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Preface

When you edit a book, the editors should ask themselves, why are we do-
ing this and whom are we doing this for? To whom could this book be 
valuable as a source of information and possibly inspiration and of course 
are there other books with similar topics on the market? Indeed the mathe-
matical structure 'partial order' is explained in many mathematical text-
books, which require different degrees of mathematical skills to compre-
hend. Thus, as far as we can tell, all these books are dedicated directly 
towards mathematician working in the area of Discrete Mathematics and 
Theoretical Informatics. Although partial order is very well known in 
quantum mechanics, especially within the context of Young-diagrams, lit-
erature stressing the application aspect of partial order seems to be not 
available. However, an increasing number of publications in scientific 
journals have in recent years appeared, applying partial order to various 
fields of chemistry and environmental sciences. A recent summary can be 
found in a special issue of the journal Match - Commun.Math.Comput. 
Chem. 2000, edited by Klein and Brickmann. However, we believe that 
this journal possibly is too specific and as such it may not reach scientists 
actually applying partial order in various fields of research. Hence, we 
dared to initiate the editing of this book in order to address a broader audi-
ence and we were happy to convincing distinguished scientists working 
with different aspects of partial order theory to contribute to this book. We 
are indeed indebted to all of them. 

What is a partial order? A general explanation can be found just in the 
first chapters of this book and according to the different application as-
pects, correspondingly adopted definitions can be found in many other 
chapters; however, it might be useful briefly to explain the concept here by 
a simple example. Thus, if a chemical is toxic and is bioaccumulating then 
obviously the chemical may exert an environmental risk. If there are two 
other chemicals, one exhibiting a lower toxicity but a higher bioaccumula-
tion potential and another with a much higher toxicity but a lower bioac-
cumulation potential, we may have a problem to assess their individual en-
vironmental risks. This kind of problems can be analyzed with partial 
order. The only mathematical operation needed is the comparison, i.e. is a 
larger or smaller than b. Hence, partial order in its various application as-
pects is the science of comparisons! Comparisons of chemical properties, 
comparisons of environmental systems, and even comparisons of strategies 
or management options are all topic that advantageously may be analyzed 
using partial order theory. Our objective with this book is to demonstrate 
how to use partial order in the field of pure chemistry, in substance prop-
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erty estimations, and in environmental sciences. Some chapters will show 
how partial order can be applied in field monitoring studies, in deriving 
decisions and in judging the quality of databases in the context of envi-
ronmental systems and chemistry. The charming aspect of partial order is 
just that by comparison we learn something about the objects, which are to 
be compared!  

Most of the readers will probably be trained within differential calculus, 
with linear algebra, or with statistics. All the mathematical operations 
needed in these disciplines are by far more complex than that single one 
needed in partial order. The point is that operating without numbers may 
appear somewhat strange. The book aims to reduce this uncomfortable 
strange feeling. 

Thus, we hope that this book will broaden the circle of scientists, which 
find partial order as a useful tool for their work. The theoretical and practi-
cal aspects of partial order are discussed in, e.g., the INDO-US-workshop 
on Mathematical Chemistry, a series of scientific symposia initialized by 
Basak and Sinha, 1998, and in specific workshops about partial order in 
chemistry and environmental systems. We urge scientist, newcomers as 
well as established partial order users to contribute to these workshops, 
contacts can be found by our E-Mail-addresses (brg@igb-Berlin.de or 
brg_home@t-online.de (Brueggemann) or LC@AwarenessCenter.dk 
(Carlsen)).

April 2006 

Rainer Brüggemann and Lars Carlsen 
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1 Chemistry and Partial Order 

In this section the fundamentals of partial orders are introduced in three 
chapters, which are rather different, albeit they point to the same item: par-
tial order in chemistry. The reader will learn basic concepts and a manifold 
how to derive a partial order from chemical concepts. 

In the first chapter, by El-Basil, the main terms and concepts of partial 
order are explained. It shows that there are many different ways to apply 
the axioms of partial order. Especially the important theorem of Muirhead 
and its generalization are broadly discussed. The reader may learn how to 
develop Young diagrams and how to extract useful results form the par-
tially ordered set of Young diagrams. The examples are mainly following 
the chemistry of aromatics. Hence, the reader will become familiar with 
the broad topic of Kekulé structures and counting them. 

The detection of the periodic system of chemical elements was a break 
through in the theoretical understanding of chemistry. Hefferlin discusses 
periodicities of chemical elements and small molecules. He shows how 
general the concept of posets is. Why not explore the properties of small 
molecules by means of a Hasse diagram? Hefferlin shows by the example 
of Phosphorus oxides how this may be done.  

The first two chapters are devoted to a static presentation of chemical 
concepts. However, chemistry is the science of reactions and interactions. 
In the third chapter Klein and Ivanciuc show, how partial order can be ap-
plied within the context of substitution patterns. The authors demonstrate 
for example that partial order relations and an order based on environ-
mental toxicities match very well and how a parameter free approach to 
QSAR can be found (see also topic 3). Methodologically the reader will 
learn how chemical structures and partially ordered sets can be related and 
how interpolation schemes are working. Finally, the important idea to ex-
tend the field of chemical property estimations by the concept or quantita-
tive super-structure activity relationships is discussed.  



Partial Ordering of Properties: The Young 
Diagram Lattice and Related Chemical Systems 

Sherif El-Basil 

Faculty of Pharmacy, University of Cairo, Kasr Al-Aini st. Cairo 11562, 
Egypt  

e-mail: sherifbasil@hotmail.com 

Abstract

The basic definitions related to the general topic of ordering are reviewed 
and exemplified including: partial ordering, posets, Hasse diagrams, ma-
jorization of structures and comparable / incomparable structures.  

Young Diagram lattice (of Ruch) and the ordering scheme of tree graphs 
(of Gutman and Randi ) are described and it is shown, how the two 
schemes coincide with each other, i.e. generate identical orders.  

The role of Young diagrams in the ordering of chemical structures is 
explained by their relation to alkane hydrocarbons and unbranched cata-
condensed benzenoid systems. 

The Basic Terms: Examples of Posets, The Hasse 
Diagram

The concept of a partial order appears to be very useful in environmental 
science when evaluation and comparative study of properties are required. 
The object to be studied form an object set and the partially order set (
poset) depends on the  , (greater than- or equal to-) relation (Luther et al. 
(2000). We now introduce some of the popular definitions in an intuitive 
approach, which avoids the “dryness” of mathematical rigor. 
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Partially ordered set (poset) 

It may be helpful to consider the following graph and analyze some parts 
of it: (cf. Fig. 1) 

Fig. 1. A labelled graph, which corresponds to a relation on a set of numbers 

Obviously, the above graph describes some sort of a relation, R, on the 
components of the set of integers: 

S = {1, 2, 3, 4, 6, 8, 12}                                                            (1) 

We consider S as ground set (object set), whose elements are labelled 
vertices of a graph. The relation among the vertices, graphically displayed 
by lines (called "edges") depends on the questions one has. For example: 
One observes that numbers, which divide others are connected, those that 
do not divide each other are not. One, then, says that the above graph 
represents some sort of ordering relation expressed as. 

{(a,b) | a divides b} on S = {1, 2, 3, 4, 6, 8, 12}                                  (2) 

The relations among integers are described as follows:
a) Because every element of S is related to itself, i. e., (a, a)  R ; R 

is said to be reflexive. 
b) While, e.g., 2 divides 4, 4 does not divide 2 and so on. Such a rela-

tion is said to be anti-symmetric. 

8

4

2

12

6

3

1
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c) The last property may be exemplified on the subset {2, 4, 8}: 2 di-
vides 4; 4 divides 8 hence 2 divides 8, which is true for other com-
ponents, i. e.: if (a, b)  R and (b, c)  R then (a, b, c)  R. 

The above property is called the transitive character of R. A poset may 
then be defined as a relation R, on a set S if R is reflexive, anti-symmetric 
and transitive. 

The graph, which describes a particular poset, is called a Hasse diagram
after the 20th century German mathematician Helmut Hasse (1898-1979) 
(Rosen 1991). See also chapter by Halfon p. 385. 

A word on Hasse diagrams:
Actually the object shown in Fig. 1 is just a graph (not a diagram!): per-
haps the word diagram is associated to it from the way it is used to be 
drawn. In fact all self-evident edges are now removed such as all loops, 
which describe the reflexive relation and also which result from the transi-
tive character, e.g., edges (2, 8), (3, 12) and (1, all other vertices) are re-
moved. Also arrows that indicate relative positions of components are no 
longer indicated, yet the “old name”: diagram, (instead of graph) remained. 

The Hasse diagram can be drawn in different ways maintaining the main 
information, the order relations. Such Hasse diagrams are isomorphic to 
each other. 

Majorization of Structures: Relative Importance 

Sometimes in (partial) ordering problems one may be interested in the rela-
tive importance of the components of a set. This situation reminds us with 
the relation A  B i.e., “A is a descendent of B” or that: “B majorizes A”. 
A popular example is the partial ordering {(A, B) | A  B} on the power 
set S = {a, b, c} where A B means that A is a subset of B. Whenever this 
relation exists one says that B majorizes A. The power set S contains  
23 = 8 elements, viz., {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c} and ,
where  is the empty set.  

For this particular case the Hasse diagram is simply a cube, labelled as 
shown in Fig. 2. 
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Fig. 2. The Hasse diagram of S = {a, b, c}. Each subset is attached to its direct off-
spring, so that the descendant (less important components) lies in lower levels 

One observes that {a, b}, {a, c} and {b, c} are subsets of {a, b, c} and 
therefore of lower relative importance and analogously for the single-
component subsets {a}, {b}, {c}. The above example represents one of the 
simplest cases of relative importance ordering problems, which finds 
chemical applications (section ‘Relative importance of Kekulé Structures 
of Benzenoid Hydrocarbons: Chain ordering’). 

Comparable and incomparable elements: Chain and Anti-chain 

The elements a and b of a poset (S,<) are called comparable if either a  b 
or b  a. When a and b are elements of S such that neither a  b nor b  a, a 
and b are called incomparable. For example the subsets {a,c}, {b,c} and 
{a, b} are incomparable with each other: (they are not directly connected 
(= adjacent) to each other, cf. Fig. 2). On the other hand, because {a, b, c} 
majorizes {a, c}, e.g., they are comparable components of S. 

Partial ordering may, then, be viewed as first weakening (  relaxation) 
of the usual total ordering which is required for every pair of elements, 
a,b  S, that it must be a  b or b  a or a = b. Of course the standard total 
ordering is that of “greater than or equal to” on the set of real members. In 
Fig. 2, the subset of vertices, labelled {{a, b, c}, {a, c}, {c}, } is called a 
chain because every two elements of this subset are comparable. On the 

{c}

{a, c} 

{a, b, c} 

{a, b} 

{b}
{a}

{b, c} 
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other hand the subset {{a, b, c}, {b, c}, {a}, }} is called an anti-chain 
because every two elements are incomparable. 

One can immediately see the advantage of mathematical (graph-
theoretical) techniques over quantum-chemical calculations in fields, 
which requires analysis of structure-property relation (such as environ-
mental sciences). We quote the following paragraph from a paper by 
Randi  et al. (1985). 

“Quantum Chemistry appears to be preoccupied with evaluation of the 
wave function and potential surfaces, a worthy goal- but of limited use 
when one considers whole families of molecules and when one is con-
cerned with structure-property relationships”. 
We quote further (Randi  et al. 1985): 

“Graph Theory is concerned with relations, and, in chemistry, the rela-
tionships between molecular structure and molecular properties are of par-
ticular interest”. 

Namely using graph-theoretical techniques, a structure is “replaced”, so-
to-speak, by a collection of its mathematical properties (  graph-
invariants) (Randi  et al. 1985) and whence allows the generation of vari-
ous types of posets as we shall see the next section. 

Some Posets of Chemical Interest 

In this section we show some of the posets produced by researchers in 
mathematical chemistry over the past quarter of a century: 

Relative importance of Kekulé Structures of Benzenoid 
Hydrocarbons: Chain ordering 

Individual formal valence structures of conjugated hydrocarbons are excel-
lent “substrates” for research in chemical graph theory, whereby many of 
the concepts of discrete mathematics and combinatorics may be applied to 
chemical problems. The lecture note published by Cyvin and Gutman (Cy-
vin, Gutman 1988)) outlines the main features of this type of research 
mostly from enumeration viewpoint. In addition to their combinatorial 
properties, chemists were also interested in relative importance of Kekulé 
valence-bond structures of benzenoid hydrocarbons. In fact, as early as 
1973, Graovac et al. (1973) published their Kekulé index, which seems to 
be one of the earliest results on the ordering of Kekulé structures: These 
authors used ideas from molecular orbital theory to calculate their indices 
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but the resulting ordering is not partial: it is a chain-type (also called total 
or linear order). 

Graph-theoretical Ordering of Kekulé structures 

A few years later, Randi  (1977) analyzed a valence-bond Kekulé structure
into conjugated circuits of -electrons: For benzenoid systems Rn implies 
(4n+2) -electrons. Randi , then, parameterized his Rn‘s and ordered them 
as R1 > R2 > R3 >… where he studied both the relative importance of Ke-
kulé structures as well as the stabilities of their benzenoid hydrocarbons 
(compare Fig. 6, section ‘Partial-Ordering of Kekulé Structures’). 

Partial Ordering of Kekulé Structures 

A decade ago El-Basil (1993) generated vertex-transitive graphs (i.e., 2-
cube (  square), 3-cubes (  cube), 4-cube (  tesseract), etc.) using terminal 
R1 circuits in a (sub)-set of Kekulé structures by defining two Kekulé 
structures as “adjacent” if one can be obtained from the other by sextet ro-
tation in only one terminal R1 through 60°. Formally, this is an operation 
on a power set composed of n terminal R1 conjugated circuits (  terminal 
sextets). When n=2 one obtains a square (2-cube, because 22 = 4), n=3 
generates a cube (23 = 8) while a tesseract requires 4 terminal circuits (24 = 
16) and so on. The base 2 originates from the fundamental fact that there 
are only two ways in which the double bonds are arranged in a hexagon, 
viz., proper, (+1) and improper (-1): (Fig. 3) 

+ 1 - 1
Fig. 3. The two orientations of -electrons in a hexagon 

The sextet rotation operation defines our adjacency relation among the 
set of Kekulé structures and the vertex-transitive graphs generated are 
nothing else but posets of Kekulé structures. 
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Coding Kekulé structures of catacondensed benzenoids 
1. Arrange the skeleton of the benzenoid hydrocarbon so that some of 

its edges are vertical 
2. Starting from the top left corner of the benzenoid graph, assign +1 

or -1 to terminal rings according to the orientation of their aro-
matic sextets (Fig. 3). 

3. Two Kekulé structures X, Y are defined to be adjacent (El-Basil 
(1993) if their codes differ in the sign of only one position: A 
skeleton X  Y iff qi(X)  qi(Y) with q being a sequence of +1 and 
-1.

An example is shown in Fig. 4 

+ 1 - 1

+ 1+ 1

(1,-1,+1,+1)
Fig. 4. The code of Kekulé structure of catacondensed benzenoid system contain-
ing 4 terminal hexagons. Compare also Fig. 3 

In Fig. 5 we show the posets (Hasse diagrams), which correspond to hy-
drocarbons containing 3, 4 and 5 terminal hexagons. 
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Fig. 5. 3-, 4- and 5-cubes, which represents posets generated from sets of Kekulé 
structures

Note that in Fig. 5 benzenoid hydrocarbons are shown, having 3, 4 and 
5 terminal hexagons. Codes of Kekulé structures are indicated. For the 5-
cube only places of negative signs of the code are written
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A) The cube poset: 
Fig. 6 shows the cube which results when 8 (out of the 9) structures of 
triphenylene are ordered according to their adjacency relations of their 
codes (El-Basil (1993).  

Fig. 6. The Hasse diagram of ordering 8 (out of 9) Kekulé structures of 
triphenylene 

In Fig. 6 incomparable structures are indicated by solid circles and by 
solid triangles. Dotted lines indicate levels of stability of the Kekulé struc-
tures: 4R1 > 3R1+R2 > 3R1+R3 > 3R1+R4
Counts of conjugated circuits are shown, from which we see several chain 
orders, e.g., one of which leads to the following relative stabilities: 

4R1 > 3R1+R2 > 3 R1+R3 > 3R1+R4                                     (3) 

All the resulting partial orders are consistent with the conjugated-
circuits model of Randi  (1977). 

Kekulé structures, which correspond to identical circuit counts, e.g. ver-
tices labelled by (3R1+R2) and by (3R1+R3) in Fig. 6, are incomparable. 
They represent vertices, which are not connected on the poset. Some Ke-
kulé structures are shown as representative examples along with their con-
jugated - circuit counts. 
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B) The tesseract (The 4-dimensional cube)
This 16 (= 24) vertex-transitive graph may be generated using a catacon-
densed benzenoid system with 4 terminal hexagons. Again, the individual 
Kekulé structures are partially ordered in accord with their conjugated-
circuits counts (Randi  (1977). 

Fig. 7 shows the resulting poset. 

Fig. 7. Four-dimensional cube generated from a benzenoid system containing 4 
terminal hexagons 

In Fig. 7 the conjugated circuits correspond to Kekulé structure-
positions as follows: 1 = (7R1); 2 = (6R1 + R2); 3 = (6R1 + R3); 4 = (6R1 + 
R2); 5 = (5R1 + 2R2); 6 = (5R1 + R2 + R3); 7 = (5R1 + 2R2); 8 = (6R1 + R2);
9 = (5R1 + R2 + R3); 10 = (6R1 + R3); 11 = (5R1 + R2 + R3); 12 = (5R1 + 
2R3); 13 = (5R1 + 2R2); 14 = (5R1 + R2 + R3); 15 = (5R1 + 2R2); 16 = (6R1
+ R2).
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The Young-Diagram Lattice, Ordering of Muirhead and 
generalization of Karamata

Ordering implies a comparison, and instead of actual structures, one nor-
mally compares sequences of numbers characterizing a molecular graph of 
a chemical structure. Frequently the required sequences are derived from 
an enumeration of selected graph invariants. If the selected invariants lead 
to integers, then the ordering theory of Muirhead (1903) is most suited for 
these special cases:  

At the beginning of last century Muirhead (1903) introduced a theory of 
ordering and comparing sequences of integers. Muirhead’s method calls 
for the construction of partial sums derived from integral sequences. If for 
every entry in two such sequences of partial sums, members of one struc-
ture are larger or equal (but not smaller) than the corresponding entries in 
other sequence, the structures can be ordered with the first structure pre-
ceding the second. If these conditions are not satisfied, the structures are 
not comparable leading to a partial ordering. 

(a1  a2  …  an > 0) and (b1  b2  …  bn >0)              (4) 

Be two sequences of integers. Then, Muirhead’s method states that:  
(a1, a2, …  an) majorizes (b1, b2, …  bn), if a series of statement holds: 
(Table 1): 

Table 1. Muirhead's method (Muirhead (1903) 

(a1,a2,…,an) majorizes (b1,b2,…,bn) if 
a1  b1
a1+a2  b1+b2
…  …  
a1+a2+…+an  b1+b2+…+bn

Restrictions to integral entries have subsequently been removed and for 
these more general situations, Karamata (Beckenbach, Bellmann 1961) de-
rived an important theorem, which allows definite conclusions to be drawn 
from properties of the structures to be studied, if graph invariants are not 
integral quantities. 

More recently Ruch (1975) used ideas of Muirhead in connection with 
representations of the symmetric group and generated a partial ordering of 
partitions of integers. For each partition one associates a row of an equal 
number of dots or boxes so that the rows are arranged in a non-increasing 
order. For example there are 5 partitions of 4, represented in Fig. 8. 
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Fig. 8. Partitions of 4 and the corresponding Ferrers graphs and Young diagrams. 
Both to be read horizontally 

Sometimes, the diagrams of dots are referred to as Ferrers graphs (Cole-
man 1968), after the English mathematician of the latter part of the nine-
teenth century. However, Young, employed similar devices now known as 
Young diagrams where he replaces dots with small squares. We let: 

a = a1 + a2 + … + an , 
b = b1 + b2 + … + bn                                                                             (5) 

be two partitions of the same integer (i.e., aa + a2 + … + an = b1 + b2 + … + 
bn). Then a is said to dominate or majorize b if equation (4) is satisfied, 
otherwise, the two partitions (or the corresponding graphs) are not compa-
rable. As an illustration, we form the partial sums of the partitions of 4: 

4                (4, 0, 0, 0)  (4, 4, 4, 4) 
3+1            (3, 1, 0, 0)  (3, 4, 4, 4) 
2+2            (2, 2, 0, 0)  (2, 4, 4, 4) 
2+1+1  (2, 1, 1, 0)  (2, 3, 4, 4) 

(3,1)  3+1 

(22)  2+2 

(2,12) 2+1+1 

(14)  1+1+1+1 

(4)  4 
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1+1+1+1  (1, 1, 1, 1)  (1, 2, 3, 4)                                      (6) 
Muirhead’s ordering conditions in the above case are a chain on five verti-
ces because all successive sequences (  graphs) are comparable.  

For n = 5 there are 7 partitions, the ordering of which also leads to a 
chain. But starting with n = 6, one observes two pairs of non-comparable 
graphs (leading to two bifurcations). (This poset is shown in Fig. 10 (sec-
tion ‘The Young-Diagram Lattice, Ordering of Muirhead and generaliza-
tion of Karamata’)). 

The first bifurcation is generated at 4 = 4 + 1 + 1 and 5 = 3 + 3, which 
correspond to the partial sums: 

(4, 5, 6, 6, 6, 6)         ,          (3, 6, 6, 6, 6, 6)                                          (7) 

We observe that the first component of the first sequence is greater than 
that of the second sequence, but the reverse order for the second compo-
nents, i.e. 4 > 3 but 5 < 6. Hence the sequences (7) are an incomparable 
pair. Both 4 and 5 are comparable with 3 = 4 + 2 whose partial sum is 
(4, 6, 6, 6, 6, 6) which majorizes both partial sums shown in eqn. (7). 

Ordering of Tree graphs  

In Gutman and Randi  (1977) published their work on the algebraic char-
acterization of skeletal branching of tree graphs (cf. Harary (1972). (A 
graph is viewed as an abstract representation of a molecule where vertices 
replace atoms and edges replace chemical bonds. The degree of a vertex 
equals the valence of the corresponding atom. Often in hydrocarbons a H-
suppressed graph is useful, where the hydrogen atoms are neglected.) The 
steps involved in the scheme of Gutman and Randi  are outlined as fol-
lows:

a) List the valences of a tree graph in a non-increasing way. 
b) Form the partial sums of the above sequence. 
c) Order a set of partial sums according to eqn. (4). 

Remarkably the poset obtained (by Ruch) for Young diagrams were also 
obtained (by Gutman and Randi ) for the trees! In fact a set of Young dia-
gram containing n vertices is isomorphic with a set of trees containing (n + 
2) vertices. As an illustration we show how a set of Young diagrams on 6 
boxes and a set of trees on 8 vertices generate the same poset (Fig. 9). 
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Fig. 9. A set of trees {T1, T2, T3} and the corresponding set of Young diagrams {Y 
(T1), Y (T2), Y (T3)}, their valence sums and partial sums leading to a poset with 
one bifurcation which defines a non-comparable pair {T2, T3}, cf. eqn. (5) 

The valences of these trees are listed in a non-increasing way together 
with the corresponding partial sums. When rules of Muirhead (eqn. 4) are 
applied to these partial sums one obtains the poset shown in Fig. 10. We 
observe that T1 majorizes (i.e., more important than  dominates) T2 and 
T3 but T2 and T3 cannot be ordered: Muirhead’s theory describes T2 and T3
(or their corresponding Young diagrams) as being incomparable. Pairs of 
incomparable objects generate sites of bifurcations. 

In Fig. 10 we show the ordering of the set of Young diagrams on 6 
boxes according to the rules of Ruch (1975). The corresponding tree 
graphs are also shown (see also chapter by Seitz p. 367, where a set of 
Young diagrams with 10 boxes is represented and discussed with respect 
to complexity measures).  

 T1   T2   T3
4,4,1,1,1,1,1,1     4,2,2,2,1,1,1          3,3,3,1,1,1,1,1 

 Y(T1)   Y(T2)   Y(T3)

T1 Y(T1)

T2 Y(T2) T3 Y(T3)
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Fig. 10. Ordering of the set of Young diagrams containing 6 boxes. The corre-
sponding tree graphs are shown. Underlined graphs are non-caterpillar trees 

The Fig. 10 illustrates how the ordering theory of Ruch (1975) coincides 
with that of Gutman and Randi  (1977) (See also Fig. 12). 

