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Supervisors’ Foreword

With the advent of femtosecond laser pulses in the 1990s, real-time imaging of
ultrafast molecular phenomena has become possible. They are now used in a
systematic manner in pump-probe experiments to map out, in real time, nuclear
motion in molecules. In the past two decades, tremendous progress has been
achieved on the experimental front with the possibility to align molecules with
lasers and the production of attosecond pulses. In particular, the high-harmonic
generation technique that is responsible for the formation of attosecond laser pulses
has been exploited to image the faster electronic motion. In this context, it becomes
conceivable to create a new chemistry where all the different motions (rotational,
nuclear and electronic) in a molecular process could be manipulated and controlled
by laser pulses. The stakes are high and pose further substantial requirements on the
development of suitable theoretical methods. In addition, one important challenge is
to transfer to chemistry techniques (experimental and theoretical) that have been
developed mainly by physicists and for problems in physics.

The central subject of the present thesis is the theoretical description of ultrafast
dynamical processes in molecular systems of chemical interest and their control by
laser pulses. This work, performed in collaboration with experimentalists, can
be considered as a decisive step to link and apply quantum physics to chemistry by
transferring concepts developed in physics to chemistry such as “wavepackets” or
“light dressed states.” This is highlighted in Part II, where Dr. M. Sala exploits the
“adiabatic Floquet theory” to rationalize the control of several molecular processes.
When a molecular system is isolated, its quantum behavior can be described in
terms of eigenstates and wavepackets featuring linear combinations of the eigen-
states. However, when the system is in interaction with a time-dependent external
field, the situation is completely different as the eigenstates are modified by the
external fields. The adiabatic Floquet theory provides a quantum mechanical
framework for the description of the interaction of quantum systems with light.
More precisely, a description in terms of Floquet states or “light dressed states,” i.e.,
quantum states similar to eigenstates that additionally include rigorous
quantum-mechanical treatment of the mean frequency of the external fields (like in
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the approach of “dressed atoms” in atomic physics). The laser parameters varying
slowly in time with respect to the mean frequency (such as the envelope of the pulse
and the chirp of the frequency) feature dynamical modification of the Floquet states,
topologically represented as dressed surfaces in the parameter space. With adiabatic
arguments, one can then characterize the quantum dynamics as trajectories in the
parameter space.

Dr. M. Sala’s Ph.D. encompasses cutting-edge methods not only for the rigorous
description of the interaction of light and matter at the molecular level but also in
quantum chemistry and molecular quantum dynamics. Indeed, one important aspect
of his work was the exploration of potential energy landscapes for electronic
excited states in organic molecules in the vicinity of so-called “conical intersec-
tions.” At a conical intersection, the potential energy surfaces belonging to different
electronic states become degenerate and the Born–Oppenheimer approximation,
that separates the nuclear and electronic motions, fails: a nonadiabatic transfer from
one electronic state to another can occur. From ab initio electronic structure cal-
culations, Dr. M. Sala could build model Hamiltonians that can be used to solve, in
a second step, the Schrödinger equation for the nuclei. For the latter step, he
developed his own codes for low-dimensional simulations and exploited the
Heidelberg Multi-Configuration Time-Dependent Hartree (MCTDH) package
otherwise. The MCTDH approach is an efficient tool to solve both the
time-dependent and time-independent Schrödinger for relatively large systems.
Finally, Dr. M. Sala has highlighted general strategies for the coherent control of
strong quantum effects involving the nuclei in chemical process: tunneling and
strong nonadiabatic processes.

Altogether, this doctoral thesis lays out important foundations for the quantum
mechanical treatment of molecular processes that we anticipate to be very useful in
the context of applications of ultrafast laser pulses to chemistry. To conclude, we
were impressed by the level of autonomy of Dr. M. Sala and his strong ability to
take initiative at all the stages of his Ph.D. work.

Prof. Fabien Gatti
Prof. Stéphane Guérin
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Chapter 1
General Introduction

Light induced chemical transformations, called photochemical reactions, are
ubiquitous in nature. These processes are initiated by the absorption of a photon, that
promotes themolecule into an excited state, where the reaction takes place. Important
examples of photochemical reactions occurring in nature are the photolysis of ozone
and molecular oxygen in the stratosphere [1–3], the initial steps of the processes of
photosynthesis [4, 5] or of vision [6–9]. In addition, photochemical processes lie at
the heart of important emerging technologies, such as 3D optical memories based on
photoswitching molecular materials [10], Organic Light-Emitting Diodes (OLED)
[11, 12] or organic photovoltaics [13–16]. For these reasons, a detailed understand-
ing of photochemical processes at the molecular level is a major goal of modern
physical chemistry.

Thanks to the development of powerful experimental techniques, tremendous
progress in the understanding of photochemical processes have been made in the last
few decades. The 1999 Nobel prize in chemistry was awarded to Ahmed Zewail for
his seminal work on time-resolved spectroscopy of molecular processes on a fem-
tosecond time scale [17–20]. The characteristic time scale of the vibrational motion
of the nuclei in molecule being of the order of the hundred of femtoseconds, experi-
ments with a time resolution of the same order of magnitude or less are able to probe
the elementary steps (bond breaking, isomerizations,…) of photochemical reactions.
Time-resolved spectroscopic techniques consist in making sequential spectroscopic
measurements on a system during a dynamical process, allowing one to record the
frames of a “movie” of a chemical transformation. In these techniques, the system
is irradiated by two laser pulses delayed in time with respect to each other. The first
laser pulse, called pump pulse, triggers a dynamical process via photoexcitation.
The second laser pulse, called probe pulse, is then used to monitor the system during
its evolution. Different probe techniques are available, such as transient absorption,
laser induced fluorescence or photoelectron spectroscopy. This procedure is repeated
with different delay times between the two laser pulses, yielding time-resolved spec-
troscopic data.

© Springer International Publishing Switzerland 2016
M. Sala, Quantum Dynamics and Laser Control for Photochemistry,
Springer Theses, DOI 10.1007/978-3-319-28979-3_1
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2 1 General Introduction

Since the first experiments on the I-CN [21] bond cleavage and the wavepacket
oscillations between the ionic and covalent potentials in the photodissociation of
NaI [22, 23], pump-probe techniques have been applied to a wide range of important
photochemical processes. However, the data obtained from such experiments are
often difficult to interpret and theoretical modeling is needed to get further insight
into the excited state dynamics of the systems of interest at the atomistic level. In
this context, the development of efficient and accurate computational methods for the
description of ground and excited electronic states ofmid-sizemolecular systems in a
balanced way [24, 25], has greatly facilitated the theoretical study of photochemical
processes.

During the same period, it became more and more evident that strong non-
adiabatic effects, occurring at regions of degeneracy between electronic states, called
conical intersections [26, 27], play an important role in a great number of cases. In
such situations, associated with a breakdown of the Born–Oppenheimer approxima-
tion, the electronic and nuclear motions are strongly coupled, giving rise to non-
radiative population transfers between electronic states, i.e population transfers that
occur because of the coupling of the electronic and nuclear motions rather than the
coupling with the electromagnetic field (Fig. 1.1).

Depending on their position and energetics with respect to the Franck–Condon
region of the excited state potential energy surface (the region occupied by the
wavepacket on the excited state potential energy surface immediately after a ver-
tical photoexcitation), conical intersections can mediate ultrafast internal conversion
processes from the excited state to the photoproducts on the ground state. A sys-
tematic exploration of the excited state potential energy surfaces, and their conical
intersections with the ground state potential energy surfaces, of the basic organic
chromophores using multi-configuration self-consistent field calculations, has been
launched in the nineties in the groups of Robb, Bernardi and Olivucci [28, 29]. In
most cases, these studies revealed the existence of low-lying conical intersections
between the first excited state and the ground state, at geometries consistent with
the observed photoproducts. This findings supported the hypothesis that low-lying

Fig. 1.1 Schematic view of
an ultrafast radiationless
decay process through a
conical intersection
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conical intersections are ubiquitous in organic molecules, and act as key mechanis-
tic features in organic photochemistry, similarly to the transition state in thermal
reactions occurring on the ground electronic state.

Often, the relaxation of a molecule to its ground electronic state via a conical
intersection is associated with a competition between two situations. The molecule
can reach a region of the ground state potential energy surface corresponding to a
different isomer, or to a repulsive part resulting in a bond breaking process. This
situation is called photoreactivity. But the molecule can also reach the ground state
potential energy surface in the region of its equilibrium geometry. This situation
is called photostability. The competition between photoreactivity and photostability
(Fig. 1.2) is directly related to the topography of the potential energy surfaces around
the conical intersection [30–32].

The notion of photostability is very important in the field of molecular biology.
The molecular “building blocks of life”, such as the DNA bases or the amino acids,
often absorb in the ultra violet (UV) region of the electromagnetic spectrum. A UV
photon carries an energy which is of the same order of magnitude as the binding
energy associated with the weakest bonds of these molecules. Therefore, UV light
is potentially harmful for these compounds and, by extension, for life. This is, how-
ever, in contradiction with the exceptional photostability observed experimentally
for these molecules and their complexes. A large number of theoretical and experi-
mental investigations, performed over the last two decades, have established that this
exceptional photostability is related with the existence of conical intersections pro-
viding extremely efficient radiationless decay channels leading the molecules back
to their ground state [33–37].

Nevertheless, although the characterization of the topography of potential energy
surfaces using electronic structure calculations often provides a qualitative under-
standing of the mechanisms of photochemical transformations, a deeper insight into
such processes often requires simulating the dynamics of the nuclei. For instance, it
is known that the existence of conical intersections is often reflected in the absorption

Fig. 1.2 Illustration of the competition between photostability (featured in red) and photoreactivity
(featured in blue) in two different situations: a non-adiabatic photodissociation process (left panel)
and a non-adiabatic photoisomerization process (right panel)



4 1 General Introduction

Fig. 1.3 Structure of the
butatriene molecule

spectra through the presence of unexpected bands or of bands presenting an unusually
complicated and broad profile. An interesting and historically important example is
provided by the photoelectron spectrum of the butatriene molecule (see Fig. 1.3).

Despite the fact that butatriene is a quite exotic molecule, it has attracted a con-
siderable attention in the spectroscopy community in the 70s because of the unusual
structure of its photoelectron spectrum in the region between 9 and 11eV [38]. It was
known that the butatriene radical cation has only two electronic states in this energy
range, corresponding to the bands centered around 9.3 and 10.0eV (bands noted 1
and 2 in the left panel of Fig. 1.4). However, the photoelectron spectrum presents a
third, broad feature (noted 1′ in the left panel of Fig. 1.4) between these two bands
that cannot be directly assigned to a given electronic state, and was termed the “mys-
tery band”. It was shown later by Cederbaum et al. [39] that this “mystery band”
was a direct signature of the existence of a strong vibronic coupling between the two
lowest excited electronic states of the cation, manifested by a conical intersection of
the two corresponding potential energy surfaces. They constructed a model poten-
tial including the two most important vibrational modes and taking into account the
vibronic couplings and could reproduce the photoelectron spectrum, including the
“mystery band”, as seen in Fig. 1.4. Since then, thanks to the enormous progress
made in the methodology of molecular quantum dynamics calculations, absorption
and photoelectron spectra of molecular systems of increasing complexity showing
signatures of strong vibronic couplings have been simulated (see e.g. Chap. 7 in ref.
[26] and Chap.6 in ref. [27]).

Beyond the computation of spectra, the simulation of the dynamics of the nuclei
has proven to be necessary for a proper understanding of a number of photochemical
processes. Indeed, in most systems, the excited state dynamics is governed by the
competition between several dynamical processes including several electronic states.
These processes can correspond to channelswith similar energies and in this case, it is
difficult to predict the dynamics of themolecule using only the static information that
can be obtained from electronic structure calculations. However, the simulation of
such photochemical processes, which often involve large amplitude nuclear motions
and complicated potential energy surfaces, using quantum dynamics techniques,
remains a formidable challenge from the numerical point of view. For this reason, a
variety of computational techniques based on a mixed quantum-classical formalism
have been developed and used to study the excited state dynamics of mid-size molec-
ular systems such as, for instance, the DNA bases [40–42]. The most popular family
of such techniques is the trajectory surface-hopping method (see Chaps. 11–13 in
ref. [27] and references therein). Other important methods in this category are the
ab initio multiple spawning method (see Chap.9 in ref. [27] and references therein)
or the methods based on the Herman-Kluk semi-classical propagator combined with
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Fig. 1.4 Experimental [38] (left panel) and computed [39] (right panel) photoelectron spectrum
of butatriene. Both figures are reproduced with permission from Elsevier

the initial-value representation (see Chap.15 in ref. [26] and references therein).
Nevertheless, the dynamics of the nuclei of molecular systems can be affected by
strong quantum effects such as tunneling over potential energy barriers or interfer-
ence effects. And, more importantly, internal conversion processes occurring in the
vicinity of conical intersections are inherently quantum effects. Therefore, the devel-
opment of simulation techniques fully based on a quantum mechanical description
of the dynamics of the nuclei and which can be applied to complex photochemical
processes is an active area of research.

The emergence of femtosecond laser technologies not only revolutionized our
understanding of elementary photochemical processes. It also opened new possi-
bilities in the way we can control the motion and the transformations of atomic
and molecular systems. The manipulation of quantum systems using tailored light
sources has potential applications in a large variety of domains such as optics, infor-
mation processing, spectroscopic and imaging techniques, molecular electronics or
chemical dynamics.

Generally speaking, quantum control consists in finding a way of inducing a
partial or complete population transfer, in a controlled way, between an initial state
and a final state (the initial and final states can be single eigenstates or superpositions
of such eigenstates). A number of techniques allowing one to induce a complete
population transfer between single eigenstates exist, such as theπ-pulse techniques or
the schemes based on adiabatic passage [43–45]. In addition, a number of extensions
of these methods to the case of superpositions of eigenstates have been proposed
[46–50].
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Beyond these general schemes, methods specifically tailored for the control of
molecular systems have been developed [51]. Brumer and Shapiro proposed to use
simultaneously two laser fields with frequencies ω1 and ωn = nω1 that couple a
bound state to a continuum. The final product can be controlled by modulating the
relative phase and amplitude between the two laser fields [52]. This control scenario,
often called “coherent control”, has been used, e.g., for the control of photodisso-
ciation processes [53], the discrimination of enantiomers [54] or the photocurrent
directionality in semiconductors [55]. This strategy has been implemented experi-
mentally in a number of situations (see [56] and references therein). Tannor, Kosloff
and Rice proposed a strategy relying on the manipulation of the time delay between
two short laser pulses [57, 58]. A first laser pulse creates a wavepacket on an excited
state potential energy surface.When the wavepacket reaches a configuration of inter-
est for the outcome of the reaction on the ground state, the second laser pulse is used
to bring the system back to the ground electronic state. This scheme is called pump-
dump scheme. Another strategy relies on a specific preparation of the initial state of
the system. For instance, it is known that molecules in excited vibrational states can
have different reactivities than their ground vibrational state counterpart. This has
been shown experimentally for prototypical systems relevant to non-adiabatic pho-
todissociation [59], atom-molecule [60], ormolecule-surface [61] reactive scattering.
More recently, the use of a strong non-resonant laser pulse, acting on the molecule
through the Stark effect, has been shown experimentally [62–64] and theoretically
[65, 66], to provide another way of manipulating the outcome of non-adiabatic pho-
todissociation processes.

The strategies mentioned above use rather simple laser pulse temporal shapes.
The control is achieved by a proper choice of a few laser parameters such as the
intensity, frequency, pulse duration, relative phase or time delay between two pulses.
The variation of these parameters offers a sufficient flexibility to achieve a signifi-
cant degree of control in relatively simple systems. In addition, a proper choice of
the parameters can be guided by intuition, or by a systematic mapping of the few
parameters. A different strategy implies a numerical optimization of the electric field
required to guide the system towards a predefined objective. This is the basis of the
optimal control [67, 68] and local control [69] techniques. These techniques have the
advantage of being applicable, in principle, to complex systems for which intuition
is of little help. However, because of their high computational cost, the applicabil-
ity of these methods to the control of polyatomic molecules often enforces the use
of simplified models. Nevertheless, general control strategies can be obtained from
such studies and tested on more sophisticated models.

While most of the schemes described above have been demonstrated experimen-
tally, a robust and efficient control of molecular processes is often difficult to achieve
experimentally. In this context, the inclusion of robustness in optimal control theory
to achieve such a robust and efficient control currently represents a very active field
of research [70]. One of the main difficulties is that the interaction of a laser field
with a sample of molecules is necessarily averaged with respect to the random ori-
entation of the individual molecules of the sample. To overcome this issue, several
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techniques to control the alignment and the orientation of molecular samples have
been developed [71].

This thesis is split into two main parts. Part I is devoted to theoretical studies of
the photochemistry of simple aromatic molecules.

In Chap.2, the basic concepts relevant for the description of photochemical pro-
cesses are presented.Themolecular Schrödinger equation and theBorn–Oppenheimer
approximation are first introduced. Then, the notions of vibronic coupling and
conical intersection are discussed and the diabatic representation for the electronic
states is introduced. Finally, a review of the methodology used in this thesis for mole-
cular electronic structure calculations, and their use in the exploration of potential
energy surfaces, is presented.

Chapter3 presents the results of a theoretical study of the photochemistry of ani-
line. The purpose of this work, initiated during a six-month fellowship in the group
of Helen Fielding in the Chemistry Department of University College London, was
to use electronic structure calculations to explore the potential energy surfaces of the
low-lying electronic states of aniline in order to help in the interpretation of the time-
resolved photoelectron imaging experiments performed in the Fielding group. After
an introduction, in which the knowledge obtained from previous studies of the pho-
tochemistry of aniline and other simple benzene derivatives is reviewed, our results
concerning the key structures and decay pathways of the molecule on the potential
energy surfaces of the low-lying electronic states relevant for its photochemistry are
presented and discussed in relation with the experimental results obtained in the
Fielding group.

The methodology of molecular quantum dynamics applied to non-adiabatic sys-
tems is presented from a time-dependent perspective in Chap. 4. The representation
of the molecular Hamiltonian is first discussed, with a focus on the choice of the
coordinates to parametrize the nuclear motion and on the discrete variable represen-
tation. The multi-configuration time-dependent Hartree (MCTDH) method for the
solution of the time-dependent Schrödinger equation is then presented. The chapter
ends with a presentation of the vibronic coupling model of Köppel, Domcke and
Cederbaum and the methodology used in the calculation of absorption spectra.

Finally, in Chap.5 which closes Part I, an application of the tools introduced in
Chaps. 2 and 4 to a quantum dynamical investigation of the photophysics of pyrazine
is presented. Thiswork focuses on the role of the low-lying dark nπ∗ states in the non-
adiabatic dynamics of the molecule after photoexcitation. Multi-reference electronic
structure calculations are used to design a vibronic couping model Hamiltonian,
including the four lowest electronic states and the sixteen most important vibrational
modes. This model is then used to simulate the absorption spectrum and the ultrafast
decay dynamics of the molecule using the MCTDH method.

Part II is devoted to the laser control of unimolecular processes. The general
object of the research presented in this Part was to combine the theoretical tools
for the computation of the electronic structure and nuclear quantum dynamics of
molecular systems presented in Part I with the methodology of the laser control of
quantum systems in order to address the problem of the quantum control by laser
fields of polyatomic molecular systems.

http://dx.doi.org/10.1007/978-3-319-28979-3_2
http://dx.doi.org/10.1007/978-3-319-28979-3_3
http://dx.doi.org/10.1007/978-3-319-28979-3_4
http://dx.doi.org/10.1007/978-3-319-28979-3_5
http://dx.doi.org/10.1007/978-3-319-28979-3_2
http://dx.doi.org/10.1007/978-3-319-28979-3_4
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In Chap.6, the theoretical tools for the laser control of quantum systems used in
this thesis are presented. The main approximations usually invoked in the theoretical
description of the interaction of molecular systems with laser fields of wavelengths
ranging from the mid-infrared to the ultraviolet regions of the electromagnetic spec-
trum, are first presented. The most basic features of the laser control of population
inversion processes between quantum states are then presented in the framework
of the two-level system in the resonant wave approximation. An effective Hamil-
tonian operator describing the interaction of a molecular system with a strong non-
resonant laser pulse, useful in the theoretical study of laser control schemes based
on the dynamic Stark effect, is then introduced. Finally, a detailed description of the
Floquet theory, and its adiabatic extension, providing a general and rigorous theo-
retical framework for the description of the interaction of molecular systems with
pulsed laser fields with slowly varying envelope and frequency is presented.

Chapter7 presents a study of the laser control of the ultrafast radiationless decay
of pyrazine using a control scheme based on the dynamic Stark effect. In this study, a
simple model including the two lowest-lying bright excited electronic states and the
four most important vibrational modes is used. This model is simpler than the model
used in Chap.5 and therefore is not expected to account for the full complexity of the
non-adiabatic dynamics of photoexcited pyrazine. However, the results presented in
this chapter are of general relevance for the study of the laser control of non-adiabatic
systems. After a presentation of the model, the effect of the Stark shifts on the
topography of the relevant potential energy surfaces is analysed and the mechanism
of the control scheme proposed is presented from the adiabatic point of view.We then
present our results and show that a strong non-resonant laser pulse can be used to trap
the wavepacket in the upper electronic state, and therefore suppress the radiationless
decay of the molecule for a time much larger than the natural decay time of this
process. We then compare our control mechanism to previous works on the laser
control of the non-adiabatic dynamics of pyrazine in which different control schemes
were considered, and the merits and drawbacks of the control scheme proposed in
this chapter are highlighted.

Chapter8,which closes Part II, presents a study of the laser control of the tunneling
dynamics in a model of the NHD2 molecule including its six vibrational degrees of
freedom. The aim of this work was to assess the applicability of well established con-
trolmechanisms, previously applied to simple one-dimensional double-well potential
models, to a more complex system. Both the enhancement of tunneling, i.e the accel-
eration of the tunneling dynamics induced by a resonant laser pulse, and the coherent
destruction of tunneling, which implies the freezing of the tunneling dynamics as
long as the laser field is on, are investigated. For this purpose, a hierarchy of effective
models of increasing complexity are considered. Simple few-level models are first
used to analyse the general features of the proposed control mechanisms. Then, an
effective model Hamiltonian expressed in the basis of the vibrational eigenstates of
the molecule lying under a given energy threshold is used to investigate in details the
effect of the parameters of the laser fields on the efficiency of the control. Finally,
MCTDH calculations using the exact vibrational Hamiltonian are performed to con-
firm the validity of this effective model.

Finally, Chap. 9 concludes this thesis.

http://dx.doi.org/10.1007/978-3-319-28979-3_6
http://dx.doi.org/10.1007/978-3-319-28979-3_7
http://dx.doi.org/10.1007/978-3-319-28979-3_5
http://dx.doi.org/10.1007/978-3-319-28979-3_8
http://dx.doi.org/10.1007/978-3-319-28979-3_9
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Part I
Theoretical Studies in Photophysics

and Photochemistry: Applications
to Aniline and Pyrazine



Chapter 2
Basic Concepts and Methodology

In this chapter, the main concepts relevant for the theoretical study of elementary
photochemical processes are briefly reviewed. The notions of vibronic coupling and
conical intersection are first introduced. The main basic tools from the molecular
electronic structure theory and their use for the exploration of potential energy sur-
faces are then presented.

2.1 The Molecular Schrödinger Equation

2.1.1 The Molecular Hamiltonian Operator

The Hamiltonian operator H(r,R) of a molecule composed of Nnu nuclei and Nel

electrons is the sum of a nuclear kinetic energy operator (KEO)Tnu(R), an electronic
KEO Tel(r) and a potential energy operator V (r,R) that describes the Coulombic
interaction between the different particles. Here, r and R denote vectors collecting
all the electron and nuclear coordinates respectively. The KEOs read

Tnu(R) = −
Nnu∑

α

�
2

2Mα
∇α.∇α (2.1)

Tel(r) = −
Nel∑

i

�
2

2me
∇i.∇i (2.2)

where me is the mass of the electron, Mα is the mass of the αth nucleus and ∇i

(∇α) is a vector operator containing the derivative operators with respect to the

coordinates of the ith electron (αth nucleus) as elements, i.e ∇i =
(

∂
∂xi

, ∂
∂yi

, ∂
∂zi

)

in Cartesian coordinates. The potential operator is the sum of an electron–electron
repulsion operator, a nucleus–nucleus repulsion operator and an electron–nucleus
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attraction operator

V (r, R) =
Nel∑

i

Nel∑

j>i

e2

4πε0|rj − ri| +
Nnu∑

α

Nnu∑

β>α

Zα Zβe2

4πε0|Rα − Rβ | −
Nnu∑

α

Nel∑

i

Zαe2

4πε0|Rα − ri| ,

(2.3)
where Zα is the charge of the αth nucleus, e is the electron charge, ri and Rα are
the position vectors of the ith electron and αth nucleus, respectively.

The quantum mechanical description of a molecule requires the solution of the
time-dependent Schrödinger equation (TDSE) associatedwith theHamiltonian oper-
ator H(r,R) = Tnu(R) + Tel(r) + V (r,R) described above

H(r,R)�(r,R, t) = i�
∂

∂t
�(r,R, t). (2.4)

Because the motions of the various particles are correlated through the potential
terms of Eq. (2.3), the direct integration of the molecular Schrödinger equation is an
extremely difficult task that is only possible, in practice, for the simplest atomic and
molecular systems.

2.1.2 The Born–Oppenheimer Approximation

The above problemcan be simplified by separating the fast electronicmotion from the
slow nuclearmotion. One first defines an electronicHamiltonian, also called clamped
nucleus Hamiltonian Hel(r;R) = Tel(r) + V (r;R). This electronic Hamiltonian
acts in the electronic space and depends parametrically on the nuclear coordinates
R, as indicated by the semicolon in the coordinate dependence of the operators.
The eigenfunctions and eigenvalues of the associated time-independent Schrödinger
equation (TISE)

Hel(r;R)φn(r;R) = Vn(R)φn(r;R) (2.5)

are the electronic adiabatic energies and eigenfunctions. The set of eigenfunctions
{φn(r;R)} satisfies the usual orthonormality relation

〈φm |φn〉 =
∫

φ∗
m(r;R)φn(r;R)dr = δmn. (2.6)

The molecular wavefunction �(r,R, t) of Eq. (2.4) can be expanded in the basis of
the electronic eigenfunctions

�(r,R, t) =
∑

n

χn(R, t)φn(r;R). (2.7)
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The exact molecular TDSE then reads

Tnu
∑

n
χn(R, t)φn(r; R) + Hel

∑

n
χn(R, t)φn(r;R) = i�

∂

∂t

∑

n
χn(R, t)φn(r; R).

(2.8)
Let us, for simplicity, rewrite the nuclear kinetic energy operator in terms of mass-
weighted rectilinear coordinates (defined as the rectilinear coordinates multiplied by
the square root of the mass of the nucleus) Tnu = −�

2

2 ∇R.∇R. The first term of the
last equation can now be developed

Tnu

∑

n

χn(R, t)φn(r;R) =
∑

n

[χn(R, t)Tnuφn(r;R) + φn(r;R)Tnuχn(R, t)

− �
2∇Rφn(r;R).∇Rχn(R, t)

]
. (2.9)

Inserting Eq. (2.9) in Eq. (2.8), multiplying from the left by φ∗
m(r;R) and integrating

over the electronic coordinates, one obtains

[Tnu + Vm(R)]χm(R, t) +
∑

n

�mnχn(R, t) = i�
∂

∂t
χm(R, t). (2.10)

This last equation shows that the nuclear motion of the molecule obeys an infinite
set of coupled differential equations. The so-called non-adiabatic couplings �mn

describe the dynamical interaction between the electronic and nuclear motions [1–
3]. They are given by

�mn = F mn.∇R + Gmn (2.11)

whereF mn = −�
2〈φm |∇Rφn〉 is a non-adiabatic derivative coupling vector element

and Gmn = 〈φm |Tnu |φn〉 = −�
2

2 〈φm |∇2
Rφn〉 is an element of the non-adiabatic scalar

couplings. The derivative coupling vector matrix F is antihermitian, i.e F † = −F .
If the adiabatic electronic wavefunctions φn(r;R) are chosen to be real, then the
diagonal elements of F vanish.

The Born–Oppenheimer approximation [4, 5] consists in neglecting the non-
adiabatic couplings. This approximation relies on the very different masses of the
electron and nuclei. Indeed, the proton, which is the lightest atomic nucleus, is
roughly 1836 times heavier than the electron. Therefore the electron velocity is
much higher than that of the nuclei and the fast electrons adjust instantaneously
to the slow motion of the nuclei. Within this approximation, no transition between
different adiabatic electronic states can be induced by the nuclear motion and in this
case, the total molecular wavefunction can be written as

�(r,R, t) = χ(R, t)φ(r;R), (2.12)

which leads to

[Tnu + V (R) + �]χ(R, t) = i�
∂

∂t
χ(R, t). (2.13)
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Equation (2.13) constitutes the Born–Oppenheimer approximation. When the elec-
tronic adiabatic wavefunctions are chosen real, the non-adiabatic term simply reads
� = G = 〈φ|Tnu |φ〉. Usually, � is very small and Eq. (2.13) is only used if very
high accuracy is sought. Neglecting� leads to the so-called adiabatic approximation

[Tnu + V (R)]χ(R, t) = i�
∂

∂t
χ(R, t). (2.14)

Below, we show that the validity of the adiabatic approximation is directly related
to the energy separation between the different electronic states. To this purpose, a
useful expression for the derivative coupling vectors F mn can be derived. It follows
directly from the electronic TISE

〈φm |Hel |φn〉 = Vn(R)δmn. (2.15)

Applying the nuclear gradient on both sides, one obtains

∇R〈φm |Hel |φn〉 = ∇RVn(R)δmn. (2.16)

Let us develop the left hand side of this last equation

∇R〈φm |Hel |φn〉 = 〈∇Rφm |Hel |φn〉 + 〈φm |(∇RHel)|φn〉 + 〈φm |Hel |∇Rφn〉
= (Vm(R) − Vn(R))〈φm |∇Rφn〉 + 〈φm |(∇RHel)|φn〉. (2.17)

From the last two equations, one finally obtains

F mn = 〈φm |(∇RHel)|φn〉 − ∇RVn(R)δmn

Vn(R) − Vm(R)
. (2.18)

For m = n, we have seen above that by choosing the φn(r;R) real, the F nn term
vanishes. For m �= n,

F mn = 〈φm |(∇RHel)|φn〉
Vn(R) − Vm(R)

. (2.19)

This last equation shows that the magnitude of the non-adiabatic coupling vec-
tor depends on the energy separation between the different electronic states. They
become large when different electronic states become close in energy. In particular,
the non-adiabatic coupling vector diverges in the situation where two or more elec-
tronic states are degenerate. This particular situation is called a conical intersection,
and leads to a breakdown of the adiabatic approximation near the degeneracy.
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2.2 Vibronic Coupling

2.2.1 The Group Born–Oppenheimer Approximation

As seen in the previous section, the separability of the electronic and nuclear motions
rests both on the large difference between the masses of electrons and nuclei and on a
sufficient energetic separation between the electronic states. When electronic states
become close in energy, the corresponding non-adiabatic coupling matrix elements
become large and the Born–Oppenheimer approximation breaks down. However, in
such situations, one is usually interested in a few electronic states and the couplings
between them. Therefore one can consider a block of electronic states inside of
which the non-adiabatic couplings are taken into account, and neglect the couplings
between the states of interest and the other states. Considering a block of Nst states
of interest, the set of equations of motion for the nuclei of Eq. (2.10) reduces to

[Tnu + Vm(R)]χm(R, t) +
Nst∑

n

�mnχn(R, t) = i�
∂

∂t
χm(R, t), (2.20)

where the indices n and m span the group of states of interest. Obviously, as for
the original Born–Oppenheimer approximation, this partitioning of the space of the
electronic states is only valid if the energy separation between the electronic states
of interest and the higher electronic states is sufficient. This approximation is known
as the group Born–Oppenheimer approximation [3].

2.2.2 The Diabatic Representation

Although thegroupBorn–Oppenheimer approximationgreatly simplifies thedescrip-
tion of molecular systems with strong vibronic interactions between low-lying elec-
tronic states, Eq. (2.20) is still difficult to handle when the electronic states are nearly
degenerate because of the divergence of the derivative couplings F mn , and of the
topography of the adiabatic potential energy surfaces (PESs), which are difficult to
represent by simple mathematical expressions. Therefore, in general, a more conve-
nient representation of the electronic states, called diabatic representation, is used in
quantum dynamical investigations. The diabatic representation is constructed such
as to provide smooth potential energy and coupling surfaces. The diabatic basis is
obtained through a unitary transformation

φd(r;R) = S(R)φ(r;R), (2.21)

where φ = (φ1,φ2, . . . ,φNst )
T and similarly φd = (φd

1 ,φ
d
2 , . . . ,φ

d
Nst

)T , such that
the derivative couplings in the new representation are zero
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F d
mn = 〈φd

m |∇Rφd
n〉 = 0. (2.22)

The diabatic derivative coupling matrix can be expressed in the adiabatic represen-
tation as

F d = S†FS + S†∇S (2.23)

with F = [Fmn]. It follows immediately that the unitary transformation that fulfills
F d = 0 satisfies the following equation :

FS + ∇S = 0. (2.24)

Unfortunately, in the general case of a polyatomicmolecule, the last equation only has
a solution if the complete set of adiabatic electronic states is considered. Therefore,
in practice, a strict diabatic basis does not exist and one usually searches a quasidi-
abatic representation that makes the derivative couplings small enough to be safely
neglected. Several methods have been proposed to obtain a quasidiabatic represen-
tation from ab initio computed data in the adiabatic representation. These methods,
which are reviewed in the Chap.4 of Ref. [6], can be classified into three classes,
depending on the type of data used to construct the quasidiabatic representation. The
first class contains derivative-basedmethods, which use ab initio computed derivative
couplings to integrate directly Eq. (2.24). These methods require the computation of
the derivative couplings over extended portions of the geometry space and are there-
fore computationally expansive. The second class contains property-based methods,
which attempt to reduce the configurational change of the electronic wavefunctions
upon geometry changes to determine the transformation matrix S. Since smoother
electronic states yield smoother properties, this can also be achieved by enforcing
the smoothness of electronic properties, such as, for instance, the dipole moment.
The last class contains energy-based methods, which use only ab initio computed
electronic energies.

Assuming that a suitable quasidiabatic representation has been derived, the TDSE
in the diabatic representation can be written in matrix form as

[TnuI + W (R)]χd(R, t) = i�
∂

∂t
χd(R, t), (2.25)

where
χd(R, t) = S(R)χ(R, t), (2.26)

is the vector of the diabatic nuclear wavefunction components and

W (R) = S†(R)V (R)S(R) (2.27)

is the matrix of the diabatic potentials with

Wmn = 〈φd
m |Hel |φd

n〉. (2.28)
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We note that the diabatic electronic states are no longer eigenstates of the electronic
Schrödinger equation, which means that the diabatic potential matrix is not diagonal.
This transformed nuclear TDSE has a much more appealing form than the original
nuclear TDSE in the adiabatic representation of Eq. (2.20) because the couplings
between the different diabatic electronic states now appear in the diabatic potential
matrix W (R) that contains only local, i.e scalar, operators. In addition, in practice,
the diabatic potential and coupling surfaces have a much simpler topography than
their adiabatic counterparts.

2.2.3 Conical Intersections

The diabatic representation can now be used to characterize the topography of the
PESs at the vicinity of conical intersections. We first expand the diabatic potential
energy matrix elements as Taylor expansions around a reference geometry R0

W (R) = W (0) + W (1) + W (2) + · · · . (2.29)

It is assumed that the diabatic representation has been constructed such that, at
this point, the adiabatic and diabatic representations are identical. This is always
possible since Eq. (2.24) defines the transformation S(R) up to a constant unitary
transformation. In other words, if the matrix S(R) satisfies Eq. (2.24), the matrix
TS(R), where T does not depends on R, also does. Therefore, by choosing T =
S†(R0), the adiabatic and diabatic representations are identical at R0. This point
can be the ground state equilibrium geometry, a point of electronic degeneracy, or
any other point of interest. The zeroth order diabatic potential matrix is simply the
diagonal matrix of the adiabatic energies

W (0)
ij = 〈φi|Hel |φj〉

∣∣
R0

= Vi(R0)δij . (2.30)

The first order potential matrix can be expressed in the adiabatic basis at R0 as

W (1)
ij (R) =

[
〈φi|∇RHel |φj〉

∣∣
R0

]T

(R − R0). (2.31)

For diagonal elements, this leads to

W (1)
ii (R) = [ 〈φi|∇RHel |φi〉|R0

]T
(R − R0)

= [∇R〈φi|Hel |φi〉|R0

]T
(R − R0)

= ∇RVi(R)|TR0
(R − R0), (2.32)

where we have used the fact that the diagonal elements of the F matrix are zero for
real electronic wavefunctions. One can see from this last equation that the gradients
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of the adiabatic PESs at the reference geometry R0 appear in W (1)
ii (R). In addition,

the non-diagonal elements W (1)
ij (R) are related to the derivative couplings given in

Eq. (2.19).
The adiabatic potential energy matrix V (R) is obtained by diagonalizing the

diabatic potential energy matrix W (R), through the unitary transformation S(R)

introduced in Eq. (2.21)

V (R) = S(R)W (R)S†(R). (2.33)

Considering a two-state system, the adiabatic PESs read

V1,2(R) = 1

2
(W11(R) + W22(R)) ∓ 1

2

√
(W22(R) − W11(R))2 + 4W12(R)2.

(2.34)
Wenow truncate the expansionofEq. (2.29) tofirst order and considerR0 to be a point
of degeneracy. Introducing the following notations:Q = R−R0,W

(1)
ii (Q) = κ(i).Q

and W (1)
12 (Q) = λ.Q, the adiabatic PESs read

V1,2(Q) = 1

2
(κ(1) + κ(2)).Q ∓ 1

2

√
(δ.Q)2 + 4(λ.Q)2, (2.35)

where δ = κ(2) − κ(1). From this last equation, the conditions for the existence of a
conical intersection between the two adiabatic PESs are:

δ.Q = 0 and λ.Q = 0. (2.36)

Therefore, at first order, the degeneracy is lifted along two directions defined by the
unitary vectors

eg = g

||g|| = ∇Q(δ.Q)

||∇Q(δ.Q)|| = δ

||δ|| , (2.37)

and

eh = h

||h|| = ∇Q(λ.Q)

||∇Q(λ.Q)|| = λ

||λ|| . (2.38)

In these last equations, g = δ is the gradient difference vector andh = λ is the linear
derivative coupling vector. The space spanned by these two vectors is called the g−h
space or branching space whereas the space orthogonal to the branching space is the
intersection space, also called conical intersection seam. Thus, a conical intersection
is a subspace of the nuclear configuration space of dimension 3N-8, where N denotes
the number of atoms of the system (the space of the nuclear configurations is of
dimension 3N-6).

From Eq. (2.35), the adiabatic PESs form a double cone at the intersection, as
illustrated in Fig. 2.1. Any infinitesimal displacement along a direction orthogonal
to the branching space preserves the degeneracy. However we stress that, because
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Fig. 2.1 Adiabatic PESs around a conical intersection obtained within the first-order description.
The PESs are obtained from Eq. (2.34) with W11 = −x , W22 = x and W12 = y. V1 and V2 are
displayed in blue and red, respectively

of the first order nature of the above analysis, a finite displacement along such a
direction will in general lift the degeneracy. This is a consequence of the curvature
of the conical intersection seam, encapsulated in the second order terms W (2) in
Eq. (2.29) [7–9].

2.3 Basics of Electronic Structure Theory

In the previous section, we have seen that in a vast majority of cases, the quantum
mechanical description of a molecular system can be greatly simplified if the nuclear
and electronic motions are separated. In this case, the electronic problem can be
treated for fixed nuclei by solving the clamped nucleus or electronicTISEofEq. (2.5).
Finding accurate and efficient numerical procedures to solve the electronic TISE has
been a major goal of theoretical chemistry since the beginning of the second part of
the previous century [10, 11].

2.3.1 Spin Orbitals and Slater Determinants

In quantum mechanics, to completely describe an electron, the spin needs to be
considered in addition to its motion in space. Electrons have a spin s = 1

2 ,
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therefore the electron spin state space is spanned by the orthonormal basis{|s = 1
2 , ms = 1

2 〉, |s = 1
2 , ms = − 1

2 〉
}
conventionally noted {|α〉, |β〉}. It is often

convenient, for ease of notation, to introduce an unspecified spin variable, that we
note σ, and to represent the eigenstates |α〉 and |β〉 by eigenfunctions 〈σ|α〉 = α(σ)

and 〈σ|β〉 = β(σ). It follows that an electron will be specified by four variables, the
three spatial variables, gathered in the vector r and the spin variable. These will be
conveniently gathered in a vector ξ ≡ (r,σ). In general, the wavefunction of a single
electron ψ(ξ) is called a spin orbital. It is expressed as the product of a function of
the spatial coordinates r named spatial orbital and one of the two spin functions

ψ(ξ) = ϕ(r) ×
⎧
⎨

⎩

α(σ)

or
β(σ)

. (2.39)

From a set of K spatial orbitals, a set of 2K spin orbitals can be generated. In
addition, if the spatial orbitals are orthonormal, so are the spin orbitals. In the rest of
this chapter, the spin orbitals will be called molecular orbitals (MOs).

The wavefunction of a N -electron system must be antisymmetric with respect to
the exchange of two electrons

�
(
ξ1, . . . , ξi, . . . , ξj, . . . , ξN

) = −�
(
ξ1, . . . , ξj, . . . , ξi, . . . , ξN

)
. (2.40)

A wavefunction satisfying this requirement can be conveniently written in the form
of a Slater determinant [12]

�(ξ1, ξ2, . . . , ξN ) = 1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(ξ1) ψ2(ξ1) · · · ψN (ξ1)

ψ1(ξ2) ψ2(ξ2) · · · ψN (ξ2)
...

...
. . .

...

ψ1(ξN ) ψ2(ξN ) · · · ψN (ξN )

∣∣∣∣∣∣∣∣∣

. (2.41)

The factor 1√
N ! ensures the normalization of the Slater determinant. As seen in

Eq. (2.41), the coordinates of a single electron appear in a given rowwhereas a single
MO appears in a given column. According to the general properties of determinants,
the exchange of the coordinates of two electrons correspond to the permutation of
two rows of the determinant, which changes its sign. Therefore the Slater determinant
satisfies the antisymmetry principle, illustrated by Eq. (2.40). In addition, if twoMOs
are identical, two of the columns of the determinant are identical, whichmakes it zero.
This correspond to the physical situation of two electron being in the same quantum
state. Thus we see that the antisymmetry principle implies that two fermions can
not be in the same quantum state. This principle is known as the Pauli exclusion
principle.
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2.3.2 The Hartree–Fock Approximation

The Hartree–Fock approximation [13, 14] plays a central role in the molecular elec-
tronic structure theory. In most cases, it provides a qualitatively correct description
of the electronic structure of many electron atoms and molecules in their ground
electronic state. In addition, it constitutes a basis upon which more accurate methods
can be developed. A detailed derivation and discussion of the method can be found in
textbooks such as [10, 11]. The Hartree–Fock approximation assumes the simplest
possible form for the electronic wavefunction, i.e a single Slater determinant given
by Eq. (2.41). Starting from the electronic TISE Eq. (2.5), the Hartree–Fock energy
EHF is simply

EHF = 〈�|Hel |�〉. (2.42)

The Hartree–Fock approximation relies on the variational principle, which states
that any approximate wavefunction has an energy above or equal to the exact ground
state energy. This principle has an important consequence : for a given system, the
wavefunction of the form of Eq. (2.41) that minimizes the energy in Eq. (2.42) is the
best possible wavefunction within the single determinant approximation.

Let us write the electronic Hamiltonian in atomic units

Hel(r;R) = −1

2

Nel∑

i

∇i.∇i +
Nel∑

i

Nel∑

j>i

1

|rj − ri| −
Nnu∑

α

Nel∑

i

Zα

|Rα − ri| +
Nnu∑

α

Nnu∑

β>α

Zα Zβ

|Rα − Rβ | .

(2.43)
This Hamiltonian can be written as the sum of three operators

Hel(r;R) = O1(r;R) + O2(r) + V NR(R), (2.44)

where

O1(r;R) =
Nel∑

i

hi (2.45)

with

hi = −1

2
∇i.∇i −

Nnu∑

α

Zα

|Rα − ri| (2.46)

is a mono-electronic operator,

O2(r) =
Nel∑

i

Nel∑

j>i

gij (2.47)

with

gij = 1

|rj − ri| (2.48)
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is a bi-electronic operator, and

V NR(R) =
Nnu∑

α

Nnu∑

β>α

Zα Zβ

|Rα − Rβ | (2.49)

is the nuclear repulsion potential energy operator. This last operator does not depend
on the electronic coordinates and therefore contributes to the molecular energy as a
constant.

