ¼ 1� k1πr2dc
*
C

32D
þ 1

2

k1π2r2dc
*
C

16D

� �2

þ k1π2r2dc
*
Z

4D

" #1=2
ð3:263Þ

3.4.10 Reversible Charge Transfers Preceded and Followed
by Several Complexation Reactions in Equilibrium
(Ladder Mechanism)

Another very common situation is produced when a species A is electro-reduced to

B with both species taking part in a number of chemical equilibria in solution which

may refer to their complexation with a ligand L [89, 90], protonation [91, 92] or

formation of ion pairs [93, 94], or association of charged species with DNA [95],

the products of which (AL, BL, . . .ALn, BLn) are also electro-active in line with the

following reaction scheme:

ð3:XIVÞ

Ligand L is assumed to be present at high concentration

c*L 
 c*A, c
*
B, c

*
ALi

, c*BLi

� �
and kij and k0ij ( j¼ 1, 2; i¼ 1, 2 . . . n) represent the

(pseudo)first-order forward and backward rate constants of the chemical reactions.

Note that this reaction scheme covers different common mechanisms that can be
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studied by adjusting the values of the formation equilibrium constants. Thus, the

situation where only the oxidized (A) or the reduced (B) species is involved in the

homogeneous chemical equilibria (i.e., only one species reacts in solution) can be

studied by setting to zero the equilibrium constant(s) of the other species (Ceq
n Erev-

or Erev Ceq
n -type mechanisms). The Erev Ceq

n mechanism is very usual in real systems

since the electron transfer generally increases the instability and reactivity of the

chemical species, for example, by forming radicals.

When a constant potential, E, is applied to the electrode immersed in the solution

containing species A and L such that the electron transfer reactions take place, the

mass transport supposed by pure diffusion to and from the electrode surface, in the

presence of an excess of supporting electrolyte, is described by the following

differential diffusive-kinetic equations system:

∂cALi

∂t
¼ DALi

∇2cALi
þ k i

1cALi-1
� k i

2 þ k iþ1
1

� �
cALi
þ k iþ1

2 cALiþ1

∂cBLi

∂t
¼ DBLi

∇2cBLi
þ k

0 i
1cBLi-1

� k
0 i
2 þ k

0 iþ1
1

� �
cBLi
þ k

0 iþ1
2 cBLiþ1

9>>=>>; ð3:264Þ

where ∇2 is the Laplacian operator given in Table 2.2 of Sect. 2.6 for the main

electrode geometries, 0 � i � n for the different complexes, AL0 ¼ A, BL0 ¼ B,

k 0
j ¼ k nþ1

j ¼ 0, k
0 0
j ¼ k

0nþ1
j ¼ 0 ( j ¼ 1, 2).

The boundary value problem associated with the reduction of A is given by

t ¼ 0, q � qs

t � 0, q!1
�

cA q; 0ð Þ ¼ cA 1; tð Þ ¼ c*

1þ
Xn
s¼1
βs

; cALi
q; 0ð Þ ¼ cALi

1; tð Þ ¼ c* βi

1þ
Xn
s¼1
βs

cB q; 0ð Þ ¼ cB 1; tð Þ ¼ 0 ; cBLi
q; 0ð Þ ¼ cBLi

1; tð Þ ¼ 0

9>>>=>>>;
ð3:265Þ

t > 0, q ¼ qs

DA

∂cA
∂qN

� �
q¼qs
¼ �DB

∂cB
∂qN

� �
q¼qs

ð3:266Þ

DALi

∂cALi

∂qN

� �
q¼qs
¼ �DBLi

∂cBLi

∂qN

� �
q¼qs

; 1 � i � n ð3:267Þ

cA qsð Þ ¼ cB qsð Þ eηA=B ð3:268Þ

3.4 First-Order Chemical Reactions Coupled to Charge Transfer Processes 221

http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2


cALi
qsð Þ ¼ cBLi

qsð Þ eηALi=BLi ; 1 � i � n ð3:269Þ

with

ηA=B ¼ F E� E��○
0

A=B

� �
=RT ð3:270Þ

ηALi=BLi
¼ F E� E��○

0

ALi=BLi

� �
=RT ; 1 � i � n ð3:271Þ

where q and t refer to the spatial coordinate and time values, qs to the coordinates at
the electrode surface, qN is the normal coordinate value at the surface of the

electrode, and βi represents the overall formation constant for the different com-

plexes of species A initially present in solution (see Eq. (3.272)).

It will be assumed that the rates of formation and dissociation of the different

complexes (ki1, k
0i
1, k

i
2, and k0i2) are sufficiently fast in comparison to the diffusion

rate so that the complex formations and dissociations are at equilibrium even when

current is flowing, i.e., that chemical equilibrium conditions are maintained at any

position and time of the experiment [90]:

βi ¼
Yi
m¼1

Kmc
*
L ¼

cALi
q; tð Þ

cA q; tð Þ

β
0
i ¼

Yi
m¼1

K
0
mc

*
L ¼

cBLi
q; tð Þ

cB q; tð Þ

9>>>>=>>>>; 8q, t ; i � 1 ; ð3:272Þ

with Km and K
0
m being

Km ¼ cALm
q; tð Þ

cALm�1 q; tð Þc*L
K
0
m ¼

cBLm
q; tð Þ

cBLm�1 q; tð Þc*L

ð3:273Þ

To solve the problem defined above, the new variables cAT and cBT are defined as

cAT q; tð Þ ¼ cA q; tð Þ þ
Xn
i¼1

cALi
q; tð Þ ð3:274Þ

cBT q; tð Þ ¼ cB q; tð Þ þ
Xn
i¼1

cBLi
q; tð Þ ð3:275Þ

which relate to the total concentration of species A and B. Taking into account

Eq. (3.272), it is possible to establish the following relationships:
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cA q; tð Þ ¼ cAT q; tð Þ
1þ

Xn
m¼1
βm

; cALi
q; tð Þ ¼ cAT q; tð Þβi

1þ
Xn
m¼1
βm

cB q; tð Þ ¼ cBT q; tð Þ
1þ

Xn
m¼1
βm

0
; cBLi

q; tð Þ ¼ cBT q; tð Þβi
0

1þ
Xn
m¼1
βm

0

9>>>>>>>>=>>>>>>>>;
ð3:276Þ

By introducing the new variables cAT and cBT (given by Eqs. (3.274) and (3.275))

and the relationships given by Eq. (3.276) in Eqs. (3.264)–(3.269), the diffusive-

kinetic differential equation system and boundary value problem simplifies to

∂cAT
∂t
¼ DA

eff∇
2cAT

∂cBT
∂t
¼ DB

eff∇
2cBT

9>>=>>; ð3:277Þ

t ¼ 0, q � qs

t � 0, q!1
�

cAT q; 0ð Þ ¼ cAT 1; tð Þ ¼ c*

cBT q; 0ð Þ ¼ cBT 1; tð Þ ¼ 0

9=; ð3:278Þ

t > 0, q ¼ qs

DA
eff

∂cAT
∂qN

� �
q¼qs
¼ �DB

eff

∂cBT
∂qN

� �
q¼qs

ð3:279Þ
cAT qsð Þ ¼ cBT qsð ÞωeηA=B ð3:280Þ

where cAT (q
s) and cBT(q

s) are the total surface concentrations of species A and B (see

Eqs. (3.274) and (3.275), respectively), ω is given by

ω ¼
1þ

Xn
i¼1
βi

1þ
Xn
i¼1
βi
0

ð3:281Þ

and DA
eff and DB

eff are the effective diffusion coefficients of the pseudo-species AT

and BT, respectively:
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DA
eff ¼

DA þ
Xn
i¼1

DALi
βi

1þ
Xn
i¼1
βi

ð3:282Þ

DB
eff ¼

DB þ
Xn
i¼1

DBLi
β
0
i

1þ
Xn
i¼1
β
0
i

ð3:283Þ

In this particular situation where the concentration of all the species satisfies the

chemical equilibrium (Eqs. (3.272)–(3.273)), D
A=B
eff is simply equal to a mole

fraction weighted average [96]. Note that Eqs. (3.278)–(3.280) are a set of initial

and boundary conditions formally identical to those of a simple reversible electron

transfer process for the pseudo-species cAT and cBT at electrodes of the different

geometries considered. By assuming that DA
eff ¼ DB

eff ¼ D, which does not mean

that the diffusivities of the free and complexed species are the same and it is

reasonable to have a great variety of experimental systems in conventional solvents

[4], it can be deduced that for any values of q and t it is fulfilled that [97]

cAT q; tð Þ þ cBT q; tð Þ ¼ c* ð3:284Þ

The combination of Eqs. (3.280) and (3.284) at q ¼ qs turns the problem of two

variables cAT and cBT into two separate problems of only one variable with constant

limit and surface conditions

∂cAT
∂t
¼ D∇2cAT

t � 0, q!1
t ¼ 0, q � qs

�
cAT q; tð Þ ¼ c*

t � 0, q ¼ qs cAT qsð Þ ¼ c*ωeηA=B

1þ ωeηA=B

9>>>>>>=>>>>>>;
ð3:285Þ

∂cBT
∂t
¼ D∇2cBT

t � 0, q!1
t ¼ 0, q � qs

�
cBT q; tð Þ ¼ 0

t � 0, q ¼ qs cBT qsð Þ ¼ c*

1þ ωeηA=B

9>>>>>>=>>>>>>;
ð3:286Þ

with ηA/B being given in Eq. (3.270).

The above differential equation problems (Eqs. 3.285 and 3.286) are mathemat-

ically analogous to the problem corresponding to the application of a potential pulse

under limiting current conditions given that the boundary conditions are time
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independent. Therefore, the solutions of both problems are identical except for the

constant surface concentration values. So, the expression for the current for any

value of the applied potential in the different geometries considered can be written

in the following general form:

IG

FAGD
¼ c* � cAT qsð Þ� �

fG t, qGð Þ ¼ cBT qsð Þ fG t, qGð Þ ð3:287Þ

where fG(t, qG) is a function of time and the electrode geometry, given in Table 2.3

of Sect. 2.6 for the most commonly used electrodes, and AG is the electrode area.

Equation (3.287) can also be written as

E ¼ E1=2 þ RT

F
ln

IGl,c � IG

IG

 !
ð3:288Þ

where E1/2 is the half-wave potential of the process

E1=2 ¼ E��○
0

A=B þ
RT

F
ln

1þ
Xn
i¼1
β
0
i

1þ
Xn
i¼1
βi

0BBBB@
1CCCCA ð3:289Þ

and IGl;c is given by

IGl,c ¼ FAG

ffiffiffiffiffiffiffiffi
DA

eff

πt

s
c* ð3:290Þ

From Eqs. (3.287) and (3.290), it can be inferred that, when total equilibrium

conditions are considered for the precedent and subsequent chemical reactions to

the charge transfer reaction, the shape and height of the voltammetric curve are not

affected although the half-wave potential shifts toward more cathodic or anodic

potentials depending on the term 1þ
Xn
i¼1
β
0
i

 !
= 1þ

Xn
i¼1
βi

 !
.
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11. Tomeš J (1937) Collect Czech Chem Commun 9:12, and 9:150

12. Galvez J, Zapata J, Serna C (1986) J Electroanal Chem 205:21–34

13. Delmastro JR, Smith DE (1966) Anal Chem 28:169–179

14. Molina A, Martinez-Ortiz F, Laborda E, Compton RG (2010) Electrochim Acta 55:5163–5172

15. Bond AM, Oldham KB, Zoski CG (1989) Anal Chim Acta 216:177–230

16. Molina A, Gonzalez J (2012) In: Kaufmann EN (ed) Characterization of materials, 2nd edn.

Hoboken, Wiley

17. Molina A, Laborda E, Gonzalez J, Compton RG (2013) Phys Chem Chem Phys 15:7106–7113

18. Mirkin MV, Bard AJ (1992) Anal Chem 64:2293–2302

19. Streeter I, Compton RG (2007) J Phys Chem C 111:18049–18054

20. Oldham KB, Zoski CG (1991) J Electroanal Chem 313:17–28

21. Bobbert PA, Wind MM, Vlieger J (1987) Physica 141A:58–72

22. Molina A, Gonzalez J, Henstridge MC, Compton RG (2011) Electrochim Acta 56:4589–4594

23. Phillips CG (1990) J Electroanal Chem 291:251–256

24. Xiaoping L, Juntao L, Chuansin C (1990) J Electroanal Chem 295:15–23

25. Oldham KB (1992) J Electroanal Chem 323:53–76

26. Molina A, Gonzalez J, Barnes EO, Compton RG (2014) J Phys Chem C 118:346–356

27. Ward KR, Lawrence NS, Hartshorne RS, Compton RG (2012) J Electroanal Chem 683:37–42

28. Chidsey CED (1991) Science 251:919–922

29. Feldberg SW (2010) Anal Chem 82:5176–5183

30. Laborda E, Henstridge M, Molina A, Martinez-Ortiz F, Compton RG (2011) J Electroanal

Chem 660:169–177

31. Evans DH (2008) Chem Rev 108:2113–2144

32. Evans DH, Lehmann MW (1999) Acta Chim Scan 53:765–774

33. Molina A, Serna C, Lopez-Tenes M, Moreno MM (2005) J Electroanal Chem 576:9–19

34. Hale JM (1964) J Electroanal Chem 8:181–199

35. Leger C, Bertrand P (2008) Chem Rev 108:2379–2438

36. Sadakane M, Steckhan E (1998) Chem Rev 98:219–237

37. Evans DH, Hu K (1996) J Chem Soc Faraday Trans 92:3893–3890

38. Lehmann MW, Evans DH (1999) Anal Chem 71:1947–1950

39. Andrieux CP, Saveant J (1970) J Electroanal Chem 28:339–348

40. Klymenko OV, Svir I, Amatore C (2010) Electrochem Commun 12:1378–1382

41. Belding S, Baron R, Dickinson EJF, Compton RG (2009) J Phys Chem C 113:16042–16050

42. Serna C, Lopez-Tenes M, Gonzalez J, Molina A (2001) Electrochim Acta 46:2699–2709

43. Lopez-Tenes M, Gonzalez J, Molina A (2014) J Phys Chem C 118:12312–12324

44. Lopez-Tenes M, Molina A, Serna A, Moreno MM, Gonzalez J (2007) J Electroanal Chem

603:249–259

45. Molina A, Gonzalez J, Laborda E, Compton RG (2012) Int J Electrochem Sci 7:5765–5778

46. Molina A, Serna C, Laborda E, Li Q, Batchelor-McAuley C, Compton RG (2012) J Phys Chem

C 116:1070–1079

47. Molina A, Serna C, Martinez-Ortiz F, Laborda E (2008) J Electroanal Chem 617:14–26

48. Hapiot P, Kispert LD, Konovalov VV, Saveant JM (2001) J Am Chem Soc 123:6669–6677

49. Zanello P (2003) Inorganic electrochemistry: theory, practice and application. Royal Society

of Chemistry, Oxford

50. Silvester DS, He W, Aldous L, Hardacre C, Compton RG (2008) J Phys Chem C

112:12966–12973

226 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions



51. Cardona CM, Mendoza S, Kaifer AE (2000) Chem Soc Rev 29:37–42

52. Torralba E, Ortu~no J, Molina A, Serna C, Karimian F (2014) Anal Chim Acta 826:12–20

53. Zhan D, Mao S, Zhao Q, Chen Z, Hu H, Jing P, Zhang M, Zhu Z, Shao Y (2004) Anal Chem

76:4128–4136

54. Lin Q, Batchelor-MacAuley C, Compton RG (2013) Phys Chem Chem Phys 15:7760–7767
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Chapter 4

Double Pulse Voltammetries
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4.1 Introduction

Double Potential Pulse Electrochemical Techniques combine the faradaic currents

at two successive potential pulses recovering then the initial equilibrium conditions

(in the case of a DME the two successive potentials are applied to the same drop).
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They are applicable to electrodes of any shape and size and are extensively

employed in electroanalysis due to their high sensitivity, good definition of signals,

and minimization of double layer and background currents. In these techniques,

both the theoretical treatments and the interpretation of the experimental results are

easier than those corresponding to the multipulse techniques treated in the follow-

ing chapters. Four double potential pulse techniques are analyzed in this chapter:

Double Pulse Chronoamperometry (DPC), Reverse Pulse Voltammetry (RPV),

Differential Double Pulse Voltammetry (DDPV), and a variant of this called

Additive Differential Double Pulse Voltammetry (ADDPV). A brief introduction

to two triple pulse techniques (Reverse Differential Pulse Voltammetry, RDPV, and

Double Differential Triple Pulse Voltammetry, DDTPV) is also given in Sect. 4.6.

The general features of the potential waveform applied and of the output currents

of these double pulse techniques are shown.

Double Potential Chronoamperometry

Among double pulse techniques, the simplest case is recording the current–time

curves obtained when the two successive potential pulses are applied. Usually, the

first is set at values corresponding to limiting current conditions for the reactant,

E1 � E��O
0

c , for a time 0 � t1 � τ1 and the second to limiting current conditions for

the electrogenerated product, E2 
 E��O
0

c , for a time 0 � t2 � τ2 as shown in

Scheme 4.1.

Reverse Pulse Voltammetry

In this voltammetric technique, introduced by Oldham and Parry by using the DME

[1], the product species of an electrochemical reaction is electrogenerated under

diffusion-limited conditions by applying a first potential E1 � E��O
0

c in the first

period 0 � t1 � τ1, and the value of the second one, E2, varying toward anodic

potentials during the second period0 � t2 � τ2. The current is sampled at the end of

the second pulse, I2(τ2), and plotted versus E2 values (Scheme 4.2).

Differential Double Pulse Voltammetry

This technique is based on the derivative of the NPV curve introduced by Barker

and Gardner [2]. In DDPV, two consecutive potentials E1 and E2 are applied during

times 0 � t1 � τ1 and 0 � t2 � τ2, respectively, with the length of the second pulse
being much shorter than the first (τ1=τ2 ffi 50� 100). The differenceΔE ¼ E2 � E1

is kept constant during the experiment and the difference ΔIDDPV ¼ I2 � I1 is

plotted versus E1 or versus an average potential E1,2 ¼ E1 þ E2ð Þ=2. When the

two pulses are of similar duration, the technique is known as Differential Normal

Double Pulse Voltammetry (DNDPV) (Scheme 4.3).

Additive Differential Double Pulse Voltammetry

This double pulse technique is a modification of the DDPV one based on obtaining

two differential signals corresponding to the same first potential, E1 (see

Scheme 4.4) [3],
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ΔI cDDPV ¼ I c2 E c
2

� �� I1 E1ð Þ ð4:1Þ
ΔI aDDPV ¼ I a2 E a

2

� �� I1 E1ð Þ ð4:2Þ

with ΔEj j ¼ � E c
2 � E1

� � ¼ E a
2 � E1, being ΔE < 0 in Eq. (4.1) and ΔE > 0 in

Eq. (4.2). The additive response is obtained by adding both differential signals ΔIc

and ΔIa, such that

IADDPV ¼ ΔI cDDPV þ ΔI aDDPV ¼ I c2 � 2I1 þ I a2 ð4:3Þ

and IADDPV is plotted versus E1. In this technique, the length of the second pulse is

much shorter than the first one. The recorded ADDPV signal is shown in

Scheme 4.4.

It is necessary to mention that there is no universal and unambiguous nomen-

clature for the different differential pulse techniques, something which can lead

to inaccurate analyses and misinterpretations. The DDPV technique is usually

called “Differential Pulse Voltammetry” (DPV) referring to the double pulse
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program [4–9], although some authors and most of the commercial software

available in Electrochemistry use the term DPV for the multipulse variant [10–

15] where the equilibrium is fully regained only at the end of the experiment (see

Sect. 5.1). The origin of this confusion may be that most of these electrochemical

methods were designed for the dropping mercury electrode (DME) where the

renewal of the equilibrium conditions is easily achieved once the drop releases,

meaning that each drop can be treated as a new experiment. However, the recovery

of equilibrium conditions at stationary electrodes can be time-consuming, espe-

cially in the case of macroelectrodes. For these reasons and in order to distinguish

clearly between double and multipulse mode, in this book the term “Differential

Double Pulse Voltammetry” (DDPV) will be employed for the double pulse

technique and the term “Differential Multipulse Voltammetry” (DMPV) for the

multipulse one which will be analyzed in the chapter (see also Sect. 7.2.2), in order
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that these two modes can be clearly distinguished. Note that, although DDPV and

DMPV can lead to similar responses in the case of reversible electrode processes

because the length of the first pulse, t1, is much longer than the second one, t2. This
does not occur in the case of nonreversible electrode processes, since re-establish-

ment of the equilibrium is not generally possible during t1 in the multipulse mode.

4.2 Reversible Electrochemical Reactions

In this section only very fast charge transfer reactions will be considered in order to

analyze their response in the different double pulse techniques considered in Sect. 4.1.
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4.2.1 Application of a Double Potential Pulse to Electrodes
and Microelectrodes of Any Geometry

Let us consider the fast electrode reaction

Oþ e�⇄R ð4:IÞ

and application of two successive potentials E1 and E2 to an electrode of any

geometry for the periods 0 � t1 � τ1 and 0 � t2 � τ2, respectively, when both

electroactive species are initially present and the condition DO ¼ DR ¼ D holds.

The current obtained when the first potential step E1 is applied is given by

Eq. (2.156) of Sect. 2.6.

If at a time t ¼ τ1 the potential is stepped to a value E2 over an interval

0 � t2 � τ2, with the total time of the experiment being t ¼ τ1 þ t2, the mass

transport of species O and R is described by the differential equations
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∂c 2ð Þ
O

∂t2
¼ D∇2c

2ð Þ
O ð4:4Þ

∂c 2ð Þ
R

∂t2
¼ D∇2c

2ð Þ
R ð4:5Þ

with∇2 being the Laplace operator given in Table 2.2 of Sect. 2.6, and c
ð2Þ
O and c

ð2Þ
R

the solutions of Eqs. (4.4) and (4.5). The boundary value problem is given by

t2 � 0, q!1
t2 ¼ 0, q � qs

�
c

2ð Þ
O ¼ c

1ð Þ
O , c

2ð Þ
R ¼ c

1ð Þ
R ð4:6Þ

t2 > 0, q ¼ qs;

c
2;sð Þ
O þ c

2;sð Þ
R ¼ c*O þ c*R ð4:7Þ

c
2;sð Þ
O ¼ eη2c

2;sð Þ
R ð4:8Þ

with

η2 ¼
F

RT
E2 � E��O

0

c

� �
ð4:9Þ

c
ð2;sÞ
O and c

ð2;sÞ
R are the surface concentrations of species O and R corresponding to

the application of potential E2, and c�O and c�R the initial concentrations of these

species. q refers to spatial coordinates (r in the case of spheres and cylinders, x and
y in the case of bands, and r and z in the case of discs), qs to the value of q at the

electrode surface, and c
ð1Þ
O and c

ð1Þ
R are the solutions corresponding to the application

of the first potential E1. Note that condition (4.7) is a consequence of the flux

conservation at the electrode surface when equidiffusivity is assumed for both O

and R species [16].

Since the operators of Fick’s second law are linear, the expressions for the

concentrations c
ð2Þ
O and c

ð2Þ
R can be written as

c
2ð Þ
O q; tð Þ ¼ c

1ð Þ
O q; tð Þ þ ec 2ð Þ

O q; t2ð Þ ð4:10Þ
c

2ð Þ
R q; tð Þ ¼ c

1ð Þ
R q; tð Þ þ ec 2ð Þ

R q; t2ð Þ ð4:11Þ

where ec 2ð Þ
O q; t2ð Þ and ec 2ð Þ

R q; t2ð Þ are unknown functions to be determined.

It should be noted that for any value of t (with 0 � t � τ1 þ t2ð Þ), cð1ÞO and c
ð1Þ
R

fulfill the equations:
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∂c 1ð Þ
i

∂t
¼ D∇2c

1ð Þ
i i ¼ O, R ð4:12Þ

t � 0, q!1
t ¼ 0, q � qs

�
c

1ð Þ
O ¼ c*O, c

1ð Þ
R ¼ c*R ð4:13Þ

t > 0, q ¼ qs;

c
1;sð Þ
O þ c

1;sð Þ
R ¼ c*O þ c*R ð4:14Þ

c
1;sð Þ
O ¼ eη1c

1;sð Þ
R ð4:15Þ

with

η1 ¼
F

RT
E1 � E��O

0

c

� �
ð4:16Þ

and, from Eqs. (4.14) and (4.15), the surface concentrations c
ð1;sÞ
O and c

ð1;sÞ
R can be

directly deduced (see also Eqs. (2.152) and (2.153) in Sect. 2.6),

c
1;sð Þ
O ¼ eη1

1þ eη1
c*O þ c*R
� � ð4:17Þ

c
1;sð Þ
R ¼ c*O þ c*R

1þ eη1
ð4:18Þ

By inserting Eqs. (4.10)–(4.11) into Eqs. (4.4)–(4.8) and taking into account

Eqs. (4.12)–(4.18), it is possible to express the boundary value problem in this

second pulse only in terms of the new unknowns ec 2ð Þ
O q; t2ð Þ and ec 2ð Þ

R q; t2ð Þ,

∂ec 2ð Þ
i

∂t2
¼ D∇2ec 2ð Þ

i i ¼ O, R ð4:19Þ

t2 � 0, q!1
t2 ¼ 0, q � qs

� ec 2ð Þ
O ¼ ec 2ð Þ

R ¼ 0 ð4:20Þ

t2 > 0, q ¼ qs;

ec 2;sð Þ
O þ ec 2;sð Þ

R ¼ 0 ð4:21Þ

ec 2;sð Þ
O ¼ eη2ec 2;sð Þ

R þ eη1 � eη2

1þ eη1
c*O þ c*R
� � ð4:22Þ

By comparing Eqs. (4.13)–(4.15) and (4.20)–(4.22), it is clear that this second

problem is quite similar to that solved when the first potential pulse is applied but

with null initial conditions. At the electrode surface ec 2;sð Þ
O and ec 2;sð Þ

R , take the

following constant values:
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ec 2;sð Þ
O ¼ eη1 � eη2

1þ eη1ð Þ 1þ eη2ð Þ c*O þ c*R
� � ð4:23Þ

ec 2;sð Þ
R ¼ � eη1 � eη2

1þ eη1ð Þ 1þ eη2ð Þ c*O þ c*R
� � ð4:24Þ

By inserting Eqs. (4.23) and (4.24) in Eqs. (4.10)–(4.11), and taking into account

Eqs. (4.17) and (4.18), the surface concentrations corresponding to this second

potential pulse are obtained

c
2;sð Þ
O ¼ c

1;sð Þ
O þ ec 2;sð Þ

O ¼ eη2

1þ eη2
c*O þ c*R
� � ð4:25Þ

c
2;sð Þ
R ¼ c

1;sð Þ
R þ ec 2;sð Þ

R ¼ c*O þ c*R
1þ eη2

ð4:26Þ

being c
ð2;sÞ
O and c

ð2;sÞ
R only dependent of potential E2, as expected (see Eqs. (4.7) and

(4.8)).

After demonstrating the similarity between the boundary value problem of the

first and second potential pulses, the current corresponding to the second potential

pulse at an electrode of any geometry can be written as (see Eq. (4.10))

IG2
FAGD

¼ ∂c 2ð Þ
O

∂qN

� �
qs
¼ ∂c 1ð Þ

O

∂qN

� �
qs
þ ∂~c 2ð Þ

O

∂qN

� �
qs
¼ IG1 τ1 þ t2ð Þ þ IG2 t2ð Þ ¼

¼ c*O � c
1;sð Þ
O

� �
fG τ1 þ t2, qGð Þ � ec 2;sð Þ

O fG t2, qGð Þ
ð4:27Þ

with fG given in Table 2.3 of Sect. 2.6 for several electrode geometries. By taking

into account that (see Eqs. (2.156) and (2.157) of Sect. 2.6),

IG1 τ1 þ t2ð Þ
FAGDc*O

¼ 1� eη1 c*R=c
*
O

� �
1þ eη1

fG τ1 þ t2, qGð Þ ð4:28Þ

and inserting the expressions of c
ð1;sÞ
O and ec 2;sð Þ

O given by Eqs. (4.17) and (4.23), into

Eq. (4.27)
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IG2
FAGDc*O

¼ 1� eη1 c*R=c
*
O

� �
1þ eη1

fG τ1 þ t2, qGð Þ

þ 1þ c*R=c
*
O

� �� � 1

1þ eη2
� 1

1þ eη1

� �
fG t2, qGð Þ ð4:29Þ

is finally obtained

It is worth recalling that, as was indicated in Sect. 2.6, in the cases of

non-uniformly accessible electrodes (discs and bands), the current is an average

quantity resulting from an average flux over the electrode surface (see for example

[17–19]).

4.2.1.1 Planar Electrodes

Equation (4.29) is applicable when both species are initially present in the solution

independently of the geometry and size of the working electrode. In the case of

planar electrodes

I plane2

FAsDc*O
¼ 1

1þ eη1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD τ1 þ t2ð Þp þ 1

1þ eη2
� 1

1þ eη1

� �
1ffiffiffiffiffiffiffiffiffiffi
πDt2
p ð4:30Þ

is obtained

It is also possible to deduce the expression of Iplane2 for the case of different

diffusion coefficients, since the surface concentrations c
1;sð Þ
O and c

1;sð Þ
R are also con-

stant at macroelectrodes when DO 6¼ DR (see Eq. (2.20)). Under these conditions

the current is given by [20, 21]:

I plane2

FAc*ODO
1ffiffiffiffiffiffiffiffiffi
πDOt2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

τ1 þ t2

r
1� eη1 c*R=c

*
O

� �
1þ γeη1

þ 1

1þ γeη2 �
1

1þ γeη1
� �

1þ c*R
γc*O

� �
ð4:31Þ

with

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ð4:32Þ

4.2.1.2 Spherical Electrodes

For spherical electrodes, given that (see Table 2.3 of Sect. 2.6),
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f s t, rsð Þ ¼ 1

rs
þ 1ffiffiffiffiffiffiffiffi

πDt
p ð4:33Þ

by inserting Eq. (4.33) into Eq. (4.29) for the most usual case in which only species

O is initially present (i.e., c*R ¼ 0),

I sphe2

FAsDc*O
¼ 1

1þ eη1

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πD τ1þ t2ð Þp þ 1

1þ eη2
� 1

1þ eη1

� �
1ffiffiffiffiffiffiffiffiffiffi
πDt2
p þ 1

1þ eη2

� �
1

rs
¼

¼ I plane2

FAsDc*O
þ Imicrosphe

2

FAsDc*O

ð4:34Þ

is obtained

with rs and As being the radius and area of the spherical electrode, Iplane2 is given by

Eq. (4.30), and

Imicrosphe
2

FAsDc*O
¼ 1

1þ eη2

� �
1

rs
ð4:35Þ

The case of different diffusion coefficients of the electroactive species has been

also considered for spherical electrodes, with the current corresponding to the

second potential being much more complex (see Eq. (F.43) in Appendix F and

reference [20]).

4.2.2 Double Pulse Chronoamperometry
and Chronocoulommetry

This section considers that the first potential pulse is set at values corresponding to

diffusion-controlled cathodic limiting current conditions for the reactant�
E1 � E��O

0

c , 0 � t1 � τ1 ) and the second to diffusion-controlled anodic limiting

current conditions for the electrogenerated product (E2 
 E��O
0

c , 0 � t2 � τ2 ), see
Scheme 4.1. The use of these diffusion-controlled limiting currents, for which no

kinetic influence is present, is very useful in the determination of diffusion coefficients

of both oxidized and reduced species.

By making eη1 ! 0 and eη2 !1 in Eq. (4.29), one obtains (see also Eq. (2.158)

of Sect. 2.6),
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IGd,1
FAGDc*O

¼ fG t1, qGð Þ, 0 � t1 � τ1 ð4:36Þ

IGd,2
FAGDc*O

¼ fG τ1 þ t2, qGð Þ � 1þ c*R=c
*
O

� �� �
fG t2, qGð Þ, 0 � t2 � τ2 ð4:37Þ

with fG(t, qG) given in Table 2.3 of Sect. 2.6.

In the case of unequal diffusion coefficients, when spherical electrodes are

considered, the currents of the first and second potential pulses under the above

conditions are (see also Eq. (2.147) of Sect. 2.5.2 and Appendix F),

I sphed,1

FAsDOc*O
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

πDOt1
p þ 1

rs
0 � t1 � τ1 ð4:38Þ

I sphed,2

FAsDOc*O
¼ 1

rs
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πDO τ1 þ t2ð Þp" #
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

πDOt2
p 1þ c*R

γc*O

� �
1� ξ2ð Þ�

� γ � 1ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
πDOt2
p ξ2 � 1ð Þ 1� H ξ1ð Þ½ 
 þ ξ1ffiffiffi

π
p



G βð Þ � 1½ 
 þ

þ γξ2ffiffiffi
π
p S β, ξ1ð Þ

�
0 � t2 � τ2

ð4:39Þ

with

ξ1 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DR τ1 þ t2ð Þp

rs
ð4:40Þ

ξ2 ¼
2
ffiffiffiffiffiffiffiffiffiffi
DRt2
p
rs

ð4:41Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
τ1 þ t2

r
ð4:42Þ

G βð Þ ¼ β arcsin βð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
ð4:43Þ

H ξ1ð Þ ¼ exp ξ1ð Þ2=4
� �

erfc ξ1=2ð Þ ð4:44Þ

S β, ξ1ð Þ ¼
X1
i ¼ 1

j ¼ 0

�1ð Þ jþi ξ1ð Þiβ2 jþ1 pi
Yj
l¼0

i� 2lþ 1ð Þ

iþ 1ð Þ 2 jþ 1ð Þ2 j jþ 1ð Þ!
Yi
l¼1

pl

266664
377775 ð4:45Þ
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pl ¼
2Γ 1þ l

2

� �
Γ 1þl

2

� � ð4:46Þ

In Eq. (4.39), the upper sign refers to solution soluble product and the lower one

to amalgam formation. When species R is amalgamated inside the electrode, the

applicability of this analytical equation is limited by Koutecký approximation,

which considers semi-infinite diffusion inside the electrode, neglecting its finite

size and simplifying the calculations. Due to the limitations of this approximation,

the analytical and numerical results coincide only for ξ1 < 1 with a relative

difference � 1:7% [20]. For higher values of ξ1, a numerical solution obtained

with the condition ∂cR=∂rð Þr¼0 ¼ 0 should be used.

Equations (4.38) and (4.39) are greatly simplified for the case of spherical

ultramicroelectrodes. By making rs �
ffiffiffiffiffiffiffiffiffiffiffi
πDOt
p

in the expressions of Isphed;1 and Isphed;2

is deduced

Imicrosphe
d,1

FAsDOc*O
¼ 1

rs
0 � t1 � τ1 ð4:47Þ

Imicrosphe
d,2

FAsDOc*O
ffi �1

rs

c*R
γ2c*O

0 � t2 � τ2 ð4:48Þ

with γ given by Eq. (4.32).

Note that under steady-state conditions the second response will only exist if the

reduced species is initially present c*R 6¼ 0
� �

.

For planar electrodes, by making E1 � E��O
0

c ! �1 in Eq. (2.34) of Sect. 2.2.2.2

and E2 � E��O
0

c !1 in Eq. (4.31) it is deduced

I planed,1

FADOc*O
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

πDOt1
p 0 � t1 � τ1 ð4:49Þ

I planed,2

FADOc*O
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πDO τ1 þ t2ð Þp � 1ffiffiffiffiffiffiffiffiffiffiffiffi
πDOt2
p 1þ c*R

γc*O

� �
0 � t2 � τ2 ð4:50Þ

Equation (4.50) for the particular case of equal diffusion coefficients and c*R ¼ 0

was deduced by Kambara [22] by applying the Superposition Principle.

The use of double potential pulse chronoamperometry is of great interest in

electrochemistry for an accurate determination of both diffusion coefficients DO

and DR, and this interest is enhanced when this technique is applied to small size

spherical electrodes like the SMDE or gold microhemispheres or microspheres.

There is a great number of redox couples for which highly unequal diffusion

coefficients appear such as room temperature ionic liquids [23], ferrocene/
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ferrocinium (γ ¼ 0:89 in acetonitrile [24]), p-benzoquinone and its cation radical (

γ ¼ 0:84 in acetonitrile [24]), ferrocyanide/ferricyanide ( γ ¼ 1:08 in aqueous

solution [24, 25]), aromatic compounds with their corresponding cation radicals

(γ ¼ 0:71� 0:93 in different organic solvents [26, 27]), or redox systems incor-

porated into polymeric matrices [28].

In order to establish the most appropriate conditions for the determination of the

diffusion coefficients of both electroactive species by using Eqs. (4.38) and (4.39),

it has been reported that when the reaction product is absent (i.e., c*R ¼ 0) neither

planar electrodes nor ultramicroelectrodes can be used in DPC for determining

diffusion coefficients (see Eqs. (4.48) and (4.50)) because in these situations the

anodic limiting current is either independent of DR or null, respectively.

To check this, in Fig. 4.1 the influence of the electrode size on current density–time
curves is shown for different γ values when both species are soluble in the electrolytic
solution, with only species O initially present. As can be observed, the electrode radius

has a great influence on the current density corresponding to the first potential pulse,

increasing its value when the electrode size decreases as is well known.

It is interesting to highlight the case in which DO ¼ DR ¼ D (i.e., γ ¼ 1) since,

surprisingly, in this situation the current density corresponding to the second

potential pulse remains unaltered when the electrode radius varies from rs !1
(planar electrode) up to rs ! 0 (ultramicroelectrodes). This can be easily

Fig. 4.1 Current density–time curves when both species are soluble in the electrolytic solution

and only species O is initially present. Three electrode sizes are considered: planar electrode (solid

lines), spherical electrode with rs ¼ 10�3 cm (dotted lines), and spherical ultramicroelectrode

with rs ¼ 10�5 cm (dashed lines), and three γ values: γ ¼ 0:5 (green curves), γ ¼ 1:0 (black

curves), and γ ¼ 2:0 (red curves). The applied potential sequences are E1 � E��O
0

c ! �1,

E2 � E��O
0

c ! þ1. τ1 ¼ τ2 ¼ 1 s, c*O ¼ 1 mM, c*R ¼ 0, DO ¼ 10�5 cm2 s�1. Taken from [20]

with permission
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demonstrated from the analytical results, since from Eq. (4.39) it is deduced that the

current density corresponding to the second pulse for any rs value is given by

I sphed,2 γ ¼ 1ð Þ
As

¼ Fc*O
ffiffiffiffi
D
pffiffiffiffiffiffi
πt2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

τ1 þ t2

r
� 1

� �
� c*R=c

*
O

� �
1þ

ffiffiffiffiffiffiffiffiffiffi
πDt2
p

rs

� �� �
ð4:51Þ

Thus, second pulse current density becomes independent of electrode radius when

the reaction product is not initially present (c*R ¼ 0):

I sphed,2 γ ¼ 1ð Þ
As

¼ Fc*O
ffiffiffiffi
D
pffiffiffiffiffiffiffi
π t2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

τ1 þ t2

r
� 1

� �
ð4:52Þ

When DO 6¼ DR ( γ 6¼ 1 ) the current density corresponding to the second

potential pulse is much less affected by the electrode size than that corresponding

to the first potential. Regarding the γ influence, it is observed that current density–
time curves corresponding to the first potential pulse are independent of DR value,

since cathodic limiting conditions are imposed. In contrast, γ value has a mean-

ingful effect on the curves corresponding to the second potential pulse at spherical

electrodes, so that the greater the DR value the lower current density. This effect is

more noticeable when the electrode radius decreases. However, a practical limit

appears as a consequence of the decrease of the ratio |Isphed;2 |/Isphed;1 at small electrodes,

which makes it difficult to determine a small current density (Isphed;2 /As) after a big

current density (Isphed;1 /As) in the same experiment. By studying the behavior of the

ratio |Isphed;2 |/Isphed;1 , it is concluded that values of
ffiffiffiffiffiffiffiffiffiffiffi
DOτ1
p

=rs in the range 0:5 <
ffiffiffiffiffiffiffiffiffiffiffi
DOτ1
p

=rs < 1:25 are optimum for this purpose since the ratio |Isphed;2 |/Isphed;1 is adequate, and

Isphed;2 is sensitive to DR; for example, for DO ¼ 10�5 cm2 s�1 and t1 ¼ 1 s the

optimum electrode radius is 25–65 μm. At planar electrodes the second potential

current density–time curve is not sensitive to species R diffusion coefficient under

these conditions (c*R ¼ 0), as can be deduced from Eq. (4.50):

I planed,2 γ 6¼ 1ð Þ
A

¼ Fc*O
ffiffiffiffiffiffiffi
DO

pffiffiffiffiffiffi
πt2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

τ1 þ t2

r
� 1

� �
ð4:53Þ

which coincides with the current density at a spherical electrode when both

diffusion coefficients are equal (see Fig. 4.1).

So, it can be concluded that, when reaction product is not initially present, DPC

of limiting currents can only be used for determining both diffusion coefficients

when spherical electrodes are used. The use of planar electrodes or ultramicroe-

lectrodes for calculating DR needs species R to be initially present.

The current–time curve corresponding to the application of the second potential

is very sensitive to the presence of assimilation or amalgamation processes at

spherical electrodes. In order to check this in Fig. 4.2, it can be seen the
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chronoamperometric curves corresponding to the second potential pulse for differ-

ent E2 values for the reduction of Tlþ at hemispherical mercury electrodes of two

different sizes (rs ¼ 50 μm, Fig. 4.2a, and rs ¼ 25 μm, Fig. 4.2b). As shown in

Fig. 4.2a, when the electrode size increases the “usual” behavior of the current–

potential curves is observed, so the less positive the E2 value, the smaller the

oxidation current at any time. In contrast, for the smaller radius (Fig. 4.2b), the

decrease of the current under anodic limiting conditions is very fast as a conse-

quence of the depletion of the reduced species during the release/re-oxidation step.

Unlike what happens with medium-sized electrodes, this gives rise to the crossing

of the chronoamperometric curves at a given time (crossing time) and after this time

the limiting current is smaller than that corresponding to a less anodic potential.

This behavior occurs because at the less positive potential the depletion of species R

is slower and so is the decay of the current with time [29].

Although present study has so far the been focused on current–potential curves,

there are some experimental situations in which it is of interest to analyze the charge–

potential ones. Chronocoulograms can be obtained from the integration of the

corresponding chronoamperograms. Under limiting condition like those discussed in

this section, the expressions of the charge-time curves corresponding to the application

of the first and second potential pulseswhen the diffusion coefficients of species O and

R are assumed equals and c�R ¼ 0 are given by (see Eqs. (4.36) and (4.37)):

QG
d,1

FAGDc*O
¼ integral ft1 ,G 0 � t1 � τ1 ð4:54Þ

QG
d,2

FAGDc*O
¼ integral f τ1þt2ð Þ,G � integral ft2 ,G

h i
0 � t2 � τ2 ð4:55Þ

with

E2 = –425 mV

E2 = –410 mV

E2 = –300 mV

times / s
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Fig. 4.2 Experimental chronoamperometric curves of the second pulse for different E2

values corresponding to the re-oxidation of Tl(Hg) on a hemispherical mercury electrode with:

(a) rs ¼ 50 μm; τ1 ¼ 300 ms; (b) rs ¼ 25 μm; τ1 ¼ 800 ms; 0.2 mM TlNO3, 0.1M KNO3.

Reproduced with permission of reference [29]
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integral ft1 ,G ¼
ðt1
0

fG u, qGð Þdu

integral f τ1þt2ð Þ,G ¼
ðτ1þt2
0

fG u, qGð Þdu

integral ft2,G ¼
ðt2
0

fG u, qGð Þdu

9>>>>>>=>>>>>>;
ð4:56Þ

and fG(t, qG) given in Table 2.3 of Sect. 2.6.

For a planar electrode it is fulfilled that for a given value of t (see [30]),

integral ft, plane ¼ 2
ffiffi
t
pffiffiffiffiffiffiffi
πD
p ð4:57Þ

and Eqs. (4.54) and (4.55) can be written as

Qplane
d,1 ¼ FADc*O

2
ffiffiffiffi
t1
pffiffiffiffiffiffiffi
πD
p ð4:58Þ

Q plane
d,2 ¼ FADc*O

2ffiffiffiffiffiffiffi
πD
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ1 þ t2
p � ffiffiffiffi

t2
p� � ð4:59Þ

In the case of spherical electrodes for a given value of t,

integral ft, sphe ¼ 2
ffiffi
t
pffiffiffiffiffiffiffi
πD
p þ t

rs
ð4:60Þ

and, therefore, the charge–time response can be written as,

Q sphe
d,1 ¼ FAsDc

*
O

2
ffiffiffiffi
t1
pffiffiffiffiffiffiffi
πD
p þ t1

rs

� �
ð4:61Þ

Q sphe
d,2 ¼ FAsDc

*
O

2ffiffiffiffiffiffiffi
πD
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ1 þ t2
p � ffiffiffiffi

t2
p� �þ τ1

rs

� �
ð4:62Þ

The time variation of the normalized converted charges for planar, spherical, and

disc electrodes can be seen in Fig. 4.3, for which a radius of 10 μm has been

assumed for the spherical and disc electrodes.QG
τ1
is the maximum converted charge

for the first potential pulse corresponding to a time t1 ¼ τ1, and is given by

QG
τ1

FAGDc*O
¼ integral fτ1 ,G ð4:63Þ

with integral fτ1 ,G ¼
ðτ1
0

fG u, qGð Þdu.
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It is clear from Fig. 4.3 that the temporal evolution of the converted charge is

electrode-size and shape depending. For spherical and disc electrodes, the evolution

of QG
d,1=Q

G
τ1

� �
is quasi-linear (since for this radius Q sphe

d,1 ffi Qdisc
d, 1 � t1=τ1 ; see

Eq. (4.61) and Table 2.3 of Sect. 2.6), whereas for the second potential pulse the

amount of converted charge is much smaller than that obtained at a planar electrode

(macroelectrode). Indeed, when the electrode radius becomes small enough the

converted charge for the second potential pulse is constant and coincides with QG
τ1

(for example, from Eq. (4.62) in the limit rs �
ffiffiffiffiffiffiffiffiffiffi
πDt1
p

the expression Q sphe
d,2 ffi F

AsDc
*
Oτ1=rs is obtained). This result is in line with those plotted in Fig. 4.1 for the

current–time curves.

Note that, in agreement with Eq. (4.55) and due to its cumulative character, the

charge corresponding to the second potential pulse tends to QG
τ1

when t2 ! 0.

Therefore, the reverse charge due solely to the second potential, QG
r;2, is given as,

QG
r,2 ¼ QG

τ1
� QG

d,2

¼ FAGDc
*
O integral fτ1 ,G � integral f τ1þt2ð Þ,G þ integral ft2,G

h i
ð4:64Þ

Equations (4.54) and (4.55) only consider the “faradaic” charge, that is, only the

converted charge due to the redox conversion of species O and R. The total

converted charge should contain also a contribution due to the double layer

charging process (Qc) and, if there is adsorption of redox species, an addend

which accounts the charge due to the reduction of these immobilized molecules

t / s
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Fig. 4.3 Normalized charge–time curves for a double potential step withE1 � E��O
0

c 0 � t1 � τ1ð Þ
and E2 
 E��O

0

c (τ1 � t � τ1 þ τ2ð Þ), calculated from Eqs. (4.54) and (4.55) for planar (solid lines),
spherical (dashed lines), and disc (dashed-dotted lines) electrodes.Qτ1 is given by Eq. (4.63). In the

inner figure, the potential perturbation has been plotted with Erest being the resting potential of null

current previous to the application of E1 and E2 ¼ Erest. D ¼ 10�5 cm2 s�1, τ1 ¼ τ2 ¼ 1 s
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(Qa ¼ FAΓT, with ΓT being the total excess of redox species). In absence of

adsorption of reactants, and assuming that the second potential pulse returns to

the initial resting value Erest (see Fig. 4.3), Eqs. (4.54) and (4.64) can be written as

QG
d,1 ¼ FAGDc

*
O integral ft1 ,G þ Qc

QG
r,2 ¼ FAGDc

*
O integral fτ1 ,G � integral f τ1þt2ð Þ,G þ integral ft2,G

h i
þ Qc

)
ð4:65Þ

in such a way that the plot of QG
d;1 versus integral ft1 ,G and of QG

r;2 versus

integral fτ1 ,G � integral f τ1þt2ð Þ,G þ integral ft2,G

h i
should be linear with the

intercept of both lines being equal to Qc in agreement with the potential perturba-

tion applied. Note also that when adsorption of redox species takes place the

intercept reflects the value of the adsorbed charge Qa (for a detailed discussion of

the different possibilities, see [31]).

The charge is a valuable magnitude for identifying the presence of homogeneous

chemical reactions or, in general, deviations from a pure faradaic behavior. Thus, in

absence of adsorption of redox species, the normalized charge-time curves can be

written as

QG,n
d,1 ¼

QG
d,1

QG
τ1

¼ integral ft1 ,G

integral fτ1 ,G

QG,n
r, 2 ¼

QG
r,2

QG
τ1

¼ 1�
integral f τ1þt2ð Þ,G
integral fτ1 ,G

þ integral ft2 ,G

integral fτ1 ,G

9>>>>=>>>>; ð4:66Þ

The ratios given in Eq. (4.66) are only dependent on the electrode shape and size

but not on parameters related to the electrode reaction, like the number of trans-

ferred electrons, the initial concentration of oxidized species, or the diffusion

coefficient D. For fixed time and size, the values of QG;n
d;1 or QG;n

r;2 are characteristic

for a simple charge transfer (see Fig. 4.4 for the plot of QG;n
r;2 calculated at time

τ1 þ τ2ð Þ for planar, spherical, and disc electrodes) and, as a consequence, devia-

tions from this value are indicative of the presence of lateral processes (chemical

instabilities, adsorption, non-idealities, etc.) [4, 32]. Additionally, for nonplanar

electrodes, these values allow to the estimation of the electrode radius when simple

electrode processes are considered.

4.2.3 Reverse Pulse Voltammetry

As stated in Sect. 4.1, in RPV a series of double potential pulses are applied where

the product is generated always in the first one under diffusion-controlled conditions

whereas the second potential pulse is set at different values (E2) and the current is

recorded at the end of this second pulse (IG2 , measured at t2 ¼ τ2) (see Scheme 4.2).
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Thus, apart from information about the mass transport and reactivity of the product

(analogously to DPC), the thermodynamics and kinetics of the electron transfer can

be studied from the position and shape of the RPV curve: IG2 versus E2.

The expression for the current in this technique, valid for any electrode geometry

when the diffusion coefficients of species O and R are assumed as equal, can be

obtained from Eq. (4.29) by making eη1 ! 0 and assuming c*R ¼ 0 for the sake of

simplicity,

IGRPV
FAGDc*O

¼ fG τ1 þ τ2, qGð Þ � eη2

1þ eη2
fG τ2; qGð Þ ð4:67Þ

Equation (4.67) takes the following expressions for disc, spherical, and planar

electrodes:

I discRPV,N ¼
I discRPV

I planed,1 τ2ð Þ
¼ ffiffiffiffiffiffiffiffiffiffiffi

πD τ2
p

fd τ1 þ τ2, rdð Þ � eη2

1þ eη2
fd τ2; rdð Þ

� �
ð4:68Þ

I spheRPV,N ¼
I spheRPV

I planed,1 τ2ð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

rs
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ1 þ τ2

r
� eη2

1þ eη2

ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

rs
þ 1

� �
ð4:69Þ

I planeRPV,N ¼
I planeRPV

I planed,1 τ2ð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ1 þ τ2

r
� eη2

1þ eη2
ð4:70Þ

with η2 given in Eq. (4.9) and fd being a function of time and of the disc radius rd given

in Table 2.3 of Sect. 2.6 and Iplaned;1 (τ2) given by Eq. (4.49) with t1 ¼ τ2 and DO ¼ D.

Fig. 4.4 Normalized net charge, corresponding to the second potential pulse applied, calculated

from Eq. (4.66) for a time t ¼ τ1 þ τ2ð Þ for planar (dotted line), spherical (solid line), and disc

(dashed line) electrodes as a function of the electrode radius rG (with rG ¼ rs for a spherical

electrode and rG ¼ rd for a disc one).Q
G
τ1
is given by Eq. (4.63).D ¼ 10�5 cm2 s�1, τ1 ¼ τ2 ¼ 1 s
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From Eq. (4.67), it is possible to obtain an expression for the cross potential (null

current potential) of the RPV curve valid for any electrode geometry

Ecross ¼ E��O
0

c þ
RT

F
ln

fG τ1 þ τ2, qGð Þ
fG τ2; qGð Þ � fG τ1 þ τ2, qGð Þ

� �
ð4:71Þ

From Eqs. (4.68)–(4.70), it is clear that the anodic normalized limiting currents

(corresponding to eη2 !1) obtained for planar and spherical electrodes have an

identical expression, and are only dependent on the ratio between the time lengths

of the first and second potential pulse, τ1 and τ2,

I planeRPV,N E2 
 E��O
0

c

� �
¼ I spheRPV,N E2 
 E��O

0

c

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ1 þ τ2

r
� 1 ð4:72Þ

In the case of disc electrodes, the anodic normalized limiting current depends on the

disc radius through the function fd, which is independent of the potential (see Table 2.3

of Sect. 2.6). Therefore, the inflection point of the IGRPV � E2 curve of the RPV curve

(mid-wave potential, Emid,RPV) coincides with the half wave potential, which can be

obtained from Eq. (4.67) independently of the electrode geometry and is given by,

Emid,RPV ¼ E r
1=2 ¼ E��O

0

c ð4:73Þ

In Fig. 4.5 it can be seen the influence of τ2 on the normalized RPV curves

calculated from planar, spherical, and disc electrodes from Eqs. (4.67) and (4.36).

From these curves, it can be observed that the decrease of τ2 causes an increase of

the anodic limiting current (with this increase being more noticeable in the case of

planar electrodes), whereas it has no effect on the half-wave potential of the

responses (marked as a vertical dotted line).

When the diffusion coefficients of both electroactive species are assumed as

different, a general solution for the RPV response at any electrode geometry has not

been found. In the case of spherical electrodes, the response is rather complex and it

can be found in reference [33] (see also Eq. (F.42) in Appendix F). From this

solution, the particular cases of planar and spherical ultramicroelectrodes can be

directly obtained,

I planeRPV,N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τ1 þ τ2

r
� γeη2

1þ γeη2 ð4:74Þ

Imicrosphe
RPV,N ¼ Imicrosphe

RPV

Isphe, ssd, c

! 1

1þ γ2eη2 ð4:75Þ

with

Isphe, ssd, c ¼ FAsDOc
*
O

1

rs
ð4:76Þ
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The effect of the electrode radius and of DR on the RPV curves can be seen in

Fig. 4.6. It is observed that an increase of DR gives rise to a shift of the RPV curve

toward more positive potentials regardless of the electrode size. Nevertheless, the

influence of DR on the anodic limiting current depends on the electrode size. Thus,
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πDO τ1 þ τ2ð Þp þ 1=

rsÞ (see Eq. (4.36)). Five γ
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Reproduced with

permission of [33]
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this influence is null for planar electrodes (Fig. 4.6a), meaningful at microelectrodes

(rs � 3� 10�3 cm) and again negligible at spherical ultramicroelectrodes. These

conclusions can be extended for other microelectrode geometries (Fig 4.6b, c). Under

the conditions considered in the figure, which are typical of aqueous solutions

(DO ¼ 10�5 cm2 s�1, τ1 ¼ 1 s), electrode radii between 25 and 65 μm are optimum

for the determination of DR from the anodic limiting current values [20] (besides,

the ratio between the limiting currents may offer better tolerance to possible

uncertainties in the values of the bulk concentration and/or the electrode radius).

Therefore, in conventional solvents ordinary microelectrodes are very appropriate for

the measurement of both diffusion coefficients of the redox couple in the same

experiment with RPV. In other media like, for example, ionic liquids, the diffusion

coefficients of the electroactive species are significantly smaller (DR � 10�7 cm2 s�1

[23, 33, 34]) so ultramicroelectrodes must be used to have a good sensitivity. The

decrease of the anodic limiting current when the diffusion coefficient of the reduced

species increases is due to the greater diffusion of species R toward the bulk solution.

4.2.4 Differential Double Pulse Voltammetry

In the differential double pulse techniques, the current response is the difference

ΔIG ¼ IG2 � IG1 obtained when two consecutive potentials E1 and E2 are applied

(with the difference ΔE ¼ E2 � E1 called pulse amplitude being constant during

each experiment; see Scheme 4.3). The theoretical expressions for the ΔIG � E1

curve of reversible processes under planar diffusion were given by Parry and

Osteryoung [35] and Ruzic and Sluyter-Rehbach [36].

The subtractive nature of signal and the rapid decay of the charging current in a

constant potential pulse give rise to well-defined peak-shaped curves that can be

characterized through the peak current (ΔIG,peak), the peak potential (EG;peak
1;2 ), and

the half peak width, W1/2. Differential double pulse techniques emulate the first

derivative of the NPV curve and the signal coincides with it for small values of ΔE
(i.e., for ΔE� RT=F ) [37]. Thus, by subtracting the expressions of IG1 and IG2
measured at the end of their respective potential pulses given by Eqs. (4.28) and

(4.29), respectively, valid for any electrode geometry when the diffusion coeffi-

cients of species O and R are assumed as equal (with c*R ¼ 0), we get

ΔIG ¼ IG2 τ1 þ τ2ð Þ � IG1 τ1ð Þ ¼ FAGDc
*
O

1

1þ eη1
fG

�
τ1 þ τ2, qGð Þþ

þ 1

1þ eη2
� 1

1þ eη1

� �
fG τ2; qGð Þ � 1

1þ eη1
fG τ1; qGð Þ

� ð4:77Þ
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In DDPV, the duration of the second pulse is much shorter than the first one

τ1=τ2 ¼ 50� 100 such that it can be assumed that fG τ1 þ τ2, qGð Þ ffi fG τ1; qGð Þ
and, therefore, Eq. (4.77) simplifies to

ΔIGDDPV ¼ FAGDc
*
O

1

1þ eη2
� 1

1þ eη1

� �
fG τ2; qGð Þ: ð4:78Þ

The applicability of Eq. (4.78) is dependent on the ratio τ1/τ2, and on the

electrode size. So, the radius range of validity of this expression broadens when

the ratio τ1/τ2 increases.
Equation (4.78) takes the following expressions for disc, spherical, and planar

electrodes,

ΔI discDDPV,N ¼
ΔI discDDPV

I planed,1 τ2ð Þ
¼ ffiffiffiffiffiffiffiffiffiffiffi

πDτ2
p 1

1þ eη2
� 1

1þ eη1

� �
f d τ2; rdð Þ ð4:79Þ

ΔI spheDDPV,N ¼
ΔI spheDDPV

I planed,1 τ2ð Þ
¼ 1

1þ eη2
� 1

1þ eη1

� � ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

rs
þ 1

� �
ð4:80Þ

ΔI planeDDPV,N ¼
ΔI planeDDPV

I planed,1 τ2ð Þ
¼ 1

1þ eη2
� 1

1þ eη1

� �
ð4:81Þ

with η2 and η1 given by Eqs. (4.9) and (4.16), respectively, Iplaned;1 (τ2) given by

Eq. (4.49) with t1 ¼ τ2 and DO ¼ D. Note that Eq. (4.80) for spherical electrodes

is generally applicable for τ1=τ2 � 50 with an error lower than 0.2 % in the region

around DDPV peak for any electrode size.

When different diffusion coefficients are considered, the expression for spherical

electrodes is given in Eq. (4) of reference [38]. From this equation, the particular

cases of planar and spherical ultramicroelectrodes can be directly obtained,

ΔI planeDDPV,N ¼
ΔI planeDDPV

I planed,1 τ2ð Þ
¼ γ 1

1þ γeη2 �
1

1þ γeη1
� �

ð4:82Þ

ΔImicrosphe
DDPV,N ¼

ΔImicrosphe
DDPV

Isphe, ssd, c

¼ γ2 1

1þ γ2eη2 �
1

1þ γ2eη1
� �

ð4:83Þ

with γ and Isphe;ssd;c given by Eqs. (4.32) and (4.76), respectively.

In this section, we use the average of the two stepped potentials as potential axis

E1,2 ¼ E1 þ E2

2

η1,2 ¼
F

RT
E1,2 � E��O

0

c

� �
9>>=>>; ð4:84Þ
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instead of the usual E1-value.
1 Note that this choice gives the advantage that the

peak potential coincides with the half-wave potential when both diffusion coeffi-

cients are equal, regardless of the electrode size and shape. Moreover, for a given

experimental system (electrode geometry, diffusion coefficients) the DDPV curves

corresponding to a negative pulse height (ΔE < 0, normal mode) and to a positive

one (ΔE > 0, reverse mode) are fully symmetrical with respect to the potential axis
for electrodes of any geometry and size (Eqs. 4.78–4.83).

For the particular cases studied here, it is possible to deduce simple analytical

expressions for the values of peak potential and peak current. The peak potential

(EG;peak
1;2 ) is obtained by equaling the derivative dΔIGDDPV/dE1,2 to zero. Next, by

substituting EG;peak
1;2 in the expression for ΔIGDDPV, the peak current (ΔIG;peakDDPV ) is

immediately deduced.

In all the cases, the expression for the current separates into two factors, one

dependent on τ2 and/or rs or rd, and another dependent on γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p� �
(in the

case of planar electrodes), E1 and E2. As only the second factor varies “along”

DDPV scan, the peak potential is only a function of the parameters included in this

factor, and so is independent of time and electrode geometry.

– Peak parameters for any electrode geometry by assuming DO ¼ DR ¼ D:

EG,peak
1,2 ¼ E r

1=2 ¼ E��O
0

c ð4:85Þ

ΔIG,peakDDPV ¼ FAGDc*O fG τ2; qGð Þtanh F

RT

ΔEj j
4

� �
ð4:86Þ

Note that Eq. (4.85) is fulfilled for the ΔIGDDPV � E1,2 curve whereas for the

ΔIGDDPV � E1 one, the expression of the peak potential is EG;peak
1 ¼ E��O

0

c � ΔEj j=2
[38].

Under these conditions, the peak potential is independent of the electrode

geometry considered. For small values of the pulse amplitude ( ΔEj j � RT=F)
the DDPV current coincides with the derivative of the Normal Pulse

Voltammetric curve at τ2, being in these conditions tanh F ΔEj j= 4RTð Þð Þ ffi F
ΔEj j= 4RTð Þ and the peak current [37, 39],

ΔIG,peakDDPV

F ΔEj j= RTð Þð Þ

 !
ΔEj j�RT=F

¼ 1

4
FAGDc

*
O fG τ2; qGð Þ ð4:87Þ

1 The expression 1
1þγeη2 � 1

1þγeη1
� �

, which depends onE1 and E2 through η1 and η2, can be written as a

function ofE1,2 andΔE, since exp(η1)¼ exp(η1,2)/exp(FΔE/2RT) and exp(η2)¼ exp(η1,2)exp(FΔE/2RT).
Note that the peak current and the half peak width are not affected by this change.
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– Peak parameters for planar electrodes DO 6¼ DRð Þ:
When the diffusion coefficients are different, the peak potential coincides with

the “reversible” half-wave potential (Er
1;2), whose value depends on

γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p� �
, enabling determination of DR once DO is known,

Eplane, peak
1,2 ¼ Er, plane

1=2 ¼ E��O
0

c þ
RT

F
ln

1

γ

� �
ð4:88Þ

ΔIplane,peakDDPV ¼
FA

ffiffiffiffiffiffiffiffiffiffiffi
DOc*O

q
ffiffiffiffiffiffiffi
πτ2
p tanh

F

RT

ΔEj j
4

� �
ð4:89Þ

Again, for the ΔI planeDDPV � E1;2 curve the expression of the peak potential is

Eplane,peak
1,2 ¼ Er, plane

1=2 [4, 35, 36].

– Peak parameters for microspheres and microdiscs:
At spherical and disc ultramicroelectrodes under steady-state conditions the

peak potential coincides with the “reversible” half-wave potential (Er;micro
1=2 ),

Emicrosphe,peak
1,2 ¼ Emicrodisc,peak

1,2 ¼ Er,micro
1=2 ¼ E��O

0

c þ
RT

F
ln

1

γ2

� �
ð4:90Þ

and the peak current is

ΔImicrosphe,peak
DDPV ¼ F4πrsDOc

*
Otanh

F

RT

ΔEj j
4

� �
ΔImicrodisc,peak

DDPV ¼ 4FrdDOc
*
Otanh

F

RT

ΔEj j
4

� �
9>>=>>; ð4:91Þ

Note that the peak current densities (ΔiG,peakDDPV ¼ ΔIG,peakDDPV =AG) of microspheres

and microdiscs of the same radius fulfill Δimicrosphe,peak
DDPV ¼ π=4ð ÞΔimicrodisc,peak

DDPV .

As the half-wave potential depends on the geometry and size of the electrode

considered, in the case of spherical or disc electrodes under transient conditions,

it is deduced that the peak potentials are comprised between Er;micro
1=2 for rG

� ffiffiffiffiffiffiffiffiffiffiffi
πDO t
p

(see Eq. (4.90)) and Er;plane
1=2 for rG 


ffiffiffiffiffiffiffiffiffiffiffi
πDO t
p

(see Eq. (4.88)).

In Fig. 4.7, the peak potential and the half-wave potential corresponding to a

spherical electrode are plotted versus the sphericity factor R0 ¼ rs=
ffiffiffiffiffiffiffiffiffiffiffi
DOτ2
p

using

three values of γ (5, 1, and 0.2). As expected, the Esphe;peak
1;2 and Er;sphe

1=2 values

coincide for planar and ultramicroelectrodes, whereas for spherical microelectrodes

the discrepancy is significant when γ 6¼ 1, with a maximum difference of �11 mV

for rs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmaxτ2
p � 2 (where Dmax is the largest diffusion coefficient of the redox

pair) that increases as γ moves away from 1 and the ratio τ1/τ2 is higher. This alerts
against the identification of the peak potential as the half-wave potential when

microelectrodes are employed and the diffusion coefficients differ significantly.
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Fig. 4.7 Variation of the DDPV peak potential (solid line) and the half-wave potential (dotted
line) with respect to the formal potential with the electrode sphericity parameter corresponding

to the second pulse ( R0 ¼ rs=
ffiffiffiffiffiffiffiffiffiffiffi
DOτ2
p

) for different values of γ indicated on the graph.

ΔE ¼ �50 mV, τ1 ¼ 5 s, τ2 ¼ 0:025 s
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Fig. 4.8 Influence of electrode radius on the peak potential of the DDPV responses. Three electrode

sizes are considered: planar electrode (solid line, from Eq. (4.82)), rs ¼ 2� 10�3 cm (dashed line,

from Eq. (4) of reference [38]), rs ¼ 5� 10�6 cm (dotted line), from Eq. (4.83)). γ values are

marked on the curves. ΔE ¼ �50 mV, E initial
1,2 � E��O

0
c ¼ þ150 mV, E final

1, 2 � E��O
0

c ¼ �150 mV,

number of points¼ 50. τ1 ¼ 1 s, τ2 ¼ 0:02 s, c*O ¼ 1 mM, c*R ¼ 0, DO ¼ 10�5 cm2 s�1, r0¼ rs.
Reproduced from [38] with permission

256 4 Double Pulse Voltammetries



In Fig. 4.8, the influence of the electrode radius of spherical electrodes on the

peak potential can be seen. The DPV curves are normalized in order to show better

the radius effect, i.e., ΔIspheDDPV/ΔI
sphe;peak
DDPV . When γ > 1 a decrease of electrode radius

gives rise to a shift of the peak potential toward more negative potentials, whereas

when γ < 1 the shift is toward more positive potentials. For γ ¼ 1, the peak potential

is independent of the electrode size and equal to the formal potential (Eq. 4.85).

Under the conditions considered in the figure γ2 ¼ 5, 1=5ð Þ, the absolute value of
the difference between the peak potential at planar electrode and spherical (or disc)

ultramicroelectrodes is Er,micro
1=2 � Er, plane

1=2

			 			 � 20:7 mV.

The DDPV curves corresponding to a negative pulse height (ΔE < 0) and to a

positive one (ΔE > 0) for three γ values at a spherical electrode can be seen in

Fig. 4.9. For any γ value, the peak potential is the same for normal and reverse

modes when E1,2 is chosen as the x-axis. The sign of ΔE has an influence on

ΔIsphe;peakDDPV , and this depends on the ratio of the diffusion coefficients of electroactive

species. It can be defined the following ratio:
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sphe
DDPV,NIΔ

peak
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0EΔ <

0EΔ >

(b)

(a)

1 2 c   V,E E /′−

Fig. 4.9 (a) Normalized DDPV curves (ΔIspheDDPV/I
plane
d;1 (τ1)) corresponding to a scan in normal mode

(ΔE ¼ �50 mV) and in reverse mode (ΔE ¼ 50 mV) at a spherical electrode
�
rs ¼ 2� 10�3 cm),

from Eq. (4) of reference [38]. Three γ values are considered: γ2 ¼ 1=5 (dashed line), γ2 ¼ 1 (solid

line), and γ2 ¼ 5 (dotted line); (b) Variation of ΔIsphe;peakDDPV;R with the ratio of diffusion coefficients.

E initial
1,2 � E��O

0
c ¼ þ200 mV, E final

1,2 � E��O
0

c ¼ �200 mV, number of points¼ 70. Taken from [38]

with permission
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ΔIsphe,peakDDPV,R ¼ ΔIsphe,peakDDPV ΔE > 0ð Þ=ΔIsphe,peakDDPV ΔE < 0ð Þ
			 			 ð4:92Þ

As can be inferred from Fig. 4.9,ΔIsphe,peakDDPV,R ¼ 1when both diffusion coefficients

are equal DO ¼ DRð Þ (see Eq. (4.86)). When DO > DR, ΔIsphe,peakDDPV,R > 1, whereas

when DO < DR we find that ΔIsphe, peakDDPV,R < 1. Hence, this ratio is sensitive to the γ
value and, therefore, is very useful for the determination of diffusion coefficients

(in the optimum range 0:5 � rs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmaxτ2
p � 3:5, with Dmax being the largest

diffusion coefficient of the redox pair).

4.2.4.1 Ion Transfer Through Liquid Membranes

DDPV technique has been also applied to the study of the ion transfer processes in

systems with one and two liquid/liquid polarizable interfaces [40–42]. The expres-

sion for the current corresponding to the transfer of ion Xþ is:

ΔIDDPV

FAc*
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW

Xþ=πτ2
q ¼ 1

1þ eη2
� 1

1þ eη1
one polarizable interface ð4:93Þ

ΔIDDPV

FAc*
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW

Xþ=πτ2
q ¼ g ηM,2

� �� g ηM,1

� �
two polarizable interfaces ð4:94Þ

with

g ηM, j

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþeηM, jð Þ2 þ 8λþeηM, j

q
� λþeηM, j

4
j ¼ 1, 2 ð4:95Þ

ηM, j ¼
F

RT
EM, j � EM,��O0
� �

EM, j ¼ Eout, j � Einn, j

)
j ¼ 1 or 2 ð4:96Þ

EM,��O0 ¼ Δw
Mϕ
��O
Xþ
0 � ΔM

w2
ϕ��ORþ

0 ð4:97Þ

λþ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2

RþD
M
Xþ

q
Dw1

Xþ

c*
Rþ

c*
Xþ

ð4:98Þ

Eout,j and Einn,j are the individual potential drops at each interface caused by the

application of the first and second potential steps. Δw
Mϕ
��O
Xþ
0 and ΔM

w2
ϕ��ORþ

0 are the

formal ion transfer potentials for the target ion X+ and for the membrane electrolyte

cation R+, respectively, c*
Rþ is the concentration of the membrane electrolyte cation,

R+, andDM
Xþ andD

w2

Rþ are the diffusion coefficients of X
+ in the membrane (M phase)

and R+ in the inner aqueous solution (w2 phase), respectively.

The half-wave potential, EM
1=2, is given by

258 4 Double Pulse Voltammetries



EM
1=2 ¼ EM,��O 0 � RT

F
lnλþ ð4:99Þ

In Fig. 4.10, the DDPV curves corresponding to a membrane system with two

polarizable interfaces (solid lines) and also to a system with a single polarizable

interface (dashed lines), obtained for two values of the pulse amplitude ΔE,
are shown. The current ΔIDDPV has been plotted in all the cases versus the

difference Eindex � EM
1=2

� �
, with Eindex ¼ EM,1 þ EM,2

� �
=2. The use of Eindex

instead of the usual EM,1 is of great interest since, as has been indicated above,

the ΔIDDPV � Eindex plots are centred about the half-wave potential in the case of a

single polarizable interface system (see dashed curves). As can be seen in this

Figure, the DDPV peaks obtained for the liquid membrane system with two

polarizable interfaces are shifted 13 mV with respect to those obtained when only

one polarizable interface is used, in agreement with Eq. (4.94). Moreover, in the

Fig. 4.10 Normalized ΔIDDPV= FAc*
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW

Xþ=πτ2
q� �

� Eindex � EM
1=2

� �
curves calculated from

Eqs. (4.93) (dashed lines) and (4.94) (solid lines). The values of ΔE are on the curves.

Δw
Mϕ
��O
Xþ
0 ¼ �200 mV, ΔM

w2
ϕ��ORþ

0 ¼ �350 mV, τ1 ¼ 12:5 s, τ2 ¼ 0:25 s, Dw1

Xþ ¼ Dw2

Rþ ¼
10�5 cm2 s�1, DM

Xþ ¼ 10�8 cm2 s�1, c*
Xþ ¼ 0:1 mM, c*

Rþ ¼ 50 mM, T¼ 298.15 K. Taken

from [42] with permission
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first case the ΔIDDPV � Eindex curves are lower (around 40–45 %) and wider than

those obtained in the second case (with a half peak widthW
1=2
DDPV ’ 131 mV versus

the ffi 90 mV observed when only one interface is considered).

4.2.5 Differential Normal Double Pulse Voltammetry

Equation (4.77) corresponds to the normal mode of Differential Double Pulse

Voltammetry for which the duration of the second applied pulse is not restricted

as in the case of DDPV [35]. From this equation, the expression of the current

ΔIGDNDPV at very negative and positive potentials valid for any electrode geometry

can be directly obtained,

ΔIGDNDPV E1 ! �1,E2 ! �1ð Þ ¼ FAGDc*O fG τ1 þ τ2, qGð Þ � fG τ1; qGð Þð Þ
ð4:100Þ

ΔIGDNDPV E1 !1,E2 !1ð Þ ¼ 0 ð4:101Þ

In the case of planar electrodes, from Eq. (4.100) and Table 2.3 of Sect. 2.6, it is

immediately deduced that

ΔI planeDNDPV E1 ! �1,E2 ! �1ð Þ
FADc*O

¼ 1ffiffiffiffiffiffiffi
πD
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ1 þ τ2
p � 1ffiffiffiffi

τ1
p

� �
ð4:102Þ

In order to check this behavior, in Fig. 4.11 it can be seen the influence of τ2 on
the DNDPV curves calculated from planar, spherical, and disc electrodes from

Eq. (4.77). From these curves, it can be observed that the increase of τ2 causes a
decrease of the peak current in all the cases, which is much more pronounced in the

case of planar electrodes (a). The current at very negative potentials increases in

absolute value with τ2 which is in agreement with Eq. (4.100). The peak potential of

the DNDPV curves of spherical and disc electrodes is not practically affected by the

value of τ2 but in the case of a plane electrode is shifted toward more positive values

as τ2 increases.

4.2.6 Additive Differential Double Pulse Voltammetry

As established in Sect. 4.1, two DDPV recordings, ΔIG,cDDPV ¼ IG,c2 E c
2

� �� IG1 E1ð Þ,
where E c

2 ¼ E1 � ΔEj j and ΔIG,aDDPV ¼ IG,a2 E a
2

� �� IG1 E1ð Þ where E a
2 ¼ E1 þ ΔEj j,

enables us to analyze the influence of different parameters on the charge transfer

reaction. In Scheme 4.4, it has been shown this new technique consisting in the

addition of the signals ΔIG;cDDPV and ΔIG;aDDPV [3]
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IGADDPV ¼ IG,c2 E c
2

� �� 2IG1 E1ð Þ þ IG,a2 E a
2

� �
: ð4:103Þ

This technique can be considered as a natural extension of DDPV and it offers,

among others, the following advantages:

– ADDPV behaves as the Double Derivative Voltammetry for ΔE� RT=F.
– The ADDPV curves present a zero current potential, Ecross, which can be

measured with great accuracy. It coincides with the half-wave potential of a

reversible electrode process in planar electrodes and with the formal potential

independently of the electrode geometry when the diffusion coefficients of both

species are assumed as equal.

– The charge current is minimized to a large extent with respect to other double

pulse techniques including DDPV, a feature which gives it great analytical

usefulness.

– ADDPV allows diagnostic criteria to be given about reaction mechanisms based

on the maximum and minimum peak current and peak potential measurements,

IGM and EM, and IGm and Em (see Scheme 4.4).

– The analytical expressions of the ADDPV signals are easily obtained from the

expression corresponding to DDPV ones, given in Sect. 4.2.4.

Using the expressions of the currents corresponding to the first and second

potentials applied given by Eqs. (4.28) and (4.29), the expression of the current in

ADDPV at any electrode geometry assuming equal diffusion coefficients for

species O and R and c*R ¼ 0 is

IGADDPV
FAGDc*O

¼ 1

1þ eη2,c
� 2

1þ eη1
þ 1

1þ eη2,a

� �
fG t2; qGð Þ ð4:104Þ

with

η2, c ¼
RT

F
E c
2 � E��O

0

c

� �
¼ RT

F
E1 � ΔEj j � E��O

0

c

� �
η2, a ¼

RT

F
E a
2 � E��O

0

c

� �
¼ RT

F
E1 þ ΔEj j � E��O

0

c

� �
9>=>; ð4:105Þ

In the case of planar electrodes, when different diffusion coefficients are

assumed, the expression of the ADDPV response is [3]:

I planeADDPV

FADc*O
¼ 1

1þ γeη2,c �
2

1þ γeη1 þ
1

1þ γeη2,a
� �

1ffiffiffiffiffiffiffiffiffiffiffiffi
πDOt2
p ð4:106Þ

where γ is given by Eq. (4.32).

Equation (4.104) is fulfilled independently of the electrode size and shape

whenever τ1
 τ2. Therefore, under these conditions the peaks and cross potentials

of the IGADDPV � E1 curve are independent of the electrode geometry and of t2.

Moreover, from Eq. (4.104) it can be deduced that EM � E��O
0

c ¼ � Em � E��O
0

c

� �
and
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IGM
IGm

				 				 ¼ 1 ð4:107Þ

By equating Eq. (4.104) to zero, the expression of the cross potential is imme-

diately deduced,

Ecross ¼ E��O
0

c ð4:108Þ
The difference between potentials EM and Em can be also obtained, and it is

given by

EM �Em ffi 68þ 7:45� 10�3 ΔEj j2� 2:54� 10�7 ΔEj j4 mV for ΔEj j> 20 mV

ð4:109Þ
EM � Em ffi 68 mV for ΔEj j < 10 mV ð4:110Þ

This last value coincides with that deduced previously for Double Derivative

Voltammetry [43] as indicated.

In Fig. 4.12, it can be seen the theoretical and experimental ADDPV curves

obtained for the system Fe(III) in oxalate for two different radii of an SMDE. It is

clear that the agreement between both sets of results is very good. The cross

potential, which coincides withE��O
0

c , is not affected by the variation of the electrode

size in line with Eq. (4.108). ADDPV has also been applied to study ion transfer

across the water-solvent polymeric membrane interface [41]. In Fig. 4.13, the

morphology of the background subtracted ADDPV curve obtained for the transfer

of tetraalkylammonium (TEA+) for ΔEj j ¼ 30, 50, and 80 mV is shown. The

experimental data were fitted to Eq. (4.106) by using the half-wave potential and

the term A DW
Xþ

� �1=2
as adjustable parameters (DW

Xþ is the diffusion coefficient of the

TEA+ cation in aqueous media). It can be seen that the cross potential does not

depend on the value of |ΔE| and it can be measured with high accuracy by making a

Fig. 4.12 Experimental

(symbols) and theoretical

(solid lines, Eq. (4.104) with

fG ¼ f s) I
sphe
ADDPV � E1 for

1 mM Fe3þ in 0.5 M

K2C2O4, pH¼ 4.45 at an

SMDE. ΔEj j ¼ 50 mV,

τ1 ¼ 3 s, t2 ¼ 0:03 s,

T¼ 291 K,

D ¼ 5:9� 10�6 cm2 s�1,
E��O

0
c ¼ �238 mV. The

values of the electrode radii

(in cm) are (a) 0.038,

(b) 0.026. (Reproduced with

permission of reference [3])
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linear interpolation of the central zone of the ADDPV curves. The half-wave

potential obtained was 305� 1 mV [41].

4.3 Nonreversible Electrochemical Reactions

In contrast with the behavior discussed in Sect. 4.2, in the case of non-reversible

electrode processes, a general treatment valid for any electrode geometrywhen a second

potential pulse is applied, as that discussed in Sect. 3.2, has not been found, even when

the diffusion coefficients are considered as equal. In this case analytical treatments

become very challenging, and numerical approaches are themost used for analyzing the

electrochemical responses. In this section, two analytical solutions corresponding to

spherical electrodes will be presented and discussed in RPV and DDPV (the limiting

behavior corresponding to planar electrodes will also be presented).

4.3.1 Application of a Double Potential Pulse to Planar
and Spherical Electrodes

The following charge transfer reaction taking place at a spherical electrode will be

considered:

Oþ e� ⇄
kred

kox
R ð4:IIÞ

with kred and kox being the rate constants for the electro-reduction and electro-

oxidation processes. The general approach for solving this process in double pulse

techniques at spherical electrodes is:

4

2

0

–2

–4
I /

 μ
A

200 250

E / mV

300 350 400

Fig. 4.13 background

substracted ADDPV curves

obtained for 10�4 M TEA+

at the following |ΔE| values:
30 (squares); 50 (circles),
and 80 mV (triangles).
(Reproduced with

permission of reference

[41])
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- The first applied potential is set at a value E1 at a stationary spherical electrode

during the interval 0 � t1 � τ1. The diffusion mass transport of the electroactive

species toward or from the electrode surface is described by the following differ-

ential equation system:

δ̂ c 1ð Þ
O r; tð Þ ¼ δ̂ c 1ð Þ

R r; tð Þ ¼ 0 ð4:111Þ

with

δ̂ ¼ ∂
∂t
� D

∂2

∂r2
þ 2

r

∂
∂r

 !
ð4:112Þ

where it is assumed that both electroactive species have the same diffusion coeffi-

cient (DO ¼ DR ¼ D) and a Butler–Volmer kinetic scheme for the charge transfer

(see Sect. 1.7).

The boundary conditions to be fulfilled by the solutions of the differential

equations are given by

t1 � 0, r !1
t1 ¼ 0, r � rs

�
c

1ð Þ
O ¼ c*O, c

1ð Þ
R ¼ c*R ð4:113Þ

t1 > 0, r ¼ rs :
∂c 1ð Þ

O

∂r

 !
r¼rs
¼ � ∂c 1ð Þ

R

∂r

 !
r¼rs

ð4:114Þ

D
∂c 1ð Þ

O

∂r

 !
r¼rs
¼ k0e�αη1c 1ð Þ

O rs; tð Þ � k0e 1�αð Þη1c 1ð Þ
R rs; tð Þ ð4:115Þ

where η1 ¼ F E1 � E��O
0

c

� �
=RT (see Eq. (4.16)).

Using the mathematical procedure described in Appendix G, the expression for

the current Isphe1 given by Eq. (G.21) is derived.

At time t � τ1, the applied potential is stepped from E1 to E2 and the mass

transport of species O and R during this second period (t ¼ τ1 þ t2; 0 � t2 � τ2)
described by

δ̂ c 2ð Þ
O r; tð Þ ¼ δ̂ c 2ð Þ

R r; tð Þ ¼ 0 ð4:116Þ

with the following boundary value problem:

t2 � 0, r !1
t2 ¼ 0, r � rs

�
c

2ð Þ
O ¼ c

1ð Þ
O , c

2ð Þ
R ¼ c

1ð Þ
R ð4:117Þ
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t2 > 0, r ¼ rs :
∂c 2ð Þ

O

∂r

 !
r¼rs
¼ � ∂c 2ð Þ

R

∂r

 !
r¼rs

ð4:118Þ

D
∂c 2ð Þ

O

∂r

 !
r¼rs
¼ k0e�αη2c 2ð Þ

O rs; tð Þ � k0e 1�αð Þη2c 2ð Þ
R rs; tð Þ ð4:119Þ

with η2 ¼ F E2 � E��O
0

c

� �
=RT (Eq. (4.9)).

Equation (4.119) assumes, as in previous chapter 3, that the transition state does

not change with potential and so the same value of α applies to forward and reverse
processes.

The resolution of Eq. (4.116) is given in Appendix G and the conditions of validity

of the expressions for the current corresponding to RPV and DDPV are deduced.

4.3.2 Reverse Pulse Voltammetry

As discussed in Sect. 4.1, the solution for the first potential pulse in RPV corre-

sponds to the well-known situation for a charge transfer process at a spherical

electrode under limiting conditions, with the current–time expression given by

Eq. (4.38). By following the mathematical procedure detailed in Appendix G, the

following expression for the current–potential response at the second potential

pulse under RPV conditions is obtained [44]:

I spheRPV ¼ I sphed,1 τ1 þ τ2ð Þ þ I planed,1 τ2ð Þ
1þ κ0sphe, sse�αη2 1þ eη2ð Þ�

�
ffiffiffi
π
p
2
Zχs,2 � β1=2 þ κ0sphe, sse�αη2 1þ eη2ð Þ ZF χs, 2

� �þ YG χs,2; β
� �� �
 � ð4:120Þ

with η2, I
sphe
d;1 , and Iplaned;1 given by Eqs. (4.9), (4.38), and (4.49), respectively.Moreover,

κ0sphe, ss ¼
k0rs
D

ð4:121Þ

Z ¼ �
1þ κ0sphe, sse 1�αð Þη2 1þ c �R

c �
O

� �
1þ κ0sphe, sse�αη2 1þ eη2ð Þ ð4:122Þ

χs, 2 ¼
2
ffiffiffiffiffiffiffiffi
Dτ2
p
rs

þ 2

ffiffiffiffi
τ2
D

r
k0e�αη2 1þ eη2ð Þ ð4:123Þ
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β ¼ τ2
τ1 þ τ2 ð4:124Þ

F χs,2
� � ¼ ffiffiffi

π
p
2
χs, 2 exp χs, 2=2

� �2
erfc χs,2=2

� � ð4:125Þ

Y ¼ � 2

χs, 2

ffiffiffi
β

π

r
ð4:126Þ

G χs,2;β
� �¼

X1
i¼0

�1ð Þiχiþ1s,2Yi
l¼0

pl

1þ
X1
k¼1

2k�1ð Þ!iβk
22k�1k! k�1ð Þ! iþ2kð Þ

( )
forχs,2<10

ffiffiffiffiffiffiffiffiffiffi
1�βp þ ffiffiffi

π
p X1

k¼1

�1ð Þk�1 2k�1ð Þ!βk
k�1ð Þ!χ2k�1s,2

þ

þ
X1
i¼1

�1ð Þi2 2i�1ð Þ!
i�1ð Þ!χ2is,2

1�
X1
k¼1

21�2k 2k�1ð Þ! 2iþ1ð Þβk
k! k�1ð Þ! 2k�2i�1ð Þ

 !
forχs,2>10

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð4:127Þ

I sphed,1 τ1 þ τ2ð Þ ¼ FAsDc
*
O

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD τ1 þ τ2ð Þp þ 1

rs

 !
ð4:128Þ

with pl given by Eq. (4.46).

The validity of analytical solution (4.120) has been studied by comparison with

numerical calculations [45] and an excellent agreement between analytical and

numerical results was obtained for any electrode size, for any length of the potential

pulses, and whatever the reversibility degree of the electrode process.

From Eq. (4.120), some particular cases of interest can be deduced:

– Planar electrodes (rs !1) [46]:

I planeRPV ¼ I planed,1 τ1 þ τ2ð Þ þ I planed,1 τ2ð Þ Z pF χ p,2

� �þ YG χ p,2; β
� �� � ð4:129Þ

with

Z p ¼ � eη2

1þ eη2
ð4:130Þ

χ p,2 ¼ 2

ffiffiffiffi
τ2
D

r
k0e�αη2 1þ eη2ð Þ ð4:131Þ

– Ultramicroelectrodes (rs �
ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

) [44, 47]:

Imicrosphe
RPV ¼ Isphe, ssd, c

κ0sphe, sse
�αη2

1þ κ0sphe, sse�αη2 1þ eη2ð Þ ð4:132Þ

with Isphe;ssd;c given by Eq. (4.76).
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In Fig. 4.14, the influence of different parameters like the duration of the second

potential pulse (τ2, Fig. 4.14a), the heterogeneous rate constant (k
0, Fig. 4.14b), and

the electrode size (through rs, Fig. 4.14c) on the RPV responses of planar and

spherical electrodes is shown. It is important to highlight that for irreversible

processes the RPV curve presents two branches (cathodic and anodic), the null

current plateau between them being wider the smaller k0 is.
Concerning the influence of τ2 in the case of large electrodes, a striking peak

is found in the anodic wave of the RPV curve for quasireversible and

irreversible systems when τ2 is sufficiently large (see Fig. 4.14a). This atypical

anodic peak is characteristic, and so indicative, of slow charge transfer processes

( k0 < 10�3 cm s�1 ), and is not found for reversible ones as can be seen in

Fig. 4.14c. In this figure, it can be also observed that the peak increases as k0

diminishes up to a limiting situation corresponding to totally irreversible systems

for which the magnitude of the peak is independent of k0 whereas its position

shifts toward more positive potentials as k0 value diminishes.

Note that the appearance of the anodic peak implies that, beyond the peak

potential, smaller anodic currents are obtained at more anodic potentials. This

situation is shown in Fig. 4.14b where it can be seen that at a given time there

is a crossing of the chronoamperograms so that the current corresponding to the

peak (E2 � E��O
0

c ¼ 300 mV, black curve) becomes greater than the anodic limiting

current (E2 � E��O
0

c ¼ 700 mV, blue curve). The appearance of a peak in the anodic

branch of RPV and Normal Pulse Voltammetry curves has also been described in

amalgam systems when small sized electrodes are used [21, 29], although in that

case the phenomenon is related to the depletion of species R whereas in the present

case it is related to the reversibility of the electrode process.

This unusual feature in RPV response is more apparent the longer the duration of

the second pulse (see Fig. 4.14a) and it is promoted by large electrodes, so that the

greatest peak is obtained at planar electrodes whereas it is not observed at micro-

electrodes (see Fig. 4.14d).

The shape and symmetry of the RPV curve give information about the kinetics of

the electrode process. This feature can be used for the extraction of kinetic

parameters by defining the parameter

ΔEmid,RPV ¼ E an
mid � E cath

mid ð4:133Þ

where Ecath
mid is the potential at which the current takes the half value of the cathodic

limiting current (i.e., IGRPV E cath
mid

� � ¼ IGd,1=2) and E
an
mid the potential at which the current

takes the half value of the anodic limiting current (i.e.,IGRPV E an
mid

� � ¼ IGRPV η2 !1ð Þ=2).
ΔEmid,RPV is directly related to the shape of RPV curves and so is very useful for

the quantitative study of the system kinetics. Thus, it is related to the separation of

the cathodic and anodic branches of the RPV curve, so its value increases as the

system behavior is more irreversible (see Fig. 4.15). Another interesting parameter
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Fig. 4.14 (a) Variation of RPV curve with τ2 for an irreversible system (k0 ¼ 10�5 cm s�1) at a
spherical electrode with rs ¼ 200 μm (Eq. 4.120). τ2 values indicated on the graph; (b) I2 � t2
chronoamperograms for two values of the second potential pulse: E2 � E��O

0
c ¼ 300 mV (black

line) and E2 � E��O
0

c ¼ 700mV (blue line); (c) RPV curves for different values of k0 (indicated on

the graph) at a planar electrode (Eq. 4.129) with τ2 ¼ 2τ1; (d) RPV curves for different electrode

radius (rs values indicated on the graph) for an irreversible system k0 ¼ 10�5 cm s�1
� �

) with τ2
¼ 2τ1 (Eq. 4.120). τ1 ¼ 1 s, D ¼ 10�5 cm2 s�1, c*R ¼ 0. IGRPV, lim ¼ IGRPV η2 !1ð Þ. Taken from

[44] with permission
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directly related to the symmetry of the RPV curves is ΣEmid,RPV ¼ E an
mid þ E cath

mid .

By combining the simultaneous analysis of the variation of ΣEmid,RPV and

ΔEmid,RPV with the duration of the second potential pulse, a complete charac-

terization of the redox system is feasible with RPV as discussed in [44], so

allowing the determination of the heterogeneous rate constant, the electron

transfer coefficient, and the formal potential. In [48], this analysis is carried

out for the reduction of three different redox systems covering a wide range of

electrode kinetics (3-nitrophenolate�=2��, 3-nitrophthalate2�=3�� and Eu3þ=2þ )
taking place at mercury hemispherical electrodes of ca. 25 μm radius, and

experimental values for the above parameters have been obtained (see

Table 4.1).

