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Preface of the Editor

Pulse techniques have a long history. Eminent scientists have to be remembered
along the pathways of development of modern pulse techniques that are now so
frequently used in research and analytical laboratories: Frederick Gardner Cottrell
(1877-1948), Mirko Kalousek (1915-1996), Geoffrey Cecil Barker (1915-2000),
Robert Allen Osteryoung (1927-2004), to name but a few. Now there are so many
different varieties of pulse techniques available that it is difficult to keep an
overview and to choose the most appropriate for a certain problem. The authors
of this monograph, Angela Molina and Joaquin Gonzalez from the Universidad de
Murcia, Spain, have undertaken the titanic venture to present a comprehensive and
at the same time clearly arranged and systematic survey of pulse techniques. Both
authors were best prepared for this task as they have contributed numerous theo-
retical and experimental studies to this field of electrochemical measuring tech-
niques. The result is the most up-to-date monograph on the theory and application
of pulse techniques—a unique book as it has never been written before. I am sure
that this monograph will become and remain a first-choice standard work for many
years to come.

Greifswald, Germany Fritz Scholz
March 2015
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1.1 Introduction

The main purpose of this opening chapter is to provide a brief review of different
concepts involved in the study of the current—potential response of electrochemical
processes. This is necessary for a better understanding of some aspects of the
responses of the different electrochemical techniques analyzed in the following

chapters.

© Springer International Publishing Switzerland 2016
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2 1 Some Fundamental Concepts

The electrostatic aspects of electrochemical systems will be introduced first
and the electrochemical potential as a key concept is presented (Sects. 1.2—1.4).
The electrochemical equilibrium is discussed and Nernst’s equation and standard
and formal electrode potentials are introduced (Sect. 1.5). The study of electro-
chemical interfaces under equilibrium ends with the phenomenological and theo-
retical treatment of the electrical double layer (Sect. 1.6).

The analysis of the kinetics of the charge transfer is presented in Sect. 1.7 for the
Butler—Volmer and Marcus—Hush formalisms, and in the latter, the extension to the
Marcus—Hush—Chidsey model and a discussion on the adiabatic character of the
charge transfer process are also included. The presence of mass transport and its
influence on the current—potential response are discussed in Sect. 1.8.

Finally, some practical questions such as the three-electrode setup, the influ-
ence of the ohmic drop, the RC time constant, and a short discussion on the
nomenclature of the potential perturbations used in this techniques are addressed
in Sects. 1.9 and 1.10.

1.2 Outer, Surface, and Inner Potentials

Electrochemistry deals with charged particles that have both electrical and chem-
ical properties. Since electrochemical interfaces are usually referred as electrified
interfaces, it is clear that potential differences, charge densities, dipole moments,
and electric currents occur at these interfaces. The electrical properties of systems
containing charged species are very important for understanding how they behave
at interfaces. Therefore, it is important to have a precise definition of the electro-
static potential of a phase [1-6]. Note that what really matters in electrochemical
systems is not the value of the potential but its difference at a given interface,
although it is illustrative to discuss its main properties.

The potential of a charged species can be divided into different contributions to
account for the different arrangements of charges (free charges, oriented dipoles,
etc.) that can be found. In order to evaluate these different contributions, a thought
experiment can be proposed in which a test charge located at the vacuum at an
infinite distance from a given phase is brought inside this phase [3].

The outer or external potential, y, of an electrified material phase is defined as
the energy required to move this unit test charge from the infinite to a point just
outside the phase, with this energy being induced only by the free electrostatic
charges, i.e., this potential is purely determined by the charge in the phase and is not
influenced by the redistribution of the charge at the surface and the so-called image
effects [3, 4, 7]. A distance of about 1 um fulfills the above requirement and at the
same time is not too large to prevent the weakening of the interactions with the
charges in the phase. Only the y potential and correspondingly Ay can be experi-
mentally measured [3].

For example, assuming that the phase is an isolated sphere of radius R, the
potential experienced by a test positive charge Q is (see Fig. 1.1)
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Fig. 1.1 Radial distribution A
of potential for a metal
sphere of radius R carrying
a positive charge Q,
illustrating the contributions
of the outer potential and
the surface potential. The
inner potential is constant
inside the sphere

Potential

Sphere

—
R T
0
y/7477.'€()(R+I‘) (1.1)
with gy being the vacuum electric permittivity and r the coordinate that defines the
movement of the charge.

The surface potential y of a solid phase is defined as the energy required to move
the unit test charge from the infinite toward the anisotropic zone resulting from the
surface to the electronic gas which expands beyond the lattice and causes the
formation of a dipolar layer although other explanations are possible. During this
hypothetical experiment, the charge in the phase turns to zero. Therefore, the
potential has nothing to do with the charge of the phase [3, 8].

In the case of a liquid phase, the y potential is associated with the net preferential
orientation of dipoles at the surface. This arrangement is equivalent to a charge
separation and a potential difference occurs across the surface dipole layer. The
estimation of y remains unsolved [8].

The inner potential, ¢, is the sum of the outer and surface potential:

b=y +x (1.2)

and is related to the energy required to move the unit test charge to a point inside the
phase (¢ is related to the electric field strength E in the interior of the phase by
—V¢ = E with V being the gradient operator).

Concerning the potential differences, that corresponding to the outer potentials
between two phases a and f is known as the Volta potential difference defined as

Wy =yl —y® (1.3)

This is a measurable quantity which is usually called the contact potential
difference [4, 6]. The equivalent potential difference for the inner potentials is
known as the Galvani potential difference!,

"It may be convenient to regard the Galvani potential difference between two phases in contact as
being due to two effects: the orientation of dipoles in the interface between them and the separation
of independently mobile charged species across the phase boundary in an analogous way to that
discussed for the separation of ¢ into outer and surface potentials [5, 6].
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W =¢ —¢* (1.4)
1.3 Thermodynamics of Electrochemical Processes

17333

The chemical potential of a species “i” in a phase with “m” species is defined as the
derivative of the internal energy U of this phase with respect to the number of moles
of species “i” (n;), at constant values of the extensive variables V, S, and the number
of moles of the remaining species in the absence of electrical and magnetic fields,

8U>
Hi = 1.5
(anl V,S,ilj#i ( )

As the condition of constant entropy is difficult to achieve, it is more convenient
to fix other variables.
The variation of internal energy can be written in a general way as

dU = —PdV + TdS + Y _ pdn; (1.6)

and the Gibbs and Helmholtz energies G and A, respectively, are given by

G=U+PV—TS (1.7)
A=U-TS (1.8)

By deriving Eqgs. (1.7) and (1.8), and inserting into the result that corresponding
to dU (Eq. (1.6)), the expression of the chemical potential given by Eq. (1.5) can be

also written as
aA)
= < (1.9)
' on; T,V.n i

5G>
ui=\=— 1.10
(a”i T.P.n iz ( )

The chemical potential is defined as the change of energy of a phase when an
additional mol of particles of species i is introduced at fixed V and S, T and V, or
T and P. The most usual definition of the chemical potential is the necessary work to
introduce one mole of species i from the infinite to a phase at fixed T'and P (i.e., as
given in Eq. (1.10)).
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u; is usually expressed as
w = w2 + RTna; (1.11)

where ,uiﬂ is the standard chemical potential independent of the concentration and
dependent on temperature and total pressure and a; is the activity of the component
“i” in the phase.

When a chemical change is produced at the equilibrium, it holds

> vin; =0 (1.12)

1

7341}

with v; being the stoichiometric coefficient of species “i” participating in the
chemical change which takes positive and negative values for products and reac-
tants, respectively.

In electrochemical systems, some of the participating species are charged and
the charge transfer process across an interface is a heterogeneous process. Under
these conditions, the Gibbs energy is denoted by G and the following is fulfilled for
a given phase of the system:

dG = —SdT + VAP + Y pdni + Fpy _ zdm; (1.13)

7311}
1

where z; is the charge of species “i” and ¢ is the inner potential of the phase. On the
basis of the previously introduced chemical potential (see Eq. 1.10), the electro-
chemical potential can be defined as

(oG
Hi = <8nl> = p; +ziF¢ (1.14)
T,P,nj%i

that is, the necessary work to introduce one mole of charged species i from the
infinite to a phase with inner potential ¢ at fixed T and P.
From Egs. (1.13) and (1.14), at constant P and T, one obtains

dG = jidm = d>  vili; (1.15)

where { being the degree of reaction progress. From this equation, the variation of
free energy of an electrochemical reaction AG can be defined as

~ (oG _
AG = (ac>” = vill (1.16)

1

When a chemical change involving charge species is produced in an electro-
chemical system, under equilibrium conditions the following condition holds:
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AG =) vili; =0 (1.17)
i

I3
1

where y; is the electrochemical potential of species “i” in the corresponding phase.
When this species is present in two phases « and f in contact, at the equilibrium, the
electrochemical potentials of “i” in both phases are equal, which leads to

u + ziF¢* = pl + zF ) (1.18)
1.3.1 Interface Between Two Metals in Contact

The significance of Eq. (1.18) is that, at the contact between two different phases,
for example two different metals, a certain Galvani potential difference exists,
which is generated by the difference between the chemical potential of the electrons
in each metal. So, for example, if an interface Cu-Fe is considered and the
equilibrium is assumed,

B = e (1.19)
From Eq. (1.14)
e = F™ = uE — Fg™ (1.20)
is deduced, which can be written as

CuAFe,u
-

Cu pFe
11 =
¢ F

(1.21)

If the contact between two identical metals M and M’ is considered, it holds
MAM ¢p = 0 since uM = M at equilibrium. Under nonequilibrium conditions, the

above does not hold (i.e., ,uel\f[ # yé"!) and”AM ¢ is the measured potential difference
between the two identical terminals of a suitable voltammeter.

1.4 Electrochemical Potential of the Electron

In the case of electrons from a metal, the electrochemical potential is the work
necessary to add one mole of electrons to the metal

at = udt = FM = pdt — F (M + ™) (1.22)

where y™ and y™ are the surface and external potentials of the metal, respectively.
uM is the chemical potential of the electrons on the metal defined as the sum of the
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Fig. 1.2 Schematic view of
the energy diagram for
electrons in a non-charged
metal

bulk potential energy of the free electrons on the metal resulting from electron—ion
and electron—electron interactions V'g, which is a negative quantity, and of the
kinetic Fermi energy ! (see Fig. 1.2) [5, 9-11]

pM =N (VP + ) (1.23)

with N, being the Avogadro’s number. The surface potential energy V. is related
with the surface potential y™, Vs = FyM. The total potential energy V., is a
stabilizing negative energy, V. = V;’ + V. The electron work function <1)e“f' given by

N = —(Ve+¢)) (1.24)

is the opposite value of the minimum work required to transfer an electron from the
Fermi energy level of a metal across a surface to infinity carrying no net charge,

= —Ny@Y + FyM (1.25)
Note that
—aM = —(uM — FyM) = N (1.26)

with a} being the real potential of electrons at the metal, defined as the electro-
chemical potential of electrons when the metal is not charged (i.e., when y™ = 0).
The work function of different metals, cDeM, is given in Table 1.1

Obviously, different metals would have different chemical potentials and that
would account for different @M values. In the case of a given metal, ®M depends on
its surface structure at atomic level, since the differences between the work function
arise from different dipole layer surfaces.



Table 1.1 Values of the
work function for

polycrystalline metal surfaces

[11, 12]
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Metal <Dehf[ (eV) | Metal (Iﬁel\fI (eV) | Metal fDeM V)
Ag 4.30 In 3.80 Rh 475
Al 4.25 Ir 4.70 Ru 4.60
Au 4.30 La 3.39 Sb 4.08
Ba 2.49 Li 2.38 Sc 3.30
Be 3.92 Mg 3.64 Sm 2.70
Bi 4.40 Mn 3.83 Sn 4.38
Ca 2.80 Mo 4.30 Sr 2.35
Cd 4.10 Na 2.35 Ta 4.12
Ce 3.20 Nb 3.99 Te 4.73
Co 4.41 Nd 3.07 Th 341
Cr 4.58 Ni 4.50 Ti 3.95
Cs 1.81 Os 4.70 Tl 4.00
Cu 4.40 Pb 4.00 U 3.74
Fe 4.31 Pd 4.80 v 4.12
Ga 3.96 Pr 2.54 \% 4.54
Hf 3.53 Pt 5.32 Zn 4.24
Hg 4.52 Rb 2.16 Zr 3.90
K 2.22 Re 5.00

1.5 Nernst’s Equation and Standard Electrode Potentials

For a chemical reaction in solution

aA +bB=cC +dD

the variation of Gibbs free energy is given by

In the case of a redox reaction in a single electrode—solution interface

with

AG = AG® + RTIn (

Keqg = exp(

a

c,d
CaD>
a b
ajag

At the equilibrium at constant temperature and pressure AG = 0 and

-

c,d
aCaD>
a_,b
dpag eq

O (sol) + ne™ (M)=R™®(sol)

(1.27)

(1.28)

(1.ID)
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n=zo— 2R (1.29)
According to Eq. (1.16), under constant temperature and pressure it holds
AG = i — gt — npM (1.30)

where superscripts “sol” and “M” refer to the solution and metallic phases, respec-
tively. By inserting Eqgs. (1.11) and (1.14) into Eq. (1.30), one obtains

Aé — 'uRG,sol —|—RT1na1§°1 + ZRF¢SOI _ #Oﬁ,sol _ RTlnaéol _ ZOF¢SOI
—n(u — FgM) (1.31)
Equation (1.31) can be rewritten as

sol

AG = AG® +RTIn <ZR ) + nF (M — ¢*") (1.32)

sol
(0]

with
AG® = ™ — g™ — np! (1.33)

which is constant at a given temperature and a pressure of 1 bar. Equation (1.32)
illustrates the major characteristic of redox reactions, i.e., the direct relation
between the Galvani potential difference between the solution and the electrode
and the concentrations of the species in solution.

At the equilibrium AG = 0 and 9]

aﬁ"l . 7AG97 }’ZF(ng . ¢sol) (1 34)
ag P RT '

A comparison of Egs. (1.28) and (1.34) indicates that for a redox reaction at the
interface electrode—solution under equilibrium the Galvani potential difference at
the interface is a function of the activities of species O and R in the solution and it is
not possible to fix this potential difference and these activities in an independent
way. In contrast, in a chemical equilibrium the concentrations of all reactant species
are fixed.

The standard potential E® is the equilibrium potential (that is, the difference of
Galvani potentials between the electrode and the solution phase) of an electrode
under standard state conditions, i.e., with the relative activities of the different
components being equal to the unity at a pressure of 1 bar and a temperature 7, and
for the reaction Scheme (1.II) it is given by
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AG®
E_e: _ e _ (¢M _¢Sol)

(1.35)

ar=ap=1

By inserting Eq. (1.35) into Eq. (1.34) the well-known Nernst equation is
deduced

RT  a
_ M 1 © R
E — ¢ _ ¢SO E — _nFl (S)Ol (136)

The product nF (¢M — d)s"l) is the work necessary to transfer n moles of electrons
from the bulk of the metal to the bulk of solution.

Unfortunately, it is impossible to measure an absolute value of (¢M — ¢S°l) ina
single electrode—solution interface. To measure this potential difference, it is necessary
to build an electrochemical cell with two electrodes. The electrode at which the redox
reaction of interest proceeds is called the “working” electrode and the second electrode
is needed to close the electrical circuit, and is called a “reference” electrode. The
electrode potentials are measured between the working and reference electrodes by
using a high impedance voltammeter to guarantee that there is no current flow through
the circuit [7, 13].

When the standard hydrogen electrode (SHE) is employed as reference electrode
(see Fig. 1.3) with a pressure of 1 bar and activity of protons unity, its standard
potential for the reduction of protons in aqueous acidic media is taken as zero, i.e.,

E& ], =0V (1.37)

In this case the reaction taking place is

H*(s) + e_(Pt):%Hg(g) (1.111)

Fig. 1.3 The standard Pt Electrode
hydrogen electrode
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Under equilibrium conditions it is fulfilled

w1
~H = B A S, =0 (1.38)

By inserting the definition of chemical and electrochemical potentials (Egs. 1.11
and 1.14) into Eq. (1.38), one obtains

F(¢Pt _ ¢sol) _ ﬂ}%sol _ E”F%g Jrﬂgg + RTIn (a}slgl (JI: ) (1.39)
H

with fy, and p© being the fugacity and the reference pressure of 1 bar. Under standard
conditions, the last term in the right-hand side of Eq. (1.39) vanishes and one obtains

1 . 1
E% ] _ = 94;501__ g Pt} 1.4
[ H*/H, SHE F (MH 2/"H2 + He ov ( O)

In order to determine the standard potentials of other redox couples, electro-
chemical cells are built in which one of the redox reactions corresponds to the
reaction Scheme (1.II1). As an example, let us consider the following electrochem-
ical cell (see Fig. 1.4):

Cut|PtH",H; ... || ...O,RM|Cu® (1.41)

The potential difference of the cell is defined as the difference between the Galvani
potentials at the right (R) and left (L) terminals named here as the copper wires,

E— (¢CuR B ¢CuL) _ (¢CuR B d)sol) _ <¢CuL _ ¢sol) (1.42)

Hg;\ ::

SHE Electrode Working Electrode

=k

HCI (aq) | | solution

Fig. 1.4 Electrochemical cell for the measure of the electrode potential on the SHE scale



12 1 Some Fundamental Concepts

where it has been assumed that both solutions have the same inner potential. Note also
that in this case the potential difference has been established between the terminals
of the two electrodes and it does not corresponds to the difference in Galvani
potentials between the working electrode phase and the solution which contains
species O or R. In this particular case, we are interested in the difference

<¢>C“R — d)s"l). The following electrochemical equilibria are established:

— At the contacts between pure metals (MICu® and Cu"IPt), the electrochemical
potential of the electrons in the two phases are equal

~CuR ~M
Ho o = He, } (1.43)
APt = s

— At the platinum electrode the reaction Scheme (1.1II) takes place and Eq. (1.38)
holds.

— Inthe same way, at the working electrode the process O™ (s) + ne™ (M) = R™(s)
occurs and

S — M et =0 (1.44)

By applying the definition of electrochemical potential to conditions (1.38),
(1.43), and (1.44) (and taking into account Eq. (1.11)), one obtains

R
Fg" = M) = e — o

L L
F7 = g ) = b = i

sol
nF(¢M _¢sol> :Moe,sol _MRG,SOI —|—l’l/,tel\4 +RT1“ZS<,1 (145)
R
1 pg 1/2
F(qc)sol _ (]SPt) _ _’ulﬁsol +§/‘I§fg _MePE — RTIn <a1§l+ (f_) )
Hy

The total potential difference between the copper wires can be obtained by
combining Eq. (1.45),

WFE — nF(¢CuR _ ¢CuL) _ nFKqSC”R _ ¢sol) _ (¢CuL _¢sol)}
sol

_ ,,©s0l _ -B;s0l ag
= Ho pg " + RTIn @ (1.46)

1 o\ 1/2
—nu 2+ Enulg’g — nRTIn (aﬁfl' (%) )
2

In the simplest case in which the activities of species O and R are equal
to the unity and the SHE reference electrode is considered, the measured potential
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Table 1.2 Selected standard

o . Redox reaction ES:

potentials in aqueous solution

(298 K) [13-15] Aut +e” = Au 1.830
Au*t +3e” = Au 1.520
Cly +2e~ = 2CI~ 1.358
O, +4H" +4e~ = 2H,0 1.229
Agt +e = Ag 0.799
Fet 4 e~ = Fe?t 0.771
0, +2H" +2¢~ = H,0, 0.695
L+2 =1 0.535
Cut +e” =Cu 0.520
0, +2H,0 + 4e~ = 40H™ 0.401
Cu*f +e = Cut 0.159
HY +e” = iH, 0.000
Fe’t +3e~ = Fe —0.040
Co*t +2¢~ = Co -0.277
Cr’t +3¢ =Cr —0.400
Cd®* +2¢- =Cd —0.402
Fe*t +2e~ = Fe —0.440
Zn** +2e” =Zn —-0.76
H,O+e™ = %Hz + OH™ —0.828
Mn?** +2e~ = Mn —1.180
AP 43¢~ = Al —-1.676
Mg?t +2e~ = Mg —2.356
Nat + e~ = Na —2.714
Kt +e =K —2.925
Lif +e” =Li —3.045

difference given by Eq. (1.46) is the standard potential E® of the redox couple
O/R,

E® = (¢C“R - ¢S°1) - <¢C"L - ¢S°1> —ESy vs. SHE  (1.47)
agr=ap=1 SHE

If the activities of species O and R are different from the unity, the Nernst’s
equation is obtained,

RT asol
E=E5g+ I (al%l) (1.48)

The standard potentials for some redox couples in aqueous solution appear in
Table 1.2. More information about formal potentials of a great number of electro-
chemical systems can be found in [14, 15].
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When other reference electrodes are used as, for example, the saturated Calomel
electrode (SCE), a constant quantity needs to be added to the right-hand side of
Nernst’s equation which reflects the difference between the SCE and the SHE
electrodes, i.e., in this case the standard potential is

£ 0 ) 0 ) ()] 0

[43:3 :ao:1

The election of the appropriate reference electrode for a given electrochemical
system is conditioned by different factors (like the solvent or the temperature). The
most important characteristic of a reference electrode is that it should provide a
constant and reproducible potential difference when connected to the other semi-
cell unit. For a detailed list of different reference electrodes, see [15-17].

1.5.1 Formal Electrode Potentials

It is very rare for the activities of all species involved in an electrode reaction to be
constrained to be the unity. In general, the electrode potential is influenced by these
activities in the form given by the Nernst’s equation (Eq. 1.36). When the reactants
or products are in solution, the Nernst’s equation can be approximated by replacing
the activities by the concentrations, but this can be a very rough approximation in
the case of ions. The usual procedure, given that the activity coefficients are almost
always unknown, is to incorporate them into the £ term writing, for example

RT sol RT RT sol , RT sol
E=E®— ™ —po_ T nfR_T R pe TR (50
nk  ag nFyo nF ¢ nk ¢
with Ef, being the formal (or conditional) electrode potential,
/ RT
E® —F° - "R (1.51)

The term “conditional” indicates that its determination is related to specific
conditions, which usually deviate from standard conditions. In general, formal
potentials may deviate from standard potentials by between a few and hundreds of
mV. These deviations are caused not only because of non-unity activity coefficients
but also because of the presence of chemical equilibria (see for example [18]).
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1.6 Electrical Double Layer

An interface is the region between two phases where the structure and composition
is different from that in the bulk of the phases. The thickness of this region extends a
few molecular diameters into each phase. When a potential is applied to an interface
(i.e., electrode—solution), it presents a resistance to accept current generation (or,
vice versa, when a current is applied to the potential change). If the effective
resistance is low, the interface is permeable to the charge carriers and is known
as “non-polarizable.” In the contrary case, the interface is impermeable to the
charge carriers and we are speaking of a “polarizable” interface (the limiting
cases of null and infinite resistance correspond to ideally non-polarizable and
ideally polarizable interfaces [3, 7, 13]). These behaviors are schematized in
Fig. 1.5.

The electrical behavior of a metal—solution interface is similar to that shown by
the equivalent circuit in Fig. 1.6 formed by a capacitor and a resistor connected in
parallel. If the resistance is small, the potential changes across the capacitor are

! Non-polarizable

Polarizable

Ca

—

AAAAAMA
LAAAAL

Rg
by AAAAAAA
VWY

Ry

AAAAAAN
LAAAAL

Ry

Fig. 1.6 Equivalent circuit for a two-electrode cell. A single interface is usually represented by
the elements in the dashed rectangle. Cy4;, Rk, and R denote the double-layer capacitance, the

Faradaic resistance, and the solution resistance, respectively
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compensated by the charge transfer through the low-resistance whereas the capac-
itor changes up to applied potential if the resistance is high.

A “non-polarizable” electrode—solution interface is a reversible electrode.
Therefore, the potential is determined by the composition of the solution based
on the Nernst equation (given by Eq. 1.36). So, for example, for the copper
electrode in a solution of CuSQO, the potential is given by

RT
E=E®+ SpIn alh, (1.52)

with E©being the standard potential of the couple Cu?>* /Cu with respect to the SHE
and aé‘i}2+ the activity of the cupric ions in solution.

In general, an electrical double layer exists whenever two conducting phases
meet at an interface that is impermeable to the charge [2, 7, 10].2 Here, the
electrode—electrolyte interface is considered when it behaves as ideally polarizable,
that is, by supposing that the electrode potential is kept in a range in which no, or
only negligible, electrochemical reactions occur [2]. This interface can be described
as a capacitor so the charge can be accumulated on the metal side using an external
voltage source which gives rise to the establishment of equal and opposite charge in
the solution side. The properties of the electrical double layer are characterized by
the electrostatic equilibrium.

The surface tension o is a special intensive property of the interface related to an
energy per unit area and it depends on the temperature, the composition of the
adjacent phases and of the shape of the interface. The surface tension of a liquid is
in a direct relation with the magnitude of the intermolecular forces.

The liquid metal mercury—solution interface presents the advantage that it
approaches closest to an ideal polarizable interface and, therefore, it adopts the
potential difference applied between it and a non-polarizable interface. For this
reason, the mercury—solution interface has been extensively selected to carry out
measurements of the surface tension dependence on the applied potential. In the
case of other metal—solution interfaces, the thermodynamic study is much more
complex since the changes in the interfacial area are determined by the increase of
the number of surface atoms (plastic deformation) or by the increase of the
interatomic lattice spacing (elastic deformation) [2, 4].

The thermodynamic treatment of an interface generally considers a system
composed of the interface (y) and two adjacent homogeneous phases (a and f).
The extensive properties of the systems must be ascribed to these three regions, for
example, the Gibbs free energy G and the number of moles of a species in the
system fulfill

2 This double layer may also form in systems as, for example, the interface between two metals of
different nature (with different work functions) or between two immiscible electrolytes and even
when one of the two phases is an insulator or a semiconductor [7, 10].
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G=G"+G'+G"

1.53
n = n®+n’ +n! (1.53)

By assuming that the interface has no volume (Gibbs convention), the following
equations can be written:

dG* = —$"dT + V'dP + » _uldnf
5 _ B 1 By, P

dG/ = —§PdT + VPdP + 3 " uldn, (1.54)

dG" = —S'dT + odA” + Y _ pldn/

where 6dA” is the necessary work to increase the interface area, A”.
Under constant temperature conditions, Eq. (1.54) for the interface becomes

dG" = 6dA” + Y pldn! (1.55)

As the Gibbs energy is a first-order homogenous function of the extensive
variables A” and n!, the application of Euler’s theorem yields

G' = 6A" + > uln! (1.56)

By differentiation Eq. (1.56) and comparing the result with (1.55), one obtains

> nldu! +A'do =0 (1.57)

By solving the surface tension and denoting surface excess of species i,
r;= ni" /A?, the Gibbs’s isotherm is obtained:

~do = " I'du! (1.58)

This equation will be applied to an electrochemical cell formed by a polarizable
and non-polarizable interface in line with the scheme

Hg|KCl (aqueous)|[Hg,Cl,|Hg' (1.59)

For the thermodynamic study of the mercury—solution interface, the electro-
chemical potential will be used in Gibbs’s isotherm instead of the chemical poten-
tial, due to the presence of charged species. In the metal side of the interface, the
components are the electrons in excess and the mercury metal whereas in solution
the two ions of the electrolyte and the solvent must be considered in the sum,



18 1 Some Fundamental Concepts

—do =Y Iidg;
= ngdﬂHg + Fe-dp, + I'+dugs + Fa-dpe- + T'wdpy (1.60)

Equation (1.60) is only valid for liquid-liquid interfaces. The term
corresponding to electron is related to the charge density in the metal, g™

Te-di,. = —FI.d¢"e = gMdgte (1.61)

The charge excess in solution, ¢°, is related with the surface excess of cations and
anions in solution,

¢ =—q" =FIg — Flor (1.62)
At the non-polarizable interface the electrochemical equilibrium holds (with the
reaction being 2Hg' + 2Cl" sHg,Cl, + 2e7; see scheme (1.59)). So,
~H¢' ~
MngClz + 21“37 = Z”Hg’ + 2/"C1* } (163)
240 = —2FdgMe = 2djiy

The chemical potential of the electrolyte in solution is given by

P = i+ Hicr (1.64)

The ionic terms in Eq. (1.60) can be rewritten as

Ig+dfig + Fordiey = e du®? — e diie- + Fer djigy- = (165)
q* - q” - 1.65
= T+ dp®c — fdﬂcr = I dy® + Fdﬂcr

Equation (1.60), taking into account (1.61)—(1.65) and that duy, = 0, becomes
—do = M (d¢Hg - d¢Hg') M diEO o Pyvduy (1.66)

(quHg — deHgl) is the Galvani potential difference between two phases of identical

composition and it can be experimentally measured. It will be denoted as E_
because the non-polarizable electrode responds to the activity of the anions in
solution.

In line with the Gibbs—Duhem equation,

xdp% 4 xwdpV =0 (1.67)
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where x; is the molar fraction of species i (with i = KCl for the electrolyte and i =W
for the solvent), the last two terms in the right-hand side of Eq. (1.66) can be written as

T duC + Mydpy = (rK+ - @rw>dﬂ‘<c‘ = durc (1.68)
Aw
where I g) (= I'k+ — (xkcr/xw)w) is the relative surface excess of ions K [4, 13,

19, 20]. The relative excess is independent of the particular choice of the dividing
surface in the Gibbs model for the interface [14]. Only relative excesses can be
experimentally measured. The final form of Eq. (1.66) is

—do = gMdE_ + 'Y duk (1.69)

If the non-polarizable electrode is sensitive to the cation of the electrolyte
(consider, for example, the cell CulHgIKCl (ac.)IK(Hg)ICu'), a similar result
would be obtained

—do = gMdE, + I duke (1.70)

In general, the result for a 1-1 electrolyte is
—do = gMdEy + rVdyelectoe (1.71)
The election of a reference electrode sensitive to one of the ions of the electro-
lyte leads to the appearance in Eq. (1.71) of the surface excess of the other.

Equation (1.71) is usually named as Lippman’s electrocapillary equation.
The surface charge of the metal g™ is

Jo

M

T 1.72

q (aEi> ”eleclroly[e ( )
In agreement with Eq. (1.72), at the potential of the electrocapillary maximum

g™ = ¢* =0, i.e., the free net charge on the interface is null. For this reason, this

potential is called the zero charge potential (PZC, E,), and its determination is of
great interest in the thermodynamic study of the interface (see Figs. 1.7 and 1.8).

From the surface tension data obtained for different electrolyte concentrations,
the relative ionic surface excesses can be determined. Thus, for the cell Hgl
KClI (aqueous)IHg,Cl,Hg', from Eq. (1.69), the cation excess is given by

(W) _ aG _ a(f
FK* - (aﬂKCI>E - (RTalnaKCl)E (1'73)
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Fig. 1.7 Surface tension of
mercury in contact with
aqueous solutions of the salt
named. T=291 K.
Abscissas are measured
relative to a “rational” scale
in which the potential
difference between the
mercury and a capillary-
inactive electrolyte is
arbitrarily set equal to zero
at the electrocapillary
maximum. Taken from [19]
with permission

Fig. 1.8 Electronic charge
on mercury surface in
contact with one-normal
solutions (with respect to
anion charge) aqueous
solutions of the salts named.
T =298 K. Taken from [19]
with permission
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where a® is the electrolyte activity. The cationic surface excess is proportional to
the cationic density charge in solution which for a 1-1 electrolyte is

(W)

qy =FI':

(1.74)
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The corresponding anionic charge can be obtained from the electroneutrality
condition,

- =q¢—q. =" —q, (1.75)

which leads to the anionic excess

ren =% 1.76
B F (1.76)
Other interesting properties are the differential (Cy) and integral (C;) capacitances,
defined as
o oM
Co=—(5z = (—aq ) (1.77)
aEﬂ: Mclcclmly(c Ei ”e]eclrolyle
E
qM JE CddE
Ci= == 1.78
E— EZ rE ( )
J dE
Ez

Except in special cases, the differential capacitance Cy is the most useful
magnitude (see Fig. 1.9) since it is that measured with impedance techniques,
although the integral capacitance is of interest as average data [13, 19].

Equations (1.72)—(1.78) provide relationships between characteristic parameters
of the interface (¢™, ¢°, Cq, C;. and surface concentrations of ionic species) and
macroscopic magnitudes such as the surface tension, the applied potential and the
bulk concentration of electrolyte. However, they provide no information about the
double-layer structure. Next, some theoretical models about the structural and
geometrical description of the electrical double layer are discussed briefly.

1.6.1 Models for the Electrical Double Layer

The first double-layer model was developed by Helmholtz more than 100 years ago
[4, 13, 19, 21]. This model postulates the double layer as two charged phases, the
polarized metal electrode (if the non-electrolytic phase is a metal or electronic
conductor) and other parallel layer with the ions of the solution separated by a
distance “d.”

? The capacitance of the Helmholtz parallel plate capacitor per surface unit is given by Cy = &0 /d,
where ¢, is the dielectric constant or the relative electric permittivity of the Hemholtz layer and &, the
electrical permittivity of free space (g9 = 8.854 x 1072 C2 7 'm™ Y [3, 4].



22 1 Some Fundamental Concepts

DIFFERENTIAL CAPACITY IN MICROFARADS PER SQUARE CENTIMETER
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Fig. 1.9 Differential capacitance of the electrical double layer between mercury and aqueous
solutions of the salts named. 7= 298 K. Taken from [18] with permission

However, unlike ordinary capacitors, the experimental observations show that
the ratio g/A¢ varies with the potential imposed and, therefore, in contrast to what
Helmboltz predicted, asymmetric electrocapillary curves with respect to the surface
tension ¢ edge as in Fig. 1.7 are obtained.

Later, the Gouy—Chapman—Stern model [2, 19, 22-24] describes the interface in
the absence of specific adsorption by assuming that the ions can approach the



1.6 Electrical Double Layer 23

m} Anion
— specifically
i adsorbed

IHP OHP

Fig. 1.10 Schematic view of the electrical double layer in agreement with the Gouy—Chapman—
Stern—Grahame models. The metallic electrode has a negative net charge and the solvated cations
define the inner limit of the diffuse later at the Helmholtz outer plane (OHP). There are anions
adsorbed at the electrode which are located at the inner Helmholtz plane (IHP). The presence of
such anions is stabilized by the corresponding “images” at the electrode in such a way that each
adsorbed ion establishes the presence of a surface dipole at the interface

electrode surface only up to the Outer Helmholtz Plane (OHP; see Fig. 1.10), from
which a diffuse layer is spread into the solution. This layer is in electrostatic and
osmotic equilibrium with the ions obeying a Boltzmann’s distribution law (in which
the energy terms are purely electrostatic). It is also assumed that the ions of this
diffuse layer interact with the electric field as point charges in a continuous
dielectric and that the electrical potential depends only on the distance at the
OHP, defined as the plane of the closest approach of non-specifically adsorbed
ions (see Fig. 1.10). The Gouy—Chapman capacitance per surface unit for a z—z
electrolyte is given by
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OHP
ErE zey —
€0 COSh (¢ ¢Z)

1.
Lp 2kT (1.79)

Cg-ch =

where ¢°"'F is the electrode potential at the OHP, ¢, is the potential of zero charge

and Lp, is the well-known Debye length obtained from the Debye—Hiickel theory for
electrolyte solutions given by

kT 1/2
Lp= |0 (1.80)
2(260) no

with 7 being the number of ions in the bulk of the solution, ¢, the electron charge,
and k and T the Boltzmann’s constant and the temperature.
Mathematically, the interface can be described as two capacitors in series:

L1,
Cs Cimm  Cgcn

(1.81)

Cinn 1s the capacitance due to the inner layer, which can be experimentally
obtained from the plot of 1/C4 (with Cy being the capacitance measured at a
given charge density) for several electrolyte concentrations versus the calculated
1/Cg-cn at a constant surface charge density (Parsons and Zobel plot) [2]. If this
plot is not linear, this is an indication that specific adsorption occurs.

At low electrolyte concentrations (< 1073 M solutions), the Cg . ¢, term dominates
and the inner term can be neglected in Eq. (1.81). Thus, the Gouy—Chapman model
agrees well with the experimental values of the double-layer capacitance of
non-adsorbing electrolytes. Contrarily, for high electrolyte concentrations the exten-
sion of the space charged layer in solution is small and the Cj,,, term becomes dominant
(see Fig. 1.11). The inner capacitance C;,, depends strongly on the charge density of
the metal (showing a maximum at the PZC), and it is extremely sensitive to the nature

Fig.1.11 Behavior of C4 as c
a function of the electrolyte
concentration for the Stern’s
model of the electrical
double layer, calculated
from Eq. (1.81) for a 1:1
electrolyte.

Cinn = 345 pF cm~2. The
concentration of the
electrolyte (in M) appears
on the curves

electrolyte

300

200

inn

C, / uF cm?
O
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of the metal and the solvent. Several models have been proposed to explain this
behavior. All of them coincide in that Cj,, contains contributions from both the
metal and the solution at the interface [2, 25]. Thus, the finite size of ions and solvent
molecules confers a complex structure to the interface. The decrease of Cj,, at
potentials far from the PZC can be caused by a dielectric saturation leading to a
decrease of the dielectric permittivity. On the other hand, the dependence of the surface
potential of the metal ¥ on the charge density causes an increase of the capacitance.

A simple model for the metal called jellium has been used to explain this last
effect [25]. The model describes the metal as positively charged ions and negative
charged electrons. The ionic charge gives rise to a constant positive background
charge which drops to zero at the metal surface whereas the electrons are
modeled as a quantum-mechanical plasma which interacts with the positive
charge and with other external fields. The resulting electronic charge distribution
generates a surface dipole moment which leads to a surface potential of the order
of several volts. The electric field in the double layer distorts this electronic
distribution in the metal and changes the surface potential y, leading to an
increase of the capacitance.

1.6.2 Specific Adsorption

Specific adsorption occurs when the concentration of a species at the interface is greater
than one would expect on the basis of electrostatic interactions only [2, 4, 13]. It is
usually caused by chemical interactions between the adsorbate and the electrode
(chemisorption) although in some cases it is due to weaker interactions such as
intermolecular forces (physisorption). The interaction of the adsorbate with the elec-
trode needs to be stronger than that of the solvent. So, adsorption involves, at least, a
partial desolvation of the electrode (anions are more likely to be adsorbed than cations).
Due to its chemical nature, chemisorption occurs at specific places of the electrode
surface.

The amount of adsorbed species is given in terms of the coverage or fraction of
the electrode surface covered by the adsorbate, 8. The relationship between the
coverage and the concentration in solution of a species under equilibrium condi-
tions is called an ‘“adsorption isotherm.” The ones most employed in electro-
chemistry are the Langmuir and Frumkin isotherms, deduced from statistical
consideration and assuming absence or presence of interactions between the
adsorbed molecules in the former and the latter, respectively.

In the discussion of the different models for the structure of double layer developed
up to this point, no specific interactions have been considered. However, specific
adsorption is a common phenomena in electrochemistry. Since the interactions
implied have to be very short range in nature, the chemisorbed species are strongly
bound to the electrode surface with the locus of their centers being the inner Helm-
holtz plane (IHP, see Fig. 1.10), or compact part of the double layer.
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Experimental evidence of the presence of specific adsorption can be found from
thermodynamic measures both from the values of relative excesses or from the
shift of the PZC with the electrolyte concentrations [19]. Currently, this presence
can be determined from the combination of electrochemical and spectroscopic
methods [4].

Specific adsorption can greatly alter the potential profile in the interfacial region.
If we consider the presence of adsorbed ions at the IHP and assume that the solution
is concentrated such that the potential drop in the diffuse layer beyond the OHP can
be neglected, the total potential difference across the interface could be divided into
two components, one from the metal to the IHP and the other from the IHP to the
OHP,

¢M . ¢Sol _ (¢M . ¢IHP) + (¢IHP o d)OHP) (182)

Each of those potential drops can be written in terms of the corresponding
integral capacitance C; (see Eq. 1.78),

¢M . ¢IHP _ qM
= oN—mp
' . (1.83)
PP _ pOHP ™+ g4

C;HP—»OHP

with ¢*® being the charge due to the adsorbed ions. By combining Eqs. (1.82) and
(1.83), one obtains

¢M _ ¢Sol _ qM + qad (l 84)
- C-inn C‘IHPHOHP :

with C %““ being the integral capacitance of the inner layer given by

1 1 1

Cimn C?/IHIHP C%HP—»OHP

(1.85)

The changes in the potential profile of the interfacial region because specific
adsorption do indeed affect the electrode kinetics of charge transfer processes,
particularly when these have an inner sphere character [13, 26] (see Fig. 1.12).
When this influence leads to an improvement of the current response of these
processes, the global effect is called “electrocatalysis.”
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Fig. 1.12 Schematic view of outer-sphere and inner-sphere reactions. IHP and OHP refer to the
inner and outer Helmholtz planes, respectively

1.7 Kinetics of the Charge Transfer

Let us consider the kinetics of a one-electron transfer between a metal electrode and
a molecule in solution via an outer-sphere mechanism (no strong interaction
between the electroactive species and the electrode takes place; see Fig. 1.12) and
with no bond breaking or formation:
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A distinguishing aspect in electrode kinetics is that the heterogeneous rate
constants, k..q and k,x, can be controlled externally by the difference between the
inner potential in the metal electrode (¢M) and in solution (¢S°1); that is, through the
interfacial potential difference E = M — ¢*°'. With the help of an appropriate
electrode setup (typically, a three-electrode arrangement and a potentiostat), the
E-value can be varied in order to distort the electrochemical equilibrium and favor
the electro-oxidation or electro-reduction reactions. Thus, the molar electrochem-
ical Gibbs energy of reaction Scheme (1.IV), as derived from the electrochemical
potentials of the reactant and product species, can be written as (see Eqs. 1.32 and
1.33 withn=1)

sol

AG = AGG—&-RTln(a >+F(¢ — ¢ (1.86)

O

where superscript “sol” refers to the values of the activities in solution.

Under electrochemical equilibrium conditions (Aé = 0), the interfacial poten-
tial difference is given by the Nernst equation (see Egs. 1.34 and 1.36):

s AG® RT (ap RT, (a
EEq = (¢M - ¢ Ol)Eq -5 1n<agol) Ee_ 71 < Ig)ol) (187)

F F

where AG ® is the reaction standard Gibbs energy and E© the standard potential of
the redox couple, which contains the nonelectrical terms of the free energy. As
stated in Sect. 1.5.1, it is more practical to work in terms of concentrations so
Eq. (1.87) can be rewritten as

' RT ¢ ol
Eeg = (¢ = ™)y =E& — n(;fol) (1.88)
O

with Ece/ being the formal potential given by Eq. (1.51). It is important to highlight
that the values of the interfacial potential at the working electrode (E) as well as the

standard and formal redox potentials (£ and ECG/ ) are relative to the potential of a
reference electrode.

Attending to Eq. (1.87), the expression for the reaction Gibbs energy (1.86) can
be rewritten as

~ M sol M sol
AG = F|($M = ¢) = (6™ — )y, | = F(E — Exy) (1.89)
From the above expression, it is evident that when the applied potential is more

negative than Egg, the interfacial electrochemical equilibrium is broken and the
electro-reduction of the oxidized species is thermodynamically favorable.
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Fig. 1.13 Influence of the
applied potential £ on the
energy barrier of the
heterogeneous electron
transfer process:

O +e~ = R. The gray line
corresponds to E = Ecg and
the blue line to E < Ece’,
where the electrochemical
potential of the electron is
increased by the amount

F(E - Ef}, ) . The energy of
the oxidized and reduced
species is supposed to be Reaction coordinate

unaffected by the change
in E

Standard Gibbs energy

It is found that heterogeneous electron transfer reactions follow first-order
kinetics with respect to the interfacial concentrations of the electroactive species,
¢}, and ¢}, such that*

Vied = kredc(s)
Vox = kol (1.90)

where it is considered that the electron transfer takes place at a fixed distance
corresponding to the distance of closest approach to the electrode surface (i.e., the
Outer Helmholtz Plane) though electron tunneling is effective in a range of several
angstroms [27].

The overall rate of the resulting electro-reduction process, v, is given by

V = kredC — koxCR (1.91)

which is directly related to the measured current as follows:

1
— = kpeaCo — koxCp 1.92
FA redCQ oxCR ( )

Within a transition-state framework (Fig. 1.13) with the transition state being the

same for the reduction “O 4+ e~ — R” and oxidation “R — O + e~ reactions for a
given E-value and the barrier being overcome by sufficient thermal activation, the
expressions for the rate constants as a function of the activation energies for the

It will be assumed in this section that the mass transport is much more rapid than the redox
kinetics, such that the activities or concentrations of species O and R at the electrode—solution
interface can be considered as identical to their bulk values (i.e.,a’ = af"l andc} = cis"l withi=0,
R). The influence of the mass transport on the current—potential response is treated in Sect. 1.8.
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+

electro-reduction and electro-oxidation reactions (Aé:ed and Aéox,

are given by
AG!
krea = Aredexp <_ ﬁ)

AG!
kox = onexp <_ R;X>

with the activation energies being related through the standard reaction Gibbs
energy as follows:

respectively)

(1.93)

AGl,— MGl =F(E-E®) (1.94)

As discussed below, any proper description of the system needs to consider the
continuum of electronic levels in the metal (see Sect. 1.7.2.1). Therefore, one can
act on the activation barriers, and hence, on the electrode kinetics, by varying the
applied potential difference, E. For example, when the electrode potential is set to a
value smaller than the formal potential (see Fig. 1.13), the Gibbs energy of the
electrons (and therefore that of the “reactants” O+ e~ ) is increased by

‘F (E —Ef)’ according to (1.89) under standard conditions. As a result, the
energy barrier for the electro-oxidation process is reduced with respect to the barrier
for the electro-reduction.

At the equilibrium potential, E = Egg, the electro-oxidation and electro-
reduction rates are equal (kreacd = koxcg) such that

kreq (EEq) o ﬁ

= 1.95
Kox (EEq) o ( )

Attending to the definitions of the rate constants (1.93), to Eq. (1.94), and to the
Nernst relationship (1.88), Eq. (1.95) leads to Areq = Aox = A.

Let us now consider a second particular case where the applied potential
corresponds to the formal potential. According to Eq. (1.94), the activation energies

are equal when £ = Ef}l:
AGL(E®) = AGH(ES) = AGT (ES) (1.96)

such that, assuming that the pre-exponential factor is potential independent, the
value of the rate constants is also the same:
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AG"(ES)

=i° 1.97
RT (1.97)

keea (Ef}) = keoy (Ef}) —Aexp| —

where £° is the standard heterogeneous rate constant corresponding to the rate
constant of the reduction/oxidation reactions at the formal potential. The k’-value
informs about the speed of the electrode reaction: the smaller °, the more sluggish
the electron transfer.

Finally, from the definition for K°, the expressions for the rate constants (1.93)
can be written as

) AGLy(E) - aGT(E®)
krea = k' exp RT
_ L (1.98)
AG,(B) - AGT (E®)
kox = koexp —

RT

Accordingly, the potential dependence of the electrode kinetics is determined by
the variation of the activation energy with E, which is established by the “position”
of the transition state on the energy profile in Fig. 1.13. This key aspect has been
addressed in different ways by the different kinetic models developed. In the
following sections, the two main models employed in interfacial electrochemistry
will be reviewed.

1.7.1 The Butler-Volmer Model

In the phenomenological Butler—Volmer model (BV) [28, 29], the effect of the
applied potential £ on the energy of the transition state is assumed to be between
that of the oxidized and reduced states, although no molecular description of the
activation process is proposed. Accordingly, the activation energies for the reduc-
tion and oxidation reactions can be written as:

red

GV (E) = AG'(ES ) - pF(E - EE)

AGIY () = G (ES ) +aF (E - ES) (1.99)

where a and f are the cathodic and anodic transfer coefficients (0 < a < 1 and 0
< f < 1), respectively. The @ and f values are supposed to be potential independent
in the BV formalism and they fulfill that @ 4+ # = 1 (as concluded from Eq. (1.94)).
According to Eq. (1.99), the activation energies for the reduction and oxidation
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processes in BV are predicted to vary linearly with the applied potential and the
magnitude of this variation is parameterized by the transfer coefficients:

_ 10AGEY (B)

a= red

F1 aAaéETBV(E) (1.100)
~F  0E

By substitution of the expressions for the activation energies (1.99) in Eq. (1.98),
the well-known equations for the BV rate constants are finally obtained:

af(E-ES)

kBV — kO
exp RT

red
(1—a)F(E—Ef‘) (110D

k2Y = k’exp RT

Accordingly, the BV model predicts an exponential variation of the electro-
chemical heterogeneous rate constants with the applied potential. Thus, as shown in
Fig. 1.14, the cathodic rate constant increases when the applied potential E is more
negative with respect to the formal potential whereas the opposite behavior is
predicted for the oxidation rate constant. Note that according to the BV model,
the heterogeneous rate constants can be increased (or decreased) unlimitedly by
applying larger overpotentials. As discussed below, this is a key difference with
respect to the Marcus—Hush model. Figure 1.14 also illustrates that the variation of
the rate constants with the applied potential depends on the value of the transfer
coefficient which can be defined as

Fig. 1.14 Variation of the 20 4
reduction and oxidation rate
constants with the applied
potential according to the
Butler—Volmer kinetic
model

decreasing o~
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ke ko
gy o (‘) | _RT om (‘)
Q@ = —— N7 -1 _ "7

FOE FOE (1.102)

Thus, the plots In(k2Y/k") vs (E - Ece,) and In(k5) /k°) vs (E - ECG/) are
only symmetrical with respect to (E - Eﬁ) when a = 0.5 so it is fulfilled that

k%03 (E - ECG,) = ko703 (— (E - Eﬁ)) For a # 0.5, this relationship does not
hold and the abovementioned plots are asymmetric.

The BV model is largely employed in interfacial electrochemistry and it has
been satisfactorily applied over the years to describe and classify the kinetics of

many redox systems with simple expressions for the rate constants (Eq. 1.101) and

in terms of only three parameters (kO, a, and Ecd ). Nevertheless, BV has some
drawbacks. BV is an empirical model and so offers very limited physical insights
into the electron transfer event and the nature of the system. This restricts the
possibility of making predictions and obtaining molecular information of the
system from electrochemical measurements. Moreover, experimental deviations
have been reported from the ad infinitum, exponential variations of the rate
constants with the overpotential predicted by BV, which are more apparent in the
case of surface-confined redox systems [30].

1.7.2 The Marcus—Hush Model

Microscopic models of electron transfer processes aim to provide a connection
between the nature of the system and the electron transfer event that is lacking in
BV. This enables us to rationalize experimental data in terms of the molecular
properties of the system as well as to make predictions. Such approaches include
“first-principles” basis for the calculation of the corresponding energy surface and
the identification of the fundamental factors behind the activation barrier and the
“meaning” of the reaction coordinate.

The Marcus—Hush model [31, 32] tackles the above questions by the harmonic
oscillator approximation for the internal energy of the reactant and product states
and by applying the Franck—Condon principle and the law of conservation of
energy. Figure 1.15 displays the quadratic variation of the Gibbs energy of reactants
and products with the reaction coordinate, g, as described in the Marcus theory
[31, 33]. This dependence can be identified with the change in the Gibbs free energy
because in this model there is no change in the entropy. For the sake of clarity, a
single, global reaction coordinate ¢ is considered that combines the vibrational and
solvent coordinates (lengths and angles of chemical bonds and orientation of solvent
dipole) affected upon the electron transfer, which otherwise lead to a many-
dimensional energy surface [34].

The Franck—Condon principle establishes that the atomic nuclei are effectively
immobile on the electron tunneling, that is, the nuclear motions can be
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Fig. 1.15 Schematic of the
energy curves in the
Marcus—Hush model with a
single, global reaction
coordinate ¢ such that the
potential energy hyper-
surface reduces to two
parabolas and the activation
energy can be calculated
from the intersection point
between them. The
electronic coupling

(Sect. 1.7.2.2) and the
continuum of electronic

levels in the metal electrode
(Sect. 1.7.2.1) are not Reaction coordinate

Gibbs energy

shown

approximated as “frozen” such that the nuclear configurations do not change. Also,
given that the “electronic transition” is radiationless, energy conservation requires
that the energies of the initial and final states are the same. From the above two
considerations, it is concluded that the electron transfer can only occur at the
intersection between the two Gibbs energy curves where the oxidized and reduced
states have the same configuration and energy. Accordingly, the activation barrier
arises from the need for rearrangement of the structure of the electroactive species
and their “surroundings” to the configuration of the transition state where the
electron transfer event is possible.

Assuming that the degree of adiabaticity is small enough (i.e., the resonance
energy is small), the activation energy for the reaction can be calculated from the
intersection of the two parabolas in Fig. 1.15. The difference between the Gibbs
energy of the oxidized and reduced systems as a function of the reaction coordinate

(g) is given by

éred(CI) - GOX(Q) =

=F(E-E?) +§{(q ~ @)~ (4 - 40)’}

(1.103)

where go and g refer to the equilibrium configurations of the oxidized and reduced
states, respectively. Also, it has been assumed that the force constants of the
harmonic oscillators approximating the behavior of the oxidized and reduced
species take the same value k in accordance with the most commonly used,
symmetric version of the Marcus theory [30]. Otherwise, different force constants
can be included in the theoretical treatment by using of the asymmetric Marcus
theory [32, 34].

As discussed above, at the transition state (¢ = ¢;) it is fulfilled that Gred (a+)

= Goy (g+) such that from Eq. (1.103) it can be deduced that
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FE-EE) 4o —q
+
k(qr — q0) 2

4 = (1.104)

and finally the well-known expression for the activation energy within the (sym-
metric) Marcus—Hush kinetic formalism (MH):

o o F(E-EZ)
AG™MA(E) ol LR

red

(1.105)

~ A
AGM gy =21 -~/
GI(E) = ;

where /1(: k(gr — q0)*/ 2) is the so-called reorganization energy, which value is

the hypothetical energy required to give the reactant (and its environment) the
equilibrium nuclear configuration of the product (and its environment), without
electron transfer. As can be deduced from Fig. 1.15, the A-value is related to the
curvature of the Gibbs energy curves so larger A-values mean tighter parabolas.
Note that according to (1.105) the MH model predicts a quadratic relationship
between the activation energy and the applied potential in contrast with the linear
relationship proposed in the BV model (Eq. 1.99). This leads to different variations
of the electrochemical rate constants with the applied potential as will be discussed
below.

The reorganization energy is a key concept introduced in the MH formalism to
understand and predict the electron transfer kinetics given that the A-value informs
about the magnitude of the structural and solvation changes induced by the electron
transfer reaction. Two contributions to A are commonly separated: the inner-sphere
reorganization energy (4;) associated with changes in the intramolecular vibrations
and the outer-sphere reorganization energy (4,) that arises from changes in solva-
tion, such that

A=A+ (1.106)

The inner component can be estimated from molecular theory by summing over
the normal vibrational modes of the species [30, 33, 34]:

1
Ai :zzkj((hz *f]o)? (1.107)
j

where k; are the force constants for each oscillator.
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With respect to the solvation energy, this is usually approximated by modeling
the reactants and products as spheres and the solvent as a dielectric continuum
(Born theory), which in the case of an interface electron transfer gives rise to the
following expression [30, 36]:

e? 1 1 1 1
Ao = —_ | — = 1.108
8reg (ao 2d> <eop 85) ( )

where “e” is the elementary charge, g, the permittivity of free space, a, the radius of
the reactant, &,, the optical permittivity, & the static permittivity, and d the distance
from the reactant to the metal surface.

1.7.2.1 The Marcus—Hush—Chidsey Formalism (MHC)

Before considering the expressions for the rate constants, it is convenient to introduce
a refinement [37] that has been ignored so far. It has been assumed that the electron
transfer only involves the electronic state corresponding to the Fermi level of the
electrode. However, the continuum of electronic levels (¢) must be considered such
that energy levels around the Fermi one can participate and the overall rate of electron
transfer is a sum of the rates for each electronic state, weighted by the probability of
occupancy/vacancy according to the Fermi—Dirac distribution:

il
s exp <_ AGred (x)>
RT
A J dx

kre ==
¢ 1 +exp(—x)
0 _ (1.109)
AG] (x)
w P\ T TR
—A
hor =4 | g

where the pre-exponential factor A has been approximated to be the same for all the

energy levels and Aézﬁm (x) is the activation energy for each electronic level such
that
A@E’;H(x) _/_1(1 L +x)2
kT 4 A (1.110)
AR A, iy
RT 4 A

with 7 = F(E - Ef/)/RT, x=F(e—E)/RT  and A being the dimensionless

reorganization energy: A = FA/RT. By introducing the standard heterogeneous
rate constant, £°, as the common value of the oxidation and reduction rate constants
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at the formal potential the following expressions for the heterogeneous rate con-
stants are finally obtained [30]:

KMHC _ 40 Srea (17, 4) — (02 1(n,A)

red Sred(O,A) [(O,A) (1111)
RMHC _ 0 Sox(m,A4) _ JLORTe 1(n,A)
ox Sox(0, 1) 1(0,A)

which depend on A and 7 (Eq. (1.110)). Sieq/ox(17,A) and I(n, A) are integrals of the
form:

AG g/ox(¥)
o eXp | =
Sre X aA =
o/ox(1, ) J 1+ exp(Fx)
o (1.112)
(x—n)°
R Y
A = | — 4
(n.4) J 2 cosh(x/2)

As in BV, the MHC model describes the electrode kinetics as a function of three
parameters: the formal potential, the standard heterogeneous rate constant, and the
reorganization energy. Nevertheless, important differences can be observed
between the two kinetic models with respect to the variation of the rate constants
with the applied potential. Whereas in BV rate constants vary exponentially and

continuously with (E - Ecd) (Fig. 1.14), MHC predicts a limiting value for the
rate constants at large overpotentials (Fig. 1.16a). Thus, at potentials close to the

formal potential the In (kred Jox/ ko) Vs (E - Eﬁ) curves obtained in MHC tend to
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Fig. 1.16 (a) Variation of the reduction and oxidation rate constants with the applied potential
according to the Marcus—Hush—Chidsey kinetic model. (b) Variation of the transfer coefficient
with the applied potential in the Marcus—Hush—Chidsey model. Gray solid lines correspond to the
values predicted by the BV model for a = 0.5
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those in BV for a = 0.5 as shown in Fig. 1.16a. As the applied potential becomes
more negative, the cathodic rate constant begins to level off and it eventually
reaches a plateau. An analogous behavior is observed for the anodic rate constant

when the applied potential takes very positive values with respect to ECG/ Note that
as the reorganization energy is smaller, the “leveling off” takes place at lower
overpotentials and the plateau value is smaller. Consequently, differences between
the predictions of the BV and MHC models are expected to be more apparent at
large overpotentials and for systems with small reorganization energies.

Note that the curved In (kred Jox/ ko) Vs (E — Ece/ ) plots imply that the transfer
coefficient, defined as a = — RT(Oln(k}'®/k°) /OE) /F (Eq. 1.102), is potential

red

dependent unlike what is assumed in BV. Thus, Fig. 1.16b shows that the MHC
model predicts that the transfer coefficient takes the value 0.5 at the formal

potential, larger than 0.5 at positive potentials (with respect to ECG, ), and smaller
than 0.5 at negative potentials. This potential dependence of the transfer coefficient
is more significant for small A-values.

With respect to the effect of the reorganization energy on the rate constants,
Fig. 1.16 shows that this is clearly different from that of the BV transfer coefficient.
Thus, the A-value has the same influence on the variation of the cathodic and anodic
rate constants with the applied potential. Thus, independently of the value of the

reorganization energy, it is fulfilled that k?gfc (E — Ecd) = kﬂ’iﬁc (— (E — Ece,))

[38]. This has important implications with respect to the shape of the voltammetric
response predicted by the different models. Thus, the MHC model has been proven,
theoretically and experimentally, to be unable to fit the voltammetric response of
redox systems that show BV transfer coefficients significantly different from 0.5
[30]. In such cases, as well as in the analysis of surface-confined redox systems, the
use of the asymmetric Marcus—Hush theory has been recommended [35] which
considers that the force constants for the redox species can be different leading to
Gibbs energy curves of different curvatures.

1.7.2.2 Adiabaticity and the Pre-exponential Factor

So far the attention has been on the nuclear reorganization barrier. Nevertheless,
other important factors previously “hidden” in the pre-exponential factor (and
ultimately in the standard rate constant) have to be considered, namely, the funda-
mental question of the magnitude of the electronic interaction between
electroactive molecules and energy levels in the electrode (i.e., the degree of
adiabaticity) and its variation with the tunneling medium (electrode—solution
interface), the tunneling distance, and the electrode material. Thus, within the
transition-state formalism, the rate constant for electron transfer can be expressed
as the product of three factors [39-42]:

kred/ox = VnKnKel (1.1 l3>
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Fig. 1.17 Splitting of the
Gibbs energy curves at the
intersection region as a
result of the electronic
interaction between
electronic states

Reaction coordinate

v, is the effective nuclear vibration frequency that takes the system through
the transition state region (the frequency of nuclear-barrier crossing), which
depends on intramolecular and/or solvent vibrational modes and, accordingly, it
takes values within the range v, = 1012—-10" 7! [40, 42]. k, refers to the nuclear
reorganization discussed in previous sections, which within the MHC formalism
can be expressed as:

AG! (%)
o2

Kn = J preE. (1.114)

—00

Finally, ., is the electronic transmission coefficient that accounts for the prob-
ability of electron transfer upon reaching the configuration of the transition state.
Note that it has been assumed that the electronic interaction between the redox
species and the energy levels in the electrode is independent of the energy of such
level x, so the electronic and nuclear factors can be treated separately.

As illustrated in Fig. 1.17, the electronic interaction between the reactant and the
electrode surface gives rise to the splitting of the energy curves at the intersection
(non-crossing). The extent of the splitting is characterized by the electronic cou-
pling element H g (see below) and defines the probability of electron transfer when
passing over the energy barrier. Thus, when the resonance energy is small (non-
adiabatic reactions), there is little probability that the system will proceed from the
initial to the final state (x.; — 0), but will predominantly remain in the same diabatic
curve and end up at the starting point: reactant. On the other hand, as the electronic
interaction is stronger (adiabatic reactions), the probability of electron transfer
increases and it tends to unity as Hp is larger (see below). Therefore, apart from
the reorganization energy-related factors discussed in previous sections, the degree
of adiabaticity is a key aspect in understanding and predicting the electrode kinetics
so adiabatic processes are faster than the corresponding non-adiabatic ones.

The effect of the reaction adiabaticity on the electronic transmission coefficient can
be estimated by making use of an extension of the Landau—Zener formalism [43-47]:
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i -on(-)
. (1.115)
2 — exp(—z"‘—i‘n>

Kel =

where v, is the electron tunneling frequency, which for electrode reactions can be
defined as [46]:

47’ py
hy /471%

with py being the density of electronic levels in the electrode and # is the Planck
constant. The effective average of the electronic coupling element, H o, decreases
exponentially with the electron transfer distance, r:

Vel = Hag (1.116)

Hap = Ho apexp {—/;r(r - I’OHP):| (1.117)

where Hy a5 is the electronic coupling element at the distance of closest approach,
roup, and f, is the decay constant for electronic coupling that depends on the
tunneling medium and takes values of the order of 108 cm~!. This reinforces the
idea that adiabaticity is a gradual property that can be “varied,” for example,
through the distance of closest approach that affects the Hyap-value [47, 48].
Therefore, the degree of adiabaticity is ascribed not only to the electrode process
itself but also to the characteristics of the electrode | solution interface and the
electrode material.

When considering the case of electroactive species in solution, the electron
transfer reaction takes place over a range of several angstroms and the hetero-
geneous rate constant can be written as [46]:

kred/ox = VnKnJ Kedr (1118)
To

which is well approximated by

2 2
Vnkn 4dr”puH, 0,AB

In| 1+
r voh 4111’%—?

Kred/ox ~ (1.119)

Thus, in the non-adiabatic regime it is fulfilled that (47[2/)MH 0.a8/vohy /47 %) <<1

and the rate constant is given by
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Fig. 1.18 Variation of the 47 Non-adiabatic Adiabatic
regime regime
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constant, k°, with the
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whereas in the adiabatic regime, (47t2pMH%’ ap/Vnliy /47 %) >> 1, the probability
of electron transfer at the transition state tends to unity (xe; — 1, as inferred from
Eq. (1.115)) and the rate constant will become independent of the electronic
coupling and the factors that determine it such as the electronic structure of the
electrode:
kihon A Vakn (1.121)
It is interesting to analyze the transition between the non-adiabatic and adiabatic
regimes in terms of the standard heterogeneous rate constant, °, given that this is

the parameter commonly referred to in kinetic studies. Considering that k° is
defined as the value of the reduction and oxidation rate constants at the formal

potential, its value can be calculated from (1.119) for x, = x; (E = Eﬁ)

Figure 1.18 shows the variation of k° with the strength of the electronic interac-
tion for typical values of the reorganization energy (4) and the effective nuclear
vibration frequency (v,). It has been assumed that the resonance energy is small
enough (in comparison with the reorganization energy) for the value of the acti-
vation energy not to be significantly smaller than that predicted by the Marcus theory
(Sect. 1.7.2). Indeed, this is the case for most outer-sphere reactions.

As predicted by Eq. (1.120), Fig. 1.18 illustrates how the standard rate constant
is independent of v, in the non-adiabatic regime where it is determined by the
strength of the electronic interaction: the stronger the interaction, the faster the
electrode reaction. For weakly adiabatic systems, the increase of the rate constant
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levels off, tending to a plateau in the adiabatic region provided that the lowering of
the energy barrier due to the electronic coupling is negligible [2]. Under such a
regime, the rate of electron transfer is predicted to be independent of the electronic
coupling and limited by the effective nuclear frequency (Eq. 1.121). When the
electronic coupling further increases and the decrease of the activation energy is not
negligible, this effect is to be included in (1.114) such that the rate constant takes
values larger than the limit corresponding to the plateau shown in Fig. 1.18 [50].

1.8 Mass Transport

Since electrode reactions tend to make the composition in the nearby solution
different from that further away, heterogeneity in the solution almost always exist
in electrochemical systems. Mass transport arises as the response of the system to
recover the initial homogeneity.

The essential quantity that is considered in the description of mass transport is
the flux for species “i” (which is, in fact, a vector) that describes the flow in a given
direction in space (moles per area and time units (see Fig. 1.19) [50-52],

o 1dni

= 1.122
A dt ( )

[73xt)

with A being the area that cross species “i.” The flux can be also defined as the

[733xt)

product of the local concentration by the velocity of species “i,
Ji = CiVi (1123)
In the absence of convection, the change in the flux with the position in the

system may be related to the time derivative of the number of moles by applying
Gauss’ theorem [4],

Fig. 1.19 Flux of a species \
“1” in the direction x
Area

dn.

1

—,

—
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\ 4
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—dni

= i 1.124
B }JdA (1.124)

where A is the surface area covering a given volume from which species i is flowing
out and —dn; /dt is the rate of loss of this species (in moles per second). The surface
integral can be related with the volume integral of the divergence of the flux,

JdiVJidV:+JidA (1.125)
Vv

Assuming mass conservation and absence of chemical reactions, it can be
written that

%_J ac,-
dt ) ot
\4

dv (1.126)

and by combining Eqgs. (1.124)—(1.126)

% = —divJ; (1.127)

This result is called the continuity equation for mass [4, 52]. The cause of the
flux is called a “driving force”, which is not used in the Newtonian sense, but
instead names any source of perturbation. In the case of mass transport, this cause is
typically a gradient (of concentration, electrical potential, or density).

The general equation that relates forces and fluxes is given by Onsager’s theory.
For a single force X, it establishes a linear dependence between fluxes and forces
that can be written as

Ji =LX (1.128)

with L; being called as the phenomenological coefficient for the force X.
Equation (1.128) can be expressed in terms of the velocity of species i (see
Eq. 1.123), by assuming that this velocity is proportional to the driving force,

Vi = uiX (1129)

with the proportionality constant being named absolute “mobility” (if X is a force
per mole, u; has units of velocity per mole divided by driving force).

By taking into account the relationship between the velocity and the force given
by (1.129), Eq. (1.123) can be written as

STf X is a force per mole, the units of L; are mol> N~! m~2 s~ in the LS.
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Ji =C1M1X (1.130)

This general relationship between the flux and the force is known as Teorell’s
equation [4, 53].

In the absence of convection, a charged species i in an electrolytic solution
moves under the influence of a driving force which is, at constant temperature and
pressure, the minus gradient of the electrochemical potential, i.e., X = —Vy; (see
Eqgs. (1.11) and (1.14) for the definition of y;), with V being the gradient operator
which, for a single Cartesian coordinate, is V = 0 / 0x. Since i; has dimensions of
energy per mole, where the energy is a force times a length, V; has dimensions of a
force per mole. Note that the gradient of the electrochemical potential includes
electric and chemical “forces” acting on an ionic species since

X=-Vu,=-Vyu —zFV¢ (1.131)

By inserting Eq. (1.131) into Eq. (1.130), the following expression for the flux is
obtained:

Ji = —ciuiVﬁi = —ciuiVyi — ciuiziFV(]ﬁ (1132)

Assuming that, under usual electrochemical conditions, the activity coefficient
of species “i”” does not vary significantly in the solution, the first term of the right-
hand side can be written as (see also Eq. 1.11)

CiuiVﬂi = CiuiRTVIHCi = MiRTVCi (1133)
and Eq. (1.132) becomes
Ji = —MiRTVCi — CiuiZiFV(f) (1134)

In the case of charged species, it is usual to define a charge mobility for the ions,
u, which is related with the absolute mobility by

uf = |Zi‘Fui (1135)
The charge mobility has units of velocity divided by electric field, m> V~! 57!
(see Table 1.3 for values of the mobility of several ions in aqueous solution and [52]

for the case of nonaqueous solutions). By inserting Eq. (1.135) into Eq. (1.134), one
obtains

RT

NPT

Ve — c‘i%uicv¢ (1.136)

Equations (1.134) or (1.136) are called the Nernst—Planck equation [4, 13, 50,
52]. In the deduction of this equation it has been assumed that the flux of a species i
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Table 1.3 Values of the Ton ue % 10° /m2 V! ¢!
charge mobility of different ~ :
ions in aqueous solution Li 40.1
[4, 14, 51] Na® 51.9
Zn**t 54.7
Mg** 54.9
F~ 57.4
Ca** 61.6
Sr2* 62.5
Ba** 65.9
K* 76.2
NH; 76.2
Cl™ 79.1
I~ 79.6
Cs™ 80.0
Rb* 80.6
Br~ 80.9
OH™ 205.2
H;0" 362.2

is only caused by the corresponding driving force (Vy;) and, therefore, there is no
coupling with other forces.