With these definitions, the Slater–Condon rules [12, 15] can be used to obtain an
expression for the energy of Eq. (2.42) as a function of the MOs. The contribution
of the mono-electronic operator reads

〈�|O1|�〉 =
Nel∑

i

〈ψi(ξ1)|h1|ψi(ξ1)〉. (2.50)

The contribution of the bi-electronic operators reads

〈�|O2|�〉 =
Nel∑

i

Nel∑

j>i

(〈ψi(ξ1)ψj(ξ2)|g12|ψi(ξ1)ψj(ξ2)〉 − 〈ψi(ξ1)ψj(ξ2)|g12|ψj(ξ1)ψi(ξ2)〉
)

= 1

2

Nel∑

i

Nel∑

j

(
Jij − Kij

)
. (2.51)

In this last equation, Jij andKij denote the Coulomb and exchange integrals, respec-
tively. TheCoulomb integral represents the repulsion between the two electronic den-
sities |ψi(ξ1)|2 and |ψj(ξ2)|2. The exchange integral has no classical analogue and is
a consequence of the Pauli principle. Using Eqs. (2.50) and (2.51), the Hartree–Fock
energy reads

EHF =
Nel∑

i

〈ψi(ξ1)|h1|ψi(ξ1)〉 + 1

2

Nel∑

i

Nel∑

j

(Jij − Kij) + VNR(R). (2.52)

The above equation can be recast in a formwhere theCoulomband exchange integrals
are replaced by the expectation values of Coulomb and exchange operators Ji and
Ki, defined such that

Ji|ψj(ξ2)〉 = 〈ψi(ξ1)|g12|ψi(ξ1)〉|ψj(ξ2)〉 (2.53)

and
Ki|ψj(ξ2)〉 = 〈ψi(ξ1)|g12|ψj(ξ1)〉|ψi(ξ2)〉. (2.54)
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The energy now reads

EHF =
Nel∑

i

〈ψi(ξ1)|h1|ψi(ξ1)〉 + 1

2

Nel∑

i

Nel∑

j

〈ψj(ξ1)|Ji − Ki|ψj(ξ1)〉 + VNR(R)

≡
Nel∑

i

〈ψi|h1|ψi〉 + 1

2

Nel∑

i

Nel∑

j

〈ψj |Ji − Ki|ψj〉 + VNR(R). (2.55)

In this last equation, the dependence of the orbitals on the electronic coordinates is
dropped since it formally depends on the coordinates of a single electron.

The objective is now to find the set ofMOs thatminimizes the energy of Eq. (2.55),
with the additional constraint that the set of MOs remains orthonormal. This type
of constrained optimization problem can be conveniently solved by the method of
Lagrange multipliers. This method consists in minimizing the Lagrange function L

L = E −
Nel∑

i

Nel∑

j

εij(〈ψi|ψj〉 − δij) (2.56)

with respect to the MOs

δL = δE −
Nel∑

i

Nel∑

j

εij(〈δψi|ψj〉 − 〈ψi|δψj〉) = 0, (2.57)

where the εij are the Lagrange multipliers.
By developing this last equation, one finds the Hartree–Fock equations

Fi|ψi〉 =
∑

j

εij |ψj〉 (2.58)

where Fi is an effective one-electron operator called the Fock operator

Fi = hi +
Nel∑

j

(
Jj − Kj

)
. (2.59)

The Fock operator is the sum of two terms : an operator hi containing the kinetic
energy operator and the electron–nuclei attraction potential operator, and an operator
describing the repulsion of the electron with all the other electrons.

The matrix of the Lagrange multipliers ε is hermitian, therefore there exists a
unitary transformation U that diagonalizes ε. Applying this unitary transformation
to the set of MOs {|ψi〉}

|ψ′
i〉 =

∑

j

Uij |ψj〉 (2.60)
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yields a new set of MOs
{|ψ′

i〉
}
verifying

F ′
i |ψ′

i〉 = ε′
i|ψ′

i〉 (2.61)

where ε′ = U†εU . In addition, it can be shown that F ′
i = Fi and that the electronic

wavefunction constructed with the newMOs is equal to the original electronic wave-
function to a phase factor. This transformed set of equations is known as the canonical
Hartree–Fock equations and the corresponding orbitals the canonical orbitals. The
prime symbols will be dropped from now on. In this representation, the Lagrangian
multiplier are interpreted as orbital energies

〈ψi|Fi|ψi〉 = εi〈ψi|ψi〉 = εi. (2.62)

Equation (2.61) forms a set of pseudo-eigenvalue equations as the Fock oper-
ator depends on the MOs via the Coulomb and exchange operators, and must be
solved by an iterative procedure. The unknown MOs {|ψi〉} are expanded in a set
of non-orthogonal, atom-centered basis functions |ψi〉 = ∑

μ cμi|χμ〉. Inserting this
expansion in the canonical Hartree–Fock equations Eq. (2.61) yields

Fi

∑

μ

cμi|χμ〉 = εi

∑

μ

cμi|χμ〉. (2.63)

Multiplying on the left by χ∗
ν and integrating, one obtains

∑

μ

cμi〈χν |Fi|χμ〉 = εi

∑

μ

cμi〈χν |χμ〉. (2.64)

This last set of equations can be written in a compact matrix form

FC = SCε (2.65)

where F is the Fock matrix of elements Fνμ = 〈χν |Fi|χμ〉, S is the overlap matrix
of elements Sνμ = 〈χν |χμ〉 andC is the vector of the coefficients of the expansion of
theMOs on the basis set cμi = 〈χμ|ψi〉. These equations are known as theRoothaan–
Hall equations [16, 17]. The problem of the calculation of the MOs is now turned
into the determination of the coefficients cμi.

The presence of the overlap matrix S in the Roothaan–Hall equations Eq. (2.65)
reflects the fact that the basis functions used to expand the orbitals are non-orthogonal.
By multiplying from the left by S− 1

2 and inserting the unit matrix I = S− 1
2 S

1
2 ,

Eq. (2.65) can be recast as
F̃ C̃ = C̃ε, (2.66)
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where F̃ = S− 1
2 FS− 1

2 and C̃ = S
1
2 C. Equation (2.66) is a standard set of eigen-

value equations, the diagonalization of the matrix F̃ yields a set of eigenvectors C̃
which can be back-transformed to obtain the vectors C solutions of Eq. (2.65).

As mentioned above, since the construction of the Fock matrix F involves the
calculation of integrals over the Coulomb and exchange operators which depend on
the MOs that we want to calculate, the Roothaan–Hall equations must be solved
iteratively. The procedure starts with the definition of an initial guess for the MOs.
This can be done conveniently by using simple empirical methods such as the Hückel
method [18]. Using this initial guess, the Fock matrix can be constructed and diag-
onalized to yield a new set of MOs which is in turn used to construct a new Fock
matrix. This procedure, called the Self-Consistent Field (SCF) method, is iterated
until convergence of the MOs.

For a N -electron closed-shell molecule, using a basis containing M ≥ N func-
tions, the solution of the Roothaan–Hall equations generates M spatial orbitals and
2M spin orbitals. In the case of molecule with an even number of electrons and a
singlet ground state (a closed-shell molecule), the restriction that each spatial orbital
should have two electrons (one with spin α and one with spin β) is usually made.
This method is called restricted Hartree–Fock method. In this case, among the M
spatial orbitals obtained from the calculation, the N/2 orbitals of lowest energy are
occupied and the remaining M − N/2 MOs are unoccupied, or virtual orbitals. The
Hartree–Fock energy and the N -electron wavefunction are obtained using the N/2
occupied orbitals. This description defines the notion of an electronic configuration
associated with a Slater determinant, which correspond to a particular repartition of
the electrons in the different MOs.

In most cases, the Hartree–Fock method provides a qualitatively correct descrip-
tion of the electronic structure of a molecular system. Usually, the Hartree–Fock
methodgives 99%of the total energy of themolecule described by the non-relativistic
Schrödinger equation and the clamped nucleus Hamiltonian. The difference between
the best Hartree–Fock energy, i.e the Hartree–Fock energy in the limit of an infinite
basis, and the “exact” energy is called the electronic correlation energy.

2.3.3 Electronic Correlation

Taking into account the electronic correlation is mandatory if a quantitative descrip-
tion of the electronic structure and energy of the system of interest is required. In
addition, in some cases, the inclusion of the electronic correlation effects are neces-
sary to obtain even a qualitatively correct description of the electronic structure of
the system. By definition, the mean-field approximation resulting from the approx-
imation of the multi-electron wavefunction by a single Slater determinant is unable
to account for the electronic correlation. A correlated electronic wavefunction must
then be written as a linear combination of several Slater determinants
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Fig. 2.2 Scheme illustrating different electronic configuration for a molecular system of N elec-
trons described in a basis of M orbitals. The left scheme shows the ground state configuration,
the middle scheme shows a singly excited configuration and the right scheme a doubly excited
configuration

�(ξ1, ξ2, . . . , ξN ) =
∑

i

ci�i(ξ1, ξ2, . . . , ξN ). (2.67)

From a set of orbitals such as the one obtained from a Hartree–Fock calculation,
manySlater determinants corresponding to excited configurations canbe constructed.
These are obtained by replacing one or several occupied orbitals by virtual orbitals,
as illustrated in Fig. 2.2.

Usually, two different types of electronic correlation are distinguished, the static
electronic correlation and the dynamic electronic correlation. Although this distinc-
tion is by no means strict, it is useful because the two types of electronic correlation
have different physical origins and different methods can be used to recover one or
the other type of correlation.

A strong static correlation is encountered in situations where several electronic
states are degenerate, or at least close in energy. Such situations occur when electrons
can be distributed in several ways in orbitals close in energy. This is the case, for
instance, in bond breaking processes, or in the case of systems containing transition
metal atoms with incomplete electronic shells. The electronic wavefunction will
therefore include important contributions from a few configurations, and theHartree–
Fockmethod has to be replaced by amethod capable of treating several configurations
on an equal footage. This is the case of the Multi-Configuration Self-consistent
field (MCSCF) method, in which the trial wavefunction is expressed as a linear
combination of Slater determinants as in Eq. (2.67), and both theMOs and expansion
coefficients ci are optimized variationally.
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The dynamic electronic correlation results from the Coulombic repulsion between
two electrons lying close to each other. It requires the inclusion of a large number of
configurations obtained by exciting electrons to high-energy virtual orbitals. How-
ever, in this case the electronic structure is still dominated by a single configuration
and the other Slater determinants included in the wavefunction have small coef-
ficients. Therefore the dynamic correlation energy can be recovered by methods
starting from the Hartree–Fock wavefunction. Among the methods that are able to
take into account the dynamic correlation energy, one can cite the configuration
interaction methods (CI), methods based on the perturbation theory or the coupled
cluster methods (CC). These methods are usually qualified as single-reference meth-
ods because they start from the Hartree–Fock Slater determinant.

Unfortunately, in many situation of interest, both static and dynamic electronic
correlation need to be taken into account. This is particularly true for the study of
processes involving excited electronic states as in UV spectroscopy or in photochem-
istry. In this case, methods capable of taking into account the dynamic electronic
correlation on top of a multi-determinantal wavefunction of the MCSCF type are
needed. Thesemethods are usually calledmulti-referencemethods. The two standard
methods that are able to account for both the static and dynamic electronic correla-
tion are the multi-reference configuration interaction (MRCI) and several variants of
second-order multi-reference perturbation theory (MRPT).

2.3.3.1 The Configuration Interaction Methods

In the configuration interaction method, the wavefunction is expanded in a basis
of Slater determinants. The Hartree–Fock determinant, noted �HF, is taken as a
reference zeroth-order wavefunction. Slater determinants corresponding to excited
configurations are generated by swapping occupied MOs ψa with virtual (unoccu-
pied) MOs ψr and can be classified with respect to the number of excited electrons.
Singly excited Slater determinants are noted �r

a , doubly excited Slater determinants
�rs

ab, triply excited Slater determinants�rst
abc, and so on. The configuration interaction

wavefunction then reads

� = cHF �HF +
∑

a,r

car�
r
a +

∑

a<b,r<s

cab,rs�
rs
ab + · · ·

=
∑

I

cI�I (2.68)

where I is a composite index accounting for all kinds of excitations. Thefinal configu-
ration interactionwavefunction is obtained by variationally optimizing the expansion
coefficients cI , with the normalization constraint 〈�|�〉=1. Again, this is done by
using the Lagrange multiplier technique. The Lagrangian function
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L = 〈�|H|�〉 − E(〈�|�〉 − 1)

=
∑

I

∑

J

c∗
I cJ 〈�I |H|�J 〉 − E

(
∑

I

c∗
I cI − 1

)
(2.69)

is minimized with respect to the expansion coefficients

∂L
∂cI

= 2
∑

J

cJ 〈�I |H|�J 〉 − 2EcI = 0. (2.70)

This last set of equations can be written in matrix form

Hc = Ec. (2.71)

Solving this set of secular equations is equivalent to diagonalizing the configuration
interaction matrix H . Therefore the lowest eigenvalue of H is the ground state
energy, the second lowest, the energy of the first excited state, and so on.

When all the Slater determinants that can be constructed from a set of Hartree–
Fock MOs are taken into account, the method is called full configuration interaction.
It provides the best possible solutions of the non-relativistic, clamped nuclei TISE
within the basis set used for the calculation. The exact solutions are thus obtained
from a full configuration interaction calculation at the complete basis limit. However,
the number of configurations that can be built from a set of MOs grows extremely
fast with the size of the system (i.e the size of the molecule and/or of the basis set).

For most systems, it is therefore necessary to reduce the number of configurations.
This is usually done by truncating the expansion of Eq. (2.68) to a given level of
excitation. When only singly excited configurations are included, the method is
called configuration interaction with single excitations (CIS). Because, in virtue of
the Brillouin’s theorem [10], matrix elements between the Hartree–Fock determinant
and a singly excited determinant are zero, the CIS method does not improve the
description of the ground electronic state. It allows one to calculate excited states
that are dominated by single excitations with an accuracy similar to that of the
Hartree–Fock method for the ground state.

Including the singly and doubly excited configurations yields the configuration
interaction with single and double excitations method (CISD). In contrast to the
CIS method, the CISD method improves the description of the ground state because
doubly excited configurations are directlymixedwith theHartree–Fock configuration

〈�HF |Hel |�rs
ab〉 = 〈ψaψb|g12|ψrψs〉 − 〈ψaψb|g12|ψsψr〉. (2.72)

In addition, in the CISDmethod, the singly excited configurations are now indirectly
mixed to the ground state, through their mixing with the doubly excited configura-
tions. Configuration interaction methods including higher level excitations (CISDT,
CISDTQ, . . .) are less commonly used.
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2.3.3.2 The Multi-configuration Self-consistent Field Method

TheMulti-Configuration Self-Consistent Field method combines the ideas of orbital
optimization through a SCF technique as in the Hartree–Fock method, and a multi-
configuration expansion of the electronic wavefunction as in the configuration inter-
action method. In other words, the electronic wavefunction is still expressed as a
linear combination of Slater determinants � = ∑

i ci�i, but now both the coeffi-
cients ci and the orbitals are optimized variationally [19–22]. This procedure being
computationally more expansive than the configuration interaction method, only
a limited number of configurations can be included in the MCSCF wavefunction.
Therefore, the MCSCF method is usually not used to calculate a large fraction of
the dynamic electronic correlation energy. On the other hand, it is well suited when
the static correlation effects are important. In these cases, several configurations are
quasi-degenerate and need to be included in the electronic wavefunction on an equal
footing to obtain a qualitatively correct zeroth order description of the electronic
structure of the system.

An important issue in MCSCF calculations is the selection of the configurations
to be included in the wavefunction expansion. The most popular approach is the
complete active space self-consistent field (CASSCF) method, also called full opti-
mized reaction space (FORS). This approach starts from a zeroth order set of MOs,
usually obtained via the Hartree–Fock method. The set of MOs is split into three
subsets, as illustrated in Fig. 2.3. A first one containing occupied inactive orbitals,
for which the occupation numbers are fixed to 2. A second one containing active
orbitals, including both occupied and virtual orbitals of the reference Hartree–Fock
configuration, in which all possible electron excitations are allowed. And a third one
containing virtual inactive orbitals, for which the occupation numbers are fixed to 0.

Fig. 2.3 Scheme illustrating
the notion of active space in
the CASSCF method. In the
present case, an active space
of four electrons in four
orbitals, noted CAS(4, 4) is
depicted
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More precisely, a set of active orbitals and a number of active electrons are defined.
All the configurations that can be built by excitations of the active electrons among the
active orbitals are included into the wavefunction. Other, more flexible approaches
for the selection of the configurations included in the MSCSF wavefunction exist,
such as the Restricted Active Space Self-Consistent Field [23, 24] (RASSCF) and
the Occupation Restricted Multiple Active Space (ORMAS) [25] methods.

A CASSCF wavefunction is, in general, much harder to converge than a sim-
ple SCF wavefunction. Several optimization procedures have been developed for
the CASSCF wavefunction. The most popular one uses a Newton–Raphson-based
method to minimize the energy. The energy is expanded to second order in the vari-
ational parameters (the orbital and configurational coefficients) around a particular
set of coefficients

E(c) = E(c0) + gT (c − c0) + 1

2
(c − c0)

T H(c − c0). (2.73)

In this equation, c ≡
(

c(o)

c(c)

)
is a vector gathering the orbital and configurational

coefficients, c0 is the vector of the current coefficients, g = ∇cE(c)|c=c0
is the

gradient of the energywith respect to the coefficients at c0 andH = ∇c∇c
T E(c)

∣∣
c=c0

the Hessian matrix. Requiring the gradient of the energy to vanish yields

c = c0 − H−1g. (2.74)

Since the energy is not a quadratic function of the coefficients, several Newton steps
are needed to locate a minimum. In addition, the calculation and inversion of the
full Hessian matrix can be extremely time consuming for large active spaces and/or
basis sets. Often, the elements of the Hessian coupling orbital and configurational
coefficients (cross derivatives) are neglected and the optimization of the two sets of
coefficients are decoupled.

During a CASSCF optimization near an electronic state degeneracy, problems
of convergence often occur. The algorithm can swap from one state to the other.
This problem is known as the root flipping problem. A way around this problem is
to optimize the two states simultaneously. Specifically, a weighted average of the
energies of the two states is minimized, and a same set of orbitals is optimized for
the two states. This procedure is called state-averaged CASSCF (SA-CASSCF).

2.3.3.3 Methods Based on Perturbation Theory

As explained above, the dynamic electronic correlation can be taken into account by
the (truncated) configuration interaction method in the case of a single reference sys-
tem. Similarly, the multi-reference configuration interaction (MRCI) method can be
used for multi-reference systems. In this method, a CASSCF wavefunction is used
as the zeroth order description of the system. A configuration interaction matrix
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containing all the configurations corresponding to single and double excitations (this
is the MRCISD approach) from the configurations present in the CASSCF wave-
function is constructed and diagonalized. However this approach is computationally
highly expansive and can only be used for small molecules.

Another approach is to include the effect of excited configurations through per-
turbation theory. This method avoids the diagonalization of a large matrix and can
be accurate if the dynamic electronic correlation effects are not too large.

The Møller–Plesset perturbation theory [26] corresponds to the application of the
stationary perturbation theory to the calculation of the correlation energy using the
Hartree–Fock Slater determinant�HF as the zeroth order wavefunction. These meth-
ods are denoted MPn where n is the order of the perturbative corrections included.
In the Møller–Plesset method, the unperturbed Hamiltonian operator is chosen as a
sum of Fock operators

H0 =
Nel∑

i

Fi =
Nel∑

i

⎛

⎝hi +
Nel∑

j

Jj − Kj

⎞

⎠ . (2.75)

The Hartree–Fock determinant and all Slater determinants built with Hartree–Fock
orbitals are eigenfunctions of H0. The perturbation operator W is then defined as
the difference between H0 and the exact electronic Hamiltonian Hel of Eq. (2.43)

W = Hel − H0 =
Nel∑

i

⎛

⎝
Nel∑

j>i

gij −
Nel∑

j

Jj − Kj

⎞

⎠ . (2.76)

With these definitions, the zeroth order energy is a sum of MO energies

E(0)
0 = 〈�HF |H0|�HF〉 =

Nel∑

i

〈�HF |Fi|�HF〉 =
Nel∑

i

εi. (2.77)

The first order energy

EMP1 = E
(0)
0 + E

(1)
0 = 〈�HF |H0|�HF 〉 + 〈�HF |W |�HF 〉 = 〈�HF |Hel |�HF 〉 = EHF

(2.78)
is simply the Hartree–Fock energy. The general expression of the second order per-
turbative correction to the energy is:

E(2)
0 =

∑

j �=0

|〈�HF |W |�j〉|2
E(0)

0 − E(0)
j

(2.79)

where�j denotes the excited Slater determinants. Singly excited determinants�j ≡
�r

a does not contribute to the correction. Both terms in the right-hand side of the
matrix elements
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〈�HF |W |�r
a〉 = 〈�HF |Hel |�r

a〉 − 〈�HF |H0|�r
a〉 (2.80)

are zero, the first one because of Brillouin’s theorem and the second one because H0

is diagonal in the basis of the Slater determinants. In addition, Slater determinants
corresponding to triple excitations and higher level excitations do not contribute
because theW operator only contains two-electron operators. Therefore, only doubly
excited Slater determinants contribute to the second order energy correction.

The energies E(0)
j read

E(0)
j = 〈�rs

ab|H0|�rs
ab〉 = E(0)

0 + εr + εs − εa − εb. (2.81)

Therefore, using Eqs. (2.72) and (2.81), the second order correction to the energy
reads

EMP2 =
∑

a<b,r<s

|〈ψaψb|g12|ψrψs〉 − 〈ψaψb|g12|ψsψr〉|2
εa + εb − εr − εs

. (2.82)

The MP2 method can be used to approximate the CISD energy of the ground state
of a molecular system at a low computational cost. Higher order corrections have
increasingly complicated expressions, however corrections up to fourth order (MP4)
[27] are commonly available in the major quantum chemistry program packages.

As stated above, the CASSCF method is the method of choice to obtain a quali-
tative description of the electronic structure of a molecular system when static cor-
relation plays a role. However, if a high accuracy is sought, the dynamic electronic
correlation needs to be taken into account. Therefore, a method capable of describing
accurately molecules in excited electronic states of different nature with a balanced
accuracy over a wide range of geometries (in particular in regions where several
electronic states become close in energy) must account for both the static and dynam-
ics electronic correlations. The full CI and MRCISD method mentioned above can
account for both types of correlation but they are extremely expansive and can only
be applied to small systems. An alternative is to account for the dynamic electronic
correlation energy through second-order perturbation theory on top of a CASSCF
zeroth-order wavefunction. This is the idea behind the multi-reference perturbation
theory methods (MRPT).

Several different methods of the MRPT2 type exist. The most popular are the
multi-reference second-order Møller–Plesset (MRMP2) method of Hirao [28] and
the complete active-space second-order perturbation theory (CASPT2) method of
Andersson et al. [29]. In these methods, each state is perturbed separately. This
can become problematic when, for instance, two states become sufficiently close in
energy to interact after perturbation, these interactions will not be properly accounted
for by such calculations. To solve this problem, methods based on second-order
multi-state multi-reference perturbation theory (MS-MRPT2) can be used. These
methods build an effective Hamiltonian between the perturbed states and diagonalize
it, allowing one to treat quasi-degenerate states perturbatively. The most famousMS-
MRPT2 methods are the multi-state CASPT2 method [30] and its extended version
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(XMSCASPT2) [31], and the multi-configuration second-order quasi-degenerate
perturbation theory (MCQDPT2) [32] and its extended version (XMCQDPT2) [33].
The XMCQDPT2method is an approach to second order multi-state multi-reference
perturbation theory recently developed by Granovsky, and implemented in the Fire-
fly QC package [34], which is partially based on the GAMESS (US) source code
[35]. It has been applied to a number of problems of biological and photochemical
interest [36–43] and was shown to compare favourably with respect to experimental
observations and other high-level theoretical methods [44–46]. All the excited state
electronic structure calculations presented in this thesis have been performed with
the CASSCF and XMCQDPT2 methods.

2.4 Potential Energy Surface Exploration

One of the most important applications of electronic structure calculations is the
exploration of PESs. In particular, the theoretical description of chemical transfor-
mations requires the knowledge of the main stationary points of the relevant PESs.

For instance, a thermal reaction on the ground electronic state is, in the simplest
case, characterized by the two minima corresponding to the reactants and products,
and the transition state connecting them, as illustrated in the left panel of Fig. 2.4.
Similarly, the characterization of stationary points is essential for the description of
photochemical reactions. In this case, besides minima and transition states, conical
intersections also play an important role. They provide channels connecting photo-
products on the ground state with the Franck–condon region on the excited state, as
illustrated in the right panel of Fig. 2.4. As for the calculation of electronic wave-
functions and energies through (MC)SCF techniques, the determination of stationary
points on PESs is an optimization problem.

Fig. 2.4 Scheme illustrating a simple thermal reaction on the ground electronic state (left panel)
and a photochemical reaction (right panel). MinR and Min P denote the minima corresponding to
the reactants and products on the ground state PES. MinES denotes a local minimum on the excited
state PES. TS denotes the transition state and CI denotes a point of conical intersection
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2.4.1 Minima and Transition State Optimization

The simplest methods to find a minimum are methods based on the gradient of
the energy with respect to the nuclear coordinates g(R0) = ∇RE(R)|R=R0

. The
steepest descent method uses the opposite of the gradient as the search direction
di = −gi, where the subscript i denotes the current iteration. A displacement is
performed in this direction to find a new estimation of the minimum. At this point, a
new gradient evaluation is performed, providing the search direction for the next step.
This procedure is iterated until all the components of the gradient are smaller than
a predefined threshold. A slightly more efficient method is the conjugated gradient
method. In this method, the search direction is defined as a mixture of the opposite
of the gradient and the previous search direction di = −gi + βidi−1. Both methods
are easy to implement but converge slowly towards a minimum.

A faster convergence can be obtained by using methods based on a second order
expansion of the energy such as the Newton–Raphson-based methods [47]. In these
methods, the search direction is defined as (see also Eq. (2.74))

di = −H−1
i gi, (2.83)

where H is the Hessian matrix of the electronic energy with respect to the nuclear
coordinates. In a coordinate system that diagonalizes the Hessian matrix, the search
direction reads

d ′
i = −(H (d))−1

i g′
i, (2.84)

whereH (d) is the diagonalHessianmatrix. If all the eigenvalues of theHessianmatrix
are positive, the algorithm converges towards a minimum, whereas if the Hessian
has a negative eigenvalue, the algorithm tends to converge towards a transition state.

Two problems need to be addressed to make this class of methods robust and
efficient. The first one is to improve the search direction and the size of the step
taken along this direction. This can be done by adding a shift parameter λ in the
Newton–Raphson step

d ′
i = −(H (d) − λI)−1

i g′
i. (2.85)

The shift parameter can be used to ensure that the optimization proceeds downhill
even if the Hessian has negative eigenvalues. In addition, it can be chosen such that
the step size is lower or equal to a predefined threshold. Popular methods using a shift
parameter are the rational function optimization (RFO) [48] and Trust Radius (TR)
methods [49, 50]. A finer control on the step size and direction can be achieved using
an approximate line search method, which attempts to fit a polynomial function to
the energies and gradients of the best previous points [51].

A second important issue is the calculation of the Hessian matrix which can be a
computationally expansive task. A method to avoid such calculation is to start with
an approximate Hessian, e.g. empirically determined or calculated at a lower level
of theory, and to update the Hessian during the optimization using only energies and
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gradients at successive optimization steps. The most popular updating scheme is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) scheme [52–55]. Methods based on
such an approximate Hessian matrix are called quasi-Newton methods.

The above methods can be modified to enforce convergence to a transition state.
In this case, the quality of the initial geometry and Hessian are more crucial than for
the optimization of a minimum.

The minimum and transition state optimizations performed in this thesis have
been performed using the Berny algorithm [56] implemented in the Gaussian 03
program package [57].

2.4.2 Minimum Energy Conical Intersection Optimization

As mentioned in Sect. 2.2.3, a conical intersection is not an isolated point but a
hyperline of N − 2 dimensions (the seam of conical intersection), where N is the
number of vibrational degrees of freedom. At each point of the seam, the degeneracy
is lifted upon displacement in the branching planewhereas it is conserved at first order
along the N-2 directions orthogonal to the branching plane. One is often interested
in finding the point of lowest energy within this seam, called the minimum energy
conical intersection (MECI) in order to characterize a photochemical process.

In this thesis, themethod proposed by Bearpark et al. [58], and implemented in the
Gaussian 03 package [57], has been used (see Chap.3). Considering two adiabatic
electronic states of energy E1 and E2, the principle of the method is to minimize
simultaneously the energy difference �E = E2 − E1 in the branching plane and
the energy of the upper state E2 in the intersection space. To avoid confusions in the
notations, the gradient difference and derivative coupling vectors will be noted x1

and x2. The branching plane is the space spanned by the two unitary vectors ex1 and
ex2 defined in Sect. 2.2.3. The condition for the minimization of the energy difference
in the branching plane reads

∇R�E2 = 2�Ex1. (2.86)

The squared energy difference is used because it varies more smoothly in the vicinity
of a conical intersection. The norm of x1 has no significance, the step size should only
depend on the energy difference �E, therefore the gradient to be used to minimize
�E is defined as

f = 2�Eex1 . (2.87)

The minimization of E2 in the intersection space is done by mean of a projector

P = I − x1x1
T − x2x2

T . (2.88)

http://dx.doi.org/10.1007/978-3-319-28979-3_3
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In this case the gradient to be used is

g = P∇RE2. (2.89)

Overall the MECI optimization uses the composite gradient

ḡ = f + g. (2.90)

Far from a conical intersection, the gradient is dominated by f and the algorithm
converges towards a point of conical intersection. During this phase, the energies E1

and E2 can rise considerably and the algorithm can reach a portion of the conical
intersection seam corresponding to highly distorted geometries. Therefore, as for
transition state optimizations, the quality of the starting geometry is important. As
the degeneracy is approached, f tends to zero and the gradient is dominated by g.
Therefore the algorithm minimizes the energy inside the conical intersection seam
and converges towards the MECI.

2.4.3 Minimum Energy Paths Optimization

The knowledge of the main stationary points on the PESs of interest gives some
information about the reactants, products and intermediates of a (photo)chemical
reaction. However, a better insight into the mechanism behind this reaction can be
obtained by computing the pathways linking these stationary points. Among the
infinite number of paths connecting two points, the path requiring the least increase
in energy is called the minimum energy path (MEP). The MEP usually follows
the steepest descent path. However, this steepest descent path usually varies from
a system of coordinates to another. When mass-weighted cartesian coordinates are
used, the steepest descent path is also known as the intrinsic reaction coordinate
(IRC). In this thesis, the algorithm of Gonzalez and Schlegel [59, 60], implemented
in the Gaussian 03 program package [57], has been used.

From a starting geometry Rk with a gradient gk , the IRC algorithm optimizes a
new point Rk+1 such that the path between the two points is an arc of a circle to
which both gradients gk and gk+1 are tangent. Defining a step size s, the algorithm
first generates a pivot point R∗

k+1 at a distance s/2 of Rk along the direction of the
gradient gk

R∗
k+1 = Rk + s

2

gk

||gk ||
. (2.91)

The new point Rk+1 is then obtained by a constrained optimization on the hyper-
sphere of radius s/2 centered at R∗

k+1.
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Chapter 3
Exploration of the Potential Energy
Landscape of Aniline Using CASSCF
and XMCQDPT2 Electronic Structure
Calculations

In this chapter, the tools introduced in Chap.2 are applied to the study of the
photochemistry of aniline. This work has been initiated during a six-month fel-
lowship in the group of Professor Helen Fielding in the Chemistry Department of
University College London, in the framework of the FASTQUAST Initial Train-
ing Network. The excited state non-adiabatic dynamics of aniline have been studied
experimentally in the Fielding group by means of time-resolved photoelectron imag-
ing (TRPEI) [1, 2]. The goal of this work was to characterize the important regions
of the potential energy surfaces of aniline relevant to its photochemistry, in order to
help in the interpretation of the data generated by these experiments.

This chapter is organized as follows. In Sect. 3.1, we discuss the general features
of the photochemistry of simple aromatic molecules and the current knowledge of
the photochemistry of aniline obtained from previous studies. We then present our
results and discuss them with respect to the available experimental data. In Sect. 3.2,
the methodology used in this work is detailed. The energy and nature of the lowest
singlet excited electronic states of the molecule are discussed in Sect. 3.3. The main
decay pathways relevant for photochemistry of the molecule after a direct excitation
to each one of the three lowest singlet excited electronic states are then presented
and discussed in Sects. 3.4–3.6. Conclusions are given in Sect. 3.7.

This chapter is partly based on results and discussions published in Ref. [3] by
the PCCP Owner Societies.

3.1 Introduction

3.1.1 General Trends in the Photochemistry of Simple
Aromatic Organic Molecules

The photochemistry and photophysics of simple aromatic organic molecules have
been investigated intensively during the last two decades. The study of these sys-
tems, ranging from simple benzene derivatives to DNA bases, aromatic amino acids
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and their complexes, have revealed general trends in their photochemistry. The UV
absorption spectra of these compounds are often dominated by low-lying ππ∗ excited
electronic states. However, depending on their structures, low-lying πσ∗ and nπ∗
states are often found in the same energy range. Generally, they have very short
excited state lifetimes and low fluorescence quantum yields, indicating the existence
of efficient non-radiative decay channels. Theoretical studies have revealed different
classes of motions, leading to low-lying conical intersections (CIs). An emblematic
example is the “channel 3” phenomenon of benzene.When it is excited near the band
origin corresponding to the 0–0 transition between the ground and first excited ππ∗
electronic states, the molecule decays on a nanosecond time scale, via fluorescence
and intersystem crossing to a nearby triplet state [4, 5]. However, when the molecule
is excited with an excess energy of more than 3000cm−1, the fluorescence quantum
yield suddenly drops down and an ultrafast decay, occurring on a femtosecond time
scale, is observed. This photochemical behavior finds its origin in the existence of a
CI between the ground and first excited ππ∗ states. The pathway leading to this CI on
the S1 potential energy surface (PES) involves a so-called prefulvene motion of the
molecule, consisting in an out-of-plane motion of one carbon atom of the benzene
ring. In addition, the activation energy needed to open this ultrafast decay channel is
the result of the existence of a potential energy barrier between the Franck–Condon
(FC) geometry on S1 and the prefulvene CI [6–14]. CIs between the first excited ππ∗
state and the ground state with similar geometries have been described in many other
aromatic molecules, such as for instance, pyrazine [15] and phenol [16]. Decay path-
ways involving out-of-plane ring deformations (also called ring puckering motions)
on the second ππ∗ excited state have also been found in a number of molecules
including pyrrole [17] or the purine DNA bases adenine [18, 19] and guanine [20].

An other important class of decay pathways involves aromatic molecules con-
taining a hydrogen atom bonded to a heteroatom such as oxygen, nitrogen or sulfur.
Typical examples of such molecules are pyrrole, indole, phenol, the DNA bases,
etc. These molecules are characterized by the existence of low-lying πσ∗ electronic
states. Generally, these states have a strong Rydberg character in the FC region and
a repulsive valence σ∗ character at large X–H distance (where X denotes the het-
eroatom)where aCIwith the ground state occurs, providing a highly efficient channel
for deactivation to the ground electronic state [21–26]. Usually these states have low
oscillator strengths, therefore they are often populated by vibronic coupling with a
nearby bright ππ∗ state.

As will be seen in this chapter, these general trends apply to the photochemistry
of aniline.

3.1.2 Previous Studies on the Photochemistry of Aniline

Aniline (C6H5NH2), composed of an amino group attached to a phenyl ring, is the
simplest aromatic amine. The motif of an amino group attached to an aromatic ring
is common in biological molecules. Therefore, aniline is an important model system.
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The low energy part of the UV absorption spectrum of aniline is composed of two
bands centered around 282nm (4.4eV) and 230nm (5.4eV) [27–29], arising from
transition to the two lowest-lying singlet ππ∗ electronic states, hereafter noted 1ππ∗
and 2ππ∗ states. The structure of themolecule in its ground andfirst excited electronic
state has been the subject of numerous experimental [30–33] and computational [34–
48] investigations. In particular, the equilibrium geometry of the 1ππ∗ state has been
a subject of debate [49–57]. A pyramidal equilibrium geometry [58]was predicted by
CASSCF calculations. Rotationally-resolved electronic spectra, on the other hand,
suggested a quasiplanar geometry for the 1ππ∗ state; however, this structure was a
vibrationally averaged structure rather than the true minimum of the PES [56].

Several high level ab initio computational investigations of the UV spectrum
of aniline have been reported, including the SAC-CI calculations of Honda et al.
[59], the MS-CASPT2 calculations of Hou et al. [60] and the EOM-CCSD(T) cal-
culations of Wang et al. [61]. Honda et al. and Hou et al. predicted the three low-
est singlet electronic states to be the 1ππ∗, 1πσ∗/R3s and 2ππ∗ states, followed
by three Rydberg 3p states. Honda et al. were the first to predict the 1πσ∗/R3s
state. This state was then observed by Ebata et al. [62] using UV–IR double-
resonance spectroscopy, with an onset at 269nm (4.60eV). In contrast with the
previous calculations, Worth et al. predicted two Rydberg 3p states to lie between the
1πσ∗/R3s and2ππ∗ states. They constructed a sophisticated vibronic couplingmodel
Hamiltonian using EOM-CCSD and EOM-CCSD(T) calculations and performed
quantum dynamic simulations which reproduced the first two bands of the UV spec-
trum with a remarkable accuracy [61].

Early experimental investigations of the photochemistry and photophysics of ani-
line following excitation of the 1ππ∗ state focussed on fluorescence and intersystem
crossing (ISC) [63–66], occurring on a nanosecond timescale. Surprisingly, how-
ever, it is only recently that the first studies of the ultrafast photochemistry of aniline
have been reported. King et al. [67] used H (Rydberg) atom photofragment trans-
lational spectroscopy to probe the photoinduced H atom loss process in aniline.
They found the N–H bond fission process to appear with a wavelength excitation
threshold of 269nm, i.e at the onset of excitation to the 1πσ∗/R3s state. Precisely,
wavelengths of 269.513, 265.781 and 262.515nm were found to excite resonances
in the quasi-bound well formed by the 1πσ∗/R3s state and to yield H atoms with
constant kinetic energy and anilino photofragments with low vibrational excitation.
Excitation at 260nm was found, in contrast, to populate high vibrational states of
the 1ππ∗ state. In this case, the N–H bond fission process on the 1πσ∗/R3s state
was proposed to occur after internal conversion through a 1ππ∗/1πσ∗ CI. At wave-
lengths below 250nm, a bimodal H atom kinetic energy distribution appears. The
high kinetic energy H atoms are produced from dissociation on the 1πσ∗/R3s state
while the low kinetic energy H atoms were assumed to originate from the ground
electronic state (GS), which is populated via vibronic coupling with either the 1ππ∗
state or the 1πσ∗/R3s state. Finally, as the excitation wavelength approaches 230nm,
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excitation of the 2ππ∗ state dominates. The bimodal H atom kinetic energy distri-
bution was still observed, with an increasing relative importance of the low kinetic
energy component. The high kinetic energy component was interpreted in term of
internal conversion through a 2ππ∗/1πσ∗ CI or through successive 2ππ∗/1ππ∗ and
1ππ∗/1πσ∗ CIs, followed by dissociation on the 1πσ∗/R3s state PES. Again, the low
kinetic energy component was interpreted in terms of internal conversion through a
2ππ∗/GS decay mechanism followed by dissociation on the ground state PES.

Several studies based on time-resolved pump-probe experiments have been
reported. Montero et al. [68] used time-resolved photoionization spectroscopy,
Roberts et al. [58] monitored the H atom rise times using femtosecond velocity
map imaging while Spesyvtsev et al. [1, 2] and Thompson et al. [69] used time-
resolved photoelectron imaging. These time-resolved experiments have revealed four
lifetimes: τ1 � 80ps, τ2 ∼ 0.4–3ps, τ3 ∼ 100–400 fs and τ4 � 100 fs. The fastest
timescale, τ4, is only observed following excitation to the 2ππ∗ state and has been
interpreted as relaxation back to the ground electronic state [1, 2] or as decay through
a series of CIs to the 1πσ∗/R3s state [58, 68]. τ3 has been interpreted as population
transfer through a CI between the 1πσ∗/R3s state and the 1ππ∗ state, from 1πσ∗/R3s
to 1ππ∗ [1, 2], or from 1ππ∗ to 1πσ∗/R3s [58, 68]. τ3 has also been proposed to arise
from tunnelling through the barrier along the N–H stretching coordinate between the
bound and dissociative components of the 1πσ∗/R3s state [69]. τ2 was observed
only in time-resolved photoelectron spectroscopy experiments [1, 2, 69] and was
interpreted as motion on the 1πσ∗/R3s PES [1, 2] or as intramolecular vibrational
energy redistribution (IVR) in the 1ππ∗ state [69]. The longest timescale, τ1, has been
interpreted as decay from the first 1ππ∗ state. More recently, new TRPEI measure-
ments with improved signal-to-noise ratios and temporal resolution, were performed
in the Fielding group [70]. Exponential decay time constants obtained from these
experiments with various pump wavelengths are summarized in Table3.1.

From the theoretical point of view, a study of the main critical points on the PESs
of the ground, 1ππ∗, 1πσ∗/R3s and 2ππ∗ states by means of CASSCF calculations
was reported by Roberts et al. in Ref. [58]. The results of this study are in line
with previous theoretical studies on similar compounds, as exposed in Sect. 3.1.1,
i.e minimum energy conical intersections (MECIs) corresponding to ring-puckering
distortions of the phenyl ring were reported between the ground and 1ππ∗ states,

Table 3.1 Exponential decay
lifetimes obtained by
Kirkby et al. [70] at different
pump wavelengths

Pump
wave-
length
(nm)

τ1 (ps) τ2 (fs) τ3 (fs) τ4 (fs)

272 600 ± 35 – – –

250 100 ± 8 571 ± 175 111 ± 20 –

245 77 ± 14 523 ± 200 145 ± 31 –

238 90 ± 5 450 134 ± 36 50 ± 10
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and between the 2ππ∗ and 1ππ∗ states. A N–H dissociation pathway was found to
exist on the 1πσ∗/R3s PES, and MECIs with the 1ππ∗ state at short N–H distance
and with the ground state at large N–H distance were optimized along this pathway.

3.2 Computational Details

Minima and transition states (TSs) were optimized using the state specific complete
active-space self-consistent field (SS-CASSCF) method. MECIs were optimized
using state-averaged CASSCF (SA-CASSCF) [71] with equal weighting given to
the two states forming the CI.

The different decay pathways relevant for the photochemistry of aniline were
studied using linearly interpolated scans in internal coordinates, relaxed potential
energy scans and minimum energy path (MEP) calculations using the SA-CASSCF
method. Linearly interpolated scans were constructed from electronic energy calcu-
lations performed at a number of geometries obtained by linear interpolation between
predefined starting and ending geometries. Internal coordinates were used to ensure
a better description of pathways involving significant angular motions of the nuclei.
Relaxed potential scans consist in calculations of the electronic energies along a given
coordinate at geometries obtained from in optimization of the rest of the molecule.
The MEP calculations were based on the intrinsic reaction coordinate (IRC) method
[72, 73], exposed in Sect. 2.4.3. Although IRC calculations are often started at a
transition state, the IRC calculation performed in this work (Sect. 3.6) was started at
the FC geometry (the ground state equilibrium geometry) using the gradient as the
initial relaxation direction.

To obtainmore reliable energies, single-point extendedmulti-configuration quasi-
degenerate second-order perturbation theory (XMCQDPT2) calculations [74] were
carried out at optimised stationary points and along decay pathways calculated using
the CASSCFmethod. This protocol is used because the XMCQDPT2 analytic gradi-
ent, required to optimize stationary points efficiently, is not available. This procedure
(energies computed using a multi-reference perturbation theory method at CASSCF
optimized geometries) has been used in previous investigations of the photochem-
istry of small organic molecule, including DNA bases [19, 20, 75, 76]. In all the
XMCQDPT2 calculations reported here, the 30 lowest CASSCF states were included
in the model space spanned by the XMCQDPT2 zero-order effective Hamiltonian
[74, 77, 78]. An intruder state avoidance (ISA) denominator shift [74] of 0.02 was
used in all the XMCQDPT2 calculations.

Two different active spaces were employed for the CASSCF calculations. CAS1
consists of 8 electrons in 7 orbitals: 3 occupied π orbitals (noted 1π, 2π and 3π) and
the corresponding 3 unoccupied π∗ orbitals (noted 1π∗, 2π∗ and 3π∗) together with
the occupied nitrogen lone-pair orbital (noted Nlp). Here, the star superscript denotes
antibonding orbitals. Since it does not include the R3s/σ∗ orbital, this active space
cannot describe the 1π3s/πσ∗ state. CAS2 consists of 10 electrons in 9 orbitals:
CAS1 augmented with a pair of σ and R3s/σ∗ orbitals centered on the amino group.

http://dx.doi.org/10.1007/978-3-319-28979-3_2
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Fig. 3.1 CASSCF optimized orbitals included in CAS1 and CAS2

The orbitals included in these active spaces are represented in Fig. 3.1. Hereafter, the
1πσ∗/R3s state will be simply labelled as 1πσ∗.

All the calculations performed with the CAS1 active space used the 6-311G**
basis set whereas the calculations performed with the CAS2 active space used the
6-311++G** basis set augmented with two diffuse s functions and two sets of diffuse
p functions on the nitrogen atom as well as a single diffuse s functions on the two
hydrogen atoms of the amino group. The exponents of the supplementary diffuse
functions were determined in an even tempered manner by dividing the exponent of
the most diffuse s and p functions already present in the 6-311++G** basis set by
a factor of 3.0. Such an extension of the basis set was found to have a significant
effect on the 1πσ∗ state vertical excitation energy and the height of the barrier to
photodissociation. A similar protocol has been previously used for pyrrole [79, 80]
and phenol [81].
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For theMECI optimizations using the CAS1 active space, we found it necessary to
use a quadratically convergent algorithm for the CASSCF wavefunction. The orbital
rotation derivative contributions from the coupled perturbed multi-configurational
self-consistent field (CP-MCSCF) equations (see Refs. [82–84] and the Chap.3 of
Ref. [85] for details) were neglected in the MECI optimizations using the CAS2
active space.