4.3.3 Differential Double Pulse Voltammetry

From the mathematical procedure given in Appendix G when τ1 
 τ2, the expres-
sion for the current of the second potential pulse is obtained:

I sphe2 ¼ I sphe1 τ1 þ τ2ð Þ þ Isphe, ssd, c

θ2 � 1ð Þg χs, 1
� �

θ2 1þ eη2ð Þ 1þ θ2 � 1ð ÞH χs,2
� �� � ð4:134Þ

withI sphe1 τ1 þ τ2ð Þgiven in Eq. (G.21) of AppendixG (see also Eqs. (3.66) and (3.76)

in Sect. 3.2.3), and χs,2 given in Eq. (4.123). Moreover,

log (κ0
sphe,ss)

-4 -3 -2 -1 0 1 2 3 4

Δ E
m

id
,R
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  /

  m
V
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800

1000Fig. 4.15 Variation of

ΔEmid,RPV with κ0sphe;ss for

α ¼ 0:5. 2
ffiffiffiffiffiffiffiffi
Dτ2
p

=rs ¼ 0:45,
τ1=τ2 ¼ 20
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χs,1 ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D τ1 þ τ2ð Þp

rs
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τ2ð Þ

D

r
k0e�αη1 1þ eη1ð Þ ð4:135Þ

g xð Þ ¼ 1� eη2

eη1

� �α θ2
θ1
þ 1� θ2

θ1

� �
H xð Þ

� �
ð4:136Þ

H xð Þ ¼ exp x=2ð Þ2erfc x=2ð Þ ð4:137Þ
θ2 ¼ 1þ κ0sphe, sse�αη2 1þ eη2ð Þ ð4:138Þ
θ1 ¼ 1þ κ0sphe, sse�αη1 1þ eη1ð Þ ð4:139Þ

with κ0sphe;ss given in Eq. (4.121).

As mentioned in Sect. 4.1, in DDPV technique initial equilibrium conditions

are reestablished before the application of each double potential pulse, for

example, by renewal of the electrode (mercury drop electrode) or by open

circuiting the working electrode for a waiting period. Lovrić shows [49], and

it is proved by numerical simulations in [5] that for a reversible process a

waiting period of � 5τ1 is long enough to achieve this condition at spherical

electrodes; the smaller the electrode radius, the shorter the waiting period

required. So, the expression for DDPV response, for which τ1 
 τ2, is imme-

diately particularized from Eq. (4.134) and the expression of Isphe1 (τ1)
(Eq. (G.21)),

ΔI spheDDPV

Isphe, ssd, c

¼ θ2 � 1ð Þg χ 0s,1
� �

θ2 1þ eη2ð Þ 1þ θ2 � 1ð ÞH χs,2
� �� � ð4:140Þ

where

χ
0
s, 1 ¼

2
ffiffiffiffiffiffiffiffi
Dτ1
p
rs

þ 2

ffiffiffiffi
τ1
D

r
k0e�αη1 1þ eη1ð Þ ð4:141Þ

From Eq. (4.140), expressions under some interesting conditions can be derived:

– Planar electrodes (rs !1). In this situation, expression (4.140) becomes:

ΔI planeDDPV

I planed,1 τ2ð Þ
¼

ffiffiffiffiffiffiffi
πτ2
D

r
k0e�αη2F χ p,2

� ��
� 1� 1þ eη2

1þ eη1

� �
1þ 1þ eη2

1þ eη1

eη2

eη1

� �α
� 1

� �
H χ p,1

� �� �
 � ð4:142Þ

with function F given in Eq. (4.125), Iplaned;1 by Eq. (4.49) and
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χ p,1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τ2ð Þ

D

r
k0e�αη1 1þ eη1ð Þ ð4:143Þ

χ p,2 ¼ 2

ffiffiffiffi
τ2
D

r
k0e�αη2 1þ eη2ð Þ ð4:144Þ

– Ultramicroelectrodes. When rs �
ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

, Eq. (4.140) tends to:

ΔImicrosphe
DDPV

Isphe, ssd, c

¼ κ0sphe, ss
e�αη2

θ2
� e�αη1

θ1

� �
ð4:145Þ

which, in the case of reversible systems (k0 !1), is equivalent to that obtained in

Square Wave Voltammetry under steady-state conditions [47]. Note that the use of

this equation is quite restricted since attaining steady-state conditions in DDPV

requires very small electrodes because of the very short duration of the second

potential pulse (t2).

As discussed in Appendix G, for the resolution of the problem we have supposed

that the mathematical concentration profiles of the first pulse for the total time τ1 þ τ2
are not disturbed by the application of the second one. This assumption is fully valid

for any electrode radius in DDPV technique, where the duration of the second pulse is

much shorter than that of the first one (τ1 
 τ2). It has been confirmed the validity of

the analytical Eq. (4.134) in DDPV conditions by comparison with numerical results

[45], since nonsignificant deviations are obtained (less than 0.5 %) around the peak

potential when τ1=τ2 > 50.

In Fig. 4.16, the effect of the reversibility of the electron transfer process on

DDPV peaks is studied at conventional spherical microelectrodes (electrode radius

rs ¼ 30 μm for t2 ¼ 10 ms and D ¼ 10�5 cm2 s�1).
As previously depicted for planar electrodes in reference [50], the decrease of

the heterogeneous rate constant gives rise to the decrease of the peak current, the

increase of the peak half width and the shift of the peak potential toward more

negative values. For fully irreversible systems (very small k0 values), it is observed
that the current peak and the peak half width become independent of the rate

constant, and only the position of the peak (i.e., the peak potential EG,peak) changes

with k0.
For the above study the usual value of the transfer coefficient α ¼ 0:5 has been

considered. With small α values, DDPV peaks are found to show a special shape

under certain conditions. As can be seen in Fig. 4.17a, forα < 0:3 the DDPV curves

corresponding to quasireversible processes with k0 � 10�3 cm s�1 present a

striking splitting of the peak, with a sharper peak appearing at more anodic

potentials. This phenomenon is promoted by small transfer constants and is more

obvious for positive pulse heights (ΔE > 0, reverse mode, where the anodic peak is

even greater than the cathodic one) and at planar electrodes, since it becomes less

apparent as the electrode size is reduced (see Fig. 4.17b). The description of this

phenomenon is of great interest since this could lead to erroneous interpretation of
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experimental data for real quasireversible systems with low α values [51, 52]. It is
worth highlighting that this anomalous behaviour is characteristic of

quasireversible processes with k0 � 10�3 cm s�1, and the splitting is not observed

for greater (k0 � 10�2 cm s�1 ) or smaller k0 � 10�4 cm s�1
� �

rate constants,

where the usual single peak is obtained regardless of α value. This splitting has been
observed experimentally for the case of the reduction of zinc (II) atmercury electrodes

[53] as well as in other electrochemical techniques like Square Wave Voltammetry

[54] and Double Differential Triple Pulse Voltammetry (see Sect. 4.6.2).

To determine kinetic parameters with DDPV, the variation of the peak potential

and the normalized peak current ΔIsphe;peakDDPV /Iplaned;1 (τ2) with the dimensionless param-

eters 2
ffiffiffiffiffiffiffiffi
D τ2
p

=rs and κ0sphe;ss are proposed as working surfaces from which the kinetic

parameters are easily obtained, once D value is known, by measuring both peak

parameters for different values of the double pulse duration, and keeping the ratio

τ1/ τ2 constant [5].

4.3.4 Additive Double Differential Pulse Voltammetry

From the analytical expressions obtained for DDPV (given by Eq. (4.140)), an

explicit analytical solution for the ADDPV current is immediately deduced, which

is valid for spherical electrodes of any size and whatever the kinetics of the

electrode process [55]:
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Fig. 4.16 Influence of the heterogeneous rate constant k0 on DDPV curves [calculated from

Eq. (4.140)]. The values of the heterogeneous rate constant k0 are marked on the curves.

rs ¼ 30 μm, α ¼ 0:5, ΔE ¼ 20 mV, τ1 ¼ 1 s, τ1=τ2 ¼ 100, D ¼ 10�5 cm2 s�1. Taken from

[5] with permission
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I spheADDPV

Isphe, ssd, c

¼ κss0
gc χs,1
� �

e�αη2,c

θ2, c



1þ θ2,c � 1ð ÞH χs,2, c

� �� �þ
þ ga χs, 1

� �
e�αη2,a

θ2, a



1þ θ2, a � 1ð ÞH χs, 2, a

� �� �� ð4:146Þ

where Isphe;ssd;c is given by Eq. (4.76), the subscripts “c” and “a” refer to the normal

and reverse mode, respectively, so the potential for the former is E2,c ¼ E1� ΔEj j
and for the latter E2, a ¼ E1 þ ΔEj j, and

gm xð Þ ¼ 1� eη2,m

eη1

� �α θ2,m
θ1

þ 1� θ2,m
θ1

� �
H xð Þ

� �
, m ¼ c, a ð4:147Þ

Fig. 4.17 Anomalous

behavior of DDPV curves

for small values of the

transfer coefficient

(Eq. 4.140). ΔE ¼ 50 mV.

(a) different α values are
considered (marked on the

curves); rs ¼ 30 μm; (b)

different electrode sizes are

considered (marked on the

curves);

k0 ¼ 10�3 cm s�1,
α ¼ 0:2 . τ1 ¼ 1 s,

τ1=τ2 ¼ 100,

D ¼ 10�5 cm2 s�1. Taken
from [5] with permission
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θ2,m ¼ 1þ κ0sphe, ss e�αη2,m 1þ eη2,mð Þ , m ¼ c, a ð4:148Þ

χs,2,m ¼
2
ffiffiffiffiffiffiffiffi
D τ2
p
rs

þ 2

ffiffiffiffi
τ2
D

r
k0e�αη2,m 1þ eη2,mð Þ, m ¼ c, a ð4:149Þ

χs,1, H(x), and θ1 are given in Eqs. (4.135), (4.137), and (4.139), respectively.

For the case of reversible processes (large k0 values), the above expression for

the ADDPV current simplifies to Eq. (4.104) with fG ¼ f s.

Particular Cases

From Eq. (4.146), the following asymptotic expressions can be derived:

– Planar electrodes (rs !1). Expression (4.146) becomes:

I planeADDPV

I planed,1 τ2ð Þ
¼

¼ π1=2k0 g p
c χ p,1

� �
e�αη2,cH χ p,2, c

� �þ g p
a χ p,1

� �
e�αη2,aH χ p,2, a

� �� �
ð4:150Þ

with χp,1 given in Eq. (4.143) and

g p
m xð Þ ¼ 1� 1þ eη2,m

1þ eη1

� �α
1þ 1þ eη1

1þ eη2,m
eη2,m

eη1

� �α
� 1

� �
H xð Þ

� �
, m ¼ c, a

ð4:151Þ

χ p,2,m ¼ 2

ffiffiffiffi
τ2
D

r
k0e�αη2,m 1þ eη2,mð Þ, m ¼ c, a ð4:152Þ

and Iplaned;1 (τ2) given by Eq. (4.49).

– Ultramicroelectrodes (UME). When rs �
ffiffiffiffiffiffiffiffiffiffiffi
πD τ2
p

, Eq. (4.146) tends to:

Imicrosphe
ADDPV

Isphe, ssd, c

¼ κ0sphe, ss
e�αη2,c

θ2,c
þ e�αη2,a

θ2,a
� 2

e�αη1

θ1

� �
ð4:153Þ

so a time-independent response is obtained under these conditions.

In Fig. 4.18, the influence of the kinetic parameters (k0, α) on the ADDPV curves

is modeled at a spherical microelectrode (2
ffiffiffiffiffiffiffiffi
Dτ2
p

=rs ¼ 0:2). In general terms, the

peak currents decrease and the crossing and peak potentials shift toward more

negative values as the electrode processes are more sluggish (see Fig. 4.18a). For

quasireversible systems k0 � 10�2 � 10�4 cm s�1
� �

, the peak currents are very

sensitive to the value of the heterogeneous rate constant (k0) whereas the variation
of the crossing potential is less apparent. On the other hand, for totally irreversible
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processes ( k0 < 10�4 cm s�1 ), the crossing potential significantly shifts toward

more negative values, whereas the peak currents are independent of the k0 value.
The relative symmetry of the peaks also indicates the degree of reversibility;

thus, for reversible systems, symmetrical peaks are obtained (i.e., IspheM =Isphem

			 			 ¼ 1)

whereas for quasireversible and irreversible processes IspheM =Isphem

			 			 > 1.

In Fig. 4.18b, the effects of the electron transfer coefficient (α) on the ADDPV

curves is shown. A decrease of α leads to the decrease of the peak currents

together with the shift of the peak and crossing potentials toward more negative

values. The ratio of the peak currents (|IspheM /Isphem |) also varies with α, and the greater

the α value, the greater the |IspheM /Isphem | ratio. It is worth highlighting the anomalous

Fig. 4.18 Influence of the

value of the heterogeneous

rate constant (k0, a) and the

transfer coefficient (α, b) on
the ADDPV curves

(Eq. 4.146).

2
ffiffiffiffiffiffiffiffiffi
Dτ2
p

=rs ¼ 0:2,
ΔEj j ¼ 50mV,

τ1=τ2 ¼ 100, k0, and α
values indicated on the

graphs. Reproduced with

permission [55]
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shape of the ADDPV signal found for small α values (see curve for α ¼ 0:3 in

Fig. 4.18b). Under this situation, two pairs of peaks are found, a small one situated

at more positive values than the formal potential and a larger one at more negative

values. Thus, two peaks with I spheADDPV > 0, two peaks with I spheADDPV < 0, and three

crossing potentials are obtained. The appearance of a new signal at more positive

potentials is related to the great influence of the anodic contribution when the α
value is very small. The split into two of the response for quasireversible systems is

typical of differential techniques and it has been previously described for Differ-

ential Double Pulse Voltammetry (DDPV) at which a double peak is obtained for

small α values (α � 0:3) (see Fig. 4.17) [5].

4.4 Multi-electron Electrochemical Reactions

Multi-electronic processes (like those consisting of two-electron transfers, EE

mechanism) have been widely treated in the literature, both in their theoretical

and applied aspects [4, 10, 56–68]. This high productivity measures in some way

the great presence and relevance of these processes in many fields, and hence the

importance of understanding them.

Among the double pulse techniques, DDPV is very attractive for the character-

ization of multi-electron transfer processes. Besides the reduction of undesirable

effects, this technique gives well-resolved peak-shaped signals which are much

more advantageous for the elucidation of these processes than the sigmoidal

voltammograms obtained in Normal Pulse Voltammetry and discussed in Sect. 3.3.

In this section, it will be shown that, when the electron transfer processes behave

as reversible, the DDPV curves (properly normalized) are independent of the

electrode size and geometry in such a way that the responses obtained in this

technique by using macroelectrodes are indistinguishable from those obtained

with microelectrodes under transient or stationary conditions.

When any of the electron transfer is slow the situation is much more complex

and the geometry of the diffusive field plays a relevant role in the electrochemical

response [4, 10].

4.4.1 Application of a Double Potential Pulse to Electrodes
of Any Geometry

For the sake of simplicity, only two-electron transfer processes are discussed in

this section. The theory corresponding to multielectronic transfer processes can

be easily generalized from that presented here and is discussed in detail in

[60–62].
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For reversible electrode reactions and no solution phase reactions other than

disproportionation, the following reaction scheme (EE mechanism) applies (see

also Sect. 3.3):

O1 þ e� Ð O2 E��O
0

c,1 a

O2 þ e� Ð O3 E��O
0

c,2 b

2O2⇄
k1

k2
O1 þ O3 K ¼ k1

k2
c

9>>=>>; ð4:IIIÞ

whereE��O
0

c, j j�1, 2ð Þare the formal potentials of each electron transfer process and

K the disproportionation constant. When the diffusion coefficients of O1, O2, and O3

are assumed as equal, the side reaction given by reaction Scheme (4.IIIc) does not

affect the voltammetric response in any single or multipotential technique as has

been discussed in Sect. 3.3 (although its influence cannot be discarded in the

concentration profiles).

When we consider the problem corresponding to the application of the second

potential pulse, E2, to the electrode process given by Scheme (4.III) at an electrode

of any geometry, the formulation of the problem in such conditions is the following:

∂c 2ð Þ
O1

∂t2
¼ DO1

∇2c
2ð Þ
O1
þ k1 c

2ð Þ
O2

� �2
� k2c

2ð Þ
O1
c

2ð Þ
O3

að Þ
∂c 2ð Þ

O2

∂t2
¼ DO2

∇2c
2ð Þ
O2
� 2k1 c

2ð Þ
O2

� �2
þ 2k2c

2ð Þ
O1
c

2ð Þ
O3

bð Þ
∂c 2ð Þ

O3

∂t2
¼ DO3

∇2c
2ð Þ
O3
þ k1 c

2ð Þ
O2

� �2
� k2c

2ð Þ
O1
c

2ð Þ
O3

cð Þ

9>>>>>>>>=>>>>>>>>;
ð4:154Þ

t2 ¼ 0, q � qs

t2 > 0, q!1
�

c
2ð Þ
Oi
¼ c

1ð Þ
Oi

; i ¼ 1, 2, 3 ð4:155Þ

t2 > 0, q ¼ qs :
∂c 2ð Þ

O1

∂qN

� �
qs
þ ∂c 2ð Þ

O2

∂qN

� �
qs
þ ∂c 2ð Þ

O3

∂qN

� �
qs
¼ 0 ð4:156Þ

c
2;sð Þ
O1
¼ eη

2ð Þ
1 c

2;sð Þ
O2

c
2;sð Þ
O2
¼ eη

2ð Þ
2 c

2;sð Þ
O3

)
ð4:157Þ

with ∇2 being the Laplacian operator for the particular electrode geometry under

study given in Table 2.3 of Sect. 2.6, c
2;sð Þ
Oi

the surface concentrations of species

Oi (i¼ 1, 2, 3) for the application of the second potential pulse, and
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η 2ð Þ
j ¼

F E2 � E��O
0

c, j

� �
RT

j ¼ 1, 2 ð4:158Þ

The problem given by Eqs. (4.154)–(4.157) cannot be solved analytically.

However, by assuming that the diffusion coefficients of the different species are

equal DO1
¼ DO2

¼ DO3
¼ Dð Þ, an expression for the current can be deduced, in a

similar way to that indicated for the first potential pulse (see Eqs. (3.117)–(3.126) in

Sect. 3.3.1), by using the following linear combination:

Y 2ð Þ ¼ c
2ð Þ
O1
þ c

2ð Þ
O2
þ c

2ð Þ
O3
¼ c*O1

ð4:159Þ

So, by combining Eqs. (4.157) and (4.159), the following time-independent

expressions are obtained for the surface concentrations of the electroactive species

during the second pulse:

c
2;sð Þ
O1
¼

ffiffiffiffi
K
p

e2η
2ð Þffiffiffiffi

K
p þ eη

2ð Þ þ ffiffiffiffi
K
p

e2η
2ð Þ c

*
O1

c
2;sð Þ
O2
¼ eη

2ð Þffiffiffiffi
K
p þ eη

2ð Þ þ ffiffiffiffi
K
p

e2η
2ð Þ c

*
O1

c
2;sð Þ
O3
¼

ffiffiffiffi
K
pffiffiffiffi

K
p þ eη

2ð Þ þ ffiffiffiffi
K
p

e2η
2ð Þ c

*
O1

9>>>>>>>>>=>>>>>>>>>;
ð4:160Þ

with

K ¼ exp
FΔE��O

0

c

RT

 !
ð4:161Þ

η 2ð Þ ¼ F

RT
E2 � E

��O0
c

� �
ð4:162Þ

E
��O0
c ¼

E��O
0

c,1 þ E��O
0

c,2

2
ð4:163Þ

ΔE��O
0

c ¼ E��O
0

c, 2 � E��O
0

c, 1 ð4:164Þ

As in the case of the first potential pulse (see Sect. 3.4.1), the following linear

combination can be used,

W 2ð Þ ¼ 2c
2ð Þ
O1

q; tð Þ þ c
2ð Þ
O2

q; tð Þ ð4:165Þ

which fulfills
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∂W 2ð Þ

∂t2
¼ D∇2W 2ð Þ ð4:166Þ

Function W(2) can be written

W 2ð Þ ¼ W 1ð Þ þ eW 2ð Þ ð4:167Þ

with W 1ð Þ ¼ 2c
1ð Þ
O1

q; tð Þ þ c
1ð Þ
O2

q; tð Þ (see also Eq. (3.135)). By inserting Eqs. (4.167)

into (4.166) and taking into account Eqs. (3.136)–(3.138) of Sect. 3.3.1, it is found

the following boundary value problem for eW 2ð Þ:

∂ eW 2ð Þ

∂t2
¼ D∇2 eW 2ð Þ ð4:168Þ

t2 ¼ 0, q � qs

t2 > 0, q!1
� eW 2ð Þ ¼ 0 ð4:169Þ

t2 > 0, q ¼ qs : eW 2;sð Þ ¼ W 2;sð Þ �W 1;sð Þ ð4:170Þ

From Eqs. (4.165)–(4.170) and following a procedure analogous to that

described in Sect. 3.3.2 for the first potential pulse, the expression for current

corresponding to the second potential pulse can be obtained,

IG2 ¼ FAGD
∂W 2ð Þ

∂qN

� �
qs

¼ IG1 τ1 þ t2ð Þ þ FAGD fG t2; qGð Þ W 1;sð Þ �W 2;sð Þ
� �

ð4:171Þ

where:

IG1 tð Þ ¼ FAGD fG τ1 þ t2; qGð Þ W* �W 1;sð Þ
� �

ð4:172Þ

W j;sð Þ ¼ 2
ffiffiffiffi
K
p

e2η
jð Þ þ eη

jð Þffiffiffiffi
K
p þ eη

jð Þ þ ffiffiffiffi
K
p

e2η
jð Þ c

*
O1
; j ¼ 1, 2 ð4:173Þ

W* ¼ 2c*O1
ð4:174Þ

η jð Þ ¼ F

RT
E j � E

��O0
c

� �
; j ¼ 1, 2 ð4:175Þ

Function fG(t, qG) is characteristic of each electrode geometry and is given in

Table 2.3 of Sect. 2.6.
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4.4.2 Differential Double Pulse Voltammetry

In this section, the analytical expressions given by Eqs. (4.171) and (4.172) are

applied to differential double pulse voltammetry (DDPV) [63, 64]. In this technique

the duration of the second pulse is usually much shorter than that of the first:

τ1 � 50� τ2. Under these conditions, fG τ1 þ τ2, qGð Þ � fG τ1; qGð Þ so equation for
ΔIGDDPV simplifies to:

ΔIGDDPV
FAGDc*O1

¼ fG τ2; qGð Þ W 1;sð Þ �W 2;sð Þ

c�O1

 !
ð4:176Þ

where W 1;sð Þ �W 2;sð Þ� �
is only dependent on the applied double pulse waveform (E1

and E2), see Eqs. (4.173) and (4.175).

According to the definition of K given in Eq. (4.161), when the formal potential

of the first step is much larger than that of the second, ΔE��O
0

c � �200 mV, the

intermediate oxidation state, O2, is stable. As can be seen in Fig. 4.19, under these

conditions two well-separate peaks are obtained, centred on the formal potential of

each process and with the same features of the signal corresponding to a simple

one-electron reaction. As the ΔE��O
0

c value increases, the peaks get closer since the

intermediate species is less stable. Thus, a transition from two peaks to a single

peak is found. The DDPV response, independently of the ΔE��O
0

c value and the form

of the signal, is symmetrical with respect to the average value of the formal

potentials, E
��○0
c (see Fig. 4.19b). This value corresponds to the valley between

peaks for very negative values of ΔE��O
0

c and to the peak potential for ΔE��O
0

c > �
71:2 mV (for small values of ΔE). This behavior is independent of the electrode

size and geometry and of the pulse durations. Eventually, when the formal potential

of the second step is much larger than that of the first one, ΔE��O
0

c � 200 mV, the

system behaves in an identical way to a simple charge transfer process of two

electrons (grey dotted curve in Fig. 4.19a).

The electrode size is another important variable to analyze since the use of

microelectrodes is very relevant for experimental electrochemical studies enabling

the reduction of capacitative and ohmic drop effects, as indicated in Sect. 2.7.

Specifically, it is of great interest to check the behavior of the system when the size

of the electrode is reduced. In Fig. 4.20, the influence of the electrode radius on the

DDPV curves is shown for spherical and disc electrodes and differentΔE��O
0

c values.

As can be seen, independently of the electrode size, a peak-shaped response is

obtained with the same peak potential and width (see the superimposed ΔIGDDPV=
ΔIG,peakDDPV � E curves in the inserted Figures) since these responses are independent

of the electrode geometry (see Eqs. (4.173) and (4.176)). This is a notable

advantage over Cyclic Voltammetry where sigmoidal curves are obtained when

small electrodes are employed which makes data analysis more difficult and less
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precise (see Sect. 6.2.1). Moreover, given that the peak position and width are

independent of the electrode size, the criteria for the characterization of these

molecules based on these DDPV peak parameters are very general and can be

applied to any electrode. It is important to highlight that, as expected, for

ultramicroelectrodes (see curves with rs ¼ 5 μm in Fig. 4.20 for which the steady

state has been almost reached), the ratio between the current densities ΔiGDDPV
¼ ΔIGDDPV=AG

� �
for disc and spheres (solid and dashed lines, respectively) tends to

4/π since under these conditions it can be deduced from Eq. (4.176) and Table 2.3 of

Sect. 2.6:

a

b

Fig. 4.19 Variation of

the normalized DDPV

curves versusE� E��○
0

c,1 (a) or

E� E
��○0
c (b) (with ΔIGDDPV,N

¼ ΔIGDDPV=
FAGDc*O1

fG τ2; qGð Þ
� �

,

with the difference between

the formal potentials of the

redox centers, ΔE��○0c (values

in V indicated on the

curves) calculated from Eq.

(4.176). The case

corresponding to a

two-electron E process is

also plotted (gray dotted
line). ΔE ¼ �50 mV,

τ1=τ2 ¼ 50, τ1 ¼ 1 s.

T¼ 298 K
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a

b

c

Fig. 4.20 Influence of the electrode radius (rs and rd values indicated on the curves) on DDPV

curves for disc (solid line) and spherical (dashed line) electrodes with rs¼ rd in all the cases. Three

different ΔE��○0c values are considered: (a) �200 mV, (b) 0 mV, and (c) +200 mV. The curves

normalized with respect to the peak current are also shown in the inserted graphs. τ1=τ2 ¼ 50, ΔE
¼ �50mV, τ1 ¼ 1 s. T¼ 298 K. Iplaned;1 is given in Eq. (4.49). Reproduced with permission of [64]
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Δidisc, ssDDPV

FDc*O1

¼ 4

π rd

W 1;sð Þ �W 2;sð Þ

c�O1

 !
ð4:177Þ

Δisphe, ssDDPV

FDc*O1

¼ 1

rs

W 1;sð Þ �W 2;sð Þ

c�O1

 !
ð4:178Þ

in such a way that for rd ¼ rs:

Δidisc, ssDDPV

Δisphe, ssDDPV

¼ 4

π
ð4:179Þ

By equating to zero the derivative of Eq. (4.176) with respect to

E1,2 ¼ E1 þ E2ð Þ=2ð Þ, a eighth degree polynomial is obtained, for which the fol-

lowing three real positive roots for E1,2 corresponding to the peak and valley

potentials are deduced [64]:

EI ¼ E��O
0

c,1þ
RT

F
ln

ffiffiffiffi
K
p� �

any value of K að Þ

EII ¼ E��O
0

c,1þ
RT

F
ln �2K� ffiffiffiffiffiffiffiffiffiffiffiffi

f 2 Kð Þp �A
ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp þ 2A2K

2A

 !
bð Þ

EIII ¼ E��O
0

c,1þ
RT

F
ln �2Kþ ffiffiffiffiffiffiffiffiffiffiffiffi

f 2 Kð Þp �A
ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp þ 2A2K

2A

 !
cð Þ

9>>>>=>>>>;
K < ca: 0:06

ΔE��O
0

c < ca:�71:2mV
� �

forΔE� 30mV

ð4:180Þ

with K given in Eq. (4.161) and

f 1 Kð Þ ¼ 4K � 1ð Þ K � A2 þ 2A2K þ A4K
� �

A2
ð4:181Þ

f 2 Kð Þ ¼ A2 � K þ 8K2 þ 16A2K2 þ 8A4K2 � 10A2K�
� A4K � 4AK

ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp � 4A3K

ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp ð4:182Þ

A ¼ exp
F

2RT
ΔEj j

� �
ð4:183Þ

From Eqs. (4.180)–(4.183), it can be shown that these roots depend on ΔE��O
0

c

(through K ) and on the pulse amplitude |ΔE| (through A). The first root (EI) is valid

for any ΔE��O
0

c value and corresponds to the average potential

EI ¼ E
��○0
c ð4:184Þ

The physical meaning of EI depends on the K value considered. For K > 0:06

ΔE��O
0

c � �71:2 mV
� �

, it corresponds to the peak potential of the single peak obtained
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(see Fig. 4.19). ForΔE��O
0

c < �71:2 mV(K < 0:06, separated peaks),EI corresponds to

the potential of the valley between the two peaks. The roots EII and EIII, only operative

for ΔE��O
0

c < �71:2 mV, correspond to the peak potentials of separate signals (i.e., to

E��O
0

c;1 andE
��O0
c;2)whenΔE

��O0
c < �142mV. In these conditions, the peak heights tend to that

corresponding to a single electron E mechanism (see also Fig. 4.19). When the pulse

amplitude tends to zero (and the response of DDPV becomes coincident with the

derivative of the Normal Pulse Voltammogram), the expressions of the three roots are

coincident with those given in Table 3.1 of Sect. 3.3.1 for the inflection points of the

NPV responses.

The evolution of the DDPV dimensionless peak height hpeak ¼ ΔIG,peakDDPV =I planed,1 τ2ð Þ
(a) and half peakwidthW1/2 (b) withΔE��O

0

c calculated fromEq. (4.176) for a disc and a

spherical electrode of radius rs ¼ rd ¼ 1 μm and three values of the potential pulse

amplitudes ΔE ¼ E2 � E1 can be seen in Fig. 4.21.

a

b

Fig. 4.21 Evolution of the

DDPV dimensionless peak

height ΔIG;peakDDPV /I
plane
d;1 (τ2) and

of the half-peak width W1/2

with ΔE��○0c , corresponding

to a two-electron reducible

molecule at disc (solid line)
and spherical (dashed line)
electrodes. rs ¼ rd ¼ 1 μm.

Iplaned;1 is given in Eq. (4.49).

ΔE values (in mV) are

marked on the graphs in

Figure A and are (a) 50 mV,

(b) 25 mV, and (c) 10 mV in

Figure B. τ1 ¼ 1 s,

τ1=τ2 ¼ 50. T¼ 298

K. Dashed line in Figure B

marks the value

ΔE��○0c ¼ �35:6 mV.

Reproduced with

permission of [64]
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The peak height, ΔIG;peakDDPV , always increases with ΔE��O
0

c from the value

corresponding to one-electron charge transfers for ΔE��O
0

c < �120 mV, until it

reaches that corresponding to an apparent simultaneous two-electron charge trans-

fers for ΔE��O
0

c > 200 mV (see Fig. 4.21a). Note that the peak height increases

with the potential amplitude for both geometries. Concerning the variation of the

DDPV half-peak width W1/2 (calculated for T¼ 298 K), the curves for discs and

spherical electrodes are superimposed since the value of the peak width is inde-

pendent of the electrode size and shape, being determined by the pulse amplitude

|ΔE| and the difference between the formal potentials ΔE��O
0

c . Therefore, the results

presented in this Figure are very general and enable the characterization of two-

electron reducible molecule whatever the electrode employed. As can be observed,

W1/2 takes a constant value close to 90 mV (W1=2 � 99 mV for ΔEj j � 50 mV)

when two separate monoelectronic peaks are obtained for ΔE��O
0

c < �140 mV,

showing a sharp jump at ΔE��O
0

c around �140 mV. This value corresponds to

the case at which the height of the central valley coincides with the half-peak

height. ForΔE��O
0

c > �140 mV, two unresolved peaks or a single peak are obtained,

and W1/2 decreases with ΔE��O
0

c until it reaches a value close to 45 mV,

corresponding to an apparently simultaneous two-electron E mechanism. A special

case is ΔE��O
0

c ¼ �35:6 mV (K¼ 1/4), for which W1/2 is the same as that

corresponding to a simple one-electron charge transfer (see dashed line in the

Figure) whereas the response has double the height. In line with references

[4, 61, 65, 66], this particular case corresponds to the absence of interactions

between the two redox centers and it applies for any electrochemical technique

and for any electrode geometry (see also Fig. 4.19 and [61]).

4.4.3 Additive Differential Double Pulse Voltammetry

This section addresses the application of additive differential double pulse

voltammetry (ADDPV) to the study of a reversible two-electron transfer reaction.

As indicated in Sect. 4.1, in this technique two differential double pulse

voltammetry (DDPV) experiments are performed with the same absolute value of

the pulse amplitude (ΔE) but with opposite signs. Depending on the difference

between the formal potentials between the two steps of the whole process, ADDPV

voltammograms can show two or more peaks and one or more crossing points

corresponding to the intersection of the current with the potential axis. This offers a

very valuable procedure for the determination of the formal potentials since,

besides its simplicity, the crossing potentials can often be measured experimentally

with greater precision than the peak potentials and widths in other differential

techniques. Moreover, their value is independent of the electrode geometry and is
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not affected by uncertainties in experimental variables such as the electrode size,

the concentration of electroactive species, or the diffusion coefficient.

By taking into account the expression of the currents for the first and second

potential pulses applied given by Eqs. (4.171) and (4.172) and that corresponding to

the response of the ADDPV technique (Eq. 4.3), the expression of the current is [62,

67],

ΔIGADDPV
FADc*O1

¼ fG τ2; qGð Þ
c�O1

W 1;sð Þ �W 2;sð Þ
� �

c
� W 1;sð Þ �W 2;sð Þ
� �

a

� �
ð4:185Þ

with W 1;sð Þ �W 2;sð Þ� �
c
and W 1;sð Þ �W 2;sð Þ� �

a
given by Eq. (4.173) with E2 ¼ E1�

ΔEj j and E2 ¼ E1 þ ΔEj j, respectively. Thus, the ADDPV voltammogram has a

symmetry center for any value of the difference between the formal potentials

which corresponds to null current and a potential value given by [67]:

E sim
cross ¼ E

��O0
c ¼

E��O
0

c,1 þ E��○
0

c,2

2
ð4:186Þ

The dimensionless theoretical ADDPV curves for a reversible EE mechanism at

a disc electrode of radius rd ¼ 50 μm, with a pulse amplitude ΔEj j ¼ 50 mV and

different values of the difference between the formal potentials of both electro-

chemical steps, can be seen in Fig. 4.22. In all cases, ADDPV curves have a center

of symmetry at the crossing potential, E sim
cross given by Eq. (4.186). So, the determi-

nation of this point helps to extract the formal potentials accurately. Besides being

easier to measure than the potential or width of a peak, the E sim
cross, value is

independent of the pulse amplitude, the electrode size and shape, and the difference

between the formal potentials, so this diagnosis criterion is very general.

For the ΔE��O
0

c values considered in Fig. 4.22a, ADDPV curves show two peaks

(a maximum and a minimum) of the same height that increase with ΔE��O
0

c until

reaching a maximum value for ΔE��O
0

c � 200 mV corresponding to an apparent

simultaneous two-electron E process of (see also Sect. 3.3). The E sim
cross value

moves continuously toward more positive potentials as ΔE��O
0

c increases. For more

negativeΔE��O
0

c values, the ADDPV voltammogram splits into two as the stability of

the intermediate species O2 increases, being the limiting value ofΔE��O
0

c required for

this split function of the pulse amplitude ΔE values (ΔE��O
0

c � �100 mV in the

conditions considered in Fig. 4.22b). As a result, four peaks (two maxima and

two minima) and three crossing potentials (Ec,1, E
sim
cross, and Ec,2) can be identified.

Expressions for the values of these potentials are obtained from Eq. (4.185) by

finding the roots of the equation for the ADDPV current [62]:
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E sim
cross ¼ E

��O0
c

Ec,1 ¼ E��O
0

c, 1 þ
RT

F
ln
�K þ A2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g K;Að Þp
2

� KA4 � 2KA2

A2

0BB@
1CCA

Ec,2 ¼ E��O
0

c, 1 þ
RT

F
ln
�2K þ A2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g K;Að Þp � 2KA4 � 4KA2

2A2

 !

9>>>>>>>>>>=>>>>>>>>>>;
ð4:187Þ

with:

a

b

Fig. 4.22 Influence of

ΔE��○0c on the

dimensionless ADDPV

curves (τ1=τ2 ¼ 100) for a

reversible EE mechanism

(calculated from

Eq. (4.185)) at a disc

electrode of radius rd ¼ 50

μm. |ΔE|¼ 50 mV,

τ2¼ 10 ms,

D ¼ 10�5 cm2 s�1, E��○
0

c,1 ¼
0V, T¼ 298 K. The values

of the difference between

the formal potentials of both

electrochemical steps are

shown on the curves.

Reproduced with

permission of [62]
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g K;Að Þ ¼ 4K2A8 þ 16K2A6 þ 24K2A4 þ 16K2A2þ
þ 4K2 þ A4 � 4KA6 � 12KA4 � 4KA2 ð4:188Þ

and A given in Eq. (4.183).

The extreme crossing potentials Ec,1 and Ec,2 do depend on the difference

between the formal potentials (through K ) and the pulse amplitude employed

(through A) and they move apart when K decreases. When the ADDPV curve

shows three crossing points, the values of the formal potentials can be easily and

accurately extracted from the analysis of the Ec,1, E
sim
cross, and Ec,2 values. For very

negative values of ΔE��O
0

c the determination is immediate since two well-resolved

signals are obtained with the characteristics of the ADDPV voltammograms of

one-electron reversible processes. Thus, the extreme potentials coincide with the

corresponding formal potentials: Ec, 1 K ! 0ð Þ ! E��O
0

c,1 and Ec, 2 K ! 0ð Þ ! E��O
0

c, 2.

When only one cross potential is obtained, the formal potentials of both steps can be

obtained by fitting the experimental ADDPV voltammograms with theoretical

curves calculated for different values of ΔE��O
0

c , once the value of E
��○0
c has been

determined from E sim
cross.

An experimental example of the application of ADDPV to the determination of

the formal potentials of the two steps can be seen in Fig. 4.23, corresponding to the

4

2

0

–2

–4

–6

6

I a
dd

iti
ve

 (μ
A

)

E I  (mV)

|ΔE | (mV) = 100

60

40

–200–100 –300 –500–400 –600

Fig. 4.23 Comparison between experimental curves for 1.25 mM pyrazine at an SMDE at

pH¼ 1.0 in HClO4 +NaClO4 adjusted to ionic strength 1.0 M (dotted lines) and theoretical curves

for an EE mechanism with ΔE��○0c ¼ �117 mV (see Eq. (4.185) for a spherical electrode, solid
lines), for different values of the pulse amplitude |ΔE| (shown in the Figure). τ1 ¼ 1s, τ2 ¼ 0:05s,

T¼ 298.15 K, A¼ 0.011 cm2, D ¼ 0:781� 10�5 cm2 s�1. Reproduced with permission of

reference [67]
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reduction of pyrazine at an SMDE in aqueous acidic media for pulse times τ1 ¼ 1s

and τ2 ¼ 0:05 s and different values of the pulse amplitude. All the curves shown in

this figure are, as expected, coincident at the symmetry center,E sim
cross, independently

of the pulse amplitude |ΔE|. It is also observed how only two peaks are obtained for

high values of |ΔE|, but the typical behavior of four peaks described above is

achieved by decreasing |ΔE|. These curves provide the value E sim
cross ¼ �367 mV

and from the difference between the extreme crossing potentials a value of ΔE��O
0

c

¼ �117mV is obtained, from which it is immediately deduced that E��O
0

c, 1 ¼ �308:5
mV and E��O

0

c, 2 ¼ �425:5mV vs. Ag/AgCl, KCl (1.0 M).

4.5 First-Order Chemical Reactions Coupled to Charge

Transfer Processes

As discussed in Sect. 3.4, the study of electrode processes coupled with homo-

geneous chemical reactions is frequent in different fields like organic

electrosynthesis, ecotoxicity, biosciences, environmental studies, etc. [4, 10, 68–

70]. In this section, double pulse techniques will be applied to the study of these

processes. These techniques present important advantages like their great sensi-

tivity and the significative reduction of capacitative and background currents,

which allow an enhanced resolution of the registered signals [4, 10]. Among the

wide range of this type of processes, our study will focused on three reaction

mechanisms (see Scheme 4.IV), the first- or pseudo-first- order catalytic, EC and

CE processes for which analytical expressions for the current in these double

pulse techniques can be obtained when planar or spherical electrodes are

considered.

Cþ e�⇄ B ⇄
k1

k2
C Catalytic mechanism að Þ

B⇄
k1

k2
Cþ e�⇄ D CE mechanism bð Þ

Aþ e�⇄ B ⇄
k1

k2
C EC mechanism cð Þ

ð4:IVÞ

4.5.1 Catalytic Mechanism at Disc, Spherical, and Planar
Electrodes

The current corresponding to a catalytic mechanism (reaction scheme 4.IVa) when

a potential pulse E1 is applied to a planar electrode for a time 0 � t1 � τ1 when the

diffusion coefficients of both species B and C are assumed as equal was deduced in

Sect. 3.4.1 and is given by [71, 72]:
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Icat,plane1

FAD
¼ ζ*

1þ K
Z cat
1 f catplane χ1ð Þ ð4:189Þ

with

Z cat
1 ¼

1� Keη1

1þ eη1
ð4:190Þ

f catplane χ1ð Þ ¼
e�χ1ffiffiffiffiffiffiffi
πχ1
p þ erf

ffiffiffiffiffi
χ1
p� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1 þ k2
D

r
ð4:191Þ

K ¼ c*B
c*C

ð4:192Þ

ζ* ¼ c*C 1þ Kð Þ ð4:193Þ
χ1 ¼ k1 þ k2ð Þt1 ð4:194Þ

and η1 ¼ F E1 � E��O
0

c

� �
= RTð Þ. Note that K is the inverse of the equilibrium constant

(see also Sect. 3.4).

When a second potential pulse E2 is applied for a time 0 � t2 � τ2, due to the

linearity of the mass transport operator, the solutions can be written as

c
2ð Þ
B x; tð Þ ¼ c

1ð Þ
B x; tð Þ þ ec 2ð Þ

B x; t2ð Þ
c

2ð Þ
C x; tð Þ ¼ c

1ð Þ
C x; tð Þ þ ec 2ð Þ

C x; t2ð Þ

)
ð4:195Þ

where c
ð1Þ
B (x, t) and c

ð1Þ
C (x, t) are the solutions corresponding to the first potential

pulse (for t ¼ τ1 þ t2 ) and ec 2ð Þ
B x; t2ð Þ and ec 2ð Þ

C x; t2ð Þ are the new unknown partial

solutions. The boundary value problem for this second potential is

t2 ¼ 0, x � 0

t2 > 0, x!1
�

c
2ð Þ
B x; tð Þ ¼ c

1ð Þ
B x; tð Þ

c
2ð Þ
C x; tð Þ ¼ c

1ð Þ
C x; tð Þ

)
ð4:196Þ

t2 > 0, x ¼ 0;

c
2;sð Þ
C ¼ eη2c

2;sð Þ
B ð4:197Þ

with c
ð2;sÞ
i being the surface concentration of species i (with i¼C or B) for the

second potential pulse and η2 ¼ F E2 � E��O
0

c

� �
= RTð Þ.

As in the case of the first potential pulse (see Sect. 3.4.1), it is convenient to

introduce the variables ϕ(2) and ζ(2),
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ϕ 2ð Þ x; tð Þ ¼ ϕ 1ð Þ x; tð Þ þ eϕ 2ð Þ x; t2ð Þ
ζ 2ð Þ x; tð Þ ¼ ζ 1ð Þ x; tð Þ þ eζ 2ð Þ x; t2ð Þ ¼ ζ*

�
ð4:198Þ

with ϕ(1) and ζ(1) being the solutions found for the first potential step (see

Eqs. (3.180), (3.184), (3.185) and (3.188a)), and eϕ 2ð Þ and eζ 2ð Þ are given by

eϕ 2ð Þ ¼ ec 2ð Þ
B x; t2ð Þ � Kec 2ð Þ

C x; t2ð Þ
� �

e k1þk2ð Þ τ1þt2ð Þ ð4:199Þ
eζ 2ð Þ ¼ ec 2ð Þ

B x; t2ð Þ þ ec 2ð Þ
C x; t2ð Þ ¼ 0 ð4:200Þ

From Eqs. (4.197) and (4.198), it can be deduced that

c
2;sð Þ
B ¼ eη2ζ*

1þ eη2

c
2;sð Þ
C ¼ ζ*

1þ eη2

9>>=>>; ð4:201Þ

e� k1þk2ð Þ τ1þt2ð Þϕ 2;sð Þ ¼ 1� Keη2

1þ eη2
ζ* ð4:202Þ

with ϕ(2,s) being the value of ϕ(2) at the electrode surface.
Note that the expressions for the surface concentrations of species B and C given

by Eq. (4.201) are similar to those corresponding to species O and R of a simple

charge transfer (see Eqs. (4.25) and (4.26)), (although in the case of a catalytic

mechanism K refers to the inverse of the chemical equilibrium constant of species B

and C).

The boundary value problem for the second potential pulse can be written solely

in terms of the function eϕ 2ð Þ,

t2 ¼ 0, x � 0

t2 > 0, x!1
� eϕ 2ð Þ ¼ 0 ð4:203Þ

t2 > 0, x ¼ 0;

e� k1þk2ð Þt2eϕ 2;sð Þ ¼ e k1þk2ð Þτ1 1� Keη2

1þ eη2
� 1� Keη1

1þ eη1

� �
ζ* ð4:204Þ

Equations (4.203) and (4.204) are analogous to Eqs. (3.191a)–(3.192a)

of Sect. 3.4.1 corresponding to the first potential pulse applied (by changingeϕ 2;sð Þ by ϕ(s)), except in the value of the constant in the surface condition

which is given by ζ* 1� Keη1ð Þ= 1þ eη1ð Þ in the first case (Eq. 3.192a) and by
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e k1þk2ð Þτ1 1�Keη2
1þeη2 � 1�Keη1

1þeη1
� �

ζ* in the second (Eq. 4.204). It is clear that the mathe-

matical expression of e� k1þk2ð Þt2eϕ 2ð Þ will be identical to that obtained for

e� k1þk2ð Þ τ1þt2ð Þϕ sð Þ (Eq. (3.192a) of Sect. 3.4.1) except in the value of this constant.

Thus, the current for the second potential pulse is given by

Icat, plane2

FAD
¼ ∂c 2ð Þ

C

∂x

 !
x¼0
¼

¼ � 1

1þ K
e� k1þk2ð Þ τ1þt2ð Þ ∂ϕ 1ð Þ

∂x

 !
x¼0
þ e� k1þk2ð Þ τ1þt2ð Þ ∂eϕ 2ð Þ

∂x

 !
x¼0

" #
;

ð4:205Þ

It can be deduced easily that the rigorous expression of the current is

Icat, plane2

FAD
¼ ζ*

1þ K
Z cat
1 f catplane χ1ð Þ þ Z cat

2 f catplane χ2ð Þ
h i

ð4:206Þ

with

Z cat
2 ¼ 1þ Kð Þ 1

1þ eη2
� 1

1þ eη1

� �
ð4:207Þ

χ2 ¼ k1 þ k2ð Þt2 ð4:208Þ

and Zcat1 and f catplane given by Eqs. (4.190) and (4.191), respectively, but with

χ1 ¼ k1 þ k2ð Þ τ1 þ t2ð Þ in this case.

Equations (4.189) and (4.206) for I cat;plane1 and I cat;plane2 at a planar electrode can

be extended to spherical and disc electrodes by changing the expression of the

electrode area and function f catplane by the corresponding f
cat
sphe and f

cat
disc, being [73, 74]

f catsphe χm, rsð Þ ¼ 1

rs
þ f catplane χmð Þ m ¼ 1, 2 ð4:209Þ

f catdisc χm, rdð Þ ¼ 1

rd
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
Tdisc χm; ξmð Þ m ¼ 1, 2 ð4:210Þ

with

294 4 Double Pulse Voltammetries

http://dx.doi.org/10.1007/978-3-319-21251-7_3
http://dx.doi.org/10.1007/978-3-319-21251-7_3


Tdisc χm;ξmð Þ ¼ e�χmffiffiffiffiffiffiffiffi
πχm
p þ erf

ffiffiffiffiffiffi
χm
p� �þ 0:2732

ffiffiffiffiffiffi
χm
p
ξm

ðξ2m
0

exp �0:39115ffiffiffi
u
p � χm

ξ2m
u

" #
duþ

þ 0:2732
ξmffiffiffiffiffiffi
χm
p exp �χm �

0:39115

ξm

� �
m¼ 1, 2

ð4:211Þ

ξ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D τ1 þ t2ð Þp

rd

ξ2 ¼
ffiffiffiffiffiffiffi
Dt2
p
rd

9>>>=>>>; ð4:212Þ

χ1 ¼ k1 þ k2ð Þ τ1 þ t2ð Þ
χ2 ¼ k1 þ k2ð Þt2

�
ð4:213Þ

Under conditions of kinetic steady state (i.e., by making ∂ϕ=∂t ¼ 0 which is

fulfilled for k1 þ k2ð Þt2 > 1:5 [73]), the expressions of the current for the first and

second potential pulses become

Icat,G, ss1

FAGD
¼ ζ*

1þ K

1� Keη1

1þ eη1

1

δGr

Icat,G, ss2

FAGD
¼ ζ*

1þ K

1� Keη2

1þ eη2

1

δGr

9>>>=>>>; ð4:214Þ

where

δplaner ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

k1 þ k2

r
ð4:215Þ

δ spher ¼ 1ffiffiffiffiffiffiffiffiffi
k1þk2
D

q
þ 1

rs

ð4:216Þ

δdiscr ¼ 1

rd
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
þ 0:5465

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r ffiffiffi
χ
p
ξ

ð1
0

uexp �0:39115ffiffiffi
u
p � χ

ξ2
u2

� �
du

" #�1
ð4:217Þ

In the case of disc electrodes, the reaction layer given by Eq. (4.217) is an

average value.

4.5.1.1 Reverse Pulse Voltammetry

In RPV technique, the second potential pulse is applied after a first potential pulse

under limiting conditions (i.e., E1 ! �1, Z1 ! 1; see Eq. (4.190)), with E2 being
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scanned in the positive direction. With these conditions in Eq. (4.206), it is obtained

[75],

Icat,GRPV

FAGD
¼ ζ*

1þ K
f catG χ1ð Þ þ Z cat

2 f catG χ2ð Þ
� � ð4:218Þ

with χ1 and χ2 given by Eq. (4.213), ζ* by Eq. (4.193) and f catG (χ1) and f catG (χ2) by
Eq. (4.191) for planar electrodes (G ¼ p), by Eq. (4.209) for spherical electrodes

(G¼ s), and by Eq. (4.210) for disc electrodes (G¼ d). The cathodic and anodic

limiting currents are

Icat,GRPV, l, c

FAGD
¼ ζ*

1þ K
f catG χ1ð Þ ð4:219Þ

Icat,GRPV, l, a

FAGD
¼ ζ*

1þ K
f catG χ1ð Þ � 1þ Kð Þ f catG χ2ð Þ
� � ð4:220Þ

which, for the particular case of a spherical electrode, can be written as,

Icat, spheRPV, l, c

FAsD
¼ ζ*

1þ K

1

rs
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
f catplane χ1ð Þ

 !
ð4:221Þ

Icat, spheRPV, l, a

FAsD
¼ ζ* � K

1þ K

1

rs

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
f catplane χ1ð Þ
1þ K

� f catplane χ2ð Þ
 ! !

ð4:222Þ

From Eqs. (4.221) and (4.222), it is clear that both limiting currents increase

when the electrode radius decreases and, when the chemical reaction is irreversible

(K ¼ 0), the anodic limiting current Icat;spheRPV;l;a is independent of the electrode size.

The formal potential of the electroactive couple can be obtained as the value of

the potential E2 at which

Icat, spheRPV E��O
0

c

� �
¼ 1

2
Icat, spheRPV, l, c � Icat, spheRPV, l, a

			 			h i
ð4:223Þ

and by combining Eqs. (4.221) and (4.222)

Icat, spheRPV, l, c þ Icat, spheRPV, l, a

			 			 ¼ 1

rs
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
f catplane χ2ð Þ ð4:224Þ

is obtained.

Under conditions of a kinetic steady state with χ2 > 1:5, Eq. (4.218) simplifies to
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Icat,G, ssRPV

FAGD
¼ ζ*

1þ K
1þ Z2½ 
 1

δGr
ð4:225Þ

and the limiting currents (Eqs. (4.219) and (4.220)) become

Icat,G, ssRPV, l, c

FAGD
¼ ζ*

1þ K

1

δGr
ð4:226Þ

Icat,G, ssRPV, l, a

FAGD
¼ �Kζ

*

1þ K

1

δGr
ð4:227Þ

Thus, independently of the electrode geometry, the sum of Eqs. (4.226) and

(4.227) leads to

Icat,G, ssRPV, l, c

FAGD
þ Icat,G, ssRPV, l, a

FAGD

					
					 ¼ 1

δGr
ð4:228Þ

where δGr is given by Eqs. (4.215), (4.216) and (4.217) for planar, spherical, and disc

electrodes, respectively

The influence of the duration of the second potential pulse τ2 on the experimental

RPV voltammograms corresponding to the catalytic process of Ti(IV) in the

presence of hydroxylamine at an SMDE electrode can be seen in Fig. 4.24. These

curves show the evident influence of τ2 on the anodic currents owing to the presence
of the catalytic process is evident. By using Eq. (4.224) by supposing that the

chemical step is irreversible (i.e., K ¼ 1=Keq ¼ 0), the value of the rate constant

k1 ¼ 1:90� 0:05ð Þ s�1 has been reported [75].

4.5.1.2 Differential Double Pulse Voltammetry

The response corresponding to DDPV technique can be obtained by subtracting the

expressions of Icat;G1 and Icat;G2 given by Eqs. (4.189) and (4.206), respectively, by

making τ1 
 τ2, such that

ΔIcat,GDDPV

FAGD
¼ ζ*

1þ K
Z cat
2 f catG χ2, qGð Þ ð4:229Þ

with f catG (χ2, qG) being the function corresponding to planar, spherical, or disc elec-

trode given byEqs. (4.191), (4.209), or (4.210), respectively, forχ ¼ χ2 andqG ¼ rs or
qG ¼ rd for spherical or disc electrodes, respectively. The DDPV voltammograms

thus obtained are peak shaped being the peak potential (when the current is plotted

versus the average potential E1,2 ¼ E1 þ E2ð Þ=2) and the peak height,
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Ecat,peak
DDPV ¼ E��O

0

c ð4:230Þ

ΔIcat, peakDDPV ¼ FAGD
ζ*

1þ K
f catG χ2; qGð Þ tanh F

4RT
ΔEj j

� �
ð4:231Þ

Under kinetic steady state conditions, the expression of the DDPV current

becomes

ΔIcat,G, ssDDPV

FAGD
¼ ζ*

1þ K
Z cat
2

1

δGr
ð4:232Þ

with δGr given by Eqs. (4.215)–(4.217) for the three-electrode geometries

considered here.

Fig. 4.24 Experimental RPV voltammograms for 1.04 mM Ti(IV) in 0.2 H2C2O4 + 0.07 M HCl

+ 0.1 M NH2OH. The radius of the SMDE is rs ¼ 0:0226cm, τ1 ¼ 1:5s, T¼ 298 K. The values of

τ2 (in s) are (a) 0.020, (b) 0.030, (c) 0.040, (d) 0.050, (e) 0.060, (f) 0.070, (g) 0.080, (h) 0.090, and
(i) 0.100. Reproduced from reference [75] with permission
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The voltammetric behavior of the first-order catalytic process in DDPV for

different values of the kinetic parameter χ2 ¼ k1 þ k2ð Þτ2ð Þ at spherical and disc

electrodes with radius ranging from 1 to 100 μm can be seen in Fig. 4.25. For this

mechanism, the criterion for the attainment of a kinetic steady state is χ2 � 1:5
(Eq. 4.232) [73–75]. In both transient and stationary cases, the response is peak-

shaped and increases with χ2. It is important to highlight that the DDPV response

loses its sensitivity toward the kinetics of the chemical step as the electrode size

decreases (compare the curves in Fig. 4.25a, c). For the smallest electrode

rd ¼ rs ¼ 1ð μm, Fig. 4.25c), only small differences in the peak current can be

observed in all the range of constants considered. Thus, the rate constants that can

be determined in DDPV if conditions rd
>ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

Tdisc χ2; ξ2ð Þ� ��1
for a disc

electrode or rs
>ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

f catplane χ2ð Þ
� ��1

for a spherical one are fulfilled (see

Eqs. (4.191), (4.209)–(4.211)).

In all the cases shown in Fig. 4.25, the peak potential corresponds to the formal

potential of the charge transfer process, Ecat,peak
1,2 ¼ E��O

0

c , with this behavior being

characteristic of the catalytic mechanism and of reversible charge transfer processes

(reversible E mechanism; see Eq. (4.85)). The half-peak width (W1/2) is indepen-

dent of the electrode geometry and size and the catalytic rate constants and is given

by

W1=2 ¼
RT

F
ln

1þ A2 þ 4Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2 þ 4A
� �2 � 4A2

q
1þ A2 þ 4A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2 þ 4A
� �2 � 4A2

q
0B@

1CA ð4:233Þ

with A ¼ exp F ΔEj j=2RTð Þ (see Eq. (4.183)).
The peak height of the DDPV curves is highly sensitive to the parameter Λ

¼ r2G k1 þ k2ð Þ=D� �
value which can be used for the determination of the cata-

lytic rate constants. In the case of spherical and disc electrodes, the expression of

the peak height can be written as [73, 75]

ΔIcat, sphe,peakDDPV

FAsD
ζ*

1þK
1ffiffiffiffiffiffiffiffi
πDτ2
p

¼
ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

rs
1þ

ffiffiffi
Λ
p e�χ2ffiffiffiffiffiffiffi

πχ2
p þ erf

ffiffiffiffiffi
χ2
p� �� �� �

tanh
F

4RT
ΔEj j

� �
ð4:234Þ

ΔIcat,disc, peakDDPV

FAdD
ζ*

1þK
1ffiffiffiffiffiffiffiffi
πDτ2
p

¼
ffiffiffiffiffiffiffiffiffiffiffi
πDτ2
p

rd
1þ

ffiffiffi
Λ
p

Tdisc χ2; ξ2ð Þ
� �

tanh
F

4RT
ΔEj j

� �
ð4:235Þ

Thus, in Fig. 4.26 working curves corresponding to the variation of the dimen-

sionless peak current of the catalytic mechanism for spherical and disc electrodes

with the parameter ξ2 ¼
ffiffiffiffiffiffiffiffi
Dτ2
p

=rG are plotted. For a given experimental system,
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b

c

a

b

c

Fig. 4.25 Effect of the electrode radius and the chemical kinetics on the DDPV responses of a

catalytic mechanism calculated from Eq. (4.229) for disc and spherical electrodes. ΔEj j ¼ 50mV,

τ1 ¼ 1 s, τ2 ¼ 0:050 s, K ¼ 1=Keq ¼ 1, T¼ 298.15 K, and D ¼ 10�5 cm2 s�1. The values of the
electrode radius rd ¼ rs and χ2 ¼ k1 þ k2ð Þτ2 are indicated on the graphs. Dotted lines mark the

potential values where the response equals to the half of the peak height
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when the electrode radius and the diffusion coefficients are known, these working

curves help to determine the rate constants ( k1 þ k2 ) from the value of the

dimensionless peak current. The case k1 þ k2 ¼ 0 corresponds to a reversible E

mechanism (dashed line), which shows the linear dependence of the peak height

with ξ2 at spherical and disc electrodes.

4.5.2 CE and EC Mechanisms at Planar Electrodes

Unlike the case of catalytic mechanism discussed in the previous section, the

theoretical study of CE and EC mechanisms (see reaction scheme 4.IVb, c) in

double potential pulse techniques is much more complex than that corresponding to

a single potential pulse since the surface concentrations of the species involved in

these reaction schemes corresponding to the application of the first potential pulse

are time dependent (see also Sects. 3.4.2 and 3.4.3). Due to this, only simplified

situations of these mechanism are considered in this section under planar diffusion

conditions. The treatment of both mechanisms at other geometries can be found in

[76–79].

Fig. 4.26 Variation of the dimensionless peak current of a catalytic mechanism (solid lines) and
of a reversible E mechanism (dashed line) for spherical and disc electrodes with the parameterffiffiffiffiffiffiffiffiffi
Dτ2
p

=rG, with rG being the sphere or disc radius. The values of Λ ¼ r2G k1 þ k2ð Þ=D� �
are

indicated on the curves. ΔEj j ¼ 50mV, τ1 ¼ 1 s, τ2 ¼ 0:050 s, K ¼ 1=Keq ¼ 1, T¼ 298.15 K,

and D ¼ 10�5 cm2 s�1
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4.5.2.1 Reverse Pulse Voltammetry

This section deals with the solution corresponding to an EC mechanism (see

reaction scheme 4.IVc) in Reverse Pulse Voltammetry technique under conditions

of kinetic steady state (i.e., the perturbation of the chemical equilibrium is inde-

pendent of time; see Sect. 3.4.3). In this technique, the product is electrogenerated

under diffusion-limited conditions in the first period (0 � t1 � τ1) and then exam-

ined electrochemically during the second one ( 0 � t2 � τ2 ; see Scheme 4.2).

Therefore, this method is applicable to obtain information about the product

of the electrode reaction. Moreover, under RPV conditions, the first potential

pulse corresponds to diffusion-limited current conditions for the electroreduction

of species A and the expression of the current for planar electrodes is given by [79],

IEC,planeRPV ¼ I planed,1 τ1 þ τ2ð Þ

� I planed,1 τ2ð Þ Keη2

1þ K þ Keη2
F χEC, p2

� �
þ 2

χEC, p2

ffiffiffi
β

π

r
M χEC, p2 ; β
� �" #

;

ð4:236Þ

where η2 ¼ F E2 � E��O
0

c

� �
= RTð Þ and

χEC, p2 ¼ 2
ffiffiffiffiffiffiffiffi
Dτ2
p

Kδplaner

1þ 1þ K

Keη2

� �
ð4:237Þ

β ¼ τ2
τ1 þ τ2 ð4:238Þ

F xð Þ ¼
ffiffiffi
π
p
2

xexp x=2ð Þ2erfc x=2ð Þ ð4:239Þ

M x; βð Þ ¼
X1
i¼0

�1ð Þixiþ1Yi
l¼0

pl

1þ
X1
k¼1

2k � 1ð Þ! iβk
22k�1k! k � 1ð Þ! iþ 2kð Þ

( )
for x < 10

ð4:240Þ

M x; βð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1� βp þ ffiffiffi

π
p X1

k¼1

�1ð Þk�1 2k � 1ð Þ!βk
k � 1ð Þ! x2k�1

þ

þ
X1
i¼1

�1ð Þi2 2 i� 1ð Þ!
i� 1ð Þ! x2i

1�
X1
k¼1

21�2k 2k � 1ð Þ! 2 iþ 1ð Þβk
k! k � 1ð Þ! 2k � 2i� 1ð Þ

 !
for x > 10

ð4:241Þ

and Iplaned;1 and δplaner are given in Eqs. (4.49) and (4.215), respectively.
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The oxidative limiting current in linear diffusion (eη2 !1) is given by

IEC,planeRPV, l, a ¼ I planed,1 τ1 þ τ2ð Þ

� I planed,1 τ2ð Þ F χEC, p2,ox

� �
þ 2

χEC, p2,ox

ffiffiffi
β

π

r
M χEC, p2,ox ; β
� �" #

ð4:242Þ

with

χEC, p2,ox ¼
2K

ffiffiffiffiffiffiffiffi
Dτ2
p

δ planer

ð4:243Þ

When the kinetics of the chemical reaction in solution is very fast with respect

to the diffusion transport, the resolution of the problem can be simplified by

noting that the concentrations of species B and C are in equilibrium at any point

and time (cB r; tð Þ ¼ c*B, cC r; tð Þ ¼ c*C) and the reaction layer thickness (δ
plane
r ) tends

to zero. Taking into account these considerations, the RPV current for the EC

mechanism is given by

IEC fast, plane
RPV ¼ I planed,1 τ1 þ τ2ð Þ � I planed,1 τ2ð Þ eη1=2

1þ eη1=2

� �
ð4:244Þ

with η1=2 ¼ F
RT E� E fast

mid;RPV

� �
and Efast

mid;RPV being the mid-wave potential in the

limit of very fast chemical kinetics,

E fast
mid;RPV ¼ E��O

0

c þ
RT

F
ln

1þ K

K

� �
: ð4:245Þ

Note that in this limiting case, the oxidative limiting current of the EC mecha-

nism is the same as for the E mechanism given by Eq. (4.72).

The conditions where Eq. (4.236) provides good results have been examined

by comparison with those obtained from digital simulation in [79] and it is

concluded that this solution gives rise to accurate results in RPV for k1 þ k2ð Þτ2
� 5 (with τ2 being the duration of the second pulse), with the error decreasing as

K increases and always less than 5 % for the value of the oxidative limiting

current.

The influence of the rate constants ( k1 þ k2 ) of an EC mechanism with an

equilibrium constant K ¼ 1=Keq ¼ 0:1 is shown in Fig. 4.27. As expected, when

the second potential is set, like the first one, under diffusion-limited conditions for

the electroreduction of species A (i.e., E2 � E��O
0

c � 0, eη2 ! 0), the corresponding

reductive limiting current IEC;planeRPV;l;c is independent of the behavior of the product

species. At other E2 values, the RPV current is affected by the coupled chemical

process. Hence for the range of ( k1 þ k2 ) values considered in the figure, the
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oxidative limiting current (IEC;planeRPV;l;a ) increases in absolute value with the rate

constants.

The position of the voltammogram is also affected by the homogeneous chem-

ical reaction. Thus, the reductive RPV curve shifts toward more positive potentials

as species B is consumed faster by the chemical process. This shift can be easily

monitored by means of the mid-wave potential (Efast
mid;RPV), which helps to charac-

terize the chemical reaction as well as to determine the formal potential of the

electrode reaction, E��O
0

c .

For the limit of very fast kinetics, the RPV response is analogous to that of the E

mechanism but shifted toward more positive potentials (in the case of a reduction

process), the shift magnitude being dependent on the value of the equilibrium

constant. This can be observed clearly in Fig. 4.27 by comparing the curve for

k1 þ k2ð Þτ2 > 105 and for the E mechanism (empty points). From Eq. (4.245) it can

be inferred that the mid-potential value Emid,RPV only depends on the equilibrium

constant, and is independent of geometric and kinetic parameters and coincident

with Er
1=2 [80].

The influence of K ¼ 1=Keq on the RPV curves is shown in Fig. 4.28. The

incidence of the chemical reaction on the voltammograms is more apparent as the

chemical equilibrium shifts toward the electroinactive species C, that is, for small

K values. Thus, the oxidative limiting current decreases and the voltammogram

shifts toward more positive potentials as K decreases. On the other hand, for high

K values the effect of the chemical step vanishes and the response of the EC

mechanism tends to that of a simple E process (open circles).

As can be deduced from Figs. 4.27 and 4.28, the value of the oxidative limiting

current provides a simple criterion to distinguish between the EC and E mecha-

nisms independently of the reversibility degree of the latter. Thus, when a follow-up

Fig. 4.27 Influence of the

chemical kinetics k1 þ k2ð Þ
τ2 on the RPV curves

calculated from Eq. (4.236).

The values of k1 þ k2ð Þ (in
s�1) appear in the curves. τ1
¼ 1 s, τ1=τ2 ¼ 10,

K ¼ 1=Keq

� � ¼ 0:1. Taken

from [79] with permission

304 4 Double Pulse Voltammetries



chemical reaction occurs, the IRPV,ox absolute value is smaller (or much smaller for

K � 1) than that expected for a simple charge transfer process.

According to these results, the characterization of the subsequent coupled

chemical reaction of the EC mechanism can be achieved with RPV by examining

the oxidative limiting current. The half-wave potential is also interesting in order to

determine the formal potential of the electrode process [79].

4.5.2.2 Differential Double Pulse Voltammetry

This section presents the solutions for CE and EC mechanism in DDPV technique

at planar electrodes under the approximation of kinetic steady state, which

are applicable to fast chemical reactions [72]. To obtain these solutions,

a mathematical procedure similar to that presented in Sects. 3.4.2 and 3.4.3 has

been followed for which it has been assumed that the perturbation of the chemical

equilibrium is independent of time (i.e., ∂ϕss=∂t ¼ ∂ cB � KcCð Þ=∂t ¼ 0

such that the expression of the current for both mechanisms in DDPV (τ2 � τ1)
is [77]

ΔICE,planeDDPV

I planed,1 ζ*
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

πDτ1
p

Kδplaner

1þ Kð Þ eη1 � eη2ð Þ
1þ 1þ Kð Þeη1

� �
1þ H χCE1

� �� �
H χCE2
� � ð4:246Þ

ΔIEC,planeDDPV

I planed,1 c*A
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

πDτ1
p

eη2δplaner

1þ Kð Þ eη1 � eη2ð Þ
1þ K þ Keη1

� �
K þ 1þ Kð Þ

eη1
H χEC1
� �� �

H χEC2
� �
ð4:247Þ

where Iplaned;1 , H(x), and δplaner are given in Eqs. (4.49), (4.137), and (4.215), respec-

tively. Moreover,

Fig. 4.28 Influence of K ¼
1=Keq on the RPV curves

calculated from Eq. (4.236).

The values of K appear in

the curves. k1 þ k2ð Þτ2 ¼
106, τ1 ¼ 1 s, τ1=τ2 ¼ 10.

Taken from [79] with

permission
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χCEm ¼
2
ffiffiffiffiffiffiffiffiffi
Dτm
p

Kδplaner

1þ 1þ Kð Þeηmð Þ m ¼ 1, 2 ð4:248Þ

χECm ¼
2
ffiffiffiffiffiffiffiffiffi
Dτm
p

eηmδplaner

1þ K þ Keηmð Þ m ¼ 1, 2 ð4:249Þ

τm ¼
Xm
h¼1
τh ð4:250Þ

K ¼ c*B
c*C
¼ 1

Keq

ð4:251Þ

As shown in Sects. 3.4.2 and 3.4.3, for the NPV response the condition∂ϕss=∂t ¼ 0

is not sufficient to obtain a time-independent current as in the case of a catalytic

mechanism. The DDPV curves for different values of the dimensionless rate

constant χ2 ¼ k1 þ k2ð Þτ2 are displayed in Fig. 4.29. As can be seen, the
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Fig. 4.29 Influence of the

chemical kinetics (χ2) on
DDPV curves for (a) a

CE mechanism

K ¼ 1=Keq

� � ¼ 102
� �
and (b) an irreversible

EC mechanism

(K ¼ 1=Keq

� � ¼ 0)

calculated from

Eqs. (4.246)–(4.247). χ2
values are marked on the

curves. ΔE ¼ �50 mV. τ1
¼ 1 s, τ1=τ2 ¼ 20
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behavior both of the peak current and of the peak potential is different for a CE

and an irreversible EC mechanism so that the reaction mechanism can be

established by changing the dimensionless rate constants through the experimen-

tal conditions, for example, the pH in the case of the reduction of an acid or the

ligand concentration in the case of the reduction of a metal complex. For a

preceding chemical reaction (CE mechanism, Fig. 4.29a), the faster the chemical

kinetics (i.e., the greater χCE2 value), the greater the ΔICE;plane;peakDDPV /Iplaned;1 (ζ*), while

the DDPV peak moves toward more negative potentials. On the other hand, for

the case of an irreversible EC mechanism (Fig. 4.29b) the peak potential moves

toward more positive values as χEC2 increases, whereas ΔIEC;plane;peakDDPV /Iplaned;1 (c�A)
remains practically constant for all the χEC2 values considered.

The influence of the equilibrium constant on DDPV curves is shown in Fig. 4.30.

DDPV current increases and peak position approaches E��O
0

c as the chemical

equilibrium shifts toward the electroactive species ( K � 1 k2 � k1ð Þ for CE

mechanism and K 
 1 k2 
 k1ð Þ for EC one with K ¼ 1=Keq

� �
), up to a situation

at which the responses of both mechanisms overlap, being equivalent to that

obtained for a simple reversible E mechanism (blue line) since the effect of the

chemical step vanishes.

The complete characterization of the coupled chemical reaction can be

performed through the analysis of the peak current and peak potentials for different

values of τ1 þ τ2ð Þ and hence the rate constants of the chemical step for a given

value of K can be obtained [77].

Fig. 4.30 Influence of the inverse of the equilibrium constant (K ) on DDPV curves for a CE

mechanism ( filled circle) and an EC mechanism (open circle) calculated from Eqs. (4.246)–

(4.247). K values are marked on the curves. χ2 ¼ 102, ΔE ¼ �50 mV. τ1 ¼ 1 s, τ1=τ2 ¼ 20. The

DDPV response corresponding to a simple reversible electron transfer calculated from Eq. (4.81)

is also plotted (blue line). Taken from [77] with permission
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4.5.2.3 Additive Differential Double Pulse Voltammetry

The response of CE and EC mechanisms (see reaction scheme 4.IVb, c) in ADDPV

is the sum of the responses obtained in two DDPV experiments performed with the

same value of the pulse height and opposite sign,

ICE,planeADDPV

I planed,1 ζ*
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

πDτ1
p

Kδplaner

1þ Kð Þ eη1 � eη2,cð Þ
1þ 1þ Kð Þeη1

� �
1þ H χCE1

� �� �
H χCE2, c
� �þ


þ 1þ Kð Þ eη1 � eη2,að Þ
1þ 1þ Kð Þeη1

� �
1þ H χCE1

� �� �
H χCE2,a
� ��

ð4:252Þ
IEC,planeADDPV

I planed,1 c*A
� � ¼ ffiffiffiffiffiffiffiffiffiffiffi

πDτ1
p

eη2,cδplaner

1þ Kð Þ eη1 � eη2,cð Þ
1þ K þ Keη1

� �
K þ 1þ Kð Þ

eη1
H χEC1
� �� �

H χEC2,c
� �þ

þ
ffiffiffiffiffiffiffiffiffiffiffi
πDτ1
p

eη2,aδ planer

1þ Kð Þ eη1 � eη2,að Þ
1þ K þ Keη1

� �
K þ 1þ Kð Þ

eη1
H χEC1
� �� �

H χEC2, a
� �
ð4:253Þ

where planar electrodes under the approximation of kinetic steady state have been

assumed and E2, c ¼ E1 � ΔEj j and E2,a ¼ E1 þ ΔEj j, respectively.
For high values of the chemical rate constant, i.e., under conditions of a

diffusive-kinetic steady state (∂ϕss=∂t ¼ 0 and consideration that diffusion only

acts on variable ζ; see Sects. 3.4.2 and 3.4.3), it is possible to find simple expres-

sions for the cross potentials of the ADDPV curves,

ECE
cross χ

CE
2, lim > 40

� � ¼ E��O
0

c þ
RT

F
ln

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π k1þk2ð Þτ2
p þ 1

1þ Kð Þ

0@ 1A ð4:254Þ

EEC
cross χ

EC
2, lim > 40

� � ¼ E��O
0

c þ
RT

F
ln

1þ Kð Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π k1þk2ð Þτ2
p þ K

ð4:255Þ

with

χCE2, lim ¼
2
ffiffiffiffiffiffiffiffi
Dτ2
p

K δplaner

ð4:256Þ

χEC2, lim ¼
2
ffiffiffiffiffiffiffiffi
Dτ2
p

δplaner

K ð4:257Þ

and δplaner given by Eq. (4.215). According to Eqs. (4.254) and (4.255), in the case of

very fast kinetics (k1 þ k2 !1) the cross potential tends to a value which only

depends on the equilibrium constant [78]:
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ECE
cross k1 þ k2ð Þ ! 1ð Þ ¼ E��O

0

c þ
RT

F
ln

1

1þ K

� �
ð4:258Þ

EEC
cross k1 þ k2ð Þ ! 1ð Þ ¼ E��O

0

c þ
RT

F
ln

1þ K

K

� �
ð4:259Þ

The influence of the chemical kinetics is analyzed in Fig. 4.31 where ADDPV

curves are plotted for different values of the dimensionless rate constant

χ2 ¼ k1 þ k2ð Þτ2ð Þ. For comparison, the curve corresponding to a simple, reversible

charge transfer process (Er) of species “C +B” for the CE mechanism and of species

A for the EC one has also been plotted (dashed line in Fig. 4.31a, b). As can be

observed, the behavior of ADDPV curves with χ2 is very different depending on the
reaction scheme. For the CE mechanism with K ¼ 1=Keq

� � ¼ 100 (Fig. 4.31a), the

peak current increases and the peak potential shifts toward more negative values

as the kinetics is faster, that is, as χ2 increases. For very fast chemical reactions,

the ADDPV signal is equivalent to that of a reversible E mechanism (Er) with

a

b

Fig. 4.31 Influence of the

chemical kinetics on the

ADDPV curves for (a) a CE

mechanism (K ¼ 100,

Eq. (4.252)) and (b) an EC

mechanism with an

irreversible homogeneous

chemical reaction

(K ¼ 1=Keq

� � ¼ 0,

Eq. (4.253)). χ2 values are
indicated on the curves. The

curves corresponding to a

reversible charge transfer

process (Er) are plotted for

comparison (dashed line,
Eq. (4.106)) with the bulk

concentration of the

electroactive species being

(a) c* ¼ ζ* ¼ c*B þ c*C and

(b) c* ¼ c*A. ΔEj j ¼ 50mV,

τ1 ¼ 1 s, τ1=τ2 ¼ 20
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ζ* ¼ c*C þ c*B although located at more negative potentials. A good agreement is

found between the value of the crossing potential of the ADDPV curves and that

predicted by Eq. (4.254) (error smaller than 3 mV for χ2 > 102).

For an electrode process followed up by an irreversible homogeneous chemical

reaction (K ¼ 0, Fig. 4.31b), the peak currents are independent of the chemical

kinetics whereas the peak potential takes more positive values as χ2 increases

because the chemical reaction facilitates the reduction process by removal of

species B. In all cases plotted in this figure, the value of the crossing potential

can be evaluated with good accuracy from Eq. (4.255) (error smaller than 3 mV for

χ2 > 102). With respect to the E mechanism of species A, in the EC response both

peak currents are smaller, and this effect is especially noticeable in the minimum

which is more affected by the follow-up reaction.

Therefore, we can indentify the reaction scheme by studying the variation of the

ADDPV response when the χ2 value is modified through the experimental condi-

tions (for example, the pH or the ligand concentration) or the pulse duration.

The relative magnitude of the peaks of the ADDPV curve is also very informa-

tive about the electrode process [55, 81, 82]. It can be observed that for the CE

mechanism it is fulfilled that I planeM < I planem

		 		whereas for the EC one I planeM > I planem

		 		.
This behavior contrasts with the case of the first-order catalytic mechanism

and with the reversible E mechanism for which the value of the peak currents is

equal (I planeM ¼ I planem

		 		). Therefore, this simple criterion allows us to discriminate

between these mechanisms.

The chemical kinetics (χ2), has no effect on the symmetry of the peaks in the

case of the irreversible EC mechanism (K ¼ 0) under kinetic steady-state condi-

tions. On the other hand, for the CE mechanism the IplaneM /|Iplanem | value does depend

on χ2 and it tends to I planeM = I planem

		 		! 1 in the limiting case of very fast chemical

reactions (see Fig. 4.31a).

The influence of the equilibrium constant on the ADDPV curves for the CE and

irreversible EC mechanisms can be seen in Fig. 4.32. For a given χ2 value, the

magnitude of the signal diminishes and it shifts away from the formal potential as

the equilibrium is displaced toward the electroinactive species, that is, for large

K values in the CE mechanism and for small K values in the EC mechanism. In the

opposite limiting case, that is, when the chemical equilibrium is fully displaced

toward the electroactive species, the kinetic effects disappear and obviously the

signal coincides with that of a reversible charge transfer process (grey line).

The quantitative determination of the homogeneous rate constants can be easily

carried out from the values of the peak currents and the crossing potential of the

ADDPV curves [78]. The use of the crossing potential is very helpful since this

parameter does not depend on the pulse height (ΔE) employed and so can be

measured with good accuracy from several ADDPV curves obtained with different

ΔE values. In addition, for fast kinetics the simple analytical expressions that are

available for Ecross (Eqs. (4.254) and (4.255)) allow a direct determination of the

rate constants of the chemical reaction.
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4.6 Triple Pulse Voltammetries

As highlighted in previous sections, double pulse techniques offer some advan-

tages over single potential pulse techniques by providing increased signal sen-

sitivity and eliminating most of the charge current. Multipotential pulse

techniques exploit these advantages, but the complexity of the diffusional-kinetic

problem compels the use of numerical methods to obtain the theoretical solu-

tions in many cases. Due to this, triple potential pulse techniques are an

interesting alternative, for which a brief introduction will be given in the present

section. These techniques present the advantage of a simple theoretical evalua-

tion of their response together with a higher versatility. Two triple potential

pulse techniques will be presented, Reverse Differential Pulse Voltammetry

(RDPV), which is a modification of the Reverse Pulse technique proposed

by Brumleve et al. [83], and Double Differential Triple Pulse Voltammetry

(DDTPV) [84–86].

4.6.1 Reverse Differential Pulse Voltammetry

Among double pulse techniques, RPV is the most powerful from the kinetic point of

view, due to the information it provides on the degree of reversibility of the

electrode process. This information is similar to that which can be obtained from

Fig. 4.32 Influence of the inverse of the equilibrium constant K ¼ 1=Keq on the ADDPV curves

for a CE mechanism [filled circle, Eq. (4.252)] and an EC mechanism [open circle, Eq. (4.253)].
χ2 ¼ 100. The curve corresponding to a reversible charge transfer process (Er) is also plotted for

comparison [gray line, Eq. (4.106)]. ΔEj j ¼ 50mV, τ1 ¼ 1 s, τ1=τ2 ¼ 20. Taken from [78] with

permission
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Cyclic Voltammetry. However, experimental use of this technique has been

restricted almost exclusively to the analysis of the limiting currents of the signals

obtained. One reason for this could be that when a quasi-reversible electronic

transfer is analyzed in RPV, two very close waves are obtained, which are difficult

to resolve from an experimental viewpoint. This problem can be eliminated by

using the triple pulse technique Reverse Differential Pulse Voltammetry (RDPV),

proposed in references [80, 84, 85] and based in the application of the waveform

presented in Scheme 4.5.

Potentials E1 and E2 are chosen as in RDP technique, i.e., E1 is constant and

it corresponds to a potential value at which the reduction process is controlled by

diffusion, whereas E2 shifts to positive potentials. In RDPV, a potential E3 is

chosen such that ΔE ¼ E3 � E2 is constant. IG1 , I
G
2 , and IG3 are designed as the

faradaic responses corresponding to each of the potentials E1, E2, and E3, which

are applied during times 0 � t1 � τ1, 0 � t2 � τ2, and 0 � t3 � τ3, respectively.
In RDPV, the representation of ΔIG ¼ IG3 � IG2 versus E2 is carried out, with IG3
and IG2 being measured at times τ3 and τ2, respectively, and with the additional

condition τ1 
 τ2 þ τ3ð Þ [87]. The records obtained are peak shaped, in contrast

to the waves obtained in RPV, with the corresponding analytical advantage that

this implies. In RDPV, the appearance of two peaks can be observed for an

irreversible simple electronic transfer. One of the peaks appears at more positive

potentials and the other at more negative potentials than the formal potential E��O
0

c .

The difference between the potentials of these peaks enables an approximate

determination of the value of the rate constant of the electrode reaction k0, while

the sum of these peak potentials is proportional to E��O
0

c . Finally, the half-width of

the peak allows an approximate calculation of the values of the transfer coeffi-

cient of the cathodic process, α, in the peak which appears at more negative

potentials than E��O
0

c and of that corresponding to the anodic process, 1� αð Þ, in
the peak that appears at more positive values than E��O

0

c . Some examples of this

behavior can be seen in Fig. 4.33, obtained for different values of k0 with τ1 ¼ 3

s, τ2 ¼ 0:3 s, and τ3 ¼ 0:03 s and ΔE ¼ �25mV. For k0 � 0:1 cm s�1 only one

Scheme 4.5 Potential–

time waveform

corresponding to RDPV
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peak appears and its position and height are independent of the k0 value,

i.e., under these experimental conditions, the electronic transfer can be consid-

ered as reversible. For k0 < 5� 10�4 cm s�1 two well-developed peaks can be

observed.

4.6.2 Double Differential Triple Pulse Voltammetry

In this technique, three potential steps, E1, E2, and E3 are successively applied

during times 0 � t1 � τ1, 0 � t2 � τ2, and 0 � t3 � τ3, respectively, with the

condition τ1 
 τ2 þ τ3ð Þ, and the differences ΔE1 ¼ E2 � E1 and ΔE2 ¼ E3 �
E2 are of equal sign (see Scheme 4.6). Thus, ΔIG1 ¼ IG2 � IG1 and ΔIG2 ¼ IG3 � IG2
also result in the same sign. The signal registered in DDTPV is [84–86]:

Fig. 4.33 Plot of ΔIplaneRDPV/

Iplaned;c (t3) versus E2 � E��O
0

c ,

with I planed, c t3ð Þ ¼ FADc*O=ffiffiffiffiffiffiffiffiffiffi
πDt3
p

calculated from

Eq. (1) of reference [87]

with z¼ 0, α ¼ 0:5, DO ¼
DR ¼ 10�5 cm2 s�1,
τ1 ¼ 3 s, τ2 ¼ 0:3 s, τ3 ¼
0:03 s, andΔE ¼�25 mV.

The values of k0 (in cm s�1)
are (a) 1; (b) 5� 10�3;
(c) 10�3; (d) 5� 10�5 and
(e) 10�6. Taken from [87]

with permission

Time

Po
te

nt
ia

l

t1 t2

E2

E3

t3

2EΔ

1EΔ
E1

Scheme 4.6 Potential–

time waveform

corresponding to DDTPV
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IGDDTPV ¼ ΔIG2 � ΔIG1 ¼ IG3 � 2IG2 þ IG1 ð4:260Þ

which is plotted vs. E2.

The form of the signal is similar to the second derivative of the NPV curve and

when the time duration of the second and third potential pulses fulfills τ3 ¼ 2τ2=3,
the DDTPV response coincides with that obtained in ADDPV for reversible charge

transfer processes [88].
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5.1 Introduction

In Multipulse techniques, the potential waveform consists of a sequence of potential

pulses E1, E2, . . ., Ep, and the initial conditions of the system are only regained after

the application of the last potential step [1–6]. When the potential waveform is a

staircase of constant pulse amplitude |ΔE|, the perturbation includes as a limiting
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situation a potential sweep (obtained when ΔEj j ! 0 at a given scan rate; see

below). Therefore, the case of sweep techniques (like Linear Sweep Voltammetry,

LSV, and Cyclic Voltammetry, CV) is considered here as a limiting behavior of the

potential staircase.1 The application of a multipulse perturbation enables us to

reduce the experimental time necessary to obtain a whole current–potential

response, but makes the theoretical treatment more complex. These methods offer

a number of advantages for quantitative studies, mainly well-defined and mostly

peak-shaped responses where undesirable effects are greatly minimized. Thus,

these techniques are highly valuable in mechanistic and kinetic quantitative studies

using the broad theoretical framework available.

In this chapter, several Multipulse techniques are analyzed: Multipulse

Chronoamperometry (and Chronocoulometry), Staircase Voltammetry (SCV),

and Linear Sweep Voltammetry (LSV). Both SCV and LSV techniques can be

used in cyclic mode, giving rise to Cyclic Staircase Voltammetry (CSCV) and

Cyclic Linear Sweep Voltammetry, commonly denoted as Cyclic Voltammetry

(CV). Note that both SCV and LSV register the current–potential signal, but they

can also be used to register the charge–potential signal in the Voltcoulommetric

modalities of these techniques (although the current is the usual magnitude to be

recorded and the charge has been only used for some particular situations, mainly

for immobilized molecules).

It is of interest at this point to compare the study of Multipulse Chronoam-

perometry and Staircase Voltammetry with those corresponding to Single Pulse

Chronoamperometry and Normal Pulse Voltammetry (NPV) developed in Chaps. 2

and 3 in order to understand how the same perturbation (i.e., a staircase potential)

leads to a sigmoidal or a peak-shaped current–potential response as the equilibrium

between two consecutive potential pulses is restored, or not. This different behavior

is due to the fact that in SCV the current corresponding to a given potential

pulse depends on the previous potential pulses, i.e., its history. In contrast, in

NPV, since the equilibrium is restored, for a reversible process the current–poten-

tial curve is similar to a stationary one, because in this last technique the current

corresponding to any potential pulse is independent of its history [8].

General features of the potential–time perturbation and of the current–potential

responses characteristic of these techniques are:

Multipulse Chronoamperometry and Chronocoulometry

The simplest case of a multipulse technique corresponds to the record of the current

time (chronoamperometry) or the charge time (chronocoulometry) curves obtained

when a given sequence of successive potential pulses E1, E2, . . ., Ep is applied for

times 0 � tn � τn, with n¼ 1, 2, . . ., p, as shown in Scheme 5.1.

1 Note that digital instrumentation approximates the linear potential ramp as a staircase waveform

[3, 6, 7]. There is a good agreement between the linear and staircase currents for

ts=τ ¼ 0:25� 0:30 for reversible processes (with ts being the time between the application of

the potential pulse and the current sampling), if the potential step ΔE is less than 8 mV.
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Staircase Voltammetry and Linear Sweep Voltammetry in Single and Cyclic

Modes

In Staircase Voltammetry (SCV), a sequence of potential pulses of identical time

length τ defining a “staircase” of potentials is applied to the system with no

recovery of the initial equilibrium at any moment of the experiment (see

Scheme 5.2). In this technique, the difference between two consecutive potential

pulses, |ΔE|, is constant, and the ratio v ¼ ΔE=τ is defined as the scan rate.

When the pulse amplitude, ΔE, tends to zero and the scan rate is held constant

(i.e., the pulse duration also tends to zero in order to keep the ratio v ¼ ΔE=τ
constant), the potential–time perturbation applied in SCV becomes a continuous

ramp of potentials and so can be identified with the potential–time perturbation

applied in Linear Sweep Voltammetry (LSV,2; see Scheme 5.2).

If the potential is inverted at a given value (inversion or final potential) until the initial

potential is reached again, the two above techniques are denoted Cyclic Staircase

Voltammetry (CSCV) and Cyclic Voltammetry (CV), respectively (see Scheme 5.3).

The potential waveform in CV can be written as a continuous function of time

E tð Þ ¼ Einitial � vt for t � tinv
E tð Þ ¼ Efinal þ vt for t > tinv

�
ð5:1Þ

where tinv is the time at which the scan is inverted and the scan rate is v ¼ dE=dt.
This waveform can be obtained as a limit of the discrete perturbation applied in

CSCV, which is given by

E j ¼ Einitial � j� 1ð ÞΔE for j ¼ 1, 2, . . . , N=2

E j ¼ Efinal þ j� N

2

� �
ΔE for j > N=2

9=; ð5:2Þ

where ΔE is the constant difference between two potential pulses denoted as

“pulse amplitude” and N the total number of potential pulses applied in the cyclic

scan. In a general way, a good coincidence is obtained between CSCV and CV for

ΔEj j ! 0mV [5]. It is important to highlight that a true linear sweep or cyclic

voltammetry is not applied in modern digital potentiostats for which the real
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2 This technique was originally called “Stationary Electrode Polarography” [9, 10].
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perturbation is that given by Eq. (5.2) [3, 4, 6, 10]. A comparison between CVSC

and CV is made in Sect. 5.2.3.1 in order to analyze the effect of the discretization of

the potential perturbation.

In the following sections, the behavior of soluble solution species giving rise to

simple charge transfer reactions (electronic and ionic) is analyzed. The case

corresponding to more complex reaction mechanisms is the subject of Chap. 6.

5.2 Reversible Electrochemical Reactions

Let us consider the fast electrode reaction

Oþ e� ! R ð5:IÞ
when species O and R are soluble in the electrolytic solution. In this section, the

response of this electrode process in the different multipulse techniques described

in Sect. 5.1 is analyzed.
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5.2.1 Application of a Multipulse Sequence to Electrodes
and Microelectrodes of Any Geometry

The expressions for the current–potential response of the electrode process given in

reaction scheme 5.1 when a single potential pulse and two successive potential pulses

are applied at electrodes of any geometry are given in Sects. 2.6 and 4.2.1, respectively.

Let us consider now a potential waveform consisting of a potential pulses

sequence E1, E2, . . ., Ep, with each pulse of the sequence Ep being applied to an

electrode of any geometry G over the interval 0 � t p � τ p. The total time of the

experiment is

t ¼
Xp�1
m¼1
τm þ t p ð5:3Þ

In the following, it is considered that the diffusion coefficients of species O and

R are equal DO ¼ DR ¼ Dð Þ, except in the case of macroelectrodes (planar

electrodes).