The expression for the flux given by Eqgs. (1.134) and (1.136) clearly shows that
it presents two components. The first, originated by a gradient of concentration, is
called the diffusive flux (first term in the right-hand side of Eq. (1.136)), and the
second, due to a gradient of electric potential, is called migrational flux (second
term in the right-hand side of Eq. (1.136)).

The diffusive flux appears as a consequence of a gradient of concentration and is
given as (see Eq. 1.136),

RT
J diffusion,i = _”fﬁvci (1.137)
1

which, taking into account the Nernst-Einstein relationship between the ionic
charge mobility and the diffusion coefficient®

S Note that, from the relationship between the ionic mobility and the diffusion coefficient given by
Eq. (1.138), it is possible to rewrite Eq. (1.132) as J; = — % Vi, (see also Eq. (1.135)).
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e lalF
i TRT

D; (1.138)

becomes
Jdittusion,i = —Di V¢ (1.139)

which is called Fick’s first law [52, 55]. The minus sign in this equation indicates
that the flux of species i takes place in the opposite direction of the concentration
gradient. It also possible to make an estimation of the size of the ion by imagining it
as a small sphere of radius r;,, and using the Stokes—Einstein relationship,

 keT
B 67[gDi

(1.140)

Tion

with kg and ¢ being the Boltzmann’s constant and the viscosity of the solvent,
respectively.

Concerning the migration component of the overall flux, in line with Eq. (1.136),
for a z:z electrolyte it is given in terms of charge per area and time as

7.
Jmigralion,i = _Ciﬁuicvqs (1141)

Since the flux can be written as the product of concentration times the velocity
(Eq. 1.123), the expression of the migration velocity is (see Eqs. 1.129 and 1.135)

7
Vmigration,i — —|Z—T|Mic V¢ ( 1. 142)
1

The charge mobility of an ion represents the speed that acquires the ion per unit
of electric field. The electric migration current corresponding to the ionic move-
ment of a single kind of charge is equal to the flux of charge, i.e., to the rate at which
the charge cross any plane normal to the flow (see Eq. 1.141) [56]

Imigralion,i = ZiFAJmigration,i = —FA|Zi|CiI/lin¢ (1143)

Equation (1.143) is valid for a single carrier. The total migration current is
obtained as

Imigration = Zlmigralion,i = *FAV¢Z |Zi|CiMiC (1144)

ions ions

The fraction of the total ionic current carried by one particular species is known
as the transport number,
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|zi|einwd |z

f = =F (1.145)

Z |zl cioe K

ions

with

k=F»  |z|ciu (1.146)

ions

being the conductivity of the media.
The ionic mobility is related to the molar ionic conductivity of the ion 4,

C

Ai
ut =
" falF

(1.147)

The molar conductivity of the solution of a z:z electrolyte of concentration c is
defined as

A:g:F(|Z+|ui—|—|2_|ui) :Fz(ufr—l—uf) (1.148)

The molar conductivity depends on the concentration in agreement with the
Kohlrauch’s law,

A=A"—Sc (1.149)

with A° being the molar conductivity at infinite dilution [4] and S a proportionality
constant which depends more on the stoichiometry of the electrolyte than on its
specific identity. Equation (1.149) is valid for concentrations below 0.05 M.

A theoretical approach for explaining the relationship between S and the charac-
teristics of the electrolyte was provided by Onsager on the basis of the model of ions
plus ionic cloud developed in the Debye—Hiickel theory, obtaining [4]

S =aAy + py (1.150)
with
, _ 82:045 x 10*
(87)3/2
82487
sveTl

Sometimes, the conductivity of the solution may decrease due to the formation
of electroneutral ion pairs. Under these conditions, the Fuoss—Onsager equation can
be used to calculate the molar conductivity (A) of associated electrolytes [57]:

(1.151)

Po (1.152)
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A=Ay —SVcO+E cOIn(6EcO) + Lc — K,cOf2A (1.153)
with
E =EA)—E (1.154)
2.942 x 10'2
1= 73
(ng)‘
04333 x 10° (1.155)
g(ErT)z
L =L+ Ly(b) (1.156)
Ly = 3.202E,Ag — 3.42E, + ap, (1.157)
44E ,
Ly(b) = 2E,Aoh(b) + 3b2 —2EInb (1.158)
207 +2b—1
h(b) = 0 (1.159)
16.7102 x 107°
h=—un"" " 1.160
eTag ( )

where ¢ is the electrolyte concentration, Ay the molar conductivity at infinite
dilution (c = 0), 0 the degree of dissociation, K, the association constant based
on activities, f, the mean molar activity coefficient of ions, and a the distance of
closest approach. Moreover, ¢, and ¢ are the relative permittivity and viscosity of
the pure solvent and T is the absolute temperature (K).

The results provided by Eq. (1.153) can be improved by using the Fuoss—Hsia
equation modified by Fernandez-Prini (for 1:1 electrolytes [58—60]):

A=Ay —SVcO+EcOn(cO) +J,c0—Jr(cO)*? —K,cOf2A  (1.161)

with

K2aib? Kaobp,
E=-—22 — 0 1.162
24¢ 70 16yc (1.162)
J1 =61A0+ 6 (1163)
Jr = 630 + 64 (1.164)

50.2901 x 10'°,/c
x = x 107e (1.165)

veT

2 2 —
5 = [(Kgfc’) 1 [1.8147 +21n<%’_> +2(2b+b+1>] (1.166)
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8 = afy + fo (’“’0) — 4 {ﬂ} [1 S337 4 = 1 2In (’“’0” (1.167)

NG 16+/c 3b Je
b*(kap)’ 4.4748  3.8284
53 [ A [0 6094 + — —+=3 } (1.168)
2 2 2
2(20% +2b — 1
5 = ﬂo(gZ“”) ( = ) 1 0384 + ap, " 7 folxaa)
N ¢ (1.169)
ﬂo (’WO)

2.2761 Pokaob
L6c [1.5405 + b } (16/\0\/—) ( 2. 2194)

1.8.1 Minimization of the Migration Component

“ 29

The migration contribution to the flux of species can be minimized by the
addition of an inert (or supporting) electrolyte in a concentration of two orders of
magnitude higher than that of species “i.” These electrolyte supports ions should be
electrochemically and chemically inert but increase the ionic strength of the
solution. Therefore, they cause a strong decrease of the transport number of species
“1.” Indeed (see Eq. 1.145),

(1.170)

and on inserting Eq. (1.170) into Eq. (1.136) and taking into account (1.138), one
obtains

ZiKti
Ji=— B Vqﬁ—Dchi (1171)

1 |zi]

Under these conditions, the first addend of the right-hand side of Eq. (1.171)
is negligible compared to the second, and it can be assumed that
Jmigration,i << Jdiffusion,i«

The addition of the inert electrolyte affords other advantages. The most impor-
tant point is that the conductivity of the solution increases (and thus the ohmic drop
decreases through a decrease of the resistance of the cell, R.; see Sect. 1.9).
Moreover, the diffuse double layer narrows, being formed mainly by the ions of the
inert electrolyte (with a sharp potential drop over a very short distance from the
electrode surface). This makes the capacitance more reproducible and the Frumkin
effects less obtrusive. Activity coefficients of the electroactive species are also less
variable (and, therefore, quantities like formal potentials and rate constants), since
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the ionic strength of the solution is virtually uniform and constant. Moreover,
natural convection becomes less troublesome because the density of a concentrated
ionic solution is less affected by small changes in the concentration of electroactive
species than in a pure solvent.

It should taken into account that the effects of the supporting electrolyte can also
be adverse, for example, reaction mechanisms can be drastically altered (the ions of
the supporting electrolyte may complicate the electroactive species through ionic
association processes). However, except in specific cases, the advantages indicated
make the addition of supporting electrolyte in excess a standard procedure.

1.8.2 Temporal Evolution

On inserting the expression of the flux given by Eq. (1.136) into the continuity
equation for mass given by Eq. (1.127) and taking into account Eq. (1.138), an
expression for the temporal evolution of the concentration of species i is obtained:

a i . iF

a—ct — —divJ; = D;V2¢; + D; ;—T VoV (1.172)
For the deduction of this expression, it has been assumed that Poisson’s equation

holds (i.e., V¢ = 0). If the migration contribution can be suppressed (for example,

due to the addition of supporting electrolyte), Eq. (1.172) simplifies to Fick’s

second law:

aCi
ot

:Divzci (1173)

with V2 being the Nabla operator for mass transport by diffusion whose expression
for usual electrode geometries is given in Table 2.2.

An example of the concentration profiles of the oxidized species O, calculated
for different times and corresponding to the application of a constant potential
under linear diffusion conditions, is shown in Fig. 1.20. The electrode reaction at
the interface leads to the depletion of species O at the solution region adjacent to the
electrode surface. As the time increases, the layer in the solution affected by the
diffusive mass transport becomes thicker, which indicates that linear diffusion is
unable to restore the initial situation (for a more detailed discussion on concen-
tration profiles and their relation with the current, see Sects. 2.2.1 and 2.2.2).

1.8.3 Convection

There is a third type of mass transport in electrochemical experiments: convection.
This can involve the macroscopic or microscopic motion of the solution in which


http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2

1.8 Mass Transport 51
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the electroactive species are dissolved. Macroscopic motions may arise either
because of forced hydrodynamic regimes (such in the case of Dropping Mercury
Electrode or the Rotating Disc Electrode) or because of the appearance of density
gradients due to strong composition changes generated by the electrochemical
reactions [52]. In any case, the expression of the convection flux is

Jconvection,i = CiVconvection ( 1.1 74)

where Veonvection 18 Telated to the motion of the solution. For an incompressible fluid,
the expression of the velocity profile is obtained by two differential equations: the
continuity equation:

div(vconvection) =0 (1175)

and the Navier—Stokes equation:

dvconvec ion 1
Tl — _;(VP — ¢ Vconvection — f) (1.176)

where p and ¢ are the density and viscosity of the fluid, P is the pressure, and fis the
force/volume exerted on an element of fluid by gravity [13, 52]. Two different
types of flow are considered in hydrodynamic problems. When the flow involves
chaotic motion, it is called as turbulent. On the other hand, if the flow occurs as if
separate layers of the fluid have steady and characteristic velocities, it is called
laminar flow. Under these conditions, the convection flux is proportional to the
pressure gradient. Thus, in the case of a fluid moving through a tube with uniform
circular cross section of radius R, the convective flux is given by the Poiseuille’s
equation:


http://dx.doi.org/10.1007/978-3-319-21251-7_2
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R* dP
Jconveclion,i = CiVconvection = —Ci S_g a (1 .177)

and the velocity profile defined by Eq. (1.177) is typically parabolic [51].
When the three diffusion, migration, and convection fluxes are considered, the

temporal evolution of the concentration of a species “i” is given as (see also
Eq. 1.175)

o F
aicl“ - _diVJi = Divzci + Di ;7 v¢vci - Vconvectionvci (1178)

When the migration of species i can be suppressed, Eq. (1.178) becomes

% - Divzci - Vconvectionvci (1179)
ot

which, for electrochemical forced hydrodynamic experiments (with the exception
of Dropping Mercury Electrode), is considered only under steady-state conditions
(i.e., Oci/0t =0). As an example, the stationary solution corresponding to the
Rotating Disc Electrode is presented in Sect. 2.8.

1.8.4 Mass Transport Coefficient

Mass transport gives rise to the appearance of concentration profiles of an
electroactive species O like those shown in Fig. 1.20, obtained for the application
of a constant potential to a macroelectrode. From this figure it can be seen that there
is a region adjacent to the electrode surface where the concentration of species O is
different from its bulk value, ¢, and, therefore, mass transport takes place. In the
following discussion, diffusion will be the only transport mode considered. The
thickness of this “diffusion layer,” 8., can be accurately calculated from the
concentration profile as the distance from the electrode surface to a point in solution
at which the following condition holds:

=90
CO(X—*real): 1 — error (1.180)
‘o

with “error” being the arbitrary tolerance limit considered, for example 0.01.
Another widely used concept in this context is the Nernst’s diffusion layer
[56, 61], whose thickness Onems 1S defined as the distance at which the linear
concentration profile (obtained from the tangent to the concentration profile curve
at the electrode surface; see broken line in Fig. 1.21) takes its bulk value. Given that
the term “Nernst” can be misinterpreted in relation to the degree of reversibility of
the electrode process, dnemst Will be referred to hereinafter as the thickness of the
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Fig. 1.21 Concentration
profile of species O and
linear and real diffusion
layers (the last with a
maximum error of 1 %)
obtained by the application
of a constant potential with

E<<EP toa
macroelectrode

co(x,t)/co*

“linear diffusion layer,” and it will be denoted by dg (with subscript G relative to
the electrode geometry).” As can be seen in Fig. 1.21, the thickness of the linear
layer is a rough estimation of the real thickness. Anyway, dg provides valuable
information related to the nature of the electrode process and the diffusion field.
Thus, in relation to the geometrical aspects of diffusion, it can be compared to the
diameter of a macroelectrode or the maximal diffusion length in an electrochemical
cell in order to discuss the validity conditions for the approximation of semi-infinite
linear diffusion of electroactive species. Concerning the characteristics of the
electrode process, in the case of coupled chemical reactions, the relative thickness
of the diffusion and reaction layers is necessary to establish the conditions where
steady-state behavior can be reached as well as to quantify the chemical contri-
bution to the electrochemical response [62—65].

In a general way, the measured current /° when a constant or time variable
potential perturbation is applied to a simple charge transfer reaction at an electrode
of a given geometry G can be defined from the equivalence between the gradient
at the electrode surface and the difference between bulk (cg)) and surface (cy)
concentrations divided by the diffusion layer thickness, dg, of the concentration
profile of electroactive species O or R [62],

I° 0 t A 0 t A
DO<CO(‘1’)) DOCODR(CR(‘]’)) :fDRicR (1.181)
FAg an ¢ 66,0 an ¢ OG.R

"Note that the concept of “transport layer” can be extended to other transport modes such as
convection. Indeed, in the presence of convection, this concept is associated with the simple idea
that the solution can be divided into two parts, a thin layer close to the electrode surface with only
diffusion, on the one hand, and the bulk solution where the stirring ensures a perfect mixing, and
therefore uniform concentration, on the other [52].
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with

Aco = cg -
Acy = ch — 3 (1.182)

q is a set of coordinates on which the concentrations depend, gy is the normal
coordinate value at the electrode surface and ¢* is its value at any electrode surface,
Do and Dy, are the diffusion coefficients of oxidized and reduced species, respec-
tively, and Ag is the electrode area.

dg 1s, in general, a complex function dependent on the nature of the electrode
reaction, the potential, and the time (see Sects. 2.2.2 and 3.2.1.2). However, in the
case of a reversible electrochemical process, the surface concentration c¢, is only
dependent on the applied potential, i.e. Aco = Aco(E), and is independent of the
electrode geometry and time. Thus, under potentiostatic conditions (see Sect.
2.2.2.2), é¢ is independent of the applied potential.

Closely related to the diffusion layer term is the mass transfer coefficient m;. In a
general way, this coefficient is the proportionality constant between the mass
transfer flux and the concentration difference between the electrode surface and
the bulk of the solution. From the current expression given by Eq. (1.181), one can
write

]G
F—AG e mOACO — —mRAcR (1183)
where®
D.
m; =—— i=0; R (1.184)
0G,i

The mass transport coefficient is, in general, a complex time and potential-
dependent function through the linear diffusion layer thickness, dg ;. Only under
certain conditions does this dependence disappear (as, for example, for nernstian

processes under potentiostatic conditions, or at potential values far from Ece, , see
below).

Equations (1.183) and (1.184) point to the existence of maximum or limiting
currents that can be obtained under mass transport control conditions. These
limiting currents correspond to the case of null surface concentrations of the
electroactive species, i.e., for Ac; = CT,

8 . .
In some references, it appears the term “resistance to the mass transfer,” Ry,;, defined as
le,i =1 / mi.
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I8 ,

d,c _ Mo, 00Co (1185)
FAg

FAg R,00"R

where m; , (i=0, R) is a potential-independent expression for the mass transport
coefficient of species “i” (i.e., corresponding to potentials E — Foo, with the upper
sign corresponding to cathodic limiting currents and the lower to anodic ones). The
expressions of m; , for different experimental situations are given in Table 1.4.
Note that the only difference between mg o, and mg  and also between mg and mg
is the diffusion coefficient.

For nernstian processes, and under steady-state conditions when Do = Dr = D,
the expressions of coefficients fulfill, regardless of the electrode geometry,

mi = Moo =M (1.186)

Under reversible conditions and electrode geometries different from the planar
one when Dg # Dg, the mass transport coefficient is a complex function of both
diffusion coefficients and, in general, the expressions of m; and m; . do not
coincide. The only case in which m; = m; . when the diffusion coefficients of
species O and R are assumed as different is that corresponding to nernstian
processes under planar diffusion (macroelectrodes).

Table 1.4 Mass transport coefficients m; o, for different experimental conditions. The values of
mj, ~ correspond to the application of a constant potential. The expressions corresponding to the
Rotating Disc Electrode (convective mass transport) under stationary conditions and to Dropping
Mercury Electrode with the expanding plane model (diffusive—convective mass transport) have
also been included

Experimental situation mi o = Di/86,i,E—Fo0 Character
Macroelectrode i Transient
’” (Sect. 2.2)
Spherical electrode of radius r D ( 141 > Transient
\r VaDit
s i (Sect. 2.5)
Spherical microelectrode of radius r; ?_ Stationary
’ (Sect. 2.7)
Disc electrode of radius ry 4 D; rd Transient
——10.7854 4 0.44315
- ( + Nl (Sect. 2.7)
rd
+ 0.2146 exp( —0.39115
e 7)),
Disc microelectrode of radius r4 %% Stationary
’ (Sect. 2.7)
Rotating disc electrode of angular 0.62D*3 /2 (¢/ p)*1/2 Stationary
velocity @ ! (Sect. 2.8)
Dropping Mercury Electrode with the 7 I Transient
expanding plane model 3V at (Sect. 2.4.1)

¢ and p are the viscosity and density of the solvent
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By solving the expressions of ¢fy and ¢} in Egs. (1.183) and (1.185) and inserting
them into the current—potential relationship given by (1.92), one obtains

k Kox
6= IWT(‘:(m";‘) 18, IG) - n;)R<IG flfam’:R > (1.187)

where k..q and k., are given by Eq. (1.101) for the Butler—Volmer model and by
Eq. (1.111) for the Marcus—Hush—Chidsey one. Since for both models it is fulfilled
that kox = €"kreq, Eq. (1.187) can be written as

kre
f= dK o ISCIG) @e”(IGIdGaIHR)] (1.188)
mo [ \"M0,c0 mg TR, 00

If a Butler—Volmer formalism is assumed (see Eq. 1.101) for the sake of
simplicity, the expression of the current—potential relationship can be rewritten as

kO
5= [e“”( Mo 6 IG) — ZO(1-ap <1G By )} (1.189)
mo mo,co mR TR, 00

In agreement with Eq. (1.189), the reversibility degree exhibited by the current—
potential response will be determined not only by the value of the rate constants but
also by the ratio R; = k° /m; (with k° being the heterogeneous rate constant for the
charge transfer reaction). Thus, for high values of R; Eq. (1.189) becomes

7 mgR %Lfo -1°
el = m_o [7(3 _IdG prs (1190)
s MR, 00

whereas for low values of R; the totally irreversible limits of Eq. (1.189) are
obtained

mo
G
[d

acm ’
f=——3%  E<<E?
|+
Kiea (1.191)
I§———
G _ MR o
6= —TRx gy g
L+
kox

Therefore, the ratioR; = k0 /m; allows us to define a “reversibility criteria” for a
given current—potential response once the expression of the mass transport coeffi-
cient is obtained (see Sects. 3.2.1.4 and 5.3.2). Note that electrochemical reversi-
bility thus considered is not only defined in terms of the intrinsic characteristic of
the process (i.e., the particular value of the heterogeneous rate constant and other
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kinetic parameters like the charge transfer coefficient or the reorganization energy)
but also in terms of extrinsic parameters like the electrode geometry, the nature of
the perturbation, and the mass transport modes involved.

By solving the expression of the current in Eq. (1.188), one obtains

_krea G kox 7G
mo,xld,c + mR,OCId,'d

kreg 4 kox
1+mO+

mg

1€ =

(1.192)

This expression of the current—potential relationship is totally general. For each
particular situation, the expressions of the rate constants (through a given kinetic
model) and of the limiting currents and mass transport coefficients should be
provided to analyze the influence of the different factors that can control the
global rate.

The current potential relationship can be written in terms of the inverse of the
current. For example, in the case in which c;; =0 (I(E’a = 0), Eqgs. (1.181)—(1.184)
and (1.192) become

1 1 1 4 7oe'l
1 FAGCOkred FAGcOmo

The first term in the right-hand side of Eq. (1.193) accounts for the pure kinetic
resistance of the process (which has been called as “activation” term), whereas the
second combines the influence of the potential and of the mass transport through the
limiting current (see Eqs. 1.184 and 1.185). The overall behavior of the current—
potential response can be seen in Fig. 1.22.

Thus, for the activation zone the current can be approximated by the first term:

19 = FAGCSkvea (1.194)

which indicates that it is the resistance of the redox conversion (through the rate
constant ko) which determines the current at this region. Under these conditions, the
depletion of the oxidized species at the electrode surface is negligible and the
surface concentration is identical to its bulk value. The relationship between the
logarithm of the current and the potential is linear (this is called a “Tafel analysis”)
and it allows the determination of the kinetic parameters of the electrode reaction.
For more negative potentials, the current (solid line) deviates from the activation
control (given by the dashed line which corresponds to a pure kinetic behavior”) and
begins to be influenced by the mass transport (second term in Eq. (1.193), which in
practice means that ¢ # cf), until for certain potentials at which the mass transport
controls the overall current (¢” — 0 and k. — o0) and under these conditions

° for which the current is given by 16 = FAg (kredcg - koxc;).
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The mass transport limiting current is the maximum current (or rate) that the
process can achieve. In order to increase its value, an increase of the electrode area,
bulk concentration, or mass transport coefficient is needed. In the last case, this
means a decrease of the diffusion layer thickness which can be done, for example,

by forced convection.
For a more detailed discussion on the importance of the diffusion layer for

different electrochemical techniques, see Sects. 2.2.2, 3.2.1.2, and 5.2.3.3.

1.9 Three-Electrode Systems. Ohmic Drop, Resistance
of the Cell, and RC Time Constant

The measured potential difference in an electrochemical cell is the sum of several
potential differences. When a current flows through the cell, these potential differ-
ences are affected to different degrees with the total change in cell potential being
the sum of all these changes. In a cell with two electrodes, denoted as working
(W) and reference (R), the change in the overall potential 5E is given by

SE = Z Ap 4+ IReen = VAP +'ARD + IR o1 (1.196)

interfaces

The working electrode—solution interface is that corresponding to the electrode
process under study and the reference electrode—solution interface is needed to
close the current flow through the cell. The term IR, denotes the Ohmic drop, with
R being the resistance of the cell which can be calculated for certain geometries
(see below) although, when important enough, it is usually measured and
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compensated electronically [51, 65]. In practice, the potential difference should be
related directly with the term WA**'¢.

The usual strategy is to use a second highly non-polarizable electrode (i.e., a
Reference electrode) in such a way that the term **'4%¢ will be negligible compared
to that of the working electrode. Under conditions of low ohmic drop, Eq. (1.196)

becomes
OE =V p%lgp (1.197)

A better way of measuring changes in potential at the metal—solution interface of
the working electrode is to use a three-electrode system in the way shown in
Fig. 1.23, in which, together with the working and reference electrodes, a third
electrode called a counter electrode is added. In this experimental setup, an external
device called a potentiostat—galvanostat is used to pass a constant or time-variable
current through the working and counter electrodes or to establish a potential
difference (which can be constant or a function of time) between the working and
counter electrodes. Note that in this scheme the current flowing between the
working and reference electrodes (i.e., the part of the circuit which defines the
changes in potential) is essentially zero.'” Under these conditions, the potential
difference at the reference electrode can be considered as constant, irrespective of
the current passing through the working and reference electrodes. This allows to
ensure that the changes in the potential difference between working and reference
are only related to phenomena taking place at the working electrode and, although
the difference “A**'¢ cannot be measured, the changes in this difference can be
directly determined. Note that the three-electrode configuration described can be
simplified in the case in which the values of the current would be small (for
example, in the case of microelectrodes, see Sects. 2.7 and 5.4), since in this case
the pass of current through the reference electrode would not alter its
non-polarizable condition and therefore the counter electrode could be suppressed.
The three-electrode configuration must be modified in the case of the studies of
ionic and electronic transfers taking place at membranes or liquid-liquid interfaces
(see Sect. 2.3 for more details).

For current to flow across a cell, ions must move through the ionic conductor and to
maintain this motion requires an electric field. The field is supplied by a difference of
electrical potentials within the ionic conductor between the surface adjacent to the
working electrode and the adjacent to the counter electrode. By considering Ohm’s
law [51]

10 Although in a three-electrode configuration the potential difference at the third electrode may
change greatly, this fact does not affect the measure of the potential difference between the
working and reference electrodes. Indeed, the only limitation that affects the counter electrode
is that it should be much larger than the working electrode.
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the ohmic overpotential, which considers the potential difference between the
solution adjacent to the working electrode and at the point where the reference
electrode is placed as a consequence of the electric field mentioned above, is given
by

dx
AG (x)

w e
A¢Ohm:¢w_¢R:Jd¢:_? (1.199)
R

X e,

where « is the electrical conductivity of the ionic conductor. The symbol “x”
denotes the length coordinate measured from the working electrode in the direction
of the current flow and Ag(x) is the area of the equipotential surface at that distance
for a given electrode geometry. In order to carry out the integration that appears in
Eq. (1.199), it is necessary to specify the geometry of the cell. In the case of simple
geometries, this integral is easily determined.
Equation (1.199) can be rewritten as
Adopm = I°RS (1.200)

cell

where
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Table 1.5 Expressions for the resistance of the cell in different electrode geometries calculated
from Eq. (1.201). x is the distance between the working electrode surface and the reference
electrode [7, 51, 67]

RS, for large

Electrode geometry RS ,/Q X >>qg*
Plane electrode (channel cell with constant section, i i
Alx)=A
Spherical electrode of radius r (A(r) = 47[1‘3) 41? ; (xir‘ ) 41? ,1
Cylindrical electrode of radius r, and length #ln(l 4 i) L (1)
— - 27Kz 27k re

z (A(r) = 2zrcz)
Small disc electrode of radius ryq J—Kﬁ
*qg is the characteristic dimension of the electrode

w

1 dx
RS, = —| — 1.201
cell KJ A ( X) ( )
R

The expressions of RS, for different electrode geometries are given in Table 1.5

Note that for the case of spherical and disc electrodes, whenx >> rg (with rg being
the electrode radius for both geometries), the resistance of the cell becomes

constant. In spite of the similarity between the expressions for RPM*"“ and Rés¢,
an important difference arises in the case of disc electrodes versus spherical or
hemispherical ones, and that is that the current density of the latter is uniform
through the surface whereas in the case of the disc the current density (i.e., the flux
of species) is not homogeneous and, indeed, is very high near the edge of the disc
(see Sect. 2.7).

The evolution of RS A versus the distance between the working and reference
electrodes has been plotted in Fig. 1.24 for the four geometries presented in
Table 1.5. From the curves in this figure, it can be seen that spherical and disc
geometries are the best at reducing the value of RS A and, therefore, of the ohmic
drop (see Eq. 1.200). This improvement becomes more evident as the electrode size
decreases (see Sects. 2.7 and 5.4).

Returning to the three-electrode setup, it could seem that no ohmic drop would
affect the measurement of the potential difference between the working and refer-
ence electrodes, since there is practically no current flow between both electrodes.
However, this is not totally true. The reference electrode is located at a given
distance from the working electrode surface, and, as a result of this separation, the
potential difference measured contains a part of the ohmic drop in the solution
which is called residual ohmic drop, IR, (with I being the current and R, the
uncompensated resistance). For more details concerning the minimization of the
ohmic distortion of the current—potential response, see Sects. 1.8 and 5.4.

It can be assumed, at least approximately, that the current for any electrochem-
ical technique can be expressed as the sum of a pure faradaic current because of the
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charge transfer process plus a charging current relative to the process of charge of
the double layer (see Sect. 1.6):

I = Ityragaic +1c (1202)

The particular form of the charging current will depend on the potential pertur-
bation. For the application of a potential jump from a rest potential to a constant
value E, AE = E — E. it is given by [12]:

I = 2—Ee* (_) (1.203)
)

with C,4 being the double-layer differential capacitance. Note that the product R,Cy
has dimension of time and it is usually denoted as the RC time constant of the cell.
This time constant establishes a practical limit for carrying out the measurement of
the current in order to avoid the influence of the charging current. An illustration of
this is seen in Fig. 1.25 in which the faradaic limiting current obtained by the
application of a constant potential at a macroelectrode (given by Eq. 2.28), the
charging current calculated from Eq. (1.203) for a time constant R,Cyq = 4 ms, and
the sum of the both have been plotted.

As can be seen in this Figure, for times close to zero, the total current is much
higher than the pure faradaic current, since at this time the charging current cannot
be neglected. From a practical point of view, under these conditions, times above
5R,C4 are required for a measurement of a current without the contribution of the
charging component (see the region on the right side of Fig. 1.25). Nevertheless, at
long experimental times there is a progressive involvement of convection into the
mass transport.
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However, it is important to take into account that the influence of the charging
current depends on the potential perturbation (for a more detailed discussion
concerning multipulse techniques, see Sect. 5.2.3.4).

1.10 Pulse Versus Step

There has been some controversy in the electrochemical literature concerning the
use of the terms “pulse” and “step” in relation to the potential perturbation used in
different potential controlled techniques, with no clear distinction between pulses
and steps [66]. A brief description of both types of perturbation is provided in this
section and a short discussion on the nomenclature is presented.

The term “pulse” has different meanings, but in signal processing it refers to “a
rapid, transient change in the amplitude of a signal from a baseline value to a higher
or lower value, followed by a rapid return to the baseline value” (see
Fig. 1.26a) [68].

In agreement with the above definition, a potential pulse of a given amplitude
presents a short duration 7 and it returns to its original baseline value, E ;.

A step is defined as a constant perturbation of variable duration (it is not
imperative that its duration is short; see Fig. 1.26b).

When a sequence of potential pulses and steps is considered (Fig. 1.26¢ and d),
no restrictions are imposed on the return to a given preestablished value as a
baseline in the case of steps (see Fig. 1.26d), whereas for pulses this return takes
place after the application of each individual perturbation (Fig. 1.26d).

Once the differences between both types of potential perturbation are clarified, a
question arises about the nature of potential-controlled techniques: attending to the
nature of the perturbation, are they pulse potential or step potential techniques? If the
pulse definition is applied in a strict sense, only Single Pulse Voltammetry is a true
pulse technique (see Scheme 2.1), whereas the rest of double and multipotential
techniques are indeed multistep techniques (see Sects. 4.1, 5.1 and 7.1).
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Fig. 1.26 Single potential pulse (a) and step (b) perturbations from a rest value of amplitude
E and duration 7. Arbitrary sequence of multiple potential pulses (c¢) and steps (d)

However, in the electrochemical literature the terms “pulse techniques” and
“multipulse techniques” are well established and commonly used to define a set
of potential-controlled techniques. In order to maintain this nomenclature, the
definition of “pulse” referred to the potential perturbation should be considered as
equivalent to that given for a step potential, i.e., without any restriction on the
duration of the perturbation and the return to a given resting potential. This will be
the criterion followed throughout this book.

There is another characteristic that all these techniques present: the current is
sampled at a given moment during the application of any individual potential of the
sequence (typically at the end of each applied potential), so the response is a
discrete collection of pairs of data (potential-current). Conversely, in the case of
techniques like Linear Sweep Voltammetry or Cyclic Voltammetry, the current is
recorded continuously (see Sect. 5.1).11

In conclusion, in Pulse and Multipulse techniques the perturbation is given as an
arbitrary sequence of constant potentials without any a priori restriction on the
duration of each individual potential of the sequence or on the particular waveform
employed, and the current is sampled at a pre-fixed time.

" Under these conditions, the potential perturbation is a continuous function of time.
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Chapter 2
Single Pulse Voltammetry: Reversible
Electrochemical Reactions
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2.1 Introduction

In a single potential step voltammetric technique, several constant potentials
(of increasing amplitude) are applied with a time length 7;. When stationary
electrodes are used, the time interval between two consecutive potentials must be
much greater than #; for the initial conditions to be restored (Scheme 2.1). If a Static
Mercury Drop Electrode (SMDE) is used, the initial conditions are simply restored
by making the drop fall. The measured current at a fixed time value ¢ = ¢, is plotted
discretely versus the corresponding potential steps [1-3]. The resulting current—
potential curve has a sigmoidal shape whose position and slope depend on the
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Scheme 2.1 Potential—
time waveform for Single
Potential Pulse
Voltammetry. E . is a
potential at which no
faradaic processes take
place at the electrode. Black
dots indicate the times at
which the current is
sampled and vertical dashed
lines correspond to the
recovery of the initial

equilibrium conditions
E rest| t 4

POTENTIAL

TIME

reversibility of the electrode process and the wave height is independent of the
electron transfer rate. At each fixed potential value, the current—time variation
(which has a typical cottrellian behavior for reversible processes at planar elec-
trodes when considering diffusive transport only) can be registered. If the length
time is in the range 2—200 ms, the electrochemical technique is called Normal Pulse
Voltammetry (NPV), originally known as Normal Pulse Polarography (NPP). This
technique was introduced by Barker [5—7] and it was originally designed for the
Dropping Mercury Electrode (DME), in which the potential pulse is applied at the
end of the life of the drop, with the current being dependent on the relation between
the pulse time and the drop lifetime. The main reason for measuring the current at
the end of short time intervals is to eliminate the capacitative component (see Sect.
1.9) in order to optimize the sensitivity. Today the DME electrode is scarcely used
and most electrochemical techniques are used at stationary electrodes

A complete comprehension of Single Pulse electrochemical techniques is
fundamental for the study of more complex techniques that will be analyzed
in the following chapters. Hence, the concept of “half-wave potential,” for
example, will be defined here and then characterized in all electrochemical
techniques [1, 3, 8]. Moreover, when very small electrodes are used, a stationary
current—potential response is reached. This is independent of the conditions of
the system prior to each potential step and even of the way the current—potential
was obtained (i.e., by means of a controlled potential technique or a controlled
current one) [9, 10]. So, the stationary solutions deduced in this chapter for the
current—potential curves for single potential step techniques are applicable to
any multipotential step or sweep technique such as Staircase Voltammetry or
Cyclic Voltammetry. Moreover, many of the functional dependences shown in
this chapter for different diffusion fields are maintained in the following chap-
ters when multipulse techniques are described if the superposition principle can
be applied.


http://dx.doi.org/10.1007/978-3-319-21251-7_1
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2.1.1 Reversible Electrode Reaction

For an electrode reaction to be considered reversible, it is necessary to compare the
rate of the charge transfer process and the rate of the mass transport of electroactive
species. When the mass transport rate is slower than the charge transfer one, the
electrode reaction is controlled by the transport rate and can be considered as
electrochemically reversible in that the surface concentration fulfills the Nernst
equation when a given potential is applied to the electrode. In Electrochemistry,
knowledge of the behavior of reversible electrode processes is very important, since
these can be used as a benchmark for more complex systems (see Chap. 5 in [1] and
Sect. 1.8.4 for a detailed discussion).

There are many examples of reversible (or nernstian) behavior.! For example,
the redox conversions of a great number of metallic complexes such as Ferrocene,
Ru(NH3)2+, or metallic cations like TI* (see Eq. (2.1) for the redox reactions in
detail®). It is important to highlight that the reversible behavior can also be obtained
in many cases by acting on suitable experimental parameters in the particular
electrochemical technique used. Under the appropriate experimental conditions,
the characterization of these types of processes can be applied to many systems.

Fc s Fct +e™
Ru(NH;);" + e Ru(NH;): " (2.1)
TI™ + e~ <TI(Hg)

2.2 Planar Electrodes

From a practical point of view, a macroelectrode can be considered as an electrode
whose characteristic dimension L is much greater than the diffusion layer thickness
(i.e.,in general L >> v/Dt, with D being the diffusion coefficient of the electroactive
species). For such an electrode, the geometry becomes irrelevant and it can be
considered as an infinite planar electrode for which, if the solution contains a great
amount of supporting electrolyte, the mass transport is governed by semi-infinite
linear diffusion (i.e., it can be assumed that mass transport occurs only in the
dimension x normal to the electrode surface) [11]. For this reason, throughout this
book, macroelectrodes will be referred as “planar electrodes.”
We consider an electrochemical reversible reaction

O+e¢ SR (2.1)

! An electrochemical reaction is called “reversible” or nernstian when the Nernst’s equation can be
applied to the surface concentrations of electroactive species for any value of the applied potential
(see Sect. 1.7).

2 The reduction of TI* takes place at a mercury electrode so the metals are amalgamated into the
electrode.


http://dx.doi.org/10.1007/978-3-319-21251-7_1
http://dx.doi.org/10.1007/978-3-319-21251-7_5
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The calculation of the concentration profiles of species O and R (co(x, ) and
cr(x, 7)) and of the current when a potential E is applied requires solving of the
following diffusion equations:

aCO - 3260
or 9 o2
B e (2.2)
CR o CR
or  Rox2
where D; is the diffusion coefficient of species i (= O, R).
The boundary value problem (bvp) is
t> O, X — O # *
t=0, x>0 } o = Cos (R = CR (2.3)

with ¢{, and cj being the bulk concentrations of species O and R.

The initial condition (# = 0) expresses the homogeneity of the solution at the
beginning of the experiment, and the semi-infinite condition (x — oo) implies that
the potential perturbation is not effective far from the electrode.

When the experiment begins, at the electrode surface (¢ > 0, x = 0) the flux

balance implies
Jco Ocr
Do == = Do == 2.4
O<ax)x—0 R(ax>x—0 ( )

Moreover, if nernstian behavior for the charge transfer reaction is assumed, the
following condition holds:

ey =elcg’ (2.5)
with
F ’
- (E- E?) 2.6
n RT( ¢ (2.6)

and ¢y and cg' are the surface concentrations of species O and R, i.e., the values of
the concentration profiles at.x = 0. Superscript “r”” denotes that the electrochemical

reaction is reversible. EC# is the formal potential of the redox couple O/R (see Sect.
1.5.1).
The current, according to Faraday law and Fick’s first law, is given by

aCo aCR

Plae — FAD (—) = —FAD (—) 2.7
°\ ox =0 f\ ox =0 @7

This problem can be easily solved by introducing the new variable,


http://dx.doi.org/10.1007/978-3-319-21251-7_1
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sf =—— {1 =0,R (2.3)

where superscript “p” denotes that the parameter s corresponds to planar diffusion.
By introducing s¥ parameter into Eq. (2.2), Fick’s second law takes the form:

de; deg .
Gop2 =0 i=0O,R (2.9)
awy
and the boundary value problem (Egs. 2.3-2.5) becomes
sP — 00
ci=c¢; i=0,R (2.10)
sf=0

\5"((160)5,:_0 _ _\/D_R<dﬁ)s;;_o (2.11)

P p
dsq dsg

co(sh =0) =e"cr(sk =0) (2.12)

Equation (2.11) refers to the flux conservation and Eq. (2.12) to the establish-
ment of the nernstian equilibrium. Note that under these conditions, the original
problem in terms of variables x and ¢ has been transformed into a one-variable
problem (s{’), that is, co and cg can be expressed only as functions of the variables
sty and sk, respectively (which include distance and time variables), because they
diffuse with different diffusion coefficients Do and Dg. This problem can now be
solved by making y; = dc;/ds?, and Eq. (2.9) becomes

dy;

dsi‘+2s§’yi =0 i=0,R (2.13)

whose direct integration leads to

¥ = 3, (0)e ()’ (2.14)

. . 2
(d_cl;) — <d_c;)> e () (2.15)
dsi dsi'/ p—o

By integrating (2.15), one obtains

or,
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ci(sh) =ci(sP =0) + (d—cp> ﬁeﬁ(sf) i=0,R (2.16)
dsi sP=0 2

By introducing condition (2.10) in Eq. (2.16), it can be deduced for sip — oo that

(§5), =5l —atr=0) 2.17)
So, Eq. (2.16) becomes
Q) =al =0+ —all =0)ert(d) @19
which can be written more conveniently as

co(x,1) = co(sh) = co + (co

cr(x, 1) = cr(sR) = cg + (cr(s

) - Cﬁ))erfc(sg) } (2.19)

5o =0

R =0) — cg)erfc(sy)

with erf(z) being the Error function of “z” given by erf(z) =2/ \/EJ ¢ du, and
0

erfc(z) = 1 — erf(z).
From Egs. (2.11), (2.12), and (2.17), the surface concentrations co (s(p) = O)
= ¢’ and cg(sk = 0) = cg" are obtained,

W ¢ (reo + cr)

o =
R (2.20)

cs,r _ 7CO + CR

R ™ 1+ yen

with
Do
=4/ 2.21

7= \De (2.21)

From Eq. (2.20), it is fulfilled that
V/Docy' + vVDrey" = v/Docg + VDreg (2.22)
2.2.1 Concentration Profiles

Equations (2.19) show the concentration profiles for species O and R. The linear
concentration profiles of these species correspond to the lines tangent to c;(x, ) at
the electrode surface (i.e., at x = 0) and are given by
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Ci(

X, t

*k

C:

S, T

_Ci

)=
) 6:)’1

1

From Egs. (2.4), (2.8), (2.17), and (2.19),

(). (

dei
ds?

)

as}’)
Ox x=0

Jk S, T
_4G =4

Vv rD;t

x+c&" 1i=0,R

i=
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(2.23)

(2.24)

Hence, by comparing Eqs. (2.23) and (2.24) it can be deduced that Nernst
diffusion layer for a planar electrode, 5;’1, is defined as

5;,1 = /nD;t

(2.25)

In Fig. 2.1, we have plotted the transient accurate concentration profiles for
species O, co(x, 1) (Eq. 2.19), and the linear concentration profiles (Eq. (2.23)) at a

Fig. 2.1 Concentration
profiles of species O at a
planar electrode calculated
from Eq. (2.19) for the
application of a potential
pulse for different values of
(E — Ef) (in mV) for a
fixed time (a), and different
values of time (in s) for a
fixed potential (b), shown in
the curves. Dashed lines
correspond to their linear
concentration profiles.
t=01 s and E — EX
= =500 mV (b).
Reproduced with
permission [12]
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fixed time and different potential values (Fig. 2.1a), and at a fixed potential and
different times (Fig. 2.1b).

From Fig. 2.1a, it can be observed that the Nernst diffusion layer, defined by the
abscissa at which the concentration reaches the value c¢, in the linear concentration
profile, is independent of the potential in all the cases in spite of their having been
obtained under transient conditions. This is in agreement with Eqgs. (2.20) and
(2.25), which show that the dependence on the electrode potential is only in the
surface concentrations.

Figure 2.1b shows the time dependence of the concentration profiles. It can also
be observed that the perturbed region of the solution adjacent to the electrode
surface grows with time and the relative difference between the linear diffusion
layer and the accurate diffusion layer (determined as the value x for which co
reaches the 99 % of its bulk value) is greater for shorter times [12].

2.2.2 Current-Time Curves (Chronoamperometry)
and Current—Potential Curves (Voltammetry)

By inserting Eq. (2.24) in (2.7), the following expression for the current is obtained:

Iplane — FADO ((’:) B C(S)’r) — _FADR ((/; - c;’r)

s Sl (2.26)

By taking into account Eq. (2.20), the current given by (2.26) becomes

e — FA, Do (o — x") (2.27)
at 1+ yel
with 5 given by Eq. (2.6).

Note that the reversible I(E, ) response is expressed as a product of a potential-
dependent function ((c;, — cge”)/(1 4 ye")) and a time-dependent function (FA
v/Do/(xt)). This behavior is characteristic of reversible electrode processes. In the

next sections the current—time curves at fixed potential (Chronoamperograms) and
current—potential curves at a fixed time (Voltammograms) will be analyzed.

2.2.2.1 Chronoamperometry

Expressions for the cathodic and anodic diffusion-controlled limiting currents, /"

and Igfzme, can be easily obtained from Eq. (2.27) by making €7 — 0 and 7 — co

(e., EK Efl and £ > E;e’/ ), respectively. For a simple charge transfer the
diffusion-controlled limiting current can also be defined as the current at which
the electrode reaction is forced by the applied potential to the point that the surface
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concentrations of electroactive reactant species fall to zero and then the current is
only limited by the diffusion transport. Hence, Ig%'z“e and Ig%:ne can also be obtained

by making c¢" = 0 and cg" = 0, respectively, in Eq. (2.26),

Do .
19 = FA [ =2,

”;) (2.28)
Iplane — _FA [ZRx
d,a it Cr

These two equations are known as the Cottrell equations [13]. Equations (2.27) and
(2.28) show that the current decays with the square root of time for any value of the
applied potential, which only acts as a scale factor, as illustrated in Fig. 2.2. These
equations predict very high current at short times, although in practice, the measured
current at very short times is influenced both by the intrinsic limitations of the
potentiostat and by the cell time constant, with the time needed for the fulfillment of
Egs. (2.27) and (2.28) being higher than R,C4q (with R, and Cg4 being the
uncompensated resistance of the cell and the double-layer capacitance; see Sects. 1.6
and 1.9). For sufficiently longer times, deviations from the cottrellian behavior are
expected because of the natural convection, that is, the movement of the solution due to
density differences, and edge effects, due to nonlinear diffusion at the electrode border.

The measurement of limiting currents is probably the simplest and most widely
applicable method for measuring the diffusion coefficients of redox species. In
agreement with Cottrell’s equation, the value of D; can be obtained from the plot of

40 A
<E1 slope=—1/2
~ 3]
()
30 - g
o 2
=
£

/ plane/ F"A

0.0 0.5 1.0 15 2.0
t/'s

Fig. 2.2 Current-time curves for the application of a constant potential to a planar electrode.
Do=Dr=10"cm’s ™", c§ = ci = 1 mM, A=0.031 cm® T=298 K. The values of (E - Ef)

inmV are: red, —25; green, —50; blue, —75; black, —100. The inner figure corresponds to the plot
of the logarithm of the current versus the logarithm of time
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the lograrithm of the limiting current versus the logarithm of time (see inner black
curve in Fig. 2.2), by using the relation
77762 xintercept

D; = Ay (2.29)

Additionally, a slope equal to %2 confirms the validity of Eq. (2.28). Note that the
Cottrell equation considers planar diffusion as the sole form of mass transport.
However, in practice, purely planar diffusion is only achieved with very large or
shielding electrodes. Deviations from cottrellian behavior at short times (double-
layer current) and long times (convection,” edge effects*) would restrict the appli-
cability of the above equation (see Fig. 2.3).

2.2.2.2 Voltammetry

At a fixed time, the current—potential curve obtained from several potential step
experiments has the sigmoidal shape shown in Fig. 2.4. This curve shows some
interesting points:

— The potential corresponding to a current /P'a" — (I g};‘“e + Ig};"e) /2, is called

“reversible half-wave potential,” E} /20 in planar geometry. This parameter can
deviate from the formal potential because it is affected by the diffusion coeffi-
cients of the electroactive couple and also by the electrode geometry and size
(i.e., it is affected by the kinetics of the mass transport); see Fig. 2.21.

To find this point, it is necessary to combine Eqs. (2.26) and (2.28),

i,
CE) Ig,lgne

(2.30)
C; Ig’l;me

By inserting Eq. (2.30) in the Nernst condition (Eq. 2.5), one obtains (see also
Chap. 7 of [3]),

 RT Dr 1/2 RT [(ﬁ’]a“e _ gplane
—F© L - _ e -
E=E- + 7 In (Do) + 7 In Jpiane I(]jal;me (2.31)

SO, for Iplane = (](Ij)’lg‘ne + I(}ilgne) /27

3 Natural convection associated to temperature or density gradients or vibrations is present in the
usual experiments [14—16].

* Enhancement of the diffusion flux at the edge of an inlaid electrode.


http://dx.doi.org/10.1007/978-3-319-21251-7_7
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Fig. 2.3 Experimental
current—time curve (a) and
logarithmic curves (b) for
the application of a constant
potential to a graphite disc
electrode of radius 0.5 mm
(planar electrode) for the

reduction of Fe(CN),™.
CFe(CN)g’ = ZmM,

A=0.0078 cm?, T=298 K.
E=-0.1V vs. Ag/AgCl,
KClI (saturated). From the
logarithmic analysis in (b)
(restricted to the Cottrellian
region, i.e., the red line), the
following values have been
obtained: slope: —0.48,
intercept: —0.475. The
diffusion coefficient of
Fe(CN), ™ obtained by
applying Eq. (2.29) is
1.15%x10"% cm? s ™!
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— Another important point of the /-E curve is the crossing potential or “equili-
brium potential” for which the current takes a null value, / plane — () (gee Fig. 2.4a).
By inserting this condition in Eq. (2.27),
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Fig. 2.4 Current—potential curve corresponding to the application of constant potentials to a

planar macroelectrode, calculated from Eq. (2.27) with cR/co =0.5 (a) and O (b). r=0.1 s,
A=0.031cm? Do =107 cm?s !,y =12

. RT. [
Egq = ES +—n (2—0) (2.33)
R

Otherwise the I-E—t response (Eqs. 2.26 or 2.27), when only the oxidized
species O is initially present in the electrolytic solution, is simplified to
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Do o papul6-8) i
Iplane _ FA\/—: [6) — FAD "0 "0/ = FAD R 2.34
zt 1+ yen Nz * /aDxt 23

Under these conditions only a cathodic wave is obtained (see Fig. 2.4b) and
Eq. (2.31) takes the simpler form:

RT Iplﬁﬂe _ Iplane
E:E{/z +F1n(¢clpldne (235)

with the normalized current—potential curve having the following time-independent
expression:

Iplane 1 1

plane = = n
Iy 14 e%(EfEr ) 1+vye

(2.36)

1/2

This is a consequence of the form of the reversible /-E—¢ response.

Note that the plot of E vs. ln<<1 g’lzne - Ipla“e> / (Iplame —1 fl”lzne)) (or vs.

ln((l g’lgne —1 pl"‘"e) /1 pla“) when R species is not initially present) is linear with a
slope 26 mV (if T'=298 K) and intercept equal to E} /2 This slope is characteristic
of reversible charge transfer processes. There are other reversibility criteria based
on the difference between potentials £ , — E{ ,, corresponding to the currents / plane
= (3/4)13%" and [ = (1/4)10%", with this difference being 56.4 mV (See
Chap. 5 of [2]; [17] and Fig. 2.4b).

The analysis of the E vs.ln ( (I g’lg"e - ]Plane) / (I plane _ 7 5‘;‘“6)> curve provides not
only a reversibility criteria (from the measurement of the slope of the resulting linear

plots), but also provides direct evidence that only one electron has been transferred and
a direct measurement of the reversible half-wave potential, £] /20 which is a funda-
mental parameter of the redox system in a given supporting electrolyte solution. £7 P
is closely related to the formal potential (Eq. 2.32) and affected by the diffusion
coefficients of the oxidized and reduced species. The half-wave potential varies with

the size and shape of the electrode used because it depends on the characteristics of
mass transport considered (see Fig. 2.21 in Sect. 2.6).

2.2.3 Stoichiometric Coefficients Different From the Unity

A variation of reaction Scheme (2.]) is considered here by assuming other stoichio-
metries, in line with the reaction scheme [1, 2]:


http://dx.doi.org/10.1007/978-3-319-21251-7_5
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voO + ne” SwrR (2.10)

where 7 is the number of electrons transferred and vg and vg the stoichiometric
coefficients of species O and R, respectively.

The mass transport and the initial conditions are also given by Eqgs. (2.2) and
(2.3), but the surface conditions are now

t>0, x=0:
Do aCo - DR aCR
2(50) = (%) 237
(c8")" =e"(eR)™ (2.38)

where 7 is given by Eq. (2.6).

As previous sections, by using the variable s” (Eq. 2.8), the differential equation
system (2.2) and the surface conditions (2.37) and (2.38) become dependent only on
s¥ variable:

i

D VR

P
Osk

VDo (0 VDr (0
° ( CO) = YR ( CR) (2.39)
s]g:O
(co(sh =0))" =e"(cr(sh =0))™ (2.40)
Therefore, the surface fluxes and concentration profiles of speciesi (i = O, R) are
also expressed by Egs. (2.16)—(2.18). From Egs. (2.17), (2.39), and (2.40), it is
possible to obtain the expression for the relationship between the potential and the
surface concentration of species O:

s,r\ Vo
E=E® +R—£1n ' VECO*) — (2.41)
A () (6 - e

with y given by Eq. (2.21).
The expression of the current is

FADo (co —cg")

e = 2.42
Dot Vo ( )
with the limiting current being
FADq cf
e — 7270 Co (2.43)

de /Dot vo

By solving c?)’r and ¢ in Eqgs. (2.42) and (2.43) and inserting them into (2.41), it
is obtained
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Vvo—V plane plane vo
vo t oTR (1 d,e I )
o ( vt ) (2.44)

FA\/Dg (I(ﬁ’lime)vk

Equation (2.44) transforms into (2.31) for the case vo = vg = 1 (with I3, = 0).

E—e® + 8y, :
¢ nF (vry)™

The expression of the half-wave potential is obtained by making /P'#" = | g}?ne /2in
(2.44),

, RT DR 1/2 RT (C*O)vo*VR
r=E® —In{ — —In| ——=¢ 2.45
1/2 c TR oF n <Do> + oF n v (»_R> R ( )
vo

From these expressions of the half-wave potential it can be inferred that, under
these conditions, it depends on the bulk concentration of oxidized species and on
the particular values of vg and vg.

2.3 Ion Transfer Through Liquid Membranes

The study of the ion transfer through artificial liquid membrane systems is impor-
tant for the elucidation of the ion transfer through biological membranes. In this
respect, the Interface between two inmiscible electrolyte solutions (ITIES) consti-
tutes a biomimetic medium suitable for studying several fundamental processes,
ranging from biocatalysis to cellular respiration of photosynthesis, and many others
[18-22]. The first studies of liquid/liquid interfaces (L/L) under the application of
an external potential were carried out by Gavach et al. [23], laying the basis for the
current electrochemical treatments of ITIES.

The membrane system considered here is composed of two aqueous solutions w
and w,, separated by a liquid membrane M, and it involves two aqueous solution/
membrane interfaces: w;/M (outer interface) and M/w, (inner interface). If the
different ohmic drops (and the potentials caused by mass transfers within wy, M,
and w,) can be neglected, the membrane potential, E);, defined as the potential
difference between w; and w,, is caused by ion transfers taking place at both L/L
interfaces. The current associated with the ion transfer across the L/L interfaces is
governed by the same mass transport limitations as redox processes on a metal
electrode/solution interface. Provided that the ion transport is fast, it can be
considered that it is governed by the same diffusion equations, and the electro-
chemical methodology can be transposed en bloc [18, 24]. With respect to the
experimental cell used for electrochemical studies with these systems, it is neces-
sary to consider three sources of resistance, i.e., both the two aqueous and the
nonaqueous solutions, with both ITIES sandwiched between them. Therefore, a
potentiostat with two reference electrodes is usually used.
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SFheme 22 A schemgtic a One polarized interface
view of the systems with Eq E;
one (a) and two (b) i £
polarized liquid/liquid aqueous phase (w;) membrane (M) aqueous phase (W)
interfaces: outer (w;/M) and CHA— XA T BtA-
inner (M/w») '
B* (M) ——» B (wp)
X*(w;) —f— X+ (M)
L —> -0 %1=0 %=d L —>®

(a)

(b)

b Two polarized interfaces

Eq E>
aqueous phase (wy) membrane (M) aqueous phase (w,)
BtA~, XA~ R*TY~ BtA~
R* (M) —1— R* (w,)
X*(wy) —F— X* (M)
X —>—0 x=0 x=d L —> 0

The ion transport through membrane systems can be studied in two forms:

By using a common ion in the organic membrane and in one of the aqueous
phases, such that it can be assumed that the external polarization is only effective
at one interface of the membrane, and the current corresponding to a given
applied potential is only determined by the transfer of the target ion at one of
the interfaces, since the other acts as a reference interface (see Scheme 2.2a).
In the case of a very hydrophobic supporting electrolyte in the membrane for
which it is not possible to have a common ion in the electrolyte of the aqueous
phases, a design like that shown in Scheme 2.2b is used. In this situation, both
liquid/liquid interfaces in the membrane system are polarized (and the charge
transfer reactions are linked to each other through the fulfillment of the
electroneutrality of the membrane). These polarization phenomena can be
described in terms of the individual electrochemical processes occurring at
the two interfaces, which are coupled by virtue of the same intensity of
electrical current (in order to maintain the electroneutrality of this system).
Moreover, Kihara et al. demonstrated that the useful potential window that this
system provides is much wider than that available when only one interface w/
M is polarized [25-27].

2.3.1 One-Polarized Interface Systems

Many of the systems used for electrochemical studies of ion transfer processes
taking place at the ITIES are systems of a single polarized interface. In these kinds

of

systems, the polarization phenomenon is only effective at the sample solution/
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membrane interface, since the potential drop through the other interface is kept
constant whatever the nature of this interface (i.e., either liquid/liquid or solid/
liquid [28]). In the specific case of a membrane system that separates two aqueous
solutions, the non-polarizable interface is achieved by adding a sufficiently high
concentration of a common ion in the membrane and inner aqueous solution, by
choosing as supporting electrolyte two salts of this common ion with lipophilic and
hydrophilic counterions, respectively.

Let us consider the transfer of a cation Xt between the aqueous phase (w;) and
the organic phase (M),

Xt (w)) 5 XT(M) (2.110)

The distribution of the cation X" between both phases in contact leads to the
development of a potential drop across the interface,

AN ¢ = d(w1) — p(M) (2.46)

where ¢ (p) is the inner potential of the phase p (=w; or M). This equilibrium
potential difference, when X* is the only ion that can be transferred, obeys the
Nernst equation:

w w RT_ [a¥\ wio RT [cXh
AV = AV s + 7ln <a§'+> = AV P + ?ln <c§'+ (2.47)
with Ay qﬁfﬁl being the formal ion transfer potential given by
: RT [f3
AV b = Ao +—1In ! > (2.48)
F It

where R, T, and F have their usual meaning and ag’ﬁ, ffw and c§+ are the activity,
activity coefficient, and concentration, respectively, of the ion X" in the phase p
(=w; or M). Ay qﬁxﬁ is the standard ion transfer potential, which is related to the
standard Gibbs energy of the transfer of X*,
M e
_ AW| (;XJr

A == (249)

The standard Gibbs energy of the ion transfer is a direct measurement of
lipophilicity, and is related to the standard partition coefficient of the ion in the
biphasic system through the following equation:

o ( auag
x+ = €Xp (2.50)

From the transposition of the theory for NPV to the study of the uptake of a
target ion X from an aqueous sample solution to a liquid membrane, the theoretical
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equations obtained with the semi-infinite diffusion model can be used to quantify
the current response of the ion transfer. The major difference between ionic transfer
through and membrane and electronic transfer at a solid electrode is that the
boundary condition corresponding to the flux conservation is given by

wi 8C§L M acgﬁ
o (F) L o (). 251

since the concentration of ion X" decreases from the aqueous bulk to the membrane
surface (i.e., for —oco < x < 0) and decreases from the membrane surface to the
membrane bulk (i.e., for 0 < x < co). However, as the planar diffusion operator is
symmetrical with respect to the x-coordinate, this change does not affect the
solution of the differential diffusion equations. So, the equation for the current in
NPV of a reversible ion transfer can be written as

I ye
Ig  14yen

PR T (2.52)
I e

where
' RT. (1
L =AM +ln<) 2.53
1/2 M Px F v ( )
. |D¥:
Iy =FAcy- ﬂXt (2.54)
F !
0= ﬁ(E — AV ;?) (2.55)
1/2
DM
y = ( §1> (2.56)
Dy.

with Ay} ¢f§l being given by Eq. (2.48). From Eq. (2.52), E} Jp can be easily
determined and also the standard ion transfer potential Ay ¢y once the diffusion
coefficients are known. Table 2.1 shows the values of A}/ ¢y for some ionic liquid

cations.

2.3.2 Two-Polarized Interfaces Systems

In these kinds of systems, the polarization phenomenon is effective at the two
interfaces involved. Specifically, in membrane systems comprising two ITIES, this
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Table 2.1 Standard ion transfer potentials of different N,N-alkylimidazolium and 1-butyl-4-
methylpyridinium ionic liquid cations [29]

Cation type R AI\",“I(/))? (mV) A\ff Gxe, (kJ/mol)
/@\ C4Hy —24.2 —2.33
N N Cg¢Hs —53.2 —-5.13
HoT TR CeHys 932 ~8.99
CgHy; —162.5 —15.68
/ \ C4Hy —35.2 —3.39

C,Hy —51.5 —-4.97
( > +
HsC N\R

behavior is achieved when the membrane contains a hydrophobic supporting
electrolyte and the sample aqueous solution (the inner one) contains hydrophilic
supporting electrolytes, and there is no common ion between any of the adjacent
phases. In this case, the potential drop cannot be controlled individually and the
processes taking place at both interfaces are linked to each other by virtue of the
same electrical current intensity. Systems of two-polarized interfaces have shown a
series of peculiarities that can be advantageous when studying ion transfer pro-
cesses. Indeed, they provide a potential window about twice that of one-polarized
interface systems, the signals of cations and anions with similar standard ion
transfer potential values appear widely separated when these systems are used,
and the half-wave potential of the ions in these systems is influenced by their
concentration.

In Scheme 2.2b interface w;/M is the outer or working interface, and interface
M/w3, is the inner interface (not a reference interface).

The theoretical characterization of the response of this kind of membrane
systems in electrochemical techniques is very interesting for determining thermo-
dynamics and transport parameters of ions.

According to Scheme 2.2b, to solve this problem we must find the following
unknown variables.

— At interface wi/M: The concentration profiles of the target cation at both sides of
this interface (cg‘+ and c)lz’i) and the potential drop E;.

— At interface M/w,: The concentration profiles of the cation R™ of the supporting
electrolyte of the membrane at both sides of this interface (CIIQ’I+ and c:{i) and the
potential drop E». Note that it has been assumed that R is being transferred at
the inner interface, coupled with the transfer of X* at the outer one, in order to
maintain electroneutrality.
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c;, and c;+ are the initial concentrations of the target ion in aqueous phase w;
and of the electrolyte cation R™ in the membrane, respectively.

Indeed, this is a problem with five unknown variables, the four concentrations
above indicated and one of the potential differences at the two interfaces, E; or E»,
since they can be reduced to one potential difference because Eyy = E| — E; is
known. Four differential equations and the additional condition of equality of the
fluxes of the target ion X" and the cation R" at the outer and inner interfaces,
respectively, will be used to obtain the explicit //Ey; curve and the concentration
profiles of all the species.

Interface w{/M or Outer Interface
The differential equations and the boundary value problem (bvp) which can be
fulfilled by C¥L and c% if the thickness of the membrane is greater than the diffusion

layer of X' into the membrane are:

ocy! %™
Xt W X+
3 = Dyl R (2.57)
2
ocih _pM 0 e (2.58)
ot X' a2 '
in phase wy:
t=0, x<0 Wi *
t>0, x— —o0 } Ox+ = Ox+ (2.59)
in phase M:
t=0, 0<x<d
t>0, x=0:
cxh = el (2.61)
o ocM
D (X)) =DM (=X 2.62
X+< Ox >x—() X}( Ox )x—() ( )
with
F Wi -6"
m= ﬁ(El — Ay ¢X+) (2.63)

and E| is unknown.
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Interface M/w, or Inner Interface

ocY? %™
RY _ nyw R
K ppr S8 (2.64)
ocM *cM
51: :D%Tﬁ + migration term (2.65)
x

Inside the membrane, the transport of R* takes place by diffusion and ionic
migration and is described by a very complex differential equation. However, since
the current is controlled by the diffusion of the target ion X and since c]; in
membrane is high enough, it will be assumed that the R* concentration is constant
in all the membranes, i.e., in 0 < x < d. Therefore, Eq. (2.65) can be changed for
the following condition:

e (x,1) = cps (2.66)
in phase M:
; N 8: gi)f d} M =ch. (2.67)
in phase wj:
ot} e 2
1>0, x=d: ct =ePc}? (2.69)
or, according with (2.66):
cpe =Ry} (2.70)
where
;72 :E(ErAg{gﬁlff) (2.71)
RT 2

and E, is unknown.

The solutions of both problems are simple due to their separate character, with
each of them corresponding to the response of reversible charge transfer processes,
in such a way that the following is obtained for interface w;/M:

w
DY

it

I, =FA (cx+ — c%L(0)) (2.72)



88 2 Single Pulse Voltammetry: Reversible Electrochemical Reactions

and

+ RT 1 RT 1

DY,
Is = FA ;‘; Cyr (2.74)

DM

X+
=1/ (2.75)
X‘l*’

D
= FA|[E2 (d) (2.76)

By taking into account that the transfer of R through M/w interface also occurs
reversibly, and that the current through both interfaces is the same, i.e.,I; =1, =1,
it can be deduced:

with

For the interface M/w:

RT Cost RT . (14
E, = AM In[ =R | +=1 2.77
¢X+ +—= F (72C;+> + F n(1> ( )
with
DY
Y) = D—iij (2.78)
>

By subtracting equations for £ and E,,

RT  (2(Ix)*
EM=E, —E, =EM, + ln<(N)> (2.79)

where:
In=—= (2.80)

' RT_ (1
EY,=EM*® +ln<> (2.81)
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2,/Dy:DYL
g =V RTTXD Cre (2.82)

D;L c;
EMC =AY o — AN pg (2.83)

Equation (2.79) provides the expression of the membrane potential E™ (applied
potential) as a function of the normalized current Iy at this potential (measured
current, which is not known). So, by working out the current from the above
equation we deduce the following explicit expression for the current obtained in
single potential step voltammetry as a function of the applied potential:

DY,
I =FA ;‘t cx-8(n) (2.84)

where g(#) is the function that contains the dependence on the applied potential for
this kind of membrane systems and it is also fundamental in the current—potential
response deduced for any voltammetric technique [30],

V A%e21 + et — Jelt
g(n) =

4
ﬂ:i( M_EM,e’)
RT

(2.85)

If coupled to the transfer of the target cation, through the outer interface, the anion
of the supporting electrolyte of w; is transferred through the inner one; Egs. (2.84)
and (2.85) are still valid for changing A for 1™,

2,/DM DM
= VR e (2.86)

= & K
Dxl+ Cyr

By comparing this solution with that obtained for only one polarized L/L
interface (Eq. 2.52), it can be observed that both are formally similar if we change
g(n) function for the sigmoidal function ye/(1 + ye"). The different behavior of
both responses is shown in Fig. 2.5, which corresponds to the transfer of a target
cation X' from water to a plasticized polymeric membrane in a system of one and
two L/L polarized interfaces (dashed and solid line, respectively). It can be seen in
Figure 2.5a that when the two interfaces are polarized, the I/E curve behaves in a
similar way to that corresponding to an irreversible process with only one interface.
Figure 2.5b also shows how the I/E curve corresponding to the applied potential
(or the membrane potential) is the sum of the curves corresponding to the outer and
inner potentials.

Note finally that in the case of two-polarized interface systems, the plots of the

membrane potential E™ versus In (Z(IN)2 /(1 — IN)> are linear with a slope equal to

RT/F and an intercept Ell\’;z.
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Fig. 2.5 (a) Normalized a
current—potential curves 10
corresponding to a system g e
with two polarizable liquid/ N
liquid interfaces (solid line; 0.5 | one polarisable interface "
see Eq. (2.84)) and to a .
system with one polarizable ,'
interface (dashed line; see 06 1
Eq. (2.52)). (b) In/EM (solid ,'
line), INJE| (dashed line), I}
and In/(—E,) (dotted line) 04 "
calculated from Eqs. (2.84), I
(2.73), and (2.77), ,' . .
respectively. 024 two polarisable interfaces
AV g = —224mV,
AM@E = —304mV, oo 2 ' ,
DY =Dy: = 1073 em? s, -400 -200 0 200
D)':’[A =10"% cm?s7!, EM / mV
ey =0.1mM, b
g =50 mM, T=298.15K.
Reproduced with permission 1.0
[30] Iy
0.8
0.6 4
0.4 -
0.2
0.0 : . = . .
-300 -200 -100 0 100 200 300

EM-E}, E-E}, (-E)-E}/mV

2.3.3 Electron Transfer at the Liquid/Liquid Interface

In this section, we will consider the transfer of electrons between an oxidized
species O; in an aqueous phase and a reduced species Ry in an organic phase, as
illustrated in reaction Scheme 2.3

The global process can be written as

0x;" + R} SR} + Ox; (2.1V)
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Scheme 2.3 A schematic
view of an heterogeneous

redox reaction at a liquid/
liquid interface

(W) ‘

(0)

To solve the mass transport equations corresponding to this process, it is
necessary to consider the arrival of two reactants in different phases at the surface
and the departure of the two products from it, so four differential equations should
be considered [31]: two for the aqueous phase,

aCOX1 — Do achXl
= Do, >
a?f az‘?x (2.87)
CR, — Dy CR,
ot ' Ox?
and two for the organic one,
aCon o Do 82c0xZ
= Do, >
a?t 825}6 (2.88)
CR, _ CR,
ot R 702

The boundary value problem is the following:
t=0, Vx

#
Cox; = Cox,
*

R = Ry (2.89)

E3
COX2 = (/Oxz

*
CR2 = CR2

t>0, x— —o0

Cox, = iOXI } (290)
ch = CR1
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t>0, x— o0

€0 ™ ‘o } (2.91)

t>0, x=0

Ocox Jcr
Dox () _, P (1), =0

Ocox oc (292)
Dows(52) _, P (35, =0

The solutions to the four differential equations given by Eqs. (2.87) and (2.88)
can be obtained easily by introducing the s parameter defined in Eq. (2.8). Once
this parameter is inserted in the above equations, the following general solution for
the concentration profiles is obtained by following a similar procedure to that
described in Sect. 2.2:

ci(x, 1) = ci* + (ci(O) — cf)erfc(sip) with 1= Ox;, R;, Ox,, and R,
(2.93)

Note that erfc(x) = 1 — erf(x) for x > 0 and erfc(x) = 1 4 erf(x) for x < 0.