The notation SAn-CASSCF is used to describe a state averaged CASSCF calcu-
lation using orbitals averaged over n electronic states.

TheCASSCFoptimizationswere performed using theGaussian 03 programpack-
age [86] and the single pointCASSCFandXMCQDPT2 calculationswere performed
using the Firefly QC package [87], which is based partially on the GAMESS (US)
source code [88].

3.3 Vertical and Adiabatic Excitation Energies

The equilibrium geometries of the ground and 1ππ∗ states, optimized using the
CAS1 active space, are shown in Fig. 3.2. Both have Cs symmetry and a pyramidal
arrangement around the nitrogen atom.

We focus on the four lowest lying singlet electronic states, which we label GS,
1ππ∗, 1πσ∗ and 2ππ∗, in order of increasing energy [59, 60]. The dominant config-
urations of each state of interest are given in Table3.2.

The vertical excitation energies computed using the two active spaces described
in Sect. 3.2 are reported in Table3.3 and compared with previous calculations and
experimental values. The CASSCF 1ππ∗ vertical excitation energy is in reasonable
agreement with the experimental value. In contrast, the 2ππ∗ vertical excitation
energy is grossly overestimated with an error of 1.96eV. This large error is due to
the charge transfer character of the 2ππ∗ state [58]. The XMCQDPT2 calculation
using the same CASSCF wavefunction yields excitation energies in good agreement
with previous calculations and experimental observations.

Fig. 3.2 Ground and 1ππ∗ state CASSCF optimized geometries. Figure reproduced from Ref. [3]



48 3 Exploration of the Potential Energy Landscape of Aniline …

Table 3.2 Wavefunction expansion coefficient of the main configurations for each state obtained
from a SA5-CASSCF calculation using the CAS2 active space

Symmetry State Coefficients

A′ GS 0.94(ref)

A′′ 1ππ∗ 0.67(2π → 1π∗) + 0.57(3π → 2π∗)
A′ 1πσ∗ 0.92(3π → R3s/σ∗)
A′ 2ππ∗ 0.81(3π → 1π∗) − 0.36(2π → 2π∗)
A′′ 2πσ∗ 0.91(2π → R3s/σ∗)

Table 3.3 SA-CASSCF and XMCQDPT2 vertical excitation energies, calculated using the two
active spaces described in Sect. 3.2, compared with values from previous high-level ab initio calcu-
lations and experimental values

A′′ 1ππ∗ A′ 1πσ∗ A′ 2ππ∗ A′′ 2πσ∗

CAS1a 4.81(4.59) – 7.38 –

CAS1/XMCQDPT2a 4.28(4.02) – 5.39 –

CAS2a 4.81(4.59) 4.90 7.36 6.19

CAS2/XMCQDPT2a 4.22(3.96) 4.74 5.25 6.25

SAC-CI [59] 4.20 4.53 5.34 6.39

MS-CASPT2 [60] 4.33 4.85 5.54 6.28

CR-EOM-CCSD(T) [61] 4.21 4.69 5.42 –

Exp. 4.41(4.22) [29] 4.60b 5.42 [29] –

The theoretical adiabatic excitation energies and experimental 0–0 transition energy of the 1ππ∗
state are given between parenthesis
aThis work
bFrom Ref. [62], assigned as the 0–0 transition

In addition to the 1πσ∗ state, the CAS2 active space generates a second low-lying
R3s/πσ∗ state, hereafter denoted 2πσ∗ state. Because of the large overestimation
of the 2ππ∗ state, the CASSCF method wrongly predicts the 2πσ∗ state below the
2ππ∗ state. The correct ordering is however recovered at the XMCQDPT2 level of
theory. SA5-CASSCF and XMCQDPT2 vertical excitation energies using the CAS2
active space are presented in Table3.3. These results show that the corrections due
to the inclusion of the dynamical correlation energy are less important for the πσ∗
states than for the ππ∗ states. Overall, the XMCQDPT2 method provides accurate
and well balanced results for the vertical excitation energies of the electronic states
of interest.

Finally, we note that the CR-EOM-CCSD(T) calculations of Wang et al. [61]
predicted the Rydberg 3pz and 3py states to lie at 5.31 and 5.42eV respectively,
between the 1πσ∗ and 2ππ∗ states which is in disagreement with previous high
level calculations [59, 60]. We have performed a calculation at the XMCQDPT2
level of theory using the CAS2 active space augmented with the two corresponding
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3p Rydberg orbitals. This calculation predicted both states to lie slightly above the
2ππ∗ state, at 5.58 and 5.62eV respectively. Therefore these states are not further
considered in this work.

3.4 Photochemistry After Excitation to the 1ππ∗ State

In this section, we study the photochemistry of aniline after excitation to the 1ππ∗
state, at energies below the vertical excitation energy of the 1πσ∗ state. The photo-
chemistry of aniline after excitation to the 1ππ∗ state shares many similarities with
that of benzene. Following excitation to the 1ππ∗ state at wavelengths>270nm, the
fluorescence quantum yields are comparable to those of benzene and single vibronic
level lifetimes ranging from3 to 9ns have been reported [63, 64]. In addition,CIswith
the ground state, analogous to the prefulvene CI in benzene, exist in aniline. Four dis-
tinct S1(1ππ∗)/GS prefulvene-like MECI points, labelled CIi1ππ∗/GS (i = 1, 2, 3, 4),
where the superscript refers to the out-of-plane carbon atom (see Fig. 3.3), have been
optimized. TSs were found between the 1ππ∗ equilibrium geometry and CI11ππ∗/GS

and CI41ππ∗/GS , indicating the presence of potential barriers along these pathways.
The four MECI and two TS geometries, optimized using the CAS1 active space are
presented in Fig. 3.4. No TSs were found on the pathways connecting the 1ππ∗ equi-
librium geometry and CI21ππ∗/GS or CI31ππ∗/GS . However, in both cases, the pathway
crosses a very flat portion of the 1ππ∗ PES before reaching the MECI point. Both
CASSCF and XMCQDPT2 energies of the four MECIs and two TSs are listed in
Table3.4. Because the degeneracy is lifted for XMCQDPT2 calculations at CASSCF
optimized MECI points, the averaged energies of the two states and the magnitudes
of the energy gaps between them are reported. These results show that, both at the

Fig. 3.3 The aniline
molecule with the numbering
scheme used in this work.
Figure reproduced from
Ref. [3]
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Fig. 3.4 Geometries of the four prefulvene-like MECIs and of the two TSs, TS11ππ∗ and TS41ππ∗ ,
optimized along the pathways leading to CI11ππ∗/GS andCI

4
1ππ∗/GS , respectively. Optimizationswere

performed using the CAS1 active space. Figure reproduced from Ref. [3]

Table 3.4 SA2-CASSCF and XMCQDPT2 prefulvene MECI and TS energies in eV, relative the
ground state equilibrium geometry

CASSCF XMCQDPT2

CI11ππ∗/GS 5.50 4.87(0.22)

CI21ππ∗/GS 5.38 4.76(0.07)

CI31ππ∗/GS 5.39 4.69(0.21)

CI41ππ∗/GS 5.26 4.55(0.46)

TS11ππ∗ 5.57 5.10

TS41ππ∗ 5.35 4.96

The XMCQDPT2 MECI energies are averaged over the GS and 1ππ∗ states. The values between
parenthesis are the magnitude of the energy gap between the two states

CASSCF and XMCQDPT2 levels of theory, the CI41ππ∗/GS MECI appears at slightly
lower energy than the three others. Note that the dynamical correlation energy cor-
rection is smaller at the TSs than at the MECIs. This indicates that the XMCQDPT2
barriers are larger than the CASSCF ones. Therefore, the lack of CASSCF TS on
the pathways leading to CI21ππ∗/GS and CI31ππ∗/GS might be a consequence of the non
uniform accuracy of the CASSCF method along the pathways.

Linearly interpolated potential energy scans between the 1ππ∗ equilibrium geom-
etry and the CI41ππ∗/GS calculated at the SA2-CASSCF and XMCQDPT2 levels of
theory are presented in Fig. 3.5. The scans were performed in two steps: from the
1ππ∗ equilibrium geometry to TS41ππ∗ and from TS41ππ∗ to CI41ππ∗/GS MECI. Our
calculation shows that the energy required to open the prefulvene decay channel is
higher than the vertical excitation energy of the 1πσ∗ state (Table3.3) and therefore,
processes taking place on the 1πσ∗ surface are likely to compete with the prefulvene
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Fig. 3.5 Ground (blue line with circles) and 1ππ∗ (red line with squares) state potential energy
profiles along the linearly interpolated internal coordinate (LIIC) from the 1ππ∗ equilibrium geom-
etry to the CI41ππ∗/GS MECI computed at the a SA2-CASSCF and b XMCQDPT2 levels of theory.

The vertical black dashed line marks the TS41ππ∗ position (see text for details). Figure reproduced
from Ref. [3]

decay channel. This explains the absence of ultrafast dynamics observed experimen-
tally after excitations at wavelengths above 270nm.As seen in Table3.1, Kirkby et al.
measured a decay time constant τ1 = 600 ± 35ps after excitation at λ = 272nm. At
this wavelength, the molecule does not have enough energy to overcome the barrier
seen in Fig. 3.5. Therefore this time constant has been attributed to an intersystem
crossing process to the first triplet excited state.

3.5 Photochemistry After Excitation to the 1πσ∗ State

In this section, we study the photochemistry of aniline following excitation at wave-
lengths <269nm, i.e. above the onset of the 1πσ∗ state [62]. In the FC region, the
1πσ∗ state PES exhibits a quasi-bound well associated with a strong Rydberg 3s
character on the nitrogen atom. However, along the N–H stretching coordinate, the
1πσ∗ state acquires a valence σ∗ character and the PES becomes dissociative. The
quasi-bound and dissociative components of the PES are separated by a significant
potential energy barrier, the height of which has been estimated at 0.5 eV using the
EOM-CCSD method [61].
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Fig. 3.6 1ππ∗ (red squares) and 1πσ∗ (brown crosses) potential energy curves along the linearly
interpolated internal coordinate between the FC and CASSCF optimized Minπσ∗ geometries, com-
puted at the a SA5-CASSCF and b XMCQDPT2 levels of theory. Figure reproduced from Ref. [3]

Optimization at the SS-CASSCF level of theory predicts a planar equilibrium
geometry with C2v symmetry for the 1πσ∗ state (see Fig. 3.9). Linearly interpolated
scans from the FC geometry to the 1πσ∗ equilibrium geometry, computed at the
SA5-CASSCF and XMCQDPT2 levels of theory, are presented in Fig. 3.6. These
calculations reveal the existence of a CI between the 1πσ∗ and 1ππ∗ states, noted
πσ∗/1ππ∗ CI, as previously reported in Ref. [58]. At the CASSCF level of theory, the
πσ∗/1ππ∗ CI appears very close to the FC geometry, and the 1πσ∗ state becomes the
first excited electronic state at its equilibrium geometry. The corresponding MECI
geometry is presented in Fig. 3.9. However, at the XMCQDPT2 level of theory, the
πσ∗/1ππ∗ CI appears much closer to the 1πσ∗ equilibrium geometry. This result
suggests that the CASSCF optimized 1πσ∗ local minimum is not an equilibrium
geometry but rather a geometry where the molecule can decay to the 1ππ∗ state. In
addition, while an experimental excitation energy of 4.60eV was attributed to the
0–0 transition to the 1πσ∗ state in Ref. [62], the existence of the πσ∗/1ππ∗ CI rather
suggests that the spectrum of the molecule in this region should be composed of a
dense set of vibronically coupled levels that cannot be attributed easily to vibrational
levels of either 1ππ∗ or 1πσ∗ states.

We now turn our attention to the H-atom loss decay pathway. We have performed
a relaxed potential energy scan along the N–H stretching coordinate on the 1πσ∗
PES. Planar geometries with C′

s symmetry were enforced during the optimizations.
Here, C′

s notation is used to distinguish the planar geometry from the ground state
equilibrium geometry where the symmetry plane is orthogonal to the phenyl ring.
In C′

s symmetry, the 1πσ∗ state belongs to the A′′ irreducible representation whereas
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the GS, 1ππ∗ and 2ππ∗ states belong to the A′ irreducible representation. In these
calculations, the A′ and A′′ states have been computed separately. The geometries on
the 1πσ∗ PEShave been optimized at the SS-CASSCF level of theory using theCAS2
active space. The A′ state energies at the optimized geometries have been computed
at the SA3-CASSCF level of theory using the same active space. XMCQDPT2 cal-
culations have been performed at the CASSCF optimized geometries and the results
of both calculations are presented in Fig. 3.7. Consistently with the results presented
above, the 1πσ∗ state lies below the 1ππ∗ state along the CASSCF relaxed scan. A
quasi-bound well is seen in the FC region, where the 1πσ∗ state has a strong Rydberg
character, separated from the dissociative part of the 1πσ∗ PES by a potential energy
barrier. The transition from the Rydberg 3s to the valence σ∗ character is illustrated
in Fig. 3.8, where CASSCF σ∗ orbitals optimized at different N–H bond lengths are
displayed.

Fig. 3.7 Relaxed potential energy scan along the N–H coordinate, computed at the a CASSCF
and b XMCQDPT2 levels of theory using the CAS2 active space, showing the ground-state (blue
circles), 1ππ∗ state (red squares), 1πσ∗ state (brown crosses), 2ππ∗ state (green diamonds). The
geometries are optimized on the 1πσ∗ state at the SS-CASSCF level of theory using C′

s symmetry.
A zoom of the 1ππ∗ and 1πσ∗ states potential scans around the 1πσ∗ minimum is shown in panel
(c). Figure reproduced from Ref. [3]

Fig. 3.8 CASSCF optimized σ∗ orbital for different N–H bond lengths



54 3 Exploration of the Potential Energy Landscape of Aniline …

Fig. 3.9 Geometries of the 1πσ∗ state local minimum and TS as well as of the πσ∗/ππ∗ and
πσ∗/GS MECIs. Figure reproduced from Ref. [3]

A CI between the 1πσ∗ state and the ground state occurs at a larger N–H distance.
The CASSCF optimized geometries of the 1πσ∗ TS andMECI with the ground state
are presented in Fig. 3.9. Our CASSCF calculation predicted a height of 0.58eV
for the barrier separating the quasi-bound well from the dissociative part on the
1πσ∗ curve, and an N–H bond strength of 3.37eV, which is a significant under-
estimate compared to the experimental value of 3.92eV reported by Ashfold and
coworkers [67].

At the XMCQDPT2 level of theory, the 1ππ∗ and 1πσ∗ states are almost degen-
erate at short N–H distance, with the 1ππ∗ state lying slightly below the 1πσ∗ state.
Consistently with the results presented in Fig. 3.6 the 1πσ∗ curve crosses the 1ππ∗
curve close to its local minimum in the quasi-bound well. We obtain a barrier height
of 0.41eV, which is lower than the CASSCF value, and an N–H bond strength of
3.83eV, in good agreement with the experimental value of 3.92eV [67].

In the work of Kirkby et al. [70], two experiments at excitation wavelengths of
445 and 450nm were performed. In both cases, three decay time constants were
extracted from the photoelectron spectra, as seen in Table3.1. The three time con-
stants are similar for the two experiments, indicating similar dynamics following
excitation at these two wavelengths. The shortest time constant τ3 of approximately
100–150 fs could be clearly associated, through the analysis of the decay associated
spectra [1, 2, 70], with a transition from the 1πσ∗ state to the 1ππ∗ state. Therefore,
this time constant can be attributed to the passage of the system through theπσ∗/1ππ∗
CI shown above. At the CI, a competition between a transfer to the 1ππ∗ state and
an ultrafast evolution on the 1πσ∗ surface, followed by photodissociation or transfer
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to the ground state at the πσ∗/GS CI, occurs. The time constant τ2 of approximately
550 fs is more difficult to interpret. Thompson et al. [69] found that a time constant
of 640 fs was necessary, in addition to the larger time constant τ1, to fit the photo-
electron spectra recorded following excitation at 273nm, thus below the onset of the
1πσ∗ state. Consequently, they attributed τ2 to an intramolecular vibrational energy
redistribution (IVR) process occurring on the 1ππ∗ state PES. However, these results
are in contrast with the experiments performed in the Fielding group [1, 2, 70], in
which no evidence of a time constant of the order of τ2 was found at 272nm. There-
fore, because in [1, 2, 70], τ2 only appeared after excitation above the onset of the
1πσ∗ state, it was interpreted as a mechanism occurring on the 1πσ∗ PES. In analogy
with results obtained on related systems, two different mechanisms can be proposed.
The coexistence of two time scales for the evolution on the 1πσ∗ state in pyrrole
has been demonstrated using quantum dynamics simulations in Ref. [80]. In pyrrole,
as in aniline, the 1πσ∗ surface exhibits a quasi-bound well at small N–H distance,
separated from the dissociative part by a potential energy barrier estimated at 0.26eV
in [80], where a crossing with the ground state occurs. The simulations performed in
Ref. [80] showed that, after photoexcitation, the component of the wavepacket that
has a sufficient energy to overcome the barrier evolves towards photodissociation on
a very short time scale of 10 fs, whereas the component with an energy lower than the
top of the barrier tunnels through the barriers and dissociates on a longer timescale of
several hundreds of femtoseconds, in line with the experimental results of Ref. [89].
However, a comparison of the time-resolved photoelectron spectra of aniline and its
fully deuterated analogue performed in Ref. [70] revealed no significant change of
τ2 upon deuteration. This observation rules out tunneling as an explanation for τ2.
A second interpretation for τ2 has been proposed in [1]. It involves a trapping of
the wavepacket on the upper cone of the πσ∗/GS CI, in analogy with experimental
observations formethylamine [90] and 5-hydroxyindole [91]. The third time constant
τ1 of approximately 80–100ps can be associated to a decay to the ground state at the
prefulvene 1ππ∗/GS CI (see Sect. 3.4) after the fast transfer from the 1πσ∗ state to
the 1ππ∗ state, as at excitation wavelengths of 445–450nm, the system has enough
energy to overcome the potential energy barrier existing along the prefulvene decay
pathway. This interpretation is further supported by the variations of τ1 with the exci-
tation wavelength. The diminution of τ1 from 600ps at λ = 272nm to 80–100ps at
λ = 250−245nm is consistent with the opening of the prefulvene decay channel.

3.6 Photochemistry After Excitation to the 2ππ∗ State

In this section, we study the decay pathways of aniline following excitation to the
2ππ∗ state, at excitation wavelengths λ < 240nm. In all previous experimental stud-
ies, an ultrafast decay was observed, or inferred, and interpreted as either internal
conversion to the ground state or H-atom loss on the 1πσ∗ surface, as explained
in Sect. 3.1.2. A 2ππ∗/1ππ∗ MECI involving a strong out-of-plane distortion of the
molecule was reported in Ref. [58]. The existence of this CI justified the interpreta-
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tion of the ultrafast decay observed experimentally as the consequence of an internal
conversion to the 1ππ∗ state followed by either a transfer to the 1πσ∗ state through
the πσ∗/1ππ∗ CI shown in the previous section, or the transfer to the ground state
through the prefulvene CI shown in Sect. 3.4. The experiments reported in [1, 2]
show the appearance of a very short time constant of approximately 50 fs. However,
in contradiction with previous interpretations, the analysis of the experimental data
showed no evidence for a population transfer from the 2ππ∗ state to the 1ππ∗ state or
the 1πσ∗ state associated with this time constant. Therefore, this time constant was
suggested to arise from the existence of an efficient decay pathway taking the system
straight back to its ground electronic state. In contrast, the more recent experiments
reported in [70] show evidence of population being transferred from the 2ππ∗ state
to the 1ππ∗ and 1πσ∗ states.

Figure3.10 presents a minimum energy path connecting the 2ππ∗ state at the FC
geometry to the ground state, computed using the IRCmethod. TheMEP calculation
was performed in several steps and the geometry was constrained to Cs symmetry.
A first IRC calculation was initiated at the FC geometry on the 2ππ∗ state, using the
CAS1 active space and a CASSCF wavefunction averaged over the 1ππ∗ and 2ππ∗
states. The initial relaxation direction was taken to be the gradient on the 2ππ∗ PES.
The CAS1 active space was used to filter out the πσ∗ states, which greatly simplified
the IRC calculation. The IRC calculation was stopped at the 1ππ∗/2ππ∗ crossing.
Then, a single point was calculated at a geometry obtained by extrapolating the last
IRC step.At this point,we checked that the 2ππ∗ statewas lying below the 1ππ∗ state.
A second IRC calculation was then initiated at this last geometry, using the CAS1
active space and a CASSCFwavefunction averaged over the 2ππ∗ and ground states.
In the second step, in order to include theπσ∗ states in our calculations, we performed
single point SA5-CASSCF andXMCQDPT2 calculations at the geometries obtained
from the IRC calculations, using the CAS2 active space. Hereafter, the intrinsic
reaction coordinate will be noted qIRC.

Fig. 3.10 A′ Ground state (blue circles), A′′1ππ∗ (red squares), A′1πσ∗ (brown crosses), A′2ππ∗
(green diamonds) and A′′2πσ∗ (magenta triangles) potential energy profiles computed at the SA5-
CASSCF (a) and XMCQDPT2 (b) levels of theory along the IRC scan on the A′2ππ∗ state. Figure
reproduced from Ref. [3]
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We first consider the CASSCF IRC scan shown in Fig. 3.10a. As discussed in
Sect. 3.3, the CASSCF method yields a wrong state ordering at the FC geometry,
i.e. the 2πσ∗ state lies below the 2ππ∗ state. Upon relaxation on the 2ππ∗ state,
the 2ππ∗ state energy decreases and the 2πσ∗ state energy increases until the two
curves cross around qIRC = 1.8. This 2ππ∗/2πσ∗ CI is an artefact of the CASSCF
method. Overall, the CASSCF MEP shows the existence of a barrierless relaxation
pathway involving a strong out-of-plane deformation of the molecule, resulting in a
boat conformation of the phenyl ring at the end of the IRC scan. Along this pathway,
the 2ππ∗ state crosses successively the 1ππ∗, 1πσ∗ and ground electronic states.
The XMCQDPT2 MEP computed at the CASSCF optimized geometries is shown
in Fig. 3.10b. Upon relaxation, the energies of the 1ππ∗, 1πσ∗ and 2ππ∗ states come
close to one another around qIRC = 3. In this region, the three states liewithin 0.25eV
of each other, which is a strong indication for the presence of a nearby three-state CI
[92–94]. In contrast to the CASSCF MEP, here the 1πσ∗ and 2ππ∗ states, both of A′
symmetry, form a narrowly avoided crossing rather than a true CI. This is, however,
just an indication that the XMCQDPT2 pathway passes very close to the 1πσ∗/2ππ∗
CI seam rather than crossing it as in the CASSCF calculation. The pseudo-diabatic
assignment used to distinguish between the states is of little significance in the
interaction region because the electronic characters of the 1πσ∗ and 2ππ∗ states
are mixed. However, as the molecule moves away from the three-state CI region,
the electronic character of both states become clear again. The same is true for the
region where the 2ππ∗ state approaches the ground state at the end of the scan.

These calculations have unveiled three CIs that are relevant to the electronic relax-
ation of aniline following excitation to the 2ππ∗ state: 1πσ∗/2ππ∗, 1ππ∗/2ππ∗ and
GS/2ππ∗ CIs. The three corresponding MECIs, labelled CI1πσ∗/2ππ∗ ,
CI1ππ∗/2ππ∗ and CIGS/2ππ∗ , were optimized at the CASSCF level of theory using
the CAS2 active space for CI1πσ∗/2ππ∗ and the CAS1 active space for CI1ππ∗/2ππ∗

and CIGS/2ππ∗ . The three resulting geometries are shown in Fig. 3.11. These three
MECIs are all characterized by an out-of-plane deformation of the amino group and
of the C4 carbon atom of the phenyl ring. In Fig. 3.12, we show the geometries of the
molecule at four key points along the MEP: the FC geometry (qIRC = 0), the geome-
try of the approximate three-state CI (qIRC = 2.89) the geometry of the 1ππ∗/2ππ∗
crossing (qIRC = 5.68) on the CASSCF MEP and the geometry corresponding to
the GS/2ππ∗ crossing (qIRC = 12.55). This figure shows that the IRC coordinate
mainly involves a boat deformation of the phenyl ring associatedwith an out-of-plane
motion of the amino group. However, in contrast with the CI1πσ∗/2ππ∗ and CI1ππ∗/2ππ∗

geometries shown in Fig. 3.11, at the approximate three-state CI (qIRC = 2.89), the
molecule is still almost planar. It is interesting to note that similar ring puckering
decay pathways have been described in other simple aromatic organicmolecules such
as pyrrole [17] or the purine DNA bases adenine [18, 19] and guanine [20]. In addi-
tion, the boat conformation of the phenyl ring, found at qIRC = 12.55 (see Fig. 3.12),
is reminiscent of the Dewar form of benzene, which is know to be populated after
excitation to the 2ππ∗ state of benzene [95–97]. To investigate this further, we extrap-
olated from the CI at qIRC = 12.55, along the IRC until a geometry where the 2ππ∗
state is the ground state was found and then performed a geometry optimization.
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Fig. 3.11 Geometries of the threeMECIs involving the 2ππ∗ state. Figure reproduced fromRef. [3]

Fig. 3.12 Geometries at key points along the MEP (see text for details). Figure reproduced from
Ref. [3]
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The resulting local minimum on the ground state PES (MinDew) is an analogue of the
Dewar benzene isomer (Fig. 3.13). We have also optimized a saddle point (TSDew)
connecting this local minimum to the global equilibrium geometry of the ground
electronic state (Fig. 3.13). The energies of the Dewar minimum and TS relative to
the global minimum energy, computed at the SA2-CASSCF and XMCQDPT2 level
of theory using the CAS1 active space, are presented in Table3.5. The SA2-CASSCF
energies of the CI2ππ∗/GS points, are also reported. The Dewar form of aniline is local
minimum on the ground state PES, separated from the global minimum by a barrier
with a height evaluated at 0.57eV. Interestingly, the Dewar form of aniline could be
a possible experimental probe of the ring puckering decay pathway discussed above.

In addition to the ring-puckering decay pathway, the potential energy curves in
Fig. 3.10 suggest two alternative decay pathways. At the three-state CI, the molecule
can be transferred to the 1ππ∗ or 1πσ∗ states. In both cases, it is clear that the
molecule can relax to the FC region, from which the molecule can then decay to the
ground state via the prefulvene CI1ππ∗/GS shown in Fig. 3.4 or the CIπσ∗/GS shown
in Fig. 3.9, or dissociate on the 1πσ∗ PES. In order to find out if other direct decay
pathways to the ground state exist, we performed linearly interpolated scans from

Fig. 3.13 Geometries of the Dewar minimum and TS on the ground state PES. Figure reproduced
from Ref. [3]

Table 3.5 SA2-CASSCF and XMCQDPT2 energies of the Dewar minimum and TS and SA2-
CASSCF energies of the CI2ππ∗/GS points

SA2-CASSCF XMCQDPT2

MinDew 3.97 3.54

TSDew 4.60 4.11

CIMECI
2ππ∗/GS 4.79 –

CIIRC2ππ∗/GS 5.21 –

CIMECI
2ππ∗/GS refers to the MECI (see Fig. 3.11) and CIIRC2ππ∗/GS to the CI point reached on the IRC path

at qIRC = 12.55 (see Figs. 3.10 and 3.12)
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Fig. 3.14 Linearly
interpolated scans a from the
CI1ππ∗/2ππ∗ to the
prefulvene CI1ππ∗/GS and
b from the CI1πσ∗/2ππ∗ to the
CI1πσ∗/GS computed at the
SA5-CASSCF and
SA6-CASSCF level of
theory, respectively, using
the CAS2 active space.
Figure reproduced from
Ref. [3]
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the CI1ππ∗/2ππ∗ to the prefulvene CI1ππ∗/GS and from the CI1πσ∗/2ππ∗ to the CI1πσ∗/GS

respectively, using the CAS2 active space. For the former, the orbitals were averaged
over the five lowest states while for the latter, the inclusion of a sixth state was found
necessary for a well balanced description of the states of interest along the pathway.
Both calculations are presented in Fig. 3.14. In both cases, the initial geometries were
not taken to be the MECI structures of CI1ππ∗/2ππ∗ and CI1πσ∗/2ππ∗ , but rather the CI
points reached in the CASSCF IRC pathway of Fig. 3.10a. The scan in Fig. 3.14a
shows the existence a rather flat but barrierless pathway connecting the CI1ππ∗/2ππ∗ to
the prefulvene CI1ππ∗/GS . Interestingly, a similar barrierless pathway connecting the
S2/S1 CI to the prefulvene S1/S0 CI in benzene has been calculated [98, 99]. However,
Fig. 3.10a shows that the path connecting the CI1ππ∗/2ππ∗ with the FC geometry is
steeper. Therefore, it seems most likely that, if the molecule is transferred to the
1ππ∗ state at the three-state CI, it will then relax to the FC region where it can relax
further via the prefulvene CI1ππ∗/GS or via the N–H dissociation path on the 1πσ∗
state after crossing the CIπσ∗/1ππ∗ , as was proposed previously [67, 68].

The scan of Fig. 3.14b shows a steep pathway connecting the the CI1πσ∗/2ππ∗ to
the CI1πσ∗/GS , suggesting the possibility of very efficient relaxation to the ground
state or dissociation on the 1πσ∗ PES. A barrier is seen on the 1πσ∗ potential energy
profile. However this barrier appears much smaller than the barrier on the relaxed
N–H potential scan shown in Fig. 3.7, and should therefore be easily overcome by
the wavepacket upon relaxation on the 1πσ∗ state after crossing the CI1πσ∗/2ππ∗ .

In this section, we have shown the existence of a decay pathway connecting the
FC region on the 2ππ∗ state to a CI with the ground state in a barrierless man-
ner. This pathway crosses a probable three-state CI involving the 1ππ∗, 1πσ∗ and
2ππ∗ states. Experimentally, a time constant τ4 of approximately 50 fs was extracted
from the photoelectron spectra recorded after excitation at λ = 238nm [1, 2, 70].
In [1, 2], the analysis of the decay associated spectra did not show evidence of a rise
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of population in the 1ππ∗ and 1πσ∗ states associated with the decay of population
from the 2ππ∗ state, although population was observed in these states. However, in
the more recent set of experiments of Kirkby et al. [70], a rise of population in the
1ππ∗ state was observed in the first tens of femtoseconds after excitation. Popula-
tion of the 1πσ∗ was also observed, although its rise could still not be correlated
to the decay of the population of the 2ππ∗ state occurring in a timescale of τ4. As
noted in [70], a direct excitation to the 1ππ∗ or 1πσ∗ states is unlikely to occur at
λ = 238nm. The results presented in this section thus provide a satisfactory expla-
nation for the experimental observation reported in [1, 2, 70]. After excitation to the
2ππ∗ state, the molecule relaxes towards a three-state CI in an ultrashort time scale
of approximately 50 fs. At the three-state CI, the molecule can further relax on the
2ππ∗ PES and decay to the ground state at the CI2ππ∗/GS , or it can be transferred to the
1ππ∗ or 1πσ∗ state and further decay through the mechanisms described in Sects. 3.4
and 3.5. Indeed, besides the short time constant τ4, three other time constants were
found at an excitation wavelength of 238nm. These three time constants are similar
to the three time constants found at λ = 245nm and λ = 250nm, and can therefore
be attributed to the same decay mechanisms.

3.7 Summary and Conclusions

In this work, we have explored the PESs of the low-lying electronic states of ani-
line using high-level electronic structure calculations. We have revealed previously
unknown stationary points and decay pathways relevant for the photochemistry of
the molecule, and discussed their implications in relation with the available experi-
mental results. This work shows that aniline has an intricate photochemistry, involv-
ing a competition between several different decay mechanisms. When the molecule
is excited to its 2ππ∗ state, four time constants appear experimentally, which are
related to four different decay mechanisms, involving a prefulvene decay pathway
on the 1ππ∗ state, a competition between photodissociation and decay to the ground
state on the 1πσ∗ state, and a direct mechanism leading to a decay to the ground
state on the 2ππ∗ state. These calculations thus provide valuable information about
the decay mechanisms accessible to the molecule after UV excitation, and help in
the interpretation of the complex experimental signals obtained from time-resolved
experiments.

Nevertheless, several questions remain open regarding the photodynamics of ani-
line. The τ2 time constant of approximately 500 fs has not found a definitive inter-
pretation. Townsend et al. have interpreted it as an IVR process on the 1ππ∗ state
[69] while Kirkby et al. interpreted it as a trapping mechanism on the 1πσ∗ PES.
Wang et al. [61] suggested that two 3p Rydberg states were involved in the dynamics
of the molecule after excitation to the 2ππ∗ state, however, no experimental evidence
for the participation of these state has been reported. Finally, only limited insight into
the relative importance of the various decay mechanisms accessible to the molecule
can be obtained from the present work. It is known that nuclear dynamics around CIs
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donot only depend on the location of theMECI point but also on the topography of the
extended CI seam. Specifically, different decay pathways can be preferred depending
on which region of the CI seam is reached [10, 100, 101]. Therefore, an extended
mapping of the various CI seams connecting the electronic states of interest in this
work would provide further insight on the competition between the different decay
channels. Quantum dynamics simulations would also provide valuable information,
however the construction of reliable coupled PESs describing large amplitude nuclear
motion for a mid-size system such as aniline is an extremely difficult task which lies
beyond the current state-of-the-art in this field. Indeed, although the recent quantum
dynamics calculations of Wang et al. [61] could reproduce the absorption spectrum
with a high accuracy, the calculations could not account for the ultrafast decay of
the molecule after excitation to the 2ππ∗ state. As an alternative, direct dynamics
techniques [102, 103] can also be used to study the relaxation pathways of the mole-
cule. The conclusions drawn in this work indicate that such investigations should use
high-level electronic structure calculations to reach the level of accuracy necessary
for a reliable description of the relaxation of aniline after electronic excitation.
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Chapter 4
Theory of Nuclear Quantum Dynamics
Simulations

In Chap.2, we have seen that the theoretical study of a molecular system is, in a
vast majority of cases, separated in two steps. In a first step, the electronic structure
of the system is studied by solving the electronic Schrödinger equation with fixed
nuclei. This approach, combined with geometry optimization techniques, allows one
to locate the important features of the various potential energy surfaces (PESs) of
the electronic states of interest. In the context of photochemistry, as seen in Chap.3,
this approach allows one to characterize the various decay pathways of the molecule
after photoexcitation. This information can then be used to interpret the various decay
time constants obtained from time-resolved spectroscopic measurements. However,
in most cases, including aniline studied in Chap.3, various decay mechanisms are in
competition, and it is often difficult to infer, from this static information, the relative
importance of the various decay mechanisms. It is thus often necessary to study the
dynamics of the nuclei in the manifold of the excited states of interest to obtain a
deeper insight into the photophysics and photochemistry of the system of interest.

The dynamics of the nuclei in molecules is often affected by strong quantum
effects [1]. One can mention, for instance, zero point energy effects or tunneling of
light nuclei through potential energy barriers. In addition, in situation where strong
vibronic couplings exist, the system can be transferred from one electronic state
to another upon nuclear motion. This phenomenon is of purely quantum origin.
Therefore, an accurate description of such phenomena requires a quantum treatment
of the dynamics of the nuclei.

We have seen in Chap.2 that, in a vast majority of case, the calculation of the elec-
tronic structure of molecular systems is performed in a time-independent formalism,
through the solution of the time-independent electronic Schrödinger equation. In
contrast, in nuclear quantum dynamics, a majority of problems can be treated either
in a time-independent or in a time-dependent formalism [2, 3]. In this thesis, the
time-dependent formalism was used. Therefore, in this chapter, the theoretical tools
for the study of the quantum dynamics of the nuclei in molecular systems will be
introduced from a time-dependent perspective.
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4.1 Setting up the Hamiltonian Operator

4.1.1 The Choice of the Coordinates and the Nuclear Kinetic
Energy Operator

The choice of the coordinates used to parametrize the motion of the nuclei is of
great importance in molecular quantum dynamics simulations. In order to ensure a
good convergence of the algorithm used to solve the nuclear Schrödinger equation, a
set of nuclear coordinates well adapted to the problem under consideration must be
chosen. A good set of coordinates is such that the correlation between the different
coordinates is minimal. When only low amplitude vibrational motions, implying a
nearly harmonic portion of the PES, need to be described, the rectilinear normal
coordinates are a good choice because they lead to a simple and separable nuclear
kinetic energy operator (KEO). However, in more floppy systems, involving, for
instance, several equilibrium geometries connected by low-energy potential energy
barriers, large amplitude angular motions need to be described. In such situations,
rectilinear coordinates cease to be a good choice because they introduce strong,
unphysical, correlations. A more natural choice is then to use a set of curvilinear
coordinates because they lead to a more separable Hamiltonian operator. Unfortu-
nately, the use of curvilinear coordinates often leads to a very complicated expression
of the nuclear KEO. In general, obtaining the correct KEO is not a problem since
analytic computation softwares can be used for that purpose. In addition, the action
of the KEO can be computed numerically, avoiding the need for the analytic expres-
sion [4, 5]. It is nevertheless of high interest to find a general form of the KEO
that is as compact as possible and well adapted to the numerical method used to
solve the nuclear Schrödinger equation. The polyspherical approach (see Ref. [6]
and references therein) meets both these requirements.

Consider an isolated molecule composed of N atoms. The position of the nuclei
is described by N vectors or 3N coordinates. The global translation of the mole-
cule is described by the three coordinates (XG, YG, ZG) of the center of mass G of
the molecule. In the center of mass frame, or space-fixed frame

{
G, ex SF , eySF , ezSF

}
,

the configuration of the nuclei is described by N − 1 vectors or 3N − 3 coordinates.
The KEO T as a function of the mass-weighted cartesian coordinates of the nuclei
(x1, . . . , xi , . . . , x3N−3), obtained by multiplying the standard cartesian coordinates
by

√
mi , where mi is the mass of the i th nucleus, simply reads

T = −1

2

3N−3∑

i=1

∂2

∂xi
2 . (4.1)

The general expression of the KEO in terms of generalized coordinates (q1, . . . ,

qi , . . . , q3N−3), which can be of any kind, has been derived by Podolsky [7]



4.1 Setting up the Hamiltonian Operator 69

T = −1

2

3N−3∑

i, j

J −1 ∂

∂qi
J gi j

∂

∂q j
. (4.2)

In this equation J = |Det (J)| is the absolute value of the determinant of the
Jacobian matrix Ji j = ∂xi

∂q j
and g is the metric tensor of elements

gi j =
3N−3∑

α=1

∂qi

∂xα

∂q j

∂xα
. (4.3)

The overall rotation of the molecule can be separated from its internal deforma-
tion motion by introducing a body-fixed (BF) frame

{
G, ex B F , eyB F , ezB F

}
, whose

orientation with respect to the SF frame is determined by three Euler angles noted α,
β and γ. The shape and size of the molecule is then described by 3N −6 internal BF-
coordinates. The KEO can be expressed as a function of the three BF-components
(Jx B F , JyB F , JzB F ) of the total angular momentum J of the molecule, and of the
momentum operators Pj = −i ∂

∂q j
with j = 1, . . . , 3N − 6

T =
3N−6∑

i, j

Pi Gi j Pj

2
+

3N−6∑

i

∑

α=x,y,z

Pi Ciα Jα + JαCαi Pi

2
+

∑

α=x,y,z

∑

β=x,y,z

Jα�αβ Jβ

2
+ Vextra.

(4.4)

Here, Vextra is a purely multiplicative operator called the extra potential term. The
volume elements used to normalize the wavefunction reads dV = sin βdαdβdγ
dq1 . . . dq3N−6. This ensures that the momentum operators Pi are Hermitian. The
matrices G, C and �, which stand for internal vibrations, Coriolis couplings and
overall rotation, respectively, are, in general, functions of the internal coordinates.

The polyspherical approach provides, for a particular class of curvilinear coor-
dinates, general expressions for the elements of the G, C and � matrices, whatever
the number of atoms and the set of N − 1 vectors (Jacobi, Radau, valence, …) used
to parametrize the system. In addition, the use of a specific definition for the BF
frame ensures that the KEO has the so-called product form (see Sect. 4.2.2), i.e. it
is expressed as a sum of products of operators acting on a single coordinate. This
definition of the BF frame is as follows: the zB F axis is parallel to one of the N − 1
vectors used to parametrize the system and the (xz) BF half-plane, with x > 0 is
parallel to another vector. A detailed presentation of the method can be found in
Ref. [6].

4.1.2 The Discrete Variable Representation

In order to solve the nuclear Schrödinger equation, a suitable representation of
the wavefunction and of the operators is needed. In this section, the variational
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basis representation (VBR), the finite-basis representation (FBR) and the discrete
variable representation (DVR) are introduced. For convenience, a one-dimensional
system, described by the Hamiltonian operator H(x) = T (x) + V (x), is consid-
ered. This operator acts in a Hilbert space H of infinite dimension. In practice,
the Schrödinger equation is solved numerically, and a finite basis of dimension N
{|φn〉, n = 1, . . . , N } is used. The subspace of H spanned by this basis is noted
HN . In the variational approach, the unknown solution of the Schrödinger equa-
tion is represented exactly in the finite basis. In this case, the eigenvalues of the
Hamiltonian are larger than or equal to the exact eigenvalues. The representation in
which the Hamiltonian matrix elements Hmn = 〈φm |H |φn〉 are evaluated exactly is
called the variational basis representation (VBR). In the VBR, the errors are only
due to the truncation of the basis. In most cases, the matrix elements of the KEO
Tmn = 〈φm |T |φn〉 are known analytically. In contrast, because the potential operator
is, in general, a complicated function of the coordinate operator, its matrix elements
Vmn = 〈φm |V |φn〉 are not known analytically. In addition, an accurate evaluation of
these matrix elements by numerical integration is too much time consuming to be
practical in most situations.

The idea behind the DVR method [8–11] is to use a representation in terms of
localized functions obtained by transformation from a “global” basis [12]. Usually,
bases constructed from orthogonal polynomials, noted Fn(x), which are solution of
one dimensional problems such as the particle in a box (Chebyshev polynomials)
or the harmonic oscillator (Hermite polynomials), are used. These polynomial bases
verify the general relationship

∫ x=b

x=a
Fm(x)Fn(x)ω(x)dx = δmn, (4.5)

where ω(x) is a specific weight function. Choosing χn(x) = √
ω(x)Fn(x), one

obtains an orthonormal basis. Standard DVRs are related to their corresponding
“global representation” through Gaussian quadratures [13]. A set of N points {xα}
and of N complex constants (weights) {ωα} defines a quadrature relation inHN if

∫ b

a
�∗(x)�(x)dx =

N∑

α=1

|ωα|2 �∗(xα)�(xα), (4.6)

where � and � are elements of HN . The overlap integrals and coordinate operator
matrix elements are then given exactly by

N∑

α=1

|ωα|2 χ∗
m(xα)χn(xα) = 〈χm |χn〉 = δmn, (4.7)

N∑

α=1

|ωα|2 χ∗
m(xα)xαχn(xα) = 〈χm |x |χn〉 = Xmn, (4.8)
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for m, n ≤ N − 1. These two relations can be recast in matrix form as

U†U = I (4.9)

and

U† X DU = X, (4.10)

where I is the identity matrix of dimension N , X is the matrix of the coordinate
operator, X D is the diagonal matrix of the grid points X D

αβ = xαδαβ and the elements
of U read

Uαm = ωαχm(xα). (4.11)

Equation (4.9) demonstrates that U is a unitary matrix. Therefore, by multiplying
Eq. (4.10) by U from the left and by U† from the right, one obtains that U† diago-
nalizes the matrix of the coordinate operator X

U XU† = X D. (4.12)

In the DVR, the Hamiltonian operator and the wavefunction are represented in the
basis {|ξα〉,α = 1, . . . , N } of the eigenfunctions of the coordinate operator x |ξα〉 =
xα|ξα〉. This basis is related to the “global” basis {|χn〉, n = 1, . . . , N } through the
transformation matrix U

ξα(x) =
N∑

m=1

U ∗
αmχm(x). (4.13)

The function ξα(x) is localized around the DVR grid point xα and is exactly zero at
all the other grid points. This is seen by evaluating Eq. (4.13) at a DVR grid point xβ

ξα(xβ) =
N∑

m=1

U ∗
αmχm(xβ)

=
N∑

m=1

1

ωβ
U ∗

αmUβm

= 1

ωβ

(
UU†)

αβ

= δαβ

ωβ
. (4.14)

An element |�〉 ofHN can be expanded in the “global” basis {|χn〉, n = 1, . . . , N } as

|�〉 =
N∑

m=1

〈χm |�〉|χm〉. (4.15)
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Using Eqs. (4.11) and (4.13) the projection of |�〉 on an element of the localized
basis {|ξα〉,α = 1, . . . , N } can be expressed as

〈ξα|�〉 =
N∑

m=1

ωαχm(xα)〈χm |�〉

= ωα�(xα). (4.16)

As seen in this last equation, in the DVR, the wavefunction is represented by its
values at the grid points xα. The matrix elements of the KEO in the DVR are exactly
given by

T DVR
αβ = 〈ξα|T |ξβ〉 =

N∑

m,n=1

Uαm〈χm |T |χn〉U †
nβ . (4.17)

The most attractive feature of the DVR is that the matrix of an operator that is a
function of the coordinate operator, such as the potential operator, is approximately
diagonal in general

V DVR
αβ = 〈ξα|V |ξβ〉 ≈ V (xα)δαβ . (4.18)

This last equation would hold exactly for an infinite local basis, as in this case,
the DVR would be equivalent to the continuous coordinate representation. We
stress here that, because the local basis {|ξα〉,α = 1, . . . , N } and the “global” basis
{|χn〉, n = 1, . . . , N } are related by a unitary transformation, the operators obtained
in the “global” basis contain the sameapproximation.Therefore, to distinguish it from
the VBR, the representation in terms of the “global” basis {|χn〉, n = 1, . . . , N } is
called finite basis representation (FBR).