The mass transport of species O and R is described by the differential equations:

∂c pð Þ
O

∂t p
¼ D∇2c

pð Þ
O ð5:4Þ

∂c pð Þ
R

∂t p
¼ D∇2c

pð Þ
R ð5:5Þ

with ∇2 being the Laplacian operator given in Table 2.2 and c
ðpÞ
O and c

ðpÞ
R the

solutions of Eqs. (5.4)–(5.5). The boundary value problem is given by

t p � 0, q!1
t p ¼ 0, q � qs

�
c

1ð Þ
O ¼ c*O, c

1ð Þ
R ¼ c*R

c
pð Þ

O ¼ c
p�1ð Þ

O , c
pð Þ

R ¼ c
p�1ð Þ

R p > 1

)
ð5:6Þ

t p > 0, q ¼ qs;

c
p;sð Þ

O þ c
p;sð Þ

R ¼ c*O þ c*R ð5:7Þ
c

p;sð Þ
O ¼ eη pc

p;sð Þ
R ð5:8Þ

with

η p ¼
F

RT
E p � E��O

0
c

� �
ð5:9Þ

c
ðp;sÞ
O and c

ðp;sÞ
R are the surface concentrations of species O and R corresponding to

the application of potential Ep, and c�O and c�R the initial concentrations of these

322 5 Multipulse and Sweep Voltammetries I

http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_2


species. Since no restrictions have been considered in the electrode geometry,

q refers to spatial coordinates (e.g., r in the case of spheres and cylinders, x and

y in the case of bands, and r and z in the case of discs), qs to the value of q at the

electrode surface, and c
p�1ð Þ

O and c
p�1ð Þ

R are the solutions corresponding to the

application of the ( p� 1) potential, E p�1.
Given that the operators of Fick’s second law are linear, the expressions for the

concentration profiles of species O and R corresponding to the pth potential pulse of
the perturbation can be written as a linear combination of solutions:

c
pð Þ

i q; tð Þ ¼ c
p�1ð Þ

i q; tð Þ þ ec pð Þ
i q; tð Þ , i � O, R

p ¼ 2, 3, . . .
ð5:10Þ

whereec p
i q; tð Þ are unknown functions of coordinates and time to be determined and

c
p�1ð Þ

i ¼ c
1ð Þ
i q; tð Þ þ

Xp�1
m¼2
ec mð Þ
i q; tð Þ , i � O, R

p ¼ 2, 3, . . .

ð5:11Þ

By taking into account Eqs. (2.149)–(2.153) for the application of the first

potential pulse, Eqs. (4.4)–(4.22) for the application of the second one, and apply-

ing the Induction Principle, it is possible to express the boundary value problem for

any potential p of the applied sequence in terms of the unknown functionsec pð Þ
i q; tð Þ,

in the following general way:

∂ec pð Þ
O

∂t p
¼ D∇2ec pð Þ

O

∂ec pð Þ
R

∂t p
¼ D∇2ec pð Þ

R

9>>>=>>>; ð5:12Þ

t p ¼ 0, q � qs

t p > 0, q!1
�

ec pð Þ
O q; tð Þ ¼ ec pð Þ

R q; tð Þ ¼ 0 ð5:13Þ
t p > 0, q ¼ qs :

ec p;sð Þ
O þ ec p;sð Þ

R ¼ 0 ð5:14Þ

ec p;sð Þ
O ¼ eη pec p;sð Þ

R þ eη p�1 � eη p

1þ eη p�1
c*O þ c*R
� � ð5:15Þ

Moreover, for any potential pulse Ep, the following is fulfilled (see Eqs. (5.7) and

(5.8)):
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c
p;sð Þ

O ¼ eη p c*O þ c*R
� �
1þ eη p

c
p;sð Þ

R ¼ c
p;sð Þ

O

eη p

9>>=>>; ð5:16Þ

Eqs. (5.12)–(5.15) show that the boundary value problem has the same general

form for any pulse potential p, whatever the geometry of the electrode.

This generalization clearly demonstrates that the superposition principle can be

rigorously applied whatever the electrode geometry [5, 8]. The expression for the

current corresponding to the application of the pth potential pulse Ep can be written

as (see Eqs. (5.10)–(5.11))

IGp
FAGD

¼ ∂c pð Þ
O

∂qN

 !
qs

¼ ∂c 1ð Þ
O

∂qN

 !
qs

þ
Xp
m¼2

∂ec mð Þ
O

∂qN

 !
qs

ð5:17Þ

with qs and qN being the coordinates at the electrode surface and the normal

coordinate, respectively.

Equation (5.17) shows that the current IGp can be written as a sum of contri-

butions due to the different potential pulses of the sequence which are only effective

from the moment when each particular potential pulse is applied. By taking into

account Eq. (2.156), Eq. (4.29), and Eqs. (5.10)–(5.16), it is possible to rewrite

Eq. (5.17) as

IGp
FAGD

¼
Xp
m¼1

c
m�1, sð Þ
O � c

m;sð Þ
O

� �
fG tm, p, qG
� � ð5:18Þ

where

c
0;sð Þ
O ¼ c*O ð5:19Þ

Superindex “G” refers to the particular electrode geometry considered, qG to the

characteristic dimension of the electrode considered, and fG is given in Table 2.3 for

several electrode geometries. tm,p is given by

tm, p ¼
Xp�1
j¼m
τ j þ t p ð5:20Þ

From Eqs. (5.16) and (5.18), the variable Zm, which is independent of the

electrode geometry, can be defined as

Zm ¼ c
m�1, sð Þ
O � c

m;sð Þ
O

c*O þ c*R
¼ 1

1þ eηm
� 1

1þ eηm�1
m � 1 ð5:21Þ
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with

eη0 ¼ exp
F

RT
Eeq � E��O

0
c

� �� �
¼ c*O

c*R
ð5:22Þ

Eeq is the equilibrium potential given by Nernst’s equation. From Eqs. (4.28)–

(4.29) and Eqs. (5.19) and (5.21)–(5.22), the current IGp can be written as

IGp
FAGDc*O

¼ 1þ c*R=c
*
O

� �Xp
m¼1

Zm fG tm, p; qG
� � ð5:23Þ

5.2.2 Multipulse Chronoamperometry

In this technique, the analysis of the current–time responses corresponding to the

application of a sequence of potential pulses without the reestablishment of the

equilibrium between them is carried out. The usefulness of this technique lies

mainly in the determination of diffusion coefficients of the electroactive species

when only two potentials are applied, as discussed in Sect. ‘4.2.2. Nevertheless,

there are also other analytical applications, which are presented in this section.

5.2.2.1 Planar Electrodes

In planar geometry, the condition of surface concentrations of species O and R

when they are only potential dependent remains valid for any potential pulse of the

sequence, even when the diffusion coefficients of species O and R are different (see

Sect. 2.2 and [1, 5, 8]). Thus, it is possible to deduce the following simple

expression for the concentration profiles of species O and R for any potential

pulse of the sequence under these conditions:

c
1ð Þ
i x; tð Þ ¼ c*i þ c

1;sð Þ
i � c*i

� �
erfc

x

2
ffiffiffiffiffiffiffiffi
DOt
p

� �
c

pð Þ
i x; tð Þ ¼

Xp
m¼1

c
m;sð Þ
i � c

m�1, sð Þ
i

� �
erfc

x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRtm, p

p ! !
p > 1

9>>>>=>>>>; i ¼ O, R

ð5:24Þ

with c
ðm;sÞ
i (i¼O and R) given by Eq. (5.16), c

ð0;sÞ
O by Eq. (5.19), c

0;sð Þ
R ¼ c*R,

erfc xð Þ ¼ 1� er f xð Þ, and erf(x) is the error function. The expression of the current

under these conditions is
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I planep

FADO c*O
¼ γ þ c*R=c

*
O

� �
γ

Xp
m¼1

Zmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πDOtm, p

p ð5:25Þ

with

Zm ¼ 1

1þ γeηm �
1

1þ γeηm�1 m ¼ 1, 2, . . . , p ð5:26Þ

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ð5:27Þ

and eη0 given in Eq. (5.22)

A situation of special interest corresponds to the application of a “square wave”

(SW) potential of the form,

E ¼ �Eabs odd steps

Eabs even steps



ð5:28Þ

with Eabs being the absolute value of the potential applied. When E! �1 (with

the upper sign referring to the odd steps and the lower one to the even steps), the

response corresponds to a diffusion-controlled process for the cathodic and anodic

currents, and Eq. (5.25) is simplified to

Iplane,SWp

FADO c*O
¼ γ þ c*R=c

*
O

� �
γ

Xp
m¼1

�1ð Þmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πDOtm, p

p ð5:29Þ

with

tm, p ¼ p� mþ 1ð Þτ ð5:30Þ

when all the pulses have the same length. The influence of the presence of the

reaction product R on the currents obtained for the application of six potentials can

be seen in Fig. 5.1.

From this figure it can be seen that the presence of species R only affects the

second and subsequent transient currents by causing an increase of the absolute

value of the current with (c�R/c
�
O).

If the length of all the pulses is the same, and the current is measured at the end

of each pulse, the expression of the current is [1, 5, 8, 11],

Iplane,SWp

FADO c*O
¼ 1þ c*R=c

*
O

� �
=γ

� �ffiffiffiffiffiffiffiffiffiffiffi
πDOτ
p

Xp
m¼1

�1ð Þmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� mþ 1
p p ¼ 1, 2, . . . ð5:31Þ

If the number of potential steps p is high enough, the sum of terms in Eq. (5.31)

tends to a constant value (0.6045 for odd pulses and�0:6050 for even ones). Thus,
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under these conditions, the cathodic and anodic responses will be repetitive, i.e., an

“ultimate state” is achieved, and under these conditions, the bulk concentrations of

species O and R can be easily determined [1, 12].

5.2.2.2 Spherical Electrodes and Microelectrodes

For spherical geometry when diffusion coefficients of species O and R are identical,

the following analytical and explicit expression for the concentration profiles of

species O and R can be obtained,

c
1ð Þ
i r; tð Þ ¼ c*i þ c

1;sð Þ
i � c*i

� �rs
r
erfc

r � rs

2
ffiffiffiffiffi
Dt
p

� �
c

pð Þ
i r; tð Þ ¼

Xp
m¼1

c
m;sð Þ
i � c

m�1, sð Þ
i

� �rs
r
erfc

r � rs

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Dtm, p

p ! !
p > 1

9>>>=>>>; i ¼ O, R

ð5:32Þ

with c
ðm;sÞ
i (i¼O, R) given by Eq. (5.16). For this electrode geometry, the expres-

sion of the current can be written as

I sphep

FAsDc*O
¼ I planep

FAsDc*O
þ Isphe, ssp

FAsDc*O
ð5:33Þ
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corresponding to the application of six potentials with Eabs � E��○
0

c

		 		 ¼ 0:5 V. The values of the

ratio (c�R/c
�
O) are: 0, solid line; 0.5, dashed line; 1, dashed-dotted line; 2, dotted line. DO ¼ DR,

τ1 ¼ . . . ¼ τ6 ¼ τ ¼ 0:1s. The potential waveform applied has been plotted in the inner figure
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with

I planep

FAsDc*O
¼ 1þ c*R=c

*
O

� �Xp
m¼1

Zmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πDtm, p

p ð5:34Þ

Isphe, ssp

FAsDc*O
¼ 1

rs

� �
1� c*R=c

*
O

� �
eη

1þ eη
ð5:35Þ

In the case of the square wave perturbation presented in the previous section,

Iplanep is given by Eq. (5.29) with γ ¼ 1 and

Isphe, ssodd

FAsDc*O
¼ 1

rs
Isphe, sseven

FAsDc*O
¼ � c*R=c

*
O

� �
rs

9>>>=>>>; ð5:36Þ

For very small electrodes, the response attains a stationary character, since the

second term in the right-hand side of Eq. (5.33) becomes dominant.

The influence of the electrode size on the current–time curves calculated from

Eq. (5.33) for two values of the ratio (c�R/c
�
O) is shown in Fig. 5.2. Thus, when

species R is not present in the solution, the anodic chronoamperograms tend to zero

very quickly, whereas when c*R=c
*
O

� � ¼ 1 both cathodic and anodic chronoam-

perograms increase in absolute value as the electrode radius decreases, and their

values are coincident with the respective cathodic or anodic stationary values

(Eq. (5.36)) and this becomes faster the smaller the size of the electrode.

5.2.3 Cyclic Staircase Voltammetry and Cyclic Voltammetry
at Electrodes and Microelectrodes of Any Geometry

In this section, general Eq. (5.23) will be applied to Cyclic Staircase Voltammetry

(CSCV) and Cyclic Voltammetry (CV). Note that for CSCV the length of each

potential pulse is identical, i.e., τ1 ¼ τ2 ¼ � � � ¼ τ p ¼ τ, and the current is usually

measured at the end of the application of each pulse in such a way that the time

elapsed between the measurement of mth and pth currents is given by Eq. (5.30).

Moreover, it is more convenient to write a dimensionless expression for the

current as

ψ G
p ¼

IGp

FAGc*O
ffiffiffiffiffiffi
aD
p ð5:37Þ

with

a ¼ Fv

RT
ð5:38Þ
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where v is the scan rate. By inserting Eqs. (5.30) and (5.37) in Eq. (5.23), the

expression for the current in CSCV is

ψ G
p ¼

ffiffiffiffi
D

a

r
1þ c*R=c

*
O

� �Xp
m¼1

Zm fG p� mþ 1ð Þτ, qGð Þ ð5:39Þ

where function fG corresponding to the mth potential pulse (see Table 2.3) has to be
calculated for each time p� mþ 1ð Þτ (with 1 � m � p). A complete C++ code to

calculate the response of reversible charge transfer processes in Cyclic Staircase

Voltammetry at disc, spherical, and cylindrical electrodes of any radius is given in

Appendix J.

time / s
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Fig. 5.2 Current–time response calculated from Eq. (5.33), withϕ sphe
m ¼ I sphem = FAs

ffiffiffiffiffiffiffi
DO

p
c*O=

ffiffiffi
τ
p� �

,

corresponding to the application of six potentials with Eabs � E��○
0

c

		 		 ¼ 0:5V. The values of the

ratio (c�R/c
�
O) are 0 and 1. The values of the radius of the spherical electrode (in microns) are:

25, solid line; 10, dashed line; 5, dashed-dotted line; 1, dotted line. DO ¼ DR,

τ1 ¼ . . . ¼ τ6 ¼ τ ¼ 0:1s
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Equation (5.39) is valid both for CSCV (in which the current is measured in a

“discrete” way) and for CV (in which the current is measured as a “continuous”

function of potential or time; see Eq. (5.1)). Eq. (5.39) allows us to give the current

as a function of time instead of the more usual potential dependence. In order to use

this equation in terms of the potential, it has been considered that

tm, p ¼ p� mþ 1ð Þτ ¼ E p�mþ1 � Einitial

v
ð5:40Þ

and in this way one obtains

ψ G
p ¼ 1þ c*R=c

*
O

� �Xp
m¼1

Zm fG ϑm, p; ξG
� � ð5:41Þ

with

ξG ¼
ffiffiffiffiffiffiffiffi
D

aq2G

s
ð5:42Þ

Zm ¼ 1

1þ eϑmeϑin
� 1

1þ eϑm�1eϑin
ð5:43Þ

ϑm, p ¼
F

RT
E p�mþ1 � Einitial

� �
m � N=2

F

RT
E p�mþ1 � Einitial þ 2Efinal

� �
m > N=2

8><>: ð5:44Þ

ϑm ¼ F

RT
Em � Einitialð Þ ð5:45Þ

ϑin ¼ F

RT
Einitial � E��O

0
c

� �
ð5:46Þ

with (N/2) being the number of pulses of each scan. G refers to the geometry of the

diffusion field considered and qG is the characteristic dimension of the electrode.

The parameter ξG depends on the electrode geometry through qG. The expression of
fG(ϑm,p, ξG) is given in Table 5.1 for different electrode geometries. Note that the

calculation of ψG
p with Eq. (5.39) (in terms of time) or Eq. (5.41) (in terms of

potential) is equivalent.

Under CV conditions ( ΔEj j ! 0, i.e., for pulse amplitudes which fulfill ΔEj j
< 0:01mV), in Eq. (5.18), it can be written

c
m�1,sð Þ
O � c

m;sð Þ
O

ΔE
¼ Δc m;sð Þ

O

ΔE
ffi dc

m;sð Þ
O

dE
¼ F

RT
c*O þ c*R
� � eϑmeϑin

1þ eϑmeϑinð Þ2 m> 1 ð5:47Þ

Using this mathematical identity and Eq. (5.43), it is possible to rewrite

Eq. (5.41) as
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ψ G
CV ¼

1� c*R=c
*
O

� �
eϑ1eϑin

1þ eϑ1eϑin
fG ϑ1, p; ξG
� �

þ 1þ c*R=c
*
O

� �Xp
m¼2

Δϑeϑmeϑin

1þ eϑmeϑinð Þ2 fG ϑm, p; ξG
� � !

ð5:48Þ

with

Δϑ ¼ F

RT
ΔEj j ð5:49Þ

Note that Eqs. (5.41) or (5.48) should be used for Δϑ values below 3:8� 10�4

(i.e., for ΔEj j < 0:01mV and T¼ 298 K). In the following sections, when this

condition is assumed, the current is denoted as ψG
CV.

5.2.3.1 Planar Electrodes

Equation (5.41) is applicable to any electrode geometry whenDO ¼ DR. In the case

of planar electrodes, it becomes

ψ plane
p ¼ 1þ c*R=c

*
O

� �Xp
m¼1

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
π ϑm, p

p ð5:50Þ

To use Eq. (5.50) under CV conditions, values of ΔEj j < 0:01mVmust be used.

Unequal Diffusion Coefficients

It is possible to deduce an analytical expression for the CSCV or CV current–

potential response at planar electrodes when DO 6¼ DR by following a procedure

analogous to that presented in Sect. 5.2.1. In this case it is obtained

ψ plane
p ¼ I planep

FAc*O
ffiffiffiffiffiffiffiffiffi
aDO

p

¼ γ þ c*R=c
*
O

� �
γ

Xp
m¼1

1

1þ γeϑmeϑin �
1

1þ γeϑm�1eϑin
� �

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
π ϑm, p

p ð5:51Þ

with ϑm,p given in Eq. (5.44) and γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p
.

This is the only case in which a rigorous explicit expression of the cyclic

voltammogram has been deduced by considering unequal diffusion coefficients

for species O and R. When the electrode geometry is considered, it has not been

possible to obtain an explicit solution and Fick’s second law differential equations

need to be solved using numerical procedures.
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When c*R ¼ 0 Eq. (5.51) coincides with the following well-known expression

(deduced by Nicholson and Shain at planar electrodes using Laplace transform

method; see Appendix H and [9]):

ψ plane
CV ¼ I planeCV

FAc*O
ffiffiffiffiffiffiffiffiffi
aDO

p ¼
ffiffiffi
π

a

r
χ atð Þ ð5:52Þ

with

at ¼ F

RT
Einitial � E tð Þð Þ ð5:53Þ

with E(t) given by Eq. (5.1). Function χ(at) can be obtained by solving numerically

the following integral equation:ð at
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ¼ 1

1þ γθe� atð Þ ð5:54Þ

with θ ¼ exp F Einitial � E��O
0

c

� �
=RT

� �
:

Several examples of applications of Eq. (5.50) valid for CSCV and CV are

shown in Fig. 5.3. The influence of the pulse amplitude ΔE (withΔE � 0:01mV) at

planar electrodes with a scan rate v¼ 50 mV s�1, where only the oxidized species

(Fig. 5.3a) or both species (Fig. 5.3b, c) are initially present in the electrolyte

solution, can be clearly seen. The CV curves (white dots) have been included for

comparison.

From these figures, it can be observed that the transient current–potential

response corresponding to a Nernstian charge transfer process at a planar electrode

presents a pair of peaks, one for the first scan and another for the second, whose

separation increases and whose height decreases as |ΔE| increases. Figure 5.3b, c

show that this effect is similar when both species are initially present. In this case an

initial anodic (Fig. 5.3b) or cathodic (Fig. 5.3c) current can also be observed in the

cyclic voltammograms when sweeping toward cathodic or anodic potentials,

respectively. It is notable that for ΔEj j ¼ 0:01mV there are negligible differences

between the SCV curve calculated from Eq. (5.50) and the CV one (Eqs. (5.52)–

(5.53) with c*R ¼ 0, white dots) in all the situations considered. This confirms the

validity of Eq. (5.50) to analyze SCV and CV curves. In order to compare experi-

mental and theoretical data, this equation allows us to fit experimental results to any

staircase waveform, instead of that given by Eq. (5.52), which is valid only for

Cyclic Voltammetry.

The expressions of the peak parameters are
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– Peak current

Iplane,peakCV ¼ 0:446FAc*O
ffiffiffiffiffiffiffiffiffi
aDO

p
¼ 0:446FAc*O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FDO

RT
v

r
ð5:55Þ

This is the well-known Randles–Ševčik equation, which establishes a linear

dependence between the peak current and the square root of the scan rate for a

reversible process under linear diffusion conditions [23, 24]. For a typical value

Fig. 5.3 Application of

Eq. (5.50) to the study

of the influence of ΔE (with

ΔE � 0:01mV) on the

ψ plane
p � E curves with

v¼ 50 mV s�1, where only
the oxidized species (a) or

both species (b and c) are

initially present in the

electrolyte solution. White

dots correspond to theψ plane
CV

�E curve calculated from

Eq. (5.52) for c*R ¼ 0 and

numerically by following

the procedure given in [21,

22] for c*R 6¼ 0. The values

of |ΔE| appear on the

curves. Einitial(in V)¼ 0.3

(a, b) and� 0.3 (c).

DO ¼ DR ¼ 10�5 cm2 s�1.
Reproduced from [8] with

permission
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of T¼ 298 K, A in cm2, D in cm2 s�1, c�O in mol cm�3, v in V s�1, and Iplane;peakCV

in A, Eq. (5.55) becomes

Iplane,peakCV ¼ 2:69� 105
� �

A
ffiffiffiffiffiffiffi
DO

p
c*O

ffiffiffi
v
p ð5:56Þ

– Forward peak potential, Eplane
peak;f

Eplane
peak, f ¼ E r

1=2 � 1:109
RT

F
¼ E r

1=2 � 28 mV T ¼ 298 Kð Þ ð5:57Þ

with Er
1=2 being the half-wave reversible potential for planar diffusion given by

Eq. (2.32) (¼ E��O
0

c þ RT
F ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DR=DO

p
). Another interesting point of the

voltammogram is the half peak potential, which is the potential at which the

current is the half of the peak current. This value is of importance when the peak

of the I–E curve is very broad and/or badly defined, and it is given by

Eplane

p=2 ¼ E r
1=2 þ 1:09

RT

F
¼ E r

1=2 þ 28 mV T ¼ 298 Kð Þ ð5:58Þ

Note that both the peak and half peak potentials are independent of the scan rate

in agreement with Eqs. (5.57)–(5.58). This behavior can be seen in Fig. 5.4,

where the voltagrams corresponding to a Nernstian process for different scan

rates in the range 50–500 mV s�1 have been plotted.

Concerning the peak potential and peak current of the reverse (second) scan, it is

important to take into account that the shape of the reverse current depends on the

switching potential (i.e., the last potential of the first scan, Efinal). This especially

affects the measurement of the reverse peak current, for which different criteria

have been reported [9]. It should be noted that these criteria are ambiguous and it is
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Fig. 5.4 Influence of the

scan rate on the

voltammograms

corresponding to a planar

electrode calculated from

Eq. (5.50) with

ΔE¼ 0.01mV for different

values of the scan rate

(shown in the Fig. in

mV s�1).
DO ¼ DR ¼ 10�5 cm2 s�1,
c*R ¼ 0. Vertical dashed
lines mark the location of

the anodic and cathodic

peak potentials. The black
dot corresponds to the

so-called isopoint
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more appropriate to focus on the measurement of the reverse peak potential, Eplane
peak;r.

If the potential is inverted at a value Efinalj j > Eplane
peak, f

			 			þ 35 mV, the second peak

potential will be unaffected by the switching potential [9, 25]. Under these condi-

tions, the difference between the peak potentials of both scans corresponding to

planar electrodes is

ΔEplane
peak ¼ 2:218

RT

F
¼ 57 mV T ¼ 298 Kð Þ ð5:59Þ

From Eqs. (5.57) and (5.59), it follows immediately that the midpoint between

cathodic and anodic peak potentials coincides with the half-wave potential (see also

Fig. 5.4):

Eplane
midpoint ¼

Eplane
peak, f þ Eplane

peak, r

2
¼ E r

1=2 ð5:60Þ

There is another characteristic point in the voltammogram known as the

“isopoint” [25, 26]. At the isopoint, the current is zero regardless of the scan rate

(see black dot in Fig. 5.4). In reference [26], the following numerical expression

was reported to determine the difference between the peak potential of the forward

scan, Eplane
peak;f , and the potential of the isopoint, Eplane

iso , in terms of the switching

potential Efinal:

Eplane
peak, f � Eplane

iso ¼ 0:60
RT

F
ln

F

RT
Efinal � Eplane

peak, f

			 			� �
� 1:609

RT

F
ð5:61Þ

5.2.3.2 Spherical Electrodes

The expression of the dimensionless current obtained for a Nernstian process at

spherical electrodes can be deduced from Eq. (5.39) (see also Table 5.1),

ψ sphe
CV ¼ ψ plane

CV þ ψ sphe, ss
CV ¼

¼ 1þ c*R=c
*
O

� �Xp
m¼1

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
π ϑm, p

p þ ξs
1� eϑ peϑin c*R=c

*
O

� �
1þ eϑ peϑinð Þ

ð5:62Þ

with ϑin, Zm, ϑp and ψ
plane
CV given by Eq. (5.43), (5.45), (5.46) and (5.50), respec-

tively. Moreover,

ψ sphe, ss
CV ¼ ξs

1� eϑ peϑin c*R=c
*
O

� �
1þ eϑ peϑinð Þ ð5:63Þ
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In the most usual case where only the oxidized species O is initially present

(c*R ¼ 0) and the potential scan starts at Einitial 
 E��O
0

c (i.e., eη1 !1), Eq. (5.62) is

simplified to,

ψ sphe
CV ¼

Xp
m¼2

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffi
π ϑm, p

p þ ξs
1

1þ eϑ peϑinð Þ ð5:64Þ

with ξs given in Eq. (5.42) and in Table 5.1.

Equation (5.64) is equivalent to the following expression deduced by Reinmuth

by using Laplace transform and assuming equal diffusion coefficients of species O

and R and c*R ¼ 0 [27],

I spheCV ¼ I planeCV þ FAsc
*
O

D

rs

1� e�at

1þ θe�at ð5:65Þ

with θ ¼ exp F Einitial � E��O
0

c

� �
= RTð Þ� �

, see Appendix H, and IplaneCV and at given in

Eqs. (5.52) and (5.53), respectively.

From Eq. (5.62) or (5.65) it is clear that when the electrode radius decreases the

second term in the right-hand side of both equations becomes dominant and the

current becomes stationary (see below). Thus, the typical peak-shaped signal of

macroelectrodes evolves toward a sigmoidal or quasi-sigmoidal shape, indicative of

stationary or quasi-stationary behavior, and therefore, under these conditions, the

peak is no longer an important feature of the signal.

To check this behavior, in Fig. 5.5 are plotted the voltammograms corresponding

to a planar electrode calculated from Eq. (5.50) (Fig. 5.5a), those calculated from

Eq. (5.63) for different values of the electrode radius (Fig. 5.5b), and, finally, the

current corresponding to a spherical electrode, calculated as the sum of these two

contributions (Fig. 5.5c). Thus, the decrease of the electrode size leads to an

increase of the dimensionless current of the spherical electrode and to a change

of the voltammogram shape in the way indicated above. For small electrodes (see

curves in Fig. 5.5c for a radius rs ¼ 10 microns), the peak of the second scan has

disappeared and that corresponding to the first scan is poorly defined. Therefore, in

these conditions the determination of thermodynamic parameters of the experi-

mental systems under study lies in the study of the half-wave potential of the

voltammograms (see below).

Expressions for the peak parameters similar to Eqs. (5.55)–(5.57) have not been

reported since, in this case, they also depend on the electrode size. Thus, the

separation between cathodic and anodic peaks increases as the electrode radius

diminishes (for example, ΔE sphe
peak ¼ 73mV (T¼ 298 K) for rs ¼ 0:01cm) [25]. The

usual approach for spherical or, in general, nonplanar electrode geometries is to use

numerical simulations to get an optimal fitting of a particular experimental

voltammogram with a given set of parameters (formal potential, diffusion coeffi-

cients, etc.).
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Although it is not possible to deduce analytical expressions for the peak currents

and potentials for spherical electrodes, the “isopoint” can be analytically charac-

terized, as in the case of planar electrodes (see Sect. 5.2.3.1).

The cyclic voltammograms corresponding to a spherical electrode of radius rs
¼ 10 microns by using three values for the scan rate (103, 102, and 10 mV s�1) are
shown in Fig. 5.6. Figure 5.6a, b shows the planar (IplaneCV ; see Eqs. (5.37) and (5.50))

and stationary (Isphe;ssCV ; see Eq. (5.63)) contributions, respectively. Figure 5.6c
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corresponds to the real current that would be expected for a spherical electrode

(Eq. (5.62)). As can be seen, planar and spherical curves present a common point in

the reverse branches of the current–potential curves obtained at different scan rates

which corresponds to the “isopoint.” The current corresponding to this point,

regardless of the scan rate value and unlike the case of planar diffusion, corresponds

to a nonzero reverse current which is due solely to the stationary contribution,

which is independent of the scan rate (see Fig. 5.6b), i.e., Isphe, isoCV ¼ Isphe, ssCV Eisoð Þ. In
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this case, the expression of Isphe;isoCV can be easily calculated by making Iplane, isoCV ¼ 0

in Eqs. (5.62) or (5.65). So it is deduced that

Isphe, isoCV ¼ FAsDc
*
O

rs

1

1þ eϑiso eϑinð Þ ð5:66Þ

where

ϑiso ¼ F

RT
E sphe
iso � Einitial

� �
ð5:67Þ

Equation (5.62) for the current–potential response in CV has been deduced by

assuming that the diffusion coefficients of species O and R fulfill the condition

DO ¼ DR ¼ D. If this assumption cannot be fulfilled, this equation is not valid since

in this case the surface concentrations are not constant and it has not been possible

to obtain an explicit solution. Under these conditions, the CV curves corresponding

to Nernstian processes have to be obtained by using numerical procedures to solve

the diffusion differential equations (finite differences, Crank–Nicholson methods,

etc.; see Appendix I and ([28])3.

The influence of the diffusion coefficients in the voltammograms corresponding

to planar (a) and spherical (b) electrodes can be seen in Fig. 5.7, which has been

obtained by following the numerical procedure described in [21, 22]. It can be seen

in these figures that for planar electrodes the variation of γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p
only causes

a shift of the voltammogram toward more negative potentials as γ increases, but
has no influence on the peak current, in line with Eqs. (5.55)–(5.56). In the case

of spherical electrodes, it can be observed that, together with the shift of the

curves toward more negative potentials, there is an increase of the peak current of

the second scan, which is more evident as the electrode size or the scan rate

decreases.

5.2.3.3 Other Electrode Geometries: Microelectrodes and Stationary

Voltammetry

For electrode geometries other than planar or spherical, the expression of the SCV

current is given, in general, by Eq. (5.41). For CV conditions, the current can be

obtained from Eq. (5.41) with ΔEj j � 0:01mV.

The effects of the pulse amplitude |ΔE| on the values of the peak potential of the

forward scan (EG
peak, f � E��○

0
c ) and the peak-to-peak distance (ΔEG

peak) of the

voltammograms calculated at discs (circles), spheres (squares), bands (hexagons),

and cylinders (triangles) for three different values of the scan rate are shown in Fig. 5.8.

3 See also: http://www.basinc.com/products/ec/digisim/ and http://www.gamry.com/products/

digielch-electrochemical-simulation-software/
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From these curves, it can be seen that in all the cases ΔEG
peak increases and E

G
peak;f

is shifted toward more negative potentials as |ΔE| increases.
Concerning the influence of the scan rate, for v¼ 1.0 V s�1, no significant

differences are observed between the four geometries. These results indicate

that for high scan rates (i.e., low values of τ for a fixed |ΔE|), the diffusional behavior
can be considered as almost planar, so the particular electrode geometry incorporates

only small differences in the current. An additional confirmation of this point is that,

as ΔEj j ! 0 and the SCV voltammograms behave as CV (vertical dotted lines),

EG
peak, f � E��○

0
c and ΔEG

peak approach the values observed in this technique for a planar

electrode (�28 and 57 mV, respectively; see Eqs. (5.57) and (5.59)).

However, when v decreases (i.e., τ increases for a given |ΔE|), the peak potential and
peak-to-peak distance show a strong dependence on the electrode geometry, which

clearly indicates that the values of fG function are very different for the four geometries.

The influence of the electrode radius on the cyclic voltammograms (ΨG � E
curves) obtained for discs, spheres, bands, and cylinders in the more general case in

which both species are initially present in the electrolytic solution (c*R=c
*
O ¼ 1) is
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shown in Fig. 5.9. In order to analyze the effects of the electrode geometry on the

dimensionless voltammetric current, discs, spheres, and cylinders with equal radii

have been chosen, as well as a band whose semi-width is identical to the cylinder

radius.

As can be deduced from these curves, the voltammograms present a more

sigmoidal shape as the electrode size decreases, such that for a small enough radius

a stationary I � E curve is reached at discs and spheres and, therefore, the current is

given by

ψG,ss
CV ¼

1� eη p c*R=c
*
O

� �
1þ eη p

fG,micro ð5:68Þ

or, alternatively,

ψG,ss
CV ¼

1� eϑ peϑin c*R=c
*
O

� �
1þ eϑ peϑin

fG,micro ð5:69Þ

with η p ¼ F= RTð Þ E p � E��O
0

c

� �
. ϑp and ϑin are given in Eqs. (5.45)–(5.46) and

fG,micro is given in Table 5.1 for different electrode geometries.
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By comparing Eq. (5.68) for the CV steady-state currents and Eq. (2.159) for

NPV under transient conditions, it can be deduced that at those electrodes where a

true steady-state response can be attained (spheres and discs) it holds that

ψG,ss
CV

ψG,ss
CV,d, c

¼ INPV
Id,c
¼ 1� eη c*R=c

*
O

� �
1þ eη

G ¼ sphere, disc ð5:70Þ

where ψG;ss
CV;d;c is the value of ψ

G;ss
CV for E! �1 (i.e., ψG,ss

CV,d,c ¼ fG,micro).

This behavior is not expected for microcylinders and microbands, for which only

quasi-steady-state curves are obtained (see Fig. 5.9c, d and Table 5.1).

In order to evaluate the conditions under which it is possible to achieve a

stationary cyclic voltammogram, a key parameter is Nernst diffusion layer thick-

ness, δrG, which was introduced in Sect. 2.2.1 for reversible processes when a single
potential pulse is applied. It is possible to extend the definition of δrG to a multipulse

sequence, δr;pG , as

δr, p
G ¼ Δc pð Þ

O

IGp = FAGDc*O
� � ð5:71Þ

with

Δc pð Þ
O ¼ 1� c

p;sð Þ
O

c*O
¼ 1� eη p c*R=c

*
O

� �
1þ eη p

ð5:72Þ

and IGp given in Eq. (5.23) (with ΔEj j � 0:01mVfor CV), which is applicable to any

electrode geometry.

In the case of spherical electrodes, Nernst diffusion layer thickness reaches the

following limiting behaviors:

anodic limit δr, p
sphe

� �
E
E��O

0
c

¼ 1

1

rs
þ

ffiffiffiffi
a

D

r
cathodic limit δr, p

sphe

� �
E�E��O

0
c

¼ 1

1

rs
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
v

πDE p

r

9>>>>>>=>>>>>>;
ð5:73Þ

For planar electrodes, the limits of the diffusion layer thickness are

anodic limit δr, p
plane

� �
E
E��O

0
c

¼
ffiffiffiffi
D

a

r
cathodic limit δr, p

sphe

� �
E�E��O

0
c

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
πDE p

v

r
9>>=>>; ð5:74Þ
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The anodic limiting behavior of Eq. (5.73) is observed for E� E��O
0

c � 95mV,

whereas the cathodic limiting behavior is observed for E� E��O
0

c � �230mV with

errors below 1 % in both cases. From Eq. (5.73), it is clear that for E� E��O
0

c , δr;psphe
has a dependence on the electrode radius and time (¼ E tð Þ � Einitialð Þ=v) similar to

that obtained when only one potential step is applied (see Eq. (2.146)).

It is also possible to find expressions analogous to those given in Eqs. (5.71) for

the limiting values of the diffusion layer thickness for other electrode geometries

like disc or band electrodes [29, 30].

The variation of δr;psphe with the potential for different values of the electrode

radius obtained in CV with spherical electrodes, including the limiting case of a

planar electrode (rs !1), can be seen in Fig. 5.10a. From these curves, which have

been calculated using Eq. (5.71) for a sweep rate v¼ 0.1 V s�1, it can be observed

that the diffusion layer thickness decreases with the electrode radius and the

constant value δr, p
sphe ¼ rs is reached when rs � 5μm (i.e., a truly stationary I–E

response is obtained as can be seen in Fig. 5.10b).
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In the case of disc electrodes, a similar behavior to that observed for spherical

ones is obtained (although in this case the diffusion layer thickness is an average

magnitude), whereas for band or cylinder electrodes, the diffusion layer thickness is

always potential dependent, and no constant limit is achieved, even for very small

values of the electrode characteristic dimension, confirming the impossibility of

these electrodes achieving a true stationary response [5, 8, 16, 29, 30].

5.2.3.4 Effect of the Uncompensated Resistance and of the Double-

Layer Charging

One of the main disadvantages of voltammetric techniques like CV is the distortion

caused by the combination of the double-layer charging process with the ohmic

drop, related to the uncompensated resistance of the solution, Ru (see Sect. 1.9).

This distortion can be very significant for macroelectrodes.

The ohmic drop causes the potential imposed between the working electrode and

the reference one (E0) to differ from the applied potential (E), according to

E
0 ¼ E� IRu. Moreover, it can be assumed, at least approximately, that the current

can be expressed as the sum of a pure faradaic current because of the charge transfer

process plus a charging current

I ¼ Ifaradaic þ Ic ð5:75Þ

For CV, the charging component is a function of the applied potential given

by [31]

ICV,c ¼
Cdlv 1� e

� Einitial�E
vRuCdl

� � !
direct scan

Cdlv 1� 2e
� E�Efinal

vRuCdl

� � !
reverse scan

8>>>>><>>>>>:
ð5:76Þ

with Cdl being the double-layer capacitance, whereas in multipulse techniques like

SCV it takes the form (see Eq. (1.203))

ISCV,c ¼ �ΔE
Ru

e
� τ

RuCdl

� �
ð5:77Þ

with the double sign referring to the direct (upper) and reverse (lower) scans. To

deduce Eqs. (5.76)–(5.77), it has been assumed that Cdl is potential independent.

The main difference between expressions (5.76) and (5.77) lies in the way the

current is measured in each technique. As stated in Sect. 5.1, in CV the current is
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measured as a continuous function of potential (or time, since both magnitudes are

proportional in line with Eq. (5.1)). In this sense, the charging current is also a

continuous function of the potential which is proportional to the scan rate (see

Eq. (5.76)), whereas the faradaic current depends linearly on the square root of the

scan rate when a planar electrode (i.e., a macroelectrode) is considered (see

Eqs. (5.55)–(5.56)). However, in SCV the current is measured in a discrete way

at particular values of time (typically at the end of the application of each potential

pulse of the perturbation waveform). The expression of the charging current given

by Eq. (5.77) has been deduced in agreement with the waveform of SCV perturba-

tion (see Scheme 5.2 and Eq. (5.2)).

Note that for typical electrodes for which the RuCdl term is in the range of 10–

100 μs, it is possible to decouple the charging component of the current from the

faradaic one in the case of SCV, since for pulse times of the order of milliseconds, it

is fulfilled that Ifaradaic 
 Ic, and the distortion caused by Ic is much less significant

than that observed in CV, where this condition is not fulfilled.

In order to confirm this behavior, the cyclic voltammograms obtained at a planar

electrode in CV and SCV (for ΔEj j ¼ 5mV) for a Nernstian charge transfer process

at different values of the scan rate are shown in Fig. 5.11. The effect of the ohmic

drop and charging current has been considered by including an uncompensated

resistance Ru ¼ 0:1KΩ and a double-layer capacitance Cdl ¼ 20μFcm�2.
As can be seen in this figure, the combined effect of ohmic drop and double-layer

capacitance is much more serious in the case of CV. The increase of the scan rate

(and therefore of the current) causes a shift of the peak potentials which is 50 mV

for the direct peak in the case of the CV with v ¼ 100Vs�1 with respect to a

situation with Ru ¼ 0 (this shift can be erroneously attributed to a non-reversible

character of the charge transfer process; see Sect. 5.3.1). Under the same conditions

the shift in the peak potential observed in SCV is 25 mV. Concerning the increase of

the current observed, in the case of CV the peak current has a value 26 % higher

than that in the absence of the charging current for v ¼ 100Vs�1, whereas in SCV

this increase is 11 %. In view of these results, it is evident that these undesirable

effects in the current are much less severe in the case of multipulse techniques, due

to the discrete nature of the recorded current. The CV response can be greatly

distorted by the charging and double-layer contributions (see the CV response for

v ¼ 500Vs�1) and their minimization is advisable where possible.

In order to avoid the distortion caused by these two effects, the usual approach is

to compensate the resistance Ru by a positive feedback loop (this is imperative in

systems like plasticized membranes for which the uncompensated resistance can be

of the order of megaohms [32–34]). Another possibility is to use microelectrodes,

for which a decrease in the measured current is obtained which minimizes the

ohmic drop and charging current distortion (see Sects. 2.7 and 5.4.1).
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5.3 Non-reversible Electrochemical Reactions

In this section, a non-reversible electrochemical reaction is considered according to

the reaction scheme:

Oþ e� ��! ��
kred

kox

R ð5:IIÞ

where kred and kox are the rate constants for the electro-reduction and electro-

oxidation charge transfer processes, respectively. The particular expression of the

rate constants depends on the kinetic model considered (Butler–Volmer or Marcus–

Hush; see Sect. 1.7).

Due to the complexity of this situation, a rigorous explicit solution for the CV

current is not available, even for the simplest case of a totally irreversible process.

The case corresponding to a planar electrode is treated in detail and that

corresponding to nonplanar geometry is addressed briefly.

5.3.1 Planar Electrodes

The expression of the boundary value problem for reaction (5.II) corresponding to the

application of a sequence of potential pulses E1, E2, . . ., Ep to a planar electrode is

∂c pð Þ
O

∂t p
¼ DO

∂2
c

pð Þ
O

∂x2

∂c pð Þ
R

∂t p
¼ DR

∂2
c

pð Þ
R

∂x2

ð5:78Þ

t p � 0, x!1
t p ¼ 0, x � 0

�
c

1ð Þ
O ¼ c*O, c

1ð Þ
R ¼ 0

c
pð Þ

O ¼ c
p�1ð Þ

O , c
pð Þ

R ¼ c
p�1ð Þ

R , p > 1

)
ð5:79Þ

t p > 0, x ¼ 0 :

DO

∂c pð Þ
O

∂x

 !
x¼0
¼ � DR

∂c pð Þ
R

∂x

 !
x¼0

ð5:80Þ

DO

∂c pð Þ
O

∂x

 !
x¼0
¼ kred, pc

p;sð Þ
O � kox, pc

p;sð Þ
R ð5:81Þ

Taking into account the relationship between the oxidation and reduction rate

constants (i.e., kox, p ¼ kred, pe
η p with η p ¼ F E p � E��O

0
c

� �
=RT) whatever the kinetic

model considered, Eq. (5.81) becomes
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DO

∂c pð Þ
O

∂x

 !
x¼0
¼ kred, p c

p;sð Þ
O � eη pc

p;sð Þ
R

h i
ð5:82Þ

To date, there has been no explicit solution for this problem for p > 3, since the

surface concentrations of electroactive species O and R are time dependent and

therefore the Superposition Principle cannot be applied (see also Sect. 4.3) [1, 5]. In

these conditions, a non-explicit integral solution has been deduced using the

Laplace transform method (see Appendix H).

Simple expressions for the peak parameters have been deduced by assuming a

totally irreversible reaction (i.e., kred, p 
 kox, p ). Considering the Butler–Volmer

kinetic scheme, the peak parameters are given by [9]:

– Peak current

Iplane, peakCV ¼ 2:99� 105
� � ffiffiffiffiffiffiffiffiffi

αDO

p
Ac*O

ffiffiffi
v
p ð5:83Þ

which corresponds to a temperature T¼ 298 K, with A in cm2, D in cm2 s�1, c�O
in mol cm�3, and v in V s�1. In Eq. (5.83), α is the charge transfer coefficient.

– Peak potential

Eplane
peak, f ¼ E��○

0
c �

RT

αF
0:78þ ln

ffiffiffi
α
p
κ0plane

 ! !
ð5:84Þ

with κ0plane being the dimensionless rate constant of the process for CV,

κ0plane ¼
k0ffiffiffiffiffiffi
Da
p ¼ k0ffiffiffiffiffiffi

DFv
RT

q ð5:85Þ

and k0 is the standard heterogeneous rate constant for the charge transfer

reaction. Also of interest is the difference between the peak potential and the

half peak potential,

Eplane
peak, f � Eplane

p=2 ¼ 1:857
RT

αF
¼ 47:7

α
mV T ¼ 298Kð Þ ð5:86Þ

The peak parameters of the second scan are logically affected by the inversion

potential, as discussed for the case of the Nernstian process. If the switching of

the potential for the reverse scan is taken at jEfinalj � jEpeak, f j þ 90mV, the peak

potential of the second scan is independent of Efinal and in these conditions it is

fulfilled that the difference between both peak potentials is

ΔEpeak ¼ RT

αF
ln vð Þ þ constant ð5:87Þ
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A detailed numerical analysis of the influence of the reversibility of the charge

transfer process on the peak parameters for planar electrodes was reported in [35].

The voltammograms corresponding to a charge transfer process with different

reversibility degree taking place at a planar electrode are shown in Fig. 5.12. These

curves have been calculated for different values of κ0plane. In agreement with

Eq. (5.85), a decrease of the electrochemical reversibility (i.e., of κ0plane) is related

to intrinsic parameters (a decrease of the heterogeneous rate constant of the

electrode process, k0) and/or extrinsic ones (an increase of the scan rate, v). In
line with the curves in Fig. 5.12, non-reversible processes will lead to voltammetric

responses exhibiting lower and wider peaks (a much more marked trend in the peak

of the reverse scan), for which the distance between cathodic and anodic peaks

increases. For totally irreversible processes, the peak current becomes independent

of the value of κ0plane, in agreement with Eq. (5.83) and peak potential for the

forward scan varies linearly with the logarithm of κ0plane, as can be seen from

Fig. 5.13. The curves shown in this figure can be used as working curves to

determine α and k0 once the formal potential is known.

Equations (5.83) and (5.84) and the curves in Fig. 5.12 indicate that both peak

current and potential of the CV curves change with the scan rate, a feature which is

not observed for the peak potential of reversible processes (see Eq. (5.57)). How-

ever, the experimental evidence that for a given system the potential peak of the

cathodic CV curves shifts to more negative values with increasing scan rate

should be used with caution when assigning a non-reversible behavior to the system

since, similar displacements can be observed for Nernstian systems when the ohmic

drop has an important effect (see Fig. 5.11). Thus, the shift of the CV peak potential

with the scan rate is not always a guarantee of a non-reversible charge transfer

process.
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5.3.2 Reversibility Criteria

From the voltammograms of Fig. 5.12, the evolution of the response from a

reversible behavior for values of κ0plane > 10 to a totally irreversible one (for κ0plane
< 0:05) can be observed. The limits of the different reversibility zones of the charge

transfer process depend on the electrochemical technique considered. For Normal

or Single Pulse Voltammetry, this question was analyzed in Sect. 3.2.1.4, and the

relation between the heterogeneous rate constant and the mass transport coefficient,

m0, defined as the ratio between the surface flux and the difference of bulk and

surface concentrations evaluated at the formal potential of the charge transfer

process was considered [36, 37]. The expression of m0 depends on the electrochem-

ical technique considered (see for example Sect. 1.8.4). For CV or SCV it takes the

form

ln(k 0      )
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m0
CV ¼

I p=FA

c*O � c
p;sð Þ

O

 !
E��O
0

c

¼ D

δqr, pO

� �
E��O
0

c

ð5:88Þ

with Ip and c
ðp;sÞ
O being the current and surface concentration of species O

corresponding to the application of potential Ep, and δqr, pO

� �
E��O
0

c

the diffusion layer

thickness corresponding to a charge transfer process of any reversibility degree

calculated atE��O
0

c . In the case of SCV or CV, it is not possible to obtain an analytical

expression for δqr;pO . However, in the absence of reduced species R, when

E p 
 E��O
0

c , the charge transfer process does not occur, and under these conditions,

the diffusion layer thickness is independent of the reversibility of the process and

takes the limiting value given in Eq. (5.74) ( δr, p
plane

� �
E
E��O

0
c

¼ ffiffiffiffiffiffiffiffiffi
D=a

p
). By inserting

Eq. (5.74) into (5.88), one obtains

mCV ¼
ffiffiffiffiffiffi
Da
p

ð5:89Þ

In order to discriminate between reversible and non-reversible regimes, the

relation between the heterogeneous rate constant and the mass transport coefficient

can be defined:

R ¼ k0

mCV

¼ k0ffiffiffiffiffiffi
Da
p ¼ κ0plane ð5:90Þ

which provides an approximate reversibility criterion. Thus, in line with the

discussion in Sect. 3.2.1.4, the following approximate limits are suggested:

κ0plane � 10 Reversible process

0:05 � κ0plane < 10 Quasi-reversible process

κ0plane < 0:05 Totally irreversible process

ð5:91Þ

These regions have been indicated in Fig. 5.13 for α ¼ 0:5. Matsuda and Ayabe

suggest the following ranges for classifying the electrode process [35]: κ0plane � 15,

Reversible process; 10�3 � κ0plane < 15, Quasi-reversible process; κ0plane < 10�3,
Totally irreversible process. The reversible limit is similar to that proposed here,

but the totally irreversible one is clearly excessive (see Fig. 5.13). In any case, this

criterion has only an approximate character.

For other electrode geometries and sizes, the expression of the mass transport

coefficient is different because the electrode size becomes relevant and the values

of the dimensionless rate constant changes (see below).
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5.3.3 Other Electrode Geometries: Microelectrodes
and Steady-State Voltammetry

For nonplanar electrodes there are no analytical expressions for the CV or SCV

curves corresponding to non-reversible (or even totally irreversible) electrode

processes, and numerical simulation methods are used routinely to solve diffusion

differential equations. The difficulties in the analysis of the resulting responses are

related to the fact that the reversibility degree for a given value of the charge

transfer coefficient α depends on the rate constant, the scan rate (as in the case of

Nernstian processes) and also on the electrode size. For example, for spherical

electrodes the expression of the dimensionless rate constant is

κ0sphe ¼
k0

D
rs
þ ffiffiffiffiffiffi

aD
p ð5:92Þ

Equation (5.92) can be rewritten as

1

κ0sphe
¼ 1

κ0plane
þ 1

κ0sphe, ss
ð5:93Þ

with κ0plane given in Eq. (5.85) and

κ0sphe, ss ¼
k0rs
D

ð5:94Þ

Note that the stationary dimensionless rate constant, κ0sphe;ss, deduced for CV

(Eq. (5.94)) logically coincides with that obtained in SCV and also in NPV (see

Eq. (3.74)).

From Eqs. (5.92)–(5.94), it is clear that κ0sphe, ss � κ0sphe � κ0plane, that is, the

maximum value of the dimensionless rate constant is that corresponding to a planar

electrode (macroelectrode). For smaller electrodes, κ0sphe decreases until it becomes

identical to the value corresponding to a stationary response, κ0sphe;ss. In practice, this

means that the decrease of the electrode size will lead to the decrease of the

reversibility degree of the observed signal. It can be seen in the CV curves of

Fig. 5.14, calculated for k0 ¼ 10�3 cms�1 and v ¼ 0:1Vs�1, that the decrease of rs
causes an increase and distortion of the dimensionless current similar to that

observed for Nernstian processes (see Fig. 5.5), but there is also a shift of the

curve toward more negative potentials (which can be clearly seen in Fig. 5.14b).

The voltammograms present a stationary behavior when the electrode size

decreases, and under these conditions, the following current–potential curves are

obtained for a microelectrode of geometry G when only oxidized species is initially

present [38]:
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ψG,ss
CV ¼

IG,ssp

FAGc*O
ffiffiffiffiffiffi
aD
p ¼ ξG

κ0G, sse
�αη

1þ κ0G,sse�αη 1þ eηð Þ ð5:95Þ

with ξG given by Eq. (5.42). For the case of a microsphere (s, radius rs), a microdisc

(d, radius rd), and a spherical nanoparticle (snp) adhered to a support (snp, radius

rsnp), the expression of κ0G;ss is (see also Sect. 3.2.5)
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κ0sphe, ss ¼
k0rs
D

κ0disc, ss ¼
k0rd
D

π

4

κ0np, ss ¼
k0rsn p
D

1

ln 2ð Þ

9>>>>>>=>>>>>>;
ð5:96Þ

5.3.4 Marcus–Hush Kinetics

In Sect. 3.2.6, the application of the Marcus–Hush formalist (MH) for the electrode

kinetics to Single Pulse Voltammetry was discussed. In Cyclic Voltammetry, most

researchers have used the Butler–Volmer kinetic model (BV) due to its greater

simplicity and to the vast body of data for the rate constant k0 and the charge

transfer coefficient α of a huge number of experimental systems. More recently,

there have been several theoretical and experimental attempts to analyze the

application of MH to the electrochemical behavior of solution soluble molecules

at different electrodes or microelectrodes [39, 40]. For example, it has been shown

that this model does not conform to the Randles–Ševčik equation for irreversible

kinetics, given in Eq. (5.83), which predicts a linear dependence of the peak current

with the square root of the scan rate [39]. The peak currents deduced by using MH

are smaller than those calculated with the BV, an effect which increases for lower

reorganization energies.

Different electrode processes have been analyzed with both MH and BVmodels,

and it has been concluded that MH is, at best, indistinguishable from BV for those

systems for which the charge transfer coefficient α is around 0.5. However, for

those systems for which BV predicts values of α other than 0.5, the MH kinetics has

been unable to provide good fittings to the experimental CV curves of a number of

experimental systems (see, for example, Fig. 5.15 corresponding to the comparison

of the voltammograms for the reduction of 2-methyl-2-nitropropane at a platinum

electrode). This weakness of MH formalism arises from the use of a symmetrized

form of the Marcus theory, which assumes that the Gibbs energy curves of both O

and R species have the same curvature (and hence the reduction and electro-

oxidation reactions will have the same reorganization energy). In order to overcome

this limitation, a nonsymmetrical MH formalism has been presented [42] which

incorporates four parameters to model the potential dependence of the response: the

formal potential (E��O
0

c ), the rate constant (k0), the reorganization energy (λ), and a

“symmetry parameter” (Ξ).
With the asymmetric MH model, it has been possible to find a relationship

between the charge transfer coefficient α and the reorganization energy and sym-

metry factor:
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α E��O
0

c

� �
¼ 1

2
þ Ξ

1

4
� 1:267

Fλ= RTð Þ þ 3:353ð Þ
� �

ð5:97Þ

Moreover, it has been also possible to obtain the kinetic parameters of different

electrochemical systems (see Table 5.2) derived from very good fittings. The

evaluation of the reorganization energy is not accurate since the experimental

voltammograms are relatively insensitive to λ, with Ξ being the main fitting

parameter within the asymmetric MH model. The fittings obtained with the

asymmetric MH model were in all cases indistinguishable from those produced

using the BV model (with both models being exactly equivalent in the limit of

large reorganization energies). Due to its easier nature, the BV model should be

used for the analysis of the voltammograms of solution soluble species [42].
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5.4 Advantages of Using Microelectrodes

As is well known, the steady-state behavior of (spherical and disc) microelectrodes

enables the generation of a unique current–potential relationship since the response

is independent of the time or frequency variables [43]. This feature allows us to

obtain identical I–E responses, independently of the electrochemical technique,

when a voltammogram is generated by applying a linear sweep or a sequence of

discrete potential steps, or a periodic potential. From the above, it can also be

expected that the same behavior will be obtained under chronopotentiometric

conditions when any current time function I(t) is applied, i.e., the steady-state I tð Þ
�E curve (with E being the measured potential) will be identical to the

voltammogram obtained under controlled potential–time conditions [44, 45].

However, the stationary behavior cannot be established immediately and there is

always a time span necessary to reach it (see [16, 43]). Oldham theoretically

established that the time taken to attain a voltammetric steady state within an

error ε% is given by the ratio 104d2/(π3ε2D) for fast charge transfer processes, at

both hemispherical or disc microelectrodes, independently of whether the route to

the steady state is potentiostatic or galvanostatic (with d being the surface diameter

of the microelectrode, d ¼ πrs for a microhemisphere, and d ¼ 2rd for a microdisc)

[46]. From the above statement, in order to obtain stationary I–E curves with an

error lower than 5 %, experimental times higher than 25 ms are required for

microelectrodes of radii above 1 μm for a value of the diffusion coefficient of

10�5 cm2 s�1. In the case of slow charge transfer processes, the time that must

elapse before an ε% approach to the steady state is attained at a spherical

Table 5.2 Kinetic parameters obtained from the fitting of experimental voltammetry at mercury

hemispherical microelectrode and platinum disc microelectrode with the asymmetric MH model

Redox couple Microelectrode Conditions

Kinetic parameters

k0 (in cm s�1) and Ξ
MeNP=MeNP�� Hg (25.0 μm) 0.1 M TBAP, MeCN

25� 0:2 �C
k0 ¼ 3:0� 10�3 Ξ ¼ �0:31

NPent=NPent�� Hg (28.5 μm) 0.1 M TBAP, MeCN

26� 0:1 �C
k0 ¼ 1:3� 10�2 Ξ ¼ �0:14

NPh�=NPh2� Hg (23.0 μm) 0.1 M TBAP, DMSO

24� 0:1 �C
k0 ¼ 2:0� 10�2 Ξ ¼ �0:42

COT =COT �� Hg (50.0 μm) 0.1 M TEABr, DMSO

25� 0:2 �C
k0 ¼ 1:1� 10�2 Ξ ¼ �0:22

TPEþ=TPE Pt (25.0 μm) 0.1 M TBAPF6, DCM

25� 0:2 �C
k0 ¼ 0:15 Ξ ¼ þ0:55

Eu3þ=Eu2þ Hg (50.0 μm) 0.4 M KCl, H2O

25� 0:2 �C
k0 ¼ 1:7� 10�4 Ξ ¼ þ0:55

MeNP, 2-methyl-2-nitropropane; NPent, 1-nitropentane; NPh, 3-nitrophenol; COT, cycloocta-

tetraene; TPE, tetraphenylethylene; TBAP, tetrabutylammonium perchlorate; TEABr, tetraethyl-

ammonium bromide; TBAPF6, Tetrabutylammonium hexafluorophosphate; MeCN, acetonitrile;

DMSO, dimethylsulfoxide; DCM, dichloromethane [42]
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microelectrode is 104 � u2 � d2= π3ε2Dð Þ, with u being the normalized steady-state

current given by Eq. (3.74) in the case of hemispherical microelectrodes [38, 47].

The use of electrodes of small size brings great benefits associated with the

elimination of undesirable effects. Some of these advantages are discussed in the

following sections.

5.4.1 Reduction of Ohmic Drop and Capacitive Effects

As stated in Sect. 5.2.3.4, there is always a potential difference generated by the

flow of faradaic current I through an electrochemical cell, which is related to the

uncompensated resistance of the whole cell (Ru). This potential drop (equal to IRu)

can greatly distort the voltammetric response. At microelectrodes, the ohmic drop

of potential decreases strongly compared to macroelectrodes. The resistances for a

disc or spherical microelectrode of radius rd or rs are given by (see Sect. 1.9 and

references [43, 48–50]).

RuÞdisc ¼
1

4κrd

RuÞsphere ¼
1

2πκrs

9>=>; ð5:98Þ

where κ is the conductivity of the solution. Therefore, Ru would increase as the

electrode radius decreases. However, the currents observed at microelectrodes are

typically six orders of magnitude smaller than those observed at macroelectrodes.

These small currents often completely eliminate the ohmic drop effects even in

organic solvents. As an example, for a solution with a typical value of specific

conductance of 0:01Ω�1 cm�1, the ohmic drop of a conventional macroelectrode

for a 1.0 mM solution of ferrocene is of the order of 5–10 mV, whereas for a

microdisc of 5 μm radius (i.e., Ru ¼ 50KΩ in line with Eq. (5.98)), the IRu value is

lower than 0.1 mV [47].

Moreover, under steady-state conditions, the current obtained at disc or spherical

electrodes linearly depends on the radius, so the ohmic drop can be written as:

IssRu ¼ Fc*ODO

κ
ð5:99Þ

Note that Eq. (5.99) does not contain parameters related to the microelectrode

itself. Therefore, this equation applies to any steady-state microelectrode cell,

regardless of the shape and size of the electrode, and with the sole provision that

the cell has a geometry that permits a diffusive steady state and that the auxiliary

electrode is large enough to remain depolarized.

Another distortion reason is related to the charging of the “double layer” formed

at the electrode–solution interphase. The reorganization of solvent dipoles and ions

at the solution phase layer adjacent to the electrode as a response to the application
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of a potential to the electrode causes a charge reorganization leading to a

capacitative contribution to the response (Ic). While the steady-state faradaic

current is proportional to the characteristic dimension of the microelectrode, the

double-layer capacitance is proportional to the electrode area (for example, for a

disc electrode is given by C ¼ πr2dCdl, with Cdl being the double-layer capacitance

per area unit). A decrease of the electrode area would logically lead to a decrease of

the capacitance and, therefore, the I/Ic ratio will increase with the reciprocal of the

characteristic dimension. From the above, it can be concluded that it is possible to

carry out electrochemical measurements in much shorter time windows than those

typical for macroelectrodes. All the electrochemical measurements present a time-

scale limit imposed by the RuC cell time constant. For the application of a constant

potential to a solution that does not contain any electroactive species, the charging

current is proportional to e�t= RuCð Þ [49]. Hence, electrochemical data with faradaic

significance can only be extracted from an experiment after five to ten times the cell

constant. For a disc electrode, this is given by (see Eq. (5.98)),

RuC ¼ πrdCdl

4κ
ð5:100Þ

On the basis of this equation, the RuC constant decreases linearly with the radius

from values of 10–100 ms for a conventional macrodisc (with rd being of the order

of millimeters) to 20 ns for a disc of rd ¼ 1μm.

In the case of a linear sweep potential of slope v, the charging current density is

given by (see Eq. (5.76))

ic ¼ vC 1� e�4 E tð Þ�Einitialð Þκ=vπrdCdl

� �
ð5:101Þ

The potential across the cell can be written as,

E tð Þ ¼ Einitial þ vt� v 1� e� E tð Þ�Einitialð Þ=vRuC
� �

RuC ð5:102Þ

The lag of potential of the working electrode is directly related to the cell time

constant. For a disc macroelectrode (rd ¼ 1mm, RuC ¼ 50ms), Eq. (5.102) fixes a

practical scan rate limit of around 400 V s�1. This limiting scan rate can be

considerably higher in the case of microelectrodes (i.e., kilovolts-per-second or

even megavolts-per-second [50].

Another useful conclusion is that it is possible to carry out electrochemical

measurements in much shorter time windows than those typical for

macroelectrodes.

The above mentioned advantages mean micro and ultramicroelectrodes can be

used in very low supported media.
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5.4.2 Neglecting Convection

Convection is often neglected at electrodes of micrometric dimensions in macro-

scopically quiescent solutions. However, depending on the size of these electrodes

and timescale of the experiments, convective fluxes due to natural convection may

still compete with diffusional fluxes in motionless solutions. These situations arise

as soon as the thickness of the diffusion layer becomes comparable to the thickness

of the convection-free domain. Under such conditions, the responses do not follow

the classical relationships given for currents in transient and steady-state regimes.

Therefore, under given experimental conditions, it is of importance to decide the

largest size of an electrode to eliminate any influence of natural convection.

Amatore has proposed a model to evaluate the influence of convection through an

apparent diffusion coefficient, Dapp, [51]. From his results, it is concluded that the

microelectrode properties are achieved for a ratio rG=δconvð Þ < 0:2 where δconv is
the thickness of the convection-free layer.

5.4.3 Ultrafast Voltammetry

When the electrochemical properties of some materials are analyzed, the timescale

of the phenomena involved requires the use of ultrafast voltammetry. Microelec-

trodes play an essential role for recording voltammograms at scan rates of

megavolts-per-seconds, reaching nanoseconds timescales for which the perturba-

tion is short enough, so it propagates only over a very small zone close to the

electrode and the diffusion field can be considered almost planar. In these condi-

tions, the current and the interfacial capacitance are proportional to the electrode

area, whereas the ohmic drop and the cell time constant decrease linearly with the

electrode characteristic dimension. For Cyclic Voltammetry, these can be written in

terms of the dimensionless parameters γu and θ given by

γu ¼ F
RT

� �3=2
Dvð Þ1=2FAGc

*
ORu

θ ¼ F

RT
vRuC

9=; ð5:103Þ

If γu < 0:1 and θ < 1, the distortion of the voltammogram will be minimal [50,

52].

Now it is possible to assemble microelectrodes with extremely short response

times. Nevertheless, an additional problem for the reduction of the ohmic drop is

that for short times high currents arise from the large concentration surface gradi-

ents. This leads to the use of on-line and real-time electronic compensation of the

cell resistance combined with the use of microelectrodes [53].
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Ultrafast voltammetry has a crucial role for investigating the kinetics of very fast

reactions, although for very small sizes the kinetics would be masked since the

system would be under diffusion control.

The heterogeneous electron transfer dynamics of a diverse range of organic and

inorganic species and also the dynamics and energetics of ultrafast heterogeneous

electron transfer dynamics of immobilized electroactive species on an electrode

surface have been investigated with ultrafast voltammetry under a wide variety of

experimental conditions of timescale, temperature, solvent, and electrolyte (see for

example Fig. 5.16, obtained from [54]).

5.4.4 Microelectrode Arrays

A microelectrode array consists of a series of microelectrodes separated by an

insulating material [36]. The microelectrodes can be regularly or randomly distrib-

uted (in the latter case the term “ensemble” is also used). Arrays containing

hundreds or even thousands of microelectrodes wired in parallel have been

Fig. 5.16 Voltammograms obtained in the Polydimethylsiloxane (PDMS) cell for a ferrocenyl

oligo (phenylenevinylene) molecular wire in acetonitrile + 1 M tetraethylammonium

tetrafluoroborate at (a) 2085 V s�1; (b) 20.7 KV s�1; (c) 103 KV s�1; (d) 412 KV s�1;
(e) 727 KV s�1; (f) 1.150 KV s�1. Electrode area (A): 3:75� 10�9 m2, surface coverage

f ¼ 8� 10�7 molm�2. Reproduced from [54] with permission
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extensively used in electrochemical analysis for sensing multiple reactive species

and probing signal transformation in a network of biological cells [36, 55,

56]. These devices comprehend most of the advantages of microelectrodes but

add several more: high amplification of the current, adequate output signals, and an

improved ratio of the faradaic to charging current. Various types of array electrodes

have been made, including planar or recessed microdiscs, microbands, interdigi-

tated microelectrodes, linear microelectrodes, and 3D microelectrodes.

A voltammetric experiment in a microelectrode array is highly dependent on the

thickness of the individual diffusion layers, δ, compared with the size of the

microelectrodes themselves, and with the interelectrode distance and the time

experiment or the scan rate. In order to visualize the different behavior of the

mass transport to a microelectrode array, simulated concentration profiles to spher-

ical microelectrodes or particles calculated for different values of the parameter ξ2s
¼ ffiffiffiffiffiffiffiffiffi

D=a
p

=rs can be seen in Fig. 5.17 [57] when the separation between centers of
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two adjacent spherical microelectrodes is 4rs. Different categories of diffusion can

be defined from this figure. For Category 1 (very high scan rates or short time

experiments), the particles/microelectrodes must be diffusionally independent (i.e.,

the diffusion layer thickness is much smaller than the microelectrode size and

diffusion is approximately planar). When the scan rate decreases the perturbed

zone grows (Category 2) until overlap of the diffusion fields occurs (Category 3)

and the microelectrodes suffer a shielding effect from their neighbors. The limiting

situation of this effect can be seen in Category 4 for which the overall concentration

profile can be considered as planar (i.e., concentration profiles become independent

on R coordinate).

For shallow recessed microdisc electrode arrays, the hemispherical diffusion is

larger than that for coplanar microdisc arrays. The minimum interelectrode distance

necessary for hemispherical diffusion becomes smaller as recess depth

increases [58].

Different theories have been developed to characterize the electrochemical

responses of arrays. The great majority of theoretical treatments of arrays consider

a large number of microelectrodes on an infinite electroinactive plane surface [36].

5.4.5 Nanoelectrodes

In the case of nanoelectrodes or nanodes, it is important to consider that their small

dimensions lead to deviations from the “classical” voltammetry theory. An implicit

assumption in electrochemical theory is that the electrode dimensions are much

larger than the thickness of the diffuse double layer and incomparably larger than

the radii of the species involved in the charge transfer. A number of theoretical and

experimental studies have focused on possible deviations from conventional elec-

trochemical theory at nanometer-sized electrodes in recent years [59]. The effect of

diffuse layer on mass transfer is the most extensively discussed, and it is expected to

be significant if the depletion layer thickness caused by the faradaic process is

comparable to that of the diffuse double layer (see [60, 61]). The extent of this

effect and its influence on the values of kinetic parameters extracted depend on

several factors including the charge of electroactive species, their standard potential

(with respect to the potential of zero charge), and the ionic strength of solution. In

most cases, the predicted deviations should be more significant at radii below

10 nm. Other size-related electrochemical phenomena and their effects on the

rates of the charge transfer process have yet to be explored, such as the stochastic

character of the charge transfer events at nanointerfaces, the more rapid potential

drops within the diffuse double layer at spherical electrodes smaller than 50–

100 nm, or the effect of charges situated on the insulating surface in the mass

transfer at glass-sealed nanoelectrodes, among others [62]. The relative importance

of each effect remains incompletely understood. To observe and quantitatively

evaluate major deviations from conventional theory, electrodes smaller than

~5 nm radius with well-characterized geometry should be required.
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5.5 Ion Transport Through Liquid Membranes

In Sects. 2.3 and 4.2.4.1, the electrochemical response corresponding to ion transfer

processes through liquid membranes in single potential pulse and double potential

pulse techniques has been discussed. In this section, these processes are analyzed

with multipulse techniques, mostly with Staircase Voltammetry and Cyclic

Voltammetry.

5.5.1 One Polarized Interface

Let us consider the reversible transfer of ion Xz through the interface between an

aqueous electrolyte solution (w phase) and an organic one (o phase), which takes

place by polarizing the interface,

Xz wð Þ ��! �� Xz oð Þ ð5:IIIÞ

where z is the positive or negative charge number.

Under the appropriate conditions, the mass transport can be mathematically

modeled as a linear diffusion problem to the spatial domains shown in Scheme 5.4,

When p successive potential pulses (E1, E2, . . ., Ep) of the same length τ are
applied, the mass transport during the pth potential pulse in the presence of

sufficient amounts of supporting electrolyte in both phases is described by the

following differential equations system:

∂c pð Þ
o

∂τ
� Do

∂2
c

pð Þ
o

∂x2
¼ 0 að Þ

∂c pð Þ
w

∂τ
� Dw

∂2
c

pð Þ
w

∂x2
¼ 0 bð Þ

9>>=>>; ð5:104Þ

with c
ðpÞ
ph (x, t) and Dph being the concentration and the diffusion coefficient, respec-

tively, of ion Xz in the ph phase (ph¼w, o).

As in the case of single potential pulse and double potential pulse techniques,

from the transposition of the theory of multipulse techniques to the ion transfer

processes taking place at macro-ITIES, the theoretical expressions obtained with

aqueous phase (w) organic phase (o)

( )zX w ( )zX o

x → − ∞ 0x = x

( )zX wz

→∞

Scheme 5.4 Spatial

domains for the diffusion of

Xz ion in the aqueous and

organic phases
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the semi-infinite diffusion model for electron transfer processes can be used to

quantify the current response of the ion transfer. Thus, by following a procedure

analogous to that presented in Sect. 5.2.1, an expression for the current of any

potential pulse analogous to that corresponding to electron transfer processes taking

place at planar electrodes (Eq. (5.25)) is obtained:

I p ¼ zFA

ffiffiffiffiffiffiffi
Dw

πτ

r Xp
m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� mþ 1
p c

m�1ð Þ
Xz 0ð Þ � c

mð Þ
Xz 0ð Þ

� �
¼

¼ zFAc*Xz

ffiffiffiffiffiffiffi
Dw

πτ

r Xp
m¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� mþ 1
p 1

1þ γeηm�1 �
1

1þ γeηm
� � ð5:105Þ

with c*Xz being the bulk concentration of ion Xz in the aqueous phase,

ηm¼F Em�Δw
o ϕ
��O 0
Xz

� �
=RT and

γ ¼
ffiffiffiffiffiffiffi
Do

Dw

r
ð5:106Þ

5.5.1.1 Cyclic Staircase Voltammetry and Cyclic Voltammetry

Cyclic Voltammetry is the most widely used technique for acquiring qualitative

information about electrochemical processes and it has also proved to be very

useful for the study of ion transfer across bulk, supported, or polymer composite

membranes [63]. The expression for the current in CV can be obtained from

Eq. (5.105) by considering the potential waveform given in (5.1),

ψCV ¼
I
ffiffiffi
π
p

zFAc*Xz

ffiffiffiffiffiffiffiffiffiffi
aDw

Xz

p
¼
Xp
m¼1

1

1þ γeϑm�1eϑin �
1

1þ γeϑmeϑin
� �

1ffiffiffiffiffiffiffiffiffiffiffiffi
πϑm, p

p !
ð5:107Þ

with

ϑm ¼ zF

RT
Em � Einitialð Þ

ϑin ¼ zF

RT
Einitial � Δw

o ϕ
��O 0
Xz

� �
9>=>; ð5:108Þ

where a and ϑm,p are given by Eqs. (5.38) and (5.44), respectively, Δw
o ϕ
��O 0
Xz is the

formal ion transfer potential, and F, R, and T have their usual meaning.
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5.5.2 Two Polarized Interfaces

In these kinds of systems, the polarization phenomenon is effective at the two

interfaces involved (see also Sect. 2.3.2). Specifically, in membrane systems com-

prising two ITIES, this behavior is achieved when the membrane contains a

hydrophobic supporting electrolyte and the sample aqueous solution (the inner

one) contains hydrophilic supporting electrolytes, and there is no common ion

between any of the adjacent phases. In this case, the potential drop cannot be

controlled individually and the processes taking place at both interfaces are linked

to each other by virtue of the same electrical current intensity.

5.5.2.1 Cyclic Staircase Voltammetry and Cyclic Voltammetry

As for single polarized interface systems, an explicit analytical equation for the CV

response for systems with two L/L polarizable interfaces is derived from that

corresponding to CSCV when the pulse amplitude ΔE approaches zero (see also

Appendix H). For the case corresponding to the transfer of a cation Xþ, one obtains

ψCV ¼
I
ffiffiffi
π
p

zFAc*
Xþ

ffiffiffiffiffiffiffiffiffiffiffi
aDw

Xþ
p ¼

Xp
m¼1

gm�1 � gmð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
πϑm, p

p !
ð5:109Þ

where gm is given by

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2e2ϑmϑin þ 8λeϑmϑin

p
� λeϑmϑin

4

ϑm ¼ F

RT
EM
m � Einitial

� �
ϑin ¼ F

RT
Einitial � EM,��O 0
� �

9>>>>>=>>>>>;
ð5:110Þ

and g0 ¼ 0. Moreover,

λ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2

RþD
M
Xþ

q
Dw1

Xþ

c*
Rþ

c*
Xþ

ð5:111Þ

EM,��O 0 ¼ Δw1

M ϕ
��O 0
Xþ � ΔM

w2
ϕ��O

0
Rþ ð5:112Þ

The current corresponding to the reverse scan is obtained by taking into account

Eq. (5.1).

The ψCV–E curves (Eq. (5.109)) for different values of ΔE (SCV), including the

limiting case of CV ( ΔEj j < 10�2mV), can be shown in Fig. 5.18, in which the

ψCV–E curve calculated from Eq. (12) of reference [64] (circles) is also included.
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From this figure, it can be seen that the decrease of ΔE causes an increase of the

current together with an approach of both peaks until their difference reaches the

CV limitΔEpeak � 90mV, in contrast with the 57 mV found in the case of only one

polarizable interface. These values are in agreement with those obtained in refer-

ence [64] using the Nicholson and Shain method [9].

In line with what is observed for other techniques, the response obtained in CV

for a system with two liquid/liquid polarizable interfaces is lower and broader than

that obtained for ion transfers at a single water/organic interface. This has been

attributed to different polarization rates at the outer and inner interfaces [66].

In Fig. 5.19, the cyclic voltammogram versus the membrane potential EM (given

in Eq. (2.79)) obtained for a system with two polarizable interfaces (solid line) is

presented. The ψCV curve has been also plotted versus the outer interface Eout

(dashed line) and the inner interface potential Einn (dotted line) with Eout and Einn

given by

Eout ¼ Δw1

M ϕ
��O 0
Xþ þ

RT

F
ln

ffiffiffiffiffiffiffiffiffi
Dw1

Xþ

DM
Xþ

s
þ RT

F
ln

gm
1� gm

� �
Einn ¼ Δw2

M ϕ
��O 0
Rþ þ

RT

F
ln

ffiffiffiffiffiffiffiffiffi
Dw2

Rþ

Dw1

Xþ

s
c*
Rþ

c*
Xþ

 !
� RT

F
ln gmð Þ

9>>>>=>>>>; ð5:113Þ

From these curves, it is clear that the difference between peak potentials for the

ψCV–E
M curve (ΔE p ¼ 88mV) is equal to the sum of those obtained from the cyclic

voltammograms plotted versus Eout and Einn (61 mV and 27 mV, respectively). The

different voltammetric responses obtained at outer and inner interfaces are the

result of different potential drops at each of them, in agreement with Eq. (5.113).
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Fig. 5.18 (solid lines) ψCV/

E�EM curves calculated

from Eq. (5.109) (SCV).

The values of the pulse

amplitude ΔE (in mV)

appear on the curves.

(circles) ψCV/EM curve

calculated from Eq. (12) of

reference [64].

Einitial � E
1=2
M ¼ �300mV,

Efinal � E
1=2
M ¼ 300mV.

Reproduced from [65]

with permission
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This is confirmed by the insert figure, in which we have plotted the time

evolution of Eout (dashed line), Einn (dotted line), and EM (solid line). Note that,

with the exception of limiting cathodic and anodic regions, the time variation of

Eout is similar to that of EM (although shifted toward more positive potentials), such

that a voltammogram similar to those of a single water/organic interface is obtained

(withΔEpeak ffi 60mV). In contrast, Einn remains almost constant for the central part

of the sweep (thus presenting a behavior similar to that of a non-polarizable

interface). This constant value causes a sharp fall in the current (see ψCV/Einn

curve) and, therefore, a narrow response (ΔEpeak ¼ 27mV).

5.5.3 Micro-ITIES and Asymmetrical Diffusion

In the last 30 years, the manufacturing and use of micrometer- and nanometer-sized

electrochemical interfaces, microelectrodes, and micro-ITIES have been widely

extended. The main advantages associated with the reduction of the size of the

interface are the fast achievement of a time-independent current–potential response

(independent of the electrochemical technique employed), the decrease of the

ohmic drop, the improvement of the ratio of faradaic to charge current, and the

enhancement of the mass transport. Their small size has played an important role in
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Fig. 5.19 ψCV/E
M (solid

line), ψCV/Eout (dashed
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calculated from

Eqs. (5.109)–(5.113) with

ΔEj j ¼ 10�4 mV and

v ¼ 0:01Vs�1 (see also
[67]). Insert figure: time

evolution of the potentials
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and �Einnð Þ (dotted).
Reproduced from [65]

with permission
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the electrochemical expansion of the use of small sample volumes like microliter

and even nanoliter, which accounts for their good performance as sensors in living

organisms [66–70].

The first micro-ITIES were introduced in 1986, using a glass micropipette which

was pulled down to a fine tip of around 25 μm to support the interface [66–71]. The

smaller size of micropipettes or microcapillaries is advantageous for sensor appli-

cations, providing the possibility of studying microenvironments as living cells, and

it can also be used as a probe in scanning electrochemical microscopy (SECM) [72].

Among the different approaches to these systems, pores, pipettes, and capillaries

have been considered to support such small liquid|liquid interfaces, as well as arrays

of them in order to amplify the electrochemical signal while retaining the benefits

mentioned above. The theoretical treatment and analysis of the results of investi-

gation of ion transfer through these interfaces is not straightforward given the

asymmetry of the diffusion fields inside and outside the pore or pipette. Thus, as

can be seen in Fig. 5.20, while diffusion can be approximated as linear in the inner

phase, radial diffusion is significant in the outer phase, especially when the size of

the capillary is decreased [73].

As a result, a stationary voltammogram cannot be expected under these condi-

tions since it shows a behavior similar to that of a macrointerface with respect to the

egress of the ion, and features of radial diffusion for the ingress process, reaching a

time-independent response [73, 74]. Both are consequences of the markedly dif-

ferent diffusion fields inside and outside the capillaries which give rise to very

different concentration profiles (see Fig. 5.21). A similar voltammetric behavior

has been reported for electron transfer processes at electrode | solution interfaces

where the diffusion fields of the reactant and product species differ greatly.

Fig. 5.20 Problem

corresponding to a liquid|

liquid interface supported

on a microcapillary of

radius a. Reproduced from

[73] with permission
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CV curves corresponding to an ion transfer process at a microcapillary under

different experimental situations with respect to the initial presence of the target ion

in the inner and outer solution are shown in Fig. 5.22 [74].

When the ion is initially present in the outer solution the forward scan toward

negative potentials leads to a sigmoidal curve associated with the ion ingress under

strongly convergent diffusion due to the small size of the capillary. On the other

hand, the linear-like diffusion that dominates inside the capillary leads to a peak in

the reverse scan related to the ion egress. Under these conditions, the ion egress is

controlled by the amount of ion ingressed in the forward scan rather than the

amount initially present in the inner solution.

Fig. 5.21 Diffusion fields

corresponding to an ion

transfer across a liquid|

liquid interface supported

on a micro/nanocapillary of

radius a. Reproduced from

[73] with permission
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Other authors have incorporated a microhole in a thin inert membrane. This

micro-ITIES has the advantage of symmetry of the diffusion fields on both sides of

the micro-orifice, which simplifies the theoretical treatment. Nevertheless, this

advantage is lost when the thickness of the membrane cannot be neglected. In

this case, it is assumed that the microhole is cylindrical and filled with the organic

phase, so, a planar L/L interface separates the aqueous and organic phases. Con-

verging diffusion outside the orifice and practically linear diffusion inside the pore

are assumed, with the solution depending on the location of the interface inside the

hole [70, 75, 76]. This problem can be rigorously treated by transposing the theory

developed for microdiscs and recessed microdiscs, which shows that the cottrellian

current decays for deep recess microdiscs, showing that at short times linear

diffusion dominates, while at long times, the current tends to steady-state value.

This steady state response decreases as the recess depth (thickness of the mem-

brane) increases [77, 78].

In summary, although the construction of micro-ITIES is, in general, simpler

than that of microelectrodes, their mathematical treatment is always more compli-

cated for two reasons. First, in micro-ITIES the participating species always move

from one phase to the other, while in microelecrodes they remain in the same phase.

This leads to complications because in the case of micro-ITIES the diffusion

coefficients in both phases are different, which complicates the solution when

nonlinear diffusion is considered. Second, the diffusion fields of a microelectrode

are identical for oxidized and reduced species, while in micro-ITIES the diffusion

fields for the ions in the aqueous and organic phases are not usually symmetrical.

Moreover, as a stationary response requires
ffiffiffiffiffi
Dt
p 
 r0 (where D is the diffusion

coefficient, r0 is the critical dimension of the microinterface, and t is the experiment

time), even in L/L interfaces with symmetrical diffusion field it may occur that the

stationary state has been reached in one phase (aqueous) and not in the other

(organic) at a given time, so a transient behavior must be considered.

Fig. 5.22 Analytical and

numerical cyclic

voltammograms for

different situations with

respect to the bulk

concentrations of the ion.

rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=Dout

X

p ¼ 0:1,
T¼ 298 K,

ψ ¼ I=zFπ r2cc
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X
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Reproduced from [74]

with permission
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6.1 Introduction

This chapter offers a study of the application of the multipulse and sweep techni-

ques Cyclic Staircase Voltammetry (CSCV) and Cyclic Voltammetry (CV) to the

study of more complex electrode processes than single charge transfer reactions

(electronic or ionic), which were addressed in Chap. 5.

In Sect. 6.2, multi-electron (multistep) electrochemical reactions are surveyed,

especially two-electron reactions. It is shown that, when all the electron transfer

reactions behave as reversible and the diffusion coefficients of all species are equal,

the CSCV and CV curves of these processes are expressed by explicit analytical

equations applicable to any electrode geometry and size. The influence of the difference

between the formal potentials of the different electrochemical reactions on these
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responses is also discussed. Non-reversible electron transfer reactions are also

considered.

In Sect. 6.3, the application of SCV and CV techniques is discussed with respect

to reversible charge transfer reactions complicated with homogeneous chemical

reactions. It is highlighted that, except in the case of a first-order catalytic mecha-

nism, relatively simple analytical general expressions for the current potential

response of CE, EC, or ECE mechanisms have not been found. Numerical pro-

cedures have been applied to analyze the influence of kinetic parameters of the

homogeneous reactions on these curves.

The general electrochemical behavior of surface-bound molecules is treated in

Sect. 6.4. The response of a simple electron transfer reaction in Multipulse

Chronoamperometry and Chronocoulometry, CSCV, CV, and Cyclic Staircase

Voltcoulometry and Cyclic Voltcoulometry is also presented. Multielectronic pro-

cesses and first- and second-order electrocatalytic reactions at modified electrodes

are also discussed extensively.

6.2 Multi-electron Electrochemical Reactions

In this section, the current–potential curves of multi-electron transfer electrode

reactions (with special emphasis on the case of a two-electron transfer process or

EE mechanism) are analyzed for CSCV and CV. As in the case of single and double

pulse potential techniques (discussed in Sects. 3.3 and 4.4, respectively), the

equidiffusivity of all electro-active species is assumed, which avoids the consider-

ation of the influence of comproportionation/disproportionation kinetics on the

current corresponding to reversible electron transfers. A general treatment is

presented and particular situations corresponding to planar and nonplanar diffusion

and microelectrodes are discussed later.

6.2.1 Application of a Multipulse Sequence to Electrodes
and Microelectrodes of Any Geometry

Let us consider the following reversible multielectronic charge transfer process:

step formal potential

1 O1 þ e� !O2 E��○c, 1
0

2 O2 þ e� !O3 E��○c, 2
0

⋮ ⋮
n On þ e� !Onþ1 E��○c, n

0

ð6:IÞ

where E��○c,n
0
i ¼ 1, 2, . . . , nð Þ are the formal potentials of each individual electron

transfer and n the number of electrochemical steps.

As discussed in Sect. 3.3.4, the incidence of comproportionation reactions on the

voltammetric response can be disregarded if diffusion is the only mass transport
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mechanism, the diffusion coefficients of all species Oi are equal, the electron

transfers are reversible, and any other chemical reactions are absent [1–4]. How-

ever, it must be taken into account that comproportionation will indeed have effects

on the concentration profiles of the different species and that no analytical solution

has been found for them even when a constant potential is applied. Nevertheless,

the current–potential response corresponding to a sequence of successive potential

pulses E1,E2, . . .,Ep applied to an electrode of any geometry can be obtained by

introducing the following linear combinations of the concentrations of the different

species for any potential pulse p:

Y pð Þ ¼
Xnþ1
i¼1

c
pð Þ

Oi
q; tð Þ

W pð Þ ¼
Xn
i¼1

n� iþ 1ð Þc pð Þ
Oi

q; tð Þ

9>>>=>>>; ð6:1Þ

with q and t referring to spatial coordinates and time, respectively

(with t being in this case t ¼
Xp
j¼m
τ j þ t p with m¼ 1, 2, 3, . . ., p� 1),

and c
pð Þ

Oi
q; tð Þ (i¼ 1, 2, . . ., nþ 1) are the concentration profiles of species Oi

corresponding to the pth potential pulse applied.

Both Y (p) and W (p) functions fulfill

∂Y pð Þ q; tð Þ
∂t p

¼ D∇2Y pð Þ q; tð Þ
∂W pð Þ q; tð Þ

∂t p
¼ D∇2W pð Þ q; tð Þ

9>>>=>>>; ð6:2Þ

where∇2 is the Laplace operator for mass transport given in Table 2.2 for the more

usual electrode geometries. Superindex “p” refers to the pth potential pulse applied.
Moreover, Y ( p) holds for any potential pulse:

Y pð Þ ¼ c*O1
ð6:3Þ

The combination of Eq. (6.3) with Nernst’s law corresponding to the n redox

couples for any potential pulse Ep leads to the following expressions for the surface

concentrations of the different (n + 1) species:

c
p;sð Þ

Oi
¼

c*O1

Yn

j¼i e
η p, j

1þ
X n

k¼1
Yn

j¼k e
η p, j

� � , i ¼ 1, 2, . . . , n

c
p;sð Þ

Onþ1 ¼
c*O1

1þ
Xn

k¼1
Yn

j¼k e
η p, j

� �

9>>>>>>=>>>>>>;
ð6:4Þ

c
0;sð Þ
O1
¼ c*O1

; c
0;sð Þ
Oi�2 ¼ 0 ð6:5Þ

with
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η p, j ¼
F E p � E��○c, j

0
� �

RT
ð6:6Þ

The linear combinationW ( p) given in Eq. (6.1) fulfills Eq. (6.2) accompanied by

these initial and boundary conditions:

t p ¼ 0, q � qs

t p > 0, q!1
�

W pð Þ ¼ W p�1ð Þ ð6:7Þ

t p > 0, q ¼ qs

W p;sð Þ ¼
Xn
i¼1

n� iþ 1ð Þc p;sð Þ
Oi

ð6:8Þ

with W 0ð Þ ¼ 2c*O1
.

Note thatW ( p,s) is only dependent on the applied potential Ep. FunctionW
( p) can

be written as a linear combination of the solutions corresponding to the previous

pulses as

W pð Þ ¼ W p�1ð Þ þ eW pð Þ

eW pð Þ ¼ W 1ð Þ þ
Xp�1
j¼2
eW jð Þ

9>=>; ð6:9Þ

where

W 1ð Þ ¼
Xn
i¼1

n� iþ 1ð Þc 1ð Þ
Oi

q; tð Þ
eW jð Þ ¼ W jð Þ �W j�1ð Þ

9>=>; ð6:10Þ

with c
1ð Þ
Oi

q; tð Þ being the solution for the first potential pulse applied andec jð Þ
Oi
¼ c

jð Þ
Oi
� c

j�1ð Þ
Oi

� �
the partial solutions for the 2nd, 3rd, . . ., pth successive

potential pulses.

By inserting Eq. (6.9) into (6.2) and taking into account equations (6.7)–(6.9), it

is possible to express the problem in terms only of the unknown function eW pð Þ (see
also Sect. 4.4.1):

∂ eW pð Þ q; tð Þ
∂tp

¼ D∇2 eW pð Þ q; tð Þ ð6:11Þ

t p ¼ 0, q � qs

t p > 0, q!1
� eW pð Þ ¼ 0 ð6:12Þ

t p > 0, q ¼ qs : eW p;sð Þ ¼
Xn
i¼1

n� iþ 1ð Þ c
p;sð Þ

Oi
� c

p�1, sð Þ
Oi

� �
ð6:13Þ
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The current of the multielectronic process can be obtained as

Imulti E,G
p ¼ FAGD

∂W pð Þ q; tð Þ
∂qN

� �
qs

ð6:14Þ

with qs referring to coordinates at the surface and qN to normal surface coordinate.

By following a procedure similar to that discussed in Sects. 3.3.4 and 4.4.1, the

following expression for the current at the pth potential pulse is [5, 6]:

Imulti E,G
p ¼ FAGD

Xp
m¼1

W m�1, sð Þ �W m;sð Þ
� �

fG tm, p; qG
� �h i( )

ð6:15Þ

where

W m;sð Þ ¼ c*O1

Xn
i¼1

n� iþ 1ð Þ
Yn
j¼i

eηm, j

 ! !

1þ
Xn
k¼1

Yn
h¼k

eηm,h

m ¼ 1, 2, . . . , p

W 0;sð Þ ¼ W* ¼ nc*O1

9>>>>>>=>>>>>>;
ð6:16Þ

where AG is the electrode area corresponding to G geometry, qG the characteristic

dimension of the electrode, tm, p ¼
Xp�1
j¼m
τ j þ t p (see Eq. (5.20)), and function fG(tm,p,

qG) is given in Table 2.3.