The overlap between the ordering schemes of Ruch and that of 
Gutman & Randi

These two ordering schemes may be made to overlap (i.e., generate the 
same poset) for a set of trees containing (n = 2) vertices and a set of Young 
diagrams containing n boxes as follows: 

a) Suppress information on terminal vertices (of valence = 1) 
b) Reduce valence of each vertex by one 
c) The resulting sequence of integers (from left to right) represents 

rows of boxes from top to bottom. 
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Example:
T2 (Fig. 9) generates the following sequence of integers representing va-
lences of vertices arranged in a non-descending order: 

4,2,2,2,1,1,1                                                               (8) 

We adopt steps a-c: 

a) Suppressing information of terminal vertices leads to the sequence: 

4,2,2,2                                                                                (9) 

b) Reduction of valence of each vertex by one leads to: 

3,1,1,1                                                                 (10) 

c) The above sequence corresponds to the following Young diagram Fig. 
11.

Fig. 11. A specific Young diagram, corresponding to the sequence 3,1,1,1 

Correlation of Young Diagrams with Alkanes and benzenoid 
Hydrocarbons 

A remarkable type of tree graph is called a Caterpillar El-Basil (1987) (or a 
caterpillar tree): Pj (m1, m2, … , mj) which is obtained by the addition of 
m1 monovalent vertices to the first vertex 1 of path Pj , m2 monovalent 
vertices to 2 of Pj and so on. The three tree graphs shown in Fig. 10 are all 
caterpillar trees and may be designated respectively as: 

= Y(T2)
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P2 (3,3) ; P4 (3,0,0,1) ; P3 (2,1,2) 

An example of a non-caterpillar tree is shown in Fig. 12. 

Fig. 12. An unbranched benzenoid hydrocarbon, the corresponding caterpillar tree 
T, alkane hydrocarbon skeleton and Young diagram. T' is a non-caterpillar tree 

Caterpillar trees are related to other combinatorial objects of chemistry 
and physics (such as rook boards, Clar graphs, and King polyomino 
graphs) (El-Basil, Randi  (1992) but most importantly, caterpillar trees 
represent in fact unbranched catacondensed benzenoid hydrocarbons (El-
Basil 1987), El-Basil, Randi  1992). To envisage this important connec-
tion we distinguish two types of annellation of hexagons (Cyvin, Gutman 
(1988), viz., linear, L, and angular, A, modes (Fig. 13): 
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Fig. 13. Linear and angular modes of annelating hexagons 
An unbranched benzenoid may thus be “coded” by its LA – sequence 

written, say, from left to right, as LA – units, viz. 

jmm LAALL ....21

The corresponding caterpillar tree is composed by the addition of m1
monovalent vertices to 1, m2 monovalent vertices to 2 , … , j monovalent 
vertices to jth vertex of path Pj (on j vertices). 

In Fig. 12 we illustrate these concepts. 

Ordering of Unbranched Benzenoid Hydrocarbons  

We have seen in the previous section (cf. Fig. 12) that a caterpillar tree can 
be made to overlap with an unbranched catacondensed benzenoid hydro-
carbon. I.e., the modes of hexagon annellation are, in fact, “stored” so-to-
speak in the distribution of the terminal vertices of a caterpillar tree. One 
is, then, tempted to go back to posets such as the one shown in Fig. 10 and 
replaces the caterpillar trees by their corresponding benzenoids. In this 
way a set of benzenoid hydrocarbons has been partially ordered according 
to the theory of Ruch (1975), using Muirhead’s rules (Muirhead (1903) 
(eqn. 4) or equivalently according to the scheme of Gutman and Randi
(1978) using valences of vertices of tree graphs as input for eqn. (4). The 
question now becomes: does the resulting (purely structural) partial order-
ing reflect the (chemical) properties of benzenoids? The answer is quite 
encouraging: In Fig. 12 the corresponding benzenoids are represented as 
their respective LA-sequences and their stabilities are measured by the set 
of Herndon’s permutation integrals (Herndorn, Ellzey Jr (1974) ( 1, 2, 3,

4) where i involves permutation of (4i+2) -electrons. Observing that 
twice these integrals are numbers of conjugated circuits (cf. Randi  (1977), 

L A 

L A
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listed, respectively, as (R1, R2, R3, R4), we can use this poset to order a set 
of hydrocarbons according to their stability.  

Fig. 14. Partial ordering of the set of unbranched benzenoids containing 7 hexa-
gons. Each benzenoid is coded by its L-A sequence of hexagon annelations 

In Figure 14, numbers in parentheses are permutation integrals (Hern-
dorn, Ellzey Jr (1974). The poset is isomorphic with the one shown in Fig. 
10. Chemical stability goes up as one goes down along the poset. 

In the present case, stability increases as one goes down the edges of the 
poset. The limits are defined as {L7} and {LA5L} representing a linear 
acene (heptacene) and a single zigzag chain, all- benzenoid, system. Linear 
acenes are known to be coloured unstable hydrocarbons while angular an-
nellations of hexagons leads to colourless stable systems (Clar 1972). In 
Fig. 15 this situation is illustrated with a few examples of unbranched ben-
zenoids for which UV data are available (Clar 1972), which serves to illus-
trate general features. 
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Fig. 15. Limits of stability of a set of catacondensed benzenoids 

In Fig. 15 the linear acene represents the most unstable system while the 
all-kinked acene being the most stable. These limits may be modelled re-
spectively with a star tree (or a row of boxes) and a path (or a column of 
boxes). The para bands of UV spectra are indicated for some cases for 
which data are available (Clar (1972). It is interesting to observe that se-
quences of numbers which represent ( 1, 2, 3, 4) lead to bifurcations (i.e. 
incomparable pairs) when the sequences, which correspond to Young dia-
grams, are also incomparable! For example at the first bifurcation (Fig.’s 
10, 12) one finds the following pair of sequences of ’s. 

(25, 18, 11, 4) , (25, 17, 10, 7),                                                            (11) 

which leads to the following non-comparable partial sums: 

(25, 43, 54, 58) , (25, 42, 52, 59)                                                         (12) 
i.e., 54 > 52 while 58 < 59 leading to a bifurcation! 
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An observation regarding Young diagrams and tree graphs
While there is a unique Young diagram for every tree graph, the opposite 
is not true, viz., several trees may occupy the same position characterizing 
a single Young diagram on a given poset. Namely, several trees lead to the 
same partition of vertex-valences and whence the same Young diagram. 
As an illustration one may observe in Fig. 10, that each of position 4, 6, 7, 
9, 10 of the poset shown characterizes a single Young diagram but several 
tree graphs! Take, e.g. the sequence of vertex-degree 3,3,2,2,1,1,1,1, then, 
the ordering rules of Gutman and Randi  (1977) lead to rows of boxes 
(from top to bottom) of lengths 2,2,1,1 which define a unique Young dia-
gram, but the vertex-degrees in this case generate four caterpillar and one 
non-caterpillar trees. (position 9 of the poset shown in Fig. 10). 

Grid Graphs Based on Molecular Path Codes of Lengths 2 
and 3: Relation to Ordering of Young Diagrams 

In a series of publications Randi  et al. (Randi , Wilkins (1979) generated 
grid graphs of molecular graphs of classes of compounds based on their 
path codes of lengths 2 and 3. Such periodic tables are reminiscent of the 
Hasse diagrams of partial orderings and may be viewed as multiposets, the 
nodes of which represent the partial ordering of a given property. Several 
properties were studied, which include enthalpies, heat capacities, critical 
volumes, index of refraction, entropy changes and several others. 

Here, we observe how these grids are related to Young diagrams. As an 
example we consider in Fig. 14, the diagram that shows positions of the set 
of octane isomers in the coordinate system (P2, P3). We also indicate the 
corresponding Young diagrams associated with the tree graphs represent-
ing the octanes. Interestingly the resulting grid successfully orders subsets 
of Young diagrams in accord with rules of Ruch (1975) as well as the 
scheme of Gutman and Randi .
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Example (Fig. 16): 

Fig. 16. The diagram showing positions of various octane isomers in the coordi-
nate system (P2, P3)

In Fig. 16 the corresponding Young diagrams are correctly ordered in 
horizontal lines (dashed arrows) in accord with rules of Ruch (1975) as 
well as Gutman and Randi  (1977). 
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Abstract

Hasse diagrams are applied to molecules and radiation phenomena. Then 
the relation of these diagrams to periodicity in atoms is noted. The possi-
bility is raised that Hasse diagrams can also be related to the growing body 
of evidence that periodicity exists in molecules with two, three, and four 
atoms; in binary inorganic molecules; and in some organic molecules. 

Individual molecules 

The definition and partially ordered set theory behind the Hasse diagram 
are given in the chapter by El-Basil, p. 3 and are not repeated; we proceed 
immediately to discuss some interesting Hasse diagrams. 

Would it be possible to construct a molecule or a decay scheme that is 
its own Hasse diagram? Fig. 1 shows such a hypothetical species. The first 
number in each box is the period number in which the atom is found; the 
second is the number of valence electrons. The lone pair on carbon is not 
shown and the left-hand line is actually a double bond. Fig. 2 shows such a 
possible atomic decay scheme; similar radiation pathways occur in mole-
cules and also in nuclei. 
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     As  S 

Al  C       
    

Fig. 1. The hypothetical molecule serves as its own Hasse diagram 

Fig. 2. A possible atomic radiation scheme is shown 

Inorganic molecules

Klein has already represented the chart of the elements as the Hasse dia-
gram of a multi-poset (Klein 1995). Over many decades the periodicity of 
many properties of main-group and transition metal diatomic molecules, in 
various phases, and main-group anions has been exhaustively documented 
(Clark 1935; Cornish 1959; Hefferlin et al. 1979; Hefferlin and Kutzner 
1981; Kong 1982; Hefferlin, 1989; Boldyrev et al. 1994). Merging these 
two trains of thought make it seem reasonable that a somewhat more com-
plex multiposet should pertain to them. The same is true for main-group 
triatomic and tetra-atomic molecules, since their periodicity has been dem-
onstrated (Kong 1989, 1993).  

A massive research project on the periodic properties of molecules has 
been pursued by generations of Russian chemists during the Soviet period 

4,5 3,6

2,43,3

3s
3p

3d

4s 4p
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and, to a lesser extent, subsequently. This research was to a large degree 
led by Shchukarev of Leningrad State University. He considered a general 
periodic system as being one immense “supermatrix” connecting innumer-
able “matrices” of elemental atomic states, of the compounds that they 
may form, of their properties, of their functional dependencies on the ex-
ternal conditions, and so on. The term “supermatrix” was used to represent 
the chemical element periodic chart and the immense molecular spaces ac-
cessed by stepping through any one or more of its compartments. The 
word “matrices” was also used loosely, referring in many cases to graphi-
cal representations of data; “databases” and “subsystems” would do as 
well.

The transformation from one matrix to any other, within the superma-
trix, was to be accomplished with advanced mathematics such as group 
theory. Knowing that such transformations were beyond his capability at 
the time, Shchukarev and his colleagues collected data in preparation for 
the day when the capability would materialize. The data are represented in 
scores of graphs such as Fig. 3. 
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Fig. 3. Heats of atomization for oxides of phosphorus plotted against the oxidation 
state, normalized to one P atom, of phosphorus. The graphs as plotted by Shchuka-
rev also normalize the data vertically to one P atom 
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The vertical axis shows the heats of formation (Gurvich 1978, 1979, 
1981, 1982) of the molecules from free atoms; all of the molecules are in 
the gas phase (except for P2O4, which is in the crystal phase). The Hasse 
diagram shown in Fig. 4 represents the upper half of Fig. 3; it is easily seen 
how the lower half would be appended. 

Fig. 4. An organization of phosphorus and its oxides up to P2O5 (higher oxides ex-
ist). Each line indicates the addition of one or more atoms to the species at its be-
ginning 

Molecular periodicity is clearly evident in perusing the graphs in 
Shchukarev’s books (1970 and 1974); they contains graphs of Ha (heat of 
atomization) like Fig. 3 (except for vertical normalization) for group 1 ox-
ides (O), Mg and Ca (O), 3 to 12 (O), 13 (halides and H), 14 (O and H), 15 
(O and H), 16 (O, S, and H), 17 (F, O, and H), and 18 (F). These graphs 
are amazingly similar, and show that heats of atomization of binary and 
ternary inorganic species echo the periodicity of atoms in the Mendeleev 
chart.

This extent of this research effort can be measured by noting that it in-
cludes work on how molecules are changed by going into water solution 
(Latysheva and Hefferlin 2004) and how the water solution is changed by 
the presence of the dissolved molecules (Lilitch and Mogilev 1954; Lilitch 
1964; Burkov et al. 1977; Lilitch and Chernykh 1977; Khripun et al. 
1983). A detailed review is given by Latysheva (1998). 

Organic molecules 

Morozov explored periodicity among alkanes nearly a century ago (Moro-
zov 1907). Beautiful periodic tables have been constructed for polycyclic 
aromatic hydrocarbons by Dias (1996), for acyclic hydrocarbons by Bytau-
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tas et al (2000), and for fullerenes by Torrens (2004). So it is clear that pe-
riodicity has been observed in organic molecules. 

Klein and Bytautas (2000) have given the Hasse diagram—technically, 
the partially ordered set reaction diagram—for halogenated benzenes. It 
starts with benzene at the top, concludes with fully chlorinated benzene at 
the bottom, and has the partially chlorobenzenes in between at ordinates 
approximating the boiling point scale. An almost identical diagram, with 
boiling points that progress in a similar way, pertains to methylbenzenes. 
From the point of view of periodicity, it is significant that the methyl func-
tional group is isovalent to the halides (Haas 1982). 

The most extreme diagram that comes to mind is one for polychlori-
nated biphenyls. Presumably it would have 1,1-biphenyl at the top, de-
cachloro 1,1-biphenyl at the bottom, and the 207 remaining isomers be-
tween, ranked according to data for some property. Unfortunately, there 
are nowhere near enough data to begin the diagram now. There are, how-
ever, enough data to suggest periodicity in halogenated biphenyls (Fig. 5). 
The suggestion would be reinforced if the point for 4-fluoro 1,1’-biphenyl 
is shown to be in error to be at about 540K. 
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Fig. 5. Boiling points of 2-, 3-, and 4- fluoro-, chloro-, and bromo- 1,1’-biphenyls. 
The x = 2 (F,Cl,Br) arrangement, which would exist also at x = 4 if one point were 
moved, suggests periodicity 
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Abstract

Reaction diagrams are considered especially for the circumstance of pro-
gressive substitution (or addition) on a fixed molecular skeleton, and it is 
noted that these naturally form Hasse diagrams for a partially ordered set 
(or poset) of the substituted structures. The possibility that different prop-
erties are similarly ordered is a further natural consideration, and is here il-
lustrated for several different properties for (methyl & chloro) substituted 
benzenes.

This posetic approach thence provides a novel approach to struc-
ture/property and structure/bioactivity correlations, with focus in some 
sense beyond simple molecular structure, in that this approach attends to 
how a structure fits into a systematic (reaction) network of structures. Dif-
ferent manners for fitting and prediction of properties are noted, with illus-
tration of an especially simple “poset-average” scheme. Some numerical 
evidence indicates that such approaches are quite reasonable. It is empha-
sized that such directed reaction graphs admitting posetic treatment are 
widespread.

Introduction

Reaction graphs occur throughout chemistry. For instance, directed reac-
tion graphs occur in (directed) syntheses, as reviewed in Corey & Cheng’s 
(1989) seminal book ‘The Logic of Chemical Synthesis’. The structures of 
synthesis graphs are crucial in differentiating between “linear” and “con-
vergent” synthetic approaches (Hendrickson 1977), though there has been 
only a little formal graph-theoretic work (e.g., in Hendrickson 1977, and 
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Bertz 1984, 1986) on such graphs, so that there could perhaps be some fur-
ther investigation incorporating more fully the directed aspect of their 
edges (and consequent possibility for being interpretable as posets). In 
many cases it seems that these synthesis graphs are simply linear chains or 
nearly so, whence the posetic structure is especially simple (a total order). 
The seemingly less common synthesis graphs for so-called “convergent” 
syntheses (Hendrickson 1977, Bertz 1984, and Bertz 1986) feature branch-
ing, but still very often these graphs are trees (even when the directions are 
eliminated from the edges), though this is not a logical necessity. Another 
commonly occurring and important type of directed reaction graph is 
found in molecular biological applications, often showing cycles (or “hy-
percycles”) say in the area of “enzyme kinetics”, again with directions on 
the edges. These reaction schemes have been much considered, even in a 
formal sense, e.g., as in Eigen (1971, 1977) and Hill (1977). But in these 
cases a posetic interpretation is complicated by the general occurrence of 
cycles. Reaction graphs for degenerate rearrangements have been consid-
ered in a general graph-theoretic network (as reviewed by Balaban 1994), 
though here not only are there cycles, but the edges are best viewed as un-
directed. General complex sets of chemical reactions (as considered by 
Temkin et al. 1996) typically similarly exhibit cycles. 

Still there is a fairly general class of directed reaction networks which 
can be neatly viewed as partially ordered sets, or posets. That is, in some 
cases there is an intrinsic natural order, say as for the possible results of 
substitutional chlorination of benzene, as illustrated in Fig. 1. There only 
the hexagon of carbons is shown, and the Cl-substituted carbon vertices 
are shown as (larger) black dots. An arrow is directed from one structure 
to a second , if  can be obtained from  by the replacement of one H-
atom by one Cl-atom (without moving around any other Cl-atoms which 
might already be attached). Note that in general not all the n-substituted
isomers so arise from a particular isomer with 1n  substituents. Thence 
there is more information than just the degree of substitution as with para-
dichloro-benzene which gives only one of the three trichloro-benzenes. 
The arrow in these diagrams represents a single minimal step of chlorina-
tion. And the diagram as a whole is (Klein and Bytautas 2000) the Hasse 
diagram associated to a poset of different chloro-benzenes. The ordering 
relation  then means that there is some non-negative number of Cl-
atoms which can be (substitutionally) added to structure  so as to obtain 
structure .

The general class of posetic reaction diagrams are (Klein and Bytautas 
2000) then those for which there is a progressive degree of reaction, via 
substitution, addition, dissociation, or local rearrangement. The progres-
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sive substitution as in Fig. 1 is just one example. The possibility for the use 
of such posetic networks in structure/property correlations is a natural con-
sideration, and is illustrated here. 

Fig. 1. The posetic reaction diagram for successive chlorination of the benzene 
skeleton, with black dots identifying Cl-substituted sites 

Posetic Substitution Reaction Networks & Chemical 
Structure

An interesting question concerns how much the posetic diagram might de-
termine about the molecular structure of the species involved. In particular, 
what does the substitution reaction diagram for benzene imply about the 
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skeleton being a regular hexagon? In fact the overall question of the struc-
ture of benzene was of great historical relevance, with Kekulé arguing 
(1865, 1866, and 1872) for a regular hexagonal skeleton, as based on sev-
eral points including: 

first, the atom-count formula; 
second, the various possible isomeric substituents; and 
third, substitution reaction graphs ordered as in our posetic reac-
tion diagrams. 

Particularly Körner in 1874 investigated permutational questions for the 
case of benzene using (at least implicitly) substitution reaction diagrams 
with an effort to avoid inadvertent geometrical assumptions. As an alterna-
tive to the hexagonal structure for benzene Ladenburg (1869) proposed a 
triagonal prismatic structure, as indicated in Fig. 2. 
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2
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Fig. 2. Hexagonal and prismatic benzene 

There we indicate the “natural” corresponding numbering for the two 
C6H6 skeletons: that is, an isomer of either skeleton with n substituents at a 
given common set S of sites gives the same n+1 substituted sets S+ of sites. 
Thus their substitution reaction networks are isomorphic, and all these cri-
teria do not distinguish Kekulé’s hexagonal skeletal structure for benzene 
from that of Ladenburg’s (1869) prismane. At least they do not distinguish 
the two so long as the chirality of some of the substituted prismane struc-
tures is ignored – the chirality of molecular structures only being proposed 
a few years later by Van’t Hoff (1874) & LeBel (1874), and then for a 
slightly different circumstance for which there was already evidence in 
hand. Also to distinguish the two choices it does not help to further con-
sider multiple substitutions (of some other substituent in addition to Cl). 
Evidently further criteria to choose the structure needed to be invoked, and 
were, involving a sort of chemical consistency for a wide range of chemi-
cal phenomena, with geometric considerations entering in different subtle 
manners. Of course there were complications: the absence of two ortho 
disubstituted derivatives (across single or double bonds), often imagined to 
be accounted for by oscillations between the two classical benzene struc-
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tures; the fact that the properties of benzene were not like that of (a mix-
ture of two) conformations with localized double bonds; and the difficul-
ties with the (Claus 1866) centric formula in that reliance solely on the 
connectivity pattern would indicate that ortho & para disubstituted deriva-
tives should be equivalent. The fully unambiguous verification of the hex-
agonal skeleton would await the development of x-ray diffraction, and a 
full understanding of the behaviour would await quantum mechanical in-
sight. This is discussed to some degree elsewhere (Rocke 1985, Klein and 
Bytautas 2000). 

Different examples of substitution (or other sorts of progressive) reac-
tion networks appear occasionally in the literature. Though the benzene-
substitution network has a long history, as already noted, it is occasionally 
rediscovered (e.g., as in Dolfing and Harrison 1993). Another nice network 
is that for a skeleton of dimethyl- bicyclo[1.1.1]pentane-1,3-dicarboxylate 
as considered by Shtarev et al. (2001). Some networks can be quite com-
plex, as must be the one for the addition of H-atoms to buckminster-
fullerene, where even when only the substitution patterns admitting a Ke-
kulé structure are retained (as in Babi  et al. 2004) there remain ~1014

members in the consequent network. Several further examples of different 
progressive reaction networks are given in Klein and Bytautas (2000). Be-
yond substitution and addition, such networks can also involve coagulation 
and other constructive processes. The posetic reaction networks need not 
correspond to typically realized reactions, but might be contemplated as an 
organizational principle. And the reaction networks need not be finite but 
can be without an end. For example one may consider the alkane poset for 
which the beginning part is shown in Fig. 3. Here the contemplated reac-
tion is the replacement of an H-atom by a methyl –CH3 group. 

One sees that the structure of a posetic reaction diagram retains some in-
formation about molecular structure. Certainly the investigation of the in-
formation inherent in a reaction diagram should be developed in a theoreti-
cal format, and different possible uses should be explored. To recognize 
the attention beyond the local structure to placement in a whole network, 
one might then speak of quantitative super-structural/activity relationships, 
or QSSAR. Or in dealing with more conventional physical or chemical 
properties one could speak of QSSPR. 
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Fig. 3. The posetic reaction network for alkanes 
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Molecular Properties & the Reaction Poset 

It is rather natural to consider that different chemical properties might be 
ordered in concert with the partial ordering of a progressive reaction poset. 
That is, for general structures A & B in the reaction poset such that B fol-
lows A, then property X might be ordered such that X(A)<X(B). If this is 
true for every such pair, then the ordering for X is consonant with the par-
tial ordering of the reaction network. Even if whenever B follows A, it 
turns out that X(A)>X(B), the property ordering is still “consonant” with 
the partial ordering of the reaction network – the sense of the correspon-
dence between the two orderings is just reversed. Such consonance is more 
technically termed isotonicity. This indeed does happen, e.g., as illustrated 
in Fig. 4, for toxicities of the chloro-benzenes, and in Fig. 5 for chroma-
tographic retention indices (on squalene at 96oC) of methylbenzenes. 

Beyond perfect isotonicity for a property X there is also the possibility 
of “imperfect isotonicity”. Such sometimes occurs, e.g., as in Fig. 6, for 
density (in g/cm3) of methylbenzenes. Here there are several neighbour 
pairs (indicated in the figure with dashed arrows) in the diagram such as to 
be ordered differently than the other neighbour pairs. Generally to each 
property one might associate an isotonicity score, defined as the ratio of 
the number of correctly ordered neighbour pairs to the total number of 
neighbour pairs. Thus for our benzene substitution poset, as of Fig. 1, one 
sees 20 neighbour pairs, and in Fig. 5 a perfect isotonicity score of 20/20 is 
attained, while for Fig. 6 with a misordering the (rather poor) score is 
15/20 as indicated by the five broken lines. 