4.2 The Solution of the Nuclear Time-Dependent
Schrödinger Equation

4.2.1 The Standard Method

In the standard method for the solution of the nuclear time-dependent Schrödinger
equation (TDSE), the wavefunction is expanded in a basis of time-independent func-
tions called a primitive basis. Specifically, considering a molecule with f degrees of
freedom (dofs), a basis of Nκ one-dimensional functions χ(κ)

jκ
(qκ)with κ = 1, . . . , f

can be defined for each dof and the total nuclear wavefunction is expanded in the
product basis composed of Hartree products of these one-dimensional functions

�(q1, . . . q f , t) =
N1∑

j1

· · ·
N f∑

j f

C j1,..., j f (t)
f∏

κ=1

χ(κ)
jκ

(qκ), (4.19)
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where qκ is the nuclear coordinate for the κth mode and the C j1,..., j f (t) are the
time-dependent expansion coefficients. The Dirac-Frenkel time-dependent varia-
tional principle

〈δ�|H − i
∂

∂t
|�〉 = 0 (4.20)

can be used to derive the equation of motion for the coefficients, leading to

i ĊJ =
∑

L

HJLCL , (4.21)

where J denotes a collective index J = j1... j f and HJL is an element of the matrix
representation of the Hamiltonian in the primitive basis. A number of methods exist
for the integration of such systems of linear differential equations, including, for
instance, the split-operator method [14–16], the Chebyshevmethod [17] or the short-
iterative Lanczos method [18] (see also Refs. [19–21] for reviews and [22–25] for
recent applications in atom-molecule,molecule-molecule andmolecule-surface reac-
tive scattering). However, because the number of configurations �J (q1, . . . , q f ) =∏ f

κ=1 χ(κ)
jκ

(qκ) grows exponentially with the number of dofs, the standard method is
generally applicable to systems with less than ten dofs.

4.2.2 The Multi-configuration Time-Dependent Hartree
Method

In order to treat larger systems in a quantum dynamical framework, one needs a
more compact basis in which the time-dependent wavepacket can be expanded. A
possibility is to consider a basis of time-dependent functions. Indeed, while in most
situations of interest thewavepacket explores large portions of the PES during a prop-
agation, at a given time, the wavepacket often has a simple and localized structure.
It is thus natural to try to define a time-dependent basis set optimized to correctly
describe the wavepacket at any given time during the propagation. This is the basic
idea behind the multi-configuration time-dependent Hartree method [26–32]. More
precisely, the MCTDH ansatz reads

�(q1, . . . q f , t) =
n1∑

j1

· · ·
n p∑

jp

C j1,..., jp (t)
p∏

κ=1

ϕ(κ)
jκ

(Qκ, t)

=
∑

J

CJ (t)�(Q1, . . . Q p, t). (4.22)

where the ϕ(κ)
jκ

(Qκ, t) are time-dependent basis functions called single-particle
functions (SPFs) and the �(Q1, . . . Q p, t) are Hartree products of SPFs called
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configurations. The coordinates Qκ for each set of nκ SPFs are composite coor-
dinates of one or more system coordinates

Qκ = (q1,κ, . . . , qd,κ). (4.23)

The SPFs ϕ(κ)
jκ

(Qκ, t) are d-dimensional functions, i.e d system coordinates have
been combined and treated as one “particle”. Overall, in Eq. (4.22), the f system
coordinates have been combined to form p “particles”. The SPFs are expressed
as linear combinations of Hartree products of primitive, time-independent, basis
functions

ϕ(κ)
jκ

(Qκ, t) =
N1,κ∑

l1

· · ·
Nd,κ∑

ld

c jκ,l1...ld (t)χ
(κ)
l1

(q1,κ) . . . χ(κ)
ld

(qd,κ). (4.24)

TheMCTDH ansatz Eq. (4.22) is not unique. Applying linear transformations among
the SPFs

ϕ̃(κ)
jκ

=
nκ∑

lκ

U (κ)
jκlκ

ϕ(κ)
lκ

(4.25)

and the inverse transformations to the coefficients

C̃ j1,..., j f =
n1∑

l1

· · ·
n f∑

l f

(U (1))−1
l1 j1

...(U ( f ))−1
l f j f

Cl1,...,l f , (4.26)

one obtains

�(q1, . . . q f , t) =
n1∑

j1

· · ·
n f∑

j f

C̃ j1,..., j f

f∏

κ

ϕ̃(κ)
jκ

(Qκ, t). (4.27)

In order to ensure the uniqueness of the MCTDH equations of motion, constraints
are introduced on the SPFs

i〈ϕ(κ)
i |ϕ̇(κ)

j 〉 = 〈ϕ(κ)
i |g(κ)|ϕ(κ)

j 〉 = g(κ)
i j . (4.28)

From this last equation, it follows that if the constraint operator g(κ), acting on the
κth particle, are chosen to be Hermitian, then a set of orthonormal SPF will remain
orthonormal at all time

∂

∂t
〈ϕ(κ)

i |ϕ(κ)
j 〉 = 〈ϕ̇(κ)

i |ϕ(κ)
j 〉 + 〈ϕ(κ)

i |ϕ̇(κ)
j 〉

= −i(g(κ)
i j − g(κ)∗

j i ) = −i(g(κ) − g(κ)†)i j . (4.29)
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Assuming the simplest choice for the constraints, i.e g(κ) = 0, theMCTDHequations
ofmotion can be derived by inserting theMCTDH ansatz of Eq. (4.22) into the Dirac-
Frenkel time-dependent variational principle of Eq. (4.20). Other choices are possible
for the constraints, see Ref. [28] for details. We first introduce the projector P (κ) on
the space spanned by the SPFs of the κth particle

P (κ) =
nκ∑

j=1

|ϕ(κ)
j 〉〈ϕ(κ)

j | (4.30)

and the single-hole functions �
(κ)
l , defined as the wavefunction associated with the

j th SPF of the κth particle

�
(κ)
l = 〈ϕ(κ)

l |�〉
=

∑

j1

· · ·
∑

jκ−1

∑

jκ+1

· · ·
∑

jp

C j1... jκ−1l jκ+1... jp ϕ
(1)
j1

. . . ϕ(κ−1)
jκ−1

ϕ(κ+1)
jκ+1

. . . ϕ
(p)

jp

=
∑

Jκ

CJκ
l
�Jκ , (4.31)

where the new composite index Jκ and Jκ
l and the single-hole configurations �Jκ

have been introduced. Using the single-hole functions, one can define the mean-field
matrices

H(κ)
i j = 〈�(κ)

i |H |�(κ)
j 〉 (4.32)

and the density matrices

ρ(κ)
i j = 〈�(κ)

i |�(κ)
j 〉 =

∑

Jκ

C∗
Jκ

i
CJκ

j
. (4.33)

Using these definitions, the MCTDH equations can be written in matrix form

i Ċ = KC (4.34)

iϕ̇(κ) = (1 − P (κ))(ρ(κ))−1H(κ)ϕ(κ). (4.35)

In these last two equations C is the vector of the coefficients and K is the matrix
representation of the Hamiltonian in the basis of the configurations

KJL = 〈�J |H |�L〉. (4.36)

Equations (4.34) and (4.35) constitute a set of non-linear coupled differential equa-
tions which is more complicated than the linear set of equations of the standard
method given by Eq. (4.21). However, the ability of the MCTDH method to treat
larger systems than the standard method lies in the compactness of the SPF basis.
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The dimension of the SPF basis n1 × · · · × n p is much smaller than that of the prim-
itive basis N1 × · · · × N f because p ≤ f and, in general, the nκ required to achieve
convergence are rather small, thanks to the variational nature of the method.

An attractive feature of the MCTDH method is that by varying the number of
SPF basis functions involved in the calculations, one can simply control the degree
of accuracy of the method. In addition, the natural populations, obtained as the
eigenvalues of the density matrices ρ(κ), provide a measure of the accuracy of the
calculation. A calculation is well converged with respect to the size of the SPF basis
if, for each particle κ, the smallest natural population is small.

Provided the Hamiltonian operator can be written in a suitable form and an effi-
cient integration scheme is used to solve the equations of motion (see Sects. 4.2.3
and 4.2.4), the MCTDH method allows one to perform accurate quantum dynamics
calculations for realistic molecular systems with more than twenty degrees of free-
dom [33–45], and on simple model systems with up to roughly eighty degrees of
freedom [46–48].

An extension of theMCTDHmethod, calledmulti-layerMCTDH [49–51], devel-
oped by Haobin Wang and Michael Thoss, allows one to treat even larger and more
complex systems.

4.2.3 Product Form of the Hamiltonian Operator

The solution of the MCTDH equations of motion requires the evaluation of the
Hamiltonian and mean-field matrix elements. A Hamiltonian matrix elementKI J =
〈�I |H |�J 〉 involves integrals of the form 〈ϕ(1)

i1
. . . ϕ

(p)

i p
|H |ϕ(1)

j1
. . . ϕ

(p)

jp
〉. In general,

these integrals are p-dimensional and need to be evaluated in the full primitive basis,
which is precisely what needs to be avoided to break the unfavorable scaling of the
standard method with respect to the size of the system. The direct evaluation of these
multi-dimensional integrals can be avoided if the Hamiltonian is written in a so-
called product form, i.e as a sum of products of operators acting on a single particle
only

H(q1, . . . , q f ) =
∑

r

cr h(1)
r (Q1) . . . h(p)

r (Q p). (4.37)

In this case one obtains

〈ϕ(1)
i1

. . . ϕ
(p)

i p
|H |ϕ(1)

j1
. . . ϕ

(p)

jp
〉 =

∑

r

cr 〈ϕ(1)
i1

|h(1)
r |ϕ(1)

j1
〉 · · · 〈ϕ(p)

i p
|h(p)

r |ϕ(p)

jp
〉. (4.38)

Here, a high dimensional integral is replaced by a sum of products of integrals of
lower dimension that can be quickly evaluated.
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In most cases, as mentioned in Sect. 4.1.1, the kinetic energy operator is natu-
rally obtained in the required product form. This is, however, not the case for the
potential energy operator.While manymodel potentials are of product form, ab initio
potential energy surfaces, which are represented by a mathematical function of the
nuclear coordinates adjusted to reproduce the electronic energy of the molecule at
a set of calculated points, are generally not. It is therefore necessary, for an optimal
performance of the MCTDH method, to bring the potential to product form. This
can be done by using the potfit algorithm, implemented in the Heidelberg MCTDH
package [32]. This method, described in Refs. [28, 30, 52, 53], allows one to bring
to product form general potentials for systems with up to approximately six degrees
of freedom, because the algorithm requires the full potential to be kept in memory.
Recently, an extension of the potfit method, called multi-grid potfit [54] has been
developed, allowing one to bring to product form potentials of systems with up to
twelve degrees of freedom. Other strategies exist for even larger systems, such as
the n-mode representation [55, 56], also called cut-HDMR [57, 58], which has been
used, for instance, to bring to product form the 15D PES of the protonated water
dimer or the 21D PES of malonaldehyde.

4.2.4 Integration of the Equations of Motion

An important aspect concerning the efficiency of the MCTDH method is the algo-
rithm used to solve the equations of motion of Eqs. (4.34) and (4.35). In this section,
two different integration schemes, the variable mean-field and constant mean-field
schemes, are briefly presented.

4.2.4.1 The Variable Mean-Field Integration Scheme

TheMCTDH equations of motion are a system of coupled non-linear first-order ordi-
nary differential equations. The most straightforward way to solve these equations
is to use an all-purpose integration algorithm such as the Adams-Bashforth-Moulton
method or the Runge-Kutta method. This integration scheme is called the variable
mean-field (VMF) scheme to distinguish it from the scheme presented in the next
section. The VMF scheme is not optimal because the vector of the coefficients C and
the SPFs contain components that are highly oscillatory in time. Therefore, small
integration steps need to be used in order to accurately solve the MCTDH equa-
tions. In this case, the computation of the mean-field Eq. (4.32) and density matrices
Eq. (4.33), at each time step of the propagation, dominates the computational effort.
To avoid this problem, an integration scheme specifically tailored to the solution of
theMCTDHequations ofmotion, the constantmean-field integration (CMF) scheme,
has been developed.
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4.2.4.2 The Constant Mean-Field Integration Scheme

The idea behind the CMF integration scheme [59] is to take advantage of the fact that
the Hamiltonian matrix elements of Eq. (4.36) and the products of the inverse den-
sity and mean-field matrices (ρ(κ))

−1H(κ) appearing in Eq. (4.35), generally change
much slower than the coefficients and SPFs. It is therefore possible to use larger time-
steps for the evaluation of the former quantities than for the latter. More precisely,
starting from an initial set of coefficients and SPFs, the Hamiltonian, mean-field and
densitymatrices are constructed.With thesematrices kept constant, thewavefunction
is propagated for a given time τ . The resulting coefficients and SPFs are then used
to compute new Hamiltonian, mean-field and density matrices. The CMF equations
of motion, using the simple constraint operators g(κ) = 0, read

i Ċ = K̄C (4.39)

iϕ̇(1) = (1 − P (1))(ρ̄(1))−1H̄(1)
ϕ(1)

...

iϕ̇(p) = (1 − P (p))(ρ̄(p))−1H̄(p)
ϕ(p).

(4.40)

In these equation, the bar indicates that the corresponding matrix is held constant
during the CMF integration step tm ≤ t ≤ tm+1, where tm = t0 + mτ , m is the
number of CMF steps made so far and t0 is the initial time.

Supposing that a large update step τ can be used, the CMF scheme has several
advantages. First, as explained above, it requires much less frequent computations
of the Hamiltonian, mean-field and density matrices. In addition, the structure of the
system of differential equations is simplified. The CMF scheme splits the MCTDH
system of coupled differential equations into p + 1 sets of equations uncoupled
from each other. In addition, the coefficients are now obtained from a set of linear
differential equations of the same form than the equations of motions in the standard
method given in Eq. (4.21) in Sect. 4.2.1. Therefore, integrators specifically designed
for the time-dependent Schrödinger equation such as, for instance, the Short-iterative
Lanczos integrator, can be used to propagate the coefficients. The set of equations
for the SPFs, however, is still non-linear due to the projection operator P (κ).

It is important to note that the scheme presented above is only a simplified version
of the actual CMF scheme implemented in the Heidelberg MCTDH package. In
this form, the method defines a first-order integrator which would perform quite
poorly. Therefore it has to be replaced by a more subtle, second-order CMF scheme,
described in details in Refs. [28, 59].
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4.2.5 The MCTDH Equations of Motion for Several
Electronic States

In the previous sections, the Born-Oppenheimer approximation was assumed, i.e.
nuclear motion on a single PES was considered. However, in many situations, the
dynamics of the nuclei need to be treated on several PESs corresponding to coupled
electronic state. The coupling between the electronic states can be due to the presence
of an external electric field or to internal vibronic interactions. There exists two
different ways of treating several coupled electronic states with the MCTDHmethod
[60], the single-set formulation and the multi-set formulation.

In the single-set formulation, the electronic manifold is treated as one extra degree
of freedom, noted κe. The Qκe coordinate then labels the electronic states, taking
only discrete values Qκe = 1, 2, . . . ,σ, where σ is the number of electronic states.
The number of SPFs for the electronic degree of freedom is set to the number of
states nκe = σ. In this formulation, the MCTDH equations of motions Eqs. (4.34)
and (4.35) are unchanged. This formulation is called single-set formulation because
a single set of SPF is used to treat the dynamics in all the electronic states.

In the multi-set formulation, in contrast, a different set of SPF is used for each
electronic state. The wavefunction and the Hamiltonian is expanded in the set of
electronic states {|α〉,α = 1, . . . ,σ}

|�(t)〉 =
σ∑

α=1

�(t)(α)|α〉 (4.41)

where �(t)(α) has the MCTDH form of Eq. (4.22) and

H =
σ∑

α,β=1

|α〉Hαβ〈β|. (4.42)

Using again the simplest choice for the constraint operators g(α,κ) = 0, the equations
of motion read

i Ċ (α)
J =

σ∑

β=1

∑

L

〈�(α)
J |Hαβ|�(β)

L 〉C (β)

L (4.43)

iϕ̇(α,κ) = (1 − P (α,κ))(ρ(α,κ))−1
σ∑

β=1

H(κ)

αβϕ(β,κ). (4.44)

These last equations show that theMCTDHmethod is capable of treating the nuclear
dynamics of molecular systems on several coupled electronic states. This formalism
has been used, in combination with the vibronic coupling model of Köppel et al.
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[61, 62], introduced more than three decades ago, and briefly presented in the next
section, to study the UV absorption and photoelectron spectra of a number of mole-
cular systems.

4.3 The Vibronic Coupling Model

The MCTDH method presented above is capable of treating high-dimensional sys-
tems and has opened new possibilities in the quantum dynamical description of mid-
size molecular systems. However such studies require a mathematical representation
of the underlying PESs in the product form. When molecular systems exhibiting
strong vibronic interactions are considered, one needs, in addition, to bring these
PESs and their couplings to a quasiadiabatic representation. In general, obtaining
global and accurate diabatic potentials is an extremely difficult task. However, in
a number of situations, only local information on the topography of the PESs is
required. This is the case when one is interested in the simulation of low-resolution
absorption or photoelectron spectra, or in the simulation of ultrafast non-radiative
decay processes through conical intersections that lie close to the Franck-Condon
region. In the later case, the dynamics of the nuclei only implies low amplitude
motions, which can be described using normal coordinates. In this case, simple
model Hamiltonians can be constructed and used in quantum dynamics simulations.
The vibronic coupling model of Köppel et al. [61, 62], is a well known example. In
this model, the diabatic Hamiltonian for several coupled electronic states is written as
the sum of a reference Hamiltonian H0( Q) and a potential energy matrix W( Q), i.e
H( Q) = H0( Q) + W( Q). The Hamiltonian is conveniently expressed in terms of
dimensionless normal coordinates [62, 63], collected in the vector Q. The reference
Hamiltonian H0( Q) is the ground electronic state Hamiltonian, usually expressed
in the harmonic approximation

H0( Q) =
∑

i

ωi

2

(
− ∂2

∂Q2
i

+ Q2
i

)
I, (4.45)

where the ωi are the harmonic vibrational frequencies and I is the n × n identity
matrix, n being the number of electronic states included in the model. The W( Q)

matrix expresses the changes in the excited state potential energy with respect to
the ground state as a Taylor expansion around a reference geometry, usually cho-
sen as the ground state equilibrium geometry, at which the diabatic and adiabatic
representations are identical

Wnn( Q) = En +
∑

i

κ(n)
i Qi +

∑

i, j

γ(n)
i j Qi Q j + · · ·

Wnn′( Q) =
∑

i

λ(nn′)
i Qi +

∑

i, j

μ(nn′)
i j Qi Q j + · · · ,

(4.46)
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where n 	= n′, the En are the vertical excitation energies,κ
(n)
i and γ(n)

i j are respectively
the linear and quadratic intrastate coupling constants for the nth electronic state and
λ(nn′)

i and μ(nn′)
i j are respectively the linear and quadratic interstate coupling constants

between the nth and n′th electronic states.
The vibronic coupling model has been extensively used to study the spectroscopy

and the dynamics of vibronically coupled systems for more than three decades. The
order at which the expansion of Eq. (4.46) can be truncated depends on the nature of
the system and the level of accuracy that is sought. However, in many cases, it was
found that retaining only the linear terms is sufficient to obtain a satisfying description
of low-resolution spectra and of the short-time dynamics of the system. In this case,
the model is called linear vibronic coupling model. In the case of highly symmetric
molecules, many coupling constants vanish by symmetry. The non-vanishing terms
fulfill the following condition:

�n ⊗ �Q ⊗ �n′ ⊃ �A (4.47)

where �n and �n′ refer to the electronic state symmetry, �Q to the normal mode
symmetry and�A is the totally symmetric irreducible representation of the symmetry
point group of the molecule. It follows immediately that only the totally symmetric
modes lead to non-vanishing linear intrastate coupling constants. Similarly, only
the modes of symmetry �n ⊗ �n′ lead to non-vanishing linear interstate coupling
constants. The linear intrastate coupling constants κ(n)

i are obtained as the derivative
of the energy of the nth adiabatic electronic state with respect to Qi at the ground
state equilibrium geometry

κ(n)
i = ∂Vn( Q)

∂Qi

∣∣∣∣
Q=0

. (4.48)

The linear interstate coupling constants λ(nn′)
i read

λ(nn′)
i = ∂Wnn′( Q)

∂Qi

∣∣∣∣
Q=0

. (4.49)

To obtain an expression of the λ(nn′)
i coupling constant as a function of the adiabatic

potential energies, one first writes the diabatic potential energy matrix along the
coordinate Qi

W (Qi ) = ωi

2
Q2

i I +
(

En λ(nn′)
i Qi

λ(nn′)
i Qi En′

)
, (4.50)

where I denotes the identity matrix. The eigenvalues of this matrix give the adiabatic
potential energy along the Qi coordinate. The difference Vn′(Qi ) − Vn(Qi ) reads

Vn′(Qi ) − Vn(Qi ) =
√

(En − En′)2 + 4(λ(nn′)
i Qi )2. (4.51)



82 4 Theory of Nuclear Quantum Dynamics Simulations

From this last two equations, the λ(nn′)
i coupling constant can be written as

λ(nn′)
i =

√
1

8

∂2(Vn′(Qi ) − Vn(Qi ))2

∂Q2
i

∣∣∣∣
Q=0

. (4.52)

The accuracy of the linear vibronic coupling model can be improved by adding
diagonal quadratic terms γ(n)

i Q2
i for the non totally-symmetric modes for which the

diagonal linear terms vanish [63]. In this case, the γ(n)
i constants can be conveniently

obtained, together with the λ(nn′)
i constants, by a least square fit to the ab initio

computed adiabatic energies. In this case, one may write

W (Qi ) = ωi

2
Q2

i I +
(

En + γ(n)
i Q2

i λ(nn′)
i Qi

λ(nn′)
i Qi En′ + γ(n′)

i Q2
i

)
. (4.53)

The corresponding adiabatic potentials read

Vn(Qi ) = 1

2

(
(ωi + γ(n)

i + γ(n′)
i )Q2

i + En + En′
)

−
√

(En′ − En + (γ(n′)
i − γ(n)

i )Q2
i )

2 + 4λ2
i Q2

i

Vn′(Qi ) = 1

2

(
(ωi + γ(n)

i + γ(n′)
i )Q2

i + En + En′
)

+
√

(En′ − En + (γ(n′)
i − γ(n)

i )Q2
i )

2 + 4λ2
i Q2

i .

(4.54)

The vibronic coupling model Hamiltonian is well suited for a combination with
the MCTDH method as it has the required product form (see Sect. 4.2.3). Usually,
molecular systems affected by strong vibronic couplings have complicated spectra
with very dense bands. Therefore, a detailed analysis of the spectrum in terms of
individual vibronic states is in general impossible and one is more interested in the
overall electronic band profiles. In this case, the use of a time-dependent framework
can be advantageous since the absorption profile can be obtained from the time-
dependent wavepacket propagated over relatively short times, as exposed below.

4.4 Calculation of Absorption Spectra

The absorption spectrum is a useful observable that can be simulated using either a
time-independent or a time-dependent formalism. In the case of molecular systems
exhibiting conical intersections, the strong vibronic couplings often have distinct
signatures in the absorption spectrum. For instance, the presence of unexpected
bands, or of bandswith an unusually complicated and dense profile, is often observed.
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Consider a molecular system described by the Hamiltonian operator H with the
eigenelements {|�n〉, En}. The absorption profile is given by Fermi’s golden rule

P(E) = 2π
∑

n

|〈�n|μ|�i 〉|2δ(E − En), (4.55)

where μ is the dipole moment operator, and |�i 〉 is the initial state of the system.
The absorption spectrum of the system can be computed directly through Eq. (4.55)
using a time-independent formalism, i.e via the solution of the time-independent
Schrödinger equation

H |�n〉 = En|�n〉. (4.56)

We note that a very efficient version of this method based on the Lanczos itera-
tive eigensolver has been implemented for the specific case of vibronically coupled
systems described by the vibronic coupling model Hamiltonian, allowing for the
computation of absorption or photoelectron spectra for systems with bases contain-
ing up to 109 basis functions. This method is described in details in the Chap.7 of
Ref. [64].

In a number of cases, it can be advantageous to compute the absorption spec-
trum without any reference to the eigenstates of the system but rather using the
time-dependent wavepacket computed through the solution of the time-dependent
Schrödinger equation. Using the integral form of the Dirac delta function, Eq. (4.55)
can be recast as

P(E) =
∫ +∞

−∞

∑

n

〈�n|μ|�i 〉〈�i |μ†|�n〉e−iEn t eiEtdt. (4.57)

The wavepacket at time t reads

|�(t)〉 = e−i Ht |�(0)〉. (4.58)

The wavepacket at time t = 0 is obtained through the application of the dipole
moment operator to the initial state |�(0)〉 = μ|�i 〉. Substituting into Eq. (4.58)
yields

|�(t)〉 = e−i Htμ|�i 〉. (4.59)

Inserting now the closure relation I = ∑
n |�n〉〈�n|, one obtains

|�(t)〉 =
∑

n

e−i En t 〈�n|μ|�i 〉|�n〉. (4.60)
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Substituting this last equation into Eq. (4.57) yields

P(E) =
∫ +∞

−∞
〈�(0)|�(t)〉ei Et dt. (4.61)

This last equation shows that the absorption spectrum can be computed from the
Fourier transform of the autocorrelation function C(t) = 〈�(0)|�(t)〉, which
measures the time-dependent overlap of the evolving wavepacket with the initial
wavepacket. Assuming an hemitian Hamiltonian operator, one may write

C(−t) = 〈�(0)|ei Ht |�(0)〉
= 〈�(0)|(e−i Ht )†|�(0)〉
= C(t)∗. (4.62)

Using this relation, the spectrum can be written as an integral over positive times
only

P(E) = 2
∫ +∞

0
Re

[
C(t)ei Et

]
dt. (4.63)

To account for the homogeneous broadening of the experimental spectrum, the
autocorrelation function can be pre-multiplied by a damping function f (t) = e−t/τ ,
where the damping time τ is a free parameter. This is equivalent to convoluting the
spectrum by a Lorentzian function of full width at half maximum of 2/τ . In addition,
to avoid problems arising from the finite propagation time T (the so-called “Gibbs
phenomenon”), the autocorrelation function can be further pre-multiplied by a filter
function gn(t) = cosn(πt/2T )�(t − T ), where n = 1, 2, . . . and � denotes the
Heaviside step function.
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Chapter 5
The Role of the Low-Lying nπ∗ States
on the Photophysics of Pyrazine

This chapter is partly based on results and discussions published in Ref. [1] by the
PCCP Owner Societies.

5.1 Introduction

In this chapter, the theoretical tools introduced in Chaps. 2 and 4 are applied to
the study of the non-adiabatic relaxation dynamics of pyrazine after ultraviolet
(UV) excitation.

The low energy part of the UV spectrum of pyrazine consists in two bands,
dominated by absorption to the B3u(nπ∗) and B2u(ππ∗) states, respectively [2–8].
The former presents a well resolved vibrational structure, whereas the latter is much
broader, indicating a fast relaxation process. Time-resolved photoelectron spec-
troscopy (TRPES) studies [9–12] revealed the existence of an ultrafast (∼20 fs)
non-radiative decay process occuring after excitation to the B2u(ππ∗) state, due
to the existence of a conical intersection (CI) between the B3u(nπ∗) and B2u(ππ∗)
states lying close to the Franck–Condon (FC) region.

From the theoretical point of view, this relaxation process has been the subject
of a large number of quantum dynamics investigations, based on reduced and full
dimensional models. Early works [13–17] reported three- and four-mode models
and showed that a simple two-state four-dimensional model provides a qualitatively
correct simulation of the UV absorption spectrum [17]. These models were used to
simulate various spectroscopic signals, including time-resolved transient absorption
[18–20], and ionization [21] spectra, fluorescence [22] and resonance Raman spec-
tra [23]. Worth et al. [24–27] performed accurate quantum dynamics simulations
based on a model including the twenty-four vibrational modes of the molecule using
the MCTDH method. These benchmark results have then been used to test various
approximate methods for the simulation of non-adiabatic dynamics of molecular
systems [28–40].
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More recently, theoretical studies using on-the-fly trajectory surface hopping
(TSH) simulations based on time-dependent density functional theory (TDDFT)
electronic structure calculations [39, 41] suggested an important participation of the
dark Au(nπ∗) and B2g(nπ∗) states in the non-adiabatic relaxation dynamics after
excitation to the bright B2u(ππ∗) state.

In this chapter, we further investigate the role of the dark Au(nπ∗) and B2g(nπ∗)
states in the photophysics of pyrazine using quantum dynamics simulations and
model Hamiltonians obtained in the framework of the vibronic coupling model of
Köppel, Domcke and Cederbaum (see Sect. 4.3 in Chap.4). Different models includ-
ing various numbers of electronic states and vibrational modes were considered.
In contrast to the results of Ref. [39], our results suggest that the B2g(nπ∗) state
plays a negligible role in the non-adiabatic dynamics of pyrazine. However, our
results suggest that the Au(nπ∗) state is significantly populated through a low-lying
B2u(ππ∗)/Au(nπ∗) CI. This decay channel is found to compete with the well estab-
lished decay through the B2u(ππ∗)/B3u(nπ∗) CI. These results agree well with the
recent TSH simulations of Tomasello et al. [41].

The rest of this chapter is organized as follows. The details of the electronic
structure calculations performed in this work are exposed in Sect. 5.2, the model
Hamiltonians used for the dynamics calculations are presented in Sect. 5.3. Our
results are then presented and discussed in Sect. 5.4 and Sect. 5.5 concludes this
chapter.

5.2 Ab Initio Electronic Structure Calculations

The energies and properties of the low-lying excited electronic states of pyrazine
have been the subject of numerous investigations using various electronic struc-
ture calculation methods [42–52]. All the electronic structure calculations presented
in this chapter were performed using the aug-cc-pVDZ basis set [53]. The ground
state equilibrium geometry optimization and vibrational analysis were performed
using the second-order Møller-Plesset (MP2) method with the Gaussian 03 pro-
gram package [54]. The resulting equilibrium geometry and harmonic frequen-
cies have been reported in Ref. [1]. Excited-state energies were computed using
the extended multi-configuration quasi-degenerate second-order perturbation theory
(XMCQDPT2) method [55] as implemented in the Firefly QC package [56] which is
partially based on the GAMESS (US) source code [57]. An active space of ten elec-
trons distributed in eight orbitalswas used for the underlying state-averaged complete
active space self-consistent field (SA-CASSCF) wavefunction. These active orbitals
include the full π orbital subset (three occupied π orbitals noted 1π, 2π and 3π,
and three virtual π∗ orbitals noted 1π∗, 2π∗ and 3π∗) and the two nitrogen lone-pair
orbitals (noted 1Nlp and 2Nlp), see Fig. 5.1. The orbitals were averaged over the five
lowest CASSCF states.

http://dx.doi.org/10.1007/978-3-319-28979-3_4
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Table 5.1 Vertical excitation energies (in eV) computed using theXMCQDPT2method and a SA5-
CASSCF reference wavefunction compared with previous theoretical results and experimental data

B3u(nπ∗) Au(nπ∗) B2u(ππ∗) B2g(nπ∗)
XMCQDPT2a 3.93 4.45 4.79 5.38

MRCISD [52] 4.55 5.52 5.16 5.91

CASPT2 [49] 3.86 4.52 4.81 5.48

CASPT2 [51] 4.02 4.75 4.80 5.56

CASPT2 [44] 3.85 4.63 4.76 –

CASPT2 [46] 3.83 4.36 4.79 5.50

CC2 [50] 4.26 4.95 5.13 5.92

CC3 [50] 4.24 5.05 5.02 5.74

EOM-CCSD(T) [45] 3.83 4.81 4.64 5.56

SAC-CI [48] 4.25 5.24 4.84 6.04

TDDFT/B3LYP [39] 3.96 4.6 5.46 6.3

Exp. [8] 3.83b – 4.81c(4.69b) –
aThis work
b0–0 transition
cBand maximum

Fig. 5.1 CASSCF optimized orbitals included in the active space used in this work

Our results for the vertical excitation energies (VEEs) of the four lowest-lying
singlet excited electronic states are presented in Table5.1, in comparison with
previous calculations and experimental data. Previous calculations include the
complete active space second-order perturbation theory (CASPT2) calculations of
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Refs. [44, 46, 49, 51], the second- and third-order approximate coupled cluster
(CC2 and CC3) calculations of Ref. [50], the equation of motion coupled cluster
with single, double and perturbative triple excitations calculations of Ref. [45], the
symmetry adapted cluster configuration interaction calculations of Ref. [48] and the
time-dependent density functional theory calculations using the B3LYP functional
of Ref. [39].

Our XMCQDPT2 VEEs for the bright B3u(nπ∗) and B2u(ππ∗) are in good agree-
ment with the experimental data [2–5, 7, 8]. A similar agreement was obtained in
previous CASPT2 calculations. The results of previous calculations performed with
other methods are in slightly less quantitative agreement with the experiment. The
EOM-CCSD(T) and TDDFT calculations gave a good agreement for the B3u(nπ∗)
VEE but the former underestimated and the latter overestimated the B2u(ππ∗) VEE.
The SAC-CI calculation overestimated the B3u(nπ∗)VEE but accurately reproduced
the B2u(ππ∗) VEE. The CC2, CC3 and MRCI methods overestimated both VEEs,
with a larger discrepancy for the B3u(nπ∗) VEE.

TheVEEof the dark Au(nπ∗) state appearsmore controversial.Walker andPalmer
proposed an experimental value of 5.0eV based on near-threshold energy loss spec-
troscopy [7]. However, other works quote a reference value of 4.72eV [48, 49].
In addition, large discrepancies exist between the VEEs calculated with different
methods. For instance, a difference of more than 1.1eV in the Au(nπ∗) VEE exists
between the CASPT2 calculation of Ref. [46] and the MRCI calculation of Ref. [52].
Our XMCQDPT2 and previous CASPT2 calculations predicted the Au(nπ∗) state
as the second singlet excited state, i.e below the B2u(ππ∗) state, with VEEs rang-
ing from 4.36 to 4.75eV. Previous CC2 and TDDFT calculations also predicted the
Au(nπ∗) state to lie below the B2u(ππ∗) state. CC3 calculations, in contrast, pre-
dicted the Au(nπ∗) and B2u(ππ∗) states to be essentially degenerate whereas the
SAC-CI, EOM-CCSD(T) and MRCI calculations predicted the Au(nπ∗) state to lie
above the B2u(ππ∗) state.

A similar uncertainty exists for the position of the B2g(nπ∗) state. Okuzawa et al.
[6] reported a value of 5.19eV based on UV-IR double resonance dip spectroscopy
measurements. However, reference values of 5.5eV [5, 48] and 6.10eV [3, 49] have
also been quoted in the literature. From the theoretical point of view, as for the
Au(nπ∗) state, rather large variations exists in the VEE calculated with different
methods. The CASPT2 and EOM-CCSD(T) values reported in Table5.1 are in good
agreement with each other, ranging from 5.48 to 5.56eV. The values obtained with
other methods are typically higher, ranging from 5.74eV to 6.3eV. Our XMCQDPT2
value of 5.38eV appears slightly underestimated with respect to previous calcula-
tions.

The interested reader is referred to the work of Weber and Reimers [46, 47] for
further extensive comparisons of computational methods for the excitation energies
of the low-lying singlet and triplet states of pyrazine.
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5.3 Construction of the Models

The four lowest excited electronic states of the molecule, namely the B3u(nπ∗),
Au(nπ∗), B2u(ππ∗) and B2g(nπ∗) states, were considered in this work. In its ground
state equilibrium geometry, pyrazine is planar, with a D2h symmetry. Its twenty-four
normal modes can be classified as

�vib = 5Ag + 1B1g + 2B2g + 4B3g + 2Au + 4B1u + 4B2u + 2B3u . (5.1)

Wehave constructed several linear vibronic couplingmodelHamiltonians augmented
with diagonal quadratic terms for the non-totally symmetric modes. The total Hamil-
tonian of the molecule in the diabatic representation reads

Hm( Q) = H0( Q) + W( Q), (5.2)

where H0( Q) is the ground state Hamiltonian in the harmonic approximation given
in Eq. (4.45) of Sect. 4.3, Chap. 4. In our case, the elements of the potential matrix
W( Q) read

Wnn( Q) = En +
∑

i

κ(n)
i Qi +

∑

i

γ(n)
j Q2

j

Wnn′( Q) =
∑

k

λ(nn′)
k Qk . (5.3)

In this last equation, n = 1, 2, 3, 4 for the B3u(nπ∗), Au(nπ∗), B2u(ππ∗) and
B2g(nπ∗) electronic states, respectively. Many of the constants appearing in this
equation vanish by symmetry, according to Eq. (4.47) of Sect. 4.3, Chap. 4. The lin-
ear intrastate coupling constants κ(n)

i are only non-zero for totally symmetric modes.
The B3g modes give rise to non-vanishing λ12

i constants, the unique B1g mode gives
rise to a non-vanishing λ13

i constant, the B2g modes give rise to non-vanishing λ23
i

constants and the B1u , B2u and Au modes give rise to non-vanishing λ14
i , λ24

i and λ34
i

constants, respectively. Therefore, in a first-order description, the two B3u modes can
be neglected. Following Ref. [17], quadratic diagonal terms γ(n)

j Q2
j were added for

the non-totally symmetric modes, i.e the modes for which the diagonal linear terms
vanish by symmetry. Thus, in Eq. (5.3) i runs over the totally symmetric modes, j
runs over the non-totally symmetric modes and k runs over the modes of appropriate
symmetry, depending on n and n′, as explained above.

The values of the parameters of the vibronic couplingmodelHamiltonians used for
the quantum dynamics calculations reported in Sect. 5.4, obtained using our XMC-
QDPT2 ab initio data, are reported below. Table5.2 presents the values of the linear
intrastate coupling constants κ(n)

i , which are the derivatives of the adiabatic ener-
gies at the FC geometry. The derivatives were obtained through finite differences in
this work. The dimensionless quantities κ(n)

i /ωi , which give a better measure of the
importance of the totally symmetric modes in the dynamics of the molecule after
photoexcitation [58, 59], are also reported.

http://dx.doi.org/10.1007/978-3-319-28979-3_4
http://dx.doi.org/10.1007/978-3-319-28979-3_4
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Table 5.2 Linear intrastate coupling constant κ(n)
i values (in eV) obtained in this work

B3u(nπ∗) Au(nπ∗) B2u(ππ∗) B2g(nπ∗)
κ6a −0.081(−1.103) −0.168(−2.283) 0.128(1.739) −0.184(−2.500)

κ1 −0.038(−0.304) −0.083(−0.659) −0.183(−1.452) −0.117(−0.926)

κ9a 0.117(0.762) −0.071(−0.459) 0.045(0.295) 0.165(1.073)

κ8a −0.087(−0.436) −0.465(−2.338) 0.026(0.132) 0.172(0.862)

κ2 0.022(0.054) 0.060(0.150) 0.018(0.044) 0.030(0.074)

The values between parenthesis are the dimensionless quantities κ(n)
i /ωi

Table 5.3 Quadratic intrastate γ(n)
i and linear interstate coupling constant λ(nn′)

i values (in eV)
obtained in this work

Mode Symm. λ γ(1) γ(2) γ(3) γ(4)

ν10a B1g 0.195(1.684) −0.012 −0.048 −0.012 −0.013

ν4 B2g 0.060(0.663) −0.030 −0.031 −0.031 −0.027

ν5 B2g 0.053(0.456) −0.014 −0.026 −0.026 −0.009

ν6b B3g <10−5 −0.013 −0.013 −0.005 −0.006

ν3 B3g 0.065(0.385) −0.006 −0.006 0.001 −0.004

ν8b B3g 0.219(1.140) −0.012 −0.012 0.007 −0.043

ν7b B3g 0.020(0.050) 0.003 0.003 0.004 0.003

ν16a Au 0.112(2.686) 0.013 −0.013 −0.008 −0.008

ν17a Au 0.018(0.146) −0.016 −0.041 −0.012 −0.012

ν12 B1u 0.207(1.629) −0.006 −0.022 −0.006 −0.006

ν18a B1u 0.090(0.632) −0.006 −0.002 −0.005 −0.006

ν19a B1u 0.094(0.511) −0.006 −0.010 −0.002 −0.006

ν13 B1u <10−5 0.004 0.004 0.004 0.004

ν18b B2u 0.044(0.332) −0.001 −0.003 −0.002 −0.003

ν14 B2u 0.044(0.263) −0.019 −0.021 −0.020 −0.021

ν19b B2u 0.072(0.404) −0.013 −0.006 0.015 −0.006

ν20b B2u <10−5 0.005 0.003 0.004 0.003

The values between parenthesis are the dimensionless quantities λ
(nn′)
i /ωi

It is known from previous work on pyrazine [17] that the ν6a , ν1 and ν9a totally
symmetric modes are needed to correctly describe the dynamics at the CI between
the B2u(ππ∗) and B3u(nπ∗) states and the absorption spectrum. In addition, as seen in
Table5.2, the Au(nπ∗) state has a very large gradient along the ν8a mode. Therefore,
this mode needs to be included in our models in order to investigate the role of
the Au(nπ∗) state in the electronic relaxation dynamics of pyrazine. In contrast, the
high frequency ν2 mode can be safely neglected, as it gives rise to small coupling
constants.

The interstate coupling constant are presented in Table5.3, together with the
diagonal intrastate quadratic coupling constants. These parameters were obtained
together from least-square fitting against XMCQDPT2 adiabatic electronic energies
computed along each coordinate (see Ref. [1] for more details). Our calculations
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show a strong coupling of the bright B2u(ππ∗) state with the B3u(nπ∗) and B2g(nπ∗)
states, essentially mediated by the ν10a and ν16a modes, respectively. The coupling
of the B2u(ππ∗) state with the Au(nπ∗) state, through the ν4 and ν5 modes, appears
comparativelyweaker. In addition,we predict strong couplings between the B3u(nπ∗)
and Au(nπ∗) states, essentially through the ν8b mode, and between the B3u(nπ∗) and
B2g(nπ∗) states, essentially through the ν12 mode.

In order to single out the role of the Au(nπ∗) and B2g(nπ∗) states in the dynamics
of pyrazine after excitation to the B2u(ππ∗) state, three different models, including
different numbers of electronic states and vibrational modes, were constructed. In
each case, only modes that give rise to non-negligible first-order coupling constants
were included.

Only the B3u(nπ∗) and B2u(ππ∗) states were included in the first model. As
explained above, only the totally symmetric modes and the unique B1g mode give

Fig. 5.2 Ground state normal modes computed at the MP2/aug-ccPVDZ level of theory. The
corresponding symmetry labels and harmonic frequencies are also shown
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rise to non-vanishing first-order coupling constants in this case. Therefore, the ν6a , ν1,
ν9a and ν8a totally symmetric modes, and the ν10a mode, were included in the model.
This model is referred to as the two-state model. Similar two-state models have been
previously used [17, 23, 32] to simulate the excited state dynamics of pyrazine.

In a second model, the Au(nπ∗) state is further included, and now the B2g and
B3g modes give rise to non-vanishing first-order coupling constants. Besides the five
modes included in the two-state model, this model includes the ν4 and ν5 modes of
B2g symmetry and the ν3 and ν8b modes of B3g symmetry. This model, referred to
as three-state model, includes nine vibrational modes.

Finally, in a third model, the B2g(nπ∗) state is further included, and the Au , B1u

and B2u modes give rise to non-vanishing first-order coupling constants. Besides the
nine modes included in the three-state model, the ν16a mode of Au symmetry, the
ν12, ν18a and ν19a modes of B1u symmetry and the ν18b, ν14 and ν19b modes of B2u

symmetry were included. This model is referred to as four-state model and includes
sixteen vibrational modes. The displacement vectors associated with these modes,
obtained from our MP2 calculations are illustrated in Fig. 5.2.