Note that the expression of the current given by Eq. (6.15) is formally identical

to that corresponding to a simple charge transfer process (Eq. (5.18)) by simply

changing c
m�1, sð Þ
O � c

m;sð Þ
O

� �
in the former for W m�1, sð Þ �W m;sð Þ� �

.

In the particular case of an EE mechanism given by the reaction scheme:

step formal potential

1 O1 þ e�  !O2 E��○c, 1
0

2 O2 þ e�  !O3 E��○c, 2
0

ð6:IIÞ

W (m) takes the form (see Eq. (6.1)):

W mð Þ ¼ 2c
mð Þ
O1
þ c

mð Þ
O2

ð6:17Þ

By inserting Eq. (6.4) for n¼ 2 into (6.17) at the surface of the electrode

q ¼ qsð Þ, we obtain
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W m;sð Þ ¼ c*O1

2eη1,meη2,m þ eη2,m

1þ eη2,m þ eη1,meη2,m
m ¼ 1, 2, . . . , p

W 0;sð Þ ¼ W* ¼ 2c*O1

9=; ð6:18Þ

Equation (6.18) can be rewritten in terms of the average formal potentialE
��○
c

0
and

the equilibrium constant of the disproportionation reaction K (see Sects. 3.3.1 and

4.4.1):

W m;sð Þ ¼ 2
ffiffiffiffi
K
p

e2ηm þ eηmffiffiffiffi
K
p þ eηm þ ffiffiffiffi

K
p

e2ηm
c*O1

m ¼ 1, 2, . . . , p ð6:19Þ

with

ηm ¼
F

RT
Em � E

��○
c

0� �
; m ¼ 1, 2, . . . , p ð6:20Þ

E
��○
c

0
¼ E��○c,1

0 þ E��○c, 2
0

2
ð6:21Þ

K ¼ exp
FΔE��○c

0

RT

� �
ð6:22Þ

ΔE��○c
0 ¼ E��○c, 2

0 � E��○c,1
0 ð6:23Þ

6.2.1.1 Cyclic Staircase Voltammetry and Cyclic Voltammetry

In this section, the general analytical expression for the current–potential response

(Eq. (6.15)) is particularized for the electrochemical techniques Cyclic Staircase

Voltammetry (CSCV) and Cyclic Voltammetry (CV). Thus, the expression for the

CSCV and CV currents of multi-electron processes at electrodes of any geometry

and size is

ψmulti E,G
p ¼ Imulti E,G

p

FAGc*O1

ffiffiffiffiffiffi
aD
p ¼ 1

c*O1

Xp
m¼1

W m�1, sð Þ �W m;sð Þ
� �

fG ξG; ϑm, p
� �� �

ð6:24Þ

where

a ¼ Fv

RT
ð6:25Þ

W (m,s) is given by Eq. (6.16) or (6.19) for multi-electron or two-electron pro-

cesses, respectively, and fG(ξG, ϑm,p) in Table 5.1, and

ξG ¼
ffiffiffiffiffiffiffiffi
D

aq2G

s
ð6:26Þ
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ϑm, p ¼
F

RT
E p�mþ1 � Einitial

� � ¼ a p� mþ 1ð Þτ m � N=2

F

RT
E p�mþ1 � Einitial þ 2Efinal

� �
m > N=2

8><>: ð6:27Þ

with (N/2) being the number of pulses of each scan.

In the particular case of two-electron transfer processes (i.e., EE mechanism),

Eq. (6.24) can be simplified to [5, 6]:

ψEE,G
p ¼

Xp
m¼1

ZEE
m fG ξG; ϑm, p

� � ð6:28Þ

ZEE
m ¼

W m�1, sð Þ �W m;sð Þ

c*O1

¼ 2
ffiffiffiffi
K
p

e2ηm�1 þ eηm�1ffiffiffiffi
K
p þ eηm�1 þ ffiffiffiffi

K
p

e2ηm�1
� 2

ffiffiffiffi
K
p

e2ηm þ eηmffiffiffiffi
K
p þ eηm þ ffiffiffiffi

K
p

e2ηm
ð6:29Þ

or

ZEE
m ¼

2
ffiffiffiffi
K
p

e2ϑm�1ϑin þ eϑm�1ϑinffiffiffiffi
K
p þ eϑm�1ϑin þ ffiffiffiffi

K
p

e2ϑm�1ϑin
� 2

ffiffiffiffi
K
p

e2ϑmϑin þ eϑmϑinffiffiffiffi
K
p þ eϑmϑin þ ffiffiffiffi

K
p

e2ϑmϑin
ð6:30Þ

ϑm ¼ F

RT
Em � Einitialð Þ ð6:31Þ

ϑin ¼ F

RT
Einitial � E

��O
c

0� �
ð6:32Þ

with ϑmϑin ¼ ηm.
A C++ code to calculate the response of two-electron reversible electrode

processes in Staircase Voltammetry at disc, (hemi)spherical, and cylindrical elec-

trodes of any radius can be found in Appendix J

Under CV conditions, Eq. (6.28) should be used with ΔEj j � 0:01mV. In the

following sections, the discussion focuses on the EE mechanism, although the

results can be easily extrapolated to a multielectronic electrode reaction.

6.2.1.1.1 Planar Electrodes

For the particular case of planar electrodes, Eq. (6.28) simplifies to

ψEE,plane
CV ¼

Xp
m¼1

ZEE
m

1ffiffiffiffiffiffiffiffiffiffi
ϑm, p

p ð6:33Þ

with ϑm,p and ZEE
m given in Eqs. (6.27) and (6.29)–(6.30).
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Using the Laplace Transform method, this expression can be compared with that

deduced by Polcyn and Shain for CV [7]:

IEE,planeCV ¼ 2IEE,1 ζð Þ þ IEE,2 χð Þ ð6:34Þ

with

IEE,1 ζð Þ ¼ FAc*O1

ffiffiffiffiffiffiffiffiffi
πDa
p

ζ atð Þ
IEE,2 χð Þ ¼ FAc*O1

ffiffiffiffiffiffiffiffiffi
πDa
p

χ atð Þ ð6:35Þ

where functions ζ(at) and χ(at) are non-explicit functions obtained from integral

equations and given by equations (9) and (10) of [7]. On comparing Eqs. (6.35) and

(6.33) in the limit corresponding to CV by applying the derivative definition in the

way of Eq. (5.47) (and taking into account that ΔEj j � 0:01mV ), it can be

concluded that

ζ atð Þ ¼
Xp
m¼1

2K3=2eϑmϑin þ 2K2e2ϑmϑin

K þ K1=2eϑmϑin þ Ke2ϑmϑin
� �2

0B@
1CA ð6:36Þ

χ atð Þ ¼
Xp
m¼1

�K3=2eϑmϑin þ K3=2e3ϑmϑin

K þ K1=2eϑmϑin þ Ke2ϑmϑin
� �2

0B@
1CA ð6:37Þ

Therefore, the classical Polcyn and Shain expression can be still used but with

the advantage of having explicit expressions instead of the awkward integral equa-

tions for functions ζ(at) and χ(at).
The influence of the difference between the formal potentials of the first- and

second-electron transfer, ΔE��○c
0
, on the voltammograms corresponding to an EE

mechanism at a plane electrode calculated from Eq. (6.33) can be seen in Fig. 6.1, in

which the current has been plotted versus E� E��○c, 1
0
(a) and E� E

��○
c

0
(b). From

these curves, it can be observed that the response shows two pair of peaks for

very negative values ofΔE��○c
0
, which approach as this parameter increases until for

ΔE��○c
0 � �71:2mV a single pair of peaks is obtained, although the intermediate

species remain stable (see Sect. 3.3.1 for an extensive discussion about this point).

For ΔE��○c
0 � 200mV, the response is indistinguishable from that corresponding to

an apparently simultaneous di-electronic charge transfer.

In the case of two separate peaks, the difference between the peak potentials

coincides with the difference between the formal potentials for ΔE��○c
0
< �142mV.

Under these conditions, the value of the formal potentials can be extracted from the

average value of the peak potentials of the forward and backward scans:
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E��○c,1
0 ¼ Epeak, f, 1 þ Epeak, r, 1

2

E��○c,2
0 ¼ Epeak, f, 2 þ Epeak, r, 2

2

ð6:38Þ

When a single peak is obtained, the average value of the forward and backward

peak potentials corresponds to the average formal potential, E
��O
c

0
, Eq. (6.21)

(Fig. 6.1b):
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Fig. 6.1 Cyclic voltammograms corresponding to an EE mechanism at planar electrodes (current

versus E� E��Oc,1
0
(a), and versus E� E

��O
c

0
(b), calculated from Eq. (6.33) for different values of the

difference between formal potentials ΔE��○c
0
(values in mV shown in the curves). E��○c,1

0 ¼ 0 mV,

T¼ 298 K
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E
��○
c

0 ¼ Epeak, f þ Epeak, r

2
ð6:39Þ

6.2.1.1.2 Spherical Electrodes and Microelectrodes and Other Electrode

Geometries

For spherical electrodes, the expression for the SCV current can be written in terms

of the planar solution given by Eq. (6.33) as [5, 6]:

ψEE,sphe
CV ¼

Xp
m¼1

ZEE
m

1ffiffiffiffiffiffiffiffiffiffiffiffi
πϑm, p

p !
þ ξs

W p;sð Þ

c*O1

¼ ψEE,plane
CV þ ξs

W p;sð Þ

c*O1

ð6:40Þ

with W(p,s), ξs, and ZEE
m given by Eqs. (6.19), (6.26), (6.29), and (6.30)

(with qG ¼ rs), respectively.
This can be extended to other electrode geometries, and, for example, the

expression for disc electrodes becomes [5]:

ψEE,disc
CV ¼ ψEE,plane

CV þ ξd
W p;sð Þ

c*O1

þ 0:2732
Xp
m¼1

ZEE
m exp � 0:39115

ξd
ffiffiffiffiffiffiffiffiffiffi
ϑm, p

p ! !
ð6:41Þ

with ξd given by Eq. (6.26) (with qG ¼ rd).
In both cases, it is clear that the response can be expressed as the sum of the

solution for planar electrodes given by Eq. (6.33) and a contribution related to the

electrode size (the second addend in the right-hand side of Eqs. (6.40) and (6.41)).

When the electrode radius decreases, the current evolves from the transient peak-

shaped response to a sigmoidal stationary one in the same way as observed for a

simple charge transfer process (see Sects. 5.2.3.2 and 5.2.3.3). For small values of

the electrode radius, the planar term in (6.40) and (6.41) becomes negligible and the

current simplifies to

ψEE, sphe, ss
CV ¼ ξs

W p;sð Þ

c*O1

ψEE,disc, ss
CV ¼ 4

π
ξd

W p;sð Þ

c*O1

9>>>=>>>; ð6:42Þ

with W ( p,s) given by Eq. (6.19).

Equation (6.42) clearly shows that the CV stationary responses of disc and

spherical electrodes hold the same equivalence relationship as that observed for a

simple charge transfer process:

ψEE,disc, ss
CV ¼ 4

π
ψEE, sphe, ss
CV ð6:43Þ

The effects of the scan rate and electrode radius on cyclic voltammograms of

different EE processes are analyzed in Fig. 6.2 through the dimensionless
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Fig. 6.2 Influence of the

scan rate and electrode

radius (through the

dimensionless parameter

ξG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRTð Þ= r2GFv

� �q
) on

the CV voltammograms of

an EE mechanism at disc
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hemispherical (dashed line)
microelectrodes. Different

ΔE��○c
0
values are

considered: (A) �200 mV,

(B) 0 mV, and

(C) +200 mV. Reproduced

from [5] with permission

6.2 Multi-electron Electrochemical Reactions 385



parameter, ξG, defined in Eq. (6.26). According to the definition, large values of

parameter ξG are associated with small electrode radii and/or slow scan rates.

Therefore, as ξG is increased, the dimensionless current of the forward scan increases,

whereas the backward peaks decrease due to diffusion of the electrogenerated species

toward the bulk solution. Moreover, the shape of the forward voltammogram varies

from peak to sigmoid shaped as the steady state is reached.

For large electrodes and/or fast scan rates, the voltammograms obtained at disc

and (hemi)spherical electrodes coincide (with a difference in the peak current of

less than 5 % forξG < 0:3). Under these conditions, the diffusion is almost linear, so

the current density is the same as on macroelectrodes. On the other hand, the larger

the ξG value (i.e., the smaller the electrode and/or the slower the scan rate), the more

apparent the differences are between the responses at electrodes of different shapes.

In these conditions, the diffusion domains at disc and (hemi)spherical electrodes

differ significantly, with the current density being greater at discs. At the limit of

steady-state conditions, the dimensionless currents for any value of the potential, in

any (direct or differential) electrochemical technique, and whatever the number of

electrochemical steps is related by ψEE,disc, ss
CV =ψEE,sphe, ss

CV ¼ 4=π.
Equation (6.41) for the current–potential response has been applied to the analysis

of different experimental systems of interest. For example, the experimental SCV

voltammograms of the two-electron reduction of anthraquinone-2-sulfonate (AQ) in

different mixtures of alkylammonium salts obtained at a gold macroelectrode (radius

¼ 0:9mm) with a scan rate v ¼ 100mVs�1 are shown in Fig. 6.3 when a staircase

E vs SCE   /   V
-1.0-0.8-0.6-0.4-0.2

I E
E

,d
is

c    
/  
m A

-4

-2

0

2

4

6

0:100 TBAOH:TMAOH
60:40 TBAOH:TMAOH
100:0 TBAOH:TMAOH

S
C

V

Fig. 6.3 Experimental blank-subtracted (solid line) and best-fit theoretical (points) SCV

voltammograms of 0.5 mM AQ/H2O solutions supported with [TMAOH] + [TBAOH]¼ 0.1 M

on a gold disc macroelectrode of 0.9 mm radius. The proportion [TBAOH]:[TMAOH] is indicated

on the graph. v ¼ 100mVs�1, ΔEj j ¼ 1:06mV, T¼ 298 K. Reproduced with permission from [5]
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potential of pulse amplitude ΔE ¼ 1:06mV is applied. It has been reported in

references [8, 9] that tuning the apparent formal potentials of this redox system can

be done by varying the electrolyte composition. The semiquinone intermediate is

stabilized by ion pairing with the tetra-n-butylammonium cation, and, consequently,

the difference between the apparent formal potentials of the electron transfers

increases. This effect enables the study of a range ofΔE��○c
0
values by simply changing

the proportion of TBAOH in solution. The values of the formal potentials of the

two-electron processes were extracted from the best fit of the experimental data with

the analytical expressions given by Eq. (6.41) (see Table 6.1).

6.2.1.1.3 Multicenter Molecules with Non-interacting Redox Centers

The multielectronic process presented in reaction scheme (6.I) is formally equi-

valent to that corresponding to the reduction of a molecule containing n electro-

active redox centers:

step formalpotential

1 On þ e� !On�1R E��○c, 1
0

2 On�1Rþ e� !On�2R2 E��○c, 2
0

⋮ ⋮
n ORn�1 þ e� !Rn E��○c,n

0

ð6:IIIÞ

such that there are n redox couples On� jþ1R j�1=On� jR j with formal potentials E��○c, j
0

( j¼ 1, 2, . . ., n) and nþ 1ð Þ possible redox states On� jR j (with subscript j denoting
the number of reduced sites of the molecule). This is a very frequent situation (for

example in dendrimers or linear polymers) [10], and it has been the subject of

several studies [4, 10–13].

In references [10, 12], the particular case was studied of the successive electron

transfers of a molecule with n identical and non-interacting centers by following an

Table 6.1 Difference between the formal potentials and formal potential of the first electro-

chemical step obtained from the best fit of staircase cyclic voltammograms at a gold disc macro-

electrode (r0 ¼ 0:9mm) of 0.5 mM AQ/H2O solutions in different supporting electrolytes (see

Fig. 6.3). T¼ 298 K [5]

Electrolyte

(I¼ 0.1 M)

100 %

TBAOH

(60 + 40)%

TBAOH+TMAOH

100 %

TMAOH

ΔE��Oc
0 ¼ E��Oc,2

0 � E��Oc,1
0
mV �135 �100 �20

E��Oc,1
0
mVa �555 �564 �597

D� 106 cm2 s�1b 3.0 3.5 5.3

aVs SCE
bValues obtained from the steady-state limiting current
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equilibrium statistical treatment, from which it is deduced that the difference

between the formal potentials of the first and any j oxidation states pair is given by

E��○c,1
0 � E��○c, j

0 ¼ RT

F
ln

jn

n� jþ 1

� �
ð6:44Þ

From this equation, it can be immediately inferred that the difference between

the formal potentials of two states j and ( j+ 1) is

ΔE��○c, j
0 ¼ E��○c, jþ1

0 � E��○c, j
0 ¼ RT

F
ln

j n� jð Þ
jþ 1ð Þ n� jþ 1ð Þ

� �
j ¼ 1, 2, . . . , n� 1 ð6:45Þ

For the particular case of a two-center molecule (n¼ 2, j¼ 1), this value is (see

Sects. 6.2.1.1.1 and 6.2.1.1.2)

ΔE��○c, 1
0 ¼ E��○c,2

0 � E��○c, 1
0 ¼ RT

F
ln

1

4

� �
¼ �35:6mV ð6:46Þ

In the case of a four-center molecule (n¼ 4, j¼ 1, 2, 3), it is obtained that

ΔE��○c, 1
0 ¼ E��○c,2

0 � E��○c, 1
0 ¼ RT

F
ln

3

8

� �
¼ �25:1mV

ΔE��○c, 2
0 ¼ E��○c,3

0 � E��○c, 2
0 ¼ RT

F
ln

4

9

� �
¼ �20:7mV

ΔE��○c, 3
0 ¼ E��○c,4

0 � E��○c, 3
0 ¼ RT

F
ln

3

8

� �
¼ �25:1mV

ð6:47Þ

By inserting Eq. (6.45) in the expression of the surface concentrations (which are

analogous to that given in Eq. (6.4)), the following expression for the particular case

of n non-interacting centers is found:

c
m;sð Þ
O j

c*
¼ f mj ð6:48Þ

with c* being the initial concentration of the multicenter molecule, and f mj can be

written as the jth coefficient of the binomial distribution

f mj ¼
n
j

� �
eηm

1þ eηm

� �n� j
1

1þ eηm

� � j

ð6:49Þ

where ηm ¼ F Em � E
��○
c

0� �
=RT (Eq. (6.20)) and E

��○
c

0
is the “common standard

potential relating each microscopic center that is in its oxidized state to its reduced

counterpart no matter what the overall oxidation state of the molecule happens to
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be” [10], whose numerical value coincides with the average formal potential of all

pairs of oxidation states:

E
��○
c

0 ¼ 1

n

Xn
j¼1

E��○c, j
0 ð6:50Þ

For example, under these conditions a redox bicentric molecule behaves as two

separate mono-redox center ones with identical formal potentials equal to E
��○
c

0
.

The expression for the current of a bicenter molecule in the absence of inter-

actions (i.e., for ΔE��○c, 1
0 ¼ �35:6mV) is double that obtained for a single charge

transfer given by Eq. (5.24):

I2 centers,G
p

FAGDc*O
¼ 2

Xp
m¼1

eηm�1

1þ eηm�1
� eηm

1þ eηm

� �
fG tm, p; qG
� �" #

ð6:51Þ

Thus, Eqs. (6.44)–(6.51) clearly demonstrate that the whole current–potential

curve corresponding to a molecule with n non-interacting centers is n times that

corresponding to a molecule with only one redox center for the same concentration

and diffusion coefficients and in any single or multipulse electrochemical tech-

nique, independently of the electrode geometry [12].

6.2.1.1.4 Non-reversible Two-Electron Electrochemical Reactions

This case is much more complex than the reversible one since the SCV and CV

currents depend not only on the difference between formal potentialsΔE��Oc
0
but also

on the particular value of the rate constants for the first and second charge transfer

steps, κ0plane;1 and κ
0
plane;2, or on one of the rate constants and the ratio between them,

with

κ0plane,1 ¼
k01ffiffiffiffiffiffi
aD
p

κ0plane,1 ¼
k02ffiffiffiffiffiffi
aD
p

9>>=>>; ð6:52Þ

Thus, the number of peaks is not merely a function ofΔE��Oc
0
, as in the reversible

case. As an example, the CV curves corresponding to a two-electron non-reversible

charge transfer calculated for ΔE��Oc
0 ¼ 0 V and κ0plane;1 (¼1) and different values of

κ0plane;2 have been plotted in Fig. 6.4. From these curves, it is clear that the

morphology of the voltammograms evolves from a single pair of peaks for the

case in which κ0plane, 1 ¼ κ0plane,2 to the appearance of a second pair of peaks which are
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shifted toward more negative and positive potentials in the direct and reverse scans,

respectively, as κ0plane;2 decreases.

Under these conditions, it is difficult to obtain criteria to characterize the

response, although some attempts have been made [14].

6.3 First-Order Chemical Reactions Coupled

with the Charge Transfer

As discussed in Sects. 3.4 and 4.5, electrode processes coupled with homogeneous

chemical reactions are very frequent and their study is of interest in many applied

fields, such as organic electrosynthesis, ecotoxicity, biosciences, environmental

studies, among others [15–17]. In this section, multipulse techniques (with a special

focus on Cyclic Voltammetry) are applied to the study of the reaction kinetics and

mechanisms of electrogenerated species.

Of the wide range of these types of processes, this study focuses mainly on three

first- or pseudo-first-order reaction mechanisms (see reaction scheme (6.IV)):

catalytic, EC, and CE processes which are the most analyzed in the Electro-

chemistry literature.

Cþ e� ! B !
k1

k2
C Catalytic mechanism að Þ

B !
k1

k2
Cþ e� ! D CE mechanism bð Þ

Aþ e� ! B !
k1

k2
C EC mechanism cð Þ

ð6:IVÞ

A brief discussion concerning more complex reaction schemes like the ECE

mechanism follows.
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Fig. 6.4 CV curves

corresponding to an EE

process with ΔE��Oc
0 ¼ 0V,

κ0plane,1 ¼ 1, and different

values of κ0plane;2 (shown in

the curves). α ¼ 0:5
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In these electrode processes, the use of macroelectrodes is recommended when

the homogeneous kinetics is slow in order to achieve a commitment between the

diffusive and chemical rates. When the chemical kinetics is very fast with respect to

the mass transport and macroelectrodes are employed, the electrochemical response

is insensitive to the homogeneous kinetics of the chemical reactions—except for

first-order catalytic reactions and irreversible chemical reactions follow up the

electron transfer—because the reaction layer becomes negligible compared with

the diffusion layer. Under the above conditions, the equilibria behave as fully labile

and it can be supposed that they are maintained at any point in the solution at any

time and at any applied potential pulse. This means an independent of time

(stationary) response cannot be obtained at planar electrodes except in the case of

a first-order catalytic mechanism. Under these conditions, the use of micro-

electrodes is recommended to determine large rate constants. However, there is a

range of microelectrode radii with which a kinetic-dependent stationary response is

obtained; beyond the upper limit, a transient response is recorded, whereas beyond

the lower limit, the steady-state response is insensitive to the chemical kinetics

because the kinetic contribution is masked by the diffusion mass transport. In the

case of spherical microelectrodes, the lower limit corresponds to the situation where

the reaction layer thickness does not exceed 80 % of the diffusion layer thickness.

6.3.1 Catalytic Mechanism

As shown in Sects. 3.4.1 and 4.5.1, the first-order catalytic mechanism is much

simpler to study than the first CE and EC mechanisms. Thus, when any sequence of

potential pulses E1,E2, . . ., Ep is applied and diffusion coefficients of species B and

C in reaction scheme (6.IV) are assumed equal, it is fulfilled that

c
pð Þ

B q; tð Þ þ c
pð Þ

C q; tð Þ ¼ c*B þ c*C ¼ ξ* 8q, t ð6:53Þ

for any electrode geometry with t ¼
X p�1

j¼1 τ j þ t p and q referring to spatial

coordinates. This condition means the mathematical treatment of this process is

greatly simplified. So, only the variable ϕ pð Þ ¼ c
pð Þ

B � Kc
pð Þ

C

� �
e� k1þk2ð Þt

� �
works

ϕ pð Þ ¼ ϕ p�1ð Þ þ eϕ pð Þ ð6:54Þ

where ϕ p�1ð Þ is the already known function ϕ corresponding to the previous

potential pulse p� 1ð Þ at time t and eϕ pð Þ the unknown function to determine.

Under these conditions (see Eqs. (4.199)–(4.202)), it can be easily demonstrated

that the Superposition Principle can be applied and the diffusion differential

equation and the boundary value problem of this process, independently of the

electrode geometry, are simplified to
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∂eϕ pð Þ q; tð Þ
∂tp

¼ D∇2eϕ pð Þ q; tð Þ ð6:55Þ

t p ¼ 0, q � qs

t p > 0, q!1
� eϕ pð Þ ¼ 0 ð6:56Þ

t p > 0, q ¼ qs;

e� k1þk2ð Þt peϕ p;sð Þ ¼ e k1þk2ð Þτ1, p�1 1� Keη p

1þ eη p
� 1� Keη p�1

1þ eη p�1

� �
ζ* ð6:57Þ

where K ¼ k2=k1ð Þ is the inverse of the chemical equilibrium constant and

τ1, p�1 ¼
Xp�1
i¼1
τi ð6:58Þ

eϕ p;sð Þ ¼ ec p;sð Þ
B � K ec p;sð Þ

C

� �
e k1þk2ð Þ τ1þ...þτ p�1þtpð Þ ð6:59Þ

c
pð Þ

B ¼ c
1ð Þ
B þ

Xp
j¼2
ec jð Þ
B

c
pð Þ

C ¼ c
1ð Þ
C þ

Xp
j¼2
ec jð Þ
C

9>>>>=>>>>; ð6:60Þ

and

ϕ pð Þ ¼ ϕ 1ð Þ þ
Xp
j¼2
eϕ jð Þ ð6:61Þ

Thus, the expression of the current is

Icat,Gp

FAGD
¼ ∂c pð Þ

C

∂qN

 !
qs

¼ e�kt1, p
∂ϕ 1ð Þ

∂qN

 !
qs

þ
Xp
m¼2

e�ktm, p
∂eϕ mð Þ

∂qN

 !
qs

0@ 1A ð6:62Þ

with tm,p being

tm, p ¼
Xp�1
i¼m
τi þ t p ð6:63Þ

and qs and qN are the coordinates at the electrode surface and the normal coordinate,

respectively. By proceeding as in Sect. 4.5.1 (see also [18–21]), one obtains
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Icat,Gp

FAGD
¼ ζ*

1þ Kð Þ
Xp
m¼1

Z cat
m f catG χm, p; qG

� �� � ð6:64Þ

where

Z cat
m ¼

1� Keϑ1eϑin

1þ eϑ1eϑin
m ¼ 1

1þ Kð Þ 1

1þ eϑmeϑin
� 1

1þ eϑm�1eϑin

� �
m > 1

8>><>>: ð6:65Þ

χm, p ¼ k1 þ k2ð Þtm, p ð6:66Þ

eη0 ¼ exp F Eeq � E��Oc
0� �
=RT

� � ¼ c*B=c
*
C ¼ K ¼ 1=Keq, and ξG, ϑm, and ϑin are

given by Eqs. (6.26), (6.31), and (6.32), respectively. Function fcatG (χm,p, qG)
depends on the electrode geometry (see Table 6.2 for planar, spherical, and

disc electrodes with qG being the characteristic dimension of the electrode of

geometry G).

Under CV conditions (i.e., for ΔEj j < 0:01mV), Eq. (6.64) can be rewritten as

ψ cat,G
CV ¼ 1

1þ K

Xp
m¼1

Z cat
m f catG ϑm, p; ξG

� �� � ð6:67Þ

with ψ cat,G
CV ¼ Icat,Gp = FAG

ffiffiffiffiffiffi
aD
p

ζ*
� �

and

χm, p ¼ χCVϑm, p ð6:68Þ

χCV ¼ k1 þ k2
a

ð6:69Þ

where a, ϑm,p, and Zcatm are given by Eqs. (6.25), (6.27), and (6.65), respectively.

6.3.1.1 Planar Electrodes

In this case, Eq. (6.67) becomes [18, 19]:

ψ cat, plane
CV ¼ 1

1þ K

Xp
m¼1

Z cat
m f catplane ϑm, p

� �� �
ð6:70Þ

with f catplane(ϑm,p) given in Table 6.2.

Since the characteristic time corresponding to CV is given by the variable 1/a
(with a ¼ Fv=RT), it is interesting to analyze the influence of the chemical kinetics

on the voltagram by using the variable χCV given by Eq. (6.69). This influence can
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be seen in Fig. 6.5 for two values of K (0 and 1). In the case of an irreversible

chemical reaction (Fig. 6.5a), the curves calculated for small values of χCV are

practically coincident with those corresponding to a simple charge transfer. The

catalysis is more effective, the higher χCV is, leading to an increase of the current

and an evolution from transient peak-shaped curves obtained for small χCV

to sigmoidal stationary ones corresponding to χCV > 1. Under these conditions,

f catplane χ p,m

� �! 1 and the current is
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Fig. 6.5 CV curves for a catalytic mechanism at planar electrodes calculated from Eq. (6.70). The

values of the inverse of the equilibrium constant are: (a) K¼ 0, (b) K¼ 1. The values of the rate

constant χCV are 10 (pink), 1 (blue), 0.1 (dark yellow), 0.01 (red), and 0.001 (black). T¼ 298 K
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ψ cat, plane, ss
CV ¼

ffiffiffiffiffiffiffiffi
χCV

p
1þ K

1� Keϑmeϑin

1þ eϑmeϑin
ð6:71Þ

which corresponds to a pure kinetic steady state identical to that obtained in

Single Pulse Techniques (see Eq. (3.205a)), i.e., the response has no memory of

the pulses previous to the mth. Moreover, a constant current is obtained for very

negative potentials (for which eϑm ffi 0):

ψ cat,plane, ss
CV

�
E!�1

¼
ffiffiffiffiffiffiffiffi
χCV

p
1þ K

ð6:72Þ

The limiting anodic current under stationary conditions is (see Fig. 6.5b):

ψ cat,plane, ss
CV

�
E!1

¼ �K
1þ K

ffiffiffiffiffiffiffiffi
χCV

p
ð6:73Þ

such that the ratio between both limiting currents fulfills

ψ cat, plane, ss
CV

�
E!1

ψ cat, plane, ss
CV

�
E!�1

							
							 ¼ K ð6:74Þ

It is also observed that the location of the CV at the potential axis is not affected

by χCV. Indeed, when a stationary response is reached, the half-wave potential of

the I–E curve coincides with the formal potential of the redox couple, as in the

case of a reversible charge transfer reaction.

6.3.1.2 Spherical and Disc Electrodes and Microelectrodes

In the case of spherical and disc electrodes, the catalytic CV curve can be written in

terms of the planar one (Eq. (6.70) and Table 6.2) as [20, 21]:

ψ cat, sphe
CV ¼ ψ cat, radial

CV þ
ffiffiffiffiffi
Λs
p

1þ Kð ÞQs

Xp
m¼1

Z cat
m f catplane ϑm, p

� �� �
ð6:75Þ

ψ cat,disc
CV ¼ ψ cat, radial

CV þ
ffiffiffiffiffi
Λd
p

1þ Kð ÞQd

Xp
m¼1

Z cat
m f catdisc Qd;Λd; ϑm, p

� �� � ð6:76Þ

with
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ΛG ¼ k1 þ k2ð Þr2G
D

ð6:77Þ

QG ¼
ffiffiffiffiffiffiffiffi
ΛG
χCV

s
¼

ffiffiffiffi
a

D

r
rG ð6:78Þ

f catdisc Qd;Λd;ϑm, p
� � ¼ f catplane ϑm, p

� �
þ 0:2732

ffiffiffiffiffi
Λd

p ð ϑm, p=Q
2
dð Þ

0

exp �0:39115ffiffiffi
u
p � Λdu

� �
du

þ 0:2732ffiffiffiffiffi
Λd
p exp �Λd

Q2
d

ϑm, p � 0:39115Qdffiffiffiffiffiffiffiffiffiffi
ϑm, p

p !
ð6:79Þ

ψ cat, radial
CV ¼ 1

QG

1� Keϑ peϑin

1þ Kð Þ 1þ eϑ peϑinð Þ ð6:80Þ

with u being the integration variable, f catplane(ϑm,p), given in Table 6.2 and ϑm, ϑin, and

Zcatm given by Eqs. (6.31), (6.32), and (6.65), respectively. The subindex G refers to

the geometry considered (G¼ s for spheres and G¼ d for discs). Note thatffiffiffiffiffiffi
ΛG
p
QG

¼
ffiffiffiffiffiffiffiffi
χCV

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

a

r
ð6:81Þ

From Eqs. (6.75)–(6.78), it can be seen that parameter QG reflects the influence

of the electrode size, whereas ΛG combines the influence of kinetics and electrode

size since for nonplanar electrodes both effects are closely related. Thus, the

influence of the electrode size on the cyclic voltagrams is analyzed in Fig. 6.6 for

a given scan rate and two different k1 values corresponding to transient conditions

(ΛG=Q
2
G ¼ 0:04, Fig. 6.6a, c) and stationary conditions (ΛG=Q

2
G ¼ 10, Fig. 6.6b, d).

As observed in Fig. 6.6a, under transient conditions the dimensionless current at

disc electrodes is always greater than at spherical ones (of the same radius), the

smaller the electrode (i.e., the smaller the QG value), the greater the difference.

When the stationary response is reached, three different steady states can be defined

depending on the value of the rate constants and the electrode radius (see Fig. 6.6b)

[21]. Thus, for very small electrodes (QG ¼ 0:01 ) the large diffusion transport

masks the kinetic contribution and a micro-geometrical steady state is achieved. For

these conditions, the response is equivalent to that of a simple charge transfer

process, so the ratio between the dimensionless curves at discs and spheres is

given by ψ cat, disc
CV =ψ cat, sphe

CV ¼ 4=π (provided that rd ¼ rs ). On the other hand, for

large electrodes (Q¼ 5) or large kinetic constants, a “purely” kinetic steady state is

reached and the dimensionless current depends only on the chemical kinetics, and is

independent of the electrode size and geometry (i.e., ψcat, disc
CV =ψ cat, sphe

CV ¼ 1). In both

figures, an intermediate behavior is found for medium-sized electrodes (Q¼ 0.5).
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The curves in Fig. 6.6c, d are similar to the previous ones, although in this case

the values of the electrode radii have been selected so that they fulfill the following

equivalence relationship: rd=rs ¼ 4=π [21]. As a consequence, equivalent cyclic

voltagrams are obtained at spherical and disc electrodes under micro-geometrical

steady-state conditions (see curves for QG ¼ 0:01 in Fig. 6.6d). These curves are

also coincident in the kinetic steady state (see curves forQG ¼ 5 in Fig. 6.6d) since,

as stated above, the current density under these conditions is independent of the

electrode size. In the intermediate geometric-kinetic steady state, some divergence

is found, although in this case the dimensionless current corresponding to spherical

electrodes is greater. This is also observed under transient conditions (see

Fig. 6.6c).

The variation of the voltammetric peak parameters (Epeak, f � E��Oc
0
, Fig. 6.7a, and

ψ cat;G;peak;f
CV , Fig. 6.7b) versus logQG, corresponding to transient CV curves, is

plotted in Fig. 6.7. All the cyclic voltammograms have been calculated by fixing

the value of parameter ΛG (Eq. (6.77)) and considering disc (solid lines) and

spherical (dashed lines) electrodes of the same radius
�
rd ¼ rs ¼ 0:01 cm) for the

(c) ΛG/QG
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Fig. 6.6 Dimensionless cyclic voltammograms (ψcat,G
CV � ηcurves, withη ¼ F E� E��Oc

0� �
= RTð Þ) of

the first-order catalytic mechanism (with K¼ 0) at disc (solid line) and spherical (dashed line)

electrodes with slow (ΛG=Q
2
G ¼ 0:04, (a) and (c)) and fast (ΛG=Q

2
G ¼ 10, (b) and (d)) catalytic

kinetics. Three different electrode radii are considered in each case (QG values marked on the

curves). (a) and (b) rd ¼ rs; (c) and (d) rd ¼ 4 rs=π. Reproduced with permission from [21]
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most common case of K ¼ 0 (Keq !1). From curves in this figure, it can be seen

that the cathodic peak potentials become less negative and the dimensionless

current decreases as logQG (i.e., the scan rate) increases. For large QG values,

both the peak potential and the peak current are independent of QG and their values

coincide with those obtained for a simple charge transfer process at planar elec-

trodes [16, 22]: Epeak, f � E��Oc
0 ¼ �28mV and ψ cat,G,peak, f

CV ¼ 0:446 (see dotted-

dashed lines). The limitingQG value to observe this behavior increases with ΛG. For
small values of ΛG (i.e., logΛG < �2), no sensitivity of the response to the catalysis
kinetics is observed and the differences between disc and spherical electrodes are

due to geometrical reasons. On the contrary (i.e., logΛG > 0), there are no differ-

ences in the peak potential and current at discs and spheres, and therefore, although

a transient behavior is obtained, it does not depend on the particular electrode

geometry but on the kinetics of the chemical step.
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Fig. 6.7 Variation of (a)

the peak potential and (b)

the peak current of the

cyclic voltammograms with

the scan rate (through the

parameter QG) at disc (solid
line) and spherical (dashed
line) electrodes. The value
of the electrode radius is

fixed fulfilling that rd ¼ rs
¼ 0:01 cm. K¼ 0. The

values of the peak potential

and peak current for a

simple fast charge transfer

process at planar electrodes

are indicated (dashed-
dotted line). Reproduced
with permission from [21]
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The dotted line in Fig. 6.7 marks the maximum values of the ratio (ΛG/Q2
G) for

which a transient behavior is achieved, i.e., a well-defined peak is obtained in CV

(with the relative difference between the peak and plateau currents being greater

than 5 %). From the data shown in this figure, it is concluded that values of

ΛG=Q
2
G

� �
< 0:4 are required to observe a transient behavior, whatever the electrode

radius. For ΛG=Q
2
G

� �
> 0:5, the stationary CV response is obtained (for example,

for k1 þ k2 ¼ 10s�1, the stationary voltammogram corresponds to scan rates below

500 mV s�1). Under these conditions, the expression of the voltammogram at disc

electrodes is given by

ψ cat,disc, ss
CV ¼ ψ cat, radial

CV 1þ
ffiffiffiffiffi
Λd

p
þ 0:5465Λd

ð1
0

u exp �0:39115ffiffiffi
u
p � Λdu2

� �
du


 �
ð6:82Þ

and at spherical electrodes by

ψ cat, sphe, ss
CV ¼ ψ cat, radial

CV 1þ
ffiffiffiffiffi
Λs

pn o
ð6:83Þ

with ψ cat;radial
CV given by Eq. (6.80).

The stationary CV curves given by Eqs. (6.82) and (6.83) have a sigmoidal shape

with the plateau currents at very positive (an) or negative (cath) potentials being for

disc electrodes

ψcat, disc, ss
CV

�
E!1 ¼

�K
1þ K

1

Qd

� �
1þ

ffiffiffiffiffi
Λd

p
þ 0:5465Λd

ð1
0

u exp �0:39115ffiffiffi
u
p � Λdu2

� �
du


 �
ψcat, disc, ss
CV

�
E!�1 ¼

1

1þ K

1

Qd

� �
1þ

ffiffiffiffiffi
Λd

p
þ 0:5465Λd

ð1
0

u exp �0:39115ffiffiffi
u
p � Λdu2

� �
du


 �
9>>=>>;

ð6:84Þ

For spherical electrodes, these current plateaus take the following expressions:

ψ cat, sphe, ss
CV

�
E!1

¼ �K
1þ K

1

Qs

� �
1þ

ffiffiffiffiffi
Λs

pn o
ψ cat, sphe, ss
CV

�
E!�1

¼ 1

1þ K

1

Qs

� �
1þ

ffiffiffiffiffi
Λs

pn o
9>>=>>; ð6:85Þ

such that the ratio between the cathodic and anodic plateau currents is

ψ cat,G, ss
CV

�
E!1

ψ cat,G, ss
CV

�
E!�1

					
					 ¼ K; ð6:86Þ

independently of the electrode geometry.
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Moreover, Eqs. (6.82) and (6.83) lead to two limiting cases, depending on the

relationship between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

and the characteristic dimension of the elec-

trode, qG:

– For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp � 10qG, the kinetics of the chemical step is masked (the

catalytic process behaves as a simple charge transfer process), and a micro-

geometrical steady state is reached:

ψ cat,disc, ss
CV ¼ 4

π
ψ cat, radial
CV

ψ cat, sphe, ss
CV ¼ ψcat, radial

CV

9=; ð6:87Þ

– For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp � 10qG, the kinetic steady state is attained and the resulting

CV curve is independent of the electrode radius and geometry:

ψ cat,G, ss
CV ¼ 1� Keϑ peϑin

1þ Kð Þ 1þ eϑ peϑinð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2ð Þ

a

r
ð6:88Þ

6.3.2 CE and EC Mechanisms

After analyzing the first order catalytic mechanism we now address the CE and EC

ones given in reaction scheme (6.IV). These mechanisms are also interesting as

examples of simple reaction schemes where a heterogeneous charge transfer reac-

tion is coupled with a homogeneous chemical one. However, as will be shown in

this section, the analysis of the cyclic voltammograms corresponding to both

reaction schemes by considering linear diffusion is much more complex than that

carried out for a catalytic mechanism since the superposition principle cannot be

applied because the surface concentrations of the participating species are depen-

dent on time even when approximate treatments as kinetic steady state and

diffusive-kinetic steady state (see Sects. 3.4.2–3.4.5 and 4.5.2) are made. As in

Sects. 3.4.2 and 3.4.3, for the sake of simplicity, it will be considered that the

electrochemical reaction takes place under Nernstian conditions, so that the homo-

geneous kinetics and the diffusion are the limiting factors.

The general mathematical treatment of CE and EC mechanisms is developed in

Appendix H. In Cyclic Voltammetry, these complex expressions are, in general,

simplified with great difficulty since, as was shown in Sects. 3.4.2 and 3.4.3, a true

stationary current–potential response for these electrode processes (i.e., a time-

independent response) cannot be achieved under linear diffusion conditions, as in

the case of a catalytic mechanism, because for CE and EC mechanisms the perturbed

region adjacent to the electrode surface by the diffusion of participating species

(diffusion layer) will never be equal to that region in which the chemical equilibrium

is perturbed (reaction layer; see scheme (3.1) in Sect. 3.4.4) except in the extreme

case of an inert equilibrium. In other words, the assumption of a kinetic steady state

(i.e., ∂ϕ=∂t ¼ 0; see Eqs. (3.230)–(3.240)) does not imply the achievement of a

stationary response as in the case of a catalytic mechanism, whatever the electrode

geometry. In contrast, getting a stationary current–potential response in a CE and EC
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mechanism also implies assuming that ∂ξ=∂t ¼ 0 and ∂ci=∂t ¼ 0 (with i¼A or D

for an EC or CE mechanism, respectively), and these conditions cannot be attained at

macroelectrodes. In general, a simplification of the current–potential response

corresponding to these mechanisms is very difficult since the influence of the

chemical kinetics (through k1 þ k2ð Þt changes along the voltammogram. So,

performing general extrapolations about the behavior of these processes in CV

based on their responses in Single Pulse Techniques (like NPV) can be mere vagary.

In Fig. 6.8, normalized cyclic voltammograms corresponding to a CE mecha-

nism for different values of χCV1 ¼ k1=að Þ at three values of K are plotted. It is
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(see also Appendix I).

Effect of the dimensionless

rate constant

χCV ¼ k1 þ k2ð Þ=a on the

current–potential

response for three values of

K ¼ 1=Keq: (a) 1; (b) 10;

(c) 100. The values of χCV1
¼ k1=a are: 10�2 (black);
0.1 (red); 1 (green);
10 (blue); 100 (pink)
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observed how in all the cases the peak height increases with χCV1 , i.e., when the scan

rate decreases or the rate constant increases. This increase is more notable the lower

the value of K, i.e., for higher Keq, since the homogeneous chemical equilibrium

becomes more labile under these conditions. In fact, for much higher χCV1 values,

this mechanism behaves as a reversible E process with E1=2 ¼ E��O
0

c þ RT=Fð Þln
1þ Kð Þ (see for example the pink curve in Fig. 6.8a). In contrast, when χCV1
decreases and K increases, the chemical kinetics has its maximum influence.

From these curves, it can be inferred that the peak potential of the cathodic scan

shifts toward more cathodic values as K increases (Keq decreases), since the

electrochemical reaction becomes more difficult. Another feature of the

voltammograms is that they shift toward more negative potentials when χCV1
increases, the more so the larger K, since χCV2 ¼ k2=að Þ also increases.

In Fig. 6.9, the influence of χCV1 and K on the voltammograms of an EC

mechanism has been plotted. From Fig. 6.9a (irreversible chemical reaction,
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Fig. 6.9 Cyclic voltagrams

corresponding to an EC

mechanism at a planar

electrode calculated by

following the numerical

procedure given in [23, 24]

(see also Appendix I). (a)

Effect of the dimensionless

rate constant χCV1 ¼ k1=a on
the current–potential

response.K ¼ 0. The values

of χCV1 appear in the figure.

(b) Effect of the equilibrium

constant Keq ¼ 1=K on the

current–potential response.

χCV1 ¼ 1. The values of

K appear in figure
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K¼ 0), it can be seen how the anodic peak disappears when χCV1 increases, due to

the growing depletion of species B. As can be seen in Fig. 6.9b, K ¼ 1=Keq

� �
has

little influence on the forward scan, whereas the anodic peak decreases when

K increases due to the increasing difficulty in the chemical transformation of C

into B. For this mechanism, a significant influence of the chemical reaction requires

large values of χCV1 and a very small value of K (large values of Keq). The CV curves

become identical to a reversible E process when K !1 (Keq ! 0). Thus, this

mechanism can be easily detected by changing the scan rate since the anodic wave

practically disappears when it decreases (species B does not have time to reach the

electrode surface to be reoxidized to A before the reverse scan can be completed).

Another characteristic of these curves is that for large values of χCV1 , the cathodic

peak shifts toward more positive potentials. This is a consequence of considering

that the electrochemical reaction takes place under reversible conditions.

The behavior of these mechanisms has been studied in an approximate way

according to “zone diagrams” proposed by Saveant et al. [25] in which different

types of responses are located in a 2D plot in terms of the values of the peak

potentials calculated for different values of Keq and χ
CV. Examples of these types of

diagrams corresponding to EC and CE mechanisms appear in Figs. 6.10 and 6.11.

Each zone in the diagram corresponds to a response obtained by inserting different

simplifying assumptions in the general integral equations for the current that appear

in Appendix H (e.g. χCV !1 or Keq ¼ 0). The meanings of the initials KG, DO,

KO, etc., is given in detail in Tables 6 and 7 of [25].

As an example, in the case of CE mechanism whenKeq 
 1 and χCV � 1 (upper

left corner of Fig. 6.10), the equilibrium is fully displaced to the right such that the

preceding reaction has little effect on the electrochemical response (zone DO and
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log, λ
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g 

k
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Fig. 6.10 Zone diagram corresponding to a CE mechanism in Cyclic Voltammetry. Reproduced

with permission from [25]
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curves in Fig. 6.8a). Contrarily, when Keq � 1 and χCV 
 1 (lower right corner of

Fig. 6.10), the influence of the chemical reaction is maximum (zone KP and curves

in Fig. 6.8c) with kinetic steady-state and even diffusive kinetic steady-state

approximations being applicable under these conditions. For intermediate values

of Keq and χ
CV (zones KO, KG, and KE), a rigorous treatment is required. Similar

discussions can be carried out for the EC mechanism (see Figs. 6.9 and 6.11).

6.3.2.1 Steady-State Voltammetry and CE and EC Mechanisms

As discussed in Sect. 3.4.7, a stationary current–potential response of these reaction

mechanisms can only be obtained when microelectrodes are used. In this case, the

expression of the current–potential curves corresponding to CE and EC mecha-

nisms for a microsphere of radius rs is (see also Eqs. (3.239) and (3.240)):

ICE,microsphe

Isphe, ssd, c ζ*
� � ¼ 1

K δmicrosphe
r =rs

� �þ 1þ 1þ Kð Þeηð Þ ð6:89Þ

IEC,microsphe

Isphe, ssd, c c*A
� � ¼ 1þ K

1þ K þ eη K þ δmicrosphe
r =rs

� � ð6:90Þ

with

2

1

2 3 4 5 6 71
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0
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Fig. 6.11 Zone diagram corresponding to an EC mechanism in Cyclic Voltammetry. Reproduced

with permission from [25]
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Isphe, ssd, c ζ*
� � ¼ 4πFrsDζ

* ð6:91Þ
Isphe, ssd, c c*A

� � ¼ 4πFrsDc
*
A ð6:92Þ

δmicrosphe
r ¼ 1

1
rs
þ

ffiffiffi
k
D

q ð6:93Þ

and k ¼ k1 þ k2. The diffusion layer thickness under steady-state conditions coin-

cides with rs.

Equations (6.89) and (6.90) are only applicable if
ffiffiffiffiffi
Dt
p

=rs > 11:3with an error of
less than 5 %. However, it is interesting to highlight that the detection of the

homogeneous kinetics is only possible in a narrow interval of microelectrodes

radius (
ffiffiffiffiffiffiffiffiffi
D=k

p
=10 � rs �

ffiffiffiffiffiffiffiffi
πDt
p

=11:3) in order for the term
ffiffiffiffiffiffiffiffiffi
k=D

p
in the reaction

layer thickness expression given by Eq. (6.93) not to be negligible with respect to

the term 1/rs. This range corresponds to δ
microsphe
r =rs < 0:8 (with δmicrosphe

r given by

Eq. (6.93)). So, for k ¼ 100 s�1, D ¼ 10�5 cm2 s�1, and t¼ 1 s, this condition is

equivalent to 0:6 � rs � 3ð Þ μm.

Under these conditions, the CV curves are coincident with those obtained in

Normal Pulse Voltammetry and the half-wave potentials corresponding to CE and

EC mechanisms become independent of time and are given by Eqs. (3.239) and

(3.240) by changing δsphe by rs.
In the case of a catalytic mechanism, the steady-state voltammetric current–

potential curve can be written as (see Eq. (3.243)):

Icat,microsphe

FAsDζ
*
¼ δ

microsphe
r

1þ K

1� Keη

1þ eη
ð6:94Þ

For this reaction scheme, only the condition
ffiffiffiffiffiffiffiffiffi
D=k

p � 10rs has to be fulfilled for
the kinetic reaction to be detected in a spherical microelectrode, since the catalytic

mechanism presents the reaction layer, whose expression is also given by

Eq. (6.93). The influence of both reaction and diffusion layers is shown in

Fig. 6.12 for a CE and a catalytic mechanism.

The reasons for the different behavior of these mechanisms are explained in

Sect. 3.4.4.

A similar discussion can be made, although only in an approximate way, for

disc microelectrodes by assuming as valid the analogy between the disc and

sphere radius, i.e., by making the change rs ¼ πrd=4 in the expressions of the

diffusion and reaction layers (see Sect. 3.4.7).
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6.3.3 ECE Mechanism

As indicated in Sect. 3.4.8, by considering that the two-electron transfers behave as

reversible, the ECE mechanism can be written [27–30]:

O1 þ e� ! R1 E��Oc,1
0

R1  !
k1

k2
O2

O2 þ e� ! R2 E��Oc,2
0

ð6:VÞ

that is, as an EC mechanism in which the reaction product O2 is capable of being

reduced (or oxidized) at the electrode surface. Usually, the chemical reaction is

irreversible, i.e., k2 � k1 . It can easily be inferred that the voltagram corresponding

to this mechanism will depend on the rate constant of the chemical reaction and on

the difference between the formal potentials of the two electrochemical steps:

ΔE��○c
0 ¼ E��○c,2

0 � E��○c, 1
0
.

As in the case of a two-electron transfer reaction (EE mechanism), there exists

the possibility of the following disproportionation reaction at the electrode surface:

R1 þ O2 !
k1

k2
R2 þ O1 ð6:VIÞ

with the equilibrium constant

Fig. 6.12 Steady-state spherical diffusion and reaction layers in the case of CE and catalytic

mechanisms. Reproduced with permission from [26]
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Keq ¼ e
�FΔE��○c

0
RT ð6:95Þ

So, it can be deduced that the voltagrams corresponding to an ECE mechanism

are influenced by reaction (6.VI) in a similar way to those corresponding to an EE

process, although in the case of the former the CV curves are affected by reaction

(6.VI) even when the diffusion coefficients of the different participating species are

assumed to be equal (see also Sect. 3.4.8 for more details). Hereinafter, the

intervention of reaction (6.VI) is disregarded for simplicity.

In Figs. 6.13. and 6.14, the current–potential curves corresponding to an ECE

mechanism under different kinetic conditions are plotted to show how the
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Fig. 6.13 (a, b) Cyclic

voltammograms

corresponding to an ECE

mechanism at planar

electrodes calculated by

following the numerical

procedure given in [23, 24]

(see also Appendix I).

ΔE��○c
0 ¼ �71:2mV. K¼ 0.

The values of χCV1 appear in

the figure. (c) CV curves of

a reversible two-electron

charge transfer process with

ΔE��○c
0 ¼ �71:2mV

calculated from Eq. (6.33)
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intermediate chemical reaction can complicate the voltagrams of the two-electron

transfer processes. Curve c in Figs. 6.13 and 6.14 corresponds to an EE process with

the same value of ΔE��○c
0
. All the curves are plotted versus E� E

��○
c

0
, with

E
��○
c

0 ¼ E��○c, 1
0 þ E��○c,2

0� �
=2.
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Fig. 6.14 (a, b) Cyclic voltammograms corresponding to an ECE mechanism at planar electrodes

calculated by following the numerical procedure given in [23, 24] (see also Appendix I).

ΔE��○c
0 ¼ �142:4mV. K¼ 3. The values of χCV1 appear in the figure. (c) CV curves of a reversible

two-electron charge transfer process with ΔE��○c
0 ¼ �142:4mV calculated from Eq. (6.33)
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The case corresponding to an irreversible chemical reaction k1 
 k2ð Þ is shown in
Fig. 6.13. A strong splitting of the voltagram caused by the increase of χCV1 ¼ k1=að Þ
due to the facilitation of the first electron transfer can be observed. The second peak

in the forward scan increases with χCV1 (i.e., with a decrease in the scan rate) due to an

increasing time for the formation of species O2. Indeed,whenχCV1 ¼ 0, the voltagram

only shows one pair of peaks corresponding to the redox couple O1/R1 since no

further steps take place under these conditions. For theΔE��○c
0
value used (�71:2mV),

the response of EE and ECE mechanisms can be well differentiated because the CV

curve presents two peaks in the forward scan and only one in the reverse.

From Fig. 6.14, it can be deduced that for ΔE��○c
0 ¼ �142:4 mV, the two mecha-

nisms show distinctly different voltammograms for small values of

χCV ¼ k1 þ k2ð Þ=að Þ, whereas the responses become more similar as the chemical

kinetics is faster. Thus, for χCV> 100 the voltammetric signal of the ECEmechanism

is equivalent to that of an EEmechanismwhere the half-wave potentials correspond to

those of the EC (first electron transfer) and CE (second electron transfer) mechanisms

under fully labile conditions (Eqs. (3.201c) and (3.221b) for δr! 0, respectively).

In any case, the presence of a chemical reaction (ECE mechanism) under these

conditions can be detected by changing the scan rate, since the dimensionless cyclic

voltammograms will remain insensitive to this change in the case of a reversible EE

process unlike what is observed in the presence of kinetic effects.

6.3.4 Reversible Charge Transfers Preceded and Followed by
Several Complexation Reactions in Equilibrium at
Electrodes of Any Geometry (“Ladder” Mechanism)

In this section, it is considered the general situation where a species A is electro-

reduced to B and both species A and B take part in a number of chemical equilibria in

solution. These may refer to their complexation with a ligand L [31, 32], protonation

[33, 34], or formation of ion pairs [35, 36], the products of which (AL, BL, . . . ALn,

BLn) are also electro-active in line with the following scheme [37]:

ð6:VIIÞ

Ligand L is assumed to be present at high concentration c*L 
 c*A, c
*
AL, c

*
ALn

� �
and kij and k

0i
j ( j¼ 1, 2; i¼ 1, 2, . . ., n) represent the (pseudo)first-order forward and
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backward rate constants of the chemical reactions. Note that this scheme allows

different common mechanisms to be studied by adjusting the values of the forma-

tion equilibrium constants. Thus, the situation where only the oxidized (A) or the

reduced (B) species is involved in the homogeneous chemical equilibria (i.e., only

one species reacts in solution) can be studied by setting to zero the equilibrium

constant(s) of the other species (Ceq
n Erev- or Erev Ceq

n -type mechanisms). The

Erev Ceq
n mechanism is very usual in real systems since the electron transfer

generally increases the instability and reactivity of the chemical species, for

example, by forming radicals.

In Sect. 3.4.10, it was presented the solution to this reaction scheme when a

single potential step is applied. Next the application of any succession of potential

steps of the same duration τ, is considered. The general solution corresponding to

the pth applied potential can be easily obtained because this is a linear problem,

and, therefore, any linear combination of solutions is also a solution of the problem,

and also that the interfacial concentrations of all the participating species only

depend on the potential and are independent of the “history” of the process

regardless of the electrode geometry considered (see Sect. 5.2.1). The two above

conditions imply that the superposition principle can be applied [38] in such a way

that the solution for the current corresponding to the application of the pth potential
can be written as follows:

Iladder,Gp

FAGD
¼
Xp
m¼1

c
A m�1ð Þ
T � c

A mð Þ
T

� �
fG p� mþ 1ð Þτ, qGð Þ ð6:96Þ

where

Z ladder
m ¼ c

A m�1ð Þ
T � c

A mð Þ
T

c*
¼ 1

1þ ωeηm �
1

1þ ωeηm�1
� �

ð6:97Þ

ω ¼
1þ

Xn

i¼1 βi

1þ
Xn

i¼1 βi
0 ð6:98Þ

with c* being the total concentration of species A in the bulk of the solution (i.e.,

c* ¼ c*A þ c*AL þ . . .þ c*ALn
). ηm is given by

ηm ¼
F

RT
Em � E��○

0

A=B

� �
, m � 1

�
ð6:99Þ

In Eq. (6.96), cAT is the total concentration of species A (for species B an

analogous definition can be found in Eq. (3.275)), given by

cAT q; tð Þ ¼ cA q; tð Þ þ
Xn
i¼1

cALi
q; tð Þ ð6:100Þ
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andD ¼ DA
eff ¼ DB

eff , with D
A
eff and D

B
eff being the effective diffusion coefficients of

the pseudo-species AT and BT, respectively:

DA
eff ¼

DA þ
Xn

i¼1 DALi
βi

1þ
Xn

i¼1 βi
ð6:101Þ

DB
eff ¼

DB þ
Xn

i¼1 DBLi
β
0

i

1þ
Xn

i¼1 β
0

i

ð6:102Þ

βi and β0 represent the overall formation constant for the different complexes of

species A or B, respectively, initially present in solution:

βi ¼
Yi
m¼1

Kmc
*
L ¼

cALi
q; tð Þ

cA q; tð Þ

β
0

i ¼
Yi
m¼1

K
0

mc
*
L ¼

cBLi
q; tð Þ

cB q; tð Þ

9>>>>=>>>>; 8q, t; i � 1; ð6:103Þ

with Km and K
0
m being

Km ¼ cALm
q; tð Þ

cALm�1 q; tð Þc*L
K
0

m ¼
cBLm

q; tð Þ
cBLm�1 q; tð Þc*L

ð6:104Þ

and fG p� mþ 1ð Þτ, qGð Þ is defined in Table 2.3 for each electrode geometry.

As Eq. (6.96) is formally identical to that corresponding to a simple reversible

electron transfer process, the dependence on the different complexation reactions is

contained in the parameter ω (Eq. (6.98)). The I/E responses corresponding to this

process shift with ω as a function of the magnitude of the equilibrium constants of

the different complexation reactions involved (see Fig. 6.15).

Equation (6.96) can be applied to any sequence of constant potential pulses and

so to any voltammetric technique. In the particular case of cyclic voltammetry, the

waveform is given by Eq. (5.1) and the current takes the form

ψ ladder,G
CV ¼ Iladder,Gp

FAGc*
ffiffiffiffiffiffi
Da
p ¼ �

ffiffiffiffi
D

a

r Xp
m¼1

Z ladder
m fG p� mþ 1ð Þτ, qGð Þ

p ¼ 1, . . . ,N ð6:105Þ

with a given by Eq. (6.25).

When the characteristic dimension of the electrode is such that qG �
ffiffiffiffiffiffiffiffi
πDt
p

(with qG being equal to rs, rc w, or rd), stationary or pseudo-stationary conditions are
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attained and the current in each pulse is dependent only on the applied potential,

being independent of the previous pulses. Under these conditions, the expression

for the CV signals greatly simplifies. For the case of disc and spheres, a true steady-

state current–potential response is obtained under these conditions, while for

cylinders and bands only pseudo-stationary currents are achieved.

From the analytical equation (6.105) obtained for CV, the study of the current–

potential response in these techniques can be performed along with the analysis of

the influence of the key variables. First, the effect of the parameter ω (Eq. (6.98)) is

shown in Fig. 6.15 where the curves are plotted for a spherical electrode of 50 μm
radius. Note that large ω-values relate to the situation where the complexes of the

reactant species A are more stable than those of species B, whereas the opposite

situation is found for small ω-values. As can be observed, the only influence of this
parameter is the shift of the curves toward more negative potentials when ω
increases on account of the hindering of the electro-reduction reaction due to the

stabilitization of the oxidized species with respect to the reduced ones. According to

Eq. (3.289), an “apparent” formal potential can be defined as follows:

E��○app
0 ¼ E��○

0

A=B þ
RT

F
ln

1

ω

� �
ð6:106Þ

The effect of the electrode geometry and size is shown in Fig. 6.16, where the

curves are plotted forω ¼ 5 and different values of the characteristic dimensions of

microelectrodes of different geometries (rs, rd, and w/2 for spheres, discs, and bands
respectively with rs ¼ rd ¼ w=2). For large electrodes (Fig. 6.16a), the curves (i.e.,
the current density) show small differences because diffusion is almost planar and

Fig. 6.15 Influence of the parameter ω on the response in CV (Eq. (6.105)) for a spherical

electrode of radii 50 μm. ΔEj j ¼ 0:01mV, v ¼ 100mVs�1. T¼ 298 K, D ¼ 10�5 cm2 s�1
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Fig. 6.16 CV [Eq. (6.105)] curves for electrodes of different geometries and characteristic

dimensions ( qG ¼ rs ¼ rd ¼ w=2 ) and ω ¼ 5. ΔEj j ¼ 0:01mV, v ¼ 100mVs�1. T¼ 298 K,

D ¼ 10�5 cm2 s�1
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the electrode geometry plays a less important role. However, these differences are

enhanced if the electrode size is decreased toward the steady state (spheres and

discs) or pseudo-steady (bands). Thus, the highest current density is observed for

discs and the lowest for bands. The position of the voltammograms is not influenced

by the electrode geometry and size, so small uncertainties in their determination

do not affect the quantitative study of the chemical equilibria.

6.4 Surface-Bound Molecules

The electrochemical behavior of molecules attached to conducting surfaces (i.e.,

electrode surfaces) forming electro-active monolayers is discussed in the following

sections. This situation has frequently been called “modified electrodes” in the

literature [39]. The electro-active character of these monolayers arises from the

presence of redox molecules on them which are susceptible to transfer to or receive

charge from the supporting electrode as well as from species in solution (in this last

situation, the attached molecules act as redox mediators between the electrode and

the solution and are responsible for the appearance of electrocatalytic processes [39,

40]). Multipulse and Sweep Electrochemical techniques like SCV and CV have

proven to be very necessary tools for understanding the behavior of these interfaces

and the processes taking place at them.

The preparation and characterization of modified electrodes has been a very

active area of Electrochemistry since the 1970s [39, 41, 42]. Among the great

variety of molecules that can be immobilized at the electrode surface are viologens,

anthraquinones, polyoxometalates, inorganic polymers, biological molecules

(enzymes, proteins, . . .), etc. (see Fig. 6.17 for an example of an alkylthiolferrocene

monolayer on gold) [43]. Once a particular molecule is attached to the electrode

surface, the last one can mimic the chemical, electrochemical, optical, etc., prop-

erties of the chemical moiety and thus gain a new functionality. Moreover, these

systems enable a molecular-level control of both the nature of the chemical

functional groups attached and also their topology [39, 44], which is why they are

considered as nanostructured interfaces.

Concerning the substrate, practically any material can be used to form a modi-

fied electrode, although the most used are gold, silver, platinum, mercury, and

carbon (in its different variants, like glassy carbon, Highly Oriented Pyrolitic

Graphite (HOPG), or Boron-Doped Diamond (BDD) electrodes [39]).

From the theoretical point of view, the analysis of the faradaic electrochemical

behavior of these systems is simpler than that corresponding to solution soluble

species since the mass transport is not present, a fact which greatly simplifies the

modellization of these processes (note that, in general, for a redox species in

solution, a two- or three-variable problem (coordinates and time) needs to be

considered, whereas at the electrode surface only time variable is needed). Thus,

it is possible to deduce the electrochemical response of these molecules in a more

direct way.
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The different assumptions needed to make a statement of this problem will be

presented in the following section. Then the general solution corresponding to the

application of a sequence of potential pulses to attached molecules giving rise to

simple charge transfer processes and particular solution corresponding to Multipulse

Chronoamperometry and Chronocoulometry and Staircase Voltammetry will be

deduced. Cyclic Voltammetry has a special status and will be discussed separately.

Finally, some effects that cause deviation from the ideal behavior and more complex

reaction schemes like multielectronic processes and chemical reactions in the solu-

tion coupled to the surface redox conversion will be discussed.

6.4.1 One-Electron Electrochemical Reactions:
Statement of the Problem

In the following, the quasi-reversible reduction of electro-active surface-confined

species O in line with the following reaction scheme is considered:

Oad þ e� !
kred

kox
Rad ð6:VIIIÞ

In this scheme, Oad and Rad refer to the oxidized and reduced species attached to

the electrode surface. The amount of these species is given by the corresponding

Fig. 6.17 Inferred structure

of a monolayer formed by

coadsorption of a ferrocene-

terminated alkane thiol

(highlighted with black
bonds) and the

unsubstituted alkane thiol

on Au(111). The

conformation around the

ester group is chosen to

illustrate the closest

approach of the ferrocene

group to the electrode (� 20

A
∘
). Reproduced from [43]

with permission
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surface excesses, ΓO or ΓR (inmolcm�2 ormolm�2 instead ofmolcm�3 ormolm�3

used for volumetric concentrations). In the theoretical treatment of the electro-

chemical behavior of this redox couple, the following assumptions are made:

– The total amount of adsorbed species remains constant during the experiment,

so, whatever the reversibility degree of the charge transfer process:

ΓO þ ΓR ¼ ΓT ð6:107Þ

is fulfilled for any potential pulse.

– The maximum amount of species O and R at the surface ΓM is independent of the

applied potential. This condition implies that no interactions between the

surface-confined molecules are considered [45], that is, a low amount of species

is at the surface (i.e.,ΓT < ΓM). In other words, low values of the ratio Γi/ΓM are

considered, with i¼O or R (this situation has been denoted “sub-monolayer,”

with the monolayer corresponding to a totally covered electrode surface).

– Charging and faradaic currents are considered as separable.

Under the above conditions, the faradaic current is the result of the redox

conversion of the immobilized redox species. When a sequence of potential pulses

E1, E2, . . ., Ep is considered, the current for the pth potential pulse is given by

I p
FA
¼ � dΓ pð Þ

O

dt
¼ dΓ pð Þ

R

dt
ð6:108Þ

and the relationship between the current and the kinetics of the electrode reaction

can be written as

I p
FA
¼ kred, pΓ

pð Þ
O � kox, pΓ

pð Þ
R ð6:109Þ

with kred,p and kox,p being the rate constants for the reduction and oxidation

processes, respectively. The form of the potential dependence of these constants

is given by the particular kinetic formalist considered (i.e., Butler–Volmer or

Marcus–Hush). In any case kox, p=kred, p ¼ eη p with η p ¼ F E p � E��Oc
0� �
=RT. E��Oc

0

is the formal potential of the redox couple. Note that for surface-confined molecules

in relation to solution soluble ones the rate constant for the charge transfer process

is given in s�1 rather than in cms�1 or ms�1.
If the charge transfer reaction is fast, the surface excesses are related by Nernst

relationship:

Γ pð Þ
O ¼ Γ pð Þ

R eη p ð6:110Þ

The current is the most studied variable in the analysis of the electrochemical

behavior of these systems. However, another interesting magnitude which provides
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valuable information is the converted charge, Qp, defined as (see Eq. (6.108))
1 [46]:

Qp ¼
ðt p
0

I pdt p ¼ �FA Γ pð Þ
O

h it p
t p¼0

ð6:111Þ

6.4.1.1 Application of a Potential Pulse

When a constant potential E1 is applied to the electrode during a time t1
0 � t1 � τ1ð Þ, the rate equation in line with Eqs. (6.108)–(6.109) is given by (see

Eq. (6.107)):

I1
FA
¼ � dΓ 1ð Þ

O

dt
¼ kred, 1Γ

1ð Þ
O � kox,1 ΓT � Γ 1ð Þ

O

� �
¼ kT,1Γ

1ð Þ
O � kox,1ΓT ð6:112Þ

with

kT,1 ¼ kred,1 þ kox,1 ð6:113Þ

Γð1ÞO is the surface excess of species O (molcm�2). By assuming that at t1 ¼ 0, the

monolayer is totally oxidized Γ 1ð Þ
O 0ð Þ ¼ ΓT

� �
, the solution of the differential

equation (6.112) leads to the following expression for the surface excess of oxidized

species [43, 46]:

Γ 1ð Þ
O ¼ ΓT

kred,1e
�kT,1t1 þ kox,1
kT,1

ð6:114Þ

By combining equations (6.111) and (6.114), the transformed charge is easily

obtained:

Q1 ¼ FAΓT

kred,1 1� e�kT,1t1
� �
kT,1

� �
ð6:115Þ

Equations (6.114) or (6.115) enable us to deduce the corresponding expression

for the current:

I1 ¼ �FA dΓ 1ð Þ
O

dt

 !
¼ dQ1

dt

� �
¼ FAΓTkred,1e

�kT,1t1 ð6:116Þ

In the following discussion, it is assumed that the expression of the rate constants

for reduction and oxidation processes is given by the Butler–Volmer formalist:

1 The experimental measurement of the converted charge can be made easily by integrating the

recorded current.
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kred ¼ k0e�αη

kox ¼ krede
η

�
ð6:117Þ

with η ¼ F E� E��○c
0� �
=RT. E is the potential pulse applied and k0 and α are the

standard rate constant and charge transfer coefficient for the electrode reaction in

reaction scheme (6.VIII).

The temporal evolution of the current I1 and the converted charge Q1 have been

plotted in Fig. 6.18 for different values of the dimensionless rate constant k0τ1 and
α ¼ 0:5. Both responses have been written in their dimensionless forms, IN,1 ¼ I1
= QF=τ1ð Þ and QN,1 ¼ Q1=QF, with QF given by

QF ¼ FAΓT ð6:118Þ

From the curves in this figure, it can be deduced that the current decreases and

the charge increases faster the higher k0τ1 is (i.e., the higher the reversibility degree

t /τ
0.0 0.2 0.4 0.6 0.8 1.0

I 1 
/( Q

F/
τ)

0

5
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15

20

t /τ
0.0 0.2 0.4 0.6 0.8 1.0

Q
1 
/Q

F

0.0

0.2

0.4

0.6

0.8

1.0

a

b

Fig. 6.18 Dimensionless

current–time (a) and

charge–time (b) curves

corresponding to the

application of a constant

potential E1 � E��○c
0 ¼ �0:2

V to an electro-active

monolayer calculated from

Eqs. (6.116) and (6.115)

assuming a Butler–Volmer

kinetics with α ¼ 0:5. The
values of (k0τ) are 0.05
(black), 0.1 (red), 0.25
(green), 0.5 (blue),
1 (yellow), and 5 (pink),
τ¼ τ1
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of the charge transfer process). Indeed, for high enough values of the dimensionless

rate constant, the charge takes the following constant value:

QN,1

		
k0τ1
1

¼ QN,1

		
reversible

¼ 1

1þ eη1
ð6:119Þ

and the current becomes zero2:

IN,1jk0τ1
1 ¼ IN,1jreversible ¼ 0 ð6:120Þ

For very small values of k0τ1 (i.e., for irreversible processes), very negative

potentials are needed to obtain a measurable response and under these conditions

kred, 1 
 kox,1. By introducing this condition in Eqs. (6.115) and (6.116), the

expressions of the time-dependent converted charge and current become

QN,1

		
k0τ1�1

¼ QN,1

		
irreversible

ffi 1� e�kred,1t1 ð6:121Þ
IN,1jk0τ1�1 ¼ IN,1jirreversible ffi kred,1τ1e

�kred,1t1 ð6:122Þ

From Eq. (6.122), is clear that a logarithmic plot of the current versus time must

be linear and this enables us to determine the values of kred,1 from the slope [43, 47].

The expressions for the charge–time and current–time responses for an irrevers-

ible anodic process can be obtained from Eqs. (6.115) and (6.116) by inserting the

condition kred,1 � kox,1, and the resulting equations are logically identical to

Eqs. (6.121) and (6.122) by changing their sign and kred,1 for kox,1.

6.4.1.2 Application of a Sequence of Potential Pulses

The treatment developed in the previous section for a single potential pulse can be

generalized for a sequence of potential pulses. Thus, the current Ip corresponding to
reduction of O species when the potential pulse Ep of the arbitrary sequence

E1, E2, . . .,Ep is applied is given by Eq. (6.109). Moreover, the total time elapsed

between the application of the first and pth potential steps is given by

t ¼ τ1 þ τ2 þ � � � þ τ p�1 þ t p ð6:123Þ

with 0 � t p � τ p.
From Eqs. (6.108)–(6.109), the expression of the surface excess of the oxidized

species ΓðpÞO corresponding to Ep is immediately obtained simply by integrating it

with respect to tp,

2 Note that the current has a paradoxical behavior at times close to zero. When k0τ1 
 1 and

t1 ! 0, the current takes the form of a Dirac’s delta function, which in practice means that

although it could take a very large value, it will be not possible to record it.
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ðΓ pð Þ
O

t pð Þ
Γ pð Þ
O

t p¼0ð Þ
dΓ pð Þ

O

kox, pΓT � kred, p þ kox, p
� �

Γ pð Þ
O

¼
ðt p
t p¼0

dt p ð6:124Þ

with Γ pð Þ
O t p ¼ 0
� �

being the value of the surface excess of the oxidized species at

the beginning of the application of Ep, i.e., for t ¼ τ1 þ τ2 þ � � � þ τ p�1.
By solving both integrals in (6.124), the following expression for ΓðpÞO is

deduced:

Γ pð Þ
O ¼

1

kred, pþ kox, p
kox, pΓT� kox, pΓT� kred, pþ kox, p

� �
Γ p�1ð Þ
O

h i
e� kred, pþkox, pð Þt p� �

ð6:125Þ

with

Γ p�1ð Þ
O ¼ Γ pð Þ

O t p ¼ 0
� �

p � 1

Γ 0ð Þ
O ¼ ΓT

)
ð6:126Þ

Equation (6.125) is applicable for all the potential pulses of the whole sequence.

Thus, from Eqs. (6.125) and (6.126), it is possible to obtain the analytical expres-

sion of Γð2ÞO by substituting p¼ 2 and inserting the expression of Γð1ÞO (Eq. (6.114))

in (6.125). Once Γð2ÞO is known, by carrying out this process p times and after a

simple rearrangement, the general analytical explicit expression of ΓðpÞO is deduced

[46]:

Γ pð Þ
O

ΓT

¼ kox, p þ kred, pθ p

kT, p
�
Xp�1
m¼1

kred,m
kT,m

1� θmð Þ
Yp

h¼mþ1
θh ð6:127Þ

with

θm ¼ exp �kT,mτmð Þ for 1 � m � p� 1ð Þ
θ p ¼ exp �kT, pt p

� � �
ð6:128Þ

and tp is the variable time of application of the potential pth potential pulse, τp the
time length of the same (0 � t p � τ p), and kT,i the sum of both heterogeneous rate

constants at the potential Ei:

kT, i ¼ kred, i þ kox, i 1 � i � p ð6:129Þ

The current corresponding to the pth potential pulse applied, Ip, is [46]:
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I p ¼ QF kred, p � kT, p
Xp�1
m¼1

kred,m
kT,m

1� θmð Þ
Yp�1

h¼mþ1
θh

" #
θ p ð6:130Þ

The converted charge corresponding to the pth potential pulse applied, Qp, is

(see Eq. (6.111)):

Qp

QF

¼ kred, p
kT, p

1� θ p

� �þXp�1
m¼1

kred,m
kT,m

1� θmð Þ
Yp

h¼mþ1
θh

 !
ð6:131Þ

with QF given by Eq. (6.118).

Equations (6.130) and (6.131) are applicable for any multipulse technique such

as Staircase Voltammetry (SCV) and Square Wave Voltammetry (SWV).

Under reversible conditions, the θi terms in Eqs. (6.130) and (6.131) become null

for any potential pulse considered (see Eq. (6.128)), and

I p
		
rev
! 0

Q p

QF

			
rev
¼ 1

1þ eη p

9=; ð6:132Þ

Note that in this case (Qp/QF) is only dependent of Ep, i.e., it has an stationary

character being independent of the potential-time waveform applied [48], and has

an analogous dependence on the potential to that shown by the normalized

voltammetric current (I/Id,c) obtained for a reversible charge transfer reaction

under diffusion control (see Eq. (2.36)). Equation (6.132) can be written as

E p ¼ E��○c
0 þ RT

F
ln

QF � Qp

Q p

 !
ð6:133Þ

Equations (6.132) or (6.133) for the converted charge are valid for any electro-

chemical technique, i.e., the charge/potential response for a reversible process is

universal. TheQ–E curves given in these equations present a sigmoidal-type feature

which allows us to obtain the QF value and, therefore, the total surface excess ΓT, at
sufficiently negative potentials of the cathodic response.

This equivalence between the charge of surface-boundmolecules and the current of

solution soluble ones is due to two main reasons: first, in an electro-active monolayer

the normalized charge is proportional to the difference between the total and reactant

surface excesses ( Qp=QF

� � / ΓT � ΓOð Þ ), and in electrochemical systems under

mass transport control, the voltammetric normalized current is proportional to the

difference between the bulk and surface concentrations ( I=Id, cð Þ / c*O � c sO
� �

[49]. Second, a reversible diffusionless system fulfills the conditions (6.107) and

(6.110) and the same conditions must be fulfilled by the concentrations cO and cR
when the process takes place under mass transport control (see Eqs. (2.150) and

(2.151)) when the diffusion coefficients of both species are equal.
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On the contrary, for very small values of (k0τi), a totally irreversible response is

attained kred, i 
 kox, ið with 1 � i � pÞ, and Eqs. (6.130) and (6.131) simplify to

QN, p

		
irrev
¼ Q p

QF

			
irrev
¼ 1� exp �

Xp�1
m¼1

kred,mτm � kred, pt p

 !

IN, p
		
irrev
¼ I pτ p

QF

			
irrev
¼ kred, pτ pexp �

Xp�1
m¼1

kred,mτm � kred, pt p

 !
9>>>>=>>>>; ð6:134Þ

6.4.1.3 Multipulse Chronoamperometry and Chronocoulometry

The influence of the reversibility of the surface charge transfer process (k0τ) on the

dimensionless current–time curves is shown in Fig. 6.19, with Φ p ¼ I p= QF=τð Þ,
corresponding to the application of a staircase of 14 potential pulses with a pulse

amplitude jΔEj ¼ 25mV, τ ¼ 1s in all the cases and E1 � E��Oc
0 ¼ 250mV. From

these curves, it can be seen that all the currents decrease with time in the way:

Φ p ¼ constant� e�kT, pt p ð6:135Þ

For high values of k0τ, very sharp decays of the current–time transients are

observed, indicating the almost immediate electrochemical conversion of oxidized

species (see solid lines corresponding to k0τ ¼ 100). Indeed, for k0τ > 100, the

faradaic conversion is so fast that the oxidized species disappears at the very first

instants of the experiment and under these conditionsΦ p ¼ 0. When k0τ decreases,
the observed currents also decrease, since the rate constant modulates the whole

faradaic current. For k0τ < 1, the current transients appear as quasi-linear, with

current–time profile being shifted toward more negative potentials. Under these

conditions, general equation (6.130) becomes identical to Eq. (6.134),

corresponding to irreversible processes.

The experimental verification of the influence of the reversibility of the electrode

process corresponding to the system Quinizarin 10 μM+HClO4 1.0 M in aqueous

+ 1 % CH3CN is shown in Fig. 6.19b. These curves have been recorded for different

values of τ (10, 5, 2.5, and 1 ms), in order to obtain different (k0τ) values.
One of the main advantages of the multipulse potential chronoamperograms is

the possibility of measuring the sum of both rate constants for each potential pulse

applied, kT, p ¼ kred, p þ kox, p, with one single experiment and independently of the

kinetic model considered. The logarithm of the dimensionless currents of the

experimental system Quinizarin 10 μM+HClO4 1.0 M in aqueous + 1 % EtOH

solutions has been plotted in Fig. 6.20a. This curve corresponds to a staircase of

35 potential pulses with a pulse amplitude jΔEj ¼ 15mV and τ ¼ 3ms. The
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current–time transients corresponding to the potential window (�5mV, �185mV)

for which the faradaic process will occur are highlighted.

From the dashed-dotted lines in the inner figure, straight lines with two negative

slopes can be observed, with that obtained at smaller times corresponding to the

double-layer charging process, and the second one to the faradaic process. For times

higher than 5RuCdl, at which the non-faradaic processes have a negligible influence

(see Sects. 1.9 and 6.4.1.5), the negative slope observed is equal to kT,p (see

Eq. (6.135)). The values of the total rate constant kT,p obtained from three experi-

ments with different time lengths τ (3, 5, and 7 ms) are shown in Fig. 6.20b

(symbols). These values seems to adjust to a parabolic curve and from the location

Ep vs. Ag/AgCl, KCl 1.0 M / mV
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Fig. 6.19 (a) Theoretical

Φ p � t curves, with Φ p ¼
I p= QF=τð Þ calculated from

Eq. (6.130) corresponding

to the application of a

staircase of 14 potential

pulses with a pulse

amplitude jΔEj ¼ 25mV

and τ ¼ 1s for all the pulses.

The values of (k0τ) are:
(solid line) 100, (dashed
line) 10, (dotted line) 1.0,
(dashed-dotted line) 0.1,
and (white circles) 0.05.
(b) Experimental Φ p � t
curves corresponding to

monolayers of Quinizarin

10 μM+HClO4 1.0 M in

aqueous +1 % CH3CN on a

mercury electrode

(rs ¼ 0:0315cm). The

values of the potential pulse

time length τ (in ms) are:

(solid line) 10, (dashed line)
5, (dotted line) 2.5, and
(dashed-dotted line) 1.0.
Reproduced with

permission from [46]
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and height of the minimum both the surface rate constant k0 and the formal potential

of the surface process E��○c
0
can be obtained since Eminimum ¼ E��○c

0
and kT, p

� �
minimum

¼ 2k0
�
E��○c

0 ¼ �0:102� 0:001ð Þ V vs. Ag/AgCl, KCl 1.0 M and k0 ¼ 300� 5ð Þ
s�1). A plot corresponding to the total rate constant expression for a Butler–Volmer

E  vs. Ag/AgCl, KCl 1.0 M / V
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Fig. 6.20 (a) Experimental ln I p=μA
� �� t curve corresponding to a monolayer of Quinizarin

10 μM+HClO4 1.0 M in aqueous + 1 % CH3CN on a mercury electrode ( rs ¼ 0:0315cm ).

E j ¼ E1 � jΔE, j ¼ 0, 1, . . . , 34, τ ¼ 3ms, and ΔE ¼ 15mV. T¼ 293 K. Bold dashed-dotted
lines have been used to highlight those transient currents corresponding to the potential pulses at

which the faradaic process takes place. Inset Figure: ln I p=μA
� �� t curve corresponding to a

potential pulse E p ¼ �0:08V. (b) (symbols) kT, p ¼ kred, p þ kox, p (s
�1) from logarithmic curves

obtained for τ (in ms): 3 (gray triangles), 5 (black circles), and 7 (white squares). (Lines)
Theoretical kT,p values calculated for a Butler–Volmer (BV, broken) and Marcus–Hush (MH,

red) kinetic schemes with k0 ¼ 300s�1, E��○c
0 ¼ �0:102, n¼ 2, and T¼ 293 K. α ¼ 0:5 (BV) and

λ ¼ 0:75eV (MH). Reproduced modified with permission from [46]
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model calculated for α ¼ 0:5 (dashed line, Eq. (6.117)) coincides with the data

obtained in the potential region around the minimum but deviates from them at

higher overpotentials. This suggests the need for a more realistic treatment to

explain those deviations based on a Marcus–Hush’s formalist. When this is done

(red line, corresponding to λ ¼ 0:75eV see Eq. (1.111), the agreement is clearly

better.

Chronoamperometric curves have been used as a standard tool to obtain values

of the rate constants of surface-bound molecules and they prove as very useful for

validating the Marcus–Hush’s formalist, and, indeed, the experimental application

of the MH theory to electrode processes has been mainly carried out with surface-

bound redox systems. Thus, Chidsey studied the oxidation of ferrocene groups

connected to a gold electrode by means of a long alkylthiol chain by using Single

Potential Pulse Chronoamperometry (see examples of the experimental responses

in Fig. 6.21) [43].

For small values of the reorganization energy, the rate constants found a notable

difference with those predicted by the BV approach for large applied over-

potentials, reaching a plateau rather than an exponential increase. The Marcus–

Hush–Chidsey model (MHC) was able to reproduce this behavior accurately in a

wide range of temperatures [50]. The rate constant value obeys an exponential

dependence on the distance between the electrode surface and the attached redox

species [51]:

k0 ¼ 4π2

h
ϖH2I Λ; 0ð Þe�βrd ð6:136Þ

where h is Planck’s constant, ϖ (eV�1 ) is the density of states in the electrode, H

(eV) is the electronic coupling matrix, I(Λ, 0) is an integral given by Eq. (1.112) or

(3.110), and βr is the electronic coupling attenuation coefficient associated with

this dependence and d ¼ ra � r0, with ra and r0 being the distance of the attached

Fig. 6.21 Semi-logarithmic plots of the absolute value of the current following potential steps

(solid) and linear regression fits to linear portions (dashed). Potential versusE��○c
0
, sum of reduction,

and oxidation rate constant kT: (a) 0.0 V,2:33s
�1; (b) 0.323 V,276s�1; and (c)�0.577 V,2980s�1.

Reproduced with permission from [43]
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redox molecule to the electrode surface and the distance of the closest approach,

respectively.

The effect of the reversibility of electrochemical reaction on the theoretical Qp

�t curves calculated from Eq. (6.131) is shown in Fig. 6.22. For reversible

processes k0τ � 10
� �

, the charge–time curves present a stepped sigmoid feature

and are located around the formal potential of the electro-active couple. Under these

conditions, the charge becomes time independent (see Eq. (6.132)). As the process

becomes less reversible, both the shape and location of theQp � t curves change in

such a way that the successive plateaus tend to disappear and a practically conti-

nuous quasi-sigmoid, located at more negative potentials as k0τ decreases, is

obtained. For k0τ � 0:1, general Eq. (6.131) simplifies to Eq. (6.134), valid for

irreversible processes and leads to a practically continuous Qp � t curve.

From the above, it is clear that a simple visual inspection of the charge–time

curves allows us to deduce the reversibility degree of the process. This character-

istic behavior, in which the discrete nature of the potential is more evident for

reversible processes, cannot be obtained when a continuous potential–time pertur-

bation is applied, as in Cyclic Voltammetry, since this kind of perturbation gives

rise to continuous charge–potential curves, whatever the reversibility degree of the

response (see Sect. 6.4.2).

This behavior can be clearly seen in Fig. 6.22b, in which experimental charge–

time curves of quinizarin monolayers on mercury obtained for different values of τ
in order to obtain several values of the dimensionless rate constant k0τ for this

system have been plotted [46]. It can be seen that the charge–time curves are

dramatically affected by the time length, so the curve corresponding to τ ¼ 10

ms can be considered as practically reversible (stepped sigmoid), whereas that

corresponding to τ ¼ 1mspresents an almost continuous feature, which is typical of

irreversible processes.

6.4.1.4 Staircase Voltammetry and Cyclic Staircase Voltammetry

In this section, the current–potential curves corresponding to the application of a

staircase potential of the form given by Eq. (5.2) are analyzed. As in the case of

solution soluble species, it is useful to use a dimensionless expression for the SCV

current:

ψSCV ¼
I p
QFa

ð6:137Þ

with a ¼ Fv=RT, Ip being the current corresponding to the potential pulse Ep, QF

given by Eq. (6.118) and v¼ΔE/τ.
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a

b

Fig. 6.22 (a) Theoretical Qp � t curves calculated from Eq. (6.131). E1 � E��○c
0 ¼ 125mV,

E j ¼ E1 � jjΔEj, j ¼ 0, 1, . . . , 13, τ ¼ 1:0s, and jΔEj ¼ 25mV. The values of k0 (in s�1 )
appear on the curves. (b) Experimental Qp � t=τð Þ curves corresponding to monolayers of

Quinizarin 10 μM+HClO4 1.0 M in aqueous + 1% CH3CN on a mercury electrode of radius

rs ¼ 0:0315cm. The values of the time length τ (in ms) appear on the curves. A “potential” axis

has been added in both figures which indicate which is the constant potential applied for each of

the successive charge–potential–time curves of the whole response. Reproduced with permission

[46]
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From Eq. (6.130), the following expression for the SCV current is deduced [52]:

ψSCV ¼
k0

a
θ p

kred, p

k0
� kT, p

k0

Xp�1
m¼1

kred,m
kT,m

1� θmð Þ
Yp�1

h¼mþ1
θh

" #
ð6:138Þ

with θi being

θi ¼ exp �kT, iτð Þ for 1 � i < p� 1ð Þ
θ p ¼ exp �kT, pρτ

� � �
ð6:139Þ

and

ρ ¼ ts=τð Þ ð6:140Þ

where ts is the time at which the current is measured (0� ts� τ). For very sluggish

electron transfer reactions (i.e., kred, p 
 kox, p, k
0 � 1 s�1), Eq. (6.138) is greatly

simplified:

ψSCV, irrev
¼ 1

a
kred, pexp �Δη

a

Xp
m¼1

kred,m

 ! !
ð6:141Þ

The peak parameters of the irreversible SCV curve can be deduced by making

dψSCV, irrev=dE ¼ 0. From this condition, and taking into account that for p> 10

it holds that

Xp
h¼1

kred,h ¼ kred, p
Xp�1
h¼1

e�αh Δηj j ¼ kred, p
e�α Δηj j

1� e�α Δηj j
ð6:142Þ

with

Δη ¼ F

RT
ΔE ð6:143Þ

it is possible to obtain the following expressions for the peak potential and height:

Epeak, irrev, f ¼ E��Oc
0 þ RT

αF
ln Aα Δηj jð Þ þ RT

αF
ln

k0

aα

� �
ð6:144Þ

ψ peak
SCV, irrev ¼

1

eAα Δηj j ð6:145Þ

with “e” being the base of the natural logarithms and
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A ¼ e�α Δηj j

1� e�α Δηj j
ð6:146Þ

The influence of the reversibility of the surface electron transfer on the theoret-

ical ψSCV � E� E��Oc
0� �
curves, calculated from Eq. (6.138), is shown in Fig. 6.23,

corresponding to the application of a staircase potential sequence of pulse ampli-

tude ΔE ¼ 5mV and τ ¼ 1s. In this figure, there are three clearly distinguishable

regions. The first corresponds to the reversible behavior and covers the values of log

(k0τ) (2! 1). In this region, the current is null (see Eq. (6.132)), and therefore,

there is no response in SCV. The second region is practically contained between the

values of log(k0τ) (1! �1:5), for which the electrode process behaves as quasi-

reversible. In this zone, it can be observed that the peak height increases until it

reaches a maximum value at log k0τ
� � ¼ �1. When shifted to more negative (k0τ)

values, the peak height slightly decreases until reaching a constant, independent of

(k0τ) value, and the peak potential is shifted linearly with log(k0τ) toward more

negative values. This behavior corresponds to a totally irreversible behavior (log

k0τ
� �

< �1:5).
Thus, in order to obtain a sensitive response in SCV, it is necessary to decrease

the pulse time length, τ, to transform the response to quasi-reversible or irreversible.

This behavior contrasts with that observed in Cyclic Voltammetry for which a

current–potential response is obtained even for fast charge transfer reactions (see

Sect. 6.4.2).