In some cases it might be that property values for all species in a reac-
tion network are not available. Even in such cases one can make an iso-
tonicity score, just by taking into account neighbour pairs (or equivalently 
the number of covering relations) of species such that property values for 
both are known. Thus for instance, if the property value for the hexa-
substituted species ( Cl6) were not available, then the remaining available 
number of neighbour pairs would be 19, as in Fig. 4. Thence the property 
score for this figure is seen to be 19/19. 
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Fig. 4. The posetic presentation of acute aquatic toxicity to guppy (Poecilia reticu-
lata) for chloro-benzenes (as logLC50, [ mol/l]) 
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Fig. 5. The posetic presentation of chromatographic retention indices for chloro-
benzenes (retention indices on CARBOWAX 20M column, polar stationary phase, 
at 140oC)
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Fig. 6. The posetic presentation of densities (in g/cm3) of the methylbenzenes. 
Dashed arrows indicate the incorrectly ordered pairs of the reaction poset 

Our article (Ivanciuc and Klein 2004) reports an examination of the lit-
erature to find reasonably complete tabulations of over two dozen proper-
ties for chloro- and methylbenzenes. 
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Table 1. Properties and Their Isotonicity Scores for Chloro-Benzenes 

No. Property Score 
Cln

Degree
indiffer- 
ence

Cln

1 logP partition coefficients oc-
tanol/water

 20/20 6/6 
6/6
6/6

0.089 
0.065 
0.142 

2 RI retention indices  20/20 
20/20

6/6
6/6
6/6
6/6

23.299a

42.949b

69.299c

16.627d

3 k capacity factor  20/20 2.182d

0.876e

4 tR retention time min 20/20 
19/19 6/6

1.064 
0.713 

5 fHo
gas enthalpy of formation of 

gas
[kJ/mol] 20/20 6/6 6.992 

6 log S water solubility [mol/l] 20/20 6/6 
6/6

0.438 
0.380 

7 logVp vapor pressure at 25oC [Pa] 20/20 6/6 0.156 

8 vapHo enthalpy of vaporization [kJ/mol] 20/20 6/6 
6/6

0.534 
1.514 

9 ln( Ms) molecular activities on 
SE-30 stationary phase 

 19/20 6/6 0.515 
0.289 

10 Hf enthalpy of fusion [kJ/mol] 17/20 3/6 3.020 
11 Tf temperature of fusion [K] 16/20 4/6 47.770 
12 Sf entropy of fusion [J/molK] 15/20 4/6 3.120 
13 log LC50 aqueous toxicity for 

Poecilia reticulata 
 19/19 6/6 0.164 

14 E2d reduction potential [V] 19/19 6/6 0.017 
15 ln infinite dilution activity 

coefficients in water at 
298.15K 

 15/19 - 2.031 

16 p solute polarity parameter  16/16 - 0.101 
17 IP ionization potential [eV] 12/16 - 0.087 
18 density [g/cm3] 12/12 - 0.102 
19 nD refractive index at 20oC  10/10 - 0.010 
20 pc critical pressure [bar] 9/9 - 0.357 
21 Tc critical temperature [K] 8/9 - 11.079 
22 Vc critical volume [ml/g] 8/9 - 36.53 
23 c critical density [g/ml] 6/6 - 0.015 
24 fHo

liquid enthalpy of formation of 
liquid

[kJ/mol] 5/5 - 2.443 

a retention indices on SE-30 column, non-polar stationary phase, at 120oC. b re-
tention indices on CARBOWAX 20M column, polar stationary phase, at 140oC. c

retention indices on SE-30 column, non-polar stationary phase, at 160oC. d reten-
tion indices and capacity factor on HP-5 column at 120oC. e capacity factor on HP-
5 column at 140oC; where Cln represents standard deviations. 
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Table 1a. References of Table 1 

     No. References 
1 Chemosphere 2000, 20, 457-512. 

J. Moleculare Structure 2003, 622, 127-145. 
2 J. Chromatography A 2003, 1002, 155-168. 

J. Chromatography 1985, 319, 1-8. 
3 J. Chromatography A 1996, 734, 277-287. 

J. Chromatography A 2003, 1002, 155-168. 
4 J. Chromatography A 1999, 835, 19-27. 

Electroanalytical Chemistry and Interfacial Electrochemistry 1975, 61, 303-313. 
5 www.nist.gov/chemistry NIST Chemistry Webbook 

J. Phys.Chem. A  2002, 106, 6618-6627. 
6 J. Chem. Inf. Comput. Sci. 1996, 36, 100-107.  

J. Chem. Inf. Comput. Sci. 1998, 38, 283-292. 
Chemosphere 1997, 34, 275-298. 

7 J. Chem. Inf. Comput. Sci. 1999, 39, 1081-1089. 
http://cas.org./SCIFINDER/SCHOLAR  

8 Thermochimica Acta 1991, 179, 81-88. 
http://cas.org./SCIFINDER/SCHOLAR 

9 J. Chromatography A 2003, 1002, 155-168. 
10 Thermochimica Acta 1991, 179, 81-88. 
11 www.nist.gov/chemistry NIST Chemistry Webbook 

Thermochimica Acta 1991, 179, 81-88. 
12 Thermochimica Acta 1991, 179, 81-88. 
13 J. Chem. Inf. Comput. Sci. 2001, 41, 1162-1176. 
14 Electroanalytical Chemistry and Interfacial Electrochemistry 1975, 61, 303-313. 
15 Fluid Phase Equilibra 2003, 205, 303-316. 

Fluid Phase Equilibra 1997, 131, 145-179. 
16 J. Chem. Inf. Comput. Sci. 2003, 43, 1240-1247. 
17 J. Phys.Chem. A 2003, 34, 6580-6586. 
18 CRC Handbook of Chemistry and Physics 1997-1998 Ed. 8, 5-43. 
19 Physical Properties of Chemical Compounds, American Chemical Society, Wash-

ington D.C 1995, 1-87. 
J. Chem. Inf. Comput. Sci. 1998, 38, 840-844. 

20 http:/159.226.63.177/scripts/opes/properties 
Engineering Chemistry Database 
Computers and Chemistry 2002, 26, 159-169.  

21 http:/159.226.63.177/scripts/opes/properties 
Engineering Chemistry Database 

22 Physical Properties of Chemical Compounds, American Chemical Society, Wash-
ington D.C 1995, 1-87. 
http:/159.226.63.177/scripts/opes/properties 
Engineering Chemistry Database 

23 Physical Properties of Chemical Compounds, American Chemical Society, Wash-
ington D.C 1995, 1-87. 

24 www.nist.gov/chemistry NIST Chemistry Webbook 
CRC Handbook of Chemistry and Physics 1997-1998 Ed. 8, 5-43. 

These properties, their posetic manifestation, and their isotonicity scores 
were reported, and the results for chloro-benzene properties are reproduced 
in Table 1. For most properties isotonicity scores were fairly high, with 
several being perfect. There are a few properties which exhibit lower iso-
tonicity scores – these properties include melting point, heat of fusion, and 
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entropy of fusion. Also in these tables one finds a “degree of indifference” 
score, such as has to do with a comparison to another somewhat natural 
partial ordering, wherein every Cln is viewed to precede every Cln+1 (ig-
noring the “incomparability” of some of the different substitution pat-
terns). That is, one might imagine that some properties are ordered such 
that the values of every n-substituted species are similarly ordered with re-
spect to every n+1 – substituted species – one especially simple such prop-
erty being the molecular weight. This alternative more complete partial or-
dering has an additional 6 pairs in the Hasse diagram and the degree of 
indifference is defined as the fraction of these additional relations which 
would also be satisfied by a considered property. E.g., from Fig. 4 one sees 
that the toxicity values simply increase with the number of substituted Cl-
atoms, so that the degree of indifference is 6/6. It is seen that the degree of 
indifference is often high – but not always, more so for the case of methyl-
benzenes.

Molecular Property Interpolation 

There is an especially simple sort of scheme by which to use the reaction 
poset to interpolatively predict property values, in suitable cases. By this 

scheme a prediction 
__

(B)X  is made for a property X at a position B in the 
poset if the property values are available for all other positions immedi-

ately adjacent to A in the Hasse diagram. We take
__

(B)X  as the average of 
two values: first the average of all X(A) with A just above B, and second 
the average of all X(C) with C just below B (see similar ideas in Klein & 
Bytautas 2000, Brüggemann et al. 2001, Carlsen et al. 2002 and 2004). 
Thence for ortho-dichoro-benzene the predicted toxicity from the data for 
chlorobenzene and for 1,2,3- & 1,2,4-trichloro-benzenes is 

___

2 3 3
1

2
1

2

1Cl Cl [ 123Cl 124Cl ]
2
1 2.23 [1.17 1.11]
2
1.685

{ }

             { }

X o X X X
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This scheme is notably rather like the neighbour-averaging scheme 
originally used by Mendeleev to make predictions for selected properties 
of (then) missing elements (e.g. eka-silicon, later named germanium). In-
deed this scheme in application to Mendeleev’s periodic table is often de-
scribed in texts for introductory chemistry courses. Notably Mendeleev’s 
scheme evidently appears to have even more in common with our present 
work when Mendeleev’s periodic table is viewed as a poset (such as in-

deed has been suggested). Errors (as 
____

BP(A) BP (A) ) for the so pre-
dicted boiling points of the methylbenzenes are exhibited in Fig. 7. 

Significantly beyond predicting already known property values so as to 
make comparisons, one may also make predictions for property values 
such as have not been experimentally reported. Such predictions are re-
ported in our article (Ivanciuc and Klein 2004). But there are further meth-
ods to use posets to make predictions. 

First, there is posetic splinoid fitting described in Došli  and Klein 
(2004), which is more widely applicable than the posetic averaging already 
described. This procedure imagines a function defined on each of the line 
segments shown in the Hasse diagram (each such segment corresponding 
to a single step of the reaction here considered), the function is taken to be 
a cubic polynomial, such that: first, its values (corresponding to the prop-
erty values) at the end points are the same for each incident line segment; 
second, it is smooth in the direction of change of the poset; and otherwise 
the net effective “curvature” of the function is minimized. Such a fitting 
for the special case of a completely ordered poset yields the long standard 
and highly successful spline fit – see, e.g., de Boor (1978) or Ruitishauser 
(1990). For more general posets such as the reaction network posets here, 
the technique is new – but we believe, promising. The consequent linear-
algebraic formulas as developed in Došli  and Klein 2004 (and summa-
rized in Ivanciuc, Ivanciuc and Klein 2005), involve standard matrix inver-
sions of matrices with sizes given by the number of members of the poset. 
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0.28

-1.65 -1.22 2.85

-3.85 -0.98 3.1

-3.85 -3.02 2.65

0.33

Fig. 7. The posetic presentation of the errors for the boiling points (in oC) of the 
methylbenzenes 

With this approach even when structures at adjacent positions in a reac-
tion network have property values which are unknown and are wished to 
be predicted, the spline-fitting method is applicable. Indeed there is initial 
evidence that the scheme is robust under the circumstance that even sizable 
fractions of the property values are missing – perhaps even a majority of 
the values might be missing. The errors may of course be anticipated gen-
erally to increase with increasing deficits of known property values. As an 
example this spline-fitting scheme is especially useful to deal with toxici-
ties of polychlorinated biphenyls (PCBs). Here there are about 40 toxicities 
available (Ivanciuc, Ivanciuc and Klein 2006), though there are 210 mem-
bers of the substitution reaction poset (presuming that one does not distin-
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guish stereostructures associated with lack of rotation of the two benzene 
rings about the interconnecting bond between the two). 

A further fitting method is to use a cluster expansion for the reaction 
poset. This gives a property X for species S as a linear combination of a 
corresponding “constituent” property x for earlier members of the poset  

X(S) = 
S

R Rxc
R

)(                    (1) 

with cR determined from the poset and the x(R) determined either by “fit-
ting” or by “inversion”. Usually a simplifying approximation is invoked 
wherein all but a few of the very earliest R of the poset have x(R) = 0. This 
also is developed to recent work (Ivanciuc, Klein, Ivanciuc 2005), and a 
summary is given in Ivanciuc, Ivanciuc and Klein 2005. In fact this 
method is intimately related to more standard substructural cluster expan-
sions discussed at length in reviews (Klein 1986 and Klein et al. 1999). 
The substructural cluster expansions are based upon the subgraph partial 
ordering, but the general idea applies to rather general posets as empha-
sized by Rota (1964). 

General Discussion 

It may be worthwhile to emphasize a little further the generality and ubiq-
uity of the general framework considered here. The idea of progressive re-
action posets can be argued to underlie the general idea of periodic tables, 
with Mendeleev’s periodic table of the elements providing naught but the 
most conspicuous example of such a periodic table. E.g., there also is 
Randi  and Wilkins “periodic table of alkanes” (such as appears on a cover 
of the Journal of Chemical Education Randi  1992), Dias’ “formula peri-
odic table of benzenoids”, and “periodic table of all acyclics” (Bytautas et 
al. 2000). All these periodic tables fall into two-dimensional arrangements 
with one type of reaction down columns and another type along rows. 
Most of these periodic table examples end up with more than one chemical 
species at each position (or node) of what then is recognized as a reaction 
network. More detail about such an interpretation (for all these periodic ta-
bles as well as several others) may be found elsewhere (Klein 2005). Espe-
cially in Randi  & Wilkins periodic table poset for alkanes the type of 
property interpolation techniques developed here should be rather directly 
applicable. In the progressive reaction poset for substituted benzenes it 
may even be mentioned that our diagram of Fig. 1 may be viewed to an-
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ticipate a second type of reaction – namely a rearrangement reaction going 
across rows of the diagram. Here it is understood that we start with the 
most symmetric species (of a given overall composition) and then proceed 
to increasingly asymmetric species with each horizontal (rearrangement) 
step to the right, so that, e.g., the molecular dipole moment should increase 
from left to right. Thence the present poset of substituted benzenes might 
be viewed as a (simple) “periodic table”. Overall it seems that the general 
ideas underlying our approach are widespread, and perhaps many applica-
tions of the general theory of posets may be made, maybe with some of the 
techniques specifically adapted to the evidently ubiquitous case of progres-
sive reaction posets. 

Note that the currently noted interpolative fitting techniques (poset-
averaging, splinoid fitting, cluster expansion) go beyond simple ordering 
and ranking. This may be contrasted with the work of Carlsen (and also in 
that of Brüggemann 2001, Carlsen et al. 2002 and 2004) the considered 
poset is not determined a priori but rather is defined in terms of the consid-
ered property values, so that at least these property values are strictly iso-
tonic. What is different in the current approach is that: miss-orderings of 
the experimental values are allowed, quantitative predictions are enter-
tained, and consequent standard deviations are obtained. That is, with pre-

dicted values 
__

(B)X  comparisons with measured values and consequent 
standard deviations are naturally made, as in the preceding section. Both 
the isotonicity score and the standard deviation provide measures of the 
degree of organization achieved by the posetic classification. The overall 
results as reported in Table I seem encouraging. A further indication of the 
utility of the results is made upon making plots of predicted vs. measured 
property values as indicated: in Fig. 8 for aquatic toxicities of chloro-
benzenes; in Fig. 9 for octanol-water partition coefficients for chloro-
benzenes; in Fig. 10 for octanol-water partition coefficients for methylben-
zenes; and in Fig. 11 for aqueous solubility of methylbenzenes. Evidently 
even this simple parameter free poset-averaging can sometimes work quite 
well. Further work with the splinoid fit and the cluster expansion indicate 
that they also work quite well, while also being more robustly tolerant of 
missing information. Especially with larger posets this robustness is often 
especially relevant, e.g., with the chloro-substitution reaction for biphenyl, 
where out of 210 members one finds only about 40 toxicities reported in 
the literature. 
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Fig. 9. Comparison of predicted and measured partition coefficients octanol-water 
for chloro-benzenes (as logP) 
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Fig. 10. Comparison of predicted and measured partition coefficients octanol-
water for methylbenzenes (as logP) 
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Fig. 11. Comparison of predicted and measured aqueous solubilities (mol/L) for 
methylbenzenes (as logS) 
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Prognosis

Evidently progressive reaction network are in fact posets. And properties 
for species appearing in such a network can be fit in a poset-attentive man-
ner to understand the pattern within the poset and to make useful predic-
tions. Some of the fitting procedures are of a notably different nature than 
commonly used QSAR fitting procedures. Indeed the “poset-average” and 
splinoid fitting procedures are in essence parameter free. The cluster-
expansion approach yields fitting parameters in a more conventional man-
ner, and the possibility of their transfer between different reaction posets is 
a problem for future study. In the (few) cases so far studied to make fits 
and predictions of properties, the various techniques seem to work quite 
reasonably. The “poset-average” procedure recommends itself with its 
great simplicity. The splinoid and cluster-expansion approaches however 
have an advantage of being tolerant to larger deficits of information, while 
still seemingly making reasonable predictions. The novelty of the approach 
in comparison to typical QSAR approaches, and in particular the attention 
beyond structure to placements in reaction networks, suggests the designa-
tion of one approach to be that of QSSAR (quantitative super-
structure/activity relationships). 

Further it is emphasized that such directed reactions graphs are wide 
spread in chemistry conceivably even in other sciences as well. Sometimes 
the posets may be quite complex as with the briefly noted addition - reac-
tion poset for hydrogenation of buckmisterfullerene – leading to a poset of 
>1014members. And sometimes the poset may be infinite, as with the noted 
alkane poset. Yet further the same types of progressive reaction posets 
may occur. For example the posets of ancestors or food webs in biology 
may often appear in the form of our reaction posets, and thence be suscep-
tible to the same analyses. Thence there is much promise for our presently 
indicated ideas and techniques. 

On a more technical level miss-orderings of associated property values 
are tolerated, quantitative parameter free predictions are entertained, and 
consequent standard deviations are describable. Simple quality-of-fit indi-
ces (isotonicity score and standard deviation) for the organizational ability 
of the poset have been designed. Other schemes (i.e., “models”) for the 
prediction of properties might be imagined, and perhaps even useful. More 
generally parameter dependent fittings as combinations of isotonic func-
tions might be sought. Further it has not escaped our attention that the sub-
stitutional progressive reaction networks are very special posets: they are 
“graded” in the sense that every isotonic path from any one fixed member 
to a successive fixed member are of the same length, and in fact these 
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posets are even more special. Thence with such additional structure addi-
tional theory concerning associated isotonic functions may be relevant. All 
this presumably should be pursued further. Even with the approaches indi-
cated here, tolerable standard deviations are often obtained, and some pre-
dictions beyond the experimentally reported values are made. 

Overall notable success is evidenced in the few investigations to date. 
As such this indicates a potentially wide-range of chemical applications 
and possibly beyond. Further posetic techniques should be developed and 
explored.

The authors acknowledge the support (via grant BD-0894) from the 
Welch Foundation of Houston, Texas. 
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2 Environmental Chemistry and Systems 

In this section the multivariate point of view is the central topic. The par-
tial order to be analyzed is a result of a characterisation of objects, e.g., of 
chemicals by different attributes. Especially the Hasse Diagram Technique 
(abbreviation: HDT), which plays a central role in this and in the next 
three sections is devoted to derive and to draw information out of graphs, 
based on the -relation among each single attribute. 

In the chapter of Brüggemann and Carlsen some concepts introduced in 
the chapter of El-Basil are revitalized and explained in the context of the 
multivariate aspect. Basic concepts, like chain, anti-chain, hierarchies, lev-
els, etc., as well as more sophisticated ones, like sensitivity studies, dimen-
sion theory, linear extensions and some basic elements of probability con-
cepts are at the heart of this chapter. The difficult problem of equivalent 
objects, which lead to the items object sets vs. quotient sets are explained 
and exemplified.  

In the chapter by Brüggemann and Carlsen the degradation of the sedi-
ments of Lake Ontario is used as an example, however only playing a mi-
nor role. In the chapter of Pudenz the quality of river sediments is the main 
topic. Sediment quality is assessed by measuring the concentrations of 
chemicals and by performing biochemical and ecotoxicological tests. The 
reader will beside others learn how clustering techniques; especially a 
fuzzy clustering can be combined with partial order. 

In the chapter of Carlsen and Walker a hard and real life example is pre-
sented. It is a challenge to analyze 50 persistent, bioaccumulating and toxic 
substances with respect to their hazard toward the environment. Just the 
Hasse diagram is helpful in getting an overview about these 50 substances.
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Abstract

The first part of this chapter gives a detailed introduction to partial order 
ranking and Hasse Diagram Technique (HDT). Thus, the construction of 
Hasse diagrams is elucidated as is the different concepts associated with 
the diagrams. The analysis of Hasse diagrams is disclosed including struc-
tural analysis, dimension analysis and sensitivity analysis. Further the con-
cept of linear extensions is introduced including ranking probability and 
averaged rank. The evaluation of sampling sites is, in the second part of 
the chapter, used as an illustrative example of the advantageous use of par-
tial order ranking and Hasse Diagram Technique.  

When a ranking of some objects (chemicals, geographical sites, river 
sections etc.) by a multicriteria analysis is of concern, it is often difficult to 
find a common scale among the criteria and therefore even the simple sort-
ing process is performed by applying additional constraints, just to get a 
ranking index. However, such additional constraints, often arising from 
normative considerations are controversial. The theory of partially ordered 
sets and its graphical representation (Hasse diagrams) does not need such 
additional information just to sort the objects.  

Here, the approach of using partially ordered sets is described by apply-
ing it to a battery of tests on sediments of the Lake Ontario. In our analysis 
we found: (1) the dimension analysis of partially ordered sets suggests that 
there is a considerable redundancy with respect to ranking. The partial 
ranking of the sediment sites can be visualized within a two-dimensional 
grid. (2) Information, obtained from the structure of the Hasse diagram: 
For example six classes of sediment sites have high priority, each class ex-
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hibits a different pattern of results. (3) The sensitivity analysis identifies 
one test as most important, namely the test for Fecal Coli-
forms/Escherichia coli. This means that the ranking of samples is heavily 
influenced by the results of this specific test.

Introduction

Overview 

In the present chapter an alternative way of analysing objects, which are 
characterized by several quantities is presented. Hence, instead of examin-
ing the variance (for example leading to principal component analysis) or 
the distances among objects (for example leading to cluster analysis), we 
focus on the use of partial ordering in ranking. An important aspect within 
the concept of partial ordering is the visualization by Hasse diagrams.  
More specifically, we study  

the system of comparabilities and incomparabilities between objects 
which arises, if an order relation between them is defined 
how to set priorities and to detect the pattern which identify objects of 
high priority 
how to define logical non-contradictory sequences and 
how the selection of criteria influences the ranking of a set of objects.  

Beyond this we analyse  
the role of the structure of the Hasse diagram, i.e. levels, hierarchies, 
articulation points 
the role of order preserving maps among partial orders and especially 
those order preserving maps whose results are linear orders and  
how we can derive an averaged rank, probability distributions from 
them and how structural properties of the Hasse diagram can be de-
tected in probability distributions. 

Further is discussed, the important concept of 
poset dimension, and 
latent variables are related to partial orders.  
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Partial order rankings may advantageously be visualized through Hasse 
diagrams. The program „WHASSE“ allows the construction of Hasse dia-
grams and provides several tools, which helps to analyse partially ordered 
sets (Brüggemann et al. 1999 a). A historical and personal view about the 
development of the programs around partial order is given by Halfon see p. 
385. A matrix W is introduced, that quantify the importance of the single 
criteria on the eventual ranking. Additional to the contributions in this 
book, several textbooks and monographs and journal's publications are 
recommended to the reader (see reference list: "Introductory references", 
p. 393).  

Partial order 

Introductory remarks 

Hasse diagrams show the relations of partially ordered sets (posets). In the 
following is explained why partial order is a useful concept on ranking. 
Ordering is a logical way to give objects a structure: If for example chemi-
cal substances are characterized by their persistence then these substances 
can be sorted according to the increasing persistence, the sequence of sub-
stances corresponds to one characteristic number, namely the persistence. 
Often however, a single number is not sufficient to characterize objects. 
For example not only the persistence but also the bioaccumulation of a 
chemical substance may be important to explain the environmental behav-
iour of the substance. For further examples see contributions of this book. 

Common to these examples is that each object (geographical sites, 
waste disposal sites, databanks, chemicals, managing options) is character-
ized by more than one quantity. Objects that are characterized by several 
quantities (we call them “attributes“ -see later for details-) often cannot be 
ordered, because there are conflicts between their attributes. Metaphori-
cally we are talking of comparing apples and oranges. 

An example may help to understand this. We may have five objects {A, 
B, C, D, E} characterized by e.g. their environmental persistence „P“ and 
by their ability to bioaccumulate „B“. As often is the case both attributes 
do not behave parallel, i.e. it is not automatically given that a persistent 
substance also is the most bioaccumulating. 
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We can arrange the five substances according to P or B (Fig. 1): 

Fig. 1. "Permutation diagram": Two sequences of objects according to two differ-
ent characteristics. 

The type of diagram in Fig. 1 is called a permutation diagram (Urrutia 
1989). It shows that there are inversions between the two sequences. Some 
objects will mutually exchange their positions in dependence which quan-
tity is used to define the sequence (for example C, E). Some other objects 
do not change their relationships to others, if the sequence defining quan-
tity (here: persistence or bioaccumulation) is changed (For example: A < D 
or E < B independent whether the persistence or the bioaccumulation is se-
lected; other examples can also be found). Obviously some „rest of order“ 
remains, if both quantities are considered at the same time and this fact 
motivate the term „partial order“. Within the given example of five objects 
partial ordering arises because more than one quantity is used to character-
ize the single substances. This is often the case, where the complexity of 
nature prevents the use of a single ranking index (therefore many applica-
tions can be found in biology, ecology, ecotoxicology, and chemistry as 
disclosed through various chapters of this book. Partial order is further a 
typical tool within operation research, many decision support systems are 
based -at least implicitly - on partial order. For example in versions of 
ELECTRE (Roy 1972, 1990) or PROMETHEE (Brans & Vincke 1985, 
Brans et al. 1986, Heinrich, 2001) a partial order is at least an interim step 
(see also chapter by Brüggemann et al., p. 237). An access to recent litera-
ture may also be found in (Colorni et al. 2001, Lerche et al. 2002). 