5.4 Time-Dependent Nuclear Quantum
Dynamics Simulations

Quantum dynamics simulations of the UV absorption spectrum and of the electronic
state population dynamics of the molecule excited by a short laser pulse resonant
with the transition to the bright B2u(ππ∗) state, based on the models described in
Sect. 5.3 were performed using the MCTDH method in the multi-set formalism (see
Sect. 4.2.5 in Chap.4). For the representation of the Hamiltonian and the wave func-
tion, aHermite polynomialDVR scheme [60]was used for all the degrees of freedom.
The number of SPF and primitive basis functions used in the calculations are listed
in Table5.4. Test calculations with both larger primitive and SPF bases have been

Table 5.4 Number of SPF and primitive basis functions used in the calculations

Model Combinations of modes Numbers of SPFs Numbers of grid points

Two-state (ν6a, ν10a), ν1, ν9a , ν8a [4, 34, 14], [4, 12, 8],
[4, 12, 8], [4, 10, 6]

(32, 40), 16, 14, 24

Three-state (ν6a, ν10a), (ν1, ν4), (ν9a , ν3,
ν8b), (ν8a , ν5)

[4, 30, 34, 14], [4, 12,
15, 8], [4, 13, 14, 8],
[4, 20, 24, 8]

(32, 40), (16, 20), (14,
10, 14), (24, 10)

Four-state (ν6a, ν10a , ν16a), (ν1, ν4, ν19b),
(ν9a , ν3, ν8b), (ν8a , ν5, ν12)
(ν18a , ν18b, ν19a , ν14)

[4, 36, 42, 14, 6], [4,
13, 14, 8, 5], [4, 24,
28, 8, 5], [4, 18, 19,
8, 5], [4, 7, 7, 4, 4]

(32, 40, 20), (16, 20,
10), (14, 10, 14), (24,
10, 11), (7, 7, 7, 8)

http://dx.doi.org/10.1007/978-3-319-28979-3_4


5.4 Time-Dependent Nuclear Quantum Dynamics Simulations 95

performed. The results (populations and spectra) of these calculations were found
almost identical to those performed with the bases of Table5.4, indicating a satisfac-
tory convergence of the results presented in this work.

5.4.1 Simulation of the UV Absorption Spectrum

The UV absorption spectrum in the energy range between 3.8 and 5.7eV consists in
two distinct bands, dominated by absorption to the B3u(nπ∗) and B2u(ππ∗) states.
The theoretical framework outlined in Sect. 4.4 of Chap.4 was used to compute
the absorption spectrum. Specifically, two wavepacket propagations, initiated on
the B3u(nπ∗) and B2u(ππ∗) states, respectively, were performed. In each case, the
initial wavepacket �( Q, 0), obtained by projecting the ground vibronic eigenfunc-
tion on the diabatic excited state manifold, was propagated for 120 fs. From these
two propagations, autocorrelation functions were calculated and Fourier transformed
to obtain partial absorption spectra. Before the Fourier transform, the autocorrela-
tion functions were multiplied by a damping function f (t) = e−t/τ to account for
the homogeneous broadening of the experimental spectrum, and by a filter function
g(t) = cos2(πt/2T )�(t − T ), where� denotes theHeaviside step function, to avoid
problems arising from the finite propagation time T . The full absorption spectrum
was then obtained as the oscillator strength-weighted sum of the two partial absorp-
tion spectra. The experimentally determined oscillator strengths of 0.006 and 0.1 [5]
for the B3u(nπ∗) and B2u(ππ∗) states were used. This strategy implicitely invokes
the Franck–Condon approximation, which is known to be much more accurate in
the diabatic representation than in the adiabatic representation. In addition, the influ-
ence of the dark Au(nπ∗) and B2g(nπ∗) states on the spectrum, mediated by their
vibronic coupling with the bright states, is fully taken into account. Based on exten-
sive test calculations, an adjustment of the Au(nπ∗) stateVEEwas found necessary to
obtain a reasonable agreement between simulated and experimental spectra. A value
of 4.69eV was found to provide the most satisfactory description of the absorption
spectrum.This value is somewhat higher than our ab initio value of 4.45eV.Neverthe-
less, the magnitude of this adjustment appears reasonable given the large deviations
existing between VEEs computed with different methods, as seen in Table5.1. Our
simulated absorption spectra, using the three different models described in Sect. 5.3,
compared with the experimental spectrum [2] are presented in Fig. 5.3. In each case,
the whole computed spectrum was blue-shifted so that the position of the B3u(nπ∗)
0–0 peak matches the experimental one at approximately 324nm.

The spectrum computed with the two-state model is presented in Fig. 5.3b. In this
case, damping times τ of 400 and 40 fs were used for the B3u(nπ∗) and B2u(ππ∗)
components, respectively. Thewhole spectrumwas blue-shifted by 0.04eV. The two-
state model qualitatively reproduces the shape of the B2u(ππ∗) band. A closer look

http://dx.doi.org/10.1007/978-3-319-28979-3_4
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Fig. 5.3 Comparison of a
the experimental UV
absorption spectrum taken
from Ref. [2] with the spectra
computed with b the
two-state model, c the
three-state model and d the
four-state model. Figure
reproduced from Ref. [1]

shows, however, that the portion between 245 and 255nm is not well reproduced. In
addition, the whole band appears slightly red-shifted with respect to the experimental
one (the experimental spectrum is presented in Fig. 5.3a). The agreement for the
B3u(nπ∗) band is less satisfactory. In particular, the relative intensities of the two
most intense peaks at approximately 324 and 319nm, corresponding to the 0–0 and
ν1
6a transitions respectively, disagree with experiment.
The spectrumcomputedwith the three-statemodel is presented inFig. 5.3c.Damp-

ing times τ of 400 and 100 fs were used for the B3u(nπ∗) and B2u(ππ∗) components,
respectively. The spectrum was blue-shifted by 0.13eV to approximately match the
experimental B3u(nπ∗) 0–0 peak. A comparison of panels b and c of Fig. 5.3 shows
that the inclusion of the Au(nπ∗) state in the simulations significantly improves
the agreement between the simulated and experimental spectra. Both the shape and
positions of the B2u(ππ∗) band are improved. The relative intensity of the 0–0 and
ν1
6a peaks of the B3u(nπ∗) band is also better reproduced by the three-state model.
Nevertheless, the agreement with experiment remains more qualitative than for the
B2u(ππ∗) band. In particular, the small peak appearing slightly above 320nm in the
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experimental spectrum, assigned to the vibronically induced ν1
10a transition, is not

visible in our computed spectra. This occurs because our model overestimates the
position of this peak, which overlaps with the ν1

6a peak.
The spectrum computedwith the four-statemodel is presented in Fig. 5.3d. Damp-

ing times τ of 400 and 100 fs were used for the B3u(nπ∗) and B2u(ππ∗) components,
respectively, and the spectrum was blue-shifted by 0.17eV. The spectra obtained
with the three- and four-state models are almost identical. This indicates, as will be
confirmed below, that the B2g(nπ∗) state is not significantly involved in the dynamics
of pyrazine after excitation to the bright B2u(ππ∗) state.

The results presented in this section allow us, by taking into account the overall
energy shift and the adjustment of the Au(nπ∗) state vertical excitation energy applied
in the three-state model, to propose refined estimations of 4.06, 4.82 and 4.92eV
for the vertical excitation energies of the B3u(nπ∗), Au(nπ∗) and B2u(ππ∗) states,
respectively.

5.4.2 Electronic State Populations and Decay Mechanism

It is well known from previous experimental [9–12] and theoretical works [13, 21,
24–26] that after excitation to the bright B2u(ππ∗) state, pyrazine undergoes an
ultrafast radiationless decay process in a few tens of femtoseconds. This process was
directly observed recently by TRPES using sub-20 fs pulses [11, 12]. In this section,
we present quantum dynamics simulations of the excited state dynamics of pyrazine
triggered by a 14 fs sine-squared shaped laser pulse resonant with the transition from
the ground to the B2u(ππ∗) state. Specifically, the total Hamiltonian operator reads

H( Q, t) = Hm( Q) + Hint(t), (5.4)

where Hm( Q) is the molecular Hamiltonian operator given in Eq. (5.2) and

Hint(t) = −με(t) (5.5)

is the Hamiltonian operator describing the interaction of the molecule with the elec-
tric field in the dipolar approximation. In this last equation, μ denotes the matrix
representation of the dipole moment operator, featuring permanent dipole moments
on the diagonal and transition dipole moments as off diagonal elements. As in the
previous section, the Franck–Condon approximation was used. In addition, only
the transition dipole moment between the ground and B2u(ππ∗) states was consid-
ered. This assumption relies on the fact that the transition dipole moment between
the ground and B3u(nπ∗) states is comparatively much smaller and that we con-
sider a laser pulse resonant with the transition to the B2u(ππ∗) state. Accordingly,
ε(t) denotes the component of the electric field parallel with the transition dipole
moment between the ground and B2u(ππ∗) states. The electric field reads
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ε(t) = ε0 sin
2

(
πt

tp

)
cos (ωt)�

(
tp − t

)
, (5.6)

where ε0 is the peak amplitude, tp is the pulse duration, ω is the frequency and
�

(
tp − t

)
is a Heaviside step function, which ensures that the electric field is zero for

t > tp. These parameters were set to ε0 = 0.01 a.u, tp = 14 fs and �ω = 4.7eV. We
note that, because we treat explicitly the electronic excitation, the ground electronic
state is included in our calculations. Nevertheless, for clarity, we continue to refer to
the three models described in Sect. 5.3 as two-, three- and four-state models.

Our results were analyzed in term of diabatic and adiabatic electronic state pop-
ulations. In what follows, the diabatic electronic states are labeled by Greek letters
whereas the adiabatic electronic states are labeled by Latin letters. The diabatic
population for the state |α〉 is simply the norm of the corresponding wavefunction
component

Pd
α = ||�d,(α)||2. (5.7)

The adiabatic populations are more difficult to obtain. Consider the transformation
matrix U( Q) that diagonalizes the diabatic potential matrix W( Q) of Eq. (5.3)

U†( Q)W( Q)U( Q) = V ( Q), (5.8)

where V ( Q) is the diagonal matrix of the adiabatic potentials. This transformation
matrix relates the adiabatic wavefunction to the diabatic one

�ad( Q) = U( Q)�d( Q). (5.9)

The adiabatic population Pad
a of the state |a〉 is obtained as the expectation value of

the corresponding projection operator P̂ad
a

Pad
a = 〈�d |P̂ad

a |�d〉, (5.10)

with
P̂ad

a =
∑

β,γ

|β〉U †
βaUaγ〈γ|. (5.11)

Unfortunately, the adiabatic projection operator does not have the so-called product
form (see Sect. 4.2.3 of Chap.4). Therefore, the integrals of Eq. (5.10) have to be
evaluated on the full primitive grid, which can become computationally expansive
for systems with more than four or five degrees of freedom. For larger systems,
as in the present work, a Monte Carlo integration algorithm, implemented in the
Heidelberg MCTDH package, can be used. In addition, to reduce the size of the
grid, the so-called “quick algorithm” (see the MCTDH html documentation [61])
was used. The idea behind this method is to ignore all the grid points at which the
product of the one-dimensional reduced densities is lower than a given threshold. The

http://dx.doi.org/10.1007/978-3-319-28979-3_4
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one-dimensional reduced density along the coordinate Qi is the density integrated
over all the degrees of freedom except Qi

Di (Qi ) = 〈�|�〉Qi . (5.12)

Below, to distinguish them from the diabatic electronic states, the adiabatic
electronic states are noted Sn with n = 1, 2, 3, 4.Wefirst present the diabatic and adi-
abatic electronic state populations obtained from the two-state model in Fig. 5.4a, b,
respectively. The electronic state populations have been analyzed in detail previously
using similar two-state models [26, 27]. The population transfered to the B2u(ππ∗)
state by the laser pulse reaches a maximum of approximately 0.6 at 12 fs and quickly
decays to the B3u(nπ∗) state. After 50 fs, the B2u(ππ∗) state population has dropped
to 0.1. This time scale of 50 fs for an almost complete decay of the B2u(ππ∗) state is
in excellent agreement with the most recent TRPES experiments [11, 12]. A large
recurrence occurs at 90 fs, as noted in previous theoretical works [26, 27]. Since the
B2u(ππ∗) state is the third excited state at the FC geometry, the two adiabatic excited
states in the two-state model are labeled S1 and S3. In order to check the accuracy
of the procedure used to calculate the adiabatic electronic state populations, two
calculations using different standard deviations for the Monte-Carlo integration and
thresholds for the quick algorithm, were performed. These quantities were set to 0.01
and 1.0 × 10−6, respectively, in the first calculation and to 0.001 and 1.0 × 10−8,
respectively, in the second calculation. The resulting adiabatic state populations are
presented inFig. 5.4b. TheS1 adiabtic state population curves exhibit a noisy behavior
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Fig. 5.4 Electronic state populations computed with the two-state model. a Populations of the
diabatic B3u(nπ∗) (blue) and B2u(ππ∗) (green) states and b populations of the adiabatic S1 (black)
and S3 (cyan) states using a Monte Carlo integration scheme combined with the so-called “quick
algorithm” (see text for details). The full lines present the adiabatic populations computed using a
standard deviation of 0.01 for the Monte Carlo integration and a threshold of 1.0 × 10−6 for the
quick algorithm. Adiabatic populations computed using values of 0.001 and 1.0 × 10−8 for the
same quantities are presented in dashed lines. Figure reproduced from Ref. [1]
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after 40 fs. This corresponds to the vibrationally hot wavepacket propagating on the
S1 PES after the initial decay through the S2/S1 CI. In this case, the Monte-Carlo
method can not integrate Eq. (5.10)with a high accuracy.Nevertheless, except for this
noisy part, the adiabatic populations obtained from the two calculations are smooth
and almost identical. This indicates that the Monte Carlo integration combined with
the quick algorithm provides a sufficient accuracy for our purpose. As noted previ-
ously [26, 27], the decay of the adiabatic population is faster than in the diabatic
case, and the final population of the upper state is lower.

Thediabatic and adiabatic electronic state populations obtainedwith the three-state
model are shown in full lines in Fig. 5.5a, b, respectively. The diabatic populations
obtained with the four-state model are also shown in dashed lines in Fig. 5.5a. The
comparison of the diabatic populations for the three- and four-state models confirms
that the inclusion of the B2g(nπ∗) state in the simulations has a minor effect on the
non-adiabatic decay dynamics of the molecule after excitation to the B2u(ππ∗) state.
Only a very small amount of population is transfered to the B2g(nπ∗) state, with a
maximum of less than 0.02 at 11 fs. In addition, the populations of the B3u(nπ∗),
Au(nπ∗) and B2u(ππ∗) states are similar in the three- and four-state models. The
population of the B2u(ππ∗) state reaches a maximum of nearly 0.6 at 11 fs, and then
quickly decays to almost zero at 50 fs. A recurrence is then seen at 95 fs, as in the
simulation with the two-state model. Between 0 and 20 fs, both the B3u(nπ∗) and
Au(nπ∗) state populations rise quickly and reach approximately 0.15 at 20 fs. Then,
between 20 and 40 fs, the B3u(nπ∗) state population continues to rise and reaches a
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Fig. 5.5 Electronic state populations computedwith the three- and four-statemodels. a Populations
of the diabatic B3u(nπ∗) (blue), Au(nπ∗) (red), B2u(ππ∗) (green) and B2g(nπ∗) (magenta) states
with the three-state model (full lines) and four-state model (dashed lines). The three-state model
includes only the B3u(nπ∗), Au(nπ∗) and B2u(ππ∗) states.b populations of the adiabatic S1 (black),
S2 (orange) and S3 (cyan) states computed using a standard deviation of 0.01 for the Monte Carlo
integration and a threshold of 1.0 × 10−6 for the quick algorithm. Figure reproduced from Ref. [1]
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value of 0.4 at 40 fs, while the Au(nπ∗) state population slightly drops to 0.13. After
40 fs the Au(nπ∗) state population increases again while the B3u(nπ∗) state popula-
tion starts to drop and the populations oscillate between these two states until the end
of the simulation. For the calculation of the adiabatic state populations presented in
Fig. 5.5b, a standard deviation of 0.01 for theMonte Carlo integration and a threshold
of 1.0 × 10−6 for the quick algorithm were used. Overall, this figure shows a fast
and sequential decay from the S3 state to the S1 state via the S2 state. At 40 fs the
S1 population reaches a value of approximately 0.6 and remains essentially constant
until the end of the simulation. In addition, a residual population of approximately
0.05 is seen to remain on the S2 state. Note that similar adiabatic state populations
were obtained in the TSH study of Tomasello et al. [41].

One-dimensional cuts of the diabatic PESs along the Q6a and Q8a totally
symmetric coordinates are presented in Fig. 5.6a, b respectively. Both figures show
B2u(ππ∗)/Au(nπ∗) CI points close to the FC geometry. Upon motion along the Q6a

coordinate, the B2u(ππ∗) state then crosses the B3u(nπ∗) state. This B2u(ππ∗)/B3u

(nπ∗) CI is responsible for the decay of the molecule in the two-state model.
The B2u(ππ∗)/Au(nπ∗) CI appears much closer to the FC geometry than the
B2u(ππ∗)/B3u(nπ∗) CI. However, as seen in Table5.3, the λ4 and λ5 coupling con-
stants mediating the B2u(ππ∗)/Au(nπ∗) coupling are smaller than the λ10a constant
mediating the B2u(ππ∗)/B3u(nπ∗) coupling. This explains the competition between
population transfer to the B3u(nπ∗) and Au(nπ∗) in the first 40 fs seen in Fig. 5.5a.
Figure5.6b shows the existence of both B2u(ππ∗)/Au(nπ∗) and Au(nπ∗)/B3u(nπ∗)
low-lying CI points. The Au(nπ∗)/B3u(nπ∗) CI explains the oscillations of popula-
tion between the B3u(nπ∗) and Au(nπ∗) seen after 40 fs in Fig. 5.5a.
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Fig. 5.6 One-dimensional cuts of the diabatic PESs of the B3u(nπ∗) (blue), Au(nπ∗) (red),
B2u(ππ∗) (green) and B2g(nπ∗) (magenta) states along the a Q6a and b Q8a totally symmet-
ric coordinates. The full lines represent the potential obtained from our model Hamiltonian whereas
the squares are the ab initio computed points. Figure reproduced from Ref. [1]
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5.5 Conclusion

During the last two decades, pyrazine has been considered as a benchmark system for
the study of the radiationless decay of molecules at CIs. The ultrafast decay observed
experimentally [9–12], has been interpreted within a two-state model including the
vibronically coupled B3u(nπ∗) and B2u(ππ∗) states. However, recent studies based
on TSH calculations [39, 41] suggested the participation of the two low-lying dark
Au(nπ∗) and B2g(nπ∗) states in the photophysics of the molecule.

In this chapter, we have presented quantum dynamics simulations of the excited
state non-adiabatic decay of the molecule. We have constructed linear vibronic cou-
pling model Hamiltonians augmented with diagonal quadratic terms for the non-
totally symmetric modes, including the four lowest lying excited electronic states
and up to sixteen vibrational modes. In contrast to the results presented in Ref. [39],
our calculations predict a negligible influence of the B2g(nπ∗) state on the dynamics
of the molecule. However, they suggest that the decay to the Au(nπ∗) state, through
a low-lying B2u(ππ∗)/Au(nπ∗) CI, efficiently competes with the well established
decay to the B3u(nπ∗) state through the B2u(ππ∗)/B3u(nπ∗) CI. In addition, we
have shown the existence of a strong vibronic coupling between the Au(nπ∗) and
B3u(nπ∗) states which influences the topography of the S1 adiabatic PES. Therefore,
the present work provides a significant new insight into the non-adiabatic dynamics
of pyrazine after excitation to the B2u(ππ∗) state.

Recently, we have extended the vibronic coupling model used in the present work
to include all the quadratic terms and selected cubic and quartic terms in order to
investigate the decay of the molecule to its ground state [62]. It is known experi-
mentally [9] that, following the initial ultrafast decay, pyrazine further decays to its
ground state on a time scale of approximately 20ps. We found a conical intersec-
tion between the Au(nπ∗) and the ground state. We performed quantum dynamics
simulations that showed that this conical intersection explains the slow decay of the
molecule to its ground state. This work gives further evidence of the important role
of the Au(nπ∗) in the non-adiabatic dynamics of pyrazine.
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Part II
Laser Control of Unimolecular Processes



Chapter 6
Theoretical Tools for the Description
of Strong Field Laser-Molecule Interaction

In this chapter, the main theoretical tools used in the work presented in the next
two chapters on the laser control of the radiationless decay in pyrazine and of the
tunneling dynamics in NHD2, are introduced. After a brief discussion of the main
approximations generallymade in the study of laser-molecule interactions, presented
in Sect. 6.1, we introduce in Sect. 6.2 the most basic tools for the laser control of
population transfer in a two-level system. The derivation of an effective Hamiltonian
allowing for the description of the interaction of a molecular system with a strong
non-resonant laser pulse is presented inSect. 6.3. TheFloquet theory and the adiabatic
Floquet theory are finally introduced in Sects. 6.4 and 6.5.

6.1 The Semi-classical Dipolar Approximation
of Laser-Matter Interaction

The quantized nature of electromagnetic fields needs to be taken into account in
situations where extremely low intensity fields are considered, typically in the single
photon regime. However, ordinary laser fields used in the quantum control of atomic
and molecular systems contain an extremely large number of photons, and in this
case, the quantum nature of the electromagnetic fields can be neglected. Therefore,
in this chapter, the electric fields associated with laser light will be considered as a
classical entity. Consider a pulsed linearly polarized electric field of the form

ε(t) = ε0�(t) cos (ωt − k.r + θ) e, (6.1)

where ε0 is the peak amplitude, �(t) is the envelope of the laser pulse, ω is the
pulsation, θ is the initial phase and e the unitary vector describing the direction
of polarization of the electric field. In most situations, the interaction of an atomic
or molecular system with a (pulsed) laser field can be described within the dipolar
approximation. This approximation is valid if thewavelength of the laser field is large
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with respect to the dimension of the system. In the case of the molecular systems
considered in this thesis, this assumption holds true for wavelengths up to the deep
UVdomain,where thewavelength is of the order of the hundred of nanometers. In this
case, one can show that the interaction of the systemwith the electric field dominates
that with the magnetic field. In addition, the spatial variations of the electric field can
be neglected (eik.r = 1) and the electric field can be recast as

E(t) = A0�(t) cos (ωt + θ) e. (6.2)

The total Hamiltonian operator H(t) for a molecular system described by the Hamil-
tonian operator H0, in interaction with such an electric field can be written in the
dipolar approximation as

H(t) = H0 + Hint(t) (6.3)

with
Hint(t) = −μ.ε(t). (6.4)

In this last equation, μ is the dipole moment operator which, for a molecule consti-
tuted of Nnu nuclei and Nel electrons, reads

μ =
Nnu∑

α=1

ZαeRα −
Nel∑

i=1

eri, (6.5)

where e is the charge of the electron and Zα the charge of the αth nucleus, Rα and ri

the position operators of the ith electron and αth nucleus.

6.2 Laser Driven Two-Level System

In this section, we consider a laser driven two-level system described by the Hamil-
tonian operator of Eq. (6.3), in the basis {|1〉, |2〉} of eigenstates of H0

H0|n〉 = En|n〉, n = 1, 2 (6.6)

where Hint describes the interaction of the system with a classical linearly polarized
pulsed electric field Eq. (6.2) within the dipolar approximation. In matrix form, the

total hamiltonian in the basis

{
|1〉 ≡

[
1
0

]
, |2〉 ≡

[
0
1

]}
reads

H(t) =
(

ω1 �(t) cos(ωt + θ)
�(t) cos(ωt + θ) ω2

)
(6.7)
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where ωn = En/� is the Bohr pulsation associated with the eigenstate |n〉 and

�(t) = −ε0�(t)〈1|μ|2〉.e (6.8)

is called the Rabi frequency. We have assumed that the permanent dipole moment is
zero in the states |1〉 and |2〉, i.e 〈1|μ|1〉 = 〈2|μ|2〉 = 0.

6.2.1 The Resonant Wave Approximation

In this subsection, we introduce the resonant wave approximation (RWA). This
approximation, which is valid when the pulsation of the electric field is close to
the resonance |ω2 − ω1 − ω| � |�(t)|, allows one to derive effective
Hamiltonians that are easier to manipulate than the exact Hamiltonian. We first
rewrite the Hamiltonian of Eq. (6.7) in a slightly different form

H(t) =
(

0 1
2�(t)

(
eiωteiθ + e−iωte−iθ

)
1
2�(t)

(
eiωteiθ + e−iωte−iθ

)
ω2 − ω1

)
(6.9)

where E1 has been chosen as the origin of the energies. In this last equation, the
off-diagonal elements of the Hamiltonian are expressed as the sum of a resonant
and an anti-resonant term. The resonant approximation consists in neglecting the
anti-resonant terms. It comes

H(t) =
(

0 1
2�(t)eiωteiθ

1
2�(t)e−iωte−iθ ω2 − ω1

)
. (6.10)

The evolution of the system is governed by the time-dependent Schrödinger equation
(TDSE)

H(t)|�(t)〉 = i
∂

∂t
|�(t)〉 (6.11)

with |�(t)〉 = c1(t)|1〉 + c2(t)|2〉. We now move to a frame rotating at the angular
velocity ω using the unitary transormation

T1 =
(
1 0
0 e−iωt

)
. (6.12)

The state of the system in the new representation is given by |�̃(t)〉 = T †
1 |�(t)〉. The

TDSE can be recast as

H(t)T1|�̃(t)〉 = i
∂

∂t

[
T1|�̃(t)〉

]

= i
∂T1

∂t
|�̃(t)〉 + iT1

∂|�̃(t)〉
∂t

. (6.13)
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Multiplying from the left by T †
1 on both sides and using the fact that T1 is unitary

(T †
1 = T−1

1 ) yields

[
T †
1 H(t)T1 − iT †

1

∂T1

∂t

]
|�̃(t)〉 = i

∂

∂t
|�̃(t)〉. (6.14)

It is seen in this last equation that the evolution of the system in the new represen-
tation is governed by a time-dependent Schrödinger equation with the transformed
Hamiltonian H̃(t) = T †

1 H(t)T1 − iT †
1

∂T1
∂t . Using the expressions ofH(t) andT1 given

in Eqs. (6.10) and (6.12), one obtains

H̃(t) =
(

0 1
2�(t)eiθ

1
2�(t)e−iθ �

)
, (6.15)

where � = ω2 − ω1 − ω is called the detuning from the resonance.

6.2.2 The Rabi Model

In this section, we consider the interaction of a two-level system with a continuous
laser field. The Hamiltonian of the system in the RWA is given by Eq. (6.15) with a
constant Rabi frequency �(t) = �0. In the present case, the Hamiltonian operator
is time independent. Therefore, the state of the system at time t is given by

|�̃(t)〉 = exp

(
−iH̃t

�

)
|�̃(t = 0)〉. (6.16)

Consider the transformation

T2 =
(

− sin φ
2 e−i θ

2 cos φ
2 e−i θ

2

cos φ
2 ei θ

2 sin φ
2 ei θ

2

)
, (6.17)

where φ is such that

tan φ = −2|�0|
�

, 0 ≤ φ < π (6.18)

This transformation diagonalizes the Hamiltonian H̃

T †
2 H̃T2 = D =

(
λ− 0
0 λ+

)
(6.19)

with

λ∓ = �

2
∓ 1

2

√
�2 + �2

0. (6.20)
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Transforming Eq. (6.16) yields

|�̃(t)〉 = T2 exp (−iDt) T †
2 |�̃(t = 0)〉. (6.21)

Considering that the system is in the state |1〉 at t = 0, one obtains

|�̃(t)〉 = 1

2

([
e−iλ+t + e−iλ−t

] + cosφ
[
e−iλ+t − e−iλ−t

]

sin φeiθ
[
e−iλ+t − e−iλ−t

]
)

. (6.22)

The state of the system a time t expressed in the basis {|1〉, |2〉} of eigenstates of H0

is given by

|�(t)〉 = T1|�̃(t)〉 = 1

2

([
e−iλ+t + e−iλ−t

] + cosφ
[
e−iλ+t − e−iλ−t

]

sin φeiθe−iωt
[
e−iλ+t − e−iλ−t

]
)

. (6.23)

From this last equation, one can express the population P2(t) of the state |2〉 at time t,
i.e the probability of population transfer between the states |1〉 and |2〉 induced by
the laser field

P2(t) = |〈2|�(t)〉|2 = sin2 φ sin2
(

λ+ − λ−
2

t

)
. (6.24)

Using Eqs. (6.18) and (6.20), one finally obtains

P2(t) = �2
0

�2
0 + �2

sin2
(√

�2
0 + �2

t

2

)
. (6.25)

This last equation shows that, in a two-level system interactingwith amonochromatic
continuous laser field, the population oscillates between the two states. The amplitude
of the oscillations depends on the detuning. In particular, the populations oscillate
between 0 and 1when the laser field is exactly resonant. The period of the oscillations
depends both on the amplitude and on the detuning. This phenomenon is called Rabi
oscillations.

6.2.3 The π-pulse Technique

In this section, we consider the interaction of a two-level system with a resonant
(� = 0) pulsed laser field. The RWA Hamiltonian for this system reads

H̃(t) =
(

0 1
2�(t)eiθ

1
2�(t)e−iθ 0

)
. (6.26)
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The Hamiltonian of Eq. (6.26) is first diagonalized

T †
3 H̃(t)T3 = D(t) (6.27)

with

D(t) =
(− 1

2�12(t) 0
0 1

2�12(t)

)
(6.28)

using the time-independent transformation

T3 =
⎛

⎝
− 1√

2
e−i θ

2
1√
2
e−i θ

2

1√
2
ei θ

2
1√
2
ei θ

2

⎞

⎠ . (6.29)

We note that this transformation is equivalent to T2 with φ = π
2 . The evolution of the

system is governed by the TDSE

i
∂

∂t
|�̄(t)〉 = D(t)|�̄(t)〉, (6.30)

with |�̄(t)〉 = T †
3 |�̃(t)〉. Assuming that the system is in the state |1〉 at the initial

time

|�(t = 0)〉 = |�̃(t = 0)〉 =
(
1
0

)
, (6.31)

one obtains

|�̄(t = 0)〉 = T †
3 |�̃(t = 0)〉 =

(− 1√
2
ei φ

2

+ 1√
2
ei φ

2

)
. (6.32)

The solution of Eq. (6.30) is given by

|�̄(t)〉 = exp

(
−i

∫ t

0
D(t′)dt′

)
|�̄(t = 0)〉. (6.33)

Coming back to the basis {|1〉, |2〉} of eigenstates of H0

|�(t)〉 = T1|�̃(t)〉 = T1T3|�̄(t)〉

=
⎛

⎝ cos
(∫ t

0
�(t′)
2 dt′

)

−ieiθe−iωt sin
(∫ t

0
�(t′)
2 dt′

)

⎞

⎠ . (6.34)

The probability to find the system in the state |2〉 at time t is given by

|〈2|�(t)〉|2 = sin2
(∫ t

0

�(t′)
2

dt′
)

. (6.35)
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From this last equation, one can see that a resonant pulse yielding a Rabi frequency
with an area that is an odd multiple of π will induce a complete population transfer
between the states |1〉 and |2〉. In particular, a pulse such that ∫ t

0 �(t′)dt′ = π is called
aπ-pulse. Theπ-pulse corresponds to the lowest pulse areawhich induces a complete
population transfer between two quantum states. This means that when the detuning
is different from zero, a Rabi frequency area larger than π is needed to achieve a
complete transfer [1]. In contrast, a resonant pulse yielding a Rabi frequency with
an area that is an even multiple of π will induce a complete population return to the
initial state.

We note here that the TDSE associated with the effective RWA Hamiltonian of
Eq. (6.26) is analytically solvable because an exactly resonant laser pulse is con-
sidered. A general, non-resonant two-level model, with an arbitrary expression for
the Rabi frequency �(t) and the (time-dependent) detuning �(t), is not analytically
solvable. However, there exists a number of models with specific expressions for
�(t) and �(t), for with analytical solutions of the TDSE are known. Examples of
such models are the Rosen–Zener [2], Allen–Eberly [3] or the Demkov–Kunike [4]
models, to cite only a few.

Theπ-pulse technique is known tobe sensitive to the parameters of the laser field or
to the details of themodel used to describe the system.An efficient population transfer
can only been obtained with a fine tuning of the laser field pulsation, amplitude
and pulse shape. This feature makes the π-pulse technique difficult to implement
experimentally, because the generation of a laser pulse with predefined values for the
different parameters is difficult, and because the eigenenergies and coupling strengths
of the system are, in general, only known with a finite precision. It is therefore of
great importance to have access to a method that is able to produce a population
transfer with a high efficiency and that is robust with respect to variations of the
parameters of the laser field or to errors in the Hamiltonian matrix elements. This
can be achieved by different methods including adiabatic passage [5, 6], composite
pulse sequences [7], or population inversion by a phase jump [8]. These methods
do not require a fine tuning of the parameters of the laser field to achieve efficient
population transfers. However, the price to pay for this robustness is that one needs
to spend more energy to produce a population transfer, that is to say, larger Rabi
frequency areas are needed.

6.3 The Non-resonant Dynamic Stark Effect

In the previous section, the basic features of the interaction of a quasi-resonant
laser field with a two-state quantum system have been presented. For this purpose,
the RWA allows one to derive convenient effective Hamiltonians. The RWA only
describes one-photon processes, which are dominant when quasi-resonant fields of
moderate intensities are considered. In this section, we consider the interaction of a
molecular systemwith a strong, non-resonant laser pulse. In this case, the system can
not be reduced to a few-level system because the high intensity of the field induces
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multi-photon processes that implies all the quantum states of the system. In the non-
resonant case, these multi-photon processes essentially manifest themselves as Stark
shifts, that is, shifts of the energy levels of the system induced by the electric field.
The Stark effect induced by a static electric field is well known and discussed in
many quantum mechanics textbooks. Similar shifts can be produced by oscillating
electric fields. If the field oscillates slowly, the energy shifts follow adiabatically the
instantaneous electric field as in the static case. On the other hand, if the frequency
is high, the energy shifts no longer follow the instantaneous electric field, but rather
its intensity envelope. This effect is known as the dynamic Stark effect [9, 10].

In many quantum systems, energy levels are organized in manifolds of close-
lying levels, separated by large energy gaps. For instance molecules have electronic
states which support a dense manifold of vibrational and rotational energy levels.
In general, one is only interested in a subset of levels, called essential states in the
following. For instance, one is often only interested in the dynamics of the system in
the ground, or in the few lowest electronic states. It is therefore convenient to work
with an effective Hamiltonian including explicitly the essential states, and including
the influence of the non-essential states as Stark shifts.

6.3.1 The Adiabatic Elimination Approach

The derivation given in this section follows closely that given in Ref. [10]. Consider
a molecular system described by the Hamiltonian operator H0 such that

H0|j〉 = �ωj|j〉, (6.36)

where �ωj = Ej is the energy of the state |j〉. For simplicity, in the rest of this section,
atomic units are assumed (� = 1). The Hamiltonian for the system in interaction
with a laser pulse of expression

ε(t) = 1

2
ε0�(t)

(
eiωt + e−iωt

)
e (6.37)

in the dipolar approximation is given by

H(t) = H0 − μ.ε(t). (6.38)

The state of the system can be expressed in the basis of H0 as

|�(t)〉 =
∑

j

cj(t)e
−iωj t|j〉. (6.39)
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Inserting this expression in the TDSE yields

∑

j

cj(t)e
−iωj tωj|j〉 −

∑

j

cj(t)e
−iωj tμ|j〉.ε(t) = i

∑

j

(
ċj(t)e

−iωj t − iωje
−iωj tcj(t)

)
|j〉.

(6.40)
This last equation is now projected on a state |j′〉

cj′(t)e
−iωj′ tωj′ −

∑

j

cj(t)e
−iωj tμj′j.ε(t) = iċj′(t)e

−iωj′ t + ωj′cj′(t)e
−iωj′ t (6.41)

with μj′j = 〈j′|μ|j〉, leading to

iċj′(t) = −
∑

j

cj(t)e
−i(ωj−ωj′ )tμj′j.ε(t). (6.42)

Here, the index j runs over all the states of the system. Let us now split the system into
a group of essential states, indexed by the letters k and k′, and a group of non-essential
states, indexed by the letter l. For an essential state |k′〉, one obtains

iċk′(t) = −
∑

k

ck(t)e
−i(ωk−ωk′ )tμk′k .ε(t) −

∑

l

cl(t)e
−i(ωl−ωk′ )tμk′l.ε(t). (6.43)

To obtain an equation free of any explicit occurence of the non-essential states,
one needs to derive an expression for the cl(t) that can be susbsituted in Eq. (6.43).
Starting from Eq. (6.42), assuming that the non-essential states are not populated
initially (cl(−∞) = 0) and neglecting the couplings between the non-essential states
(μll′ .ε(t) = 0), one obtains

iċl(t) = −
∑

j

cj(t)e
−i(ωj−ωl)tμlj.ε(t) (6.44)

cl(t) = i

2

∫ t

−∞

∑

k

(
e−i(ωk−ωl−ω)t′ + e−i(ωk−ωl+ω)t′

)
μlk .A(t′)ck(t

′)dt′, (6.45)

where A(t) = ε0�(t)e. This last expression can be integrated by parts repeatedly to
yield

cl(t) = −1

2

∞∑

s=0

∑

k

(−i)s

(
e−i(ωk−ωl−ω)t

(ωk − ωl − ω)s+1 + e−i(ωk−ωl+ω)t

(ωk − ωl + ω)s+1

)
μlk .

ds

dts

[
A(t)cj(t)

]
.

(6.46)
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This last equation can be simplified if we assume that the product A(t)ck(t) varies
slowly in time. In this case, the time derivatives can be neglected and only the s=0
term is retained

cl(t) = −1

2

∑

k

(
e−i(ωk−ωl−ω)t

ωk − ωl − ω
+ e−i(ωk−ωl+ω)t

ωk − ωl + ω

)
μlk .A(t)ck(t). (6.47)

This expression of the cl(t) can now be inserted in Eq. (6.43). After some manipula-
tion, one obtains

iċk′ (t) = −
∑

k

ck(t)e−i(ωk−ωk′ )tμk′k .ε(t)

− 1

4

∑

k

∑

l

ck(t)e−i(ωk−ωk′ )tμk′l .A(t)μpk .A(t)

(
e2iωt + 1

ωl − ωk − ω
+ e−2iωt + 1

ωl − ωk + ω

)
.

(6.48)

Considering that the field is far from any resonance between the essential and non-
essential states ω � ωl − ωk , this last equation simplifies to

iċk′(t) = −
∑

k

ck(t)e
−i(ωk−ωk′ )tμk′k.ε(t)

−
∑

k

∑

l

ck(t)e
−i(ωk−ω′

k)t
μk′l.eμlk .e
ωl − ωk

ε20�
2(t) cos2 ωt, (6.49)

or in matrix form

i
∂

∂t
�(t) =

[
H0 + Heff

int (t)
]
�(t) (6.50)

with
(Heff

int (t))k′k = −μk′k.ε(t)e −
∑

l

μk′l.eμlk .e
ωl − ωk

ε2(t). (6.51)

This effective interaction Hamiltonian operator is difficult to evaluate as it requires
the knowledge of the transition dipole moments between the essential states and
all the non-essential states. For a general molecular system, there is an infinity of
such states, including bound states but also the various continua. In practice how-
ever, one can further approximate the second term of Eq. (6.51) by neglecting the
(ro)vibrational structure of the non-essential electronic states. This term can then
be expressed as a function of static electronic polarizabilities, that can be computed
using standard electronic structuremethods available in themajor quantumchemistry
program packages.



6.3 The Non-resonant Dynamic Stark Effect 117

6.3.2 Connection with the Static Electronic Polarizability

Let us first rewrite Eq. (6.51) including explicitly the (ro)vibrational structure of each
electronic state

(Heff
int (t))kmkk′m′

k′ = −μkmkk′m′
k′ .ε(t)e −

∑

l

∑

nl

μkmklnl
.eμlnpk′m′

k′ .e

ωlnl − ωk′m′
k′

ε2(t). (6.52)

Here, mk denotes the mth (ro)vibrational state of the kth essential electronic state.
Similarly, nl denotes the nth (ro)vibrational state of the lth non-essential electronic
state. Approximating the vibronic energy differences by average electronic energy
differences ωlnl − ωk′m′

k′ ≈ ωl − ωk , this last equation can be recast as

(Heff
int (t))kmkk′m′

k′ = 〈mk|(Heff
int (Q, t))kk′ |m′

k′ 〉
= −〈mk|μkk′(Q).ε(t)e|m′

k′ 〉
−

∑

l

∑

nl

〈mk|μkl(Q).e|nl〉〈nl|μlk′(Q).e
ωl − ωk′

|m′
k′ 〉ε2(t)

= −〈mk|μkl(Q).ε(t)e|m′
k′ 〉

−
∑

l

〈mk|μkl(Q).eμlk′(Q).e
ωl − ωk′

|m′
k′ 〉ε2(t), (6.53)

where the closure relation
∑

nl
|nl〉〈nl| = I has been used, andQ is a vector collecting

the nuclear coordinates of the molecular system. An element of the Heff
int (t) operator

in the basis of the essential electronic states reads

(Heff
int (t))kk′ = −μkk′(Q).ε(t)e −

∑

l

μkl(Q).eμlk′(Q).e
ωl − ωk′

ε2(t). (6.54)

Further assuming that ωl − ωk′ ≈ Vl(Q) − Vk′(Q), where Vk′(Q) and Vl(Q) are the
adiabatic electronic eigenvalues (i.e, the adiabatic PESs) of the essential and non-
essential states respectively, one can rewrite Eq. (6.54) as

(Heff
int (t))kk′ = −μkk′(Q).ε(t)e −

∑

l

μkl(Q).eμlk′(Q).e
Vl(Q) − Vk′(Q)

ε2(t). (6.55)

Introducing the static electronic polarizability α(Q), one finally obtains

(Heff
int (t))kk′ = −μkk′ (Q).ε(t)e − e.

⎡

⎣1

2
αkk′ (Q) −

∑

k′′ �=k,k′

μkk′′ (Q)μk′′k′ (Q)

Vk′′ (Q) − Vk′ (Q)

⎤

⎦ .eε2(t).

(6.56)
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The first term of this last equation is the exact dipolar interaction Hamiltonian of the
system in the subspace of the essential states. The second term adds the influence of
all the non-essential electronic states at the second order, including Stark shifts but
also two-photon transitions.

6.4 The Floquet Theory

The Floquet theory provides a general formalism that allows one to describe and
analyze the dynamics of a quantum system in interaction with a periodic radiation
in terms of dressed states and quasienergies, which are the eigenelements of a time-
independent Floquet Hamiltonian operator. The Floquet theory connects the purely
quantum description of the interaction between light and matter, where both the
system and the electromagnetic field are quantized, to the semiclassical description
where the electromagnetic field is described classically. The classical field corre-
sponds to a coherent state with a very large number of available photons, from which
a few can be exchanged with the matter. The Floquet theory allows one to char-
acterize this exchange by counting the number of photons taken from or given to
the classical field. Technically, in the Floquet theory, one replaces the periodic time
variable by an auxilliary dynamical variable. Therefore, the Floquet theory can be
viewed as a mathematical tool allowing one to transform a time-dependent problem,
described by a system of linear differential equations in the Hilbert space H, into
a time-independent problem, described by an eigenvalue problem in an enlarged
Hilbert space K which takes into account the photons of the classical field.

Consider a molecular system described by the Hamiltonian operator H0(r, R)

where r and R are vectors containing the electronic and nuclear coordinates, respec-
tively. This Hamiltonian acts in the Hilbert space H spanned by the basis of eigen-
states of H0. The dynamics of the system in interaction with a periodic electric field
ε(t) = ε0 cos(ωt + θ) with ε0 = ε0e in the semiclassical dipole approximation is
described by the TDSE

H(r, R, θ + ωt)ψ(r, R, t) = i
∂

∂t
ψ(r, R, t) (6.57)

withH(r, R, θ + ωt) = H0(r, R) − μ(r, R).ε(t).Weuse the initial 2π-periodic phase
θ to introduce the Hilbert space L of the square integrable functions on the circle of
length 2π, with the scalar product

〈ξ1|ξ2〉 =
∫

dθ

2π
ξ∗
1(θ)ξ2(θ). (6.58)

This space is spanned by the basis {|ξk〉, k ∈ Z} with 〈θ|ξk〉 = eikθ. We introduce
a time-independent Hamiltonian, called the Floquet Hamiltonian, acting in the
enlarged Hilbert space K = H ⊗ L defined as
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K(r, R, θ) = −iω
∂

∂θ
+ H(r, R, θ)

= −iω
∂

∂θ
+ H0(r, R) − μ(r, R).ε0 cos(θ). (6.59)

Below, we show that the dynamics in H given by Eq. (6.57) can be recovered from
the dynamics in K defined by the TDSE

K(r, R, θ)�K(r, R, θ, t) = i
∂

∂t
�K(r, R, θ, t). (6.60)

The advantage is that the Floquet Hamiltonian is time-independent, leading to the
simple propagator

UK(t, t0, θ) = e−iK(t−t0) (6.61)

verifying
�K(r, R, θ, t) = UK(t, t0, θ)�K(r, R, θ, t0). (6.62)

To prove the correspondance between Eqs. (6.57) and (6.60), we introduce the phase
translation operator Tωt = eωt ∂

∂θ acting on a wavefunction ξ(θ) of L as

Tωtξ(θ) = ξ(θ + ωt), (6.63)

and which is such that

ψ(r, R, t) = Tωt�K(r, R, θ, t) = �K(r, R, θ + ωt, t) (6.64)

Inserting this last equation in Eq. (6.57), one obtains

H(r, R, θ + ωt)Tωt�K (r, R, θ, t) = i
∂

∂t
[Tωt�K (r, R, θ, t)]

= i
∂Tωt

∂t
�K (r, R, θ, t) + iTωt

∂�K (r, R, θ, t)

∂t

= iωTωt
∂

∂θ
�K (r, R, θ, t) + iTωt

∂�K (r, R, θ, t)

∂t
.