Fig. 6.23 Influence of the

reversibility on the

theoretical SCV curves for

different values of (k0τ)
(Eq. (6.138)), when a

staircase voltammetry of

ΔEj j ¼ 5mV and τ ¼ 1s is

applied. ts ¼ τ=2,
T¼ 298.15, K and α ¼ 0:5.
Reproduced with

permission [52]
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6.4.1.5 Non-faradaic Charge and Current of an Electro-active

Monolayer

As stated in Sect. 6.4.1, it has been assumed that the measured experimental

currents and converted charges when a potential Ep is applied can be considered

as the sum of a pure faradaic contribution, given by Eqs. (6.130) and (6.131), and a

non-faradaic one, Ip,nf and Qp,nf. In order to evaluate the impact of these

non-faradaic contributions on the total response, analytical expressions have been

obtained. If it is assumed that initially the monolayer is at an open circuit potential,

Erest, and then a sequence of potential pulses E1, E2, . . .,Ep is applied, the expres-

sion for the non-faradaic charge Qp,nf can be deduced from the analogy between the

solution–monolayer interface and an RC circuit [53] (shown in Fig. 6.24), so the

following differential equation must be solved:

dQp, nf

dt
þ Qp, nf

RuCp, nf
¼ �ΔE p

Ru

ð6:147Þ

with Ru being the uncompensated resistance, ΔEp the potential step applied (which

is constant in the case of Staircase Voltammetry), and Cp,nf the non-faradaic

capacitance of the solution–monolayer interface corresponding to the potential

pulse Ep. Different models can be considered for the particular form of Cp,nf. For

the sake of simplicity, the parallel capacitor model introduced by Damaskin is

assumed [46], for which Cp,nf can be written as

C p, nf ¼ Cnf,O f
pð Þ

O τð Þ þ Cnf,R 1� f
pð Þ

O τð Þ
� �

ð6:148Þ

with Cnf,O and Cnf,R being the limiting values of the non faradaic capacitance

corresponding to f
pð Þ

O ¼ 1 (totally oxidized monolayer) and f
pð Þ

O ¼ 0 (totally

reduced monolayer), respectively, which can be considered as practically constant,

and f
pð Þ

O τð Þ ¼ Γ pð Þ
O τð Þ=ΓT

� �
is the surface coverage of oxidized species at time τ.

From the relationship between the coverage and the faradaic charge (see

Eq. (6.111)), Eq. (6.148) can be rewritten:

Fig. 6.24 Equivalent circuit corresponding to the non-faradaic contribution of the interface

electro-active monolayer solution. Ru is the uncompensated resistance provided by the solution

and Cnf is the double-layer capacitance
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Cp, nf ¼ Cnf,O þ Cnf,R � Cnf,Oð Þ Qp=QF

� � ð6:149Þ

with Qp being the expression of the faradaic converted charge corresponding to the

pth potential pulse given by Eq. (6.131).

By solving Eq. (6.147) and inserting Eq. (6.149), the non-faradaic converted

charge at any potential pulse p is deduced:

Qp, nf ¼
ΔE p

		 		
Ru

e�P τð Þ
ð τ

0

eP tð Þdtþ Qp�1,nf ð6:150Þ

with

P tð Þ ¼ t

A p
þ 1

kT, pA p
ln

A p þ B pe
�kT, pt

A p þ B p

� �
ð6:151Þ

A p ¼ RuCnf,O þ Ruδ
kred, p
kT, p

ð6:152Þ

B p ¼ Ruδ
Xp�1
m¼1

kred,m
kT,m

1� θmð Þ
Yp�1

h¼mþ1
θh�kred, p

kT, p

 !
ð6:153Þ

δ ¼ Cnf,R � Cnf,O ð6:154Þ

Under the most simple situation in which it can be assumed that the non-faradaic

capacitance of the monolayer is practically constant (i.e., Cnf,O ¼ Cnf,R ¼ Cnf , δ
ffi 0), Eq. (6.150) simplifies to

Qp, nf ¼ �Cnf E p � Erest � ΔEe�t p= RuCnfð Þ
� �

ð6:155Þ

with (RuCnf) being the so-called time constant of the cell and

ΔE ¼ E p � E p�1 for p > 1

E1 � Erest for p ¼ 1



ð6:156Þ

The non-faradaic current can be immediately obtained by differentiating the

expression of the non-faradaic charge given by Eqs. (6.150) or (6.155). In this case,

the well-known expression (see Sect. 1.9),

I p, nf ¼ ΔE
Ru

e�t p= RuCnfð Þ; ð6:157Þ

is obtained. That is, the non-faradaic current has an exponential dependence with

time in an analogous way to the faradaic component (Eq. (6.135)) such that its

logarithm has a linear dependence with time:
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ln I p, nf
� � ¼ ln

ΔE
Ru

� �
� 1

RuCnf

t p ð6:158Þ

with the slope being 1/(RuCnf).

One of the most important advantages of potential pulse techniques in the study

of the electrochemical response of surface-bound molecules is that derived from the

decoupling of faradaic and non-faradaic contributions. In the case of the current, in

agreement with Eq. (6.157), times higher than 5(RuCnf) are needed in order to

neglect the non-faradaic component Ip,nf (see inner figure in Fig. 6.20a for a

practical example of the different time regimes of faradaic and non-faradaic

components of the current. For the converted charges, the non-faradaic contribution

cannot be neglected in any case and a subtraction of this contribution to the total

response is needed in order to analyze the characteristic parameters of the faradaic

charge properly [46, 52].

6.4.2 One-Electron Electrochemical Reactions:
Cyclic Voltammetry

The application of Cyclic Voltammetry to the study of electro-active monolayers is

of special interest and deserves to be treated separately. The general treatment of

these systems was developed by Laviron [45, 54] and the cases of reversible and

non-reversible processes will be presented separately.

6.4.2.1 Reversible Reactions

As stated in Sect. 6.4.1, when the charge transfer process is fast, the surface excess

of both species O and R is related by Nernst condition (Eq. (6.110)). The combi-

nation of this equation with the assumption of constant total excess (Eq. (6.107))

allows us to obtain directly the expressions of ΓO and ΓR:

ΓO ¼ ΓT

eη

1þ eη

ΓR ¼ ΓT

1

1þ eη

9>>=>>; ð6:159Þ

In Cyclic Voltammetry, the potential is continuously changing with time as indi-

cated in Eq. (5.1), and, as a consequence, the excesses of both species also change.3

Under these conditions, it is possible to rewrite Eq. (6.108) in terms of the potential:

3 This change is external and directly imposed by the particular form of the potential waveform

applied.
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I

FA
¼ � dΓO

dt
¼ � dΓO

dE

dE

dt
¼ �v dΓO

dE
ð6:160Þ

with v being the scan rate (the double sign refers to the first and second scans).

By differentiating the expression of ΓO given by Eq. (6.159) with respect to the

potential, it is obtained [54, 55]:

ψCV ¼
ICV
aQF

¼ � eη

1þ eηð Þ2 ¼ � sech2
η

2

� �
ð6:161Þ

with a ¼ Fv=RT and η ¼ F E� E��Oc
0� �
=RT.

The reversible CV curve has a symmetrical peak shaped feature for the direct

and reverse scans with the following peak parameters (see also Fig. 6.25):

ψCV,peak
rev ¼ �1

4
Epeak, rev ¼ E��Oc

0

W1=2 ¼ 3:53
RT

F
ffi 90 mV if T ¼ 298 K

9>>>=>>>; ð6:162Þ

As can be expected, the cyclic voltagram corresponding to a very fast electron

transfer of a surface-bound species has identical characteristics to the derivative of

the Normal Pulse I–E curve when the redox species are in solution (see Sect.

2.2.2.2).

From Eq. (6.161), it can be concluded that the current corresponding to surface-

attached molecules divided by the scan rate is indeed a capacitance since

Fig. 6.25 CV curves

calculated from

Eqs. (6.160) and (6.166) for

different values of logjΩj
(shown in the figure). α ¼
0:5 and T¼ 298.15 K
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ICV ¼ dQCV

dt
¼ dQCV

dE

dE

dt
¼ CCVv ð6:163Þ

Note that this capacitance is linked to the electron transfer reaction and therefore

has a faradaic origin and is not related to the double-layer charging process (this last

capacitance corresponds to a pure capacitor; see Sect. 6.4.1.5). In this sense, it has

been called “pseudo-capacitance” [56]. The normalized current ψCV is a ratio of

capacitances since, from Eq. (6.161), ψCV ¼ ICV=vð Þ= QF F=RTð Þð Þ ¼ CCV=CF

[48, 57].

6.4.2.2 Non-reversible Reactions

In this case, the surface excesses are related to the current through Eq. (6.109). If the

Butler–Volmer formalist is assumed, the expression of the surface coverage of

oxidized species fO ¼ ΓO=ΓTð Þ can be obtained by solving the following differen-

tial equation which arises from the combination of Eqs. (6.107)–(6.109):

d fO
dη
þΩ fO e�αη þ e 1�αð Þη

� �
¼ Ωe 1�αð Þη

d f R
dη
þΩ f R e�αη þ e 1�αð Þη

� �
¼ Ωe�αη

9>>=>>; ð6:164Þ

with

Ω ¼ k0

a
ð6:165Þ

and once fO has been determined, the current can be calculated as

ICV ¼ �aQF d fO=dηð Þ, where k0 and α in Eqs. (6.164) and (6.165) are the rate

constant and the charge transfer coefficients of the surface charge transfer process.

From Eqs. (6.160) to (6.164), the following expressions of ψCV,cath and ψCV,an

are obtained:

ψCV,cath ¼ Ωe�αη 1�Ω 1þ eηð Þeh ηð Þ
ð η
1

z� 1þαð Þe�h zð Þ
� �

dz


 �
ψCV,an ¼ �Ωe�αη eη �Ω 1þ eηð Þeh ηð Þ

ð η
0

z�αe�h zð Þ
� �

dz


 � ð6:166Þ

with

h ηð Þ ¼ Ω

α 1� αð Þe
�αη 1� α 1þ eηð Þð Þ ð6:167Þ

The integral that appears in Eq. (6.166) needs to be solved numerically except in
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the case of totally irreversible processes (i.e., low values of k0), for which this

equation simplifies and the following expressions are found [54]:

ψCV,cath ¼ Ωe�αηe
Ωe�αη
αð Þ

ψCV,an ¼ �Ωe 1�αð Þηe �
Ωe 1�αð Þη

1�α
� � )

ð6:168Þ

The irreversible cathodic and anodic CV curves given by Eq. (6.168) are shifted

toward more negative and positive potentials, respectively, as the rate constant

decreases. When α ¼ 1=2, they remain symmetrical with respect to the formal

potential, although this symmetry is lost for α 6¼ 1=2. The expressions of the peak
parameters are:

ψ peak
CV,cath ¼

α

e

Epeak,cath ¼ E��Oc
0 � RT

αF
ln

α

Ωj j
� �

W1=2,cath ¼ 2:45
RT

αF

9>>>>>=>>>>>;
ð6:169Þ

for the cathodic (with ψpeak
CV,cath ¼ IpeakCV,cath=jajQF) and

ψ peak
CV,an ¼ �

1� αð Þ
e

Epeak,an ¼ E��Oc
0 þ RT

1� αð ÞF ln
1� αð Þ
Ω

� �
W1=2, an ¼ 2:45

RT

1� αð ÞF

9>>>>>>=>>>>>>;
ð6:170Þ

for the anodic.

The effect of the reversibility of the charge transfer process on the CV curves of

an electro-active monolayer can be seen in Fig. 6.25, while the evolution of the peak

current, peak potential, and half-peak width is shown in Fig. 6.26. From these

figures, it can be inferred that the decrease of the reversibility of the charge transfer

gives rise to similar effects to those observed for solution soluble species (see

Fig. 5.12), that is, a decrease of the peak current until a constant value independent

of Ω, together with a shift of the cathodic/anodic peak potentials toward more

negative/positive values and a broadening of the response. The main feature that

defines the response of these processes is the dependence of the peak current on the

scan rate (instead of that observed for the square root of the scan rate typical of

solution soluble species at macroelectrodes; see Eqs. (5.55) and (5.83), respec-

tively). Moreover, the linearity between the peak potentials and the logarithm of the

scan rate shown in Fig. 6.26 can be used to determine the value of k0 and α, and
indeed, this is the most common way to obtain values of these parameters.

In relation to the application of the Marcus–Hush model to immobilized redox

groups in LSV and CV, the behavior predicted by MH matches that of the BV
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a

b

c

Fig. 6.26 Peak parameters of the CV curves (peak potentials (a); peak heights (b); half-peak

widths (c)) calculated by generating voltammograms from Eqs. (6.160) and (6.166) for different

values of the dimensionless rate constant Ω. The values of α appear on the curves. Letters “a” and
“c” in figure c correspond to anodic and cathodic curves, respectively
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treatment for very high reorganization energies (λ; see Sects. 1.7.2 and 3.2.6).

However, for λ � 2 eV, the voltagrams are broader and lower than those predicted

by the BV model (see Fig. 6.27). Values of the heterogeneous rate constant (k0) and
those of the reorganization energy (λ) obtained from CV for electro-active mono-

layers with a great variety of redox centers have been reported [50, 51], with these

values being in excellent agreement with those obtained in Potential Pulse

Chronoamperometry [43].

6.4.2.3 Deviations from the Ideal Behavior

Although very simple, the criteria used to obtain characteristic parameters of

surface-confined molecules correspond to an “ideal” behavior in line with the

premises presented in Sect. 6.4.1. Unfortunately, it is difficult to meet these criteria

and several contributing factors need to be considered in order to explain the

non-idealities observed in these redox systems. One of the most common deviations

from the ideal criteria is that related to the width of the voltammetric signals, which

are typically broader than the values predicted by the ideal model (i.e., W1=2 ffi 90

mV for reversible systems; see Eq. (6.162)). Some possible reasons for this

experimental evidence are:

– Double-layer effects.

Fig. 6.27 Dependence of

the normalized CV curves

on the reorganization

energy λ based on the MH

formalism. T¼ 273 K.

log v=k0
� � ¼ 1:0. Top to

bottom, λ (eV)¼ 1.00, 0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3,

0.2, and 0.1. The bar marks

the peak potential values.

Reproduced with

permission from [58]
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The non-faradaic component of the CV curves can be easily obtained as

ICV,nf ¼ dQnf

dt
¼ dQnf

dE

dE

dt
¼ �Cnfv ð6:171Þ

with Cnf being the non-faradaic capacitance of the monolayer which is typically

a function of the potential. The usual way of dealing with the non-faradaic

current is to subtract it from the experimental response as a “baseline correction”

(for example, by making an extrapolation of the current at very positive and

negative potentials from the faradaic signal at which it can be assumed that the

current is only due to the charging process of the double layer). However, when

surface-bound redox molecules are considered, this task may not be correct.

For the evaluation of the non-faradaic component of the response in a more

realistic way, different proposals have been made. A useful idea is that

corresponding to the “interfacial potential distribution” proposed in [59] which

assumes that the redox center of the molecules can be considered as being

distributed homogeneously in a plane, referred to as the plane of electron transfer

(PET), located at a finite distance d from the electrode surface. The diffuse

capacitance of the solution is modeled by the Gouy–Chapman theory and the

dielectric permittivity of the adsorbed layer is considered as constant. Under

these conditions, the CV current corresponding to reversible electron transfer

reactions can be written as

ψCV ¼ 1� ∂ϕPET
∂E

� �
eη

1þ eηð Þ2 ð6:172Þ

with ϕPET being the potential difference between the PET and the bulk solution

and η ¼ F E� ϕPET � E��Oc
0� �
. The term ϕPET introduces the correction to the

current due to the double layer and gives rise to the appearance of a minimum in

the double-layer capacitance at potentials around the formal one [59]. This

model has been extended to include slow electrode reactions and the formation

of ion pairs [60, 61].

– Surface heterogeneities

It should be borne in mind that it has been assumed that the electro-active

monolayer is a homogeneous system, i.e., the environment of a particular

molecule cannot be distinguished from any other one present in the monolayer.

This is very difficult to achieve in practice since heterogeneity arises very easily.

Among the various causes of this heterogeneity are:

(a) Interactions between adsorbed molecules which cause the surface activity

to differ from surface concentration [45, 62].

(b) Interactions between the local field and the permanent dipoles of uncharged

adsorbed molecules [63].

(c) Different tunneling distance between the redox species and the electrode

surface [64].

(d) A dispersion in the electronic coupling term β caused by conformational

changes in the monolayer structure that induce uneven interactions [64].
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These effects will give rise to different molecular environments that could

lead to surface inhomogeneities, i.e., different formal potentials (thermodynamic

dispersion) or different rate constants (kinetic dispersion).

In order to evaluate the influence of a dispersion of formal potentials or redox

constants (through different tunneling distances) in the CV peak broadening, a

Gaussian distribution of both these parameters can be assumed with a mean μ
and standard deviation σ. The current can be obtained as a weighted sum:

ψCV ¼
X

j
p jψCV, j

� �X
j
p j

� � ð6:173Þ

with ψCV,j being the CV current calculated for the jth formal potential or rate

constant and pj the weighting of the jth component:

p j ¼ exp
χ j � η
� �2

2σ2

 !
ð6:174Þ

and χj is the potential or the rate constant. The values of χ are spread in the range

χ ¼ μ� xσ with “x” being a number which defines the width of the distribution

(x ¼ 0 corresponds to no dispersion, i.e., to the ideal case).

6.4.3 Two-Electron Electrochemical Reactions

This section presents the solution corresponding to a surface two-electron charge

transfer process (EE mechanism) when a sequence of potential pulses E1, E2, . . .,Ep

is applied to the reaction scheme (6.II) by assuming that all the species (O1, O2, and

O3) correspond to the oxidation states of a surface-confined molecule O. Under

these conditions, Eq. (6.107) has to be replaced by

ΓO1
þ ΓO2

þ ΓO3
¼ ΓT independently of the applied potential ð6:175Þ

6.4.3.1 Reversible Reactions

For reversible reactions, the surface excesses of species O1, O2 and O2, O3 are

related by the two Nernstian conditions:

Γ pð Þ
O1

Γ pð Þ
O2

¼ e
F
RT E p � E��Oc,1

0� �
Γ pð Þ
O2

Γ pð Þ
O3

¼ e
F
RT E p � E��Oc,2

0� �
9>>>>>=>>>>>;

ð6:176Þ
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By combining Eqs. (6.175) and (6.176), expressions for surface excesses or

coverages are obtained, which are obviously identical to those corresponding to the

surface concentrations of species O1, O2, and O3 for a solution soluble redox

process given in Eqs. (3.132) and (3.133).

From this result, the converted chargeQEE
p transferred for a di-electronic transfer

process is straightforwardly obtained as the sum of charges Qp,1 and Qp,2 for steps

1 and 2, respectively

QEE
p ¼ QEE

p, 1 þ QEE
p, 2 ð6:177Þ

with

QEE
p, 1 ¼ �FAΓT

ð τ
0

d f
pð Þ

O1

dt

 !
dt ¼ FAΓT 1� f

pð Þ
O1

� �
ð6:178Þ

QEE
p, 2 ¼ FAΓT

ð τ
0

d f
pð Þ

O3

dt

 !
dt ¼ FAΓT f

pð Þ
O3

ð6:179Þ

where f
pð Þ

O j
¼ Γ pð Þ

O j
=ΓT, with j¼ 1, 2, 3, is the surface coverage of species Oj at Ep, A

is the area of the electrode, and τ is the duration of the potential pulse applied.

By combining Eq. (6.175) and those corresponding to the surface coverage of the

three species, one obtains [65]:

QEE
p,N ¼

1

QF

QEE
p ¼

2
ffiffiffiffi
K
p þ eη

pð Þffiffiffiffi
K
p þ eη

pð Þ þ ffiffiffiffi
K
p

eη
pð Þ

� �2 ð6:180Þ

with η p, K and QF given by Eqs. (6.20), (6.22), and (6.118), respectively.

The QEE
p � E curve for a reversible two-electron transfer taking place in a

monolayer is independent of time (i.e., it has a stationary character) and, therefore,

is independent of the potential–time waveform applied to the electrode, as in the

case of a reversible one-electron transfer reaction. It is also important to highlight

that the normalized charge, QEE
p;N, has a identical expression to that for the normal-

ized transient current IEENPV;N obtained for solution soluble species when the NPV

technique is applied to an electrode with any geometry (see curves in Fig. 3.16, and

Eq. (3.141)), and also to the normalized stationary current obtained for solution

soluble species when any potential–time waveform is applied for ultramicroe-

lectrodes with any geometry.
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The normalized current–potential curve in CV, ψEE
CV, can be easily obtained from

ψEE
CV ¼

d QEE=QF

� �
dη

¼ K3=2eη þ 4K2e2η þ K3=2e3η

K þ K1=2eη þ Ke2η
� �2 ð6:181Þ

where η ¼ F E tð Þ � E
��O
c

0
� �

=RT. Equation (6.181) for surface-immobilized mole-

cules has, logically, the same expression as that for the derivative of the NPV

response of solution soluble species (see Figs. 6.28 and 3.16).

The evolution of the peak parameters of the (ψEE
CV � E) response withΔE��Oc

0
(peak

potentials (a), peak heights (b), and half-peak width (c)) for a two-electron transfer

can be seen in Fig. 6.29. In Fig. 6.29a, the peak potentials refer to the average

formal potential value, E
��O
c

0
. The horizontal black line at E ¼ E

��O
c

0
and the two

symmetrical branches represent, respectively, that only one peak and two peaks are

obtained in the corresponding range ofΔE��Oc
0
values in abscissas, as indicated in the

figure.

From Fig. 6.29b, it can be observed that the values of the peak height, ψEE;peak
CV , for

an EE process, change withΔE��Oc
0
between 1/4 (forΔE��Oc

0 � 0) and 1 (forΔE��Oc
0 
 0),

as expected, since the normalized current for an E mechanism with n electrons

transferred is ψE,peak
CV ¼ n2=4; thus, 1/4 for n ¼ 1 and 1 for n ¼ 2. When only one

peak is observed, the peak height is given by:

ψEE,peak
CV ¼ 2

ffiffiffiffi
K
p

1þ 2
ffiffiffiffi
K
p ΔE��Oc

0 � �71:2mV ð6:182Þ

The values of the peak height calculated with Eq. (6.182) have been included in

Fig. 6.29b (black dots).

Figure 6.29c shows that the half-peak width, W1/2, changes in the extreme

negative and positive values of ΔE��Oc
0
between 90 mV (E1e� ) and 45 mV (E2e� )

for an EE process, but a sharp jump in the half-peak width, W1/2, is observed at

ΔE��Oc
0 ffi �135mV, which corresponds to a ψ � E curve with two peaks, whose

central trough is situated just at the half-peak height. As in the case of the peak

current, a theoretical expression has been reported for the half-peak width when

only one peak appears [66, 67]:

W1=2 ¼ 2RT

F
ln Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 1

p� �
ΔE��Oc

0 � �71:2mV ð6:183Þ

where
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B ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4K þ 16K

ffiffiffiffi
K
p þ 32K2

p
4K

ð6:184Þ

The values ofW1/2 calculated from Eq. (6.184) have been included in Fig. 6.29c

(black dots).

Figure 6.29a–c can be used as working curves to accurately determine the values

of ΔE��Oc
0
and the total surface excess ΓT for immobilized surface molecules.

The most singular characteristics exhibited by this figure are as follows:

a

b

Fig. 6.28 QEE � E (a) and ψEE
CV � E (b) curves (with ψEE

CV ¼ d QEE=QF

� �
=dη) calculated from

Eqs. (6.180) and (6.181) for different values of ΔE��Oc
0 ¼ E��Oc,2

0 � E��Oc,1
0
(shown in the curves)
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Fig. 6.29 Peak parameters of the ψEE
CV � E curves with ΔE��Oc

0
[(a) peak potentials; (b), peak

heights; (c) half-peak width], for a two-electron transfer, calculated from Eq. (6.181). The black

dots in figures (b) and (c) correspond to the values of ψEE;peak
CV and W1/2 calculated from

Eqs. (6.182) and (6.183), respectively
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1. ForΔE��Oc
0 � �142:4mV, the two peak potentials in the voltagram correspond to

the individual formal potentials and ψEE,peak
CV ¼ 1=4 (see Fig. 6.29b), with both

peak parameters being characteristic of a simple E mechanism.

2. ForΔE��Oc
0 ¼ �71:2mV, a transition 2 peaks–1 peak takes place (see Fig. 6.29a).

For more positive values ofΔE��Oc
0
, only one peak appears in the response, whose

peak potential corresponds to E
��O
c

0
(see Fig. 6.29a).

3. ForΔE��Oc
0 ¼ �35:6mV, the response presents a height which is double that for a

simple E mechanism, but W1=2 ¼ 90mV (Fig. 6.29c).

4. ForΔE��Oc
0
> 200mV,ψEE,peak

CV ¼ 1 andW1=2 ¼ 45mV (Fig. 6.29c); therefore, the

EE process behaves as an E mechanism of two electrons.

The appearance of one or two peaks in the CV curve is closely related to the

roots with physical meaning of the first derivative of Eq. (6.181), which are

identical to the second derivative of the normalized NPV signal given in Table 3.1.

6.4.3.2 Non-reversible Reactions

When the electrode processes given in reaction scheme (6.II) are slow, the

Nersntian relationship given by Eq. (6.176) is not fulfilled, and the following

relationships can be established for the time variation of the surface coverages:

� d f
pð Þ

O1

dt p
¼ k p

1 f
pð Þ

O1
þ k p

ox,1 f
pð Þ

O3
� k p

ox,1

d f
pð Þ

O3

dt p
¼ �k p

2 f
pð Þ

O3
� k p

red,2 f
pð Þ

O1
þ k p

red,2

d f
pð Þ

O2

dt p
¼ � d f

pð Þ
O1

dt p
þ d f

pð Þ
O3

dt p

 !

9>>>>>>>>>=>>>>>>>>>;
ð6:185Þ

with

k p
i ¼ k p

red, i þ k p
ox, i i ¼ 1, 2 ð6:186Þ

The currents corresponding to first, Ip,1, and second, Ip,2, steps, for each potential
Ep, are as follows:

IEEp, 1
QF

¼ � d f
pð Þ

O1

dt p

IEEp, 2
QF

¼ d f
pð Þ

O3

dt p

9>>>=>>>; ð6:187Þ

and the total current, IEEp , for the two-electron process is given by
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IEEp ¼ IEEp, 1 þ IEEp, 2 ð6:188Þ

To solve the differential equation system given by Eqs. (6.185) and (6.187), the

following solution is assumed:

f
pð Þ

O1
¼ δ pð Þ θ pð Þ

1 � 1
� �

þ f
p�1ð Þ

O1

f
pð Þ

O3
¼ γ pð Þ θ pð Þ

2 � 1
� �

þ f
p�1ð Þ

O3

9=; ð6:189Þ

with δ( p) and γ( p) being coefficients to be determined and

θ pð Þ
i ¼ exp �k p

i t p
� �

i ¼ 1, 2 ð6:190Þ

where tp is the variable time of the potential Ep (with 0 � t p � τ). It is assumed that

the current of each potential pulse is measured at t p ¼ τ. In agreement with

Eqs. (6.188) and (6.189), the current for any potential can be obtained as

IEEp
QF

¼ δ pð Þk p
1 θ

pð Þ
1 � γ pð Þk p

2 θ
pð Þ

2 ð6:191Þ

By inserting the solutions proposed in Eq. (6.189) and condition (6.175) in

Eq. (6.185), recurrent expressions for coefficients δ( p) and γ( p) are deduced [68]

and by inserting these expressions into (6.191) the current is calculated. These

expressions allow us to obtain limiting cases like the reversible and irreversible

ones which have a discrete character which makes them applicable to any

multipulse technique by simply changing the potential time waveform, including

the continuous limit of Cyclic Voltammetry. Moreover, they are independent of the

kinetic formalist considered for the process.

For the application of Eq. (6.191) to CV, the Butler–Volmer formalism has been

used and the following changes are made:

ψEE
p ¼

IEEp
aQF

ð6:192Þ

Ωi ¼ k0i
a

i ¼ 1, 2 ð6:193Þ

with a ¼ Fv=RT.

As an example of application, in Fig. 6.30 the CV curves (ψEE
CV � E� E��Oc,1

0� �
) for

a two-electron transfer EE mechanism (solid lines), calculated from

Eqs. (6.191)–(6.192) for a ratio of the dimensionless heterogeneous rate constants

of the two steps Ω2=Ω1ð Þ ¼ 0:1, have been plotted. These figures include the curves
calculated for three values of the dimensionless rate constant of the first step,

Ω1: 10, 0.1, and 0.01, in Figures A, B, and C, respectively, and also for three values

of ΔE��Oc
0 ¼ E��Oc,2

0 � E��Oc,1
0� �
, in mV: �200, 0, and 200, in Figures I, II, and III,

respectively, by assuming α ¼ 0:5 for the two-electron transfers in all cases.
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The CV curves for two independent electron transfers (dashed lines) and those

corresponding to an apparently simultaneous two-electron transfer (dashed-dotted

lines) have also been plotted for comparison with those obtained for an EE

mechanism with ΔE��Oc
0 ¼ �200 and 0 mV and ΔE��Oc

0 ¼ 0 and 200 mV, respec-

tively. These figures indicate a great variety of voltammetric responses, showing

one or two peaks on the direct and reverse scans, whose heights and relative

positions depend on the values ofΩ1,ΔE��Oc
0
, and the ratio (Ω2/Ω1), which is smaller

than unity in this set of figures. It is important to highlight that it is not necessary to

calculate the CV curves for the inverse case of Ω2 > Ω1, because to obtain the

responses for the inverse value of (Ω2/Ω1) (i.e., the curves obtained by exchanging

the values of Ω1 and Ω1, as can be easily inferred from Eq. (6.185)), all that

is required is a rotation of 180� with respect to the black dot marked in the

figures, i.e., the initial direct (cathodic) and reverse (anodic) responses become

the reverse (anodic) and direct (cathodic) ones. This singular point is located at

Fig. 6.30 CV curves calculated from Eqs. (6.191) to (6.192) for an EE mechanism

( ΔEj j ¼ 0:01mV, solid lines) and from (6.166) for two independent electron transfers

(dashed lines) and an apparent simultaneous two-electron single transfer (dashed-dotted
lines). These curves have been calculated for three values of the dimensionless rate constant

of the first step, Ω1, and three values of ΔE��Oc
0
(shown in the curves). Ω2=Ω1 ¼ 0:1 for the

EE mechanism and the two independent electron transfers. For the two-electron

single transfer, it has been assumed that the formal potential coincides with the average

potential of the EE mechanism and Ω ¼ Ω1. α ¼ 0:5. T¼ 298 K. Reproduced with

permission from [68]
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coordinates (0, E��Oc
0 � E��Oc,1

0
) whereE

��O
c

0
corresponds to the average formal potential,

defined in Eq. (6.21).

This general characteristic of the voltammograms allows us to locate the value of

the average formal potentialE
��O
c

0
in any response, with symmetrical or asymmetrical

voltammograms. In this last case, we have to change the sign of current and invert

the sense of the potentials in the experimental response. From comparison of the

original and inverted responses, the point (0, E
��O
c

0
) is immediately located. Another

important feature of the voltammograms shown in Fig. 6.30 is that for high values

of both heterogeneous rate constants, reversible electrochemical reactions are

expected. In this case, the CV responses for the direct and the reverse scans are

symmetrical with respect to the zero current line. These voltammograms show two

peaks centered at the individual formal potentials when ΔE��Oc
0
is very negative

(Fig. 6.30A–I), which evolve to a single peak centered at the average formal

potential as ΔE��Oc
0
increases.

Moreover, for non-reversible charge transfers, the voltammetric curves

corresponding to the direct and reverse scans can become very different, and the

number of peaks is no longer fixed only by the value ofΔE��Oc
0
but also by the values

of the kinetic constants of steps 1 and 2 in scheme (6.II). Thus, for the CV curves of

these figures, the direct response tends to present two peaks as the process becomes

more irreversible (an obvious feature for very negative values of ΔE��Oc
0
but not so

obvious for zero or even positive ones), and the reverse voltammogram presents

only one.

Under these conditions, the determination of the rate constants of both charge

transfers becomes very complex. Some general criteria can be found in [68].

6.4.4 Electrocatalytic Processes at Modified Electrodes

One of the most fruitful trends in the comprehension and control of electrochemical

reaction kinetics and electrocatalysis has been the development of modified elec-

trodes to achieve redox mediators of solution processes. This strategy is based on

the electrochemical activation (through the application of an electrical perturbation

to the electrode) of different sites at a modified surface. As a result of this

activation, the oxidation or the reduction of other species located in the solution

adjacent to the electrode surface (which does not occur or occurs very slowly in the

absence of the immobilized catalyst) can take place4 [40, 69, 70].

4 The processes analyzed in this section refer to catalytically active molecules attached to the

electrode (electron conductor), a case which has been named “molecular electrocatalysis” by

Savéant [40].
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This section will focus on the study of an electrocatalytic reaction in line with the

following reaction scheme:

Oad þ e� !
kred

kox
Rad

Rad þ Csol  !
k
0
1

k
0
2

Oad þ Dsol

ð6:IXÞ

where Oad and Rad refer to the redox couple bound to the electrode surface and Csol

and Dsol are species in solution.

6.4.4.1 Pseudo-First-Order Electrocatalytic Processes

We consider first the situation in which the chemical reaction is considered as

irreversible. It is assumed that the surface concentration of species Csol remains

constant and equal to their bulk value, c�C (in such a way that the process can be

considered as a pseudo-first order process),

Oad þ e� !
kred

kox
Rad

Rad þ Csol!kc Oad þ Dsol

ð6:XÞ

with the pseudo-first-order rate constant being

kc ¼ k
0

1c
*
C ð6:194Þ

When a constant potential E1 is applied during a time t1 0 � t1 � τð Þ, the rate

equation for the process (6.X) is given by

I cat1

QF

¼ � d f
1ð Þ
O

dt1
þ kc f

1ð Þ
R ð6:195Þ

with f
1ð Þ
i ¼ Γ 1ð Þ

i =ΓT , i¼O or R, and QF is given in Eq. (6.118). By combining

Eqs. (6.107)–(6.109) and (6.195), one obtains

� d f
1ð Þ
O

dt1
¼ k c

T,1 f
1ð Þ
O � kox,1 þ kcð Þ ð6:196Þ

with
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k c
T,1 ¼ kT,1 þ kc ð6:197Þ

with kT,1 given by Eq. (6.113).

Equation (6.196) is formally identical to that corresponding to a simple charge

transfer process (given by Eq. (6.112)) by changing kT,1 for kcT;1. Therefore, the

solution of (6.196), by considering f
1ð Þ
O t ¼ 0ð Þ ¼ 1, leads logically to an expression

for the surface coverages of electro-active species O and R which is formally

identical to that obtained for a simple charge transfer process with the changes

indicated above.

Equations (6.112) and (6.196) also allow us to easily deduce the expression

corresponding to the current of the first potential pulse:

I cat1

QF

¼ kred,1θ1 þ kc
kred,1
k c
T,1

1� θ1ð Þ ð6:198Þ

with θ1 ¼ exp �k c
T,1t1

� �
.

This equation shows that the catalytic current is enhanced in relation to that

corresponding to a simple surface electrochemical reaction by means of an additive

contribution due to the catalytic step (second term in the right-hand side of

Eq. (6.198)).

The converted charge can also be obtained by integrating the current:

Q cat
1

QF

¼ kred,1
k c
T,1

1� θ1ð Þ 1þ kct1ð Þ ð6:199Þ

When a sequence of p consecutive potential pulses of the same length τ is

applied, the analytical expression of the surface excess of species O is, in line

with the above discussion, identical to that given for a simple charge transfer

reaction in Eq. (6.127) by changing kT,p for k
c
T;p with

θ p ¼ exp �k c
T, pτ

� �
ð6:200Þ

k c
T, p ¼ kT, p þ kc ð6:201Þ

with kT,p given by Eq. (6.129)

The current–potential curve has the expression [69]:

I catp

QF

¼ � k c
T, p � kc

� �Xp�1
m¼1

kred,m
k c
T,m

1� θmð Þ
Yp

h¼mþ1
θh

 !

þ kred, p
k c
T, p

k c
T, p � kc

� �
θ p þ kc

kred, p
k c
T, p

ð6:202Þ
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For a fast charge transfer process, by introducing the condition kE, p 
 1s�1 in
Eq. (6.202), one obtains

I catp, rev

QF

¼ kc
1

1þ eη p
ð6:203Þ

with η p ¼ F E p � E��○c
0� �
=RT.

ForE! �1 (i.e., kred, p !1) andE!1 (i.e., kox, p !1) in Eq. (6.202), the

limiting currents are

I catp

QF

�
E!�1

¼ kc
I catp

QF

�
E!1

¼ 0

9=; ð6:204Þ

The converted charge corresponding to the pth potential pulse Ep can be

obtained by integrating Icatp given by Eq. (6.202) [70, 71]:

Q cat
p

QF

¼ �
Xp
m¼2

1� kc
k c
T,m

 !
1� θmð Þ f R,m�1

 !

þ
Xp
m¼1

kred,m
k c
T,m

kcτ þ 1� θmð Þ 1� kc
k c
T,m

 ! ! !
ð6:205Þ

with f R,m�1 ¼ 1� fO,m�1 (see Eq. (6.107)).
For fast electron transfers, the expression of the converted charge simplifies to

Q cat
p, rev

QF

¼ 1

1þ eη p
þ kcτ

Xp
m¼1

1

1þ eηm
ð6:206Þ

A stationary behavior is attained when the condition kc 
 1s�1 holds. Under

these conditions, the terms θm become null (see Eqs. (6.200) and (6.201)) and

Eqs. (6.202) and (6.205) for the current and converted charge take the following

simpler form, whatever the reversible degree of the electrode reaction:

Icat, ssp

QF

¼ kc
kred, p
k c
T, p

ð6:207Þ

Qcat, ss
p

QF

¼ kred, p
k c
T, p

þ kcτ
Xp
m¼1

kred,m
k c
T,m

ð6:208Þ

Equations (6.207) and (6.208) lead to the following limiting situations

depending on the reversibility degree of the electron transfer process:
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– For a fast electron transfer reaction, by introducing the conditionkT, p 
 kc in both
equations, the reversible limit given by Eqs. (6.203) and (6.206) is recovered.

– For an irreversible charge transfer reaction (kred, p � 1s�1), two new situations

can be analyzed. In the first case, for cathodic potentials kred, p 
 kox, p,
Eqs. (6.207)–(6.208) lead to

Icat, ssp, irrev

QF

¼ kckred, p
kred, p þ kc

¼ 1
1

kred, p
þ 1

kc

ð6:209Þ

Qcat, ss
p, irrev

QF

¼ kred, p
kred, p þ kc

þ kcτ
Xp
m¼1

kred,m
kred,m þ kc

ð6:210Þ

When kred, p � kc at any potential value, Eqs. (6.209)–(6.210) are simplified

to

Icat, ssp, irrev

QF

¼ kred, p ð6:211Þ

Qcat, ss
p, irrev

QF

¼ τ
Xp
m¼1

kred,m ð6:212Þ

Equation (6.211) coincides with equation (5) of reference [72], deduced by

considering that the charge transfer reaction was an oxidation.

6.4.4.1.1 Cyclic Voltammetry and Cyclic Voltcoulometry

The expressions for the current given by Eq. (6.202) can be applied in CV when the

pulse amplitude holds ΔEj j � 0:01mV, whereas in the case of the converted charge

given by Eq. (6.205), it provides a good agreement for ΔEj j � 1mV[69–71]. Under

stationary behavior (kc 
 1s�1), the expression for the current corresponding to a

reversible charge transfer (Eq. (6.207)) becomes

ψ cat, ss
CV ¼ Icat, ssCV

aQF

¼ ψ E
CV þ χCV

kred
k c
T

ffi χCVkred
k c
T

ð6:213Þ

which is obtained with

χCV ¼ kc
a

ð6:214Þ

ψE
CV in Eq. (6.213) refers to the CV current–potential curve of the electron transfer

process in the absence of chemical reaction given by Eq. (6.161) and (6.166). Since

the assumption of stationary behavior implies that the catalytic component of the
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current is much higher than that due to the redox conversion, this contribution can

be neglected in the total response. So, under reversible conditions for the electron

transfer, Eq. (6.213) becomes [71]:

ψ cat, ss
CV, rev ¼ χCV

1

1þ eϑeϑin
ð6:215Þ

Concerning the expression of the stationary charge potential curves for Cyclic

Voltcoulometry, the sum that appears in Eq. (6.208) can be transformed into an

integral which for the case of fast and slow charge transfer reactions simplifies to

Qcat, ss
CV, rev

QF

¼ 1

1þ eϑeϑin
þ χCV ϑ� ln

1þ eϑeϑin

1þ eϑin

� �
 �
ð6:216Þ

Qcat, ss
CV, irrev

QF

¼ kred
kred þ kc

þ χ
CV

α
ln

kred þ kc
kred, i þ kc

� �
ð6:217Þ

with ϑ ¼ F E tð Þ � Einitialð Þ=RT, ϑin ¼ F Einitial � E��Oc
0� �
=RT, and kred,i being the

value of kred at Einitial.

Theoretical ψ cat
SCV � E and Q cat

SCVC=QF � E curves, calculated from Eqs. (6.202)

and (6.205), respectively, for different values of the dimensionless catalytic rate

constant χCV, have been plotted in Fig. 6.31. These curves correspond to a cyclic

staircase potential withΔE ¼ 5mV and τ ¼ 10ms (v ¼ 0:5Vs�1). Two values of the
heterogeneous rate constant k0 s�1ð Þ ¼ 200 and 2, which refer to reversible (1a and 1b)

and totally irreversible (1c and 1d) electrochemical behavior, have been considered.

From Figs. 6.31a, c it can be seen that, when χCV increases, the current–potential

response changes its feature from two peak-shaped curves (with more separated

peaks the smaller the reversibility degree of the charge transfer) to a single

sigmoidal one (stationary state). The χCV limit necessary for attaining this station-

ary behavior increases as the value of the heterogeneous rate constant k0 decreases

(note that in Figure c the steady state has not been reached for χCV ¼ 1).

From the charge–potential curves in Figures b and d, it is clear that a stationary

behavior cannot be reached in any case. From the first scan of these curves, it can be

seen that the converted charge is null up to potentials close to E��Oc
0
, from which it

increases with the potential, with this increase becoming linear for sufficient

cathodic values. For the second scan, the charge–potential curves present an

opposite behavior, i.e., they increase linearly until they reach a constant value

(charge plateau) for enough cathodic potentials.

The above behavior can be characterized when the charge transfer step is fast

(b) or slow (d).

Fast Electron Transfer Step Under these conditions, for cathodic potentials,

E� E��Oc
0
, from Eq. (6.216) is obtained [70]:
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Qcat, ss
CV, rev

QF

¼ 1� χCVη ð6:218Þ

with the upper sign referring to the first sweep and the lower to the second one.

From this linear relationship between the charge and the potential, kc is easily
deduced from the cathodic slopes of both sweeps. The expression of the reversible

cathodic converted charge plateau can also be deduced from Eq. (6.216) by

imposing E! �1 in the second cathodic sweep (see Eq. (6.217)):

Qcat, ss, plateau
CV, rev

QF

¼ 1þ 2 χCV
		 		η f ð6:219Þ

with η f ¼ F Efinal � E��Oc
0� �
=RT and Efinal being the reversal potential.

Slow Electron Transfer Step In this case, at very cathodic potentials (E� E��Oc
0
),

Eq. (6.217) becomes

Fig. 6.31 Theoreticalψ cat
CV � E ((a) and (c)) andQ cat

CV=QF � E curves ((b) and (d)) calculated from
Eqs. (6.202) and (6.205) in Staircase Voltammetry and Voltcoulometry, respectively, for a

catalytic mechanism. The values of χCV are on the curves. The values of k0 (in s�1) are: 200 (a,

b); 2 (c, d). ΔE ¼ 5mV, τ ¼ 10ms, Einitial ¼ �400mV, Efinal ¼ 400mV, T¼ 298 K, α ¼ 0:5.

v ¼ 0:5Vs�1. Reproduced with permission from [70]
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Q cat
CV

QF

¼ 1� χ
CV

α
ln

k0

kc

� �
� χCVη ð6:220Þ

Concerning the irreversible cathodic charge plateau, it can be obtained by making

E! �1 in the expression of the charge for the second sweep (see Eq. (6.217)):

Qcat,plateau
CV

QF

¼ 1þ 2χCV

α
ln

k0

kc

� �
þ 2χCVη f ð6:221Þ

Note that in agreement with Eqs. (6.218) and (6.220), the absolute value of the

slope of these linear regions does not depend on the reversibility degree of the

electron transfer step and its measurement will allow us to obtain the catalytic rate

constant.

The experimental and theoretical CV (current–potential) and CVC (charge–

potential) curves of the system FcC6SH� C6SH in a solution 1.0 M NaClO4 and

10 mM in Fe CNð Þ4�6 obtained for different values of the sweep rate are plotted in

Fig. 6.32 (corresponding to an oxidation [70, 71]).

The CV curves in Fig. 6.32a show a sigmoidal feature which is typical of

stationary or nearly stationary behavior (see Eq. (6.215)). The increase of the

sweep rate does not affect the response as the stationary limit has been reached.

Moreover, it can be observed that a well-defined plateau independent of the sweep

rate is obtained for E > 0:200V. From the measurement of this plateau, the value

kcQFð Þ ¼ 11:29� 0:05ð ÞnA is obtained.

In the case of the CVC curves of Fig. 6.32b, the converted charge increases as

the scan rate decreases and they show a clear linear region at potentials above

0.20 V. The slope of these linear zones should be equal to (kcQF)/v (see Eqs. (6.214)
and (6.218)). The values of the slopes of the linear regression of these zones for

different values of v in the range 0.20–100 V s�1 have been plotted vs. the inverse of
the sweep rate and from these data kcQFð Þ ¼ 11:3� 0:2ð ÞnA has been obtained.

This value is practically coincident with that obtained from the current–potential

curves of Fig. 6.32a.

The values of the cathodic charge plateau can also been plotted versus 1/v again
obtaining a very good linearity. If the ferrocene oxidation can be considered as

reversible under these conditions, the linear dependence observed corresponds to

that given by Eq. (6.219), with the slope being 2kcQF E f � E��Oc
0� �
, from which, by

taking into account that E f ¼ 0:600V, the formal potential of the ferrocene/

ferrocenium couple: E��Oc
0 ¼ 0:1000� 0:005ð ÞV vs. SCE is deduced.

To check the goodness of the data obtained, the theoretical CV and CVC curves

calculated from Eqs. (6.215) and (6.218) have been included (symbols). By taking

into account that the total charge for the ferrocene monolayer in the 1.0 M NaClO4
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solution is QF ¼ 0:437� 0:050 pC, the theoretical curves have been calculated using

the parameters: E��Oc
0 ¼ 0:095V and kc ¼ 250s�1. From the value of ΔEj j ¼ 5mV

used, we can finally obtain that the true chemical rate constant of the mechanism is

k
0

1 ¼ 2:5� 104M�1 s�1.

(a)

(b)

Fig. 6.32 Experimental I–E (a) and Q–E (b) curves obtained in CV and CVC for a mixed

ferrocene monolayer (FcC6SH� C6SH 1:20) adsorbed at a disc gold electrode of radius rd ¼
0:001 cm in an aqueous solution 1 M NaClO4 with potassium ferrocyanide 10mM. The values of

the scan rate E tð Þ � Einitialð Þ=v (in Vs�1 ) appear in (b) and for (a) are the following: 0.2 (solid
lines), 0.4 (dotted lines), 0.6 (long-dashed lines), 0.8 (short-dashed lines), and 1 (dashed-dot-dot
lines). (symbols) I–E (a) and Q–E (b) curves calculated from Eqs. (6.215) to (6.216) by using the

following parameters: E��Oc
0 ¼ 0:095V, kc ¼ 250s�1, QF ¼ 0:437 pC, and T¼ 298 K. Reproduced

with permission from [71]
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6.4.4.2 Second-Order Electrocatalytic Process

When the surface concentration of species Csol cannot be considered as constant the

analysis of the electrochemical response that arises from reaction scheme (6.X)

becomes much more complex since the process is of second order and the value of

the surface concentration of Csol will be a function of the kinetics of the catalytic

reaction and also of the mass transport (and therefore of the electrode geometry).

Due to this higher complexity, only the current–potential response in CV will be

treated with the additional simplification of fast surface charge transfer.

The analytical resolution of this problem is considerably more difficult. Due to

this, only numerical or approximate models were initially available in the literature

[73–75].

The rate equation for this process is now given by the following modification of

Eq. (6.195):

d f
pð Þ

O

dt
¼ � I catp

QF

þ k
0

1 f
pð Þ

R c
s; pð Þ
C tð Þ ð6:222Þ

with c
ðs;pÞ
C (t) being the surface concentration of species C, which is a function of

time (or potential in the case of CV).

An approximate analytical expression for the CV current of this process when

spherical electrodes are used has been given in [74]:

ψ cat
p ¼

I catp

FAsc*C
ffiffiffiffiffiffiffiffiffi
aDC

p ¼ ψ surf
p þ ψ cat

p ð6:223Þ

with:

ψ surf
p ¼ � ΓT

c*C
ffiffiffiffiffiffiffiffiffi
aDC

p d f
pð Þ

R

dη p
¼ ΓT

c*C
ffiffiffiffiffiffiffiffiffi
aDC

p eη p

1þ eη pð Þ2 ð6:224Þ

ψ cat
p ¼ Λ f pð Þ

R

Yp�1
m¼1

1þ Λ f
mð Þ
R σmþ1, p

h i
Yp
m¼1

1þ Λ f
mð Þ
R σm, p

h i ð6:225Þ

where

Λ ¼ k
0

1ΓTffiffiffiffiffiffiffiffiffi
aDC

p ð6:226Þ
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f
mð Þ
R ¼ 1

1þ eηm
ð6:227Þ

σm, p ¼ 1

ρþ 1ffiffiffiffiffiffiffiffiffiffi
π δm, p
p ð6:228Þ

ρ ¼ DC

ar2s

� �1=2

ð6:229Þ

δm, p ¼ F

RT
E p�mþ1 � Einitial

		 		 m � p=2

δm, p ¼ F

RT
�E p�mþ1 � Einitial þ 2Efinal

		 		 m > p=2

9>=>; ð6:230Þ

The catalytic term given in Eq. (6.225) is greatly simplified in the case of

microelectrodes:

ψ cat,microsphe
p ¼ Λ f

pð Þ
R

1þ Λ
ρ f

pð Þ
R

ð6:231Þ

so under these conditions the current is only dependent on the applied potential. If

the ψ surf
p can be neglected (or removed from the total response, for example, by

subtracting the CV curves of the monolayer in absence of species C), the

voltammetric current has a sigmoidal shape with a plateau and a half-wave potential

given by

ψ cat,microsphe,plateau
p ¼ Λ

1þ Λ
ρ

ð6:232Þ

E1=2 ¼ E��Oc
0 þ RT

F
ln 1þ Λ

ρ

� �
ð6:233Þ

The effects of the catalytic reaction on the CV curve are related to the value of

dimensionless parameter Λ in whose expressions appear variables related to the

chemical reaction and also to the geometry of the diffusion field. For small values of

Λ, the surface concentration of species C is scarcely affected by the catalysis for any

value of the electrode radius, such that c
s; pð Þ
C ! c*C and the current becomes

identical to that corresponding to a pseudo-first-order catalytic mechanism

(see Eq. (6.203)). In contrast, for high values of Λ and f
mð Þ
R ! 1 (cathodic limit),

the rate-determining step of the process is the mass transport. In this case, the

catalytic limiting current coincides with that obtained for a simple charge transfer

process.

Figure 6.33 shows the effects of the electrode size (rs) and the catalytic rate

constant (Λ) on the dimensionless catalytic component of the voltammogram. For a

given electrode radius, the increase of Λ (i.e., the increase of the rate constant k
0
1)
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Fig. 6.33 Catalytic CV curves for spherical microelectrodes calculated from Eq. (6.225) for

different values of Λ (shown in the curves). These curves have been calculated for

ΔEj j ¼ 0:01mV, a scan rate v ¼ 0:1Vs�1, and three electrode radii rs (in μm): (a) 50, (b)

20, and (c) 10. Reproduced with permission from [76]
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enhances ψ cat
p and leads to the shift of the voltammogram toward more anodic

potentials. For very fast catalytic reactions (Λ � 100), the peak current becomes

independent of Λ in an analogous way to that reported for planar electrodes. On the

other hand, the peak potential is also always sensitive to the kinetics.

The shape of the voltammograms is affected by both the electrode radius and Λ.
Thus, a transition from a peak-shaped response to a sigmoidal wave is observed as Λ
and/or the electrode radius decrease, although this behavior has different causes in

each case.

The consideration of chemical equilibrium for this mechanism (scheme (6.IX)),

has been treated in detail in references [74, 77], where different methods for

obtaining the characteristic parameters of the process are proposed.
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Chapter 7

Differential Multipulse and Square Wave

Voltammetries
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7.1 Introduction

A common feature of the electrochemical techniques considered in this chapter is

that the recorded signal is the difference between the current (or converted charge)

sampled at the end of consecutive potential pulses of a given sequence E1,E2, . . .,
Ep without the initial conditions being regained. This difference is plotted versus a

potential axis, giving a peak-shaped response in all the cases.

Differential multipulse techniques are, due to their subtractive nature, highly

sensitive, and they present high resolution of the peak-shaped voltammogram, and

minimization of double-layer and background effects [1–3]. In addition, given that

they are pulse techniques and the value of the applied potential remains constant

during each pulse, the effect of the charging current is greatly reduced since this

sharply decays after the application of the pulse. As a consequence, these tech-

niques are widely used in electroanalysis for determination of trace elements

as well as for the study of electrode processes and identification of reaction

mechanisms.

This chapter analyzes the subtractive techniques Differential Multipulse

Voltammetry (DMPV), Differential Staircase Voltammetry (DSCVC), and Square

Wave Voltammetry (SWV). Of these, the most employed SWV will be analyzed in

more detail. Interesting alternatives to DSCVC and SWV are Differential Staircase

Voltcoulometry (DSCVC) and Square Wave Voltcoulometry (SWVC), which are

based on the analysis of the difference of converted faradaic charge signals obtained

between two successive potential pulses when a staircase potential or a square wave

potential is applied [4, 5], which is very useful for the study of surface-confined

redox species. There exists, however, a book in this series devoted entirely to the

theory and application of SWV [6], so in some of the reaction mechanisms

analyzed, the reader will be directed to this title for a more thorough treatment of

the SWV response.

The general features of the potential time perturbations and of the current–potential

(or converted charge–potential) responses characteristic of these techniques are:

Differential Staircase Voltammetry

This technique was introduced by Scholz et al in [7, 8] in its noncyclic mode as a

technique related to DDPV and SCV in which the potential–time wave form is that

corresponding to SCV (see Scheme 5.2) and the signal is built through the differ-

ence between the currents measured at the end of each pair of consecutive pulses

(see Scheme 7.1)

IDSCV ¼ I p � I p�1 1 < p � Nð Þ ð7:1Þ

with Ip being the voltammetric current corresponding to the pth potential pulse,

and N the number of pulses applied. Under these conditions, the current–potential

response is obtained in a similar way to that employed for differential double pulse

techniques (like DDPV), and IDSCV is plotted versus the potential Ep [9].
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A variant of DSCVC is DSCVC, for which the response is built by subtracting

the converted charge measured at the end of each pair of consecutive potential

pulses applied [4]:

QDSCVC ¼ Qp � Qp�1 1 < p � Nð Þ ð7:2Þ

This technique is of special interest in the case of charge transfer processes at

surface-bound molecules since it allows a simple and more effective correction of

the non-faradaic components of the response than Cyclic Voltammetry. Moreover,

this technique presents an intense peak-shaped signal for fast charge transfer,

whereas other multipulse techniques give rise to nonmeasurable currents under

these conditions and it is necessary to use short potential pulses to transform the

response to quasi-reversible, which is much more difficult to analyze [4, 6, 10].

P
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l

Time

direct scan

IDSCV

direct scan

Potential

reverse scan

reverse scan

Einitial

p= p 1I I I

a

b

pE

p 1E

EΔ

Δ

t

Scheme 7.1 Differential

staircase voltammetry and

cyclic differential staircase

voltammetry. (a) Potential–

time waveform. (b) current–

potential response with

ΔI¼ IDSCV. The black dots
in (a) indicate the time at

which the current is

measured
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Differential Multipulse Voltammetry and Differential Normal Multipulse

Voltammetry

The DMPV technique can be viewed as a variant of DDPV (see Scheme 4.3), where

the initial conditions are not recovered during the experiment (Scheme 7.2). Thus,

the pulse length (τp) is much shorter than the period between pulses (τ1),
τ1=τ p ¼ 50� 100.

The DNMPV is the multipulse variant of the DMPV technique such that the

duration of the period between pulses and the duration of the pulses are similar:

τ1 � τ p.

scan

Time

Po
te

nt
ia

l

τ1

τp

Eindex

(-)
ΔΙ scan

Eindex

A

B

sEΔ

EΔ

Scheme 7.2 Differential multipulse voltammetry (DMPV). (a) Potential–time waveform. (b)

current–potential response. The black dots in (a) indicate the time at which the current is measured
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The response ΔI is the difference between currents corresponding to each pair of
consecutive potential pulses, and this is plotted versus Eindex, which is convenient to

define as

Eindex ¼ Einitial � Int
pþ 1

2

� �
� 1

� �
ΔEsj j p � 1 ð7:3Þ

and

Einitial ¼ E1 þ E2

2
ð7:4Þ

where Int(x) is the integer part of the argument x [11].
DMPV is by far the most frequently used in commercial potentiostats referred to

Differential Pulse Voltammetry.

Square Wave Voltammetry

SWV is one of the most popular electrochemical techniques, mainly in electro-

analysis, due to its great sensitivity, discrimination of background currents, and

short experimental times [6, 9, 12]. It was introduced by Baker [13–15] and later

developed by the Osteryoungs and coworkers by using a combination of a staircase

potential modulation and a periodic square wave potential function [16–19]. In the

SWV technique, the potential sequence can be described as (see Scheme 7.3

and [9]):

E p ¼ Einitial � Int
pþ 1

2

� �
� 1

� �
ΔEs � �1ð Þ pþ1ESW; p ¼ 1, 2, . . . ,N=2

E p ¼ EN� pþ1; p ¼ N=2ð Þ þ 1, . . . ,N

9=;
ð7:5Þ

where the upper/lower sign corresponds to a cathodic/anodic scan. N is the total

number of potential pulses applied, ΔEs is the potential step in the staircase, and

ESW is the square wave amplitude. According to the SWV waveform shown in

Scheme 7.3, three parameters are necessary for its characterization: ΔEs, ESW, and

the frequency or the time pulse length τ.
The current is sampled at the end of each potential pulse and the net response

(ISW) is given by the subtraction of the current corresponding to a pulse with odd

index (forward current, If) and the signal of the following pulse with even index

(reverse or backward current, Ir) (see Scheme 7.3):

ISW ¼ I2 p�1 � I2 p ¼ I f � Ir; p ¼ 1, 2, . . . , N=2ð Þ ð7:6Þ

where subscripts f and r refer to the forward (2p� 1) and reverse (2p) pulses,
respectively, and τ is the semi-period of the square wave and its frequency

f ¼ 1= 2τð Þ. SWV can be applied in cyclic mode as indicated in Scheme 7.4.
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The SWV current is plotted versus the arithmetic average of the potentials

applied in each pair of pulses (2 p� 1, 2p)

Eindex ¼ E p � �1ð Þ pESW ð7:7Þ

Note that, in agreement with Eq. (7.5), the index potential defined by Eq. (7.7)

for a cathodic scan (upper sign) is identical in this case to that given by Eq. (7.3).

In accordance with Scheme 7.4, during the course of a single potential cycle, the

electrochemical process is driven in both cathodic and anodic directions, so pro-

viding a thorough understanding of the reaction mechanism.

An interesting variant of SWV is SWVC, which is based on the analysis of the

difference of converted faradaic charge signals obtained between two successive

half-cycles when a square wave potential is applied [5]. The potential perturbation

is given by Eq. (7.5) and the response is

QSW ¼ Q2 p�1 � Q2 p ¼ Q f � Qr; p ¼ 1, 2, . . . , N=2ð Þ ð7:8Þ

TheQSW � Eindex curves present an intense signal for reversible processes taking

place with surface-bound species, so allowing their simple and complete character-

ization (see Sect. 7.7.1.3).

7.2 Reversible Electrochemical Reactions at Electrodes

and Microelectrodes of Any Geometry

In this section, the response corresponding to a fast electrochemical reaction, shown

by the following reaction scheme:

Oþ e� !R ð7:IÞ

when species O and R are soluble in the electrolytic solution, is obtained for

differential multipulse techniques by using the general expressions for the current

Ip corresponding to any pth potential pulse applied of an arbitrary sequence,

deduced in Sect. 5.2.1.

7.2.1 Differential Staircase Voltammetry

According to Scheme 7.1 and Eq. (7.1), by subtracting the currents corresponding

to the consecutive potential pulses Ep and E p�1 (see Eq. (5.24)), the DSCVC

response for any electrode geometry when equal diffusion coefficients for species O

and R are assumed is
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ψ G
DSCVC ¼

ffiffiffiffi
D

a

r
1þ c*R=c

*
O

� �
Z p fG τ, qGð Þ þ

Xp�1
m¼1

Zm fG p� mþ 1ð Þτ, qGð Þ � fG p� mð Þτ, qGð Þð Þ
 !

ð7:9Þ

with

ψ G
DSCVC ¼

IGDSCVC
FAGc*O

ffiffiffiffiffiffi
aD
p ¼ IGp � IGp�1

FAGc*O
ffiffiffiffiffiffi
aD
p ð7:10Þ

a ¼ Fv

RT
ð7:11Þ

Zm ¼ 1

1þ eηm
� 1

1þ eηm�1
1 � m � p ð7:12Þ

ηm ¼
F

RT
Em � E��O

0
c

� �� �
1 � m � p ð7:13Þ

and

eη0 ¼ exp
F

RT
Eeq � E��O

0
c

� �� �
¼ c*O

c*R
ð7:14Þ

Moreover, fG(τ, qG) is a function which depends on the electrode geometry (see

Table 2.3 for several common situations), c�i is the bulk concentration of species i,

v is the scan rate (¼ ΔE=τ), and Eeq is the equilibrium potential given by Nernst

equation. The superindex or subindex “G” refers to the electrode geometry consi-

dered, and qG to the characteristic dimension of the electrode considered.

7.2.1.1 Planar Electrodes

By making qG !1 in Eq. (7.9) (see also Table 2.3), the DSCVC curve

corresponding to planar electrodes is obtained:

ψ plane
DSCVC ¼ 1þ c*R=c

*
O

� � 1ffiffiffiffiffiffiffiffi
πaτ
p Z p þ

Xp�1
m¼1

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p� mþ 1
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

p� m
p

� � !
ð7:15Þ

When different values for the diffusion coefficients of species O and R are

assumed, the expression for the current is [9, 20],
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ψ plane
DSCVC ¼

IGp � IGp�1
FAGc*O

ffiffiffiffiffiffiffiffiffi
aDO

p

¼ 1þ c*R=γc
*
O

� � 1ffiffiffiffiffiffiffiffi
πaτ
p

Xp
m¼1

Zmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� mþ 1
p �

Xp�1
m¼1

Zmffiffiffiffiffiffiffiffiffiffiffiffiffi
p� m
p

 !
ð7:16Þ

with Zm being given under these conditions as

Zm ¼ 1

1þ γeηm �
1

1þ γeηm�1 1 � m � p ð7:17Þ

and

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ð7:18Þ

7.2.1.2 Spherical Electrodes

In this case qG ¼ rsð Þ, from Eqs. (7.9) to (7.15), we get

ψ sphe
DSCVC ¼ ψ plane

DSCVC þ ψ sphe, ss
DSCVC ð7:19Þ

with

ψ sphe, ss
DSCVC ¼

ffiffiffiffi
D

a

r
1þ c*R=c

*
O

� �Z p

rs
ð7:20Þ

In Fig. 7.1, the influence of the electrode radius rs on the dimensionless DSCVC

ψG
DSCVC/|Δη| curves (with Δηj j ¼ F ΔEj j=RT) is shown. Figure 7.1a corresponds to

the planar contribution, Fig. 7.1b to the radial or stationary contribution, and the

curves corresponding to spherical electrodes obtained from Eq. (7.19) are shown in

Fig. 7.1c. From these curves, it can be seen that the peak potential does not coincide

with the formal potential in the case of planar electrodes. In the case of spherical

electrodes (Fig. 7.1c), the peaks of the first and second scans approach the formal

potential as the electrode radius decreases, and ψ sphe
DSCVC responses of both scans

become symmetrical.

The experimental verification of this behavior can be seen in Fig. 7.2 for the

system FeCl3 1 mM+K2C2O4 0.25 M (pH¼ 4.70) at mercury electrodes of differ-

ent radii.

7.2.2 Differential Multipulse Voltammetry

Since in this technique the duration of the pulse (τp) is much shorter than the period

between pulses (τ1, see Scheme 7.2), the response of reversible processes in DMPV

is totally coincident with that obtained in the double pulse technique DDPV [9],
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because in DMPV the system is able to establish conditions equivalent to DDPV

near to the electrode surface during τ1, as if previous pulses had not existed.

Therefore, under these conditions ( τ1 
 τ p for any value of p), we can take

advantage of simple analytical expressions available for DDPV (see Sect. 4.2.4)

together with the faster potential–time program of DMPV. In line with reported

results [21, 22], the period between pulses τ1 must be at least five times longer than

τp. So, in Fig. 7.3a, it can be seen that the agreement between DDPV and DMPV

voltammograms is excellent. However, in Differential Normal Multipulse

Voltammetry (DNMPV, τ1 ffi τ p ), important differences are found between this

technique and the double pulse one (DNDPV) since in DNMPV the period between

pulses τ1 is not sufficient for the equilibrium to be restored.

The clearest difference corresponds to the value of the response at very cathodic

potentials which is null for the case of DNMPV, whereas it depends on the ratio (τ1/

τ2) ΔI planeDNDPV / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ1 þ τ2
p � 1=

ffiffiffiffi
τ1
p� �� �

for DNDPV, in agreement with

Eq. (4.102). Moreover, the peak potential coincides with the formal one in the

case of the multipulse technique, whereas it is shifted toward more positive values

in the case of the double pulse one.

The location of the response is not affected by the ratio between pulse times in

the case of DNMPV. This effect can be seen in Fig. 7.4 in which the current

potential curves calculated for different values of (τ2/τ1) and planar electrodes

have been plotted. This ratio only affects the magnitude of the current and not the

peak potential, which coincides with the formal potential in all the cases. For

nonplanar electrodes, this behavior also holds when the diffusion coefficients of

oxidized and reduced species are equal [9].

Fig. 7.2 DSCVC curves corresponding the system FeCl3 1 mM+K2C2O4 0.25 M (pH¼ 4.70) at

mercury electrodes of different radii. The values of the electrode radius (r0 ¼ rs in cm) are shown

on the curves
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7.2.3 Square Wave Voltammetry

As stated in Sect. 7.1, the current in SWV is sampled at the end of each potential

pulse and the net response (IGSW) is given by the subtraction of the current

corresponding to a pulse with odd index (forward current, IGf ) and that of the

following pulse with even index (reverse or backward current, IGr ) (see Eq. (7.6)).
By using the expression of the current for any pulse of a given sequence

(Eq. (5.23)), the expression for the SWV response of a reversible electrode reaction

at electrodes of any geometry is immediately derived [21]:
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Reproduced from [9] with

permission
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ψ G
SW ¼

IGSW
ffiffiffi
τ
p

FAG

ffiffiffiffi
D
p

c*O
¼ � 1þ c*R=c

*
O

� �
Z2 p fG 1; ξGð Þþ

þ 1þ c*R=c
*
O

� �X2 p�1
m¼1

Zm fG 2 p�mð Þ; ξGð Þ � fG 2p�mþ 1ð Þ; ξGð Þ½ 
ð Þ

p ¼ 1, 2, . . . , N=2ð Þ

ð7:21Þ

with

ξG ¼
ffiffiffiffiffiffi
Dτ
p

qG
ð7:22Þ

where qG is a characteristic dimension of the electrode geometry considered, Zm
is given in Eq. (7.12), and fG is a dimensionless function given in Table 7.1 for

several common electrode geometries.

A C++ code to calculate the response of one-electron reversible electrode

processes in SWV at disc, (hemi)spherical, and cylindrical electrodes of any radius

can be found in Appendix J.

7.2.3.1 Planar Electrodes

In the particular case of planar electrodes (qG !1, see Table 7.1), the following

simplified expression for Eq. (7.21) is deduced:

t
DI

I

¢

Fig. 7.4 Influence of the

ratio (τ2/τ1) on the response

of DNMPV for planar

electrodes. The values of

(τ2/τ1) are indicated on the

curves. ΔE ¼ �50mV,

ΔEs ¼ �5mV.

I planed, c τð Þ ¼ FAc*O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= πτð Þp
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ψ plane
SW ¼ � 1þ c*R=c

*
O

� �Z2 pffiffiffi
π
p

þ 1þ c*R=c
*
O

� � 1ffiffiffi
π
p
X2 p�1
m¼1

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� mþ 1
p

� �� �
ð7:23Þ

When the diffusion coefficients of species O and R are different the current is

ψ plane
SW ¼ I planeSW

ffiffiffi
τ
p

FA
ffiffiffiffiffiffiffi
DO

p
c*O

¼ � 1þ c*R= γc
*
O

� �� �Z2 pffiffiffi
π
p

þ 1þ c*R=γc
*
O

� � 1ffiffiffi
π
p
X2 p�1
m¼1

Zm
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p� mþ 1
p

� �� �
ð7:24Þ

with Zm and γ given by Eqs. (7.17) and (7.18).

The SWV curve (Eqs. (7.23) and (7.24)) presents a peak potential corresponding

to the half-wave potential. Moreover, from these equations, an easy expression

for the maximum current can be deduced when very large values of ESW are

applied ( ESW � 100mV ), so the potential is completely stepped through the

wave. Therefore, near the top of the wave, the forward pulses verify E f � E��O
0

c ¼
E2 p�1 � E��O

0
c � 0, and the reverse pulses fulfill Er � E��O

0
c ¼ E2 p � E��O

0
c 
 0. In

these conditions and according to Eq. (7.12), Zm takes the value

Zm ¼ �1ð Þmþ1 ð7:25Þ

In these conditions, Eq. (7.23) becomes

Table 7.1 Expressions for functions fG(n, ξG) and fG,micro for the four electrode geometries

considered

Electrode Function fG(n, ξG)
fG,

micro

Disc (radius rd, area

Ad ¼ πr2d)
4
πξd 0:7854þ 0:44315 1ffiffi

n
p
ξd
þ 0:2146exp �0:39115 1ffiffi

n
p
ξd

� �� �
4
πξd

Sphere (radius rs, area

4πr2s )
ξs þ 1ffiffiffiffi

πn
p ξs

Band (height w, length l,
area wl)

ξb þ 1ffiffiffiffi
πn
p if nξ2b < 0:4

0:25
ffiffi
π
n

p
e�0:4

ffiffiffiffi
πn
p

ξb þ πξb
ln 5:2945þ5:9944 ffiffinp ξbð Þ if nξ2b � 0:4

2πξb
ln 64nξ2b½ 


Cylinder (radius rc,
length l, area 2πrcl )

1ffiffiffiffi
πn
p e�0:1

ffiffiffiffi
πn
p

ξc þ ξc
ln 5:2945þ1:4986 ffiffinp ξcð Þ

2ξc
ln 4nξ2c½ 


ξG ¼
ffiffiffiffiffiffi
Dτ
p

=qG with qG ¼ rd for discs; qG ¼ rs for spheres or hemispheres; qG ¼ rc for cylinders;
and qG ¼ w for bands. Note that functions fG(n, ξG) and fG,micro are dimensionless
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ψ plane
SW ¼ 1þ c*R=c

*
O

� � 1ffiffiffi
π
p 1þ

X2 p�1
m¼1

�1ð Þmþ1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� mþ 1
p

� �� �( )
ð7:26Þ

The sum in the brackets of the right-hand side of this equation converges rapidly

to 2.144 for p � 10, so for the maximum value of the current, we obtain [21]

ψplane,plateau
SW ¼ 1:21 1þ c*R=c

*
O

� � ð7:27Þ

7.2.3.2 Spherical Electrodes

In the case of spherical electrodes, by taking into account Table 7.1 and Eq. (7.23),

the SW current can be written as

ψ sphe
SW ¼ ψ plane

SW þ 1þ c*R=c
*
O

� �
ξs

1

1þ eη2 p�1
� 1

1þ eη2 p

� �
ð7:28Þ

The above equation indicates that the contribution to the total current due to the

electrode radius has a stationary character since it only depends on the last potential

cycle considered (i. e., of the 2p and 2p �1 potential pulses). As in the case of

planar electrodes, for very large values of ESW (i.e., ESW � 100mV), a maximum

current is obtained which, in agreement with Eqs. (7.27) and (7.28) is given by

[21, 23]:

ψ sphe,plateau
SW ¼ 1þ c*R=c

*
O

� �
1:21þ ξsð Þ ð7:29Þ

In the case of spherical microelectrodes under steady-state conditions, Eq. (7.29)

becomes

ψ sphe, ss, plateau
SW ¼ 1þ c*R=c

*
O

� �
ξs ð7:30Þ

which can be written as (see Eqs. (7.21)–(7.22) and (2.166)):

Isphe, ss, plateauSW ¼ 1þ c*R=c
*
O

� �
FAsDc

*
O

1

rs
¼ 1þ c*R=c

*
O

� �
Imicrosphere, ss
d, c ð7:31Þ

7.2.3.3 Other Electrode Geometries: Microelectrodes and Steady-State

Subtractive Voltammetries

Figure 7.5 shows the ψ G
SW � Eindex � E��O

0
c

� �
curves calculated for discs, spheres,

bands, and cylinders by considering three values of qG ¼ rd ¼ rs ¼ w=2ð Þ ¼ rcð Þ
(see Eq. (7.21) and Table 7.1). For the largest electrode considered (Fig. 7.5a), all

the voltammograms are almost coincident since the prevalent diffusion field is
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linear such that the electrode geometry is irrelevant. As the electrode size decreases

(Fig. 7.5b, c), the different SWV curves separate until they reach the steady-state

(disc, sphere) or quasi-steady-state (band, cylinder) behavior (Fig. 7.5c). Under

these conditions, the ratio between the SWV currents at spheres and discs is (π / 4)

in agreement with Eqs. (7.35) and (7.36). Note that in all the cases the peak

potential does not depend on either the geometry or size of the electrode and it

coincides with the formal potential.

The forward and reverse currents ψG
f and ψG

r of the square wave voltammograms

corresponding to Fig. 7.5c are shown in Fig. 7.6a for microelectrodes of the four

electrode geometries considered. From these curves, it can be seen that both

currents present a sigmoidal shape and they are separated by 2ESW in the case of

spheres and discs. This behavior clearly shows that the steady state has been

attained. On the other hand, in the case of cylinders and bands, ψG
f and ψG

r show

a transient behavior under these conditions. From Fig. 7.6b, c, it can be verified

that a decrease in the radius, ( w=2ð Þ ¼ rc ¼ 0:1μm) and that of both radius and

frequency (Fig. 7.6c, w=2ð Þ ¼ rc ¼ 0:1μmand f¼ 10 Hz) do not lead to a stationary

SWV response at cylinder and band microelectrodes.

In Fig. 7.7, the variation of the dimensionless peak current (ψG;peak
SW ) with the

parameter ξG ¼
ffiffiffiffiffiffiffi
Dτ
p

=qG (see Eq. (7.22)) is plotted for the four geometries under

study with ΔEs ¼ 5mV and ESW ¼ 50mV.

A linear dependence of ψG;peak
SW with ξG in the case of discs and spheres (equa-

tions shown in the graphs) can be seen in this figure which coincides with those

previously reported [6, 21]. For cylinders and bands, polynomial dependences are

obtained showing a more complex behavior. Note that in the planar-limiting

behavior (i.e., ξG ! 0), the four geometries logically tend to the constant limit

ψplane, peak
SW ¼ 0:918=

ffiffiffi
π
p ¼ 0:518 [6].

The evolution of the half-peak width (W1/2) of the ψ
G
SW � Eindex � E��O

0
c

� �
curve

with the square wave amplitude ESW for the four geometries considered can be seen

in Fig. 7.8. As can be inferred, W1/2 increases with ESW from W1=2 ¼ 90mV for

ESW � 10mV to W1=2 ¼ 2ESW for ESW > 100mV, independently of the electrode

geometry and size (i.e., under transient and steady-state conditions). The half-peak

width (W1/2) is therefore independent of the electrode dimension and its geometry

and of the period or the frequency of the square wave, as given by [21]:

W1=2 ¼ RT

F
ln

1þ e2ηSW þ 4eηSW þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ηSW þ 4eηSWð Þ2 � 4e2ηSW

q
1þ e2ηSW þ 4eηSW �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ηSW þ 4eηSWð Þ2 � 4e2ηSW

q
0B@

1CA ð7:32Þ

with

ηSW ¼ FESW=RT ð7:33Þ

The variation of the logarithm of the peak current (IG;peakSW ) with the logarithm of

the frequency ( f ) for the four geometries considered and three values of the
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characteristic dimension of the electrode qG is plotted in Fig. 7.9. For spheres and

discs, IG;peakSW becomes regardless of the frequency f (steady-state behavior) for small

frequencies and electrode radii ( f< 10 Hz in Fig. 7.9a). In the case of bands and

cylinders, the peak current always depends on the frequency (i.e., only a pseudo-

stationary behavior can be obtained), even for low values of f and qG (see dashed

and dotted-dashed curves in Fig. 7.9a). On the other hand, as f increases, a linear

ξG
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Fig. 7.7 Variation of the dimensionless peak current (ψG;peak
SW ) with the parameter ξG ¼

ffiffiffiffiffiffiffi
Dτ
p

=qG
at discs (solid lines,qG ¼ rd), spheres (dotted lines,qG ¼ rs), cylinders (dashed lines,qG ¼ rc), and
bands (dashed-dotted lines, qG ¼ w=2). ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298.15 K. Reproduced

from [21] with permission
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Fig. 7.8 Variation of the half-peak width (W1/2, Eq. (7.32)) of the SWV curve with the square
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ΔEs ¼ 5mV. T¼ 298.15 K
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dependence between the peak current and log( f ) with slope 0.5 arises, and the peak
currents of the four geometries are coincident for large f and qG values. This

linearity is typical of a predominant planar diffusion [6, 24].

The influence of ESW on the SWV curves of the four geometries considered is

plotted in Fig. 7.10. From these curves, it can be concluded that the peak potential

of the ψ G
SW � Eindex � E��O

0
c

� �
curves remains unaffected by the variation of ESW and

is coincident in any case with the formal potential, and the peak current increases

with the square wave potential up to values of ESW � 125mV for which a broad

plateau is obtained. The value of this current plateau is related to ξG, independently
of ESW. The current corresponding to this plateau is given by Eq. (7.29) for spheres

and for discs

ψdisc,plateau
SW ¼ 1:21þ 4

π
ξd ð7:34Þ
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The equation corresponding to spherical electrodes coincides with that previ-

ously reported in references [19, 23].

In the case of Cyclic Square Wave Voltammetry (CSWV), the SWV curve

obtained in the second scan is a mirror image to that of the first scan whatever

the electrode geometry if the diffusion coefficients of species O and R are assumed

as equal. In the contrary case, although the peak potentials of both scans are

coincident, differences in the peak heights are observed for nonplanar electrodes.

When the characteristic dimension of the electrode fulfills thatqG �
ffiffiffiffiffiffiffiffi
πDt
p

(with

qG being equal to rd, rs, w, or rc for discs, spheres, bands, or cylinders, respectively),
stationary or pseudo-stationary conditions are attained. Under these conditions, the

expressions for the signal obtained in SWV as well as those corresponding to

differential techniques DSCVC and DMPV previously discussed simplify greatly.

In the case of discs or spheres, a true steady-state response can be obtained

(see Eqs. (7.20) and Table 7.1):

– Spherical electrode

ψ sphe, ss
DSCVC ¼ 1þ c*R=c

*
O

� �
ξs

1

1þ eη p
� 1

1þ eη p�1

� �
ψ sphe, ss
DMPV ¼ 1þ c*R=c

*
O

� �
ξs

1

1þ eη p
� 1

1þ eη p�1

� �
ψ sphe, ss
SWV ¼ 1þ c*R=c

*
O

� �
ξs

1

1þ eη2 p�1
� 1

1þ eη2 p

� �

9>>>>>>=>>>>>>;
ð7:35Þ

– Disc electrode

ψdisc, ss
DSCVC ¼ 1þ c*R=c

*
O

� �
ξd
4

π

1

1þ eη p
� 1

1þ eη p�1

� �
ψdisc, ss
DMPV ¼ 1þ c*R=c

*
O

� �
ξd
4

π

1

1þ eη p
� 1

1þ eη p�1

� �
ψdisc, ss
SWV ¼ 1þ c*R=c

*
O

� �
ξd
4

π

1

1þ eη2 p�1
� 1

1þ eη2 p

� �

9>>>>>>=>>>>>>;
ð7:36Þ

with ξG (G¼ s for spheres, qG ¼ rs, and G¼ d for discs, qG ¼ rd ) given by

Eq. (7.22). Note that the current has been written in an identical dimensionless form

for the three techniques, ψ G
SW ¼ IGSW

ffiffiffi
τ
p

= FAG

ffiffiffiffi
D
p

c*O
� �

. In agreement with equa-

tions (7.35) and (7.36), the response in the three techniques considered is

identical if the pulse amplitude is the same in all cases (which in practice means

that ΔEDSCVC ¼ ΔEDMPV ¼ 2ESW).

The differential curves are peak shaped in all cases even under the stationary

state, with a peak potential equal to the formal potential if the current is plotted

versus Eindex (given by equations (7.3) or (7.7)), and the peak current is given by
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Isphe, ss,peak ¼ Isphe, ss tanh
FΔE
4RT

� �
Idisc, ss,peak ¼ Idisc, ss tanh

FΔE
4RT

� �
9>>=>>; ð7:37Þ

with Idisc, ss ¼ 4FDc*Ord and Isphe, ss ¼ 4πFDc*Ors being the steady-state diffusion-

limiting currents for a disc or spherical electrode, respectively, andΔE ¼ ΔEDSCVC

¼ ΔEDMPV ¼ 2ESW (see Eqs. (2.166) and (2.168) and [9, 25]).

In the case of cylinders and bands, only pseudo-stationary currents are achieved

and no strict equivalence between the three techniques is observed in this case.

7.3 Non-reversible Electrochemical Reactions

For electron transfer processes with finite kinetics, the time dependence of the

surface concentrations does not allow the application of the superposition principle,

so it has not been possible to deduce explicit analytical solutions for multipulse

techniques. In this case, numerical methods for the simulation of the response need

to be used. In the case of SWV, a semi-analytical method based on the use of

recursive formulae derived with the aid of the step-function method [26] for solving

integral equations has been extensively used [6, 17, 27].

As in the case of differential double potential pulse techniques like DDPV, slow

electrochemical reactions lead to a decrease in the peak height and a broadening of

the response of differential multipulse and square wave voltammetries as compared

with the response obtained for a Nernstian process. Moreover, the peak potential

depends on the rate constant and is typically shifted toward more negative potentials

(when a reduction is considered) as the rate constant or the pulse length decreases.

SWV is the most interesting technique for the analysis of non-reversible electro-

chemical reactions since it presents unique features which allow us to characterize

the process (see below). Hereinafter, unless expressly stated, a Butler–Volmer

potential dependence is assumed for the rate constants (see Sect. 1.7.1).

7.3.1 Differential Multipulse Voltammetry

As stated in the previous section, a sluggish electrochemical reaction gives rise

to smaller and broader signals than a fast one. This can be seen in Fig. 7.11 in

which the influence of the dimensionless rate constant κ0plane ¼ k0
ffiffiffiffiffiffiffiffi
τ=D

p
on the

ΔI � Eindex � E��O
0

c

� �
curves obtained in DMPV (τ1=τ p ¼ 50, Fig. 7.11a) and in

DNMPV (τ1=τ p ¼ 1, Fig. 7.11b) is plotted. It is interesting to highlight that,

although the effect of the decrease of κ0plane is qualitatively similar in DMPV and
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DNMPV techniques, there is a smaller influence of the variation of the rate

constants in the latter technique (for example, for κ0plane ¼ 10�3 in DMPV the

current has decreased by 78 % compared to the reversible peak height and the

peak potential is shifted �55 mV from the formal potential value, whereas in

DNMPV the decrease in the peak current is 40 % and the shift of the peak

potential is �10 mV).

It is interesting to compare the results obtained in DMPV and DNMPV tech-

niques with those corresponding to DDPV and DNDPV double pulse ones (see

Eqs. (4.134) and (4.142)). Thus, in Figs. 7.12 and 7.13, this comparison for quasi-

reversible and irreversible processes is made. Unlike reversible processes, for

sluggish electrode reactions the disagreement between the curves is apparent

whatever the length of the pulses; the slower the charge transfer, the greater the

discrepancy of the curves. This affects not only the value of the peak current, but

also the position of the peak and the curves corresponding to the multipulse

methods (DMPV, DNMPV) appear at less negative potentials.
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The discrepancy or similarity between the response in double pulse and

multipulse techniques is related to the ability of the system to compensate the

accumulative effects taking place in the latter. In the case of irreversible charge

transfer processes, these effects are more significant since the electrode reaction

does not regenerate the electro-active species and so there is a depletion of the

reactant during the scan that gives rise to smaller signals (see Figs. 7.12b and

7.13b). Thus, for example, the comparison of the responses in DDPV and DMPV

techniques provides a simple diagnosis test for the reversibility of the electrode

process (Fig. 7.12).

According to the above, the electrochemical response in the different differential

pulse techniques can be very different, and it is worth analyzing the advantages and

disadvantages of each method. Regarding the double pulse methods, in normal

mode, DNDPV, this has the inconvenience of presenting asymmetrical peaks that

can hinder the experimental determination of the peak current. In addition, the peak

b
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Fig. 7.12 Comparison

between double (DDPV,

dotted lines) and multipulse

(DMPV, solid lines)
techniques for different

electrode kinetics:

(a) quasi-reversible

(k0 ¼ 10�3 cms�1, α ¼ 0:5)
and (b) irreversible

(k0 ¼ 10�5 cms�1, α ¼ 0:5)
processes. Planar electrode,

τ1 ¼ 1s,

τ1=τ2 ¼ τ1=τ p ¼ 50,

ΔE ¼ �50mV,

ΔEs ¼ �5mV. Reproduced

from [9] with permission
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potential for a reversible process (Fig. 7.3b) is shifted from the half-wave potential.

On the other hand, the other techniques (DDPV, DMPV, DNMPV) have well-

defined peaks, all of them situated around the half-wave potential in the case of

reversible charge transfer processes. As can be observed, the choice of the method

will depend on the electrode kinetics of the system under study. Thus, for reversible

systems the multipulse DNMPV technique shows greater sensitivity than DDPV

and DMPV. For totally irreversible processes, the height of the signal is notably

greater in double pulse techniques than in multipulse ones, and therefore we can

infer that DDPV is the better method for analyzing slow electrode processes

because of its higher sensitivity and well-defined curves. Nevertheless, if the aim

is to remove the interference of background irreversible signals when studying a

reversible process, multipulse techniques (DNMPV and DMPV) provide greater

discriminatory power.
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Fig. 7.13 Comparison

between double (DNDPV,

triangle) and multipulse
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techniques for different

electrode kinetics:
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(k0 ¼ 10�2 cms�1, α ¼ 0:5)
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The electrode size is another important factor to be considered since it affects the

magnitude of the diffusive transport, as shown in Fig. 7.14 for totally irreversible

processes. At planar and spherical electrodes significant differences are found

between double pulse and multipulse modes, with the discrepancy diminishing

when the electrode radius decreases, since the system loses the “memory” of the

previous pulses while approaching the stationary response. Thus, the relative

difference in the peak current of a given double pulse technique and the

corresponding multipulse variant is always smaller than 2 % when

rs < 0:1
ffiffiffiffiffiffiffiffiffiffiffiffi
πDτ1
p

. Note that this implies that attaining equivalent responses requires

the use of smaller electrodes when both pulses are short with similar lengths as in

DNDPV and DNMPV (see Fig. 7.14f) than when the length of the pulse (τ2, τp) is
much shorter than τ1 as in DDPV and DMPV (see Fig. 7.14c).

7.3.2 Square Wave Voltammetry

In order to use SWV to obtain sufficiently precise kinetic data, it is essential to

analyze how complications in a fast electron transfer affect the current–potential

response. The usual way to do this for non-reversible electrochemical processes is

by changing the frequency and, therefore, the dimensionless rate constant given by

κ0plane ¼ k0
ffiffiffiffiffiffiffiffi
τ=D

p
ð7:38Þ

and to monitor the evolution of the peak parameters, with the response being

dependent on both κ0plane and on the charge transfer coefficient α. The influence of

the dimensionless rate constant on the net current and on the forward and reverse

components corresponding to planar electrodes can be seen in Fig. 7.15.

From the curves in this figure, it can be concluded that the effect of the decrease

of the electrochemical reversibility is similar to that observed for other differential

techniques (compared with the results obtained in DMPV shown in Fig. 7.11). The

reverse current is the most affected by the decrease of the reversibility of the charge

transfer since it changes from a negative peak-shaped feature for reversible and

quasi-reversible processes to a positive pseudo-sigmoidal one for fully irreversible

processes (see Fig. 7.15a), which causes a decrease of the net current, compared to

that of reversible processes. The following intervals have been proposed for

characterizing the SWV response at planar electrodes in terms of reversibility:

κ0plane > 10, reversible process; 0:01 < κ0plane < 10, quasi-reversible process;

κ0plane < 0:01, fully irreversible process [6]. For nonplanar electrodes, the influence

of the reversibility on the SWV response is more complex since it depends on the

electrode size [9].

The evolution of the peak parameters of the SWV current (peak current, peak

potential, and half-peak width) is plotted in Fig. 7.16 for a planar electrode in terms
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of κ0plane for different values of the charge transfer coefficient α and ESW ¼ 50mV

[27]. From the current–potential curves in these figures, it can be seen that the peak

height decreases with κ0plane until it reaches a constant value independent of the rate

constants for κ0plane < 0:01. Under these conditions, the value of the peak current

depends on α and the following empirical formula has been proposed [28]:

ψplane, peak
SW ¼ 0:77

αFΔEs

RT

� �0:41

tanh
0:47αFESW

RT

� �
ð7:39Þ

Concerning the peak potential shown in Fig. 7.16b, for slow charge transfers, its

value moves away from the formal potential E��O
0

c (which coincides with the peak

potential for fast charge transfers) toward negative values, and the shift is more

pronounced the smaller α. The half-peak width of the SWV net current increases as

the charge transfer evolves from fast to slow (see Fig. 7.16c) becoming independent

of κ0plane for values of the rate constant below 0.01 and α � 0:3. In the case of a

reduction process, some anomalies in the general trend are observed for low values

of α (see below).
Cyclic Square Wave Voltammetry (CSWV) is very useful in determining the

reversibility degree and the charge transfer coefficient of a non-Nernstian electro-

chemical reaction. In order to prove this, the CSWV curves of a quasi-reversible

process with κ0plane ¼ 0:03 and different values of α have been plotted in Fig. 7.17.

In this figure, we have included the net current for the first and second scans

(Fig. 7.17b, d, and f) and also the forward, reverse, and net current of a single

scan (first or second, Fig. 7.17a, c, e) to help understand the observed response.

From the curves in Fig. 7.17, it can be concluded that if α ¼ 0:5, no splitting is

observed in the net current in either scan. However, ifα� 0:5, there is a splitting in
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Fig. 7.15 Influence of the dimensionless rate constant κ0plane ¼ k0
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p
on the SWV forward

(dashed lines) and reverse (solid lines) currents ψplane
f and ψplane

r (a) and on the SWV net current
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SW (b), corresponding to a non-reversible electrochemical reaction at a planar electrode.
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p
appear on the curves
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the net current of the first scan which is not present in the second (see Fig. 7.17b).

This splitting is related to the appearance of a minimum in the reverse component of

the current at anodic potentials for values of α < 0:3 for quasi-reversible processes
(Fig. 7.17a). Contrarily, this splitting is only observed in the second scan ifα
 0:5
(Fig. 7.17f). In this case, there is a maximum in the reverse component at cathodic

potentials, in agreement with Fig. 7.17e.

The CSWV response of a fully irreversible electrochemical reaction (κ ¼ 0:003)
has been plotted in Fig. 7.18 for the same values of α shown in Fig. 7.17 in order to
compare it with the quasi-reversible case discussed above. From these curves, it can

be seen that in this case there is no splitting in the first scan, regardless of the value

of α, and the dependence of the peak height on the charge transfer coefficient is

given by Eq. (7.39) under these conditions. Contrarily, a splitting is always

observed in the second scan (with the relative heights of the two peaks being

modulated by the value of the charge transfer coefficient).

So, a totally irreversible process could bemistaken for a quasi-reversible onewith

α
 0:5 (Fig. 7.17f). In order to discriminate the reversibility degree of the electro-

chemical reaction, it is necessary to take into account that for a quasi-reversible

process the peak corresponding to more cathodic potentials in the second scan

(denoted as RC by [29]) is higher than that located at more anodic ones (denoted

as RA by [29]) when α
 0:5, whereas the opposite is observed for a fully

irreversible electron transfer for any value of α (see also Table insert, Fig. 7.20).