Obviously, the concept of partially ordered sets appears rather useful in 
environmental sciences. The „usual“ order, namely the order in which each 
object can be compared with each other, can be considered as a special 
case of partial order, i.e., the term "linear" or "total" order is used. 
Permutation diagrams become confusing if many objects are included and 
especially if more than two attributes characterize the objects. In such 
cases a corresponding number of sequences may arise and for each pair of 

B:    A < E  <  B   <   C < D 

P:    A  <  C  < E < B   <  D 
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sequences a permutation diagram can be drawn. Instead of this trouble-
some procedure which leads to m·(m-1)/2 pairs of permutation diagrams 
(m attributes used) the technique of Hasse diagrams provides a useful tool 
for visualization. From the permutation diagram (Fig. 1) it can be con-
cluded that A < C < D and A < E < B < D, respectively, whereas we can-
not say anything concerning the relations between C and E and B, respec-
tively, if both persistence and bioaccumulation are taken into account. 
Thus, the partially ordered set of the five objects (cf. Fig. 1) is visualized 
in a "Hasse diagram" (Fig. 2). 

Fig. 2. The Hasse diagram as an alternative to the permutation diagram shown in 
Fig. 1 

The name "Hasse diagram" becomes popular by the German mathemati-
cian Helmut Hasse, who worked in Marburg, Berlin and Hamburg, see 
also chapter by Halfon, p. 385. Often this kind of diagram is simply called 
"line diagram" or even only "the diagram" (Rival 1985b).

The rationale of using Hasse diagrams 

The concept of partial order is described in the chapter of El-Basil, p. 3. 
Therefore we concentrate ourselves on the specific order relation we are 
using here, which is known as "Hasse Diagram Technique". In this tech-
nique we specifically consider any component of a sequence separately, as 
it bears its own valuable information with respect to the evaluation. Tech-
niques, motivated by the work of Muirhead 1900, 1906 and Karamata, see 
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Beckenbach & Bellmann 1971, or by Young diagrams (Ruch 1975, Ruch 
& Gutman 1979) may be useful too. However, applying these techniques, 
the components of the sequence, i.e. the attributes would loose their indi-
vidual meaning, which often is disadvantageous. (with respect to Young 
diagrams see the chapters by El-Basil, p. 3 and Seitz, p. 367.) 

The basis of the Hasse Diagram Technique (HDT) is that we can per-
form a ranking without the use of a single ordering index (called a "rank-
ing index"), i.e. we rank objects by maintaining all information about 
them. If an ordering index were used to force the object into a linear order, 
then information is lost. For example, an object might be ranked higher ac-
cording to one criterion but lower according to another. Two objects might 
not be ordered unambiguously because their data are "contradictory" to 
each other. This ambiguity is not immediately evident when we use a rank-
ing index, still worse: by using a ranking index the two attribute can com-
pensate each other. That means a "bad" value in one attribute can be com-
pensated by a "good" value in another one. Metaphorically speaking you 
can put one hand in boiling water and one hand in ice water. Discomfort-
ing? Yes! However, on an average basis you should feel quite comfort-
able! Such kinds of potential compensations or conflicts among attributes 
are immediately evident in a Hasse diagram.  

Many problems are governed simply by comparisons, i.e. by the analy-
sis of the order-relation. Typical examples can be found in textbooks of 
chemistry, when concepts like electronegativity, hardness or softness of 
compounds, etc is discussed. Many other problems are reducible to an or-
der - relation. Often for example objects may be characterized by a binary 
bit pattern, representing whether a property is given or not. For example 
existence or non-existence of chemical functional groups lead to a binary 
bit pattern, for which a partial order can be defined (see for an example the 
chapter by Klein & Ivanciuc, p. 35). Partial orders help to analyse Quanti-
tative Structure Activity Relationships (Randi  2002, Brüggemann et al. 
2001), see also chapters by Carlsen, p. 163 and Pavan et al., p. 181 and 
references therein). Other examples are biomarker responses on certain 
stress factors in ecosystems (see for example, Brüggemann et al. 1995a, 
1995b) and the analysis of data sources, see chapter by Voigt and Brügge-
mann, p. 327 and references therein. 

To explain partial order and its visualization by Hasse diagrams, some 
useful theoretical notations are given in the following section. 
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Prerequisites

Criteria comprise both quantitative and qualitative properties. Of-
ten it is useful to define a criteria hierarchy: Starting with a general 
criterion, which is hardly quantifiable, one looks for subcriteria to 
specify the general one, the subcriteria in turn may further speci-
fied, until a set of precise criteria is found, which may be quanti-
fied by attributes. 
Attributes are quantitative, measurable data. We denote these at-
tributes as q1, q2,..., qm. It is useful to define the information basis 
of the evaluation, IB to be the set of these attributes:
IB = {q1,q2,...,qm}. Some authors denote attributes as descriptors or 
possibly parameters. These terms are used synonymously. 
A case is a subset of selected attributes, taken from the ground set 
of attributes, IB. The attributes are specific to the problem. Each 
case corresponds to exactly one Hasse diagram. Thus, a given set 
of attributes induces a Hasse diagram. More definitions will follow 
in the text as the need arises. 
An object is the item of interest that may be characterized by at-
tributes. Examples of objects can be chemical substances, or geo-
graphical sites (see chapter by Myers et al., p. 309), or strategies 
(see chapter by Simon et al., p. 221) etc. Objects are ranked 
graphically by Hasse diagrams (see for example Fig. 2). Generally 
the objects are considered to belong to a set "E". Therefore the ob-
jects are also often called "elements" and E is called a ground set
or object set. The ground set corresponding to the Hasse diagram 
in Fig. 2 is thus E = {A, B, C, D, E} (note: set E but element E). 
We assume that we have n elements of the set E.
Data are the numerical values corresponding to each criterion by 
which a given object is characterized.  
Equivalent objects in Hasse diagrams: Different objects that have 
the same data with respect to a given set of attributes. Equality 
with respect to a given set of attributes defines an equivalence re-
lation, “ ”. Objects having the same values of all their attributes 
form disjoint subsets of E, the equivalence classes. An equivalence 
class with only one object is called a singleton and is called trivial. 
The equivalence classes can be considered as elements of a set, the 
quotient set E/ . Usually the partial order is based on the quotient 
set and -if necessary- the equivalent elements are associated with 
that vertex, where a representative element out of the equivalence 
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class is drawn. Examples will be given below. Further details, see 
Patil & Taillie 2004 or Brüggemann & Bartel 1999. 
The cardinality of a (finite) set is the number of elements of the 
set, denoted by card G for a set G.
Numerical representation of objects: Objects are considered to be 
elements of the object set E. Each object is characterized by attrib-
utes. We can create a table where the rows represent the objects 
and the columns the data of each object corresponding to the col-
umn-defining attribute 
Taken an element of E, the corresponding row consisting of the 
data of q1,...,qm is often called a tuple, and abbreviated by q.  
Attribute profile or pattern: If the order of attributes is fixed then 
the sequence of attribute values for a given object x can be thought 
of as visualized by a bar diagram.  This we have in mind when we 
are speaking of a profile or pattern. 

Further - more specific - terms are explained later. 

Graphs and Hasse diagrams 

The construction of Hasse diagrams:  
A set that has an order relation is called a partially ordered set (poset).

An order for a set, for example for the set E, is denoted by (E, ), the set E
often being called the ground set (of objects). As the application of partial 
order, presented here, is based on attributes, just IB influences the partial 
order. Therefore, we often write (E, IB). If the quotient set is used, then we 
write (E/ , IB).

Partially ordered sets can be visualized through Hasse diagrams, which 
are quite useful if not too many objects are included. Let a and b be two 
elements of the object set E. Each object is characterized by a set of attrib-
utes. The relation ‘ ‘ between a and b is valid, if and only if this relation 
holds for all attributes of a and b. In other words: a  b, if all components 
of the tuple of a are smaller or equal to the corresponding component of 
the tuple of b. With help of the notation qj(i) with i the index for any ele-
ment of E, and j as index for any attribute of IB we give a formula: 

 a, b E: a  b : if and only if qj(a)  qj(b), for all qj IB             (1) 

We call equation (1) the generality principle, because this equation de-
fines dominance of b over a if all properties of b confirm the -relation. 
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To illustrate the above, an example may be useful. Consider three objects 
a, b, c. They are characterized by two attributes, as Table 1 shows.  

Table 1. Fictitious example 

 q1 q2

a 1 1 
b 1 2 
c 2 1 

Obviously a < b and a < c, respectively. With respect to the first attribute:  
a = b and with respect to the second attribute: a < b. Therefore a < b. A 
similar argument holds for the a-c relation. Objects for which the -
relation holds are comparable to each other. Often it is useful to have a 
shorthand notation for comparable objects (without specifying the orienta-
tion). Thus, if a < b, or b < a, we write a  b.  

However, the relation  does not hold for the objects b and c, because 
with respect to attribute q1: b < c, and with respect to attribute q2: b > c. 
Hence, objects that cannot be compared with each other, like b, c are called 
incomparable. A shorthand notation to describe two incomparable objects 
is b || c.  

Cover relation:
If there is no element „x“ of E, for which a  x  b, x  a, b, a  b 

holds, then a is covered by b, or b covers a. Often the cover relation is re-
ferred to by its own symbol < . Obviously in our example a <  b and
a <  c, the corresponding graphical representation is given in Fig. 3. 

Fig. 3. Visualization of the order relation, induced by the data matrix, shown in 
Table 1. 

Partial orders can be visualized in different ways, see also Chapters 
written by El-Basil, p. 3 and Seitz, p. 367. An interesting variant can be 
found in the chapter by Myers et al., p. 309). Other presentations are dis-
cussed in Neggers & Kim 1998. In the present chapter, the construction of 
Hasse diagrams is explained according to the software WHASSE (Brüg-

a

b c 
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gemann et al. 1999 a) and is performed with the help of the cover relation 
as follows: 

1. E may be represented by a configuration of circles and with an 
identifier for the objects within and each circle is located in the 
two-dimensional plane. 

2. Note that the program WHASSE only displays a representative 
within the circle; other objects, having equal data tuples are shown 
in an extra field of the screen.

3. If a cover-relation holds, then a line between the corresponding ob-
ject-pair is drawn. The covering pair is oriented corresponding to 
the -relation.

4. The covered object in the -related pair is located at a lower posi-
tion on the page. (Alternatively we can, instead of the connecting 
line segment, draw an oriented arrow, beginning at the covering 
object and directed towards the covered object; in this case the lo-
cations in the two-dimensional plane of the Hasse diagram can be 
selected arbitrarily. In the practice it is more convenient to select 
the positions in the plane of the figure, according to the cover-
relation.) By this step the lines become an orientation, for example 
“good-bad” or “high-low”. See also in chapter by Helm, p. 291.  

5. Finally, not all line segments for which the - relation holds are to 
be drawn. Because of the logical rule of transitivity (which holds 
by definition for partial orders) lines corresponding to the pair x, z 
with x  y and y  z concluding x  z are omitted. They do not 
present a cover-relation. 

Fig. 4. The Hasse diagram of the example of Fig. 1 and Fig. 2, respectively, drawn 
by the program WHASSE 

In order to introduce further concepts another Hasse diagram is drawn 
(Fig. 5): 

D

B

E

C

A
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Fig. 5. Arbitrary Hasse diagram 

Elements, which are not covered by other elements, are called 
maximal elements, or -as done for example in the chapter by Carl-
sen and Walker, p. 153 simply as maximals. In Fig. 5 such ele-
ments are f, g, i. 
Elements that do not cover any other element are called minimal 
element, or simply minimals.
If there is only one maximal element, then this is also called a 
greatest element. In Fig. 5, there is no greatest element, however in 
Fig. 4 element D is a greatest element. 
If there is only one minimal element, then this is also called a least 
element. In Fig. 5, there is no least element, however in Fig. 4 
element A is a least element. 
If in a Hasse diagram there are parts that are not connected then 
these parts are called hierarchies. The suborders ({a, b, c, d, e, f, 
g}, ) and ({h, i}, ) are such hierarchies. 

Details of the construction of Hasse diagrams „by hand“ are explained 
by Halfon et al. 1989. There is a useful "four-point-program" how step-by-
step Hasse diagrams may be constructed (nevertheless quite tedious, if 
done by hand). See for a detailed description, (Voigt and Brüggemann, p. 
327). There are still many ways to draw a Hasse diagram and some mathe-
maticians are thinking about that point as art, Rival 1989. For example the 
program WHASSE would draw the Hasse diagram of Fig. 2 as depicted in 
Fig. 4. In the specific case that a poset can be considered as lattice, i.e. ful-
fils the axioms of lattices, then Freese 2004 gives an advice how to draw 
automatically lattices. 

According to the scientific background the actual diagram may be con-
structed such that the results are presented as clear as possible. If there is 
no such specific background, the Hasse diagram is drawn as symmetric as 
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possible. Incomparable objects are, conservatively located at the same 
height and as high as possible on the page. For example the object C in 
Fig. 4 could be located everywhere between objects D and A without hurt-
ing the order relations. Because of the above-mentioned convention, in-
comparable objects are arranged in levels. Sometimes a compromise be-
tween the symmetry demand and the general clearness of the diagram is to 
be accepted. The concept of levels is further discussed below. 

The concept of order preserving maps plays an important role in appli-
cations of Hasse Diagram Technique (HDT). For an introduction, this con-
cept will be exemplified by the so-called level construction (see Fig.6). 

  (a)            (b)           (c) 
Fig. 6. The Hasse diagram (left side (a)) is mapped onto the Hasse diagram (b). 
All order relations of the domain set, and order relations (left side) are preserved 
in the range of the mapping  (right side). Finally an order-preserving map ': F

F is applied to obtain a linear order (diagram (c)).

Let E be a set of objects and F another set. Let x1, x2, ... be the objects 
of E and y1, y2, ... the objects of F. An assignment f(xi ) = yi is order pre-
serving, if any order relation xi  xj is maintained, i.e. f(xi)  f(xj) or yi  yj.
Thus, if a set {A, B, C, D, E} (Fig. 6a) is assigned to the set {a, b, c, d, e} 
as follows: f(A) = a, f(B) = b, f(C) = c, f(D) = d, f(E) = e then in order to 
obtain an order preserving map one has to demand: a < b, b < d, a < c, c < 
e, c < d as e.g. in Fig. 6b and c. It should be noted that the order C < E is 
maintained. Thus, f(C) < f(E) or c < e. This is not affected by the creation 
of a new order d < e. Indeed: Very often an order-preserving map is asso-
ciated with an enrichment of comparabilities. 

Assignments as  are often called mappings, the mapping relate one set 
(the domain) to another one (the range of a map). Often it is very useful 
that the order of the image is a linear one. Especially in QSAR applications 
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as shown in chapter by El-Basil, p. 3 the quantity of interest, for example a 
toxicity of substances, induces a linear order, whereas information on 
chemicals (say: topological indices or other codes of the chemical struc-
ture) leads to a partial order (for example visualized by Young diagrams). 
Then the art is, to find such topological indices that the partially ordered 
set can be related to the linear order by an order-preserving map.  

There are several possibilities to construct linear orders. Theoretically 
very important is the concept of linear extensions, which is explained later 
(vide infra).

Another concept is that of the "levels". Linear orders by a level con-
struction encompasses in HDT the following steps: 

1. Set i = 1 
2. Consider for the first steps of construction the quotient set E/

(not the set of objects E). The set of the maximal elements, MAX,
is thus the subset of E/ .

3. Identify the maximal elements (in E/ ) and label the set MAX1

4. Reduce the set E/  by the maximal elements MAX1, E/ new = 
E/ old -MAX1

5. Draw the elements of MAX1 in top-position in the drawing plane. 
All elements of MAX1 get the same vertical position. 

6. Add 1 to i. I.e. inew = iold +1.
7. Identify the new maximal elements of (E/  - MAXi-1, IB) . Label 

the new set MAX by i.  
8. Reduce the set E/  by the maximal elements MAXi, E/ new = 

E/ old -MAXi
9. Draw the maximal elements MAXi in the same vertical position. 

Elements of MAXi-1 will located below those of MAXi . 
10.  Repeat the steps 6-9 till E/  is exhausted. The corresponding i is 

Cmax, the number of elements in the maximal chain of (E/ , IB).
11.  Corresponding to the intended application: a) give the top ele-

ments the level no Cmax and the lower levels Cmax -1 , Cmax-2, ... ,1  
or b) keep the i-labelling as level-label. In that case the bottom ele-
ments get the level number Cmax and the top elements 1.

12.  If wanted, the order relations can be added as edges. 
This construction is order preserving. 

A detailed example may be helpful: 
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Fig. 7. Hasse diagram of 12 elements. E = {a, b, c, d, e, f, g, h, i, j, k, l}. Note that 
the Hasse diagram is not drawn following the convention of the program 
WHASSE in order to clarify the construction 

Step 1: i = 1 
Step 2: E can be identified with E/ , because there are only trivial 
equivalence class (i.e. singletons). 
Step 3: MAX1 = {a, c, g, j, l} 
Step 4: E/ new = {a, b, c, d, e, f, g, h, i, j, k, l} - {a, c, g, j, l} = 
 {b, d, e, f, h, i, k} 
Fig. 8 shows the resulting Hasse diagram: 
Step 5: (see Fig. 9) 
Step 6: i = 2 
Step 7: MAX2 = {d, k} (see Fig. 8) 
Step 8: E/ new = {b, d, e, f, h, i, k} - {d, k} = {b, e, f, h, i} 
Step 9: (see Fig. 9) 
Step 6: i = 3 (iteration) 
Step 7: MAX3 = {e, h} (see Fig. 8). 
Step 8: E/ new = {b, e, f, h, i} - {e, h} = {b, f, i} 
Step 9: (see Fig. 9) 
Step 6: i = 4 (iteration) 
Step 7: MAX4 = {f, i} 
Step 8: E/ new = {b}
Step 9: (see Fig. 9) 
Step 6: i=5 
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Step 7: MAX5= {b} 
Step 8: E/ new = 
Step 12: Cmax = 5. We follow the labelling of a). See Fig. 9 left 
side for the level structure and right side for the diagram, supplied 
with the order relations: 

Fig. 8. The resulting poset and its visualization after subtracting the maximal ele-
ments of (E/ , IB) after the start and the first iteration 

Fig. 9. Example to determine the level structure (Left side: Assignment to levels 
Right side: the Hasse diagram redrawn) 

These steps sound difficult, however they are easily understandable, 
just by doing! Here some examples (Fig. 10) 
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Fig. 10. Example, how to assign the levels. If one vertex contains several equiva-
lent objects, than these objects belong all to the same level. The vertical arrow 
symbolizes the order induced by the vertical arrangement of the vertices 

The levels may be considered as a first very crude evaluation: If a high 
level is associated with a high hazard, then the sequence of increasing lev-
els coincides with increasing hazard. 

In the above advices 1-6, the rule 4 needs additional explanations. In 
order to do this, we introduce first the concept of graduation and of the 
rank-function, respectively. If there is a rank function r, then for any ele-
ment of the ground set the levels are uniquely found. Hence, a poset is 
graded or possesses a rank function if: 

a)  x > y implies r(x) > r(y) (order preserving!) and 
b)  for x covering y a unique function r can be found, such that  

r(x) = r(y)+1. 

In the case, shown in Fig. 11 (a) such a rank function exists, whereas in 
Fig. 11 (b) one cannot find a function r. Obviously, for the Hasse diagram 
in Fig. 11 (a) all five objects are located at specific levels, whereas the 
hatched object in the diagram in Fig. 11 (b) may be located either at the 
level of x or the level of y, respectively. However, corresponding to the 
level construction the element u belongs to MAX2. The elements u and z 
have therefore the same vertical position and are below the top element, 
which belongs to MAX1.
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Fig. 11. Graded (a) and non-graded (b) posets (visualized by Hasse diagrams) 
Grey circle, x and z: (see text) 

Posets, which do not have a rank function, give the user of Hasse dia-
grams the additional freedom, for example to introduce further informa-
tion. Locating an element as high as possible obviously is a conservative 
approach. Thus, in, e.g., risk assessment, high values of attributes are asso-
ciated with high risk. Locating an element of a poset as high as possible 
has thus a warning function.  

A useful theorem to find out whether a rank function r exists, is the so-
called Jordan-Dedekind Chain Condition (JDCC) (see also Birkhoff 1984), 
stating that all maximal chains between the same endpoints have the same 
finite length. Thus, if a poset satisfies JDCC, a rank function can be found. 
In Fig. 11 (a) there can be found two maximal chains. Both have the same 
length. In Fig. 11 (b), once again two maximal chains can be found. How-
ever, they differ in their length. Hence the JDCC is hurted in case of the 
poset, visualized in Fig. 11 (b). A generalization of rank functions for lat-
tices is given in Freese (2004). However, as most empirical posets do not 
satisfy the axioms of lattices, we will not deepen this concept here. 

Hasse diagrams as digraphs  
Hasse diagrams can be interpreted as mathematical graphs, i.e. they are 

called digraphs (directed graph), because of the orientation of the lines. 
Following the definitions of order the digraphs are acyclic. Interpreted as 
ordinary graphs, Hasse diagrams are triangle-free: Due to the rule of tran-
sitivity, line segments corresponding to a < c can be omitted if a < b and at 
the same time b < c. A digraph consists of a set E (or E/  if the quotient 
set is to be partially ordered) of vertices (circles in Hasse diagrams) and a 

(a) (b)

x

z
u



78      Brüggemann, R. and Carlsen, L. 

set of oriented edges each connecting two vertices. If the vertices are 
drawn in the diagram according to the above rules (defining the level-
construction) then the arrows can be simply be represented by lines, be-
cause then the element x will be arranged below y, if x < y. Therefore the 
orientation of the line is replaced by the vertical location in the drawing 
plane. The circles are the objects of E, or elements of the set E/ to be 
ranked.

The basic essence is that by the order relation a data matrix is repre-
sented by a mathematical graph with objects as vertices and that the struc-
ture of this graph tells us somewhat about the data structure. As the data 
matrix arises from external studies (experimental work, modelling, empiri-
cal data) the resulting graph is called an "empirical graph", which may 
have (hitherto hidden) regularities. A main task in performing partial order 
as an exploring tool is just to detect (by abstraction, by simplification) 
regularities or structures in the graph. Helpful, however still not yet fully 
developed, is that one can establish an algebra among a set of posets, 
which reveals different kinds of sums, products and exponentiation, see for 
example Jonsson 1982. 

The concepts "hierarchy", "articulation points", "chains" and "anti-
chains" are very basic and simple ones, which direct into the structural 
analysis of digraphs. These concepts will be explained in the next section. 

Simple elements of interpreting a Hasse diagram 

Overview
The basics to consider Hasse diagrams are to check 

1. the system of comparabilities and incomparabilities 
2. the priority elements 
3. pattern of attributes and
4. identifying data structures. 
Almost all these kinds of analyses of Hasse diagrams can be found in 

the different chapters of this book.  

Example
A simple example is given in the following (Table 2 and Fig. 12). 
There are three hierarchies. One of them is a trivial hierarchy as it consists 
of one element only, i.e., element f that is not comparable to any other 
elements. Such elements are also called isolated elements. If only few iso-
lated elements are found, whereas almost all other are comparable, then the 
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isolated elements should be examined carefully as very often specific data 
structures are the reason for their isolation.  