(6.65)

Applying the operator T−ωt on both members of this last equation leads to

H(r, R, θ)�K(r, R, θ, t) =
[

iω
∂

∂θ
+ i

∂

∂t

]
�K(r, R, θ, t). (6.66)

One finally obtains

[
H(r, R, θ) − iω

∂

∂θ

]
�K(r, R, θ, t) = i

∂

∂t
�K(r, R, θ, t). (6.67)
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Using the fact that the Floquet Hamiltonian is time-independent, the solution of
the TDSE in H Eq. (6.57) can be directly expressed as a function of the eigenstates
and eigenvalues obtained through

K(r, R, θ)�ν(r, R, θ) = λν�ν(r, R, θ). (6.68)

Using Eqs. (6.62) and (6.64), one may write

ψ(r, R, t) = Tωte
−iK(t−t0)�K(r, R, θ, t0)

= Tωte
−iK(t−t0)T−ωt0ψ(r, R, t0) ⊗ 1L. (6.69)

where ψ(r, R, t0) ⊗ 1L denotes the initial wavefunction ψ(r, R, t0) lifted in K.
Expanding ψ(r, R, t0) ⊗ 1L in terms of the eigenfunctions of K one may write

ψ(r, R, t) =
∑

ν

cνe−iλν (t−t0)Tω(t−t0)�ν(r, R, θ)

=
∑

ν

cνe−iλν (t−t0)�ν(r, R, θ + ω(t − t0)). (6.70)

The coefficients cν can be expressed as

cν = 〈�ν(r, R, θ)|ψ(r, R, t0) ⊗ 1L〉K
=

∫
drdR

∫
dθ

2π
�∗

ν(r, R, θ)ψ(r, R, t0)

=
∫

drdR�∗
ν(r, R)ψ(r, R, t0)

= 〈�ν(r, R)|ψ(r, R, t0)〉H (6.71)

where �ν(r, R) = ∫
dθ
2π �ν(r, R, θ) is the average of �ν(r, R, θ) over the phase.

The eigenelements of the Floquet Hamiltonian have a periodic structure
�ν(r, R, θ) ≡ �n,k(r, R, θ) = �n,0(r, R, θ)eikθ and λν ≡ λn,k = λn,0 + kω,
where the index n refers to the Hilbert spaceH. The Floquet eigenstates can thus be
classified in families labeled by n with individual elements of a given family distin-
guished by the index k. This property allows one to simplify the expansion in terms
of the eigenstates of the Floquet Hamiltonian by considering only a single member
of each family, e.g. the k=0 member, as shown below. Eq. (6.71) can be recast as

ψ(r, R, t) =
∑

n,k

cn,ke−i(λn,0+kω)(t−t0)�n,0(r, R, θ + ω(t − t0))e
ik(θ+ω(t−t0)

=
∑

n,k

cn,ke−iλn,0(t−t0)�n,0(r, R, θ + ω(t − t0))e
ikθ

=
∑

n

c̃n(θ)�n,0(r, R, θ + ω(t − t0)) (6.72)
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with c̃n(θ) = ∑
k cn,keikθ. To find an expression for the coefficients, we start from

Eq. (6.71)

c̃n(θ) =
∑

k

〈�n,k(r, R, θ)|ψ(r, R, t0) ⊗ 1L〉Keikθ

=
∑

k

∫
drdR

∫
dθ′

2π
�∗

n,0(r, R, θ′)e−ikθ′
ψ(r, R, t0)e

ikθ. (6.73)

To calculate the integral over θ′, we first decompose the function �∗
n,0(r, R, θ′) as

�∗
n,0(r, R, θ′) =

∑

l

al(r, R)eilθ′
. (6.74)

One may then write

∑

k

∫
dθ′

2π
�∗

n,0(r, R, θ′)e−ikθ′
eikθ =

∑

k

∑

l

al(r, R)

∫
dθ′

2π
ei(l−k)θ′

eikθ

=
∑

k

∑

l

al(r, R)eikθδkl

=
∑

k

akeikθ

= �∗
n,0(r, R, θ). (6.75)

Plugging this last result in Eq. (6.73), one finally obtains

c̃n(θ) = 〈�n,0(r, R, θ)|ψ(r, R, t0)〉H. (6.76)

6.5 The Adiabatic Floquet Theory

The formalism presented in the previous section only applies to the case of a periodic
Hamiltonian, i.e to the case of a system interactingwith a continuous laser field. How-
ever, the Floquet formalism can be extended to the study of the interaction of quantum
systemswith pulsed laserswith slowly varying envelopes, frequencies or polarisation
direction [11, 12]. The corresponding time-dependent Floquet Schrödinger equation,
defined as the TDSE with the Floquet Hamiltonian, only depends on time through
the slowly varying field parameters. It can therefore be treated using an adiabatic
approximation, by studying the instantaneous eigenelements of the Floquet Hamil-
tonian as a function of the slow parameters. In this context, the adiabatic Floquet
theory provides an intuitive, geometric, interpretation of the laser driven dynamics.
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6.5.1 The Floquet Schrödinger Equation for Pulsed
Laser Fields

Consider amolecular systemdescribed by theHamiltonian operatorH0(r, R) in inter-
action with a pulsed laser field with slowly varying envelope and frequency. Below,
for ease of notation, the dependence of the various operators and wavefunctions on
the electronic and nuclear coordinates r andR is dropped. In the semiclassical dipolar
approximation, the total Hamiltonian operator of the system reads

H(θ + g(t);ω(t), ε(t)) = H0 − μ.eA(t) cos(θ + g(t)), (6.77)

where g(t) = ω(t)t and A(t) = ε0�(t) and�(t) is the envelope of the pulsed electric
field. We introduce the translation operator Tg(t) = eg(t) ∂

∂θ acting in L as Tg(t)ξ(θ) =
ξ(θ + g(t)), and the wavefunction of K �K(θ, t) such that

ψ(t; θ) = Tg(t)�K(θ, t) = �K(θ + g(t), t). (6.78)

To derive the Floquet operator associated with the Hamiltonian Eq. (6.77), we start
from the TDSE

H(θ + g(t);ω(t), A(t))ψ(t; θ) = i
∂

∂t
ψ(t; θ) (6.79)

and insert Eq. (6.78)

H(θ + g(t);ω(t), A(t))Tg(t)�K(θ, t) = i
∂

∂t

[Tg(t)�K(θ, t)
]
. (6.80)

The derivation is analogous to the one given in Eqs. (6.65)–(6.67) and leads to the
Floquet time-dependent Schrödinger equation

K(θ;ω(t), A(t))�K(θ, t) = i
∂

∂t
�K(θ, t) (6.81)

with the Floquet Hamiltonian operator

K(θ;ω(t), A(t)) = H(θ;ω(t), A(t)) − iωeff (t)
∂

∂θ
(6.82)

where

ωeff (t) = dg(t)

dt
= ω(t) + ω̇t. (6.83)

We note the appearance of an effective instantaneous frequency ωeff (t) in the Floquet
Hamiltonian, which is the derivative of the phase of the field. The correspondance
between the semiclassical TDSE and its Floquet counterpart is exact and does not
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relie on the slow variations of the parameters of the field. However, because the
Floquet Hamiltonian only depends on time through these parameters, it is well suited
to an adiabatic analysis, where the dynamics of the system can be related to the
instantaneous eigenstates of the Floquet Hamiltonian.

6.5.2 The Adiabatic Approximation for the Time-Dependent
Floquet Schrödinger Equation

To study the Floquet Schrödinger equation using adiabatic principles, it is convenient
to consider explicitly a characteristic time τ for the slow parameters. Here τ is
interpreted as the pulse duration. We introduce the following notations A(t) = Ã(s)
andωeff (t) = ω̃eff (s), where s = t/τ is a reduced time.Gathering the slow parameters
in a vector η(s), the Floquet Schrödinger equation Eq. (6.81) can be recast as

K(θ;η(s))�K(θ, τs) = i

τ

∂

∂s
�K(θ, τs). (6.84)

Let {�m(θ;η(s))} be an orthonormal basis of instantaneous eigenvectors of the Flo-
quet Hamiltonian with the associated eigenvalues λm(η(s)). We define the unitary
operator

T(η(s)) =
∑

m

|�m(θ;η(s))〉〈�m(θ;η(s0))| (6.85)

where s0 is the initial time. This operator diagonalizes the Floquet Hamiltonian at
all times in the basis {�m(θ;η(s0))} of the Floquet Hamiltonian taken at s = s0

T †(η(s))K(θ;η(s))T(η(s)) = D(η(s)). (6.86)

Defining transformed states by

�̃K(θ, s) = T †(η(s))�K(θ, τs) (6.87)

the Floquet Schrödinger equation (6.84) can be recast as

[
D(η(s)) − i

τ
T †(η(s))

∂T(η(s))

∂s

]
�̃K(θ, s) = i

τ

∂

∂s
�̃K(θ, s). (6.88)

The time-dependent wavefunction can be expanded in the basis of the instantaneous
eigenfunctions of the Floquet operator

�K(θ, τs) =
∑

m

cm(τs)�m(θ;η(s)). (6.89)
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Using this definition and Eq. (6.87), one may write

�̃K(θ, s) =
∑

m

cm(τs)�m(θ;η(s0)). (6.90)

Inserting this definition in Eq. (6.88) yields

∑

m

cm(τs)λm(η(s))�m(θ;η(s0))

− i

τ

∑

m′,m

cm(τs)〈�m′(θ;η(s))| ∂

∂s
|�m(θ;η(s))〉�m′(θ;η(s0))

= i

τ

∑

m

∂cm(τs)

∂s
�m(θ;η(s0)). (6.91)

Projecting this last equation on a transformed state

�̃n(θ;η(s)) = T †(η(s))�n(θ;η(s)) = �n(θ;η(s0)) (6.92)

leads to

cn(τs)λn(η(s)) − i

τ

∑

m

cm(τs)〈�n(θ;η(s))| ∂

∂s
|�m(θ;η(s))〉 = i

τ

∂cn(τs)

∂s
.

(6.93)
This last equation constitutes a system of coupled differential equations, with non-
adiabatic coupling terms − i

τ
〈�n(θ;η(s))| ∂

∂s |�m(θ;η(s))〉. In the adiabatic limit
τ → ∞, these terms can be neglected and one obtains

[
λn(η(s)) − i

τ
〈�n(θ;η(s))| ∂

∂s
|�n(θ;η(s))〉

]
cn(τs) = i

τ

∂cn(τs)

∂s
, (6.94)

or equivalently

[
λn(η(t)) − i〈�n(θ;η(t))| ∂

∂t
|�n(θ;η(t))〉

]
cn(t) = i

∂cn(t)

∂t
. (6.95)

This last equation shows that, in the adiabatic limit, the dynamics is restricted to the
subspace of K containing the initial wavefunction �K(θ, t0). Specifically, if the sys-
tem is at time t = t0 in theFloquet instantaneous eigenstate�K (θ, t0) = �n(θ,η(t0)),
then, in the adiabatic limit, the wavefunction�K(θ, t) solution of Eq. (6.84) is, up to a
phase, the instantaneous Floquet state whose eigenenergy is continuously connected
to the initial one:

�K(θ, t) = exp [iδn(t;η(t))]�n(θ,η(t)). (6.96)
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From Eq. (6.95), one immediately obtains

δn(t;η(t)) = −
∫ t

t0

du λ(η(u)) + i
∫ t

t0

du 〈�n(θ;η(t))| ∂

∂u
|�n(θ;η(t))〉. (6.97)

The second term of the right hand side of the last equation can be transformed by
changing the variable of integration. Precisely, noting that ∂

∂t = η̇(t).∇η , one may
write

〈�n(θ;η(t))| ∂

∂t
|�n(θ;η(t))〉 = η̇(t).〈�n(θ;η(t))|∇η|�n(θ;η(t))〉. (6.98)

Using then the fact that η̇(t)dt = dη, Eq. (6.97) can be recast as

δn(t;η(t)) = −
∫ t

t0

du λ(η(u)) + i
∫ η(t)

η(t0)
dη.〈�n(θ;η(t))|∇η|�n(θ;η(t))〉.

(6.99)
This phase is the sum of a dynamical phase (first term of the right hand side of
Eq. (6.99)), which depends on the trajectory followed in the parameter space and on
its speed, andof a geometric phase,whichdoes not dependon its speed.Thegeometric
phase can be set to zero by an appropriate choice of phase for the eigenvectors, in
absence of loop in the parameter space. This approach is called parallel transport.
When a loop is considered, the geometric phase is zero if only one parameter is varied.
If two parameters are varied, it can be π if the trajectory forms a loop enclosing a
degeneracy of the eigenvalue surfaces or zero if not. In this particular case, the
geometric phase is known as the Berry phase [13]. It can take any value if more than
two parameters are varied.

One can see a clear analogy between the adiabatic Floquet theory for the calcu-
lation of the laser driven dynamics of a quantum system and the Born-Oppenheimer
approximation for the calculation of the dynamics of the nuclei in amolecular system.
In the later, one uses the eigenvalues of an electronic Hamiltonian with fixed nuclei to
define adiabatic potential energy surfaces. Because the dynamics of the nuclei is slow
compared to that of the electrons, one can often neglect the non-adiabatic couplings
between the different electronic states. Therefore, the dynamics of the nuclei can
be interpreted as the motion of a nuclear wavepacket on a single adiabatic potential
energy surface, which depends on the nuclear coordinates. In the adiabatic Floquet
theory, one defines quasienergy surfaces as the instantaneous eigenvalues (eigenval-
ues at fixed time of the slow parameters of the field) of a Floquet Hamiltonian. If the
parameters of the laser field vary slowly enough in time, the non-adiabatic couplings
between the different quasienergy surfaces can be neglected, and the dynamics of
the system driven by a laser pulse with a given set of parameters can be interpreted
as a trajectory on a single quasienergy surface, which depends on the parameters of
the laser pulse. The adiabatic Floquet theory thus provides an intuitive, geometric
interpretation of the laser driven dynamics of the system.
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6.5.3 Calculation of the Eigenvalues
of the Floquet Operator

Consider the Floquet operator K(r, R, θ) given by Eq. (6.59), associated with a
molecular system, described by the Hamiltonian H0(r, R), in interaction with a
laser field. In this section, we address the problem of the calculation of the
eigenvalues of this Floquet operator. The matrix representation of this opera-
tor in the basis

{|φn,k〉 = |χn〉 ⊗ |ξk〉
}
of K, where {|χn〉} denotes the basis of

H0(r, R), has a transparent structure and can be easily constructed. Considering
k = −kmax,−kmax + 1, . . . , kmax − 1, kmax with kmax a positive integer, this matrix
is of dimension N(2kmax + 1), with N the dimension of the basis {|χn〉}. Therefore,
depending on the value of kmax needed for convergence of the quasienergies, the
computational cost of the direct diagonalisation of this matrix for each value of the
laser field parameters considered can quickly become prohibitive. In this case, an
alternative method that can be more efficient, from the computational point of view,
can be used. It is based on the construction and diagonalisation of the propagator of
the Schrödinger equation U(0, τ ) over one period of the field τ = 2π

ω
, solution of

H(r, R, t)U(0, τ ) = i
∂

∂t
U(0, τ ) (6.100)

where
H(r, R, t) = H0(r, R) − μ.ε(t). (6.101)

The representation of U(0, τ ) in the basis {|χn〉} is a matrix of dimension N . In prac-
tice, thenth columnofU(0, τ ) is obtained by solving the time-dependent Schrödinger
equation

H(r, R, t)�(t) = i
∂

∂t
�(t) (6.102)

using the nth eigenstate of H0(r, R) as the initial condition. The eigenvalues of
the Floquet Hamiltonian are directly related to the eigenvalues of the propagator
U(0, τ ). Specifically, if |ψ〉 is an eigenstate of U(0, τ )with U(0, τ )|ψ〉 = λ|ψ〉, then
there exists an eigenstate |�〉 of K(r, R, θ) verifying K(r, R, θ)|�〉 = − i

τ
ln(λ)|�〉

[14]. Therefore, for each value of the laser field parameters, the computation of the
quasienergy spectrum requires N solution of the TDSE over one period of the laser
field and the diagonalisation of a matrix of dimension N .
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Chapter 7
Laser Control of the Radiationless Decay
in Pyrazine Using the Dynamic Stark Effect

This chapter is partly based on results and discussions published in [1]. This material
is reproduced with permission. Copyright [2014] AIP Publishing LLC.

7.1 Introduction

In this chapter, we use quantum dynamics simulations to investigate the possibility of
manipulating the excited state dynamics of polyatomic molecules using mechanisms
based on the dynamic Stark effect. In this type of control scenarios, a weak reso-
nant laser pulse is used to induce an electronic excitation and to trigger the excited
state dynamics while a strong non-resonant laser pulse is used to modify the shape
of the potential energy surfaces of the molecule through the dynamic Stark effect,
and thus to influence the evolution of the excited wavepacket. The ability of this
method to control the outcome of a photoinduced non-adiabatic molecular process
has been demonstrated experimentally on the photodissociation of IBr [2, 3]. From
the computational point of view, a number of investigations on diatomic [4–8] or one
dimensional models of polyatomic molecules [9] have been reported. A similar con-
trol mechanism, proposed by Suominen et al. [10–13] and further developed by Solá
et al. [14–18], named adiabatic passage by light-induced potentials, was shown to
provide ameans ofmanipulating the bond length and inducing selective vibronic pop-
ulation transfer in diatomic molecules. The applicability of similar control schemes
to multidimensional models of polyatomic molecules have been investigated more
recently [19, 20], and the Stark control of the photodissociation of methyl iodide
(CH3I) have been demonstrated experimentally [21].

Pyrazine is a convenient model system for the study of the laser control of radi-
ationless decay processes occurring at conical intersections (CIs), with particular
focus on the control of the lifetime of the B2u(ππ∗) state. Studies based on optimal
control theory [22–24], or local control theory [25], predicted a high level of control
over the lifetime of the B2u(ππ∗) state. Another approach, based on the concept of
overlapping resonances, in conjunction with approximate computational methods
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allowing for a full dimensional treatment of the problem has been reported [26–28].
Again, a significant degree of control over the lifetime of the B2u(ππ∗) state could
be achieved. More recently, the coherent control of the ionization of pyrazine after
electronic excitation of the neutral molecule has been investigated [29, 30].

In Chap.5, we showed that the dark Au(nπ∗) state plays an important role in
the photophysics of pyrazine. However, in the present work, we consider a simpler
model including only the bright B3u(nπ∗) and B2u(ππ∗) states and the four most
important vibrational modes of the molecule. Similar models have been considered
in a number of previous investigations of the non-adiabatic dynamics of the molecule
[31, 32] and its control by laser pulses [22, 25, 26]. Therefore, while this model can
not fully account for the complexity of the dynamics of photoexcited pyrazine, it
allows us to compare our control mechanism with alternative control mechanisms
proposed in previous studies. In addition, the results presented in this chapter are
of general interest for the laser control of radiationless decay processes using the
dynamic Stark effect.

The rest of this chapter is organized as follows. The model and computational
methodology used in this work are presented in Sect. 7.2. In Sect. 7.3, we present
and analyze the mechanism behind our control strategy. Our results are presented in
Sect. 7.4 and a discussion of these results in comparison with previous works on the
laser control of pyrazine, together with our conclusions, is given in Sect. 7.5.

7.2 Model and Methods

7.2.1 The Hamiltonian

We consider a reduced-dimensional model of pyrazine including four vibrational
degrees of freedom and three electronic states : the ground state and the vibronically
coupled B3u(nπ∗) and B2u(ππ∗) states, hereafter noted S0, S1 and S2. The vibrational
modes included are the totally symmetric ν6a , ν1 and ν9a modes and the ν10a mode
of B1g symmetry, which couples the S1 and S2 electronic states at first order. The
body-fixed frame used in this work corresponds to the frame of the principal axes
of inertia with the following definition: at the ground state equilibrium geometry
the molecule lies in the yz plane, with both nitrogen atoms on the z axis. In D2h

symmetry, the S1 and S2 states are coupled with the ground electronic state by an
electric field polarized along the x and y directions, respectively. Upon displacement
along the coupling mode, the S0/S1 transition dipole moment (TDM) acquires a
non-zero y component, while the S0/S2 TDM acquires a non-zero x component. In
addition, due to the inversion symmetry, the permanent dipole moments are zero.

We consider the interaction of the molecule with a weak laser pulse resonant with
the S0 → S2 electronic transition, hereafter denoted pump pulse, and a strong non-
resonant laser pulse, denoted control pulse. The pump pulse is polarized along the
y direction and the control pulse along the z direction. The total Hamiltonian in the
diabatic representation reads

http://dx.doi.org/10.1007/978-3-319-28979-3_5
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H d( Q, t) = H d
m( Q) + H p,d

int ( Q, t) + H c,d
int ( Q, t), (7.1)

where Q denotes a vector collecting the vibrational coordinates, H d
m( Q) is themolec-

ularHamiltonian, H p,d
int ( Q, t) describes the interaction of themoleculewith the pump

pulse and H c,d
int ( Q, t) describes the interaction of themolecule with the control pulse.

A linear vibronic coupling model Hamiltonian [33], augmented with a diagonal
quadratic term along the ν10a mode [31] is adopted for the molecular Hamiltonian.
Its matrix representation in the basis of the diabatic electronic states reads

Hd
m( Q) = H0( Q)I + V d( Q), (7.2)

where H0( Q) is the ground state Hamiltonian in the harmonic approximation (see
Sect. 4.3 in Chap.4), I is the 3 × 3 identity matrix, and

V d( Q) =
⎛

⎝
0 0 0
0 V d

11( Q) V d
12( Q)

0 V d
12( Q) V d

22( Q)

⎞

⎠ (7.3)

is the diabatic potential energy matrix. In our case, the elements of the latter read

V d
nn( Q) = Ei +

∑

i

κ(n)
i Qi + γ10a Q2

10a, (7.4a)

V d
12( Q) = λ10a Q10a . (7.4b)

with n = 1, 2 and i = 6a, 1, 9a. The κ(n)
i parameters, which are the derivatives of the

adiabatic electronic energies at the Franck–Condon (FC) geometry, were computed
through finite differences, whereas the γ10a Q2

10a and λ10a parameters were obtained
together via a least-square fit to ab initio computed adiabatic electronic energies
along the Q10a coordinate.

In typical experiments and in the present work, the pump pulse used to trigger
the electronic excitation is of low intensity in order to avoid competing multi-photon
processes. Therefore the interaction of the pump pulse with the electronic polar-
izability can be neglected, and the corresponding interaction Hamiltonian simply
reads

H p,d
int ( Q, t) = −μd

y( Q)εp(t), (7.5)

where μd
y( Q) is the y-component of the dipole moment operator and εp(t) is the

electric field associated with the pump pulse, given by

εp(t) = Ap(t) cos(ωpt). (7.6)

In this last equation, Ap(t) = ε0p�p(t) denotes an envelope function, with ε0p the
peak amplitude. The matrix representation of μd

y( Q) in the basis of the diabatic
electronic states reads

http://dx.doi.org/10.1007/978-3-319-28979-3_4
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μd
y( Q) =

⎛

⎝
0 μd

01( Q) μd
02( Q)

μd
01( Q) 0 0

μd
02( Q) 0 0

⎞

⎠ , (7.7)

where, for ease of notation, the subscript y is dropped for the matrix elements. In the
spirit of the vibronic coupling model, the following simple expressions were adopted
for the diabatic transition dipole matrix elements [31]

μd
01( Q) = ξ(01)

10a Q10a, (7.8a)

μd
02( Q) = μ(02)(0) +

∑

k

ξ(02)
k Qk + 1

2
ρ(02)
10a Q2

10a, (7.8b)

where μ(02)(0) is the S0/S2 TDM at the FC geometry and k runs over the totally
symmetric modes. The constants ξ(02)

k were computed through finite differences of
the adiabatic μad

02 ( Q) TDM at the FC geometry

ξ(02)
k = ∂μad

02 (Qk)

∂Qk

∣∣∣∣
Q=0

. (7.9)

At D2h symmetry, the non-adiabatic couplings between the S1 and S2 states are
zero. As a result, a smooth dependence of the μd

02( Q) matrix element with respect
to the totally symmetric modes is expected. Cuts of μd

02( Q) along the three totally
symmetric modes considered in this work are presented in Fig. 7.1. This figure shows
that the ab initio computed adiabatic TDMs along the totally symmetric modes are
well approximated by linear terms.

The Q10a modes couples the S1 and S2 states at first order. To obtain the ξ0110a
and ρ0110a constants, we use the unitary matrix S( Q) that diagonalizes the diabatic
potential matrix V d( Q) to relate the diabatic and adiabatic dipole moment matrices

μad( Q) = S†( Q)μd( Q)S( Q) (7.10)
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Fig. 7.1 Cuts of the μd
02( Q) TDM surface along the Q6a , Q1 and Q9a totally symmetric normal

coordinates. The circles are the ab initio computed adiabatic TDMs and the solid lines are the model
diabatic TDMs
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Fig. 7.2 Adiabatic (left panel) and diabatic (right panel) TDMs along the Q10a normal coordinate.
The μ01 and μ02 components are shown in blue and red respectively. The circles represent the ab
initio computed adiabatic TDMs (left panel) and the diabatic TDMs obtained directly from Eq.
(7.10). The full lines represent the adiabatic and diabatic TDMs obtained from our model

where

S( Q) =
⎛

⎝
1 0 0
0 cos(θ( Q)) sin(θ( Q))

0 − sin(θ( Q)) cos(θ( Q))

⎞

⎠ (7.11)

and

θ( Q) ≡ θ(Q10a) = 1

2
tan−1

(
2λQ10a

E2 − E1

)
. (7.12)

Using Eq. (7.10), the ξ0110a and ρ0110a were fitted against the ab initio computed adiabatic
TDMs. Cuts of the adiabatic and diabatic TDMs along the Q10a coordinate are
presented in Fig. 7.2. This figure shows that, although the adiabatic TDMs curves
have rather complicated shapes that can not be well approximated by low-order
polynomials, the diabatic TDMs arewell approximated by linear and quadratic terms,
see Eq. (7.8).

For the H c,ad
int (t) operator, the effective Hamiltonian of Eq. (6.56), was used. In

addition, all the elements of the μad
z matrix in the subspace of electronic states

considered in this work are zero by symmetry. We thus obtain

H c,d
int (t) = −1

2
αd

zz( Q)ε2c(t) (7.13)

where αd
zz( Q) is the zz component of the diabatic static polarizability and εc(t) is

the electric field associated with the control pulse

εc(t) = Ac(t) cos(ωct). (7.14)

Again Ac(t) = ε0c�c(t) is an envelope function, with ε0c the peak amplitude. The
matrix representation of αd

zz( Q) in the basis of the diabatic electronic states reads

http://dx.doi.org/10.1007/978-3-319-28979-3_6
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αd
zz( Q) =

⎛

⎝
αd
00( Q) 0 0
0 αd

11( Q) αd
12( Q)

0 αd
12( Q) αd

22( Q)

⎞

⎠ , (7.15)

where, for ease of notation, the subscript zz is dropped for the matrix elements. As
for the potentials and TDMs the matrix elements of the diabatic static polarizability
were expressed as low order Taylor expansions

αd
nn( Q) = α(n)(0) +

∑

k

χ(n)
k Qk + ϕ(n)

10a Q2
10a, (7.16a)

αd
12( Q) = χ12

10a Q10a (7.16b)

where n = 0, 1, 2 and α(n)(0) is the static polarizability of the electronic state n at
the FC geometry. As for the TDMs, the χ(n)

k parameters were obtained from the
derivatives (computed as a finite differences) of the adiabatic static polarizability at
the FC geometry

χ(n)
k = ∂αad

nn( Q)

∂Qk

∣∣∣∣
Q=0

, (7.17)

whereas the ϕ(n)
10a and χ12

10a parameters were obtained through a least-square fit to
ab initio computed adiabatic static polarizabilities along the Q10a coordinate. Again,
the transformation matrix S( Q) was used to relate the diabatic and adiabatic static
polarizability matrices. As seen in Fig. 7.3, the static polarizabilities along the totally
symmetric modes are well approximated by linear terms, at the exception of the static
polarizability of the S1 state along the Q6a mode, which clearly displays a quadratic
behavior in the FC region. However, the inclusion of a quadratic term was found to
have a minor effect on the results of the simulations presented in Sect. 7.4 below.
Cuts of the static polarizabilities along the Q10a coordinate are presented in Fig. 7.4.
Again, while the adiabatic static polarizabilities have rather complicated shapes,
their diabatic counterpart can be well approximated by the simple expressions of
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static polarizabilities and the full lines represent the static polarizabilities obtained from our model
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Fig. 7.4 Adiabatic (left panel) and diabatic (right panel) static polarizabilities along the Q10a
normal coordinate. The αd

00, αd
11, αd

22 and αd
12 components are shown in black, blue, red and

magenta, respectively. The circles represent the ab initio computed adiabatic static polarizability
and the diabatic static polarizability obtained from application of the transformation S( Q). The full
lines represent the static polarizabilities obtained from our model

Eq. (7.16) in the FC region. In contrast, significant deviations between the model
and the ab initio data are observed for Q10a > 4.

We note that a different strategy can be used to parametrize such a model Hamil-
tonian. In Ref. [20] Blancafort et al. studied photophysics of fulvene in interaction
with a strong non-resonant laser field, using a four dimensional model Hamiltonian
expressed in a combination of rectilinear and curvilinear coordinates. They obtained
the model parameters directly from fits to ab initio calculations including explicitly
static electric fields of different amplitudes. A comparison of the results obtained
from this strategy could be used to assess the validity of our model. Such compari-
son between the two strategies has been performed in Ref. [9] in the case of a one
dimensional system.

7.2.2 Electronic Structure Calculations

All the electronic structure calculations presented in this work were performed with
the aug-cc-pVDZ basis set of Dunning [34]. The ground state geometry optimization
and normal mode calculations were performed at the second-order Møller–Plesset
(MP2) level of theory using the Gaussian 03 program package [35]. The PESs were
explored with the extended multi-configuration quasi-degenerate second-order per-
turbation theory (XMCQDPT2)method [36] using theFireflyQCpackage [37]which
is partially based on the GAMESS (US) source code [38]. For the underlying state-
averaged complete active space self-consistent field (SA-CASSCF) wavefunction,
an active space of ten electrons in eight orbitals, including the full π orbital subset
and the two nitrogen lone-pair orbitals was used. The transition dipole moments
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and static polarizabilities were obtained at the zero-order QDPT (ZO-QDPT) level
of theory. The ZO-QDPT properties include only a part of the electron dynamic
correlation corrections obtained via the XMCQDPT2 method. Therefore they are
an approximation of the true XMCQDPT2 properties (more details can be found in
the Firefly documentation [37]). The static polarizabilities were computed using the
finite-fieldmethod, i.e as the numerical derivative of the dipolemoments with respect
to the amplitude of an applied static electric field. The number of states included in
the SA-CASSCF stage was found to have an important impact on the result of the
static polarizability calculations. Test calculations were performed with an increas-
ing number of states included in the SA-CASSCF stage until converged values of the
static polarizability were obtained. We found that including the six lowest CASSCF
states allows one to obtain stable static polarizability values without significantly
degrading the accuracy of the energies. For the sake of comparison, we have also
computed MRCI static polarizabilities using the same basis set and SA-CASSCF
guess wavefunction. Our results are presented in Table7.1.

We observe that in most cases the CASSCF, ZO-QDPT and MRCI results are
very similar. The only notable exception is for the αzz component of the S1 state,
for which the ZO-QDPT and MRCI results differ by almost 10% from the CASSCF
results. Our results predict the αzz component to be roughly twice as large for the
S1 state as for the S2 state. This difference is very important since it will allow
for an efficient shift of the S1 state with respect to the S2 state by a non-resonant
laser pulse (see Sect. 7.3 below). In addition, we note that this result is in line with
the high resolution Stark effect measurements of Okruss et al. [39] who observed
that the S1 state polarizability was significantly higher than that of the ground state.
Test calculations of the static polarizabilities at the ZO-QDPT level of theory using
the aug-cc-pVTZ basis set yielded values of 59.5, 105.4 and 53.6 a.u for the αzz

component for the S0, S1 and S2 states respectively (the values obtained for the αxx

and αyy showed similar deviations with respect to the aug-cc-pVDZ values). These
results indicate that the aug-cc-pVDZ basis set provides reasonably well converged
static polarizability values. Details of the values of the parameters obtained for the
potential energy, transition dipole moment and static polarizability surfaces from our
XMCQDPT2 calculations can be found in Ref. [1].

Table 7.1 SA-CASSCF, ZO-QDPT and MRCI polarizabilities in atomic units at the ground state
equilibrium geometry

S0 S1 S2
αxx αyy αzz αxx αyy αzz αxx αyy αzz

CASSCF 36.3 68.1 59.3 37.7 64.3 114.4 37.5 57.7 53.3

ZO-QDPT 36.3 68.8 59.3 37.7 64.4 104.7 37.5 57.1 53.3

MRCI 36.5 70.0 61.0 38.3 66.9 104.5 38.0 60.5 56.3
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7.3 An Adiabatic Picture of the Control Mechanism

Generally, control scenarios relying on the interaction of the system with a strong,
non-resonant laser pulse, can be classified in two categories. The first category is
based on a dynamical effect, i.e the control pulse is short with respect to the char-
acteristic time of the process. This scheme can be used in the case of photoreac-
tive processes where two or several reactive channels are in competition. Here the
short control pulse imparts a “kick” to the molecule which can be used to influence
the branching ratio between the different channels. This type of scenario has been
recently used to manipulate the branching ratio between different photodissociation
products [3, 7, 19, 21]. The second category relies on a strong adiabatic effect. Here
the control pulse is long with respect to the characteristic time of the process. The
control pulse interacts with the system during the whole process. This scheme is
expected to be useful in cases where the dynamics of the photoexcited molecule is
dominated by a single process, such as the non-radiative decay through a sloped CI
(see e.g. [40] and references therein), as it is the case for pyrazine (see Fig. 7.5). In
this case, the Stark shift induced by the control pulse can be used to shift the CI
seam away from the FC geometry and thus to quench the non-radiative decay of
the system as long as the control pulse is on. This type of scenario has been pro-
posed theoretically to prevent photodissociation of a fluoroethylene derivative [9].
The second scenario is the one adopted in the present work.

The impact of a strong non-resonant laser field on the topography of the PESs of
the coupled S1 and S2 states can be analyzed in terms of dressed PESs [9, 17], which
are obtained as the instantaneous eigenvalues of the matrix:

W( Q) = 1

2

∑

i

ωi Q2
i + V d( Q) − 1

4
αd( Q)Ac(t)

2. (7.18)
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Fig. 7.5 S1 (blue) and S2 (red) adiabatic PESs plotted as a function of Q6a and Q10a a in the
field-free case with Q1 = 1.83 and Q9a = −0.15 and b dressed by a control field of intensity
I = 50TW/cm2 with Q1 = 2.42 and Q9a = 0.13. Figure reproduced from Ref. [1]
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Such an analysis is relevant when the control field is switched on (and off) adiabati-
cally in a non-resonant way. In this expression, the rapidly oscillating term cos2(ωct)
has been averaged over time. This approximation is valid if the control field fre-
quency is high with respect to any two photon transition frequency between the S1
and S2 states. The dressed PESs of Eq. (7.18) are evaluated for fixed values of the
control field amplitude (corresponding formally to the amplitude of the envelope
function Ac(t) at a fixed time t). They allow one to characterize the modifications of
the topography of the PESs induced by the control field from an adiabatic point of
view. Thus, in practice, Ac(t)2 in Eq. (7.18) is treated as a constant. We stress here
that this approximation is necessary for an analysis of the system in terms of dressed
PESs. However, in the full time-dependent simulations presented in Sect. 7.4, the
more accurate expression of Eq. (7.1) has been used.

The effect of the Stark shifts on the seam of CI connecting the S1 and S2 states is
of particular interest. As seen in Table7.1, the S1 αzz component is roughly twice as
large as the S2 αzz component at the FC geometry. As a result, the interaction of the
molecule with a strong non-resonant control pulse is expected to shift the CI away
from the FC region.

Thanks to the simple mathematical expressions assumed in our model for the dia-
batic potential energy and polarizabilitymatrices (Eqs. (7.4) and (7.16) respectively),
the position and energies of theminimaof the upper dressed adiabatic potential energy
surface and CI seam are given by simple analytic expressions [33]. Specifically, in
our case the position of the minimum of the upper adiabatic surface is identical to
that of the diabatic V2( Q) and simply reads

Qmin
i = −κ(2)

i

ωi
. (7.19)

The corresponding energy is given by

V min
2 = E2 − 1

2

∑

i

(κ(2)
i )2

ωi
. (7.20)

The position and energy of the minimum energy conical intersection (MECI) are
given by

QMECI
i = (δi/ωi )(F − �)

D
− σi

ωi
(7.21)

and

V MECI = E1 + E2

2
+ (F − �)2

2D
− 1

2

∑

i

σ2
i

ωi
(7.22)
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where the following quantities

σi = κ(2)
i + κ(1)

i

2
(7.23a)

δi = κ(2)
i − κ(1)

i

2
(7.23b)

� = E2 − E1

2
(7.23c)

D =
∑

i

δ2i
ωi

(7.23d)

F =
∑

i

σiδi

2
(7.23e)

have been introduced.
A similar analysis can be performed for the dressed potential energy surfaces.

CombiningEqs. (7.4), (7.16) and (7.18), the elements of the dressed diabatic potential
energy matrix corresponding to the excited states can be written as

W d
j j ( Q) = 1

2

∑

i

ωi Q2
i + Es

j +
∑

k

κ
s,( j)
k Qk + γ

s,( j)
10a Q2

10a (7.24a)

W d
12( Q) = λs Q10a, (7.24b)

where

Es
j = E j − 1

4
α( j)(0)A2

c(t) (7.25a)

κ
s,( j)
k = κ

( j)
k − 1

4
χ

( j)
k A2

c(t) (7.25b)

γ
s,( j)
10a = γ

( j)
10a − 1

4
ϕ

( j)
10a A2

c(t) (7.25c)

λs = λ − 1

4
χ12
10a A2

c(t). (7.25d)

One can see that the dressed potential energy matrix elements of Eq. (7.24) have
the same form than the field-free diabatic potential energy matrix elements of Eq.
(7.4). Thus, analytical expressions for the positions and energies of the minima of
the dressed upper adiabatic PES and MECI can be obtained by replacing E j by Es

j

and κ
( j)
i by κ

s,( j)
i in Eqs. (7.19)–(7.23).

In Table7.2, we report the energy and geometry of the MECI between the dressed
S1 and S2 PESs and of the minimum of the dressed S2 PES as a function of the
intensity of the control field. For each control field intensity considered, the ref-
erence energy is taken as the zero point energy of the dressed ground electronic
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Table 7.2 Energy (in eV) and geometry of the MECI between the dressed S1 and S2 PESs and of
the minimum of the dressed S2 PES as a function of the intensity of the control field (in TW/cm2)

I = 0 I = 10 I = 20 I = 30 I = 40 I = 50

EMECI 4.36 4.40 4.45 4.51 4.57 4.65

QMECI
6a − 2.70 −3.03 −3.35 −3.67 −3.98 −4.29

QMECI
9a −0.15 −0.09 −0.04 0.02 0.08 0.13

QMECI
1 1.83 1.96 2.08 2.20 2.32 2.42

Emin 4.32 4.32 4.33 4.34 4.35 4.36

Qmin
6a −1.77 −1.78 −1.78 −1.79 −1.79 −1.80

Qmin
9a −0.30 −0.29 −0.29 −0.28 −0.27 −0.27

Qmin
1 1.45 1.47 1.48 1.50 1.51 1.53

For each control field intensity, the reference energy is the zero point energy of the dressed ground
state

state. In the field-free case, the MECI is very close to the minimum of S2, and lies
0.45eV below the S2 vertical excitation energy. In comparison, the S2/S1 MECI was
reported in Ref. [41] at 0.16eV below the S2 vertical excitation energy at a position
(QMECI

6a , QMECI
9a , QMECI

1 ) = (−2.99,−0.02, 1.547), using a four modemodel similar
to the model considered in this work.

The S0 and S2 states have similar polarizabilities (see Table7.1). Therefore, the
relative energy and position of the minimum of the dressed S2 PES are almost insen-
sitive to the control field intensity. In contrast, because the S1 state has a larger
polarizability than the S2 state, the MECI is shifted to higher energies as the control
field intensity is increased. To further illustrate the effect of the control field on the
topography of the PESs, two dimensional cuts of the S1 and S2 PESs as a function
of Q6a and Q10a , both in the field-free case and in the presence of a control field
of intensity I = 50TW/cm2, are presented in Fig. 7.5. In each case, the two other
coordinates Q1 and Q9a have been fixed at their value at the MECI. In the field-free
case, the CI is readily accessible after excitation close to the origin of the S2 state, and
a very fast radiationless decay occurs. However, the interaction with a sufficiently
strong non-resonant laser pulse is seen to shift the CI away from the FC region,
creating a bound potential well in the S2 state. As a result, one can expect to trap the
wavepacket in this potential well as long as the non-resonant pulse interacts with the
molecule, and thus to avoid the radiationless decay to the S1 state.

To further investigate the structure of the vibronic manifold of the molecule
dressed by the control field at energies close to the onset of the S2 state, we have
calculated the absorption spectrum of the molecule in this energy range as a function
of the intensity of the control field. Specifically, the time-dependent Schrödinger
equation (TDSE)

H dressed( Q)�( Q, t) = i�
∂

∂t
�( Q, t) (7.26)
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Fig. 7.6 Absorption spectra of the S2 state in the field-free case (a) and in interaction with control
fields of intensity I = 10TW/cm2 (b), I = 20TW/cm2 (c), I = 30TW/cm2 (d), I = 40TW/cm2

(e) and I = 50TW/cm2 (f). No phenomenological broadening was applied on the spectra. Figure
reproduced from Ref. [1]

with Hdressed( Q) = H0( Q)I + W( Q) and W( Q) is the dressed potential energy
matrix given in Eq. (7.18), was solved for different intensities of the control field,
using as an initial condition the dressed ground vibronic state projected in the excited
diabatic dressed S2 manifold. For each control field intensity, the spectrum was
obtained as the Fourier transform of the autocorrelation function c(t) = 〈�(0)|�(t)〉
obtained from a 300 fs propagation. No phenomenological broadening was applied
to the spectra (see Sect. 4.4 in Chap.4). The spectra obtained for control field inten-
sities ranging from 0 to 50TW/cm2 are shown in Fig. 7.6. In all cases, the onset
of absorption to S2 occurs at a nearly constant energy of approximately 4.6 eV, in
good agreement with the experimental value of 4.69eV [42], corresponding to the
field-free case. Again, this is a consequence of the fact that the S0 and S2 states
have similar polarizabilities (see Table7.1), and therefore experience similar Stark
shifts. In the field-free case, even in the low energy range, the spectrum consists
of a dense set of strongly vibronically coupled states. However, as the control field
intensity is increased, the MECI is shifted to higher energies, and the low energy
part of the spectra become sharper and less congested. This can be interpreted as an
effective decoupling of the two electronic states in the FC region induced by the con-
trol field, i.e the control field creates pure vibrational states localized in S2. The pure

http://dx.doi.org/10.1007/978-3-319-28979-3_4
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vibrational states correspond to the lower peaks of the spectrum in Fig. 7.6 in the
presence of the control field (see for instance panel (f) featuring the most favorable
situation).

7.4 Results

The feasibility of the proposed control scenariowas investigated by solving theTDSE

H d( Q, t)�( Q, t) = i�
∂

∂t
�( Q, t) (7.27)

where H d( Q, t) is the total Hamiltonian operator given by Eq. (7.1). The envelopes

�p,c(t) were chosen to be of sine-squared shape �p,c(t) = sin2
(

πt
t p,c

p

)
, where t p,c

p

are the pulse durations. In all the simulations presented below, the values t p
p = 100 fs

and t c
p = 500 fs have been used. The control pulse is turned on at t = −150 fs. The

pump pulse is turned on at t = 0 and ends when the control pulse reaches its peak
intensity, as sketched in Fig. 7.7.