In order to show this behavior in a clearer way, the CSWV net currents corres-

ponding to the second scan of an electrochemical reaction with α ¼ 0:8 are shown in

Fig. 7.19 for several values of the dimensionless rate constant. From these curves, it can

be inferred that the ratio between RC and RA peak currents corresponding to the

second scan forκ0plane ¼ 0:03andα ¼ 0:8, ψplane;peak;RC
SW /ψplane;peak;RA

SW , is 1.415, whereas
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for a slow electrochemical reaction taking place at planar electrodes.

The values of α are (A–L): 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Reproduced

from [27] with permission
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for κ0plane ¼ 0:003 (fully irreversible processes) and the same value of α for this ratio is

0.927 (see Fig. 7.20). Moreover, for a fully irreversible process the ratio between peak

currents of the second scan is independent of the frequency (or of the pulse time),

whereas for quasi-reversible processes this ratio is highly sensitive to it (see Fig. 7.19).

Indeed, a strong decrease of theRCpeak is observedwhen the rate constant diminishes,

giving rise to an inversion of the ratio ψplane;peak;RC
SW /ψplane;peak;RA

SW . Another feature that

should be considered is that the magnitude of the dimensionless current observed for a

fully irreversible electrochemical reaction is always smaller than that obtained for a

quasi-reversible one.

The appearance of two peaks in the second scan is a feature of the CSWV typical

of fully irreversible processes. Since the response of a non-reversible electro-

chemical reaction can be driven to the fully irreversible limit by using high fre-

quencies (or small pulse time lengths), it is interesting to characterize the response at

this limit. The net currents corresponding to the second scan of a totally irreversible

process (κ0plane ¼ 0:003) taking place for different values of α are shown in Fig. 7.20.

The displacement of the RC peak corresponding to more cathodic potentials with the

dimensionless rate constants obeys the same law as the single peak of the first scan

(not shown), whereas the RA peak observed at more anodic potentials reflects the

oxidation of species R generated at the electrode surface during the RC peak. It has

been reported that the shape and position of both peaks is not dependent on the

electrode size (for the case of spherical electrodes [29]). By combining the values of

the peak-to-peak separation and the ratio between the peak currents, it is possible to
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Fig. 7.19 SWV net currents corresponding to a charge transfer process with α ¼ 0:8 and different

values of κ0plane at planar electrodes. The values of 100κ0plane are shown on the curves.

ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298 K
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determine the kinetic parameters of the electrochemical reaction. This has been done

for the case of the U(V)/U(VI) system in [29].

Due to the great sensitivity of the response of the reverse scan to the kinetic

parameters, this has been used to test the accuracy of the Butler–Volmer (BV) and

the symmetrical Marcus–Hush (MH) formalisms in the elucidation of the kinetic

parameters of different redox couples. As an example, experimental CSWV

voltammograms obtained with different frequencies ( f ) (solid lines) of a 2 mM

2-methyl-2-nitropropane (MeNP), 0.1 M TBAP acetonitrile solution at a mercury

hemispherical electrode with rs ¼ 25μm are plotted in Fig. 7.21 [30]. As can be

observed, a reductive peak is recorded in the first scan at ca.�1:93V(vs. Agwire) and

in the second scan the peak corresponding to the oxidation of the radical anion

MeNP� is situated at ca. �1.54 V (once the forward and reverse components are

analysed, see for example Figs. 7.17e and 7.18c and e). The SWV parameters

have been optimized so as to obtain two well-defined peaks in the reverse scan.

This requires high frequencies ( f � 100Hz ) and a step potential ΔEs ¼ 10mV,

which permits both fast experiments and a sufficient number of points in the

voltammograms.

The reductive and oxidative peaks shown in Fig. 7.21 are well resolved and the

relative magnitude of the oxidative peak and the peak-to-peak separation increases

with frequency. The theoretical reverse SWV voltammograms were fitted to the

experimental data assuming both BV and MH models. As can be seen, with the

Butler–Volmer formalism (•) excellent fits are obtained between experimental and

theoretical SWV curves such that the magnitude and separation of the reduction and
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Fig. 7.21 Experimental (solid line) and theoretical (points) SWV voltammograms obtained with

Butler–Volmer (dotted) and Marcus–Hush (triangle) models. A positive sign corresponds to
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oxidation peaks are well described in all cases. However, when the symmetrical

Marcus–Hush relationships (Δ) were employed to describe the electrode kinetics,

the simultaneous fit of both peaks was not possible. This limitation of the symmet-

rical MH formalism has been highlighted with other techniques like CV, but CSWV

has proved very suitable for analyzing its degree of validity under different condi-

tions (see [30, 31]). Indeed, when the more flexible asymmetric MH formalist is

used for the kinetic analysis of this system, the agreement between theoretical and

experimental results is much better [32].

Although the usual way of analyzing the influence of the kinetics of the

electron transfer on the SWV response is based on the variation of the frequency

at fixed values of the staircase and square wave amplitude, a new approach for

carrying out this analysis has been proposed based on the study of the influence of

the square wave amplitude ESW on the current potential curves at a fixed value of

the frequency (or the time pulse) [19, 33, 34]. The square wave amplitude has

been used rarely as a tool in mechanistic and kinetic studies. One of the main

reason is that, as stated in Sect. 7.1, in SWV the current is plotted versus an index

potential which is an average potential between the forward and reverse potentials

(see Eq. (7.7)) and leads to a discrepancy between the plotted and actual potentials

at which the current is sampled. Therefore, the role played by ESW in the process is

complex.

A novel approach has been reported for the determination of kinetic parameters

at a fixed value of the frequency based on a new feature called “amplitude-based

quasi-reversible maximum” [33]. This term is related to the “quasi-reversible

Table 7.2 Values of the standard rate constant (k0), the transfer coefficient (α), the reorganization

energy (λ), and the formal potential (E��○
0

c , vs. Ag) corresponding to the theoretical curves shown in

Fig. 7.21. Taken from [30]

f (Hz) Butler–Volmer Marcus–Hush

100 k0 ¼ 3:1� 10�3 cms�1

α ¼ 0:40

E��○
0

c ¼ �1:652V

k0 ¼ 2:8� 10�3 cms�1

λ ¼ 1:8eV

E��○
0

c ¼ �1:678V
200 k0 ¼ 2:9� 10�3 cms�1

α ¼ 0:39

E��○
0

c ¼ �1:647V

k0 ¼ 2:5� 10�3 cms�1

λ ¼ 2:6eV

E��○
0

c ¼ �1:679V
300 k0 ¼ 2:8� 10�3 cms�1

α ¼ 0:39

E��○
0

c ¼ �1:638V

k0 ¼ 2:7� 10�3 cms�1

λ ¼ 3:1eV

E��○
0

c ¼ �1:673V
Mean

values
k0
� � ¼ 2:9� 0:1ð Þ � 10�3 cms�1

αh i ¼ 0:393� 0:006

E��○
0

c

� � ¼ �1:645� 0:007V

k0
� � ¼ 2:7� 0:2ð Þ � 10�3 cms�1

λh i ¼ 2:5� 0:7eV

E��○
0

c

� � ¼ �1:677� 0:003V

Fig. 7.21 (continued) reverse scans. E reverse
initial ¼ �2:6V vs: Agð Þ, ESW ¼ 25mV, ΔES ¼ 10mV.

The values of the kinetic parameters and formal potential extracted in each case are given in

Table 7.2. Test solution: 2 mM 2-methyl-2-nitropropane, 0.1 M tetra-n-butylammonium perchlo-

rate in acetonitrile. Reproduced from [30] with permission
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maximum” observed for surface-confined molecules introduced by Lovrić

[6]. When the square wave pulse amplitude is varied, a maximum appears in the

plots of ψplane
SW /ESW versus ESW for quasi-reversible electrochemical reactions which

is highly sensitive to the standard rate constants and thus enables its determination

(see Fig. 7.22). The position of the amplitude-based maximum, (ESW)max, depends

linearly on the logarithm of the frequency and on the value of the charge transfer

coefficient. This procedure has been applied in the determination of the kinetic

parameters of the 2-methyl-2-nitropropane system.

Another approach based on the same idea is to analyze the separation between

the forward and reverse currents as a function of ESW by using potential-corrected

voltammograms, i.e., by plotting the forward and reverse currents ψplane
f and ψplane

r

versus the real potential at which these currents are obtained, E2 p�1 and E2p,

respectively, in order to avoid artificial separations. These plots provide the basis

for the estimation of the rate constant [34].

7.4 Ion Transport Through Liquid Membranes

In this section, the subtractive multipulse techniques DMPV and SWV are applied

to reversible ion transfer across different liquid–liquid systems with one or two

polarizable interfaces. These electrochemical techniques allow the accurate and

easy determination of standard potentials directly from the peak potentials of the

current–potential curves since non-faradaic and background currents are minimized

[12, 35–40].

Fig. 7.22 Quasi-reversible electrode reaction of a dissolved redox couple at a planar electrode.

Dependence of the amplitude-based quasi-reversible maximum on the rate constant (a) and on the

charge transfer coefficient (b). For panel (a), the simulations are conducted for two electrons and

the frequencies (in Hz): 0.01 (1), 0.03 (2), 0.05 (3), and 0.06 (4). For panel (b), the simulation

conditions are: one electron, frequency 0.1 Hz, and α: 0.2 (1), 0.3 (2), 0.4 (3), 0.5 (4), 0.6 (5), and

0.7 (6). ΔEs ¼ 5mV. Reproduced from [33] with permission
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7.4.1 Differential Multipulse Voltammetry

In the case of DMPV (see Scheme 7.2), the treatment followed in Sect. 4.2.4.1 for

Differential Double Pulse Voltammetry (DDPV) for one and two polarizable

interfaces can be used because the equilibrium is quickly reestablished during the

longer period τ1. Therefore, the peak potential of the DMPV curves when the

current is plotted versus the index potential is

EDMPV,peak ¼ E1=2 Onepolarizable interface

EDMPV,peak ¼ EM
1=2 þ 13mV Twopolarizable interfaces

�
ð7:40Þ

with EM
1=2 being the half-wave potential for a two-polarizable interface system

EM
1=2 ¼ EM,��O 0 � RT

F
lnλþ ð7:41Þ

EM,��O0 ¼ Δw
Mϕ
��O0
Xþ � ΔM

w ϕ
��O0
Rþ ð7:42Þ

λþ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dw2

RþD
M
Xþ

q
Dw1

Xþ

c*
Rþ

c*
Xþ

ð7:43Þ

Δw
Mϕ
��O0
Xþ andΔ

M
w ϕ
��O0
Rþ are the formal ion transfer potentials for the target ion X+ and

for the membrane electrolyte cation R+, respectively, c*
Rþ is the concentration of the

membrane electrolyte cation, R+, andDM
Xþ and D

W2

Rþ are the diffusion coefficients of

X+ in the membrane (M phase) and R+ in the inner aqueous solution (w2 phase),

respectively.

7.4.2 Square Wave Voltammetry

The general expression for the SWV net current applicable to systems with one and

two polarizable interfaces is [36–38]:

ISW ¼ I2 p�1 � I2 p
¼ �Id τð Þg2 p

þ Id τð Þ
X2 p�1
m¼1

g2m�1 � g2mð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� mþ 1
p

� �� �
ð7:44Þ

where
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Id τð Þ ¼ zFAc*
XZ

ffiffiffiffiffiffiffiffi
DW

XZ

πτ

s
ð7:45Þ

gm ¼

1

1þ γeηm One polarizable interfaceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λþeηM,mð Þ2 þ 8λþeηM,m

q
� λþeηM,m

4
Two polarizable interfaces

8>>><>>>:
ð7:46Þ

with

ηm ¼
F

RT
Em � Δw

Mϕ
��O0
XZ

� �
One polarizable interface

ηM,m ¼
F

RT
Em � EM,��O0
� �

Two polarizable interfaces

9>=>; ð7:47Þ

γ ¼
ffiffiffiffiffiffiffiffi
DM

XZ

DW
XZ

s
ð7:48Þ

and with λþ given by Eq. (7.43).

In order to show the distribution of the applied potential between the outer and

the inner interface in the case of systems with two polarized interfaces, the potential

time waveform used in SWV is depicted in Scheme 7.5. The applied potential,

E (red line), and the outer (Eout, blue line) and inner potentials (Einn, green line)

have been plotted.

It can be seen that in the central part of the cyclic sweep, the outer potential, Eout,

follows the same trend as the applied potential, E, so in this zone the outer

interface presents a behavior similar to that of a system with a single polarizable

interface. Concerning the inner interface, Einn is quite sensitive to the external

polarization at both extremes of the cyclic sweep, becoming independent of

the potential in the central zone of the same. In the inset, it can be seen how

the potential pulses are distributed unequally between both outer and inner

interfaces [38].

For comparison of the SWV responses provided for systems of one and two

polarized interfaces, Fig. 7.23 shows the ISW � E curves corresponding to the direct

and to the reverse scans (solid line and empty circles, respectively) for both kinds of

membrane systems, calculated for ESW ¼ 50mV by using Eq. (7.44). The peaks

obtained when two polarized interfaces are considered are shifted 8 mV with

respect to those obtained for a system with a single polarized one, which implies

that the half-wave potential for the system with two polarized interfaces can be

easily determined from the peak potential by
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ESW,peak ¼ EM
1=2 � 8mV ð7:49Þ

forESW ¼ 50mV(with the upper sign for cations and the lower for anions), whereas

ESW,peak ¼ E1=2 when only one interface is considered, regardless of the square

wave amplitude [38].

In both types of membrane systems, the current–potential curves corresponding

to the first and second scans must be mirror images, which indicates that the ion

transfer processes taking place at both the outer and inner interfaces are reversible.

Thus, CSWV can be used as an excellent tool for analyzing the reversibility of

charge transfer processes.

Regarding the influence of the target ion concentration on the SWV curves, the

major difference found between systems with one or two polarized interfaces is that

this variable causes a shift of the peak potentials toward more anodic values through

an increase of EM
1=2 in the latter case (see Eqs. (7.41)–(7.43)), whereas only an

increase in the peak current is observed for systems with one polarized interface

[36]. Therefore, SWV is a very good analytical tool for the determination of ion

concentrations in both kinds of membrane systems.

The experimental and theoretical SWV net currents calculated from Eq. (7.44)

of several anions and cations can be seen in Fig. 7.24 corresponding to systems of
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Scheme 7.5 Potential–time waveform of SWV obtained from Eq. (7.5) (E, red line), and its

distribution between the outer interface (Eout, dark blue line) and the inner interface (Einn, green
line). The three index potentials (the outer index potential, Eout,index, the inner index potential, Einn,

index, and the membrane index potential, Eindex) are also included (blue line, dark green line, and
black line, respectively). Inset figure: Distribution of the applied potential (red line), between the

outer and the inner interfaces (dark blue line and green line, respectively). Einitial ¼ �450mV,

Efinal ¼ 450mV, ΔEs ¼ 10mV, ESW ¼ 50mV, τ ¼ 1s, A ¼ 0:081, Δw
o ϕ
��O0
Xþ ¼ �50mV,

Δo
wϕ
��O0
Rþ ¼ �150mV, c*

Xþ ¼ 0:5mM, c*
Rþ ¼ 50mM, Dw1

Xþ ¼ Dw2

Rþ ¼ 10�5 cm2 s�1,
DM

Xþ ¼ 10�8 cm2 s�1. T¼ 298.15 K. Reproduced from [38] with permission
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one polarized interface systems [38]. This series of ions is distributed into a range of

potentials of 1200 mV, which constitutes one of the widest potential windows in the

literature [36, 41]. As can be seen, the concordance between both sets of data is

excellent.

7.4.3 Micro-ITIES and Asymmetrical Diffusion

The advantages derived from the use of microscopic liquid–liquid interfaces have

been highlighted in Sect. 5.5.3, and different approaches to support such small

liquid|liquid interfaces in pores, pipettes, and capillaries have been addressed. The

theoretical treatment of ion transfer through these interfaces needs to consider the

asymmetry of the diffusion fields inside and outside the pore or pipette (i.e.,

diffusion can be approximated as linear in the inner phase, whereas radial diffusion

is significant in the outer phase, especially for small sizes) [36, 40, 42–44].

–

Fig. 7.23 Theoretical ISWj j � E� E1=2
� �

curves corresponding to the direct and reverse scans of

the square wave (solid lines and empty circles, respectively) for a system with one and two

polarizable interfaces obtained for ESW ¼ 50mV by using Eq. (7.44). ΔEs ¼ 5mV. E1/2 is the

half-wave potential given by Eqs. (2.53) and (2.81) for system with one or two polarizable

interfaces, respectively. Others parameters are the same as given in Scheme 7.5. Reproduced

from [38] with permission
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Following the theoretical treatment described in [42], the following expression

for the SWV net current corresponding to the transfer of an ion Xz taking place at a

microcapillary of radius a is found:

ISW ¼ I2 p�1 � I2 p ¼

¼ 4zFDout
X ac*, outX

c*, inX =c*, outX

� �þ ξSW ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� 1
p

1þ ξSW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p� 1
p

eη1

 !
eη2 p�1�

(
Y2 p�1
m¼2

c*, inX =c*, outX

� �þ ξSW ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� m
p

eηm�1

1þ ξSW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� m
p

eηm

 !
�

c*, inX =c*, outX

� �þ ξSW ffiffiffiffiffiffi
2 p
p

1þ ξSW
ffiffiffiffiffiffi
2p
p

eη1

 !
eη2 p�

Y2 p
m¼2

c*, inX =c*, outX

� �þ ξSW ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� mþ 1
p

eηm�1

1þ ξSW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� mþ 1
p

eηm

 !)
ð7:50Þ

with

ξSW ¼
4

π

ffiffiffiffiffiffiffiffiffi
Dout

X

D in
X

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πDout

X τ
p

a
ð7:51Þ
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Fig. 7.24 Experimental SWV obtained for 5� 10�4M solutions of several ions (shown on the

curves). Theoretical curves are given by solid lines. ESW ¼ 50mV, ΔEs ¼ 10mV, τ ¼ 0:3s, and

A
ffiffiffiffiffiffiffiffiffi
Dw

Xþ
p

in cm3 s�1=2 : (a) TMAþ, 5� 10�4 ; (b) TEAþ, 4:9� 10�4; (c) TPAþ, 4:5� 10�4; (d)
TBAþ, 3:8� 10�4 ; (f) SbCl�6 , 3:3� 10�4 ; (g) AuCl�4 , 4:9� 10�4 ; (h) Pic�, 3:7� 10�4.
T¼ 298.15 K. Reproduced from [38] with permission
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ηm ¼
F

RT
Δ in

outϕm � Δ in
outϕ

��O0
� �

ð7:52Þ

Dphase
X is the diffusion coefficient of the target ion in the different phases and

c
�;in=out
X its bulk concentration in the inner/outer solution, Δin

outϕm the electric

potential difference across the interface corresponding to the mth potential applied,

and Δ in
outϕ

��O0 the formal potential of the ion transfer.

The behavior of the system is defined by the dimensionless parameter ξSW
(Eq. (7.51)) and so by the ratio between the diffusion coefficients (Dout

X /Din
X) and

the dimensionless radius of the capillary defined as σSWV ¼ a=
ffiffiffiffiffiffiffiffiffiffiffi
D out

X τ
p

.

In cyclic SWV (Fig. 7.25), the typical peak-shaped response is obtained in both

the forward and reverse scans for any bulk concentrations of the ion. In contrast to the

behavior at macro-interfaces, the forward and backward peaks are not symmetrical

with respect to the potential axis, and the peak height of the reverse scan is dependent

on the vertex potential. The position of the voltammograms is well described by the

analytical solution (7.50) whenσSWV � 0:1, with a difference between analytical and
numerical results for the peak potentials of less than 8 mV at T¼ 298 K for typical

SWV conditions: ESW ¼ 10� 50mV and ΔEs ¼ 2� 10mV.

The SWV curves cannot be unambiguously related to the ion ingress or egress

due to the subtractive nature of the signal. To do this, the analysis of the forward and

backward components (Fig. 7.25b) is necessary and this reveals that, when the ion

is present in the outer solution, the forward peak in the scan toward negative

potentials is associated with the ion ingress and the peak obtained in the reverse

scan with the ion egress.

The influences of the pulse amplitude (ESW) and the potential step (ΔEs) in SWV

are shown in Fig. 7.26. Similarly to the case of macro-interfaces, the increase of

ESW gives rise to higher and broader peaks. Thus, for very large ESW values (> 100

mV), a plateau rather than a peak is obtained, whereas for smaller pulse amplitudes

(� 50mV), the forward and backward peaks are well defined.

With regard to the influence of the potential step (Fig. 7.26c, d), this is not

significant for reversible transfers at macro-interfaces (Fig. 7.26d), but this is not

the case at micro/nano-interfaces. As can be observed in Fig. 7.26c, the peak

potentials shift toward less negative potentials as the step potential is increased.

For the conditions considered in the figure, a ca. 15 mV shift is observed between

ΔEs ¼ 2 and 15 mV.

The peak potential varies linearly with ln ξSWV (Eq. (7.53)), where ξSWV

includes the influence of the intrinsic variables of the system (Eq. (7.51)). However,

it is difficult to find a general expression for the exact value of the peak potential

given that this also depends on the step potential and the pulse amplitude:

ΔϕSW,peak ¼ Δ in
outϕ

��O0 � RT

zF
lnξSWV �

RT

zF
f ΔEs, ESWð Þ ð7:53Þ

For typical SWV conditions (ΔEs ¼ 2mV,ESW ¼ 25mV,T ¼ 298K), the value

f ΔEs, ESWð Þ ¼ 1:44 is obtained from the analytical solution [42].
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The above expression makes it easy to predict the shift of the voltammograms

with the capillary size, experiment timescale, and diffusivities of the ion. Also,

provided that the capillary diameter and diffusion coefficients of the ion are known

(for example, by means of chronoamperometric experiments), the ΔϕSWV,peak

value allows the determination of the ion transfer formal potential and the consis-

tency of the value obtained can be easily tested by varying the scan rate or the

frequency [42, 44].
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7.5 Multi-electron Electrochemical Reactions

The electrochemical characterization of multi-electron electrochemical reactions

involves the determination of the formal potentials of the different steps, as these

indicate the thermodynamic stability of the different oxidation states. For this

purpose, subtractive multipulse techniques are very valuable since they combine

the advantages of differential pulse techniques and scanning voltammetric ones [6,

19, 45–52]. All these techniques lead to peak-shaped voltammograms, even under

steady-state conditions.

Here, the response of multi-electron electrochemical reactions in subtractive

multipulse voltammetries is treated by first considering the situation in which all the

electron transfers are reversible. The case corresponding to slow electron transfers

with different types of stabilization of the intermediate species is also analyzed.
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7.5.1 Reversible Electrochemical Reactions

Equations (6.15) and (6.16) cover an important gap in the electrochemical literature

corresponding to multi-electron electrochemical reactions, since they provide the

theoretical background for the study of these electrode processes in any electro-

chemical technique for electrodes of different geometry and size.

7.5.1.1 Differential Staircase Voltammetry

For the reaction scheme

step formal potential

1 O1 þ e� !O2 E��O
0

c,1

2 O2 þ e� !O3 E��O
0

c,2

⋮ ⋮
n On þ e� !Onþ1 E��O

0
c,n

ð7:IIÞ

in which the homogeneous comproportionation / disproportionation reactions are

not considered (see Sects. 3.3.1 and 3.3.4 for a detailed discussion).

E��O
0

c, i i ¼ 1, 2, . . . , nð Þ are the formal potentials of each individual electron transfer,

the analytical explicit expression of the DSCVC current according to Eqs. (6.15)

and (7.1) is

ψmultiE,G
DSCVC ¼

ImultiE,G
p � ImultiE,G

p�1
FAGc*O1

ffiffiffiffiffiffi
aD
p

¼
ffiffiffiffi
D

a

r Xp�1
m¼1

W m�1, sð Þ �W m;sð Þ
� �

fG p� mþ 1ð Þτ, qGð Þ � fG p� mð Þτ, qGð Þð Þ
(

þ W p�1, sð Þ �W p;sð Þ
� �

fG τ; qGð Þg ð7:54Þ

where

W m;sð Þ ¼ c*O1

Xn

i¼1 n� iþ1ð Þ
Yn

j¼i e
ηm, j

� �� �
1þ
Xn

k¼1
Yn

h¼k e
ηm,h

m¼ 1,2, . . . , p

W 0;sð Þ ¼W*¼ nc*O1

9>>=>>; ð7:55Þ

η p, j ¼
F E p � E��O

0
c, j

� �
RT

ð7:56Þ

AG is the electrode area corresponding to G geometry, qG the characteristic

dimension of the electrode, and function fG(tm,p, qG) given in Table 2.3 for different
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electrode geometries. In the particular case of a two-electron electrochemical

reaction (n¼ 2, EE mechanism),

step formal potential

1 O1 þ e� !O2 E��O
0

c,1

2 O2 þ e� !O3 E��O
0

c,2

ð7:IIIÞ

Eq. (7.54) becomes

ψEE,G
DSCVC¼

ffiffiffiffi
D

a

r Xp�1
m¼1

ZEE
m fG p�mþ1ð Þτ,qGð Þ� fG p�mð Þτ,qGð Þð ÞþZEE

p fG τ;qGð Þ
( )

ð7:57Þ

with

ZEE
m ¼

2
ffiffiffiffi
K
p

e2ηm�1 þ eηm�1ffiffiffiffi
K
p þ eηm�1 þ ffiffiffiffi

K
p

e2ηm�1
� 2

ffiffiffiffi
K
p

e2ηm þ eηmffiffiffiffi
K
p þ eηm þ ffiffiffiffi

K
p

e2ηm
ð7:58Þ

ηm ¼
F

RT
Em � E

��O0
c

� �
; m ¼ 1, 2, . . . , p ð7:59Þ

E
��O0
c ¼

E��O
0

c, 1 þ E��O
0

c, 2

2
ð7:60Þ

K ¼ exp
FΔE��O0c

RT

� �
ð7:61Þ

ΔE��O
0

c ¼ E��O
0

c, 2 � E��O
0

c, 1 ð7:62Þ

DSCVC is much more appropriate and accurate than CV and SCV because it

improves the shape and resolution of the peaks. Hence, it is very useful when the

peaks in CV or SCV are slightly overlapped. So, in Fig. 7.27 the variation of DSCVC

curves with ΔE��O0c is plotted for an EE mechanism at disc electrodes of different

sizes.

When the formal potentials fulfill ΔE��O0c < �142:4mV, the value of the formal

potentials can, therefore, be extracted from the average value of the peak potentials

of the forward and backward scans

E��O
0

c,1 ¼
E forward
peak,1 þ Ebackward

peak,1

2

E��O
0

c,2 ¼
E forward
peak,2 þ Ebackward

peak,2

2

ð7:63Þ

Evidently, under steady-state conditions, the peak potentials and the formal
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potentials coincide, since the DSCVC curve is equivalent to the Differential Double

Pulse one [48].

When only one peak is obtained (ΔE��O0c > �71:2mV), the determination of the

formal potentials can be made from the peak current and peak potential. Indeed, the

average of the forward and backward peak potentials corresponds to the value of the

average formal potential, i.e.,

E forward
peak þ Ebackward

peak

2
¼ E

��O0
c ð7:64Þ

Complementarily, the peak current depends on ΔE��O0c as can be seen in Fig. 7.28

for the response of the first scan corresponding to discs and spheres.

In Fig. 7.29, explicit Eqs. (6.15), corresponding to Cyclic Staircase Voltammetry

(CSCV, Figs. 7.29a, b), and (7.54), corresponding to Differential Cyclic Staircase

Voltammetry (DCSCV, Figs. 7.29c, d), have been applied to deduce the response for

the four-electron oxidation of bis(1,2-diferrocenyldithiolene)nickel under transient

(Fig. 7.29a, c) and stationary (Fig. 7.29b, d) conditions for three different values for

the pulse amplitude (ΔE). This complex has four oxidizable ferrocenyl groups and a

nickel dithiolene center, so multiple anodic and cathodic processes are possible

[53]. In this figure, the four oxidation steps that the neutral species can undergo are

considered. As can be observed, the first two steps are well resolved (although they

are much better in DCSCV), whereas the third and fourth give rise to overlapped

voltammograms.
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Fig. 7.27 Influence of the difference between the formal potentials (ΔE��○0c values indicated in the

graphs) on the DSCV voltammograms of an EE mechanism at disc microelectrodes of different

sizes (ξd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= ar2d
� �q� �

values indicated in the graphs). ΔEj j ¼ 5mV. ψdisc
DSCV and a are given by

Eqs. (7.10) and (7.11). Reproduced from [48] with permission
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7.5.1.2 Square Wave Voltammetry

Equation (6.15) is now applied to SWV in order to characterize a two-electron

electrochemical reaction. The effects of the difference between the formal poten-

tials, the frequency, the square wave potential, and the staircase potential of the

SWV are discussed and procedures for the determination of the formal potentials of

both electrochemical reactions are proposed.

When a square wave potential like that depicted in schemes (7.3) and (7.4) is

applied to the reaction scheme (7.III) (EE mechanism), the explicit form of the

current for any electrode geometry is

ψEE,G
SW ¼ IEE,GSW

ffiffiffi
τ
p

FAGc*O
ffiffiffiffi
D
p

¼
X2 p�1
m¼1

ZEE
m fG 2p�mð Þτ,ξGð Þ � fG 2p�mþ 1ð Þτ,ξGð Þð Þ � ZEE

2 p fG τ;ξGð Þ
( )

ð7:65Þ
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Fig. 7.28 Variation of the current of the forward peak in DSCVC with the ΔE��○0c value at disc

(solid line) and hemispherical (dashed line) microelectrodes of different sizes. The

ξG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= ar2G
� �q� �

values are indicated on the graphs. ΔEj j ¼ 0:5mV. Reproduced from [48]

with permission
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where ξG and ZEEm are given by Eqs. (7.22) and (7.58), respectively, and fG(nτ, ξG) is
given in Table 7.1 for different electrode geometries. In the case of planar elec-

trodes, Eq. (7.65) becomes

ψEE,plane
SW ¼ 1ffiffiffi

π
p

X2 p�1
m¼1

ZEE
m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� mþ 1
p

� �
� ZEE

2 p

 !
ð7:66Þ

For spherical electrodes, Eq. (7.65) is transformed into

ψEE,sphe
SW ¼ 1ffiffiffi

π
p

X2 p�1
m¼1

ZEE
m

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p� m
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p� mþ 1
p

� �
� ZEE

2 p

ffiffiffi
π
p
ξs þ 1

� � !
ð7:67Þ

A C++ code to calculate the response of two-electron reversible electrode

processes in SWV at disc, (hemi)spherical, and cylindrical electrodes of any radius

can be found in Appendix J.
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Fig. 7.29 Theoretical voltammograms in staircase cyclic voltammetry (a and b) and differential

staircase voltammetry (c and d) at disc electrodes for the four-electron oxidation of bis

(1,2-diferrocenyldithiolene)nickel in [NBu4][PF6]/CH2Cl2 solution (E��○
0

c,2 � E��○
0

c,1 ¼ 120mV,

E��○
0

c,3 � E��○
0

c,1 ¼ 230mV, E��○
0

c,4 � E��○
0

c,1 ¼ 290mV [48, 53]). Electrode radius: rd ¼ 1mm (a and c),

and rd ¼ 5μm (b and d); v ¼ 100mVs�1, |ΔE| values indicated in the graphs
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The behavior of the forward, If, reverse, Ir, and net, ISW, currents of a

two-electron electrochemical reaction with ΔE��O0c ¼ �200mV is shown in

Fig. 7.30 where a whole square wave cycle with ESW ¼ 50mV is applied to

spherical electrodes of different sizes.

For the reductions, the direct scan is applied in the cathodic direction, so in each

square cycle, the forward current is obtained at a more negative potential than the

reverse current, and therefore, Idirect scanf > Idirect scanr . However, for the inverse

sweep toward anodic potentials, it is fulfilled that Iinverse scan
f < Iinverse scan

r , since

the forward currents in each square cycle are now obtained at more positive

potentials than with the reverse one (see Scheme 7.4).

As the radius value diminishes, the forward and reverse currents corresponding

to different direction sweeps get closer, as can be seen by comparing Fig. 7.30a, b

corresponding to electrode radii values of 10�3 and 5� 10�4 cm, respectively.

These currents become coincident for small enough radii, i.e.,

Idirect scan
f ¼ Iinverse scan

r and Idirect scan
r ¼ Iinverse scan

f , as occurs in Fig. 7.30c for the

minor radius rs ¼ 5� 10�5 cm
� �

. This is a proof that the steady state has been

reached, something which is impossible to detect at sight if we observe only the

IEE;GSW currents, because they present the same morphology for any radius value, as is

shown in the boxes of Fig. 7.30. Thus, IEE;GSW shows two perfectly defined peaks of

the same height for each electronic transfer if ΔE��O0c � �200mV. The positive

peaks correspond to the cathodic scan (usually direct scan for reductions), whereas

the peaks with negative currents are obtained during the anodic scan.

The currents obtained with the multipulse technique SWV in the steady-state

situation, which are shown in the box of Fig. 7.30c, are identical to those obtained

with double pulse technique DDPV, whenever ΔEDDPV ¼ 2ESW (i.e., when E1

DDPVð Þ ¼ E f SWð Þ and E2 DDPVð Þ ¼ Er SWð Þ) [46, 49], so the currents obtained

with SWV in microelectrodes have the same characteristic as those shown for this

double pulse technique.

The effect of frequency on the SWV voltammograms of a two-electron electro-

chemical reaction is shown in Fig. 7.31 for differentΔE��O0c values at T¼ 298 K. The

responses for disc (solid line) and (hemi)spherical (dashed line) microelectrodes

calculated from Eq. (7.65) are considered.

When the formal potential of the first step is much more positive than that of the

second, ΔE��O0c < �200mV (Fig. 7.31c), the intermediate species O2 is stable and

two well-separated peaks are obtained, centered on the formal potential of each

process and with the features of the voltammograms of one-electron electro-

chemical reaction. When theΔE��O0c value increases, the stability of the intermediate

decreases and the two peaks are closer, and the transition from two peaks to a single

peak is observed (ΔE��O0c � �71:2mV). Eventually, when the formal potential of the

second electron transfer is much more positive than that of the first one,

ΔE��O0c > 200mV, the characteristics of the voltammograms are those of an appar-

ently simultaneous two-electron electrochemical reaction (Fig. 7.31a). Note that the
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resolution and symmetry of the peaks in SWV (as well as other differential pulse

techniques) are better than in linear sweep voltammetry. In addition, SWV offers

further reduction of double-layer charging and background currents, which enables

more precise quantitative analysis of experimental data.

In any case, the position and width of the peaks are not affected by the value of

the frequency or by the geometry of the electrode (see embedded graphs in

Fig. 7.31) since the potential and the time-geometrical dependences of the response

can be separated. On the other hand, the peak height is affected in the usual way,

such that the higher the frequency, the higher the peak.

Regarding the discrepancies between disc and spherical electrodes, these are

more evident as the frequency decreases (i.e., longer potential pulses) and so the

differences in the diffusion domains are more apparent.

With respect to the peak potentials, their value are independent of all the

technique parameters (including the pulse amplitude) and it is corroborated that it

coincides with the peak potential in Differential Double Pulse Voltammetry

(DDPV) and Differential Multipulse Voltammetry (DMPV). So, by imposing the

condition dψ G
SWV=dE ¼ 0 in Eq. (7.65), the three following roots are obtained in

terms of K [49]:

EI ¼ E
��O0
c any value of K að Þ

EII ¼ E��O
0

c,1 þ
RT

F
ln � 2K � ffiffiffiffiffiffiffiffiffiffiffiffi

f 2 Kð Þp � B
ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp þ 2B2K

2B

 !
bð Þ

EIII ¼ E��O
0

c,1 þ
RT

F
ln � 2K þ ffiffiffiffiffiffiffiffiffiffiffiffi

f 2 Kð Þp � B
ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þp þ 2B2K

2B

 !
cð Þ

9>>>>=>>>>;
K < ca: 0:06

ΔE��O0c < ca:�71:2mV
� �

for ESW < 50mV

ð7:68Þ

with K given in Eq. (7.61) and

f 1 Kð Þ ¼ 4K � 1ð Þ K � B2 þ 2B2K þ B4K
� �

B2
ð7:69Þ

f 2 Kð Þ ¼ B2 � K þ 8K2 þ 16B2K2 þ 8B4K2 � 10B2K � B4K

� 4BK
ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þ

p
� 4B3K

ffiffiffiffiffiffiffiffiffiffiffiffi
f 1 Kð Þ

p
ð7:70Þ

⁄�

Fig. 7.30 (continued) microelectrode (c) rs ¼ 5� 10�5 cm, for ΔE��○0c ¼ �200mV. The

corresponding net currents, IEE;spheSW , are also shown in boxes. ΔEs ¼ 5mV, ESW ¼ 50mV,

τ ¼ 0:0025s, c*O1
¼ 1mM, D ¼ 10�5 cm2 s�1, T ¼ 298K. Reproduced from [46] with permission
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Fig. 7.31 Influence of frequency on the peak height of square wave voltammograms of a

two-electron electrochemical reaction at disc (solid line) and (hemi)spherical (dashed line)
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B ¼ exp
F

RT
jESWj

� �
ð7:71Þ

The first root (EI) is valid for any ΔE��O0c value and corresponds to the average

value of the formal potentials:

EI ¼ E
��O0
c ¼

E��O
0

c,1 þ E��O
0

c,2

2
ð7:72Þ

Independently of the ΔE��O
0

c value, the SWV voltammograms are symmetrical

with respect to the E
��O0
c value (see Fig. 7.31), which corresponds to the minimum of

the valley between peaks for very negative values ofΔE��O0c , and to the peak potential

for ΔE��O0c � �71:2mV. This behavior is independent of the electrode size and

geometry and of the pulse durations. The roots EII and EIII correspond to the peak

potentials of separate signals (i.e., to E��O
0

c,1 and E��O
0

c,2) when ΔE��O0c < �142:4mV.

As in the case of a reversible one-electron electrochemical reaction, the half-

peak width of the SWV does not depend on the electrode geometry. For a

two-electron electrochemical reaction, W1/2 is only a function of the difference

between formal potentials ΔE��O0c and of the square wave amplitude ESW. The

evolution of the half-peak width W1/2 with ΔE��O0c at both disc and (hemi)spherical

electrodes has been plotted in Fig. 7.32. These curves give a very general criterion

for the characterization of the EE process through W1/2.

The half-peak width takes a constant value when two separate peaks are obtained,

which corresponds to the width of mono-electronic transfers:

W1 e�
1=2 ESW ! 0ð Þ ! 90mV. For ΔE��O0c > �142:4mV, two unresolved peaks or a

single peak are obtained, and W1/2 decreases with ΔE��O0c until it reaches the value

corresponding to two-electron transfer reactions: W2 e�
1=2 ESW ! 0ð Þ ! 45mV. The

sharp change of W1/2 corresponds to the ΔE��O0c value where the height of the central

valley between peaks coincides with the half-peak height (� �142mVforESW ! 0).

The influence of ESW on the CSWV curves corresponding to quinizarin and

pyrazine systems on a static mercury electrode can be seen in Fig. 7.33. The square

wave amplitude has been changed in the range 10–450 mV and the voltammograms

show that, in general, the net current, IEE;spheSW , increases with ESW.

The experimental cyclic square wave voltammograms in Fig. 7.33a show two

well-defined peaks at small values of ESW ESW < ΔE��O0c

		 		=2� �
and a broad valley

between them, with their positions being independent of ESW (compare curves

⁄�

Fig. 7.31 (continued) electrodes calculated from Eq. (7.65). Three differentΔE��○0c ¼ E��○
0

c,2 � E��○
0

c,1

� �
values are considered: (a) 200 mV, (b) 0 mV, and (c) �200mV. The curves normalized with

respect to the peak current are also shown in the inserted graphs. rG ¼ 10μm, ESW ¼ 50mV,

ΔEs ¼ 5mV, T¼ 298.15 K, D ¼ 10�5 cm2 s�1, c*O1
¼ 1mM
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for ESW ¼ 10, 25, 50, and 100mV). Under these experimental conditions, both

peaks are located at the formal potential values of each charge transfer reaction

obtaining, respectively, E��O
0

c,1 ¼ �825� 1mV and E��O
0

c, 2 ¼ �1333� 1mV, such

thatΔE��O0c ¼ �505� 2mV, whereas according to Eq. (7.68), the valleys are centered

at the average of formal potentials, E
��O0
c ¼ E��O

0
c,1 þ E��O

0
c,2

� �
=2 ¼ �1079� 1mV.

Both peaks in the curve obtained at ESW ¼ 10mV have a half-peak width of

W1=2 ¼ 90mV, whereas for higher values of ESW the peaks become wider and less

defined, reaching the value W1=2 ¼ 2ESW for each of the peaks at curves

corresponding to ESW ¼ 100 and 200 mV. These peaks are already clearly

transformed into two plateaus forESW ¼ 200mV, which merge into a whole plateau

for ESW � ΔE��O
0

c

		 		=2 (see curve with ESW ¼ 250mV in Fig. 7.33a) with height

IEE,sphe,plateauSW ESW ¼ 250mVð Þ ¼ 27� 1μA.
If ESW increases over ΔE��O0c

		 		=2 a new and single peak appears which, as in the

case of the valley observed at lower ESW, is centered atE
��O0
c . The height and width of

this peak grow while ESW continues to increase, until for ESW � ΔE��O0c

		 		 a new

plateau appears, whose height does not vary now for higher ESW values
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Fig. 7.32 Evolution of the SWV half-peak width,W1/2, withΔE
��○0
c , corresponding to a reversible

two-electron electrochemical reaction at disc and (hemi)spherical electrodes for three ESW values

(indicated on the curves). T¼ 298.15 K. No significant effect of the value of the step potential on

the peak width is found in the range ΔEs ¼ 2� 10mV. Reproduced from [49] with permission
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Fig. 7.33 Influence of the square wave amplitude, ESW, on the experimental IEE, spheSW � E curves

(dotted lines), and comparison with the corresponding theoretical ones (solid lines, Eq. (7.65)),

obtained for systems (a) quinizarin 0.75 mM+TBAP 0.1 M in acetonitrile, E��○
0

c,1 ¼ �825mV,

ΔE��○0c ¼ �505mV,D ¼ 2:5� 10�5 cm2 s�1, rs ¼ 0:029cm and (b) pyrazine 2.0 mM at pH ¼ 0:4

in HClO4 þ NaClO4 adjusted to ionic strength 1.0 M at a SMDE, E��○
0

c,1 ¼ �269mV,

ΔE��○0c ¼ �126mV, D ¼ 0:75� 10�5 cm2 s�1, rs ¼ 0:042cm. ΔEs ¼ 5mV, τ ¼ 0:010s,
T ¼ 293K. The values of ESW, in mV, are given on the curves. Reproduced from [46] with

permission
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ESW � 400mVð Þ, and reaches the highest current value of

IEE,sphe,plateauSW ESW � 400mVð Þ ¼ 54� 1μA.
It is possible to calculate the diffusion coefficient from both plateau current

values since the current at the higher plateau is in fact twice that of the lower one,

according to Eq. (7.29) with two or one electrons, respectively. Hence, the value

D ¼ 2:5� 0:1ð Þ � 10�5 cm2 s�1 has been obtained.

For the pyrazine system plotted in Fig. 7.33b, it is possible to get an intermediate

plateau, as is shown on the curve at ESW ¼ 60mV with

IEE,sphe,plateauSW ESW ¼ 60mVð Þ ¼ 77� 1μA, which transforms into a single peak

centered at E
��O0
c ¼ �333� 1mV (see curve at 100 mV), and turns into a new and

higher plateau forESW > ΔE��O0c , reaching a current double that is obtained in the first

plateau, IEE, sphe,plateauSW ESW � 200mVð Þ ¼ 161� 1μA (see curves with ESW ¼ 200

and 250 mV of Fig. 7.33b). From this value and Eq. (7.29) for two electrons, the

diffusion coefficient value D ¼ 0:75� 0:01ð Þ � 10�5 cm2 s�1 has been obtained.

The theoretical SWV curves shown in Fig. 7.33b (solid lines) have been calculated

with the values obtained forD andE
��O0
c , and by selecting the valueΔE��O0c ¼ �126mV

with which the best adjustment between theoretical and experimental curves is

obtained. So, by combining the values of E
��O0
c and ΔE��O0c the following individual

formal potentials have been deduced: E��O
0

c, 1 ¼ �269� 1mV and E��O
0

c, 2 ¼ �395� 1

mV [46].

There is a special case of the EE mechanism in which the reversible electrode

reactions are coupled to a very fast chemical reaction such that the chemical

equilibrium is quickly reestablished at the electrode surface in line with the

following reaction scheme [51]:

R1 ! Oþ1 þ e� E��O
0

c, 1

Oþ1 þ X�  !
k1

k2
R2

R2 ! O2 þ e� E��O
0

c, 2

ð7:IVÞ

Under these conditions, the SWV curves of the EE mechanism depend on ΔE��O0c

and on the chemical equilibrium constant, Keq ¼ cR2
=cOþ

1
, since the concentration

of X� is in a great excess. Thus, for example, for ΔE��O0c ¼ 0mV, the responses are

split if Keq > 100 or Keq < 0:01. This behavior is shown in Fig. 7.34 [51].

7.5.2 Non-reversible Electrochemical Reactions

In this case, the reaction scheme can be written
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O1 þ e� !O2 E��O
0

c,1, k
0
1, α1

O2 þ e� !O3 E��O
0

c,2, k
0
2, α2

ð7:VÞ

If linear diffusion is considered and the influence of comproportionation/dispro-

portionation reactions is neglected, the solution for the response of this process in

SWV is given as a system of recursive formulae by Lovrić [54] using the numerical

integration method proposed by Oldmstead and Nicholson [26].

As stated in Sects. 3.3.3 and 6.2.1.1.4 in this case, the response depends not only

on the difference between the formal potentials of the two steps but also on the

dimensionless rate constants κ0plane, i ¼ k0i
ffiffiffiffiffiffiffiffi
τ=D

p
(i¼ 1, 2). As an example, in

Fig. 7.35 two SWV responses are shown. In both cases, the value of ΔE��O0c ¼ 100

mV means that the intermediate species O2 is thermodynamically unstable (i.e., cO2
=

cO1
þ cO2

þ cO3
ð Þ ¼ 0:01 at the average potential E

��O0
c , see Sect. 3.3.1). The SWV

curve in solid line corresponds to a first reversible step (κ0plane,1 ¼ 100) followed by a

second quasi-reversible step (κ0plane,2 ¼ 0:1). The net current presents a single peak

Fig. 7.34 Theoretical SWV curves for a reversible EE mechanism coupled to a very fast chemical

reaction. ΔE��○0c ¼ 0mV, ESW ¼ 50mV, ΔEs ¼ 5mV. The values of the chemical equilibrium

constant Keq are 0.01 (a), 1 (b), and 100 (c). The dimensionless net current (ΔΦ) and their forward
(Φf) and reverse (Φb) components are shown. Reproduced from [51] with permission
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located at 30 mV from E��O
0

c, 1. The SWV curve in dashed line considers a first quasi-

reversible step (κ0plane,1 ¼ 1) followed by a fully irreversible one (κ0plane,2 ¼ 0:001). In

this situation, the net current shows two peaks located at �5 and �185mV. The

appearance of the second peak at more negative potentials is caused by the kinetic

stabilization of the intermediate species, i.e., species O2 needs a significant negative

potential to be reduced to species O3. So, since the values of the dimensionless rate

constants depend on the frequency (or the pulse time length), the response of a quasi-

reversible two-electron electrochemical reaction may exhibit one peak at lower

frequencies and two peaks at higher frequencies [54].

A detailed study of the different kinetic situations that may arise and of the

dependence of the peak parameters on the rate constants of the two steps can be

found in [6, 19, 50, 52].

7.6 First-Order Chemical Reactions Coupled to the Charge

Transfer Reaction

Electrode processes coupledwith homogeneous chemical reactions are very frequent

and their study is of interest in many applied fields, such as organic electrosynthesis,

ecotoxicity, biosciences, and environmental studies, among others [1–3, 6, 12, 19,

55]. In this section, only the differential multipulse technique SWV is applied to the

study of the reaction kinetics and mechanisms of electrogenerated species.

Of the wide range of this type of processes, this study focuses mainly on three

first- or pseudo-first-order reaction mechanisms (see reaction scheme (7.VI)):

catalytic, CE, and EC processes which are the most analyzed in the Electro-

chemistry literature.

Fig. 7.35 Theoretical

forward (Φf), reverse (Φr),

and net (�ΔΦ) SWV curves

for a quasi-reversible EE

mechanism.

ΔE��○0c ¼ 100mV,

α1 ¼ α2 ¼ 0:5,

κ0plane,2=κ
0
plane,1

� �
¼ 10�3,

ESW ¼ 50mV,

ΔEs ¼ 5mV. The values of

κ0plane;2 are 0.1 (solid line)

and 0.001 (dashed line).
Reproduced from [54] with

permission
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Cþ e� ! B !
k1

k2
C Catalytic mechanism að Þ

B !
k1

k2
Cþ e� !D CE mechanism bð Þ

Aþ e� ! B !
k1

k2
C EC mechanism cð Þ

ð7:VIÞ

The ECE mechanism is also analyzed

O1 þ e� ! R1 E��O
0

c,1

R1 !
k1

k2
O2

O2 þ e� ! R2 E��O
0

c,2

ð7:VIIÞ

for which, as in the case of two-electron electrochemical reactions

(EE mechanism), the following reaction may occur:

O2 þ R1 !
k
0
1

k
0
2

O1 þ R2 ð7:VIIIÞ

7.6.1 Catalytic Mechanism

As discussed in previous chapters (see Sects. 3.4.1, 4.5.1 and 6.3.1), of the pro-

cesses with first- or pseudo-first-order homogeneous reactions coupled to the charge

transfer, the catalytic mechanism is the simplest to study. The solution

corresponding to SWV corresponding to planar, spherical, and disc electrodes

will be discussed.

7.6.1.1 Square Wave Voltammetry

From the general expressions for the catalytic current corresponding to any

sequence of potential pulses (given by Eq. (6.64)), the following explicit SWV

response can be easily deduced for electrodes of different geometry:
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ψ cat,G
SW ¼ Icat,GSW

ffiffiffi
τ
p

1þ Kð Þ
FAG

ffiffiffiffi
D
p
ζ*

¼ �Z cat
2 p f

cat
G χSW; ξG
� �

þ
X2 p�1
m¼1

Z cat
m f catG χm, 2 p�1; ξG

� �� f catG χm, 2 p; ξG
� �� �� � ð7:73Þ

where

χm, j ¼ j� mþ 1ð ÞχSW ð7:74Þ
χSW ¼ k1 þ k2ð Þτ ð7:75Þ

Z cat
m ¼

1� Keη1

1þ eη1
m ¼ 1

1þ Kð Þ 1

1þ eηm
� 1

1þ eηm�1

� �
m > 1

8>><>>: ð7:76Þ

K ¼ c*B
c*C
¼ 1

Keq

ð7:77Þ

ξG is given by Eq. (7.22). Functions fcatG (χm,p, ξG) are given in Table 7.3 for planar,

spherical, and disc electrodes. Note that these functions are dimensionless. qG is the

characteristic dimension of the electrode of geometry G (i.e., qG ¼ rs for spherical
electrodes and qG ¼ rd for disc ones).

In Fig. 7.36, the SWV curves of a first-order catalytic mechanism for different

values of the dimensionless kinetic constant χSW ¼ k1 þ k2ð Þτð Þ at disc electrodes
are shown. For χSW > 1:5, a time-independent current is reached whatever the

shape and size of the electrode. In order to determine the transient or stationary

nature of the SWV current, the forward (ψ f) and reverse (ψ r) components of the

response must be analyzed, since the net current is bell shaped in all the cases.

Figure 7.36a–c shows the forward and reverse components of the square wave

current. When the chemical kinetics is fast enough to achieve kinetic steady-state

conditions (χSW � 1:5and k1 þ k2 
 D=r2d
� �

, see [58, 59]), the forward and reverse

responses at discs are sigmoidal in shape and are separated by 2ESW. This behavior

is independent of the electrode geometry and can also be found for spheres and even

for planar electrodes. It is likewise observed for a reversible single charge transfer

at microdiscs and microspheres, or for the catalytic mechanism when

rd �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D= k1 þ k2ð Þp

(microgeometrical steady state) [59, 60].

Faster attainment of steady-state conditions is also fostered by the use of smaller

electrodes, as can be concluded by comparing Fig. 7.36a–c, such that for the

smallest radius considered (Fig. 7.36c, rd ¼ 1μm), both ψ cat, disc
f � Eindex � E��O

0
c

� �
and ψcat,disc

r � Eindex � E��O
0

c

� �
curves correspond to the stationary response even for

the lowest χSW value. Moreover, in all the cases the peak potential of the SWV net
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curves in Fig. 7.36d–f corresponds to the formal potential of the charge transfer

process, Epeak ¼ E��O
0

c , with this behavior being characteristic of the catalytic

mechanism and of reversible charge transfer processes.

Concerning the half-peak width (W1/2), as can be deduced from Fig. 7.36, its

value is independent of the electrode radius and the catalytic rate constants. The

dependence ofW1/2 on the square wave amplitude is identical to that obtained for a

simple charge transfer given by Eq. (7.32) (see also Fig. 7.8), i.e., it increases with

ESW from W1=2 ¼ 90mV for ESW � 10mV to W1=2 ¼ 2ESW for ESW > 100mV.

The peak height of the SWV net current increases in all the cases with the square

wave amplitude until it reaches a constant value (plateau) for ESW � 100mV. This

value depends on the electrode shape and size and also on the catalytic rate

constants. Under steady-state conditions, the plateau current at microspheres and

microdiscs is given by

Icat, sphe, ss, plateauSW ¼ Isphe, ssd, c 1þ
ffiffiffiffiffiffiffiffi
χSW

p
ξs

 !
¼ Isphe, ssd, c 1þ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r !
ð7:78Þ

Icat,disc, ss, plateauSW ¼ Idisc, ssd, c 1þ
ffiffiffiffiffiffiffiffi
χSW

p
ξd

 !
fcat, ssdisc χSW; ξd

� � ð7:79Þ

with [56, 57, 59]

fcat, ssdisc χSW; ξd
� � ¼ 1þ

ffiffiffiffiffiffiffiffi
χSW

p
ξd

þ 0:5465

ffiffiffiffiffiffiffiffi
χSW

p
ξd

ð1
0

uexp �0:39115ffiffiffi
u
p �

ffiffiffiffiffiffiffiffi
χSW

p
ξd

u2

 !
du ð7:80Þ

and Isphe, ssd, c ¼ 4πFrsDc*O and Idisc, ssd, c ¼ 4FrdDc
*
O.

Table 7.3 Expressions for function fcatG (χm,p, ξG) for planar, spherical, and disc electrodes [56–60]

Electrode fcatG (χm,p, ξG), ξG ¼
ffiffiffiffiffiffi
Dτ
p

=qG
Planar

ffiffiffiffiffiffiffiffi
χSW

p
e�χm, pffiffiffiffiffiffiffiffiffi
πχm, p
p þ er f

ffiffiffiffiffiffiffiffiffi
χm, p
p� �h i

Sphere ξs þ
ffiffiffiffiffiffiffiffi
χSW

p
e�χm, pffiffiffiffiffiffiffiffiffi
πχm, p
p þ er f

ffiffiffiffiffiffiffiffiffi
χm, p
p� �h i

, ξs ¼
ffiffiffiffi
Dτ
p
rs

Disc
ξd þ

ffiffiffiffiffiffiffiffi
χSW

p
er f

ffiffiffiffiffiffiffiffiffi
χm, p
p� �

þ 0:2732

ffiffiffiffiffiffiffiffiffi
χm, p
p
ξd

ð ξdð Þ2
0

exp �0:39115ffiffiffi
u
p �

�"
χm, p

ξdð Þ2
u

�
duþ e�χm, p 0:2732

ξdffiffiffiffiffiffiffiffiffi
χm, p
p exp �0:39115

ξd

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

πχm, p
p

" ##
, ξd ¼

ffiffiffiffiffiffi
Dτ
p

rd
:

G¼ d for discs and s for spheres or hemispheres. Note that functions fcatG (χm,p, ξG) are

dimensionless
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The evolution of the peak current (Icat;disc;peakSW ) with frequency ( f ) is plotted in

Fig. 7.37 for the first-order catalytic mechanism with different homogeneous rate

constants at microdisc electrodes. For a simple reversible charge transfer process, it

is well known that the peak current in SWV scales linearly with the square root of

the frequency at a planar electrode [6, 17]. For disc microelectrodes, analogous

linear relationships between the peak current and the square root of frequency are

found for a reversible electrode reaction (see Fig. 7.37 for the smallest k1 value).
The variation of the peak current in the presence of a coupled catalytic reaction

differs from the above behavior due to the catalytic contribution. Thus, as the

chemical rate constant increases and the frequency decreases, that is, as the

catalytic component becomes more apparent, there is a deviation from the linear

increase of Icat;disc;peakSW with f1/2. This deviation is only significant for k1 > 10s�1.
When steady-state conditions are achieved (very small frequencies and/or large

kinetic constants), the peak current becomes independent of the frequency, as

shown in Fig. 7.37 for k1 ¼ 100s�1 and f 1=2 < 5s�1=2.
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Fig. 7.36 Effect of the electrode radius and the kinetics of the catalytic reaction on the forward

(ψ f), reverse (ψ r), and net (ψcat;disc
SW ) responses in SWV calculated from Eq. (7.73) for a disc

electrode. ESW ¼ 50mV, ΔEs ¼ 5mV, τ ¼ 10ms f ¼ 50Hzð Þ, K¼ 0, T¼ 298.15 K, and

D ¼ 10�5 cm2 s�1. The values of the electrode radius rd and χSW are indicated on the graphs.
Dotted lines mark the potential values where ψSWV ¼ ψSWV,peak=2. Reproduced from [60] with

permission
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In Fig. 7.38, the experimental SWV curves are plotted after blank subtraction

corresponding to the reduction of the heteropolyanion P W3O10ð Þ4
� �3�

in the

absence and presence of the nitrite anion NO�2 at a disc gold microelectrode (rd
¼ 15:1μm) in sulfuric medium. Under these conditions, the following reaction

corresponding to a first-order catalytic mechanism takes place [60, 61]:

P W3O10ð Þ4
� �3� þ e� Ð P W3O10ð Þ4

� �4�
Eð Þ

P W3O10ð Þ4
� �4� þ NO�2 þ 2Hþ!k1 P W3O10ð Þ4

� �3� þ NOþ H2O C
0� � ð7:IXÞ

The SWV experiments have been carried out with f ¼ 10Hz,ESW ¼ 25mV and

ΔEs ¼ 5mV, with a concentration of nitrite in large excess with respect to the

heteropolyanion concentration to ensure pseudo-first-order conditions for the kine-

tics. The potential region scanned was from 200 to �200mV (vs. SCE), where the

first reduction of P W3O10ð Þ4
� �3�

occurs. As can be observed, the peak current

increases with c*NO�2 , which indicates the incidence of the catalytic reaction that

regenerates the oxidized species P W3O10ð Þ4
� �3�

and so the signal increases. From

the value of the peak potential, the formal potential is immediately extracted:

E��O
0

c ¼ �49� 3mV vs: SCE. From the value of the peak currents, the value of

the homogeneous rate constant was determined from Eq. (7.73) for the different

concentrations of nitrite, obtaining the following mean value after three different

experimental measurements: k1 ¼ 1860� 60M�1 s�1. Using these values, theo-

retical curves have been generated which lead to a satisfactory fit of experimental

and theoretical results [60].
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Fig. 7.37 Influence of the

frequency on the peak

current of the SWV curves

of a catalytic mechanism at

disc electrodes, calculated

from Eq. (7.73) with

rd ¼ 5μm. The values of k1
(in s�1) are 0.1 (black
circles), 1 (white circles),
10 (black triangles), and
100 (white triangles).
ESW ¼ 50mV,

ΔEs ¼ 5mV, K¼ 0,

T¼ 298.15 K, and

D ¼ 10�5 cm2 s�1.
Reproduced from [60] with

permission
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7.6.2 CE and EC Mechanisms

As indicated in Sect. 6.3.2, explicit expressions for the current corresponding to CE

and EC mechanisms have not been found in multipulse techniques even when linear

diffusion is considered.

7.6.2.1 Square Wave Voltammetry

A treatment for these reaction schemes in SWV based on the mathematical proce-

dure given by Smith [62] considering reversible electrode reactions has been

followed in reference [27], and for the case of non-reversible electrode reactions

in [6].

For a first-order or pseudo-first-order CE mechanism with a reversible electrode

reaction, the SWV response is determined by the thermodynamic and kinetic

parameters of the chemical reaction. So, the peak current ψG;peak
SWV and the peak

potential are notably dependent on them.

In Fig. 7.39, the dependence of the peak current with

logχSW
� ¼ log k1 þ k2ð Þτð Þ is shown for a CE mechanism for different values of

the equilibrium constant Keq. As can be observed, ψCE;plane;peak
SWV (ψp in the figure),

increases with χSW for any value of Keq, until it reaches a maximum value (highest

plateau) corresponding to the labile equilibrium where it is controlled by the

reversible reduction of both species B and C (see reaction scheme (7.VIb)). This
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Fig. 7.38 Experimental (solid line) and theoretical (points) square wave voltammograms

corresponding to the reduction of P W3O10ð Þ4
� �3�

at a gold microelectrode (rd ¼ 15:1μm) in the

presence of different concentrations of the nitrite anion (indicated on the curves). f ¼ 10Hz,

ESW ¼ 25mV,ΔEs ¼ 5mV, T¼ 293 K. Test solutions: 0.2 mM P W3O10ð Þ4
� �3�

, 0.1 M in H2SO4.

Reproduced from [60] with permission
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maximum value is reached more easily (i.e., at lower values of χSW) the smaller Keq

(for logχSW � 0:2 if log Keq

� � � �2). Contrarily, when the chemical reaction is

slow enough or for small enough pulse times (i.e., logχSW < �1), the chemical

equilibrium becomes less labile and ψCE;plane;peak
SWV is controlled only by the reduction

of C species, and its production from species B is negligible during the timescale

of the square wave experiment. This situation corresponds to the lower plateaus of

the curves in Fig. 7.39. In the rising zone of these sigmoidal shaped curves,

ψCE;plane;peak
SWV is controlled by the kinetics of the preceding chemical reaction and

the chemical rate constants k1 and k2 can be easily determined from ψCE;plane;peak
SWV

measurements [27].

The peak potential is generally shifted toward more negative values as χSW

increases for a given value of the equilibrium constant Keq, and more noticeably the

smaller the Keq value. The half-peak width is slightly affected by the kinetics

parameter of the chemical reaction.

When the electrode reaction is quasi-reversible, the analysis of the SWV

response of a CE mechanism by varying the frequency becomes cumbersome,

since it simultaneously affects both the electrode and chemical reactions. A brief

discussion of this situation can be found in reference [6].

For an EC mechanism (see reaction scheme (7.VIc)), the variation of

ψEC;plane;peak
SWV with the equilibrium and rate constants is shown in Fig. 7.40. As can

be clearly observed, these curves present a minimum whose position depends on
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Fig. 7.39 SWV Peak current for a CE mechanism at a planar electrode as a function of logχSW� ¼ log k1 þ k2ð Þτð Þ for several values of log(Keq): (A–H) 2, 1, 0.5, 0, �0:5, �1, �2, and �3.
ψp ¼ ψCE,plane,peak

SW ¼ ICE,plane,peakSW

ffiffiffiffiffi
πτ
p

= FA
ffiffiffiffi
D
p
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� �

. Reproduced from [27] with permission
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Keq and is shifted to larger χSW values the larger Keq. This behavior has been

explained by considering that the decreasing branch of these curves is predomi-

nantly controlled by the rate of the forward chemical reaction, whereas in the rising

branch, it is the reverse reaction which becomes dominant. The dependence of these

curves with Keq is because an enhancing of Keq increases the concentration of

electro-inactive product C and higher values of χSW are necessary to produce the

electro-active species B on the timescale of the reverse potential pulses. The peak

potential is generally shifted toward more positive potentials when χSW increases,

whereas the half-peak width is scarcely affected by the kinetic parameters of the

chemical reaction.

A discussion of the behavior of an EC mechanism with reversible and

non-reversible electrochemical reaction is given in [6]

7.6.3 ECE Mechanism

This electrode process (scheme (7.VII)), has been studied in SWV by considering

that the homogeneous chemical reaction is fully irreversible and without consider-

ation of the reaction (7.VIII) (see also Sect. 3.4.8 for more details) [63–65].
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Fig. 7.40 SWV Peak current for a EC mechanism at a planar electrode as a function of logχSW� ¼ log k1 þ k2ð Þτð Þ for several values of log(Keq): (A–H) �2, �1, �0:5, 0, 0.5, 1, 2, and 3.
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7.6.3.1 Square Wave Voltammetry

In order to analyze the influence of the chemical kinetics on the SWV response of

this mechanism when the chemical reaction behaves as irreversible (Keq !1), it

can be compared with that obtained for a reversible two-electron electrochemical

reaction (EE mechanism) at the same values of the difference between the formal

potentials of the electrochemical steps, ΔE��O0c ¼ E��O
0

c,2 � E��O
0

c,1 (which is always

centered at Eindex ¼ E��O
0

c,1 þ E��O
0

c,2

� �
=2).

The behavior of an ECE mechanism with an irreversible chemical reaction for

ΔE��O0c values between �200 and 200 mV can be seen in Fig. 7.41. In all these

curves, it can be observed that the peak currents corresponding to an ECE mech-

anism are lower than those corresponding to an EE one. If ΔE��O0c < �71:2mV

(Fig. 7.41a, b), two peaks centered in E��O
0

c,1 and E��O
0

c,2 appear in the SWV curves
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Fig. 7.41 Square Wave Voltammetry. Net currents corresponding to ECE and EE mechanisms at

planar electrodes calculated by using the numerical procedure described in [66, 67] (ECE) and

Eq. (7.65) (EE). The values of χSW1 for the ECE mechanism are 0.01 (solid lines), 0.05 (dashed
lines), 0.5 (white circles), 10 (dashed-dotted lines), and 100 (dotted lines). The curves

corresponding to the EE mechanism appear with black circles. The values of ΔE��○0c in mV appear

in the figures. ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298 K
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corresponding to an EE mechanism. In the case of an ECE process, the

peak located at more positive potentials diminishes its height until it reaches a

constant value for χSW1 ¼ k1τ > 5s�1, with the peak potentials being shifted toward
more positive potentials as χSW1 increases because of the facilitated conversion of
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Fig. 7.42 Cyclic Square Wave Voltammetry. Net currents corresponding to ECE and EE mecha-

nisms at planar electrodes calculated by using the numerical procedure described in [66, 67] (ECE)

and Eq. (7.65) (EE). The values of χSW1 for the ECE mechanism are 0.01 (solid lines), 0.05 (dashed
lines), 0.5 (white circles), 10 (dashed-dotted lines), and 100 (dotted lines). The curves

corresponding to the EE mechanism appear with black circles. The values of ΔE��O0c in mV appear

in the figures. ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298 K
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species O1 into R1. Contrarily, the height of the peak located at more negative

potentials increases with χSW1 and its position is slightly shifted toward potentials

less than E��O
0

c,2. The height of this last peak tends to that corresponding to the more

cathodic peak of an EE process faster, the lesser the value of ΔE��O0c and the greater

χSW1 .

For �71:2 � ΔE��O0c � 0mV (Fig. 7.41c, d), only one peak is observed for small

values of χSW1 whose peak height is much lower than that corresponding to an EE

process (dotted curves). An increase of χSW1 causes a splitting of this response,

which is less pronounced when ΔE��O0c increases (compare curves corresponding to

χSW1 � 0:5 in Fig. 7.41c, d).

ForΔE��O
0

c 
 0 (Fig. 7.41e, f), only one peak is observed and its position is shifted

toward more anodic potentials as χSW1 increases, whereas its height shows a

complex dependence on χSW1 .

In Fig. 7.42a, b, the cyclic SWV curves obtained for ΔE��O0c ¼ �200 and

200 mV have also been plotted. As can be observed, the characterization of an

ECE is very complex from these curves. So, from the CSWV response obtained

for ΔE��O0c ¼ �200mV, the most cathodic peak corresponding to the second

(anodic) scan loses symmetry with respect to that obtained in the first scan

when χSW1 increases, whereas for the peak corresponding to more anodic poten-

tials this symmetry is never observed, and the peak height is always lower, with

the peak potential being shifted toward more positive values than the

corresponding to the peak in the first scan. For ΔE��O0c ¼ 200mV, no symmetry

with the curves obtained for the first scan is observed and the very complex

influence of χSW1 makes it advisable to vary the pseudo-first-order rate constant k1
(through the variation of the concentration of the corresponding species or the

SW frequency) and compare experimental and theoretical data under different

experimental conditions.

7.6.4 Ladder Mechanism

In this section, we consider the application of SWV to the characterization of the

electroreduction of a species A into species B with both species A and B taking part

in a number of chemical equilibria in solution in line with the following reaction

scheme [68–70]:
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ð7:XÞ

As stated in Sect. 6.3.4, ligand L is assumed to be present at high concentration

c*L 
 c*A, c
*
B, c

*
ALi

, c*BLi

� �
and kij and k0ij ( j¼ 1, 2; i¼ 1, 2, . . ., n) represent the

(pseudo)first-order forward and backward rate constants of the chemical reactions.

7.6.4.1 Square Wave Voltammetry

Section 6.3.4 presented the solution to this reaction scheme when any succession

of potential steps of the same duration τ is applied. For SWV, by taking into

account Eqs. (6.96)–(6.98) and (7.6), the following expression for the current is

obtained:

ψ ladder,G
SW ¼ Iladder,GSW

ffiffiffi
τ
p

FAG

ffiffiffiffi
D
p

c*
¼ �Z ladder

2 p fG τ; ξGð Þ

þ
X2 p�1
m¼1

Z ladder
m fG 2 p� mð Þτ, ξGð Þ � fG 2 p� mþ 1ð Þτ, ξGð Þ½ 
� � ð7:81Þ

where

Z ladder
m ¼ 1

1þ ωeηm �
1

1þ ωeηm�1
� �

ð7:82Þ

ω ¼
1þ

Xn

i¼1 βi

1þ
Xn

i¼1 βi
0 ð7:83Þ
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ηm ¼
F

RT
Em � E��O

0

A=B

� �
, m � 1 ð7:84Þ

ξG is given by Eq. (7.22) and D ¼ DA
eff ¼ DB

eff , with DA
eff and DB

eff being the

effective diffusion coefficients of the pseudo-species AT and BT, respectively (see

Eqs. (3.274)–(3.275)):

DA
eff ¼

DA þ
Xn

i¼1 DALi
βi

1þ
Xn

i¼1 βi
ð7:85Þ

DB
eff ¼

DB þ
Xn

i¼1 DBLi
β
0
i

1þ
Xn

i¼1 β
0
i

ð7:86Þ

βi and β0 represent the overall formation constant for the different complexes of

species A or B, respectively, initially present in solution:

βi ¼
Yi
m¼1

Kmc
*
L ¼

cALi
q; tð Þ

cA q; tð Þ

β
0
i ¼

Yi
m¼1

K
0
mc

*
L ¼

cBLi
q; tð Þ

cB q; tð Þ

9>>>>=>>>>; 8q, t; i � 1; ð7:87Þ

with Km and K
0
m being

Km ¼ cALm
q; tð Þ

cALm�1 q; tð Þc*L
K
0
m ¼

cBLm
q; tð Þ

cBLm�1 q; tð Þc*L

ð7:88Þ

and fG p� mþ 1ð Þτ, ξGð Þ is defined in Table 7.1 for different electrode geometries.

The effect of the parameter ω (given by Eq. (7.83)) on the SWV curves is shown

in Fig. 7.43 for a spherical electrode of 50-μm radius. Large ω-values relate to the

situation where the complexes of the reactant species A are more stable than those

of species B, whereas the opposite situation is found for small ω-values. As can be

observed, the only influence of this parameter is the shift of the curves toward more

negative potentials when ω increases on account of the hindering of the electro-

reduction reaction caused by the stabilization of the oxidized species with respect to

the reduced ones. The peak potential in SWV coincides with the half-wave potential

such that
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Epeak ¼ E��O
0

A=B þ
RT

F
ln

1

ω

� �
ð7:89Þ

In practice, the influence of the ω-value on the voltammograms can be revealed

experimentally by changing the bulk concentration of species L, c�L, that is, of the
complexing agent, protons, counterions. . . In this respect, Fig. 7.44 shows the

variation of the peak potential in SWV (Epeak) with c�L for the CeqErevCeq mecha-

nism (i.e., a coupled chemical reaction takes place “before” and “after” the electron

transfer). As can be observed, the variation of the signal position informs about the

relative stability of the oxidized and reduced species. When K=K
0
> 1, the stabili-

zation of the oxidized species by the chemical equilibrium is greater and the

voltammograms move toward more negative overpotentials, whereas the opposite

is true forK=K
0
< 1. Note that these situations include as extreme cases the CeqErev

and ErevCeq mechanisms, where K
0 ¼ 0 and K ¼ 0, respectively.

As shown in Fig. 7.44, in the absence of coupled reactions (the so-called E

mechanism), the voltammetry is insensitive to changes in the concentration of species

L provided that this does not lead to significant changes in the ionic strength.

Therefore, the study of the position of the voltammograms in the presence of different

concentrations of species L offers a simple criterion to discriminate between simple

electron transfer processes and those complicated by coupled chemical equilibria.

7.7 Surface-Bound Molecules

In this section, the application of differential multipulse and Square Wave

Voltammetric techniques to strongly adsorpted species is treated. Special detail is

paid to SWV, since it is the most important technique. Differential Staircase
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Fig. 7.43 Influence of the

parameter ω on the response

in SWV (Eq. (7.81)) for a

spherical electrode of radii

50 μm. ESW¼ 30 mV,

ΔEs ¼ 3mV, τ ¼ 10ms

( f¼ 50 Hz). T¼ 298 K,

D ¼ 10�5 cm2 s�1.
Reproduced from [70] with

permission
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Voltcoulommetry (DSCVC) and Square Wave Voltcoulommetry (SWVC) are also

considered, since they are very valuable tools for the analysis of fast electrochem-

ical reactions between surface-confined molecules. First, a simple mono-electronic

electrochemical reaction is analyzed and, after that, the cases corresponding to

multi-electron electrochemical reactions and chemical reactions coupled to the

surface charge transfer, including electrocatalytic processes, are discussed.

7.7.1 One-Electron Electrochemical Reactions

The expressions corresponding to the current and charge obtained for a surface

one-electron electrochemical reaction under the conditions described in Sect.

6.4.1.2 when an arbitrary sequence of potential pulses is applied are given in

Eqs. (6.130) and (6.131), respectively.

7.7.1.1 Differential Staircase Voltcoulometry

As stated in Sect. 7.1, DSCVC is of special interest in the case of surface-bound

molecules, because its response makes it possible to characterize electrode pro-

cesses of any reversibility. Thus, from the expression of the converted charge Qp

corresponding to the pth potential pulse applied of an arbitrary sequence given by

Eq. (6.131), and inserting it into that corresponding to the response in DSCVC

given by Eq. (7.2) we obtain [4]:
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QDSCVC ¼ QF

1

1þ eη p
1� θ p

� �� 1

1þ eηm�1
1� θ p�1
� �þXp�1

j¼1

1� θ j

� �
1þ eη j

"

�
Yp

h¼ jþ1
θh �

Xp�2
j¼1

1� θ j

� �
1þ eη j

Yp�1
h¼ jþ1

θh

#
ð7:90Þ

where

θh ¼ exp �kT,hτð Þ h ¼ 1, 2, . . . , p ð7:91Þ
kT,h ¼ kred,h þ kox,h h ¼ 1, 2, . . . , p ð7:92Þ

QF ¼ FAΓT ð7:93Þ

In the above equations, kred,h and kox,h are the first-order heterogeneous rate

constants (in s�1) at potential Eh of a pulse sequence, for the electro-reduction and

electro-oxidation reactions, respectively. It will be assumed that the potential

dependence of the rate constants is in agreement with the Butler–Volmer formalism

(see Eq. (1.101)), i.e.,

kred,h ¼ k0e�αηh
kox,h ¼ kred,he

ηh

�
ð7:94Þ

with

ηh ¼
F

RT
Eh � E��O

0
c

� �
ð7:95Þ

and k0 and α are the heterogeneous rate constant and the charge transfer coefficient,
respectively [1, 2].

The DSCVC response has a peak-shaped feature similar to that obtained in

Cyclic Voltammetry. Indeed, the most appropriate way of analyzing the DSCVC

response is to divide QDSCVC by the pulse amplitude ΔE in order to obtain the

QDSCVC=ΔEð Þ � E response, since the following relationship between the contin-

uous current–potential curve corresponding to CV and the QDSCVC=ΔEð Þ � E
curve obtained from a discrete staircase potential sequence can be established

for ΔE� RT=F:

ICV ¼ dQCV

dt
¼ v

dQCV

dE
’ v

QDSCVC

ΔE

� �
ð7:96Þ

with v being the CV scan rate. In practice, CV and DSCVC responses present

differences of less than 5 % for values of ΔEj j < 10mV [4]. The above relationship

means that the ICV=vð Þ � E response, which corresponds to the faradaic capacitance
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obtained by using CV, should be coincident with the QDSCVC=ΔEð Þ � E one.

Equation (7.96) can be simplified in the following situations:

Fast Charge Transfer

Under reversible conditions, only the first two terms of Eq. (7.90) remain, since

θ p ! 0 (see Eq. (7.91)), so the QDSCVC curve is simplified to

QDSCVC ¼ QF

1

1þ eη p
� 1

1þ eη p�1

� �
ð7:97Þ

By making dQDSCVC=dE p ¼ 0 (with E p ¼ E p þ E pþ1
� �

=2) in this expression,

the peak potential and height are obtained

EDSCVC,peak ¼ E��O
0

c ð7:98Þ

Qpeak
DSCVC, rev ¼ QF tanh

F ΔEj j
4RT

� �
ð7:99Þ

Fully Irreversible Cathodic Charge Transfer

In this case, Eq. (7.90) becomes

QDSCVC, irrev ffi QFe

�
Xp�1
h¼1

kred, h

 !
τ

kred, pτ ð7:100Þ

By equating to zero, its derivative the following expressions for the peak

coordinates (potential and height) are obtained:

EDSCVC,peak ¼ E��O
0

c þ
RT

αF
ln α Δηj jBð Þ þ RT

αF
ln

k0

aα

� �
ð7:101Þ

Qpeak
DSCVC, irrev ¼

1

ΔEj jeBQF ð7:102Þ

with “e” being the base of the natural logarithms and |Δη| and B given by

Eqs. (7.104) and (7.108), respectively. In both limiting reversible and fully irre-

versible behavior, on imposing ΔE� RT=F in the expressions for the DSCVC

response, the QDSCVC=ΔEð Þ � E curves transform into those obtained for the

voltammetric ICV=vð Þ � E ones (see Eqs. (6.161) and (6.168), respectively).

Thus, the peak parameters obtained in DSCVC become identical to those given in

CV by Eqs. (6.162) and (6.169)–(6.170). In the case of the peak potential, the

differences between DSCVC and CV are of lower than 2 mV and the error in the

peak height is less than 5 % for values of ΔEj j < 10mV [4].
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The experimental verification of the theoretical behavior of DSCVC responses is

presented in [4] for two systems which have been adsorpted on a mercury electrode

forming stable sub-monolayers: the disodium salt of the 2,6-Anthraquinonedisulfonic

acid (AQDS) 1.0 μM+HClO4 0.5 M, which behaves as reversible (Fig. 7.45), and the

4-PhenylazoPhenol 5 μM+0.5 M KNO3 (pH¼ 8.0), which behaves as quasi-

reversible (Fig. 7.46).

The corrected cathodic and anodic ICV=vð Þ � E curves (dashed lines) and the

QDSCVC=ΔEð Þ � E ones (symbols) corresponding to an AQDS sub-monolayer,

for different values of the pulse amplitude ΔE (1, 3, 5, and 10 mV) in the

DSCVC curves, are plotted in Fig. 7.45. The correction mentioned above refers

to the non-faradaic component of the response and has been carried out as discussed

in [4]. On comparing the cathodic and anodic CV and DSCVC curves in Fig. 7.45,

an excellent concordance between both techniques is observed. From the values of

the peak heights the faradaic charge QF and the surface excess ΓT of the anthra-

quinone system have been obtained by using Eq. (7.98). For small values of ΔE,
the peak potentials of the CV and DSCVC curves coincide (ΔE ¼ 1mV, ECV,peak
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-0.10-0.050.000.050.100.150.20

I C
V/

v,
 (Q

D
SC

VC
 / D

E
) /

 m
F

-1.0

-0.5

0.0

0.5

1.0

Fig. 7.45 Experimental corrected QDSCVC=ΔEð Þ � E curves (symbols) and ICV=vð Þ � E ones

(dashed lines) corresponding to the disodium salt of the 2,6-Anthraquinonedisulfonic acid

(AQDS) 1.0 μM+HClO4 0.5 M adsorpted on a mercury electrode. The sweep rate in both

techniques is v ¼ 1:0Vs�1. The values of ΔE (in mV) of the DSCVC curves are 1 (dark gray
diamonds), 3 (white circles), 5 (gray squares), and 10 (black triangles). The initial potential in

both DSCVC and CV technique was Einitial ¼ �150mV. rs ¼ 0:0316cm, and T¼ 296 K. A

vertical dotted line indicates the value of the formal potential E��O
0

c ¼ 0:062V vs. Reference.

Reproduced from [4] with permission
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’ EDSCVC,peak ¼ E��O
0

c ¼ 62mV vs. Reference, with both cathodic and anodic

responses being mirror images). From the analysis of the peak parameters, it can

be seen that the experimental DSCVC curves show a better agreement with the

ideal theoretical predictions than the corresponding CV ones. Thus, the ratio

between peak heights in CV differs from the unity by 4 %, whereas in DSCVC,

this ratio is equal to the unity with negligible error. Moreover, the half-peak widths

of the CV curves are 16 % broader than the ideal value and in the DSCVC curves

these differences are of the order of 10 %.

The non-reversible behavior is plotted in Fig. 7.46, which corresponds to the

corrected ICV=vð Þ � E curves (dashed lines) and the QDSCVC=ΔEð Þ � E ones

(symbols) of the system 4-PhenylazoPhenol. From these curves, it can be seen

that although the DSCVC curves are perfectly superimposable, the CV ones clearly

show smaller peak heights in both scans. This systematic decrease of the CV

signals, which cannot be theoretically predicted, is 5–10 %, and it has been reported

when the response of electro-active monolayers in CV has been compared with

other voltammetric and chronopotentiometric electrochemical techniques [71, 72].

Due to the quasi-reversible nature of the charge transfer reduction of the

4-PhenylazoPhenol, no simple equations for the peak parameters are available.

So, a numerical comparison between theoretical and experimental curves for

different sets of parameters should be made in order to obtain the kinetic and

thermodynamic parameters of the system.
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Fig. 7.46 Experimental

corrected ICV=vð Þ � E
curves (dashed lines) and
QDSCVC=ΔEð Þ � E ones

(symbols) corresponding to

the 4-PhenylazoPhenol

5 μM +0.5 M KNO3

(pH¼ 8.0) adsorpted on a

mercury electrode.

v ¼ 1:0Vs�1. The values of
ΔE (in mV) of the DSCVC

curves are 5 (black
triangles), 7 (white circles),
and 10 (gray squares).
Einitial ¼ �150mV.

rs ¼ 0:0316cm, and

T¼ 296 K. Reproduced

from [4] with permission
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7.7.1.2 Differential Staircase Voltammetry

In the case of surface-bound molecules, due to the characteristics of the current

obtained when a sequence of potential pulses is applied (see Sect. 6.4.1.2), the use

of DSCVC is only recommended for the analysis of non-reversible electrochemical

reactions, since for very fast electrochemical reactions (i.e., for values of the

dimensionless rate constant which fulfill log k0τ
� � � 0:5 ), the current becomes

negligible, in accordance with Eq. (6.132). The response obtained in DSCVC

when non-reversible electrochemical reactions are considered presents two

peaks, one maximum positive (ψMax
DSCVC) and one minimum negative (ψmin

DSCVC)

which appear for values of the applied potentials EMax and Emin, respectively

(with ψDSCVC ¼ IDSCVC= aQFð Þ). The cross potential value, at which ψDSCVC ¼ 0,

is Ecross.

When the electrochemical reaction can be considered as fully irreversible, it is

possible to deduce analytical expressions for the maximum, minimum, and cross

potentials. By taking into account equation (6.134) for the dimensionless current

under these conditions, we obtain [73]:

ψDSCVC, irrev ¼
IDSCVC, irrev

aQF

¼ 1

a
kred, pexp �kred, pτ e�α Δηj j

1� e�α Δηj j

� �
e�kred, pτ � e�α Δηj j
� � ð7:103Þ

with

Δηj j ¼ F ΔEj j
RT

ð7:104Þ

and a given by Eq. (7.11).

In this case, the cross potential or null current potential is

Ecross ¼ E��O
0

c þ
RT

αF
ln

k0τ

α Δηj j
� �

ð7:105Þ

whereas the potentials of the maximum and the minimum, EMax and Emin, respec-

tively, can be obtained by imposing dΔψDSCVC, irrev=dE ¼ 0 in Eq. (7.103):

EMax ¼ E��O
0

c þ
RT

αF
ln

k0

aα

� �
� RT

αF
ln

YMax

α Δηj j
� �

Emin ¼ E��O
0

c þ
RT

αF
ln

k0

aα

� �
� RT

αF
ln

Ymin

α Δηj j
� �

9>>=>>; ð7:106Þ

with
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Y
Max
min

¼
2þ B 1� eα Δηj j

� �� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ B 1� eα Δηj jð Þð Þ2 � 4 Bþ 1ð Þ 1� eα Δηj jð Þ

q
2 Bþ 1ð Þ

ð7:107Þ

B ¼ e�α Δηj j

1� e�α Δηj j
ð7:108Þ

YMax and Ymin are the values of Y corresponding to the upper and lower sign in

Eq. (7.107), respectively.

In agreement with Eq. (7.106), the distance between both maximum and mini-

mum potentials is only dependent on α and α|Δη|,

EMax � Emin ¼ RT

αF
ln

Ymin

YMax

� �
ð7:109Þ

and the same behavior is observed for the ratio between the maximum and mini-

mum peak heights given by

Rψ ¼ ψ Max
DSCVC

ψmin
DSCVC

				 				 ¼ YMaxe
�YMaxB e�YMax � e�α Δηj j

� �
Ymine�YminB e�Ymin � e�α Δηj jð Þ

					
					 ð7:110Þ

For Δηj j � 1, the DSCVC current–potential curves given by Eq. (7.103) can be

written in a simpler way as the derivative (dψ /dE). Under these conditions, it is

obtained

dψDSCVC

dE

� �
irrev

¼ �αkred
vj j e�

kred
aα 1� kred

aα

� �
ð7:111Þ

whereas Eqs. (7.107)–(7.110) become

Y
Max
min

¼ 3� ffiffiffi
5
p

2
ð7:112Þ

EMax � Emin ¼ RT

αF
ln

3þ ffiffiffi
5
p

3� ffiffiffi
5
p

 !
ð7:113Þ

Rψ ¼ 0:521 ð7:114Þ

ψDSCVC � E� E��O
0

c

� �
curves calculated from Eqs. (6.130) and (7.1) for a staircase

potential with ΔE ¼ 5mV, α ¼ 0:5, and different values of the dimensionless

surface rate constant (k0τ) are shown in Fig. 7.47. As can be seen, the shape of
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the curves changes gradually with k0τ. Thus, for k0τ ¼ 1, the |IMax
DSCVC/I

min
DSCVC| ratio is

practically equal to the unity and the potential at which ψDSCVC ¼ 0 coincides with

E��O
0

c , due to the reversible behavior of the system (solid line in Fig. 7.47). Note that,

under these conditions, the reversible limit can be established, and this can be

observed from the symmetrical shape of the ψDSCVC � E� E��O
0

c

� �
curve. For

smaller values of (k0τ), the electron transfer process behaves as non-reversible

and, then, the response is shifted toward more negative potentials. Moreover, the

positive peaks tend to be broader and lower, whereas the negative ones become

sharper and higher, so for a totally irreversible behavior, the |IMax
DSCVC/I

min
DSCVC| ratio

takes the constant value of 0.523, in line with Eq. (7.110) (see curves with k0τ
� �

< 0:1).

7.7.1.3 Square Wave Voltcoulometry

In general, Cyclic Voltammetry (CV) is the most used technique in the study of

mono-electron or multi-electron electrochemical reactions for surface-bound mol-

ecules, although it may be more advantageous to use discrete potential perturba-

tions like those based on square wave and staircase waveforms, for which signals

are recorded with improved faradaic-to-background ratio which are much less

affected by double layer influence. When the electron transfers behave as revers-

ible, techniques based on charge measurements, such as SWVC or DSCVC, provide

an easily characterizable peak-shaped charge–potential response. On the other

¢
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Fig. 7.47 Influence of the reversibility on the theoretical ψDSCV � E� E��O
0

c

� �
curves calculated

from Eqs. (6.130) and (7.1). The values of the dimensionless surface rate constant k0τ are shown on
the curves. ΔE ¼ 5mV, τ ¼ 1s, α ¼ 0:5, T¼ 298 K. Reproduced from [73] with permission
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hand, more usual techniques based on the recording of currents such as SWV,

Staircase Voltammetry (SCV), and DSCVC provide negligible measured currents

for adsorbed molecules with reversible behavior and, therefore, cannot be used in

these conditions. In order to apply these last techniques, high values of the square

wave frequency or small time pulses must be used, for which a quasi-reversible

behavior is exhibited by the system under study.

SWVC technique presents the following additional advantages which makes it

particularly suitable for the study of multi-electron reversible systems: (a) The

charge–potential curves present a practically constant baseline; (b) The peak

parameters of the SWVC curves show great sensitivity in determining the

characteristic parameters of the process; (c) SWVC shows an enhanced resolution

for experimental responses. Note also that recording the charge can be easily

implemented in traditional electrochemical instrumentation [5].

In SWVC, the square wave potential sequence given by Eq. (7.5) is applied to

the analysis of the converted charge in an electrochemical reaction between

surface-bound molecules in order to obtain the QSW � E curves, in line with

Eq. (7.8), instead of the usual ISW � E curves corresponding to SWV. The QSW

�E curves present an intense signal for reversible processes from which they can be

completely characterized [5]. The analytical expression of the SWVC charge–

potential is (see Eqs. (6.131) and (7.8)):

QSW ¼ QF

1

1þ eη2 p�1
1� θ2 p�1
� �� 1

1þ eη2 p
1� θ2 p
� �þ� X2 p�2

j¼1

1� θ j

� �
1þ eη j

�
Y2 p�1

h¼ jþ1
θh �

X2 p�1
j¼1

1� θ j

� �
1þ eη j

Y2 p
h¼ jþ1

θh

#
p ¼ 1, 2, . . . ,N ð7:115Þ

with θj and ηj given by Eqs. (7.91) and (7.95), respectively.

Under reversible conditions,θ j ! 0, and Eq. (7.115) takes the following simpler

form:

QSW ¼ QF

1

1þ eη2 p�1
� 1

1þ eη2 p

� �
ð7:116Þ

with η2 p�1 ¼ η2 p þ 2F= RTð Þð Þ ESWj j.
Equation (7.116) for the SW charge–potential response of surface-bound mole-

cules presents a potential dependence identical to that obtained for the stationary

SW current of a one-electron electrochemical reaction between solution soluble

molecules at electrodes of any geometry (see for example Eqs. (7.35) and (7.36) for

spherical and disc electrodes, respectively). Therefore, the expression of the peak

parameters will be analogous to those obtained in the case of solution soluble

molecules (see Eq. (7.37)):
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Eindex,peak ¼ E��O
0

c ð7:117Þ

Qpeak
SW ¼ QFtanh

F ESWj j
2RT

� �
ð7:118Þ

and the half-peak width is given by Eq. (7.32) (see also Fig. 7.8).