Table 2. A more extended  
example, demonstration of  
isolated hierarchies 
objects\attributes q1 q2 q3

a 2 2 3 
b 1 2 2 
c 2 1 2 
d 4 3 1 
e 4 2 1 
f 0 0 5 

Fig. 12. The partially ordered set of objects of 
Table 2 has a Hasse diagram with three iso-
lated hierarchies, namely ({a, b, c}, {q1, q2,
q3}) , ({d, e},{q1, q2, q3}) and ({f}, {q1, q2, q3})

If, on the other hand, all elements of E (or E/ ) are isolated then the at-
tributes should be checked for the degree of anti-correlation (Spearman 
rank correlation). It depends on the scientific question, whether such a 
trade-off among attributes (a decreasing sequence of values of one attribute 
is always accompanied by an increasing sequence of another attribute) 
should be maintained in the study. There are methods to deal with such 
cases, see the chapter by Simon et al., p. 221 and by Sørensen et al., p. 
259. However, this shall not be further discussed here. The subsets {d, e} 
as well as {a, b, c} form nontrivial hierarchies. Hence, we have three order 
relations: b  a, c  a, and e  d. The fact that the set E can thus be parti-
tioned into three disjoint subsets is always of great interest with respect to 
the data structures. Further structural elements, which are of interest in the 
analysis of Hasse diagrams, are subsequently discussed: 
Chain: Subset of the ground set, where all elements are mutually compara-
ble. An example is the chain ({d, e},{q1, q2, q3}) another: ({b, a},{q1, q2,
q3}) (Fig. 12). Often it is sufficient, simply to write {d, e} is a chain. Any 
other element of the ground set added would led to at least one incompara-
bility and thus hurts the definition. Therefore the chains {b, a}, {c, a}, {e, 
d} are maximal. The identification of chains is of high interest with respect 
to exploring data structures, because the generality principle demands that 
for all attributes of objects of a chain it is valid. Thus, if x < y, x, y being 
elements of a chain, then qi(x) < qi(y) implies qj(x)  qj(y) for all j  i. Fol-
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lowing the elements of a chain in one direction (from top to bottom or (ex-
clusively) from bottom to top) the attributes are increasing in a weak mo-
notonous manner. 
Anti-chain: Subset of the ground set, where all elements are mutually in-
comparable. An example is the anti-chain ({f, a, d}, {q1, q2, q3}). Any 
other element of the ground set added to the set {f, a, d} would introduce a 
comparability. Therefore {f, a, d } is a maximal anti-chain. Attribute pro-
files being results of monotonous variations as seen in chains are not con-
sidered as essentially different. Contrary, attribute profiles through anti-
chains are essentially different. Hence the width, Wd(E), of the poset is 
considered as a measure of diversity. 
Maximal elements (often also called simply "maximals"): Elements of the 
ground set E/ , xi, for which no yi E/  can be found with xi  yi.
Maximal elements in the Hasse diagram, shown in Fig. 12 are: f, a, d. 
Minimal elements (often also called simply "minimals"): Elements of the 
ground set E/ , xi, for which no yi E/  can be found with xi  yi. Mini-
mal elements in the Hasse diagram, shown in Fig. 12 are: f, b, c, e. 
Isolated elements: Elements that are both: Minimal and Maximal elements.  
Maximal/Minimal elements which are not isolated, are often called proper 
maximal/minimal elements. An isolated element in the Hasse diagram, 
shown in Fig. 12 is: f. 
Hierarchy: Let E'/  and E''/  be two subsets of E/ . If for all x E'/ ,
and all y E''/  : x||y then (E'/ , IB) and (E''/ ,) are hierarchies. In a 
Hasse diagram they can often be recognized as non connected parts.  
Articulation point: If the elimination of one element of E/  enhances the 
number of hierarchies in the residual poset, then this element is called an 
articulation point. In the Hasse diagram, Fig. 12 the element a is an articu-
lation point. 

Long chains, hierarchies and articulation points indicate specific data 
structures. The role of hierarchies will be explained by a two dimensional 
scheme (Fig. 13): Several objects may be located as points within the two 
rectangles H1 and H2. Comparing one object of H1 with one of H2 will lead 
to q1 (of x H1) > q1 (of y H2), whereas q2 (of x H1) < q2 (of y H2).
Hence no object of H1 is comparable with that of H2. In Neggers & Kim 
1998 a rather nice wording is found for the objects belonging to the field F
and P: These are the future objects relative to the objects in the field P,
which are called the objects in the past.  
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Fig. 13. Role of hierarchies in Hasse diagrams 

Note that by construction of levels any level is to be considered as anti-
chain. However, this anti-chain may not necessarily be a maximal one. The 
evaluation of sampling sites for sediment samples of the Lake Ontario is 
used as a further illustrative example (cf. pp. 94). More details can be 
found in Brüggemann & Halfon (1997) and Brüggemann et al. (2001 b).  

Characterizing a Hasse diagram as a whole 

Characteristic Numbers of Posets  

In the present section a series of simple characterising numbers is intro-
duced. They are useful to give a general overview and impression of the 
poset and the corresponding visualizing graph, the Hasse diagram. It is 
recommended to read the careful discussion by Pavan & Todeschini 2004 
and in this book, chapter by Pavan, p. 181. The Hasse diagram of Lake 
Ontario will exemplify all numbers.  

NECA: Number of equivalence classes with more than one object, 
i.e., the number of nontrivial equivalence classes.  
Wd(E): The width of a Hasse diagram. It is the maximum number 
of elements of E/ , which are found in an anti-chain. In the con-
text of Young diagrams (see Seitz, p. 373) also called a “breadth”. 
L(E): The length of a Hasse diagram: The number of line segments 
in the chain with a maximum number of elements of E/ .

q1

q2

H1

H2
F

P
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H(E): The height of a Hasse diagram = Cmax. H(E)=L(E)+1. H(E)
is the number of objects (of E/ ) in the maximum chain. 
NL, the number of levels = H(E).
NEL, the number of elements (of E/ ) in the level, which contains 
the most elements of E/ ; note that this number is not necessarily 
the same as Wd(E).
NMAX: The number of maximal elements (called: number of 
maximal equivalent classes because this information is related to 
E/ ).
NMIN: The number of minimal elements (notation as for the 
maximal elements). 
Z: Number of all equivalence classes, including singletons, i.e., Z 
= card E/ . Note that Z and NECA differ. If NA is the number of 
elements of E, which are contained in nontrivial equivalence 
classes (NECA) then the following equation holds 
card E = NA + Z - NECA                           (2) 
Some other numbers are also interrelated, for example the relation 
NL = L(E)+1                              (3) 
P(IB): stability of ranking. This quantity is a measure for the effect 
of extending or reducing the set of attributes on the structure of the 
Hasse diagram. It is calculated as the quotient of all incomparabili-
ties, Utotal and Z·(Z-1)/ 2: 

1)(ZZ
U2)P( totalIB                 (4) 

If P(IB) is near 1 or 0, respectively, then extending or reducing, re-
spectively, the set attributes should have a minor effect. 

Linear Extensions

The linear extensions are the basis of the dimension theory of posets. Be-
sides the dimension of posets other characterizations may be derived from 
linear extensions (Carlsen et al. 2002, Lerche et al. 2003, Lerche & Søren-
sen 2003).

Extensions may be explained by the following: Given a poset (E, )
then we can assign another poset (EX(E), ) which

1. supplies some ||-relations of (E, ) by < or > -relations  
2. maintains all comparabilities of E in the correct orientation 
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Extensions are order-preserving maps from the ground set E into the 
ground set E; see Davey & Priestley 1990. Linear extensions (LEX(E), )
are order-preserving maps from E to E, which assign to (E, ) a linear or-
der.
In Fig. 6 (b) an extension is shown (identify A with a, B with b, etc), but 
not a linear one. An additional preserving map leads to a linear order (Fig. 
6 (c)). The diagram in Fig. 6 (c) is a linear extension of that in Fig. 6 (a). 
Given a poset (E, ) then several linear extensions (LEX(E), ) are possible. 
A systematic procedure is described by Atkinson (1989), especially for 
trees a closed formula can be derived Atkinson (1990). A useful formula to 
calculate the number of linear extensions is also given by Stanley (1986). 

Each relation x  y, x, y E is reproduced in LEX(E). However, the re-
verse statement is not true. All in all, any linear extension is an image of an 
order-preserving map. The diagram (Fig. 14) visualizes the concept. All 
comparabilities x < y, x, y E, of (E, ) are reproduced in the first fourteen 
lines of the table, whereas the last sequence (16th row) in the table illus-
trates a non order preserving map. The relation d  e of (E, ) is reversed. 
This sequence therefore is no linear extension of the poset (shown in the 
left side of Fig. 14). If the sequences (1) to (14) are considered as partially 
ordered sets, then they have comparabilities, which are not found in the 
original poset. For example the elements b and e are comparable in the 14 
sequences of Fig. 14, but are incomparable in the original poset. The in-
comparability of b, e is expressed in the linear extensions by the fact that 
there are some, where b > e, and some where the opposite is true.  



84      Brüggemann, R. and Carlsen, L. 

1 a b c e f d  2 
2 a b c e d f  2 
3 a e f b c d  2 
4 a e b f c d  4 
5 a e b c f d  4 
6 a e b c d f  3 
7 e f a b c d  1 
8 e a f b c d  3 
9 e a b f c d  3 
10 e a b c f d  3 
11 e a b c d f  2 
12 a b e f c d  2 
13 a b e c f d  4 
14 a b e c d f  3 
         
 a b c d e f   

Fig. 14. Poset (E, ) (left side) and its 14 linear extensions (LEX(E, )) ((1) to 
(14). 

In Fig. 14 the first column labels the linear extensions, which are repre-
sented as sequences in rows 1 - 14. A sequence a   b   c  ... is to be read as 
a > b > c. Furthermore there is a sequence (last row in the table) which is 
not a linear extension of (E, ). Vertical bold lines indicate jumps (see be-
low). The last column indicates the number of jumps of each single linear 
extension. Consecutive elements in linear extensions (LEX(E), ), which 
have no correspondence in (E, ) are called "jumps" (see Fig. 14, the verti-
cal bold lines indicating jumps). The jump number, jump (LEXi(E, )),
obviously depends on the actual selected linear extension. The jump num-
ber of a poset (E, ), jump (E, ), is just min(jump(LEXi (E, ))), whereby 
the minimum is to be found by checking all linear extensions. Beside the 
jump - number there is also a bump - number. Once again the bump num-
ber is to be referenced to a specific linear extension. A bump is a consecu-
tive pair of elements in a linear extension, which are comparable in the un-
derlying poset. The bump number of a poset is the maximum about all 
bump numbers found for the linear extensions. If a linear extension of n 
elements is formed then n-1 consecutive relations are found in a linear ex-
tension. Therefore  

 jump (LEXi(E, <)) + bump (LEXi(E, <)) = n - 1              (5) 

a

b

c

d

e

f
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Linear extensions of a minimal jump number of specific interest: These 
linear extensions (also called "greedy linear extensions") preserve as much 
as possible the chain-structure of a Hasse diagram (Rival 1983, Rival & 
Zaguia 1986). As one can see in Fig. 14 that linear extension with jump 
number = 1 preserves both chains a > b > c > d and e > f. Consequently, 
the jump number of a poset may be considered as indicator for 
"chainyness": Thus, a low jump number indicates that the poset contains 
subposets, which are long chains. In operation research or queuing plans a 
jump implies often some cost-intensive rearrangements. Therefore linear 
extensions with a small number of jumps are preferred in organisation of 
work. Contrary to that, Patil and Taillie 2004 are discussing in their paper 
that the jump number may also serve to weight linear extension, where the 
linear extension with the largest number of jumps gets the highest weight. 

If a specific element, say x E is selected then its spectrum is of inter-
est (Atkinson 1990). It should be noted that other authors (for example 
Trotter 1991, Schröder 2003) also call the spectrum a projection. However, 
we favour "spectrum" as the more suitable name for the following con-
struction. Thus, let LT be the number of linear extensions of a poset, then 
we can find the rank of an element x in the ith linear extension: rank(i, x). 
Note that this construction should not be confused with the rank function, 
we discussed above. Conventionally, the bottom element of a linear exten-
sion is given the rank 1, thus the top element has the rank n (card E = n). 
However, if appropriate the top element may be assigned the first priority, 
such that bottom elements will get numbers > 1 (see for example chapter 
by Carlsen, p. 163). We call k(x) the frequency, how often x E gets the 
rank k. The spectrum spec(x) is a tuple containing n components ( 1(x),

2(x), ... , n(x)). Thus for example the spectrum of element b in Fig. 14 as 
follows: spec(b) = (0, 0, 3, 6, 5, 0). (i) There is no linear extension, where 
the rank of b is 1, 2 or 6. (ii) There are 3 linear extensions, where the rank 
of b is 3. (iii) There are 6 linear extensions, where the rank of b is 4. (iv) 
There are 5 linear extensions, where the rank of b is 5. Obviously: 

LT = k(..)              k = 1,...,n                (6) 

The set of linear extensions is the basis for probability considerations: 
Dividing k(x) by LT the quantity prob (rk(x) = k) = k(x)/LT can be inter-
preted as (ordinal) probability to get the rank k, sometimes also called “ab-
solute rank”. Hence, an averaged rank, Rkav can be derived by  

 Rkav(x) =  k· k(x)/LT                 (7) 
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and the elements x E can be ordered by their Rkav-values. Therefore a 
total order, however, often including equivalence classes can be derived 
from a poset, without the numerical combination of attributes to one rank-
ing index. This concept is widely used based on the following arguing: If 
the attributes are combined, say by weighted sums or any other positively 
monotonous function, then the result must be (besides ties) one of the lin-
ear extensions, as the set of all linear extensions encompasses all results of 
order preserving maps. However, there are still many open problems due 
to computational difficulties in handling large object sets, advices can be 
found in Lerche et al. 2003 or in Patil & Taillie 2004. If n objects are mu-
tually incomparable, then n! linear orders are possible, corresponding to n! 
permutations. (See also chapter of Sørensen, Lerche, Thomson, p. 259, for 
a discussion of entropy, related to the number of linear extensions). Hence 
a crude upper estimation of the number of linear extensions is n! A ground 
set containing for example 17 elements may have at most ca. 3.5 1014 lin-
ear extensions.

Recently an alternative was discussed, in order to use a local model of 
the partial order, which describes the environment in the directed graph 
around the element of interest. For further discussions two recent publica-
tions should be consulted (Brüggemann et al. 2004, 2005). 

A rather good approximation for an element of interest, x, may be ob-
tained, if the successors (all elements "below" x) and predecessors (all 
elements "above" x), respectively, are organized into a so-called “S-x-P” 
chain, all remaining elements, i.e. those incomparable to x being consid-
ered as isolated. From a combinatorial study follows that the averaged rank 
of an element x can be expressed as 

Uk

0k

kUk

Uk

0k

kUk

1)(P1)(S
k
U

1)(P1)(S
k
U

k)1(S
Rkav                         (8) 

which can be transformed (Brüggemann et al. 2004) into 

Rkav= (S+1)·(S+P+U+2)/(S+P+2)                 (9) 
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Since N = S+P+U+1 the averaged rank of an element x may be expressed 
by the following simple relation 1

                            
                   (10) 

with:

S(x): = |{y  E : y < x}| is the number of successors of x 
N the total number of elements and  
U(x): = |{y  E : y || x}| is the number elements incomparable to x.  
P(x): = |{y  E : y > x}| is the number of predecessors. 

The principle is illustrative demonstrated by determining the averaged 
rank of element b in the Hasse diagram depicted in Fig. 15.  

Fig. 15. Example for application of equation 10. The averaged rank of element b 
is to be estimated 

It is immediately seen that N = 5, S(b) = 1 (element c), P(b) = 1 (ele-
ment a), and U(b) = 2 (elements d and e). Hence, according to equation 
(10) the averaged rank of element b is estimated to be Rkav(b) (estimated) 
= (1+1)·(5+1)/(5+1-2) = 3, the exact value - calculated after equation 7 - 
being Rkav(b) (exact) = 2.889. 

Dimension of a poset 

The dimension of a poset is based on the set of linear extensions. A linear 
extension can be considered as a set of ordered pairs. For example the lin-
ear extension no 1 in Fig. 14 (right side): 

1 Counting from bottom to top. 

a

b

c d

e

U(x)1N
1)(N1)(S(x)Rkav(x)
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{(a, a), (b, a), (c, a), (e, a), (f, a), (d, a), (b, b), (c, b), (e, b), (f, b),  
(d, b), (c, c), (e, c), (f, c), (d, c), (e, e), (f, e), (d, e), (f, f), (d, f),  
(d, d)}. Each pair denotes a  -relation. For example (e, b) means that in 
the linear extension no 1 e  b. 
A similar set could be found for any other linear extension, for example no 
2:
{(a, a), (b, a), (c, a), (e, a), (d, a), (f, a), (b, b), (c, b), (e, b), (d, b),  
(f, b), (c, c), (e, c), (d, c), (f, c), (e, e), (d, e), (f, e), (d, d), (f, d),  
(f, f)} 
The intersection of these two sets of pairs leads to: 
{(a, a), (b, a), (c, a), (e, a), (d, a), (f, a), (b, b), (c, b), (e, b), (d, b), (f, b), (c, 
c), (e, c), (d, c), (f, c), (e, e), (d, e), (f, e), (d, d), (f, f)}. 
This intersection does not coincide with the set of ordered pairs of the 
poset itself (Fig. 14 (left side)): 
{(a, a), (b, a), (c, a), (d, a), (b, b), (c, b), (d, b), (c, c), (d, c), (e, e), (f, e), 
(d, e), (f, f), (d, d)} 
Thus this kind of troublesome check has to be repeated until the intersec-
tion of the set of ordered pairs of the linear extensions coincide with that of 
the poset. The lowest number of linear extensions -written as ordered pairs 
as shown above- whose intersection is the actual poset (together with its 
transitive relations), is its dimension. Following the explanation above one 
would have to check 14·13/2 intersections, just to verify that the dimension 
equals 2. If such pair of ordered sets, derived from any two linear exten-
sions is found, one has found a "realizer" of the poset (Trotter 1991).  

Note, it is not a good policy to derive the dimension by finding explic-
itly the realizers. Here five useful theorems are taken from the literature 
(Trotter 1991): 

dim (E, )  Wd(E) (for further on Wd(E), see p. 81)           (11) 
Let (E, ) a poset and (C, ) a chain, C E. Then 
dim(E, )  2 + dim(E-C, )                        (12) 
Let (E, ) a poset, and n:=card E  4, then:
dim (E, )  n/2                       (13) 
Let EA E an anti-chain of a poset (E, ) , then 
dim (E, )  max(2, card(E-EA))                         (14) 
If the Hasse diagram, supplied (if necessary) by a greatest and 
least element can be drawn in the plane without crossing 
of lines, then the dimension of the poset is 2,            (15) 

Let (E, ) be a poset and (E', ) be a subset of E, then 
dim (E, )  dim (E', )                            (16) 
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We apply equation 12 to determine the dimension of the poset shown in 
Fig. 16: 

Step 1: As the poset is not a linear order we conclude: dim (E, ) > 
1
Step 2: We select a chain: C = {c, b, a} 
Step 3: The ground set is now E-C = {d, e}. The poset ({d, e}, )
is a chain. 
Step 4: dim ({d, e}, ) = 1 
Step 5: 1 < dim (E, )  2 + 1. Thus the dimension of (E, ) is ei-
ther 2 or 3. 

Equation 11 would be more useful: As Wd(E) of the poset, shown in 
Fig. 15 is 2, the dimension must be 2. Generally, for the purposes intended 
in this chapter equations (15) and (16) are the most interesting theorems. 

Fig. 16. Hasse diagram of a poset with dimension 3. The Hasse diagram on the left 
side follows not the convention explained earlier! The Hasse diagram on the right 
side is supplied by a greatest ”G” and least element ”L”. 

The poset, whose Hasse diagram is shown in Fig. 16 (left side) has the 
dimension 3. A priori, as obviously there is no crossing of lines, the di-
mension would be expected to be 2. However, this poset must be extended 
by a greatest, G, and a least element, L. Then a crossing of lines within a 
plane is not avoidable. Thus posets having such substructure have at least 
dimension 3. For other examples, compare Trotter 1991. Why is the di-
mension of posets so interesting? Let us assume we got a Hasse diagram 
by using 5 attributes. If now, the dimension of the partial order would be 2 
then we knew in advance that two linear extensions are sufficient to repro-
duce the partial order. As each single linear extension can be considered as 
the linear order induced by an unknown attribute, two attributes are suffi-
cient to obtain the same partial order as by the original five ones. Usually 
these two attributes cannot be found as a subset of the information base. 

G

L
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They are called latent variables. The original five attributes may be (in a 
complex manner) mapped onto 2 latent variables.  

                                                                   

(a)                                (b) 

     

(c)                                                     (d) 

Fig. 17. The partial order of four elements and the concept of dimension 

In Fig. 17 a Hasse diagram (a) and its 5 linear extensions (ordered for in-
creasing values) (b) are shown. Two realizers (grey hatched) are identified 
and are considered as new attributes ("attr. 1"; "attr.5") (c). The objects are 
located in a rectangular grid (d) due to values of attr. 1 and attr. 5. A rota-
tion of the coordinate system around ca 45o would reproduce the original 
Hasse diagram. If the dimension of posets is 2 or 3 then it may be useful, 
to embed the poset into a two- or three-dimensional grid (see Brüggemann 
2001 b). For an example of embedding a poset into a two-dimensional co-
ordinate system, see also the chapter of El-Basil. 

On the other hand, any two-dimensional scatter plots can be interpreted 
as a partial order, if the generality principle is applied to the both coordi-
nates of any point. 

1     2     3    4     attr. 5)

 1) d,c,b,a 
 2) d,b,c,a 
 3) b,d,c,a 
 4) d,b,a,c 
 5) b,d,a,c 

attr.1) attr.5)
a 4 3 
b 3 1 
c 2 4 
d 1 2 

attr. 1) 

4

3

2

1

a
b

d
c

a

b

c

d
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Sensitivity study 

Mathematical Notation and Background 

Preferably a maximal element should be chosen as a starting point for the 
analysis. This choice, however, is not mandatory. Thus, other elements of 
E or E/  could be chosen too. This selected element is called "key ele-
ment". We may simultaneously select more than one key element even all 
elements (no restrictions apply here). For the sake of convenience all key 
elements are supposed to form a set K (  E).

The analysis of a key element implies a search of all elements located 
lower than that of the key element, i.e. all elements that can be reached 
from the key element by a path, a sequence of connecting edges. (There-
fore the selection of maximal elements rather than other elements is more 
meaningful). These elements together with elements equivalent but not 
identical to the key element are called successors. The set of all successors 
of the key element "k" is denoted as G(k,A), A IB. We include the in-
formation about the actual set of attributes (i.e. the case) by A. Note the 
similar concept of "down-sets" in Davey & Priestley (1990): The order 
ideal (or down set), generated by the key element will be denoted by 
O(k,A). Then it is valid: 

G(k,A) = O(k,A)-{k}

The operation "-" is the set theoretical subtraction. For example: 
{a, b, c, d} - {a, e} = {b, c, d} 

Those elements of the first set, which also are in the second set, are 
eliminated. By definition G(k) does not include the key element itself. The 
successor sets and their cardinalities are the heart of the sensitivity analysis 
shown here. The successor sets found for two Hasse-diagrams resulting 
from two attribute-subsets of IB are used to quantify certain differences. 
The cardinality of successor sets (denoted: card G(k)) and of their set theo-
retical combinations play an important role here. 
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Residual sets

To assess the influence of each attribute on ranking, we compare Hasse 
diagrams that arise from subsets B, C of IB. A straightforward method to 
perform this task is to choose a key element and quantify the effect of each 
attribute set on its successor set. For this purpose the residual set, R, i.e. is 
now introduced. 

R(k, B, C): = (G(k, B) \ G(k, C))                          (17) 

By Venn-Euler diagrams residual sets can easily be understood (see 
Fig. 18): 

Fig. 18. Venn-Euler diagram of the residual set R(k, B, C) = G(k, B) - G(k, C)

In general R(k, B, C) R(k, C, B). Therefore the symmetric difference set 
"W(k, B, C)" of the sets G(k, B) and G(k, C) is introduced:

W(k, B, C): = R(k, B, C) R(k, C, B) =
[G(k, B) - G(k, C)]  [G(k, C) - G(k, B)]              (18) 

If the cardinality of W(k, B, C) is small, i.e. 

W(k, B, C) << min [G(k, B), G(k, C)]) 

then subsets B and C lead to not very different Hasse diagrams. If the dif-
ference is large then the two corresponding Hasse diagrams are dissimilar 
to each other. Those attributes, by which B and C differ, play a key role in 
ranking. This finding motivates the introduction of the matrix W.

 G(k, B)

Residual Set

G(k, C)
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Definition of the matrix W 

Calculating the matrix W
The matrix W(k) assesses the difference of Hasse diagrams induced by 

the two subsets of attributes with respect to a key element k. This matrix, 
which is at the heart of the analysis, is called the "dissimilarity-matrix", 
because the larger the matrix-entries are, the greater is the difference be-
tween the successor sets for the element k and hence between the Hasse 
diagrams (see for more details, below). We define the entry W(k, B, C) of 
matrix W to be: 

 W(k, B, C): = card [R(k, B, C)    R(k, C, B)]                          (19) 

For any key-element k the residual sets R(k, B, C) and R(k, C, B) are 
determined, their elements being counted and summed. The entries of the 
matrix W are subsequently calculated by adding the cardinalities of the R-
sets. To simplify notation, we now write W(k, i, j) for W(k, B, C).

Search for the important attributes 

Several W(k, i, j)'s, k K (K is any set of key elements) can be compared 
to see how a change in attributes affects the partial order with respect to 
the set of several key elements: 

EK
K

k
j)i,,W(k:j)i,,W(                                                               (20) 

W(K) is a symmetrical matrix. W(E) is the total dissimilarity matrix of the 
set of E. Let be n:=card E. Mainly the W(k) and the W(E) matrices are 
useful. The final steps towards a sensitivity are: 

1. If we are interested in comparisons of the full attribute set IB with all 
subsets Ai IB , Ai only one row of the matrix W is of interest. We 
can choose the first one without loss of generalization, thus we are 
left with W(k, 0, 1), W(k, 0, 2), .... , W(k, 0, p), where the index 0 
denotes the full attribute set IB (i.e. A0 IB) and p=2m -1. 