An important aspect in control schemes based on the Stark effect is the choice
of the frequency of the control field. It should be chosen such as to ensure a non-
resonant interaction with the molecule. In our case, as mentioned in Sect. 7.2.1, all
the elements of the dipole moment matrix along the z direction are zero by symme-
try. However, two-photon transitions between the S1 and S2 states can be mediated
by the non-zero αd

12( Q) matrix element. A value of �ωc = 1.8 eV, which is high
with respect to any two-photon transition between the S1 and S2 states was chosen.
Calculations with peak intensities of 0, 10, 20, 30, 40 and 50TW/cm2 for the control
field were performed. The peak intensity of the pump pulse was set to 0.2TW/cm2.
In order to address various parts of the spectrum, three different photon energies
(4.6, 4.7 and 4.8 eV) were considered. The TDSE of Eq. (7.27), for each set of para-
meters was solved using the MCTDH method in the multi-set formalism. In each

Fig. 7.7 Envelope �p(t)
(green full line) of the pump
pulse and squared envelope
�2

c(t) (brown dashed lines)
of the control pulse. Figure
reproduced from Ref. [1]

−100 0 100 200 300
Time (fs)
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Table 7.3 Number of SPF
and primitive basis functions
used in the calculations

Q6a Q1 Q9a Q10a

Primitive 42 24 16 40

SPF (S0) 6 6 3 6

SPF (S1) 16 10 6 12

SPF (S2) 15 9 6 10

case, the initial wavefunction was chosen as the ground vibronic state. The wave-
function was propagated for 500 fs, between t = −150 fs and t = 350 fs. For the
representation of the Hamiltonian and the wavefunction, a Hermite polynomial DVR
scheme [43]was used for all the degrees of freedom.The number of SPF andprimitive
basis functions used in the calculations are listed inTable7.3. The adiabatic electronic
state populations were computed as outlined in Sect. 5.4 of Chap.5 using the diabatic
wavepackets obtained from the solution of the TDSE. The transformation between
the diabatic and adiabatic representations was performed exactly, i.e the integrals of
Eq. (5.10) were evaluated on the full primitive grid. In Fig. 7.8 the adiabatic popu-
lations of the S1 and S2 states are reported for the various control pulse intensities
and pump pulse photon energies considered. The populations are shown from t = 0,
when the pump pulse is turned on while the control pulse is already intense (see
Fig. 7.7). In the absence of the control field (Fig. 7.8a), the population transferred to
S2 by the pump pulse decays to S1 before the end of the pulse at t = 100 fs, regard-
less of the pump pulse photon energy, in agreement with the ultrafast decay observed
experimentally [44, 45]. The dynamics of the molecule in the presence of a control
pulse of 10TW/cm2 peak intensity (Fig. 7.8b) is hardly different from the dynamics
without control pulse. Again, the major part of the population excited to S2 decays
to S1 before the end of the pump pulse. One can however notice that the decay rate
slightly increases with the pump pulse photon energy. Already for a control pulse
peak intensity of 20TW/cm2 (Fig. 7.8c), a significant effect of the Stark shifts on
the electronic state population dynamics is observed. In the case of the lowest pump
pulse photon energy (4.6 eV) considered, a fast decay occurs in the first 100 fs, i.e
during the electronic excitation, as shown by the rise of the S1 population. However
at t = 100 fs, when the control pulse reaches its peak intensity, a substantial fraction
of the population still remains in S2 and decays at a slightly slower rate to S1 between
t = 100 fs and t = 200 fs. At a pump pulse photon energy of 4.7eV, a significant
effect is also observed, though less than at 4.6 eV. Indeed at 4.7 eV, the decay from
the S2 to S1 is faster, however a greater amount of population is excited from the
ground state by the pump pulse. For the highest pump pulse photon energy of 4.8
eV, the effect of the control pulse is almost nonexistent and a major part of the pop-
ulation decays before the end of the pump pulse. As the control pulse peak intensity
is further increased (Fig. 7.8d–f), the trapping effect is more and more pronounced.
At the highest intensities considered (I = 40TW/cm2 and I = 50TW/cm2), at the
pump pulse photon energy of 4.6 eV, the most part of the population excited to the S2

http://dx.doi.org/10.1007/978-3-319-28979-3_5
http://dx.doi.org/10.1007/978-3-319-28979-3_5
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Fig. 7.8 Adiabatic populations of the S1 (dashed lines) and S2 (full lines) states for the pump pulse
photon energies 4.6eV (blue), 4.7 eV (red) and 4.8eV (green) and for the control pulse intensities
I = 0 (a), I = 10TW/cm2 (b), I = 20TW/cm2 (c), I = 30TW/cm2 (d), I = 40TW/cm2 (e) and
I = 50TW/cm2 (f). Figure reproduced from Ref. [1]

remains trapped up to t = 200 fs. At this time, the control pulse intensity is less than
half its peak intensity (see Fig. 7.7). The decay to S1 then occurs between t = 200 fs
and t = 300 fs. At the pump pulse photon energy of 4.7 eV, a stepwise decay is
observed, with a first decay between t = 100 fs and t = 150 fs, followed by a plateau
between t = 150 fs and t = 200 fs and a second decay completed before t = 250 fs.
At the highest pump pulse photon energy (4.8eV) the population excited to S2 has
almost completely been transferred to S1 at t = 200 fs.

Overall, these results show that, as the control pulse intensity is increased from
0 to 50TW/cm2, a transition between two regimes is observed concerning the excited-
state dynamics of the molecule. In the absence of a control pulse or at low intensities,
the dynamics of the system is dominated by the presence of the low-lying S1/S2 CI,
readily accessed by the wavepacket after photoexcitation. The decay from the S2
to S1 is completed within 100 fs, i.e before the end of the pump pulse. At high
intensities, the Stark shifts are strong enough to shift the CI to high energies and to
create localized vibrational states in the S2 state. As a result, after photoexcitation,
the wavepacket is trapped in the S2 state as long as the intensity of the control pulse
is high enough.
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7.5 Discussion and Conclusions

In this chapter, we have investigated the control of the radiationless decay between
the B3u(nπ∗) and B2u(ππ∗) states of pyrazine using a strong non-resonant laser pulse.
It is interesting to compare the control strategy investigated in this work with other
control strategies previously studied for the control of the radiationless decay of
pyrazine. Optimal control theory (OCT) was used by Wang et al. [22] and Sukharev
and Seideman [23, 24]. Wang et al. used a combination of OCT with the MCTDH
method and considered vibronic couplingmodels including three and four vibrational
modes (the four modemodel being equivalent to the model used in the present work).
Their simulation showed the possibility of maximizing the population of either the
B3u(nπ∗) or B2u(ππ∗) states at a given time using both models. In addition, the
possibility of achieving more complicated control objectives such as steering the
wavepacket to a desired position in a given electronic state was demonstrated. A
similar study, based on local control theory was performed by Penfold et al. [25] and
showed similar performances, but at the price of significantly higher field strengths.
Sukharev and Seideman considered a different approach. They used a simpler two
mode model and calculated all the vibronic eigenstates between 4 and 10eV above
the ground electronic state. By analyzing the projection of the calculated states on the
diabatic (i.e localized) vibrational eigenstates, they showed the existence of highly
excited vibronic eigenstates essentially localized in the B2u(ππ∗) electronic state.
Then they used OCT to optimize a laser field able to excite the system to a selected
localized vibronic eigenstate, immune to the radiationless decay to the B3u(nπ∗)
state. Finally Shapiro et al. [26–28] used the concept of overlapping resonances to
find specific superpositions of vibronic states designed to maximize or minimize the
population of the B2u(ππ∗) state at a given time. Significant control over the lifetime
of the B2u(ππ∗) was demonstrated. However, the problem of the preparation of the
designed superpositions of states by laser pulses was not investigated.

Despite their apparent success, a common feature of these control mechanisms
is their need of high selectivity. OCT and LCT are expected to be very sensitive
to the details of the vibronic level pattern in the B3u(nπ∗) and B2u(ππ∗) electronic
manifold. Therefore the transferability of the solutions obtained from simplified, few
mode models to more realistic ones, for instance including more vibrational modes,
and eventually to experiment can be questioned.

In contrast, the control mechanism presented in this chapter does not rely on a
particular pulse shape designed to reach a specific target state, nor on details of the
model. It is based on the topography of the PESs as well as on the relative magnitude
of the static polarizabilities of the different electronic states involved. Therefore con-
trolmechanisms based on the use of the Stark effect can be expected to bemore robust
with respect to fluctuations of the laser pulse parameters or to an imperfect descrip-
tion of the system. In order to confirm this robustness, the application of the control
mechanism used in this work to a model of pyrazine including the 24 vibrational
modes has been investigated [46]. These calculations showed that the control mech-
anism investigated in the present work still applies in the full-dimensional model,
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demonstrating its robustness with respect to the details of the model used to describe
the system.

This attractive feature makes this class of control mechanisms a promising candi-
date for the laser control of non adiabatic dynamics in polyatomicmolecules. Despite
this, much work will be necessary to further assess the applicability of control mech-
anisms based on the Stark effect to a wide class of systems.

First, in the present work, rather high control pulse intensities (I > 20TW/cm2)
were shown to be necessary to produce a significant effect on the dynamics of the
molecule. The technology required to produce such high intensity near infrared fem-
tosecond laser pulses is well established and widely used in molecular alignment or
strong field ionization experiments. However, in the context of laser control through
the non-resonant Stark effect, competing processes such as multi-photon excitation
or ionization can occur at such intensities, depending on the system. In the exper-
imental work of Stolow et al. [2, 3] on IBr, because of the high polarizability of
the molecule, significant effects could be obtained with relatively modest control
pulse intensities (<10TW/cm2), thereby minimizing such detrimental competing
processes. On the other hand, in previous theoretical works [9, 19, 20], intensities
similar to the ones considered in the present work were found necessary to obtain
significant results. Experimental studies of the ionization of benzene, halobenzenes
and azobenzenes [47, 48] using femtosecond near infrared laser pulses revealed that
ionization occurs in the same range of intensities (>10 TW/cm2), mainly through
resonance-enhanced multiphoton ionization.

In addition, the rotational degrees of freedom have not been considered in this
work. The main detrimental effect of the rotation corresponds here to the inefficiency
of the control pulse which cannot be considered as aligned with the z molecular axis,
even for a cold molecule since the ground rotational state is fully delocalized. The
need for aligned molecules to improve in general the efficiency of laser-control
processes is a well known issue and much progress has been achieved towards this
aim. In particular adiabatic alignment, that is while the field is on, and field-free
post-pulse alignment have been both studied for linear or more complex polyatomic
molecules (3Dalignment) [49–52].Thepost-pulse alignment occurs transientlywhen
the rotational wavepacket features a rephasing while the adiabatic alignment corre-
sponds to a non-resonant field-dressing of the rotational states. In this adiabatic case,
the ground rotational dressed state features an aligned state for a sufficiently high field
and one mainly recovers the vibrational structure omitting the rotational structure
(see Refs. [53, 54]). The present work based on the manipulation of the vibrational
structure has thus to be considered in this context of adiabatic alignment. One can
even imagine that the Stark control field itself aligns the molecule if it is switched on
adiabatically also with respect to the rotational structure (which generally imposes a
sub-nanosecond pulse). However this general scenario cannot be applied here since
the most polarizable axis, both in the ground and B2u(ππ∗) states, is the y axis (see
Table7.1). Alternative alignment can be envisaged, for instance by confining the
system in a nanostructured environment [55–57], or near a surface [58–63].
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Chapter 8
Laser Driven Tunneling Dynamics in NHD2

This chapter is partly based on results and discussions published in Refs. [1, 2]. This
material is reproduced with permission. Copyright [2012, 2014] AIP Publishing
LLC.

8.1 Introduction

Tunneling plays an essential role in a number of chemical and physical phenomena
including chemical [3], photochemical [4] or biological reactions [5], electron trans-
fer between quantum dots [6], strong field ionization [7] or nuclear fission [8] and
fusion [9]. In addition, the tunneling effect is a paradigmatic example of quantum
coherence phenomena. Therefore, the laser control of the tunneling dynamics of
quantum systems is a topic of major interest [10]. Tunneling can occur from a poten-
tial well to a continuum, or between different wells in a bound potential. In particular,
the tunneling effect in systems described by a symmetric double well potential repre-
sents the simplest and most intensively studied situation. Various schemes to control
the tunneling dynamics of symmetric double well quantum systems have been pro-
posed. Enhancement of tunneling, i.e. field-induced tunneling in a time much shorter
than the natural time, by a nonresonant [11–13] or resonant [14] pulse-shaped field,
localization of the system in one of the two wells from the delocalized ground state
by a quasi-resonant field [15], or the coherent destruction of tunneling during the
field [16–19]. More recently, a scheme to induce the localization and suppression of
tunneling by adiabatic passage has been proposed [20]. Control of tunneling shares
some aspects with the control of superposition of states [21] and with the orientation
of molecules [22]. Most of these studies have been proposed in simplified, typically
one-dimensional, systems. In this chapter, we first address the laser induced enhance-
ment of tunneling (Sect. 8.2) and next the coherent destruction of tunneling (Sect. 8.3)
in a model of NHD2 taking into account its six vibrational degrees of freedom.

© Springer International Publishing Switzerland 2016
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Ammonia and its isotopomers, through their inversion motion (also called umbrella
motion), are a textbook example illustrating the tunneling dynamics in a symmetric
double well potential. In addition, they are simple enough to allow for an accurate,
full-dimensional quantum mechanical description of their nuclear dynamics. Our
choice of NHD2 as a target system was motivated the possibility to use the vibra-
tional eigenstates computed in a previous theoretical study [23], and the transition
moments between them, to construct a model Hamiltonian allowing us to study the
laser control of the tunnelingmotion of themolecule at a reduced computational cost.
The main objective of this work was to assess the applicability of control schemes
established for simple model systems to a realistic model of a polyatomic molecule.

8.2 Laser Induced Enhancement of Tunneling

In this section, we study the strategy of enhancement of tunneling by a pulsed reso-
nant laser field [14] in NHD2 by means of quantum dynamics simulations performed
using theMCTDHmethod as implemented in the Heidelberg package. TheMCTDH
method has been previously used to investigate the laser driven vibrational dynamics
of similar systems such as HCF3 [24], HFCO [25], DFCO [26] or HONO [27, 28].
An effective Hamiltonian built in a basis of low-lying vibrational eigenstates of the
molecule was first used to explore the influence of the laser pulse parameters on
the efficiency of the control scheme at a reduced computational cost. The dynam-
ics of the molecule driven by a suitable laser pulse was then computed using the
exact vibrational Hamiltonian. Choosing a linearly polarized laser pulse of appro-
priate frequency, we obtained a laser driven tunneling effect in a time approximately
twenty times smaller than the field-free tunneling time in rather good accordance
with analytical predictions obtained from an oversimplified three-state model. This
result necessitates that the molecule experiences a three-dimension alignment during
the excitation process [29–34]. If the molecule experiences only a one-dimensional
alignment, the tunneling enhancement obtained after averaging over the azimuthal
orientation about the alignment axis was found to be much reduced. In this case, the
averaged tunneling enhancement can be improved by replacing the linear-polarized
field by a circular-polarized field.

In the next subsection, we present the mechanism of driven enhanced tunneling
by a resonant pulse using an effective three-state model. The Hamiltonian and the
coordinates used in the MCTDH calculations are derived in Sect. 8.2.2. The range of
parameters considered in this work is justified in Sect. 8.2.3. In Sect. 8.2.4, quantum
dynamics simulations of the control scheme investigated in this work using the exact
vibrational Hamiltonian are presented. Simulations are presented and discussed both
for linearly and circularly polarized fields. Conclusions are given in Sect. 8.2.5.
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8.2.1 Enhancement of Tunneling by a Resonant Pulsed
Field: Mechanism

In a symmetric double well potential with a low-energy barrier connecting the two
wells, the low-lying eigenstates form nearly degenerate doublets, one member of
the doublet being symmetric and the other being antisymmetric with respect to the
tunneling coordinate. The corresponding eigenfunctions are delocalized over the two
wells. To study the tunneling dynamics in a symmetric double well, it is convenient
to define two localized states, noted |L〉 and |R〉, as superpositions of the delocalized
eigenstates of the ground tunneling doublet, noted |(0)s〉 and |(0)a〉.

|L〉 = 1√
2

(|(0)s〉 + |(0)a〉) , |R〉 = 1√
2

(|(0)s〉 − |(0)a〉) . (8.1)

The wavefunctions associated with the delocalized eigenstates and the localized
states are illustrated in Fig. 8.1 in the case of a generic one-dimensional double well
potential. If one considers, for instance, |L〉 as initial condition, the dynamics of the
system is described by the state

|�(t)〉 = e−i σ
2 t 1√

2

[
|(0)s〉ei δ

2 t + |(0)a〉e−i δ
2 t
]

= e−i σ
2 t

[
|L〉 cos

(
δ

2
t

)
+ i|R〉 sin

(
δ

2
t

)]
, (8.2)

where σ = (ω(0)a + ω(0)s) and δ = ω(0)a − ω(0)s with �ω(0)s and �ω(0)a being the ener-
gies corresponding respectively to |(0)s〉 and |(0)a〉. δ is usually called the ground
state tunneling splitting. From this relation, a field-free tunneling time τ can be
defined as the shortest time for the system to tunnel from |L〉 to |R〉 (up to a global
phase)

τ = π/δ. (8.3)

The 6D model of NHD2 used in this work [23] gives a splitting of 0.159cm−1

between the two components of the ground state, in very good agreement with the
experimental value of 0.171cm−1. The corresponding field-free tunneling time is
τ ≈ 104ps.

Our goal is to induce a full population inversion between the two localized states
by a single laser pulse in a timemuch smaller than thefield-free tunneling timedefined
above. In a previous work, it was shown that this can be achieved by a 2π-pulse that
selectively couples one of the two delocalized states to an intermediate excited state,
noted |χe〉. The 2π-pulse induces a full Rabi oscillation between the two coupled
states and the required π phase to the delocalized state that has been addressed by the
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Fig. 8.1 Illustration of the wavefunctions of the delocalized states |(0)s〉 and |(0)a〉 (a) and (b) and
of the localized states |L〉 and |R〉,(c) and (d) in the case of a generic one-dimensional double well
potential

field. This result can be demonstrated analytically by assuming a simple three-state
effective model. Consider a linearly polarized laser pulse of general expression

ε(t) = ε0�(t) cos(ωt)e, (8.4)

where ε0 is the peak amplitude, �(t) an envelope function, ω the carrier frequency
and e the unit vector in the direction of polarization. Assuming the resonant wave
approximation (RWA), the interaction of the system with the laser pulse is described
by the following effective Hamiltonian operator, expressed in the dressed basis
{|(0)s, 0〉, |(0)a, 0〉, |χe,−1〉}, where the second label stands for the relative num-
ber of dressing photons

HRWA(t) = 1

2

⎛

⎝
0 0 �(t)
0 2δ 0

�(t) 0 0

⎞

⎠ , (8.5)
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where�(t) = −ε0�(t)μ(0)s,χe .e, andμ(0)s,χe is the transition dipole moment vector
between states |(0)s〉 and |χe〉. The time-dependent Schrödinger equation (TDSE)

HRWA(t)�(t) = i�
∂

∂t
�(t) (8.6)

can be solved analytically, following the steps detailed in Sect. 6.2.3 of Chap.6.
Considering the system initially in the |L〉 superposition, the probability Ptun to find
the system in the |R〉 at the end of the pulse (t = tp) is given by

Ptun = |〈R|�(t = tp)〉|2 = 3

8
+ 1

8
cosA(tp)

− 1

4

[
cos

(
δtp − A(tp)/2

) + cos
(
δtp + A(tp)/2

)]
, (8.7)

with the Rabi frequency partial area A(t) = ∫ t
0 |�(s)| ds. From this equation one can

see that the tunneling inversion probability is close to unity if the conditions

A(tp) ≡
∫ tp

0
|�(t)| dt = 2π, tp � π/δ ≡ τ (8.8)

are fulfilled. Thus, one requires a 2π-pulse of sufficiently short duration to enhance
the tunneling. The 2π-pulse condition defines a relation between the peak amplitude
and the duration of the laser pulse. Considering a sine-square shaped envelope for
the laser pulse

�(t) = sin2
(

πt

tp

)
for 0 < t < tp

�(t) = 0 otherwise, (8.9)

this relation reads

∣∣ε0μ(0)a,χe .e
∣∣
∫ tp

0
sin2

(
πt

tp

)
dt = 2π, (8.10)

which gives

tp = 4π∣∣ε0μ(0)a,χe .e
∣∣ . (8.11)

http://dx.doi.org/10.1007/978-3-319-28979-3_6
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8.2.2 Hamiltonian and Coordinates

The molecule in interaction with the laser field is described by the Hamiltonian
operator

H(q, t) = H0(q) + Hint(q, t), (8.12)

where q denotes a vector gathering the six vibrational coordinates used to para-
metrize the motion of the nuclei (see below). H0(q) is the field-free Hamiltonian
operator of the molecule

H0(q) = T(q) + V (q), (8.13)

where T(q) denotes the nuclear kinetic energy operator (KEO) and V (q) is the
potential energy surface of the ground electronic state. The Hint(q, t) Hamiltonian
operator describes the interaction of the molecule with the laser field in the dipole
approximation

Hint(q, t) = −μ(q).ε(t), (8.14)

where μ(q) is the vector containing the three dipole moment surfaces and ε(t) is the
electric field vector.

Following Ref. [23], the vibrational motion of the nuclei was parameterized by
polyspherical Radau coordinates [35, 36]. The Radau coordinates are the spheri-
cal coordinates (r1, θ1,ϕ1), (r2, θ2,ϕ2) and (r3, θ3,ϕ3) of the three Radau vectors,
illustrated in Fig. 8.2, in the molecular frame M = xyz defined as follows: the x
axis is parallel to r3 and r2 lies in the (x,y) plane (see Fig. 8.3). The corresponding
laboratory (or space-fixed) frame denoted L = XYZ allows one to characterize the
orientation of the three main axes by three Euler angles. The vibrational motion is
described by the six coordinates r1, r2, r3, θ1, θ2 and ϕ1, the three remaining coordi-
nates describe the rotation of the molecule. As a simplification, we consider the KEO
of the fundamental rotational state J = 0 [23] and neglect the rotational motion of
the molecule. This is equivalent to assuming that the molecule is ideally aligned
(three-dimensional alignment) and that the Hamiltonian operator of Eq. (8.12)
describes this aligned molecule. This assumption was found to be valid in the case of
a diatomicmolecule inRef. [37]. The extension of this result to polyatomicmolecules
is a working hypothesis in the present work. Note that the actual coordinates used in
the calculations are r1, r2, r3, u1, u2 and ϕ1, where ui = cos(θi). This choice allows
one to work with Hermitian momentum operators [35]. The explicit expression of
the J = 0 KEO can be found in Ref. [23]. The AMMPOT4 potential energy surface
[38] and the dipole moment surfaces of Ref. [39], both developed by Marquardt and
co-workers, were used in this work.

In the case of an ideal three-dimensional alignment, the M frame equals the L
frame and the polarization of the laser pulse can be chosen in the molecular frame.
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Fig. 8.2 Radau polyspherical coordinates for the NHD2 molecule. CP denotes the canonical point
(see Ref. [40] for a definition). Figure reproduced from Ref. [2]

Fig. 8.3 Definition of the M and M ′ molecular frames. The x axis is parallel to the NH bond and
the y axis lies in the NHD plane. The x′ and z′ axes are in the plane of the paper. The z′ coordinates
of the H and D atoms are mutually equal, the y′ coordinate of the H atom is zero. The z and y′ axes
are not shown for sake of clarity. Figure reproduced from Ref. [1]

In the case of one-dimensional alignment [29] we consider the molecule as ideally
aligned along the most polarizable axis of the asymmetric-top molecule, which is
parallel to the dipolemoment vector at the equilibrium geometry [41] (corresponding
to the C3 axis of NH3), for instance during a nanosecond (non-resonant) adiabatic
linearly polarized pulse. Since the most polarizable axis of the molecule does not
correspond to any of the axes of the above defined molecular frame, it is convenient
to introduce a second set of molecular and laboratory frames called respectively
M ′ = x′y′z′ and L′ = X ′Y ′Z ′. The M ′ frame is defined as follows: The z′ axis is
parallel to the most polarizable axis at the equilibrium geometry while the NH bond
lies in the (x′, z′) plane (see Fig. 8.3). The L′ frame is defined as follows: the Z ′
axis is parallel to the z′ axis; the X ′ and Y ′ axes are rotated from the x′ and y′ axes,
respectively, by the Euler angle φ about the Z ′ axis, φ being the precession angle of
the molecule about the alignment axis Z ′.

One assumes that the field is in the plane (X, Y) of the L frame

ε(L)(t) =
⎛

⎜⎝
ε(L)

X (t)

ε(L)
Y (t)
0

⎞

⎟⎠ (8.15)

where, for the linear polarization, we choose (see Sect. 8.2.3 for a justification of this
choice) {

ε(L)
X (t) = 0,

ε(L)
Y (t) = ε0�(t) cos(ωt),

(8.16)
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and, for the circular polarization,

{
ε(L)

X (t) = ε0√
2
�(t) sin(ωt),

ε(L)
Y (t) = ε0√

2
�(t) cos(ωt).

(8.17)

Note that the alignment axis Z ′ and the direction Z of propagation of the electro-
magnetic field do not coincide. The electric field is then rotated in the M molecular
frame, in which we know the three dipole moment surfaces, via the L′ and M ′ frames
through the series of transformations

ε(M)(t) =
⎛

⎜⎝
ε(M)

x (t)

ε(M)
y (t)

ε(M)
z (t)

⎞

⎟⎠ = RM ′→MRL′→M ′RL→L′

⎛

⎜⎝
ε(L)

X (t)

ε(L)
Y (t)
0

⎞

⎟⎠ . (8.18)

The rotation matrices RL→L′ and RM ′→M depend on three constant Euler angles,
φ0 = 240◦, θ0 = 38.677◦ and χ0 = 126.465◦, determined from the definitions of
the various frames given above. Following the coventions of Ref. [42], one can write

RL→L′ =
⎛

⎝
cφ0cθ0cχ0 − sφ0sχ0 −cφ0cθ0sχ0 − sφ0cχ0 cφ0sθ0
sφ0cθ0cχ0 + cφ0sχ0 −sφ0cθ0sχ0 + cφ0cχ0 sφ0sθ0

−sθ0cχ0 sθ0sχ0 cθ0

⎞

⎠ , (8.19)

where a short-hand notation has been used for the cos and sin functions, e.g. cφ0 ≡
cosφ0. However, the matrix R = RM ′→MRL′→M ′RL→L′ was found to be independent
of the angle φ0. Therefore, the simpler form

RL→L′ =
⎛

⎝
cθ0cχ0 −cθ0sχ0 sθ0

sχ0 cχ0 0
−sθ0cχ0 sθ0sχ0 cθ0

⎞

⎠ . (8.20)

can be used without loss of generality. The matrix RM ′→M is simply given by
RM ′→M = RL→L′R−1

L→L′ = R†
L→L′ . Finally the RL′→M ′ matrix defines a rotation around

the alignment axis (Z ′) and therefore depends only on the first Euler angle φ

RL′→M ′ =
⎛

⎝
cφ sφ 0

−sφ cφ 0
0 0 1

⎞

⎠ . (8.21)

Using these definitions, one can calculate the electric field in the molecular frame M

ε(M)
x (t) = (

cφc2θ0cχ0 − sφcθ0sχ0 + s2θ0cχ0
) (

cχ0ε
(L)
X (t) − sχ0ε

(L)
Y (t)

)

+ (sφcθ0cχ0 + cφsχ0)
(

Sχ0ε
(L)
X (t) + cχ0ε

(L)
Y (t)

)
, (8.22)
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ε(M)
y (t) = − (

cφc2θ0sχ0 + sφcθ0cχ0 + s2θ0sχ0
) (

cχ0ε
(L)
X (t) − sχ0ε

(L)
Y (t)

)

+ (−sφcθ0sχ0 + cφcχ0)
(

sχ0ε
(L)
X (t) + cχ0ε

(L)
Y (t)

)
, (8.23)

ε(M)
z (t) = cθ0sθ0(cφ − 1)

(
cχ0ε

(L)
X (t) − sχ0ε

(L)
Y (t)

)

+ sθ0sφ
(

sχ0ε
(L)
X (t) + cχ0ε

(L)
Y (t)

)
. (8.24)

8.2.3 Computational Strategy

The three-state model presented in Sect. 8.2.1 is a minimal model that provides a
simple description of the control mechanism adopted in the present work. However,
thismodel can not describe competing processes such asmulti-photon excitations and
vibrational Stark shifts which could impact the efficiency of the process. Therefore,
it represents an oversimplification of our system and can not be used to choose
the precise parameters of the laser pulse (peak amplitude, duration and frequency)
which would efficiently induce the desired effect in the full system. On the other
hand, simulations of the dynamics of the molecule using the exact 6D vibrational
Hamiltonian are time-consuming. Therefore one can not explore the full parameter
space in order to find the best possible set of parameters in a reasonable time. It is
thus desirable to derive an effective but accurate model which is simple enough to
allow one to perform a large number of simulations with different parameters of the
field. A simple way to construct such amodel is to extract all eigenstates, eigenvalues
and transition dipole moments between eigenstates in a given energy window. The
effective Hamiltonian reads

Heff (t) = Heff
0 + Heff

int (t), (8.25)

where the matrix representation of the field-free effective Hamiltonian Heff
0 is the

diagonal matrix

(Heff
0 )ij = Eiδij, (8.26)

where Ei denotes the eigenvalues of the exact vibrational field-free Hamiltonian and

Heff
int (t) = μeff .ε(t) (8.27)

is the effective interaction Hamiltonian operator. Thematrix elements of the effective
dipole moment operator read

(μeff )ij = 〈χi|μ(M)|χj〉 (8.28)
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where |χi〉 denotes the ith eigenstate of the exact vibrational Hamiltonian of the
molecule. We used the 142 lowest vibrational eigenstates of the molecule, span-
ning the energy range up to 5307cm−1, computed in Ref. [23] using the improved
relaxation method [43, 44] as implemented in the Heidelberg MCTDH package.
The package was used in this work to compute all the transition dipole moments
vectors between these eigenstates. The low dimensionality and simple structure of
the effective Hamiltonian of Eq. (8.25) allows for a fast integration of the associated
TDSE

i�
∂�(t)

∂t
= Heff (t)�(t). (8.29)

In this work, Eq. (8.29) was solved using a split operator-scheme, in which the prop-
agator U(t) = e−iHeff t is split into three terms

U(t) ≈ e− i
2 Heff

0 te−iHeff
int te− i

2 Heff
0 t . (8.30)

The propagation scheme between times t and t + �t reads

�(t + �t) = e− i
2 Heff

0 �te−iHeff
int (t+ �t

2 )�te− i
2 Heff

0 �t�(t) + O(�t3). (8.31)

To avoid the calculation of the exponential of the matrix Heff
int at each time step of

the propagation, the matrix μeff .e can be diagonalized before the propagation

μeff .e = TμDT †, (8.32)

and the scheme (8.31) can be rewritten as

�(t + �t) = e− i
2 Heff

0 �tTe−iμDE(t+ �t
2 )�tT †e− i

2 Heff
0 �t�(t) + O(�t3). (8.33)

Using this scheme, the computation of the dynamics of the systemover a few picosec-
onds does not take more than a few seconds on a standard computer.

In order to apply the mechanism described in Sect. 8.2.1 to the enhancement of
tunneling in NHD2, one has first to choose a suitable intermediate excited vibrational
state which can be efficiently and selectively coupled to one state of the fundamen-
tal tunneling doublet. More precisely, one needs to induce a full Rabi oscillation
between one of the delocalized |(0)s〉 and |(0)a〉 eigenstates and the intermediate
excited state without inducing any population transfer between the other delocalized
eigenstate and any excited vibrational state. The vibrational eigenvalues computed
in Ref. [23] compared with experimental values, and the transition dipole moments
computed in this work are presented in Tables8.1 and 8.2. As seen in Table8.2, a
field polarized along the z molecular axis couples states with different parity with
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Table 8.1 Comparison of selected low-lying 6D vibrational eigenvalues calculated in [23] with
available experimental values (in cm−1)

Level Sym. (MS4) EMCTDH Exp.

(0)s A+ 0.00 0.00

(0)a A− 0.16 0.171 [45]

(21)s A+ 808.81 810.23 [45]

(21)a A− 817.68 819.56 [45]

(41a)
s A+ 1235.67 1233.27 [46]

(41a)
a A− 1238.11 1235.89 [46]

(22)s A+ 1450.38 –

(41b)
s B+ 1461.55 1461.79 [46]

(41b)
a B− 1461.72 1461.99 [46]

(22)a A− 1575.56 –

(23)s A+ 1957.55 –

(23)a A− 2360.99 –

(31a)
s A+ 2435.87 2430.80 [46]

(31a)
a A− 2437.49 2434.62 [46]

(31b)
s B+ 2564.05 2559.81 [46]

(31b)
a B− 2564.16 2559.96 [46]

(11)s A+ 3406.08 3404.24 [46]

(11)a A− 3406.15 3404.32 [46]

The spectroscopic notation to used to label the levels is explained in Ref. [46]. Symmetry labels in
the MS4 permutation-inversion symmetry group are given

respect to the inversion motion. This coupling is particularly strong for states of a
same tunneling doublet (see for instance the value of 〈(0)s|μ(M)

z |(0)a〉 in Table8.2).
These strong transition dipole moments are expected to produce significant Stark
shifts which could destroy the efficiency of the process. Conversely, a field polarized
in the orthogonal plane (x, y) only couples states of the same parity with respect to
the inversion motion.

As illustrated in Fig. 8.4, the |(22)a〉 state seems to be the best choice for the
intermediate excited state, as it is well isolated in energy from both its tunneling
doublet partner and other vibrational states. It has furthermore a sufficiently strong
transition dipolemoment with the antisymmetric component of the fundamental state
|(0)a〉. Within these conditions, the mechanism to enhance the tunneling described
in the previous section is applicable with a sufficiently short pulse of non-ionizing
intensity linearly polarized along the y direction.
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Table 8.2 Calculated transition dipole moments (in ea0 where e is the elementary charge and a0
is the bohr) of the selected low-lying vibrational eigenstates with the two tunneling components of
the fundamental eigenstate

Level μ(0)s

x μ(0)a

x μ(0)s

y μ(0)a

y μ(0)s

z μ(0)a

z

(0)s 0.3278 – 0.5562 – – 0.3028

(0)a – 0.3279 – 0.5561 0.3028 –

(21)s −0.0151 – 0.0448 – – −0.0381

(21)a – −0.0150 – 0.0448 −0.0375 –

(41a)
s −0.0270 – 0.0086 – – 0.0188

(41a)
a – 0.0275 – −0.0094 −0.0188 –

(22)s −0.0065 – 0.0079 – – 0.0046

(41b)
s – – −0.0114 – – 0.0199

(41b)
a – – – 0.0114 −0.0199 –

(22)a – 0.0045 – −0.0058 −0.0045 –

(23)s −0.0017 – 0.0019 – – 0.0001

(23)a – – – 0.0005 −0.0021 –

(31a)
s 0.0058 – −0.0247 – – −0.0150

(31a)
a – 0.0061 – −0.0253 −0.0153 –

(31b)
s – – 0.0084 – – −0.0147

(31b)
a – – – 0.0085 −0.0147 –

(11)s – 0.0382 – −0.0030 −0.0014 –

(11)a 0.0381 – −0.0031 – – −0.0014

For each state listed, transition dipole moment corresponding to transition from the |(0)s〉 and |(0)a〉
are given. Values smaller than 10−4 ea0 are not given

8.2.4 Results and Discussion

8.2.4.1 Linearly Polarized Field and Three-Dimension Alignment

Here we consider the ideal case of three-dimensionally aligned molecule in interac-
tion with a linearly polarized laser pulse. We compare the results obtained with the
effective model Hamiltonian described in Sect. 8.2.3 to those obtained with the exact
vibrational Hamiltonian described in Sect. 8.2.2.

Results Obtained with the Effective Hamiltonian

The TDSE of Eq. (8.29) was solved using the scheme of Eq. (8.33) for a wide range
of parameters of the laser pulse, with frequencies close to the resonance between
the |(0)a〉 and the |(22)a〉 states, using the |L〉 localized state as initial condition.
Contour plots of the population of the target state |R〉 at the end of the interaction of
the system with a laser pulse of polarization in the y direction are given in Fig. 8.5
as a function of the pulse parameters. On the left panel, the population of the target
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Fig. 8.4 Energy diagram illustrating our control strategy. The blue arrow features the resonant
2π-pulse. Figure reproduced from Ref. [1]

Amplitude (x103 au)

P
ul

se
 d

ur
at

io
n 

(p
s)

2 4 6 8 10 12

4

6

8

10

12

Amplitude (x103 au)

W
av

en
um

be
r 

(c
m

−
1 )

6 8 10 12
1565

1570

1575

1580

1585

0.2

0.4

0.6

0.8

Fig. 8.5 Two dimensional contour plots of the population of the |R〉 localized superposition at the
end of the pulse (t = tp) as a function of the peak amplitude ε0 and of the pulse duration tp (left
panel) and as a function of the peak amplitude ε0 and the field wavenumber (right panel). The
frequency of the field has been set at resonance (ω = 1575.56cm−1) in the left panel. The pulse
duration tp is chosen such that the 2π condition given by Eq. (8.11) is fulfilled in the right panel.
The blue curve of left panel is the hyperbola defined by Eq. (8.11). Figure adapted from Ref. [1]

state is given as a function of the peak amplitude ε0 and duration of the pulse tp.
The blue curve is the hyperbola of Eq. (8.11) defining a constant Rabi frequency
area of 2π. These results confirm the mechanism suggested by the three-state system
invoked in Sect. 8.2.1. The probability of population transfer to the target state is
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close to unity for a Rabi frequency area close to 2π. On the right panel, the final
population of the target state |R〉 is displayed as a function of the peak amplitude ε0
and the frequency ω of the pulse. The Rabi frequency area is fixed at 2π whichmeans
that for a given peak amplitude, the pulse duration was set according to Eq. (8.11).
Figure8.5 shows that for amplitudes of the electric field strength below 8 × 10−3 au,
the population transfer reaches its maximum probability for an exactly resonant
laser pulse, i.e. when the field frequency matches the transition frequency between
the |(0)a〉 and the intermediate excited |(22)a〉 states. However, it appears clearly that
for higher amplitudes, the frequency for which the process is the most efficient is
slightly detuned from the transition frequency. This effect is due to the vibrational
Stark shifts which begin to play a non-negligible role as the amplitude of the laser
field is increased.

In order to find a satisfactory set of parameters, we first set the peak amplitude
at ε0 = 10−2 au. This amplitude is high enough to lead to a relatively short duration
of the tunneling, and low enough to avoid detrimental effects such as ionization
and to guarantee a negligible influence of the electronic polarizability (not included
in our model). With this constraint, the best parameters found within our model
are ε0 = 10−2 au, ω = 1574 cm−1 and tp = 5280 fs. Results of the dynamics of the
systemwith these parameters are shown in Fig. 8.6. Again, themechanism is found to
be consistent with the one suggested by the three-state system invoked in Sect. 8.2.1.
The left panel displays the population of bare states |(0)s〉, |(0)a〉 and |(22)a〉 during
the interaction with the laser pulse. States |(0)a〉 and |(22)a〉 are selectively coupled
by the pulse and the system undergoes a full Rabi oscillation between them. As stated
before, during this process the state |(0)a〉 experiences a phase change of π and as
seen on the right panel, a nearly full population transfer occurs between the two
localized superpositions |L〉 and |R〉 defined in Eq. (8.1). Indeed the final population
of the target superposition |R〉 is approximately 0.995. Thus, given the duration of
the pulse used in this calculations, we predict a full tunneling inversion in a time
which is almost twenty times faster than the field-free tunneling time.

MCTDH Dynamics Calculation

In order to confirm the results obtained in the previous section, we have solved the
TDSE

i�
∂�(t)

∂t
= H(q, t)�(t) (8.34)

where H(q, t) is the full Hamiltonian operator of Eq. (8.12), using the parameters
of the field used for the calculations presented in Fig. 8.6. This calculation was
performed using the Heidelberg MCTDH package. For the representation of the
Hamiltonian and the wave function, a Hermite polynomial DVR scheme [47] was
used for all the degrees of freedom. Details of the primitive basis used for each degree
of freedom are given in Table8.3. The combined modes and numbers of SPF basis
functions used in this calculation are described in Table8.4.
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Fig. 8.6 Population of states |(0)s〉 (blue), |(0)a〉 (green) and |(22)a〉 (red) during the interaction
with the laser pulse (left panel). Population of the initial |L〉 (blue) and target |R〉 (green) superpo-
sitions (right panel). Figure adapted from Ref. [1]

Table 8.3 Primitive basis, numbers of grid points and grid range used for each degree of freedom

r1 r2 r3 cos(θ1) cos(θ2) ϕ1

Grid range 1.3–2.6 a0 1.3–2.6 a0 1.3–2.8 a0 −0.94–0.40 −0.94–0.40 −3.10–3.10 rad

Primitive
basis

14 14 12 30 30 60

Table 8.4 Primitive basis, numbers of grid points and grid range used for each degree of freedom

Combined modes (r1, r2) (cos θ1, cos θ2) (r3, ϕ1)

Number of SPF
functions

25 30 30

The results obtained are shown in Fig. 8.7. The populations of the three eigen-
states |(0)s〉, |(0)a〉 and |(22)a〉 and of the two localized superpositions |L〉 and |R〉
defined in Eq. (8.1) show a good agreement with the results obtained with the effec-
tive Hamiltonian shown in Fig. 8.6. The slight differences between the two sets of
results are most probably due to the approximate nature of the effective Hamiltonian
described in the preceding section. The final population of the target superposition
|R〉 is approximately 0.971. The full dimensional dynamics calculation confirms the
global picture of the process that can be understood by considering the oversimplified
three-state system described in Sect. 8.2.1. The main reason comes from the fact that
the process under consideration takes place in the low-energy part of the spectrum
were the density of states is rather low, allowing for a selective coupling between
individual quantum states, even if the nature of the inversionmotion, explained by the
tunneling effect and resulting in a splitting of the vibrational states looks complicated
at first sight.
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Fig. 8.7 Population of states |(0)s〉 (blue full line), |(0)a〉 (green dashed line) and |(22)a〉 (red dotted
line) during the interaction with the laser pulse (left panel) in a complete 6D MCTDH simulation.
Population of the initial |L〉 (blue full line) and target |R〉 (green dashed line) superpositions (right
panel). Figure adapted from Ref. [1]

8.2.4.2 Linearly Polarized Field and One-Dimension Alignment

Here we consider the less restrictive situation where the molecule is aligned along
its most polarizable axis (one-dimensional alignment) corresponding to the direction
of inversion. To analyze how the enhancement of tunneling survives with respect to
this simpler one-dimensional alignment, we calculate the tunneling probability as a
function of the precession angle φ, for the field given in Eqs. (8.15) and (8.16), using
the effective Hamiltonian described in Sect. 8.2.3. The results of these calculations
are shown in Fig. 8.8 (left panel) along with the projections of the unit vector along
the Y axis of the laboratory frame L (which is the polarization direction of the electric
field) on the unit vectors along the three directions x, y and z of the molecular M
frame (right panel).

When φ equals zero, the system is in the situation explored in the previous section
(the electric field polarization is along the y axis) and the tunneling probability is
close to one. The second peak observed at φ ≈ 0.6π corresponds to the situation
where the electric field polarization direction is very close from the x direction of
the M frame. As seen in Table8.2, the 〈(0)a|μ(M)

x |(22)a〉 transition dipole moment
has a smaller value than that of the 〈(0)a|μ(M)

y |(22)a〉 transition dipole moment, thus
the parameters of the laser field used here do not induce a full tunneling inversion.
Figure8.8 also shows that for specific values of φ, namely φ ≈ 0.4π and between
φ ≈ 1.05π and φ ≈ 1.45π the tunneling probability drops to values close to zero.
At φ ≈ 0.4π the electric field interacts almost equally with the x and y components
of the dipole moment. Since the 〈(0)a|μ(M)

x |(22)a〉 and 〈(0)a|μ(M)
y |(22)a〉 have close

absolute values but different signs, they cancel out and the tunneling probability is
close to zero. Between φ ≈ 1.05π and φ ≈ 1.45π the z component of the dipole
moment dominates. The 〈(0)a|μ(M)

x |(22)a〉 and 〈(0)a|μ(M)
z |(22)a〉 transition dipole
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Fig. 8.8 Probability of tunneling as a function of φ for a molecule aligned along the Z axis of the L
frame.Theparameters of the laser pulse used in these calculations are ε0 = 10−2 au,ω = 1574 cm−1

and tp = 5280 fs, as in the previous sections (left panel). ProjectionsPx = �eY . �ex (blue),Py = �eY . �ey
(green) and Pz = �eY . �ez (red) of the unit vector along the field polarization direction on the three
directions x, y and z of the molecular frame M (right panel). Figure adapted from Ref. [1]

moments have almost identical values, thus one could expect to observe a full tun-
neling inversion for a field polarized along the z axis. However, as mentioned in
Sect. 8.2.3, transition dipole moments between the symmetric and antisymmetric
components of a same tunneling doublet are very large along the z direction. These
large transition dipole moments induce strong vibrational Stark shifts that destroy
the efficiency of the process.

The tunnelingprobability inducedby the laser fieldwhen themolecule experiences
an ideal one-dimensional alignment can be estimated by the value of the tunneling
probability averaged over the angle φ. In the present case, we found a rather low
tunneling probability of 0.35. We conclude that the enhancement of tunneling by a
linearly polarized laser pulse can only be efficiently induced on a three-dimensionally
aligned molecule.

8.2.4.3 Circularly Polarized Field and One-Dimension Alignment

We expect that a field circularly polarized in the plane orthogonal to the axis of
1D alignment should in principle much improve the enhancement of tunneling with
respect to a linearly polarized field as the circular polarization matches with the delo-
calization of the twomolecular axes that are not aligned. However such a field has no
actual couplingwith themolecule since the dipolemoment is here parallel to themost
polarizable axis (corresponding to the axis of 1D alignment). We thus alternatively
test a circularly polarized field in the (XY) plane, see Eq. (8.16). Figure8.9 shows
the tunneling with the circularly polarized field (8.16) as a function of the angle φ.
The enhancement of tunneling is achieved with a higher probability than with the
linearly polarized pulse, with an average value with respect to φ of 0.68.
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Fig. 8.9 Same as Fig. 8.6
but for the circularly
polarized pulse (8.16) with
E0 = 0.01au, tp = 5900 fs
and ω = 1574cm−1. Figure
adapted from Ref. [1]
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8.2.5 Conclusion

We have presented a computational study of the enhancement of tunneling induced
by a resonant laser pulse using an accurate six-dimensional model of NHD2. Our
aim was to investigate the possibility of applying a control strategy established for a
simple model system to a more complex system using accurate quantum dynamics
simulations. The control strategy was first analyzed using a simple three-state model,
providing an analytical formulation of the tunneling probability as a function of the
parameters of the field. An effective Hamiltonian was then introduced and used to
explore the influence of the parameters of the field on the efficiency of the process in a
more accurate framework. These calculations allowed us to find suitable parameters
of the field allowing to induce a nearly full tunneling inversion in a timemuch shorter
than the natural tunneling time of the molecule. Finally, the parameters were used
in a complete simulation of the laser induced dynamics of the molecule using an
accurate Hamiltonian composed of an exact vibrational KEO, and a set of accurate
potential end dipole moment surfaces.