The peak charge and the half-peak width, W1/2, depend on the square wave

amplitude and present the following limiting values:

W1=2 ¼ 90mV Qpeak
SW ¼ F ESWj j

2RT
QF for ESWj j < 10mV and T ¼ 298K

W1=2 ¼ 2 ESWj j Qpeak
SW ¼ QF for ESWj j > 120mV

ð7:119Þ

It is evident that the square wave charge–potential curves corresponding to

surface-bound molecules behave in a similar way to the normalized current–

potential ones observed for a soluble solution reversible redox process in SWV

when an ultramicroelectrode is used (i.e., when steady-state conditions are

attained), providing the analogous role played by QSW (surface-bound species)

and IGSW (soluble solution species), and also QF (Eq. (7.93)) and the steady-state

diffusion-limited current (IG;ssd;c ), see Sect. 2.7. This analogy can be made because the

normalized converted charge in a surface reversible electrode process is propor-

tional to the difference between the initial surface concentration (ΓT) and that

corresponding to potential Ep, Qp=QF

� � / ΓT � Γ pð Þ
O

� �
, and in electrochemical

systems under mass transfer control, the voltammetric normalized current is pro-

portional to the difference between the bulk (c�O) and surface concentration (c
ðp;sÞ
O ) at

potential Ep, IGp =I
G,ss
d, c

� �
/ c*O � c sO
� �

. Moreover, both types of systems fulfill

ΓT � Γ pð Þ
O

ΓT

¼ c*O � c
p;sð Þ

O

c*O
¼ 1

1þ eη p
ð7:120Þ

Equation (7.116) indicates that the charge–potential curves for reversible pro-

cesses are only dependent on the square wave amplitude ESW and are independent

of the frequency f ¼ 1=2τ and the staircase amplitude ΔEs. As a consequence, they

are superimposable on those obtained at any differential electrochemical technique,

such as DSCVC, provided that the differences between the successive potential

pulses coincide (ΔE ¼ 2ESW). Moreover, when this difference is much less than

RT/F (i.e., less than 25 mV at T¼ 198 K), the responses obtained in Cyclic

Voltammetry (CV), Alternating Current Voltammetry, Potentiometric Stripping

Analysis (PSA) and also in any Reciprocal Derivative Chronopotentiometry

(RDCP) fulfill [5, 74, 75]:
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QSWVC

ESWj j
� �

ESWj j�RT=F

¼ QDSCVC

ΔEsj j
� �

ΔEsj j�RT=F

’ dQ

dE
¼ ICV

vCV
¼ IACV

vACV

¼ I tð Þapplied
dt

dE
ð7:121Þ

The influence of the reversibility of the electrochemical reaction on the SW net

charge–potential curves ( QSW=QFð Þ � Eindex � E��O
0

c

� �
is plotted in Fig. 7.48 for

different values of the square wave amplitude (ESW ¼ 25, 50, 100, and 150mV)

and three values of the dimensionless surface rate constant (k
0 ¼ k0τ
� � ¼ 10, 0:25,

and 0:01), which correspond to reversible, quasi-reversible, and fully irreversible

behaviors. Thus, it can be seen that for a reversible process (Fig. 7.48a), the

QSW=QFð Þ � Eindex � E��O
0

c

� �
curves present a well-defined peak centered at the

formal potential (dotted line), whose height and half-peak width increase with

ESW (in line with Eqs. (7.118) and (7.119)), until, for ESW > 100mV, the peak

becomes a broad plateau whose height coincides with QF. This behavior can also be

observed for the quasi-reversible case shown in Fig. 7.48b, although in this case,

there is a smaller increase of the net charge curves with ESW, and the plateau is not

obtained for the values of ESW used, with a higher square wave amplitude needed to

obtain it. Nevertheless, even for this low value of the dimensionless rate constant,

the peak potential of the SWVC curves coincides with the formal potential. This

coincidence can be observed for values of ESW > 10mV.

The fully irreversible behavior is shown in Fig. 7.48c. In this case, a negative net

charge appears (see the curve with ESW ¼ 25mV). An increase of the square wave

pulse leads to a growing peak in the SWVC curve, with its peak potential being

shifted up to values close to that corresponding to formal potential. From these

results, the following reversibility criteria as a function of the dimensionless rate

constant

k
0 ¼ k0τ ð7:122Þ

can be established:

Reversible Conditions k
0
> 5

� �
The SWVC curve will reach a plateau for ESW

> 100mV (with a deviation of less than 5 %). In contrast, the SWV curve is null.

Quasi-Reversible Conditions 5 > k
0
> 0:05

� �
The SWVC signal will reach the

plateau for higher ESW values than in the reversible case. Under these conditions,

the SWV response is not null and shows a clear splitting for high enough ESW

values [6]. For example, for k
0 ¼ 0:25, values of ESW � 180mV and ESW � 140

mV must be used to reach a well-defined charge plateau and a splitting of the

current response, respectively.
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0

c

� �
curves calculated from Eq. (7.115).

The values of ESW (in mV) and of the dimensionless rate constant k
0
are shown in the figure.

ΔEsj j ¼ 5mV, T¼ 298.15 K. Dotted lines mark the formal potential position. Reproduced from [5]

with permission
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An increase in the pulse time τ allows the measurement of bothE��O
0

c and QF from

the SWVC curves, since the charge transfer process can be considered as reversible.

Once these values are known, the kinetic parameters α and k
0
can be obtained from

the comparison between theoretical and experimental curves.

The experimental verification of the theoretical predictions for reversible and

quasi-reversible behavior can be seen in Fig. 7.49, where the QSW � Eindex curves

(symbols) are plotted corresponding to the di-electronic reduction of the system

Anthraquinone-2-carboxylic acid (2-AQCA) 10 μM in HClO4 1.0 M. These curves

have been obtained for different values of the square wave pulse amplitude and for

two values of the pulse time length τ ¼ 5 (reversible, Fig. 7.49a, b) and 0.5 ms

(quasi-reversible, Fig. 7.49c, d).

Under reversible conditions, this process leads to a null square wave faradaic

current, i.e., the current corresponding to this system cannot be distinguished from

the background values (see inner figure in 7.49a). According to this, a broad

plateau, independent of the value of the square wave pulse amplitude, should be
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Fig. 7.49 Black dots: experimental cathodic SWVC QSW � E curves (a and c) and corrected

faradaic SWVC cathodicQ c
SW � E curves (b and d) of the 2-AQCA 10 μM+HClO4 1 M adsorpted

on a mercury electrode, τ ¼ 5ms (a, b) and 0.5 ms (c, d). The values of the square wave pulse

amplitudes (in mV) are shown in the figures. Solid lines: theoreticalQSW � E (a) andQ c
SW � E (b)

curves for the above system calculated from Eqs. (7.116) and (7.138) corresponding to reversible

processes withE��O
0

c ¼ 0:017V,QF ¼ 119nC,Einitial ¼ 0:1 (a, b) and 0.1500 V (c, d).ΔEs ¼ 5mV,

Ru ¼ 150Ω. rs ¼ 0:03445cm, n¼ 2, and T¼ 298 K. Inset figures in a and c: Experimental ISW
�E curves for the 2-AQCA system corresponding to τ ¼ 5ms (a) and 0.5 ms (c),ΔEs ¼ 5mV and

ESW ¼ 40mV (a) and 30, 50 mV (b). Dotted linemarks the formal potential position. Reproduced

from [5] with permission
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seen in the experimental charge–potential curves at values of ESWj j � 100mV, in

agreement with Eq. (7.119). However, although the curves corresponding to the

highest ESW values in Fig. 7.49a present this plateau, it increases with ESW due to

the contribution of the non-faradaic charge to the whole response (also responsible

for the asymmetric non-faradaic baseline). This non-faradaic contribution can be

easily quantified and eliminated (see Sect. 7.7.1.5) and the corrected charge–

potential curves can be easily obtained by subtracting the non-faradaic component

of the response, so obtaining the curves shown in Fig. 7.49b, which now show that

the charge plateau is independent of the square wave pulse amplitude. The QF value

obtained gives rise to a surface excess ofΓT ¼ 4:1� 0:1ð Þ � 10�11 mol cm�2 [5]. In
Fig. 7.49a, b, the theoretical total QSW þ QSW,nf

� �� Eindex

� �
and corrected (QSW

�Eindex) faradaic curves have also been plotted, calculated from Eqs. (7.116) and

(7.138) (solid lines), showing a very good agreement with the experimental ones.

The quasi-reversible behavior of the system 2-AQCA is plotted in Fig. 7.49c, d.

The increase of the pH and the subsequent smaller availability of protons in solution

cause a decrease of the surface rate constant and a shift of the formal surface

potential of this system toward more negative values. The quasi-reversibility is

confirmed from the current–potential curves shown in the inset figure of Fig. 7.49c,

which shows a splitting of the ISW � Eindex response for ESW ¼ 50mV (see

Sect. 7.7.1.4). The experimental QSW � Eindex curves of 2-AQCA under these

conditions also increase with ESW and present a well-defined charge plateau, but

the square wave amplitude necessary for reaching it is higher than that

corresponding to the reversible case. In order to obtain the values of the kinetic

parameters of this system, theoreticalQSW � Eindex curves have been calculated for

different sets of values of k
0
, α, and QF and compared with the experimental ones.

The best fittings correspond to the following parameters: k
0 ¼ 0:9, α ¼ 0:5, and

QF ¼ 0:135μC. In Fig. 7.49d, the experimental corrected charge–potential curves

for this system have been plotted, along with the theoretical faradaic ones, calcu-

lated using Eqs. (7.116) and (7.138) and showing excellent agreement.

7.7.1.4 Square Wave Voltammetry

As in the case of DSCVC, the analysis of the SWV response of electrochemical

reactions of surface-bound molecules has been carried out for non-reversible

processes only, since in the case of fast charge transfers, negligible currents are

obtained for the applications of potential pulses.

The expression for the SWV net current can be obtained from Eq. (6.130) and

(7.6):
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ψSW ¼
ISW
QF=τð Þ ¼ kred,2 p�1θ2 p�1 � kred, 2 pθ2 p � kT,2 p�1

X2 p�2
j¼1

1� θ j

� �
1þ eη j

Y2 p�1
h¼ jþ1

θh

"

þkT,2 p
X2 p�1
j¼1

1� θ j

� �
1þ eη j

Y2 p
h¼ jþ1

θh

#
ð7:123Þ

with θj given by Eq. (7.91) and

kT, p ¼ kred, p þ kox, p
kred, p ¼ kred, pτ
kox, p ¼ kox, pτ

9=; ð7:124Þ

The SWV current of non-reversible electrochemical reactions depends on the

dimensionless rate constant k
0
(see Eq. (7.122)), on the charge transfer coefficient,

and on the square wave amplitude ESW. The main characteristics of the currents are

the appearance of a “quasi-reversible maximum (QRM)” when the peak current is

monitorized in terms of the frequency (or the pulse length) [6] and the splitting of

the net current. Thus, as can be observed in Staircase Voltammetry (see Fig. 6.23),

the SWV current increases with k
0
(or ω ¼ k0= f ) until reaching a maximum and

then it falls sharply (see Fig. 7.50a). By determining k
0

max (or ωmax ¼ k0= fmax) the

value of k0 can be obtained [6]. k
0

max (or ωmax) depends on the charge transfer

coefficient and on the square wave amplitude ESW, although average values of k
0

max

(or ωmax) can be used if the charge transfer coefficient is not known. As indicated in

Sect. 7.7.1.3, the charge increases with k
0
until it reaches a plateau for fast charge

transfers (see Fig. 7.50b).

The splitting of the SWV net current appears on increasing the square wave

amplitude and the ratio ω. For example, for ESW ¼ 50mV, the splitting appears

for surface electrode reactions with ω > 3. Therefore, the values of the peak

current shown in Fig. 7.50 for log k
0

� �
� 0:17 correspond to the appearance

of two symmetrical peaks. The causes of the splitting are complex and are

discussed in detail in [6]. The separation between the peak potentials is a linear

function of ESW and can also be used to estimate the rate constant of the

process [33, 76, 77].

Various methods for the measure of k0 based on the effect of the square wave

amplitude on the SWV response have been proposed [33, 34]. The first relies on the

so-called amplitude-based quasi-reversible maximum, i.e., a maximum value of the

peak height which appears as a function of ESW in the interval 0:01 � ω � 0:5 and
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is independent of the charge transfer coefficient in the range 0:3 � α � 0:7
(see Fig. 7.51). The location of this maximum shifts linearly with ω, obeying the

expression:

ESW,max mVð Þ ¼ �148:08logωþ 0:80 ð7:125Þ

This relationship can be used to estimate k0.
The second procedure is based on the effect of the square wave amplitude on the

peak potential separation between the anodic and cathodic components of the SWV

response. This separation depends on both the reversibility of the surface charge

transfer (through ω and ESW. Thus, by plotting the differences ΔE p ¼ E p, c � E p, a,

with Ep,c and Ep,a being the peak potentials of the forward and reverse currents

measured versus the index potential, or ΔE0p ¼ E
0
p, c � E

0
p, a with E

0
p;c and E

0
p;a being

the peak potentials of the forward and reverse currents measured versus the real

potential that is applied in each case (potential-corrected voltammograms), it is

possible to obtain linear dependences between the peak potentials separation and
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Fig. 7.50 Evolution of the

SWV peak current ((a),

Eq. (7.123)) and of the

SWVC peak charge ((b),

Eq. (7.115)) of a

electrochemical reactions in

terms of k
0
. ESW ¼ 50mV,

ΔEs ¼ 5mV, α ¼ 0:5,
T¼ 298 K
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ESW which allows us to estimate the rate constant in the range 1 � k0= s�1
� � � 2000

[34]. As an example, the SWV response and the plots of ΔEp and ΔE0p versus ESW

corresponding to a monolayer of azobenzene at a mercury electrode obtained for

different frequencies are plotted in Fig. 7.52. By assuming a charge transfer coeffi-

cient of α ¼ 0:5, the value k0 ¼ 23� 2ð Þ s�1 is found.

7.7.1.5 Non-faradaic Charge and Current Correction

As stated in Sect. 6.4.1, in the theoretical treatment of the electrochemical

responses of surface-bound molecules, it has been assumed that the measured

experimental currents and converted charges when a potential Ep is applied can

be considered as the sum of a pure faradaic contribution, given by Eqs. (6.130) and

(6.131), and a non-faradaic one, Qp,nf and Ip,nf (given by Eqs. (6.150) and (6.157)).

The correction of this non-faradaic component of the response can be done simply

when subtractive electrochemical techniques are used). We assume the parallel

capacitors model introduced by Damaskin [78], for which Cp,nf can be written as

C p, n f ¼ Cnf,O f
pð Þ

O τð Þ þ Cnf,R 1� f
pð Þ

O τð Þ
� �

ð7:126Þ

with Cnf,O and Cnf,R being the limiting values of the non-faradaic capacitance

corresponding to f
pð Þ

O ¼ 1 (totally oxidized monolayer) and f
pð Þ

O ¼ 0 (totally

reduced monolayer), respectively, which can be considered as practically constant,

and f
pð Þ

O τð Þ ¼ Γ pð Þ
O τð Þ=ΓT

� �
is the surface coverage of oxidized species at time τ.

Fig. 7.51 Quasi-reversible

surface-confined electrode

mechanism. Amplitude-

based quasi-reversible

maxima for different values

of the charge transfer

coefficient. k0= f
� � ¼ 0:1,

ΔEs ¼ 5mV, n¼ 1,

α ¼ 0:3 (white circles); 0.4
(black squares); 0.5 (black
diamonds); 0.6 (red
asterisks); and 0.7 (white
triangles). T¼ 298 K.

Reproduced from [33] with

permission
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The analysis of the influence of the non-faradaic component corresponding to

the converted charge-potential (Q-E) and current-potential (I-E) curves, is very

different. A short discussion of this influence in some of the subtractive techniques

analyzed follows.

Fig. 7.52 Electrode

reaction of azobenzene at

HMDE. The dependence of

the peak potential

separation of conventional

voltammograms (a) and

potential-corrected

voltammograms (b) on the

amplitude, measured at

different frequencies:

f (in Hz)¼ 8 (1); 25 (2);

50 (3); 100 (4); 251 (5); and

398 (6). (c) Net SWV

curves of azobenzene

recorded at f¼ 50 Hz and

ESW mVð Þ ¼ 100 (1);

125 (2); 150 (3); 175 (4);

and 200 (5). The

concentration of

azobenzene is 0.1 μM in a

phosphate buffer

(pH¼ 6.75). The

accumulation is carried out

for 30 s at 0 V.ΔEs ¼ 1mV.

Reproduced from [34] with

permission
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Differential Staircase Voltcoulommetry and Cyclic Voltammetry

In the case of Differential Staircase Voltcoulometry (DSCVC), the response

(QDSCVC/ΔE)� �E, with �E¼ E j þ E jþ1
� ��

2 is, indeed, a capacitance which can be

written as the sum of the faradaic contribution, given by Eq. (7.97) for reversible

processes (and by Eq. (6.161) in CV, ICV=vð Þ � E response), and of the non-faradaic
contribution (Eq. (7.126)). Thus, for a potential pulse Ep,

CT ¼ C f þ Cnf ¼ QF

ΔE

1

1þ eη p
� 1

1þ eη p�1

� �
þ Cnf,O þ Cnf,R � Cnf,Oð Þ Qp=QF

� �
ð7:127Þ

for DSCVC, whereas for CV the total capacitance is

CT ¼ C f þ Cnf ¼ F

RT
QF

eη

1þ eηð Þ2 þ Cnf,O þ Cnf,R � Cnf,Oð Þ Q=QFð Þ ð7:128Þ

From Eq. (7.127) the following expression for the peak parameters of the

capacitance–potential response QDSCVC=ΔEð Þ � �Eð Þ are obtained [73]:

EDSCVC,peak ¼ E��O
0

c þ
RT

F
lnρ ð7:129Þ

Qpeak
DSCVC

ΔE
¼ QF

ΔE
ρ e�Δη=2 � eΔη=2
� �

1� ρ2eΔη þ Cnf,O þ Cnf,R � Cnf,Oð Þ 1

1þ ρeΔη=2 ð7:130Þ

with

ρ ¼ � δ=CFð ÞΔηe�Δη=2 þ e�Δη � 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ=CFð ÞΔηp

e�Δη � 1þ δ=CFð ÞΔηe�Δη=2 ð7:131Þ

δ ¼ Cnf,R � Cnf,Oð Þ ð7:132Þ

CF ¼ FQF

RT
ð7:133Þ

Δη ¼ F

RT
ΔE ð7:134Þ

Equations (7.129) and (7.130) take the following, simpler, expressions when

ΔE! 0 (CV limit):

ECV,peak ¼ E��O
0

c þ
RT

F
ln

1þ δ
1� δ
� �

ð7:135Þ

I peakCV =v ¼ F

4RT
QF 1� δ2� �þ Cnf,O þ Cnf,R � Cnf,Oð Þ

2
1þ δð Þ ð7:136Þ

Note that when there are no differences between the structure of an oxidized or

reduced monolayer, it is fulfilled that Cnf,R ffi Cnf,O (i.e., δ ffi 0 ). Under these
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conditions, the expression of the peak potential (divided by ΔE) would coincide

with Eq. (7.98), i.e., it is not affected by double-layer effects, whereas the peak

height given by Eq. (7.130) would be equivalent to that of Eq. (7.99) plus a constant

value Cnf,O.

Square Wave Voltcoulometry

In the case of SWVC, the net non-faradaic charge, which corresponds to the

difference QSW,n f ¼ Q2 p�1,n f � Q2 p, n f ¼ Q f, n f � Qr, n f , is (see Eq. (6.150)),

QSW,n f ¼
2 ESWj j
Ru

e�P τð Þ
ð τ

0

eP tð Þdt ð7:137Þ

with Ru being the uncompensated resistance and P(t) given by Eq. (6.151). Equation
(7.137) has been obtained by considering that the pulse time length τ is much

greater than the time constants (RuCnf,O) and/or (RuCnf,R) [5].

Note that, in agreement with Eq. (7.137), the non-faradaic contribution to the

QSW � E curve is due only to the potential jump (equal to 2ESW). This behavior is

due to the differential character of the QSW, n f � E response.

Under reversible conditions, the following simplified expression for the net

non-faradaic charge is obtained:

QSW, n f ¼ 2ESW Cn f,O þ δ

1þ eη2 p

� �
ð7:138Þ

This equation indicates that QSW, nf gives rise to a baseline equal to 2ESWCnf,R

for E p � E��O
0

c , and equal to 2ESWCnf,O for E p 
 E��O
0

c .

Equation (7.138) can be considered as valid for dimensionless rate constants of

the order of k0τ
� � � 1. For smaller (k0τ) values, the general expression of QSW, nf,

given by Eq. (7.137), must be used.

Finally, note that when Cn f,O ’ Cn f,R ¼ Cn f , the non-faradaic charge logically

takes the constant value 2ESWCnf, whatever the value of k
0
was.

Square Wave Voltammetry

The correction of the non-faradaic component of the current curve is of special

relevance in the case of surface-bound molecules, especially in the case of bio-

logical molecules such as proteins or enzymes, since for these species the coverages

are very low and the faradaic response can be much smaller than the non-faradaic

one [79–81]. In this sense, SWV has the advantage of giving rise to practically

constant non-faradaic currents due to the subtractive nature of the signal which

are typically removed from the total response as a baseline correction. In the case

of the non-faradaic current taking different values at very positive and negative

potentials, the usual strategy is to carry out a polynomial interpolation of these

values in order to generate a complete non-faradaic response which will be

subtracted from the total response [79–83].
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Another more sophisticated approach is to make a Fourier Transform analysis of

the response in the way proposed by Bond et al. [84, 85]. In this case, the perturbation

is a continuous function of time (a ramped square wave waveform) which combines a

dc potential ramp with a square wave of potential that can be described as a

combination of sinusoidal functions. Under these conditions, the faradaic contribu-

tion to the response generates even harmonics only (i.e., the non-faradaic current goes

exclusively through odd harmonics). Thus, the analysis of the even harmonics will

provide excellent faradaic-to-non-faradaic current ratios.

7.7.2 Multi-electron Electrochemical Reactions

In this section, surface two-electron transfer reactions in line with the following

reaction scheme:

step formal potential

1 O1,ad þ e� !O2,ad E��O
0

c,1

2 O2,ad þ e� !O3,ad E��O
0

c,2

ð7:XIÞ

are analyzed using some subtractive techniques.

7.7.2.1 Reversible Electrochemical Reactions

When both electron transfers are very fast, only Differential Staircase

Voltcoulomentry (DSCVC) and SWVC are employed, since the corresponding

DSCVC and SWV are not adequate under these conditions.

The converted charge in DSCVC for a reversible EE mechanism is given by [86]

(see Eq. (6.180) and Eq. (7.2))

1

QF

QEE
DSCVC ¼ ZEE

p ð7:139Þ

with ZEEp given by Eq. (7.58).

When ΔE � 10mV

QEE
DSCVC

ΔE
ffi dQEE

dE
¼ IEECV

v
ð7:140Þ

So, the DSCVC curves have similar behavior to the CV ones (see Sect. 6.4.3.1).

Nevertheless, DSCVC has the advantage of presenting a time-independent, easily

characterizable peak-shaped response for any value of the pulse amplitude.
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An experimental example can be seen in Fig. 7.53 in which the DSCVC curves

obtained for a staircase potential (dQEE=dE� E curves, white dots) are plotted

together with the LSV ones corresponding to the application of a linear potential

sweep (IEECV=v� E curves, solid lines) to a solution of Phenantrenoquinone (PQ) in

an aqueous-buffered media adsorbed at a mercury electrode. These curves have

been obtained for a scan rate v¼ 150 mV s�1 in both techniques. PQ has two

carbonyl groups, which can be reduced in a two-electron two-proton reversible

conversion, where these last transfers not being rate limiting [86]. Both DSCVC

and CV responses in this figure are superimposed, which points to a reversible

electrochemical conversion (i.e., responses independent of the electrochemical

technique from which they have been obtained [75, 86]). The half-peak width of

the curves in Fig. 7.53 isW1=2 ¼ 51mV, a higher value than the 45 mV expected for

an E process of two electrons. Therefore, it can be considered that it behaves as a

two-electron electrochemical reaction with superimposed signals. Thus, from the

expression of W1/2 given by Eq. (6.183), we get the following value of ΔE��O0c ¼ 34

mV (K¼ 3.76; see Eq. (7.61)). By combining this value with the peak potential

which coincides with the average formal potential E
��O0
c , the following values of the

formal potentials are obtained: E��O
0

c, 1 ¼ �99mV and E��O
0

c, 2 ¼ �65mV vs. Reference.

The surface concentration of PQ can be determined from the peak height leading to

QF ¼ 15:1nC (i.e., ΓT ¼ 3:11� 10�11 molcm�2). An additional verification of the

reversibility of the responses arises from the excellent agreement between the

E / V vs Ag/AgCl, KCl (sat) 
-0.3 -0.2 -0.1 0.0 0.1

-0.5
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-0.3
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0.0

Phenantrenequinone
I C

V
/v

,(d
Q

SC
VC

/d
E

) /
 μ

F
EE

EE

Fig. 7.53 Experimental DSCVC dQEE
SCVC=dE� E curves (white dots) and LSV IEECV=v� E ones

(solid lines) corresponding to PQ 1 μM + PBS 0.1 M (pH¼ 7.2) adsorbed on a mercury electrode

(rs ¼ 0:02cm). The scan rate is in both cases v ¼ 150mVs�1. The pulse amplitude in DSCVC is

Es ¼ 5mV. Theoretical DSCVC curves (black dots) were calculated from Eq. (7.139) using the

following parameters: E��O
0

c,1 ¼ �99mV, E��O
0

c,2 ¼ �65mV, QF ¼ 15:1nC. T¼ 298 K. Reproduced

from [86] with permission
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experimental DSCVC and CV curves and the theoretical response calculated from

Eq. (7.139), by using the experimental values obtained from this figure.

With respect to SWVC, as indicated in Sect. 7.7.1.3, this technique has impor-

tant advantages since, in addition to the benefits derived from the application of a

square waveform, the QSW � E curves present a stationary character when the

electrode processes are fast given by

QSW

QF

¼ Q2 p�1 � Q2 p

QF

¼ �ZEE
2 p ð7:141Þ

with ZEEp given by Eq. (7.58).

This technique has been applied to the study of the reduction of the Keggin

heteropolyanion PMo12O40½ 
3� immobilized at the surface of a BDD electrode in

aqueous media with two electrolytes: HClO4 1.0 M and LiClO4 0.1 M. In the case of

carbon electrodes like Glassy Carbon or Pyrolytic Graphite electrodes, in aqueous

acidic media, three reversible waves are observed in the potential range (0.6,�0.2)
V, for each of which a two-electron transfer has been assigned [61, 74].

Square Wave charge–potential curves corresponding to PMo12O40½ 
3� mono-

layers in both electrolytes for ESW ¼ 25mV and τ ¼ 100ms (lines) are shown in

Fig. 7.54. These curves show three very well-defined peaks with a nearly constant

baseline. Actually, the resolution achieved in the three peaks is a great improve-

ment on that obtained with Cyclic Voltammetry.

It has been assumed that each peak corresponds to an isolated EE process with a

not very negative or even a positive value of ΔE��O0c such that each one (denoted as

processes I, II, and III) can be treated separately from the others. From the values of

the peak parameters of these responses, it is possible to obtain the formal potentials

of the different steps. From these values, theoreticalQEE
SW � Eindex curves have been

calculated using Eq. (7.141) for each of the three processes, concluding that the

overall response is the sum of the three individual ones. From the results, it can be

concluded that the above assumption of three isolated EE processes is justified,

since no significant difference between the three different individual processes and

the overall response is obtained (relative error between individual and overall lesser

than 3 %) [74].

An excellent agreement is obtained from the comparison between experimental

and theoretical data. The results obtained for the formal potentials are shown in

Table 7.4. From these values it can be concluded that an aprotic electrolyte leads to

a shift in the formal potential of the different steps which is more noticeable in

process III (shift of 240 mV in ΔE��O0c ). This may be due to the increasing formal

charge in the immobilized molecules, which cannot be compensated for the addi-

tion of protons [87].

7.7 Surface-Bound Molecules 559



Eindex / V vs. SCE
0.00.20.40.6

Q
SWW

/
C

0.00

0.01

0.02

0.03

0.04

0.05
HClO4 1.0 M

Eindex / V vs. SCE
-0.20.00.20.4

Q
SW W

/
C

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
LiClO4 0.1 M

A

B

I

I

II

III

II

III

3
12 40PMo O

EE
EE

m
m

Fig. 7.54 (Lines) Experimental QEE
SW � Eindex curves of a PMo12O40½ 
3� monolayer at a BDD

electrode for aqueous HClO4 1.0 M (a) and LiClO4 0.1 M (b) media. τ ¼ 100ms ( f¼ 5 Hz). (Black

dots) Theoretical QEE
SW � Eindex curves calculated from Eq. (7.141) by using the data shown in

Table 7.4 for the two media above. Reproduced from [74] with permission
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7.7.2.2 Non-reversible Electrochemical Reactions

When both redox reactions are sluggish, both SWV and SWVC responses become

very complex because they are influenced by both the kinetic and thermodynamic

parameters of the electrode reactions and those associated with the square wave

waveform (i.e., ESW, f, and ΔEs). Basically, when two peaks are observed, their

peak heights are determined mainly by the magnitude of the dimensionless kinetic

constants k
0

1 ¼ k01τ and k
0

2 ¼ k02τ, and the charge transfer coefficients α1 and α2,

whereas their position depends on the difference between formal potentials ΔE��O0c

and the ratio k
0

1=k
0

2 [6, 88].

In order to obtain some examples of the SWV and SWVC curves for several

characteristic values of ΔE��O0c and k
0

1=k
0

2, the recurrent expressions for the current

given by Eqs. (6.185)–(6.191) have been applied to the square wave potential

sequence (the charge have been calculated by integrating the corresponding

currents).

In Fig. 7.55, the SWV and SWVC curves for an EE mechanism with identical

values of the surface rate constants k
0

1=k
0

2 ¼ 1 are plotted. As can be inferred, the

Square Wave Voltammograms (curves a and b) present a maximum value for the

peak currents (quasi-reversible maximum, QRM, see Sect. 7.7.1.4) for k
0

1 ¼ k
0

2 ¼ 1,

and a splitting is observed for k
0

1 ¼ k
0

2 ¼ 1:5 with much lower peak height. For k
0

i

� 1 (i¼ 1, 2), the current decreases with k
0

i .

From Fig. 7.55c, d, it is clear that the converted charge–potential curves obtained

with SWVC are much more sensitive than the SWV ones for quasi-reversible

electrode reactions, although the response charge-potential (SWVC curves) is

very weak for k
0

i values below 0.05 (compare curves 7.55a, b with 7.55c and d

for these k
0

i values). This can also be observed from these curves as both SWV and

Table 7.4 Average potentials E
��O0
c, i and ΔE��O0c, i ¼ E��O

0
c,2, i � E��O

0
c,1, i, for the three peaks (i¼ I, II, and

III), corresponding to the direct response of PMo12O40½ 
3� monolayer shown in Fig. 7.54

[74]. τ ¼ 100ms

HClO4 1.0 M

Process E
��O0
c, i (mV) vs. SCE Qpeak;i

SW /QF ΔE��O0c, i (mV) vs. SCE E��O
0

c,1, i, E
��O0
c,2, i (mV) vs. SCE

I 451 1.21 17 447, 463

II 348 1.41 85 305, 385

III 173 1.07 �10 180, 170

LiClO4 0.1 M

Process E
��O0
c, i (mV) vs. SCE Qpeak,i/QF ΔE��O0c, i (mV) vs. SCE E��O

0
c,1, i, E

��O0
c,2, i (mV) vs. SCE

I 255 0.77 �55 282, 227

II 120 1.32 46 97, 143

III �65 1.01 �19 �55, �74
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SWVC signals are not centered with respect to the average formal potentialE��O
0

c and

shift toward more negative potentials as k
0

i decreases.

In Fig. 7.56, SWV and SWVC curves for k
0

1=k
0

2 ¼ 102 under the same conditions

of Fig. 7.55 are plotted. As can be seen, forΔE��O0c ¼ �200mV, the behavior of these

curves (see Fig. 7.56a, c) is markedly different to that shown in Fig. 7.55a, c, since

the first peak in Fig. 7.56a (which is itself split for k
0

1 ¼ 1:5) is higher than the

second. Moreover, for k
0

1 � 1:5 the second peak is shifted toward much more

negative potentials than in Fig. 7.55a. Contrary to what is observed in Fig. 7.55c,

SWCV curves in Fig. 7.56c do not present splitting. Figure 7.56b, d corresponding

to ΔE��O0c ¼ 0mV present a slightly different morphology to that corresponding to

Fig. 7.55b, d, although their peak heights are halved.
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Fig. 7.55 SWV and SWVC curves for a non-reversible surface EE process calculated from

Eqs. (6.185) to (6.191) and Eq. (7.5). The values of the dimensionless rate constant k
0

1 and of

the difference between formal potentials ΔE��O
0

c appear on the figures. k
0

1=k
0

2 ¼ 1, α1 ¼ α2 ¼ 0:5,
ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298 K
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7.7.3 Electrocatalytic Reactions at Modified Electrodes

In the last 20 years, a big effort has been made to characterize different reaction

schemes taking place at modified electrodes, with special focus on the case of

biomolecules in what has been called “Protein Film Voltammetry” [79–83]. Among

the different situations analyzed with multipulse techniques (including Cyclic

Voltammetry), it can be cited the surface ECE process [89, 90] and surface

reactions preceded by homogeneous chemical reactions [91]. For a more detailed

revision of the different mechanisms analyzed in the case of SWV, see [19].

The most interesting reaction scheme is the electrocatalytic one. Electrocatalysis

at modified electrodes is accomplished by an immobilized redox mediator, which is

activated electrochemically by applying an electrical perturbation (potential or

current) to the supporting electrode. As a result, the chemical or electrochemical

conversion of other species located in the solution adjacent to the electrode surface

(which does not occur, or occurs very slowly in the absence of the immobilized

catalyst) takes place [1, 92–94]. The main advantage of this kind of

electrocatalyzed reactions lies in the large number of synthetic procedures for
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Fig. 7.56 SWV and SWVC curves for a non-reversible surface EE process calculated from

Eqs. (6.185) to (6.191) and Eq. (7.5). The values of the dimensionless rate constant k
0

1 and of

the difference between formal potentials ΔE��O
0

c appear on the figures. k
0

1=k
0

2 ¼ 102, α1 ¼ α2 ¼ 0:5,
ESW ¼ 50mV, ΔEs ¼ 5mV, T¼ 298 K
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modifying different electrode surfaces with electrochemically active molecules or

biomolecules (e.g., proteins, enzymes).

Two different variants of the electrocatalytic process are analyzed here. The first

one corresponds to first-order conditions and in this case one-electron and

two-electron charge transfers coupled to the chemical reaction are discussed

under SWV and Voltcoulometry conditions [19, 83, 95–97]. After that, a second-

order catalytic scheme is presented in which the mass transport of the substrate of

the chemical reaction is considered [98, 99].

7.7.3.1 Pseudo-First-Order Electrocatalytic Processes: EC0 Process

The following reaction scheme is considered:

Oad þ e� !
kred

kox
Rad

Rad þ Csol  !
k
0
c

k
0
c

Oad þ Dsol

ð7:XIIÞ

where Oad and Rad refer to the redox couple bound to the electrode surface and Csol

and Dsol are species in solution. In this case, the redox mediator O suffers a single

reduction. It is assumed that the surface concentration of species Csol remains

constant and equal to its bulk value, c�C (such that the chemical reaction can be

considered to be of pseudo-first order) and the chemical reaction behaves as

irreversible,

Oad þ e� !
kred

kox
Rad

Rad þ Csol!kc Oad þ Dsol

ð7:XIIIÞ

with the pseudo-first-order rate constant given by

kc ¼ k
0
cc

*
C ð7:142Þ

The expressions for the SWV and SWVC curves obtained for the application of

an arbitrary sequence of potential pulses are given by Eqs. (6.202) and (6.205),

respectively. For the usual particular case of a fast catalytic reaction, i.e., kc 
 1,

the following limiting expressions for the SWV current and SWVC charge can be

obtained:

SWV (Current–Potential Curves)

For fast catalyzed reactions, the stationary (independent of time) ISWV � E response

is given by (see Eqs. (6.207) and (7.6)),
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ψ cat
SW ¼

I catSW

QF=τð Þ ¼ kc
kred, f
kcT, f

� kred, r
kcT, r

 !
ð7:143Þ

where

kcT, i ¼ kred, i þ kox, iþ kc i ¼ f, r ð7:144Þ
kc ¼ kcτ ð7:145Þ

and QF given by Eq. (7.93). Subindexes “f” and “r” refer to the forward and reverse

pulses (i.e., 2p� 1 and 2p, respectively).
For a reversible charge transfer, Eq. (7.143) becomes

ψ cat
SW, rev ¼ kc

1

1þ eη f
� 1

1þ eηr

� �
ð7:146Þ

with η f ¼ ηr þ 2F= RTð Þð ÞESW.

The dimensionless SWV curve is identical to the stationary SWV curve obtained

for a fast electrochemical reaction with solution soluble molecules given by

Eqs. (7.35) or (7.36) for spherical or disc electrodes, respectively, and also to that

obtained for a reversible surface electrode process (Eq. (7.116)). Therefore, the

peak potential coincides with the formal potential and the half-peak width is given

by Eq. (7.32). The peak height is amplified by kc:

ψ cat,peak
SW,rev ¼ kc tan h

FESW

2RT

� �
ð7:147Þ

SWVC (Charge–Potential Curves)

Under these conditions (kc 
 1), the following QSW � E relation is obtained (see

Eqs. (6.208) and (7.8)):

Q cat
SW

QF

¼ kred, f
kcT, r

� kred, r 1þ kcτð Þ
kcT, r

� kc
kcT, r

kred, f
kcT, r

� kred, r
kcT, r

 !
ð7:148Þ

This equation shows that a steady state (i.e., an independent of time behavior)

cannot be obtained for the Q cat
SW � E curves.

For a reversible charge transfer, Eq. (7.148) simplifies to

Q cat
SW,rev

QF

¼ 1

1þ eη f
� 1þ kc
1þ eηr

ð7:149Þ

These curves also present a peak-shaped response, but it is distorted by

the catalytic contribution 1þ kc
� �

which appears in the backward term. In
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agreement with Eqs. (7.148) and (7.149), the following charge limits are obtained

for E! �1:

Q cat
SW

QF

�
E!1

¼ 0

Q cat
SW

QF

�
E!�1

¼ �kc

9=; ð7:150Þ

When the charge transfer step is an oxidation instead of a reduction, Eqs. (7.143)

and (7.148) remain valid by changing kred for kox.

Theoretical I catSW=QF � E� E��O
0

c

� �
andQ cat

SW � E� E��O
0

c

� �
curves, calculated from

Eqs. (7.143) and (7.148), for different values of the catalytic rate constant kc and a

fixed square wave pulse amplitude ESW ¼ 100mV are plotted in Fig. 7.57. Two

values of the dimensionless heterogeneous rate constant have been considered

k
0 ¼ 10 and 0.5, which refer to reversible (Fig. 7.57a, b) and quasi-reversible

(Fig. 7.57c, d) electrochemical behavior. The case corresponding to a simple
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Fig. 7.57 Theoretical I catSW=QF � E� E��O
0

c

� �
(a, c) and Q cat

SW=QF � E� E��O
0

c

� �
(b, d) calculated

from Eqs. (7.143) to (7.149) in Square Wave Voltammetry and Voltcoulometry, respectively, for a

catalytic mechanism. kc ¼ 10s�1. The values of kc (in s�1) and of the dimensionless heterogeneous

rate constant k
0
are on the curves. ΔEs ¼ 5mV, ESW ¼ 100mV, τ ¼ 50ms, T¼ 298 K, α ¼ 0:5.

Reproduced from [95] with permission
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charge transfer process (kc ¼ 0) has been included for comparison. Note that this

process gives rise to null current under Nernstian conditions (see Fig. 7.57a) [5].

From the I catSW=QF � E� E��O
0

c

� �
curves in Fig. 7.57a, c, it can be seen that the

current increases with kc, whatever the reversibility degree of the electrochemical

step. Under reversible conditions (Fig. 7.57a), these curves present a peak-shaped

feature centered at the formal potential of the immobilized electro-active species

(dotted line). When the charge transfer step is quasi-reversible, the current curves

show one or two peaks depending on the values of kc and ESW. Typically, an

increase of kc gives rise to a single peak located at more negative potentials thanE��O
0

c

(see Fig. 7.57c). No simple expressions for the peak parameters can be obtained in

these conditions.

The Q cat
SW � E� E��O

0
c

� �
curves in Fig. 7.57b, d show a peak-shaped response

whose cathodic limit is determined by the catalytic rate constant value (see

Eq. (7.150)), independently of the heterogeneous rate constant k
0
. The peak height

of the charge–potential curves increases with ESW until a charge plateau equal toQF

is obtained for ESW � 120mV in the reversible case (see Fig. 7.57b). For processes

with non-reversible charge transfer step a higher |ESW| is necessary to reach a

plateau, independently of the square wave pulse amplitude.

The peak potential expression of the Q cat
SW � E curves can be obtained for

reversible conditions by imposing dQ cat
SW=dE ¼ 0 in Eq. (7.149):

Epeak ¼ E��O
0

c �
RT

F
ln

kc � eηSW � e�ηSWð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kc

p
e�ηSW � 1þ kc

� �
eηSW

 !
ð7:151Þ

with ηSW given by Eq. (7.33).

This equation indicates that the peak potential is located at more negative values

than E��Oc
0 and it moves toward the formal potential as ESW increases. When high

values of the square wave pulse amplitude are used, the Q cat
SW � E curves show a

broad plateau which is centered at a potential E ¼ E��O
0

c � RT= 2Fð Þð Þln 1þ kc
� �

.

Another interesting characteristic of the Q cat
SW � E curve is the cross potential for

which the converted charge is null. For reversible conditions, it is given by (see

Eq. (7.149) for Q cat
SW ¼ 0),

EQ cat
SW¼0 ¼ E��O

0
c þ

RT

F
ln

eηSW � e�ηSW 1þ kc
� �

kc

 !
ð7:152Þ

This expression simplifies for high values of the square wave pulse amplitude:

EQ cat
SW¼0 ¼ E��O

0
c �

RT

F
ln kc
� �þ ESW ð7:153Þ

so this potential moves linearly toward positive values with ESW.
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For quasi-reversible conditions (Fig. 7.57d), the shape of the Q cat
SW � E curves is

similar to that of the reversible ones, although the peak heights are smaller.

The applicability of the theoretical expressions discussed above has been tested

with different systems such as the oxidation of protein myoglobin in the presence of

sodium ascorbate [96] or the oxidation of ferrocene in the presence of potassium

ferrocyanide [95]. The case corresponding to ferrocene-containing monolayers on a

gold electrode in the presence of potassium ferrocyanide will be addressed here.

The redox reaction of the ferrocene moiety in a 6-(ferrocenyl)hexanethiol-

hexanethiol ( FcC6SH� C6SH, 1:20) mixed monolayer has been studied in the

presence of potassium ferrocyanide as reducing agent. Thus, the ferrocenium

formed at anodic potentials is reduced to ferrocene by the ferrocyanide in solution

and the whole process becomes a surface catalytic reaction, in agreement with the

following reaction scheme:

FcC6SH !
kox

kred
FcþC6SHþ e�

FcþC6SHþ Fe CNð Þ4�6 !
k
0
c
FcC6SHþ Fe CNð Þ3�6

9>=>; ð7:XIVÞ

The process implies a first electrochemical step with a very fast conversion of the

ferroceno/ferrocinium couple, due to the short length of the alkyl chain, and a

second chemical step with a simple electron transfer between the iron complex in

solution and that of the monolayer. Moreover, the thiols block the gold surface in

such a way that the Fe CNð Þ4�6 oxidation will take place due solely to the ferrocene

mediation at the monolayer, and with a very high efficiency (i.e., the catalytic way

is observed at potentials 500 mV lower than those corresponding to a gold electrode

with a C6SH monolayer).

The experimental I catSW=QF � E� E��O
0

c

� �
and Q cat

SW � E� E��O
0

c

� �
curves of the

FcC6SH� C4SHmixed monolayer at a disc gold electrode of 100 μm diameter in a

solution 1.0 M NaClO4, obtained for different values of the square wave pulse

amplitude and a fixed ferricyanide concentration 10 mM, are plotted in Fig. 7.58. It

can be seen that whereas the peak height of the charge–potential curves increases

with ESW until charge plateau for ESWj j > 110mV is obtained, the anodic limit

region remains unaffected, in line with Fig. 7.57b and Eq. (7.150). From the

measurement of the charge plateau for ESW ¼ 130mV, the value

QF ¼ 2:0� 0:1ð ÞnC.
Moreover, the anodic limit should be equal to �kc, in agreement with

Eq. (7.150). From the curves for ESW � 110mV the value kc ¼ 0:75 has been

obtained (k
0
c ¼ 2:5� 104M�1 s�1 ). The theoretical I catSW=QF � E� E��O

0
c

� �
and

Q cat
SW � E� E��O

0
c

� �
curves have been included for comparison (symbols)

showing an excellent agreement in all the cases.
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Fig. 7.58 (solid lines) Experimental I catSW=QF � E� E��O
0

c

� �
(a) and Q cat

SW=QF � E� E��O
0

c

� �
(b)

curves obtained in SWV and SWVC for a mixed FcC6SH� C6SH monolayer in 1 M NaClO4

solution with 10mM in potassium ferrocyanide. Electrode radius rd ¼ 50μm. ΔEs ¼ 5mV. The

values of ESW (in mV) appear on the curves. (symbols) Theoretical current–potential (a) and
charge–potential (b) curves calculated from Eqs. (7.146) to (7.149) by using the following

parameters: E��Oc
0 ¼ 0:100V, kc ¼ 0:75, QF ¼ 1950 pC, and T¼ 298 K. Reproduced from [95]

with permission
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7.7.3.2 Pseudo-First-Order Electrocatalytic Processes: EEC0 Process

Another possible electrocatalytic process is that related to a surface-bound mole-

cule which can give rise to a two-electron reaction. In these conditions, the coupling

of the catalytic reaction in the presence of an adequate species in solution can lead

to different mechanistic schemes from which the elucidation of the global reaction

path is not immediate. This situation matches the behavior of a great number of

inorganic catalysts (such polyoxometallates or ion complexes) [86, 98] and bio-

logical molecules (enzymes, proteins, oligonucleotides, etc.) [79, 80], for which

there is a lack of theoretical basis which enables a clear classification of the

different possibilities that can be encountered.

The possible pseudo-first-order catalytic routes, when both electron transfers are

fast enough are

ð7:XVÞ

The normalized SWV response is given by the following expressions:

ψEEcat, route i i¼1,2, 3ð Þ
SW ¼

kc f
2 p�1ð Þ
O2

� f
2 pð Þ
O2

� �
Route 1

kc f
2 p�1ð Þ
O3

� f
2 pð Þ
O3

� �
Route 2

2kc f
2 p�1ð Þ
O3

� f
2 pð Þ
O3

� �
Route 3

8>>><>>>: ð7:154Þ

with

f
pð Þ

O2
¼ eη pffiffiffiffi

K
p þ eη p þ ffiffiffiffi

K
p

e2η p
ð7:155Þ

f
pð Þ

O3
¼

ffiffiffiffi
K
pffiffiffiffi

K
p þ eη p þ ffiffiffiffi

K
p

e2η p
ð7:156Þ

and η p given by Eq. (7.59).

For the deduction of Eq. (7.154), it has been taken into account that the

contribution to the current due to the charge transfers is null.

Concerning the converted charge, the expression of the QSW � E curves is
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Q
EEcat, route i i¼1,2, 3ð Þ
SW ¼ QEE

SW �
kc f

2 pð Þ
O2

Route 1

kc f
2 pð Þ
O3

Route 2

2kc f
2 pð Þ
O3

Route 3

8><>: ð7:157Þ

where

QEE
SW ¼

2
ffiffiffiffi
K
p þ eη2 j�1ffiffiffiffi

K
p þ eη2 j�1 þ ffiffiffiffi

K
p

e2η2 j�1
� 2

ffiffiffiffi
K
p þ eη2 jffiffiffiffi

K
p þ eη2 j þ ffiffiffiffi

K
p

e2η2 j
ð7:158Þ

The SWV and SWVC curves for the EEC0 reaction schemes, calculated from

Eqs. (7.154) and (7.157), can be seen in Figs. 7.59 and 7.60, respectively. These

curves have been obtained for different values of the dimensionless chemical rate

constant kc and ΔE��O0c (i.e., the difference between the formal potentials of

the electron transfer reactions). SWV proves highly sensitive for detecting the

presence of the catalysis, since no measurable response is obtained in the absence

of the same. From Fig. 7.59, it can be deduced that when catalysis takes place, route
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Fig. 7.59 SWV curves corresponding to an EEC0 mechanism for its three possible routes

calculated from Eq. (7.154). The values of the dimensionless chemical rate constant kc appear

on the curves. ΔEs ¼ 5mV, ESW ¼ 50mV, T¼ 298 K
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1 always gives rise to two well-defined symmetric peaks with respect to the null

current point corresponding to positive and negative values of ψSW, whose heights

increase with kc (see Figs. A.I–A.III in 7.59). The null current potential or cross

potential coincides with the average formal potentialE
��O0
c independently of the value

of ΔE��O0c . Moreover, both peak potentials coincide with E��O
0

c,1 and E
��O0
c,2 for ΔE

��O0
c � 0

(see Fig. A.I in 7.59). The peak potential separation fulfill thatΔEpeak ¼ ΔE��O0c

		 		 for
ΔE��O0c � �142:4mV.

The SWV curves corresponding to the routes 2 and 3 cannot be distinguished

since they lead to similar expressions which only differ by a factor of 2 (see

Eq. (7.154)). Under these conditions (curves A.II–C.II and A.III–C.III in

Fig. 7.59), the SWV curves present only one peak and lose their symmetry. So, it

can be inferred that SWV technique is highly suitable for distinguishing route 1

from routes 2 and 3. However, the determination of E��O
0

c,1 and E
��O0
c, 2 becomes complex

in general in route 1 for ΔE��O0c 
 0.

SWVC charge–potential curves show a constant negative value at cathodic

potentials from which it is possible to make an estimation of the catalytic rate
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Fig. 7.60 SWVC curves corresponding to an EEC0 mechanism for its three possible routes

calculated from Eq. (7.157). The values of the dimensionless chemical rate constant kc appear

on the curves. ΔEs ¼ 5mV, ESW ¼ 50mV, T¼ 298 K
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constant for routes 2 and 3. In the case of route 1, for very positive values of ΔE��O0c ,

there is no influence of the catalytic step.

7.7.3.3 Second-Order Electrocatalytic Processes

When the surface concentration of species Csol cannot be considered as constant,

the analysis of the electrochemical response that arises from reaction scheme

(7.XII) becomes much more complex, since the process is of second order and

the values of the surface concentrations of Csol are a function of the kinetics of the

catalytic reaction and also of the mass transport (and, therefore, of the electrode

geometry). Due to this higher complexity, only the current–potential response in

SWV will be treated, with the additional simplification of fast surface charge

transfer. In this case, when discrete constant potentials are applied, the surface

coverages of both species are constant (i.e., d f
pð Þ

O =dt ¼ �d f pð Þ
R =dt ¼ 0 for any

potential Ep), such that the current corresponding to the pth applied potential

applied to a spherical electrode is given by

Icat, sphep

FAΓT

¼ kc f
pð Þ

R c
pð Þ

C rs; tð Þ ð7:159Þ

with rs being the electrode radius. The following approximate expression for the

SWV net current has been obtained [99]:

Icat,spheSW ¼FAc*C

ffiffiffiffiffiffi
DC

τ

r
Λ f

2 p�1ð Þ
R

Y2 p�2
h¼1 1þΛ f hð Þ

R σhþ1,2 p�1
h i

Y2 p�1
h¼1 1þΛ f hð Þ

R σh,2 p�1
h i

8<:
� f

2 pð Þ
R

Y2 p�1
h¼1 1þΛ f hð Þ

R σhþ1,2 p
h i

Y2 p

h¼1 1þΛ f hð Þ
R σh,2 p

h i
9=; p¼ 1,2, . . . ,NP=2 ð7:160Þ

where

f
hð Þ
R ¼

Γ hð Þ
R

ΓT

¼ 1

1þ eηh
ð7:161Þ

Λ ¼ kcΓT

ffiffiffiffiffiffi
τ

DC

r
ð7:162Þ

σh,m ¼ 1

ξs þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π m�hþ1ð Þ
p ð7:163Þ
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ξs ¼
ffiffiffiffiffiffiffiffi
DCτ
p
rs

ð7:164Þ

The response obtained in SWV is peak shaped, and, due to the complexity of

Eq. (7.160), the peak coordinates cannot be analytically deduced, with the excep-

tion of simpler situations like stationary conditions.

First-Order Behavior

By considering the limitΛ! 0 (i.e., very low demand from the chemical process at

the monolayer/solution interface), the square wave response is given by

Icat, spheSW

�
Λ!0
ffi FAc*C

ffiffiffiffiffiffi
DC

τ

r
Λ f

2 p�1ð Þ
R

n
� f

2 pð Þ
R

o
¼ QFkc

1

1þ eη f
� 1

1þ eηr

� �
ð7:165Þ

which is logically coincident with Eq. (7.146), deduced by assuming first-order

conditions. Therefore, Eq. (7.165) leads to the same peak parameters as those

obtained with Eq. (7.146).

Small Electrodes

Considering the limiting condition ξs 
 1 (i.e., small values of the radius) in

Eq. (7.160) (i.e., σh,m ! 1=ξsð Þ, the following simplified expression is obtained

Icat, spheSW ¼ FAc*C

ffiffiffiffiffiffi
DC

τ

r
Λ

f
2 p�1ð Þ
R

1þ Θ f
2 p�1ð Þ
R

� f
2 pð Þ
R

1þ Θ f
2 pð Þ
R

 !
ð7:166Þ

with

Θ ¼ Λ
ξs
¼ kcΓTrs

DC

ð7:167Þ

By taking into account that E2 p�1 ¼ E2 p � 2ESW, with the upper sign being

applied in the first (cathodic) sweep and the lower corresponding to the second

(anodic) one, Eq. (7.166) can be rewritten as

Icat, spheSW ¼ FAc*C

ffiffiffiffiffiffi
DC

τ

r
Λ

1

1þ Θþ eη2 p�1
� 1

1þ Θþ eη2 p�1�2ηSW

� �
ð7:168Þ

In this case, it is possible to obtain the following simple expressions for the peak

parameters:

574 7 Differential Multipulse and Square Wave Voltammetries



y

L

L

L

y
y y

¢

¢ ¢

Fig. 7.61 (a) ψcat, plane
SW � Eindex � E��O

0
c

� �
(solid lines) at a planar electrode for different values of Λ

(indicated on the graphs). Peak currents (b) and potentials (c) of the first (black circles) and second
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Ess
SW,peak ¼ E��O

0
c þ

RT

F
ln 1þ Θð Þ ð7:169Þ

Icat, sphe,peakSW ¼ �FAc*C
ffiffiffiffiffiffi
DC

τ

r
Λ

1þ Θtanh
ηSW
2

� �
¼ �FAc*CkcΓT

1

1þ Θtanh
ηSW
2

� �
ð7:170Þ

In the cyclic mode of SWV, two scans can be analyzed in an anologous way to

Cyclic Voltammetry. In Fig. 7.61, the Cyclic SWV curves (7.61a) of the catalytic

process given in (7.XI) for different values of Λ at planar electrodes have been

plotted, together with the evolution of the peak currents (7.61b) and peak potentials

(7.61c) of the first (1) and second (2) scans toward cathodic and anodic potentials,

respectively, as a function of logΛ.
From these curves, we can see that the increase of Λ gives rise to the increase of

both responses up to a value of Λ � 5, as of which no influence is observed on the

peak currents (see also Fig. 7.61b). For low Λ values, identical peak heights

proportional to Λ are obtained in both sweeps. This feature is typical of first-order

catalytic behavior (see figure embedded in Fig. 7.61b). As Λ increases, a strong

asymmetry appears between the responses of the first and second sweeps, with the

former being higher than the latter. For logΛ > 1 the ratio between both peaks takes

the constant value 7.42. A numerical expression for the dependence of the both

peak currents with logΛwhich covers the whole range of values shown in Fig. 7.61b
is obtained:

ψ cat,plane, p1
SW ffi 0:2191

1þ e�
logΛþ0:5891ð Þ

0:4037

ψ cat,plane, p2
SW ffi �0:0301

1þ e�
logΛþ1:4655ð Þ

0:3715

9>>>=>>>; ð7:171Þ

from which obtaining Λ is immediate. In the case of the anodic peaks, the errors are

higher due to the small values of ψ cat;plane;p2
SW (the relative error is higher than 5 % for

logΛ � �1), so the use of the expression for the peak heights of the first sweep is

more appropriate.

Concerning the peak potentials, both values coincide with E��Oc
0 for logΛ < �2

(first-order behavior) and both responses shift toward more positive potentials as Λ
increases. Moreover, the peak potentials of both responses depend linearly on logΛ

Fig. 7.61 (continued) (white triangles) scans as a function of logΛ. ESW ¼ �50mV,

ΔEs ¼ �5mV, with the upper sign corresponding to the first scan (cathodic) and the lower to the

second (anodic), respectively. Inner figure in 7.61b: peak currents of the first sweep as a function of Λ.
τ ¼ 10ms, T¼ 298.15 K, D ¼ 10�5 cm2 s�1. Reproduced from [99] with permission

576 7 Differential Multipulse and Square Wave Voltammetries



for Λ > 1 with a slope that is approximately equal to 59 mV, in agreement with the

following expressions (T¼ 298 K):

ESW, p1 � E��Oc
0 mVð Þ ffi 51:6þ 59:4log Λð Þ

ESW, p2 � E��Oc
0 mVð Þ ffi 26:4þ 58:4log Λð Þ

�
Λ > 1 ð7:172Þ

The difference between peak potentials of the two sweeps becomes constant and

equal to ΔESW, p ffi 25mV for log Λ > 1.

On the basis of these results, three different behaviors can be distinguished in the

SWV response:

(a) First-order region (Λ < 0:01). In this region, the chemical rate constant kc is
low and therefore the surface concentration is approximately equal to the bulk

value. The peak current is proportional to Λ (see figure embedded in 7.61b),

and the peak potential coincides with the formal potential of the surface-

attached redox catalyst, E��O
0

c .

(b) Mixed region ( 0:01 < Λ < 10 ). For intermediate values of Λ, the surface

concentration of species C decreases more rapidly and at more positive

potentials as Λ increases. Under these conditions, the current increases and

the SWV peak potentials of both sweeps shift toward more anodic values when

Λ increases.

(c) Mass transport control region (Λ > 10). This zone corresponds to high values

of the chemical rate constant (i.e., very fast conversion of species C by the

immobilized redox catalyst). The chemical conversion of Csol through the

assistance of the attached mediator R is very fast, so the diffusive mass

transport is the limiting step. In this case, the peak currents become inde-

pendent of Λ and the peak potentials show a logarithmic dependence on the

chemical rate constant (i.e., Λ). The behavior of the peak potential is similar to

the variation of the peak potential of a totally irreversible charge transfer

reaction with the logarithm of the heterogeneous rate constant.

An in-depth analysis of the response at spherical electrodes and microelectrodes

can be found in [99].
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Appendix A. Dimensionless Parameter Method:

Solution for the Application of a Constant

Potential to a Simple Charge Transfer Process at

Spherical Electrodes When the Diffusion

Coefficients of Both Species are Different

The Dimensionless Parameter is a mathematical method to solve linear differential

equations. It has been used in Electrochemistry in the resolution of Fick’s second
law differential equation. This method is based on the use of functional series in

dimensionless variables—which are related both to the form of the differential

equation and to its boundary conditions—to transform a partial differential equation

into a series of total differential equations in terms of only one independent

dimensionless variable. This method was extensively used by Koutecký and later

by other authors [1–9], and has proven to be the most powerful to obtain explicit

analytical solutions. In this appendix, this method will be applied to the study of a

charge transfer reaction at spherical electrodes when the diffusion coefficients of

both species are not equal. In this situation, the use of this procedure will lead us to a

series of homogeneous total differential equations depending on the variable

s given in Eq. (A.1). In other more complex cases, this method leads to

nonhomogeneous total differential equations (for example, the case of a reversible

process in Normal Pulse Polarography at the DME or the solutions of several

electrochemical processes in double pulse techniques). In these last situations,

explicit analytical solutions have also been obtained, although they will not be

treated here for the sake of simplicity.

The homogeneous differential equation,

ρ
00
j sð Þ þ 2sρ

0
j sð Þ � 2 jρ j sð Þ ¼ 0; ðA:1Þ

has two linearly independent solutions given by the following series:
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K j sð Þ ¼
X1
i¼0

a
jð Þ

i si

L j sð Þ ¼
X1
i¼0

c
jð Þ

i siþ1

9>>>=>>>; ðA:2Þ

where the coefficients a
jð Þ
i and c

jð Þ
i are given by the following recurrence relationships:

a
jð Þ

iþ2
a

jð Þ
i

¼ 2 j� ið Þ
iþ 1ð Þ iþ 2ð Þ

c
jð Þ

iþ2
c

jð Þ
i

¼ 2 j� i� 1ð Þ
iþ 2ð Þ iþ 3ð Þ

9>>>>=>>>>; ðA:3Þ

with

a
jð Þ

0 ¼ c
jð Þ

0 ¼ 1 ðA:4Þ

such that the coefficients not included in Eqs. (A.3) and (A.4) are null. A new

solution for Eq. (A.1) can be written as a linear combination of the series Kj(s) and
Lj(s),

ρ j sð Þ ¼ b1 jK j sð Þ þ b2 jL j sð Þ ðA:5Þ

where b1j and b2j are constants. The following function:

ψ j sð Þ ¼ K j sð Þ � p jL j sð Þ ðA:6Þ

with [1, 6],

p j ¼ lim
s!1

K j sð Þ
L j sð Þ ¼

2Γ 1þ j=2ð Þ
Γ 1þ jð Þ=2ð Þ ; ðA:7Þ

is also a solution of Eq. (A.1) as can be easily demonstrated by direct substitution.

Γ(x) in Eq. (A.7) is the Euler’s Gamma function [10]:

Γ xð Þ ¼
ð1
0

tx�1e�tdt ðA:8Þ

Moreover,
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p0 ¼
2ffiffiffi
π
p ðA:9Þ

p j p jþ1 ¼ 2 jþ 1ð Þ ðA:10Þ

The so-called Koutecký Functions [1], ψ j(s), have the following properties:

ψ �ð Þj 0ð Þ ¼ 1 ðA:11Þ
ψ �ð Þj �1ð Þ ¼ 0 ðA:12Þ

ψ �ð Þj
0 sð Þ ¼ � p jψ

�ð Þ
j�1 sð Þ ðA:13Þ

ψ �ð Þ0 sð Þ ¼ 1� er f sð Þ ðA:14Þ

with

er f sð Þ ¼ 2=
ffiffiffi
π
p� �ð s

0

e�t
2

dt ðA:15Þ

being the Gauss error function [10].

The lower sign in the above functions applies where the variable s takes positive
values (for example, solution soluble species), and the upper sign where s < 0 (for

example, when the species amalgamates and diffuses into the electrode; see Sect.

2.5). Similarly, in the case of ITIES (Sect. 2.3), the organic phase is considered to

correspond to s > 0 and then the lower sign applies, whereas the aqueous phase

corresponds to s < 0 and the upper sign is taken.

If the boundary conditions for Eq. (A.1) are

ρ j s ¼ 0ð Þ ¼ h j ðA:16Þ

and

ρ j s!1ð Þ ¼ ρ�j ðA:17Þ

from Eqs. (A.2)–(A.5), (A.7), and (A.16)–(A.17), the constants b1j and b2j can be

determined:

b1 j ¼ h j ðA:18Þ

b2 j ¼
ρ�j

lim
s!1 L j sð Þ � b1 j p j ðA:19Þ

and by introducing Eqs. (A.18)–(A.19) into Eq. (A.5), one obtains
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ρ j sð Þ ¼ h jψ j sð Þ þ
ρ�j

lim
s!1L j sð Þ

0@ 1AL j sð Þ ðA:20Þ

Thus, for j¼ 0, from Eqs. (A.2) and (A.3), the function ρ0(s) is given by

ρ0 sð Þ ¼ h0ψ0 sð Þ þ ρ�0
lim
s!1 L0 sð Þ

0@ 1AL0 sð Þ ðA:21Þ

with

L0 sð Þ ¼
ðs
0

e�t
2

dt ðA:22Þ

L0 0ð Þ ¼ 0 ðA:23Þ

L0 s!1ð Þ ¼
ð1
0

e�t
2

dt ¼
ffiffiffi
π
p
2
¼ 1

p0
ðA:24Þ

So, Eq. (A.20) for j¼ 0 can be written as

ρ0 sð Þ ¼ h0ψ0 sð Þ þ ρ�0er f sð Þ ¼ ρ�0 þ h0 � ρ�0
� �

erfc sð Þ ðA:25Þ

Regarding L1(s), from Eqs. (A.2) and (A.3) one can deduce that L1(s)¼ s, since

c
1ð Þ
2 ¼ c

1ð Þ
4 ¼ . . .¼ 0. Note that if ρ�j ¼ 0 for j> 0,

ρ j sð Þ ¼ h jψ j sð Þ, j > 0 ðA:26Þ

The dimensionless parameter method has been successfully applied to the

resolution of electrochemical problems [1–9]. Next, as an example, this method

will be applied to the resolution of the problems described in Sect. 2.5.1.

First, the following change of variable is made:

uO r; tð Þ ¼ cO r; tð Þr
c�Ors

uR r; tð Þ ¼ cR r; tð Þr
c�Ors

9>>=>>; ðA:27Þ

where r is the distance to the electrode center, t is the electrolysis time, ci(r, t) is the
concentration of species i (i¼O, R), c�O is the initial concentration of species O, and

rs is the electrode radius.
Considering the new variable, the differential equation system that describes

mass transport [given by Eq. (2.131)] changes into
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∂uO r; tð Þ
∂t

¼ DO

∂2
uO r; tð Þ
∂r2

∂uR r; tð Þ
∂t

¼ DR

∂2
uR r; tð Þ
∂r2

9>>=>>; ðA:28Þ

where DO and DR are the diffusion coefficients of the electro-active species O

and R, respectively. The boundary value problem (bvp) takes the form:

t ¼ 0; r � rs
t � 0; r ! �1

�
uO r; tð Þ ¼ r

rs
; uR r; tð Þ ¼ μ r

rs
ðA:29Þ

with

μ ¼ c�R
c�O

ðA:30Þ

t > 0; r ¼ rs

DO

∂uO r; tð Þ
∂r

� �
r¼rs
� uO rs; tð Þ

rs

 !
¼ �DR

∂uR r; tð Þ
∂r

� �
r¼rs
� uR rs; tð Þ

rs

 !
ðA:31Þ

uO rs; tð Þ ¼ eηuR rs; tð Þ ðA:32Þ

with η ¼ F=RTð Þ E� E��O
0

c

� �
.

Again, when two signs appear in Eq. (A.31) and in the following, the lower one

refers to the case where both species diffuse in the same phase whereas the upper

sign to the situation where the electro-active species are diffusive in different

phases, such as in amalgamation and uptake processes.

The variable si given by

si ¼ r � rs

2
ffiffiffiffiffiffi
Dit
p i ¼ O, Rð Þ ðA:33Þ

is introduced in the bvp, such that this reveals that the bvp depends on the new

dimensionless variable:

ξ ¼ 2
ffiffiffiffiffiffiffiffi
DRt
p
rs J ηð Þ

�
ðA:34Þ

where
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J ηð Þ ¼ 1þ γeηð Þ
γ2eη � 1ð Þ ðA:35Þ

and γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p
.

In order to apply this method, the solutions are written as the series:

uO r; tð Þ ¼ uO sO; ξð Þ ¼
X1
j¼0
σ �ð Þj sOð Þξ j

uR r; tð Þ ¼ uR sR; ξð Þ ¼
X1
j¼0
ϕ �ð Þj sRð Þξ j

ðA:36Þ

Taking into account the dimensionless variables sl and ξ, the differential equa-
tion system (A.28) becomes

∂2
uO sO; ξð Þ
∂s2O

þ 2 sO
∂uO sO; ξð Þ

∂sO
� 2ξ

∂uO sO; ξð Þ
∂ξ

¼ 0

∂2
uR sR; ξð Þ
∂s2R

þ 2 sR
∂uR sR; ξð Þ

∂sR
� 2ξ

∂uR sR; ξð Þ
∂ξ

¼ 0

9>>>=>>>; ðA:37Þ

with the boundary value problem given by

Soluble solution product

t ¼ 0

r � rs

�
si !1; ξ ¼ 0

t � 0

r !1
�

si !1

9>>=>>;
uO 1ð Þ ¼ r

rs
¼ 1þ γJ ηð ÞsOξ

uR 1ð Þ ¼ μ r

rs
¼ μ 1þ J ηð ÞsRξð Þ ðA:38Þ

Amalgam formation

t ¼ 0

r � rs

�
sO !1; ξ ¼ 0

t � 0

r !1
�

sO !1

9>>=>>; uO 1ð Þ ¼ r

rs
¼ 1þ γJ ηð ÞsOξ ðA:39Þ

t¼ 0

r � rs

�
sR!�1; ξ¼ 0

t� 0

r!�1
�

sR!�1

9>>=>>; uR �1ð Þ ¼ μ r
rs
¼ μ 1þ J ηð ÞsRξð Þ ðA:40Þ

586 Appendix A. Dimensionless Parameter Method:. . .



t > 0

r ¼ rs

�
si ¼ 0 i ¼ O, Rð Þ

γ ∂uO sO;ξð Þ
∂sO

� �
sO¼0
� γJ ηð ÞξuO 0; ξð Þ

� �
¼ � ∂uR sR;ξð Þ

∂sR

� �
sR¼0
� J ηð ÞξuR 0; ξð Þ

� � ðA:41Þ

uO 0; ξð Þ ¼ eηuR 0; ξð Þ ðA:42Þ

By introducing expressions (A.36) into Eq. (A.37), the equations system

becomes

σ �ð Þ
00

j sOð Þ þ 2 sO σ
�ð Þ0
j sOð Þ � 2 jσ �ð Þj sOð Þ ¼ 0

ϕ �ð Þ
00

j sRð Þ þ 2 sRϕ
�ð Þ0
j sRð Þ � 2 jϕ �ð Þj sRð Þ ¼ 0

)
ðA:43Þ

Note that Eq. (A.43) is identical to Eq. (A.1); therefore, the solutions of this

homogeneous differential equation system have the following form (see

Eq. (A.20)):

σ �ð Þj sOð Þ ¼
σ �ð Þj þ1ð Þ
lim L j
sO!1

L j þ a jΨ
�ð Þ
j sOð Þ

ϕ �ð Þj sRð Þ ¼
ϕ �ð Þj �1ð Þ
lim L j
sR!�1

L j þ b jΨ
�ð Þ
j sRð Þ

9>>>>>>=>>>>>>;
8 j ðA:44Þ

where Ψ �ð Þj sið Þ, i ¼ O,Rð Þ, are the Koutecký functions [1, 6], aj and bj are

constants that will be determined by applying the boundary value problem, and Lj
is given by Eq. (A.2).

By considering expression (A.36) and Koutecký functions properties, the bound-

ary value problem is given by

Soluble solution product

t ¼ 0

r � rs

�
si !1; ξ ¼ 0

t � 0

r !1
�

si !1

9>>=>>;
σ0 1ð Þ ¼ 1; ϕ0 1ð Þ ¼ μ

σ1 1ð Þ ¼ γJ ηð ÞsO; ϕ1 1ð Þ ¼ μJ ηð ÞsR
σ j 1ð Þ ¼ 0; ϕ j 1ð Þ ¼ 0 j > 1

ðA:45Þ

Amalgam formation
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t ¼ 0

r � rs

�
sO !1; ξ ¼ 0

t � 0

r !1
�

sO !1

9>>=>>;
σ0 1ð Þ ¼ 1

σ1 1ð Þ ¼ γJ ηð ÞsO
σ j 1ð Þ ¼ 0

ðA:46Þ

t ¼ 0

r � rs

�
sR ! �1; ξ ¼ 0

t � 0

r ! �1
�

sR ! �1

9>>=>>;
ϕ0 �1ð Þ ¼ μ

ϕ1 1ð Þ ¼ μJ ηð ÞsR
ϕ j 1ð Þ ¼ 0 j > 1

ðA:47Þ

t > 0

r ¼ rs

�
si ¼ 0 i ¼ O, Rð Þ,

γ σ �ð Þj
0 0ð Þ � γ J ηð Þσ �ð Þj�1 0ð Þ

h i
¼ � ϕ �ð Þj

0 0ð Þ � J ηð Þϕ �ð Þj�1 0ð Þ
h i

8 j ðA:48Þ

σ �ð Þj 0ð Þ ¼ eη ϕ �ð Þj 0ð Þ 8 j ðA:49Þ

with σ �ð Þ�1 0ð Þ ¼ ϕ �ð Þ�1 ¼ 0.

For the solutions of the homogeneous differential equation system (A.43) with

conditions (A.45)–(A.49), it is obtained

σ �ð Þ0 sOð Þ ¼ 1� c�O � cs, rO

� �
c�O

Ψ �ð Þ0 sOð Þ

σ �ð Þ1 sOð Þ ¼ γJ ηð Þ sO þ
c�O � cs, rO

� �
c�O

eη γ � 1ð Þγ
p1 γ2eη � 1ð Þ Ψ

�ð Þ
1 sOð Þ

σ �ð Þj sOð Þ ¼
c�O � cs, rO

� �
c�O

eη γ � 1ð Þγ �1ð Þ j�1

γ2eη � 1ð Þ
Yj
l¼1

pl

Ψ �ð Þj sOð Þ j > 1

9>>>>>>>>>>=>>>>>>>>>>;
ðA:50Þ

ϕ �ð Þ0 sRð Þ ¼ μ�
c�R � cs, rR

� �
c�O

Ψ �ð Þ0 sRð Þ

ϕ �ð Þ1 sRð Þ ¼ μJ ηð Þ sR �
c�R � cs, rR

� �
c�O

γ � 1ð Þ
p1 γ2eη � 1ð Þ Ψ

�ð Þ
1 sRð Þ

ϕ �ð Þj sRð Þ ¼
c�R � cs, rR

� �
c�O

�1ð Þ j γ � 1ð Þ

γ2eη � 1ð Þ
Yj
l¼1

pl

Ψ �ð Þj sRð Þ j > 1

9>>>>>>>>>>=>>>>>>>>>>;
ðA:51Þ

with cs;rO and cs;rR given by Eq. (2.20).

From Eqs. (A.36), (A.50), and (A.51), and taking into account the definition of

variable ui (i¼O, R) given by Eq. (A.27), we deduce the following expressions for

the concentration profiles of species O and R:
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cO sO; ξð Þ ¼ c�O

� c�O � cs, rO

� �
1þ γJ ηð ÞsO ξ erfc sOð Þ þ eη γ γ � 1ð Þ

γ2eη � 1ð Þ
X1
j¼1

�1ð Þ jYj
l¼1

pl

ξ jΨ �ð Þj sOð Þ

266664
377775
ðA:52Þ

cR sR; ξð Þ ¼ c�R

� c�R � cs, rR

� �
1þ J ηð ÞsR ξ erfc sRj jð Þ � γ � 1ð Þ

γ2eη � 1ð Þ
X1
j¼1

�1ð Þ jYj
l¼1

pl

ξ jΨ �ð Þj sRð Þ

266664
377775
ðA:53Þ

From these expressions and taking into account the properties of Koutecký

functions, the expressions for the current and surface concentrations shown in

Sect. 2.5.1 are obtained [Eqs. (2.137) and (2.140), respectively].
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Appendix B. Laplace Transform Method:

Solution for the Application of a Constant

Potential to a Simple Charge Transfer Process at

Spherical Electrodes When the Diffusion

Coefficients of Both Species are Equal

Transform methods are used to solve two-variable linear differential equations

essentially by means of the transformation of a partial differential equation into a

total differential equation of one independent variable (in general, the number of

variables is reduced by one) [1]. The major inconvenience of these methods to find

analytical solutions is that the inverse transformation is frequently very difficult or

cannot be done at all even for not too complex electrochemical processes. In these

cases, the solutions have an integral non-explicit form, from which it is not possible

to deduce limit behaviors and the influence of the different variables cannot be

inferred for a glance. In Electrochemistry, this method has been extensively used to

solve the diffusion equation, which is a two-variable partial differential equation.

In general, any integral transform T of a function f(t) is given by

T f tð Þð Þ ¼
ðb
a

f tð ÞK t, pð Þdt ¼ ef pð Þ ðB:1Þ

This operation may also be described as mapping a function f(t) in t-space into

another function ef pð Þ in p-space.
There are numerous useful integral transforms, each of which is specified by a

two-variable function K(t, p) called the Kernel function or nucleus of the transform.

The Laplace transform or the Laplace integral of a function f(t), defined for

0 � t � 1, is

L f tð Þð Þ ¼
ð1
0

f tð Þe�ptdt ¼ f pð Þ; ðB:2Þ

i.e., the Laplace Kernel is e�pt.
The formal properties of calculus integrals and the integration by parts formula

lead, among others, to the following rules of the Laplace transform:
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– Linearity
The Laplace transform, as any integral, has the following properties:

að Þ L f tð Þ þ g tð Þð Þ ¼ L f tð Þð Þ þ L g tð Þð Þ ðB:3Þ
bð Þ L c f tð Þð Þ ¼ cL f tð Þð Þ ðB:4Þ

– The t-Derivative Rule
Let f(t) be continuous, of exponential order, and let f 0(t) piecewise continuous

on t � 0. Then L f
0
tð Þ� �

exists and

L f
0
tð Þ

� �
¼ pL f tð Þð Þ � f 0ð Þ ðB:5Þ

This rule can be extended to the nth derivative in the way,

L f n tð Þð Þ ¼ pnL f tð Þð Þ �
Xn�1
k¼0

pn�k�1
� �

f k 0ð Þ ðB:6Þ

– The t-Integral Rule
Let f(t) be of exponential order and continuous for t � 0. Then

L

ð t
0

f xð Þdx
� �

¼ 1

p
L f tð Þð Þ ðB:7Þ

– First Shifting Rule
Let f(t) be of exponential order and �1 < a <1. Then,

L eat f tð Þð Þ ¼ L f tð Þð Þj p¼ p � a ðB:8Þ

Table B.1 Laplace transforms of some common functions [2]

f(t) L f tð Þð Þ ¼ f pð Þ
tn n!=p1þn

tα

Γ 1þ αð Þ= p1þα (Γ 1þ αð Þ ¼
ð1
0

e�xxαdx)

t�1=2
ffiffiffiffiffiffiffiffiffi
π=p

p
eat 1= p� að Þ
cos(at) p= p2 þ a2ð Þ
sin(at) a= p2 þ a2ð Þ
a=πtð Þ1=2e�x2=4at e� p=að Þ1=2x= p=að Þ1=2
erfc x=

ffiffiffiffiffiffiffi
4at
p� �

e� p=að Þ1=2x=p

ea
2terfc at1=2

� �
1=p1=2 p1=2 þ a

� �
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– Second Shifting Rule
Let f(t) and g(t) be of exponential order and continuous and assume a � 0.

Then

að Þ L f t� að ÞH t� að Þð Þ ¼ e�a pL f tð Þð Þ; ðB:9Þ
bð Þ L g tð ÞH t� að Þð Þ ¼ e�a pL g tþ að Þð Þ ðB:10Þ

where H(x) is the Heaviside (step) function:

H xð Þ ¼ 1 for x � 0

0 otherwise



ðB:11Þ

– Convolution Rule
Let f(t) and g(t) be of exponential order. Then,

L f tð Þð ÞL g tð Þð Þ ¼ L f *gð Þ ¼ L

ð t
0

f xð Þg t� xð Þdx
� �

ðB:12Þ

Some examples of application of the Laplace Transform are as follows:

L eatð Þ ¼
ð1
0

eate�ptdt ¼ 1

p� a
ðB:13Þ

L tð Þ ¼
ð1
0

te�ptdt ¼ lim
x!1

xe�x p

p
þ 1� e�x p

p2

� �
¼ 1

p2
ðB:14Þ

L sinh ωtð Þð Þ ¼
ð1
0

1

2
eωt � e�ωtð Þe�ptdt ¼ 1

2

1

p� ω�
1

pþ ω
� �

ðB:15Þ

Next, this method will be applied to find the concentration profiles of species O

and R when a potential step is applied to a spherical electrode of radius rs by
assuming that diffusion coefficients of both species are equal (i.e., DO ¼ DR ¼ D).
The differential equation system to solve is given by Eq. (2.131). The following

variable change will be done:

uO ¼ cOr

c�Ors
uR ¼ cRr

c�Ors

9>=>; ðB:16Þ

By introducing the new variables uO and uR into Eqs. (2.131)–(2.136), they

become
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∂uO
∂t
¼ D

∂2
uO

∂r2
∂uR
∂t
¼ D

∂2
uR

∂r2

9>>=>>; ðB:17Þ

t � 0, r !1
t ¼ 0, r � rs

�
uO ¼ r

rs
, uR ¼ μ r

rs
ðB:18Þ

with μ ¼ c�R=c
�
O.

t > 0, r ¼ rs
uO rs; tð Þ ¼ eη uR rs; tð Þ ðB:19Þ

∂uO
∂r

� �
r¼rs
� uO rs; tð Þ

rs
¼ � ∂uR

∂r

� �
r¼rs
� uR rs; tð Þ

rs

" #
ðB:20Þ

If Laplace Transform is applied to Eq. (B.17),

L
∂ui
∂t

� �
¼ L D

∂2
ui

∂r2

 ! !
i ¼ O, R ðB:21Þ

By taking into account Eqs. (B.4)–(B.5) and writing hereafter for the sake of

simplicity L uið Þ ¼ ui, it is obtained:

d2uO
dr2
� p

D
uO ¼ � r

rsD
d2uR
dr2
� p

D
uR ¼ � rμ

rsD

9>>=>>; ðB:22Þ

If the following variable change is made:

uO
0 ¼ r

rs p
� uO

uR
0 ¼ rμ

rs p
� uR

9>=>; ðB:23Þ

Eq. (B.22) is transformed as follows

d2uO
0

dr2
� p

D
uO

0 ¼ 0

d2uR
0

dr2
� p

D
uR

0 ¼ 0

9>>=>>; ðB:24Þ
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The solutions of this differential equation system (B.24) are the following:

uO
0
rð Þ ¼ a1e

ffiffi
p
D

p
r�rsð Þ þ a2e

�
ffiffi
p
D

p
r�rsð Þ

uR
0
rð Þ ¼ b1e

ffiffi
p
D

p
r�rsð Þ þ b2e

�
ffiffi
p
D

p
r�rsð Þ

)
ðB:25Þ

with a1, a2 b1, and b2 being constants to be determined. Thus, from Eq. (B.25), it is

deduced that to ensure that solutions �u
0
i remain finite as r !1, it must be fulfilled

that

a1 ¼ b1 ¼ 0 ðB:26Þ

For r ¼ rs solutions (B.25) become

uO
0
rsð Þ ¼ a2

uR
0
rsð Þ ¼ b2

�
ðB:27Þ

in such a way that Eq. (B.25) become

uO
0
rð Þ ¼ uO

0
rsð Þe�

ffiffi
p
D

p
r�rsð Þ

uR
0
rð Þ ¼ uR

0
rsð Þe�

ffiffi
p
D

p
r�rsð Þ

)
ðB:28Þ

which, by taking into account Eqs. (B.16) and (B.23), can be rewritten as

r
1

rs p
� cO r; pð Þ

c�Ors

� �
¼ 1

p
� cO rs; pð Þ

c�O

� �
e�

ffiffi
p
D

p
r�rsð Þ

r
μ

rs p
� cR r, pð Þ

c�Ors

� �
¼ μ

p
� cR rs; pð Þ

c�O

� �
e�

ffiffi
p
D

p
r�rsð Þ

9>>=>>; ðB:29Þ

By working out cO r; pð Þ and cR r; pð Þ in the above equations, one obtains

cO r; pð Þ ¼ c�O
p
� c�O

p
� cO rs; pð Þ

� �
rs
r
e�

ffiffi
p
D

p
r�rsð Þ

cR r; pð Þ ¼ c�R
p
� c�R

p
� cR rs; pð Þ

� �
rs
r
e�

ffiffi
p
D

p
r�rsð Þ

9>>=>>; ðB:30Þ

Both cO r; pð Þ and cR r; pð Þ fulfill

dci r, pð Þ
dr

� �
r¼rs
¼ c�i

p
� ci rs; pð Þ

� � ffiffiffiffi
p

D

r
þ 1

rs

� �
i ¼ O, R ðB:31Þ

From the mass conservation condition, it is obtained that
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cO rs; pð Þ þ cR rs; pð Þ ¼ c�O þ c�R
p

ðB:32Þ

Combining Eq. (B.32) with the Nernstian condition [cO rs; pð Þ ¼ eηcR rs; pð Þ, see
Eq. (B.19)], the next expressions for the surface concentrations are obtained:

cO rs; pð Þ ¼ c�O þ c�R
� �

eη

p 1þ eηð Þ
cR rs; pð Þ ¼ c�O þ c�R

p 1þ eηð Þ

9>>=>>; ðB:33Þ

Equation (B.33) lead to the following anti-transforms:

cO rsð Þ ¼
c�O þ c�R
� �

eη

1þ eη

cR rsð Þ ¼ c�O þ c�R
1þ eη

9>=>; ðB:34Þ

Regarding the concentration profile, by introducing Eq. (B.33) into Eq. (B.30),

cO r; pð Þ ¼ c�O
p
� c�O

p
� c�O þ c�R
� �

eη

p 1þ eηð Þ
� �

rs
r
e�

ffiffi
p
D

p
r�rsð Þ

cR r; pð Þ ¼ c�R
p
� c�R

p
� c�O þ c�R

p 1þ eηð Þ
� �

rs
r
e�

ffiffi
p
D

p
r�rsð Þ

9>>=>>; ðB:35Þ

and by carrying out the anti-transform of the above equations (see Table B.1),

cO r; tð Þ ¼ c�O �
rs
r

c�O � c�Re
η

1þ eη

� �
erfc

r � rs

2
ffiffiffiffiffi
Dt
p

� �
cR r; tð Þ ¼ c�R þ

rs
r

c�O � c�Re
η

1þ eη

� �
erfc

r � rs

2
ffiffiffiffiffi
Dt
p

� �
9>>=>>; ðB:36Þ

The expression for the current can be obtained by differentiating Eq. (B.36) with

respect to r, and thus Eq. (2.142) is deduced.
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Appendix C. Solutions for Reversible Electrode

Reactions at Microspheres and Microdiscs under

Steady State Conditions

Stationary Diffusion to Spherical Microelectrodes

The differential equation system to solve is (see Scheme C.1):

d2ci
dr2
þ 2

r

dci
dr
¼ 0 i ¼ O, R ðC:1Þ

with the following initial and limiting conditions,

r !1

cO ¼ c�O, cR ¼ c�R ðC:2Þ

r ¼ rs

DO

∂cO
∂r

� �
r¼rs
¼ �DR

∂cR
∂r

� �
r¼rs

ðC:3Þ

cO rsð Þ ¼ eη cR rsð Þ ðC:4Þ

with η ¼ F=RTð Þ E� E��○
0

c

� �
.

By introducing the change yi ¼ dci=dr in Eq. (C.1), this is transformed into

dyi
dr
þ 2

r
yi ¼ 0 i ¼ O, R ðC:5Þ

which can be directly integrate to yield to
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yi rð Þ ¼ yi rsð Þ
rs
r

� �2
ðC:6Þ

or

dci
dr
¼ dci

dr

� �
r¼rs

rs
r

� �2
ðC:7Þ

By integrating Eq. (C.7), one obtains

ci rð Þ � ci rsð Þ ¼ dci
dr

� �
r¼rs

rs 1� rs
r

� �
ðC:8Þ

and, by introducing condition Eq. (C.2) in Eq. (C.8),

dci
dr

� �
r¼rs
¼ c�i � ci rsð Þ

rs
ðC:9Þ

and,

ci rsð Þ ¼ c�i þ ci rsð Þ � c�i
� �rs

r
ðC:10Þ

From Eqs. (C.3)–(C.4), and (C.10), the surface concentrations expressions are as

follows:

cO rsð Þ ¼ eη
γ2c�O þ c�R
1þ γ2eη

� �
cR rsð Þ ¼ γ

2c�O þ c�R
1þ γ2eη

9>>=>>; ðC:11Þ

with γ2 ¼ DO=DR [see Eq. (2.21)].

The current is given by

Imicrosphere, ss ¼ FAsDO

dcO
dr

� �
r¼rs

ðC:12Þ

By introducing Eqs. (C.10)–(C.11) into Eq. (C.12), the expression for the current

given in Eq. (2.164) is obtained.

598 Appendix C. Solutions for Reversible Electrode Reactions at Microspheres and. . .

http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2


Stationary Diffusion to Disc Microelectrodes

The diffusion equations in this case depend on two spatial coordinates, z and r, in
the way (see Scheme C.1):

∂2
ci

∂r2
þ 1

r

∂ci
∂r
þ ∂2

ci
∂z2
¼ 0 i ¼ O, R ðC:13Þ

with the following boundary conditions:

r � 0, z!1
z � 0, r !1

�
cO ¼ c�O, cR ¼ c�R ðC:14Þ

z ¼ 0, r � rd

cO z ¼ 0ð Þ ¼ eη cR z ¼ 0ð Þ ðC:15Þ

DO

∂cO
∂z

� �
z¼0
¼ �DR

∂cR
∂z

� �
z¼0

ðC:16Þ

A solution for Eq. (C.13), if it is assumed that the surface concentrations are

constant in the complete disc surface, i.e., that they are independent of r for r � rd,
is the following [1]:

ci r; zð Þ ¼ c�i þ ci z ¼ 0ð Þ � c�i
� �2

π

ð1
0

sin mrð Þ
m

J0 mrð Þe�mzdm ðC:17Þ

with J0(x) being the zeroth order Bessel function [2].

Scheme C.1 Geometries and coordinate systems of (a) a microspherical electrode, (b) a

microdisc embedded in an insulating surface
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Therefore,

∂ci
∂z

� �
z¼0
¼ 2

π
c�i � ci z ¼ 0ð Þ� �ð1

0

sin mrð ÞJ0 mrð Þdm

¼ 2

π
c�i � ci z ¼ 0ð Þ� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d � r2
p ðC:18Þ

By introducing Eq. (C.18) into Eq. (C.16), it can be easily deduced:

DO c�O � cO z ¼ 0ð Þ� � ¼ �DR c�R � cR z ¼ 0ð Þ� � ðC:19Þ

By combining Eqs. (C.15) and (C.19), it is obtained

cO z ¼ 0ð Þ ¼ eη
γ2c�O þ c�R
1þ γ2eη

� �
cR z ¼ 0ð Þ ¼ γ

2c�O þ c�R
1þ γ2eη

9>>=>>; ðC:20Þ

The quantity of species electrolyzed at the total electrode surface per unit of

time, C, is

C ¼ 4DO c�O � cO z ¼ 0ð Þ� �ðrd
0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2d � r2

p dr ¼ 4rdDO c�O � cO z ¼ 0ð Þ� � ðC:21Þ

The disc current is obtained by multiplying C by the factor “F” as follows [1]:

I ¼ 4rdFDO c�O � cO z ¼ 0ð Þ� � ðC:22Þ

By introducing Eq. (C.20) into Eq. (C.22), the final expression for the current

given in Eq. (2.169) is deduced.
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Appendix D. Solutions for the Application of a

Constant Potential to for Different Electrode

Processes with Presence of Homogeneous and

Heterogeneous Kinetic Effects at

Macroelectrodes

Solution for a Non-reversible Electrode Process at a Planar

Electrode

The differential equation given by Eq. (3.1), with the change of variables proposed

in Eqs. (3.6) and (3.11) of Sect. 3.2.1, becomes

∂2
cO

∂ s p
O

� �2 þ 2 s p
O

∂cO
∂s p

O

� 2χ
∂cO
∂χ
¼ 0

∂2
cR

∂ s p
Rð Þ2
þ 2 s p

R

∂cR
∂s p

R

� 2χ
∂cR
∂χ
¼ 0

9>>>>=>>>>; ðD:1Þ

with

s p
i ¼

x

2
ffiffiffiffiffiffi
Dit
p i ¼ O, R ðD:2Þ

χ ¼ 2k red

ffiffiffiffiffiffiffi
t

DO

r
1þ γeηð Þ ðD:3Þ

with γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DO=DR

p
.

Differential equations (D.1) have the following boundary conditions:

spi !1 ci ¼ c*i
spi ¼ 0

∂cO
∂spO

� �
sp
O
¼0
¼ � 1

γ

∂cR
∂spR

� �
sp
R
¼0

9>>>=>>>; ðD:4Þ
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∂cO
∂s p

O

� �
s

p

O
¼0
¼ χ cO 0ð Þ � eηcR 0ð Þ½ 


1þ γeη ðD:5Þ

The solutions of differential equations system (D.1) with the boundary

value problem given by Eqs. (D.4)–(D.5) can be written as the following functional

series of the variable χ with their coefficients being dependent on the variable spi
(i¼O, R):

cO x; tð Þ ¼ cO s p
O ; χ

� � ¼X1
j¼0
σ j s

p
O

� �
χ j

cR x; tð Þ ¼ cR s p
R ; χð Þ ¼

X1
j¼0
ρ j s

p
Rð Þχ j

ðD:6Þ

By introducing Eq. (D.6) in Eq. (D.1) the following differential equation system

only dependent on spO or spR parameters is obtained:

σ
00
j s

p
O

� �þ 2 s p
O σ

0
j s

p
O

� �� 2 jσ j s
p
O

� � ¼ 0

ρ
00
j s

p
Rð Þ þ 2 s p

R ρ
0
j s

p
Rð Þ � 2 jρ j s

p
Rð Þ ¼ 0

)
ðD:7Þ

and the boundary conditions are as follows:

s p
i !1

σ0 s p
O !1

� � ¼ c�O; ρ0 s p
R !1ð Þ ¼ c�R

σ j s
p
O !1

� � ¼ 0; ρ j s
p
R !1ð Þ ¼ 0 j � 1

ðD:8Þ

s p
i ¼ 0

σ
0
j 0ð Þ ¼ �

1

γ
ρ
0
j 0ð Þ ðD:9Þ

σ
0
j 0ð Þ ¼

σ j�1 0ð Þ � eηρ j�1 0ð Þ
1þ γeη ðD:10Þ

with [see Eqs. (A.25)–(A.26)]:

σ0 s p
O

� � ¼ h0ψ0 þ c�Oer f sOð Þ
σ j s

p
O

� � ¼ h jψ j j � 1

�
ðD:11Þ

ρ0 s p
Rð Þ ¼ g0ψ0 þ c�Rer f sRð Þ

ρ j s
p
Rð Þ ¼ g jψ j j � 1

�
ðD:12Þ

and σ�1(0)¼ ρ�1(0)¼ 0
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Introducing Eqs. (D.11)–(D.12) into Eqs. (D.8)–(D.10), it is obtained

h0 ¼ c�O ðD:13Þ
g0 ¼ c�R ðD:14Þ

h j ¼ �1ð Þ j c�O � γeηc�R
� �
1þ γeηð Þ

Yj
h¼1

ph

j � 1 ðD:15Þ

g j ¼ �γh j j � 1 ðD:16Þ

where ph is given by Eq. (A.7).