From this equation, it is possible to calculate the surface gradients of the four
species. If we assume that the diffusion coefficients of all of them are equal
(Dox, = Dr, = Doy, = Dr, = D), then,

VDt (2.94)

The current is given by the following relationship:

_ aCOxl
1= FAD( 5 )Y_O (2.95)

Taking into account Eqs. (2.92), (2.94), and (2.95), we get the following
expressions for the surface concentrations of the four species in terms of the
current:
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o (0) = — =+ o
FAy/—
it
CR, (0) = D + C;{l
FAy | —
IS (2.96)
COXZ (O) D + C0X7
FA\/ —
it
CRZ (0) = D + CE?
FAy | —
it

The equivalent of the Nernst equation for the above process at the interface is

W AW RT CR, (O)COXZ (0)
AJp=Ad" + ?ln (76_0)(1 0)cx, (0)> (2.97)

which can be rewritten as

In+ f‘l) (1 +&)

el = CR, (O)COXZ (O) _ ( N Cox) N Cox, (2 98)
cox, (0)cg, (0 '
OXI( ) RZ( ) (_1N+1)(_1N+;§:)
with
F w w G/
n= R_T(Ao - A0 ¢ ) (299)
1

In= (2.100)

By working out the current in terms of the potential, the following quadratic
equation is obtained:

B(e"—1)—Ix[e"(1+p) +a+y] +e'B—ay=0 (2.101)
with
CR,
a=—
COX[
C*
p=-2 (2.102)
COX1
r= Cf’z
COxl
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Fig. 2.6 Normalized current—potential curves corresponding to a heterogeneous redox reaction at

a liquid/liquid interface calculated from Egs. (2.102) and (2.103). The values of coefficients a, 3,
and y are: (a) 0, 1,and 0; (b) 1, 1, and 0; (c) 1, 1, and 1

Finally, the current corresponds to the following root of Eq. (2.101):

@1+ 8) +a+ 7] — (1 +§) + at 7 —4(er — 1)(ep—ar)
2(en — 1)

Iy =

(2.103)

Figure 2.6 plots the NPV response of a redox reaction at a liquid/liquid interface
for different values of the ratio of concentrations a, 8, and y (see Eq. 2.102). As can
be seen in these curves, the presence of the products of the redox reaction at the
aqueous phase R leads to a shift of the response toward more positive potentials
(curve b), whereas the presence of species O, allows the attainment of negative

currents for negative values of AY¢p — AV .

2.4 Dropping Mercury Electrode (DME)

Although nowadays the DME electrode is scarcely employed, it is of a great
historical importance since it allowed the development of the first voltammetrical
technique, Polarography, designed by Jaroslav Heyrovsky (Fig. 2.7). A DME
consists of a glass capillary of 0.05-0.1 mm of internal diameter from which
mercury flows forming spherical drops (see Fig. 2.8). This electrode has two
characteristic parameters: the flow rate m (mass of mercury per unit of time) and
the drop life time #;. By assuming that the electrode has spherical shape at any
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Fig. 2.7 A portrait of
Jarovslav Heyrovsky, Nobel
Prize for Chemistry in 1959
“for his discovery and
development of the
polarographic methods of
analysis.” Source: archiv
UFCH J. Heyrovského AV
CR, v.v.i. http://www.jh-

inst.cas.cz

Fig. 2.8 A schematic view
of a Dropping Mercury

Electrode Reservoir

of mercury

Valve for allowing
the flux of mercury

Three-electrodes
cell
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moment, the radius and the area of the drop at any instant during its growth are (see
Chap. 2 of [3]):

3mr\ /3
=(— 2.104
e () o
3me \ 2
A(t) = dmrdyy = 4n <471X%> = 0.85m%/32/3 (2.105)

with 0 < 1 < 11, p being the mercury density in g cm >, m being expressed in g s~ ',
tin s, and the area in cm?.

The DME presents special features derived from its homogeneous and isotropic
drops, small size, and periodical renewed surface so that the current on each drop
rises from zero to its maximum value toward the end of the drop life. Moreover, it is
well known that mercury has the highest overpotential for hydrogen evolution,
which enables polarization of the electrode to very negative potentials.

Two different ways of operating with a DME will be described in this section. In
the first, called “dc Polarography” (dcP), the potential step is applied from the
beginning of the drop life with electrolysis taking place during the whole drop life.
The other way consists of applying a potential pulse only at the end of the drop life
for a short time called pulse time (1-200 ms), after which the potential returns to the
initial value. This last technique is called Normal Pulse Polarography (NPP). In the
first technique, the voltage varies linearly with time very slowly from an initial
value, so it can be considered almost constant for each drop during the whole drop
life. The polarographic potential—current curve presents regular oscillations due to
the repetitive drop growth and fall. This feature prompted the application of
dumping systems, and thus most of the theoretical expressions have been derived
for mean currents. As will be seen below, for reversible electrode processes,
the instantaneous current during a single drop varies with ¢'/° following an
“Ilkovician” behavior.

2.4.1 dc Polarography

Theoretically, the modeling of the electrochemical response corresponding to the
application of a constant potential to a single drop presents an additional compli-
cation over stationary electrodes due to the convection caused by the growth of the
mercury drop toward the solution. Under these conditions the temporal variation of
the concentration of electroactive species is related both to the diffusion component
and to convection. This problem was solved by Koutecky by using the expanding
sphere electrode model (see Eq. 2.119), although the first model that treated this
electrode was proposed by Ilkovi¢ [32], and is known as the “expanding plane”
model, and assumes linear diffusion in the way,
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le) % Joci .
a_tl:DiW_VXE i=0,R (2.106)
with the term v, Oc;/0x being related to the convection through the velocity of the
solution, v, (see Sect. 1.8.3). The basic assumption of the model is that the growth
of the drop can be described as the movement of an expanding plane toward the
solution, so the convection velocity would be only observed in the normal direction
to the plane, v,. Its expression is vx = —2x/3¢, such that the mass transport equation
becomes [3, 32-34]:

oc; 0%, 2x 0c¢; .
o = D; 2 + o T O,R (2.107)
The applicability of this model is restricted to longer times, i.e., drops of large
radius (rpmg > 0.05 cm for =1 s). Although this equation is logically more
complex than that corresponding to stationary planar electrodes, it can be easily
solved in a similar way to that described in Sect. 2.2 (Egs. 2.8-2.19) by making the
following variable change:

7T x 7
DME _ /' =4/=s" i=0,R 2.108
i \/;2\/Dit \/Es1 ! ( )

By including this new variable in the differential equation system (2.107) and in
the initial and limiting conditions, these are transformed into a one-variable prob-
lem (sPME) of identical form to that given by Egs. (2.9)~(2.12) for static planar
electrodes; that is, co and cr can be expressed as functions of only one variable,
sBME and sRME, respectively. Thus, by following the same procedure indicated by
Egs. (2.13)—(2.18), one obtains expressions for the concentration profiles:

o) = co(4BY) = + (65— cpere () 2109
2.109
cr(x, 1) = cr (SRME) = cg + (cg" — cg )erfe(sRME)

As can be seen, these expressions are formally identical to those deduced for a
planar electrode (compare Egs. (2.109) and (2.19)), with the only difference being
the definition of the dimensionless variable: s for planar electrodes and sPME for
DME. Under these conditions, surface concentrations are also given by Eq. (2.20)
and condition (2.22) is also fulfilled.

According to Fick’s law the current is

dco Ocr

D% = FA(f)Do (W) L —FA(t)Dg (W) » (2.110)
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with A(¢) given by Eq. (2.105). Inserting Eq. (2.109) in Eq. (2.110), gives the
following expression for the current:

[ 7 . [ 7 .
IDNE = FA(1)Do Tl)(ﬂ(c'o—c%r)z—FA(l‘)DR TW(L-R—C-QF) (2.111)

with ¢ and ¢ being the surface concentrations deduced for a plane electrode
given by Eq. (2.20).
From Eq. (2.105), (2.111) can be written as

2/3 7 "
=) ol =
2.112
2/3 7 "
= —4x(38) " PO\ s (G — i)
R

and on inserting Eq. (2.20) in (2.112),

3m\ %> 7 (c>k —ch e”)
IPME _ g7 (=) FDot/® O R 2.113
deP 4 4rp 0 3zDo 1+ yel ( )

If we consider that the current / is in A, the concentrations ¢ are in mol cm*3,

the diffusion coefficient Dg is in cm? s, the mercury density p in g cm >, the
mercury flow m in g s™', and time 7 in s, Eq. (2.113) becomes

1/2 (Cz — C:;C )
IPME — 0.732FDY mzﬂwtl/é (2.114)

From this equation, cathodic and anodic limits are deduced by making " — 0
and e’ — oo, respectively, giving rise to the well-known Ilkovi¢ equations [32-34]:
IPME — 0.732FD > m?3ci /6
d.c o o (2.115)
IDNE = —0.732F Dy “m*3 ¢/

Figure 2.9 plots the time variation of the limiting current /9ME

given by the
Eq. (2.115) for five drops. As can be seen in this Figure, the current increases with
time until # = #; when the drop falls and, logically, the current also falls to zero.

Note that for the DME it is fulfilled that

Ic?cl\lg[E (1 — (C;/Cz))erl) (2.116)

IE’?E N 1+ yen

which can be rewritten as

RT | (1D IR
E=E',+—In| =< _ 2.117
1/2 F <I(11301\];1E — ]dD,I;l/IE ( )
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Fig. 2.9 Current time curves for a DME calculated from Eq. (2.115). m=0.1 g s,

Do =107 em?s™!, 1, =15, (‘07 1 mM

Observe that Egs. (2.116) and (2.117) are identical to (2.27), (2.28) and (2.31)
deduced for planar electrodes.
From Eq. (2.111), it can be deduced that the Nernst diffusion layer for a DME is

3 3
ObME.i = \| 77Pit = \/;5;),1 i=0,R (2.118)

By using the expanding sphere electrode model for the DME, Koutecky obtained
the following expression for the instantaneous limiting current [35-37]:

D276 1/2,1/6
IPME — 0.732FDY > m* e/ 14 3.9 o LS| O
YR

(2.119)

2.4.2 Normal Pulse Polarography (NPP)

In this technique, the DME is kept at an initial potential £; during a time ¢, at which
the electrode reaction cannot occur and then it is polarized by a potential pulse of
increasing amplitude, E,. The measurement of the current during a short pulse time
t, at the end of the drop life confers important advantages on NPP over dcP in
relation to the elimination of double-layer effects. In any case, this technique is
actually a single potential step technique in which the perturbation shown in
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Scheme 2.1 is applied to the DME for a very short time interval, #,, before which the
electrode has an area proportional to t?/ 3,

The differential diffusion equations system to solve when a potential pulse
E is applied and the corresponding boundary value problem (bvp) when the

expanding plane model for the DME is considered are:

Oc; o%ci 2x  0Og
da_pla, 2 %G L GadR 2.120
ot ax2+3(t1+t2) ox | an ( )
h >0, x— o0 o _ox
h=0, x>0 } © = R= R (2.121)
>0, x>0
aCo aCR
Do)  — _p. (YR 2.122
O(ax> R<ax x=0 ( )
= el ey (2.123)

where #; is the constant time previous to the application of the potential pulse and 7,
the variable pulse time, the total time drop life is 7 = #; + ,, and ¢} and cy" are the
surface concentrations deduced for a plane electrode given by Egs. (2.20).

This problem was addressed by Brikmann and Loss [38] and solved later by
Galvez and Serna [39]. More recently, a compact expression as a function of the
ratio (,/f) for the pulse polarographic wave when the two species are initially
present in the solution was obtained [40, 41]. Under these conditions, the current
can be expressed as

oy _ g o~ e) Do 2.124
NPP (1) 1+ yer mzh(a) ( )
with
(7/3)a
h(a) = @)
1-(1-a) (2.125)
— tz
- Hh+t

Note that if #; — 0 (i.e., t, — tand a — 1), h(a) — +/7/3 such that Eq. (2.124)
presents an ilkovician behavior (see 2.114):

DME /3 ‘Re Do
Igpp (11 — 0) = FA#* 1—|—ye'7 Vo

7D —cge’
= FAgy /70t1/6w (2.126)
3n 1+ yet

where Ay = 4z(3m/(47p))*>.
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On the other hand, if r, < #; (i.e., a — 0), h — 1, Eq. (2.124) transforms into

cq —c*e”) Do
IDME(1, <t :FA(OiR,/— 2.127
Npp (2 < 1) 1+ yer pvs ( )

withA = Aotf/ 3 being constant. The above equation is simply the current—potential
relationship corresponding to a planar electrode with the potential pulse time being
t, (see Eq. 2.27). Therefore, it presents a cotrellian behavior.

In all the above cases, it is possible to rewrite the current—potential expression as

RT . (l4. — IR
E=E; 2+—ln<’— (2.128)
20 F U\RNE

which is identical to that obtained in a static planar electrode (see Eq. 2.31).
The sensitivity of NPP is greater than that of dcP because the ratio

IOME /IDME ~ (31/71,)"/2 is much greater than unity, provided that 7 3> #,. Moreover,

the pulse current greatly exceeds the charging current as compared to dc current,
since the charging current for a DME is given by [1-3]:

IM® = 0.567Ci(Epzc — E)m*Pr 2 oc 723 (2.129)

where C; is the integral capacity and Epyc is the potential of zero charge (see Sect.
1.6). Note that C; is given in F cm~ L, min g s~ Ein V, and the current I.in A. So,
for NPP it is fulfilled that

RNE 4 [DVE o 12 21 o 12 (2130)

The NPP current—potential curves calculated from Eq. (2.124) for #{ = 1 s and
different values of ¢, have been plotted in Fig. 2.10. As can be seen from these
curves, the decrease of the potential pulse time f, leads to an increase of the
response (and therefore of its sensitivity), whereas it does not affect the location
of the current—potential curve.

2.5 Spherical Electrodes

When the electrode does not have macrometric dimensions (i.e., for a radius smaller
than 0.05 cm for a time of experiment of 1 s), the geometry becomes fundamental.
In this section, special detail will be paid to spherical geometry. The use of
spherical electrodes such that the Static Mercury Drop Electrode (SMDE) offers
important advantages over solid electrodes on account of its smooth and
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Fig. 2.10 NPP current—potential curves calculated from Eq. (2.124) fora DME withm=0.1 gs ™",
Do =Dgr = 1075 cm?s7!, cg = 1mM, C; =0, t; =1 s, and different values of ¢, indicated in
the figure

homogeneous surface and because of the large hydrogen overpotential. This elec-
trode is extensively used in Stripping Analysis by preconcentration of the metal into
the small volume of the mercury electrode by cathodic deposition at controlled time
and potential [42, 43]. Nowadays gold spherical electrodes and microelectrodes are
also widely used [44, 45]. Moreover, the electrode potential can be used to induce
uptake or release of species in individual spherical droplets or arrays of droplets and
in the monitorization of processes in and around biological cells. In all these
examples, the spherical geometry plays an important role [46, 47].

In this section, it will be highlighted that, for nonplanar geometry, finding
analytical solutions when the diffusion coefficients of oxidized and reduced species
are different is much more complicated than in the planar case, since under these
conditions the surface concentrations are time dependent even for reversible pro-
cesses. However, this situation is of great interest when the ion is transferred
between two different phases as in the case of ion transfer between conventional
solvents and liquid membranes, or in amalgamation processes. When room tem-
perature ionic liquids (RTILs) are used as solvents, significant differences in the
diffusion coefficients of oxidized and reduced species can be also found [48—50],
since the electrostatic interactions of the solute with the solvent play an important
role in its transport properties, so the different charge of the electroactive species
has a significant influence on the magnitude of the diffusion coefficient [49, 51].
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2.5.1 Unequal Diffusion Coefficients (Do # Dr)
Under these conditions, the diffusion equations to solve are the following:
Jc 0%co  20c
reo _ Do _20 42250
ot or r or
0 0? 20
Ocr _p (Oer 20k
ot or:2 r or
The boundary value problem (bvp) by considering that the reduced species is

initially present in the solution (solution soluble product) or in the electrode
(amalgam formation), and that diffusion coefficients of both species are different, is

(2.131)

IZ 0 N r — o0 _ox o
(=0 r>n } €o = Cq, CR = Cg (2.132)
for solution soluble product, and
t>0, r—o0 ox o
=0 . r>n } co=C¢g, cr =0 (2.133)
t>0, r— -0 . s
t=0, r<r } 0 =0, v =g (2.134)
for amalgam formation
t>0, r>rg:
aCo aCR
Do —=— = FDr| —=— 2.135
o(50)... = (%), @139
cg’sr’he =e c;Sphe (2.136)

with 5 given by Eq. (2.6) and r, being the radius of the spherical electrode. In the
following and in Eq. (2.135), the upper sign refers to solution soluble product and
the lower one to amalgam formation.

By following the procedure indicated in Appendix A, an analytical expression
for the current can be deduced:

sphe (1= (c;/cg)e” 1 N 1 ely(y F 1)
1+ yen

D
VrDot 1y rs(yer £ 1)

ey ¥ 1)
ro(r?en £ 1)(1 + Ve”)H(f)}

FADocp,

(2.137)
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with
H(&) = e“/ erfe(é/2) (2.138)
 2\/Dri(y2e" £ 1)
= e (2.139)

. : sph h
and the time-dependent surface concentrations ¢ and ¢y are

ey (r 1) (co — <3')

s, sphe ST H —1

€o (0] ( (i/zeji 1) ) [ (5) ] (2'140)
s,sphe __ sr Y F I)(cg — Cb’r

CR o = (R + ()/26'71; 1) 2 [H(f) - 1}

¢ and ¢y are the time-independent surface concentrations found in planar elec-
trodes (Eq. 2.20), and A= 47rr§.

Note that the finite electrode volume has not been considered to deduce
Eq. (2.137), i.e., we have used the so-called Koutecky approximation (see Eq.
(2.134) and [52]). Therefore, when amalgamation takes place, these equations
with the lower sign cannot be used for very small spherical electrodes for which
numerical treatments considering null flux at the center of the electrode are needed.

According to Eq. (2.140), the presence of amalgam has no effect on the
voltammetric response of planar electrodes since, under these conditions ry — 0o
(& — 0; see Eq. (2.139)) and H(£) — 1 (see also Eq. 2.20).

To obtain Eqgs. (2.137) and (2.140), the Dimensionless Parameter Method
(DPM) has been used as described in Appendix A and expressions of the concen-
tration profiles have been obtained [52]. In the 1960s, a compact analytical solution
for the I-E response was obtained by using the Laplace transform method when the
oxidized species was the only present in the electrolytic solution, i.e., for a cathodic
wave [53, 54], and non-explicit expressions for the concentration profiles and
surface concentrations were obtained.

The time variation of the surface concentration of the oxidized species for

different values of y at a potential corresponding to £ — E;e”’ = —0.05 V can be
seen in Fig. 2.11. It is clear that for the radii considered the surface concentrations
of the oxidized species vary with time fory < 0.7 andy > 1.41, respectively, while
remaining almost constant for other values of y. It is also observed that the further y
is from the unity, the longer it takes to reach a constant value.

In Fig. 2.12, the analytical current—time curves under anodic and cathodic limiting
current conditions calculated from Eq. (2.137) (Fig. 2.12a and b, respectively) when
species R is soluble in the electrolytic solution (solid curves) and when species R is
amalgamated in the electrode (dotted lines) are plotted. In Fig. 2.12a, the amalgam-
ation effect on the anodic limiting current has been analyzed. As expected, when
species R is soluble in the electrolytic solution, the absolute value of the current
density increases when the electrode radius decreases because of the enhancement of
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Fig. 2.11 Temporal evolution of the surface concentrations of oxidized species calculated from
Eq. (2.140). Two electrode radius values are considered: 7y = 5 X 1073 cm (solid curves) and r
=5x10"* ecm  (dashed and different indicated in the figure.

E— EC%, =-005V, C*O = c; = 1mM, Dp = 107 ecm? st
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the diffusive mass transport. On the other hand, for a given electrode radius the
amalgam formation leads to a decrease in the absolute value of the current density,
and this decrease is more significant when the electrode radius becomes smaller and/or
the electrolysis time is longer. Thus, the radius influence is inverted in relation to the
solution soluble product case, so a decrease in electrode radius leads to a decrease in
the absolute value of the current density (see Fig. 2.12a, dotted lines). This behavior is
due to the diffusion of R taking place inside the spherical electrode. As expected, the
cathodic limiting current (see Fig. 2.12b) is not influenced by the amalgam formation,
since it is only dependent on the species O behavior.

The analytical equations obtained allow us to study the anodic—cathodic wave.
The current—potential curves for y = 0.7 are plotted in Fig. 2.13 for three values of
the electrode radius and for two different initial conditions: when species O is the
only one present (Fig. 2.13a), and when both species are present in the system
(Fig. 2.13b).

In the first case, when only species O is initially present in the electrolytic
solution (Fig. 2.13a), it is observed that the amalgamation of species R leads to a
shift of the wave to more negative potential values, and this shift is greater the more
spherical the electrode, i.e., when the duration of the experiment increases or the
electrode radius decreases. In the second case (Fig. 2.13b), both species are initially
present in the system so we can study the anodic—cathodic wave. In the anodic
branch of the wave, the amalgamation produces a decrease in the absolute value of
the current. As is to be expected, the null current potential, crossing potential, or
equilibrium potential (Eg,) is not affected by the diffusion rates (Do and Dg), by the
electrolysis time, by the electrode geometry (r5), nor by the behavior of species R
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Fig. 2.12 Influence of the electrode radius on the current-time curves under anodic (a) and
cathodic (b) limiting conditions (Eq. 2.137) when species R is soluble in the electrolytic solution
(solid curves) and when it is amalgamated in the electrode (dashed curves). The electrode radius
values (in cm) are: rs = 5 x 1072 (red curves), rs = 1072 (blue curves), andry = 5 x 1073 (green
curves). cg = C; = 1mM, Do = Dr = 10~ cm? s !. (The dashed green curve has been calcu-

lated numerically for ¢ > 0.5 s). Reproduced with permission [52]

(soluble in the electrolytic solution or in the electrode) (see Eq. 2.33). On the other
hand, the half-wave reversible potential is affected by the diffusional behavior of
species O and R and the following is observed for a solution soluble product:

>
T ZEr
]/Z‘Sphé < 1/2

<
if y=1 2.141
if 73 ( )

plane

Note that in this case the determination of the half-wave potential can be made
by fitting experimental date to the Eq. (2.137) since Eq. (2.31) is not fulfilled under
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Fig. 2.13 Influence of the cf/c( ratio on the anodic—cathodic waves when species R is
soluble in the electrolytic solution (solid curves) (Eq. (2.137) considering the upper sign) and
when it is amalgamated in the electrode (dotted curves) (Eq. (2.137) considering the lower sign).
1;{’2&55 = FASDOCS /rs (see Eq. 2.148). Three electrode sphericity values (\/D—Rt/rs) are consi-
dered: 0.071 (green curves), 0.214 (blue curves), and 0.451 (red curves), and two different initial
concentration ratios: ¢y, = 1 mM, cg = 0(a),cg = cg = 1 mM (b). Do = 107> cm?s™!,y = 0.7.
Reproduced with permission [52]

these conditions and the plots E vs. ln((lgf’:e — ISPhe) / (I sphe _ Isf’; e)) cannot be

used as in the case of planar electrodes. This is because under the above conditions
the current presents a complex expression which cannot be written as the product of
a function of the potential by a function of time, as in the case of the electrodes
mentioned above.
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2.5.2 Equal Diffusion Coefficients (Do = Dy)

When both diffusion coefficients are equal (Do = Dgr = D), and both species are
soluble in the electrolytic solution (taking only the upper sign in Eq. (2.135)),
Egs. (2.137) and (2.140) drastically simplify to the following [1-4, 40, 41, 55, 56]:

e _(1—(C§/05)e”) { ! +l} (2.142)

FADcy 1+er VaDt 7
Cs,sphe ST _ e’ (CZ) + Cl*{)
(0] — Y0 ly=1 —
r=1 ’ Lt (2.143)
s, sphe st _ €o + CR

and the concentration profiles are given by the following equations:

«  Tsysr * r—=Ts
co(r,t) =co+—(c5 — cp)erfc
0( ) 0] r(O O) (2\/5;>

* Fs/ gr * r—ryg
cr(r,t) = cx +—(cp — cg)erfc
R( ) R r(R R) (2\/5)

(2.144)

Appendix B describes in detail the solution of this problem as an application of
the Laplace’s Transform method and Eqgs. (2.142)—(2.144) have also been deduced.

As can be inferred from Eq. (2.143), under these conditions the surface concen-
trations of both species are time independent, so the current given by Eq. (2.142)
can be written as

. 1 1
I = FADo (cy — ¢ {—+—}
* O(O 0) VDt T

. 1 1
= —FADg (cg — c§") {\/ﬁ + r_} (2.145)

From Eq. (2.145), it is clear that the diffusion layer thickness in spherical
diffusion is (compare Eqs. (2.145) and (2.26)) [12],

1
T (2.146)

sphe 1 1
{m T ‘}

which is independent of the applied potential, as in the case of planar diffusion.
In Fig. 2.14 we have plotted the transient accurate concentration profiles for
species O, co(r,t) (Eq. 2.144) and the linear concentration profiles

S,T

(Co(r,t) — < (r—rs) +c§5r) at a fixed time and different potentials

- T
O ohe

(Fig. 2.14a), and at a fixed potential and different times (Fig. 2.14b).
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When compared with the linear concentration profiles of Fig. 2.1a, it can be
observed that, in agreement with Eq. (2.146) for spherical electrodes, the Nernst
diffusion layer is, under these conditions, independent of the potential in all the
cases. As for the time dependence of the profiles shown in Fig. 2.14b, it can be
seen that the Nernst diffusion layer becomes more similar to the electrode size
at larger times. Analogous behavior can be observed when the electrode radius
decreases.

Expressions for the cathodic and anodic limiting currents can also be easily
obtained for spherical electrodes by making ¢” — 0 and ¢” — oo in Eq. (2.142),

, ¥ 1 1
Is?ile = FADc, <——nDt + ’—>
1 1

(2.147)
sphe *
Idf)a = —FASDCR (ﬁ_i_r_)
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Fig. 2.15 (Solid line) Current—time curves for the application of a constant potential to a spherical
electrode calculated from Eq. (2.142). Do =Dgr =10 cm’s™!, ¢j=cx= 1 mM,
rs = 0.001 cm, (E —Ecﬁl) = —0.2V, T=298 K. (Dashed line) Current-time curves for the
application of a constant potential to a planar electrode of the same area as the spherical one
calculated from Eq. (2.28). (Dotted line) Steady-state limiting current for a spherical electrode
calculated from Eq. (2.148). The inner figure corresponds to the plot of the current of the spherical
electrode versus 1/+/1

The time evolution of the cathodic limiting current (Eq. 2.147) has been plotted
in Fig. 2.15 together with that obtained for a planar electrode (Eq. 2.28) and the
constant steady-state limiting current for a spherical electrode given by

S SS * 1
P> = FADco— (2.148)

From this figure, it can be seen that the current decays with time as in the planar
case although this decrease leads to a constant value, IZT ©%5 different from zero,
which will be achieved sooner as the electrode radius diminishes. The current for
times close to zero is identical to that obtained in a planar electrode given to the
prevalence of the term 1/v/zDt over the inverse of the radius. For longer times,
the opposite happens and the term 1/r is dominant.

In order to obtain values for the diffusion coefficient at spherical electrodes, a
logarithmic plot of the current versus time would lead to nonlinear dependence (see
Eq. 2.147). In this case a plot of the current versus 1/+/Zis more appropriate (see inner
curve in Fig. 2.15) and this plot also allows the determination of the electrode radius
by combining the values of the slope (FASCB\ /D /) and intercept (FADcp)/rs

Finally, from Eq. (2.145), it is clear that the half-wave potential, which under

these conditions (Do = DgR) coincides with the formal potential E;e,, can be easily
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obtained from the linear analysis of the potential  versus
ln(([ Sphe ISPhe) / ([Sphe -1 jf’:e)) curves like in the case of a planar electrode

or a DME with the expanding plane model since, as in these cases, the current
presents the potential and time dependences in separate terms.

2.6 Other Electrodes Geometries

This section addresses other electrode geometries, both uniformly accessible (like
cylindrical electrodes) and non-uniformly accessible (like discs and bands) (see
Scheme 2.4). Cylindrical electrodes are the best example of electrodes where one
dimension (the radius) is much smaller than the other (the length). Under these
conditions, edge effects on the current can be considered as negligible and diffusion
is mainly radial and therefore only dependent on the distance r to the center of the
cylinder [10]. In relation with disc and band electrodes, it is important to highlight
that the mass transport of species in solution requires a much more complex
mathematical treatment due to their nonuniform accessibility. The theoretical
modeling of the mass transport at these electrodes shows that the current is an
average quantity resulting from an average mass flux over the electrode surface [10,
57, 58]. Hence, in the case of disc electrodes, depending on the electrode size, the
current will be the result of mixed mass transport, with a predominant component
that could change from linear (large sizes or short times) to radial (small sizes or
long times). This nonuniform accessibility leads to more efficient mass transport to
the electrode edge and to a shielding effect of this at the center of the electrode (see
Fig. 2.16). Even so, this electrode remains the most popular and practical due to its
easy manufacture in a wide range of sizes, and the easy and controlled cleaning of
its surface [58, 59].

For the sake of simplicity only electrode processes in which the oxidized and
reduced species are soluble in the electrolytic solution and have equal diffusion
coefficients will be considered.

Under these conditions, the differential equation systems for the diffusion mass
transport of species O and R is given by

aCO

= DVZCO
aacf (2.149)
a—[R = szC'R

where V2 is the Laplacian operator given by any equation of Table 2.2. When the
flux is conserved in the electrode surface, the following solution for the sum of
concentrations of species O and R is obtained (see Appendix in reference [60]):

co(q, 1) + cr(q,1) = o + cg (2.150)
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Table 2.2 Expressions for - 2
Electrod t Lapl. ator V
the diffusion mass transport ceiroce geometry ap 2a01an operator
operators given by Fick’s Planar 8_
second law Ox2
Spherical 22 N 20
or2  ror
Cylindrical 02 N 10
oz  ror
Band 22 02
Fraar
Dise > 19 @
or2 ror 022

with ¢ and ¢ referring to spatial coordinates and time values, respectively. Equation
(2.150) is, of course, fulfilled at the electrode surface, i.e., for ¢ = ¢°, with ¢° being
the coordinates at the surface of the electrode.” For nernstian processes, at ¢*:

cg =€y’ (2.151)
The combination of Eqgs. (2.150) and (2.151) transforms the problem of two
variables ¢ and ¢ into two separate problems of only one variable with constant

surface conditions,

aCo

> = DV?co
;i&g:;} co(q,1) = ¢o (2.152)
t20,9g=¢" g = : (;E_LCR)
% = DV?cx
;z&g:f} cr(q.1) = cg (2.153)
t>20,9=¢" g = (CIO:;;)

with 7 being given in Eq. (2.6).
The two diffusional problems above are very similar to those corresponding to a
process under limiting current conditions but with ¢g}" # 0 and/or cg" # 0.

3 For a cartesian set of coordinates, like those used for band electrodes, g denotes coordinates x, y,
and z, whereas for a cylindrical set of coordinates, like those corresponding to disc electrodes,
q denotes coordinates r and z. In both cases, ¢° refers to z=0.
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Scheme 2.5 Disc and band z z
electrodes and relevant
coordinates for each
geometry (disc area,

_ 2. I w P 1y y
Agq = mry; band area, C v I \

Ab = Wl) ry WX
—
disc electrode band electrode

Note that at uniformly accessible electrodes, spheres and cylinders, the mass
flux is identical at all the points of its surface, whereas at non-uniformly accessible
ones, discs and bands, the mass flux varies through the radius and the width,
respectively. Therefore, in these cases, the surface gradient should be calculated
by integrating the flux over the electrode surface such that the current is given by
(see Scheme 2.5):

[disc . 1 R=1 aCO
= 2A4Dc— — RdR 2.154
F ¢ CordJR:O ( 0z ):o ( )
Iba.nd N 1 X:1/2 aC
- = 2AchO—J =2) dx (2.155)
F Wlx=0 5Z =0

with Co = co/cg, R =r/ra, X = x/w and Z = z/rq (disc) or Z = z/w (band).

It has been verified that the current obtained when a potential step is applied only
differs from the corresponding to the limiting cathodic or anodic currents in the
constant terms (c;, — ¢g) and (cg — cg") instead of ¢fy and ck, respectively (with
¢;" being the surface concentration of species i). From Egs. (2.152) and (2.153), the
surface concentrations are independent of the electrode geometrical characteristics
under nernstian conditions [60]. Hence, the average current can be expressed
independently of the electrode geometry as the product of a function of the applied
potential (cg —c¢g') and a function of time and the electrode geometry fg(, gc)
(with gg being the characteristic dimension of the electrode), which is given in
Table 2.3 for each particular geometry:

16 = FAGD x (cg — ¢§') x fa(t,q6) =

Lol (2.156)
= —FAgD x (cg — c§") x fa(t,qg)
with
el
o= = —(cg — &) :% (2.157)

where Ag is the electrode area and ¢g the characteristic dimension of the electrode
(Table 2.3).

The cathodic and anodic limiting currents for an electrode of a given geometry
can be obtained by imposing # — Foo on (2.156) and (2.157)
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Table 2.3 Expressions for functions fg(f,gg) and fgmicro for the four electrode geometries
considered. gg = rq for discs; g = r, for spheres or hemispheres; gg = r for cylinders; and gg
= w for bands. Note that functions f5(#, gg) and fG micro have dimensions of 1/length

Electrode Function f5(t, ¢G) {G micro
Disc (radius ryg, 41 rd 41
Area Ay — m_g) ;; (0.7854 + 0.44315—\/E+ g
I'q
+0.2146exp| —0.39115—=—
(oo ))

Sphere (radius 1 n 1 1
ro Ag=4mr?) s \/zDt T
Band (height w, |1 1 . 2 1 2n

— f Dt 0.4 ——
length I, wt T if Dr/w” < w In[64D1/w?]
Ab = Wl) Dt

025, /= exp (—0.4 T ) T

Dr W) win(5.2945 + 5.9944 Y27

if Dt/w? > 0.4

Cylinder (radius | | ( ol \/ﬂDI) R 1 1_2
o, length 1, exp| —0- e
o fenen VaDi Yo ) rin(5.2945+ 1.49864%) | tnf4Dt/re’}

]Sc = FAgD x cg x fg(t,q5) } (2.158)

lga = —FAgD x cg x f5(t,qg)

In order to highlight the non-uniformity of the concentration distribution around
the disc, Fig. 2.17 shows the concentration profiles of oxidized species
corresponding to the application of a potential step to a disc electrode for three

values of r4 (500, 50, and 5 pm), and two values of the applied potential (E = Ecd
and an E value corresponding to limiting current) for a time t=0.5 s. From this
figure, it can be deduced that, although the concentration profiles are logically
affected by the applied potential, the Nernst diffusion layer thicknesses are inde-
pendent of it. It can also be observed from this figure that the solution region
adjacent to the electrode surface disturbed by the mass transport is much lower than
the disc radius for higher values of ry. Moreover, in this case (see curves with
rq=>500 pm in Fig. 2.17a and b), the dominant mass transport is that corresponding
to planar diffusion, i.e., practically all the flux at the surface takes place at the
normal coordinate z, with the exception of r values close to the edge of the disc.
This gives rise to a planar front for 4, as seen in Fig. 2.17a and b. As the disc radius
decreases (see Fig. 2.17c—f), the linear diffusion layer thickness becomes compa-
rable to or even higher than r4, showing a continuous variation between the center
and the edge of the disc. For a radius ry =5 pm (see Fig. 2.17e and f), the radial
mass transport becomes dominant in the whole response.

A consequence of the temporal independence of the surface concentrations is
that under transient conditions, the relation IG/IfiC and the curve E/
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Fig. 2.17 Concentration profiles of oxidized species in reaction Scheme (I) corresponding to the
application of a potential step to a disc electrode for three values of ry4 (um): 500 (a, b), 50 (c, d),

and 5 (e, f), and two values of the applied potential: £ = Ecﬁ, (a,c,and e) and E = Ef —0.256 'V
(b, d, and f). Co = co/ CE,R = r/rq, and Z = z/rq. These profiles have been numerically obtained
by following the procedure described in reference [61] for a time r=0.5 s and
Do =Dr = 1073 cm? s='. T=298.15 K. Reproduced with permission [59]

In((1$, —1°)/(1° —1§,)) at a fixed time are independent of the electrode
geometry,

19 _1-¢'(cg/co)

R (2.159)
or,
. RT, (IS, —1IC
E-ESf =—1In[-% (2.160)
Fo\I6—1¢,

The analysis of the current—time curves at electrodes or microelectrodes of
different geometries has also a great interest in detecting the presence of small
particles or nanoparticles at its surface or even single nanoparticles events through
the current due to the electro-oxidation (or reduction) of the particles (see Fig. 2.18)
or to a electrocatalytic reaction on the nanoparticle surface when this comes into
contact with the electrode and transiently sticks to it [62—65].

In Fig. 2.19, we have plotted the (I°/I ) — (E - Ef) curves for discs,

spheres, bands, and cylinders calculated from Egs. (2.156) and (2.159) when both
species are initially present in the solution in order to show that, for a given process,
this ratio is independent of the size and geometry of the electrode considered and
independent of the transient or stationary character of the response. On the basis of
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Fig. 2.18 Chronoamperometric profiles showing oxidative faradaic transients of gold
nanoparticles at potentials of (a) 0.8 V and (b) 1.1 V at a Glassy Carbon microelectrode of
11 pm of radius. Reproduced from reference [62] with permission
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Fig. 2.19 (@) (19/1§,) - (E—EZ) curves and () (E— £ ) —In((I. — 1)/ (1° = 1§.,))
for discs, spheres, bands, and cylinders calculated from Egs. (2.159) and (2.160) when both species
are initially present in the solution and ¢y /¢, = 1
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these results, it is clear that the analysis of the curve E/ln(([i’c — IG) / (IG — I(fa)) is
identical to that carried out in the case of planar or spherical electrodes (see for

example Eq. 2.31). So, whatever the geometry considered, by combining
Eq. (2.156) and

IS = FAGD (g—;:) (2.161)
qi

with gy being the normal coordinate value at the electrode surface, the Nernst
diffusion layer &, is easily determined as a function of time, size, and geometry
(compare Eq. (2.156) with Egs. (2.26) and (2.145)):

gr— o= _ 1 (2.162)
¢ IS/FAGDcy  falt,qc)

with fg(¢, ¢g) given in Table 2.3.
Note that if the electrode is not uniformly accessible such as disc and band
electrodes, the diffusion layer thickness given by Eq. (2.162) has an average

character [59], and in this case it will be denoted 5&.

The temporal evolution of 8y, (¢) and &, 4(), calculated from Eq. (2.162) and
Table 2.3 for disc (solid lines) and band (solid-dotted lines) electrodes of three sizes
(ro =500, 50, and 5 pm, with r( being equal to 4 or w/2, respectively), has been
plotted in Fig. 2.20. We have compared these curves with those obtained for
spherical (dashed lines) and cylindrical (dotted lines) electrodes considering
rq=rs=r. (with 6gphe(z) and 5£yl(t) being calculated from equations in Table 2.3).

From these curves it can be seen that the Nernst diffusion layer, J, increases
with time in all cases. Moreover, Fig. 2.20a shows how these curves are all
coincident at short times and only small differences appear between the couples
“bands and cylinders” and “spheres and discs” at times longer than 0.2 s. This
indicates that for this electrode size and time below 0.2 s, the prevalent diffusion
field is planar, so the electrode geometry becomes irrelevant. As the electrode size
decreases (Fig. 2.20b and c), so does the temporal dependence of d; and the
different curves begin to separate until they reach a steady state in the case of
discs and spheres, or a pseudo-steady state in the case of bands and cylinders
(Fig. 2.20c). Note that the ratio between the diffusion layers corresponding to

I,MiCro r,micro
disc and 6sphe

It is worth highlighting that, when different diffusion coefficients are consi-
dered, the half-wave potential depends on the characteristics of the diffusive field
(geometry and size of the electrode), as indicated in Sect. 2.5.1. The variation of the

small discs and spheres o tends to the value z/4 (see also Sect. 2.7).

half-wave potential Erl/ ? with the electrode radius for cylindrical and spherical
electrodes for y = 3 (numerically calculated) has been plotted in Fig. 2.21. The
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Fig. 2.20 Temporal
evolution of &y (r) and
Bpana (1), calculated from
equations in Table 2.3 for
disc (solid lines) and band
(solid-dotted lines)
electrodes of three sizes
(ro=500, 50, and 5 pm,
with r( being equal to r4 or
w/2). These curves have
been compared with those
obtained for spherical
(dashed lines) and
cylindrical (dotted lines)
electrodes consideringrqg =
rs = re (with 6§phe(t) and
gy (1) is calculated from
equations in Table 2.3).
Reproduced with
permission [59]
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Fig. 2.21 Evolution of the -25 4
half-wave potential with the
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half-wave potential of planar electrodes is also shown for comparison. As can be
seen, the stationary value of Ej , = Ef‘l + (RT/F)In(1/y*) (see Appendix C and

Eq. (2.167)) is reached for spherical electrodes for values of Rg =0.01, whereas for
cylindrical ones a steady-state value is not reached.

2.7 Microelectrodes. Steady-State Voltammetry

A microelectrode is usually defined as an electrode with at least one characteristic
dimension (rg) on the micrometer scale (of tens of micrometers or less). As is well
known, the progressive decreasing of the electrode size produces an enhancement of
the mass transport between the electrode surface and the bulk of the solution. This
leads to important advantages in electrochemistry like fast establishment of station-
ary response (i.e., independent of time), improved ratio of faradaic to charging
currents, decrease of the ohmic drop, short response times, and others derived from
its small size: electroanalytical measurements in living organisms, microscopic
sensors and arrays, among others. The currents observed at microelectrodes typi-
cally lie in the pA to nA range, and are much smaller than those measured with
conventional electrodes of milimetric dimensions. It is only since the 1980s that
very small electrodes and appropriate instruments to measure such low currents
accurately have been available (see [9, 66, 67]). The scarce ohmic drop permits the
study of electrochemical processes in high resistance solvents, low supported
solutions, solids, and gases. Moreover, the effect of convective flux on mass
transport is greatly reduced because the rate of diffusional transport can be several
orders of magnitude larger than that attainable at a macro or planar electrode and
other modes of transport are masked by the large diffusional contribution. More
recently, nanoelectrodes have been developed with their characteristic dimension of
a few tens of nanometers, which is comparable to the diffuse double-layer thickness.
This can lead to deviations from the classic voltammetric theory [68, 69].
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In this section, we will show that the stationary responses obtained at micro-
electrodes are independent of whether the electrochemical technique employed was
under controlled potential conditions or under controlled current conditions, and
therefore, they show a universal behavior. In other words, the time independence of
the I/E curves yields unique responses independently of whether they were obtained
from a voltammetric experiment (by applying any variable on time potential), or
from chronopotentiometry (by applying any variable on time current). Hence, the
equations presented in this section are applicable to any multipotential step or
sweep technique such as Staircase Voltammetry or Cyclic Voltammetry.

Special attention should be paid to spherical geometry, since the mathematical
treatment of spherical microelectrodes is the simplest and exemplifies very well the
attainment of the steady state observed at microelectrodes of more complex shapes.
Indeed, spherical or hemispherical microelectrodes, although difficult to manufac-
ture, are the paragon of mathematical model for diffusion at microelectrodes, to the
point that the behavior of other geometries is always compared against them.

The expression for the current of a reversible electrode process corresponding to
a microelectrode of a given geometry will be deduced from Eq. (2.156) by making
g < V/zDt. Under these conditions, a stationary current—potential response will
be attained only if fg micro. defined as

fG,micro = [fG(ta CIG)]qG<<\/Jﬁ (2163)

reaches a constant value. The expressions for fg micro corresponding to micro-
hemispheres, microdiscs, microcylinders, and microbands are given in Table 2.3.
The condition fG micro = constant is only attained at disc and hemispherical
electrodes (see Table 2.3). In both cases, the function fg(?#, gg) becomes inde-
pendent of time when g5 < Vz D¢t

For a spherical electrode, by making ry < +/zDot in Eq. (2.137) (which has
been deduced for unequal diffusion coefficients), and considering that both species
are soluble in the electrolytic solution (upper sign), one obtains

]microsphere,ss = FAD M =FAD Mi (2164)
Fs 1+ y2%e" rg
or
' RT Imicrosphere,ss 7
E = EPmee 4 2 dc—h (2.165)
/ F J— Igjlacrosp ere, s$

where ¢’ is given by Eq. (C.11) and

[;nlccrosphere,ss — FASDoCb_
’ e (2.166)

icrosphere, ss L1
[:jm:rosp €1¢, SS — —FASDRCR—
, re
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The reversible half-wave potential is given by

) + RT 1
Erl,/r;mrosphe _ E;e =+ ?ln (P) (2167)

with Erl"';;cr“phe being the half-wave potential deduced for a microsphere or
microhemisphere. As can be expected, the expression for

Eq. (2.166) coincides with that of I3, "eSS for a spherical electrode given by Eq. (2.148).
In the case of an ultramicrodisc, the above equations become

Imicrosphere,ss
d.c

given by

]microdisc,ss — AFr.D *
d.c r¢¥loco } (2.168)

microdisc,ss __ *
Id,a = _4FrdDRCR

It has been verified numerically that, when Do = Dg, the stationary current-
potential response of a microdisc presents the same half wave potential as that
observed for a microsphere, which is given by Eq. (2.167) (see [70] and Appendix C).

Therefore, the stationary /-E response can be written as (Table 2.3)

®

o co— ¢ C
Jmicrodise,ss _ pA p "0 "0 T _pAp ZO " R_T 2.169
d0O rd d0 1+}/2€n arg ( )

cs 4 o —€leg 4

b2
where ¢ is given by Eq. (C.20).

The current densities (i = I/A) obtained for disc and microspheres of the same
radius for reversible electrode processes at any value of the applied potential follow
the equivalence relationship given by [70, 71]:

smicrodisc, ss 4

W = — (2 170)
i phere, ss T

In the case of microcyclinders and microbands, fgmicro 1S time dependent
(Table 2.3) and only a pseudo-stationary response can be achieved. This is because
all the microelectrode dimensions have to fall in the range of the microns to attain a
true steady state. The expressions for the pseudo-stationary current—potential
responses when the diffusion coefficients of species O and R fulfills Do = Dy are:

Jmicrocylinder, pss _ FA.D CE) — e”c; l 2 (2 171)
L+el reyy [4_1,;:]

- cy,—elcg 1 2z
Imlcroband, pss _ FAbD [6) R

1+e wln[%]

(2.172)
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Nevertheless, it is possible to obtain a constant relationship between the current
at both microelectrodes for certain geometrical conditions. Thus, for microbands
and microhemicylinders fulfilling r. = w/4, a constant ratio is obtained, but in this
case it is necessary to use the same experimental timescale [10]:

]microband, pss

(2.173)

]microhemicylinder, pss =

The solutions of the stationary diffusion equations for spherical and disc micro-
electrodes are deduced in Appendix C.

It is also of interest to consider the case of a microsphere at a non-electroactive
substrate because it is used as a model for spherical nanoparticles (of radius r,, and
area A,p) impacting on a surface [72, 73]. For this case the average stationary
current is given by [74]:

s = A DF O~ 0 1 (2.174)
Fip

Note that, on the basis of Egs. (2.164), (2.169), and (2.174), it can be concluded
that for all these electrode geometries for which it is possible to achieve a true

stationary response, Eq. (2.165) could be used by changing [f;iccmphere’ss by the

corresponding stationary limiting current for the geometry considered. Therefore,
in all the previous cases it is fulfilled,

RT 1 microG __ ImicroG
d.c (2.175)

__ pr,microG
E= El/2 + 711’1 <ImicroG _ ]ililcroG

The advantages derived from the use of microelectrodes will be discussed in
Sect. 5.4.

2.8 Rotating Disc Electrode

A rotating disc electrode (RDE) is a conductive disc of the material of interest
embedded in an inert non-conductive polymer or resin that can be attached to an
electric motor which has very fine control of the electrode’s rotation rate. During
the experiment, the electrode rotates in the solution under study, thus inducing a
flux of redox analyte to the electrode [75].

The modeling of the electrochemical response corresponding to the application
of a constant potential to an RDE is similar to that discussed in the case of a DME
since in this electrode it is imperative to consider the convection caused by the
rotation of the electrode. This problem was solved by Levich under stationary
conditions [76]. To do this, the starting point is the diffusive—convective differential
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Fig. 2.22 Polar coordinates ®

for the rotating disc \ j

electrode - /———\
N—_|

+X

r=0

equation that describes the mass transport in the normal direction to the electrode
surface (see Fig. 2.22),

aCi azc‘i aCi .
5, =Digs —wg, i=OR (2.176)

The convection velocity for an RDE is given by the following expression:
vy = —0.510% 27122 (2.177)
in which o is the angular rotation speed (in Hz) and v the kinematic viscosity

(in m? s_l).
Under steady-state conditions, i.e., when Oc;/0r = 0, Eq. (2.176) simplifies to

2. 2 de-
da _cda o 5R
dx? B dx
D, (2.178)

B= 0.51@3/2y=1/2
By making the change of variable y = dc¢;/dx, Eq. (2.178) is easily integrated
and the following expression is obtained:

dCi

d i X .
i (_C> iz or (2.179)

dx /.

Integrating once more, the concentration profile,

dc; ( _i? .
¢i(x) — ¢i(0) = (—) Je #du i = O,R (2.180)
x=0
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By taking the infinite limit (x — o0) in the above equation, it becomes
< 2
J . — (dei T
= a0) = (), [¢ Hhau =
0

_ <%>X0(33)'/3r(3/4) —~ 1.298'3 (%) (2.181)

x=0

with I'(x) being the Euler Gamma function. By combining Egs. (2.180) and (2.181)
the following expression for the concentration profile is deduced:

S — (0 [
ci(x) — ¢i(0) :(}T;l(ﬂ) Je*"””du i=0,R (2.182)
' 0

Moreover, the current is given by

[RPE _ fAD, (dé_o> _ co — co(0) _
dx /.,  1.29B'/3 (2.183)

= 0.620FADY > 0'/2v=1/6 (¢ — ¢6(0))

which simplifies to the well-known Levich’s equation for limiting conditions (i.e.,
co(0)=0):

IRPE = 0.620FAD w'/>v1/0¢], (2.184)
From Egs. (2.183) and (2.184), it is possible to rewrite the expression of the

surface concentrations in terms of the current, and the cathodic and anodic limiting
currents are as follows:

co (O) 1 IRDE
G IFE
c
. 2.185
CR(O) . IRDE ( )
G

with [dREE being identical to that given in Eq. (2.184) by changing D and c(, by Dg
and cy and of negative sign. By combining Eq. (2.185) with the nernstian condition
e" = co(0)/cr(0), with 5 given by Eq. (2.6), the following relationship between
current and potential is given by

RT IRDE _ IRDE

r,RDE d,c

E = E1/2 + 7111 (17RDE — Il(}DE (2 186)
,a
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which is formally identical to that obtained at planar electrodes (Eq. 2.31), but the
half-wave potential is

. RT. (Dg\*?
Erl,/RzDE:ECe +7ID<D_§) (2.187)

2.9 Thin Layer Voltammetry

This section analyzes the response of a charge transfer process under conditions of
finite linear diffusion which corresponds to a thin layer cell. This type of cell can
be achieved by miniaturization process for obtaining a very high Area/Volume
ratio, i.e., a maximum distance between the working and counter electrodes that is
even smaller than the diffusion layer [31]. In these cells it is easy to carry out a
bulk electrolysis of the electroactive species even with no convection. Two differ-
ent cell configurations can be described: a cell with two working electrodes or a
working electrode versus an electro-inactive wall separated at distance / (see
Fig. 2.23).

If we consider a thin layer cell where the electrode process given in reaction
Scheme (I) takes place, the mass transport differential equation is given by Eq. (2.2)
and the boundary conditions corresponding to limiting current are as follows:

t=0,0<x<] co=cy =0 (2.188)

Fig. 2.23 Diagram of a thin

layer cell with a single or Reference

two working electrodes Auxiliar electrode

electrode
Working Wall or
electrode working

electrode
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CO(Oa t) = C0(17 t) =0
(M) —0 two working electrodes (2.189)
x=1/2
Co(O, l) =0
) o one working electrode (2.190)
ox )

The solution to Eq. (2.2) can be deduced by using Laplace transform method (see
Appendix B), by obtaining the following expression:

0 7 _ /Ty
Eo(x,p)— (; )—l—ae DIOX—&—aze Vs (2.191)

In order to determine the values of constants a; and a,, the derivative of
Eq. (2.191) is equated to zero at the corresponding distance (x =1/2 or x =) in
line with Eqgs. (2.189) and (2.190):

a1V — aye VS — (2.192)

where 6 = [/2 for the two electrodes cell and § = / for the one electrode cell. By
combining Eq. (2.192) and condition ¢o(0, p) = 0, one obtains

Ls

—cF Do
ag=—0__° ' e _ (2.193)
p e\/%(s +e 5o?
s \/izﬁ
—c Do
m=—0___° (2.194)

e\/%;‘S + e_\/%é

The Laplace transform of the current is given by

- 0 /
ITLV( ) = FADo( a‘;)“_o = FADo D—po[al — a] (2.195)

which, by taking into account Egs. (2.193) and (2.194), becomes [31]:

_ D \/—' \/“ D
™ (p) = FAch [=2° = FA(|=2tan h (, /15> (2.196)
005 + e \/Z p DO

As indicated in reference [77] the inverse transform of Eq. (2.196) leads to

ITLV

- 4/12 exp { 1)277,12} (2.197)
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Fig. 2.24 Variation of the 1.0
ratio (ItLv/l4.c) versus A
calculated from Eq. (2.197) s
Cotreliike - Dirac-like
ehavior behavior
o 06
\'U
=
>
-
02 -
0.0 ‘ — : : . : ‘
00 02 04 06 08 10 12 14 16 18

with

VDot two working electrodes
A= [ (2.198)
vV#Do!  one working electrode
21

and I, being the diffusion-controlled limiting current (see Eq. 2.28). Equation
(2.197) simplifies in two asymptotic cases. When A — 0 (i.e.,/ > /zDot), the term

4/12 exp {—(Zm — 1)271/12} — 11in such a way the current becomes identical to /.
m=1
(that is, the expression corresponding to the semi-infinite approach). In the contrary,

i.e., for A — oo (and ! < /zDot), the current expression simplifies to [31],

1YY = FAcgl x Dirac(f) (2.199)

This result indicates that as / decreases the current takes a very high value at
times close to zero and it diminishes very fast (i.e., species O is consumed
instantaneously). In order to check the values of parameter A for which the response
evolves from the cottrellian behavior to that given by Eq. (2.199), the behavior of
the ratio (ITLV/Id,C) versus 4 has been plotted in Fig. 2.24. From this figure, it can be
seen that for 4 < 0.46 the current is identical to that obtained with the Cottrell
equation (with a maximum relative difference of 5 %). For higher values of 4, the
ratio decreases until for4 > 1.21 the current behaves in line with Eq. (2.199) (with a
maximum relative difference of 5 %). In practice, that means that the current will be
similar to that obtained at a “semi-infinite” cell for times close to zero and it will
decrease with time faster, the smaller the value of / (i.e., the faster 4 increases) due
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™ /A

Fig. 2.25 Chronoamperometric responses of a thin layer cell calculated from Eq. (2.197) for
different values of / (in pm): 150 (solid line); 100 (dashed line); 75 (dashed-dotted line); and
50 (dotted line). The current calculated with Cottrell Eq. (2.28) is also plotted (black dots).
D =107 cm?s™!', A=0.01 cm?, ¢ = 107° mol cm 3

to a faster depletion of the oxidized species, which can be seen in Fig. 2.25. For
example, for a fixed time of one second, the current obtained for a separation
between electrodes of 150 pm is undistinguishable from that obtained under
semi-infinite linear diffusion whereas it drops 48 % from the cottrellian value
when the distance is /=75 pm. This decrease reaches 91 % for the narrower cell
(I=50 pm), for which, at this time, the current is very close to zero.
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3.1 Introduction

This chapter addresses more complex electrode processes than one-electron revers-
ible electrochemical reactions in single potential pulse techniques. The concepts
given here set the basis for tackling the current—potential response in multipotential
pulse electrochemical techniques (see Chaps. 4-7), which are more powerful, but
also present greater theoretical complexity.

In Sect. 3.2, non-reversible charge transfer reactions will be studied, with
emphasis on their most characteristic aspects, such as the dependence of the half-
wave potential on the heterogeneous charge transfer rate constant and the time of
the application of the potential, as well as the size and geometric characteristics of
the working electrode.

Multi-electron (multistep) electrode processes will be studied in Sect. 3.3,
underlining the key role of the difference of the formal potentials between each
two consecutive electrochemical steps on the current—potential curves and also the
comproportionation/disproportionation reactions that take place in the vicinity of
the electrode surface. In the case of two-step reactions, interesting aspects of the
current—potential curves will be discussed and related to the surface concentrations
of the participating species.

In Sect. 3.4, the current—potential curves corresponding to electrode processes
complicated with homogeneous chemical reactions will be analyzed, highlighting
the analogies and differences between the theoretical treatments of the different
reaction schemes corresponding to first-order catalytic, CE, and EC mechanisms.
These three reaction schemes will be treated rigorously and with different
approaches of approximation. Also working curves will be given to obtain equilib-
rium and chemical rate constants in each case. ECE mechanism and some more
complex reaction schemes will also be discussed.

All general typical variables considered in this chapter for a particular reaction
scheme, for example the half-wave potential, are of fundamental interest for its
characterization in any electrochemical technique. Moreover, as indicated in the
previous chapter, all the current—potential expressions deduced here under station-
ary conditions (when microelectrodes are used) are applicable to any multipotential
step or sweep electrochemical techniques like Staircase Voltammetry or Cyclic
Voltammetry.

3.2 Quasi-reversible and Irreversible Electrochemical
Reactions

In the preceding chapter, single pulse voltammetry and chronoamperometry were
applied to the study of reversible electrode reactions of species in solution. Under
these conditions, the surface concentrations fulfill Nernst equation and are
independent of the duration of the experiment, regardless of the diffusion field
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geometry, if the diffusion coefficients are identical, and depend only on the applied
potential.

In this section, a non-reversible electrode reaction will be addressed. An exact
definition of a slow charge transfer process is not possible because the charge
transfer reaction can be reversible, quasi-reversible, or irreversible depending on
the duration of the experiment and the mass transport rate. So, an electrode reaction
can be slow or non-reversible when the mass transport rate has a value such that the
measured current is lower than that corresponding to a reversible process because
the rate of depletion of the surface species at the electrode surface is less than the
diffusion rate at which it reaches the surface. Under these conditions, the potential
values that reduce the O species and oxidize the R species become more negative
and more positive, respectively, than those predicted by Nernst equation.

A reversible criterion will be presented in order to clearly establish the exper-
imental conditions for which a charge transfer process can be considered as
reversible, quasi-reversible, or fully irreversible. Note that this criterion can be
easily extended to any electrochemical technique. This section also analyzes the
response of non-reversible electrode processes at microelectrodes, which does not
depend on the electrochemical technique employed, as stated in Chap. 2.

3.2.1 Planar Electrodes

A non-reversible electrochemical reaction that occurs on a planar electrode is
considered according to the reaction scheme:

Kred
O+e =R (3.0)

The mass transport of the different species in solution is described by the
diffusive differential equation system:

aCQ - az(,'o
W_DO ax2 (3'1)
der _p, Oe
or R ox

The boundary conditions for a non-reversible electrochemical reaction are

t>0, X — OO o o ox
f=0 x>0 } €o = Cg, CR = CR (3.2)
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Oco B Ocr
Do (ax) o e (ax) (33)

dc
Do (a—f) = kreaCd) — koxcy (3.4)

Taking into account the relationship between the oxidation and reduction rate con-
stants (i.., kox = kreqe” with y = F(E — ECG/) /RT; see Sect. 1.7) whatever the kinetic
model considered, Eq. (3.4) becomes

Oc s s
Do (5;)\»_0 = krea [ — €] (3.5)

where ¢, and c} are the surface concentrations of species O and R.

The above problem is solved using the dimensionless parameter method devel-
oped by Koutecky [1-3] (the Laplace transform method has been addressed in
reference [4]). First, we insert the dimensionless diffusion parameter
s7(i = O, R):

1

P _ X 3.6
S =2 bs (3.6)
such that the boundary value problem becomes
5P — o0
co = Cp; CR = Cq (3.7)
sP=0
(%) = l(%) (3.8)
osg =0 YANCET 9/
Oco = 2kred L[c(s) — e”cf{] (3.9)
8s0 sP—0 DO
where

v = v/Do/Dr (3.10)

Surface condition (3.9) indicates that the surface concentrations of species O
and R, c{, and c}, are not only functions of variable sf i = O, R), as in the case of
Nernstian charge transfer processes, but also time dependent, since their
corresponding derivatives at s;” = 0 are too.
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Both surface conditions (3.8) and (3.9) suggest the inclusion of a new time-
dependent dimensionless variable:

t
X = 2kred 7(1 +}/e’7) (311)
\V Do

Inserting variables s and y in Eq. (3.1) gives the differential equation system in
Eq. (D.1) of Appendix D, and by following the procedure described in Appendices
A and D, the expressions for the concentration profiles are obtained (see Egs. (D.19)
and (D.20)). By makings;” = Oin these equations, the following expressions for the
surface concentrations are deduced:

1— (cg/co)e"

col0. 1) =) =1+ Jeo-n] G

1+ yet
Cospn v (1= (cx/co)e
cr(0, x) = cr(x) = g [1 - (cﬁ/cé)( 1 f},e,? >(H()() - 1)] (3.13)

where H(y) = e<1/2>2erfc()(/2) (see also Eq. (2.138)).

In what follows, the Butler—Volmer formalism for the electrode kinetics will be
assumed (unless otherwise indicated), so the expressions for the rate constants are
(see Sect. 1.7.1):

kiea = ke
k:)ex = kreqe” } (314)

with n =F (E — ECG’)/RT, and k° and a being the standard heterogeneous rate
constant and charge transfer coefficient. Note that £° is the value of the reduction
and oxidation rate constants at the formal potential E°'.

3.2.1.1 Concentration Profiles

The concentration profiles are very sensitive to the kinetics of the electrode
reaction. In this context, the determination of the diffusion layer thickness is of
great importance in the study of non-reversible charge transfer processes. This
magnitude can be defined as the thickness of the region adjacent to the electrode
surface where the concentration of electro-active species differs from its bulk value,
and it can be accurately calculated from the concentration profiles. In the previous
chapter, the extensively used concept of “Nernst diffusion layer” (), defined as the
distance at which the linear concentration profile (obtained from the straight line
tangent to the concentration profile curve at the electrode surface) takes its bulk
value, has been explained. In this chapter, we will refer to it as “linear diffusion
layer” since the term “Nernst” can be misunderstood when non-reversible processes
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are treated. An analytical expression for the linear diffusion layer thickness is
provided in Eq. (3.22).
The variation with time of the transient concentration profiles (co(x, H)/cg vs. x)

and the linear concentration profiles (co(x,?) = ((cg —cy) /8%, O)x + ¢ vs. xis
shown in Fig. 3.1, with &, being the linear diffusion layer thickness, see below) of

species O when a potential step E = Ef‘/ — 0.10 Vis applied for different values of
the standard heterogeneous rate constant k° and supposing that only species O is
initially present in the electrolytic solution. The superscript “qr” in the diffusion
layer 6 denotes that it corresponds to quasi-reversible processes.

As can be observed from these curves, the rate of variation of linear and real
diffusion layer thickness with time increases with k°, being maximum for
k0 > 0.1 cms~!, which corresponds to the reversible case. From Fig. 3.1a, it can
be seen that for reversible processes the surface concentration is independent of
time in agreement with Eq. (2.20) (see also Fig. 2.1 in Sect. 2.2.1). However, for
non-reversible processes (Fig. 3.1b and c), the time has an important effect on the
surface concentration, such that ¢, decreases as  increases, with this behavior being
more marked for intermediate k° values (quasi-reversible processes). So, for
k% =103 cms™!, the surface concentration decreases by 19 % from t=0.1 to
0.4 s, whereas for kX = 107 cm s~ it only varies 7 %. It is also worth noting that
for the reversible case (Fig. 3.1a), the diffusion control (¢ — 0) has practically
been reached at the selected potential.

3.2.1.2 Current-Time Curves (Chronoamperometry) and Current—
Potential Curves (Voltammetry)

From Eq. (D.19) of Appendix D and (E.6) of Appendix E, the following expression
for the current is obtained:

mee L (deoy e (o) )
FADo  2+/Dot\0sd Sopzo_\/zrDot 1+ yen “ '

where F function is defined as (see Appendix E):

Flx) =Y (._—1)] ()M = Va(x/2)exp(x/2)erfc(x/2) (3.16)

J

Jj=0
H Ph
h=0

By comparing Eq. (3.15) with Eq. (2.27), it can be written that

Iplane
e F(y) (3.17)

rev
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Fig. 3.1 Real concentration profiles (solid lines) and linear concentration profiles (dashed lines)
of the oxidized species at a planar electrode for the application of a potential step, calculated from
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or (see Eq. (2.28))

e 1 — (cg/ep)e”

plane
15 1+ yer

F(y) (3.18)

with y given in Eq. (3.11) and

i _ [P0 (0~ &) (3.19)
2t 1+ pel '

: /D
lane O =
Idp,C =FA ECO (320)

The main characteristics of function F are outlined in Appendix E.

Equations (3.17) and (3.18) hold for electrochemical reactions of any reversibil-
ity degree. By comparing these equations with Eq. (3.19) corresponding to a
reversible process, it can be inferred that the current for a non-reversible process
is expressed as the reversible current modulated by F function (that contains the
kinetic influence through the dimensionless parameter y), which increases with y
from zero to the unity (see Fig. E.1 of Appendix E). Hence, small values of y cause
a strong kinetic influence and large values of y give rise to a reversible behavior.

The faradaic current corresponding to any charge transfer process depends on
the surface gradient (Oco/0x),_,, which can be expressed as the ratio of the
difference between the bulk and surface concentrations of the oxidized species
and the linear diffusion layer, 5370’

Iplane LB _ C(S)
FADo 6%,

5

(3.21)

By solving for &, in Eq. (3.21) and substituting the expressions of the surface
concentrations and the current given by Eqs. (3.12) and (3.18), one has [3]:

530 =G(x) ;,o (3.22)

with
1 1
F(x) xvVm/2

Glz) = (3.23)

Fig. 3.1 (continued) Eq. (D.19) E—E® = 0.1V, a=05, Do=10"" cm® s™', y=1.
T =298 K. The values of time and of the heterogeneous rate constant k° are on the curves. Dotted
lines mark the values of the linear diffusion layer. Reproduced with permission from reference [3]
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8" o = v/nDot (3.24)

and F(y) given by Eq. (3.16).
From Eq. (3.22), it can be deduced that function G defines the ratio 5ng/ 5;70 asa
function of parameter y, and leads to the following limits:

<1 (3.25)

Note that égfo, unlike the reversible case, depends on the applied potential, and
the more irreversible the process, the smaller the diffusion layer (except under
limiting current conditions where the thickness is independent of the electrode
kinetics).

For fully irreversible reduction reactions (small values of ko), the enhancement
of k.4 leads to a progressive decrease of k. as the potential becomes less than Ec@/
such that, under conditions for which the current is measurable, it is fulfilled that
kred > kox- Under these conditions, (kox/kreq) = €” — 0, and from Egs. (3.11) and
(3.18),

Iplane

Ip]m — F()(irrev) (326)
d,c

can be easily deduced, where

: t
2 = 2kgeqy /D—O (3.27)

From Egs. (3.26) and (3.27), the expression of the half-wave potential for a

totally irreversible reaction can be easily deduced since, for £ = ir/rgv,
pe 1 F(xis) (3.28)
[(il‘z:ne ) 1/2

with

. t _aF E irev —Ee,
imev — 240 [—e ( 12 ) 3.29
X172 Do ( )

Equation (3.28) holds for )(i‘/r;" = 0.865. By taking logarithms and solving for

Eil‘}gv, one obtains [4, 5],
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: ., RT f
v =E + —n (2.309/<°1 /D—O> (3.30)

It is important to highlight that the current for a quasi-reversible or fully
irreversible electrode process cannot be expressed as a product of functions
depending on the different variables, i.e., applied potential and time (or k°\/z/Do).
Unfortunately, the dimensionless parameter y is influenced by time, by the kinetic
constants and by the applied potential.