As discussed in Chap. 6, strategies based on π-pulse techniques require a rather
fine tuning of the laser parameters to achieve a high-degree of control. Further studies
will be needed to overcome this major drawback and to be able to propose robust
control strategies, e.g. based on adiabatic passage, in complex realistic systems such
as polyatomic molecules.

Based on a static description of the relative orientation of the molecule and the
polarization of the laser pulse, we found that the control strategy can only produce
a high degree of control on a three-dimensionally aligned molecule, which from the
experimental point of view, represents a rather strong restriction. Considering the less
restrictive situation of a one-dimensionally aligned molecule, we have found that a
circularly polarized laser pulse would induce a higher degree of tunneling inversion
than a linearly polarized laser pulse. Further optimization of the field (such as an
elliptically polarized one) that would produce a significant tunneling enhancement
of the molecule experiencing a one-dimensional alignment should be investigated.

http://dx.doi.org/10.1007/978-3-319-28979-3_6
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8.3 Coherent Destruction of Tunneling

The phenomenon of coherent destruction of tunneling (CDT) was first discovered
by Grossmann et al. [16, 48–51]. They considered a particle moving in a one-
dimensional quartic double-well potential driven by a monochromatic laser field
and showed numerically that for specific values of the frequency and amplitude of
the radiation, the particle is forced to stay in one of the two wells as long as the
laser field is on. Since then, this intriguing phenomenon has been the object of fur-
ther theoretical analysis [17, 18, 52–58], extended in various forms [20, 59–70],
and demonstrated experimentally in different physical systems [71–74]. The role of
CDT in processes such as the strong field ionization of diatomic molecules [75] or
the proton transfer dynamics in tropolone [76] has also been discussed.

In this section, we explore theoretically the possible application of the CDT in
our accurate six-dimensional model of NHD2. As in the previous section, various
effective models were used to analyse the sensitivity of the process to variations
of the laser field parameters, and accurate quantum dynamics simulations using the
MCTDH method were then performed in order to confirm the results obtained with
the effective model.

Two different regimes were considered for the laser field frequency, as sketched in
Fig. 8.10. A non-resonant regime, where the frequency of the laser field (featured by
the blue arrow in Fig. 8.10) is much larger than the ground state tunneling splitting,
but much smaller than the transition frequency between the |(0)a〉 and |(21)s〉 states,
corresponding to an excitation of the inversionmotion.This regime corresponds to the
frequency regime considered in the original CDT papers [16, 48–51]. In this regime,
the phenomenonofCDT is analogous to the phenomenonof dynamical localization in
a high-frequency driven two-level system. In the second regime considered, referred
to as quasi-resonant regime, the frequency of the laser field (featured by the red arrow
in Fig. 8.10) is close to the transition frequency between the |(0)a〉 and |(21)s〉 states.
In this case, the phenomenon of CDT is a consequence of the different Stark shifts
induced by the laser field on the two tunneling components |(0)s〉 and |(0)a〉 of the
ground vibrational state.

In each case, we first studied the laser driven dynamics of the system in the
frameworkof theFloquet formalism, described inSect. 6.5 ofChap.6,whichprovides
a geometrical interpretation of the laser driven dynamics and its dependence on the
frequency and amplitude of the laser field, through the analysis of the eigenvalues of
the Floquet operator, called quasienergies. Various effective models were used for
that purpose. This analysis allowed us to explain the shape of the relevant quasienergy
curves as a function of the laser parameters, and to obtain the parameters of the laser
field that induce the CDT. We then used the MCTDH method to solve the TDSE for
the molecule in interaction with the laser field and compare these results with those
obtained from the effective Hamiltonian described in Sect. 8.2.3 above.

The models and methods used in this section are briefly outlined in Sect. 8.3.1.
Section8.3.2 presents our results and Sect. 8.3.3 concludes this chapter.

http://dx.doi.org/10.1007/978-3-319-28979-3_6
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Fig. 8.10 Energy diagram
illustrating the two laser field
frequency regimes
considered in this work. The
blue (red) arrow features the
non-resonant
(quasi-resonant) regime, see
text for details. Figure
adapted from Ref. [2]

8.3.1 Model and Methods

We assumed an ideally aligned molecule [29–34] (three-dimensional alignment) in
interactionwith a laser field linearly polarized along the z axis of themolecular frame.
The total angularmomentumwas fixed at J = 0. The interaction of themolecule with
a monochromatic laser field of amplitude ε0 and frequency ω

ε(t) = ε0 cos(ωt + θ) (8.35)

was studied in the framework of the Floquet formalism [77–82]. Again, we used the
142 lowest vibrational eigenstates of the molecule, computed in Ref. [23], and the
transition dipole moments between them, to construct an effective Floquet Hamil-
tonian [82]

Keff (θ) = −iω
∂

∂θ
+ Heff

0 − μeff
z ε0 cos(θ) (8.36)

whereHeff
0 is the diagonalmatrix of the vibrational eigenenergies,μeff

z is thematrix of
the z-component of the dipole moment (see Sect. 8.2.3 above) and ε0 is the amplitude
of the electric field of phase θ at t = 0, taken as a dynamical variable for the laser field.
The construction of quasienergy diagrams allows us to determine the parameters of
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the laser field that lead to the CDT. The TDSE for the molecule in interaction with
the laser field was then solved using both the effective Hamiltonian

Heff (t) = Heff
0 (t)μeff

z ε(t) (8.37)

and the exact vibrational Hamiltonian

H(q, t) = T(q) + V (q) + Hint(q, t), (8.38)

where T(q) is the J = 0 KEO in Radau coordinates, V (q) is the AMMPOT4 PES
[38] and Hint(t) = −μz(q)ε(t), where μz(q) denotes the z-component of the dipole
moment surfaces of Marquardt et al. [39] (see Sect. 8.2.2 above). The TDSE involv-
ing the effective Hamiltonian was solved using the split-operator scheme detailed
in Sect. 8.2.3. The TDSE involving the exact vibrational Hamiltonian was solved
using the MCTDH method. The comparison of the results obtained with the exact
and effective Hamiltonians allowed us to check the accuracy of the later, as in the
preceding section.

8.3.2 Results

8.3.2.1 The Non-resonant Regime

Quasienergy Diagram

Assuming the system in the |L〉 state at t = 0, the CDT is achieved if the system
remains localized in the |L〉 state as long as the laser field is on. We consider the
Floquet Hamiltonian K2 in the basis {|(0)s, k〉, |(0)a, k〉}, where k is the quantum
number describing the number of photons exchanged between the laser field and
the molecule, describing the molecule in interaction with a periodic time-dependent
laser field

K2(θ) = −iω
∂

∂θ
+

(
E(0)s � cos θ

� cos θ E(0)a

)
(8.39)

where � = −ε0〈(0)s|μz|(0)a〉 and E(0)s and E(0)a are the energies of the |(0)s〉 and
|(0)a〉 states, respectively. In the limit of high frequencies, i.e. when the frequency
of the laser field is much higher than the tunneling splitting ω � E(0)a − E(0)s , the
quasienergies �(0)a,k and �(0)s,k as a function of the parameters of the field � and ω
are given by simple analytic expressions, as shown below.

The operator K2(θ) of Eq. (8.39) can be written as the sum of a zeroth-order
Floquet Hamiltonian K0 and a perturbation W . Here, the field-free Hamiltonian of
the two-level system is considered as a perturbation of the field and the coupling
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K0(θ) = −iω
∂

∂θ
+

(
0 � cos θ

� cos θ 0

)
(8.40)

and

W =
(

E(0)s 0
0 E(0)a

)
. (8.41)

First we rewrite K2(θ) in the basis where K0 is diagonal by mean of a unitary trans-
formation

S1 = 1√
2

(
1 1
1 −1

)
. (8.42)

The transformed Floquet Hamiltonian K ′
2 = S†

1K2S1 then reads

K ′
2(θ) = −iω

∂

∂θ
+

(
� cos θ 0

0 −� cos θ

)
+ 1

2

(
� �

� �

)
, (8.43)

where� = E(0)s + E(0)a and� = E(0)s − E(0)a . One can note here that this is equiva-
lent to rewriting the Hamiltonian in the basis {|R, k〉, |L, k〉} of the (dressed) localized
states. We now apply a second unitary transformation

S2 =
(

e−i �
ω sin θ 0
0 ei �

ω sin θ

)
, (8.44)

which diagonalises the operator given by the two first terms of Eq. (8.43)

K ′′
2 = S†

2K ′
2S2

= −iω
∂

∂θ
+ 1

2

(
� �e2i �

ω sin θ

�e−2i �
ω sin θ �

)
. (8.45)

The exponential terms appearing in the last equation can be expanded as a sum
of Bessel functions

e2i �
ω sin θ = J0

(
2�

ω

)
+ 2

∞∑

n=1

Jn

(
2�

ω

)
ζn(θ) (8.46)

where

ζn(θ) =
{
cos(nθ), n even
i sin(nθ), n odd

(8.47)
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In the high frequency regime,ω � E(0)a − E(0)s , this expansion can be averaged over
θ which leaves only the first term

e2i �
ω sin θ ≈ J0

(
2�

ω

)
, (8.48)

where J0 is the zero-order Bessel function. It follows

K ′′
2 (θ) = −iω

∂

∂θ
+ 1

2

(
� �J0

(
2�
ω

)

�J0
(
2�
ω

)
�

)
. (8.49)

Now coming back to the initial basis {|(0)s, k〉, |(0)a, k〉}

K ′′′
2 (θ) = S1K ′′

2 S†
1

= −iω
∂

∂θ
+ 1

2

(
� + �J0

(
2�
ω

)
0

0 � − �J0
(
2�
ω

)
)

. (8.50)

From this last equation it is clear that the quasienergies read

�(0)s,k = 1

2
� + 1

2
�J0

(
2�

ω

)
+ kω (8.51)

�(0)a,k = 1

2
� − 1

2
�J0

(
2�

ω

)
+ kω (8.52)

and their difference

�(0)a,k − �(0)s,k = �J0

(
2�

ω

)
. (8.53)

In Sect. 8.2.1, the natural tunneling time of the system was defined as a function
of the field-free tunneling splitting, see Eq. (8.3). In analogy, the quasienergy differ-
ence �(0)a,k − �(0)s,k of Eq. (8.53) defines a field-dependent tunneling splitting, and
thus provides a field-dependent tunneling time. As a result, when the quasienergy
difference tends towards zero, the tunneling time become infinite and the CDT is
achieved. This condition J0

(
2�
ω

) = 0 defines a straight line in the field parameter
space [17]. The connection of the quasienergies �(0)s,k and �(0)a,k to the respective
field-free energies E(0)s and E(0)a , is achieved in a continuous way by an adiabatic
switching of the field until the value satisfying J0

(
2�
ω

) = 0.
This model gives a simple, analytic description of the phenomenon of CDT. How-

ever, it does not account for the possible effect of the higher vibrational states on
the laser driven dynamics. In the present case, the frequency of the laser field is far
from any resonance. Therefore, one does not expect it to induce population transfers
among the vibrational states. Nevertheless, the presence of higher vibrational states
can influence the dynamics through vibrational Stark shifts. These Stark shifts can
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approximately be accounted for by applying second-order stationary perturbation
theory.

We start by rewriting the effective Floquet operator Keff of Eq. (8.36) as the sum
of a zeroth order Floquet Hamiltonian Keff

0 and a perturbation operator W

Keff (θ) = Keff
0 (θ) + W (θ) (8.54)

with

Keff
0 (θ) = −iω

∂

∂θ
+ Heff

0 (8.55)

and
W (θ) = −μ

eff
zBF ε0 cos(θ). (8.56)

The eigenstates and eigenenergies of the Keff
0 (θ) operator are simply

Keff
0 |φn,k〉 = �

(0)
n,k|φn,k〉, �

(0)
n,k = En + kω, (8.57)

where |φn,k〉 = |χn〉 ⊗ |ξk〉 (see Sect. 6.4 of Chap.6), |χn〉 and En are the eigenele-
ments of the molecular effective Hamiltonian Heff

0

Heff
0 |χn〉 = En|χn〉, (8.58)

and |ξk〉 are the eigenvectors of the operator −iω ∂
∂θ

− iω
∂

∂θ
|ξk〉 = kω|ξk〉. (8.59)

The first-order correction to the energy is zero

�
(1)
n,k = 〈φn,k|W (θ)|φn,k〉

= −ε0〈χn|μz|χn〉〈ξk| cos(θ)|ξk〉
= 0. (8.60)

The second-order correction to the energy reads

�
(2)
n,k =

∑

p

∑

l

∣∣〈φp,l|W (θ)|φn,k〉
∣∣2

�
(0)
n,k − �

(0)
p,l

=
∑

p

ε20
∣∣μpn

∣∣2
(

|〈ξk−1| cos(θ)|ξk〉|2
En − Ep + ω

+ |〈ξk+1| cos(θ)|ξk〉|2
En − Ep − ω

)

= −1

4
ε20

∑

p

∣∣μpn

∣∣2
(

1

Ep − En + ω
+ 1

Ep − En − ω

)
, (8.61)

http://dx.doi.org/10.1007/978-3-319-28979-3_6
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where μpn = 〈χp|μz|χn〉. One can now define an effective Floquet Hamiltonian in
the basis {|(0)s, k〉, |(0)a, k〉} including the effect of the higher dressed vibrational
states through second-order perturbation theory

KPT
2 (θ) = −iω

∂

∂θ
+

(
E′

(0)s � cos θ

� cos θ E′
(0)a

)
(8.62)

with

E′
(0)s = E(0)s − 1

4
ε20

∑

p

∣∣μp(0)s

∣∣2
(

1

Ep − E(0)s + ω
+ 1

Ep − E(0)s − ω

)
(8.63)

E′
(0)a = E(0)a − 1

4
ε20

∑

p

∣∣μp(0)a

∣∣2
(

1

Ep − E(0)a + ω
+ 1

Ep − E(0)a − ω

)
(8.64)

and where p runs over all the vibrational states except the |(0)s〉 and |(0)a〉 states.
Applying the high-frequency approximation, one obtains for the quasienergies

�(0)s,k = 1

2
�′ + 1

2
�′J0

(
2�

ω

)
+ kω (8.65)

�(0)a,k = 1

2
�′ − 1

2
�′J0

(
2�

ω

)
+ kω (8.66)

and their difference

�(0)a,k − �(0)s,k = �′J0
(
2�

ω

)
. (8.67)

with �′ = E′
(0)s + E′

(0)a and �′ = E′
(0)s − E′

(0)a .
The quasienergies �(0)s,0 and �(0)a,0 associated with the dressed states continu-

ously connected with the |(0)s〉 and |(0)a〉 states, as a function of the amplitude of the
electric field for three different frequencies of ω =50, 80 and 100cm−1 are presented
in Fig. 8.11. The results obtained from the two-level model using Eqs. (8.51) and
(8.52) are shown in red dotted lines, the results obtained from the perturbative model
using Eqs. (8.65) and (8.66) are shown in blue dashed lines and the results obtained
numerically from the effective Floquet Hamiltonian of Eq. (8.36) are shown in black
full lines. Figure8.11 panels (a), (b) and (c) shows that the shape of the quasienergy
curves is explained by two different factors. The quasienergy curves obtained from
the two-level model show multiple crossings at field amplitudes determined by the
zeros of the Bessel function J0

(
2�
ω

)
. The quasienergy curves obtained numerically

using the effective Floquet Hamiltonian of Eq. (8.36) show a similar behavior, super-
imposed with an amplitude-dependent red-shift induced by the vibrational Stark
effect. A comparison with the quasienergy curves obtained from the perturbative
model using Eqs. (8.51) and (8.52) shows that these Stark shifts are well accounted
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Fig. 8.11 Quasienergies ε(0)s,0 and ε(0)a,0 plotted as a function of the laser field amplitude for
three different frequencies a ω =50cm−1, b 80cm−1 and c 100cm−1. The results obtained from
the two-level model using Eqs. (8.51) and (8.52) are shown in red dotted lines, the results obtained
from the perturbative model using Eqs. (8.65) and (8.66) are shown in blue dashed lines and the
results obtained numerically using the effective Floquet Hamiltonian of Eq. (8.36) are shown in
black full lines. The blue dashed lines and black full lines are almost superimposed. Figure adapted
from Ref. [2]

Fig. 8.12 Amplitudes and
frequencies of the field
which lead to CDT. The full
lines represent the
parameters obtained from the
two-level model of Eq. (8.53)
and the crosses represent the
parameters obtained with the
effective Floquet
Hamiltonian of Eq. (8.36).
The parameters given by the
first, second, third and fourth
crossing for each frequency
are plotted in blue, red, green
and magenta, respectively.
Figure adapted from Ref. [2]
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for by second-order perturbation theory. The parameters required to achieve the CDT
obtained from the two-level model and the effective Floquet Hamiltonian are dis-
played in Fig. 8.12. One can see that the effective Floquet Hamiltonian reproduces the
linear relationship between the frequencies and amplitudes of the laser field required
to achieve the CDT predicted by the simple two-level model.
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Time-Dependent Simulations

In order to demonstrate numerically the relation between the CDT and the crossing
of the quasienergy curves shown in Fig. 8.11, we have solved the TDSE

Heff (t)�(t) = i�
d�(t)

dt
(8.68)

starting from one of the |L〉 localized superposition. For the electric field, we con-
sidered a monochromatic radiation smoothly turned on of expression

ε(t) =
{

ε0 sin2
(

πt
2tramp

)
cos(ωt) for t ≤ tramp

ε0 cos(ωt) for t > tramp

, (8.69)

where ε0 and is the amplitude, ω the frequency and tramp the duration of the ramp
of the electric field. A ramp of four optical cycles is considered, i.e. tramp = 8π/ω.
Calculations withω =50, 80 and 100cm−1 were performed. For each of these values,
the amplitudes ε0 = 9.00 × 10−4, 1.43 × 10−3 and 1.78 × 10−3 au, given by the first
crossing of the two quasienergy curves �(0)s,0 and �(0)a,0, were used. The dynamics
of the system in interaction with the laser field was calculated for 105ps, which is the
approximate field-free tunneling time for NHD2. Figure8.13 shows the population
of the |L〉 localized state as a function of time. These results show that, in the three
cases, the CDT is achieve with a high efficiency, as the system is seen to remains
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Fig. 8.13 |L〉 localized state populations obtained from the solution of the TDSE of Eq. (8.68) for
the laser field frequencies and amplitudesω = 50cm−1 and ε0 = 9.00 × 10−4 au (a),ω = 80cm−1

and ε0 = 1.43 × 10−3 au (b) and ω = 100cm−1 and ε0 = 1.78 × 10−3 au (c). Figure adapted from
Ref. [2]
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Table 8.5 Single particle
function bases used in the
calculations

Combined
modes

(r1,r2) (u1,u2) (r3,ϕ1)

SPF basis 1 6 10 10

SPF basis 2 10 15 15

SPF basis 3 15 20 20

SPF basis 4 25 30 30

localized in the initial well with a probability of more than 99.9%. In addition, the
populations show fast oscillations that are not resolved in Fig. 8.13, originating from
small amplitude Rabi oscillations between the |(0)s〉 and |(0)a〉 states induced by the
laser field.

As in Sect. 8.2, the accuracy of the effective model was checked by solving the
TDSE with the exact 6D vibrational Hamiltonian using the MCTDH method. The
combined modes and sizes single-particle function (SPF) bases used in the calcula-
tions are presented in Table8.5.

To study the convergence of the calculations with respect to the size of the SPF
basis, calculations with SPF bases of increasing sizes, were performed. Because
of their relatively high computational cost, these calculations were performed over
10ps only. The frequency and amplitude of the laser field were set to ω = 50cm−1

and ε0 = 9.0 × 10−4 au, respectively. The populations of the initial localized state
|L〉 obtained from the MCTDH calculations, compared with that obtained with the
effective Hamiltonian, are presented in Fig. 8.14. The |L〉 state population obtained
from the calculation with the small SPF basis 1 (magenta curve) is almost identical
to that obtained from the effective Hamiltonian. However, when the size of the SPF
basis is increased, one observes a deviation of the MCTDH result compared to the
effective model. Specifically, the |L〉 state population obtained from the SPF basis 2
(green curve) follows closely the population obtained with the effective model up to
approximately t = 2.5ps, and then suddenly drops down. Surprisingly, when the
size of the SPF basis is further increased, the MCTDH results still deviate from the
effectivemodel, but to a lesser extent. The difference between the |L〉 state population
computed with the SPF basis 4 and that computed with the effective Hamiltonian is
only of roughly 0.1% at t = 10ps. These calculations reveal the approximate nature
of the effective Hamiltonian, despite the relatively high number of vibrational states
included. Nevertheless, it allows to obtain the parameters of the field required to
achieve an efficient CDT, at least for relatively short times.

8.3.2.2 The Quasi-resonant Regime

Quasienergy Diagram

In the quasi-resonant regime, the frequency of the laser field is close to the transi-
tion frequency between the |(0)a〉 and |(21)s〉 states, as featured by the



8.3 Coherent Destruction of Tunneling 177

0 2 4 6 8 10
0.996

0.997

0.998

0.999

1

Time (ps)

P
op

ul
at

io
ns

Fig. 8.14 |L〉 localized state populations obtained from the solution of the TDSE using the exact
vibrational Hamiltonian, the laser field frequency and amplitude ω = 50cm−1 and ε0 = 9.00 ×
10−4 au and the SPF basis 1 (magenta), SPF basis 2 (green), SPF basis 3 (blue) and SPF basis 4
(red). The population computed with the effective Hamiltonian of Eq. (8.25) is shown in black for
comparison. Figure adapted from Ref. [2]

red arrow in Fig. 8.10. A minimal model Hamiltonian in the dressed state basis{|(0)s, 0〉, |(0)a, 0〉, |(21)s,−1〉, |(21)a,−1〉}, can be written in the framework of the
resonant wave approximation (RWA)

HRW A =

⎛

⎜⎜⎝

E(0)s 0 0 �(0)s,(21)a

0 E(0)a �(0)a,(21)s 0
0 �(0)a,(21)s E(21)s − ω 0

�(0)s,(21)a 0 0 E(21)a − ω

⎞

⎟⎟⎠ , (8.70)

where, in this case, the Rabi frequencies read, e.g.

�(0)s,(21)a = −1

2
ε0〈(0)s|μz|(21)a〉, (8.71)

and identical expressions for �(0)a,(21)s , �(0)a,(21)s and �(0)s,(21)a . Here, because the
frequency of the laser field is much higher than in the previous section, the transi-
tion dipole moment between the |(0)s〉 and |(0)a〉 states can be simply neglected.
Diagonalizing this Hamiltonian, one obtains

�(0)s,0 = 1

2
(E(0)a + E(21)s − ω) − 1

2

√
(E(21)s − ω − E(0)a)2 + 4�2

(0)a,(21)s (8.72)

�(0)a,0 = 1

2
(E(0)s + E(21)a − ω) − 1

2

√
(E(21)a − ω − E(0)s)2 + 4�2

(0)s,(21)a (8.73)
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Fig. 8.15 Quasienergies �(0)s,0 and �(0)a,0 plotted as a function of the laser field amplitude for
three different frequencies a ω =795cm−1, b 800cm−1 and c 805cm−1. The results obtained from
the minimal model using Eqs. (8.72) and (8.73) are shown in blue dashed lines and the results
obtained from the effective Floquet Hamiltonian of Eq. (8.36) are shown in black full lines. Figure
adapted from Ref. [2]

The quasienergies �(0)s,0 and �(0)a,0 associated with the dressed states continuously
connectedwith the |(0)s〉 and |(0)a〉 states as a function of the amplitude of the electric
field for three different field frequencies of 795, 800 and 805cm−1 are presented in
Fig. 8.15. These frequencies are close to the resonance between the |(0)a〉 and the
|(21)s〉 states at 808.65cm−1. The results obtained from the minimal model using
Eqs. (8.72) and (8.73) are shown in blue dashed lines and the results obtained from
the effective Floquet Hamiltonian of Eq. (8.36) are shown in black full lines.

The mechanism at the origin of the CDT in the quasi-resonant regime is differ-
ent than in the case of the non-resonant regime described in Sect. 8.3.2.1 above. In
the non-resonant regime, the CDT can be well understood in a two-level system
because the frequency of the field is low with respect to the transition frequency to
vibrationally excited states. The CDT originates from the fact that the frequency,
on the other hand, is high with respect to the ground state tunneling splitting. As
seen in Fig. 8.11, �(0)s,0 and �(0)a,0 the quasienergy curves show multiple crossings
at amplitude determined by the zeros of the Bessel functions. Although the vibra-
tional Stark shifts were found to have a non-negligible effect on the shape of the
quasienergy curves, these effects were found to be very similar for the two �(0)s,0

and �(0)a,0 quasienergy curves. As a result, the vibrational Stark effect was found to
have a negligible impact on the amplitude required to achieve the CDT for a given
frequency. In addition, it is seen in Fig. 8.11 that the amplitude of the first crossing
increases as the frequency of the field increases. In the quasi-resonant regime, the
frequency of the field is chosen to be much higher than in the non-resonant regime,
therefore the amplitude of the first crossing obtained in a simple two-level model
would be extremely high. In addition, such a two-level model would obviously not be
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a suitablemodel as the frequency of the field is chosen to be close to the transition fre-
quency between the two ground state tunneling components and the two first excited
state tunneling components. This choice has two important consequences. First, the
vibrational Stark shifts experienced by the |(0)s〉 and |(0)a〉 are dominated by the con-
tributions originating from the |(21)a〉 and |(21)s〉 states, respectively. This justify the
use of the effective four-level model described above. In addition, the frequency of
the laser field is closer to the transition frequency between the |(0)a〉 and |(21)s〉
states (808.65cm−1) than that between the |(0)s〉 and |(21)a〉 states (817.68cm−1).
Therefore the Stark shift induced by the laser field on the |(0)a〉 state is larger than
the one induced on the |(0)s〉. As a result, in the quasi-resonant regime, the quasi-
energies�(0)s,0 and�(0)a,0 associated with the dressed states continuously connected
with the |(0)s〉 and |(0)a〉 states only show a single crossing. The amplitude of the
laser field required to induce the quasienergy crossing gets smaller as the frequency
of the field approaches that of the resonance between the |(0)a〉 and |(21)s〉 states.
The quasienergies given by the analytical expressions of Eqs. (8.72) and (8.73) fol-
low closely the quasienergies obtained from the effective Floquet Hamiltonian of
Eq. (8.36) at low field amplitudes. However, as the field amplitude is increased, the
minimal model becomes less accurate. This indicates that, at higher amplitudes, the
Stark shifts induced by the higher vibrational states become non negligible.

The parameters of the laser field required to achieve the CDT, obtained from the
minimal RWAHamiltonian and with the effective Floquet Hamiltonian are displayed
in Fig. 8.16. One can see that the results obtained with the minimal four-level RWA
Hamiltonian and with the effective Floquet Hamiltonian are in good agreement for
laser field frequencies close to the resonance between the |(0)a〉 and |(21)s〉 states,
whereas at lower frequencies, the minimal RWA Hamiltonian yields less accurate

Fig. 8.16 Amplitudes and
frequencies of the field
which lead to CDT. The blue
circles represent the
parameters obtained from the
minimal model using
Eqs. (8.72) and (8.73) and
the crosses represent the
parameters obtained with the
effective Floquet
Hamiltonian of Eq. (8.36).
Figure adapted from Ref. [2]
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results. This discrepancy occurs because, at lower frequencies, the Stark shifts are
less strongly dominated by the contributions originating from the |(21)s〉 and |(21)a〉
states.

Time-Dependent Simulations

Again, the TDSE of Eq. (8.68) associated with the effective Hamiltonian Heff (t) was
solved using the field amplitudes required to achieve the CDT determined by the Flo-
quet analysis of the previous section. Three frequencies ω = 795, 800 and 805cm−1

were considered with the corresponding amplitudes ε0 = 6.2 × 10−4, 4.17 × 10−4

and 2.3 × 10−4 au, respectively. The electric field is given by Eq. (8.69) with a ramp
of 50 optical cycles. The population of the |L〉 localized state for the three set of field
parameters are presented in Fig. 8.17. As in the non-resonant regime, the |L〉 state
populations show oscillations. The amplitude of these oscillations increases as the
frequency of the laser field approaches the resonance between the |(0)a〉 and |(21)s〉
states. In the present case, these are Rabi oscillations between the |(0)a〉 and |(21)s〉
states induced by the laser field. In addition, a comparison between Figs. 8.15 and
8.11 shows that, in the quasi-resonant regime, the amplitude of the laser field required
to achieve the CDT is smaller than in the non-resonant regime, which would be of
interest for a practical implementation.

The accuracy of the 142 state effective Hamiltonian was then checked by solv-
ing the TDSE involving the exact vibrational Hamiltonian H(t) using the MCTDH
method. The frequency and amplitude of the laser field were set toω = 800cm−1 and
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Fig. 8.17 |L〉 localized state populations obtained from the solution of theTDSEofEq. (8.68) for the
laser field frequencies and amplitudes ω = 795cm−1 and ε0 = 6.2 × 10−4 au (a), ω = 800cm−1

and ε0 = 4.17 × 10−4 au (b) and ω = 805cm−1 and ε0 = 2.3 × 10−4 au (c). Figure adapted from
Ref. [2]
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Fig. 8.18 |L〉 localized state populations obtained from the solution of the TDSE using the exact
vibrational Hamiltonian, the laser field frequency and amplitude ω = 800cm−1 and ε0 = 4.17 ×
10−4 and the SPF basis 1 (magenta), SPF basis 2 (green), SPF basis 3 (blue) and SPF basis 4
(red). The population computed with the effective Hamiltonian of Eq. (8.25) is shown in black for
comparison. Figure adapted from Ref. [2]

ε0 = 4.17 × 10−4 au respectively. Calculations using the four SPF bases presented
in Table8.5 were performed. The populations of the |L〉 localized state obtained from
these calculations, and compared with the population obtained using the effective
Hamiltonian are presented in Fig. 8.18. In agreement with the result obtained using
the effective Hamiltonian, the populations of the |L〉 state obtained from theMCTDH
calculations using the four different SPF bases stay above 0.95 during the first 10ps.
This indicates that the laser field parameters that lead to the CDT are accurately pre-
dicted by the effective Hamiltonian. The calculations with the SPF bases 1, 2 and 3
yield rather different populations, especially for t > 6ps. In contrast, the populations
computed with the SPF bases 3 and 4 are very similar over the 10ps of the simu-
lation, indicating that the SPF basis 3 is sufficient to obtain converged results. The
period of the Rabi oscillations between the |(0)a〉 and |(21)s〉 states obtained from the
MCTDH calculations are shorter than the ones obtained with the effective Hamil-
tonian. This indicates that the details of these Rabi oscillations are highly dependent
on the details of the model. Indeed, Fig. 8.18 shows that the |L〉 localized state pop-
ulations obtained from the full MCTDH calculations only match that obtained from
the 142 state effective Hamiltonian during the first Rabi oscillation.

8.3.3 Summary

Thephenomenonof coherent destructionof tunnelingwas investigated in a six dimen-
sional, rotationless model of NHD2. Two different regimes were considered for the
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frequency of the laser field. A non-resonant regime, where the frequency of the laser
field is much larger than the ground state tunneling splitting, but much smaller than
excitation frequency of the inversionmode. This regime corresponds to the frequency
regime considered in the original CDT papers [16, 48–51]. In this regime, the CDT
is analogous to the phenomenon of dynamical localization in a driven two-level sys-
tem and can be understood using simple analytical formulas. In the second regime
considered, the quasi-resonant regime, the frequency of the laser field is close to
the frequency of the transition between the |(0)a〉 and |(21)s〉 states. In this case, the
CDT originates in the difference between the Stark shifts induced on the |(0)s〉 and
|(0)a〉 states. In both case, the system was studied in the framework of the Floquet
formalism, using effective models. This analysis allowed us to explain the shape of
the quasienergy curves corresponding to the dressed states continuously connected
to the |(0)a〉 and |(0)s〉 vibrational states and to determine, for each field frequency
considered, the field amplitude required to achieve the CDT. The TDSE was then
solved for the molecule in interaction with an adiabatically turned on continuous
wave field using both an effective Hamiltonian written in a basis containing the low-
est 142 vibrational states and the exact full dimensional vibrational Hamiltonian. Our
results show that, in the quasi-resonant regime, the CDT can be achieved with less
intense laser fields than in the non-resonant regime, which would be advantageous
experimentally.

8.4 Conclusion

The results presented in this chapter show that the use of proper effective models, in
combinationwith calculations basedon the exact vibrationalHamiltonian, constitutes
a promising approach to study the laser driven vibrational dynamics of polyatomic
molecules. In this context, the MCTDH method is an invaluable tool as it allows to
compute the laser driven dynamics of polyatomic molecules with a high accuracy,

However, our models still contain simplifications that prevent a direct comparison
of our results with potential experiments. First, the rotational motion of the molecule
was not explicitly described in the present work. The inclusion of the rotation in
the description of the dynamics of the molecule is expected to be important in sev-
eral ways. First, even at low energies, the inclusion of the rotational structure would
result in a more complicated system with different selection rules. In addition, the
orientation of the molecule with respect to the laser field polarization would make
the control less efficient because of the rotational averaging of the laser-molecule
interaction and the possible existence of competing processes. On the other hand,
the combination of the laser control of the molecular alignment/orientation with the
vibrational control proposed in this work could allow for a more complete control
of the dynamics of the molecule. A second simplification of our models concerns
the initial state chosen for the simulations. We have considered a molecule in a
localized coherent superposition of vibrational eigenstates but we have not studied
the preparation of this state. We note here that a control scheme for the localiza-
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tion of the dynamics of a particle in a symmetric double well potential, starting
from the ground delocalized eigenstate and using a three-photon process, has been
proposed [20].
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Chapter 9
Conclusion

In the work presented in the first Part of this thesis, we have used high-level elec-
tronic structure and nuclear quantum dynamics calculation techniques to study the
photochemistry of simple aromatic organic molecules. In a first application, initiated
during a six-month fellowship in the experimental group of Helen Fielding in the
Chemistry Department of University College London, we have studied the photo-
chemistry of aniline through a systematic exploration of the potential energy surfaces
of the low-lying 1ππ∗, 1πσ∗ and 2ππ∗ states of the pmolecule using CASSCF and
XMCQDPT2 calculations. Several previously unknown minimum energy conical
intersections and the associated decay pathways have been reported. These include
a prefulvene conical intersection between the 1ππ∗ and the ground states, charac-
terized by an out-of-plane distortion of the carbon atom of the phenyl ring holding
the amino group. The presence of a relatively high potential energy barrier along the
prefulvene decay channel prevents the molecule from accessing this channel after
photoexcitation close to the onset of the 1ππ∗ state. The top of the barrier being
at a higher energy than the vertical excitation energy of the higher 1πσ∗ state, the
decay of the molecule at the prefulvene CIs is only observed as a secondary chan-
nel, following the transfer of the system from a higher state to the 1ππ∗ state. This
prefulvene MECI occurs at a lower energy than the three other, previously known,
prefulvene MECIs and its structure is close to the structure of the 1ππ∗/2ππ∗ MECI
responsible for a transfer of the molecule to the 1ππ∗ state after excitation to the
2ππ∗ state. Therefore the decay of the molecule through the prefulvene pathway is
likely to be dominated by this newly characterized prefulvene CI. A relaxed poten-
tial energy scan describing the dissociation of one of the N–H bonds of the amino
group has been presented, which supports the experimental observation of an ultra-
fast decay involving the previously known 1ππ∗/1πσ∗ CI. Finally, a new decay
pathway, connecting in a barrierless manner the FC region of the 2ππ∗ potential
energy surface to a low-lying conical intersection with the ground state has been
found. This pathway, featuring a probable three-state CI involving the 1ππ∗, 1πσ∗
and 2ππ∗ states, supports the interpretation, previously proposed by Fielding et al.,
that the shortest time constant of approximately 50 fs, measured after photoexcitation
to the 2ππ∗ state, is associated with an efficient decay process, transferring directly
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the system to its ground state. While these results provide a significant new insight
into the intricate photochemistry of aniline, some experimental observations will
require further efforts to find a definitive interpretation. In particular, the role of the
tunneling of the dissociating H atom through the potential energy barrier separating
the quasi-bound and dissociative parts of the 1πσ∗ surface is difficult to analyse
from static electronic structure calculations. Nevertheless, our work has stimulated
new experiments, undergone in the Fielding group, involving a comparison of the
photochemistries of aniline and its deuterated analogue, in order to provide a deeper
understanding of the role of tunneling in the photochemistry of aniline.

In a second application, we have studied the photophysics of pyrazine, with a
particular focus on the role of the low-lying dark nπ∗ states. While the existence
of these dark states is well established from previous ab initio investigations of
the excited electronic states of the molecule, and despite the very large number
of previous theoretical investigations of its non-adiabatic dynamics, the possible
role of these states has only been highlighted in previous trajectory surface-hopping
dynamics studies [1, 2].We have usedXMCQDPT2 calculations to design a vibronic
couplingmodelHamiltonian andperformedMCTDHquantumdynamics simulations
of the absorption spectrumand the ultrafast radiationless decay process occuring after
excitation to the bright ππ∗ state of the molecule. Our results show the existence of a
competition between the well known ultrafast decay to the bright B3u(nπ∗) state and
a decay to the dark Au(nπ∗) state, establishing the important role of the latter in the
ultrafast photophysics of the molecule. More recently, in a work not presented in this
thesis [3],we have extended ourmodel to investigate the further decay of themolecule
to its ground state. Our quantum dynamics simulations show that this decay occurs
through a conical intersection between the Au(nπ∗) and the ground state, and predict
a time scale in agreement with experimental observations. Therefore this work gives
further evidence of the important role of the Au(nπ∗) state in the photophysics of
pyrazine.

These studies illustrate the fact that, thanks to the enormous progress in the
methodological development of highly accurate and efficient computational tech-
niques, reliable electronic structure and quantum dynamics calculations can now be
performed on photoexcited mid-size molecular systems. These calculations are able
to provide a deep insight into the structure and dynamics of such molecules and
constitute invaluable tools to help in the interpretation of increasingly sophisticated
experimental investigations of their photochemistry. Nevertheless, the application of
these techniques to a broader range of systems of interest for our understanding of
the photochemistry of important biological molecule and for the design of innova-
tive photoresponsive materials will require further efforts. For instance, the quantum
dynamical study of the photophysics of pyrazine is facilitated by the fact that it is
dominated by decay processes involving only low amplitude vibrational motions of
the molecule. Therefore, model potential energy surfaces and coupling terms that are
only accurate around the equilibrium geometry are sufficient to provide a reliable
description of these processes by quantumdynamics simulations. However, our study
of aniline shows that, despite its simple structure, its photochemistry is more intricate
and involves several decay pathways characterized by large amplitude motions of
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the nuclei, which can not be described by simple coupled harmonic potentials. This
is illustrated by the recent quantum dynamics study of Wang et al. [4]. They have
constructed a sophisticated vibronic coupling model based on an extensive mapping
of the potential energy surfaces using high-level electronic structure calculations.
Their model provided a remarkably accurate simulation of the absorption spectrum
of the molecule. However, despite its quality, it could not account for the ultrafast
decay observed experimentally after excitation to the 2ππ∗ state. This illustrates the
considerable challenge posed by the development of accurate model potentials for
use in quantum dynamics simulations of photochemical processes involving large
amplitudemotions of the nuclei. This challenge is currently an active area of research,
and several significant advances towards this goal have been reported recently. One
can mention for instance, the model Hamiltonian describing the ring opening of ben-
zopyrane, developed by Joubert-Doriol et al. [5], the model Hamiltonian of Jornet
Somoza et al. [6], describing the excited state dynamics of ethylene, the recent work
of Köppel et al. on the exited state dynamics of butadiene [7] and the ring-opening of
furan [8], or the recent set of full-dimensional potential energy surfaces for phenol
of Zhu and Yarkony [9].

An other important topic for the future development of quantum dynamics for
photochemistry is the inclusion of the environment of the molecular system in the
models. Indeed, while the study of isolated molecular system applies to gas phase
processes, most photochemical systems of interest are embedded in an environment.
For instance, a large number of industrial reactions used to synthesize chemical com-
pounds of interest are catalyzed at metal surfaces. Many technological devices based
onmolecularmaterials, including for instance, new generations of solar cells, involve
molecular system adsorbed at the surface of nanomaterials. Biological molecules of
interest are dissolved in water, and often embedded in a protein environment. This
environment often has a significant influence on the dynamics of the molecular sys-
tems of interest. Awell known example, that is the subject of intensive investigations,
is the fluorescent proteins. These systems involve organic chromophores embedded
in a protein environment. Taking the example of theGreenFluorescent Protein (GFP),
it is know that the isolated chromophore, or the chromophore in solution, undergoes
an ultrafast non-radiative decay after photoexcitation, and has therefore a low fluo-
rescence quantum yield. However, when it is embedded in its protein environment,
this ultrafast decay process is quenched by the influence of this environment and the
protein is fluorescent. Therefore, the development of computational protocols able
to describe the effect of this environment on the dynamics of the molecular system
is of high interest. Examples of such methodologies are quantum dissipative dynam-
ics, based on the propagation of density operators [10] or hybrid QM/MM methods
allowing for a quantum treatment of the molecular system and a classical treatment
of its environment [11].

As seen in second part of these thesis, the development of efficient quantum
dynamical computational methods also opened the door to the study of the laser
control of polyatomic molecular systems. In a first application, we used a simplified
model Hamiltonian describing the excited state dynamics of pyrazine to investigate
the laser control of its ultrafast radiationless decay by a strong non-resonant laser
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pulse. We found that a strong non-resonant pulse can significantly alter, through the
dynamic Stark effect, the topography of the conically intersecting potential energy
surfaces of the molecule and thus influence its decay dynamics. In particular, we
have found that, because of the difference of polarizability between the B3u(nπ∗)
and B2u(ππ∗) states, the strong non-resonant pulse can trap the wavepacket in the
upper B2u(ππ∗) state, and can suppress the radiationless decay to the B3u(nπ∗) state
for a timemuch longer than the natural time scale of the process. In a subsequentwork,
the same control mechanism was investigated in a model including the twenty-four
vibrational modes of the molecule, in the basis of our work. These full-dimensional
calculations, employing the multi-layer MCTDH method, performed by Saab et al.
[12], showed that the control could still be achieved, despite the fact that the natural
decay process is more efficient in the full-dimensional model, than in the simpler
model used in the present work. This work therefore established the robustness of the
proposed control mechanism with respect to the details of the model used to describe
the system.

In a second application, we have investigated the laser control of the tunneling
dynamics in NHD2 using a model including the six vibrational degrees of freedom
of the molecule. Both the laser induced enhancement of tunneling by a resonant
pulse and the coherent destruction of tunneling were considered. Our computational
strategy involved the use of different models of increasing complexity in order to
understand the general properties of the control mechanisms and to find sets of
parameters of the laser field allowing for an efficient implementation of the control
schemes studied. MCTDH quantum dynamics simulation using the exact vibrational
Hamiltonian operator were then performed in order to confirm the applicability of
these control schemes to the full system.

These studies established the MCTDHmethod as a powerful tool for the theoreti-
cal study of the laser control of molecular processes involving polyatomicmolecules.
However, several issues will need to be addressed in order to be able to design and
propose laser control schemes that can be readily implemented experimentally. First,
a number of control schemes developed so far rely on the knowledge of the individual
quantum states of the system. However, the calculation of the rovibrational states of
realistic molecular system is, in most cases, an extremely difficult task, especially
when several coupled excited electronic states are considered. It is thus important to
develop control schemes that rely on more accessible features of the system, such as
the topography of the potential energy surfaces. The control schemes based on the
dynamic Stark effect are interesting examples of such control schemes that do not
require the knowledge of the individual quantum states of the system. However, their
applicability to the control of a given molecular system, and the variety of targets
that can be reached, depends on the topography of the polarizability surfaces of the
molecule. An alternative approach, in this context, would involve resonant control
schemes based on the creation of dressed electronic potential energy surfaces with an
adiabatically controlled topography. A similar approach has been tested byGarraway
and Suominen [13] and Solá et al. [14] for simple diatomic systems.

In addition, the rotational motion of the molecules was not explicitly included in
our models. It is well established that, because of the necessary random orientation
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of the individual molecules in a sample with respect to the polarization of the laser
feld, the rotational motion has a detrimental effect on the efficiency with which the
system can be controlled. Therefore, a systematic inclusion of the rotational motion
in the models used to study the laser control of molecular systems would provide
a valuable insight into the applicability of a given control scenario. In addition,
it would allow one to combine a given control scenario with the well established
techniques of laser induced molecular alignment and orientation, and thus to design
more efficient control scenarios that could be implemented experimentally. In this
context, the recent implementation of the theoretical machinery required to include
the interaction of a rotating molecule with a laser field into the Heidelberg MCTDH
program package will open exciting possibilities in the theoretical study of the laser
control of complex molecular processes.
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