2. To see the influence of single attributes on a Hasse diagram we 
compare the Hasse diagrams induced by IB with those induced by 
those attribute sets Aj IB with only m-1 attributes (Ai = IB - {qi}). 
Therefore the effect of dropping exactly one attribute is given by the 
remaining m entries: W(k, 0, 1), W(k, 0, 2), ...., W(k, 0, m).  
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3. The m entries W(k, 0, 1), W(k, 0, 2), ..,W(k, 0, m) are put together to 
form a "sensitivity tuple" of the key element k, s(k) being [s1 ,..., sm]. 

4. The larger si the larger is the symmetrized difference between  
G(k, IB) and G(k, Ai) and correspondingly the larger the influence of 
attribute qi on the position of key element k within the Hasse diagram 
under IB compared with that under Ai . 

5. The matrix W(k) depends on the selection of the key element k. If 
however, more objects are to be analyzed we generalize according to 
equation (20). 

6. W(E) will be used as a measure of sensitivity. Accordingly we 
quantify the sensitivity by: 

7. (i): = W(E ,IB, Ai ) 1 < i < m                      (21) 
with the enumeration scheme of step 3).  

8. It can be shown that (i) has values between 0 and n·(n-1). Hence a 
measure of attribute's sensitivity, independent of the number of 
objects is: 

9. norm (i) = W(E, IB, Ai )/[n·(n-1)] .  0 norm (i)  1 

Evaluation of Sampling Sites 

Sediment samples of Lake Ontario as object set and the tests 
of the battery as information base 

A battery of tests developed by Dutka et al. 1986 to test the sediments of 
near-shore sites of Lake Ontario (Canadian part) is used to exemplify the 
definitions and some results of HDT. In Lake Ontario 55 sediment samples 
were tested, thus, the set E contains 55 objects. Dutka et al. classified their 
results and used discrete scores instead of the measured (raw) data. For our 
analysis we have adopted their classification. Thus, si denotes the score of 
the i-th test of the battery. Five specific tests form the actual battery: (1) 
Fecal Coliforms „FC“, as an indicator designed to control the health state 
of the sediments, (2) Coprostanol „CP“ and (3) Cholesterol „CH“ both be-
ing indicators of loadings by fecals, (4) Microtox tests „MT“ and (5) 
Genotoxicity tests „GT“ disclosing some kind of acute toxicity and the po-
tential for carcinogenicity, respectively (see Table 3). 
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Table 3. Scores of the 5 test battery results for representatives of the equivalence 
classes of E/

identifier FC CP CH MT GT  identifier FC CP CH MT GT 
1 2 0 0 4 0  17 3 0 0 6 0 
2 1 0 0 2 0  18 1 0 0 2 4 
3 2 0 0 2 0  23 1 0 0 0 4 
4 3 0 0 0 0  25 4 0 0 0 0 
5 3 3 2 0 0  27 5 0 0 0 0 
7 2 0 0 8 0  31 4 5 4 0 0 
9 1 0 0 6 2  32 3 0 0 8 0 
11 1 0 0 0 0  91 2 0 0 0 0 
12 3 0 0 2 0  92 3 0 0 4 0 
14 1 0 0 8 0  95 3 5 2 6 0 

By scoring the data many equivalence classes (in fact 20) arise (vide in-
fra). It is convenient to refer only to these classes by specifying a represen-
tative for each class Thus, besides the sensitivity study we apply the con-
cept of quotient sets. With the equivalence relation  meaning equality in 
all five scores sFC, sCP, sCH, sMT and sGT, the following sediment samples 
appeared as equivalent, (Table 4) the quotient set being denoted as E/ .

Table 4. Nontrivial equivalence classes and their battery of tests pattern. No. of sites 
in bold letters are later used as representatives for the whole equivalence class eci

Equivalence Class (ec) card
(ec)

FC CP CH MT GT 

ec1={2,8} 2 1 0 0 2 0 
ec2={4,6,10,13,19,21,22,29,30,48,94} 11 3 0 0 0 0 
ec3={11,16,40,41,42,43,44,45} 8 1 0 0 0 0 
ec4={15,92} 2 3 0 0 4 0 
ec5={17,35} 2 3 0 0 6 0 
ec6={20,24,26,28,34,37,39,49,50,51,91,93} 12 2 0 0 0 0 
ec7={23,60} 2 1 0 0 0 4 
ec8={27,33,46,47} 4 5 0 0 0 0 

The sites, referred to as site numbers in bold letters are later used as 
representatives for the whole equivalence class. The site numbers are used 
as object identifiers.
The quotient set E/  consists of the 8 equivalent classes {ec1, ec2, ec3, 
ec4, ec5, ec6, ec7, ec8} together with remaining 12 singletons {1}, {3}, 
{5}, {7}, {9}, {12}, {14}, {18}, {25}, {31}, {32}, {95}. 
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Now we apply all the characteristic numbers of Hasse diagrams, intro-
duced earlier in this chapter.

n = card E = 55, Z = card E/  = 20, NECA = 8, NA = 43 
Clearly: card E = NA + SG, SG the number of singletons (here: SG = 

12) and SG = Z - NECA. 
The information base of the battery of tests is: IB: = {sFC, sCP, sCH, sMT,

sGT}. The partial ordering of the samples arises as explained in sections 2 
and 3. The visualization of the partial order by HDT is depicted in Fig. 19. 

27 31 95 32

25 5 17

92

12

4

91

11

2

3

1 14

7

9 18

23

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Fig. 19. The comparative evaluation of samples of the Lake Ontario, as generated by 
the WHASSE software. Hasse diagram of the poset (E/ , ) . 

We check now the items discussed in former sections by some illustrative 
examples. Note, that in the following sections the term sites is used for the 
single objects/elements covered by the ranking exercise, reflecting the actual 
nature of the data material. 

Comparability: 
Taking site 31 as an example it is immediately seen that due to the transi-

tivity (see El-Basil, p. 3) this site is comparable to (and worse than) site 4. 
Thus, 31  4 as we have the sequence 31  5 and 5  4 from which 31  4 
follows logically. Likewise, through a longer chain 32  17  92  1  3  91 

 11 it follows that 32  11. We say that 32 are connected to, or comparable 
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to 11, because there is a path, which can be followed without changing the 
orientation. On the other hand, site 17 is not connected/comparable to site 14, 
because there is no path, which can be followed from 17 to 14 without chang-
ing the orientation: 17  92  1  3  2, however: 2  14. The relation be-
tween the sites 31 and 5, displaying 31  5, is a cover relation, whereas the 
relation between the sites 31 and 4, although 31  4 is not a cover relation, as 
there is an in-between element, i.e., site 5 located between site 31 and site 4. 
What does comparabilities or chains tell us? By identifying chains we know 
that the upper object (e.g. site 32) is in all aspects worse than the lower object 
(e.g. site 3). All attributes increase simultaneously when the path from the 
lower element, i.e., site 3 to the site 32 is followed. In mathematical terms 
this can be described as a weak positive monotonous function, i.e. equal or 
increasing values of all attributes simultaneously following a chain. 

Incomparability and Anti-chain: 
Site 32 is, e.g., incomparable to site 9 as well as to many others. There is 

no path (in the digraph) by which we can start from site 32 and stop at site 9 
without changing the orientation. It should be remembered that in an ordinary 
graph there is a path: 32  7  14  2  9. However, the arrows recall that 
in the digraph we have an orientation, whereas in the ordinary graph we only 
have a line. The set {25, 5, 17, 7, 23} is an example of an anti-chain (cf. Fig. 
19). However, this anti-chain is not of maximum length as site 9 could be 
added without violating the definition of an anti-chain. Large anti-chains in-
dicate a high diversity of attribute profiles. Incomparabilities arise if at least 
one pair of attributes is antagonistic: i.e. a "walk" from an object x to an ob-
ject y is accompanied with increasing of at least one attribute and decreasing 
of at least one other. For an illustration, take the incomparable sites 95 and 
32. As the incomparability arises from the fact that CP, CH increase, FC and 
GT do not change, whereas MT decreases if the path from site 32 to site 95 is 
followed (cf. Table 3 and Fig. 19). 

Priority elements: 
As the sampling sites with high responses of the test-battery are of most 

interest, the maximal elements are taken as priority elements, i.e. the equiva-
lence classes {27, 33, 46, 47}, {31}, {95}, {32}, {9}, {18}. From this we 
conclude that a) the sites 27, 33, 46, 47, 31, 95, 32, 9, 18 are of specific im-
portance, and b) the set of sites {27, 33, 46, 47} has the same profile of 
scores, thus, they may be remedied by the same methods, whereas the attrib-
ute profiles differ among all other priority objects. 
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Characterizing numbers: 
With the Hasse diagram of Fig. 19 at hand it is easy to derive the remain-

ing characterizing numbers discussed in former sections. Hence, we find L(E)
= 6, H(E) = 7, and NL = H(E) =7. These numbers give an impression in 
which detail the steps from a minimal element to a maximal element may be 
disclosed. This informs us here about the maximum possible differentiation 
in the degree of hazards. 

In the present case (cf. Fig. 19) a partitioning of E (or E/ ) into levels of 
increasing hazard prevails. Thus, {ec3} < {ec6, ec1} < {ec2, {3}} < 
{{12},{1},{14}} < {ec4} < {{25}, {5}, ec5, {7}, ec7} < {ec8, {31}, {95}, 
{32}, {9}, {18}}, the "<" sign reflecting that the sets are ordered correspond-
ing to their level number. 

We further find that NEL = 6, which in the present case coincides with 
NMAX = 6. The number of minimal elements NMIN = 1. 

Finally the stability is to be calculated: P(IB) = 0.574 
This means than on one hand the Hasse diagram will change remarkably, if 
an attribute is omitted or if an additional attribute is included, leading to 
new P(IB) values of 0.247 and 0.832, respectively. Hence, omitting an at-
tribute changes the Hasse diagram towards a chain, whereas adding a new 
attribute causes the appearance of several hierarchies, eventually leading to 
an anti-chain. 

See also for another example in chapter by Helm, p. 298. 

Linear extensions: 
As 20 objects (elements) of E/  (= Z) are a rather high number, we would 

have to expect up to 2·1018 linear extensions we restrict our study to the order 
ideal O(95). Its Hasse diagram is shown in Fig. 20.  

For the poset, shown in Fig. 20 a total of 66 different linear extensions are 
possible. In the present context it makes no sense to list them all. For illustra-
tion a random selection of 5 linear extensions is listed below: 

L1: 11 < 2 < 91 < 3 < 1 < 4 < 5 < 12 < 92 < 17 < 95 
L2: 11 < 91 < 2 < 3 < 4 < 1 < 12 < 5 < 92 < 17 < 95 
L3: 11 < 2 < 91 < 4 < 3 < 1 < 12 < 5 < 92 < 17 < 95 
L4: 11 < 91 < 4 < 2 < 3 < 1 < 12 < 92 < 5 < 17 < 95 
L5: 11 < 91 < 2 < 4 < 3 < 1 < 5 < 12 < 92 < 17 < 95 
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Fig. 20. O(95) , the order ideal generated by object (sampling site ) 95. All con-
siderations here are based on E/

The jump-numbers are 3, 6, 4, 3, 5 for L1 to L5, respectively, the jumps 
in, e.g., L1 being found between 2 < 91, 1 < 4 and 5 < 12. 

What kind of information can be derived from this? If we represent a 
poset by a set of linear extensions, then those of major interest are those pre-
serving the chains of the poset as far as possible. It is obvious that L2 is a cor-
rect representation of the partial order. However, the chains that can be iden-
tified (cf. Fig. 20) are separated by many elements, which originally did not 
belong to chains.  

A further use of linear extension is the probability scheme (ranking prob-
abilities) that they provide. Probability plots are depicted for the three sites 1, 
17 and 91 (Fig. 21a) and for site 5 (Fig. 21b), respectively. (See also the con-
tributions, chapters by Voigt and Brüggemann, p. 327; Brüggemann et al., p. 
237; Carlsen, p. 163.  

Remarkable differences can be noted. Thus, in the case of the three sites 1, 
17, and 91 rather sharp maxima are developed, indicating that they can safely 
be assigned to a rank near the maximum of their probability plot. However, 
the sites differ in their individual ranking position. Thus, site 91 takes a lower 
rank site 1 a medium rank and site 17 a rather high rank. Therefore a mutual 
ranking sequence of the sites 1, 17, and 91, i.e., 91 < 1 < 17, can be given 
since the minimum rank of the one site apparently does not overlap signifi-
cantly with the maximum rank of a lower positioned site. 

1

2

3 4

5

11

12

17

91

92

95
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The site 5, on the other hand, differs from the above discussed sites as a 
rather smeared out probability plot is disclosed. Thus, the eventual assign-
ment of a rank for site 5 is uncertain. This can also be seen directly from the 
visualization in the Hasse diagram (Fig’s. 20 and 19). The site 5 is not as 
strongly connected as the other three elements. In more detail the conse-
quences are discussed in Brüggemann et al. (2001b). We can calculate the lo-
cal quantity U(x), i.e. the number of incomparabilities of an element x. The 
larger the values of U(x) the more uncertain the rank of x is. In the case of 
site 5 it turns out that U(5) = 6 , whereas the corresponding values for the site 
91, 1, 17 are U(91) = 1 , U(1) = 2 , and U(17) = 1, respectively. Therefore the 
measure of uncertainty about the ranks is U(91) = U(17) < U(1) << U(5). 

As stated earlier, it is possible to calculate averaged ranks; the full list of 
information is given in Table 5, where the minimum, maximum rank and the 
local incomparabilities are displayed. 

Table 5. Summary of the analysis by linear extensions 

Identifier Min Rkav Max U(x) 
1 5 6.67 8 3 
2 2 2.85 5 3 
3 4 4.70 6 2 
4 3 4.33 6 3 
5 4 7.67 10 6 
11 1 1 1 0 
12 6 6.94 8 2 
17 9 9.82 10 1 
91 2 2.39 3 1 
92 8 8.63 9 1 
95 11 11 11 0 

The analysis by linear extensions is very attractive as it helps to derive a 
linear ranking, without any subjective preferences. The data lead to a poset, 
the poset may be analyzed with respect to its structure, this is a combinatorial 
problem, and finally a ranking probability can be derived. Crucially in this 
procedure is that very different attribute profiles may lead to the same Hasse 
diagram and thus to the same set of linear extensions and therefore finally to 
the same probability characteristics: Thus, the attribute profiles a) (0,0), (1,0), 
(0,1), (1,1) and b) (0,0), (1,0), (0,5), (4,7) lead to identical Hasse diagrams. 

A priori this is fine as the first attribute definitely should compensate the 
second one. However, the sites, which belong to (1,0),(0,1) on the one side 
and (1,0), (0,5) on the other side will get the same averaged rank! Thus, the 
analysis by linear extensions alone should be carried out with appropriate 
care. We continue the analysis of the poset and discuss the attribute profiles. 
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Fig. 21. Probability plots for 4 elements of the poset, shown in Fig. 20 

Up to now, we have a quite good overview about the ranking of sites in 
Lake Ontario. However, does the test battery comprise redundancies? The 
subsequent dimension analysis will disclose this. 

a

b
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Dimension analysis  

We find, applying equation 15 that the poset shown in Figure 19 has dimen-
sion 2. Once the dimension d of a poset is found with d < card IB, then corre-
sponding many new latent ordering variables l1, l2, ... ld may be used to form 
the same Hasse diagrams as found by the original attributes. Hence, the same 
ranking must be possible by a lower number of latent ordering variables and a 
redundancy within the battery appears possible. However, the numerical rela-
tion between the original attributes and the latent ordering variables may be 
rather difficult to derive and, if even then hard to interpret as it is often the 
case, e.g., in principal component analysis. 

Corresponding to the dimension d = 2, the poset shown in Fig. 19 can al-
ternatively be visualized by a two-dimensional grid as is shown in Fig. 22. 
Both visualizations have their advantages. Structures within a Hasse diagram, 
e.g., successor sets, or sets of objects separated from others by incomparabili-
ties, can be more easily disclosed by a representation like that of Fig. 19. In 
multivariate statistics reduction of data is typically performed by principal 
components analysis or by multidimensional scaling. These methods mini-
mize the variance or preserve the distance between objects optimally. When 
order relations are the essential aspect to be preserved in the data analysis, the 
optimal result is a visualization of the sediment sites within a two-
dimensional grid. 

Some scores of the test battery are additionally shown. From them the 
values of the scores of other objects can be estimated or exactly calculated. 
For example, for site 17, FC must have the value 3, because the lower object 
92 and the higher object 95 have sFC = 3. The value of CP must be 0 because 
sCP(32) = 0, which is the lowest value. Similarly sCH(17) = 0 and sGT(17)=0, 
whereas for sMT(17) only the interval 4  sMT(17)  8 can be predicted from 
the knowledge of the neighbours in the Hasse diagram. 

The grid (Fig. 22) can be thought of as being a coordinate system, with 
one axis of a latent order variable l1 and another by l2, according to d = 2. 
By these two latent ordering variables, each element E/  can be charac-
terized by a pair, which represents correctly the order relations (Compare 
Figure 17) that are important for ranking but which is clearly not unique 
with respect to a numerical representation. The interpretation of the latent 
variables l1 and l2 is supported by checking the configurations within the two-
dimensional grid in terms of its a priori content (variables FC, CP, CH, MT, 
GT). A clear correlation can be detected between FC and the latent variable l1
and also between GT and the latent variable l2.
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Fig. 22. Visualization of the ranking result of the sediment samples of Lake Ontario 
after dimension analysis 

Sometimes these variables FC and GT with primary meaning are called 
polar items Shye 1985, Borg & Shye 1995. For further elucidation see also 
the multivariate technique posac (partial order scalogram analysis with coor-
dinates), which is explained in Brüggemann et al. 2003, Voigt & Welzl, 2002 
and for which a tool is provided in the software package Systat (R) 2000. 

The other variables accentuate the possibility of discrimination in a 
nonlinear manner. Therefore, in a qualitative sense, the ranking of the sedi-
ment sites of the Lake Ontario seems to be determined by a hygienic and an 
ecotoxicological component. Some objects could be embedded into the grid 
on alternative ways. However, the order theoretical information, namely the 
comparabilities and incomparabilities are maintained. This can be easily 
proved by verifying that the Hasse diagram induced by five attributes (Fig. 
19) is isomorphic to that, induced by the two latent variables (Fig. 22). If the 
ranking is in mind, then obviously the five tests apparently contain some re-
dundancies, because the decision for "good" or "bad" could also be given on 
the basis of two coordinate values. 
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Sensitivity analysis of the ranking  

For our example the matrix W has the following values (Table 6) 

Table 6. Values of the matrix W for different combinations of attribute 

W case 0 
FC,CP,CH,
MT,GT 

case 1 
CP,CH,M
T,GT

case 2 
FC,CH,M
T,GT

case 3 
FC,CP,
MT,GT 

case 4 
FC,CP,C
H,GT

case 5 
FC,CP,C
H,MT 

case 0 0 795 0 0 360 124 
case 1 - 0 795 795 1155 919 
case 2 - - 0 0 360 124 
case 3 - - - 0 360 124 
case 4 - - - - 0 484 
case 5 - - - - - 0 

It is seen that cases 1 to 5 excludes one after another FC, CP, CH, MT and 
GT, respectively. Thus, comparing these cases to case 0, including all 5 at-
tributes, will disclose the relative importance of the 5 tests comprising the 
battery. Thus, from this matrix the sensitivities are (FC) = 795, (CP) = 

(CH) = 0, (MT) = 360 and (GT) = 124, respectively, unambiguously dis-
closing the test "FC" as the most important within the attribute set containing 
the five tests. The tests CP and CH apparently do not have any influence at all 
on the order theoretical structure of the set of samples, i.e. they do not influ-
ence the prioritization of the sites. Their low sensitivities are also found by 
Dutka et al. 1986, who established a regression model between the two quan-
tities. It is emphasized that this conclusion refers to the classified values of 
the battery of tests. Hence, the result with respect to FC should be carefully 
examined as the high sensitivity may be induced by the scoring process. 

Fig. 23 shows the Hasse diagram (generated by the computational soft-
ware, WHASSE (Brüggemann et al. 1999 a) therefore drawn in its standard 
format: circles, and each object as high as possible in the drawing plane): 
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Fig. 23. 55 samples evaluated with the test battery of Dutka, excluding the FC test. 
Note that many samples are members of non-trivial equivalence classes 

The dramatic changes compared to the original Hasse diagram (Fig. 19) 
are immediately seen. 

Discussion and Conclusion 

The battery of tests approach helps to evaluate sites using different criteria 
simultaneously: The decision of which sites are "good" or "bad", i.e. the sort-
ing process is more difficult the larger the number of samples and especially 
the larger the number of tests, since there is more information that can be 
used to differentiate among the tested objects. This, in turn, leads to difficul-
ties for ranking, because the complexity of a well-designed battery is being 
lost, if in order to compare the tested objects, a ranking index like  

 =  gi·qi                         (22) 

is constructed. The presentation by a Hasse diagram avoids the arbitrariness 
in constructing a ranking index. Applying concepts of partially ordered sets 
must not be performed in isolation. All results depend on the data representa-
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tion used. The present study aimed at demonstrating the HDT using, and ex-
tending the results of Dutka et al. 1986. Therefore we did not need statistical 
analyses. However, generally, the appropriate data representation is of much 
concern, Brüggemann & Welzl 2002. The use of cluster analysis and princi-
pal component analysis may be helpful to obtain a statistical relevant data 
representation and to avoid insignificant numerical differences of the attrib-
utes, which in turn would lead to insignificant comparabilities and incompa-
rabilities and thus to very complex Hasse diagrams.  

A combination of Hasse Diagram Techniques and explorative statistical 
methods could be a very promising approach to future tasks in environ-
mental sciences. Approaches in this respect were followed on the pollution 
of regions in Germany with heavy metals, cf. Brüggemann et al. 1999b) 
and on the contents of environmental databases, cf. Voigt et al. 2004. 

The analysis of empirical datasets may lead to empirical partial orders, 
which do not necessarily fulfill the axioms of lattices. The school around 
Wille (Wille 1987 and Ganter & Wille 1996) has shown how it is possible 
nevertheless to construct a lattice. The resulting lattices and the analysis 
based on them is called "Formal concept analysis". As lattices fulfill more 
axioms than posets generally, one gets a richer theory of them. Especially 
it is possible to generate a set of implications. See chapter by Kerber, p. 
355 for introductory examples. 

The main advantage of a ranking by HDT is that it can be performed 
without any normative constraints. HDT simply sorts the objects without any 
additional information. Beyond sorting, many conclusions may be drawn 
from the Hasse diagrams as they represent a well-defined mathematical struc-
ture. Summarizing the following recommendations can be given:  

If the battery of tests is used to test many objects, perform a cluster 
analysis to get rather numerically robust results. Instead of the meas-
ured results for each object use some characteristic values of the clus-
ter (mean values or some other quantities, describing a cluster cen-
ter).
Apply HDT to look for priority objects, to identify objects or subsets 
with characteristic patterns (in mathematical terminology: find "order 
ideals") or to select sequences (in order theoretical terminology: 
"chains") of objects. 
Perform a dimension analysis to estimate the redundancy of the test 
system and a sensitivity study to identify important or less important 
attributes. The rational for the importance of each attribute cannot be 
drawn from the HDT; here the scientific background is needed: What 
are the characteristics for all the tested objects are there any internal 
correlations among the attributes? 
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If an aggregation is done, as, e.g., by eqn. 22 then note that the 
weights may have an important influence on the ranking results via 
if objects have an high degree of incomparability, i.e. have a large 
value for U(x). 
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Abstract

With respect to sediment pollution responses of ecotoxicological tests may 
differ from those of biochemical test systems and moreover both tests are 
indicating effects instead of simply measuring of chemical concentrations. 
Because most test results of sediment investigations are commonly given 
as inhibition values and sediment pollution by chemicals is measured by 
their concentrations a comparative evaluation of sediments by means of 
both test results and chemicals at the same time has to consider different 
scales. Both data transformations on a common scale (standardization) and 
aggregations lead to loss of information and hamper the interpretation of 
results. In order to avoid merging of data and to circumvent often-crucial 
data transformations, partial ordering is used for evaluation of sediment 
samples from German rivers. The aim here is to compare the evaluation of 
river sections by different parameter groups, namely biochemical and 
ecotoxicological tests, as well as concentrations of organic pollutants, 
heavy metals etc. Fuzzy cluster analysis as a pre-processing step is addi-
tionally used to understand the pollution pattern that is given by each test 
result. It is shown that for most of the river sections, test systems among 
each other and also compared to chemical concentrations yield different 
quality pattern and therefore lead to different Hasse diagrams. Sole excep-
tion is a bayou where the sediment is undisturbed by shipping traffic and 
sewage. Moreover, as a consequence of varying pollution pattern during 
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the sampling period (over several years), only for a few river sections it is 
possible to derive distinct temporal changes: Except for the nematode 
sediment contact test, where all parameters are significantly correlated, this 
holds for both ecotoxicological and biochemical tests, and for chemical 
concentrations. Furthermore, for one river section it could be observed that 
chemical concentrations indicate a decline of contamination, whereas 
ecotoxicological parameters point to an increased toxicity. With respect to 
the development of a classification system for river sediments it is recom-
mended to take care in the selection of parameters and to base it at least at 
two parameter groups. 