3.2.1.2.1 Chronoamperometry

The expression for the current of a non-reversible process given by Eq. (3.18)
allows us to obtain those corresponding to cathodic and anodic diffusion-controlled
limiting currents, Ig!zcme and Igfg"e given by Eq. (2.28) by making e’ — 0 and
e — oo, respectively (i.e., y — oo; see Egs. (3.11) and (3.14), and Appendix E).

The dependence on time of the current when a constant potential is applied to a
plane electrode for different values of the heterogeneous rate constant k° ranging
from reversible to totally irreversible processes is shown in Fig. 3.2.

From these curves, it can be seen that the current decreases with time in all cases,
and more pronounced the higher the rate constant. Moreover, for values of
0 >10"2 cms™!, the response becomes independent of the kinetics, i.e., the
reversible limit has been reached. The rate constant is related to the kinetic
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Fig. 3.2 Current-time curves calculated from Eq. (3.18) for a plane electrode with
E—Ece/ =—0.15 V. A=0.031 cm?, co=1mM, cg =0, Do = 10> cm? s7!, y = 1. The
values of the heterogeneous rate constant K° (inem s Y are: (2) 1074 (b)2.5 x 107% (¢) 5 x 1074
(d) 1073, (e) 1072 and (f) 0.1. The current corresponding to a reversible process, given by

Eq. (2.27), has been included for comparison (black dots)
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activation that the charge process requires to give rise to measurable values of the
current. In this sense it can be seen that, whereas for reversible processes the current
tends to infinity when the time tends to zero (see Eq. (2.28)), in the case of
non-reversible processes, the current takes a constant value at t — 0, which
decreases with the rate constant. This value can be obtained from the series
expansion of function F given in Appendix E for small values of y (see Eq. (E.6))

ane 1 - C* /C* e’ * —2 t
(Ipl )t<<1 1(— —|—Rye:7))FAco (Kred + 7kox) (1 - \/7_T(kred }/kOX)\/D_O>
(3.31)

1%

so for t — 0 the second term in the brackets of the right-hand side vanishes and the
current takes the constant value (1 — (cg/cg)e’)FAcy(kea + vkox)/(1 + ye'),
which for a totally irreversible process simplifies to FAKk 4.

3.2.1.2.2 Voltammetry

The shape and location of the current—potential curves are strongly dependent on
the kinetics of the electrode reaction through the dimensionless rate constant,
defined as

Koiane = k°v/1/Do (3.32)

This dimensionless rate constant contains typical parameters of the process (i.e.,
the heterogeneous rate constant ko, the diffusion coefficient, and the experiment
time), thus reflecting that the behavior of the process is the result of a combination
of intrinsic (kinetics and diffusion) and extrinsic (time window) effects. The effect

of K'glane in the voltammograms obtained when both species (a) or only oxidized

species O (b) are initially present can be seen in Fig. 3.3.
The curves in Fig. 3.3a for electrochemical processes of different reversibility

degree show how «%_ affects the voltammograms. Note that a decrease of the

plane
dimensionless rate constant leads to gentler current—potential curves. In this sense,
irreversible processes spread into broader intervals of potential. This can be quan-
tified by calculating the width of the potential region needed to go from, for

example, (1/4)(IP"/I52™) to (3/4)(IP“"/I72™) (i.e., the difference EI, — EVT,).
For a reversible process, this region has a width of 56 mV (see Eq. (2.36) and
Fig. 2.4 of Sect. 2.2.2.2), whereas for a totally irreversible one (i.e., % < 0.01) it

plane

is of 90 mV (see Eq. (3.26) and Fig. 3.4). Moreover, for values of K9 <0.01, the

plane
shape of the anodic and cathodic waves remains unchanged although they move

toward positive and negative potentials, respectively. This shift is due to the fact

that the lower Kglane is, the higher the values of # necessary for y to have a value for
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Fig. 3.3 Normalized
current—potential curves
calculated from Eq. (3.18)
for a plane electrode with
y=1, c;; = cg (a) and

c; = 0 (b). The values of
the dimensionless rate

constant k%, = k°\/t/Do
are shown in the curves. The
current corresponding to a
reversible process, given by
Eq. (2.27), has been
included for comparison
(black dots). a=0.5,
T=298 K

Fig. 3.4 Comparison of the
voltammograms
corresponding to a
reversible process
(calculated from Eq. (2.36))
and to a totally irreversible
one (calculated from

Eq. (3.26)) with

(c;/cg) =0,a=0.5,and
Kglanc =0.01
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F(y) # 0. In other words, the electrode reaction presents a stronger kinetic resis-
tance the smaller Kglane is, and, as a consequence, higher # values are required to
obtain measurable anodic and cathodic currents.

It is also worth pointing out that a similar result to that shown in Fig. 3.3 is
obtained if we analyze the effect of the time in the response of a quasi-reversible
charge transfer process, i.e., for a given value of the rate constant kO, a decrease of

the time leads to a decrease of the dimensionless rate constant Kglane and therefore to

a higher irreversible character of the process. This fact can be used to ascertain at a
glance if a particular electrode process behaves in a reversible or non-reversible
way, since in the first case no influence of time on the normalized current is
observed (see Eq. (2.36)).

3.2.1.3 Approximate Treatment

This approximate procedure is similar to that used in references [6—8] applied to the
Dropping Mercury Electrode. In this treatment, it is assumed that the concentrations
of oxidized and reduced species at the electrode surface can be written in the form
given by Eq. (2.30), i.e.,

plane lane
ey = [fae T (3.33)
O (0] [plane '
d,c
plane _ plane
= (e (3.34)
I3,
with 152" and 173" given by Eq. (2.28) of Sect. 2.2.2.1.
As the current for a non-nernstian process is
Iplane
ﬂ = kredc(s) — koxC[s{ (335)

by inserting Egs. (3.33), (3.34), and (2.28) in (3.35), the following expression for
the current is deduced:

I‘ili“c Iil:nc
\/E{kred ﬁ + kox ﬁ
1 +kred\/DL;+koxy/DL;

By considering that the current for a reversible process, after arranging
Eq. (2.31) of Sect. 2.2.2.2 and taking into account that e” = kyy /kpeq, it can be
written as

e — (3.36)
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http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2

146 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions

Iplgme _ kred\/ﬁlzld,c + kox VDOId,a (3 37)
i kred A% DR + kox \% DO

From Egs. (3.36) and (3.37), we get

kre kOX
Iplane \/E{\/Tio + \/T_R}

[Plane {km Koy }
rev 1+ \/E \/Dlo + N

(3.38)

It is important to note that Eq. (3.38) obtained with this treatment (based on the
consideration that the diffusion layer corresponding to a non-nernstian electrode
process coincides with that corresponding to a reversible one) can also be directly
deduced from Eq. (3.17) if F(y) is replaced by its simplified form given by
Eq. (E.10) (which is valid for y < 0.185 and y > 19.7 with an error smaller than
5 %; see Appendix E):

]plane /2

So, for an irreversible cathodic electrode reaction ( kpq > kox, €7 — 0),
Eq. (3.38) or (3.39) leads to

I =
1(11),(?ne 1 + \/ DL(t)kred

By expressing k.4 in terms of the potential through the Butler—Volmer relation
(kreqa = koe’“”), it is easily deduced that under suitable conditions in which Eq. (3.40)

is applicable, the potential varies linearly with In ( (1 (‘i”line - ]Ph‘"e) / Ipla“e> :

Iplane g_[kred
y = (3.40)

RT Iplane _ Iplane
E:E]/2 +aF'1n<(LCIIJMIIC (341)
with
,  RT
Eip=E® + a—Fln(\/i_rK%) (3.42)

Note that the expression of £/, in Eq. (3.42) differs from that obtained from the
rigorous expression of E;, for a fully irreversible electrode process given in
Eq. (3.30) (with this difference being RTIn(2.309/\/7)/(aF) = 13.6 mV for
a = 0.5 and T=298 K).
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3.2.1.4 Reversibility Criteria

At this point, a question arises concerning the reversibility degree of the charge
transfer process. It was stated in Sect. 3.2 that an exact definition of a slow charge
transfer process is not possible. However, is it possible to give a criterion for clearly
defining when the electrode process behaves in a reversible or non-reversible way?
Attending to the above discussion and to that in Sect. 3.2, this question could be
answered by considering the relation between the heterogeneous rate constant and
the mass transport coefficient for the oxidized species, mq, defined as the ratio
between the surface flux and the difference of bulk and surface concentrations (see
Sect. 1.8.4 and references [4, 9, 10]), i.e.,

_ Iplane/FA B DO

Co

mo (3.43)

=
C(S) 5p,0

Note that the usual definition of the mass transfer coefficient is related to limiting
diffusion conditions or nernstian conditions (mo ~, = \/Do/at for a planar elec-
trode; see Sect. 1.8.4). The definition given in Eq. (3.43) is general for any
reversibility degree of the electrode process at planar electrodes.

In order to discriminate between reversible and non-reversible regimes, the
behavior of the following relation R® at the formal potential should be examined:

_k_°_k°5‘§,o(x°)

0
R o, D
0 O

(3.44)

with y° and mQ being the value of y and mg at E = ECGI. By taking into account
Egs. (3.11), (3.14), and (3.22)—(3.24), R can be written as

R = XOT%G( 7°) (3.45)

By assuming that a reversible process corresponds to R° > 10 and a fully
irreversible one to R® < 0.05 (i.e., the heterogeneous rate constant is ten times
higher or 20 times smaller than the mass transport coefficient, respectively), in the
interval 0.05 < R% < 10 the process can be considered as quasi-reversible. The
variation of log(R®) with log(y") fory = 1 has been plotted in Fig. 3.5, and the three
regions have been delimited. From the above criterion, a totally irreversible process
is characterized by a value of ¥° < 0.17 (which corresponds to a dimensionless rate
constant k% < 0.042), and a reversible behavior is attained for ;(0 > 23.6 (i.e.,

plane
0
Kplane > 3-9)-
The figure also includes the variation of the ratio k°/mo,_», = \/Ekglane with log

(+°) (dashed line) for comparison. Thus, it can be seen that in the reversible limit,
there is a coincidence with the criterion used here, but in the irreversible one, this
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Fig. 3.5 Variation of log a i
(RY) (a) and of the surface ) !
concentration of oxidized - 1 i !
species c%(;(o) (b) with log %_\ TOTALLY | : REVERSIBLE
(¢°) calculated from E, IRREVERSIBLE !
Egs. (3.45)and (3.12) with ¢ < ©] | |
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relation leads to a value of y° = 0.113 (i.e., K‘glane < 0.03 if y = 1). This smaller
value of Kglane is a consequence of the use of the linear diffusion layer for reversible

processes instead of that obtained for processes of any reversibility given by
Eq. (3.22) (which fulfills (8% / 85.0) < 1),

The criterion discussed above is based on the dependence of the surface con-
centration of the oxidized species with the reversibility degree of the electrode
process. So, for a totally irreversible process, the rate of depletion of the surface
concentration c¢§y is much smaller than the mass transport rate process, and there-
fore, at the formal potential its value should be coincident with the bulk concen-
tration  (c§(x°)/co,=1). In contrast, for reversible electrode reactions,
c&(x°)/co = 0.5 (see Eq. (2.20) of Sect. 2.2 for ¢g = 0 and y = 1). In order to
verify this behavior, the variation of the surface concentration of species O at the
formal potential calculated as a function of »° has been plotted in Fig. 3.5b.
From this figure, it can be deduced that at the irreversible limit (i.e., ;(0 =0.17),
c&(x°)/cy, = 0.955 (around 5 % error), whereas for the reversible limit (y° = 23.6),
itiscg(x°)/co = 0.524 (around 5 % error). Both results confirm the accuracy of the
chosen limits of »°.
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Note that any reversibility criterion can change with the geometry and size of the
electrode considered since the expression of the mass transport coefficient depends
on these features.

3.2.1.5 Determination of Kinetic Parameters

The characterization of a non-reversible electrode process is logically more com-
plex than that of a reversible one since it implies knowledge of thermodynamic
(formal potential) and kinetic (heterogeneous rate constant and charge transfer
coefficient) parameters of the process under study.

There are various approaches for determining the kinetic parameters of
non-reversible processes. The most common correspond to totally irreversible
processes since the expression of the current given by Eq. (3.26) is simpler than
that obtained for the general case (Eq. 3.18). Below we present the main features of
three ways of determining these parameters.

(a) Determination of k.4 at any potential value
In agreement with Eq. (3.26), for a totally irreversible process, from a plot
of the normalized current I'Dl"me/l(lilﬁnc vs. y'™" (i.e., Fig. E.1 in Appendix E), it
is possible to determine the values of parameter ™ corresponding to each
potential by using the corresponding values of F function. Once the values of
2™ have been obtained, from Eq. (3.27), kwq at each potential follows
immediately. A logarithmic plot of the potential versus In(k..q) will allow us
to obtain the values of a from the slope and of k° from the intercept if the
formal potential is known (see Eq. (3.14)).
(b) Tomes criterion [11]
As in the reversible case, together with the irreversible half-wave potential,
the difference between potentials corresponding to a current /P4 = (3/4)
1y 0 and P = (1/4)1 i‘g"e, §74 — E}4, can be used to determine the charge
transfer coefficient. Thus, for a quasi-reversible process, this difference is
higher than the 56.4 mV value typical of a reversible monoelectronic charge
transfer, reaching the value 45/a mV for a fully irreversible process (see also
Fig. 3.4). By combining this difference with the irreversible half-wave poten-
tial given by Eq. (3.30), it is possible to obtain k” when the formal potential is
known.
(c) Linearized current—potential curves.
The easiest way to obtain thermodynamic information of a reversible
electrode process comes from the plots of the potential versus

ln( (I g’lgne - ]Pl““) /]pl““e) , which are linear in agreement with Eq. (2.35) of
Sect. 2.2.2.2, and whose intercept coincides with the reversible half-wave

potential. In the case of non-reversible processes, it could be thought that
these plots would not be linear since this linearity is a direct consequence of
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the separation between potential and time dependences in the expression of
the reversible current, which does not occur in the case of fully irreversible
processes (see Eq. (3.26)). In order to check if this linearity could also be
observed for non-reversible processes at planar electrodes, a set of E — In

((I g’lgne —1I Pla"e) /I pla"") curves calculated for different values of the dimen-

: 0
sionless rate constant Ky,

is plotted in Fig. 3.6. The plots in this figure for non-reversible processes (i.e.,
Kglane < 1) deviate from linearity, but can be decomposed into three different
linear regions corresponding to different potential intervals (which are related
with the corresponding values of y through Eq. (3.11)). The particular case
corresponding to Kglm = 0.11is analyzed in detail in Fig. 3.7. The zone labeled
1 corresponds to positive potentials and high values of y (i.e., F(y) = 1; see
Appendix E), for which the process behaves as reversible and the

E— ln((]c’il?“e —Ipla"‘°'> /Ipla"e> plot in this region is coincident with that

obtained for a reversible process (black dots in Fig. 3.6), thus presenting as
intercept the reversible half-wave potential £} /2 (red dot on Fig. 3.7b). This

covering all the reversibility degrees of the process

potential region corresponds to the foot of non-reversible voltammograms (red
line in Fig. 3.7) and it will only be useful for quasi-reversible processes (1 >

K'gla_ne > 0.1) since for irreversible ones it appears at very positive potentials at
which the current obtained is indistinguishable from the background current
(Fig. 3.7a). For more negative potentials (zone 2 of the voltammogram; see

also blue line in Fig. 3.7b), a second zone with a linear dependence of the
potential with 1n(<1 g}i“e - Ipla“e) /Ipl"‘"e) appears. This zone corresponds to

small values of y for which the approximate Eq. (3.40) can be used with small
error (see Appendix E). Therefore,

Fig. 3.6 E vs.

In ( (1312“ _ Iplane) /[plane>

curves calculated from

Eq. (3.18) for different
values of the dimensionless
rate constant k... cg = 0,
a = 0.5. The plot
corresponding to a
reversible process, given by
Eq. (2.35) of Sect. 2.2.2.2, is
included for comparison
(black dots)

ln(([(]ilcane _ Iplane;/ ]plane)
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Fig. 3.7 Current—potential a 10 —
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is fulfilled.
Note that the range of potentials for which Eq. (3.46) can be applied becomes
broader as the rate constant decreases. By using Eq. (3.46), the rate constant £ can

be determined from the intercept of these plots (E° +RT1n(\/7rK0 ) /(aF)),

plane
shown as a blue dot in Fig. 3.7b, if the formal potential is known (with negligible
errors in the rate constant for Kglane <1072).

Finally, for currents close to the diffusion-limiting current (very cathodic poten-
tials), a new linear region appears (labeled 3 in Fig. 3.7) which, for a = 0.5,
presents the same slope as the reversible region. The linear dependence found
here can be identified using a truncated asymptotic expansion of function F given

by Eq. (E.9) of Appendix E
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2
Fly)m1-=, y>36 (3.47)
X
By inserting Eq. (3.47) into Eq. (3.26) it is found that
. RT RT (I5%° — i
E = E? —l—ﬁln(\/@cglane) +7]H (’IT (348)

Under these conditions, for @ = 0.5 the slope coincides with that corresponding
to a reversible process and the intercept is ES’ + (2RT/F)In (\@KO ) (marked as

plane

a green dot in Fig. 3.7b). As the current values for this region are close to 2", the
limiting current needs to be obtained with high accuracy. From a practical point of
view, only region 2 will provide good normalized current values for the linear
analysis of the non-reversible current potential curves. The usefulness of zones
1 and 3 depends on the accuracy of the experimental values for the current response
and on the degree of reversibility of the process. This behavior reflects
the complexity of the current—potential response associated with non-reversible
processes and the great difficulties involved in the analysis of the kinetic and
thermodynamic parameters. For this reason, the common way to proceed in the
analysis of the current potential curves of a non-reversible electrode reaction
involves the use of numerical fitting procedures to determine the characteristics
parameters of the process under study.

3.2.2 Dropping Mercury Electrode
3.2.2.1 dc Polarography

The study of non-reversible processes with dc Polarography was solved by
Koutecky [1, 6] by using the dimensionless parameter method and finding the
following expression for the current:

e
IDCW = F(xpmE) (3.49)

rev

where IPME is given by Eq. (2.113) and F(ypyg) is the so-called Koutecky function.

rev

This function is given in equation (E.1) of Appendix E (z =2/3) by

3 t , 3
XDME = \/;Zkred\/;_;(] +ye’) = \@x (3.50)
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y and y are given by Egs. (3.10) and (3.11). Different approximations to F(Xpmg)
are discussed in Appendix E.

The characteristics of the current—potential curves (polarograms) are similar to
that discussed in Sect. 3.2.1.2.2 for planar electrodes.

For an irreversible process, the half-wave potential is

: , RI t
DME, irrev -© 0
E1/2 =E; —|——ln<1.33k ,/—) (3.51)

3.2.2.2 Normal Pulse Polarography

The measured current at a short pulse time at the end of the drop life is given by

Do « G(a, x)
IPME — FA(t) + 1)y | =2 ’ 3.52
NPP (1 +1) mzco 1+ e ( )
where
3}7’[ 2/3 2/3
Alty + 1) = 4;;() (t + 1) (3.53)
4rp
t
a=—2 (3.54)
Hh+no

t
¥ = 2kpeay | —(1 + ye") (3.55)
Do

G(a, y) is defined by Egs. (A4)—(AS) in reference [12], and m and p are the flux
and density of the mercury, respectively.

The behavior of the normalized normal pulse polarograms at different pulse time
values is shown in Fig. 3.8, which clearly shows the influence of the pulse time on

Fig. 3.8 NPP curves
obtained for different values 1
of t, for

Do =107 cm? s7!,

T=298K,a=0., 8: 08
fni=1sk (incm s™Y): Z
(A) 1023 (B) 101, (ins): £ 06
(1) 0.001; (2) 0.02; =5
(3) 1. Reproduced with & 04

permission [12]
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the reversibility of the process, with the current potential curve being as more
irreversible the smaller the value of #,.

3.2.3 Spherical Electrodes and Microelectrodes

As shown in Chap. 2, attaining analytical explicit solutions is considerably more
complex for nonplanar geometries. This section studies quasi-reversible and irre-
versible processes when a potential step is applied to a spherical electrode, since
this solution will be very useful for discussing the behavior of these electrode
reactions when steady-state conditions are addressed in the next section. Moreover,
the treatment of other electrode geometries seldom leads to explicit analytical
solutions and it is necessary in most cases to use numerical treatments.

Section 2.5 and Appendix A show (see Egs. (A.27)—(A.32)) how the change of
variable

i, f)r .
ui(r,t):cc(:r)’ i = O,R (3.56)
ofls

is very useful when the spherical diffusion operator is considered, and how this
change of variable notably simplifies the mass transport equations, although it
complicates the boundary conditions. In the case of a non-reversible process, the
boundary value problem becomes

Ouo(r, 1) D azuo(r7 f)

or 0o 3.57
Oug(r,1) _p % ur(r, 1) (3-57)
ot TR or?
t=0;r>r T ] —ii
l‘>0;r—>oo} uo(r, 1) = ur(r, 1) “an (3.58)

Po ((W> — M) = Dr ((W} - M) (3.59)

m((%} . _M> = keatio (s, 1) = koxtir (rss?)  (3.60)

Ts

This problem was solved by Delmastro and Smith by using the Laplace trans-
form method, assuming that only oxidized species O was initially present in the
solution [13], and they reported the following analytical solution:
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12, nl/2  pl/2p002
soh Doy 1/2 1 Dy~ +Dg" Dy Dy
P = FAseo (52) kred{a—b a— - + a exp(a?t)erfc(ar'/?)—
1 D1/2+D1/2 D1/2D1/z D1/2D1/2
b— bPt)erf: (bt‘/z) o TR
a—b ot | SRerte 12ab
(3.61)
where
D1/2 D1/2 pI2 L pl2 pl2pl/
=20 TP o )P0 TP 20 R
T Fs r2
(D1/2 _(m_'_Dl/Z (1 a),,) (3.62)
0
rle/z
pl/2 1/2 pl2 1/2 2 1/2~1/2
Dy Dy Ds°D
2b = #_’_ﬂ + #—i—ﬂ _ O ~R
Ts Ts r2
3.63
. (Dllz/ze’“” +Dg2e(1’“>’7> (3.63)
Dl/zrS
- (I—a)n
olete )
T A (3.64)
D =D{ °Dg (3.65)

By supposing that both oxidized and reduced species are initially present in the
electrolytic solution and that diffusion coefficients of O and R are equal (Do = Dy
= D), the current takes the form [14]:

;dl:; _ KsphE(jg (—1 EfRe ,/,;O)GH) [1 + Kephe (1 + \/ZEj)H( ;(S)} (3.66)
with
H(y) =2F(x,)/(Vay,) =& terfe(z,/2) (3.67)
gy K lte (3.68)
ean
Xs = z\iﬁ& (3.69)

Ksphe = Koppe® (1 +¢") (3.70)



156 3 Single Pulse Voltammetry: Non-reversible and Complex Electrochemical Reactions

£r
0 D
Ksphe = rs (371)
L+ nDt
1 1
I = FADc; (— + —> 3.72
d,c (0] r \/Iﬁ ( )

Equation (3.66) coincides with (3.61) if c; =0 and Do = Dg.
The expression for the current given in Eq. (3.66) can be simplified by consid-
ering the approximate expression of the F function given in Eq. (E.10):

sphe )k 9
e wne(L— (cr/co)e’) |y | Gy (3.73)
e e T+ (VE/2) ks '

For spherical microelectrodes, it is fulfilled that y, > 1 and H(y,) — 0 (see
Egs. (3.67)—(3.69)) so the second term in the brackets of Egs. (3.66) or (3.73) can be
neglected, and the following time-independent response is deduced [15, 16]:

0 — _* _*
]Sphe’ss o Isphe,ss Ksphe,sse 0”1(1 - (LR/LO)en)
— “d,c

(3.74)
(1 + K(s)phe,sseiaﬂ(l + eVI))
with
k()rS
K(s]phe,ss = 7 (375)
sphe, ss « 1
[50 = FADCo (3.76)

Equation (3.74) is only applicable to microspheres and microhemispheres, i.e.,
under steady-state conditions for which y, > 1 and r, < zDt8/(8 — 1) in
Eq. (3.66). These conditions relate the electrode radius not only to /7D, like for
areversible charge transfer process (see Sect. 2.7), but also to the kinetic parameters
k° and a, and the applied potential E.

In order to analyze the degree of accuracy of Egs. (3.73) and (3.74), the current—
potential curves calculated with rigorous (3.66) (solid lines), approximate quasi-
stationary (3.73) (dotted lines), and stationary (3.74) (dashed lines) equations have
been plotted in Fig. 3.9 for different values of the electrode radius and two values of
k°. From this figure, it can be observed that a decrease of the electrode size
facilitates the fulfillment of the Eq. (3.73) for a given value of k° such that the
approximate quasi-stationary solution can be used instead of the rigorous one with
an error smaller than 5 % for ry <50 pm if =102 cms™! and r=1 s.
Equation (3.74) is valid for any value of k° if ry < 3 pm.

The influence of the kinetics on the voltammograms corresponding to spherical
electrodes is conditioned by different variables, and is linked to the electrode size.
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Fig. 3.9 Current—potential
curves for a slow charge
transfer reactions at
spherical electrodes
calculated from Eqgs. (3.66)
(solid lines), (3.73) (dotted
lines), and (3.74) (dashed
lines). The values of ° (in
cm s~ ') and of the
electrode electrode radius
(in microns) are shown in
the curves. a = 0.5,
D=107 cm?® s, t=1s,
T=298.15K

-0.4 -0.6

0.2 0.0 -0.2 -0.4 -0.6
E-EJIV

This mixed influence can be observed from the expression of y, (Eqgs. 3.68 and
3.69). In order to analyze the influence of the electrode size, Fig. 3.10a shows the
current—potential curves obtained for a charge transfer process with different values
of the dimensionless rate constant Kgphe for a fixedk’ = 10™* cm s~! in NPV with a
time pulse r = 0.1 s (i.e., for different values of the electrode radius ranging from
100 to 1 pm). As a limiting case useful for comparison, the current—potential
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Fig. 3.10 Current—

potential curves (a) and £ —

In ( <1§,p<l:1e _ Isphe) /Isphe>

(b) for a slow electrode
process taking place at a
spherical electrode,
calculated from Eq. (3.66)
for different values of Kgphe
with k& = 107* cm s7!,
t=0.1s,and a = 0.5. The
curve corresponding to a
plane electrode, calculated

from Eq. (3.15) for K0

plane =
K°\/t/D = 0.01 (black
dots), has been included for
comparison

-0.8 T T T T T
-10 -5 0 5 10 15 20

In (([g?chc _ [sphc ) / [sphc)

response at a planar electrode has been included (black dots). From these curves, it
is clear that a decrease of the dimensionless rate constant K(S)phe given by Eq. (3.71)
mainly affects the irreversible half-wave potential of the responses leading to a shift
of the current—potential curves toward more cathodic potentials. This effect can be
explained by taking into account that the location of the voltammogram is directly
related to Kgphe, which presents the limits:

planar electrodes

Ors / ~ _ 10
0o _ k D (rS > ﬂDt) K(s)phe = \/J_TK(p)lane =k 5 (377)

sphe T .
P 1+ 7-0: | microelectrodes
(l‘s < ”Dt) Kgphe = Kgphe,ss =k B
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0
sphe

for planar electrodes, i.e., it contains characteristic parameters of the system (the
heterogeneous rate constant ko, the diffusion coefficient, the time of the experiment,

and the electrode radius). According to Eq. (3.77), Kgphe tends to Kg]ane multiplied by

/& when rg > v/zDt (i.e., for r¢ > 36+/Dt for an error lower than 5 %), and K(S)phe

For spherical electrodes, k., . plays an analogous role to Kg (given by Eq. (3.32))

o2 g0 = kOrS/D when ry < v zDt (i.e., for r¢ < 0.1/ Dt for an error lower than

sphe, ss
5 %). These two limiting behaviors are clearly seen in Fig. 3.11.

Concerning the determination of kinetic parameters of the voltammograms of
quasi-reversible and irreversible electrode processes, Fig. 3.10b shows the exis-
tence of different linear zones in a similar way to that observed for planar electrodes
(see Fig. 3.6). For practical purposes, it is helpful to use spherical microelectrodes,
for which a broader linear region is obtained under steady-state conditions, since
the process behaves as more irreversible as the radius decreases. For fully irrevers-
ible charge transfers, Eq. (3.74) simplifies to

sphe, ss sphe, ss Kgphe,sse_(m
pohesss — pohess Bphess® (3.78)
o 1 + K?phe,sseim7
which can be rewritten as
, RT RT Isphe,ss _ Isphe,ss
_ e 0 d,c
E= Ec + (l_Fln (Ksphe,ss) + a_Fln Jsphe.ss (379)

Equation (3.79) allows us to obtain a and k° values from the slope and intercept
of the plots of Fig. 3.10b, once the formal potential Ef" is known.

In order to gain a deeper understanding of the particularities of non-reversible
processes at spherical electrodes, it is useful to define the linear diffusion layer

Fig. 3.11 Variation of Kgphe " 0.5 P
with the electrode radius %: ............................................... ./../. ...............................
(solid line) calculated from I ‘/;’(glaﬂe N 4 A
Eq (377) 8-) ’ Ksphe.ss// Ksphc
kK°=10"% cm s~'. The = /
variation of k{y,. ., (dashed § 151 / o
line, Eq. (3.75)) and that of Zk Y
K‘glane (dotted line, :E, 204 V
Eq. (3.32)) have been E’
included for comparison =
£ 251
o n
X
>
L 30 : : .
5 -4 -3 2 -1

log(rg/ cm)
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thickness in an analogous way to that discussed for the case of planar electrodes
(see Sect. 3.2.1.2):

r cg —cd
52phe - [sphe/(FASD) (380)

By considering that the current I°"™ is given by Eq. (3.66) and that the surface
concentration of species O when diffusion coefficients are equal is

Ksphe<1 + \/‘;()(1 = (cr/co)e")
(1 xgne (1+2) ) (1 +e)

ey =cp|1+ (H(z) - 1) (3.81)

it is found that

5 — 1 _H()(s) _ Vs(l _H()(s)) (3 82)
sphe Ts -7 _ 29 .
1+ Ksphe<1 +ﬁ)ﬂ(%) U= H(x,) +2=2F (1)

with H(ys), ¥s» Ksphe» and & given in Egs. (3.67)—(3.70) and F(y,) by Eq. (3.16).
Note that for reversible processes (k° = oo, Xs— 00, H—0,and F — 1),
Sohe = Olphe = (1/V=Dt + l/rs)_1 (see Eq. (2.146) of Sect. 2.5.2).

For spherical microelectrodes (ry < v/zDt), H(y,) — 0 and Egs. (3.81) and
(3.82) convert into

¥ 0 (I—a)y ( * *
o Cot+ Ksphe 55 (CO + (’R)

s = 3.83
© 1+ Ksphe ss€ (lﬂ(] + C”) ( )
3 7 (3.84)

with Kgphe‘ss given by Eq. (3.75).

The influence of the electrode radius (through r/ \/zDrt) and Kinetics (through
ko\/%) on the ratio 5§phe/5Sphe for E— Eel = —150 mV is summarized in
Fig. 3.12. As mentioned in Sect. 3.2.1.2 and in reference [17], 5§phe sphe
to 2/z at planar electrodes (i.e., macroelectrodes) for totally irreversible systems
(ko\/t/_D < 5% 1073 within 2 % error). For smaller electrodes and/or faster
processes, 5Sphe/5 is greater, approaching a limiting value of 1. This value is
attained for reversible processes or when microelectrodes are used, given that in the
latter situation the thickness of the linear diffusion layer is 61 2 r, independently

is equal

sphe

sphe
of the reversibility degree.

On the basis of the above, in an analogous way to that discussed for planar
electrodes in Sect. 3.2.1.4, a reversibility criterion can be also defined for spherical
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Fig. 3.12 Variation of the
ratio between the linear
diffusion layer thickness of
slow and fast electrode
reactions for spherical

qr T
electrodes, 8¢ /Oiphe
the electrode kinetics e
(through the dimensionless : ! O ;;"3‘1’,";'51}‘;";'«'315'1'

0 J fr:.,,*,;r‘u,,;,;wr,’,
parameter k°/¢/D) and the 1
electrode size (through rg/

with
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[T

O iyt
] gyt

Uyyigy
g

\/7D1).

E—E® =—150 mV,
a=05,tr=1s,

D =10cm? s .

Reproduced with
permission of reference [17]

0

electrodes relied on R defined as the ratio between the heterogeneous rate

sphe’
constant and the mass transport coefficient m* = D/ 52;,16, calculated at the formal
potential:
0 oqr
KK S
0o o sphe, 0
Rsphe - % - D (385)

with 88, o defined by Eq. (3.82) at E = E®.

For microelectrodes, the ratio Rgphe becomes (see Eq. (3.84)):

0
RO. = K‘O = k rs
micro sphe, ss DO

(3.86)

which is independent of the potential.

As indicated in Sect. 3.2.1.4, it will be assumed that an irreversible process
corresponds to Rgphe < 0.05 and a reversible one to Rgphe > 10. On the basis of these
limits, it is clear that the lower the electrode radius, the higher the value of ©°
needed to consider the process reversible is. For example, for D = 107> cm? s 1,
reversible processes are observed in microelectrodes for K> 10" /rs. This means
that forrg = 1073 cmavalue of k° > 0.1 ¢cm s lis enough, whereas forr, = 107
cm it is necessary for k° > 10 cm s~!'. This behavior is in agreement with the
enhanced irreversibility observed for microelectrodes, as discussed above. The
accuracy of this approach is based on the dependence of the surface concentration
of the oxidized species with the reversibility degree. Under these conditions, at
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E=E? (and assuming cg = 0), the surface concentration of species O for a
microsphere or a microhemisphere is easily deduced from Eq. (3.81):

, 1+«
s(F = Ee) —cf — sphewss 3.87
Co ( ¢ J micro o 1+ 2Kgphe,ss ( )

For a totally irreversible process, it should be fulfilled that ¢ = cp, (see
Eq. (3.81)) whereas for a reversible one ¢§ = 68/2 (see Eq. (2.143) of Sect.
2.5.2). These assumptions are satisfied with an error of less than 5 % for the values
of R%. . considered above.

In reference [18], the authors show the expression for the stationary current
obtained at uniformly accessible electrodes in the case in which species R is not
initially present in the solution (i.e., cg = 0). In the case of spherical electrodes, it
can be written:

Isphe,ss 1
Isphe,ss = Ie) 1 (388)
d,c Kred,sphe.,ss
with
O =1+y% (3.89)
Kred,sphe,ss = Kgphe’sse_(m (390)

andn = F(E — Ef*,)/RT, vy = v/Do/Dg, and K'(s)phe’ss is given in Eq. (3.75).
If the potential E1,, is considered, where [P/ ]Z”’Ee’“ = 1/p, it is fulfilled that

@l/p + 1/K'red,sphe,ss,l/p =p (391)
Writing Eq. (3.91) for p=2, 4, and 4/3 (half-wave potential, E,,, quartile

potential, Ey,, and three-quartile potential, E;,, respectively), and combining
these expressions yields

(3.92)
and

8{1/4(1 — 383/4) + 383(1/4(81/4 - 3) + 983/4 — 81/4 =0 (393)

with

F
Sl/p = CXp(R—T( 1/p —E1/2)> (394)
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Solving Eq. (3.93) numerically, Bard and Mirkin presented a table with the
values of @, k°, and AE® = E®' — E, /, for different pairs of values of Ey /4 — Ej
and Evpp — E3p.

3.2.4 Microdiscs. Steady-State Voltammetry

In this section, microdisc electrodes will be discussed since the disc is the most
important geometry for microelectrodes (see Sect. 2.7). Note that discs are not
uniformly accessible electrodes so the mass flux is not the same at different points
of the electrode surface. For non-reversible processes, the applied potential controls
the rate constant but not the surface concentrations, since these are defined by the
local balance of electron transfer rates and mass transport rates at each point of the
surface. This local balance is characteristic of a particular electrode geometry and
will evolve along the voltammetric response. For this reason, it is difficult (if not
impossible) to find analytical rigorous expressions for the current analogous to that
presented above for spherical electrodes. To deal with this complex situation,
different numerical or semi-analytical approaches have been followed [19-
25]. The expression most employed for analyzing stationary responses at disc
microelectrodes was derived by Oldham [20], and takes the following form when
equal diffusion coefficients are assumed:

Imicrodisc,ss _ Imicrodisc,ss 1 1+ 1 Kgigc,sS (%)e—l”l(l + eﬂ) +3

e (1+e) (K_gﬂ) e (1 + o) Kaise,ss (5)e7 (1 +€7) + 37
(3.93)

with
Kran
0 d

Kdisc,ss = TZ (396)
77000 — 4FDegrg (3.97)

In references [20, 25], Oldham establishes that this empirical solution presents a
maximum error of 0.3 % versus numerical simulations.

In view of the expressions of the stationary current—potential responses of
microspherical and microdisc electrodes (Egs. (3.74) and (3.95), respectively), it
is clear that an equivalence relationship between disc and hemispherical microelec-
trodes, like that shown for fast charge transfer processes (see Eq. (2.170) of Sect.
2.7), cannot be established in this case.

For discs and bands, it is very difficult to obtain analytical expressions for the
steady-state current, although at first sight the theory for steady-state voltammetry
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appears simple. When the electrochemical processes are kinetically non-reversible,
analytical treatments become very challenging and have hitherto been carried out
on a one-by-one basis for each particular electrode geometry of interest. This is why
numerical procedures are usually employed for the analysis of these responses.
However, an approximate yet accurate alternative general approach can be used.
This approach is based on the fact that when the boundary values of the concen-
trations of electro-active species at the electrode surface and in the bulk are
constant, the solution for the diffusion equation at any electrode geometry can be
written as [26]:

cilg, ) =c; + (¢ —¢;)f(g,t) i=0O,R (3.98)

where ¢ denotes the required coordinates for the electrode geometry considered and
¢; and ¢] are the constant values of the concentration of species i at the electrode
surface and at the bulk, respectively. f(q, t) is a continuous function dependent on
the particular electrode geometry and on time, ¢. Equation (3.98) can be rigorously
applied in the study of a charge transfer process under transient conditions provided
that the charge transfer is reversible and the diffusion coefficients of species O and
R are equal (see Eq. (2.144) of Sect. 2.5.2). When either assumption is not fulfilled
this equation is not strictly valid, since in this case ¢; depends on time. As the
electrode size diminishes, the electrochemical response of the system tends to
become stationary or quasi-stationary such that both the average surface concen-
trations' of electro-active species and the average normal surface gradient become
independent of time even for non-reversible electrode processes. Under these
conditions, Eq. (3.98) may be again applicable in an approximate way. This is of
great interest since, on the basis of this reasoning, it is possible to obtain general,
albeit approximate, simple analytical solutions for microelectrodes of different
geometries when the steady state is reached.

So, in the case of microdiscs under steady-state conditions, the following general
expression for the current can be written:

microdisc, ss * ~g
4 — iD (CO CO)

FAq4 . rd = (krea + kox)co — koxc (3.99)

with Eé being the average surface concentration, Ay the microdisc area, and

*

c = cg + c;.
By operating on Eq. (3.99), it is possible to obtain an expression for the average
surface concentration of oxidized species:

! Note that surface concentrations under stationary conditions are not uniform on the disc surface,
varying from the center to the edge of the disc. Under these conditions, only the average surface
concentrations are constant. For nonstationary conditions even the average surface concentrations
are time dependent.
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0 (I—a)n
* 1+ Kdisc,sse

C
© 1+ Kgisc,ssei{m(l + 6'7)

T = (3.100)

where 9. is given in Eq. (3.96).
The general expression for the current can be written in the general way:

Imicrodisc,ss B Kgisc,sse_(m (1 _ (c;/cg)e”)

— = 3.101
Igjlccrodlsc,ss 1+ Kgisc,sseﬂm(1 + e'?) ( )

with I7°% given by Eq. (3.97) and kY. ., being the dimensionless rate constant

for a microdisc given by Eq. (3.96).

In order to determine the accuracy of the solution proposed in Eq. (3.101) for the
case of a microdisc electrode, in Fig. 3.13 numerical results are compared with this
equation and also with the Oldham Eq. (3.95). Fully reversible, Kgisc’ss = 10007 /4,
quasi-reversible, Kgisc,ss = r/4, and fully irreversible, Kgisc,ss = 0.0017/4, hetero-
geneous kinetics were considered under steady-state behavior. It is seen that, for
fully reversible kinetics, both equations give almost identical results which are in
good agreement with the simulated values. As the kinetics becomes less reversible,
however, the results given by the two equations diverge from each other, with the
simulated result lying between them. The maximum error in the Oldham equation is
0.5 %, and for Eq. (3.101), the maximum error is 3.6 %.

5 10007 /4

0.6

1™

0.4 <

0.0

Fig. 3.13 Simulated (white dots) and analytical steady-state voltammograms for the reduction of
a single electro-active species at a microdisc electrode for reversible, quasi-reversible, and
irreversible kinetics calculated from Eqs. (3.101) (solid line) and (3.95) (dashed line).

[ /11 = pmierodise.ss /puictodise:ss “The values of &Y., appear on the curves. In all cases, a=0.5,
and Do = Dg. Reproduced with permission of reference [26]
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3.2.5 General Expression for the Stationary Current—
Potential Response at Microelectrodes

Although Eq. (3.101) has been written for microdiscs, it can be applied to any
particular electrode geometry by changing 7<% and & for the
corresponding steady-state limiting current and dimensionless rate constant. Thus,
the general expression for the current—potential response at a microelectrode of

geometry G is

195 kg e (1= (cg/co)e”)

15’;:8 - 14 K%,sseian(l + e’l)

(3.102)

Another situation of interest in which this equation is applicable is that of a
single conductive sphere (or nanoparticle) on an electro-inactive surface (np) since
it can be considered as a model system for the study of the voltammetric behavior of
spherical nanoparticles adhered to a support [26, 27]. In this last case, the expres-
sion for the current—potential curve is identical to Eq. (3.101) by using

. In(2
1 — paypey ) (3.103)
, -

and

Kor
0 np
= 3.104
Kop,ss Din(2) ( )

with r,, and Ay, being the radius and area of the nanoparticle. For this particular
geometry, Eq. (3.102) has a maximum error of 2.6 % [26].

In Eq. (3.102), G =s for microspheres, G =d for microdiscs, and G=np for
single conductive spheres. Moreover, the expressions of Kgphm (microspheres) and

Kgisc’ss (microdiscs) are given in Egs. (3.75) and (3.96), respectively.
Equation (3.102) can be rewritten as [15, 20, 25] (see also Sect. 1.8.4):

1 1 1 1

=1 I 3.105
[G, sS [km Igv’,ss I(SN ( )
with
MY = AgFcokea  for any geometry (3.106)
Ié‘fﬁmdisc = 4FDcjrqe ™"
IO = 27FDeroe ™ (3.107)

I\ = 4xIn(2)FDcrope ™
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and Ig fs given by Eqgs. (3.76), (3.97), and (3.103) for microspheres, microdiscs, and
single conductive spheres, respectively.

Equations (3.105)—(3.107) point out the existence of three different polarization
causes. So, I"" is a kinetically controlled current which is independent of the
diffusion coefficient and of the geometry of the diffusion field, i.e., it is a pure
kinetic current. The other two currents have a diffusive character, and, therefore,

depend on the geometry of the diffusion field. Ig = corresponds to the maximum
current achieved for very negative potentials and IdG’N is a current controlled by
diffusion and by the applied potential which has no physical meaning since it
exceeds the limiting diffusion current Ifi >* when the applied potential is lower

than the formal potential (E < EZ ). This behavior is indicated by Oldham in the
case of spherical microelectrodes [15, 20, 25].

3.2.6 Comparison Between Marcus—Hush and Butler-
Volmer Kinetics

Up to now, the treatment of non-reversible electrode process has focused on the
usual Butler—Volmer kinetics for which the rate constants take the form (see Sect.
1.7.1):

BV _ 1.0.—an
keg =K ¢ } (3.108)

kg)?/ _ k()e (I—a)n

where n = F (E — Ece/) /RT and a and (1 — a) are the transfer coefficients that are
related to the symmetry of the energy barrier, that is, if the transition state is reactant
or product like. As has been indicated in Sect. 1.7.2, together with Butler—Volmer
approach the symmetric Marcus—Hush one is the most employed kinetic schemes.
For this model, the expressions of the heterogeneous rate constants are [28, 29]:

kMH _ kOe—n/2 1(7/’ A)

red I(O A)
' 3.109
kMH _ koer//Z I(’7>A) ( )
> 1(0,A)

where A = AF/RT, with A being the reorganization energy, and I(, A) is an
integral of the form:

o exp ==’
I, A) = LC %}:‘@/J)dg (3.110)
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where ¢ is an integral variable. The value of the reorganization energy (4) corre-
sponds to the energy necessary to adjust the configurations of the reactant and
solvent to those of the product state. At the limit A — oo Egs. (3.109) reduce to
(3.108) when a = 1/2, i.e., the effectiveness of Butler—Volmer formalism as an
approximation of the Marcus—Hush one improves as A increases.

In this section, both approaches will be compared in chronoamperometry under
limiting current conditions at spherical electrodes and microelectrodes. As is well
known, for spherical electrodes and taking into account the Butler—Volmer model,
the value of the diffusion-controlled reduction current at large overpotentials,

I‘I’:e’BV, is given by the following expression (see Eq. (2.147) of Sect. 2.5.2):

. 1 1
[;PfCIE,BV :FASDOCO <l)t+1> (3111)
; VDo s

which is exclusively controlled by the diffusion transport of species O toward
the electrode surface and independent of the electrochemical reversibility of the
process.

When the Marcus—Hush treatment is considered, the reduction rate constant is
not predicted to increase continuously with the applied potential, but rather a
maximum value exists. A simple expression for this value of the rate constant
was given in reference [29]:

PMH _ 40 V4 rAexp(A/4)
max T — 3

A (2.5 < A < 80) (3.112)
A+A3T)

By inserting Eq. (3.112) in (3.66) under limiting current conditions at spherical
electrodes (i.e., E < EZ) and taking into account that now § = 1 + KM and
Ksphe = K/ (1 + ry/V/7Dt), the following solution is derived:

max

sphe, MH
Id,c

« 1
FASDOC'O’,_
8

(K
-\ kM

KM — (MH - /Do. Note that the value of the dimensionless heterogeneous

1+ KMHexp (@(1 + [(MH)>2erfc (\/D—O’(l —I—KMH))]

s max rs max
(3.113)

where
rate constant KMH increases with the standard rate constant £°, the reorganization

energy, and the electrode radius, and it decreases with the diffusion coefficient. This
expression leads to accurate results (error smaller than 1 % with respect to
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Eq. (3.109) for the rate constants) in a wide range of values of the reorganization
energy, 2.5 < A < 80.

According to Eq. (3.113), the limiting current depends not only on the diffusion
transport but also on the electrode kinetics, so it is a function of the reorganization
energy and the heterogeneous rate constant. These parameters set the discrepancy in
the value of the limiting current between the two kinetic models such that greater
differences are expected for small k° and/or A values, short ¢ values, and small
electrode radius.

Under steady-state conditions, the expressions for the limiting current simplify

to
FADo ¢
]Zpkcle,ss,BV _ 0¢o (3'114)
> T
Isphe,ss,MH o Isphe,ss,BV Krl\r/llg( 11
d,c — “d,c 1 4 KMH (3 5)

The difference between the BV and MH expressions is the term KX& /1+ Kmi,
which tends to unity for large KMH values, so both solutions coincide. Otherwise,
this term is smaller than the unity and the stationary current predicted by Marcus—
Hush is less than by Butler—Volmer; the smaller the electrode radius (i.e., the

smaller the Kxg( value), the greater the difference between both solutions.

In Fig. 3.14a, the dimensionless limiting current Ig{g”e (t)/]ﬁfime(tp) (where 7, is the

total duration of the potential step) at a planar electrode is plotted versus 1/+/under
the Butler—Volmer (solid line) and Marcus—Hush (dashed lines) treatments for a
fully irreversible process with k° = 107* cm s~', where the differences between
both models are more apparent according to the above discussion. Regarding the
BV model, a unique curve is predicted independently of the electrode kinetics with
a slope unity and a null intercept. With respect to the MH model, for typical values
of the reorganization energy (1 = 0.5 — 1 eV, A ~ 20 — 40 [4]), the variation of the
limiting current with time compares well with that predicted by Butler—Volmer
kinetics. On the other hand, for small A values (A < 20) and short times, differences
between the BV and MH results are observed such that the current expected

with the MH model is smaller. In addition, a nonlinear dependence of Ig{ine(t)/

P (z,) with 1/+/7 is predicted, and any attempt at linearization would result in
poor correlation coefficient and a slope smaller than unity and non-null
intercept.

The differences between BV and MH also have implications in the concentra-
tion profiles of the electro-active species. Thus, whereas the BV model predicts a
zero surface concentration of the oxidized species at the electrode surface, in
the Marcus—Hush model the surface concentration of species O also depends
on the electrode kinetics such that for small values of the heterogeneous
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Fig. 3.14 Single potential step chronoamperometry at large overpotentials. (a) Variation of
the limiting current with time; (b) concentration profiles at the end of the pulse. Planar electrode.

Lim () /Lim () = 1§f§“e(t)/1§1§"e (tp) for the two kinetic models considered. kK =10"* cm/s.
Reproduced with permission of reference [30]. In this Figure A* = A.

rate constant and reorganization energy, this is not zero (see Fig. 3.14b); the

smaller the reorganization energy, the greater the surface concentration of the
reacting species.
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3.3 Multi-electron Electrochemical Reactions

There are a number of molecules for which two- or more electron transfers
can be detected (i.e., stepwise processes). For molecules capable of giving
two-electron transfer reactions (EE mechanism; see reaction scheme (3.I1)), the
addition of the second electron occurs, in the more typical case, with greater
difficulty than the first, so the single pulse voltammogram presents two well-
separated waves because of the difference between the two formal potentials
defined as

AEE =EZ, —EZ (3.116)

is negative enough (i.e., AE?I < —200 mV; see below). This behavior is very
common in electrochemical reactions of alkylviologens and metallocenes where the
first electron transfer does not give rise to large changes in the molecule and the
second electron transfer is thermodynamically more difficult than the first [4, 31]. In
any case this behavior leads to a very stable intermediate redox state of the
molecule. Under these conditions, one can speak of a “normal” potential difference
[31, 32], repulsive or negative interactions [4, 33, 34], or high anti-cooperativity
degree between the two charge transfers [35].

For AECe’ > —71.2 mV, one wave is observed in the current—potential curve.
Under these conditions, low anti-cooperativity degree (—71 2< AEf/ < —35.6 mV)

[35], cooperativity and attractive (or positive) interactions (AECG/ > —35.6mV)

[4, 33, 35], and “inverted” potential difference (AES "> 0mV) [31, 32] denomi-
nations are used for an increasingly unstable intermediate (see below). This last
denomination refers to the fact that, after the first transfer, there is an important
change in the molecular structure that leads to a modification of the frontier orbitals
or, alternatively, there are changes in solvation or ion pairing formation. Examples
of the potential inversion are the case of several reversible electrode reductions in
aqueous solutions of ions as Cd*" 4 2e~=Cd, Molybdenum polyoxometalates, and
anumber of aromatic species like derivatives of tetraphenylethylene [31, 36]. In this
last case, the structural changes accompanying the inclusion of electrons into the
sterically congested neutral species lead to the LUMO energy of this decreasing. In
the same way the SOMO energy of the radical anion diminishes as it adopts the
structure of the di-anion [37]. This behavior could justify the inversion of the formal
potentials in these species (see Fig. 3.15).

In this section, the electrochemical behavior of an EE mechanism with two
reversible electron transfer reactions will be studied. It will also be shown that for
this electrode process (given in reaction scheme (3.I1)) in both cases, i.e., normal
ordering and potential inversion, the disproportionation/comproportionation reac-
tion (3) can take place in the diffusion layer.
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Fig. 3.15 Orbital energies

for the neutral and radical structure: Structure:

anion forms of neutral  radical anlon | radical anion  dianion
tetraphenylethylene, each in $

two different structures. oF — o 0oV V/l F
Note the lowering of the 1.04¢

LUMO energy of the
neutral form when it is
converted to the structure of

P

energy/eV

the radical anion and also =Sr
the lowering of the SOMO
energy of the radical anion _H_
as it adopts the structure of _H__
the di-anion. Reproduced
from reference [37] with -10 neutral radical anion
permission
0, +e =0, EE (1)
0, + e~ =203 EZ, (2)

i ' , (3.10)
1 FAES
20,0, +0; K:k—l:e o (3)

Reaction Scheme (3.I1) Ece; with j=1, 2 are the formal potentials of each

electron transfer step. ki, k», and K are the rate and equilibrium constants, respec-
tively, of the disproportionation reaction (3).

Reaction (3) has no effect on the electrochemical response when both electron
transfers are reversible, diffusion is the only transport mechanism, the diffusion
coefficients of all species are equal and there are no solution phase reactions in the
vicinity of the electrode surface other than disproportionation/comproportionation
ones (although it cannot be ignored for obtaining the concentration profiles). It will
be shown in this section that this behavior occurs independently of the electro-
chemical technique employed and also of the geometry and size of the electrode
[30, 33]. Under these conditions, experimental methods other than electrochemical
must be used to characterize the kinetics of the disproportionation reaction in
reaction scheme (3.II). Reaction (3) can be detected from electrochemical mea-
surements when diffusion coefficients are not identical (although these effects are
not very significant), when the concentration of supporting electrolyte becomes
small enough to have to consider mass transport by electrical migration, when other
homogeneous chemical reactions take place, or when one or both electron transfers
are quasi-reversible [31, 38, 39].
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3.3.1 Two-Electron Electrochemical Reactions at Planar
Electrodes

The reduction of a soluble molecule O; with initial concentration Ca to the different
two oxidation states O, and O3, as shown in reaction scheme (3.1II), is considered
under the above mentioned conditions in which, as can be seen below, reaction
(3) has no effect on the electrochemical response. Thus, when a constant potential is
applied, the formulation of the problem is as follows [33, 34, 39]:

aCO‘—D %—Hcc — kaco,c (a)

or O, gxz 1o, 2€0,¢0;

aCo a Cco

. :DOZQT; 2kicd, + 2kxco,co,  (b) (3.117)
8(203 6 Co;

3 =Do,—=—— 2 +k1C02 k2001003 (C)

t:o ’ x—>oo} Colzc(l)w (,'02:0, ("03:0 (3118)

dco, Oco, dco, ~
Dol( Ox )X_o+ DOZ( ox )x_0+ Dos( P )X_O =0 (3.119)

co, = €"cy, (3.120)
co, = €™cp, (3.121)
with
F o\
n, = RT(E E: ) j=12 (3.122)

From Egs. (3.120)—(3.122), it can be deduced that

S
O (3.123)
6'03
with
F —/
7 E—E ) 3.124
1= r(E-F. (3.124)

and Ece’ being the average formal potential defined as

o o
=/ _ Ec,l +EC,2

s == (3.125)
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and the current is given by (see Eq. (3.119)):

[EE,plane b 5001 s 8603
FA o\ "ox =0 %\ "ox =0

— 2D, <aac;') + Do, (a§$2> (3.126)
x=0 x=0

An analytical solution has not been found for this problem, which has, instead,
been solved numerically in a number of papers [40, 41]. However, if the diffusion
coefficients of the different oxidation states O;, O,, and O; are equal, i.e.,
Do, = Do, = Do, = D, important simplifications can be made as indicated in
[34, 39].

In this situation, the addition of equations (a), (b), and (c) in (3.117) gives rise to

oy oY
—=D— 3.127
o P (3:127)
t>0, x— o0 s
o 2 } Y =c) (3.128)
t>0, x=0
oY
—-— =0 3.12
<ax>x—0 ( 9)
where
Y = co,(x,1) + co, (x,1) + co, (x, 1) (3.130)

The solution of this simple problem leads to the following solution, indepen-
dently of the electrode geometry (see below):

coy (x,1) + o, (x, 1) + co, (x,1) = ¢4, (3.131)

By combining Eq. (3.131) for x = 0 with surface conditions (3.120)—(3.121), the
following expressions for the surface concentrations are found:

s eyll 6”2 *
CO = —CO
! 1+ e 4 enhen !
e ' 3.132
S *
C = ——C, 1
02 1 4+ en 4 emen 0, ( )
s 1 *
CO = CO
3 1 4+ e 4 enhen !
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which can be rewritten in terms of the average formal potential as

S VR,

O T VR e+ VRen
e’? #

S

Ch =—F—F——C

O VK + ek (3.133)
. = vk Cz)
6 = UK + o+ VKT O

with

/
S
FAE;

K=crm (3.134)

It is notable that surface concentrations are only dependent on the applied
potential and independent of the time and of the values of k; and k,. Therefore,
they are independent of the existence of the disproportionation/comproportionation
in solution (see reaction scheme (3.1I)).

The following linear combination is now considered:

W = 2co, (x,1) + co,(x,1) (3.135)
which fulfills
ow o*w
— —_p—_ 1
o~ Pae (3.136)

with the boundary conditions

t>0, x— o0

120, x>0 } W=W =2, (3.137)

2VKeT +¢e .
S __ S s __
W =2e5, + 5, = o e o) (3.138)

By following an identical procedure to that indicated in Sect. 2.2, it can be easily
demonstrated that the solution of this other simple problem is

W (x,t) =W + (W* — W")erfe(s) (3.139)
with s given by Eq. (2.8) of Sect. 2.2, such that the current corresponding to

a two-electron electrochemical reaction (EE mechanism) is given by (see Egs.
(3.126) and (3.135)):
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[EE,plane B (aw> B
FAD ox /) .

This equation can be written in a normalized way:

e K el 4 /Ke?l

W' —Ws ¢, 2VK + e (3.140)
VaDt  /aDt VK + el + \/Ke%l '
]EE,plane WK n
VK +e (3.141)

with [ g’lgne = FAci \/D/nt (Eq. 3.20), being the diffusion-controlled limiting
current for a single charge transfer.

Equation (3.140) shows that the electrochemical response of an EE mechanism
depends on the difference between the formal potentials AECG/ and is not influenced
by the homogeneous reaction. This behavior is shown in Fig. 3.16 where the current

for an EE mechanism versus £ — ECG; (Fig. 3.16a) and versus E — Ffl (Fig. 3.16b)

Fig. 3.16 Current for an
EE mechanism vs. E — Ef’l’

(a) and vs. E — Fce/ (b)
calculated from Eq. (3.141)
for different values of AES’
(shown in the curves). (b)
Includes the response of two
independent E mechanisms
for the values of AES

(in mV) —200, —142.4, and
—71.2 (dashed red curves),
for AECG’ =0mV (dashed
green curve), calculated
from Eq. (20) in reference
[42], and also for a simple
di-electronic charge transfer
(dashed blue curve)
calculated from Eq. (2.34)

of Sect. 2.2.2.2. I} = FA

ct, v/D/nt (Eq. 3.20)
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has been plotted for different values of AE’. In all the cases, the current—potential

curves are symmetrical with respect to the average formal potential EC@ " as
shown in Fig. 3.16b (i.e., all of them present a symmetry center located at the
point (JEE-plne /plane _ Oy
As can be observed in this figure (see also Table 3.1), for
AECe’ < —142.4 mV (K =1/ 28), the normal pulse voltagram presents two well-
resolved waves whose half—wave potentials exactly match with the corresponding
formal potentials £ L and ES, (for( 142.4 < AE® < —71.2) mV, two non-well-
resolved waves are observed, whose half-wave potentials are not coincident
with the corresponding individual formal potentials, Fig. 3.16a. For AECG' > =712
mV (K >1/ 24), only one wave is obtained with the half-wave potential being

Erl/ 2 = Ece , (thus, at AECG/ = —71.2 mV the transition two waves — one wave takes
place).

For AEY' = —35.6 mV(K =1/ 22), one wave with identical shape to that of an
E process but with double height is observed. Finally, for very positive values of
AE?’ (see curves with AES" = 200 mV in Fig. 3.16a and b), the response of the EE
mechanism is indistinguishable from that obtained for a single charge transfer of
two electrons (see dashed blue curve).

The voltammetric response of the EE mechanism can be compared with those
for two independent reversible charge transfers (two reversible independent E
processes or E+E mechanism) with identical bulk concentrations of oxidized
species (c*) by assuming that the diffusion coefficients of all species are equal,
that is,

Table 3.1 Analytical expressions for the roots with physical meaning of the second derivative of
the current of an EE mechanism given by Eq. (3.141) [43]

(4K —1)(16K — 1)
E=E. +—1 ( _aVE 42 /3 )

K < (1/16) (AEZ < -71.2mV)

1+ /(K — 1)(16K — 1)
En=E; —1 —4vVK
il +F < VK + WK
Note that
E = Ee o
ol forK < (1/256) (AES < —142.4mV)
Ey=E;,

Ey and Ey; coincide with the reversible half-wave potentials of the individual waves, E} 21 and £} 1220

respectively

< (1/16) (AE® < —71.2mV)

Eqn corresponds to the inflexion point between the two waves
> (1/16) (AES > ~71.2mV)

Eyp corresponds to the half-wave potential of the single wave
Ey=Ey=En=E; fork =(1/16) (AE® = —71.2mV)
Transition 2 waves—1 wave

E]H = Ece/ For K
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O, +e =0, E° (
O;+e =04 EZ, (2) (3.10I)

01 4+ 0470, + 03 (3)

—_
~—

with ¢o, + co, = co, + co, = ¢”. Under these conditions, it is fulfilled that

E:Efi:cél :cgzzc:/Z (3.142)
E=E2,=cy, =cy,=c /2

Conditions (3.142) are independent of the difference between the formal poten-
tials of both processes 1 and 2, AE;@/ = Ece; — Ef’; In Fig. 3.16b, it can be seen the
coincidence between the responses of EE and E+E mechanisms for
AE?’ < —=71.2 mV (two waves in the voltagram; see dashed red lines). The EE
mechanism with AES’ = —35.6 mV behaves as two independent E mechanisms
with AES’ = 0 mV (see dashed green curve in Fig. 3.16b).

In order to clarify the influence of AE?" on the electrochemical response of an
EE mechanism, in Fig. 3.17 the dependence of the normalized surface concentra-
tions of species O;, O, and O; (c(s)i/cf)] i=1, 2, 3) with E — E:}’ given by
Eq. (3.133) has been plotted for the same values of AE>" appearing in Fig. 3.16.

a AE®' =200 mV b AE®'=-142.4 mV o] AE®' =-71.2 mV
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Fig. 3.17 Variation of the normalized surface concentrations c§ /co, (solid lines), ¢ [co,

(dashed-dotted lines), and cg, / C& (dotted lines) corresponding to a reversible EE mechanism,

withE — Ece, (mV) (Eq. 3.133) for different values of AECQ’ (shown in the Figure). Ppe , P , and
e, 1 c,2

PEy denote the cross points. Reproduced with permission of [43]

c
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In this figure, three characteristic cross points for the surface concentrations can
be observed: PEi/l (cg] = cgz, Eq. (3.120)), PES; (cg2 = c&, Eq. (3.121)), and PEf/

(¢, = ¢o,» Eq. (3.123)), located respectively (see dotted vertical lines) at E = Ef;
(E — Ece, = —AE?/Z),E = Eceé (E — Ecel = AEC@//Z), andE = Ece,, regardless

of the difference between the formal potentials AECGI. Note that when AECe’
increases from —200 mV (Fig. 3.17a) to 200 mV (Fig. 3.17f), the values of the

normalized surface concentrations at PEef and PEeJ vary between 0.5 (i.e., as
c,y 1 c,2

corresponds to a simple E mechanism) and 0, and contrarily, between 0 and 0.5 at

PEG/

Thus, the behavior of the (Ilali’l’k“’e /1 é”l?ne) - (E - Efd) curves in Fig. 3.16 can
be understood in terms of the surface concentrations, taking into account that the
values of (cg2 /c6, )Ece, and ((cé1 + c(s)B) /co, )Ece/ are indicative of the percentage
of character E|.- Ej.- and of character E,.-, respectively, of the EE mechanism
[43]. Indeed, for AECG/ < -200 mV, (cgz/cgl)ice, =~ | (see Fig. 3.17a), and this

limiting situation corresponds to a genuine 100 % Ei.-Ei.- mechanism with a
totally stable intermediate (0 % character E.-), i.e., two totally separate waves
appear in the voltagram with the half-wave potential of each individual wave being

coincident with the formal potential of each process (Fig. 3.16a). For AECQ/ =—
142.4 mV (Fig. 3.17b), a less stable intermediate leads to the appearance of two
non-totally separate waves in the response (89 % character Ei.-E.- and 11 %
character Ey.-), although the half-wave potential of each individual wave remains

coincident with the formal potential of each process. For AEfJ =—-71.2 mV
(Fig. 3.17¢), itis fulfilled that (c3, /5, ) o = 0666 (6.7 % character Exe Er. ),

i.e., the transition two waves—one wave in the voltagram takes place, but the
intermediate O, is still stable.
Note that for AECG/ < -71.2 mV, (c(s)’_/ca) >~ (0.5 with i =1, 2, at the cross
point Ppo and i = 2, 3 at Ppo, and, therefore, the EE mechanism practically
c,1 c,2

behaves like the E + E mechanism (see dashed red lines in Fig. 3.16b).
The value AECGI = —35.6 mV has the particular interest of corresponding to a

50 % of character Ei.-Ej.- and Ej.-. At the average formal potential ECG /, the
intermediate species reaches half of its maximum value and, hence, at this AEC’S‘/
species O, may or may not gain a second electron (and as a direct consequence, for
higher AES” it will be considered that the intermediate species is no more stable at
the average formal potential). So, this AECe/ could be considered as the boundary
between anti-cooperative and cooperative behavior of both electron transfer reac-
tions [35, 43]. Indeed, it is well known that the voltamogram of an EE mechanism
under these conditions is identical to that of an E mechanism multiplied by a factor
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2 (as the case of two independent monoelectronic charge transfers with identical

formal potentials, AECG' =0; see dashed green curves in Fig. 3.16b). For

AECG’ =0 mV (Fig. 3.17¢), Pe, P, and PESJ become coincident and
c,1 c,2

c

(cgz /c;';])Ee, — 0.333 (66.7 % character Ex. ). For AES > 200 mV (Fig. 3.176),

the intermediate practically disappears and (C(S)l / Ca)ge’ = (053 / C81>Ee’ =05.
Thus, the typical behavior of surface concentrations for a two-electron E mecha-
nism is observed (100 % character E,.- ), and hence the corresponding typical
voltagram is obtained (see dashed blue curve in Fig. 3.16b).

In line with the above discussion, the term “effective electron number”, ngg,
defined as

nege = (1+% character Ep.-/100) = 2(cgz/cg]> (3.143)

£
is introduced. Thus, ne s =1 for AECG’ < =200 mV, ne¢ = 1.333 for
AEZ = —71.2 mV, negr = 1.5 for AES = —35.6 mV, and ner =2 for AES
> 200 mV [43].

Table 3.1 shows the analytical expressions for the roots with physical meaning
of the second derivative of the current expression given by Eq. (3.141) with respect
to the potential (Ey, Eyy, and Eyyp), which correspond to the inflexion points of the
current—potential curves shown in Fig. 3.16, given as a function of K.

3.3.2 Two-Electron Electrochemical Reactions at Different
Electrode Geometries

When nonplanar geometries are considered for the reaction scheme (3.II), the
following diffusive-kinetic differential equations must be solved:

oc

8(;] = Do, Vco, + ki, —kaco,co,  (a)
0

522 = Do, Vo, — 2kich, + 2kaco, o, (b) (3.144)
Jco,

a? = D03V2c03 + klc(2)2 - k2c01c03 (C)

where V? is the Laplacian operator for the geometry considered given in Table 2.2
of Sect. 2.6. If only species O is initially present with a concentration cgl, the
boundary value problem is

1=0,9>¢q

t>0, g— o0 } o, = c(*)ﬁ co, =coy, =0 (3.145)
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t>0,g=¢":

dc dc Oco, 3.146
Do.(aq(:)qsle)oz(aq(:j)qsJrDo3(a;;')qS —o )

S __ alll ~S
& = ¢e'lc
S (3.147)
Coz = Co3

where 1; (j=1, 2) is given in Eq. (3.122), ¢" is the value of the coordinates at the
electrode surface, and gy is the normal coordinate value at the electrode surface.

By assuming that the diffusion coefficients of the different oxidation states Oy,
O, and O3 are equal, i.e.,Do, = Do, = Do, = D, functionY = co, (¢, 1) + co,(q, 1)
+co,(g, ) can be used to solve the above problem and the general solution given by
Eq. (3.131) remains valid, independently of the electrode geometry. By combining
Eq. (3.131) with the nernstian conditions (3.147), identical expressions to those
given by Eqgs. (3.132) or (3.133) are obtained for the surface concentrations. Under
these conditions, the current can be written, regardless of the electrode geometry
(see Eq. (3.126)) as

=0 _ (v (3.148)
FAGD — \0qx) , '
where
W= 2col(q7 t) +C02(q7 t) (3149)

and Ag is the electrode area in the corresponding geometry. The current can be
expressed as a product of two functions which depend on the potential and on time
and electrode geometry, respectively, as occurs for a reversible E process (see

Eq. (2.156) of Sect. 2.6) [44—46]:
%% = FAGDfq(t,q6) (W™ — W) (3.150)

with fg(#, gg) given in Table 2.3 of Sect. 2.6 for each geometry and (see Eq. 3.140)

W WS = VK el (3.151)
VK 1o + VK
Equation (3.150) can be also written in a dimensionless form as
IEE,G W* — WS
= (3.152)
Id,C CO]

with 1((;’70 being the diffusion-controlled limiting current for the geometry considered
given by
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I§. = FAaDcy, f6(t,qc) (3.153)

Note that function f5(, gg) is identical to that appearing in the case of an E
mechanism. Moreover, Egs. (3.151) and (3.152) are identical to that corresponding

to a planar electrode (Eq. 3.141).
In the case of non-uniformly accessible electrodes, the currents given by

Egs. (3.150) or (3.153) are an average current [46].