From Eqs. (D.11)–(D.16), it is obtained

σ0 s p
O

� � ¼ c�O

σ j s
p
O

� � ¼ c�O � c�Re
η

1þ γeη
� � �1ð Þ jYj

h¼1
ph

Ψ �ð Þ
j s p

O

� �
for j � 1

9>>>>=>>>>; ðD:17Þ

ρ0 s p
Rð Þ ¼ c�R

ρ j s
p
Rð Þ ¼ γ

c�O � c�Re
η

1þ γeη
� � �1ð Þ jþ1Yj

h¼1
ph

Ψ �ð Þ
j s p

Rð Þ for j � 1

9>>>=>>>; ðD:18Þ

such that the concentration profiles of the electroactive species are given by:

cO s p
O ; χ

� � ¼ c�O 1þ 1� μeη
1þ γeη
� �X1

j¼1

�1ð Þ jYj
h¼1

ph

Ψ �ð Þ
j s p

O

� �
χ j

266664
377775 ðD:19Þ

cR s p
R ; χð Þ ¼ c�R 1� γ

μ

1� μeη
1þ γeη
� �X1

j¼1

�1ð Þ jYj
h¼1

ph

Ψ �ð Þ
j s p

Rð Þ χ j

266664
377775 ðD:20Þ

Solution for a First-Order Catalytic Mechanism at a Planar

Electrode

The differential equation (3.183) can be written as
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∂ϕ
∂t
¼ D

∂2ϕ

∂x2
ðD:21Þ

with the boundary conditions (3.191.a)–(3.192.a) which can be solved by introduc-

ing the dimensionless parameters:

s p ¼ x

2
ffiffiffiffiffi
Dt
p ðD:22Þ

χ ¼ k1 þ k2ð Þt ðD:23Þ

in Eq. (D.21), obtaining

∂2ϕ

∂ sPð Þ2 þ 2 sP
∂ϕ
∂sP
� 4χ

∂ϕ
∂χ
¼ 0 ðD:24Þ

for the differential equation and

s p !1;

ϕ ¼ 0 ðD:25Þ

s p ¼ 0;

e�χϕs ¼ 1� Keη

1þ eη
ζ* ðD:26Þ

This problem can be solved by supposing that

ϕ x; tð Þ ¼ ϕ s p; χð Þ ¼
X1
j¼0
σ j s

pð Þχ j ðD:27Þ

By introducing Eq. (D.27) into Eq. (D.24), we obtain a differential equation only

dependent on the variable sp, from which the functions σj(s
p) can be determined:

σ
00
j s

pð Þ þ 2s pσ
0
j s

pð Þ � 4 jσ j s
pð Þ ¼ 0 ðD:28Þ

s p !1;

σ j s
p !1ð Þ ¼ 0 8 j � 0 ðD:29Þ

s p ¼ 0;
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σ j s
p ¼ 0ð Þ ¼ h0

j!

h0 ¼ 1� Keη

1þ eη
ζ*

9>=>; j � 0 ðD:30Þ

Therefore,

ϕ s p; χð Þ ¼ h0
X1
j¼0

ψ2 j

j!
χ j

� �
ðD:31Þ

with ψ i being the Koutecký functions (see Eqs. (A.6)–(A.15)) and

∂ϕ
∂s p

� �
s p¼0
¼ �h0

X1
j¼0

p2 j
j!
χ j

� �
ðD:32Þ

and pi is given by Eq. (A.7).

The current can be written as

Icat

FADζ*
¼ 1� Keη

1þ Kð Þ 1þ eηð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

D

r
e�χffiffiffiffiffi
πχ
p þ e�χ

2
ffiffiffi
χ
p
X1
j¼1

p2 j
j!
χ j

� � !" #
ðD:33Þ

with

e�χ

2
ffiffiffi
χ
p
X1
j¼1

p2 j
j!
χ j

� �
¼ er f

ffiffiffi
χ
p� � ðD:34Þ

To obtain Eq. (D.34), it has been taken into account that

p2i ¼
2ið Þ!!

2i� 1ð Þ!!
2ffiffiffi
π
p ðD:35Þ

Rigorous Solution for a CE Process at a Planar Electrode

The differential equation system (3.186.b)–(3.188.b) with the change of variables

proposed in Eqs. (D.22)–(D.23) transforms into

∂2ζ

∂ s pð Þ2 þ 2s p
∂ζ
∂s p
� 4χ

∂ζ
∂χ
¼ 0

∂2ϕ

∂ s pð Þ2 þ 2s p
∂ϕ
∂s p
� 4χ

∂ϕ
∂χ
¼ 0

∂2
cD

∂ s pð Þ2 þ 2s p
∂cD
∂s p
� 4χ

∂cD
∂χ
¼ 0

9>>>>>>>>=>>>>>>>>;
ðD:36Þ
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It will be assumed that the solutions for ζ(x, t), ϕ(x, t), and cD(x, t) are given by

the following functional series:

ζ x; tð Þ ¼ ζ s p; χð Þ ¼
X1
j¼0
σ j s

pð Þχ j ðD:37Þ

ϕ x; tð Þ ¼ ϕ s p; χð Þ ¼
X1
j¼0
δ j s

pð Þχ j ðD:38Þ

cD x; tð Þ ¼ cD s p; χð Þ ¼
X1
j¼0
ρ j s

pð Þχ j ðD:39Þ

By introducing Eqs. (D.37)–(D.39) into the differential equation system (D.36),

it is obtained

σ
00
j s

pð Þ þ 2s pσ
0
j s

pð Þ � 4 jσ j s
pð Þ ¼ 0

δ
00
j s

pð Þ þ 2s pδ
0
j s

pð Þ � 4 jδ j s pð Þ ¼ 0

ρ
00
j s

pð Þ þ 2s pρ
0
j s

pð Þ � 4 jρ j s
pð Þ ¼ 0

9>=>; ðD:40Þ

and the boundary conditions given by Eqs. (3.189.b)–(3.192.b) become

s p !1;

σ0 s p !1ð Þ ¼ ζ*
σ j s

p !1ð Þ ¼ 0 8 j � 1

δ j s p !1ð Þ ¼ 0 8 j
ρ j s

p !1ð Þ ¼ 0 8 j

9>>=>>; ðD:41Þ

s p ¼ 0;

σ
0
j 0ð Þ ¼ �ρ

0
j 0ð Þ ðD:42Þ

�K
Xj

n¼0

σ
0
n 0ð Þ
j� nð Þ! ¼ δ

0
j 0ð Þ ðD:43Þ

Xj

n¼0

σn 0ð Þ
j� nð Þ!� δ j 0ð Þ ¼ 1þ Kð Þeη

Xj

n¼0

ρn 0ð Þ
j� nð Þ! ðD:44Þ

The solutions for the differential equation system (D.40) take the form:
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σ j s
pð Þ ¼ h jΨ 2 j s

pð Þ þ σ j 1ð Þ
lim

s p!1 L j
L j

δ j s pð Þ ¼ g jΨ 2 j s
pð Þ þ δ j 1ð Þ

lim
s p!1L j

L j

ρ j s
pð Þ ¼ k jΨ 2 j s

pð Þ þ ρ j 1ð Þ
lim

s p!1 L j
L j

9>>>>>>>>>=>>>>>>>>>;
8 j ðD:45Þ

being

σ0 s pð Þ ¼ h0Ψ 0 s pð Þ þ ζ*er f s pð Þ
σ j s

pð Þ ¼ h jΨ 2 j s
pð Þ 8 j 6¼ 0

δ j s pð Þ ¼ g jΨ 2 j s
pð Þ 8 j

ρ j s
pð Þ ¼ k jΨ 2 j s

pð Þ 8 j

9>>=>>; ðD:46Þ

in such a way that

σ
0
0 s pð Þ ¼ � p0 h0 � ζ*

� �
Ψ�1 s pð Þ

σ
0
j s

pð Þ ¼ �h j p2 jΨ 2 j�1 s pð Þ 8 j 6¼ 0

δ
0
j s

pð Þ ¼ �g j p2 jΨ 2 j�1 s pð Þ 8 j
ρ
0
j s

pð Þ ¼ �k j p2 jΨ 2 j�1 s pð Þ 8 j

9>>>=>>>; ðD:47Þ

and at the electrode surface (s p ¼ 0), it is fulfilled that

σ j 0ð Þ ¼ h j

δ j 0ð Þ ¼ g j

ρ j 0ð Þ ¼ k j

9=; 8 j ðD:48Þ

σ
0
0 0ð Þ ¼ � p0 h0 � ζ*

� �
σ
0
j 0ð Þ ¼ �h j p2 j 8 j 6¼ 0

δ
0
j 0ð Þ ¼ �g j p2 j 8 j
ρ
0
j 0ð Þ ¼ �k j p2 j 8 j

9>>>=>>>; ðD:49Þ

where (see also Appendix A):

p j ¼
2Γ 1þ j

2

� �
Γ 1þ j

2

� � ðD:50Þ

By applying the surface conditions (D.42)–(D.43), and taking into account

Eq. (D.49), the following is obtained for j¼ 0:
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k0 ¼ ζ* � h0 ðD:51Þ
g0 ¼ K ζ* � h0

� � ðD:52Þ

and from the Nernstian condition (D.44), by considering the two above equations

and Eq. (D.48):

h0 ¼ K þ 1þ Kð Þeη
1þ Kð Þ 1þ eηð Þ ζ

* ðD:53Þ

Therefore,

g0 ¼
K

1þ Kð Þ 1þ eηð Þζ
* ðD:54Þ

k0 ¼ 1

1þ Kð Þ 1þ eηð Þζ
* ðD:55Þ

For j 6¼ 0, it is obtained

k j ¼ �h j ðD:56Þ

g j ¼ �K
Xj

n¼0

hn
j� nð Þ!

p2n
p2 j

ðD:57Þ

g j ¼
Xj

n¼0

hn � 1þ Kð Þeηkn
j� nð Þ! ðD:58Þ

By combining Eqs. (D.56)–(D.58), it can be deduced

h j 1þ Kð Þ 1þ eηð Þ ¼ g0
j!

p0
p2 j
� 1

 !

�
Xj�1
i¼1

hi
j� ið Þ! K

p2i
p2 j
þ 1þ 1þ Kð Þeη

 !
j 6¼ 0 ðD:59Þ

The coefficients hj can be rewritten as

h j ¼ �
g0 p0ε

CE
j

1þ Kð Þ 1þ eηð Þp2 j
j 6¼ 0 ðD:60Þ

in such a way that
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εCEj ¼
1

j!

p2 j
p0
� 1

� �

� 1

1þ Kð Þ 1þ eηð Þ
Xj�1
i¼1

εCEi
j� ið Þ! K þ 1þ 1þ Kð Þeηð Þ p2 j

p2i

� �
j 6¼ 0 ðD:61Þ

with

εCE1 ¼
p2
p0
� 1 ðD:62Þ

Taking into account Eqs. (3.193b), (D.37), (D.46), (D.53) and (D.60), the expres-

sion (3.149b) is obtained for the current corresponding to the CE mechanism.

For an EC mechanism, the solution for the differential equation system given by

Eqs. (3.186.c)–(3.188.c) with the boundary conditions (3.189.c)–(3.192.c) can be

deduced by following a similar procedure to that described for a CE mechanism.

The expression of the coefficients of the series SEC which appears in the expression

of the current [Eq. (3.194.c)] is

εECj ¼
1

j!

p2 j
p0
� 1

� �

�
Xj�1
i¼1

εECi
j� 1ð Þ! 1þ 1þ K 1þ eηð Þ

1þ Kð Þ 1þ eηð Þ
� �

p2 j
p2i
� 1

� �� �
j � 1 ðD:63Þ
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Appendix E. The F(x) Function

The F(x) function is defined in general for any electrode whose area increases with

an arbitrary power of time z (z¼ 0 for a Planar Electrode and z¼ 2/3 for a Dropping

Mercury Electrode) as [1]:

F xð Þ ¼
X1
j¼0

�1ð Þ j xð Þ jþ1Yj
h¼0

ph zð Þ
ðE:1Þ

with

p j zð Þ ¼
2Γ 1þ j

4zþ2
� �

Γ 1
2
þ j

4zþ2
� � ðE:2Þ

p0 0ð Þ ¼ 2ffiffiffi
π
p ðE:3Þ

pi zð Þpiþ1 zð Þ ¼ 2 iþ 1ð Þ ðE:4Þ

with i being

i ¼ 2
j

2zþ 2

� �
ðE:5Þ

Planar Electrodes

F function takes the following compact form in the particular case of planar

electrodes (z¼ 0):
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F xð Þjplane ¼
X1
j¼0

�1ð Þ j xð Þ jþ1Yj
h¼0

ph 0ð Þ
¼

ffiffiffi
π
p

x

2
� x2

2
þ 8x3ffiffiffi

π
p � � � �

¼ ffiffiffi
π
p

x=2ð Þexp x=2ð Þ2erfc x=2ð Þ

ðE:6Þ

p j 0ð Þ ¼
2Γ 1þ j

2

� �
Γ 1

2
þ j

2

� � ðE:7Þ

being in this case i¼ j in Eq. (E.5) and [2]:

erfc xð Þ ¼ 1� er f xð Þ ¼ 1� 2ffiffiffi
π
p
ðx
0

e�u
2

du ðE:8Þ

In Fig. E.1, it has been plotted the behavior of function F(x)|plane for positive
values of the variable x.

For high values of the argument x, function F(x)|plane admits an asymptotic

expansion:

F xð Þjx
1 ¼ 1þ 2
X1
j¼1

�1ð Þ j 2 j� 1ð Þ!
j� 1ð Þ!x2 j ¼ 1� 2

x2
þ 12

x4
� 120

x6
þ � � � ðE:9Þ

An usual approximation to F function is the following:

log(x)
-3 -2 -1 0 1 2 3

F(
x)

pl
an

e, 
F(

x)
D

M
E

0.0

0.2

0.4

0.6

0.8

1.0

F(x)plane

F(x)DME

Fig. E.1 Dependence of F(x)|DME and F(x)|plane with x calculated from Eqs. (E.1) and (E.6)
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Fapprox xð Þ		
plane
�

ffiffiffi
π
p

=2ð Þx
1þ ffiffiffi

π
p

=2ð Þx ðE:10Þ

In Fig. E.2, a comparison between F function and approximation given by

Eq. (E.10) can be seen. This approximation leads to errors below 5 % for x �
0:185 and x � 19:7, although the maximum error is below 16 %.

A function related to F(x)|plane is H(x), defined as

H xð Þjplane ¼
F xð Þjplaneffiffiffi
π
p

x=2ð Þ ¼ exp x=2ð Þ2erfc x=2ð Þ ðE:11Þ

log(x)
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an

e, 
F ap

ro
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Fig. E.2 Comparison between F(x)|plane (solid line) and Fapprox(x)|plane (dashed line) calculated
from Eqs. (E.6) and (E.10), respectively
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Dropping Mercury Electrode

For a Dropping Mercury Electrode, the value z¼ 2/3 must be introduced in

Eqs. (E.1)–(E.2), and no compact form has been found. Note that in this case

p j 2=3ð Þ ¼ 2Γ 1þ 3 j
14

� �
Γ 1

2
þ 3 j

14

� � ðE:12Þ

The behavior of this function is similar to that obtained for a plane electrode (see

Fig. E.1). For high values of the argument x, function F(x)|DME admits an asymp-

totic expansion:

F xð ÞjDME,x
1 ffi 1� 0:7498

x
þ 0:1733

x2
� 0:1116

x3
þ 0:3733

x4
� � � � x � 7:1 ðE:13Þ

Different approximations have been proposed for F(x)|DME. The most usual are

as follows:

– Approximation by Smith et al. [3]

F xð ÞjDME ffi
1:030xð Þ1:091

1þ 1:030xð Þ1:091 ðE:14Þ

– Approximation by Oldham and Parry [4]

F xð ÞjDME ffi
3

2
1þ b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 2b

3
þ 1

r" #
ðE:15Þ

With b ¼ 0:85923x
– Approximation by Nishihara and Matsuda [5]

F xð ÞjDME

1� F xð ÞjDME

ffi 0:224x tanh 1:3log 0:474xð Þð Þ þ 4:96½ 
 ðE:16Þ
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Appendix F. Application of a Second Potential

Pulse to a Reversible Electrode Reaction Taking

Place at Spherical Electrodes When the Diffusion

Coefficients of Both Species Are Assumed

as Different

Let us consider a reversible charge transfer reaction:

Oþ e� !R ðF:1Þ

when a double potential pulse is applied at a stationary spherical electrode of radius

rs, taking into account that the reduced species is soluble in the electrolytic solution
or in the electrode (electrolyte drop electrodes, amalgamation) and that the diffu-

sion coefficients of the electroactive species may be different.

The applied potential is set at a value E1 in the interval 0 � t � τ1 and stepped

from E1 to E2 at the time t > τ1 (t ¼ τ1 þ t2; 0 � t2 � τ2). During this second period
( 0 � t2 � τ2 ), the mass transport of the species O and R is described by the

following differential equation system:

δ̂ Oc
2ð Þ
O r; tð Þ ¼ δ̂ Rc 2ð Þ

R r; tð Þ ¼ 0 ðF:2Þ

with

δ̂ k ¼ ∂
∂t2
� Dk

∂2

∂r2
þ 2

r

∂
∂r

 !
, k�O, R ðF:3Þ

The boundary value problem is given by the following:

Solution soluble product:

t2 � 0, r !1
t2 ¼ 0, r � rs

�
c

2ð Þ
O ¼ c

1ð Þ
O , c

2ð Þ
R ¼ c

1ð Þ
R ðF:4Þ

Electrode soluble product:
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t2 � 0, r !1
t2 ¼ 0, r � rs

�
c

2ð Þ
O ¼ c

1ð Þ
O , c

2ð Þ
R ¼ 0 ðF:5Þ

t2 � 0, r ! �1
t2 ¼ 0, r � rs

�
c

2ð Þ
O ¼ 0, c

2ð Þ
R ¼ c

1ð Þ
R ðF:6Þ

t2 > 0, r ¼ rs :

c
2ð Þ
O rs; tð Þ ¼ eη2c

2ð Þ
R rs; tð Þ ðF:7Þ

DO

∂c 2ð Þ
O r; tð Þ
∂r

 !
r¼rs
¼ � DR

∂c 2ð Þ
R r; tð Þ
∂r

 !
r¼rs

ðF:8Þ

with

η2 ¼
F

RT
E2 � E��O

0
c

� �
ðF:9Þ

Hereafter, the upper sign in any equation refers to solution soluble product while

the lower sign refers to electrode soluble product.

In order to solve the differential equation system [Eq. (F.2)], it is convenient to

introduce the following variable change:

uk r; tð Þ ¼ ck r; tð Þ � r

c�O � rs
k�O, Rð Þ ðF:10Þ

Taking into account the new variable uk(r, t) and that the operator δ̂ k given by

Eq. (F.3) is linear, solutions corresponding to the second potential step can be

written as

u
2ð Þ
k r; tð Þ ¼ u

1ð Þ
k r; tð Þ þ eu 2ð Þ

k r; t2ð Þ k�O, Rð Þ ðF:11Þ

being u
ð1Þ
k (r, t) the solutions of the first potential pulse [1], and u�ð2Þk (r, t2) the new

unknown partial solutions with null initial conditions (t2 ¼ 0).

The differential equation system becomes

∂eu 2ð Þ
O r; t2ð Þ
∂t2

¼ DO

∂ 2eu 2ð Þ
O r; t2ð Þ
∂r2

∂eu 2ð Þ
R r; t2ð Þ
∂t2

¼ DR

∂ 2eu 2ð Þ
R r; t2ð Þ
∂r2

9>>>=>>>; ðF:12Þ

and the boundary value problem is given by

Solution soluble product
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t2 � 0, r !1
t2 ¼ 0, r � rs

� eu 2ð Þ
O ¼ eu 2ð Þ

R ¼ 0 ðF:13Þ

Electrode soluble product

t2 � 0, r !1
t2 ¼ 0, r � rs

� eu 2ð Þ
O ¼ 0;

t2 � 0, r ! �1
t2 ¼ 0, r � rs

� eu 2ð Þ
R ¼ 0 ðF:14Þ

t2 > 0

r ¼ rs

�
γ2

∂eu 2ð Þ
O

r;t2ð Þ
∂r

� �
r¼rs
� eu 2ð Þ

O rs; t2ð Þ
rs

" #
¼ � ∂eu 2ð Þ

R
r;t2ð Þ

∂r

� �
r¼rs
� eu 2ð Þ

R rs; t2ð Þ
rs

" #
ðF:15Þ

eu 2ð Þ
O rs; t2ð Þ � eη2eu 2ð Þ

R rs; t2ð Þ ¼ eη2u
1ð Þ
R rs; tð Þ � u

1ð Þ
O rs; tð Þ ðF:16Þ

with

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ðF:17Þ

As can be seen, the differential equation system (F.12) only depends on the new

functions u�ð2ÞO (r, t2), while the surface condition (F.16) introduces dependence with

the first potential pulse.

This problem has been solved by means of Koutecký’s dimensionless parame-

ters method [2]. In order to apply it, it has been supposed that solutions have the

form:

eu 2ð Þ
O r; t2ð Þ ¼ eu 2ð Þ

O sO,2; ξ1; αð Þ ¼
X1
i, j¼0

σ �ð Þi, j sO,2ð Þξ i1α j

eu 2ð Þ
R r; t2ð Þ ¼ eu 2ð Þ

R sR,2; ξ1; αð Þ ¼
X1
i, j¼0

ϕ �ð Þi, j sR,2ð Þξ i1α j

ðF:18Þ

with

sk,2 ¼ r � rs

2
ffiffiffiffiffiffiffiffiffi
Dkt2
p k�O, Rð Þ ðF:19Þ

ξ1 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DR τ1 þ t2ð Þp
rs J1

ðF:20Þ
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J1 ¼ 1þ γeη1
γ2eη1 � 1

ðF:21Þ

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
τ1 þ t2

r
ðF:22Þ

η1 ¼
F

RT
E1 � E��O

0
c

� �
ðF:23Þ

Taking into account the dimensionless variables, the differential equation sys-

tem (F.12) becomes

∂2eu 2ð Þ
O sO,2; ξ1; αð Þ
∂s2O,2

þ 2 sO,2
∂eu 2ð Þ

O sO,2; ξ1; αð Þ
∂sO,2

� 2α2ξ1
∂eu 2ð Þ

O sO,2; ξ1; αð Þ
∂ξ1

� 2α 1� α2� �∂eu 2ð Þ
O sO,2; ξ1; αð Þ

∂α
¼ 0

∂2eu 2ð Þ
R sR,2; ξ1; αð Þ
∂s2R,2

þ 2 sR,2
∂eu 2ð Þ

R sR,2; ξ1; αð Þ
∂sR,2

� 2α2ξ1
∂eu 2ð Þ

R sR,2; ξ1; αð Þ
∂ξ1

� 2α 1� α2� �∂eu 2ð Þ
R sR,2; ξ1; αð Þ

∂α
¼ 0

9>>>=>>>;
ðF:24Þ

with the boundary value problem given by

Solution soluble product

t2 � 0, r !1
t2 ¼ 0, r � rs

�
sk,2 !1 k�O, Rð Þ : eu 2ð Þ

O 1ð Þ ¼ eu 2ð Þ
R 1ð Þ ¼ 0 ðF:25Þ

Electrode soluble product

t2 � 0, r !1
t2 ¼ 0, r � rs

�
sO,2 !1, eu 2ð Þ

O 1ð Þ ¼ 0 ðF:26Þ

t2 � 0 , r ! �1
t2 ¼ 0 , r � rs

�
sR,2 ! �1, eu 2ð Þ

R �1ð Þ ¼ 0 ðF:27Þ

t2 > 0

r ¼ rs

�
sk,2 ¼ 0 k�O, Rð Þ

γ
∂eu 2ð Þ

O
sO,2;ξ1;αð Þ
∂sO,2

� �
sO,2¼0

� ξ1γαJ1eu 2ð Þ
O 0; ξ1; αð Þ

" #

¼ � ∂eu 2ð Þ
R

sR,2;ξ1;αð Þ
∂sR,2

� �
sR,2¼0

� ξ1αJ1eu 2ð Þ
R 0; ξ1; αð Þ

" # ðF:28Þ

eu 2ð Þ
O 0; ξ1; αð Þ � eη2eu 2ð Þ

R 0; ξ1; αð Þ ¼ eη2u
1ð Þ
R 0; ξ1ð Þ � u

1ð Þ
O 0; ξ1ð Þ ðF:29Þ

By introducing expressions (F.18) into Eq. (F.24), the equation system becomes
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σ
00 �ð Þ
i, j sO,2ð Þ þ 2 sO,2 σ

0 �ð Þ
i, j sO,2ð Þ � 2 jσ �ð Þi, j sO,2ð Þ ¼ �2 j� i� 2ð Þσ �ð Þi, j�2 sO,2ð Þ

ϕ
00 �ð Þ
i, j sR,2ð Þ þ 2 sR,2ϕ

0 �ð Þ
i, j sR,2ð Þ � 2 jϕ �ð Þi, j sR,2ð Þ ¼ �2 j� i� 2ð Þϕ �ð Þi, j�2 sR,2ð Þ

9=; ðF:30Þ

By considering expressions (F.18), the boundary value problem is given by

Solution soluble product

t2 � 0, r !1
t2 ¼ 0, r � rs

�
sk,2 !1 k�O, Rð Þ : σ �ð Þi, j 1ð Þ ¼ 0; ϕ �ð Þi, j 1ð Þ ¼ 0 8i, j ðF:31Þ

Electrode soluble product

t2 � 0, r !1
t2 ¼ 0, r � rs

�
sO,2 !1, σ �ð Þi, j 1ð Þ ¼ 0 8 i, j

t2 � 0, r ! �1
t2 ¼ 0, r � rs

�
sR,2 ! �1, ϕ þð Þi, j �1ð Þ ¼ 0 8 i, j

ðF:32Þ

t2 > 0

r ¼ rs

�
sk,2 ¼ 0 k�O, Rð Þ

γ σ �ð Þi, j
0 0ð Þ � γ J1σ �ð Þi�1, j�1 0ð Þ

h i
¼ � ϕ �ð Þi, j

0 0ð Þ � J1ϕ
�ð Þ
i�1, j�1 0ð Þ

h i
8 j ðF:33Þ

σ �ð Þi, 0 0ð Þ � eη2 ϕ �ð Þi, 0 0ð Þ ¼ eη2 ϕ �ð Þi 0ð Þ � σ �ð Þi 0ð Þ j ¼ 0

σ �ð Þi, j 0ð Þ ¼ eη2 ϕ �ð Þi, j 0ð Þ j > 0

9=; ðF:34Þ

where ϕ �ð Þi 0ð Þ and σ �ð Þi 0ð Þ correspond to the first potential pulse solutions [2].

Solutions of the differential equation system have the following form:

When j� i� 2 ¼ 0 or j < 2 (homogeneous differential equations)

σ �ð Þi, j sO,2ð Þ ¼ σ
�ð Þ
i, j þ1ð Þ
limL j
sO,2!1

L j þ ai, jΨ
�ð Þ
j sO,2ð Þ

ϕ �ð Þi, j sR,2ð Þ ¼ ϕ
�ð Þ
i, j �1ð Þ
limL j

sR,2!�1

L j þ bi, jΨ
�ð Þ
j sR,2ð Þ

9>>>>>>>=>>>>>>>;
8 i, j ðF:35Þ

When j� i� 2 6¼ 0 (nonhomogeneous differential equations)
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σ �ð Þi, 2 j sO,2ð Þ ¼ σ
�ð Þ
i, 2 j þ1ð Þ
limL j
sO,2!1

L j þ
Xj

m¼0
ai, 2 j,mΨ

�ð Þ
2m sO,2ð Þ

ϕ �ð Þi, 2 j sR,2ð Þ ¼ ϕ
�ð Þ
i, 2 j �1ð Þ
limL j

sR,2!�1

L j þ
Xj

m¼0
bi, 2 j,mΨ

�ð Þ
2m sR,2ð Þ

9>>>>>>>=>>>>>>>;
8 i, j ðF:36Þ

σ �ð Þi, 2 jþ1 sO,2ð Þ ¼ σ
�ð Þ
i, 2 jþ1 þ1ð Þ
limL j
sO,2!1

L j þ
Xj

m¼0
ai, 2 jþ1,mΨ

�ð Þ
2mþ1 sO,2ð Þ

ϕ �ð Þi, 2 jþ1 sR,2ð Þ ¼ ϕ
�ð Þ
i, 2 jþ1 �1ð Þ
limL j

sR,2!�1

L j þ
Xj

m¼0
bi, 2 jþ1,mΨ

�ð Þ
2mþ1 sR,2ð Þ

9>>>>>>>=>>>>>>>;
8 i, j ðF:37Þ

where ai, j, m and bi, j, m are constants that we will determine by applying the

boundary value problem, Lj are sk-powers numeric series, and

Ψ �ð Þm skð Þ k�O, Rð Þ are Koutecký’s functions [3], which have the following

properties (see also Appendix A):

Ψ �ð Þm 0ð Þ ¼ 1 ðF:38Þ
Ψ �ð Þm �1ð Þ ¼ 0 ðF:39Þ

Ψ �ð Þm
0 skð Þ ¼ � pmΨ

�ð Þ
m�1 skð Þ ðF:40Þ

Ψ �ð Þ0 skð Þ ¼ 1� er f skð Þ ðF:41Þ

Finally, considering that

I sphe2

FAs

¼ DO

∂c 2ð Þ
O r; tð Þ
∂r

 !
r¼rs
¼ �DR

∂c 2ð Þ
R r; tð Þ
∂r

 !
r¼rs

ðF:42Þ

the following expression for the response corresponding to the second potential

pulse is obtained:

I sphe2 ¼ I sphe1 τ1 þ t2ð Þ þ I planed,2 t2ð ÞZ1,2 1þ c�R=γc
�
O

� �� �
1þ γΩ2ξ2ð Þ

þ I planed,2 t2ð ÞZ1,2P1 1þ γΩ2ξ2ð Þ 1� H ξ1ð Þ½ 
þf ξ1ffiffiffi
π
p G αð Þ � 1½ 


þ γ ξ2Y1,2S
even α; ξ1ð Þ þ γ ξ2ffiffiffi

π
p Sodd α; ξ1ð Þ

� ðF:43Þ

with I sphe1 τ1 þ t2ð Þ and H ξ1ð Þ given by Eqs. (2.137) and (2.138), respectively, and
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ξ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πDRτ2
p

rs
ðF:44Þ

I planed,2 τ2ð Þ ¼ FAsc
�
O

ffiffiffiffiffiffiffi
DO

pffiffiffiffiffiffiffiffi
π τ2
p ðF:45Þ

Ωm ¼ 1� eηm

1þ γeηm m�1, 2 ðF:46Þ

Z1,2 ¼ γ eη1 � eη2ð Þ
1þ γeη1ð Þ 1þ γeη2ð Þ ðF:47Þ

Y1,2 ¼ eη2 γ � 1ð Þ γJ2 � 1ð ÞJ21
1þ γeη2ð ÞJ22

ðF:48Þ

P1 ¼
γ � 1ð Þ 1� c�R=c

�
O

� �
eη1

� �
γ2eη1 � 1ð Þ ðF:49Þ

J2 ¼ 1þ γeη2
γ2eη2 � 1

ðF:50Þ

Seven α; ξ1ð Þ ¼
X1
i ¼ 2

j ¼ 1

�1ð Þ jþi ξ1ð Þiα2 jYi
l¼1

pl

A

8>>>><>>>>:

9>>>>=>>>>; ðF:51Þ

Sodd α; ξ1ð Þ ¼
X1
i ¼ 1

j ¼ 0

�1ð Þ jþi ξ1ð Þiα2 jþ1 pi
iþ 1ð Þ

Yi
l¼1

pl

B

8>>>><>>>>:

9>>>>=>>>>; ðF:52Þ

where function G(x) is given by equation (4.43) and

ph ¼
2Γ 1þ h

2

� �
Γ 1þh

2

� � ðF:53Þ

being Γ(x) the Euler Gamma Function [4], and

if 2 j < i : A ¼

Yj�1
l¼0

i� 2lð Þ

2 j j!
1� J1

J2

� �2
" # j�1

ðF:54Þ
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if 2 j ¼ i :

A ¼
Xj�2
h¼0

�1ð Þh J1
J2

� �2h j� 1ð Þ!
h! j� h� 1ð Þ!

" #
þ 1þ c�R=γc

�
O

� �
P1

�1ð Þ j
Yi
h¼1

ph

22 j j!

J1
J2

� �2 j�1ð Þ ðF:55Þ

where the sum is only effective for j � 2.

if 2 j > i i odd : A ¼

Yj�1
h¼0

i� 2hð Þ

2 j j!

Xi�32
h¼0

�1ð Þh J1
J2

� �2h j� 1ð Þ!
h! j� h� 1ð Þ!

" #
i even : A ¼ 0

8>>><>>>: ðF:56Þ

and

if 2 jþ 1 < i : B ¼

Yj
h¼0

i� 2hþ 1ð Þ

2 jþ 1ð Þ2 j jþ 1ð Þ!
1

2γJ1
þ Y1, 2

Xj

m¼0
�1ð Þm2m J1

J2

� �2m�1Ym
k¼0

j� k þ 1

2k � 1

� �( )" #
ðF:57Þ

if 2 jþ 1¼ i : B¼ 1

2 jþ 1ð ÞγJ1þ
2Y1,2

2 jþ1ð Þ
Xj�1
m¼0

�1ð Þm2m J1
J2

� �2m�1Ym
k¼0

j� kþ1

2k� 1

� �( )

þY1,2 1þ c�R=γc
�
O

� �� �
P1

�1ð Þ j iþ1ð Þ j!
Yi
h¼1

ph

pi 2 jþ 1ð Þ!
J1
J2

� �2 j�1

ðF:58Þ

where the sum is only effective for j� 1.

if 2 jþ 1 > i

i even : B ¼

Yj
h¼0

i� 2hþ 1ð Þ

2 jþ 1ð Þ2 j jþ 1ð Þ!
1

2γJ1
þ Y1,2

Xi=2�1
m¼0

�1ð Þm2m J1
J2

� �2m�1Ym
k¼0

j� k þ 1

2k � 1

� �( )" #
i odd : B ¼ 0

ðF:59Þ

The number of terms to be considered in series Seven(α, ξ1) and Sodd(α, ξ1)
obviously depends on the electrode sphericity (through ξ1) and on the duration of

the potential pulses (through α), so that the higher sphericity and the greater α value,
the higher order of i-powers and j-powers, respectively, must be considered. In

reference [5], a discussion about this point is presented, showing that to obtain a

relative error less than 1 % when γ ¼ 0:7, E1 ! �1, E2 ! þ1, t1 ¼ 1s, and
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t2 ¼ 0:5s, we need to consider up to the 11th order (ξ111 ) for rs ¼ 5� 10�3 cm, up to

the 175th order (ξ1751 ) for rs ¼ 10�3 cm, and up to the 275th order (ξ2751 ) for

rs ¼ 8� 10�4 cm, being in all cases up to α75-term considered [2].
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3. Koutecký J (1953) Czech J Phys 2:50–55

4. Oldham KB, Myland J, Spanier J (2009) An atlas of functions, 2nd edn. Springer Science

+Business Media LLC, New York

5. Molina A, Serna C, Martinez-Ortiz F, Laborda E (2008) Electrochem Commun 10:376–381

Appendix F. Application of a Second Potential Pulse to a Reversible. . . 623



Appendix G. Application of Two Potential Pulses

to a Non-reversible Charge Transfer:

Differential Double Pulse Voltammetry and

Reverse Pulse Voltammetry

Solution for Spherical Electrodes in Differential Double

Pulse Voltammetry

The following charge transfer reaction taking place at a spherical electrode of

radius rs will be considered:

Oþ e� !
kred

kox
R ðIÞ

with kred and kox being the rate constants for the electro-reduction and electro-

oxidation processes which, for the Butler–Volmer formalist, are given by

kred, j ¼ k0e�αη j

kox, j ¼ eη j kred, j

�
ðG:1Þ

with

η j ¼
F

RT
E j � E��O

0
c

� �
j ¼ 1, 2 ðG:2Þ

k0 and α are the heterogeneous rate constant and the charge transfer coefficient,

respectively.

In order to solve the problem, we introduce the following variable change [1]:

u
jð Þ

i r; tð Þ ¼ c
jð Þ

i r; tð Þr
c�O rs

i�O, R
j�1, 2 ðG:3Þ

Considering the new variable, u
ðjÞ
i (r, t), the differential equation system and the

corresponding boundary value problem for the first potential pulse E1 ( t ¼ t1; 0
� t1 � τ1) become [see Eqs. (4.111)–(4.115)]:
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∂u 1ð Þ
O r; tð Þ
∂t

¼ D
∂ 2u

1ð Þ
O r; tð Þ
∂r2

∂u 1ð Þ
R r; tð Þ
∂t

¼ D
∂ 2u

1ð Þ
R r; tð Þ
∂r2

9>>=>>; ðG:4Þ

t � 0, r !1
t ¼ 0, r � rs

�
u

1ð Þ
O ¼

r

rs
; u

1ð Þ
R ¼ c�R=c

�
O

� � r

rs
ðG:5Þ

t > 0

r ¼ rs

�
∂u 1ð Þ

O

∂r

� �
r¼rs
� u

1ð Þ
O rsð Þ
rs

¼ � ∂u 1ð Þ
R

∂r

 !
r¼rs
� u

1ð Þ
R rsð Þ
rs

24 35 ðG:6Þ

D
∂u 1ð Þ

O

∂r

 !
r¼rs
� u

1ð Þ
O rsð Þ
rs

24 35 ¼ k0e�αη1u 1ð Þ
O rsð Þ � k0e 1�αð Þη1u 1ð Þ

R rsð Þ ðG:7Þ

with η1 given by Eq. (G.2).

By applying Koutecký’s dimensionless parameter method [1], we suppose that

solutions are functional series of the dimensionless variable ξ:

u
1ð Þ
O r; tð Þ ¼ u

1ð Þ
O s; ξð Þ ¼

X
k

σ 1ð Þ
k sð Þξk ðG:8Þ

u
1ð Þ
R r; tð Þ ¼ u

1ð Þ
R s; ξð Þ ¼

X
k

ρ 1ð Þ
k sð Þξk ðG:9Þ

with

ξ ¼ 2
ffiffiffiffiffiffi
Dt
p

rs
ðG:10Þ

s ¼ r � rs

2
ffiffiffiffiffiffi
Dt
p ðG:11Þ

Taking into account the dimensionless variables s and ξ, the differential equation
system and the boundary value problem turn into

∂2
u

1ð Þ
O

∂s2
þ 2 s

∂u 1ð Þ
O

∂s
� 2ξ

∂u 1ð Þ
O

∂ξ
¼ 0

∂2
u

1ð Þ
R

∂s2
þ 2 s

∂u 1ð Þ
R

∂s
� 2ξ

∂u 1ð Þ
R

∂ξ
¼ 0

9>>>=>>>; ðG:12Þ

s!1
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u
1ð Þ
O 1ð Þ ¼ 1þ sξ; u

1ð Þ
R 1ð Þ ¼ c�R=c

�
O

� �
1þ sξð Þ ðG:13Þ

s ¼ 0

∂u 1ð Þ
O

∂s

 !
s¼0
� ξu 1ð Þ

O 0ð Þ ¼ � ∂u 1ð Þ
R

∂s

 !
s¼0
� ξu 1ð Þ

R 0ð Þ
" #

ðG:14Þ

∂u 1ð Þ
O

∂s

 !
s¼0
� ξu 1ð Þ

O 0ð Þ ¼ rs k
0e�αη1

D
u

1ð Þ
O 0ð Þ � eη1u

1ð Þ
R 0ð Þ

h i
ξ ðG:15Þ

By introducing the expressions (G.8) and (G.9) into Eq. (G.12), the differential

equation system becomes

σ 1ð Þ
k
00 sð Þ þ 2 sσ 1ð Þ

k
0 sð Þ � 2kσ 1ð Þ

k sð Þ ¼ 0

ρ 1ð Þ
k
00 sð Þ þ 2 sρ 1ð Þ

k
0 sð Þ � 2kρ 1ð Þ

k sð Þ ¼ 0

)
ðG:16Þ

the solutions of which have the following form:

σ 1ð Þ
k sð Þ ¼ σ

1ð Þ
k 1ð Þ
limLk
s!1

Lk þ a
1ð Þ
k Ψ k sð Þ

ρ 1ð Þ
k sð Þ ¼ ρ

1ð Þ
k 1ð Þ
limLk
s!1

Lk þ b
1ð Þ
k Ψ k sð Þ

9>>>>>=>>>>>;
ðG:17Þ

where a
ð1Þ
k and b

ð1Þ
k are constants that will be determined from the boundary value

problem, Lj are s-powers numeric series, and Ψ k(s) are Koutecký functions which

have different properties indicated in Eqs. (A.11)–(A.14) (see also [2]). Taking into

account the form of the solutions [Eq. (G.17)] along with the properties of Koutecký

functions, the boundary value problem is given by

s!1

σ 1ð Þ
0 1ð Þ ¼ 1 ρ 1ð Þ

0 1ð Þ ¼ c�R=c
�
O

� �
σ 1ð Þ
1 1ð Þ ¼ s ρ 1ð Þ

1 1ð Þ ¼ c�R=c
�
O

� �
s

σ 1ð Þ
k 1ð Þ ¼ 0 ρ 1ð Þ

k 1ð Þ ¼ 0; k > 1

ðG:18Þ

s ¼ 0

σ 1ð Þ
k
0 0ð Þ � σ 1ð Þ

k�1 0ð Þ ¼ �ρ 1ð Þ
k
0 0ð Þ þ ρ 1ð Þ

k�1 0ð Þ ðG:19Þ
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σ 1ð Þ
k
0 0ð Þ � σ 1ð Þ

k�1 0ð Þ ¼ rs k0
D

e�αη1 σ 1ð Þ
k�1 0ð Þ � eη1ρ 1ð Þ

k�1 0ð Þ
h i

ðG:20Þ

and σ 1ð Þ
�1 0ð Þ ¼ ρ 1ð Þ

�1 0ð Þ ¼ 0

By applying Eqs. (G.18)–(G.20), we obtain the expressions for σð1Þk (s) and

ρð1Þk (s), and by introducing them in Eqs. (G.8) and (G.9), we find the solutions of

the problem (u
ð1Þ
O (r, t) and u

ð1Þ
R (r, t)). From these, the I–E expression for the appli-

cation of the first potential pulse at spherical electrodes is obtained:

I sphe1

I sphed,c

¼ κsphe 1� c�R=c
�
O

� �
eη1

� �
ϑ1 1þ eη1ð Þ 1þ κsphe 1þ 2ffiffiffi

π
p ϑ1
χs, 1

� �
H χs, 1
� �� �

ðG:21Þ

with

H χsð Þ ¼ 2F χsð Þ=
ffiffiffi
π
p
χs

� � ¼ eχ
2
s =4erfc χs=2ð Þ ðG:22Þ

ϑ1 ¼ 1þ k0rs
D

1þ eη1

eαη1
ðG:23Þ

χs;1 ¼
2
ffiffiffiffiffi
Dt
p

rs
ϑ1 ðG:24Þ

κsphe ¼ κ0sphee�αη1 1þ eη1ð Þ ðG:25Þ

κ0sphe ¼
k0rs
D

1þ rsffiffiffiffiffiffi
πDt
p ðG:26Þ

I sphed, c ¼ FADc�O
1

rs
þ 1ffiffiffiffiffiffiffiffi

πDt
p

� �
ðG:27Þ

Regarding the application of the second potential step (t ¼ τ1 þ t2 ; 0 � t2 � τ2),
due to that the diffusion operator for spherical diffusion is linear, the solutions of the

differential equation system can be written as

u
2ð Þ
i r; tð Þ ¼ u

1ð Þ
i r; tð Þ þ eu 2ð Þ

i r; t2ð Þ i�O,R ðG:28Þ

being ũ
ð2Þ
i (r, t2) the new unknown partial solutions with null initial conditions:

∂eu 2ð Þ
O r; t2ð Þ
∂t2

¼ D
∂ 2eu 2ð Þ

O r; t2ð Þ
∂r2

∂eu 2ð Þ
R r; t2ð Þ
∂t2

¼ D
∂ 2eu 2ð Þ

R r; t2ð Þ
∂r2

9>>>=>>>; ðG:29Þ
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t2 � 0, r !1
t2 ¼ 0, r � rs

� eu 2ð Þ
O ¼ 0; eu 2ð Þ

R ¼ 0 ðG:30Þ

t2 > 0

r ¼ rs

�

∂eu 2ð Þ
O

∂r

 !
r¼rs
� eu 2ð Þ

O rsð Þ
rs

¼ � ∂eu 2ð Þ
R

∂r

 !
r¼rs
� eu 2ð Þ

R rsð Þ
rs

24 35 ðG:31Þ

D
∂eu 2ð Þ

O

∂r

� �
r¼rs
� eu 2ð Þ

O rsð Þ
rs

" #
� k0e�αη2eu 2ð Þ

O rsð Þ þ k0e 1�αð Þη2eu 2ð Þ
R rsð Þ ¼

� D
∂u 1ð Þ

O

∂r

� �
r¼rs
� u

1ð Þ
O rsð Þ
rs

" #
� k0e�αη2u 1ð Þ

O rsð Þ þ k0e 1�αð Þη2u 1ð Þ
R rsð Þ

( ) ðG:32Þ

Again this problem can be solved by means of Koutecký’s dimensionless

parameter method. Thus, we introduce the dimensionless variables:

s2 ¼ r � rs

2
ffiffiffiffiffiffiffiffi
Dt2
p ðG:33Þ

ξ2 ¼
2
ffiffiffiffiffiffiffiffi
Dt2
p
rs

ðG:34Þ

so that the solutions are given by

eu 2ð Þ
O r; t2ð Þ ¼ eu 2ð Þ

O s2; ξ2ð Þ ¼
X
k

σ 2ð Þ
k s2ð Þξ k2 ðG:35Þ

eu 2ð Þ
R r; t2ð Þ ¼ eu 2ð Þ

R s2; ξ2ð Þ ¼
X
k

ρ 2ð Þ
k s2ð Þξ k2 ðG:36Þ

and the differential equation system and the boundary value problem turn into

∂2eu 2ð Þ
O

∂s22
þ 2 s2

∂eu 2ð Þ
O

∂s2
� 2ξ2

∂eu 2ð Þ
O

∂ξ2
¼ 0

∂2eu 2ð Þ
R

∂s22
þ 2 s2

∂eu 2ð Þ
R

∂s2
� 2ξ2

∂eu 2ð Þ
R

∂ξ2
¼ 0

9>>>=>>>; ðG:37Þ
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s2 !1

eu 2ð Þ
O 1ð Þ ¼ 0; eu 2ð Þ

R 1ð Þ ¼ 0 ðG:38Þ

s2 ¼ 0

∂eu 2ð Þ
O

∂s2

 !
s2¼0
� ξ2 eu 2ð Þ

O 0ð Þ ¼ � ∂eu 2ð Þ
R

∂s2

 !
s2¼0
� ξ2 eu 2ð Þ

R 0ð Þ
24 35 ðG:39Þ

∂eu 2ð Þ
O

∂s2

� �
s2¼0
� ξ2 eu 2ð Þ

O 0ð Þ � rs k
0e�αη2

D
eu 2ð Þ
O 0ð Þ � eη2eu 2ð Þ

R 0ð Þ
h i

ξ2 ¼

� ∂u 1ð Þ
O

∂s1

� �
s1¼0

1

ξ1
� u

1ð Þ
O 0ð Þ � r0 k

0e�αη2

D
u

1ð Þ
O 0ð Þ � eη2u

1ð Þ
R 0ð Þ

h i( )
ξ2

ðG:40Þ

The solutions of the system (G.37) have the following form:

σ 2ð Þ
k s2ð Þ ¼ σ

2ð Þ
k 1ð Þ
limLk
s2!1

Lk þ a
2ð Þ
k Ψ k s2ð Þ

ρ 2ð Þ
k s2ð Þ ¼ ρ

2ð Þ
k 1ð Þ
limLk
s2!1

Lk þ b
2ð Þ
k Ψ k s2ð Þ

9>>>>>=>>>>>;
ðG:41Þ

which must fulfill the following limit and surface conditions:

s2 !1

σ 2ð Þ
k 1ð Þ ¼ 0; ρ 2ð Þ

k 1ð Þ ¼ 0 8k ðG:42Þ

s2 ¼ 0

σ 2ð Þ
k
0 0ð Þ � σ 2ð Þ

k�1 0ð Þ ¼ �ρ 2ð Þ
k
0 0ð Þ þ ρ 2ð Þ

k�1 0ð Þ ðG:43Þ

� σ 2ð Þ
k
0 0ð Þ � σ 2ð Þ

k�1 0ð Þ � rs k0 e
�αη2

D
σ 2ð Þ
k�1 0ð Þ � eη2 ρ 2ð Þ

k�1 0ð Þ
h i

¼ 0 k 6¼ 1

� σ 2ð Þ
1
0 0ð Þ � σ 2ð Þ

0 0ð Þ � rs k0 e
�αη2

D
σ 2ð Þ
0 0ð Þ � eη2ρ 2ð Þ

0 0ð Þ
h i

¼

� ∂u 1ð Þ
O

∂s1

� �
s1¼0

1

ξ1
� u

1ð Þ
O 0ð Þ � rs k0 e

�αη2

D
u

1ð Þ
O 0ð Þ � eη2u

1ð Þ
R 0ð Þ

h i( )
k ¼ 1

9>>>>>>=>>>>>>;
ðG:44Þ

As can be seen, the surface condition (G.44) introduces dependence with the first

potential pulse. Given that in DDPV technique we have that t1 
 t2, it can be
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assumed that the mathematical form of the solutions corresponding to the first pulse

(u
ð1Þ
O (r, t) and u

ð1Þ
R (r, t)) is not disturbed by the application of the second one.

By applying the conditions given by Eqs. (G.42)–(G.44), we deduce the expres-

sions for σð2Þk (s2) and ρ
ð2Þ
k (s2), and taking into account Eqs. (G.28), (G.35), and

(G.36), the solutions u
ð2Þ
i (r, t) are obtained. From these, the equation for the current

corresponding to the second potential pulse [Eq. (4.134)] is derived.

Solution for the Second Current in Reverse Pulse

Voltammetry

To solve the problem corresponding to the second potential step, the Koutecký’s
dimensionless parameter method [3] has been applied by assuming that the solu-

tions of the differential equation system (G.29) are functional series of the dimen-

sionless variables χ2 and β:

eu 2ð Þ
O r; tð Þ ¼ eu 2ð Þ

O s2; χ2; βð Þ ¼
X
i, j
σi, j s2ð Þχ i2 β j=2 ðG:45Þ

eu 2ð Þ
R r; tð Þ ¼ eu 2ð Þ

R s2; χ2; βð Þ ¼
X
i, j
δi, j s2ð Þχ i2 β j=2 ðG:46Þ

with

χ2 ¼
2
ffiffiffiffiffiffiffi
Dt2
p
rs
þ 2

ffiffiffiffi
t2
D

r
k0e�αη2 1þ eη2ð Þ ðG:47Þ

β ¼ t2
τ1 þ t2

ðG:48Þ

Taking into account the definition of s2 (Eq. (G.33)), χ2, and β, the differential
equation system and the boundary value problem turn into

∂2eu 2ð Þ
O

∂s22
þ 2 s2

∂eu 2ð Þ
O

∂s2
� 2χ2

∂eu 2ð Þ
O

∂χ2
� 4β 1� βð Þ∂eu 2ð Þ

O

∂β
¼ 0

∂2eu 2ð Þ
R

∂s22
þ 2 s2

∂eu 2ð Þ
R

∂s2
� 2χ2

∂eu 2ð Þ
R

∂χ2
� 4β 1� βð Þ∂eu 2ð Þ

R

∂β
¼ 0

9>>>=>>>; ðG:49Þ
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s2 !1

eu 2ð Þ
O 1ð Þ ¼ 0; eu 2ð Þ

R 1ð Þ ¼ 0 ðG:50Þ

s2 ¼ 0

∂eu 2ð Þ
O

∂s2

 !
s2¼0
� χ2
θ2
eu 2ð Þ
O 0ð Þ ¼ � ∂eu 2ð Þ

R

∂s2

 !
s2¼0
� χ2
θ2
eu 2ð Þ
R 0ð Þ

24 35 ðG:51Þ

∂eu 2ð Þ
O

∂s2

 !
s2¼0
� χ2
θ2
eu 2ð Þ
O 0ð Þ � χ2

θ2
κ0sphe, sse

�αη2 eu 2ð Þ
O 0ð Þ � eη2eu 2ð Þ

R 0ð Þ
� �

¼ � 2ffiffiffi
π
p β1=2 þ Zχ2 ðG:52Þ

with

κ0sphe, ss ¼
k0rs
D

ðG:53Þ

Z ¼ �
1þ κ0sphe, sse 1�αð Þη2 1þ c�R

c�
O

� �
1þ κ0sphe, sse�αη2 1þ eη2ð Þ ðG:54Þ

θ2 ¼ 1þ κ0sphe, sse�αη2 1þ eη2ð Þ ðG:55Þ

and the expression for the current is given by

I sphe2

FADc�O
¼ I sphed, c τ1 þ t2ð Þ þ 1

2
ffiffiffiffiffiffiffi
Dt2
p ∂eu 2ð Þ

O

∂s2

 !
s2¼0
� χ2
θ2
eu 2ð Þ
O 0ð Þ

24 35
¼ I sphed, c τ1 þ t2ð Þ þ 1

2
ffiffiffiffiffiffiffi
Dt2
p

X
i, j
σ
0
i, j 0ð Þχ i2 β j=2 � 1

θ2

X
i, j
σi, j 0ð Þχiþ12 β j=2

" #
ðG:56Þ

By introducing the expressions (G.45)–(G.46) into Eqs. (G.49)–(G.52), the

differential equation system and the boundary value problem become

σ
00
i, j s2ð Þ þ 2 s2 σ

0
i, j s2ð Þ � 2 iþ jð Þσi, j s2ð Þ ¼ �2 j� 2ð Þσi, j�2 s2ð Þ

δ
00
i, j s2ð Þ þ 2 s2 δ

0
i, j s2ð Þ � 2 iþ jð Þδi, j s2ð Þ ¼ �2 j� 2ð Þδi, j�2 s2ð Þ

)
ðG:57Þ

s2 !1

632 Appendix G. Application of Two Potential Pulses to a Non-reversible Charge Transfer:. . .



σi, j 1ð Þ ¼ 0; δi, j 1ð Þ ¼ 0 i, j � 0 ðG:58Þ

s2 ¼ 0

σ
0
i, j 0ð Þ �

σi�1, j 0ð Þ
θ2

¼ �δ0i, j 0ð Þ þ
δi�1, j 0ð Þ
θ2

ðG:59Þ

σ
0
i, j 0ð Þ �

σi�1, j 0ð Þ
θ2

� κ
0
sphe, sse

�αη2

θ2
σi�1, j 0ð Þ � eη2 δi�1, j 0ð Þ
� �

¼
� 2ffiffiffi

π
p for i ¼ 0, j ¼ 1

Z for i ¼ 1, j ¼ 0

0 otherwise

8><>: ðG:60Þ

By applying Eqs. (G.58)–(G.60), the following relationships are obtained:

σ00,1 0ð Þ ¼ � 2ffiffiffi
π
p ðG:61Þ

σ00, j 0ð Þ ¼ 0 for j 6¼ 1 ðG:62Þ
σ 01,0 0ð Þ ¼ Z ðG:63Þ

σ0i, j 0ð Þ ¼ σi�1, j 0ð Þ for i � 1, j odd ðG:64Þ
σ0i, j 0ð Þ ¼ σi, j 0ð Þ ¼ 0 for i � 1, j even ðG:65Þ

From these results, and taking into account Eq. (G.56), the expression for the

RPV current is deduced [Eq. (4.120)].
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Appendix H. Solution for the Application of a

Cyclic Linear Sweep Potential to Different

Charge Transfer Processes. Planar Electrodes

In this section, a brief discussion will be presented about the solution for the

current–potential response of different charge transfer processes taking place at a

planar electrode when a cyclic linear sweep potential is applied. This procedure has

been discussed in detail in references [1–3] and only a short deduction will be

provided here. The potential waveform can be written as

E tð Þ ¼ Einitial � vt for t � tinv a

E tð Þ ¼ Efinal þ vt for t > tinv b

9=; ðH:1Þ

a) Nernstian Charge Transfer

We will consider first the application of the linear sweep potential until t ¼ tinv. The
boundary value problem to solve is given by

∂cO
∂t
¼ D

∂2
cO

∂x2
∂cR
∂t
¼ D

∂2
cR

∂x2

9>>=>>; ðH:2Þ

t � 0, x!1
t ¼ 0, x � 0

�
cO ¼ c�O, cR ¼ 0 ðH:3Þ

t > 0, x ¼ 0;

DO

∂cO
∂x

� �
x¼0
¼ �DR

∂cR
∂x

� �
x¼0

ðH:4Þ
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c sO ¼ eη tð Þc sR ðH:5Þ

with

η tð Þ ¼ F

RT
E tð Þ � E��O

0
c

� �
¼ F

RT
Einitial � vt� E��O

0
c

� �
ðH:6Þ

The time dependence of Eq. (H.5) is significant and it greatly complicates the

resolution of the problem. This equation can be rewritten as

c sO
c sR
¼ θe�at ¼ θS tð Þ ðH:7Þ

with

θ ¼ exp
F

RT
Einitial � E��O

0
c

� �� �
ðH:8Þ

a ¼ Fv

RT
ðH:9Þ

S tð Þ ¼ e�at ðH:10Þ

Note that ϑS tð Þ ¼ eη tð Þ because v ¼ Einitial � E tð Þð Þ=t.
The expression for the concentrations of species O and R can be found by

applying the Laplace Transform method in the way discussed in Appendix

B. Thus, the following expression is found for cO x; pð Þ [see Eqs. (B.17)–(B.28)]:

cO x; pð Þ ¼ c�O
p
þ a2e

�
ffiffiffiffi
p

DO

p
x ðH:11Þ

By taking into account that the current is

I ¼ FADO

∂cO x; pð Þ
∂x

� �
x¼0
¼ �FA

ffiffiffiffiffiffiffiffiffiffi
DO p

p
a2 ðH:12Þ

it is possible to rewrite the expression of the surface concentration of species O:

c sO ¼
c�O
p
� I

FA
ffiffiffiffiffiffiffiffiffiffi
DO p
p ðH:13Þ

and by carrying out the inverse of the transform and taking into account the

Convolution theorem [see Eq. (B.12)], it is deduced:
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c sO ¼ c�O �
1

FA
ffiffiffiffiffiffiffiffiffi
πDO

p
ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ ðH:14Þ

In an analogous way, for species R is obtained

c sR ¼
1

FA
ffiffiffiffiffiffiffiffiffi
πDR

p
ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ ðH:15Þ

From Eqs. (H.14)–(H.15), it is found

γc sO þ c sR ¼ γc�O ðH:16Þ

with

γ ¼
ffiffiffiffiffiffiffi
DO

DR

r
ðH:17Þ

By combining Eqs. (H.7) and (H.16), it is possible to write csO in the way:

c sO ¼ c�O
γθS tð Þ

1þ γθS tð Þ ðH:18Þ

and inserting Eq. (H.18) into Eq. (H.14),

ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ ¼ FAc�O

ffiffiffiffiffiffiffiffiffi
πDO

p
1þ γθS tð Þ ðH:19Þ

Equation (H.19) allows us to calculate the current in terms of time. In order to

work with potential values instead of time values, a change of variable can be

carried out. Let’s define

χ zð Þ ¼ I atð Þ
FAc�O

ffiffiffiffiffiffiffiffiffiffiffiffi
πDOa
p ðH:20Þ

It is possible to rewrite Eq. (H.19) in terms of χ(z):
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ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ¼ 1

1þ γθS tð Þ ðH:21Þ

From the above equation, it is possible to calculate χ(z) for each value of the

potential and the current can be obtained from Eq. (H.20):

I atð Þ ¼ FAc�O
ffiffiffiffiffiffiffiffiffiffiffiffi
πDOa

p
χ atð Þ ðH:22Þ

with

at ¼ F

RT
Einitial � E tð Þð Þ ðH:23Þ

For the reverse sweep with the potential perturbation given by (b) in Eq. (H.1),

the procedure is the same with function S(t) given now as

S tð Þ ¼ e�at�2atinv ðH:24Þ

Logically, the shape of the reverse peak will depend on the inversion of final

potential of the first sweep.

Values for function χ(at) have been calculated by numerical integration [3], by a

series solution [2, 4], and other methods [5–8].

The evolution of function
ffiffiffi
π
p
χ atð Þ can be seen in Fig. H.1. The maximum value

of χ(at) is 0.4463, corresponding to E� E��O
0

c ¼ �0:0285 V (γ ¼ 1). This value

leads to the peak current given by Eq. (5.55).

-0.15-0.10-0.050.000.050.10

π1/
2 χ

(a
t)

0.0

0.1

0.2

0.3

0.4

0.5

O
c ( )  / VE t E– ¢

0.4463

Fig. H.1 Evolution of
ffiffiffi
π
p
χ atð Þ given by Eqs. (H.20)–(H.21) in terms of E� E��O

0
c (DO ¼ DR).

T¼ 298 K
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b) Quasi-reversible Charge Transfer Processes

In this case, the Nernstian condition given in Eq. (H.5) must be replaced by the

following relationship [in which a Butler–Volmer kinetics formalism has been

assumed; see Eq. (1.101)]:

I

FAk0
¼ c

sð Þ
O e�αη tð Þ � c

sð Þ
R e 1�αð Þη tð Þ

� �
ðH:25Þ

with η(t) given in Eq. (H.6). k0 and α are the heterogeneous rate constant and the

charge transfer coefficient, respectively. By taking into account the time depen-

dence of the perturbation [Eq. (H.1)], the above expression can be written as

I

FAk0
¼ ϑS tð Þð Þ�α c

sð Þ
O � c

sð Þ
R ϑS tð Þ

� �
ðH:26Þ

and by inserting the expressions of c
ðsÞ
O and c

ðsÞ
R given by Eqs. (H.14)–(H.15) into

Eq. (H.26), it is obtained

I

FAk0 ϑS tð Þð Þ�α ¼ c�O �
1

FA
ffiffiffiffiffiffiffiffiffi
πDO

p
ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ � ϑS tð Þ

FA
ffiffiffiffiffiffiffiffiffi
πDR

p
ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ

0@ 1A
ðH:27Þ

By assuming DO ¼ DR ¼ D, Eq. (H.27) simplifies to

I

FAk0c�O ϑS tð Þð Þ�α ¼ 1� S tð Þ � 1þ ϑS tð Þð Þ
FAc�O

ffiffiffiffiffiffiffi
πD
p

ðt
0

I τð Þ 1ffiffiffiffiffiffiffiffiffiffi
t� τp dτ ðH:28Þ

and rewriting Eq. (H.28) in terms of χ(z), it is found

χ atð Þ
Λ ϑS tð Þð Þ�α ¼ 1� S tð Þ � 1þ ϑS tð Þð Þ

ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:29Þ

with

Λ ¼ k0ffiffiffiffiffiffiffiffiffi
πDa
p ðH:30Þ

The current can be obtained by solving the integral equation (H.29) for a given

value of Λ and α [see also Eq. (H.20)]. If the electrode process can be considered as
totally irreversible, condition (H.25) becomes
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I

FAk0
¼ c

sð Þ
O e�αη tð Þ ðH:31Þ

and by following an analogous procedure to that described in section a, it is found

χ atð Þ
Λ ϑS tð Þð Þ�α ¼ 1�

ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:32Þ

The values of the function χ(at) for this last situation have been calculated in

[3] and it has been found that χ(at) and therefore the current presents a maximum

value equal to 0.4958 for a value of the dimensionless potential

αF E� E��O
0

c

� �
=RT þ ln

ffiffiffiffiffiffiffiffiffiffiffiffi
πDOa
p

=k0
� � ¼ �0:21. These values lead to the expressions

of the peak current and potential given by Eqs. (5.83) and (5.84), respectively.

Reaction Mechanisms

CE Mechanism

The reaction scheme in this case is the following:

B !
k1

k2
Cþ e� ! D ðIÞ

and in this case the differential equations and the boundary value problem are

δ̂ pcB ¼ �k1cB þ k2cC
δ̂ pcC ¼ k1cB � k2cC
δ̂ pcD ¼ 0

9=; ðH:33Þ

t ¼ 0, x � 0

t � 0, x!1
�

cC ¼ c�C
cB ¼ c�B; K ¼ c�B

c�C
¼ k2

k1
cD ¼ 0

9>=>; ðH:34Þ
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t > 0, x ¼ 0

DC

∂cC
∂x

� �
x¼0
¼ �DD

∂cD
∂x

� �
x¼0

ðH:35Þ

DB

∂cB
∂x

� �
x¼0
¼ 0 ðH:36Þ

c sC ¼ eη tð Þ c sD ðH:37Þ

with η(t) given by Eq. (H.6) and δ̂ p ¼ ∂
∂t� Di

∂2

∂x2.

The current is related to the fluxes of species C and D and is given by

ICE

FA
¼ DC

∂cC
∂x

� �
x¼0
¼ �DD

∂cD
∂x

� �
x¼0

ðH:38Þ

Considering DB ¼ DC ¼ D and using the following variable changes:

ζ ¼ cB þ cC ðH:39Þ
ϕ ¼ cB � KcC ðH:40Þ

with K being the inverse of the equilibrium constant, it is fulfilled that [9]:

∂ζ
∂T
¼ D

∂2ζ

∂X2
ðH:41Þ

∂ϕ
∂T
¼ D

∂2ϕ

∂X2
� λϕ ðH:42Þ

∂cD
∂T
¼ DD

∂2
cD

∂X2
ðH:43Þ

with

λ ¼ λ1 þ λ2 ðH:44Þ

λ j ¼ k j

a
j ¼ 1, 2 ðH:45Þ

X ¼
ffiffiffiffi
a

D

r
x ðH:46Þ

T ¼ at ðH:47Þ

Equations (H.41) and (H.43) are analogous to Eq. (H.2). Thus, their integration

leads to [see Eqs. (H.14)–(H.15)]:
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ζs ¼ 1� 1ffiffiffi
π
p
ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:48Þ

c sD ¼
1ffiffiffi
π
p
ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:49Þ

By solving the Laplace transform of differential equation (H.42) and taking into

account that ϕ remains finite ϕ ¼ 0
� �

for X!1, it follows that

ϕ ¼ ϕ
s � 1ffiffiffiffiffiffiffiffiffiffiffiffi

pþ λp ∂ϕ
∂X

� �
X¼0

� �
e�

ffiffiffiffiffiffiffi
pþλ
p

X

2
ðH:50Þ

Therefore,

ϕ
s ¼ ψffiffiffiffiffiffiffiffiffiffiffiffi

pþ λp ðH:51Þ

with

ψ ¼ ICE

FA
ffiffiffiffi
D
p
ζ*a

ðH:52Þ

and

ζ* ¼ c�B þ c�C ðH:53Þ

Returning Eq. (H.51) to the initial space, one obtains

ϕs ¼ 1ffiffiffi
π
p
ðat
0

e�λ at�zð Þ χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:54Þ

and combining Eqs. (H.48)–(H.54), the surface concentration of species C is

obtained:
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c sC ¼
K

1þ K
1� 1ffiffiffi

π
p
ðat
0

1þ e�λ at�zð Þ

K

� �
χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz

0@ 1A ðH:55Þ

Finally, by introducing the expressions for csD and csC in the Nernst condition

(H.37), a non-explicit integral expression for the CV current can be deduced.

EC Mechanism

The reaction scheme is

Aþ e� ! B  !
k1

k2
C ðIIÞ

For this reaction, the differential equations and boundary value problem are

δ̂ pcA ¼ 0

δ̂ pcB ¼ �k1cB þ k2cC
δ̂ pcC ¼ k1cB � k2cC

9=; ðH:56Þ

t ¼ 0, x � 0

t � 0, x!1
�

cA ¼ c�A
cB ¼ cC ¼ 0

�
ðH:57Þ

t > 0, x ¼ 0

DA

∂cA
∂x

� �
x¼0
¼ �DB

∂cB
∂x

� �
x¼0

ðH:58Þ

DC

∂cC
∂x

� �
x¼0
¼ 0 ðH:59Þ

c sA ¼ eη tð Þ c sB ðH:60Þ

with δ̂ p ¼ ∂
∂t� Di

∂2

∂x2.

The current is related to the fluxes of species A and B in the way

IEC

FA
¼ DA

∂cA
∂x

� �
x¼0
¼ �D ∂cB

∂x

� �
x¼0

ðH:61Þ

By assuming DB ¼ DC ¼ D and using the variables defined in Eqs. (H.39)–

(H.40), it is fulfilled that [9]:
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∂cA
∂T
¼ DA

∂2
cA

∂X2
ðH:62Þ

∂ζ
∂T
¼ D

∂2ζ

∂X2
ðH:63Þ

∂ϕ
∂T
¼ D

∂2ϕ

∂X2
� λϕ ðH:64Þ

where λ, X and T are given by Eqs. (H.44), (H.46) and (H.47), respectively.

Since Eqs. (H.62) and (H.63) are analogous to Eq. (H.2), their integration leads

to

c sA ¼ 1� 1ffiffiffi
π
p
ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:65Þ

ζs ¼ 1ffiffiffi
π
p
ðat
0

χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:66Þ

And solving the Laplace transform for Eq. (H.64), it is obtained

ϕ ¼ ϕ
s � 1ffiffiffiffiffiffiffiffiffiffiffiffi

pþ λp ∂ϕ
∂X

� �
X¼0

� �
e�

ffiffiffiffiffiffiffi
pþλ
p

X

2
ðH:67Þ

and hence

ϕ
s ¼ Kψffiffiffiffiffiffiffiffiffiffiffiffi

pþ λp ðH:68Þ

with

ψ ¼ IEC

FA
ffiffiffiffi
D
p

c�Aa
ðH:69Þ

Therefore,

ϕs ¼ Kffiffiffi
π
p
ðat
0

e�λ at�zð Þ χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:70Þ

By combining Eqs. (H.66) and (H.70) ,one obtains
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c sB ¼
1ffiffiffi
π
p
ðat
0

1

1þ K
þ K

1þ K
e�λ at�zð Þ

� �
χ zð Þffiffiffiffiffiffiffiffiffiffiffiffi
at� z
p dz ðH:71Þ

and inserting Eqs. (H.65) and (H.71) in Nernst’s condition (H.60), an integral

non-explicit expression of the cyclic voltagram corresponding to the EC mecha-

nism is obtained.
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9. Saveánt JM, Vianello E (1967) Electrochim Acta 12:629–646

Appendix H. Solution for the Application of a Cyclic Linear Sweep Potential. . . 645



Appendix I. Numerical Simulation

The electrochemical responses presented in this book typically consider quiescent

solutions where mass transport takes place only by diffusion. As stated in Sect. 1.8,

the flux of a species i by diffusion is described by Fick’s first law:

Jdiffusion, i ¼ �Di∇ci ðI:1Þ
where Jdiffusion,i is the flux, Di the diffusion coefficient, and ∇ represents the

gradient operator which typically has a vectorial character. For the simpler case

of transport through one single direction x, Eq. (I.1) becomes

Jdiffusion, i ¼ �Di
∂ci
∂x

ðI:2Þ

The concentration of an electroactive species is changing with time and distance

in such a way that a temporal evolution equation is needed for analyzing the

current–potential behavior. This evolution is typically given by Eq. (1.173):

∂ci
∂t
¼ Di∇2ci ðI:3Þ

which for a single x direction becomes

∂ci
∂t
¼ Di

∂2
ci

∂x2
ðI:4Þ

Equation (I.4) is a second-order differential equation in partial derivatives. In

order to solve it, it is necessary to specify some boundary conditions relative to the

value of the concentration at some points/times (Dirichlet boundaries) or its deriv-

ative at some points/times (Neumann boundaries). The solution of Eq. (I.4) is called

a concentration profile, ci(x, t), which is a function of coordinates and time.
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For these situations in which it is not possible to find an analytical expression for

ci(x, t), the usual alternatives are to consider simpler situations (e.g., steady-state

conditions for avoiding the temporal dependence) or to solve Eq. (I.3) numerically.

Here it will be considered the case of a single dimension x although the procedure

can be extended to a higher number of coordinates.

There are different approaches for carrying out the numerical solution of the

differential equations involved in electrochemical problems, with the most popular

being the Finite Difference Method (FDM) and the Finite Element Method (FEM)

[1–3]. This appendix will be focused on the first one.

FDM was applied to electrochemical problems very early [4], but it was in the

1960s when Feldberg developed the basis of digital simulation of electrochemical

processes by means of the “box method,” which at present is considered as a

FEM-like method (see [5]).

For solving Eq. (I.4), the first step is to change the conventional variables

(concentrations, distance, times), into dimensionless ones in order to get a more

general approach and to avoid problems relative to particular units. An adequate set

of dimensionless variables used in this problem is

T ¼ t

tR
ðI:5Þ

Ci ¼ ci
c�O

i ¼ O, R ðI:6Þ

X ¼ xffiffiffiffiffiffiffiffiffiffi
DOtR
p ðI:7Þ

g ¼ DO

DR

ðI:8Þ

with tR being an arbitrary reference time. By inserting the above dimensionless

variables into Eq. (I.4), the differential equation system becomes

∂CO

∂T
¼ ∂2

CO

∂X2

∂CR

∂T
¼ g

∂2
CR

∂X2

9>>=>>; ðI:9Þ

Subsequently, both the differential equation and the boundary conditions are

discretized. “Discretization” consists in that the time and spatial coordinates, which

are continuous, are approximated as a set of values—discrete “points”—in time and

space [1–3]. Thus, time and space can be divided into equally spaced small

intervals:

X ¼ iH i ¼ 0, 1, . . . , n
T ¼ jδT j ¼ 0, 1, . . . ,m

ðI:10Þ
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where the value of m is determined by the overall duration of the experiment:

m ¼ Tmax

δT
ðI:11Þ

with Tmax being the duration of the experiment, whereas the value of n is such that

the concentration at this point is not altered throughout the experiment. Typically a

value Xmax ¼ nH ¼ 6
ffiffiffiffiffiffiffiffiffi
Tmax

p
is chosen.

The key point in FDM is the approximation of a function and its derivatives

through the use of series expansion of a function (i.e., by means of a Taylor

expansion), in order to rewrite the expressions of the derivatives in an algebraic

way. If we consider a generic function f(x) and we want to approximate it at the

points xþ hð Þ and x� hð Þ,

f xþ hð Þ ¼ f xð Þ þ h f
0
xð Þ þ h2

2!
f
00
xð Þ þ h3

3!
f
000
xð Þ þ � � � f x� hð Þ

¼ f xð Þ � h f
0
xð Þ þ h2

2!
f
00
xð Þ � h3

3!
f
000
xð Þ þ � � � ðI:12Þ

By making

yiþk ¼ f xþ khð Þ ðI:13Þ

Equation (I.12) can be written as

yiþ1 ¼ yi þ hy
0
i þ

h2

2!
y
00
i þ

h3

3!
y
000
i þ � � �

yi�1 ¼ yi � hy
0
i þ

h2

2!
y
00
i �

h3

3!
y
000
i þ � � � ðI:14Þ

From Eq. (I.14), it is possible to obtain different approximations for the first and

second derivatives of a given function. For example, it is possible to approximate

the first derivative with a two-point expression:

y
0
i �

yiþ1 � yi
h

ðI:15Þ

and the second derivative can be written as an approximation of three points:

y
00
i �

yiþ1 � 2yi þ yi�1
h2

ðI:16Þ

By taking into account the above approximate expressions for the first and

second derivatives, the finite-difference method proceeds as follows. First, the
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concentration profile of both species is transformed into a set of discrete values that

concentration profile of both species is transformed into a set of discrete values that

will be denoted as

C X; Tð Þ ¼ C iH; jδTð Þ ¼ Ci, j ðI:17Þ

The first derivative of the concentrations with time will be approximated by

using Eq. (I.15):

∂CO
i, j

∂T
� CO

i, jþ1 � CO
i, j

δT
ðI:18Þ

and the second derivative with respect to X will be approximated by using

Eq. (I.16):

∂2
CO
i, j

∂X2
� CO

iþ1, j � 2CO
i, j þ CO

i�1, j
H2

i ¼ 1, 2, . . . ðI:19Þ

– The Explicit Finite-Difference Method (EFDM)
In this case, by inserting Eqs. (I.18) and (I.19) into Eq. (I.9), it is possible to

obtain an explicit expressions forCO
i, jþ1 andC

R
i, jþ1 in terms of the concentrations

of O and R at the previous time,

CO
i, jþ1 ¼ CO

i, j þ λ CO
iþ1, j � 2CO

i, j þ CO
i�1, j

� �
CR
i, jþ1 ¼ CR

i, j þ gλ CR
iþ1, j � 2CR

i, j þ CR
i�1, j

� � ðI:20Þ

with

λ ¼ δT
H2

ðI:21Þ

The boundary conditions for this problem, by assuming the application of a

constant potential with E << E��O
0

c (cathodic limiting current; see Sect. 2.2.2.1), are

t ¼ 0, 8 x

CO
i, 0 ¼ 1, CR

i, 0 ¼ 0 ðI:22Þ

t > 0

CO
nH, j ¼ 1 ðI:23Þ
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CO
0, j ¼ 0 ðI:24Þ

From Eq. (I.20) and the values of concentrations given by the initial and limiting

conditions [Eqs. (I.22)–(I.24)], it is possible to obtain the values at the successive

times in a direct way. The restriction λ < 0:5 is required for the procedure to be

convergent (i.e., the spatial and temporal intervals are related). For example, by

taking m ¼ 1=λH2, if H¼ 0.1 then m¼ 200 but if H¼ 0.001 then m ¼ 2� 106.

Moreover, the convergence of the approximate solutions is proportional to δT.
– The Fully implicit method (FIM)

An improvement over the explicit method is done by the fully implicit method

in which the concentration corresponding to time jþ 1ð Þ is calculated as

CO
i, jþ1 ¼ CO

i, j þ λ CO
iþ1, jþ1 � 2CO

i, jþ1 þ CO
i�1, jþ1

� �
ðI:25Þ

In this case, in order to solve Eq. (I.25), it is necessary to take into account the

boundary conditions. Thus, by taking into account conditions (I.22)–(I.24), it is

possible to make an arrangement of the set of linear equations for the concentrations

into a matrix equation:

CO
0, j

CO
1, j

CO
2, j

. . .
CO
imax�1, j

CO
imax, j þ λ

0BBBBBBB@

1CCCCCCCA ¼
1 0 0

0 �λ 1þ 2λ �λ 0

0 �λ 1þ 2λ �λ 0

. . .
0 �λ 1þ 2λ �λ 0

0 0 1

0BBBBBB@

1CCCCCCA
0

CO
1, jþ1
CO
2, j

. . .
CO
imax�1, jþ1

1

0BBBBBB@

1CCCCCCA
ðI:26Þ

When the solution of a given problem depends on a single species or on different

species which are only related by the surface conditions, the matrix equation given

by (I.26) can be solved sequentially to give a concentration vector for each value of

time j by using the Thomas’ algorithm [6, 7]. There is no restriction in the value of λ
in order to obtain a convergent solution unlike in the case of the EFDM, but the

resolution is obviously more complex whereas the convergence of the method is

still proportional to δT.
– The Crank–Nicholson method (CNM)

This method is similar to the FIM discussed above, although the right-hand

member of Eq. (I.25) is now taken as an average between times j and jþ 1, i.e.,

CO
i, jþ1 ¼ CO

i, jþ
λ

2
CO
iþ1, j � 2CO

i, j þ CO
i�1, j þ CO

iþ1, jþ1 � 2CO
i, jþ1 þ CO

i�1, jþ1
� �

ðI:27Þ

Again, Thomas’ algorithm can be used, but in this case the convergence is propor-

tional to δT2.
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There are different improvements that can be included in the different

methods presented here. Thus, multi-point approximations to the derivatives

[1], the use of unequally spaced spatial and time intervals [1, 8, 9], and the use of

more sophisticated methods of time integration [1], among others, have been

developed.

For a more detailed review on these methods and for obtaining sample codes

of them, the reader may refer [1, 10].
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Appendix J. C++ Programs to Calculate

the Response of Two-Electron Reversible

Electrode Processes in Cyclic Staircase

Voltammetry and Square Wave Voltammetry

at Disc, (Hemi)Spherical, and Cylindrical

Electrodes of Any Radius

/* C++ PROGRAM TO CALCULATE THE RESPONSE OF A TWO-ELECTRON REVERSIBLE

ELECTRODE PROCESS IN CYCLIC STAIRCASE VOLTAMMETRY AT DISC, (HEMI)

SPHERICAL AND CYLINDRICAL ELECTRODES OF ANY RADIUS ’R0’*/

//By making ’E02’ negative enough with respect to the vertex potential,

the case of a 1-electron process can be simulated

//By making ’Step’ small enough (<0.01 mV), the response in staircase

voltammetry is equivalent to that in cyclic voltammetry

#include<fstream>

#include<iostream>

#include<vector>

#include<cmath>

#include<omp.h>

using namespace std;

int main (void) {

//Constants

double pi¼4.0*atan(1.0);

double Far¼96485.3365; //Faraday constant (C mol-1)

double R¼8.314462; //Gas constant (J K-1 mol-1)

//******** INPUT ********

//Experimental conditions

double Temp¼298.15; //Absolute temperature (K)

double Cbulk¼1.e-6; //Bulk concentration of the oxidized

species (mol cm-3)

double Dif¼1.e-5; //Diffusion coefficient of all the species

(cm2 s-1)

double R0¼1.e-1; //Electrode radius (cm)

double LL¼1.e0; //Length of the cylindrical electrode (cm)
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double E01¼0.000; //Formal potential of the first electron

transfer (V)

double E02¼-1.000; //Formal potential of the second electron

transfer (V)

//Technique parameters

double Eini¼0.200; //Initial (and final) potential (V)

double Evtx¼-0.200; //Vertex potential (V)

double Step¼1.e-5; //Step potential (V)

double Rate¼1.0; //Scan rate (V s-1)

//Saving the data

int PointsToSave¼500; //Maximum number of points to save

ofstream Disc("CSV_disc.txt"); //Name of the file for the data

of the disc electrode

ofstream Sph("CSV_spherical.txt"); //Name of the file for the

data of the spherical electrode

ofstream Hemi("CSV_hemispherical.txt"); //Name of the file

for the data of the hemispherical electrode

ofstream Cyl("CSV_cylindrical.txt"); //Name of the file for

the data of the cylindrical electrode

//**********************************

//CALCULATIONS

//Potential-time perturbation

double ff¼Far/(R*Temp);

double tau¼Step/Rate;

int points¼2*abs(Evtx - Eini)/Step+1;

int pm¼(Evtx - Eini)/abs(Evtx - Eini);

double Jnu1, Jnu2;

vector<double>Nu1(points+1,0.0);

vector<double>Nu2(points+1,0.0);

vector<double>WW(points+1,0.0);

WW[0]¼2.0*Cbulk;

for(int j¼1; j<¼points; j++)

{

if(j<¼(points/2)) //forward scan

{

Nu1[j]¼ff*(Eini+pm*Step*(j-1) - E01);

Nu2[j]¼ff*(Eini+pm*Step*(j-1) - E02);

}

else //reverse scan

{

Nu1[j]¼ff*(Evtx - pm*Step*

(j-points/2) - E01);

Nu2[j]¼ff*(Evtx - pm*Step*

(j-points/2) - E02);

}
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Jnu1¼exp(Nu1[j]);

Jnu2¼exp(Nu2[j]);

WW[j]¼Cbulk*(2.0*Jnu1*Jnu2+Jnu2)/(1.0+Jnu1*Jnu2+Jnu2);

}

//fG-functions (included the cases of disc, spherical and

cylindrical electrodes)

double time;

vector<double>fdisc(points+1,0.0);

vector<double>fsph(points+1,0.0);

vector<double>fcyl(points+1,0.0);

for(int j¼1; j<¼points; j++)

{

time¼tau*j;

fdisc[j]¼(4.0/(pi*R0))*(0.7854+0.44315*R0/sqrt

(Dif*time)+0.2146*exp(-0.39115*R0/sqrt(Dif*time)));

fsph[j]¼1.0/R0+1.0/sqrt(pi*Dif*time);

fcyl[j]¼exp(-0.1*sqrt(pi*Dif*time)/R0)/sqrt

(pi*Dif*time)+1.0/(R0*log(5.2945+1.4986*sqrt

(Dif*time)/R0));

}

//current response (in Amp)

PointsToSave¼fmin(PointsToSave,points);

vector<double>disc(PointsToSave+1,0.0);

vector<double>sph(PointsToSave+1,0.0);

vector<double>hemi(PointsToSave+1,0.0);

vector<double>cyl(PointsToSave+1,0.0);

vector<double>Potential(PointsToSave+1,0.0);

double Ad¼pi*R0*R0;//area disc electrode

double As¼4.0*pi*R0*R0;//area spherical electrode

double Ah¼2.0*pi*R0*R0;//area hemispherical electrode

double Ac¼2.0*pi*R0*LL;//area cylindrical electrode

for(int m¼1; m<¼PointsToSave; m++)

{

int pulse¼m*points/PointsToSave;

for(int k¼1; k<¼pulse; k++)

{

disc[m]¼disc[m]+Far*Ad*Dif *(WW[k-1]-WW[k])

*fdisc[pulse-k+1];

sph[m]¼sph[m]+Far*As*Dif *(WW[k-1]-WW[k])

*fsph[pulse-k+1];
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hemi[m]¼hemi[m]+Far*Ah*Dif *(WW[k-1]-WW[k])

*fsph[pulse-k+1];

cyl[m]¼cyl[m]+Far*Ac*Dif *(WW[k-1]-WW[k])

*fcyl[pulse-k+1];

}

Potential[m]¼Nu1[pulse]/ff+E01;

Disc<< Potential[m]<< "\t"<< disc[m]<< "\n";

Sph<< Potential[m]<< "\t"<< sph[m]<< "\n";

Hemi<< Potential[m]<< "\t"<< hemi[m]<< "\n";

Cyl<< Potential[m]<< "\t"<< cyl[m]<< "\n";

}

return 0;}

/* C++ PROGRAM TO CALCULATE THE RESPONSE OF A TWO-ELECTRON REVERSIBLE

ELECTRODE PROCESS IN SQUARE WAVE VOLTAMMETRY AT DISC, (HEMI)SPHERICAL

AND CYLINDRICAL ELECTRODES OF ANY RADIUS ’R0’*/

//By making ’E02’ negative enough with respect to the vertex potential,

the case of a 1-electron process can be simulated

#include<fstream>

#include<iostream>

#include<vector>

#include<cmath>

#include<omp.h>

using namespace std;

int main (void) {

//Constants

double pi¼4.0*atan(1.0);

double Far¼96485.3365; //Faraday constant (C mol-1)

double R¼8.314462; //Gas constant (J K-1 mol-1)

//******** INPUT ********

//Experimental conditions

double Temp¼298.15; //Absolute temperature (K)

double Cbulk¼1.e-6; //Bulk concentration of the oxidized

species (mol cm-3)

double Dif¼1.e-5; //Diffusion coefficient of all the species

(cm2 s-1)

double R0¼0.1; //Electrode radius (cm)

double LL¼1.e0; //Length of the cylindrical electrode (cm)

double E01¼0.000; //Formal potential of the first electron

transfer (V)

double E02¼-1.000; //Formal potential of the second electron

transfer (V)
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//Technique parameters

double Eini¼0.2; //Initial (and final) potential (V)

double Evtx¼-0.2; //Vertex potential (V)

double Step¼5.e-3; //Step potential (V)

double Esw¼25.e-3; //Square wave potential (V)

double Freq¼50.0; //Frequency (Hz)

//Saving the data

ofstream Disc("SWV_disc.txt"); //Name of the file for the data

of the disc electrode

ofstream Sph("SWV_spherical.txt"); //Name of the file for the

data of the spherical electrode

ofstream Hemi("SWV_hemispherical.txt"); //Name of the file

for the data of the hemispherical electrode

ofstream Cyl("SWV_cylindrical.txt"); //Name of the file for

the data of the cylindrical electrode

//**********************************

//CALCULATIONS

//Potential-time perturbation

double ff¼Far/(R*Temp);

double tau¼1.0/(2.0*Freq);

int points¼2*abs(Evtx - Eini)/Step;

int cycles¼points/2;

int pm¼(Evtx - Eini)/abs(Evtx - Eini);

double Jnu1, Jnu2;

vector<double>Nu1(points+1,0.0);

vector<double>Nu2(points+1,0.0);

vector<double>WW(points+1,0.0);

WW[0]¼2.0*Cbulk;

for(int j¼1; j<¼points; j++)

{

int cycle;

if(j%2¼¼0) //even pulses

{

cycle¼j/2;

Nu1[j]¼ff*(Eini+pm*Step*(cycle-1) - pm*Esw - E01);

Nu2[j]¼ff*(Eini+pm*Step*(cycle-1) - pm*Esw - E02);

}

else //odd pulses

{

cycle¼j/2+1;

Nu1[j]¼ff*(Eini+pm*Step*(cycle-1)+pm*Esw - E01);

Nu2[j]¼ff*(Eini+pm*Step*(cycle-1)+pm*Esw - E02);

}
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Jnu1¼exp(Nu1[j]);

Jnu2¼exp(Nu2[j]);

WW[j]¼Cbulk*(2.0*Jnu1*Jnu2+Jnu2)/(1.0+Jnu1*Jnu2+Jnu2);

}

//fG-functions (included the cases of disc, spherical and

cylindrical electrodes)

double time;

vector<double>fdisc(points+1,0.0);

vector<double>fsph(points+1,0.0);

vector<double>fcyl(points+1,0.0);

for(int j¼1; j<¼points; j++)

{

time¼tau*j;

fdisc[j]¼(4.0/(pi*R0))*(0.7854+0.44315*R0/sqrt

(Dif*time)+0.2146*exp(-0.39115*R0/sqrt(Dif*time)));

fsph[j]¼1.0/R0+1.0/sqrt(pi*Dif*time);

fcyl[j]¼exp(-0.1*sqrt(pi*Dif*time)/R0)/sqrt

(pi*Dif*time)+1.0/(R0*log(5.2945+1.4986*sqrt

(Dif*time)/R0));

}

//SWV response (in Amp)

vector<double>disc(points+1,0.0);

vector<double>sph(points+1,0.0);

vector<double>hemi(points+1,0.0);

vector<double>cyl(points+1,0.0);

vector<double>Potential(points+1,0.0);

double Ad¼pi*R0*R0;//area disc electrode

double As¼4.0*pi*R0*R0;//area spherical electrode

double Ah¼2.0*pi*R0*R0;//area hemispherical electrode

double Ac¼2.0*pi*R0*LL;//area cylindrical electrode

for(int m¼1; m<¼points; m++)

{

for(int k¼1; k<¼m; k++)

{

disc[m]¼disc[m]+Far*Ad*Dif *(WW[k-1]-WW[k]) *fdisc

[m-k+1];

sph[m]¼sph[m] + Far*As*Dif *(WW[k-1]-WW[k]) *fsph

[m-k + 1];

hemi[m]¼hemi[m]+Far*Ah*Dif *(WW[k-1]-WW[k]) *fsph

[m-k+1];

cyl[m]¼cyl[m] + Far*Ac*Dif *(WW[k-1]-WW[k]) *fcyl

[m-k + 1];

}
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if(m%2 ¼¼ 0)

{

Potential[m]¼(Nu1[m]+Nu1[m-1])/2.0/ff+E01;

Disc<< Potential[m]<< "\t"<< (disc[m-1]-disc[m])<<

"\n";

Sph<< Potential[m]<< "\t"<< (sph[m-1]-sph[m])<<

"\n";

Hemi<< Potential[m]<< "\t"<< (hemi[m-1]-hemi

[m])<< "\n";

Cyl<< Potential[m]<< "\t"<< (cyl[m-1]-cyl[m])<<

"\n";

}

}

return 0;}
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