Introduction

In order to ensure shipping traffic in rivers and coastal waters fairways 
have to be dredged continuously. As a consequence thousands of tons of 
sediments are to be managed yearly. This dredged material can be con-
taminated with different pollutants. Depending on the degree of contami-
nation dredged material can be relocated within the water or has to be dis-
posed as hazardous waste. However, exactly the question which sediment 
can be classified as hazardous or not hazardous is a crucial one and a stan-
dardized method about how to classify sediments and dredged material re-
spectively, would be a helpful tool not only for administrative purposes but 
also regarding economic and environmental aspects. Surveying the way of 
developing such a system several questions arise, which have to be an-
swered a priori: 

What is the state of sediment pollution of all waterways and what 
kind of contamination is known, currently and in the past? 
How are 'hazardous' to be defined and what parameter should be 
taken into account respectively, when sediment/dredged material 
has to be classified? 

The German Federal Institute of Hydrology (BfG) holds an extensive 
database about sediment investigations of Federal Water Ways considering 
several parameters (Heininger et al. 1998, Heininger et al. 2003). These 
data can be divided into three groups, namely chemical, ecotoxicological 
and biochemical parameters. With respect to the questions above and in 
order to make optimum use of these data the following question arises. 

Is there a difference between a comparative evaluation of sedi-
ments when using different parameter groups or is it sufficient to 
consider one group or certain parameters as representatives for 
sediment burden? 
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The questions put here for sediments could be applied to other environ-
mental evaluation problems just as well, for instance to soil or groundwa-
ter pollution. However, a common difficulty with these evaluations is that 
many of the methods mask and aggregate the data, and therefore both 
valuable information and transparency are lost. An alternative is partial or-
der ranking that avoids the merging of data and thus preserves important 
elements of the evaluation. Here we will show that partial order ranking 
has useful qualities in data analysis and it can be applied for pre-
processing in the development of classification systems.  

For all calculations and graphical presentations of partial ordered sets 
the ProRank  Software was used (Pudenz 2004). 

Database

For many sections of the main waterways in Germany, namely the rivers 
Rhein, Elbe and Oder, sediment investigations provide results about  

concentrations of priority pollutants like toxic heavy metals 
(measured in the fine fraction <20 µm) and hazardous organic 
compounds (detected in the whole sample <2 mm),  
sediment toxicity as revealed in aquatic ecotoxicological tests with 
Daphnia, Algae and Bacteria using eluates and pore-water as test 
medium and in an sediment contact test (whole sediment) with 
Nematodes; in both tests toxicity is expressed in terms of percent 
inhibition compared to an unpolluted standard 
biochemical tests measuring enzymatic activities (e.g. aminopepti-
dase activity, glucosidase activity); the test results are given as 
percent consumption of a specific indicator substance, 
the basic sediment properties like organic carbon concentration, 
grain size spectrum, water content, for biochemical tests also DNA 
content; all basic parameters are measured in the whole sample. 

A detailed list about parameters and sample sites can be found in Tables 
5 and 6 in the appendix.  

Partial order ranking requires complete data sets; alternatively data gaps 
have to be filled or to be cancelled. In case of time series of river sections 
the missing parameter could be replaced by e.g. the mean of temporal ad-
joining measurements. The nearer these measurements are the better is the 
gap filling. However a detailed review of the data set for this study shows 
that mainly locations, which were investigated only one time per year, had 
missing values in certain parameters. Alternatively, cancelling of data gaps 
means loss of information. In order to minimize loss two different proce-
dures are considered:
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exclusion of the parameter with one or more gaps aiming at data 
sets with maximum sample number (MAX-SN) and  
exclusion of the sample with one or more gaps aiming at a maxi-
mum number of parameter (MAX-PN). 

Results

Evaluation of Oder sediments using raw data 

Chemical pollutants versus aquatic ecotoxicological tests 
For the River Oder there are only a few samples with a fully completed 

data set. Therefore, the largest sample set consisting of chemical and 
ecotoxicological parameters is used here. The Hasse diagrams (HD) are 
based on 33 samples (MAX-SN), which were collected along the whole 
river between 1997 and 2001. Figure 1 shows the result for inhibition val-
ues of ecotoxicological tests in eluate and pore-water. All circles are la-
belled by identifiers for the sampling site and date, for example WD10/99 
means Widuchowa at October 1999. Due to many lines the diagram is 
rather difficult to interpret. 

However, compared to the HD based on chemical parameter (see Fig. 2) 
it shows a distinct level-structure (five levels). That means, for certain 
sediments a similar pattern concerning ecotoxicological effects in all tests 
can be observed. Regarding these lines consisting of samples with increas-
ing values in all tests in more detail, we find one maximal chain with five 
samples: GG6/99<CB9/98<KR11/98<EH10/95<WD5/98. However, none 
of these relations is found in the evaluation by chemical concentrations. 
Moreover, there are only two comparabilities that are common for both 
Hasse diagrams, namely  

WD10/95 < ZB7/00 and 
WD10/95 < ZB3/00. 

More interesting could be an observation about a temporal development 
of a sample location. However, there are only a few comparabilities indi-
cating a temporal development for a specific site with respect to all tests 
and inhibition values respectively. For the site Glogau (GG) only the rela-
tion GG6/99 < GG5/98 holds, whereas both other samples from there, 
GG11/97 and GG11/98, are incomparable (see Fig. 1 and Table 1). In ad-
dition to Glogau only one more comparability indicates a temporal devel-
opment with respect to all test results, namely for the site Widuchowa 
(WD): WD10/95 < WD4/99 (Fig. 1). 
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Fig. 1. Hasse diagram of 33 Oder sediment samples concerning six ecotoxicologi-
cal test results 

Table 1. Inhibition (H) of algae (A) and bacteria (B) tests in pore-water (P) and 
eluate (E); not shown are zero-values for daphnia in all Glogau samples 

Sample HPA HEA HPB HEB
GG11/97 -99,3 -7,4 16,3 3,3 
GG5/98 -7,2 -53,1 50,6 19,2 
GG11/98 25,7 -7,8 11,4 15,5 
GG6/99 -185 -111 15,9 8 

In the evaluation by chemical parameters no temporal comparison of a 
sample location is found. The number of incomparabilities (U=1006) is by 
far more than the comparabilities (V=25). A high stability value 
(P(IB)=0,95) c.f. p. 83 indicates that the partial order is very instable 
against omitting an attribute, where a sensitivity analysis (for details to 
sensitivity analysis, the reader is referred to e.g. (Brüggemann et al. 2001 
and to pp. 91) shows that the evaluation is sensitive against the pollution 
parameters PCBs, pp'-DDT, PAHs and Sn. However, omitting one of these 
parameters leads neither to more levels nor to significant more compara-
bilities as in the diagram based on all parameters.  

Summarizing the observations it can be concluded that 
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compared to the HD by means of ecotoxicological tests the chemi-
cal concentration profile c.f. p. 81 shows by far more diversity 
(Fig. 2) and yields a different ranking result, 
for both parameter groups temporal developments are hardly to 
observe.

Fig. 2. Hasse diagram of 33 Oder sediment samples concerning concentrations of 
22 chemical parameters (except P, B and TBT; see Table 4 in the appendix). Be-
cause of shortage of space the upper level consisting of isolated objects is sepa-
rated

Evaluation of Elbe sediments using raw data 

Chemical pollutants vs. aquatic ecotoxicological tests vs. nematode 
sediment contact test 

There are no sediments where all ecotoxicological and biochemical tests 
and chemical measurements have been carried out together. Therefore we 
established two sets of samples where the first one contains chemical con-
centrations and the whole set of ecotoxicological tests (12 samples, see 
Fig. 3a and 3b) and the other one contains chemical concentrations, bio-
chemical and ecotoxicological tests except nematodes (Fig. 4a and 4b, 28 
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samples). This data processing procedure leads not only to sets with differ-
ent samples and size but also to different chemical pollutants that are taken 
into account. Therefore a comparison between the Hasse diagrams in Fig. 
3a-b and Fig. 4a-b is not feasible. 

In Fig. 3b it is seen, that the HD for the whole sediment test with nema-
todes shows most structure compared to the other diagrams in Fig. 3a. It 
has six levels whereas the diagrams for ecotoxicological tests and chemi-
cals have only three and two levels, respectively. There are several chains 
with increasing inhibitions in all tests (egg hatch (EH), growth (G), repro-
duction (R)) simultaneously, for example: 

AE6/00 < FL4/01 < AE10/00 < AK4/01 < FL8/01 
AE6/00 < FL4/01 < FL10/00 < AE4/01 - DE4/01 < FL8/01 
FL6/00 < FL4/01 < FL10/00 < AE4/01 < DE4/01 < FL8/01 
etc.

All four samples of the site FL (Fahlberg List) are comparable (see the 
bold letters in the sequence shown above), where in year 2000 the toxicity 
increases from July to October whereas in April 2001 it decreases again 
and obtains a maximum in August 2001. In contrast to the results of the 
nematode test the ecotoxicological responses in the other tests indicate a 
decline of burden from June via October 2000 to August 2001 (as seen in 
Fig. 3). Moreover, it is noticeable that in the "ecotoxicological HD" the 
sample FL4/01 (April 2001) is not comparable to all other FL samples. 
The reason for this antagonism can be easily identified by examining the 
bar diagram presentation of a HD in Fig. 3: It can be observed that FL4/01 
has a relatively high value in the algae test using pore-water (HPA) but a 
low effect for the eluate (HEA) compared to, for instance FL8/01, which 
has a lower effect in pore-water and a higher effect in eluate. This may be 
a hint at different pollution pathways and/or different bioavailability. 

Comparing the three HD's in Fig. 3 it is indicated that each of the pa-
rameter groups, i.e. ecotoxicological test results with aquatic media, nema-
todes test results and chemical pollution, lead to different orders and there-
fore present different effects and responses, respectively. 



118      Pudenz, S. and Heininger, P. 

Fig. 3a. Hasse diagrams from evaluation of 12 Elbe sediments for chemical pol-
lutants and ecotoxicological tests. Chemicals without N, S, B, Co, Sn (for abbre-
viations and speciation of elements, see Table 5 in the appendix). Because of 
shortage of space evaluation of these samples by nematodes tests is shown in Fig. 
3b
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Fig. 3b. Hasse diagram from evaluation of 12 Elbe sediments for nematodes tests 
corresponding to Fig. 3a 

Chemical pollutants versus aquatic ecotoxicological tests versus 
biochemical tests 

Regarding the biochemical tests in comparison to chemical parameters and 
ecotoxicological tests in Fig. 4 striking differences can be observed too. 
Instead of a HD consisting of lines and circles, here the so-called level 
presentation is used. This kind of presentation might be useful when partial 
ordering results for instance in messy diagrams, as it is the case for 
ecotoxicological tests indeed. Here, again we want to show that the three 
parameter groups lead to highly different results, where evaluation by 
means of chemicals results in solely incomparable samples (a so-called  
anti-chain) and the biochemical responses are comparable for only three 

Nematodes tests:
G=growth
EH=egg hatch
R=reproduction

EH
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samples. This result may underline the assumption, that the parameter 
groups yield different responses to sediment quality and therefore to dif-
ferent rankings and classifications respectively. However, it has to be con-
sidered that here rough data are used and therefore already small numerical 
differences may lead to incomparabilities between sediment samples. For 
example, the HD based on chemical parameters in Fig. 4c consists of only 
incomparable samples and it is not obvious if data noise is responsible or if 
it is an effect of different pollution pattern indeed. Therefore, classifying 
by cluster analysis as pre-processing will be introduced in the following. 

HD's after pre-processing by fuzzy clustering 

The aggregation of samples is a strategy to get HD’s, which is "easier and 
more robust" to interpret. Here, fuzzy cluster analysis is preferred. In con-
trast to conventional clustering methods, where each sample will be as-
signed to a cluster by a "yes/no-decision", fuzzy clustering yields a degree 
for the assignment of samples to a cluster (membership function with val-
ues between 0 and 1). The advantage is that samples, which are located be-
tween two clusters because they are outliers or so-called hybrid elements, 
can be identified (for details, see e.g. Pudenz et al. 2000, Luther et al. 
2000). The fuzzy-algorithm used here (k-means fuzzy) requires a default 
cluster number (FCL) and a threshold value for the membership function 
(TMF). The TMF determines to which degree a sample belongs to a clus-
ter. Here, preliminary tests have shown that in case of clustering over the 
whole property space (see below) cluster numbers FCL of six or seven 
lead to relatively complex diagrams. Therefore a FCL=4 is selected. Cor-
respondingly a high TMF of 0.8 is used, such that hybrid elements and out-
liers will be identified. 

Basically clustering can be distinguished between  
attribute-wise classification, i.e. all samples are clustered for each 
parameter separately, and  
clustering of all samples by the whole property space, i.e. by 
means of all parameter at the same time. 
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Fig. 4a. HD's as level presentation from evaluation of 28 Elbe samples by means 
of a) ecotoxicological tests (additionally as Hasse diagram in Fig. 4b), b) bio-
chemical tests and c) chemical concentrations without P, TBT (see Table 5)  

c) chemical concentrations
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Fig. 4b. Hasse diagram for ecotoxicological tests as shown as level presentation in 
Fig. 4a 

b) ecotoxicological tests
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When the whole quality pattern of a location is of interest and samples 
with similar pattern with regard to all parameter will be identified, then 
clustering by means of all parameter is convenient. When all samples will 
be classified by each parameter separately, then efforts are more directed 
towards neglecting numerical differences between samples. For both 
methods the aim is, all samples will be ranked by the cluster centre they 
have been assigned to, instead of their original parameter values. Because 
of technical software problems, the number of chemical parameter had to 
be reduced to a maximum number of 20 (only in case of clustering by the 
whole property space). Here, the following pollutants are seen as the most 
relevant:

As, Pb, Cd, Hg, Cu, Cr, Zn 
PAHs, PCBs, pp'-DDT, pp'-DDE, pp'-DDD, AOX, TBT, HCB, -
HCH, -HCH

Clustering by the whole property space - River Oder sediments 

Chemical pollutants versus aquatic ecotoxicological tests 

As mentioned above, if samples are assigned to clusters they are ordered 
by the coordinates of their cluster centre instead of their original parameter 
values. In Fig.’s 5a and 5b the clustering provided by four clusters 
(FCL=4) is represented by equivalence classes K1, …, K4. Samples that 
are not assigned to a cluster are hybrid elements (due to their characteristic 
burden pattern) and will be denoted as singletons. Clusters that consist of 
only one sample are denoted as singletons too, whereas the other clusters 
are called 'nontrivial' ones. Due to very characteristic values these samples 
have lead to a single cluster and therefore they can be treated like hybrid 
elements. In Fig. 5a, clustering of river Oder samples by chemical parame-
ters has apparently lead to only three nontrivial clusters (K1, K2, K3).
Here, one cluster consists of only one sample in fact, namely RA9/00: As a 
single sample RA9/00 (Ratzdorf) represents one cluster because of its 
comparatively high contamination by heavy metals. Because RA9/00 is 
greater than (above) RA5/00 it can be concluded that concentrations of all 
pollutants considered have been increased between May and September 
2000. However, RA samples from March and July 2000 (RA3/00, 
RA7/00) are both incomparable to the May and September samples. 
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Fig. 5a. HD after fuzzy clustering by the whole property space of chemical pa-
rameters. River Oder, 31 samples (MAX-PN). Number of hybrid elements = 8 
(samples that are not assigned to cluster due to their very characteristic pattern) 

Chemical parameters 
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Fig. 5b. HD's after fuzzy clustering by the whole property space of ecotoxicologi-
cal parameters. River Oder, 31 samples (MAX-PN). Number of hybrid elements = 
9 (samples that are not assigned to cluster due to their very characteristic pattern) 

Examining the clustering results by chemical parameters in detail, the 
following can be observed: 

Ecotoxicological parameters 
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Cluster K3 and equivalence class K3, respectively, contains four 
out of six samples of Widuchowa (WD). That means, except for 
June 1997 and April 1999 the pollution pattern by the chemicals 
considered here is quite similar. The patterns of WD4/99 and 
WD6/97 are incomparable to these four samples of 1999. 
Comparing K1 and K3, it is seen that the pollution pattern of ZB in 
year 2000 (ZB3/00, ZB5/00, ZB7/00, ZB9/00) is different to 2001 
(ZB4/01, ZB5/01). 
All samples of Cerna Budisovka (CB) have the same pollution pat-
tern over the years of investigation. 

A comparison between the diagrams in Fig.’s 5a and 5b once again 
leads to the assumption that chemical concentrations reproduce another 
pattern than ecotoxicological effects. This is indicated, for instance, by the 
following findings: 

Whereas in the clustering of ecotoxicological parameters nearly all 
Ratzdorf samples (except RA3/00) are assigned to one cluster to-
gether with ZB5/00 and ZB9/00 (cluster K4), clustering of chemi-
cal parameter leads to significantly different similarities: RA9/00 
as well as RA5/00 show a very characteristic pattern. RA9/00 
forms a single cluster (see above) and RA5/00 cannot assigned to 
any (therefore it is a hybrid element; see section 3.1).  
Instead of four similarities between Widuchowa samples (WD) in 
case of chemical pollution, ecotoxicological parameters without 
exception lead to incomparabilities between WD samples, thus in-
dicating significant differences in their ecotoxicity. 

Clustering by the whole property space - River Elbe sediments 

Chemical pollutants versus aquatic ecotoxicological tests 

Fig.’s 6a and 6b shows the clustering results for 62 Elbe sediment samples. 
Regarding at first the result of chemical parameters and selecting only the 
comparable samples with respect to a location, the following relations are 
found:

AE9/94=AE6/97=AE10/97=AE10/99=AE6/99=AE10/00=AE6/00
=AE4/01=AE8/01<AE12/92=AE9/93=AE6/94=AE3/95=AE4/96=
AE6/96=AE9/96
FL6/94=FL6/95=FL6/96=FL6/97  
FL12/92=FL9/95=FL10/00=FL6/00=FL4/01 
FL6/94=FL6/95=FL6/96=FL6/97 < FL10/99 
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FL6/94=FL6/95=FL6/96=FL6/97 < FL6/99 
FL6/94=FL6/95=FL6/96=FL6/97 < FL9/96 
HM9/95 < HM9/94=HM11/95=HM6/95=HM6/96=HM10/99 
DA6/97=DA9/97
WB6/96=WB9/96

Except AE6/95 and AE9/95 all samples of Alte Elbe (AE) are assigned 
to two clusters (K3, K1) and moreover both are comparable to each other 
(K3<K1). Furthermore, since cluster K3 only contains samples of recent 
dates, except AE/94, it is indicated that the concentrations of the chemicals 
considered here are decreased. Moreover, it is striking too that almost only 
AE samples of prior date are assigned to cluster K1. This could be evi-
dence of a higher pollution of the river section AE in this time period and 
relatively specific burden pattern too. Indeed, since the Alte Elbe is a 
bayou with limited exchange to the main waterway river Elbe depending 
on the discharge conditions a stable pollution pattern can be expected over 
longer periods of time. A similar result is obtained when using aquatic 
ecotoxicological tests for evaluation: except AE10/99, AE9/93 and 
AE6/96, all AE samples are assigned to cluster K1 and have therefore a 
similar quality pattern. 

Considering the other clusters of Fig. 6a it is evident that also K2 and 
K4 consist of samples from almost one river section, namely FL (Fahlberg 
List) and HM (Meißen harbour). However, in case of FL cluster K2 is not 
comparable to the remaining samples of FL: four of overall ten samples 
from FL are assigned to K2. Moreover, most of the samples of FL are in-
comparable to all other samples (they are isolated elements). Reasons for 
this specific pattern could be the discontinuous sewage draining from an 
old contaminated site there.  

Cluster K4 consists of five out of 15 samples from HM. HM9/95 is  K4
and has therefore lower concentrations. HM9/96, HM6/97 and HM6/00 are 
assigned to cluster K3 together with many samples from AE and other 
river sections, while K3 is not comparable to other HM-samples. More-
over, samples HM10/97, HM9/93, HM10/00, HM6/99, HM6/94 and 
HM11/92 are isolated (incomparable to all other samples). 
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Fig. 6a. HD's after fuzzy clustering by the whole property space of chemical pa-
rameters. River Elbe, 62 samples (MAX-PN) 
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Fig. 6b. HD's after fuzzy clustering by the whole property space of ecotoxicologi-
cal parameters. River Elbe, 62 samples (MAX-PN) 
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Obviously, within the sampling period the pollution pattern of Meißen 
harbour varies more than that of other river sections. This may be due to ir-
regular discharges via a creek flowing into the harbour. Using the results 
of the aquatic ecotoxicological tests only one HM sediment is isolated, i.e. 
not comparable to any other sediment. Moreover, whereas HM10/00, 
HM6/99 and HM10/97 have been singletons (isolated) in the chemical ap-
proach here they form one cluster (K4). However, many of the HM sam-
ples are not comparable among each other even though several of them are 
assigned to one cluster. For example five HM samples belong to cluster 
K2, three to K4 and three to K1, but neither of them is comparable to each 
other.

Regarding the results of Oder and Elbe sediments it is noticeable that 
clustering by ecotoxicological parameters  

1. leads to more comparabilities in the Hasse diagram and 
2. yields other cluster compositions, 

compared to chemical parameters.  
Ad(1) More comparabilities have been already observed in the evalua-

tion by rough data, i.e. without pre-processing. Therefore it can be ex-
pected that also after pre-processing by clustering this proportion holds. 

Ad(2) Not many samples can be found in both clusters of chemical and 
ecotoxicological parameter. For example, in Fig. 6a cluster K4 consists ex-
clusively of five HM samples. From these five samples, three (HM9/94, 
HM6/95), HM10/99) are recovered in cluster K2 (Fig. 6b), one sample 
(HM11/95) is a hybrid element (not assigned to any cluster) and moreover 
not comparable to any other HM sample and another sample (HM6/96) is 
assigned to cluster K1 in the ecotoxicological evaluation. More examples 
of different compositions with respect to a certain river section can be 
found in both clustering of Oder and Elbe sediments. Therefore cluster 
analysis over the whole property space (by means of all parameters at the 
same time) strengthens the assumption of different responses between 
ecotoxicological tests and chemical parameters describing sediment pollu-
tion.

Chemical pollutants vs. aquatic ecotoxicological tests vs. nematode 
sediment contact test 

According to the evaluations of Elbe sediments by raw data of a) aquatic 
ecotoxicological tests, b) chemical measurements, and c) nematode sedi-
ment contact tests in Fig. 3, clustering results by means of all parameters 
simultaneously (i.e. over the whole property space) for each of the groups 
and additional partial ordering is shown in Fig. 7. A common characteristic 
for both chemical and ecotoxicological tests is, that 
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all AE samples are assigned to one cluster, 
AK4/01 and DE4/01 form a cluster and 
HM10/00 is a singleton and isolated. 

The location of AE samples in the lower level of the Hasse diagram is 
common for all parameter groups. Again, this may result from the special 
characteristics of undisturbed sediments in this bayou. Another common 
characteristic is the similarity of samples AK4/01 and DE4/01 (due to clus-
ter analysis) indicating a typical pattern that leads to analogous responses 
of chemical parameters and test results. However, except the sediments 
AK4/01, DE4/01 and all AE sediment samples, for FL and HM sediments 
the parameter groups lead to different compositions of clusters and there-
fore indicating different responses between the parameter groups. 

In contrast to the partial orders from chemical concentrations and 
aquatic ecotoxicological tests, the results of the sediment contact tests with 
nematodes lead to a total order. This corresponds to a correlation analysis 
that shows a significant correlation between growth, reproduction and egg 
hatch (r=0,7). 

Chemical pollutants, biochemical tests and ecotoxicological tests 
simultaneously 

To complete fuzzy clustering over the whole property space and identi-
fying differences in responses between the parameter groups, respectively, 
clustering results of each biochemical tests, chemical parameters and 
ecotoxicological tests are combined in a matrix as basis for partial order-
ing. In addition to the comparisons shown above this presentation may fa-
cilitate the identification of similar responses of tests. Fig. 8 shows that 
partial ordering leads to two equivalence classes1 containing all AE sam-
ples. Once again this fact strengthens the assumption that the bayou Alte 
Elbe has specific sediment features leading to similar responses of all test 
systems. 