3.3.2.1 Microelectrodes. Steady-State Voltammetry

The current for a reversible EE mechanism can achieve a stationary feature when
microelectrodes are used since in these conditions the function f5(#, gg) that appears
in Eq. (3.150) transforms into fg micro given in Table 2.3 of Sect. 2.6. For micro-
electrode geometries for which fg micro 1S constant, the current—potential responses
have a stationary character, which for microdiscs and microspheres can be written

as [16]:

L 41 2VK + €'
— FAD ~re
l77:rd \/K +el 4 \/_Kez'7 (3154)
L 1 2VK + ¢
= FAD ¢}, — _ -
'rs VK + el + /Ke?

IEE’ microdisc, ss

IEE’ microsphere, ss

In Fig. 3.18, it is shown the response of an EE mechanism at microdiscs and
microspheres for different values of AES".

Obviously the equivalence relationship for microspheres and microdiscs
established for a single charge transfer process (see Eq. (2.170) of Sect. 2.7) also
holds in this case (Fig. 3.18).

Fig. 3.18 Current density— 3.0
potential curves for
two-electron transfer 25 4
processes at disc (solid line)
and spherical (dashed line) 3 40
microelectrodes of the same to_

N

radius. The values of the [
difference between the E 1.5 1
formal potentials of the o=
redox centers, AE® (in V), i
are indicated on the curves. =
These curves have been 05
calculated with Eq. (3.154)
by assuming

rg =rqg=rs=>5 pm,
t=1s.D=10"cm?s L.
T=298 K

1.0 1

0.0
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For microelectrodes like microbands or microcylinders for which fG micro 1S
not constant, only pseudo-stationary behavior can be achieved.

3.3.3 Non-reversible Two-Electron Electrochemical
Reactions

The treatment of non-reversible two-electron electrochemical reactions is much
more complex than the reversible one. The general scheme of the process is

0, + e 20, ES/, K, o (1)
0, +e =05 ES), K, o (2) (3.1V)
k k rags’ ’
20,20, + 03 Keg = L =e 7 (3)
/Q k2

with kjo and a;, j = 1, 2, being the rate constants and charge transfer coefficients of
the step J.

Even in the simplest situation for which a; = a, = 0.5, the global behavior of
the response depends upon three parameters, the difference between the formal
potentials AE.®', and the rate constants of both steps 9 and ). Thus, the observed
current—potential curves are the result of the interaction of thermodynamic and
kinetic effects so the appearance of two or one waves would not be due solely to
thermodynamic stability or instability of the intermediate species but also to a
kinetic stabilization or destabilization of the same [4, 31]. This can be seen in
Fig. 3.19 in which the current—potential curves of an EE process with AECe'I =0
mV  taking place at a planar electrode with a reversible first step

(Kglane,l =10\/t/D = 1) and a second step with different reversibility degree

Fig. 3.19 Current— 2.0
potential responses for an
EE mechanism at a plane
electrode calculated by
following the numerical
procedure described in
reference [47]

AE® =0 mV.

Klane,1 = k%\/t/D = 1 and
a; = a, = 0.5. The values
of Kglune,Z = k(Z) \/l‘_/B appear
on the curves

plane
d,c
N
3
L

/ EE,pIane/l

0.5 A

0.0

0.2
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have been plotted. The voltammogram for a second reversible step shows a single
wave in line with results shown in Fig. 3.16. As the second charge transfer becomes
more irreversible, the increasing kinetic stabilization of the intermediate leads to
the appearance of a second wave that shifts toward more negative potentials as

Kglane = kg t/D decreases.

Moreover, the current—potential curves are affected by the disproportionation
reaction; therefore, other variables (the rate constant for the disproportionation
reaction) must be taken into account. Since experimental results for many interesting
systems show clear evidence of slow kinetics, ad hoc simulation procedures have
typically been used for the analysis of the resulting current—potential curves [31, 38,
41, 48]. As an example, in reference [38], it is reported that a clear compropor-
tionation influence is observed for an EE mechanism with normal ordering of
potentials and an irreversible second charge transfer step. In this case, the second
wave is clearly asymmetric, showing a sharp rise near its base. This result was
observed experimentally for the reduction of 7,7,8,8-tetracyanoquinodimethane in
acetonitrile at platinum electrodes (see Fig. 3.20). In order to fit the experimental
results, a comproportionation rate constant keomp = 108 M~'s7!  should be
introduced.

References [40, 41] report the chronoamperometric analysis of the response of an
EE mechanism with non-reversible charge transfer processes including the consid-
eration of a fast comproportionation step [40], indicating that strong differences in
the diffusion coefficients of the different species are needed to cause a clear
influence of the comproportionation process in the electrochemical response.

25 T T T T T T d T ¥ T w, T T

wn
T

L " 1 1 i L

1 i 1

02 00 -02 -04 -06 ‘ -0.8 l -1.0 -1.2
Evs. AgRE/V

Fig. 3.20 Normal Pulse Voltammograms for the reduction of 6.9 x 10™* M tetracyanoquino-
dimethane (TCNQ) in acetonitrile with 0.10 NBuyNPF¢ at 293 K (platinum disc electrode with
diameter 0.31 cm). Pulse duration: 0.050 s. Lines are simulations with the following input
parameters: EZ' = —0.107 V, AE® = —0551 V, K9 =10" em 57!, &y =05, ap =0.35,
kg =6.5x 1073 cm s !, diffusion coefficients of neutral, anion, and di-anion are: 1.44 x 1073,

1.35x 107, and 9.1 x 107 cm? s~ !, respectively. Reproduced from reference [38] with
permission



3.3 Multi-electron Electrochemical Reactions 185

3.3.4 General Solution for Multi-electron Electrochemical
Reactions

In this section, the results corresponding to an EE process are generalized for a
multi-electron electrochemical reaction of & steps (multi-E process) in agreement
with the reaction scheme:

step formal potential
1 Oy +e =20, ES/
2 0, +e 203 Ele

P 3.V)
j O]’ + 67:011'4,_1 Eceij/
k Or+e =04 EZ/
where Ef*j’ (j= 1,2, ...,k) is the formal potential of each step. The above general

reaction scheme must be considered together with (k — 1) homogeneous chemical
reactions of disproportionation, coupled to the k heterogeneous steps of the elec-
trochemical process given in scheme (?).V):2

reaction .
1
1 202;:)0] + O3
b
2 203;:)02 + Oy
: L (3.VI)
J 201170+ 012
' ' ki1
k—1 Zokk:) O—1 + Oy
(k1)
whose equilibrium constants, K; (j=1,2,...,k—1), are determined by the

difference between the formal potential of the redox couples implied in each
chemical reaction:

! o
K — Ceq,0;Ceq,0 > . (EC»]+1 o EC»])
) = exp RT
eq,0 41
AE?
= —=) i=1,2, ... k—1 3.155
ew( RT ) (J ) ( )

2 For sake of simplicity, only homogeneous, independent chemical reactions are considered in
scheme (3.VI)
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In the vicinity of the electrode, the homogeneous chemical reactions inevitably
take place since, when the electrode process given in reaction scheme (3.V) occurs,
all species O; (i = 1,2, ...,k + 1) are being generated at the electrode surface.

By considering the chemical reactions of reaction scheme (3.VI), the differential
equation system that describes the mass transport of the (k + 1) species involved is

Jc
a(t)l :Dol VZCOI _k—1601603 +k1 Céz
dc
afz :D02V2c02+2k71co]c03—2k1cé2—k72c02c04 +k2Cé3
acoi? V2 2 L 2
5, —Do, Vo, +2ki-n)co. o, = 2k(i-1)Co, K- (i-2) €0, €0 HK(i-2)Co,,
7k,iCoiC0i+2+k,~C?+l
acok_ vz 2 2 2 2
3 =Do, V7co,+2k_—1)co,  Co —2k(k-1)Co, —k—(x—2)C0, €0, FK(-2)C0,
aCO .
#:Dok vzcokﬂ _k*(kfl)coxfl COxy +k(/€*1)cé,‘

(3.156)

where co, (i=1,2,...,k+1) are the concentration of each species O;, and kjand k_;
(j=1,2,...,k—1) the rate constants corresponding to the jth chemical step in reaction
scheme (3.VI). The expressions for the laplacian operator V? corresponding to the
most usual electrode geometries are given in Table 2.2 of Sect. 2.6.

As discussed in Sects. 3.3.1 and 3.3.2, the presence of disproportionation
reactions has no effect on the current when all the heterogeneous steps are revers-
ible and the diffusion coefficients of each species O; are assumed to be equal. To
test this, it should be first considered that the initial and limiting conditions for the
stepwise process given in reaction scheme (3.V) are

t=0, >q° * .
t>0 Z;qoo} co, =Co,» Co, =0 (i=2, ..., k+1) (3.157)

t>0, g=¢°

ket 1 <W> - 0 (3.158)

— (EED) ey (i=1,2,...,k) (3.159)

where ¢° denotes the value of the coordinates at the electrode surface and gy is the
normal coordinate value at the electrode surface.
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The expression of the total current is the sum of the partial currents
corresponding to the different steps is:

k
I6-E,G _ Iti-E, G
[reEG =y i (3.160)
=1
The partial currents I;“um'E'G are calculated by taking into account that for

reaction scheme (3.V) the following relationships hold:

Irlnulti—E,G b <aCOl>
FAG an qs

multi-E, G multi-E, G
12 — 11 -D (8c02>
e

FAG aQN
- ' (3.161)
I;{nulu—E,G . ]anllltl-E,G b (aC0k>
FAG an ¢
I;Cnulli—E,G B (aCOL-l)
FAG an q*

From Eq. (3.161), it is deduced that for the jth step the partial current can be
written as

) I /dc

[MIES — pAGD <—Of) (3.162)
! ; an ¢

and by combining Eqs. (3.160) and (3.162), the following expression for the current
is deduced:

‘ k den
[muln-E,G _ FAGDZ (k — l)( CO/> (3163)
an &

J=1

Equations (3.158) and (3.163) suggest the inclusion of the linear combinations:

k+1

Y(g.0) =) co,(a.1) (3.164)

k
W(g,t) =Y (k—j+1)co,(q.1) (3.165)
j=1
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for which the differential equations that described the mass transport become

aY(qa t) — DVZY(Q7I)

aWa(tq 1) o
1) 2

5= =DV W(g.1)

From Egs. (3.157), (3.158), and (3.166), it can be easily demonstrated that
Y(q,t) = cg] Vg, t (3.167)

The current can be written as

[MIGEG _ pA LD (%) (3.168)
4qN q°

and it is not sensitive to the presence of coupled reactions to the charge transfer
processes under the above conditions.

The surface concentrations of species O; with (i=1,2,..., k+1) are
obtained by combining Egs. (3.159) and (3.167) [42]:

k
Heﬂh
s * h=i .
o =Co, 1 = 1,2, ..., k
n
1+ ZUHP« ! (3.169)
c8k+| = Ca k k
it
m=1h=m
with
nA:E(E_Ee/) j=1,2, ...k (3.170)
i=®T N , 2, ,

As in the case of an EE process, the total current for a molecule capable of
producing k electron transfers (reaction scheme (3.V)) can be expressed as a
product of two functions which depend on the potential and on time and electrode
geometry, respectively:

Jmulti-EG _ FAc,DCg] f6(1,q6) (W* _ WS) (3.171)

with
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k—1 k
k+ s [T e
W= W = e —— e (3.172)
R

and fg(#,gc) given in Table 2.3 of Sect. 2.6 with gg being the characteristic
dimension of the electrode considered.

3.4 First-Order Chemical Reactions Coupled to Charge
Transfer Processes

In the previous sections, only fast or slow charge transfer reactions (one-electron or
multi-electron) have been considered. As occurs with a chemical reaction, an
electrochemical reaction can be complicated by the coupling of homogeneous
chemical reactions where one or both electro-active species participate. In this
section, only some of the more important electrode reaction schemes are studied.
Of course, many more reaction schemes than those we discuss below could be
considered by adding chemical homogeneous reactions or varying the reversibility
degree of the electron transfer reaction, but in this book only the more usual
reaction schemes will be treated in order to discuss the elucidation of the different
mechanisms by using electrochemical methods.

Sometimes the oxidized species can exist in two forms in chemical equilibrium,
with one of them electro-inactive in the potential range where the electrochemical
process occurs. This type of reaction pathway is known as a CE mechanism because
a homogeneous chemical reaction (C) precedes the heterogeneous electrochemical
process (E). If the chemical step is of first or pseudo-first order, the process can be
expressed by the reaction scheme:

k
Bk:" Cte =D (3.VID)

Examples of these reactions are the reduction of the non-hydrated form of
formaldehyde or that of acetic acid in aqueous solution at a mercury electrode [9]
as well as the reduction of many inorganic ions in their complexed forms
[49]. Among organic species there are also many examples of this reaction scheme
like the reduction of benzoic acid at room temperature ionic liquids [50] or that of
the oxidation of ferrocenecarboxylate in the presence of a B-cyclodextrin host (see
Fig. 3.21) [51].

Sometimes the electrochemical reaction product is not stable and it reacts with
any species present in the solution to produce a non-electro-active species at the
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Fig. 3.21 CE mechanism 00~ 00~
for the oxidation of d d
ferrocenecarboxylate in the ke
Fe Fe
¢ -

presence of a f-cyclodextrin S
host. Reproduced with
permission of reference [51]

Fig. 3.22 Interaction /\o/ﬁ

between DB18C6 and alkyl- H_+_H Ho+_H 0 (NP

ammonium cations [52] R,I';l (W) = E R,’?‘ (M) + ©[ |
H H 0 e

potential range where the electrochemical process occurs. This reaction scheme
(pseudo-first-order EC mechanism) is

Ate 2B = C (3.VIII)

Examples of these processes are the oxidation of p-aminophenol at platinum
electrodes in aqueous acidic solution, the reduction of dopamine at glassy carbon
electrodes or that of the cation 2,6-diphenylpyrylium in acetonitrile [9]. Another
interesting example arises from the facilitated ion transfer of amines from aqueous
to organic media in the presence of crown ethers like the dibenzo-18-crown-6 [52,
53] (see Fig. 3.22).

In a catalytic process, the product of an electrochemical reaction B reduces an
electro-inactive species Z and is regenerated to its oxidized state C, in line with the
following reaction scheme:

C+e =B

’

kl
B+Z=C+P (3.1Xa)

ky
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where species Z is present in a large excess so the reaction is of pseudo-first order,
with the pseudo-first-order rate constants being k; = k,c;, and k, = k,cp. It can be
considered that the redox couple C/B is a catalyst and Z is the species that is
catalytically reduced. In this reaction scheme, the direct reduction of species Z at
the electrode surface occurs with great difficulty, and is facilitated through its
reaction with species B. In most cases, homogeneous reaction in scheme (IXa) is
irreversible and can be written as

(3.IXb)

C+ e’_<7’ B
B+Z % CtP

In this case, the above process is called EC’ mechanism. Examples of this
reaction scheme are the reduction of Ti(IV) in the presence of Hydroxylamine,
the reduction of Fe** in the presence of H,O, (Fenton reaction) [2, 4, 6], or the
mediated reduction of oxygen via the reduced form of methyl viologen at a boron
doped diamond electrode [54].

Multistep electrode reactions can also be complicated by homogeneous chemical
reactions. The most studied case is that the product of a first electron transfer
undergoes a homogeneous chemical transformation with an electro-inactive species
present in a large excess; under these conditions, the reaction scheme is that
corresponding to a pseudo-first-order ECE mechanism given by

Oy +e =R, EY/
k
R, = 0, (3.X)
2

O, +e 2R, Ec‘?zf

Examples of this mechanism are the reduction of o-nitrophenol, p-nitrosophenol,
uranium complexes, and tocopherols, among many others [55], and also proteins
containing two redox sites including the possibility of an intramolecular electron
transfer [35].

In single step voltammetry, the existence of chemical reactions coupled to the
charge transfer can affect the half-wave potential E,, and the limiting current /.
For an in-depth characterization of these processes, we will study them more
extensively under planar diffusion and, then, under spherical diffusion and so
their characteristic steady state current potential curves. These are applicable to
any electrochemical technique as previously discussed (see Sect. 2.7). In order to
distinguish the different behavior of catalytic, CE, and EC mechanisms (the ECE
process will be analyzed later), the boundary conditions of the three processes will
be given first in a comparative way to facilitate the understanding of their similar-
ities and differences, and then they will be analyzed and solved one by one. The
first-order catalytic mechanism will be described first, because its particular reac-
tion scheme makes it easier to study.
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Boundary Value Problem for Catalytic, CE, and EC Mechanisms

If we consider a planar electrode and assume that the chemical reaction in reaction
schemes (3.VII)—(3.1Xa, 3.IXb) is of first or pseudo-first order, the differential
equation systems that should be solved together with the initial and surface con-
centrations in the three reaction schemes considered are given in Table 3.2.

Table 3.2 Boundary value problem corresponding to Catalytic, CE, and EC mechanisms

Mass transport differential equations

Catalytic CE EC
(?pCB:—klc‘B-f—szc} (ipCB = —kjcg + kace (?I,CA =0
6ch IkICB *kz(,‘c EAP(’.C = kch — kzL'C 6APCB = *leB + kz(,'c
(3.173a) opcp =0 bpcc = kicg — kace
(3.173b) (3.173¢)
Initial and boundary conditions
t=0,x>0
t>0, x— o0
B = (;3 * cc= C,(k: * A= CZ (3 1740)
. cp . cp cg=cc=0 ’
cc = cCc; K=+ CB = Cg; K=—+ (3.174b)
ce Ce
(3.174a) cp=0
t>0,x=0,
DC <%> x=0 - _DB (%> x=0 DC (%> x=0 - _DD <aa%) x=0 DA <aa%> x=0 - _DB <aa%) x=0
(3.175a) (3.175b) (3.175¢)
Dy (%) =0(3.176b De(%)  =0(.176c
c& =elcf (3.176a) ) ( : N ( )
cé =ecy (3.177b) cy = elcg (3.177¢c)

withn = F (E — Ece’) /RT and Ece’ being the formal potential of the electro-active couple on each
of the three mechanisms. Note that conditions (3.176b) and (3.176c¢) are related with the fact that
species B and C are electro-inactive in the CE and EC mechanisms, respectively. K in
Egs. (3.174a) and (3.174b) is the inverse of the equilibrium constant, K.y

In Egs. (3.173a2)—(3.173c), Sp is the mass transport operator corresponding to
linear diffusion given by

2
SPZE—D 0

5 Diza (withi = A, B, C, or D) (3.178)

In order to ease the resolution of these problems, it is useful to assume that all
diffusion coefficients are equal and make the following variable changes:

{=cg+cc (3179)
¢ = (cg — Kce)e? (3.180)
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with
x = (ki + ko)t (3.181)

By inserting Eqs. (3.179) and (3.180) into (3.173a)—(3.173c), it is fulfilled that

5,£=0 (3.182)
Spp =0 (3.183)
and
cc = % (3.184)
oy = % (3.185)

Now we will insert Egs. (3.179)—(3.183) in the boundary value problem of the
three reaction schemes considered. The first-order catalytic mechanism will be
considered first.

3.4.1 Catalytic Mechanism

By inserting Eq. (3.179) into Eq. (3.174a)—(3.175a) and assuming that Dg = D¢
= D it is obtained that

= > * * B
t=0,x>0 } (= =ch(1+K),K=23= (3.186a)

t>0,x=0,

o¢ B
(a)xo —0 (3.187a)

Equation (3.182) with conditions (3.186a)—(3.187a) implies that
C(x,0) = c(x,0) +cclx,t) =¢ Vo, t (3.188a)

Moreover, from Egs. (3.176a) and (3.188a), it is easily deduced that

(3.189a)
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el
14en

= (3.190a)

It is clear that the resolution of this problem is reduced to solving the differential
Eq. (3.183) with the following boundary conditions:

t=0, x>0
150 x — oo } $=0 (3.191a)

t>0,x=07
1 —-Ke .

XS — .192
e (3.192a)

with ¢° the value of variable ¢ given by Eq. (3.180) at the electrode surface.
Equation (3.192a) has been obtained by inserting Egs. (3.184), (3.185), and
(3.188a) into Eq. (3.176a).

Rigorous Solution
The current corresponding to the catalytic mechanism is given by (see Egs. (3.184)

and (3.188a)):
Jeat,plane B aCC _ e X a¢
T (36),, e (3. (193

This problem was solved in Chronoamperometry in references [56, 57] and in
Polarography in reference [58—62] (see Appendix D)

(\;%Jrerf(\/})) Eha

[cat,plane 1 —Kel
FADS  (1+K)(1+e)

(3.194a)

From Eq. (3.194a) it can be deduced that for £ < Ece’ (i.e.,e” — 0), the cathodic
limiting current is

Ifact’plane 1 e ¥ ki + k2
: — = + erf 3.195a
ror ~ x| (g e VO (31950)
whereas for £ > ECG’ (i.e., " — 00), the anodic limiting current is
I;:a;,plane —-K e /4 ki + ko
2 — = + erf 3.196a
FAD¢ 1+K (\/ﬁ (ﬁ)> D ( )

3 Note that, according with Eq. (3.180)—(3.181), surface condition (3.192a) is independent on time,

: : : s _ s __ 1-Ke #*
since it can be written as ¢y — Keg="75-¢".
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Note that
t, pl
Iia; plane |
e = K= i (3.197a)
Il,C eq

Moreover, from Eqs. (3.194a)—(3.196a), it is deduced that

RT Icat,plane o Icat,pleme

_ o aL Ic

E = EC + F ln (Icat,plane _ IlCZit,Plal’le (31988)
,a

Kinetic Steady-State Conditions (kss)
This treatment makes the assumption that the equilibrium perturbation given by

¢ss = CB — KCC (31993)

is independent of time. So, by inserting Eq. (3.199a) in Eq. (3.183), one has

o 0’
=0=D S (kg +k 3.200
ot 02 ( 1t 2)¢ss ( a)
The solution to Eq. (3.200a) is [2, 63, 64]:
. kithky
b = g VT (3.201a)

with @3, being the value of ¢ at the electrode surface, which is easily obtained by
combining Egs. (3.189a), (3.190a), and (3.199a):

. 1—Kel .
M PR (3.202a)

From Egs. (3.193a), (3.199a), and (3.201a), we deduce the stationary (indepen-
dent of time) kinetic current, which can be written as

[cal,plane,ss 1 ¢ S(OO) S
= 3.203
FAD 1+K o (3.:203a)

with ¢ (c0) being the value of ¢ at the bulk, which in line with Eq. (3.201a) is
¢ (00) = 0, and &, the reaction layer thickness for a planar electrode given by [6,

65-67]:
D
o = 3.204
YVt ke ( 2)
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Therefore, Eq. (3.203a) can be rewritten as

Icat,plane,ss B 1 — Ke 1
FADS  (1+K)(1+e7)5

(3.205a)

If the homogeneous reaction is irreversible K — 0, ¢ = ce(1+K) — ci. and

Eq. (3.205a) simplifies to
Icat, plane, ss 1 k k
— Jath (3.2063)
FAD¢ 1 +en D

Note that from Eq. (3.194a) under transient conditions or from Eq. (3.205a)
corresponding to a stationary response, it is easily deduced that the variation of the

potential with ln((llcit -plane Icat’plane) / (I““’pl‘me - Ifa,;’planj) is linear as in the
case of a reversible single charge transfer reaction (E mechanism), although here

the cathodic limiting current increases with +/k; + k, (see Egs. (3.194a) and
(3.206a)).

3.4.2 CE Mechanism

To solve this problem using the variables { and ¢ given by Eqgs. (3.179) and (3.180)
when assuming that all diffusion coefficients are equal (Dg = D¢ = Dp = D), the
following differential equation system must be tackled:

5,{=0 (3.186b)
Spp =0 (3.187Db)
5pcp =0 (3.188b)

with the following boundary conditions (see Eqs. (3.174b)—(3.177b) and (3.184)—
(3.185)):

t=0, x>0
t>0, x— o0

o cp_ 1
} (=8 mccllik), K=2=p - (3.180)
¢:O CD:O

t>0,x=0,

aC - aCD
b (@ o (H)X_o (3.1900)
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o (04
_K<a>x—0 - x<§)x—0 (3191b)

é«s _ ¢Se—)( — (1 +K)e’76IS) (3]92b>

with the current given by (see Egs. (3.176b) and (3.179)):

ICE,plane a
"FAD (a_i> (3.193b)
x=0

Rigorous Solution

Finding the rigorous solution of the problem is much more complicated than that
corresponding to a catalytic mechanism (see reaction scheme 3.VII), and it is given
by [68]:

ICE’ plane 1 KSCE
; — = {1 + } (3.194b)
[gi‘"e(g ) (I+K)(1+em) (I+K)(1+4en)
with
plane ( o*\ « |D
153¢(¢7) = FAC p (3.195b)
: 7
0 .
SE =" 5Fy/ (3.196b)
j=1
where y is given by Eq. (3.181) and the coefficients efE of the functional series S°F

are defined in Appendix D in a recurrent way (see Eq. (D.61)).
In order to try to get a simpler response, it is advisable to use the kinetic steady-
state approximation.

Kinetic Steady-State Conditions (kss)
In this case, the variables  given by Eq. (3.179) and ¢ (see Eq. (3.199a)) are used.
So, Egs. (3.186b) and (3.188b) are still satisfied and

Spthss = — (ki + k2) by (3.197b)

The boundary conditions are

t=0,x>0 }CzC* b =0 5 =0 (3.198b)
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8{ - aCD
»(3) o (W)X_o (3.1996)
o¢ (O
K (a>x—0 B < ax >x—0 (3200b)
&= =1+K)e"c) (3.201b)

The kinetic steady-state assumption implies that the equilibrium perturbation
function ¢, is independent of time, so

a¢ss _
=2=0 (3.202b)

Therefore, the solution of Eq. (3.197b) with this restriction is

kytky

s =gge V7" (3.203b)

SS

By inserting Eq. (3.203b) into (3.200b) and (3.201b), these boundary conditions

become
ook -2 (%)~ s ke (3.204b)
i+ ko \ox) o €D '

To summarize, this problem has now been reduced to the following one,
depending on the variables { and cp:

5,{=0 (3.205b)
5pcp =0 (3.206b)
t= O, X Z 0 e L
£> 0, x o 00 } (=¢ op=0 (3.207b)

t>0,x=0,
aC _ aCD
b <ax> 0P (ax) » (3.208b)
aé’ - 1 ki + ko < , s
<E>X_O =g\ £ 1+ K] (3.209b)

Note that Eq. (3.209b) is merely manipulation of Eq. (3.204b).
It is important to highlight that “by chance” the problem given by Eqs. (3.205b)—
(3.209b) is identical to that previously solved for a non-reversible process (see
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Eq. (3.5)) by changing \/k/D/K by ka/Do, (1 + K)e" by €, and {* and ¢}, by ¢
and cj.

So it is very easy to verify that the current of a CE mechanism under kinetic
steady-state conditions is given by [63-65]:

ICE,plane,kss F CE
plane [ o* = ()(kbb) (3210'3)
15 (g) 1+ (1+K)en
with
2
2CE = 2Vx [1+(1+K)e"] (3.211b)

kss K

and F function and Igfne(éj *) given by Egs. (3.16) and (3.195b), respectively. The

solution given by Eq. (3.210b) only coincides with the rigorous one Eq. (3.194b)
when y > 5 for any value of K.

As can be seen in Eq. (3.211b), ¥ E is influenced not only by the rate constants of
the chemical step but also by the equilibrium constant (K., = 1/K), since any
significant influence of the chemical reaction requires large values of y and small
equilibrium constants (i.e., large K values).

The limiting current is deduced from Egs. (3.210b) and (3.211b) by making
e"— 0

ICE, plane, kss 2
e = F (ﬂ> (3.212b)
]d,c (é’ ) K

with y given by Eq. (3.181).

As 0 <F <1, as indicated in Appendix E, the limiting current of a CE
mechanism is always less than that obtained for a single charge transfer reaction.

Equations (3.210b)—(3.212b) indicate that under kinetic steady-state conditions
the single pulse voltammograms obtained for a CE mechanism depend on the
kinetic constants and time, unlike to that deduced for a catalytic mechanism, for
which a time-independent current—potential curve was obtained under these condi-
tions (see Egs. (3.2052)—(3.206a)).

Kinetic Steady-State Conditions by Assuming a Purely Diffusive Behavior
for Species £ and D (Diffusive-Kinetic Steady State, dkss)

In this section, new assumptions are introduced which will be fundamental for the
general definition and understanding of reaction and diffusion layers. We will
consider that variable ¢, retains the form given by Eq. (3.203b) deduced under
kinetic steady-state approximation (i.e., by supposing that 0¢, /0t = 0(cg — Kcc)/
0t = 0). In relation to the variables ¢ and cp, it is assumed that their profiles have
the same form as that for species that would only suffer diffusion and would keep
time-independent values at the electrode surface, i.e., [63]:
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(=0 + (8= )erfe (2\23> (3.213b)
cp = cperfc (ﬁ) (3.214b)

By inserting Egs. (3.203b), (3.213b), and (3.214b) into Eqgs. (3.199b)-(3.201b),
the following expression for the current is deduced:

[CE,plane,dkss a s
s (%) _8=¢ (3.215b)
FAD ox/) 1)
or
ICE,plane,dkss _ _l a¢ss _ _ld)ss(oo) o SsS (3 216b)
FAD K\ox )., K 5 '

with ¢ (0c0) =0, and § and &, are the diffusion and reaction layer thickness for
planar electrodes, respectively, with (see also Eq. (2.25) of Sect. 2.2.1):

6 = VaDt (3.217b)
and 6, given in Eq. (3.204a).

The expressions of {* or ¢S, can be obtained from conditions (3.199b)—(3.201b)
and the current for a CE mechanism can be written as

ICE,pIane,dkss 1
= 3.218b
ey K(6:/6) + (1+ (1 +K)er) ( )
and the cathodic limiting current (7 — 0) is
ICE,plane,dkss 1 % AT
Le alki + k2) (3.219b)

() KGO+ 1 K+ /alk + ko)t

The expression of the current given by Egs. (3.218b) or (3.219b) only coincides
with the rigorous one (Eq. 3.194b) for “F > 10 with an error smaller than 5 %.
From Egs. (3.218b) and (3.219b), it is easily deduced that under these conditions

the applied potential varies linearly with ln((llcf’pla"e’dkss —ICE’pla"e’dk“)/

ICE’ plane, dkss )

CE, plane, dkss CE, plane, dkss
RT (I — e
_ CE l,c
E= E1/2 + F 111( JCE. plane, dkss ) (3220b>
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RT . (1+K(5/)8
Effy=EZ'+—In (%) (3.221b)

3.4.3 EC Mechanism

In this case (see reaction scheme (3.VIII)), the following problem should be solved:

bpca =0 (3.186¢)
5,{ =0 (3.187c¢)
Spp =0 (3.188c)

with the following boundary conditions (see Egs. (3.174c)—(3.177¢c) and (3.179)—
(3.181)):

t=0,x20 .
t>0,§—>oo } ca=cy, ¢=0 ¢=0 (3.189c¢)
t>0,x=0,
aCA B ac
P <ax> P (ax)x_o (3.190c)
00\ _ (0
<a>x0 —° (5)((0 (3.191c¢)
Kerger= % (3.192¢)
and the current is
IEC,plane aCA
FAD (&c)x_o (3.193¢)

By comparing the problem given by Egs. (3.186b)—(3.193b) for a CE mechanism
with Egs. (3.186c)—(3.193c) for an EC mechanism, it can be easily inferred that the
current corresponding to the EC process can be deduced with a similar procedure to
that followed for a CE one (see Appendix D). So, the solution is:
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Rigorous Solution

IEC,plane 1 qSEC
: = [ © } (3.194c)
e T+er  (1+K)(1+e)
with
10 (c}) = FACA\/; (3.195¢)
SFC= "y (3.196¢)
j=1

where y is given in Eq. (3.181) and the expression of coefficients EJEC is given in
Appendix D (see Eq. (D.63)).

Contrarily to the CE mechanism, in this case the current—potential curve is more
affected by the chemical reaction the higher the rate and the equilibrium constants y
and Kq = 1/K.

Kinetic Steady State (kss)
In this case, the following expression for the current is obtained:

]EC,plane,kss 1 + K)F EC
plane / = ( 1 K) (I)gkqns) (3197C)
Id,c (CA) + K+ Ke

with Igfzme given by Eq. (3.195c¢). Function F is given in Appendix E and

2
e \/)?[1 +K + Ke| (3.198¢)

kss el

Kinetic Steady State Assuming Purely Diffusive Behavior for A and ¢ Species
(Diffusive-Kinetic Steady State, dkss)
Under these conditions, the current is

IEC’ plane, dkss 1 K
e = i (3.199¢)

or

RT EC,plane,dkss IEC,plane,dkss
_ pEC I,c
E= El/2 + ?hl( JEC.plane, dkss > (3200C)
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RT 1+K
EFC =E¥ + —In[————— 3.201
1/2 c + F n<K+(5r/5)> ( C)

where 6 and &, are given in Eqgs. (3.217b) and (3.204a), respectively.

From Egs. (3.194c), (3.197c), and (3.199¢c) corresponding to rigorous and
approximate treatments, it can be deduced that under limiting conditions (i.e., E
< E®" ore’ — 0), the expression for the current coincides with that corresponding
to a single charge transfer process (E mechanism):

IEOPe () = 159 (c}) (3.202¢)
with 152" (c3) given by Eq. (3.195c¢).

An important particular situation of an EC mechanism corresponds to the case

K=0 (Keq — oo), for which the chemical reaction has its greatest influence.
Under these conditions, Egs. (3.199¢c) and (3.201c¢) transform, respectively, to

[EC,plane 1
= 3.203¢
Idp’lzme (C;) 1 +en (5r/5) ( )
RT 1 RT
E}ffz =E% + 71n (5—) =E? + ﬁln(ﬂklt) (3.204c¢)

Under these conditions, EIIE/C2 is dependent on k;, and is shifted toward more

anodic potentials as k; increases.

3.4.4 Comparison of the Disturbed Regions by Catalytic, CE,
and EC Mechanisms

In this section, the different behavior of processes with coupled noncatalytic
homogeneous reactions (CE and EC mechanisms) is discussed in comparison
with a catalytic process. We will consider that the chemical kinetics is fast enough
and in the case of CE and EC mechanisms K (: cg/ cé) fulfills K > 1 so that the
kinetic steady-state and even diffusive-kinetic steady-state approximation can be
applied.

Indeed, from Eq. (3.205a) for a catalytic process (under kss conditions) and
Egs. (3.218b) and (3.199¢) for CE and EC processes (under the more restrictive
dkss conditions), it can be inferred that a true stationary (independent of time)
current—potential response for a catalytic reaction (reaction scheme (3.1Xa, 3.1Xb))
can be reached even for large electrodes (planar diffusion), whereas for CE and EC
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CE Mechanism Catalytic Mechanism
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lf=.‘ : 0‘7
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Scheme 3.1 Steady-state diffusion and reaction layers for CE and catalytic mechanisms

processes (schemes (3.VII) and (3.VIII)), it is not possible to find a true stationary
current—potential response under these conditions, as is shown from Egs. (3.218b)
and (3.199c) obtained under the dkss assumption (this is also impossible for an E
process). This different behavior is outlined in Scheme 3.1 [63].

This different behavior can be explained by considering that for a CE mecha-
nism (the reasoning is similar for an EC one), C species is required by the chemical
reaction whose equilibrium is distorted in the reaction layer (whose thickness in the

simplified dkss treatment is &, = /D/(k; + k2)) and by the electrochemical

reaction, which is limited by the diffusion layer (of thickness 6§ = /zDt). For a
catalytic mechanism, C species is also required for both the chemical and the
electrochemical reactions, but this last stage gives the same species B, which is
demanded by the chemical reaction such that only in the reaction layer do the
concentrations of species B and C take values significantly different from those of
the bulk of the solution. In summary, the catalytic mechanism can reach a true
steady-state current—potential response under planar diffusion because its perturbed
zone is restricted to the reaction layer d,, which is independent of time, whereas the
distortion of CE (or EC) mechanism is extended until the diffusion layer 6, which
depends on time, and a stationary current—potential response will not be reached
under these conditions.

It is interesting to point out that if we write Eqs. (3.218b) and (3.199c)
corresponding to CE and EC processes as

JCE.plane, dkss 1 1
o - (3.222)
FAD K(8:/8) + (1+ (1+K)er)s
JEC.plane, dkss 1+K 1
™ (1+K) 1 (3.223)
FADc, — 1+K+el(K+(5/8))6
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by making 6 = 6, (and ci; = CE in Eq. (3.222) and cZ = cé in Eq. (3.223)), both
equations convert to that corresponding to a catalytic mechanism with K =0 when
diffusion and reaction layers become coincident, i.e.,

ICE,plane,dkss| o [EC,plane,dkss
cp=cy

= [eplnekss e 5 L5 (3.224)

(‘A:CC

3.4.5 Comparison Between the Current—Potential Curves
Corresponding to Catalytic, CE, and EC Mechanisms

Before studying the influence of the different kinetic parameters on the single
potential step or normal pulse voltammograms corresponding to these three reac-
tion mechanisms, it is of great interest to point out some features of these curves,
which can be directly deduced from the equations presented in the previous sections
corresponding to the dependence of the limiting current and of the half-wave
potential with the characteristic parameters when diffusion coefficients of species
B and C are assumed equal.

The single pulse voltammograms of a pseudo-first-order catalytic process are
easily characterized by the increase of the limiting current with the time or the
chemical kinetic constants, whereas its half-wave potential remains unchanged.

For a pseudo-first-order CE mechanism, both the limiting current (which is
always less than that corresponding to an E mechanism) and the half-wave potential
are affected by the equilibrium and rate constants.

In the case of a pseudo-first-order EC mechanism, only the half-wave potential
depends on time and the equilibrium and rate constants, with the limiting current
remaining unaltered with the variation of these parameters—identical to that
corresponding to an E mechanism.

The influence of the ratio K =cy/cc on the normalized single pulse
voltammograms corresponding to y = (k; + k2)¢t = 30 for the three mechanisms
(note that K is the inverse of the equilibrium constant, i.e., K = (1 /Keq)) can be
seen in Fig. 3.23. An increase of K does not affect the location of the
voltammograms in the potential axis in the case of the catalytic mechanism
(Fig. 3.23a), whereas it causes a shift of the current—potential curves for both CE
and EC mechanisms toward more negative potentials (Fig. 3.23b and c).
Concerning the influence of K (: l/Keq) in the limiting currents, for a catalytic
mechanism the increase of this ratio leads to a decrease of the cathodic limiting
current and to an increase of the anodic one in absolute value (in line with
Egs. (3.195a) and (3.196a)). The cathodic limiting current of the CE mechanism
also decreases with the increase of K (see Eq. (3.212b)), whereas it does not affect
that corresponding to an EC mechanism (see Eq. (3.202c)). In the case of a CE
mechanism, the behavior corresponding to a simple charge transfer without chem-
ical complications (dotted line in Figure b) refers to the sum of concentrations of
species B and C (labile equilibrium) for K — 0 and only to the concentration of
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Fig. 3.23 Influence of K (: 1 /Keq) on the normalized voltammograms corresponding to a
catalytic (a, Egs. (3.194a) and (3.195b)), CE (b, Egs. (3.194b) and (3.195b)), and EC mechanism
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species C (non-labile equilibrium) for K >> 1 [69]. An EC mechanism behaves like
an E process only if K > 1 (see Fig. 3.23c¢).

The variation of the normalized single pulse voltammograms of the three
reaction mechanisms with y for K=1 (CE mechanism, Figure b) and K=0
(catalytic and EC mechanism, Figures a and c, respectively) is plotted in
Fig. 3.24. From these curves, it can be observed that an increase of y does not
affect the location of the voltammetric responses of a catalytic process (Fig. 3.24a),
whereas it causes a slight shift toward more negative potentials in the case of a CE
process (Fig. 3.24b) and a more notable shift toward more positive potentials for an
EC one (Fig. 3.24c). The influence of y in the limiting current is restricted to
catalytic and CE mechanism (since it does not affect the limiting current of the EC
one), being stronger in the former case since /; it'pla"e/lpf"e(é_,’ *) is proportional to \/x
(see Egs. (3.225) and (3.226)).

3.4.6 Determination of Kinetic Parameters

From the Limiting Currents
In the case of a catalytic mechanism, the normalized limiting current I5%P" /Pl

(&%) is

Icat,plane — ]iact’plane — |:( e’ —+ erf(ﬁ)) \/7T_)(:|L (3 225)
N I(]i)’l';me (é/‘) \/ﬂ-_)( 1+K

with Ig’l:ne (C*) = FAL"\/D/(nt) and y given by Eq. (3.181). So, a set of plots of
290 ys. /i for different values of K can be used as working curves to determine
ky and k, from experimental values of IZ"P*™ once the value of D is known
(see Fig. 3.25). The value of K can be obtained by linear extrapolation of these
curves to y — 0 (see dashed lines) [4]. Note that for y > 1.5 the kinetic steady
state is applicable and these plots are linear since the term (e"f /Ty + erf (\/7))
— 1 and

VE
paorie| o VI (3.226)
>1.5 1 —+ K
For a CE mechanism, the curves /5P = Iff’plane /1 g’line (£") vs. y calculated

from Egs. (3.194b) and (3.195b) are plotted in Fig. 3.26.

<
«

Fig. 3.23 (continued) (¢, Egs. (3.194c) and (3.195c)). The values of K = 1/K.q appear on the

curves. y = 30. T=293.15 K. Dotted lines in Figures b and c¢ correspond to a charge transfer
without chemical complications (E mechanism; see Eq. (2.36))
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Egs. (3.194a) and (3.195b)), CE (b, Egs. (3.194b) and (3.195b)), and EC mechanism (c,
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Fig. 3.25 Variation of the normalized current of a first-order catalytic mechanism versus /y
calculated from Eq. (3.225) with K = 1/Kq. E — E?/ = —0.3 V, T=298.15 K. Dashed lines

correspond to the limiting behavior of the normalized current given by Eq. (3.226). A vertical
dotted line has been plotted at y = 1.5
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Fig. 3.26 Variation of the normalized current of a CE mechanism versus y calculated from
Egs. (3.194b) under limiting current conditions and (3.195b). The values of K = 1/K¢q are on

the curves. E — Ece’ = —0.3 V,T=298.15 K. Dashed lines correspond to the behavior of a simple
charge transfer without chemical complications (E mechanism; see Eq. (2.36))
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Fig. 3.24 (continued) Egs. (3.194c) and (3.195c¢)). The values of y appear on the curves. For the
catalytic and EC mechanism K = 1/Kq = 0 and for the CE one K = 1/K¢q = 1. T=293.15 K.

Dotted lines in Figure c¢ correspond to a charge transfer without chemical complications
(E mechanism, see Eq. (2.36))
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Fig. 3.27 Variation of the half-wave potential with ,/y for a CE (Eq. 3.221b) and EC (Eq. 3.201c¢)
mechanism. K =0 (EC mechanism) and K = 10 (CE mechanism) with K (: 1/ Keq)

From these curves, by knowing the experimental values of /5™, it is possible

to determine k; and k, once K is known. Moreover the lower bound of the
equilibrium constant of the chemical reaction can be determined (note that if

IEE’pla“e(t — 0) < 0.5, K > 1). The value of K can be also calculated by extrapo-

lation of these curves for small values of y (i.e., for y — 0) since Ig """ (1 — 0)

=1/(14+K) [68].
The limiting current of an EC mechanism is independent of y and its value
cannot be used to obtain the parameters of the chemical reaction.

From the Half-Wave Potentials

The variation of the half-wave potentials with /y = \/(k; + k2)t for CE (see
Eq. (3.221b)) and EC (see Eq. (3.201¢c)) mechanisms is plotted in Fig. 3.27. From
this figure, it can be seen that the half-wave potential shifts toward more anodic
(EC) or cathodic (CE) potentials when y increases, respectively, whereas the half-
wave potentials of catalytic and E mechanisms are independent of y.

3.4.7 Spherical Electrodes

Catalytic Mechanism

As discussed in Sect. 3.4.1, finding the single step voltammetric curve of this
mechanism is much easier than finding those corresponding to EC and CE mech-
anisms in planar electrodes because the surface concentrations of the participating
species are independent of time. In this case, finding the voltammogram for a
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spherical electrode of any size is not very difficult and is given in references [59, 63,
64, 70], and the current can be written as

[E5 s retin)

with y given in Eq. (3.181) and r¢ being the electrode radius.
Under kinetic steady-state conditions (y > 1.5), Eq. (3.227) becomes

Icat,sphe,kss 1 — Ke" k k 1
" € Jatk 1 (3.228)
FADS  (1+K)(1+en) D

By comparing Eq. (3.228) with (3.205a) for planar electrodes, it can be easily
inferred that the reaction layer in this case is

Icat,sphe 1 — Ke'
FADS  (1+K)(1+e)

6rsphe _ 1

[kitka | 1
D + s

(3.229)

CE and EC Mechanisms

Finding rigorous analytical expressions for the single potential step
voltammograms of these reaction mechanisms in a spherical diffusion field is not
easy. However, they can be found in reference [63, 64, 71-73] for the complete
current—potential curve of CE and EC mechanisms. The solutions of CE and EC
processes under kinetic steady state can be found in references [63, 64] and the
expression of the limiting current in reference [74]. Both rigorous and kinetic
steady state solutions are too complex to be treated within the scope of this book.
Thus, the analysis of these processes in spherical diffusion will be restricted to the
application of diffusive-kinetic steady-state treatment.

For this purpose, we will consider a CE mechanism (reaction scheme (3.VII)),
since the derivation of the expressions for an EC process can be carried out by
following a similar procedure to that of a CE process. In this case, as previously, we
will consider that the pseudo-species {(= c¢p + ¢c) and species c¢p have a purely
diffusive behavior. So, it is also supposed that 0¢ /0t =0 (¢ = cg — Kcc),
which fulfills, in a spherical diffusion field:

az¢ss + 2 ad)ss _ ki + ko

o2 'ror D Ps (3:230)

The solution of this differential equation is

by = r;qb e VI5E (1) (3.231)
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then,

<a§;s> _ _,75 o k(o) F_i_ \/kl%__kz] (3.232)

which takes the following expression at the electrode surface:

0 ss - isi
< 8¢r> = 5spﬁé (3.233)

with 5P given by Eq. (3.229).
Moreover, it is assumed that in spherical diffusion the concentration profiles of
and cp are given by (see Eq. (2.144) of Sect. 2.5.2):

(=¢ - —(C - Cs)erfc< \/_> (3.234)
cp = cierfc (2 \/_> (3.235)
then,
(gf) = 55;5 : (3.236)
(%) == 5 (3.237)

with 5" being the diffusion layer thickness for spherical electrodes (see
Eq. (2.146) of Sect. 2.5.2):

1
sPhe — (3.238)

l
v

By inserting Egs. (3.231)—(3.238) in the surface conditions of a CE process (see
Egs. (3.174b)—(3.177b)) and considering spherical diffusion, it is easily deduced that

ICE’ sphe, dkss 1
sphe ( o* = sphe / csphe (3239)
I0°(¢7) K (/o) + (14 (14 K)er)
]EC, sphe, dkss 1 K
+ (3.240)

() THK+or(K + o /57)
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with

sphe / * sf 1 1
1§ (¢7) = FADc <Z+\/ﬁ (3.241)

with ¢ = ¢" or ¢" = ¢}, in Egs. (3.239) and (3.240), respectively.

By comparing Egs. (3.239) and (3.240) with Egs. (3.218b) and (3.199c¢) previously
deduced for planar electrodes, it can be verified that they are identical if we change in
Egs. (3.239) and (3.240) &' for §, and 8P for 8. So, all equations deduced for
planar electrodes under dkss conditions can be transferred to spherical diffusion
merely by making these changes. This is also applicable to a catalytic mechanism
under kinetic steady-state conditions (compare Eqgs. (3.205a) and (3.228)).

Microspherical Electrodes (Total Steady State)

If the electrode radius r, is  restricted to the interval
D/(ky + k2)/10 < ry < /zDt/20, the spherical diffusion and reaction layer

thicknesses given by Eq. (3.229) or (3.238) simplifies to

5mlcrosphe = ry }

5rmicrosphe — 5rsphe (3242)

Under these conditions, the voltammetric response of a catalytic mechanism
given by Eq. (3.228) remains valid since it is independent of time. This expression
can be normalized by the diffusion-controlled limiting current at microspheres:

Jeat. sphe 1 — Ke' \/m
A = s +1 3.243
ImICrOSphe (g*) (1 + K)(] + e”) (7‘ D ( )

d,c

with
IO () = 4aFrDC (3.244)

Equation (3.243) shows that for pseudo-first-order catalytic mechanism, the
normalized current varies linearly with the radius for any value of the applied
potential and the term (k; + k») can be calculated from the slope provided the
equilibrium constant and the diffusion coefficients are known.

The current—potential curves corresponding to CE and EC mechanisms become
independent of time under these conditions, and Eqs. (3.239)—(3.240) can be used
by changing §*P" for smicrosphe,

So, the half-wave potentials for these mechanisms at spherical microelectrodes are
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RT (1+K(5/r,)
CE _ o/ r S
RT 1+K
EC _ o/
Ejp=E~ + 7 In <K+ (551"“6/145)) (3.246)

The solutions found under these conditions are equivalent to the simultaneous
establishment of the three assumptions:

-G)-C8)0 o

for a CE mechanism and

aé’ aCA a¢ss
(8t> < 8t> ( ot ) 0 (3.248)
for an EC mechanism.

The use of microelectrodes under total steady-state conditions is very advanta-
geous in determining kinetic constants of very fast chemical reactions. To show
this, in Fig. 3.28, we show the time influence at different values of rg on the
normalized limiting current of a CE mechanism (Eq. 3.249) compared with the
time-independent solution (dashed lines and Eq. (3.250)):

ICE, sphe, dkss

1
l,c
’ — = 3.249
Ig?:e (CA) K((srsphe/ésphe) +1 ( )
with the time-independent solution given by (6°" — r):
ICE,microsphe 1
Le (3.250)

17 () T K (6 /) + 1

and I7°(*) and I35 ((*) given by Egs. (3.241) and (3.244), respectively.

It is clearly shown in this figure that time has a great effect on the current and that
this influence decreases with r. Figure 3.28b (K = 10? and k| +k» = 10> s~ 1)
shows that Eq. (3.250) can be applied for # = 1 s only if 7, < 10~ cm.

Both Egs. (3.243) and (3.250) for catalytic and CE mechanisms, respectively,
convert into that corresponding to an E process when (ki +ky) < D/r?, since
under these conditions the chemical reaction is masked and the use of microelec-
trodes is not appropriate for determining kinetic rate constants.

The analysis of the EC and CE mechanisms under steady-state conditions at
other microelectrode geometries is much more complex. In the case of microdiscs,
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Fig. 3.28 Time influence at different values of r; on the normalized limiting current of a CE
mechanism (Egs. 3.249 and 3.241) compared with the time-independent solution (dashed lines and
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some authors have proposed approximate equations analogous to those given in
Egs. (3.239) and (3.240) by taking as valid the analogy between the disc and sphere
radius, i.e., by making the change ry = nr4/4 in the expressions of the diffusion and
reaction layers given by Egs. (3.229) and (3.238) (see [76, 77] and Sect. 2.7). Under
these conditions, the approximate expressions of the reaction and diffusion layers
are

disc __ 1
' ki + ko n 41
V" D Try (3.251)
6microdisc —_ %},d

3.4.8 ECE Mechanism and Other More Complex Reaction
Schemes

When there is a chemical reaction between two electrochemical steps, the mecha-
nism is called ECE. This process, when the second electrochemical step is further

reduced, is also denoted ECE and can be schematized

Oy +e =R, EZ/
ki
Ri 20, (3.XI)

O, +e =Ry, EZ)/

As in the case of two electrochemical steps (EE mechanism), the following
reaction occurs:

!

k|
0O, + Ry :ﬁ O +Ry (3.XH)

2

If EC%’ > EC9 !, then the disproportionation step (3.XII) is thermodynamically
viable. The source of the second electron transfer may then be either the second

Fig. 3.28 (continued) Egs. (3.250) and (3.244)). Three values of (k; + k) (in s’l) are considered:
1 (a); 10% (b); and 10 (¢). ro is the radius of the spherical electrode. Time values are indicated on

the curves. K = 1/Kqq = 10%. Taken from [75] with permission
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electron transfer reaction (ECE mechanism) or the chemical reaction (3.XII)
(DISP1 mechanism if the intermediate chemical reaction in (3.XI) is rate limiting,
or the DISP2 mechanism if reaction (3.XII) is rate limiting). While DISP2
is distinguished from the other mechanisms with relative ease, discrimination
between ECE and DISP1 is more difficult [78, 79] At high concentrations of
supporting electrolyte, careful analysis of voltammetric wave shape over a range
of scan rates can in some circumstances be used [80].

Throughout this book, a negligible interference of reaction (3.XII) is considered.
The reader can find an extensive analysis of its influence on the response in
references [79, 81].

If the second electrochemical step corresponds to the oxidation of the chemical
reaction product, this process is called parallel ECE mechanism and is denoted
ECE.

The voltammetric response for the reaction scheme (3.XI) depends on the
difference between the formal potentials of both electrochemical steps, AECQ’, and
on the equilibrium and kinetic constants of the intermediate chemical reaction. If
AES =ES) —ES’ <0 (ie., EZ,) is much more negative than EZ,"), two well-
resolved waves are observed, with the first corresponding to the EC process:

Oy +e =R, EY/

; 3.XIII
R, k<:* 0, (3-XIT)
2

giving rise to a first plateau of current independent of the chemical reaction which is
defined by the diffusion-controlled current of the first electron transfer. The limiting
current corresponding to the second wave is obviously less than that which would
correspond to the diffusion-controlled current of the second electron transfer, since
it is conditioned by the chemical reaction. However, this limiting current, while
presenting certain similarities, does not coincide exactly with that deduced for a CE
mechanism, because for an irreversible chemical reaction (K=0), the second

limiting current of an ECE process is less than the diffusion-controlled current
except for very large values of y = k;t, contrary to that predicted for a CE
mechanism, since the second wave depends on the previous step, as can be seen
in Fig. 3.29.

The limiting current corresponding to the second electron transfer of an ECE
mechanism is given by [82]:

ECE, pl
[1 ¢ plane SICE
> — 1 +

(3.252)
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Fig. 3.29 Influence of y on 20
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with SCE being coincident with the series corresponding to a CE mechanism only
under limiting current conditions (see Eq. (3.196b) in Sect. 3.4.2). The limiting
current of a CE process is

ICI?,plane 1 K CE
Le [ Si } (3.253)

) T THKL T THK

Second-Order Catalytic Mechanism

The theoretical study of other electrode processes as a reduction followed by a
dimerization of the reduced form or a second-order catalytic mechanism (when the
concentration of species Z in scheme (3.1Xa, 3.IXb) is not too high) requires the
direct use of numerical procedures to obtain their voltammetric responses, although
approximate solutions for a second-order catalytic mechanism have been given
[83—85]. An approximate analytical expression for the normalized limiting current
of this last mechanism with an irreversible chemical reaction is obtained in refer-
ence [86] for spherical microelectrodes, and is given by

12

cat, microsphe # w\ 2 *
Q,CTZI—M ! (klrzcc> LA (3.254)
I3 () 2D 2 D D

with k; being the rate constant of the irreversible chemical reaction.

3.4.9 Catalytic Mechanism at Disc Electrodes

The special characteristics of the first-order catalytic mechanism make it possible to
obtain an explicit analytical expression for its transient voltammetric response at
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disc microelectrodes [87, 88]. Indeed, by considering a nernstian behavior for the
electrochemical reaction, the surface concentrations are constant and only depend
on the applied potential, and the current can be written as

Icat,disc 1 — Ke'
F = f i (ra, 3.255
FADC  (1+K)(1+en) aie(rd: ) (3.255)
being
1 ki + ko, g
B (g, ) = — -+ || 2T (5 ) (3.256)
rq D
with
i ¢ 0.39115
T9¢(y, &) = T(y) +0.2732 ﬂj exp {_ - lzu} du+
& Jo vi¢ (3.257)
027322 exp (—x - 0'39“5)
Y/ £
671
T(y) =—=+erf(Vx 3.258
() =+ et (V) (3.258)
D
&= \{——[ (3.259)
d

with y given in Eq. (3.181) and r4 being the radius of the disc electrode.

Steady-State Conditions
Inserting the condition y > 1.5 in Egs. (3.255)—(3.258), one obtains

lcat,mlcrodlsc 1—Ke"

FADC  (1+en)(1+K) |

1 Jky + ko l<1+k2\/;?JC>C 039115 y ,
— 0.5465 — - —Su” |d
x{rd+ D + D : ), u exp \/ﬁ fzu u

(3.260)

When the condition (k;+k2)<D/r} is fulfilled, the enhancement of the
diffusion transport freezes the chemical reaction, so the response is that
corresponding to a simple charge transfer process and therefore does not contain
any information about the chemical kinetics. So, Eq. (3.260) under these conditions
becomes

Icat,mlcrodlsc 1 —-—Ke 4

S S —— (3.261)
FADE | viyenyz (1)1 +K) arg
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It is interesting to highlight that Eqgs. (3.255), (3.260), and (3.261) deduced in
this section fulfill that

Icat,disc 1 —Ke"
. = 3.262
15 () T (T en (1 +K) (3.262)

since the applied potential only affects the surface concentrations which are inde-
pendent of time.

For a second-order catalytic mechanism with an irreversible chemical reaction,
an approximate analytical solution has been reported [86]:

1/2
(3.263)

I&r’liccrodisc (C*) - 32D 2

cat, microdisc 2 * 2.2 %\ 2 2,2 %
I 1 kimrjee 1| (kin“rice kim-ricy
16D 4D

3.4.10 Reversible Charge Transfers Preceded and Followed
by Several Complexation Reactions in Equilibrium
(Ladder Mechanism)

Another very common situation is produced when a species A is electro-reduced to
B with both species taking part in a number of chemical equilibria in solution which
may refer to their complexation with a ligand L [89, 90], protonation [91, 92] or
formation of ion pairs [93, 94], or association of charged species with DNA [95],
the products of which (AL, BL, ... AL,, BL,) are also electro-active in line with the
following reaction scheme:

(3.X1V)

B : » BL, ... ——= BL,_
Ligand L is assumed to be present at high concentration
(c;: > Cpy Cps Caps cEL’> and k} and K (j=1, 2; i=1, 2 ... n) represent the

(pseudo)first-order forward and backward rate constants of the chemical reactions.
Note that this reaction scheme covers different common mechanisms that can be
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studied by adjusting the values of the formation equilibrium constants. Thus, the
situation where only the oxidized (A) or the reduced (B) species is involved in the
homogeneous chemical equilibria (i.e., only one species reacts in solution) can be
studied by setting to zero the equilibrium constant(s) of the other species (C4 E™"-
or E*¥ C$4-type mechanisms). The E*Y C* mechanism is very usual in real systems
since the electron transfer generally increases the instability and reactivity of the
chemical species, for example, by forming radicals.

When a constant potential, £, is applied to the electrode immersed in the solution
containing species A and L such that the electron transfer reactions take place, the
mass transport supposed by pure diffusion to and from the electrode surface, in the
presence of an excess of supporting electrolyte, is described by the following
differential diffusive-kinetic equations system:

OCaL ; ; ; i
a/;L’ = Dar, Vear, +kiea,, — (ks + k™ )ear, + k5 ear,,

5 (3.264)
CBL.: /i 2l 1 i+1 rit+1
aB[LI = DBL,-VZCBL,' +k ;CBLH - (k; +k 1'Jr )CBL,' +k 12+ CBLiy

where V? is the Laplacian operator given in Table 2.2 of Sect. 2.6 for the main

electrode geometries, 0 < i < n for the different complexes, ALy = A, BLy = B,
rn+1

kO = kot :O,k’;) =" =0(=12.
The boundary value problem associated with the reduction of A is given by

t=0, q>q°
t>0, g—

¢’ c*_ﬁ»
;i caL(g,0) = car, (00, 1) = 0

Yy L+) A,
s=1 s=1

ca(q,0) = ca(oo,t) =

cg(q,0) = cp(00,t) =0 ;i cBL(¢,0) = cpr,(00,7) =0
(3.265)
t>0, qg=q°
aCA) (aCB>
Dal5— = -—Dg|=— 3.266
A<an 9=¢* b an q=q ( )
OcaL, OCpL
Dy, 3 : = Do 3 ' 1<i<n (3.267)
N/ g=¢ N/ ¢=¢
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car (@) = cmu(g) e s 1 <i<n (3.269)

with
Nasp = F (E EA/B)/RT (3.270)
MAL,/BL, = F(E - Efi,/BL,.)/RT ; 1<i<n (3.271)

where ¢ and ¢ refer to the spatial coordinate and time values, ¢° to the coordinates at
the electrode surface, gy is the normal coordinate value at the surface of the
electrode, and f; represents the overall formation constant for the different com-
plexes of species A initially present in solution (see Eq. (3.272)).

It will be assumed that the rates of formation and dissociation of the different
complexes (ki, K|, kb, and k'}) are sufficiently fast in comparison to the diffusion
rate so that the complex formations and dissociations are at equilibrium even when
current is flowing, i.e., that chemical equilibrium conditions are maintained at any
position and time of the experiment [90]:

CAL t)
HKm =)

o, (4.0) Vgt ;5 i>1; (3.272)
% _ CBL; (¢,
K, c
ﬂ H meL = CB 617 )
with K, and Km being
t
K, = CALm((Q?f)) .
CALnt 3 L 3.273
! CBLm (q7t) ( ’ )

To solve the problem defined above, the new variables ¢4 and ¢ are defined as

ot (¢,1) = ealg, 1) + Z caL (g, 1) (3.274)

i=1

ct(g,1) = clq,t +ZCBL q,1) (3.275)

which relate to the total concentration of species A and B. Taking into account
Eq. (3.272), it is possible to establish the following relationships:



3.4 First-Order Chemical Reactions Coupled to Charge Transfer Processes 223

ch(q,t cf(q,0)p;
ealg 1) = ———— (qn ) O e (q,, L
1+ Zlﬁm 1+ Zlﬂm
m= m=l 3.276)
cr(g,t ct(g,0)pi (
calqot) = —TLD gy = T @D
1+ B, 1+ B,
m=1 m=1

By introducing the new variables c% and c? (given by Egs. (3.274) and (3.275))
and the relationships given by Eq. (3.276) in Eqgs. (3.264)—(3.269), the diffusive-
kinetic differential equation system and boundary value problem simplifies to

aCT _ D/?fvz A
aat (3.277)
G
t=0, qgz2¢
t>0, g— o
C?(qvo) = C{}(OOJ) =
(3.278)
¢t (¢,0) = cf (00, 1) =0
t>0, g=¢°
c oc >
T T (3.279)
etf < N) q etf (an o
e (q®) = cB(g*) werm (3.280)

where c%(qs) and c% (¢°) are the total surface concentrations of species A and B (see
Egs. (3.274) and (3.275), respectively), @ is given by

1+zn:ﬁi

w=—"L (3.281)

L+ B
i=1

and D%y and DB are the effective diffusion coefficients of the pseudo-species A
and Br, respectively:
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Dy + ZDALiﬁi
i=1
Dy = ————— (3.282)
1+ 5
N /
Dg + Z Dgy,p;
i=1

DB = (3.283)

1+Zn:ﬂ}
i=1

In this particular situation where the concentration of all the species satisfies the
chemical equilibrium (Egs. (3.272)—(3.273)), D%B is simply equal to a mole
fraction weighted average [96]. Note that Eqgs. (3.278)—(3.280) are a set of initial
and boundary conditions formally identical to those of a simple reversible electron
transfer process for the pseudo-species c? and c® at electrodes of the different
geometries considered. By assuming that D;}f = Dgf = D, which does not mean
that the diffusivities of the free and complexed species are the same and it is
reasonable to have a great variety of experimental systems in conventional solvents
[4], it can be deduced that for any values of ¢ and ¢ it is fulfilled that [97]

(g, 0) +cf(g,0) =¢ (3.284)

The combination of Eqs. (3.280) and (3.284) at ¢ = ¢* turns the problem of two
variables ¢4 and c2 into two separate problems of only one variable with constant
limit and surface conditions

Och

o =PVier

[>0, — 00 *

(=0 Z>qs } B(gt) =c (3.285)
_ s Al s _M

1209(]_‘] CT(q)_l+we'7A/B

oc 2

i =DVier

1>0,g— 00

1=0,q9>¢ } a0 =0 25
_ B/ s\ _ C*

t>0,9g=4¢° CT(‘])*I_i_a)eﬂA/B

with 775,5 being given in Eq. (3.270).

The above differential equation problems (Egs. 3.285 and 3.286) are mathemat-
ically analogous to the problem corresponding to the application of a potential pulse
under limiting current conditions given that the boundary conditions are time
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independent. Therefore, the solutions of both problems are identical except for the
constant surface concentration values. So, the expression for the current for any
value of the applied potential in the different geometries considered can be written
in the following general form:

G
F1¢1\6D = (¢ = (@) fa(t a6) = 1 (@) fs(t. 46) (3.287)

where f5(¢, gg) is a function of time and the electrode geometry, given in Table 2.3
of Sect. 2.6 for the most commonly used electrodes, and Ag is the electrode area.
Equation (3.287) can also be written as

RT (I —1°

where E, is the half-wave potential of the process

1+ 8
i=1

/ RT
Eip=Efp + 5 n | —5— (3.289)
1+ Zﬂi
Py
and I}, is given by
D& .
I8 =FAg —tffc (3.290)
’ T

From Eqgs. (3.287) and (3.290), it can be inferred that, when total equilibrium
conditions are considered for the precedent and subsequent chemical reactions to
the charge transfer reaction, the shape and height of the voltammetric curve are not
affected although the half-wave potential shifts toward more cathodic or anodic

potentials depending on the term (1 + Z ﬂ;) / (1 + Zﬂ,) .
i=1 i=1
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Chapter 4
Double Pulse Voltammetries
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4.1 Introduction

Double Potential Pulse Electrochemical Techniques combine the faradaic currents
at two successive potential pulses recovering then the initial equilibrium conditions
(in the case of a DME the two successive potentials are applied to the same drop).
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They are applicable to electrodes of any shape and size and are extensively
employed in electroanalysis due to their high sensitivity, good definition of signals,
and minimization of double layer and background currents. In these techniques,
both the theoretical treatments and the interpretation of the experimental results are
easier than those corresponding to the multipulse techniques treated in the follow-
ing chapters. Four double potential pulse techniques are analyzed in this chapter:
Double Pulse Chronoamperometry (DPC), Reverse Pulse Voltammetry (RPV),
Differential Double Pulse Voltammetry (DDPV), and a variant of this called
Additive Differential Double Pulse Voltammetry (ADDPV). A brief introduction
to two triple pulse techniques (Reverse Differential Pulse Voltammetry, RDPV, and
Double Differential Triple Pulse Voltammetry, DDTPV) is also given in Sect. 4.6.

The general features of the potential waveform applied and of the output currents
of these double pulse techniques are shown.

Double Potential Chronoamperometry

Among double pulse techniques, the simplest case is recording the current—time
curves obtained when the two successive potential pulses are applied. Usually, the
first is set at values corresponding to limiting current conditions for the reactant,

E < Ef} for a time 0 < #; < 7; and the second to limiting current conditions for

the electrogenerated product, E,; > Ec9 , for a time 0 <t <1, as shown in
Scheme 4.1.

Reverse Pulse Voltammetry
In this voltammetric technique, introduced by Oldham and Parry by using the DME
[1], the product species of an electrochemical reaction is electrogenerated under

diffusion-limited conditions by applying a first potential E; < Ece/ in the first
period 0 <t < 71, and the value of the second one, E,, varying toward anodic
potentials during the second period0 < t, < 7,. The current is sampled at the end of
the second pulse, /5(z,), and plotted versus E, values (Scheme 4.2).

Differential Double Pulse Voltammetry

This technique is based on the derivative of the NPV curve introduced by Barker
and Gardner [2]. In DDPV, two consecutive potentials £, and E, are applied during
times 0 < #; < 7pand 0 < £, < 1, respectively, with the length of the second pulse
being much shorter than the first (1 /7, =2 50 — 100). The difference AE = E, — E;
is kept constant during the experiment and the difference Alpppy =1, — I is
plotted versus E; or versus an average potential E;, = (E; + E»)/2. When the
two pulses are of similar duration, the technique is known as Differential Normal
Double Pulse Voltammetry (DNDPV) (Scheme 4.3).

Additive Differential Double Pulse Voltammetry

This double pulse technique is a modification of the DDPV one based on obtaining
two differential signals corresponding to the same first potential, E; (see
Scheme 4.4) [3],
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Scheme 4.1 Double Pulse a)
Chronoamperometry. (a) -~ E
Potential-time program; (b) ~ !
DPC response ;
4
S
g AE
o
a
EZ
Iy
7 7,
Time

T

Time

AIIC)DPV :Izc(Ezc) _II(EI) (4~1)
AISDPV ZIS(ES) *II(EI) (4-2)

with |AE| = —(E5 — Ey) = E3 — Ey, being AE <0 in Eq. (4.1) and AE >0 in
Eq. (4.2). The additive response is obtained by adding both differential signals AI°
and A/?, such that

Iapppy = Alpppy + Alpppy = 1; =21 + 13 (4.3)

and I opppy is plotted versus E;. In this technique, the length of the second pulse is
much shorter than the first one. The recorded ADDPV signal is shown in
Scheme 4.4.

It is necessary to mention that there is no universal and unambiguous nomen-
clature for the different differential pulse techniques, something which can lead
to inaccurate analyses and misinterpretations. The DDPV technique is usually
called “Differential Pulse Voltammetry” (DPV) referring to the double pulse
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Scheme 4.2 Reverse Pulse 2" pulse
Voltammetry. (a) Potential— (A) c 0—t —= scan
time program; (b) RPV I .
[1]
response. Irpy req and £ « }
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/ \
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ime 1 2
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Time
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Cros
B
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E;

program [4-9], although some authors and most of the commercial software
available in Electrochemistry use the term DPV for the multipulse variant [10—
15] where the equilibrium is fully regained only at the end of the experiment (see
Sect. 5.1). The origin of this confusion may be that most of these electrochemical
methods were designed for the dropping mercury electrode (DME) where the
renewal of the equilibrium conditions is easily achieved once the drop releases,
meaning that each drop can be treated as a new experiment. However, the recovery
of equilibrium conditions at stationary electrodes can be time-consuming, espe-
cially in the case of macroelectrodes. For these reasons and in order to distinguish
clearly between double and multipulse mode, in this book the term “Differential
Double Pulse Voltammetry” (DDPV) will be employed for the double pulse
technique and the term “Differential Multipulse Voltammetry” (DMPV) for the
multipulse one which will be analyzed in the chapter (see also Sect. 7.2.2), in order
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Scheme 4.3 Differential a)

Double Pulse Voltammetry: — scan
(a) Potential-time program; L _— 8
(b) DDPV response. IE3%

Epeax, and Wy, denote the Recovery of initial —e 8
peak parameters of the equilibrium conditions [~
DDPV signal, peak current,
peak potential, and half-
peak width, respectively

Potential

b)

Al DDPV

that these two modes can be clearly distinguished. Note that, although DDPV and
DMPV can lead to similar responses in the case of reversible electrode processes
because the length of the first pulse, #;, is much longer than the second one, #,. This
does not occur in the case of nonreversible electrode processes, since re-establish-
ment of the equilibrium is not generally possible during #; in the multipulse mode.

4.2 Reversible Electrochemical Reactions

In this section only very fast charge transfer reactions will be considered in order to
analyze their response in the different double pulse techniques considered in Sect. 4.1.
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Scheme 4.4 Additive (A)
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4.2.1 Application of a Double Potential Pulse to Electrodes
and Microelectrodes of Any Geometry

Let us consider the fast electrode reaction
O+e 2R (4.1)

and application of two successive potentials £ and E, to an electrode of any
geometry for the periods 0 <# < 7; and 0 <1, < 75, respectively, when both
electroactive species are initially present and the condition Dg = Dg = D holds.
The current obtained when the first potential step E; is applied is given by
Eq. (2.156) of Sect. 2.6.

If at a time ¢ = 7; the potential is stepped to a value E, over an interval
0 <1, <1y, with the total time of the experiment being ¢ = 7; + f,, the mass
transport of species O and R is described by the differential equations
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acg)

Zfo _ pv2® 4.4

ot €o (4.4)
)

Oex” _ DV (4.5)
al‘z

with V2 being the Laplace operator given in Table 2.2 of Sect. 2.6, and cg ) and c](f)

the solutions of Eqs. (4.4) and (4.5). The boundary value problem is given by

th>0,qg— 0 2 1 2 1

EIOITT) = =d (6)
th >0, qg=4¢",
cg‘s) + cg‘s) = cg + c; 4.7)
cg’s) =eP cl(f’s) (4.8)
with
F /
— (B, - Ee) 4.9
= o=(E2 — E (4.9)
(2,5) (2,3)

¢y’ and ¢y are the surface concentrations of species O and R corresponding to
the application of potential £, and cg and cy the initial concentrations of these
species. g refers to spatial coordinates (7 in the case of spheres and cylinders, x and

y in the case of bands, and r and z in the case of discs), ¢° to the value of g at the

electrode surface, and cg ) and cg ) are the solutions corresponding to the application

of the first potential £;. Note that condition (4.7) is a consequence of the flux
conservation at the electrode surface when equidiffusivity is assumed for both O
and R species [16].

Since the operators of Fick’s second law are linear, the expressions for the

. 2 2 .
concentrations cg> and c1§> can be written as

q,1) = §g,0) +¢P (g, 12) (4.10)
a,1) = g, + T (. 12) (4.11)

where Eg ) (¢,t,) and 'El(f ) (g, t2) are unknown functions to be determined.

It should be noted that for any value of ¢ (with 0 <7 < (71 + 1)), cg ) and cl(; )

fulfill the equations:
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i 2 .
o =DV-<¢ i=0,R (4.12)
t>0,qg— o0 1) . 1 *
(=0, q>q } ¢ =con i = (4.13)
t>0,qg=¢,
SV eV =+ o (4.14)
cg’s) :e”lcl(;’s) (4.15)
with
F !
-~ (E —E9> 4.16
g RT( 1R (4.16)

(Ls)

and, from Eqs. (4.14) and (4.15), the surface concentrations ) and ¢y’ can be

directly deduced (see also Egs. (2.152) and (2.153) in Sect. 2.6),

(L) _ e s
" =Tren (co +cR) (4.17)
(s _ Cotcr
& =T (4.18)

By inserting Egs. (4.10)—(4.11) into Egs. (4.4)—(4.8) and taking into account
Egs. (4.12)—(4.18), it is possible to express the boundary value problem in this

second pulse only in terms of the new unknowns Eg ) (¢,1,) and Eff ) (¢,12),

oc? 2
atl :DVZE]-() i =0 R (4.19)
2
20,g—-00| ~0)_ 0
ti:O,q>qS } 5 = =0 (4.20)
n>0,q9=q,
~28) _ mn2s) €M P
o =ehey” T ren (o + cr) (4.22)

By comparing Egs. (4.13)—(4.15) and (4.20)—(4.22), it is clear that this second
problem is quite similar to that solved when the first potential pulse is applied but
with null initial conditions. At the electrode surface Eg %) and 'Eff ’S), take the

following constant values:
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~(2,5) el — el

‘o = (T4+em)(1+emn) (co +x) (4.23)
~(2.5) _ el — ez * s
RO T 0t en)(1ten) (co +cx) (4.24)

By inserting Eqgs. (4.23) and (4.24) in Egs. (4.10)—(4.11), and taking into account
Egs. (4.17) and (4.18), the surface concentrations corresponding to this second
potential pulse are obtained

28 1, ~(2,s # *
G =T = (o) (4.25)
C&Z,s) = C](;’S) + E&Z,s) = 76.0 R (426)

being cg ) and cl(f ) only dependent of potential E,, as expected (see Eqgs. (4.7) and

(4.8)).

After demonstrating the similarity between the boundary value problem of the
first and second potential pulses, the current corresponding to the second potential
pulse at an electrode of any geometry can be written as (see Eq. (4.10))

1§ <acg>) (acg>) <85(2)) G G
- - + (32 ) =1F(m+0n)+17(n) =
FAGD ~ \ %) . Gax ) s oa ) (4.27)

= (Cr) - CS’S))fG(Tl + 0, qg) — EVg’s)fc;(lz, qc)

with f given in Table 2.3 of Sect. 2.6 for several electrode geometries. By taking
into account that (see Eqgs. (2.156) and (2.157) of Sect. 2.6),

18(t1 + 1) R (cr/co)
FAc,ch 1+em

folt1 + 12, qg) (4.28)

and inserting the expressions of cg *) and Eg ) given by Egs. (4.17) and (4.23), into
Eq. (4.27)
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7 _1=e(ew/co)
- — t s
FAGDCB 14+en fG(Tl +n qG)
+ (1 + (er/co)) (1 Tt 1 Jre,ﬁ)fs(fz’ 4G) (4.29)

is finally obtained

It is worth recalling that, as was indicated in Sect. 2.6, in the cases of
non-uniformly accessible electrodes (discs and bands), the current is an average
quantity resulting from an average flux over the electrode surface (see for example
[17-19]).

4.2.1.1 Planar Electrodes

Equation (4.29) is applicable when both species are initially present in the solution
independently of the geometry and size of the working electrode. In the case of
planar electrodes

plane 1 1 1 1 1
FASDCO 14 emn ﬂD(Tl + l‘2) 1+emn 14emn \/ﬂth

is obtained

It is also possible to deduce the expression of /5™ for the case of different

P . . . 1, 1,
diffusion coefficients, since the surface concentrations cg ¥ and c§ ¥ are also con-

stant at macroelectrodes when Do # Dy (see Eq. (2.20)). Under these conditions
the current is given by [20, 21]:

N o B AT
FACZ)D()W T+t 1+yen

1 1 "
+ - 1+-R (4.31)
14yen 1+ yen 7Co
with
Do
= /=2 432
7 =\px (4.32)

4.2.1.2 Spherical Electrodes

For spherical electrodes, given that (see Table 2.3 of Sect. 2.6),
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1 1
—+
rs  /zDt

by inserting Eq. (4.33) into Eq. (4.29) for the most usual case in which only species
O is initially present (i.e., ci; =0),

fs(t? rS) =

(4.33)

1;Phe:<1> 1 +<1_1>1+(1)l:
FA,Dc}, L+en )\ /zD(z, + 1) 1+e= 1+en ) \/zDt, 1+4em ) rg
[é)lane [;nicrosphe
FADc;,  FAsDc;,

(4.34)

is obtained
with r, and A, being the radius and area of the spherical electrode, 15" is given by

Eq. (4.30), and
Imicrosphe 1 1
- BE——_ — (4.35)
FADcg 1+em)rg

The case of different diffusion coefficients of the electroactive species has been
also considered for spherical electrodes, with the current corresponding to the
second potential being much more complex (see Eq. (F.43) in Appendix F and
reference [20]).

4.2.2 Double Pulse Chronoamperometry
and Chronocoulommetry

This section considers that the first potential pulse is set at values corresponding to
diffusion-controlled cathodic limiting current conditions for the reactant

(E | <K Ecel , 0 <t <11) and the second to diffusion-controlled anodic limiting

current conditions for the electrogenerated product (E, > E?/ , 0<n <1), see
Scheme 4.1. The use of these diffusion-controlled limiting currents, for which no
kinetic influence is present, is very useful in the determination of diffusion coefficients
of both oxidized and reduced species.

By making e” — 0 ande™ — oo in Eq. (4.29), one obtains (see also Eq. (2.158)
of Sect. 2.6),
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I3,
= t, , 0<n < 4.36
FAGDC, fa(t1, g6) 1< (4.36)
[(?2 * #
= fo(r1 + 12, qg) — (1 + (er/co)) fo(t2: 46)s 0<n <7 (437
FAGDC,

with f5(¢, gg) given in Table 2.3 of Sect. 2.6.

In the case of unequal diffusion coefficients, when spherical electrodes are
considered, the currents of the first and second potential pulses under the above
conditions are (see also Eq. (2.147) of Sect. 2.5.2 and Appendix F),

i ! + ! 0<n < (4.38)
. * — >~ t >~ .
FADocy,  vaDoti | 14 L=

e L, 1 1
FASDOCE B Ts \/ﬂDo(Tl + 1) VrDot

[1+C—’*§<](liéz)—

YCo

_ 1 _ S B 439
(Y:Fl)m{(fzil)[l H(E)] +22G() — 1)+ (4.39)

+%S(ﬂ, 51)} 0<tn<n

with

2 DR(Tl + [2)

Si=—"7"—" (4.40)
52 = @ (4-41)
15}
B= 0 (4.42)
G(p) = p arcsin(p) + /1 — p* (4.43)
H(&) = exp( (&) /4) erfe(,/2) (4.44)

N (G SR COVEar ) | (P R ))
S, &) = Z = (4.45)

! 1) (+1)@j+02G+ )] m
J= =1
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2r(1 +)
b= T 121) (446)
In Eq. (4.39), the upper sign refers to solution soluble product and the lower one
to amalgam formation. When species R is amalgamated inside the electrode, the
applicability of this analytical equation is limited by Koutecky approximation,
which considers semi-infinite diffusion inside the electrode, neglecting its finite
size and simplifying the calculations. Due to the limitations of this approximation,
the analytical and numerical results coincide only for &, <1 with a relative
difference < 1.7% [20]. For higher values of £;, a numerical solution obtained
with the condition (Ocgr/0r),_, = 0 should be used.
Equations (4.38) and (4.39) are greatly simplified for the case of spherical

ultramicroelectrodes. By making r, < v/ZDof in the expressions of I and I5°
is deduced

L+

I microsphe

1
Ll 0<y <1 (4.47)
FADocy 75
Imicrosphe 1 *
42~ _ R g<p<n (4.48)
FADoc rsy*Co

with y given by Eq. (4.32).

Note that under steady-state conditions the second response will only exist if the
reduced species is initially present (c # 0).

For planar electrodes, by making E; — Ece/ — —ooin Eq. (2.34) of Sect. 2.2.2.2
and E, — E® — oo in Eq. (4.31) it is deduced

]g,l?ne 1 0<t < (4 49)
- = S ST .
FADocy,  vaDoh b=
Iplane 1 1 JF
2 _ - [1 +‘—E} 0<n<n (4.50)
FADoco  \/zDo(t1 + 1) VaDoh Yo

Equation (4.50) for the particular case of equal diffusion coefficients and c; =0
was deduced by Kambara [22] by applying the Superposition Principle.

The use of double potential pulse chronoamperometry is of great interest in
electrochemistry for an accurate determination of both diffusion coefficients Dg
and Dg, and this interest is enhanced when this technique is applied to small size
spherical electrodes like the SMDE or gold microhemispheres or microspheres.
There is a great number of redox couples for which highly unequal diffusion
coefficients appear such as room temperature ionic liquids [23], ferrocene/
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Fig. 4.1 Current density—time curves when both species are soluble in the electrolytic solution
and only species O is initially present. Three electrode sizes are considered: planar electrode (solid
lines), spherical electrode with ry = 1073 cm (dotted lines), and spherical ultramicroelectrode
with ¢ = 107> cm (dashed lines), and three y values: y = 0.5 (green curves), y = 1.0 (black
curves), and y = 2.0 (red curves). The applied potential sequences are E; —ECe — —00,
E; — E? — +00. 11 =173=15, cg =1 mM, c:; =0, Do = 107 cm? s~!. Taken from [20]
with permission

ferrocinium (y = 0.89 in acetonitrile [24]), p-benzoquinone and its cation radical (
y = 0.84 in acetonitrile [24]), ferrocyanide/ferricyanide (y = 1.08 in aqueous
solution [24, 25]), aromatic compounds with their corresponding cation radicals
(y = 0.71 — 0.93 in different organic solvents [26, 27]), or redox systems incor-
porated into polymeric matrices [28].

In order to establish the most appropriate conditions for the determination of the
diffusion coefficients of both electroactive species by using Egs. (4.38) and (4.39),
it has been reported that when the reaction product is absent (i.e., c; = 0) neither
planar electrodes nor ultramicroelectrodes can be used in DPC for determining
diffusion coefficients (see Eqs. (4.48) and (4.50)) because in these situations the
anodic limiting current is either independent of Dy or null, respectively.

To check this, in Fig. 4.1 the influence of the electrode size on current density—time
curves is shown for different y values when both species are soluble in the electrolytic
solution, with only species O initially present. As can be observed, the electrode radius
has a great influence on the current density corresponding to the first potential pulse,
increasing its value when the electrode size decreases as is well known.

It is interesting to highlight the case in which Do = Dr = D (i.e., y = 1) since,
surprisingly, in this situation the current density corresponding to the second
potential pulse remains unaltered when the electrode radius varies from ry — oo
(planar electrode) up to rg — 0 (ultramicroelectrodes). This can be easily
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demonstrated from the analytical results, since from Eq. (4.39) it is deduced that the
current density corresponding to the second pulse for any r, value is given by

Ij?gegszl):chn\t/zBK\/E_Q_(C;/cg)(lp/’?g)} (4.51)

Thus, second pulse current density becomes independent of electrode radius when
the reaction product is not initially present (cg = 0):

IR (y=1) FeyvD 3
- 1 (4.52)
Ag V2% 71+ 1

When Do # Dr (y # 1) the current density corresponding to the second
potential pulse is much less affected by the electrode size than that corresponding
to the first potential. Regarding the y influence, it is observed that current density—
time curves corresponding to the first potential pulse are independent of Dy value,
since cathodic limiting conditions are imposed. In contrast, y value has a mean-
ingful effect on the curves corresponding to the second potential pulse at spherical
electrodes, so that the greater the Dy value the lower current density. This effect is
more noticeable when the electrode radius decreases. However, a practical limit

appears as a consequence of the decrease of the ratio II,I/IF)* at small electrodes,

which makes it difficult to determine a small current density (1;1‘);6/145) after a big

current density (Iffile/As) in the same experiment. By studying the behavior of the

ratio II;p;el/IZf’i'e, it is concluded that values of v/Dot; /r in the range 0.5 < /Dot

/rs < 1.25 are optimum for this purpose since the ratio IIZ?;eI/IZ?i'e is adequate, and

I;p;‘e is sensitive to Dg; for example, for Do =10~ cm®s™! and #; =1 s the
optimum electrode radius is 25—-65 pm. At planar electrodes the second potential
current density—time curve is not sensitive to species R diffusion coefficient under

these conditions (c;ke = 0), as can be deduced from Eq. (4.50):

1;’}3“6(7 #1) _ Fcov/Do h | (4.53)
A Tty T+ 16 '

which coincides with the current density at a spherical electrode when both
diffusion coefficients are equal (see Fig. 4.1).

So, it can be concluded that, when reaction product is not initially present, DPC
of limiting currents can only be used for determining both diffusion coefficients
when spherical electrodes are used. The use of planar electrodes or ultramicroe-
lectrodes for calculating Dy needs species R to be initially present.

The current—time curve corresponding to the application of the second potential
is very sensitive to the presence of assimilation or amalgamation processes at
spherical electrodes. In order to check this in Fig. 4.2, it can be seen the
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Fig. 4.2 Experimental chronoamperometric curves of the second pulse for different E,
values corresponding to the re-oxidation of TI(Hg) on a hemispherical mercury electrode with:
(@) r¢ =50 pm; 7; =300 ms; (b) ry =25 pm; 7; = 800 ms; 0.2 mM TINO;, 0.1M KNOs.
Reproduced with permission of reference [29]

chronoamperometric curves corresponding to the second potential pulse for differ-
ent E, values for the reduction of TI" at hemispherical mercury electrodes of two
different sizes (ry = 50 pm, Fig. 4.2a, and ry = 25 pm, Fig. 4.2b). As shown in
Fig. 4.2a, when the electrode size increases the “usual” behavior of the current—
potential curves is observed, so the less positive the E, value, the smaller the
oxidation current at any time. In contrast, for the smaller radius (Fig. 4.2b), the
decrease of the current under anodic limiting conditions is very fast as a conse-
quence of the depletion of the reduced species during the release/re-oxidation step.
Unlike what happens with medium-sized electrodes, this gives rise to the crossing
of the chronoamperometric curves at a given time (crossing time) and after this time
the limiting current is smaller than that corresponding to a less anodic potential.
This behavior occurs because at the less positive potential the depletion of species R
is slower and so is the decay of the current with time [29].

Although present study has so far the been focused on current—potential curves,
there are some experimental situations in which it is of interest to analyze the charge—
potential ones. Chronocoulograms can be obtained from the integration of the
corresponding chronoamperograms. Under limiting condition like those discussed in
this section, the expressions of the charge-time curves corresponding to the application
of the first and second potential pulses when the diffusion coefficients of species O and
R are assumed equals and cg = 0 are given by (see Eqs. (4.36) and (4.37)):

o
FiAG’ch =integral f, ; 0<# <7 (4.54)
03 , .
FiAG(;)ch) = |integral f(n+tz),G — integral f,Z’G} 0<t,<m (4_55>

with
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1
integral f;, g :J fo(u, qg)du
0
71+

integral f(;.r) g = J fo(u, qg)du (4.56)

0
5]

integral f, g = J fo(u, qg)du
0

and fg(#, gg) given in Table 2.3 of Sect. 2.6.
For a planar electrode it is fulfilled that for a given value of ¢ (see [30]),

2y

integral f; pjane = 7D (4.57)
TT.
and Eqgs. (4.54) and (4.55) can be written as
; « 24/t
pe = FAD ¢ Vi (4.58)

0 /D
VRN (4.59)

v 2
Qplane — FADc 2
d,2 O\/E[

In the case of spherical electrodes for a given value of ¢,

2/t t
2Vt

integral f; gope = 4.60
g hsph \/75 I's ( )
and, therefore, the charge—time response can be written as,
# 2\/?1- h
O — FA.Dc < +-L 4.61
d, 1 (0] \/ﬂ_D r ( )

2 T
e _ FADCE |——— (V71 + o — V) + — 4.62
Qd,z sDCq |:\/E( 71+ 1 \/;) + e ( )

The time variation of the normalized converted charges for planar, spherical, and
disc electrodes can be seen in Fig. 4.3, for which a radius of 10 pm has been
assumed for the spherical and disc electrodes. QTC;’ is the maximum converted charge
for the first potential pulse corresponding to a time #; = 7, and is given by

06
——— = integral f, ¢ (4.63)
FAcDC :

7

with integral f, ;= J fa(u, q)du.
0
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Fig. 4.3 Normalized charge—time curves for a double potential step with £; < Ebe, 0<#<1)

and E; > Ef’, (1 <t < (71 + 12)), calculated from Egs. (4.54) and (4.55) for planar (solid lines),
spherical (dashed lines), and disc (dashed-dotted lines) electrodes. Q, is given by Eq. (4.63). In the
inner figure, the potential perturbation has been plotted with £ being the resting potential of null
current previous to the application of £y and £, = Ejey. D = 0% em? s\,ry=m=1s

It is clear from Fig. 4.3 that the temporal evolution of the converted charge is
electrode-size and shape depending. For spherical and disc electrodes, the evolution
of (QS / Qg) is quasi-linear (since for this radius ijr ¢ o Qé‘f?c ~ 1y /11; see

Eq. (4.61) and Table 2.3 of Sect. 2.6), whereas for the second potential pulse the
amount of converted charge is much smaller than that obtained at a planar electrode
(macroelectrode). Indeed, when the electrode radius becomes small enough the
converted charge for the second potential pulse is constant and coincides with Qg
(for example, from Eq. (4.62) in the limit r; < /7Dt the expression Q;f’;e ~F
Aschrl /rs is obtained). This result is in line with those plotted in Fig. 4.1 for the

current—time curves.
Note that, in agreement with Eq. (4.55) and due to its cumulative character, the

charge corresponding to the second potential pulse tends to QS when 1, — 0.
Therefore, the reverse charge due solely to the second potential, Qer, is given as,

G _ NG G
Qr,2 - er - Qd,2

= FAgDc,, [integral f, g —integral f(; ) ; +integral f, g (4.64)

Equations (4.54) and (4.55) only consider the “faradaic” charge, that is, only the
converted charge due to the redox conversion of species O and R. The total
converted charge should contain also a contribution due to the double layer
charging process (Q.) and, if there is adsorption of redox species, an addend
which accounts the charge due to the reduction of these immobilized molecules
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(Q, = FAI't, with 't being the total excess of redox species). In absence of
adsorption of reactants, and assuming that the second potential pulse returns to
the initial resting value E ., (see Fig. 4.3), Eqgs. (4.54) and (4.64) can be written as

Q(fl = FAgDcé integral f, 5+ O
Qr(,}2 = FAgDcg [integral fz, g — integral f(; ) o + integral f,z,G} + 0.

(4.65)

in such a way that the plot of le versus integral f, 5 and of sz Versus
integral f; g — integral f( ) s + integral f,Z,G} should be linear with the

intercept of both lines being equal to Q. in agreement with the potential perturba-
tion applied. Note also that when adsorption of redox species takes place the
intercept reflects the value of the adsorbed charge Q, (for a detailed discussion of
the different possibilities, see [31]).

The charge is a valuable magnitude for identifying the presence of homogeneous
chemical reactions or, in general, deviations from a pure faradaic behavior. Thus, in
absence of adsorption of redox species, the normalized charge-time curves can be
written as

G .
QG’n _ Qd’1 _ integral f,l’G
Q8 integral f, g

. (4.66)
QG,n o QSZ o . lntegral f(T]+fz),G ln'[egl‘al ft2,G
n2o QS B integral f;, g integral f; ¢

The ratios given in Eq. (4.66) are only dependent on the electrode shape and size
but not on parameters related to the electrode reaction, like the number of trans-
ferred electrons, the initial concentration of oxidized species, or the diffusion

. . . G G ..
coefficient D. For fixed time and size, the values of Q " or Q.3" are characteristic

for a simple charge transfer (see Fig. 4.4 for the plot of QSﬁ" calculated at time
(r1 4 72) for planar, spherical, and disc electrodes) and, as a consequence, devia-
tions from this value are indicative of the presence of lateral processes (chemical
instabilities, adsorption, non-idealities, etc.) [4, 32]. Additionally, for nonplanar
electrodes, these values allow to the estimation of the electrode radius when simple
electrode processes are considered.

4.2.3 Reverse Pulse Voltammetry

As stated in Sect. 4.1, in RPV a series of double potential pulses are applied where
the product is generated always in the first one under diffusion-controlled conditions
whereas the second potential pulse is set at different values (E,) and the current is
recorded at the end of this second pulse (1(23 , measured at £, = 7,) (see Scheme 4.2).
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Fig. 4.4 Normalized net charge, corresponding to the second potential pulse applied, calculated
from Eq. (4.66) for a time ¢ = (71 + 7») for planar (dotted line), spherical (solid line), and disc
(dashed line) electrodes as a function of the electrode radius rg (with rg = ry for a spherical
electrode and rg = rq for a disc one).Qfl' is given by Eq. (4.63).D = 0% em? s\,ey=m=1s

Thus, apart from information about the mass transport and reactivity of the product
(analogously to DPC), the thermodynamics and kinetics of the electron transfer can
be studied from the position and shape of the RPV curve: IS versus E,.

The expression for the current in this technique, valid for any electrode geometry
when the diffusion coefficients of species O and R are assumed as equal, can be
obtained from Eq. (4.29) by making e”" — 0 and assuming cy = 0 for the sake of
simplicity,

el

Igpy
= fg(r1 + 72, 9g) “1ron

— = f 4.67
FAgDcB G(727QG) ( )

Equation (4.67) takes the following expressions for disc, spherical, and planar
electrodes:

) Idisc ez
Idlsc =RV __ ﬂDTz(fd T + 72,74 ——fd 72,74 ) 4.68
s = g = VA )~ TrafEr))  46)

sphe Ililg? :\/ﬂD72+\/ 7 e <\/7rD12

T+t l+en

+ 1) (4.69)

RPV,N ™ , plane
Id,l (7,'2) I's I
plane n
plane IRPV _ ¢ ’ (4 70)
RPV,N ™ plane - 1 7 '
137" (1) 71+ 72 +e

with 7, given in Eq. (4.9) and f; being a function of time and of the disc radius r4 given
in Table 2.3 of Sect. 2.6 and Iglflme(rz) given by Eq. (4.49) with #; = 7, and Do = D.
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From Eq. (4.67), it is possible to obtain an expression for the cross potential (null
current potential) of the RPV curve valid for any electrode geometry

' RT
Ecross:Ece +—ln(f (
G

fo(r1 +72,46)
F G g > (4.71)

72,4g) — fo(71 + 72, 96)

From Egs. (4.68)—(4.70), it is clear that the anodic normalized limiting currents
(corresponding to €"> — oo) obtained for planar and spherical electrodes have an
identical expression, and are only dependent on the ratio between the time lengths
of the first and second potential pulse, 7; and 75,

n / ! T
BN (B> 8 ) = N i (B2 > £ ) = [ -1 (4.72)

In the case of disc electrodes, the anodic normalized limiting current depends on the
disc radius through the function fy, which is independent of the potential (see Table 2.3
of Sect. 2.6). Therefore, the inflection point of the / SPV — E5 curve of the RPV curve
(mid-wave potential, E,,;qrpv) coincides with the half wave potential, which can be
obtained from Eq. (4.67) independently of the electrode geometry and is given by,

Enmiarev = Ej ), = E® (4.73)

In Fig. 4.5 it can be seen the influence of 7, on the normalized RPV curves
calculated from planar, spherical, and disc electrodes from Eqgs. (4.67) and (4.36).
From these curves, it can be observed that the decrease of 7, causes an increase of
the anodic limiting current (with this increase being more noticeable in the case of
planar electrodes), whereas it has no effect on the half-wave potential of the
responses (marked as a vertical dotted line).

When the diffusion coefficients of both electroactive species are assumed as
different, a general solution for the RPV response at any electrode geometry has not
been found. In the case of spherical electrodes, the response is rather complex and it
can be found in reference [33] (see also Eq. (F.42) in Appendix F). From this
solution, the particular cases of planar and spherical ultramicroelectrodes can be
directly obtained,

el
Iplane _ N 474
RPV,N Tt 1+ pen ( )
) N Imicrosphe 1
IRpvN - = e T (4.75)
I L4ypren

with

. 1
I = FADoco (4.76)
S
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Fig. 4.5 Influence of 7, on a
the normalized RPV curves
calculated from planar (a),

spherical (b) and disc (c)

electrodes from Eqs. (4.67)

and (4.36). &
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The effect of the electrode radius and of Di on the RPV curves can be seen in
Fig. 4.6. It is observed that an increase of Dy gives rise to a shift of the RPV curve
toward more positive potentials regardless of the electrode size. Nevertheless, the
influence of Dy on the anodic limiting current depends on the electrode size. Thus,
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Fig. 4.6 Normalized RPV a
curves when only species O [ - —
is initially present for three Iy / I8h° Y v

electrode sizes: planar
electrode (a), spherical
electrode with

r¢ =3 %1073 cm (b), and
ultramicroelectrode with

re < 107% cm(c) calculated
from Eq. (F.43) of
Appendix F. IJ7* = FA,Do
66(1/ \/ﬂ'Do(Tl + Tz) + 1/
rs) (see Eq. (4.36)). Five y
values are considered: y? =
1/10 (long dashed line), y*
= 1/3 (dash-dotted line), y*
= 1 (solid line), y*> = 3
(dotted line), and y*> = 10
(dashed line). 1 = 1 s,

7 =0.05 s,c5 =1 mM,
c; =0,Do=10" cm? s~ .
Reproduced with 0 -4
permission of [33]
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this influence is null for planar electrodes (Fig. 4.6a), meaningful at microelectrodes
(ry ~3 x 107 cm) and again negligible at spherical ultramicroelectrodes. These
conclusions can be extended for other microelectrode geometries (Fig 4.6b, ¢). Under
the conditions considered in the figure, which are typical of aqueous solutions
Do = 107 em?s ', =1 s), electrode radii between 25 and 65 pm are optimum
for the determination of Dy from the anodic limiting current values [20] (besides,
the ratio between the limiting currents may offer better tolerance to possible
uncertainties in the values of the bulk concentration and/or the electrode radius).
Therefore, in conventional solvents ordinary microelectrodes are very appropriate for
the measurement of both diffusion coefficients of the redox couple in the same
experiment with RPV. In other media like, for example, ionic liquids, the diffusion
coefficients of the electroactive species are significantly smaller (Dg ~ 1077 cm? s~
[23, 33, 34]) so ultramicroelectrodes must be used to have a good sensitivity. The
decrease of the anodic limiting current when the diffusion coefficient of the reduced
species increases is due to the greater diffusion of species R toward the bulk solution.

4.2.4 Differential Double Pulse Voltammetry

In the differential double pulse techniques, the current response is the difference
AICS =I$ —I{ obtained when two consecutive potentials £; and E, are applied
(with the difference AE = E, — E; called pulse amplitude being constant during
each experiment; see Scheme 4.3). The theoretical expressions for the AIS — E,
curve of reversible processes under planar diffusion were given by Parry and
Osteryoung [35] and Ruzic and Sluyter-Rehbach [36].

The subtractive nature of signal and the rapid decay of the charging current in a
constant potential pulse give rise to well-defined peak-shaped curves that can be
characterized through the peak current (AI°P**), the peak potential (Effeak), and
the half peak width, W', Differential double pulse techniques emulate the first
derivative of the NPV curve and the signal coincides with it for small values of AE
(i.e., for AE < RT/F) [37]. Thus, by subtracting the expressions of 1(13 and Ig
measured at the end of their respective potential pulses given by Egs. (4.28) and
(4.29), respectively, valid for any electrode geometry when the diffusion coeffi-
cients of species O and R are assumed as equal (with c; = 0), we get

. 1
A]G = [§<Tl +72) —[1G<‘L'1) = FAC,DCO (mfG(Tl +‘L'2,qG)+

+(11 - )me,qG)—#fG(wG))

+en 1+4en 1+en

(4.77)
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In DDPV, the duration of the second pulse is much shorter than the first one
71/72 = 50 — 100 such that it can be assumed that f (71 + 72,9¢) = fs(71,96)
and, therefore, Eq. (4.77) simplifies to

1 1

G _ ¥ J—
AIS,py = FAGDC), ( e Tie

)fG<rz7qG>. (4.78)

The applicability of Eq. (4.78) is dependent on the ratio 71/7,, and on the
electrode size. So, the radius range of validity of this expression broadens when
the ratio 7,/7, increases.

Equation (4.78) takes the following expressions for disc, spherical, and planar
electrodes,

, [;”1 (12) 1+en 1+en
N AL 1 1 VaD
AISDRV N = e~ = l+en 1+emn 1 (4.80)
Id,l (1-2) + e +e€ I's
AIplane 1 1
plane _ DDPV  __ —
AIDDpv,N - [éal?ne(rz) - (1 +en 14 em) (4.81)

with 7, and #n; given by Egs. (4.9) and (4.16), respectively, (1) given by
Eq. (4.49) with t; = 7, and Do = D. Note that Eq. (4.80) for spherical electrodes
is generally applicable for 7| /7, > 50 with an error lower than 0.2 % in the region
around DDPV peak for any electrode size.

When different diffusion coefficients are considered, the expression for spherical
electrodes is given in Eq. (4) of reference [38]. From this equation, the particular
cases of planar and spherical ultramicroelectrodes can be directly obtained,

Al plane 1 1
Al plane DDPV < _ > 4.82
DDPV,N [ilzlme (72) r 1+ ye'n: 1 4 yem ( )

plane
1 d,1

Al microsphe 1 1
AImicrosphe _ DDPV — 2 _ (4 83)
DDPV,N Izplcqe,ss Y 1+ }/Ze'h 1+ yze’ﬁ .

sphe,ss

with y and /.~ given by Eqgs. (4.32) and (4.76), respectively.
In this section, we use the average of the two stepped potentials as potential axis

(4.84)
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instead of the usual E,-value." Note that this choice gives the advantage that the
peak potential coincides with the half-wave potential when both diffusion coeffi-
cients are equal, regardless of the electrode size and shape. Moreover, for a given
experimental system (electrode geometry, diffusion coefficients) the DDPV curves
corresponding to a negative pulse height (AE < 0, normal mode) and to a positive
one (AE > 0, reverse mode) are fully symmetrical with respect to the potential axis
for electrodes of any geometry and size (Egs. 4.78-4.83).

For the particular cases studied here, it is possible to deduce simple analytical
expressions for the values of peak potential and peak current. The peak potential
(ESP*) is obtained by equaling the derivative dAIS ,\/dE, , to zero. Next, by

substituting ESP* in the expression for AIS ., the peak current (AISPEY) is

immediately deduced.
In all the cases, the expression for the current separates into two factors, one

dependent on 7, and/or r, or r4, and another dependent on y (: /Do /DR) (in the

case of planar electrodes), £y and E,. As only the second factor varies “along”
DDPV scan, the peak potential is only a function of the parameters included in this
factor, and so is independent of time and electrode geometry.

— Peak parameters for any electrode geometry by assuming Do = Dgr = D:

ESp — g1, — EO (4.85)

F |AE|

AIST — FAGD cg, f6(72, g )tanh (ﬁ 2 ) (4.86)

Note that Eq. (4.85) is fulfilled for the AISyp, — E1.2 curve whereas for the

AIS;»y — E) one, the expression of the peak potential is £ P = Ece/ —|AE|/2
[38].

Under these conditions, the peak potential is independent of the electrode
geometry considered. For small values of the pulse amplitude (|AE| < RT/F)
the DDPV current coincides with the derivative of the Normal Pulse
Voltammetric curve at 7,, being in these conditions tanh(F|AE|/(4RT)) = F
|AE|/(4RT) and the peak current [37, 39],

AIG,peak !
DDPV .
(FIAE|/(RT)) = —FAgDc,fs(r 4.87
(F|AE|/(RT)) 4 4G ofa(72,96) (4.87)
|AE|<RT/F
' The expression (T +;1/e_>72 ~ Tqen +;ev, ) , which depends on E; and E, through 7 and 7, can be written as a

function of £, ; and AE, since exp(17;) = exp(1, 2)/exp(FAE/2RT) and exp(1,) = exp(; 2)exp(FAE/2RT).
Note that the peak current and the half peak width are not affected by this change.
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— Peak parameters for planar electrodes (Do # DR):
When the diffusion coefficients are different, the peak potential coincides with
the “reversible” half-wave potential (E],), whose value depends on

y(: v/Do/ DR) , enabling determination of Di once Dg is known,

;' RT /(1
Ell)!azne,peak _ Eli,/pzlane _ Ece 4 ?ln (;> (4.88)

A ]plane, peak

DDPV -

FA\/Doc:
V"% anh (i |AE|) (4.89)

Ty RT 4

Again, for the AIDSS, — E,, curve the expression of the peak potential is

Elﬂz;ne,peak — Exi,/pzlane [47 35, 36]

— Peak parameters for microspheres and microdiscs:

At spherical and disc ultramicroelectrodes under steady-state conditions the

peak potential coincides with the “reversible” half-wave potential (Erl’;nzicm),

: L ) . RT |
he, peak disc, peak T, Micro o
Elll'fl;l‘()sp c, pea — Ellelzcro 1SC, peai — E1/2 _ EC + FIH <y_2> (490)
and the peak current is
i * F |AE
A]gg}r)(ifphe,peak = F47T”5D066tanh 7u
RT 4

microdisc, peak % F |AE| (491)

Alnppy = 4FryDocytanh <RT 4>

Note that the peak current densities (AigPe = AISP, /A) of microspheres

and microdiscs of the same radius fulfill AiJStoP"® P — (7 /4) Ajmicrodise-peak
As the half-wave potential depends on the geometry and size of the electrode
considered, in the case of spherical or disc electrodes under transient conditions,

it is deduced that the peak potentials are comprised between Erl’;“;m for rg

< /mDo 't (see Eq. (4.90)) and Erl’%ane for rg > /Dot (see Eq. (4.88)).

In Fig. 4.7, the peak potential and the half-wave potential corresponding to a
spherical electrode are plotted versus the sphericity factor Ry = ry/v/Dot, using
three values of y (5, 1, and 0.2). As expected, the Ei’?;e’peak and Eﬁ’/sghe values
coincide for planar and ultramicroelectrodes, whereas for spherical microelectrodes
the discrepancy is significant when y # 1, with a maximum difference of ~11 mV
for rs/v/Dmaxt2 & 2 (where Dy, is the largest diffusion coefficient of the redox
pair) that increases as y moves away from 1 and the ratio 7,/7, is higher. This alerts
against the identification of the peak potential as the half-wave potential when
microelectrodes are employed and the diffusion coefficients differ significantly.
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Fig. 4.7 Variation of the DDPV peak potential (solid line) and the half-wave potential (dotted
line) with respect to the formal potential with the electrode sphericity parameter corresponding
to the second pulse (Ro=rs/v/Dot,) for different values of y indicated on the graph.
AE =—-50 mV, 7y =5 5,70 =0.025 s
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Fig. 4.8 Influence of electrode radius on the peak potential of the DDPV responses. Three electrode
sizes are considered: planar electrode (solid line, from Eq. (4.82)), ry = 2 x 1073 cm (dashed line,
from Eq. (4) of reference [38]), s =5 X 107% cm (dotted line), from Eq. (4.83)). y values are
marked on the curves. AE = —50 mV, E[E — & = 4150 mV, E — E® = —150 mV,
number of points=50.7; =1 s, 7, =0.02 s, cg =1 mM, c; =0,Dp = 1075 em? s7!, ro="rs.
Reproduced from [38] with permission
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Fig.4.9 (a) Normalized DDPV curves (Alg’,‘;;v/lgﬁ“e (1)) corresponding to a scan in normal mode
(AE = —50 mV) and in reverse mode (AE = 50 mV) at a spherical electrode (rs =2x 1073 cm),
from Eq. (4) of reference [38]. Three y values are considered: y> = 1 /5 (dashed line), 72 = 1 (solid
line), and y> = 5 (dotted line); (b) Variation of Alffg;\r}?;k with the ratio of diffusion coefficients.
EPitial _ S = 1200 mV, Ef% — E® = —200 mV, number of points =70. Taken from [38]
with permission

In Fig. 4.8, the influence of the electrode radius of spherical electrodes on the

peak potential can be seen. The DPV curves are normalized in order to show better

the radius effect, i.e., AL /AIESP . When y > 1 a decrease of electrode radius

gives rise to a shift of the peak potential toward more negative potentials, whereas
wheny < 1 the shift is toward more positive potentials. Fory = 1, the peak potential
is independent of the electrode size and equal to the formal potential (Eq. 4.85).
Under the conditions considered in the figure (y> = 5, 1/5), the absolute value of
the difference between the peak potential at planar electrode and spherical (or disc)

ultramicroelectrodes is Erl’/";im — Erl’/pzlane ~20.7 mV.

The DDPV curves corresponding to a negative pulse height (AE < 0) and to a
positive one (AE > 0) for three y values at a spherical electrode can be seen in
Fig. 4.9. For any y value, the peak potential is the same for normal and reverse
modes when E;, is chosen as the x-axis. The sign of AE has an influence on
ALESP and this depends on the ratio of the diffusion coefficients of electroactive
species. It can be defined the following ratio:
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AIsphe,peak _ AIsphe, peak AE 0 Alsphe,peak AE 0 4.92
popv.R = |Alpppy  (AE > 0)/Alpppy (AE < 0) (4.92)

As can be inferred from Fig. 4.9, AIBEIGE = 1 when both diffusion coefficients
are equal (Do = DR) (see Eq. (4.86)). When Do > Dy, AISLEOR > 1, whereas
when Do < Dy we find that AIJEPR < 1. Hence, this ratio is sensitive to the y

value and, therefore, is very useful for the determination of diffusion coefficients
(in the optimum range 0.5 < ry/v/Dmut < 3.5, with D, being the largest
diffusion coefficient of the redox pair).

4.2.4.1 Ion Transfer Through Liquid Membranes
DDPV technique has been also applied to the study of the ion transfer processes in

systems with one and two liquid/liquid polarizable interfaces [40—42]. The expres-
sion for the current corresponding to the transfer of ion XV is:

Alooey 1 one polarizable interface (4.93)
FAC; /D;’(&i/mz 14+en 1+en
Alpppy . .
=g(nw.2) — g(mv.1) two polarizable interfaces  (4.94)
FAcy. /Dy [t
with

\/()fre”M’ ,‘)2 + SA+GI7M” _ A+e'7M,j

g(nM’j) = ) j=1,2 (4.95)
_Frim M, o

”M«f,_R_T(E —E )} j=1lor2 (4.96)

EM’ = Eout, j— Einn,j
EMO = AN — AN’ (4.97)

2, /DD o
pr= VL RX e (4.98)
DX+ Cyr

Eoyjand E;p, ; are the individual potential drops at each interface caused by the
application of the first and second potential steps. Ah“,;gbf(}ﬂ and A\l:,’i q’)l{i’ are the
formal ion transfer potentials for the target ion X* and for the membrane electrolyte
cation R*, respectively, cl*2+ is the concentration of the membrane electrolyte cation,
RY, andD)lgﬁ andDXE are the diffusion coefficients of X* in the membrane (M phase)
and R* in the inner aqueous solution (w, phase), respectively.

The half-wave potential, EIIV}Z, is given by



4.2 Reversible Electrochemical Reactions 259

13 mV
1.8 4 A]DDPV f:l\
FAC DY / (77,) !
/A I A
15 [ |\ AE=50 mV
|
Fol
| |
1.2 1 |
|
|
0.9 4 ! AE=20 mV
|
|

N

0.6

0.3 A

|
|
|
|
|
|
|
|
|
|
|
|
|
|
0

100 200

E

index-E:\I/I2 [ mV

Fig. 4.10 Normalized A[DDP\//(FAC;. 1/D)‘?’+/m’2> — (Eindex - E%) curves calculated from
Eqgs. (4.93) (dashed lines) and (4.94) (solid lines). The values of AE are on the curves.
AN ==200 mV, ANPZ'=-350 mV, 7,=125s, 1,=025s Dyl =Dy =
107 cm? s7!, DY =107 cm? s7!, ¢}, =0.1 mM, cp. =50 mM, T=298.15 K. Taken
from [42] with permission

' RT
EY, =EM® — Fmﬁ (4.99)

In Fig. 4.10, the DDPV curves corresponding to a membrane system with two
polarizable interfaces (solid lines) and also to a system with a single polarizable
interface (dashed lines), obtained for two values of the pulse amplitude AE,
are shown. The current Alpppy has been plotted in all the cases versus the

difference <Eindex —E }‘fz) with Ejpgex = (EM' + EM?) /2. The use of Ejpgex

instead of the usual EM'! is of great interest since, as has been indicated above,
the Alpppy — Eindex plots are centred about the half-wave potential in the case of a
single polarizable interface system (see dashed curves). As can be seen in this
Figure, the DDPV peaks obtained for the liquid membrane system with two
polarizable interfaces are shifted 13 mV with respect to those obtained when only
one polarizable interface is used, in agreement with Eq. (4.94). Moreover, in the
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first case the Alpppy — Eindex curves are lower (around 40-45 %) and wider than

those obtained in the second case (with a half peak width WII)/SPV ~ 131 mV versus
the = 90 mV observed when only one interface is considered).

4.2.5 Differential Normal Double Pulse Voltammetry

Equation (4.77) corresponds to the normal mode of Differential Double Pulse
Voltammetry for which the duration of the second applied pulse is not restricted
as in the case of DDPV [35]. From this equation, the expression of the current
AIS\ppy at very negative and positive potentials valid for any electrode geometry
can be directly obtained,

A[gNDPV(El — —00,Ey — —00) = FAGDCB(fG(TI +12,96) — fo(71,96))
(4.100)
AlS\ppy(Er = 00, Ey — 00) =0 (4.101)

In the case of planar electrodes, from Eq. (4.100) and Table 2.3 of Sect. 2.6, it is
immediately deduced that

A13§‘§PV(E1_>_09,EZ_>—OO): 1 < 1 _L> (4.102)
FADc VaD\VTi+1 T

In order to check this behavior, in Fig. 4.11 it can be seen the influence of 7, on
the DNDPV curves calculated from planar, spherical, and disc electrodes from
Eq. (4.77). From these curves, it can be observed that the increase of 7, causes a
decrease of the peak current in all the cases, which is much more pronounced in the
case of planar electrodes (a). The current at very negative potentials increases in
absolute value with 7, which is in agreement with Eq. (4.100). The peak potential of
the DNDPYV curves of spherical and disc electrodes is not practically affected by the
value of 7, but in the case of a plane electrode is shifted toward more positive values
as 7, increases.

4.2.6 Additive Differential Double Pulse Voltammetry

As established in Sect. 4.1, two DDPV recordings, Al5spy = 15°(E5) — IT(E1),
where ES = E; — |AE| and Aliey = 15°°(E3) — IP(E1) where EX = E; + |AE|,
enables us to analyze the influence of different parameters on the charge transfer
reaction. In Scheme 4.4, it has been shown this new technique consisting in the
addition of the signals AISSoy and AISEsy [3]


http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2
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Fig. 4.11 Influence of 7, on
the DNDPV curves
calculated from planar (a),
spherical (b), and disc
electrodes (c), from

Eq. 4.77).
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Ioppy = Igc(Ezc) —27(E) +1(23’3(E;)' (4.103)

This technique can be considered as a natural extension of DDPV and it offers,
among others, the following advantages:

— ADDPYV behaves as the Double Derivative Voltammetry for AE < RT/F.

— The ADDPV curves present a zero current potential, E..., Which can be
measured with great accuracy. It coincides with the half-wave potential of a
reversible electrode process in planar electrodes and with the formal potential
independently of the electrode geometry when the diffusion coefficients of both
species are assumed as equal.

— The charge current is minimized to a large extent with respect to other double
pulse techniques including DDPV, a feature which gives it great analytical
usefulness.

— ADDPYV allows diagnostic criteria to be given about reaction mechanisms based
on the maximum and minimum peak current and peak potential measurements,
11(\}/1 and Ey, and Ig and E,, (see Scheme 4.4).

— The analytical expressions of the ADDPYV signals are easily obtained from the
expression corresponding to DDPV ones, given in Sect. 4.2.4.

Using the expressions of the currents corresponding to the first and second
potentials applied given by Egs. (4.28) and (4.29), the expression of the current in
ADDPV at any electrode geometry assuming equal diffusion coefficients for
species O and R and ¢y = 0 is

ISDDPV 1 2 1
5 - t, 4.104
FAGgDcg 1+emhe 14en + 1 + e [t q6) ( )
with
RT RT ,
2,¢ F 2 c F :
(4.105)
RT (. o\ KT o
T2.a 7(E2 —E; ) :7(E1 + |AE| — E; )

In the case of planar electrodes, when different diffusion coefficients are
assumed, the expression of the ADDPV response is [3]:

e 1 2 1 1
Y = —~ + (4.106)
FADc 1 4ye"e 14yem 14ye™: )\/aDot>

where y is given by Eq. (4.32).

Equation (4.104) is fulfilled independently of the electrode size and shape
whenever 7; > 7,. Therefore, under these conditions the peaks and cross potentials
of the 1§, py — E1 curve are independent of the electrode geometry and of #,.

Moreover, from Eq. (4.104) it can be deduced that Eyy — Ece/ = — (Em — Ece/ ) and
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Fig. 4.12 Experimental 44 S e =
(symbols) and theoretical i.-'

(solid lines, Eq. (4.104) with ‘-'
fo=rfo) e, —E, for 2 / .

b N
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1
m

By equating Eq. (4.104) to zero, the expression of the cross potential is imme-
diately deduced,

/

Ecross = Ee (4108)

C

The difference between potentials Ey; and E,, can be also obtained, and it is
given by

En — En 2 68+7.45 x 1073|AE[* —2.54 x 1077 |AE[* mV  for |AE|>20 mV
(4.109)
Em —En =68 mV for |AE| <10 mV (4.110)

This last value coincides with that deduced previously for Double Derivative
Voltammetry [43] as indicated.

In Fig. 4.12, it can be seen the theoretical and experimental ADDPV curves
obtained for the system Fe(IIl) in oxalate for two different radii of an SMDE. It is
clear that the agreement between both sets of results is very good. The cross

potential, which coincides with Ece/ , is not affected by the variation of the electrode
size in line with Eq. (4.108). ADDPV has also been applied to study ion transfer
across the water-solvent polymeric membrane interface [41]. In Fig. 4.13, the
morphology of the background subtracted ADDPV curve obtained for the transfer
of tetraalkylammonium (TEA™) for |AE| = 30, 50, and 80 mV is shown. The
experimental data were fitted to Eq. (4.106) by using the half-wave potential and

the term A (D)‘z‘i) 2 s adjustable parameters (D;?i is the diffusion coefficient of the

TEA™ cation in aqueous media). It can be seen that the cross potential does not
depend on the value of IAE] and it can be measured with high accuracy by making a
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Fig. 4.13 background [
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obtained for 107* M TEA*

at the following IAEI values:
30 (squares); 50 (circles), o | 4

- \
and 80 mV (triangles). o
(Reproduced with 0 eneadd
permission of reference < o sedre -\
[41]) = e S
= Bg
B o
_2 | 'y
L
. 4 &
4 - abd &
—4 4
200 250 300 350 400
E/mv

linear interpolation of the central zone of the ADDPV curves. The half-wave
potential obtained was 305 £ 1 mV [41].

4.3 Nonreversible Electrochemical Reactions

In contrast with the behavior discussed in Sect. 4.2, in the case of non-reversible
electrode processes, a general treatment valid for any electrode geometry when a second
potential pulse is applied, as that discussed in Sect. 3.2, has not been found, even when
the diffusion coefficients are considered as equal. In this case analytical treatments
become very challenging, and numerical approaches are the most used for analyzing the
electrochemical responses. In this section, two analytical solutions corresponding to
spherical electrodes will be presented and discussed in RPV and DDPV (the limiting
behavior corresponding to planar electrodes will also be presented).

4.3.1 Application of a Double Potential Pulse to Planar
and Spherical Electrodes

The following charge transfer reaction taking place at a spherical electrode will be
considered:

kred
O+e 2R (4.1
Kox
with k..q and k., being the rate constants for the electro-reduction and electro-
oxidation processes. The general approach for solving this process in double pulse
techniques at spherical electrodes is:


http://dx.doi.org/10.1007/978-3-319-21251-7_3
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- The first applied potential is set at a value £ at a stationary spherical electrode
during the interval 0 < #; < 7y. The diffusion mass transport of the electroactive
species toward or from the electrode surface is described by the following differ-
ential equation system:

SC(OU(r,t):ch)(r,t):O (4.111)

with

. 0 0’ 20

where it is assumed that both electroactive species have the same diffusion coeffi-
cient (Do = Dgr = D) and a Butler—Volmer kinetic scheme for the charge transfer
(see Sect. 1.7).

The boundary conditions to be fulfilled by the solutions of the differential
equations are given by

H=0 >0 o =Cp» CR = Cp (4.113)

o) o)
=7y = — 4.114
>0, r=r ( 3 B a3 B ( )

Hnh>0,r— oo} (1) (1)

oW
D( ZC)(; — k0e7“”16‘8>(rs,t) _ kOe(l—a)nlc-g)(’,s,t) (4.115)

where 7, = F(El — ECG/) /RT (see Eq. (4.16)).

Using the mathematical procedure described in Appendix G, the expression for
the current /"™ given by Eq. (G.21) is derived.

At time ¢ > 7y, the applied potential is stepped from E; to E, and the mass
transport of species O and R during this second period (r = 7; + #5; 0 < 1, < 13)
described by

6cg>(r, = SCQ(F, HNn=0 (4.116)
with the following boundary value problem:

fh20,r—o00 @_ o @_ O
h=0,r>rs } €o" =€ » (R = (R (4.117)
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oc® .(2)
h>0,r=rs: ( g(’? =— ag‘; (4.118)

oc®
D ( SO = K0l (ry, 1) — K= (1, 1) (4.119)
r

with 7, = F(E2 —E® ) JRT (Eq. (4.9)).

Equation (4.119) assumes, as in previous chapter 3, that the transition state does
not change with potential and so the same value of « applies to forward and reverse
processes.

The resolution of Eq. (4.116) is given in Appendix G and the conditions of validity
of the expressions for the current corresponding to RPV and DDPV are deduced.

4.3.2 Reverse Pulse Voltammetry

As discussed in Sect. 4.1, the solution for the first potential pulse in RPV corre-
sponds to the well-known situation for a charge transfer process at a spherical
electrode under limiting conditions, with the current-time expression given by
Eq. (4.38). By following the mathematical procedure detailed in Appendix G, the
following expression for the current—potential response at the second potential
pulse under RPV conditions is obtained [44]:

lane
]g,l (72) %
\/_ 1+ Kgphe,sse_mh(l + eﬂz) (4 120)
T
Y {TZM PR e (1 ) [ZF (1) + YGlre0.6)] }

sphe __ ysphe
Igpy =14 (11 +72) +

with 75, Izﬂle, and Igﬁne given by Egs. (4.9), (4.38), and (4.49), respectively. Moreover,
kO -
Kgphe,ss = § (4121)

1+ lcg)lbhe,sse(l_()l);72 (1 + %)

Z=- 4.122
1+ K(s)Phe,sse_Um2 (1 + e’?z) ( )
2D,
Yor =240 %Zkoe’“’h(l +eh) (4.123)
I's
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()
= 4.124
p p—— ( )

VT aexp(ra/2) ere(z,./2) (4.125)

y =2 \/E (4.126)
1@2 T

o) ( 1 i 1+1 2k—1 lﬂ
14 fory,, <10
Z i Zzﬂ ]k| (l+2k) X 2

i=0

F()(s,Z) =

P
1=0
G(xs2:8) = (=D k- 1)
1—ﬁ+ﬁ; SR
> (—1)2(2i—1)! 2122k —1)1(2i 4+ 1)
+; (i— )2, (1_ < H(k—1)1(2k—2i— 1) forzs»>10
(4.127)
sphe _ E 1 l
17" (71 + 12) = FADc (77:D(11 —) + Vs) (4.128)

with p, given by Eq. (4.46).

The validity of analytical solution (4.120) has been studied by comparison with
numerical calculations [45] and an excellent agreement between analytical and
numerical results was obtained for any electrode size, for any length of the potential
pulses, and whatever the reversibility degree of the electrode process.

From Eq. (4.120), some particular cases of interest can be deduced:

— Planar electrodes (ry — o) [46]:

Iy =I5 (11 + 72) + 131 (22) [ZPF (1 p.2) + YG (1 2, 8)] (4.129)
with
P e 4.130
ZP = — .
1+4en ( )
;(pz_z\/;ko T (] 4 e) (4.131)
— Ultramicroelectrodes (ry < \/nDt,) [44, 47]:
h h (s)phe ssei{mz
Im1crosp e _ ysphe,ss 4.132
KoV e 1+ Kﬁphe ss€ e n (1 + e’?z) ( )

with I given by Eq. (4.76).
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In Fig. 4.14, the influence of different parameters like the duration of the second
potential pulse (,, Fig. 4.14a), the heterogeneous rate constant (k°, Fig. 4.14b), and
the electrode size (through rg, Fig. 4.14c) on the RPV responses of planar and
spherical electrodes is shown. It is important to highlight that for irreversible
processes the RPV curve presents two branches (cathodic and anodic), the null
current plateau between them being wider the smaller £° is.

Concerning the influence of 7, in the case of large electrodes, a striking peak
is found in the anodic wave of the RPV curve for quasireversible and
irreversible systems when 7, is sufficiently large (see Fig. 4.14a). This atypical
anodic peak is characteristic, and so indicative, of slow charge transfer processes
(K <1072 cm s7'), and is not found for reversible ones as can be seen in
Fig. 4.14c. In this figure, it can be also observed that the peak increases as K°
diminishes up to a limiting situation corresponding to totally irreversible systems
for which the magnitude of the peak is independent of k° whereas its position
shifts toward more positive potentials as k° value diminishes.

Note that the appearance of the anodic peak implies that, beyond the peak
potential, smaller anodic currents are obtained at more anodic potentials. This
situation is shown in Fig. 4.14b where it can be seen that at a given time there
is a crossing of the chronoamperograms so that the current corresponding to the

peak (E, — Ece/ = 300 mV, black curve) becomes greater than the anodic limiting
current (E, — Ece/ =700 mV, blue curve). The appearance of a peak in the anodic
branch of RPV and Normal Pulse Voltammetry curves has also been described in
amalgam systems when small sized electrodes are used [21, 29], although in that
case the phenomenon is related to the depletion of species R whereas in the present
case it is related to the reversibility of the electrode process.

This unusual feature in RPV response is more apparent the longer the duration of
the second pulse (see Fig. 4.14a) and it is promoted by large electrodes, so that the
greatest peak is obtained at planar electrodes whereas it is not observed at micro-
electrodes (see Fig. 4.14d).

The shape and symmetry of the RPV curve give information about the kinetics of
the electrode process. This feature can be used for the extraction of kinetic
parameters by defining the parameter

AEmiarey = EXy — ESSY (4.133)

mid mid

where ES4I is the potential at which the current takes the half value of the cathodic
limiting current (i.e., Iy (ES) = 15,/2) and E2, the potential at which the current
takes the half value of the anodic limiting current (i.e.,/gpy (E2) = Igoy (1, — 00)/2).

AE i rpv 1s directly related to the shape of RPV curves and so is very useful for
the quantitative study of the system kinetics. Thus, it is related to the separation of
the cathodic and anodic branches of the RPV curve, so its value increases as the
system behavior is more irreversible (see Fig. 4.15). Another interesting parameter
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Fig. 4.14 (a) Variation of RPV curve with 7, for an irreversible system *° =107 cm s ata
spherical electrode with g = 200 pm (Eq. 4.120). 7, values indicated on the graph; (b) I, — 1,
chronoamperograms for two values of the second potential pulse: E, — Ece’ =300 mV (black
line) and E, — ECG’ = 700mV (blue line); (¢) RPV curves for different values of K° (indicated on
the graph) at a planar electrode (Eq. 4.129) with 7, = 27;; (d) RPV curves for different electrode
radius (7, values indicated on the graph) for an irreversible system (ko =107 cm s’l)) with 7,
=27y (Eq. 4.120). 7y = 15, D =107° em? s7', ¢ = 0. Iy iy = Ifpy (1, — 00). Taken from
[44] with permission
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Fig. 4.15 Variation of 1000
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directly related to the symmetry of the RPV curves is ZEpig rpy = E2 + ESAh.
By combining the simultaneous analysis of the variation of ZE,qgrpv and
AE ijarpv With the duration of the second potential pulse, a complete charac-
terization of the redox system is feasible with RPV as discussed in [44], so
allowing the determination of the heterogeneous rate constant, the electron
transfer coefficient, and the formal potential. In [48], this analysis is carried
out for the reduction of three different redox systems covering a wide range of
electrode kinetics (3-nitrophenolate /2=, 3-nitrophthalate>/3~* and Eu’*/>*)
taking place at mercury hemispherical electrodes of ca. 25 pm radius, and
experimental values for the above parameters have been obtained (see
Table 4.1).

4.3.3 Differential Double Pulse Voltammetry

From the mathematical procedure given in Appendix G when 7 > 1, the expres-
sion for the current of the second potential pulse is obtained:

sphe, ss (92 - 1)g ()(s, l)

J5phe _ psphe I 14+ (6, — DH(y. 4.134
2 1 (m )+ 0,(1 + en) [14 (62 — DH(x5)]  ( )

withllsphe(rl + 1) givenin Eq. (G.21) of Appendix G (see also Egs. (3.66) and (3.76)
in Sect. 3.2.3), and y, given in Eq. (4.123). Moreover,
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2,/D
Hs1= (:l +72) +2 (Tl 4D‘T2)’I\Oefam(1 +en,) (4135)
S
e’72 a 92 92
=1l—(— [+ |1-5|H 4.136
s =1-(5) [+ (1-5) ] (4136
H(x) = exp(x/2)%erfc(x/2) (4.137)
02 = 1+ Kppe. i@ (1 + ™) (4.138)
01 = 1+ Kppe i@ " (1 + ™) (4.139)

with Kgpheﬁs given in Eq. (4.121).

As mentioned in Sect. 4.1, in DDPV technique initial equilibrium conditions
are reestablished before the application of each double potential pulse, for
example, by renewal of the electrode (mercury drop electrode) or by open
circuiting the working electrode for a waiting period. Lovri¢ shows [49], and
it is proved by numerical simulations in [5] that for a reversible process a
waiting period of < 57; is long enough to achieve this condition at spherical
electrodes; the smaller the electrode radius, the shorter the waiting period
required. So, the expression for DDPV response, for which z; > 7,, is imme-

diately particularized from Eq. (4.134) and the expression of Iiphe(rl)
(Eq. (G.21)),

AI]S)%;V (- l)g()(;,l)

= 1 0, —1)H 4.140
I;plcw,ss 92(1_|_e;72) [ +( 2 ) (XS,Z)] ( )
where
/ 2D
X1 = riﬁ +2 %koe’“”l (1+eM) (4.141)
S

From Eq. (4.140), expressions under some interesting conditions can be derived:

— Planar electrodes (ry — o0). In this situation, expression (4.140) becomes:

AIplane 7T Y
plarll)eDPV = Hkoe ’hF()( p,2) X
Igy (72) (4.142)

1 +eh 1 +em fen\*
L-El (e @) -]

with function F given in Eq. (4.125), Isﬁme by Eq. (4.49) and
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(Tl —‘rTz)

5 ke~ (1 4 M) (4.143)

)(p,l =2
Y2 = 2\/%k0e“'72(1 + ™) (4.144)

— Ultramicroelectrodes. When ry < +/nD7,, Eq. (4.140) tends to:

microsphe —an —an
Alpppy _ 0 e e (4.145)
Izphe, ss sphe, ss 92 91 .
,C

which, in the case of reversible systems (k0 — 00), is equivalent to that obtained in
Square Wave Voltammetry under steady-state conditions [47]. Note that the use of
this equation is quite restricted since attaining steady-state conditions in DDPV
requires very small electrodes because of the very short duration of the second
potential pulse ().

As discussed in Appendix G, for the resolution of the problem we have supposed
that the mathematical concentration profiles of the first pulse for the total time 7; + 7,
are not disturbed by the application of the second one. This assumption is fully valid
for any electrode radius in DDPV technique, where the duration of the second pulse is
much shorter than that of the first one (z; >> ;). It has been confirmed the validity of
the analytical Eq. (4.134) in DDPV conditions by comparison with numerical results
[45], since nonsignificant deviations are obtained (less than 0.5 %) around the peak
potential when 7 /7, > 50.

In Fig. 4.16, the effect of the reversibility of the electron transfer process on
DDPYV peaks is studied at conventional spherical microelectrodes (electrode radius
rs =30 pm for t, = 10 ms and D = 107> cm? s~ ).

As previously depicted for planar electrodes in reference [50], the decrease of
the heterogeneous rate constant gives rise to the decrease of the peak current, the
increase of the peak half width and the shift of the peak potential toward more
negative values. For fully irreversible systems (very small k° values), it is observed
that the current peak and the peak half width become independent of the rate
constant, and only the position of the peak (i.e., the peak potential ESP**) changes
with &°.

For the above study the usual value of the transfer coefficient @ = 0.5 has been
considered. With small a values, DDPV peaks are found to show a special shape
under certain conditions. As can be seen in Fig. 4.17a, fora < 0.3 the DDPV curves
corresponding to quasireversible processes with k° ~ 107* cm s~! present a
striking splitting of the peak, with a sharper peak appearing at more anodic
potentials. This phenomenon is promoted by small transfer constants and is more
obvious for positive pulse heights (AE > 0, reverse mode, where the anodic peak is
even greater than the cathodic one) and at planar electrodes, since it becomes less
apparent as the electrode size is reduced (see Fig. 4.17b). The description of this
phenomenon is of great interest since this could lead to erroneous interpretation of
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Fig. 4.16 Influence of the heterogeneous rate constant k° on DDPV curves [calculated from
Eq. (4.140)]. The values of the heterogeneous rate constant k° are marked on the curves.
rs =30 pm, a=0.5, AE=20 mV, 7; =1 s, 7;/7, = 100, D = 1073 cm? s~!'. Taken from
[5] with permission

experimental data for real quasireversible systems with low a values [51, 52]. It is
worth highlighting that this anomalous behaviour is characteristic of
quasireversible processes with k° ~ 107 cm s~', and the splitting is not observed
for greater (kO > 102 cm s™1) or smaller (ko <10™* c¢m s‘l) rate constants,
where the usual single peak is obtained regardless of a value. This splitting has been
observed experimentally for the case of the reduction of zinc (II) at mercury electrodes
[53] as well as in other electrochemical techniques like Square Wave Voltammetry
[54] and Double Differential Triple Pulse Voltammetry (see Sect. 4.6.2).

To determine kinetic parameters with DDPV, the variation of the peak potential

sphe,peak ;yplane
Mgy

and the normalized peak current Aljjhpy (r») with the dimensionless param-

eters 2y/D 1y /rsand Kgphe‘ss are proposed as working surfaces from which the kinetic
parameters are easily obtained, once D value is known, by measuring both peak

parameters for different values of the double pulse duration, and keeping the ratio
71/ 75 constant [5].

4.3.4 Additive Double Differential Pulse Voltammetry

From the analytical expressions obtained for DDPV (given by Eq. (4.140)), an
explicit analytical solution for the ADDPV current is immediately deduced, which
is valid for spherical electrodes of any size and whatever the kinetics of the
electrode process [55]:



4.3 Nonreversible Electrochemical Reactions

275

a=05

Fig. 4.17 Anomalous a o124
behavior of DDPV curves
for small values of the 010 4
transfer coefficient )
(Eq. 4.140). AE =50 mV. ~
(a) different « values are 2t -0.08 1
considered (marked on the 5
curves); s = 30 pm; (b) X -0.06 A
different electrode sizes are % é
considered (marked on the 2 0.04 1
curves);
=103 cm s, .
a=02.7,=1s, Rt
T1 / T = 100,
D =107 cm? s~ !. Taken 0-0002
from [5] with permission ’
b
-0.06 -|
o
5F 004 ]
. Z
s a
o 0O
~
<
-0.02
0.00 £

0.2

(1 =+ (02,0 - I)H(/YS,Z,C))_F

sphe —a
N _ s 8e (Xs.1) e~
Izplcle,ss 0 92’0
—N, 4
8a(Xs1)e™ ™
et
92,a
where I5PhesS
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(4.146)
(02,3 - I)H(Xs,z,a))}

is given by Eq. (4.76), the subscripts “c” and “a” refer to the normal

and reverse mode, respectively, so the potential for the former is E; . = E|— |AE]|

and for the latter £, , = E; + |AE|, and

e’72,m a 92m
1 — — 1
(&) [or =

gm (%)

_ 9;_’1"‘) H(x)} , m=c,a (4.147)
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02,m =1+ K(s]phe,ss e—(l’iz,m(l + e’h’m> » m=¢,a (4148)

2D
Zsom =" 2, 2\/;’;2/<°e“"2,m(1 +ehm), m=c,a (4.149)
S

Xs.1, H(x), and 8, are given in Eqs. (4.135), (4.137), and (4.139), respectively.
For the case of reversible processes (large k° values), the above expression for
the ADDPV current simplifies to Eq. (4.104) with f5 = f,.

Particular Cases
From Eq. (4.146), the following asymptotic expressions can be derived:

— Planar electrodes (ry — 00). Expression (4.146) becomes:

I plane
ADDPV

()
= z'k° (e (x p,l)eiaﬂz’cH()(p,Z,C) +al(x p,l)eiwz’aH(Z p,Z,a))
(4.150)

with y,, ; given in Eq. (4.143) and

14+ enm\¢ 1+en [ehm\?
Py =1—(—L—" " T () - _
) =1 <1+e'ﬁ> {1+<1+em’m<em> 1)11@)}, nees
(4.151)

Xp2m = 2\/%koe—aﬂz,m(1 + e’?z,m), m=c,a (4]52)

and [gf?"e (7,) given by Eq. (4.49).
— Ultramicroelectrodes (UME). When ry < /7D 7;, Eq. (4.146) tends to:

microsphe — — _

I \5opy e e e MM2a e

ADDPV 0

ADDPV_ Ty ~ 2 (4.153)
3 SS sphe, ss

Izpile,ss P 92,(‘ 92,(1 91

so a time-independent response is obtained under these conditions.

In Fig. 4.18, the influence of the kinetic parameters (ko, a) on the ADDPYV curves
is modeled at a spherical microelectrode (2+/D 75, /rs = 0.2). In general terms, the
peak currents decrease and the crossing and peak potentials shift toward more
negative values as the electrode processes are more sluggish (see Fig. 4.18a). For
quasireversible systems (ko ~ 1072 = 10~* cm s‘l), the peak currents are very
sensitive to the value of the heterogeneous rate constant (ko) whereas the variation
of the crossing potential is less apparent. On the other hand, for totally irreversible
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processes (k° < 107 cm s~!), the crossing potential significantly shifts toward
more negative values, whereas the peak currents are independent of the k° value.
The relative symmetry of the peaks also indicates the degree of reversibility;

Iy /rehe) = 1)

thus, for reversible systems, symmetrical peaks are obtained (i.e.,

. . . . h .
whereas for quasireversible and irreversible processes ‘1 e /I;‘l’he > 1.

In Fig. 4.18Db, the effects of the electron transfer coefficient () on the ADDPV
curves is shown. A decrease of o leads to the decrease of the peak currents

together with the shift of the peak and crossing potentials toward more negative

values. The ratio of the peak currents (Ilif’[he/lf;ﬁ’hel) also varies with a, and the greater

the a value, the greater the II;I,)[he/I;EheI ratio. It is worth highlighting the anomalous
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shape of the ADDPYV signal found for small a values (see curve for a = 0.3 in
Fig. 4.18b). Under this situation, two pairs of peaks are found, a small one situated
at more positive values than the formal potential and a larger one at more negative
values. Thus, two peaks with IZI;;EPV > 0, two peaks with IZ%]EPV < 0, and three
crossing potentials are obtained. The appearance of a new signal at more positive
potentials is related to the great influence of the anodic contribution when the a
value is very small. The split into two of the response for quasireversible systems is
typical of differential techniques and it has been previously described for Differ-
ential Double Pulse Voltammetry (DDPV) at which a double peak is obtained for
small « values (a < 0.3) (see Fig. 4.17) [5].

4.4 Multi-electron Electrochemical Reactions

Multi-electronic processes (like those consisting of two-electron transfers, EE
mechanism) have been widely treated in the literature, both in their theoretical
and applied aspects [4, 10, 56—68]. This high productivity measures in some way
the great presence and relevance of these processes in many fields, and hence the
importance of understanding them.

Among the double pulse techniques, DDPV is very attractive for the character-
ization of multi-electron transfer processes. Besides the reduction of undesirable
effects, this technique gives well-resolved peak-shaped signals which are much
more advantageous for the elucidation of these processes than the sigmoidal
voltammograms obtained in Normal Pulse Voltammetry and discussed in Sect. 3.3.

In this section, it will be shown that, when the electron transfer processes behave
as reversible, the DDPV curves (properly normalized) are independent of the
electrode size and geometry in such a way that the responses obtained in this
technique by using macroelectrodes are indistinguishable from those obtained
with microelectrodes under transient or stationary conditions.

When any of the electron transfer is slow the situation is much more complex
and the geometry of the diffusive field plays a relevant role in the electrochemical
response [4, 10].

4.4.1 Application of a Double Potential Pulse to Electrodes
of Any Geometry

For the sake of simplicity, only two-electron transfer processes are discussed in
this section. The theory corresponding to multielectronic transfer processes can
be easily generalized from that presented here and is discussed in detail in
[60-62].
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For reversible electrode reactions and no solution phase reactions other than
disproportionation, the following reaction scheme (EE mechanism) applies (see
also Sect. 3.3):

O,+e =0, E® a

O2+e” =0 Eh b (4.111)
k k

20,20, + 0, K="1 ¢
kz kz

where Ef/j (j=1, 2) are the formal potentials of each electron transfer process and
K the disproportionation constant. When the diffusion coefficients of Oy, O,, and O3
are assumed as equal, the side reaction given by reaction Scheme (4.IIlc) does not
affect the voltammetric response in any single or multipotential technique as has
been discussed in Sect. 3.3 (although its influence cannot be discarded in the
concentration profiles).

When we consider the problem corresponding to the application of the second
potential pulse, E, to the electrode process given by Scheme (4.1II) at an electrode
of any geometry, the formulation of the problem in such conditions is the following:

oc® )
atOI = Do, vzcgl) tki (‘gD - kzc'gl)cgj (a)
2 :
oc) 2 2)\? 2) (2
5 = DoVl = 2k (e5)) + 2eactles] O (4.154)
2 :
oc® )
. z03 = Do, V2 + &y (C&)) gD ©
2 : :
h=0,q>¢ @ _ . .
th>0,g— o0 o, =¢o 3 =123 (4.155)
nh>0,9g=q¢":
oc? oc® 0c@ 1156
(a;;‘) +<aqu) +<aq°N3> =0 (4.156)
q° q° s
_(2,5) — 17(2) ‘(2,8)
(’O =c CO
C<2',s> _ e'vé”c(;#) } (4.157)
0O, 03

with V2 being the Laplacian operator for the particular electrode geometry under
study given in Table 2.3 of Sect. 2.6, cg_’5> the surface concentrations of species

O, (i=1, 2, 3) for the application of the second potential pulse, and
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F(E2 —Ed)
2 CJ .
7Y =——" j=12 (4.158)

The problem given by Egs. (4.154)—(4.157) cannot be solved analytically.
However, by assuming that the diffusion coefficients of the different species are
equal (Do, = Do, = Do, = D), an expression for the current can be deduced, in a
similar way to that indicated for the first potential pulse (see Egs. (3.117)—(3.126) in
Sect. 3.3.1), by using the following linear combination:

2 2 2 *
y? = cgf + cgz + CE)Z = Cp, (4.159)

So, by combining Eqgs. (4.157) and (4.159), the following time-independent
expressions are obtained for the surface concentrations of the electroactive species
during the second pulse:

(2,8) \/Eezﬁm &
Co, = — —o o,
VK + e + VKe?
)
(2s) _ e’ * (4.160)
COZ \/[? + eﬁ(z) + \/I?ezﬁ(z) Col
C(2,s) o \/E C*
O3 \/E + eﬁ(z) + \/Eezﬁ(z) Oy
with
FAE®
K = ¢ 4.161
exr>< RT ) ( )
_ F —o
7 = RT(E2 _E ) (4.162)
o ES +EP,
© c, 1 c,2
== > 4.163
¢ttt (4.163)
AE® = E®, — E®, (4.164)

As in the case of the first potential pulse (see Sect. 3.4.1), the following linear
combination can be used,
2) _ 5.2 (2)
W =2c5)(q,1) + <o, (4, 1) (4.165)

which fulfills
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ow®
al‘z

=DV*w®? (4.166)
Function W® can be written

w? =wl L w® (4.167)

with WO = 2¢)) (¢, 1) + 5 (g, 1) (see also Eq. (3.135)). By inserting Eqgs. (4.167)

into (4.166) and taking into account Egs. (3.136)—(3.138) of Sect. 3.3.1, it is found
the following boundary value problem for w®.

ow® ~
o - DV*w® (4.168)

I = 07 Z s (17
ti >0 qq quo } Wi =0 (4.169)

h>0,g=q
2 e W29 — w2s) _ s (4.170)

From Egs. (4.165)—(4.170) and following a procedure analogous to that

described in Sect. 3.3.2 for the first potential pulse, the expression for current
corresponding to the second potential pulse can be obtained,

ow®
19 = FAGD< )
qS

aC]N
=18(z) + 12) + FAGD (12, q) (Wa,s) _ W<z.s)) (4.171)
where:
18(1) = FAGD f6 () + 12, qG)(W* - W“’”) (4.172)
) 2 K zﬁ(.f) ﬁ(j) .
W(.hs) — \/_i ; te — Cb ; ] =1,2 (4173)
VK + el + /Kez"
W' =2c,, (4.174)
. F _
ﬁm:ﬁ(Ej_Ef>; j=12 (4.175)

Function fg(t, ¢g) is characteristic of each electrode geometry and is given in
Table 2.3 of Sect. 2.6.
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4.4.2 Differential Double Pulse Voltammetry

In this section, the analytical expressions given by Eqgs. (4.171) and (4.172) are
applied to differential double pulse voltammetry (DDPV) [63, 64]. In this technique
the duration of the second pulse is usually much shorter than that of the first:
71 > 50 x 7. Under these conditions, f;(z1 + 72,¢g) = fg(71,9g) so equation for
AISpy simplifies to:

AISDPV W) — w2
—— = fo(n2,q6) | ———— (4.176)
FAgDcy, G cd,

where (W(LS) — W<2’S>) is only dependent on the applied double pulse waveform (£,
and E), see Egs. (4.173) and (4.175).
According to the definition of K given in Eq. (4.161), when the formal potential

of the first step is much larger than that of the second, AECG/ < =200 mV, the
intermediate oxidation state, O, is stable. As can be seen in Fig. 4.19, under these
conditions two well-separate peaks are obtained, centred on the formal potential of
each process and with the same features of the signal corresponding to a simple

one-electron reaction. As the AECe value increases, the peaks get closer since the
intermediate species is less stable. Thus, a transition from two peaks to a single

peak is found. The DDPV response, independently of the AECG/ value and the form
of the signal, is symmetrical with respect to the average value of the formal

potentials, ECG / (see Fig. 4.19b). This value corresponds to the valley between

peaks for very negative values of AECG/ and to the peak potential for AECG/ > —
71.2 mV (for small values of AE). This behavior is independent of the electrode
size and geometry and of the pulse durations. Eventually, when the formal potential

of the second step is much larger than that of the first one, AECG/ > 200 mV, the
system behaves in an identical way to a simple charge transfer process of two
electrons (grey dotted curve in Fig. 4.19a).

The electrode size is another important variable to analyze since the use of
microelectrodes is very relevant for experimental electrochemical studies enabling
the reduction of capacitative and ohmic drop effects, as indicated in Sect. 2.7.
Specifically, it is of great interest to check the behavior of the system when the size
of the electrode is reduced. In Fig. 4.20, the influence of the electrode radius on the

DDPV curves is shown for spherical and disc electrodes and different AECG/ values.
As can be seen, independently of the electrode size, a peak-shaped response is
obtained with the same peak potential and width (see the superimposed AlSypy/

G, peak . . . . .
AILpsy — E curves in the inserted Figures) since these responses are independent

of the electrode geometry (see Eqgs. (4.173) and (4.176)). This is a notable
advantage over Cyclic Voltammetry where sigmoidal curves are obtained when
small electrodes are employed which makes data analysis more difficult and less
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Fig. 4.19 Variation of
the normalized DDPV

,
curves versus E — EZ) (a) or

E—ES (b) (with AISpy.
= Al SDPV

(FA(;D CB] fg(‘[z, qG)) N
with the difference between
the formal potentials of the
redox centers, AECG, (values
in V indicated on the
curves) calculated from Eq.
(4.176). The case
corresponding to a
two-electron E process is
also plotted (gray dotted
line). AE = —50 mV,
71/12 =50, 7) = 1s.
T=298 K
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precise (see Sect. 6.2.1). Moreover, given that the peak position and width are
independent of the electrode size, the criteria for the characterization of these
molecules based on these DDPV peak parameters are very general and can be
applied to any electrode. It is important to highlight that, as expected, for
ultramicroelectrodes (see curves with ¢ = 5 um in Fig. 4.20 for which the steady
state has been almost reached), the ratio between the current densities AiSypy

(: Al S’DPV /AG) for disc and spheres (solid and dashed lines, respectively) tends to
4/z since under these conditions it can be deduced from Eq. (4.176) and Table 2.3 of

Sect. 2.6:
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Fig. 4.20 Influence of the electrode radius (1 and r4 values indicated on the curves) on DDPV
curves for disc (solid line) and spherical (dashed line) electrodes with r¢ = r4 in all the cases. Three
different AECQ’ values are considered: (a) —200 mV, (b) 0 mV, and (¢) +200 mV. The curves
normalized with respect to the peak current are also shown in the inserted graphs. 7; /7, = 50, AE

= -50mV,7; = 1s. T=298 K. Igf?"e is given in Eq. (4.49). Reproduced with permission of [64]
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Ai dD‘ffpSvS _ 4 <.W<1’S)7_ Wm)) (4.177)

FD Co Try o,

Ai -sphe, ss 1 W(l,s) _ W(2.s)

FDDDPV (R (4.178)
CO] Is CO[

in such a way that for ry = r:

Al .disc, ss 4

DEPV = (4.179)
A .sphe, ss s

IppPV

By equating to zero the derivative of Eq. (4.176) with respect to
E\2(= (E; + E»)/2), a eighth degree polynomial is obtained, for which the fol-
lowing three real positive roots for E;, corresponding to the peak and valley
potentials are deduced [64]:

Er= Ecel+ ln(ﬁ) any valueof K (a)
o RT 2K — /1K) —AVFi(K) +24°K
En=EQ +—-In : : (b) K < ca.0.06
_ _ . (AE? <ca.—712mV
o_pe BT 2K+ V1K) —AVF(K) +24°K for AE < 30mV
it 1T F A (c)
(4.180)

with K given in Eq. (4.161) and

(4K — 1)(K — A* + 24K + A*K)

f1(K) = Ve (4.181)
fr(K) =A* — K +8K* + 16A21<2 + 8A*K? — 10A’K — (4.182)
A4K 4AK\/f|(K) — 4A°K\/f,(K) '
A= AE 4.183
exp (ZRT| |) (4.183)

From Eqgs. (4.180)—(4.183), it can be shown that these roots depend on AECG/
(through K) and on the pulse amplitude |AEI (through A). The first root (E;) is valid

for any AECe value and corresponds to the average potential

—o!

E =E (4.184)

The physical meaning of E; depends on the K value considered. For K > 0.06
(AEC9 > —=T1.2 mV) , it corresponds to the peak potential of the single peak obtained
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Fig. 4.21 Evolution of the
DDPV dimensionless peak
height AIGEe /155" (z,) and
of the half-peak width W, 129
with AE®’, corresponding
to a two-electron reducible
molecule at disc (solid line)
and spherical (dashed line)

electrodes. ry = rq = 1 pm.
plane
Iy

Q

G, peak plane
porv/l.1(T2)
o -
o o
TS

Al

is given in Eq. (4.49).
AE values (in mV) are
marked on the graphs in 0.0
Figure A and are (a) 50 mV, -300
(b) 25 mV, and (c) 10 mV in
Figure B. 71 = 15,

11/7.'2 =50.T=298

K. Dashed line in Figure B
marks the value

AEZ = -35.6 mV. 200
Reproduced with
permission of [64]
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(see Fig. 4.19). For AECQ, < =71.2mV (K < 0.06, separated peaks), £} corresponds to
the potential of the valley between the two peaks. The roots Ey; and Eyy, only operative

for AECG/ < —=71.2 mV, correspond to the peak potentials of separate signals (i.e., to

Efl’ andEg) when AECG/ < —142mV. In these conditions, the peak heights tend to that
corresponding to a single electron E mechanism (see also Fig. 4.19). When the pulse
amplitude tends to zero (and the response of DDPV becomes coincident with the
derivative of the Normal Pulse Voltammogram), the expressions of the three roots are
coincident with those given in Table 3.1 of Sect. 3.3.1 for the inflection points of the
NPV responses.

The evolution of the DDPV dimensionless peak height /ipeac = Alpisy /151" (72)
(a) and half peak width W, (b) with AE, ce calculated from Eq. (4.176) for a disc and a

spherical electrode of radius s = r4 = 1 pm and three values of the potential pulse
amplitudes AE = E, — E; can be seen in Fig. 4.21.
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The peak height, A]g%’;ﬁ;‘, always increases with AECG/ from the value

corresponding to one-electron charge transfers for AECe < —120 mV, until it
reaches that corresponding to an apparent simultaneous two-electron charge trans-

fers for AECG/ > 200 mV (see Fig. 4.21a). Note that the peak height increases
with the potential amplitude for both geometries. Concerning the variation of the
DDPV half-peak width W, (calculated for T=298 K), the curves for discs and
spherical electrodes are superimposed since the value of the peak width is inde-
pendent of the electrode size and shape, being determined by the pulse amplitude

IAEl and the difference between the formal potentials AECGI . Therefore, the results
presented in this Figure are very general and enable the characterization of two-
electron reducible molecule whatever the electrode employed. As can be observed,
W, takes a constant value close to 90 mV (W;,; <99 mV for |[AE| < 50 mV)

when two separate monoelectronic peaks are obtained for AEC9 < —140 mV,

showing a sharp jump at AE?/ around —140 mV. This value corresponds to
the case at which the height of the central valley coincides with the half-peak

height. For AECGI > —140 mV, two unresolved peaks or a single peak are obtained,

U
and W, decreases with AECe until it reaches a value close to 45 mV,
corresponding to an apparently simultaneous two-electron E mechanism. A special
U

case is AE? = —35.6 mV (K=1/4), for which Wy, is the same as that
corresponding to a simple one-electron charge transfer (see dashed line in the
Figure) whereas the response has double the height. In line with references
[4, 61, 65, 66], this particular case corresponds to the absence of interactions
between the two redox centers and it applies for any electrochemical technique
and for any electrode geometry (see also Fig. 4.19 and [61]).

4.4.3 Additive Differential Double Pulse Voltammetry

This section addresses the application of additive differential double pulse
voltammetry (ADDPV) to the study of a reversible two-electron transfer reaction.
As indicated in Sect. 4.1, in this technique two differential double pulse
voltammetry (DDPV) experiments are performed with the same absolute value of
the pulse amplitude (AE) but with opposite signs. Depending on the difference
between the formal potentials between the two steps of the whole process, ADDPV
voltammograms can show two or more peaks and one or more crossing points
corresponding to the intersection of the current with the potential axis. This offers a
very valuable procedure for the determination of the formal potentials since,
besides its simplicity, the crossing potentials can often be measured experimentally
with greater precision than the peak potentials and widths in other differential
techniques. Moreover, their value is independent of the electrode geometry and is



288 4  Double Pulse Voltammetries

not affected by uncertainties in experimental variables such as the electrode size,
the concentration of electroactive species, or the diffusion coefficient.

By taking into account the expression of the currents for the first and second
potential pulses applied given by Eqs. (4.171) and (4.172) and that corresponding to
the response of the ADDPYV technique (Eq. 4.3), the expression of the current is [62,
071,

G
AIADDPV _ fG(72,96) ((W(l,s) _ W(z,s)) _ (W(l,s) B W(Z‘s)) ) (4.185)
FAD Cz)l CS] c a

with (W) — w9)) “and (W) — W) given by Eq. (4.173) with E; = E;—
|AE| and E, = E; + |AE]|, respectively. Thus, the ADDPV voltammogram has a
symmetry center for any value of the difference between the formal potentials
which corresponds to null current and a potential value given by [67]:

!
© o/
Esim EG’ _ Ec,l +Ec,2

Cross C 2 (4' 1 86)

The dimensionless theoretical ADDPV curves for a reversible EE mechanism at
a disc electrode of radius 74 = 50 pm, with a pulse amplitude |AE| = 50 mV and
different values of the difference between the formal potentials of both electro-
chemical steps, can be seen in Fig. 4.22. In all cases, ADDPV curves have a center
of symmetry at the crossing potential, E;;(‘)“ss given by Eq. (4.186). So, the determi-
nation of this point helps to extract the formal potentials accurately. Besides being
easier to measure than the potential or width of a peak, the ES™  value is
independent of the pulse amplitude, the electrode size and shape, and the difference

between the formal potentials, so this diagnosis criterion is very general.
For the AE® values considered in Fig. 4.22a, ADDPV curves show two peaks
(a maximum and a minimum) of the same height that increase with AECG until

reaching a maximum value for AE® > 200 mV corresponding to an apparent

simultaneous two-electron E process of (see also Sect. 3.3). The ESM  value

moves continuously toward more positive potentials as AECe increases. For more
negative AEC9 values, the ADDPV voltammogram splits into two as the stability of
the intermediate species O, increases, being the limiting value of AEC9 required for

this split function of the pulse amplitude AE values (AECQI < —100 mV in the
conditions considered in Fig. 4.22b). As a result, four peaks (two maxima and
two minima) and three crossing potentials (E, i, E;‘g‘“, and E_ ) can be identified.

Expressions for the values of these potentials are obtained from Eq. (4.185) by
finding the roots of the equation for the ADDPV current [62]:
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Fig. 4.22 Influence of
AECe’ on the

dimensionless ADDPV
curves (71 /7, = 100) for a
reversible EE mechanism
(calculated from

Eq. (4.185)) at a disc
electrode of radius rq4 = 50
pm. IAEI=50 mV,

7, =10 ms,

D=10" cm? s7!, E?{ =
0V, T=298 K. The values
of the difference between
the formal potentials of both
electrochemical steps are
shown on the curves.
Reproduced with
permission of [62]
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Fig. 4.23 Comparison between experimental curves for 1.25 mM pyrazine at an SMDE at
pH= 1.0 in HC1O4 + NaClO, adjusted to ionic strength 1.0 M (dotted lines) and theoretical curves
for an EE mechanism with AEfJ = —117mV (see Eq. (4.185) for a spherical electrode, solid
lines), for different values of the pulse amplitude |IAEI (shown in the Figure). 7; = 1,7, = 0.05s,
T=298.15 K, A=0.011 cm?, D =0.781 x 107> cm? s~'. Reproduced with permission of
reference [67]

g(K,A) = 4K>A® + 16K%A° + 24K?A* + 16K2A%+ (4.188)
+4K? + A% — 4KA® — 12KA* — 4KA? '
and A given in Eq. (4.183).

The extreme crossing potentials E.; and E., do depend on the difference
between the formal potentials (through K) and the pulse amplitude employed
(through A) and they move apart when K decreases. When the ADDPV curve
shows three crossing points, the values of the formal potentials can be easily and

accurately extracted from the analysis of the E, ;, Ecsrigés, and E_, values. For very

negative values of AECG/ the determination is immediate since two well-resolved
signals are obtained with the characteristics of the ADDPV voltammograms of
one-electron reversible processes. Thus, the extreme potentials coincide with the
corresponding formal potentials: E. ;(K — 0) — Ece; and E.»(K — 0) — Ece;
When only one cross potential is obtained, the formal potentials of both steps can be
obtained by fitting the experimental ADDPV voltammograms with theoretical
curves calculated for different values of AE?I, once the value of Efd has been
determined from ES™ .

An experimental example of the application of ADDPV to the determination of
the formal potentials of the two steps can be seen in Fig. 4.23, corresponding to the
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reduction of pyrazine at an SMDE in aqueous acidic media for pulse times7; = 1s
and 7, = 0.05 s and different values of the pulse amplitude. All the curves shown in
this figure are, as expected, coincident at the symmetry center, E‘f;g;, independently
of the pulse amplitude IAEI. It is also observed how only two peaks are obtained for
high values of |AEI, but the typical behavior of four peaks described above is

achieved by decreasing IAEl. These curves provide the value ES™ = —367 mV

Cross

and from the difference between the extreme crossing potentials a value of AECG/
= —117mV is obtained, from which it is immediately deduced that Ef} = —308.5
mV and E9, = —425.5mV vs. Ag/AgCl, KCI (1.0 M).

4.5 First-Order Chemical Reactions Coupled to Charge
Transfer Processes

As discussed in Sect. 3.4, the study of electrode processes coupled with homo-
geneous chemical reactions is frequent in different fields like organic
electrosynthesis, ecotoxicity, biosciences, environmental studies, etc. [4, 10, 68—
70]. In this section, double pulse techniques will be applied to the study of these
processes. These techniques present important advantages like their great sensi-
tivity and the significative reduction of capacitative and background currents,
which allow an enhanced resolution of the registered signals [4, 10]. Among the
wide range of this type of processes, our study will focused on three reaction
mechanisms (see Scheme 4.1V), the first- or pseudo-first- order catalytic, EC and
CE processes for which analytical expressions for the current in these double
pulse techniques can be obtained when planar or spherical electrodes are
considered.

k

Cte2BaC Catalytic mechanism (a)
ka
ky
B2C+e 2D  CE mechanism (b) (4.1v)
ka
k
A+e2B2C  EC mechanism (c)

2

4.5.1 Catalytic Mechanism at Disc, Spherical, and Planar
Electrodes

The current corresponding to a catalytic mechanism (reaction scheme 4.IVa) when
a potential pulse E is applied to a planar electrode for a time 0 < #; < r; when the
diffusion coefficients of both species B and C are assumed as equal was deduced in
Sect. 3.4.1 and is given by [71, 72]:
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Icat,plane é/
bw =T;Eﬁ“§% 1) (4.189)
with
1 — Ken

cat -~ 4.190
I TFon ( )

e ki + ko
cat = f \— 4.191
. plane@fl) (\/7714*61' (\/){_1)> D ( 9 )
K=" (4.192)

Cc

¢ =ci(1+K) (4.193)
X = (ki + ko)t (4.194)

andn, = F (E | — ECG, ) /(RT). Note that K is the inverse of the equilibrium constant

(see also Sect. 3.4).
When a second potential pulse E; is applied for a time 0 < 7, < 75, due to the
linearity of the mass transport operator, the solutions can be written as

2 1 ~(2
i (v,0) = i (v,0) + & (3, 12) (4.195)
@0 = (0,0 + 2 (x,00)

where c](y(x, t) and C(C1>(x, 1) are the solutions corresponding to the first potential

pulse (for t =71 + 1) and 51(3 (x,1;) and E<C2 )(x, tp) are the new unknown partial

solutions. The boundary value problem for this second potential is

=0, x>0 o5 (1) = ) (x,1) (4.196)
th >0, x — oo CX) (lx) .

th >0, x=0,

2,s)

2 = enc}d (4.197)

with ci(z’s) being the surface concentration of species i (with i=C or B) for the
second potential pulse and 1, = F (E2 - E?) /(RT).

As in the case of the first potential pulse (see Sect. 3.4.1), it is convenient to
introduce the variables ¢ and ¢®,


http://dx.doi.org/10.1007/978-3-319-21251-7_3
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D (x,1) = ¢V (x,1) + @ (x, 1) }
@ (x,0) =W (x,0) + P, 1) = ¢ (4.198)

with ¢ and ¢V being the solutions found for the first potential step (see
Egs. (3.180), (3.184), (3.185) and (3.188a)), and ¢ and £ are given by

p? = (51(32> (x,12) — Kg(cz) (x, lz))e<’<l+kz)(n+t2) (4.199)
0 =P (x,0) + P (x,1) = 0 (4.200)

From Egs. (4.197) and (4.198), it can be deduced that

. et
y@_eC

B lqen (4.201)
2o ¢
C T l4en
1 — Ke™
—(kitk)(ri+02) p(25) 2 RE T F
. P ron C (4.202)

with ¢ being the value of ¢ at the electrode surface.

Note that the expressions for the surface concentrations of species B and C given
by Eq. (4.201) are similar to those corresponding to species O and R of a simple
charge transfer (see Egs. (4.25) and (4.26)), (although in the case of a catalytic
mechanism K refers to the inverse of the chemical equilibrium constant of species B
and C).

The boundary value problem for the second potential pulse can be written solely

in terms of the function a(z)’

=0, x>0 ~2) _
£ > 0. ¥ — 00 } ¢ =0 (4.203)
th >0, x=0,
RS 1—-Ke” 1—Ken
—(ki+ko)t £(2,8) _ a(kit+ke)m _ *
e Pt =e < o T on )C (4.204)

Equations (4.203) and (4.204) are analogous to Egs. (3.191a)—(3.192a)
of Sect. 3.4.1 corresponding to the first potential pulse applied (by changing

5(2,@ by ¢®), except in the value of the constant in the surface condition
which is given by ¢"(1 — Ke™)/(1+eM) in the first case (Eq. 3.192a) and by


http://dx.doi.org/10.1007/978-3-319-21251-7_3
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http://dx.doi.org/10.1007/978-3-319-21251-7_3
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elbithn (111% N E fe?,T‘)C* in the second (Eq. 4.204). It is clear that the mathe-

matical expression of e’(k‘”Q)’Za(z) will be identical to that obtained for

e~ (hitk)(@+2) 4(5) (Eq. (3.192a) of Sect. 3.4.1) except in the value of this constant.
Thus, the current for the second potential pulse is given by

I;at,plane B a(,g) -
FAD ox |

— 1 ef(k1+k7 T|<H‘2 a¢ _|_ ef(k]ﬁ*kz T|+f2 a¢
1+K CO0x COx ’
x=0 x=0

(4.205)

It can be deduced easily that the rigorous expression of the current is

I;at,plane C* ) . . .
D TR A 1) + 25" e ()| (4.206)
with
7 — (1 +K)(—— ! (4.207)
2 1+en 14en

xr = (ki + ko)t (4.208)

and Z and fii;,. given by Egs. (4.190) and (4.191), respectively, but with
x1 = (k1 + k2)(z1 + 1) in this case.

Equations (4.189) and (4.206) for I ?at’pla"e and / gat’pla"e at a planar electrode can
be extended to spherical and disc electrodes by changing the expression of the

electrode area and function_}"gj‘;ne by the corresponding f g;he andf %, being [73, 74]

fe 1 cal
splze()(m’ rS) = r_ + fplatne()(m) m=1,2 (4209>

1 ki +k
Sl 1) = A [T T T () m=1,2 (4.210)
d

with


http://dx.doi.org/10.1007/978-3-319-21251-7_3
http://dx.doi.org/10.1007/978-3-319-21251-7_3

4.5 First-Order Chemical Reactions Coupled to Charge Transfer Processes

A . o (G
TasC(y E) = ¢ +erf(\/x,,) +0.2732 A J eXp[
0

N Em

0.39115
+0.2732 S exp(—;(m— : ) m=1,2
m m
D(T] =+ l‘2)
R L
rq
VDt
&=
rq

11 = (ki + k) (71 + 1)
X = (ki + k)t

295
0.39115 4,
N —5—214 du+
m
(4.211)
(4.212)
(4.213)

Under conditions of kinetic steady state (i.e., by making 0¢/0t = 0 which is
fulfilled for (k; + k2)t, > 1.5 [73]), the expressions of the current for the first and

second potential pulses become

*

I(l:at,G,ss B éa 1 —Ken 1

FAcD 1+K 1+en §8
I;at,G,ss _ é«* 1 — Ke™ L
FAGD 14K 1+en §8

where
plane __ D
! kl —+ kg
5sphe _ 1
Ttk 1
KiThka £
D —i_rS
5disc _

\/k1+k2+05465 k1+k2\/— J exp(

0.39115
v

-1
£u2>du]

(4.

52

(4

(4.

(4.

214)

215)

216)

217)

In the case of disc electrodes, the reaction layer given by Eq. (4.217) is an

average value.

4.5.1.1 Reverse Pulse Voltammetry

In RPV technique, the second potential pulse is applied after a first potential pulse
under limiting conditions (i.e., E; — —o00, Z; — 1; see Eq. (4.190)), with E, being
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scanned in the positive direction. With these conditions in Eq. (4.206), it is obtained
(751,

e _ ¢
FAGD 1+K

[fcat ) 4 antfcat(xz)] (4218)

with y; and y, given by Eq. (4.213), {* by Eq. (4.193) and f&'(y;) and f &' (y,) by
Eq. (4.191) for planar electrodes (G = p), by Eq. (4.209) for spherical electrodes
(G =y), and by Eq. (4.210) for disc electrodes (G =d). The cathodic and anodic
limiting currents are

cat,G %
[ngVlc _ C fcat ) (4 219)
FAGD 1+4+K° ’
ICRdIt’\gjl a g* at
= fé K ““ 4.220

which, for the particular case of a spherical electrode, can be written as,

Icat,sphe % 1 p 2
RPV.Lc _ & et 1; 2 peat () (4.221)
S

FAD 14K / prane

cat, sphe
IRpvhe & K (L), ke pime 1) _ Fotane (22) (4.222)
FAD 1+ K\rs D 1K ol '

From Egs. (4.221) and (4.222), it is clear that both limiting currents increase
when the electrode radius decreases and, when the chemical reaction is irreversible

K = 0), the anodic limiting current I°%*™ is independent of the electrode size.
g RPV,la p
The formal potential of the electroactive couple can be obtained as the value of
the potential £, at which

17 cat s At s
cat, sphe o cat, sphe cat, sphe
I (B8 ) = 3 [mwnts — | (4.223)
and by combining Egs. (4.221) and (4.222)
1 ki +k
cat, sphe cat, sphe 1 2 a
IRIEV?I,C + IR;V?l,a = Py + D [‘):la[ne (r2) (4.224)

is obtained.
Under conditions of a kinetic steady state with y, > 1.5, Eq. (4.218) simplifies to
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*

L™ ¢ 1
- 42— 4205
FAGD Trr! T+ 2l5s (4.225)

r

and the limiting currents (Egs. (4.219) and (4.220)) become

cat, G, ss *
IRPV,I,C é 1

FAGD ~ 1+K6C

(4.226)

Iipvia _ —KC 1
FAcD 1+ K6°

(4.227)

Thus, independently of the electrode geometry, the sum of Egs. (4.226) and
(4.227) leads to

[cat,G, ss Ical,G, ss 1
RPV,1,c RPV.La| _ * (4228)
FAGD  |FAgD| &C

where 5? is given by Egs. (4.215), (4.216) and (4.217) for planar, spherical, and disc
electrodes, respectively

The influence of the duration of the second potential pulse 7, on the experimental
RPV voltammograms corresponding to the catalytic process of Ti(IV) in the
presence of hydroxylamine at an SMDE electrode can be seen in Fig. 4.24. These
curves show the evident influence of 7, on the anodic currents owing to the presence
of the catalytic process is evident. By using Eq. (4.224) by supposing that the
chemical step is irreversible (i.e., K =1 /Keq = 0), the value of the rate constant
ki = (1.90 £ 0.05) s~! has been reported [75].

4.5.1.2 Differential Double Pulse Voltammetry

The response corresponding to DDPV technique can be obtained by subtracting the
expressions of 1% and I5"S given by Eqs. (4.189) and (4.206), respectively, by
making 7; > 7,, such that

Algsey _ ¢
Fagh 11K /6 b do) (4.229)

with f&"(y2, gc) being the function corresponding to planar, spherical, or disc elec-
trode given by Egs. (4.191), (4.209), or (4.210), respectively, fory = y, andgg = rsor
qg = rq for spherical or disc electrodes, respectively. The DDPV voltammograms
thus obtained are peak shaped being the peak potential (when the current is plotted
versus the average potential £, » = (E; + E)/2) and the peak height,
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Fig. 4.24 Experimental RPV voltammograms for 1.04 mM Ti(IV) in 0.2 H,C,04+0.07 M HCl
+0.1 M NH,OH. The radius of the SMDE is r; = 0.0226cm, 7 = 1.5s, T =298 K. The values of
7, (in s) are (a) 0.020, (b) 0.030, (c) 0.040, (d) 0.050, (e) 0.060, (f) 0.070, (g) 0.080, (h) 0.090, and
(i) 0.100. Reproduced from reference [75] with permission

peak :
Exp = £9 (4230
AIcat,peak = FA-D Cx fcat()( )t h L|AE‘ (4 231)
popy  — FAGE T e T 6 Wy 96) TN rp '

Under kinetic steady state conditions, the expression of the DDPV current
becomes

®

cat,G,ss
Al DDPV_ __ C dti

= 3 4.232
FAGD — 1+K? 8 (4.232)

with 69 given by Eqgs. (4.215)—(4.217) for the three-electrode geometries

T
considered here.
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The voltammetric behavior of the first-order catalytic process in DDPV for
different values of the kinetic parameter y,(= (k; + k2)72) at spherical and disc
electrodes with radius ranging from 1 to 100 pm can be seen in Fig. 4.25. For this
mechanism, the criterion for the attainment of a kinetic steady state is y, > 1.5
(Eq. 4.232) [73-75]. In both transient and stationary cases, the response is peak-
shaped and increases with y,. It is important to highlight that the DDPV response
loses its sensitivity toward the kinetics of the chemical step as the electrode size
decreases (compare the curves in Fig. 4.25a, c). For the smallest electrode
(ra = rs = 1 pm, Fig. 4.25c), only small differences in the peak current can be
observed in all the range of constants considered Thus, the rate constants that can

be determined in DDPV if conditions rg &~ Z.\/D [ (k1 + k2) (T (x5, &) ! for a disc

electrode or ry >~ +/D/(k; + kz)( < (rp) ) ~ fora spherical one are fulfilled (see

plane
Eqgs. (4.191), (4.209)—(4.211)).
In all the cases shown in Fig. 4.25, the peak potential corresponds to the formal

potential of the charge transfer process, E{" peak Ee with this behavior being

characteristic of the catalytic mechanism and of reversible charge transfer processes
(reversible E mechanism; see Eq. (4.85)). The half-peak width (W) is indepen-
dent of the electrode geometry and size and the catalytic rate constants and is given
by

RT [1+A>+4A+ \/(1 + A% +44)° — 44
WI/Z =—In (4233)

Frolteasaa— /(1447 140 —an?

with A = exp(F|AE|/2RT) (see Eq. (4.183)).
The peak height of the DDPV curves is highly sensitive to the parameter A
(= r& (ki + k2) /D) value which can be used for the determination of the cata-

lytic rate constants. In the case of spherical and disc electrodes, the expression of
the peak height can be written as [73, 75]

A Icat ,sphe, peak /1. D —X2
DDPV = YR (1 +\//_1(e—+erf(\/;(_2)>)tanh( |AE|)
FAD Is V2 RT

1+K \/zDr,
(4.234)
A[cat, disc, peak D
DDPV _VviPn ( + \/_lesc()h,é))tanh <4RTAE|> (4.235)
F AdD 1+K \/7[1)17 fd

Thus, in Fig. 4.26 working curves corresponding to the variation of the dimen-
sionless peak current of the catalytic mechanism for spherical and disc electrodes
with the parameter &, = /Dt /rg are plotted. For a given experimental system,
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Fig. 4.25 Effect of the electrode radius and the chemical kinetics on the DDPV responses of a
catalytic mechanism calculated from Eq. (4.229) for disc and spherical electrodes. |AE| = 50mV,
71 =1 8,7 =0.0508,K = 1/Keq = 1, T=298.15K, and D = 10~ cm? s~'. The values of the
electrode radius r4 = rs and y, = (k; + k2)7, are indicated on the graphs. Dotted lines mark the
potential values where the response equals to the half of the peak height
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Fig. 4.26 Variation of the dimensionless peak current of a catalytic mechanism (solid lines) and
of a reversible E mechanism (dashed line) for spherical and disc electrodes with the parameter
/Dty /rg, with rg being the sphere or disc radius. The values of A (: & (ki + ka) /D) are
indicated on the curves. |AE| =50mV, 7y =1 s, 70 =0.050 s, K = 1/K.q = 1, T=298.15 K,
and D =107 cm? s~!

when the electrode radius and the diffusion coefficients are known, these working
curves help to determine the rate constants (k; + k, ) from the value of the
dimensionless peak current. The case k; + k, = 0 corresponds to a reversible E
mechanism (dashed line), which shows the linear dependence of the peak height
with &, at spherical and disc electrodes.

4.5.2 CE and EC Mechanisms at Planar Electrodes

Unlike the case of catalytic mechanism discussed in the previous section, the
theoretical study of CE and EC mechanisms (see reaction scheme 4.IVb, ¢) in
double potential pulse techniques is much more complex than that corresponding to
a single potential pulse since the surface concentrations of the species involved in
these reaction schemes corresponding to the application of the first potential pulse
are time dependent (see also Sects. 3.4.2 and 3.4.3). Due to this, only simplified
situations of these mechanism are considered in this section under planar diffusion

conditions. The treatment of both mechanisms at other geometries can be found in
[76-79].
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4.5.2.1 Reverse Pulse Voltammetry

This section deals with the solution corresponding to an EC mechanism (see
reaction scheme 4.IVc) in Reverse Pulse Voltammetry technique under conditions
of kinetic steady state (i.e., the perturbation of the chemical equilibrium is inde-
pendent of time; see Sect. 3.4.3). In this technique, the product is electrogenerated
under diffusion-limited conditions in the first period (0 < #; < 77) and then exam-
ined electrochemically during the second one (0 <# < 1,; see Scheme 4.2).
Therefore, this method is applicable to obtain information about the product
of the electrode reaction. Moreover, under RPV conditions, the first potential
pulse corresponds to diffusion-limited current conditions for the electroreduction
of species A and the expression of the current for planar electrodes is given by [79],

[E(lgvplcme _ Ipldne (Tl + 7-'2)
Ke™ 2 p
__ yplane EC, p v EC, p
la™ () | en F(Xz ) Jr/;C’P\/;M(XZ ﬂ)]
(4.236)
where 7, = F(Ez - E?,)/(RT) and
2v/Dt 1+K
EC,p 2
x> = Kérpla“e (1 + Ko > (4.237)
¥
= 4.238
L (4.238)
_ f
F(x) = ¥= xexp(x/2)%erfc(x/2) (4.239)
> x’“ 2k — 1)'zﬂ
M(x,p) = 1+ for x < 10
ﬁ ; { 2221( lk' )(l—|—2k)
b
=0

(4.240)

= k=1in . k
M(x.f) = VTP +fZ L

+i 1_12’_1)<1—§:21 2k — N2 )ﬂ> for x> 10

2 £ (k- 1)1(2k — 20 — 1)
(4.241)

and /2" and &P are given in Eqs. (4.49) and (4.215), respectively.
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The oxidative limiting current in linear diffusion (e”> — o0) is given by

EC,plane __ ;splane
Igpvia =1g1 (71 +72)

2
F(5Sr) + Ec,p\/éM(ﬁf;xp, )] (4.242)

2,0x

_ ]([l)’lelme (72 )

with

EC,p ZK\/DTQ

X2,0x = Splane (4243)
3

When the kinetics of the chemical reaction in solution is very fast with respect
to the diffusion transport, the resolution of the problem can be simplified by
noting that the concentrations of species B and C are in equilibrium at any point
and time (cg(r, 1) = cg, cc(r, 1) = c¢) and the reaction layer thickness (5P14") tends
to zero. Taking into account these considerations, the RPV current for the EC
mechanism is given by

EC fast, ple 12 1 ez
R ) ) () (424)

with 77y, = %(E — E;‘ﬁRPV) and Ef-ﬁisé,RPV being the mid-wave potential in the

limit of very fast chemical kinetics,

' RT _(1+K
Enarey = E& +—In (%) : (4.245)

Note that in this limiting case, the oxidative limiting current of the EC mecha-
nism is the same as for the E mechanism given by Eq. (4.72).

The conditions where Eq. (4.236) provides good results have been examined
by comparison with those obtained from digital simulation in [79] and it is
concluded that this solution gives rise to accurate results in RPV for (k; + k2)7;
> 5 (with 7, being the duration of the second pulse), with the error decreasing as
K increases and always less than 5 % for the value of the oxidative limiting
current.

The influence of the rate constants (k; + k,) of an EC mechanism with an
equilibrium constant K = 1/K.q = 0.1 is shown in Fig. 4.27. As expected, when
the second potential is set, like the first one, under diffusion-limited conditions for

the electroreduction of species A (i.e., E; — EC9 < 0, e” — 0), the corresponding

reductive limiting current I5s™™ is independent of the behavior of the product

species. At other E, values, the RPV current is affected by the coupled chemical
process. Hence for the range of (k; + k») values considered in the figure, the
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Fig. 4.27 Influence of the 14
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oxidative limiting current (Igpy,s ) increases in absolute value with the rate

constants.

The position of the voltammogram is also affected by the homogeneous chem-
ical reaction. Thus, the reductive RPV curve shifts toward more positive potentials
as species B is consumed faster by the chemical process. This shift can be easily
monitored by means of the mid-wave potential (E™! x5\, which helps to charac-
terize the chemical reaction as well as to determine the formal potential of the

electrode reaction, Ece,

For the limit of very fast kinetics, the RPV response is analogous to that of the E
mechanism but shifted toward more positive potentials (in the case of a reduction
process), the shift magnitude being dependent on the value of the equilibrium
constant. This can be observed clearly in Fig. 4.27 by comparing the curve for
(ky + k2)72 > 10° and for the E mechanism (empty points). From Eq. (4.245) it can
be inferred that the mid-potential value E,;q rpy Only depends on the equilibrium
constant, and is independent of geometric and kinetic parameters and coincident
with E} P [80].

The influence of K = 1/K., on the RPV curves is shown in Fig. 4.28. The
incidence of the chemical reaction on the voltammograms is more apparent as the
chemical equilibrium shifts toward the electroinactive species C, that is, for small
K values. Thus, the oxidative limiting current decreases and the voltammogram
shifts toward more positive potentials as K decreases. On the other hand, for high
K values the effect of the chemical step vanishes and the response of the EC
mechanism tends to that of a simple E process (open circles).

As can be deduced from Figs. 4.27 and 4.28, the value of the oxidative limiting
current provides a simple criterion to distinguish between the EC and E mecha-
nisms independently of the reversibility degree of the latter. Thus, when a follow-up
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chemical reaction occurs, the Irpy ox absolute value is smaller (or much smaller for
K < 1) than that expected for a simple charge transfer process.

According to these results, the characterization of the subsequent coupled
chemical reaction of the EC mechanism can be achieved with RPV by examining
the oxidative limiting current. The half-wave potential is also interesting in order to
determine the formal potential of the electrode process [79].

4.5.2.2 Differential Double Pulse Voltammetry

This section presents the solutions for CE and EC mechanism in DDPV technique
at planar electrodes under the approximation of kinetic steady state, which
are applicable to fast chemical reactions [72]. To obtain these solutions,
a mathematical procedure similar to that presented in Sects. 3.4.2 and 3.4.3 has
been followed for which it has been assumed that the perturbation of the chemical
equilibrium is independent of time (i.e., O¢y/0t= 0(cg —Kcc)/0t=0
such that the expression of the current for both mechanisms in DDPV (7, < 77)
is [77]

Alpsiv™ _ v/aDr; <(1 +K)(eh —em)
I(il?ne (é,*) Kérplane 1 + (1 +K)eﬂ]
EC, plan )
Alpppy™ — VaDr ((1 + K)(e" — eyl“)> <K + (1 +K)H(){EC)>H()(EC)
—, 1\

e (ch)  enPe \ 14K + Ke e :

> (14 H(x$5)H (£5F) (4.246)

(4.247)

where Igime, H(x), and &P are given in Egs. (4.49), (4.137), and (4.215), respec-
tively. Moreover,
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Fig. 4.29 Influence of the a 05
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cc Ko

As shown in Sects. 3.4.2 and 3.4.3, for the NPV response the condition 0¢/0f = 0
is not sufficient to obtain a time-independent current as in the case of a catalytic
mechanism. The DDPV curves for different values of the dimensionless rate
constant y, = (k; + kp)7, are displayed in Fig. 4.29. As can be seen, the
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Fig. 4.30 Influence of the inverse of the equilibrium constant (K) on DDPV curves for a CE
mechanism ( filled circle) and an EC mechanism (open circle) calculated from Egs. (4.246)—
(4.247). K values are marked on the curves. y, = 10?2, AE = —50 mV. 7, = 1s, 71/72 = 20. The
DDPYV response corresponding to a simple reversible electron transfer calculated from Eq. (4.81)
is also plotted (blue line). Taken from [77] with permission

behavior both of the peak current and of the peak potential is different for a CE
and an irreversible EC mechanism so that the reaction mechanism can be
established by changing the dimensionless rate constants through the experimen-
tal conditions, for example, the pH in the case of the reduction of an acid or the
ligand concentration in the case of the reduction of a metal complex. For a
preceding chemical reaction (CE mechanism, Fig. 4.29a), the faster the chemical
kinetics (i.e., the greater ySF value), the greater the AISED’E{?HC’Peak/Ig}?"C(C *), while
the DDPV peak moves toward more negative potentials. On the other hand, for
the case of an irreversible EC mechanism (Fig. 4.29b) the peak potential moves

.- EC EC,plane,peak ,yplane ,
toward more positive values as y,- increases, whereas Alppy My (cp)

remains practically constant for all the )(IZEC values considered.
The influence of the equilibrium constant on DDPV curves is shown in Fig. 4.30.

DDPV current increases and peak position approaches Ece/ as the chemical
equilibrium shifts toward the electroactive species (K < 1 (k; < k;) for CE
mechanism and K > 1 (k, > ky) for EC one with K = (1/Kcq)), up to a situation
at which the responses of both mechanisms overlap, being equivalent to that
obtained for a simple reversible E mechanism (blue line) since the effect of the
chemical step vanishes.

The complete characterization of the coupled chemical reaction can be
performed through the analysis of the peak current and peak potentials for different
values of (7; + 7;) and hence the rate constants of the chemical step for a given
value of K can be obtained [77].
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4.5.2.3 Additive Differential Double Pulse Voltammetry

The response of CE and EC mechanisms (see reaction scheme 4.IVb, ¢) in ADDPV
is the sum of the responses obtained in two DDPV experiments performed with the
same value of the pulse height and opposite sign,

lapbey _ v/aDTi f ((1+K)(e" — ) CEY\ 11 (,CE
[glzlme(c*) = K&rplane {( 1+ (1 —I—K)e”' )(1 +H()(1 ))H(ZZ,C)—F

() 0 memmes |

(4.252)
by _ VDt )(e" —em) (1+K) 0 xc
= K+-—FH H
Ié)l?ne (C*A 6”2 c5plane < 1+ K + Kem ) ( + el ()( )) ()(2 c)+
VaDz; [((1 +K)(en — ') (1+K) c
K+-—"H H
enz s gplane ( 1 +K + Ken ) ( + () ()(2 <)
(4.253)

where planar electrodes under the approximation of kinetic steady state have been
assumed and E; . = E; — |AE| and E, , = E; + |AE|, respectively.

For high values of the chemical rate constant, i.e., under conditions of a
diffusive-kinetic steady state (O¢/0f = 0 and consideration that diffusion only
acts on variable {; see Sects. 3.4.2 and 3.4.3), it is possible to find simple expres-
sions for the cross potentials of the ADDPV curves,

K
1
' RT 7k k)7

Eccrgqq ()(g,];:im > 40) = Ece + ?ln W (4.254)

' RT (1+K)
Elcarcoss ()(2 lim > 40) EG lnr (4255)

F +K
a(ki+ko)
with
2\/D‘L'2
)(g]im = Képlane (4256)
2D

5 2k (4.257)

2,lim — 6plane

and 5?1*““” given by Eq. (4.215). According to Eqs. (4.254) and (4.255), in the case of
very fast kinetics (k; + k» — o0) the cross potential tends to a value which only
depends on the equilibrium constant [78]:
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mechanism (K = 100,
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mechanism with an
irreversible homogeneous
chemical reaction
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The influence of the chemical kinetics is analyzed in Fig. 4.31 where ADDPV
curves are plotted for different values of the dimensionless rate constant
x>(= (k1 + k2) 72). For comparison, the curve corresponding to a simple, reversible
charge transfer process (E.) of species “C + B” for the CE mechanism and of species
A for the EC one has also been plotted (dashed line in Fig. 4.31a, b). As can be
observed, the behavior of ADDPV curves with y; is very different depending on the
reaction scheme. For the CE mechanism with K = (1 /Keq) = 100 (Fig. 4.31a), the
peak current increases and the peak potential shifts toward more negative values
as the kinetics is faster, that is, as y, increases. For very fast chemical reactions,
the ADDPYV signal is equivalent to that of a reversible E mechanism (E,) with

T
-0.2

(4.258)

(4.259)
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&= CE + c; although located at more negative potentials. A good agreement is
found between the value of the crossing potential of the ADDPV curves and that
predicted by Eq. (4.254) (error smaller than 3 mV for y, > 107).

For an electrode process followed up by an irreversible homogeneous chemical
reaction (K = 0, Fig. 4.31b), the peak currents are independent of the chemical
kinetics whereas the peak potential takes more positive values as y, increases
because the chemical reaction facilitates the reduction process by removal of
species B. In all cases plotted in this figure, the value of the crossing potential
can be evaluated with good accuracy from Eq. (4.255) (error smaller than 3 mV for
2> > 10%). With respect to the E mechanism of species A, in the EC response both
peak currents are smaller, and this effect is especially noticeable in the minimum
which is more affected by the follow-up reaction.

Therefore, we can indentify the reaction scheme by studying the variation of the
ADDPYV response when the y, value is modified through the experimental condi-
tions (for example, the pH or the ligand concentration) or the pulse duration.

The relative magnitude of the peaks of the ADDPV curve is also very informa-

tive about the electrode process [55, 81, 82]. It can be observed that for the CE
mechanism it is fulfilled that /"™ < |/P1**| whereas for the EC one I{;"" > [IPlae|.

This behavior contrasts with the case of the first-order catalytic mechanism
and with the reversible E mechanism for which the value of the peak currents is

equal (/5" = [I9%"|). Therefore, this simple criterion allows us to discriminate
between these mechanisms.

The chemical kinetics (y5), has no effect on the symmetry of the peaks in the
case of the irreversible EC mechanism (K = 0) under kinetic steady-state condi-

tions. On the other hand, for the CE mechanism the 2" /IP'| value does depend

on z, and it tends to 7§"" /|I?"°| — 1 in the limiting case of very fast chemical
reactions (see Fig. 4.31a).

The influence of the equilibrium constant on the ADDPYV curves for the CE and
irreversible EC mechanisms can be seen in Fig. 4.32. For a given y, value, the
magnitude of the signal diminishes and it shifts away from the formal potential as
the equilibrium is displaced toward the electroinactive species, that is, for large
K values in the CE mechanism and for small K values in the EC mechanism. In the
opposite limiting case, that is, when the chemical equilibrium is fully displaced
toward the electroactive species, the kinetic effects disappear and obviously the
signal coincides with that of a reversible charge transfer process (grey line).

The quantitative determination of the homogeneous rate constants can be easily
carried out from the values of the peak currents and the crossing potential of the
ADDPV curves [78]. The use of the crossing potential is very helpful since this
parameter does not depend on the pulse height (AE) employed and so can be
measured with good accuracy from several ADDPV curves obtained with different
AFE values. In addition, for fast kinetics the simple analytical expressions that are
available for E s (Egs. (4.254) and (4.255)) allow a direct determination of the
rate constants of the chemical reaction.
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Fig. 4.32 Influence of the inverse of the equilibrium constant K = 1/K.q on the ADDPV curves
for a CE mechanism [filled circle, Eq. (4.252)] and an EC mechanism [open circle, Eq. (4.253)].
x> = 100. The curve corresponding to a reversible charge transfer process (E,) is also plotted for
comparison [gray line, Eq. (4.106)]. |AE| = 50mV, 7; = 1 s, 71 /7, = 20. Taken from [78] with
permission

4.6 Triple Pulse Voltammetries

As highlighted in previous sections, double pulse techniques offer some advan-
tages over single potential pulse techniques by providing increased signal sen-
sitivity and eliminating most of the charge current. Multipotential pulse
techniques exploit these advantages, but the complexity of the diffusional-kinetic
problem compels the use of numerical methods to obtain the theoretical solu-
tions in many cases. Due to this, triple potential pulse techniques are an
interesting alternative, for which a brief introduction will be given in the present
section. These techniques present the advantage of a simple theoretical evalua-
tion of their response together with a higher versatility. Two triple potential
pulse techniques will be presented, Reverse Differential Pulse Voltammetry
(RDPV), which is a modification of the Reverse Pulse technique proposed
by Brumleve et al. [83], and Double Differential Triple Pulse Voltammetry
(DDTPV) [84-86].

4.6.1 Reverse Differential Pulse Voltammetry

Among double pulse techniques, RPV is the most powerful from the kinetic point of
view, due to the information it provides on the degree of reversibility of the
electrode process. This information is similar to that which can be obtained from
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Scheme 4.5 Potential— '

time waveform

corresponding to RDPV :
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Cyclic Voltammetry. However, experimental use of this technique has been
restricted almost exclusively to the analysis of the limiting currents of the signals
obtained. One reason for this could be that when a quasi-reversible electronic
transfer is analyzed in RPV, two very close waves are obtained, which are difficult
to resolve from an experimental viewpoint. This problem can be eliminated by
using the triple pulse technique Reverse Differential Pulse Voltammetry (RDPV),
proposed in references [80, 84, 85] and based in the application of the waveform
presented in Scheme 4.5.

Potentials £, and E, are chosen as in RDP technique, i.e., E; is constant and
it corresponds to a potential value at which the reduction process is controlled by
diffusion, whereas E, shifts to positive potentials. In RDPV, a potential E; is
chosen such that AE = E5 — E, is constant. I(l}, Ig’, and Ig’ are designed as the
faradaic responses corresponding to each of the potentials £y, E,, and E3, which
are applied during times 0 <t < 7y, 0 <1, < 1, and 0 < 73 < 73, respectively.
In RDPV, the representation of AIC = 13G — Ig versus E, is carried out, with Ig’
and IS being measured at times 73 and 7,, respectively, and with the additional
condition 7; >> (7 4 73) [87]. The records obtained are peak shaped, in contrast
to the waves obtained in RPV, with the corresponding analytical advantage that
this implies. In RDPV, the appearance of two peaks can be observed for an
irreversible simple electronic transfer. One of the peaks appears at more positive

U
potentials and the other at more negative potentials than the formal potential ECe .
The difference between the potentials of these peaks enables an approximate
determination of the value of the rate constant of the electrode reaction ko, while

the sum of these peak potentials is proportional to Ece/. Finally, the half-width of
the peak allows an approximate calculation of the values of the transfer coeffi-
cient of the cathodic process, @, in the peak which appears at more negative

potentials than ECe and of that corresponding to the anodic process, (1 — a), in

the peak that appears at more positive values than ECG/ Some examples of this
behavior can be seen in Fig. 4.33, obtained for different values of £° with 71=3
s, 7o = 0.3s, and 73 = 0.03s and AE = —25mV. For K° >0.lcm s~} only one
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Fig. 4.33 Plot of AIRS / T - .

15?2“3(13) versus E, — E® a

with I (t5) = FADcp,/
v/ zDt3 calculated from

Eq. (1) of reference [87]
withz=0, a = 0.5, Dg =
Dr =107° cm? s7!,
71=35817=03s1=
0.03 s,and AE = —25 mV.
The values of £° (incms™ Y
are (a) 1; (b) 5 x 1073;

() 107% (d) 5 x 107> and
(e) 1075, Taken from [87]
with permission
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Scheme 4.6 Potential—
time waveform
corresponding to DDTPV

Potential

Time

peak appears and its position and height are independent of the k° value,
i.e., under these experimental conditions, the electronic transfer can be consid-
ered as reversible. For k° < 5 x 107 cm s~! two well-developed peaks can be
observed.

4.6.2 Double Differential Triple Pulse Voltammetry

In this technique, three potential steps, £, E,, and E; are successively applied
during times 0 <t# <7;, 0 <t <15, and 0 <13 < 73, respectively, with the
condition 7; > (12 + 73), and the differences AE; = E; — E; and AE, = E; —
E, are of equal sign (see Scheme 4.6). Thus, AI¥ =17 —IF and AI§ =19 — I
also result in the same sign. The signal registered in DDTPYV is [84-86]:
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Isprpy = Al — AIY =15 =207 +1 (4.260)

which is plotted vs. E,.

The form of the signal is similar to the second derivative of the NPV curve and
when the time duration of the second and third potential pulses fulfills 7; = 27, /3,
the DDTPV response coincides with that obtained in ADDPV for reversible charge
transfer processes [88].
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Multipulse and Sweep Voltammetries I
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5.1 Introduction

In Multipulse techniques, the potential waveform consists of a sequence of potential
pulses Ey, E, . . ., E},, and the initial conditions of the system are only regained after
the application of the last potential step [1-6]. When the potential waveform is a
staircase of constant pulse amplitude |AEI, the perturbation includes as a limiting
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situation a potential sweep (obtained when |AE| — 0 at a given scan rate; see
below). Therefore, the case of sweep techniques (like Linear Sweep Voltammetry,
LSV, and Cyclic Voltammetry, CV) is considered here as a limiting behavior of the
potential staircase." The application of a multipulse perturbation enables us to
reduce the experimental time necessary to obtain a whole current—potential
response, but makes the theoretical treatment more complex. These methods offer
a number of advantages for quantitative studies, mainly well-defined and mostly
peak-shaped responses where undesirable effects are greatly minimized. Thus,
these techniques are highly valuable in mechanistic and kinetic quantitative studies
using the broad theoretical framework available.

In this chapter, several Multipulse techniques are analyzed: Multipulse
Chronoamperometry (and Chronocoulometry), Staircase Voltammetry (SCV),
and Linear Sweep Voltammetry (LSV). Both SCV and LSV techniques can be
used in cyclic mode, giving rise to Cyclic Staircase Voltammetry (CSCV) and
Cyclic Linear Sweep Voltammetry, commonly denoted as Cyclic Voltammetry
(CV). Note that both SCV and LSV register the current—potential signal, but they
can also be used to register the charge—potential signal in the Voltcoulommetric
modalities of these techniques (although the current is the usual magnitude to be
recorded and the charge has been only used for some particular situations, mainly
for immobilized molecules).

It is of interest at this point to compare the study of Multipulse Chronoam-
perometry and Staircase Voltammetry with those corresponding to Single Pulse
Chronoamperometry and Normal Pulse Voltammetry (NPV) developed in Chaps. 2
and 3 in order to understand how the same perturbation (i.e., a staircase potential)
leads to a sigmoidal or a peak-shaped current—potential response as the equilibrium
between two consecutive potential pulses is restored, or not. This different behavior
is due to the fact that in SCV the current corresponding to a given potential
pulse depends on the previous potential pulses, i.e., its history. In contrast, in
NPV, since the equilibrium is restored, for a reversible process the current—poten-
tial curve is similar to a stationary one, because in this last technique the current
corresponding to any potential pulse is independent of its history [8].

General features of the potential-time perturbation and of the current—potential
responses characteristic of these techniques are:

Multipulse Chronoamperometry and Chronocoulometry

The simplest case of a multipulse technique corresponds to the record of the current
time (chronoamperometry) or the charge time (chronocoulometry) curves obtained
when a given sequence of successive potential pulses E;, E,, ..., E, is applied for
times 0 < ¢, <7, withn=1, 2, ..., p, as shown in Scheme 5.1.

! Note that digital instrumentation approximates the linear potential ramp as a staircase waveform
[3, 6, 7]. There is a good agreement between the linear and staircase currents for
ts/t = 0.25 — 0.30 for reversible processes (with 7, being the time between the application of
the potential pulse and the current sampling), if the potential step AE is less than § mV.


http://dx.doi.org/10.1007/978-3-319-21251-7_3
http://dx.doi.org/10.1007/978-3-319-21251-7_2
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Current—time response; (c)
Charge—time response
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Staircase Voltammetry and Linear Sweep Voltammetry in Single and Cyclic
Modes

In Staircase Voltammetry (SCV), a sequence of potential pulses of identical time
length 7z defining a “staircase” of potentials is applied to the system with no
recovery of the initial equilibrium at any moment of the experiment (see
Scheme 5.2). In this technique, the difference between two consecutive potential
pulses, IAE], is constant, and the ratio v = AE/z is defined as the scan rate.

When the pulse amplitude, AE, tends to zero and the scan rate is held constant
(i.e., the pulse duration also tends to zero in order to keep the ratio v = AE/z
constant), the potential-time perturbation applied in SCV becomes a continuous
ramp of potentials and so can be identified with the potential-time perturbation
applied in Linear Sweep Voltammetry (LSV,?; see Scheme 5.2).

If the potential is inverted at a given value (inversion or final potential) until the initial
potential is reached again, the two above techniques are denoted Cyclic Staircase
Voltammetry (CSCV) and Cyclic Voltammetry (CV), respectively (see Scheme 5.3).
The potential waveform in CV can be written as a continuous function of time

E(t) - Einitial —vt for ¢ S tiny }

E(t) = Efinas +vt  for > tiny (5.1)

where f;,, is the time at which the scan is inverted and the scan rate is v = dE/dt.
This waveform can be obtained as a limit of the discrete perturbation applied in
CSCV, which is given by

Ej:Einitial_(j_l)AE for j:1, 2, ,N/2
N
E; = Efina + (j—2>AE for j>N/2 (5-2)

where AFE is the constant difference between two potential pulses denoted as
“pulse amplitude” and N the total number of potential pulses applied in the cyclic
scan. In a general way, a good coincidence is obtained between CSCV and CV for
|AE| — OmV [5]. It is important to highlight that a true linear sweep or cyclic
voltammetry is not applied in modern digital potentiostats for which the real

Scheme 5.2 Potential scv LSV
1 1 Discrete measure of the Current / Charge Continuous measure
waveform apphed in SCV 9 of the Current / Charge

and LSV (limiting behavior
obtained when |AE| — 0 for
a fixed scan rate)

m
=

Potential

m

Time

2 This technique was originally called “Stationary Electrode Polarography” [9, 10].
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Scheme 5.3 Potential
waveform applied in (a)
CSCV and (b) CV
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perturbation is that given by Eq. (5.2) [3, 4, 6, 10]. A comparison between CVSC
and CV is made in Sect. 5.2.3.1 in order to analyze the effect of the discretization of
the potential perturbation.

In the following sections, the behavior of soluble solution species giving rise to
simple charge transfer reactions (electronic and ionic) is analyzed. The case
corresponding to more complex reaction mechanisms is the subject of Chap. 6.

5.2 Reversible Electrochemical Reactions

Let us consider the fast electrode reaction
O+e =R (5.0)
when species O and R are soluble in the electrolytic solution. In this section, the

response of this electrode process in the different multipulse techniques described
in Sect. 5.1 is analyzed.


http://dx.doi.org/10.1007/978-3-319-21251-7_6
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5.2.1 Application of a Multipulse Sequence to Electrodes
and Microelectrodes of Any Geometry

The expressions for the current—potential response of the electrode process given in
reaction scheme 5.1 when a single potential pulse and two successive potential pulses
are applied at electrodes of any geometry are given in Sects. 2.6 and 4.2.1, respectively.

Let us consider now a potential waveform consisting of a potential pulses
sequence £y, E,, ..., E,, with each pulse of the sequence E, being applied to an
electrode of any geometry G over the interval 0 < ¢, < 7,. The total time of the
experiment is

p—1
[:Z‘[m—i—tp (53)
m=1

In the following, it is considered that the diffusion coefficients of species O and
R are equal (Do =Dr =D), except in the case of macroelectrodes (planar
electrodes).

The mass transport of species O and R is described by the differential equations:

dctp)

=0 = DV (5.4)
p
(p)

aacf =DV (5.5)
p

with V? being the Laplacian operator given in Table 2.2 and cg’ ) and c(l{' ) the
solutions of Egs. (5.4)—(5.5). The boundary value problem is given by

TR R T 59
(p-1) p> 1

t[’ = O’ q Z qs CE)I;) = C8’71), Cl(2p> = CR
tp >0, q=¢,
cgp’s> + cf{""s) =co+ g (5.7)
L‘E)p7s> =elr c]({p’S> (5.8)
with
F o
1= 122 59
¢ and ¢ are the surface concentrations of species O and R corresponding to

the application of potential £, and c(, and cy the initial concentrations of these


http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_2
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species. Since no restrictions have been considered in the electrode geometry,
q refers to spatial coordinates (e.g., » in the case of spheres and cylinders, x and
y in the case of bands, and r and z in the case of discs), ¢° to the value of g at the
electrode surface, and cgp Y and c](zp D are the solutions corresponding to the
application of the (p — 1) potential, £ ,_;.

Given that the operators of Fick’s second law are linear, the expressions for the
concentration profiles of species O and R corresponding to the pth potential pulse of
the perturbation can be written as a linear combination of solutions:

1 _ .
¢"@n=¢""g0+c"@q). i=0.R (5.10)
2,3, ...
where ¢,” (¢, t) are unknown functions of coordinates and time to be determined and

p—1
V=g +> &g,  i=0.R (5.11)
m=2
p=23,...

By taking into account Egs. (2.149)—(2.153) for the application of the first
potential pulse, Eqgs. (4.4)—(4.22) for the application of the second one, and apply-
ing the Induction Principle, it is possible to express the boundary value problem for

any potential p of the applied sequence in terms of the unknown functions Ei(p ) (g,1),

in the following general way:

~(p)
aCOp :Dv}&/(ol))
at(f’ (5.12)
a'cv p)
R — sz’(‘:(p)
ot R
t,=0, g>¢°
tp, >0, g— o0
g0 = (g,0) =0 (5.13)
tp, >0, q=4q"
e e =0 (5.14)
~(ps) _ o =ps)  E e s
e = emreh? +W(CO+CR) (5.15)

Moreover, for any potential pulse E,,, the following is fulfilled (see Egs. (5.7) and
(5.8)):


http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_2
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(s _ & (eo tcx)
(P9 —
LA el (5.16)
o
clps) _ o
eﬂp

Egs. (5.12)—(5.15) show that the boundary value problem has the same general
form for any pulse potential p, whatever the geometry of the electrode.

This generalization clearly demonstrates that the superposition principle can be
rigorously applied whatever the electrode geometry [5, 8]. The expression for the
current corresponding to the application of the pth potential pulse £, can be written
as (see Egs. (5.10)—(5.11))

15 (o o) & oz
P _ (Y0 | _ (L% 0 5.17
FAGD (an » \9ax qﬁ,; dax ), 17

with ¢° and gy being the coordinates at the electrode surface and the normal
coordinate, respectively.
Equation (5.17) shows that the current Ig’ can be written as a sum of contri-

butions due to the different potential pulses of the sequence which are only effective
from the moment when each particular potential pulse is applied. By taking into
account Eq. (2.156), Eq. (4.29), and Egs. (5.10)—(5.16), it is possible to rewrite
Eq. (5.17) as

16 p

P _ (m—1,s) (m.s)
FAGD ; (CO ~ ¢ ) f (tm. - 4c) (5.18)
where

cg]’s) = ¢, (5.19)

Superindex “G” refers to the particular electrode geometry considered, gg to the
characteristic dimension of the electrode considered, and f is given in Table 2.3 for
several electrode geometries. 1, , is given by

p—1
tup = Tji+1, (5.20)
Jj=m

From Egs. (5.16) and (5.18), the variable Z,, which is independent of the
electrode geometry, can be defined as

an—l,s) . C(m,s) 1 1

y— - 0 _
ot R 14+emm 1+ el

m>1 (5.21)


http://dx.doi.org/10.1007/978-3-319-21251-7_2
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with

F / *
e’ = exp <R—T(Eeq - E?)) - E—O (5.22)
R

E.q is the equilibrium potential given by Nernst’s equation. From Eqs. (4.28)—
(4.29) and Egs. (5.19) and (5.21)—(5.22), the current IS’ can be written as

)4
= (1+c/c0) > Znta(tm. pr4G) (5.23)

m=1

G
P
FAGD ¢},
5.2.2 Multipulse Chronoamperometry

In this technique, the analysis of the current—time responses corresponding to the
application of a sequence of potential pulses without the reestablishment of the
equilibrium between them is carried out. The usefulness of this technique lies
mainly in the determination of diffusion coefficients of the electroactive species
when only two potentials are applied, as discussed in Sect. ‘4.2.2. Nevertheless,
there are also other analytical applications, which are presented in this section.

5.2.2.1 Planar Electrodes

In planar geometry, the condition of surface concentrations of species O and R
when they are only potential dependent remains valid for any potential pulse of the
sequence, even when the diffusion coefficients of species O and R are different (see
Sect. 2.2 and [1, 5, 8]). Thus, it is possible to deduce the following simple
expression for the concentration profiles of species O and R for any potential
pulse of the sequence under these conditions:

(1) _ox ( (1s) _ *) x
) 1) = ¢ ) . fc| ———
' (v, t)=c¢ + (¢ ¢ Jer 0(2\/D_ot
p i=0,R
Py ( (ms) _ <m—1,s>) x
¢V (x,t) = C; c; erfc > 1
S 3 (e o | K
(5.24)
with ™ (i=0 and R) given by Eq. (5.16), ¢ by Eq. (5.19), " =5,

erfc(x) = 1 — erf(x), and erf(x) is the error function. The expression of the current
under these conditions is


http://dx.doi.org/10.1007/978-3-319-21251-7_2
http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_4
http://dx.doi.org/10.1007/978-3-319-21251-7_4
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L s CR/Co Z” (5.25)
FADO o = /ﬂDotm » '
with
1 1

y— — m=1,2, ..., p (5.26)

1 4 ye'in 1+ ye'n-1

Do

=, /== 5.27
" =\/Dy (5.27)

and e™ given in Eq. (5.22)
A situation of special interest corresponds to the application of a “square wave”
(SW) potential of the form,

£ { —Eqs  odd steps (5.28)
Eaps even steps

with E,,s being the absolute value of the potential applied. When E — Foo (with

the upper sign referring to the odd steps and the lower one to the even steps), the

response corresponds to a diffusion-controlled process for the cathodic and anodic

currents, and Eq. (5.25) is simplified to

Iplane,SW )4 —1 m+1

FADO(,O o 1/77:D0tm p

with
=(p—-m+ 1)z (5.30)

when all the pulses have the same length. The influence of the presence of the
reaction product R on the currents obtained for the application of six potentials can
be seen in Fig. 5.1.

From this figure it can be seen that the presence of species R only affects the
second and subsequent transient currents by causing an increase of the absolute
value of the current with (cg/c).

If the length of all the pulses is the same, and the current is measured at the end
of each pulse, the expression of the current is [1, 5, 8§, 11],

II;)]ane,SW :( R/‘ /y zf’: 1)m+1 b= 1.2 (5.31)
FADo ¢, VDot — Vp-m+1 , 2, ... _

If the number of potential steps p is high enough, the sum of terms in Eq. (5.31)
tends to a constant value (0.6045 for odd pulses and —0.6050 for even ones). Thus,
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Fig. 5.1 Current-time response calculated from Eq. (5.29), with 2™ = IP!** / (FA\/Docp //7),
corresponding to the application of six potentials with |EabS — Ef"| = 0.5 V. The values of the
ratio (cg/c) are: 0, solid line; 0.5, dashed line; 1, dashed-dotted line; 2, dotted line. Do = Dg,
71 = ... =16 = 7 = 0.1s. The potential waveform applied has been plotted in the inner figure

under these conditions, the cathodic and anodic responses will be repetitive, i.e., an
“ultimate state” is achieved, and under these conditions, the bulk concentrations of
species O and R can be easily determined [1, 12].

5.2.2.2 Spherical Electrodes and Microelectrodes

For spherical geometry when diffusion coefficients of species O and R are identical,
the following analytical and explicit expression for the concentration profiles of
species O and R can be obtained,

(1) * (1,5) «\1's r—rs
¢ (rt)=c¢ + (¢ —¢ |—erfc
i =el+ Voo (55)

P
(p) - (m,s) (m—1,8)\"'s r—rs
¢V (r,t) = E (ci —¢ )—.erfc —
— r 2,/Dty,

i=0,R
p>1

(5.32)

with ci("”s> (i=0, R) given by Eq. (5.16). For this electrode geometry, the expres-
sion of the current can be written as

sphe plane sphe, ss
I; Iy I3

-+

FADC,  FADC, ' FADC
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with
pldne

(1
FADC, Dco + c&/%) Z , /ﬂDtm S
- (1) e (5.35)

FAD cg Ts 1+ e

(5.34)

In the case of the square wave perturbation presented in the previous section,
Igla“e is given by Eq. (5.29) with y = 1 and

sphe, ss

[oltjid _ = l
FA{Dcy s (5.36)
5™ (/<o)
FAD cg T's

For very small electrodes, the response attains a stationary character, since the
second term in the right-hand side of Eq. (5.33) becomes dominant.

The influence of the electrode size on the current—time curves calculated from
Eq. (5.33) for two values of the ratio (cg/cg) is shown in Fig. 5.2. Thus, when
species R is not present in the solution, the anodic chronoamperograms tend to zero
very quickly, whereas when (cg/cg) =1 both cathodic and anodic chronoam-
perograms increase in absolute value as the electrode radius decreases, and their
values are coincident with the respective cathodic or anodic stationary values
(Eq. (5.36)) and this becomes faster the smaller the size of the electrode.

5.2.3 Cyclic Staircase Voltammetry and Cyclic Voltammetry
at Electrodes and Microelectrodes of Any Geometry

In this section, general Eq. (5.23) will be applied to Cyclic Staircase Voltammetry
(CSCV) and Cyclic Voltammetry (CV). Note that for CSCV the length of each
potential pulse is identical, i.e., 7y = 7, = --- = 7, = 7, and the current is usually
measured at the end of the application of each pulse in such a way that the time
elapsed between the measurement of mth and pth currents is given by Eq. (5.30).

Moreover, it is more convenient to write a dimensionless expression for the
current as

G P
. 5.37
l//p FA(;COV aD ( )
with
F
a=-" (5.38)
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Fig. 5.2 Current-time response calculated from Eq. (5.33), with ¢ 3P = [ e/ (FAsv/Doco /7).
corresponding to the application of six potentials with |EabS - Eﬁ } = 0.5V. The values of the
ratio (cg/cgy) are 0 and 1. The values of the radius of the spherical electrode (in microns) are:
25, solid line; 10, dashed line; 5, dashed-dotted line; 1, dotted line. Do = Dg,
T1=...=1=7=0.1s

where v is the scan rate. By inserting Eqgs. (5.30) and (5.37) in Eq. (5.23), the
expression for the current in CSCV is

e - \/g(l e /e)> Zufal(p—m+ De.g) (5.39)

m=1

where function f; corresponding to the mth potential pulse (see Table 2.3) has to be
calculated for each time (p — m + 1)z (with 1 < m < p). A complete C++ code to
calculate the response of reversible charge transfer processes in Cyclic Staircase
Voltammetry at disc, spherical, and cylindrical electrodes of any radius is given in
Appendix J.


http://dx.doi.org/10.1007/978-3-319-21251-7_2
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Equation (5.39) is valid both for CSCV (in which the current is measured in a
“discrete” way) and for CV (in which the current is measured as a “continuous”
function of potential or time; see Eq. (5.1)). Eq. (5.39) allows us to give the current
as a function of time instead of the more usual potential dependence. In order to use
this equation in terms of the potential, it has been considered that

Ep_mt1 — Einii
tm,pz(p—m+1)rzw (5.40)
and in this way one obtains
G % % P
v =(1+cx/co)D Znfa(9m pr &) (5.41)
m=1
with
D
=== (5.42)
aqg
1 1
Zn = - 5.43
" 1+ eInedin 1+ edn-1e9n ( )
F

——(Ep-mt1 — Einitia1) m<N/2
Iy = KT (5.44)

R_T(Ep7m+1 — Einitiat + 2Efinal) m > N/2
O = (E — Euia) (5.45)

m — RT m initial .
F o

Iin = ﬁ(Einitial —E, ) (5.46)

with (N/2) being the number of pulses of each scan. G refers to the geometry of the
diffusion field considered and ¢ is the characteristic dimension of the electrode.
The parameter £g depends on the electrode geometry through ¢g. The expression of
f6(Om,p, Ec) is given in Table 5.1 for different electrode geometries. Note that the
calculation of q/l(;’ with Eq. (5.39) (in terms of time) or Eq. (5§.41) (in terms of
potential) is equivalent.

Under CV conditions (|]AE| — 0, i.e., for pulse amplitudes which fulfill |AE]|
< 0.01mV), in Eq. (5.18), it can be written

(m-15) _ (ms) A (ms) o (ms) P
co —ch Acy dey F . gomein

— I~ =—(¢ ) >1 (547

AE AE g~ rr\Cot ) (I +etmet)? (5:47)

Using this mathematical identity and Eq. (5.43), it is possible to rewrite
Eq. (5.41) as
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¢ 11— (c;/cg)es‘e‘gi"

cv = 1+ ededn fa (91, 5, a)
C e A9ePnelin
+ (14 cx/c ——— T (I, ps € 5.48
1)y (b)) s
with
AY = d |AE]| (5.49)
CRT '

Note that Egs. (5.41) or (5.48) should be used for A9 values below 3.8 x 107
(i.e., for |AE| < 0.01mV and T=298 K). In the following sections, when this
condition is assumed, the current is denoted as 1//8\,.

5.2.3.1 Planar Electrodes

Equation (5.41) is applicable to any electrode geometry when Do = Dg. In the case
of planar electrodes, it becomes

yhe = (1+ /o) Y Zn——— (5.50)

m=1 z 19"7, P

To use Eq. (5.50) under CV conditions, values of |AE| < 0.01 mV must be used.

Unequal Diffusion Coefficients

It is possible to deduce an analytical expression for the CSCV or CV current—
potential response at planar electrodes when Dg # Dr by following a procedure
analogous to that presented in Sect. 5.2.1. In this case it is obtained

plane
plane __ u P

Yo T FAc,aDo

:(y+c;’;/cg)z": 1 B 1 1 (5.51)
4 1 J'_ }/e&me&in 1 + yelgm—l e19m ﬂ'tgm’ » ’

m=1

with 8, ,, given in Eq. (5.44) and y = \/Do/Dr.

This is the only case in which a rigorous explicit expression of the cyclic
voltammogram has been deduced by considering unequal diffusion coefficients
for species O and R. When the electrode geometry is considered, it has not been
possible to obtain an explicit solution and Fick’s second law differential equations
need to be solved using numerical procedures.
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When c; =0 Eq. (5.51) coincides with the following well-known expression
(deduced by Nicholson and Shain at planar electrodes using Laplace transform
method; see Appendix H and [9]):

' Iplane T
plane Ccv

= 0= —vlat 552
VeV = Fack Jabg xan) (5.52)

with

F
at = R—T(Eini[ial - E(l)) (553)

with E(#) given by Eq. (5.1). Function y(at) can be obtained by solving numerically
the following integral equation:

at
x(2) 1
dz = 5.54
L Jai—z 1+ 0@ (5:54)

with ¢ = exp(F (B — ) /RT).

Several examples of applications of Eq. (5.50) valid for CSCV and CV are
shown in Fig. 5.3. The influence of the pulse amplitude AE (with AE > 0.0l mV) at
planar electrodes with a scan rate v=50 mV s~', where only the oxidized species
(Fig. 5.3a) or both species (Fig. 5.3b, c) are initially present in the electrolyte
solution, can be clearly seen. The CV curves (white dots) have been included for
comparison.

From these figures, it can be observed that the transient current—potential
response corresponding to a Nernstian charge transfer process at a planar electrode
presents a pair of peaks, one for the first scan and another for the second, whose
separation increases and whose height decreases as IAE| increases. Figure 5.3b, ¢
show that this effect is similar when both species are initially present. In this case an
initial anodic (Fig. 5.3b) or cathodic (Fig. 5.3¢c) current can also be observed in the
cyclic voltammograms when sweeping toward cathodic or anodic potentials,
respectively. It is notable that for |AE| = 0.01 mV there are negligible differences
between the SCV curve calculated from Eq. (5.50) and the CV one (Egs. (5.52)-
(5.53) with c; = 0, white dots) in all the situations considered. This confirms the
validity of Eq. (5.50) to analyze SCV and CV curves. In order to compare experi-
mental and theoretical data, this equation allows us to fit experimental results to any
staircase waveform, instead of that given by Eq. (5.52), which is valid only for
Cyclic Voltammetry.

The expressions of the peak parameters are
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Fig. 5.3 Application of a
Eq. (5.50) to the study
of the influence of AE (with
AE > 0.01mV) on the
y/;l*’“e — E curves with

v=50mV s, where only
the oxidized species (a) or
both species (b and c) are
initially present in the
electrolyte solution. White
dots correspond to the y2u™
—E curve calculated from
Eq. (5.52) for cg = 0 and
numerically by following
the procedure given in [21,
22] for ¢y # 0. The values
of IAE| appear on the
curves. Ejpiia(in V) =0.3
(a, b) and — 0.3 ().

Do =Dr = 103 cm?s7.
Reproduced from [8] with
permission

E-E?' /mV

300 200 100 0 -100 -200 -300

— Peak current

. . [FD
[Pk () 446F Ach \/aDo = 0.446FAch /R—Tov (5.55)

This is the well-known Randles—Sev&ik equation, which establishes a linear
dependence between the peak current and the square root of the scan rate for a
reversible process under linear diffusion conditions [23, 24]. For a typical value
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of T=298 K, Ain cm?, D incm?s ', & in mol cm 3, vin Vs~ !, and Ipl"me"[’e"lk
in A, Eq. (5.55) becomes
12y = (2,69 x 10°)A+/Docoy/v (5.56)
— Forward peak potential, Eg;'ff
EPMe — By, - L. 109 Ej,—-28mV (T =298K)  (557)

with E} » being the half-wave reversible potential for planar diffusion given by

Eq. (2.32) (= E® +%CIn\/Dr/Do ). Another interesting point of the
voltammogram is the half peak potential, which is the potential at which the
current is the half of the peak current. This value is of importance when the peak
of the I-E curve is very broad and/or badly defined, and it is given by

It
EPSC = Ef ), + 1. 09 = Ej,, +28mV (T =298 K) (5.58)

Note that both the peak and half peak potentials are independent of the scan rate
in agreement with Eqs. (5.57)—(5.58). This behavior can be seen in Fig. 5.4,
where the voltagrams corresponding to a Nernstian process for different scan
rates in the range 50-500 mV s~ ' have been plotted.

Concerning the peak potential and peak current of the reverse (second) scan, it is
important to take into account that the shape of the reverse current depends on the
switching potential (i.e., the last potential of the first scan, Eg,,). This especially
affects the measurement of the reverse peak current, for which different criteria
have been reported [9]. It should be noted that these criteria are ambiguous and it is

Fig. 5.4 Influence of the 57 mV

scan rate on the 1 1 = T
ane * - c

voltammograms 600 | 1"/ (FACOD)/ cm b B

corresponding to a planar
electrode calculated from
Eq. (5.50) with

AE =0.01 mV for different
values of the scan rate 200 -
(shown in the Fig. in
mV s 04
Do = Dr = 107 cm?s ™!,
c; = 0. Vertical dashed
lines mark the location of
the anodic and cathodic
peak potentials. The black ~400 - Ef:é:ier | E.';‘iﬂi -
dot corresponds to the Y

so-called isopoint

400 ~

-200 -

300 200 100 0 -100 -200 -300
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Epleme

more appropriate to focus on the measurement of the reverse peak potential, peak.r-

E plane

peak, £| T 35 mV, the second peak

If the potential is inverted at a value |Egpa| > ’

potential will be unaffected by the switching potential [9, 25]. Under these condi-
tions, the difference between the peak potentials of both scans corresponding to
planar electrodes is

1 RT
AEPY = 2.2187 =57mV (T =298 K) (5.59)

From Egs. (5.57) and (5.59), it follows immediately that the midpoint between
cathodic and anodic peak potentials coincides with the half-wave potential (see also
Fig. 5.4):

plane plane
plane _ Epeak, f + Epeak,r _Ef 5.60
midpoint 2 - F1/2 ( . )

There is another characteristic point in the voltammogram known as the
“isopoint” [25, 26]. At the isopoint, the current is zero regardless of the scan rate
(see black dot in Fig. 5.4). In reference [26], the following numerical expression

was reported to determine the difference between the peak potential of the forward
plane plane

scan, E., ¢ and the potential of the isopoint, E;;"™, in terms of the switching
potential Egpap:
RT F RT
1 1 1
E;’ezﬁff . Eilzoane = 060?111 (R—T’Eﬁna] — Egezﬁ?f ) — 1609? (5.61)

5.2.3.2 Spherical Electrodes

The expression of the dimensionless current obtained for a Nernstian process at
spherical electrodes can be deduced from Eq. (5.39) (see also Table 5.1),

sphe lane sphe, ss
vy =Wy ‘Hl/cpvl = Dret (/o)
e, L —ePref (ch/ch (5.62)
= (14+cx/c E Zm + &
( R/ O)m:1 \/;m 5 (1+eigpe(9in)

with &, Zp,, 9 and u/pclf,“e given by Eq. (5.43), (5.45), (5.46) and (5.50), respec-
tively. Moreover,

sphe, ss 1 - es ])egin (C;/Cg)
= 65 (1 +68,,et9;n)

cv (5.63)
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In the most usual case where only the oxidized species O is initially present
(c; = 0) and the potential scan starts at Ejpjga > Ef} ’ (i.e., e — 00), Eq. (5.62) is
simplified to,

ghe o 1 1
y& = Zn + &, (5.64)
m=2

\/7[19771,[7 (1 +elgpe'9in)

with & given in Eq. (5.42) and in Table 5.1.

Equation (5.64) is equivalent to the following expression deduced by Reinmuth
by using Laplace transform and assuming equal diffusion coefficients of species O
and R and c;; =0 [27],

sphe plane «D 11— e
ICV :ICV +FASCO}"_W (565)

with 6 = exp(F (Einial — ECG/) /(RT)), see Appendix H, and Igléne and at given in
Egs. (5.52) and (5.53), respectively.

From Eq. (5.62) or (5.65) it is clear that when the electrode radius decreases the
second term in the right-hand side of both equations becomes dominant and the
current becomes stationary (see below). Thus, the typical peak-shaped signal of
macroelectrodes evolves toward a sigmoidal or quasi-sigmoidal shape, indicative of
stationary or quasi-stationary behavior, and therefore, under these conditions, the
peak is no longer an important feature of the signal.

To check this behavior, in Fig. 5.5 are plotted the voltammograms corresponding
to a planar electrode calculated from Eq. (5.50) (Fig. 5.5a), those calculated from
Eq. (5.63) for different values of the electrode radius (Fig. 5.5b), and, finally, the
current corresponding to a spherical electrode, calculated as the sum of these two
contributions (Fig. 5.5¢). Thus, the decrease of the electrode size leads to an
increase of the dimensionless current of the spherical electrode and to a change
of the voltammogram shape in the way indicated above. For small electrodes (see
curves in Fig. 5.5¢ for a radius ¢ = 10 microns), the peak of the second scan has
disappeared and that corresponding to the first scan is poorly defined. Therefore, in
these conditions the determination of thermodynamic parameters of the experi-
mental systems under study lies in the study of the half-wave potential of the
voltammograms (see below).

Expressions for the peak parameters similar to Egs. (5.55)—(5.57) have not been
reported since, in this case, they also depend on the electrode size. Thus, the
separation between cathodic and anodic peaks increases as the electrode radius
diminishes (for example, AE;S?; = 73mV (T =298 K) for ry = 0.01 cm) [25]. The
usual approach for spherical or, in general, nonplanar electrode geometries is to use
numerical simulations to get an optimal fitting of a particular experimental
voltammogram with a given set of parameters (formal potential, diffusion coeffi-
cients, etc.).
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Fig.5.5 w&, — Eresponses a
calculated with

AE=0.01 mV from

Eq. (5.50) (a, planar

electrode), Eq. (5.63) 0.2 A
(b, stationary contribution

0.4 4
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to the' response of a 3 00
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Although it is not possible to deduce analytical expressions for the peak currents
and potentials for spherical electrodes, the “isopoint” can be analytically charac-
terized, as in the case of planar electrodes (see Sect. 5.2.3.1).

The cyclic voltammograms corresponding to a spherical electrode of radius ry
= 10 microns by using three values for the scan rate (10°, 10%, and 10 mV s~ ") are
shown in Fig. 5.6. Figure 5.6a, b shows the planar (Ipclf,"e; see Egs. (5.37) and (5.50))

and stationary (I%°%; see Eq. (5.63)) contributions, respectively. Figure 5.6¢
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Fig. 5.6 Current—potential a
curves for a Nernstian
process in Cyclic 0.016 -
Voltammetry. (a) planar
contribution, Egs. (5.37)
and (5.50); (b) stationary < 0,005 -
contribution, Egs. (5.37) R
and (5.63); (c) spherical w0
electrodes, Egs. (5.37) and
(5.62). r¢ = 10 microns, 0.000 -
D =10 cm?s7!,
T =298.15K, ¢y =0,
|AE| = 0.01mV. The
values of the scan rate 0.008
(in mV s™") appear in the b
curves. The coordinates of 0.016
the nonzero current isopoint v Vs =105 10% 10
(ELS™ — EZ', I,,) are L
shown in figure (c). < >
. < 0.008
Reproduced with o
permission from [25] %f
0.000 -
-0.008
C
0.016 -
Iiso'
< 0.008
~
£
0.000 -
-0.008

corresponds to the real current that would be expected for a spherical electrode
(Eq. (5.62)). As can be seen, planar and spherical curves present a common point in
the reverse branches of the current—potential curves obtained at different scan rates
which corresponds to the “isopoint.” The current corresponding to this point,
regardless of the scan rate value and unlike the case of planar diffusion, corresponds
to a nonzero reverse current which is due solely to the stationary contribution,

which is independent of the scan rate (see Fig. 5.6b), i.e., 12:‘)36’1” = 12:"36’“ (Eiso). In
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this case, the expression of I can be easily calculated by making 24" = (

in Egs. (5.62) or (5.65). So it is deduced that

is FADcy 1
Isphe,lso _ S (6] 5.66
cv T's (1 _|_ elgisoelgin) ( )
where
F
19iso = E(Eissihe - Einilial) (567)

Equation (5.62) for the current—potential response in CV has been deduced by
assuming that the diffusion coefficients of species O and R fulfill the condition
Do = Dr = D. If this assumption cannot be fulfilled, this equation is not valid since
in this case the surface concentrations are not constant and it has not been possible
to obtain an explicit solution. Under these conditions, the CV curves corresponding
to Nernstian processes have to be obtained by using numerical procedures to solve
the diffusion differential equations (finite differences, Crank—Nicholson methods,
etc.; see Appendix I and ([28])3.

The influence of the diffusion coefficients in the voltammograms corresponding
to planar (a) and spherical (b) electrodes can be seen in Fig. 5.7, which has been
obtained by following the numerical procedure described in [21, 22]. It can be seen

in these figures that for planar electrodes the variation of y = /Do /Dg only causes
a shift of the voltammogram toward more negative potentials as y increases, but
has no influence on the peak current, in line with Egs. (5.55)—(5.56). In the case
of spherical electrodes, it can be observed that, together with the shift of the
curves toward more negative potentials, there is an increase of the peak current of
the second scan, which is more evident as the electrode size or the scan rate
decreases.

5.2.3.3 Other Electrode Geometries: Microelectrodes and Stationary
Voltammetry

For electrode geometries other than planar or spherical, the expression of the SCV
current is given, in general, by Eq. (5.41). For CV conditions, the current can be
obtained from Eq. (5.41) with |AE| < 0.01mV.

The effects of the pulse amplitude IAE! on the values of the peak potential of the
forward scan (EpGeak, . —E®) and the peak-to-peak distance (AEg’eak) of the
voltammograms calculated at discs (circles), spheres (squares), bands (hexagons),
and cylinders (triangles) for three different values of the scan rate are shown in Fig. 5.8.

3See also: http://www.basinc.com/products/ec/digisim/ and http://www.gamry.com/products/
digielch-electrochemical-simulation-software/


http://www.gamry.com/products/digielch-electrochemical-simulation-software/
http://www.gamry.com/products/digielch-electrochemical-simulation-software/
http://www.basinc.com/products/ec/digisim/
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Fig. 5.7 Dimensionless a
current—potf:ntlal response y =172, 1,32
of a Nernstian process in 0.4 4
CV calculated for planar (a)
and spherical (b) electrode
by using the numerical 0.2 1
procedure proposed in [21, o
22] (see also Appendix I). g 3
The values of the ratio y = > 00+
/Do /DR appear on the
curves. rg = 100 pum,
y=50mV s~ 0.2 4
10 5 0 5 -10
F(E-E®")RT
b (£-£)
0.6 - 7:\;1/2,1,\/5
0.4 1
2 02-
wsa
0.0 1
-0.2
y=~1/2,1,42
-0.4 . . .
10 5 0 5 -10
F(E -EY ) IRT

From these curves, it can be seen that in all the cases AEEeak increases and Egzak’f
is shifted toward more negative potentials as IAE| increases.

Concerning the influence of the scan rate, for v=1.0 V s~ ', no significant
differences are observed between the four geometries. These results indicate
that for high scan rates (i.e., low values of 7 for a fixed IAEl), the diffusional behavior
can be considered as almost planar, so the particular electrode geometry incorporates
only small differences in the current. An additional confirmation of this point is that,
as |AE| — 0 and the SCV voltammograms behave as CV (vertical dotted lines),
El?eak’ . —E® and AESeak approach the values observed in this technique for a planar
electrode (—28 and 57 mV, respectively; see Egs. (5.57) and (5.59)).

However, when v decreases (i.e., 7 increases for a given |AEL), the peak potential and
peak-to-peak distance show a strong dependence on the electrode geometry, which
clearly indicates that the values of f; function are very different for the four geometries.

The influence of the electrode radius on the cyclic voltammograms (¥S — E
curves) obtained for discs, spheres, bands, and cylinders in the more general case in
which both species are initially present in the electrolytic solution (c; / cg =1)is

1
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Fig. 5.8 Influence of the pulse amplitude IAE| on the values of the peak potential (Eg;ak, ;i —E® ’)

and the peak-to-peak distance (AEgeak) of the voltammograms calculated from Eq. (5.41) for discs
(circles), spheres (squares), bands (hexagons), and cylinders (triangles), for three different values
of the scan rate. rq =rs = (w/2) =r. =0.0lcm, cg/cy=0. 7=50ms, D= 10" cm?s™".
Vertical dotted lines mark the CV limits, i.e., the response of SCV with |AE| = 0.0l mV, which
can be considered as indistinguishable from that of CV. Taken from [8] with permission
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Fig. 5.9 Influence of the electrode radius on the cyclic voltammograms (y/gv — E curves)
obtained from Eq. (5.41) for discs, spheres, bands, and cylinders in the more general case in
which both species are initially present in the electrolytic solution (cg /cg = 1). The values of rq
=ry=(w/2)=r. (in microns) are shown in the figures. v =50mVs~'. =50 ms,
D = 107 cm?s~!. Taken from [8] with permission

shown in Fig. 5.9. In order to analyze the effects of the electrode geometry on the
dimensionless voltammetric current, discs, spheres, and cylinders with equal radii
have been chosen, as well as a band whose semi-width is identical to the cylinder
radius.

As can be deduced from these curves, the voltammograms present a more
sigmoidal shape as the electrode size decreases, such that for a small enough radius
a stationary I — E curve is reached at discs and spheres and, therefore, the current is
given by

1—elr (c* /ce )
G,ss R/ %0
Yev = T {6, micro (5~68)
or, alternatively,

1 —ePredn(cy/cg)
G,ss _ R/ €0
l//CVss - 1+ credn fG,micro (569)

with », = F/(RT) (Ep —Ece/). 9, and 9;, are given in Eqs. (5.45)—(5.46) and
fG.micro 18 given in Table 5.1 for different electrode geometries.
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By comparing Eq. (5.68) for the CV steady-state currents and Eq. (2.159) for
NPV under transient conditions, it can be deduced that at those electrodes where a
true steady-state response can be attained (spheres and discs) it holds that

w& _Iwev _ 1 —e"(cg/co)

G,ss - n
WeVige lac I+e

G = sphere, disc (5.70)

Gss - Gose . ,
where %y . is the value of ycy* for E — —00 (i.e., ey « = fG.micro)-

This behavior is not expected for microcylinders and microbands, for which only
quasi-steady-state curves are obtained (see Fig. 5.9c, d and Table 5.1).

In order to evaluate the conditions under which it is possible to achieve a
stationary cyclic voltammogram, a key parameter is Nernst diffusion layer thick-
ness, dg, which was introduced in Sect. 2.2.1 for reversible processes when a single
potential pulse is applied. It is possible to extend the definition of J to a multipulse
sequence, 85/, as

AC(P)
ol =0 (5.71)
¢ IS/(FAGDcS)
with
(Ps) (/e
Adp =1 o 17 (ck/<o) (5.72)

*
"
Co 1+4+¢r

and ],(f’ given in Eq. (5.23) (with |AE| < 0.01 mV for CV), which is applicable to any
electrode geometry.

In the case of spherical electrodes, Nernst diffusion layer thickness reaches the
following limiting behaviors:

anodic limit (5“ P

sphe>E>>E?/ = 1 B \/E
s VD (5.73)

cathodic limit <5r’ P ) =
sphe E<E® 1 v

I zDE ,

For planar electrodes, the limits of the diffusion layer thickness are

D
anodic limit (5;’1;1’8) o = \/:
E>E a (5.74)

. nDE
cathodic limit (52 e ) , P
P ) E<E® v
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The anodic limiting behavior of Eq. (5.73) is observed for E — Ece/ >95mV,
whereas the cathodic limiting behavior is observed for E — E® < —230mV with

errors below 1 % in both cases. From Eq. (5.73), it is clear that for £ < ECG/, 52;’}16

has a dependence on the electrode radius and time (=(E(f) — Eiyiial)/v) similar to
that obtained when only one potential step is applied (see Eq. (2.146)).

It is also possible to find expressions analogous to those given in Egs. (5.71) for
the limiting values of the diffusion layer thickness for other electrode geometries
like disc or band electrodes [29, 30].

The variation of 52;’}16 with the potential for different values of the electrode
radius obtained in CV with spherical electrodes, including the limiting case of a
planar electrode (r; — 00), can be seen in Fig. 5.10a. From these curves, which have
been calculated using Eq. (5.71) for a sweep rate v=0.1 V s~ ', it can be observed
that the diffusion layer thickness decreases with the electrode radius and the
constant value §:i)hpe =r is reached when rg < Spm (i.e., a truly stationary I-E

response is obtained as can be seen in Fig. 5.10b).

Fig. 5.10 Nernst diffusion (a) 100

layer thickness 8.7, rs (um)= (plane electrode) o
e 00

obtained in LSV (a) and 50 |
Cyclic Voltammograms (b)

corresponding to a spherical

electrode. These curves g 609
have been calculated from
Eq. (5.71)—(5.72) and (5.23) |
for |AE| = 107> mV and 50
v =100mVs~!. The values

of the electrode radii appear 20 1
on the curves. Reproduced 10
with permission [29]
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In the case of disc electrodes, a similar behavior to that observed for spherical
ones is obtained (although in this case the diffusion layer thickness is an average
magnitude), whereas for band or cylinder electrodes, the diffusion layer thickness is
always potential dependent, and no constant limit is achieved, even for very small
values of the electrode characteristic dimension, confirming the impossibility of
these electrodes achieving a true stationary response [5, 8, 16, 29, 30].

5.2.3.4 Effect of the Uncompensated Resistance and of the Double-
Layer Charging

One of the main disadvantages of voltammetric techniques like CV is the distortion
caused by the combination of the double-layer charging process with the ohmic
drop, related to the uncompensated resistance of the solution, R, (see Sect. 1.9).
This distortion can be very significant for macroelectrodes.

The ohmic drop causes the potential imposed between the working electrode and
the reference one (E') to differ from the applied potential (E), according to
E = E — IR,. Moreover, it can be assumed, at least approximately, that the current
can be expressed as the sum of a pure faradaic current because of the charge transfer
process plus a charging current

I= Ifaradaic + Ic (575)

For CV, the charging component is a function of the applied potential given

by [31]
_ (Einiliul’E)
Cqv (1 —e \ M ) direct scan

ICV,c - (E - )
. —Efinal
Cav (1 —2e \'ca ) reverse scan

with Cy being the double-layer capacitance, whereas in multipulse techniques like
SCV it takes the form (see Eq. (1.203))

(5.76)

AE ~(tz)
]SCV,C =+ R € FuCa (577)

u

with the double sign referring to the direct (upper) and reverse (lower) scans. To

deduce Eqgs. (5.76)—(5.77), it has been assumed that Cy; is potential independent.
The main difference between expressions (5.76) and (5.77) lies in the way the

current is measured in each technique. As stated in Sect. 5.1, in CV the current is
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measured as a continuous function of potential (or time, since both magnitudes are
proportional in line with Eq. (5.1)). In this sense, the charging current is also a
continuous function of the potential which is proportional to the scan rate (see
Eq. (5.76)), whereas the faradaic current depends linearly on the square root of the
scan rate when a planar electrode (i.e., a macroelectrode) is considered (see
Egs. (5.55)-(5.56)). However, in SCV the current is measured in a discrete way
at particular values of time (typically at the end of the application of each potential
pulse of the perturbation waveform). The expression of the charging current given
by Eq. (5.77) has been deduced in agreement with the waveform of SCV perturba-
tion (see Scheme 5.2 and Eq. (5.2)).

Note that for typical electrodes for which the R,Cq term is in the range of 10—
100 ps, it is possible to decouple the charging component of the current from the
faradaic one in the case of SCV, since for pulse times of the order of milliseconds, it
is fulfilled that I¢aagaic > I, and the distortion caused by /.. is much less significant
than that observed in CV, where this condition is not fulfilled.

In order to confirm this behavior, the cyclic voltammograms obtained at a planar
electrode in CV and SCV (for |AE| = 5mV) for a Nernstian charge transfer process
at different values of the scan rate are shown in Fig. 5.11. The effect of the ohmic
drop and charging current has been considered by including an uncompensated
resistance R, = 0.1KQ and a double-layer capacitance Cyq = 20pFcm 2,

As can be seen in this figure, the combined effect of ohmic drop and double-layer
capacitance is much more serious in the case of CV. The increase of the scan rate
(and therefore of the current) causes a shift of the peak potentials which is 50 mV
for the direct peak in the case of the CV with v = 100Vs~! with respect to a
situation with R, = O (this shift can be erroneously attributed to a non-reversible
character of the charge transfer process; see Sect. 5.3.1). Under the same conditions
the shift in the peak potential observed in SCV is 25 mV. Concerning the increase of
the current observed, in the case of CV the peak current has a value 26 % higher
than that in the absence of the charging current for v = 100 Vs~!, whereas in SCV
this increase is 11 %. In view of these results, it is evident that these undesirable
effects in the current are much less severe in the case of multipulse techniques, due
to the discrete nature of the recorded current. The CV response can be greatly
distorted by the charging and double-layer contributions (see the CV response for
v =500Vs~!) and their minimization is advisable where possible.

In order to avoid the distortion caused by these two effects, the usual approach is
to compensate the resistance R, by a positive feedback loop (this is imperative in
systems like plasticized membranes for which the uncompensated resistance can be
of the order of megaohms [32-34]). Another possibility is to use microelectrodes,
for which a decrease in the measured current is obtained which minimizes the
ohmic drop and charging current distortion (see Sects. 2.7 and 5.4.1).
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Fig. 5.11 Current—potential response of CV and SCV (for |AE| = 5mV) for a Nernstian charge
transfer process taking place at a planar electrode for different values of the scan rate (shown in the
figure). Dashed-dotted lines: Pure faradaic component (SCV and CV) calculated by using the
numerical procedure proposed in [21, 22]. Dashed lines: Charging current calculated from
Eqgs. (5.77) (SCV) and (5.76) (CV). Solid lines: total current calculated as indicated in
Eq. (5.75). R, =0.1KQ, Cg=20pFcm2, Area=0.05 cm? c5=1mM, cg=0,
Do =Dg = 10 cm?s™!
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5.3 Non-reversible Electrochemical Reactions

In this section, a non-reversible electrochemical reaction is considered according to
the reaction scheme:

O+e —=LR (5.11)
k(\x

where k.4 and k., are the rate constants for the electro-reduction and electro-
oxidation charge transfer processes, respectively. The particular expression of the
rate constants depends on the kinetic model considered (Butler—Volmer or Marcus—
Hush; see Sect. 1.7).

Due to the complexity of this situation, a rigorous explicit solution for the CV
current is not available, even for the simplest case of a totally irreversible process.
The case corresponding to a planar electrode is treated in detail and that
corresponding to nonplanar geometry is addressed briefly.

5.3.1 Planar Electrodes

The expression of the boundary value problem for reaction (5.1I) corresponding to the

application of a sequence of potential pulses Ej, E, ..., E, to a planar electrode is
aco 52
5, ~ Do g
P ) (5.78)
el 02clp)
R__ pg ‘R
oty 0x2
(1) ®
> D ~ =
ST OO} o C?} D ? 1) (5.79)
tp=0, x>0 oy’ =€y »CR g ., p>1

t, >0, x=0:

5cgp> B acf{’)
W) - n) e

dc) (p) (ps)
Do = kred pCOp kox pCRp (581)
x=0

Ox

Taking into account the relationship between the oxidation and reduction rate
constants (i.e., Kox, p = kreq, p€7» with p= F (E p— ECG’) /RT) whatever the kinetic
model considered, Eq. (5.81) becomes
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el \ .
DO < a(; = kred,p |:Cé)p" ) — e”"cl({” ):| (582)
x=0

To date, there has been no explicit solution for this problem for p > 3, since the
surface concentrations of electroactive species O and R are time dependent and
therefore the Superposition Principle cannot be applied (see also Sect. 4.3) [1, 5]. In
these conditions, a non-explicit integral solution has been deduced using the
Laplace transform method (see Appendix H).

Simple expressions for the peak parameters have been deduced by assuming a
totally irreversible reaction (i.e., kreq, p > kox, p). Considering the Butler—Volmer
kinetic scheme, the peak parameters are given by [9]:

— Peak current

Ilélslne,peak _ (299 % 105) /aDoAC'?)\/; (583)

which corresponds to a temperature 7= 298 K, with A in cm2, D in cm? s71 ¢
inmolcm >, and vin Vs~ In Eq. (5.83), a is the charge transfer coefficient.

— Peak potential
ane / RT a
EMe =ES — = <O.78 + 1n< })F )) (5.84)

Kplane

with &0

plane DeINg the dimensionless rate constant of the process for CV,

0 0
_ Kk (5.85)

0
K. 1.
plane /_Da DFv
\/ RT

and k° is the standard heterogeneous rate constant for the charge transfer
reaction. Also of interest is the difference between the peak potential and the
half peak potential,

RT 417

Eplane _ Eplane — 1857 — —
[¢4

peak, £ ) mV (T =298K) (5.86)

The peak parameters of the second scan are logically affected by the inversion
potential, as discussed for the case of the Nernstian process. If the switching of
the potential for the reverse scan is taken at |Efinal| > |Epeak, f| + 90mV, the peak
potential of the second scan is independent of Eg,, and in these conditions it is
fulfilled that the difference between both peak potentials is

RT
AEpealk =

a—Fln(v) -+ constant (5.87)
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Fig. 5.12 CV response 0
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A detailed numerical analysis of the influence of the reversibility of the charge
transfer process on the peak parameters for planar electrodes was reported in [35].
The voltammograms corresponding to a charge transfer process with different
reversibility degree taking place at a planar electrode are shown in Fig. 5.12. These

curves have been calculated for different values of Kglane. In agreement with
0

plane
to intrinsic parameters (a decrease of the heterogeneous rate constant of the
electrode process, ko) and/or extrinsic ones (an increase of the scan rate, v). In
line with the curves in Fig. 5.12, non-reversible processes will lead to voltammetric
responses exhibiting lower and wider peaks (a much more marked trend in the peak
of the reverse scan), for which the distance between cathodic and anodic peaks
increases. For totally irreversible processes, the peak current becomes independent

of the value of Kglane, in agreement with Eq. (5.83) and peak potential for the
0

plane®

Eq. (5.85), a decrease of the electrochemical reversibility (i.e., of k. ) is related

forward scan varies linearly with the logarithm of « as can be seen from

Fig. 5.13. The curves shown in this figure can be used as working curves to
determine a and £° once the formal potential is known.

Equations (5.83) and (5.84) and the curves in Fig. 5.12 indicate that both peak
current and potential of the CV curves change with the scan rate, a feature which is
not observed for the peak potential of reversible processes (see Eq. (5.57)). How-
ever, the experimental evidence that for a given system the potential peak of the
cathodic CV curves shifts to more negative values with increasing scan rate
should be used with caution when assigning a non-reversible behavior to the system
since, similar displacements can be observed for Nernstian systems when the ohmic
drop has an important effect (see Fig. 5.11). Thus, the shift of the CV peak potential
with the scan rate is not always a guarantee of a non-reversible charge transfer
process.
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5.3.2 Reversibility Criteria

From the voltammograms of Fig. 5.12, the evolution of the response from a

reversible behavior for values of . > 10 to a totally irreversible one (for 3,

< 0.05) can be observed. The limits of the different reversibility zones of the charge
transfer process depend on the electrochemical technique considered. For Normal
or Single Pulse Voltammetry, this question was analyzed in Sect. 3.2.1.4, and the
relation between the heterogeneous rate constant and the mass transport coefficient,
mo, defined as the ratio between the surface flux and the difference of bulk and
surface concentrations evaluated at the formal potential of the charge transfer
process was considered [36, 37]. The expression of m° depends on the electrochem-
ical technique considered (see for example Sect. 1.8.4). For CV or SCV it takes the
form
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1,/FA D
mey = | —"—— o/ oyl =mEn— (5.88)
Co—Co Ece’ (60 ) Ef’/

with [, and c(g ) being the current and surface concentration of species O
corresponding to the application of potential £, and (5C0'r P )E o the diffusion layer

thickness corresponding to a charge transfer process of any reversibility degree
calculated at Ece/. In the case of SCV or CV, it is not possible to obtain an analytical
expression for 5?; 7 However, in the absence of reduced species R, when
E,> EC9 /, the charge transfer process does not occur, and under these conditions,
the diffusion layer thickness is independent of the reversibility of the process and
takes the limiting value given in Eq. (5.74) (<5gla§e)E>>Eﬁ’ = M). By inserting
Eq. (5.74) into (5.88), one obtains )

mey = VDa (5.89)

In order to discriminate between reversible and non-reversible regimes, the
relation between the heterogeneous rate constant and the mass transport coefficient
can be defined:

0 0

0
—— =K, 5.90
mcv  /Da plane ( )

which provides an approximate reversibility criterion. Thus, in line with the
discussion in Sect. 3.2.1.4, the following approximate limits are suggested:

Kglane > 10 Reversible process
0.05 < ke < 10 Quasi-reversible process (5.91)
Kglane < 0.05 Totally irreversible process

These regions have been indicated in Fig. 5.13 for a = 0.5. Matsuda and Ayabe
suggest the following ranges for classifying the electrode process [35]: k. = > 15,

plane —
glane < 15, Quasi-reversible process; Kglane <1073,
Totally irreversible process. The reversible limit is similar to that proposed here,
but the totally irreversible one is clearly excessive (see Fig. 5.13). In any case, this
criterion has only an approximate character.

For other electrode geometries and sizes, the expression of the mass transport
coefficient is different because the electrode size becomes relevant and the values

of the dimensionless rate constant changes (see below).

Reversible process; 1073 <«
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5.3.3 Other Electrode Geometries: Microelectrodes
and Steady-State Voltammetry

For nonplanar electrodes there are no analytical expressions for the CV or SCV
curves corresponding to non-reversible (or even totally irreversible) electrode
processes, and numerical simulation methods are used routinely to solve diffusion
differential equations. The difficulties in the analysis of the resulting responses are
related to the fact that the reversibility degree for a given value of the charge
transfer coefficient a depends on the rate constant, the scan rate (as in the case of
Nernstian processes) and also on the electrode size. For example, for spherical
electrodes the expression of the dimensionless rate constant is

kO
0
Kophe = 57— 5.92
sphe % /—aD ( )

Equation (5.92) can be rewritten as

1 1 1

= o (5.93)
Ksphe Kplane Ksphe,ss
with Kglane given in Eq. (5.85) and
Kr,
0

Ksphe,ss = ?b (594)
Note that the stationary dimensionless rate constant, K(S)phe,ss, deduced for CV

(Eq. (5.94)) logically coincides with that obtained in SCV and also in NPV (see
Eq. (3.74)).
From Egs. (5.92)-(5.94), it is clear that K2 <kd <k that is, the

sphe, ss sphe plane’
maximum value of the dimensionless rate constant is that corresponding to a planar

electrode (macroelectrode). For smaller electrodes, K'(S)phe decreases until it becomes

identical to the value corresponding to a stationary response, K‘jphe_yss.
means that the decrease of the electrode size will lead to the decrease of the
reversibility degree of the observed signal. It can be seen in the CV curves of
Fig. 5.14, calculated for X° = 10 cms~" and v = 0.1 Vs~ that the decrease of r,
causes an increase and distortion of the dimensionless current similar to that
observed for Nernstian processes (see Fig. 5.5), but there is also a shift of the
curve toward more negative potentials (which can be clearly seen in Fig. 5.14b).

The voltammograms present a stationary behavior when the electrode size
decreases, and under these conditions, the following current—potential curves are
obtained for a microelectrode of geometry G when only oxidized species is initially
present [38]:

In practice, this
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Fig. 5.14 CV responses corresponding to a non-Nernstian charge transfer process at a spherical
electrode, calculated by following the numerical procedure discussed in [21, 22]. v = 0.1 Vs~!,
K =103cms™!, =05, ¢y =1mM, cg =0, Do =Dg = 10~>cm?s~!. The values of the
electrode radius (in cm) appear in the figure

G,ss 0 —an
G,ss __ 1 14 KG, 5sC

Vev = FAgcyVaD =< 1+ kg e (1 +e)

(5.95)

with &g given by Eq. (5.42). For the case of a microsphere (s, radius ), a microdisc
(d, radius ry), and a spherical nanoparticle (snp) adhered to a support (snp, radius
Tsnp)» the expression of K'OG’SS is (see also Sect. 3.2.5)
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5.3.4 Marcus—Hush Kinetics

In Sect. 3.2.6, the application of the Marcus—Hush formalist (MH) for the electrode
kinetics to Single Pulse Voltammetry was discussed. In Cyclic Voltammetry, most
researchers have used the Butler—Volmer kinetic model (BV) due to its greater
simplicity and to the vast body of data for the rate constant k° and the charge
transfer coefficient a of a huge number of experimental systems. More recently,
there have been several theoretical and experimental attempts to analyze the
application of MH to the electrochemical behavior of solution soluble molecules
at different electrodes or microelectrodes [39, 40]. For example, it has been shown
that this model does not conform to the Randles—Sev&ik equation for irreversible
kinetics, given in Eq. (5.83), which predicts a linear dependence of the peak current
with the square root of the scan rate [39]. The peak currents deduced by using MH
are smaller than those calculated with the BV, an effect which increases for lower
reorganization energies.

Different electrode processes have been analyzed with both MH and BV models,
and it has been concluded that MH is, at best, indistinguishable from BV for those
systems for which the charge transfer coefficient « is around 0.5. However, for
those systems for which BV predicts values of @ other than 0.5, the MH kinetics has
been unable to provide good fittings to the experimental CV curves of a number of
experimental systems (see, for example, Fig. 5.15 corresponding to the comparison
of the voltammograms for the reduction of 2-methyl-2-nitropropane at a platinum
electrode). This weakness of MH formalism arises from the use of a symmetrized
form of the Marcus theory, which assumes that the Gibbs energy curves of both O
and R species have the same curvature (and hence the reduction and electro-
oxidation reactions will have the same reorganization energy). In order to overcome
this limitation, a nonsymmetrical MH formalism has been presented [42] which
incorporates four parameters to model the potential dependence of the response: the
formal potential (ECG'), the rate constant (ko), the reorganization energy (4), and a
“symmetry parameter” (E).

With the asymmetric MH model, it has been possible to find a relationship
between the charge transfer coefficient o and the reorganization energy and sym-
metry factor:
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Fig. 5.15 Comparison of
experimental
voltammograms for the
reduction of 2-methyl-2-
nitropropane at a platinum
electrode (solid lines) with
best fist simulations using
BV (black squares) and MH
(white circles) kinetics at
two scan rates: (a)

50 mV s~ (b)

5000 mV s~'. Reproduced
with permission [41]
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Moreover, it has been also possible to obtain the kinetic parameters of different
electrochemical systems (see Table 5.2) derived from very good fittings. The
evaluation of the reorganization energy is not accurate since the experimental
voltammograms are relatively insensitive to A, with E being the main fitting
parameter within the asymmetric MH model. The fittings obtained with the
asymmetric MH model were in all cases indistinguishable from those produced
using the BV model (with both models being exactly equivalent in the limit of
large reorganization energies). Due to its easier nature, the BV model should be
used for the analysis of the voltammograms of solution soluble species [42].
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Table 5.2 Kinetic parameters obtained from the fitting of experimental voltammetry at mercury
hemispherical microelectrode and platinum disc microelectrode with the asymmetric MH model

Kinetic parameters

Redox couple Microelectrode Conditions k°(incm s~ and B

MeNP/MeNP*~ Hg (25.0 pm) 0.1 M TBAP, MeCN K =30x103==-031
254+0.2°C

NPent/NPent*~ Hg (28.5 pm) 0.1 M TBAP, MeCN K=13x1022=-0.14
26 £0.1°C

NPh~ /NPh*~ Hg (23.0 pm) 0.1 M TBAP, DMSO K =20x1022=-042
24 4+0.1°C

COT /COT*~ Hg (50.0 pm) 0.1 MTEABr,DMSO |1'=1.1x1025E=-0.22
254+0.2°C

TPE*/TPE Pt (25.0 pm) 0.1 M TBAPF4, DCM K =0.152 = +0.55
25+£0.2°C

Eu’t /Eu?* Hg (50.0 pm) 0.4 M KCl, H,O W =17x10*Z2 = +0.55
25+0.2°C

MeNP, 2-methyl-2-nitropropane; NPent, 1-nitropentane; NPh, 3-nitrophenol; COT, cycloocta-
tetraene; TPE, tetraphenylethylene; TBAP, tetrabutylammonium perchlorate; TEABT, tetraethyl-
ammonium bromide; TBAPF,, Tetrabutylammonium hexafluorophosphate; MeCN, acetonitrile;
DMSO, dimethylsulfoxide; DCM, dichloromethane [42]

5.4 Advantages of Using Microelectrodes

As is well known, the steady-state behavior of (spherical and disc) microelectrodes
enables the generation of a unique current—potential relationship since the response
is independent of the time or frequency variables [43]. This feature allows us to
obtain identical /-E responses, independently of the electrochemical technique,
when a voltammogram is generated by applying a linear sweep or a sequence of
discrete potential steps, or a periodic potential. From the above, it can also be
expected that the same behavior will be obtained under chronopotentiometric
conditions when any current time function I(¢) is applied, i.e., the steady-state /(¢)
—E curve (with E being the measured potential) will be identical to the
voltammogram obtained under controlled potential-time conditions [44, 45].
However, the stationary behavior cannot be established immediately and there is
always a time span necessary to reach it (see [16, 43]). Oldham theoretically
established that the time taken to attain a voltammetric steady state within an
error €% is given by the ratio 10*@*/(z°¢’D) for fast charge transfer processes, at
both hemispherical or disc microelectrodes, independently of whether the route to
the steady state is potentiostatic or galvanostatic (with d being the surface diameter
of the microelectrode, d = zr¢ for a microhemisphere, and d = 2r4 for a microdisc)
[46]. From the above statement, in order to obtain stationary /-E curves with an
error lower than 5 %, experimental times higher than 25 ms are required for
microelectrodes of radii above 1 pm for a value of the diffusion coefficient of
107> cm? s~'. In the case of slow charge transfer processes, the time that must
elapse before an €% approach to the steady state is attained at a spherical
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microelectrode is 10* x u? x d*/(z3¢*D), with u being the normalized steady-state
current given by Eq. (3.74) in the case of hemispherical microelectrodes [38, 47].

The use of electrodes of small size brings great benefits associated with the
elimination of undesirable effects. Some of these advantages are discussed in the
following sections.

5.4.1 Reduction of Ohmic Drop and Capacitive Effects

As stated in Sect. 5.2.3.4, there is always a potential difference generated by the
flow of faradaic current / through an electrochemical cell, which is related to the
uncompensated resistance of the whole cell (R,). This potential drop (equal to IR,,)
can greatly distort the voltammetric response. At microelectrodes, the ohmic drop
of potential decreases strongly compared to macroelectrodes. The resistances for a
disc or spherical microelectrode of radius r4 or ry are given by (see Sect. 1.9 and
references [43, 48-50]).

1
g (5.98)

sphere

u ) disc

Ry =—
) 27K

where « is the conductivity of the solution. Therefore, R, would increase as the
electrode radius decreases. However, the currents observed at microelectrodes are
typically six orders of magnitude smaller than those observed at macroelectrodes.
These small currents often completely eliminate the ohmic drop effects even in
organic solvents. As an example, for a solution with a typical value of specific
conductance of 0.012~'cm™!, the ohmic drop of a conventional macroelectrode
for a 1.0 mM solution of ferrocene is of the order of 5-10 mV, whereas for a
microdisc of 5 pm radius (i.e., R, = S0KQ in line with Eq. (5.98)), the IR, value is
lower than 0.1 mV [47].

Moreover, under steady-state conditions, the current obtained at disc or spherical
electrodes linearly depends on the radius, so the ohmic drop can be written as:

(5.99)

Note that Eq. (5.99) does not contain parameters related to the microelectrode
itself. Therefore, this equation applies to any steady-state microelectrode cell,
regardless of the shape and size of the electrode, and with the sole provision that
the cell has a geometry that permits a diffusive steady state and that the auxiliary
electrode is large enough to remain depolarized.

Another distortion reason is related to the charging of the “double layer” formed
at the electrode—solution interphase. The reorganization of solvent dipoles and ions
at the solution phase layer adjacent to the electrode as a response to the application
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of a potential to the electrode causes a charge reorganization leading to a
capacitative contribution to the response (/). While the steady-state faradaic
current is proportional to the characteristic dimension of the microelectrode, the
double-layer capacitance is proportional to the electrode area (for example, for a
disc electrode is given by C = m‘ﬁCdl, with Cy being the double-layer capacitance
per area unit). A decrease of the electrode area would logically lead to a decrease of
the capacitance and, therefore, the I/I, ratio will increase with the reciprocal of the
characteristic dimension. From the above, it can be concluded that it is possible to
carry out electrochemical measurements in much shorter time windows than those
typical for macroelectrodes. All the electrochemical measurements present a time-
scale limit imposed by the R,C cell time constant. For the application of a constant
potential to a solution that does not contain any electroactive species, the charging
current is proportional to e ~"/(®:€) [49]. Hence, electrochemical data with faradaic
significance can only be extracted from an experiment after five to ten times the cell
constant. For a disc electrode, this is given by (see Eq. (5.98)),

_ wrgCq

R
u¢ 4k

(5.100)

On the basis of this equation, the R,C constant decreases linearly with the radius
from values of 10—100 ms for a conventional macrodisc (with 4 being of the order
of millimeters) to 20 ns for a disc of 4 = 1 pm.

In the case of a linear sweep potential of slope v, the charging current density is
given by (see Eq. (5.76))

jo = vC (1 = e 0 Fusa)e/varsCa ) (5.101)
The potential across the cell can be written as,
E(t) = Einitial + vt — V(l - e_(E(')_Ei"i““')/VR”C)RuC (5.102)

The lag of potential of the working electrode is directly related to the cell time
constant. For a disc macroelectrode (r4 = 1 mm, R,C = 50ms), Eq. (5.102) fixes a
practical scan rate limit of around 400 V s™'. This limiting scan rate can be
considerably higher in the case of microelectrodes (i.e., kilovolts-per-second or
even megavolts-per-second [50].

Another useful conclusion is that it is possible to carry out electrochemical
measurements in much shorter time windows than those typical for
macroelectrodes.

The above mentioned advantages mean micro and ultramicroelectrodes can be
used in very low supported media.
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5.4.2 Neglecting Convection

Convection is often neglected at electrodes of micrometric dimensions in macro-
scopically quiescent solutions. However, depending on the size of these electrodes
and timescale of the experiments, convective fluxes due to natural convection may
still compete with diffusional fluxes in motionless solutions. These situations arise
as soon as the thickness of the diffusion layer becomes comparable to the thickness
of the convection-free domain. Under such conditions, the responses do not follow
the classical relationships given for currents in transient and steady-state regimes.
Therefore, under given experimental conditions, it is of importance to decide the
largest size of an electrode to eliminate any influence of natural convection.
Amatore has proposed a model to evaluate the influence of convection through an
apparent diffusion coefficient, Dy, [51]. From his results, it is concluded that the
microelectrode properties are achieved for a ratio (rg/8cony) < 0.2 where Scony 1S
the thickness of the convection-free layer.

5.4.3 Ultrafast Voltammetry

When the electrochemical properties of some materials are analyzed, the timescale
of the phenomena involved requires the use of ultrafast voltammetry. Microelec-
trodes play an essential role for recording voltammograms at scan rates of
megavolts-per-seconds, reaching nanoseconds timescales for which the perturba-
tion is short enough, so it propagates only over a very small zone close to the
electrode and the diffusion field can be considered almost planar. In these condi-
tions, the current and the interfacial capacitance are proportional to the electrode
area, whereas the ohmic drop and the cell time constant decrease linearly with the
electrode characteristic dimension. For Cyclic Voltammetry, these can be written in
terms of the dimensionless parameters y, and 6 given by

3/2 #
}/u = (%) / (DV)I/ZFAGCORU

F
0= R—TVRUC

(5.103)

If y, < 0.1 and 8 < 1, the distortion of the voltammogram will be minimal [50,
52].

Now it is possible to assemble microelectrodes with extremely short response
times. Nevertheless, an additional problem for the reduction of the ohmic drop is
that for short times high currents arise from the large concentration surface gradi-
ents. This leads to the use of on-line and real-time electronic compensation of the
cell resistance combined with the use of microelectrodes [53].
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Fig. 5.16 Voltammograms obtained in the Polydimethylsiloxane (PDMS) cell for a ferrocenyl
oligo (phenylenevinylene) molecular wire in acetonitrile+1 M tetracthylammonium
tetrafluoroborate at (a) 2085 V s~ (b) 20.7 KV s™; (¢) 103 KV s~ (d) 412 KV s}
(e) 727 KV s (f) 1.150 KV s~'. Electrode area (A): 3.75 x 1072 m?, surface coverage
f =8 x 107" molm~2. Reproduced from [54] with permission

Ultrafast voltammetry has a crucial role for investigating the kinetics of very fast
reactions, although for very small sizes the kinetics would be masked since the
system would be under diffusion control.

The heterogeneous electron transfer dynamics of a diverse range of organic and
inorganic species and also the dynamics and energetics of ultrafast heterogeneous
electron transfer dynamics of immobilized electroactive species on an electrode
surface have been investigated with ultrafast voltammetry under a wide variety of
experimental conditions of timescale, temperature, solvent, and electrolyte (see for
example Fig. 5.16, obtained from [54]).

5.4.4 Microelectrode Arrays

A microelectrode array consists of a series of microelectrodes separated by an
insulating material [36]. The microelectrodes can be regularly or randomly distrib-
uted (in the latter case the term ‘“ensemble” is also used). Arrays containing
hundreds or even thousands of microelectrodes wired in parallel have been
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Fig. 5.17 Simulated concentration profiles at a diffusion domain containing a spherical particle.
Category 1: cff = 1073, Category 2: éf = 0.1. Category 3: 53 = 1. Category 4: 53 = 100. For all
categories, the distance between particles is two times the radius. Reproduced from [57] with
permission

extensively used in electrochemical analysis for sensing multiple reactive species
and probing signal transformation in a network of biological cells [36, 55,
56]. These devices comprehend most of the advantages of microelectrodes but
add several more: high amplification of the current, adequate output signals, and an
improved ratio of the faradaic to charging current. Various types of array electrodes
have been made, including planar or recessed microdiscs, microbands, interdigi-
tated microelectrodes, linear microelectrodes, and 3D microelectrodes.

A voltammetric experiment in a microelectrode array is highly dependent on the
thickness of the individual diffusion layers, §, compared with the size of the
microelectrodes themselves, and with the interelectrode distance and the time
experiment or the scan rate. In order to visualize the different behavior of the
mass transport to a microelectrode array, simulated concentration profiles to spher-
ical microelectrodes or particles calculated for different values of the parameter cfg

= /D/a/rs can be seen in Fig. 5.17 [57] when the separation between centers of
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two adjacent spherical microelectrodes is 4r,. Different categories of diffusion can
be defined from this figure. For Category 1 (very high scan rates or short time
experiments), the particles/microelectrodes must be diffusionally independent (i.e.,
the diffusion layer thickness is much smaller than the microelectrode size and
diffusion is approximately planar). When the scan rate decreases the perturbed
zone grows (Category 2) until overlap of the diffusion fields occurs (Category 3)
and the microelectrodes suffer a shielding effect from their neighbors. The limiting
situation of this effect can be seen in Category 4 for which the overall concentration
profile can be considered as planar (i.e., concentration profiles become independent
on R coordinate).

For shallow recessed microdisc electrode arrays, the hemispherical diffusion is
larger than that for coplanar microdisc arrays. The minimum interelectrode distance
necessary for hemispherical diffusion becomes smaller as recess depth
increases [58].

Different theories have been developed to characterize the electrochemical
responses of arrays. The great majority of theoretical treatments of arrays consider
a large number of microelectrodes on an infinite electroinactive plane surface [36].

5.4.5 Nanoelectrodes

In the case of nanoelectrodes or nanodes, it is important to consider that their small
dimensions lead to deviations from the “classical” voltammetry theory. An implicit
assumption in electrochemical theory is that the electrode dimensions are much
larger than the thickness of the diffuse double layer and incomparably larger than
the radii of the species involved in the charge transfer. A number of theoretical and
experimental studies have focused on possible deviations from conventional elec-
trochemical theory at nanometer-sized electrodes in recent years [59]. The effect of
diffuse layer on mass transfer is the most extensively discussed, and it is expected to
be significant if the depletion layer thickness caused by the faradaic process is
comparable to that of the diffuse double layer (see [60, 61]). The extent of this
effect and its influence on the values of kinetic parameters extracted depend on
several factors including the charge of electroactive species, their standard potential
(with respect to the potential of zero charge), and the ionic strength of solution. In
most cases, the predicted deviations should be more significant at radii below
10 nm. Other size-related electrochemical phenomena and their effects on the
rates of the charge transfer process have yet to be explored, such as the stochastic
character of the charge transfer events at nanointerfaces, the more rapid potential
drops within the diffuse double layer at spherical electrodes smaller than 50—
100 nm, or the effect of charges situated on the insulating surface in the mass
transfer at glass-sealed nanoelectrodes, among others [62]. The relative importance
of each effect remains incompletely understood. To observe and quantitatively
evaluate major deviations from conventional theory, electrodes smaller than
~5 nm radius with well-characterized geometry should be required.



5.5 Ion Transport Through Liquid Membranes 365
5.5 Ion Transport Through Liquid Membranes

In Sects. 2.3 and 4.2.4.1, the electrochemical response corresponding to ion transfer
processes through liquid membranes in single potential pulse and double potential
pulse techniques has been discussed. In this section, these processes are analyzed
with multipulse techniques, mostly with Staircase Voltammetry and Cyclic
Voltammetry.

5.5.1 One Polarized Interface

Let us consider the reversible transfer of ion X through the interface between an
aqueous electrolyte solution (w phase) and an organic one (o phase), which takes
place by polarizing the interface,

X(w) —— X(o) (5.110)

where z is the positive or negative charge number.
Under the appropriate conditions, the mass transport can be mathematically
modeled as a linear diffusion problem to the spatial domains shown in Scheme 5.4,
When p successive potential pulses (E,, E», ..., E,) of the same length 7 are
applied, the mass transport during the pth potential pulse in the presence of
sufficient amounts of supporting electrolyte in both phases is described by the
following differential equations system:

Ol 0%clp)

D, =0 (a)
oz ox? (5.104)
acwm azc&lp)
5r Pva =0 O

with c}(ji) (x, 1) and Dy, being the concentration and the diffusion coefficient, respec-
tively, of ion X” in the ph phase (ph=w, 0).

As in the case of single potential pulse and double potential pulse techniques,
from the transposition of the theory of multipulse techniques to the ion transfer
processes taking place at macro-ITIES, the theoretical expressions obtained with

Scheme 5.4 Spatial aqueous phase (w) | organic phase (0)
domains for the diffusion of
X? ion in the aqueous and

organic phases X*(w) == X(0)

X —>—00 X X —x0

Il
o
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the semi-infinite diffusion model for electron transfer processes can be used to
quantify the current response of the ion transfer. Thus, by following a procedure
analogous to that presented in Sect. 5.2.1, an expression for the current of any
potential pulse analogous to that corresponding to electron transfer processes taking
place at planar electrodes (Eq. (5.25)) is obtained:

Dy, E 1 (m—1) (m)
Iy = 2FAY Y e (70(0) = 2 (0)) =
p=z 7t e\ /p—m+ 1 ex:(0) = ex (0)
. [Dud 1 1 1
= ZFACx:\ | — -
e ﬂfrnz_;\/p—m+l(l+ye”ml 1+ye’7m)

with ¢y being the bulk concentration of ion X° in the aqueous phase,
Hn=F (En—AY ¢ ) /RT and

(5.105)

Dy
_ B 5.106
Y D. ( )

5.5.1.1 Cyclic Staircase Voltammetry and Cyclic Voltammetry

Cyclic Voltammetry is the most widely used technique for acquiring qualitative
information about electrochemical processes and it has also proved to be very
useful for the study of ion transfer across bulk, supported, or polymer composite
membranes [63]. The expression for the current in CV can be obtained from
Eq. (5.105) by considering the potential waveform given in (5.1),

Iz
Yov = "% ——w
zFAcy:\/aDx:
r 1 1 > 1 )
= — — » (5.107)
; ((1 + yesm—l elgm 1 + ]/619’” e'9m 71'19,,7, p
with
zF
S = RT (Em — Einitial)
e / (5.108)
On = RT (Einitial — A py: )

where a and 9,,,, are given by Eqs. (5.38) and (5.44), respectively, A ¢§?’ is the
formal ion transfer potential, and F, R, and T have their usual meaning.



5.5 Ion Transport Through Liquid Membranes 367
5.5.2 Two Polarized Interfaces

In these kinds of systems, the polarization phenomenon is effective at the two
interfaces involved (see also Sect. 2.3.2). Specifically, in membrane systems com-
prising two ITIES, this behavior is achieved when the membrane contains a
hydrophobic supporting electrolyte and the sample aqueous solution (the inner
one) contains hydrophilic supporting electrolytes, and there is no common ion
between any of the adjacent phases. In this case, the potential drop cannot be
controlled individually and the processes taking place at both interfaces are linked
to each other by virtue of the same electrical current intensity.

5.5.2.1 Cyclic Staircase Voltammetry and Cyclic Voltammetry

As for single polarized interface systems, an explicit analytical equation for the CV
response for systems with two L/L polarizable interfaces is derived from that
corresponding to CSCV when the pulse amplitude AE approaches zero (see also
App