                                                     
1 In contrast to the evaluations above where equivalence classes are a conse-

quence of clustering results (instead of original parameter values samples ob-
tain the values of cluster centres), here equivalence classes are a result of 
equivalent pattern concerning the three parameter groups (chemicals, ecotox. 
and biochemical tests). 
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Chemical parameter

Ecotoxicological parameter

Nematodes tests

Fig. 7. Clustering results and Hasse diagrams for Elbe sediments 
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Fig. 8. Hasse diagram of clustering results from three parameter groups: bio-
chemical tests, chemical parameters and ecotoxicological tests (28 Elbe sediments 
and 36 parameters overall) 
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The Hasse diagram shows only one comparability, namely between 
FL10/00 and FL3/95, indicating a decline of concentrations in all chemi-
cals, metals and toxic qualities at the same time. However, all FL samples 
taken before and in between are not comparable to any other sediment 
sample, and are therefore expressing different responses of test systems 
and chemicals. 

Attribute-wise clustering - Oder sediments 

Aquatic ecotoxicological tests versus chemical pollutants 

Fig. 9a and 9b show the evaluations after fuzzy-clustering by means of 
each parameter separately (attribute-wise clustering). As in the clustering 
by the whole property space, here for each parameter a cluster number of 
FCL=4 and a TMF of 0.8 is used. The investigation particularly aims at the 
discovery of temporal changes in the sediment quality and therefore on the 
identification of so-called chains2 with links consisting of samples from a 
certain river section.

The evaluation by means of chemical concentrations only yields one 
comparability between samples of a river section, namely ZB4/01 < 
ZB3/00, whereas the Hasse diagram based on ecotoxicological tests gener-
ates several relations as shown in Table 2. 

Table 2. Comparabilities of a river section after evaluation by ecotoxicological 
test

Comparabilities of a river 
section 

Total number 
of samples of 
each river sec-
tion 

Incomparable river sections 

ZB4/01 < ZB3/00 < ZB7/00 
ZB4/01 < ZB8/01 ZB=6

ZB9/00

GG11/97 < GG11/98 
GG6/99 < GG11/98 
GG6/99 < GG5/98 

GG=4 

CB9/98 < CB10/99 CB=4 CB9/96, CB5/00 

WD8/99 < WD5/98 WD=6 WD10/99,WD4/99, 
WD3/99,WD6/97 

                                                     
2 Chains are a sequence of lines in the Hasse diagram indicating that the elements 

are comparable with each other. 
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With respect to ecotoxicological responses partial ordering of river sec-
tion GG (Glogau) indicates an improvement of its pollution status because 
sample 6/99 is less than 11/98 and 5/98. The incomparability between 
GG6/99 and GG11/97 is only based on a difference in the bacteria test in 
eluate (HEB), see Table 2. For river section ZB a conclusion about an im-
provement is difficult to derive. Though sample ZB4/01 is less than 
ZB3/00 and ZB7/00, it is not comparable with ZB5/00 and ZB9/00 (Tab. 
2).

Both Hasse diagrams in Fig. 9a and 9b indicate neither an increasing nor 
a decline of sediment burden for a river section, except for GG with re-
spect to ecotoxicological responses. 

Fig. 9a. Hasse diagram for Oder sediments after attribute-wise clustering of 
ecotoxicological parameters (FCL=4, TMF=0.8) 

Ecotox. tests
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Fig. 9b. Hasse diagrams for Oder sediments after attribute-wise clustering of 
chem. concentrations (FCL=4, TMF=0.8) 
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Table 3. Inhibition values of ecotoxicological tests from a selection of samples in 
Fig. 9. Negative values mean stimulation of test cultures 

Sample HEA HEB HED HPA HPB HPD 
GG11/97 3,33 1,28 0 -77,33 14,16 0
GG5/98 -44,32 15,87 0 -20,52 47,78 0 
GG11/98 3,33 15,87 0 38,63 14,16 0 
GG6/99 -96,39 10,11 0 -159,3 14,16 0
ZB3/00 3,33 10,11 0 -20,52 14,16 0 
ZB5/00 -96,39 15,87 0 -121,2 32,23 0 
ZB7/00 3,33 15,87 0 -20,52 14,16 0 
ZB9/00 -198,23 20,4 0 -159,3 47,78 0 
ZB4/01 3,33 1,28 0 -20,52 14,16 0 
ZB8/01 3,33 5,8 0 7,7 14,16 0 

Attribute-wise clustering - Elbe sediments 

Aquatic ecotoxicological tests versus chemical pollutants 

In contrast to the above made comparisons of quality patterns by chemical 
concentrations and aquatic ecotoxicological test results for 62 sections 
(sites) of the River Elbe (see Fig. 6), here we will use attribute-wise clus-
tering to look at temporal changes of only one river section. Afterwards the 
results of evaluation by a) the nematode test and b) biochemical tests will 
be compared with the chemical and aquatic ecotoxicological approaches.  

Fig.’s 10a and 10b shows the Hasse diagrams after single clustering of 
each attribute (parameter) for AE sediments using a cluster number of 
FCL=4 and a TMF=0.8. The equivalence classes K1 and K2 in the ecotoxi-
cological evaluation are the only minimal elements, i.e. compared to all 
samples above their members have the lowest values in all tests. Except K2
all samples are comparable with K1. The fact that except AE9/94, AE6/94 
and AE3/95 all samples above K1 (AE12/92, AE9/93, AE6/95) have been 
taken at a later date indicates an increasing pollution for AE. Using chemi-
cal concentrations for evaluation the temporal trend seems to be contrary. 
However, both recent samples AE4/01 and AE8/01 are isolated, i.e. not 
comparable to all other samples. A sensitivity analysis (see e.g. Heininger 
et al. 2003) shows that the evaluation is most sensitive to the nitrogen 
content, where omitting this nutrient compensates the isolation of AE4/01 
and AE8/01 (see Fig. 11). Moreover, sample AE4/01 is now a minimal 
element and therefore emphasizes the indication of a decline of the 
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cline of the pollution status with respect to (most of) chemical concentra-
tions.

Fig. 10a. Hasse diagrams for AE sediments after clustering of each parameter 
(FCL=4, TMF=0.8): ecotoxicological tests 

K1={AE12/92; AE9/93;AE695} 
K2={AE10/97; AE10/00}
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Fig. 10b. Hasse diagrams for AE sediments after clustering of each parameter 
(FCL=4, TMF=0.8): chemical concentrations 



140      Pudenz, S. and Heininger, P. 

Fig. 11. Hasse diagram for AE sediments after omitting nitrogen (in HD of chem. 
conc.; Fig. 10) 

Seasonal effects may lead to incomparabilities between samples and 
therefore hamper the analysis of long-term temporal changes. For this rea-
son only annual mean values of each parameter will be clustered as basis 
for partial ordering. In addition to the evaluation above, here the biochemi-
cal test results will also be considered (parameters are shown in Table 5 in 
the appendix). 

Fig. 12 shows that averaging does not facilitate the interpretation of the 
Hasse diagrams. Different quality patterns between younger and older 
samples are the reason for incomparabilities. Again, sensitivity analysis 
may be a method to identify sensitive parameters whose significance may 
be subject of expert discussion. In case of minor relevance of such a pa-
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rameter simply omitting may lead to a result that is at least easier to inter-
pret (as shown in Fig. 11). Whereas for biochemical and ecotoxicological 
tests sensitivity analysis does not yield any striking sensitivity values, the 
evaluation by chemical parameters is again sensitive to the nitrogen con-
tent (c.f. Fig. 12). Now, the results can be discussed as follows: 

Evaluation by means of biochemical tests reveals a positive quality 
trend of section AE. The pollution patterns of both AE00 and 
AE99 are less than AE95 and AE97, but incomparable with those 
of 1996 and 1994. Reasons for that incomparability are higher val-
ues (after clustering) in both parameters DHGS and PRV whereas 
all remaining parameters of AE00 and AE99 have lower values 
than AE95 and AE97. 
Similar to the trend of biochemical test results the position of 
AE00 in the Hasse diagram indicates a decline in ecotoxicity. 
Here, the incomparability of AE00 to the years 1995 and 1994 is 
due to the bacteria test (eluate) that yields higher values for year 
2000 whereas algae (in pore water and eluate) and bacteria in pore 
water have identical or lower values in 2000 (daphnia tests yield 
only zero values for all years). 
From the analysis of all AE samples a high sensitivity to nutrient 
pollution (nitrogen) has been expected (c.f. Fig. 10 and 11). From 
the water ecological point of view nitrogen is a limiting factor for 
algae growth and therefore important for evaluation. Considering 
the management of dredged material (e.g. from AE ) this may be 
important for the relocation in waters, which are sensitive to eutro-
fication.
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Fig. 12. Clustering and evaluation of annual mean values of river section AE 



Comparative Evaluation and Analysis of Water Sediment Data      143 

Attribute-wise clustering – Elbe and Oder sediments 

Chemical pollutants vs. aquatic ecotoxicological tests vs. nematode 
sediment contact test  

According to the clustering over the whole property space the evaluation 
by nematode tests after single clustering will be compared with those of 
chemicals and aquatic ecotoxicological tests too. However, here the sam-
ple set includes additional samples from River Oder due to relatively few 
samples from River Elbe (nematodes tests started in 2000 only).  

Fig. 13a. Hasse diagram for evaluation of river Elbe and Oder sediment samples 
after single clustering of parameters (22 samples): ecotoxicological tests 

Ecotoxixological tests 
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Fig. 13b. Hasse diagram for evaluation of river Elbe and Oder sediment samples 
after single clustering of parameters (22 samples): nematodes tests 

Nematodes tests 
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Fig. 13c. Hasse diagram for evaluation of river Elbe and Oder sediment samples 
after single clustering of parameters (22 samples): chemical concentrations 
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Compared to the results of nematodes tests, evaluation by chemical con-
centrations and ecotoxicological tests present a familiar picture (c.f. Fig. 7 
and 13a,b,c), which is dominated by incomparabilities (and no equivalence 
classes) and therefore a higher diversity of pollution pattern. Again, due to 
high correlation between the three parameters egg hatch, growth and re-
production, evaluation of samples by nematodes tests results in nearly total 
order.

In contrast to the comparison between biochemical tests, aquatic 
ecotoxicological tests and chemical concentrations, here averaging is not 
convenient since nematodes have been investigated only for two years. 
Moreover, instead of considering only one river section and visual examin-
ing of differences between the Hasse diagrams, the Tanimoto index and 
the W-matrix will be used for similarity investigations between evaluation 
results. For the Tanimoto index T holds the higher the index the more 
similarity, where a value of one means total similarity: Two approaches of 
the Tanimoto index are used here: 

1.
srBA

sr
1 BA

BAT , where A  and B  are 

the numbers of comparabilities in set A and B respectively, and 

sr
counts the comparabilities which are common in both sets A 

and B (for details see Pudenz et al. 1998). 
2. T2 quantifies similarity by a rank correlation analysis and in com-

parison to T1 it takes more information into account: 

irBirArrsr

sr
2T , where 

rr
 is the sum of 

pairs for which a reverse ranking is observed (i.e. x < y in set A 
and y <x in set B), 

irA
 counts the number of pairs that are 

comparable in set A but incomparable in set B and 
irB

is the 

sum of pairs that are comparable in set B but incomparable in set 
A (for details see Sørensen et al. 2003).  

Table 4. Similarities between Hasse diagrams in Fig. 13 (Elbe and Oder sedi-
ments) calculated by two similarity indices 

Similarity between A and B: T1 T2

Chemicals – Ecotoxicological tests 0,22 0,22 
Chemicals – Nematodes tests 0,15 0,19 
Ecotoxicological tests – Nematodes tests 0,26 0,27 
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For both Tanimoto indices T1 and T2 similar results can be observed 
where the highest value results from the comparison between ranking by 
nematodes and ecotoxicological tests (Table 4). However, all values show 
a relative low similarity between the Hasse diagrams in Fig. 13 and there-
fore the different property pattern of sediments indicated by chemical con-
centrations, ecotoxicological and nematodes tests should be taken into ac-
count for sediment evaluation.  

Summary and Conclusions 

Partial ordering of sediment data from German rivers Elbe and Oder has 
shown that Hasse diagram technique is a powerful tool to analyse the 
sediment status. The diversity of pollution pattern of river sections can be 
identified and the effects of pollutants on different test systems can be 
compared without merging of data. However, as shown here a relatively 
high diversity of the quality pattern may also increase the degree of in-
comparability between sediment samples and therefore hampers the identi-
fication of e.g. temporal changes. But also incomparabilities between sam-
ples may give reasons for expert discussion, for instance the consideration 
of secondary information of river sections (discharge of pollutants) that 
could be responsible for a specific quality pattern and for incomparabili-
ties, respectively. 

In order to reduce incomparabilities and to facilitate the interpretation of 
Hasse diagrams, pre-processing by two strategies of fuzzy cluster analysis 
has been applied to sediment data: 

classification of sediments over the whole property space (by 
means of all parameter at the same time) aiming at the identifica-
tion of similar quality pattern and  
classification of sediment samples by each parameter separately 
focusing on disregard of small numerical differences between pa-
rameter values on the one hand and in conclusion on ranking with 
respect to their quality on the other hand. 

Cluster analysis over the whole property space often leads to clusters 
containing time series of samples from one river section. The sediments in 
particular from the River Elbe section Alte Elbe are characterised by rela-
tively constant pattern over the years of investigation. This is underlined 
by the fact that for each parameter group similar clustering results can be 
observed with respect to the site Alte Elbe. An instructive example is the 
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Hasse diagram in Fig. 8 that considers clustering results of biochemical 
and aquatic ecotoxicological tests and chemical measurements at the same 
time, where exclusively all AE samples are assigned to two equivalence 
classes. It is assumed in this case the specific conditions of a bayou lead to 
similar responses of different test systems. However, for most of the sam-
ples from rivers Oder and Elbe the parameter groups lead to different clus-
tering results and therefore indicate different responses in the sediment 
contact test with nematodes, in biochemical and aquatic ecotoxicological 
tests among each other and also compared to chemical concentrations. 

This result is also confirmed by partial ordering of sediment samples af-
ter an attribute-wise clustering. Here, additional similarity calculations 
with Tanimoto indices indicate relatively high differences between ranking 
results.

Whereas the clustering over the whole property space indicates a similar 
pattern during the sampling period with respect to chemical concentrations 
and aquatic ecotoxicological tests for river section Alte Elbe (c.f. Fig. 8), 
attribute-wise clustering enables a more differentiated comparison. Here, 
the Hasse diagrams indicate contrasting temporal changes for AE. Follow-
ing the chemical concentrations and additionally omitting nitrogen concen-
tration from the parameter group a decline can be observed whereas the 
ecotoxicological tests suggest an opposite trend. However, by averaging 
and therefore eliminating seasonal effects, the opposite trend indicated by 
ecotoxicological tests is slightly weakened.  

In summary, by each parameter group different responses to sediment 
quality can be expected. Comparing the responses of the different parame-
ter groups, the diversity obtains a maximum when using chemical concen-
trations for partial ordering, thus hampering a comparative evaluation of 
sediments.  

Regarding the evaluation of dredged material further expert discussions 
aiming at a detailed selection of parameters should be initiated. Here, sen-
sitivity analysis has shown that for instance omitting nitrogen leads to sig-
nificant changes in the ranking result.

Furthermore, a basic problem for the evaluation of dredged material 
seems to be the high diversity of sediment quality as represented by all pa-
rameter groups. Though partial ordering is helpful to analyse differences in 
responses of test systems, due to many incomparabilities it is crucial to de-
rive a decision. Therefore, it has to be investigated whether a linear map-
ping of the partial order by e.g. linear extensions and an average rank 
probability (Brüggemann et al. 2004) or other approaches like fuzzy-logic 
(Ahlf, Heise 2005) are useful for decision purposes. 
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Appendix

Table 5. Parameter groups and their composition for evaluation of river sediments 

Parameter group Parameters 

25 chemical pollut-
ants and basic pa-
rameters (concentra-
tions in mg/kg, 
µg/kg; g/kg) 

AOX, pp'-DDT, pp'-DDD, pp'-DDE, HCB, -HCH, -
HCH, PAHs (sum of 16 according to EPA 610), PCBs 
(sum of  congeners 28, 52, 101, 138, 153, 180), TBT; N, 
S, TOC, 
As*, B, Cd, Cr, Cu, Co, Hg, Ni, P, Pb, Sn, Zn 

6 ecotoxicological 
test results with pore 
water and eluates 
(inhibition, %) 

Daphnia (HED), algae (HEA), bacteria (HEB) each in se-
diment eluate and pore-water (HPD, HPA, HPB)  

3 nematode test re-
sults with the whole 
sediment (inhibition, 
%; details in Traun-
spurger et al. 1997) 

egg hatch, reproduction, growth 

11 biochemical test 
results (reduced on 
the maximum num-
ber of tests used he-
re; for details see 
Heininger, 
Tippmann 1995). 

DHP=Dehydrogenase activity in pore-water 
DHgS= Dehydrogenase activity in sediment 
AP=Alanin- Aminopeptidase activity in pore-water 
AV=Alanin- Aminopeptidase, D1 value of dilution series 
AS=Alanin- Aminopeptidase activity in sediment 

GP= -Glucosidase activity in pore-water 
GV= -Glucosidase activity, D1 value of dilution series 
GS= -Glucosidase activity in sediment 

PR=Protease activity 
PRV=Protease activity, D1 value of dilution series 
DNAP=DNA- content in pore-water 

* Heavy metals, boron (B(V)), arsenic and total phosphorus were determined in 
the fraction < 20 µm to improve the comparability of the results. This fraction 
was separated from the freeze-dried and non-milled samples by ultrasonic siev-
ing (Ackermann 1980). Metals were analysed after microwave-assisted diges-
tion with aqua regia at 180 °C in closed vessels by inductively coupled plasma 
optical emission spectroscopy, atomic fluorescence spectroscopy (mercury) and 
hydride atomic absorption spectroscopy (arsenic). 
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Table 6. Sample sites/river sections 

Abbr. Site Abbr. Site Abbr. Site 
AE Altarm Alte Elbe  HK Havelkanal SA Saale, Buhnenfelder 

AK Hornhafen Aken, 
Elbe

HL Hirschsteiner 
Lache, Elbe 

SS Seddinsee vor Insel 

CB Cermna Budi-
sovka, Oder 

HM Hafen Mei-
ßen

TS Tiefer See 

CU Cumlosen, Elbe JO Jocinkou, 
Odergebiet 

UW Unterwarnow, R6 

DA Damnatz, Elbe KA Kaczawa, 
Oder 

VS Veltener Stichkanal 

DD Dresden, Hafen 
Pieschen 

LA Lauffen WA Warthe, Swierkocin 

DE Dessau, Leo-
poldhafen 

ME Mescherin WB Wittenberge 

DÖ Dömitz, MEW OD Oder WD Widuchowa 

EH Eisenhüttenstadt, 
Oder 

OK Oder-
Havelkanal 

WE Weiße Elster 

EK Eldenburger Ka-
nal, MEW 

OP Mnichov, 
Opava, Oder 

WO Westoder 

FL Fahlberg List, 
Elbe

RA Ratzdorf WT Wettin, Saale 

FS Finowschleuse, 
Oder 

RB Ramzovsky-
bach, Oder 

WU Wusterwitz, EHK 

GG Glogau, Oder RG Rothenburg, 
Saale

WZ Wittenberge, Zell-
wollehafen 

HF Hohensaathe-
Friedrichsthaler 
Wasserstraße 

RO Rodleben, 
Elbe

ZB Hohenwutzen, Zoll-
brücke 

    ZD Zehdenick, OHW 
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Abstract

The interplay between partial order ranking and Quantitative Structure Ac-
tivity Relationships (QSARs) constitute a strong decision support tool. By 
means of partial order ranking it is possible to prioritize and select chemi-
cals for decision-making among a group of substances based on simulta-
neous evaluation of data related to different endpoints. In the absence of 
experimental data, QSARs are used to provide estimates. In the present 
chapter, the identification of chemicals with Persistence and Bioconcentra-
tion (PB) potential is used to illustrate the interplay between partial order 
ranking and QSARs. The endpoints biodegradation and bioconcentration 
were obtained using the BioWin and BCFWin modules from 
http://www.epa.gov/oppt/exposure/docs/episuitedl.htm. Partial order the-
ory was used to rank chemicals for PB potential based on QSAR estimates. 
The proposed approach is suggested as a decision support tool to facilitate 
pollution prevention activities by regulated and regulatory communities. 

Introduction

Persistent, bioaccumulative and toxic (PBT) substances are chemicals that 
persist in the environment, accumulate in tissues of biological organisms 
and cause toxic effects. PBT substances are characterized by having persis-
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tence characteristics (e.g., an atmospheric half-life of > 2 days, an aquatic 
half life of > 60 days or a soil or sediment half life of > 6 months), a bio-
concentration factor (BCF) > 5,000 and toxicity potential, e.g., an aquatic 
organism LC50 < 1 mg/L (cf. Carlsen and Walker, 2003 and references 
therein).

It is advantageous to prioritize chemicals for PBT potential by evaluat-
ing several criteria. One method for accomplishing this is to include all cri-
teria into a single criterion (for a discussion please see Brüggemann et al., 
p. 237). As described in this chapter for substances with P and B character-
istics, a more effective method for prioritizing chemicals for P and B po-
tential is by simultaneous evaluation of several criteria using partial order 
ranking.

Materials and Methods 

Substances studied 

The TSCA Interagency Testing Committee (ITC, 
http://www.epa.gov/opptintr/itc) screened 8,511 chemicals for PB poten-
tial. Walker and Carlsen (2002) described the PB characteristics for 50 of 
these chemicals (Table 1). 

Table 1. Bioconcentration factors (BCF) and Biodegradation potentials (BDP) for 
the 50 chemicals included in the Walker and Carlsen (2002) study. H and M de-
notes high and medium estimates for both the bioconcentration (B) and Persis-
tence (P) scores 
 CAS RN Chemical BCF BDP  B P 
1 000087-82-1 Benzene, hexabromo- 9417 1.1644 H H 
2 000118-74-1 Benzene, hexachloro- 5153 1.3302 H H 
3 000128-69-8 Perylo[3,4-cd:9,10-c'd']dipyran-1,3,8,10-tetrone 13200 1.5328 H H 
4 000133-14-2 Peroxide, bis(2,4-dichlorobenzoyl) 8478 1.533 H H 
5 000355-42-0 Hexane, tetradecafluoro- 8609 0.5777 H H
6 000375-81-5 1-Pentanesulfonyl fluoride, 1,1,2,2,3,3,4,4,5,5,5-

undecafluoro- 
29740 1.0596 H H 

7 000423-50-7 1-Hexanesulfonyl fluoride, 1,1,2,2,3,3,4,4,5,5,6,6,6-
tridecafluoro- 

7444 0.737 H H 

8 000509-34-2 Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 
3',6'-bis(diethylamino)- 

25450 1.5815 H H 

9 000596-49-6 Benzenemethanol, 4-(diethylamino)-.alpha.,.alpha.-
bis[4-(diethylamino)phenyl]- 

4292 1.1758 M H 
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10 000678-39-7 1-Decanol, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-
heptadecafluoro- 

12200 0.3357 H H 

11 001568-80-5 1,1'-Spirobi[1H-indene]-6,6'-diol, 2,2',3,3'-tetrahydro-
3,3,3',3'-tetramethyl- 

13070 1.994 H M 

12 001770-80-5 Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, 
1,4,5,6,7,7-hexachloro-, dibutyl ester 

29340 1.2935 H H 

13 002379-79-5 Anthra[2,3-d]oxazole-5,10-dione, 2-(1-amino-9,10-
dihydro-9,10-dioxo-2-anthracenyl)- 

2310 1.9347 M M 

14 002475-31-2 3H-Indol-3-one, 5,7-dibromo-2-(5,7-dibromo-1,3-
dihydro-3-oxo-2H-indol-2-ylidene)-1,2-dihydro- 

3972 1.0633 M H 

15 002641-34-1 Propanoyl fluoride, 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-
hexafluoro-2-(heptafluoropropoxy)propoxy]- 

1363 -0.5183 M H 

16 003006-86-8 Peroxide, cyclohexylidenebis[(1,1-dimethylethyl) 13560 1.9874 H M 
17 003864-99-1 Phenol, 2-(5-chloro-2H-benzotriazol-2-yl)-4,6-bis(1,1-

dimethylethyl)- 
14930 1.8338 H M 

18 004051-63-2 [1,1'-Bianthracene]-9,9',10,10'-tetrone, 4,4'-diamino- 5198 1.8572 H M 
19 004162-45-2 Ethanol, 2,2'-[(1-methylethylidene)bis[(2,6-dibromo-

4,1-phenylene)oxy]]bis- 
7479 1.2501 H H 

20 004378-61-4 Dibenzo[def,mno]chrysene-6,12-dione, 4,10-dibromo- 6110 1.8566 H M 

21 005590-18-1 1H-Isoindol-1-one, 3,3'-(1,4-
phenylenediimino)bis[4,5,6,7-tetrachloro- 

1916 0.0193 M H 

22 013080-86-9 Benzenamine, 4,4'-[(1-methylethylidene)bis(4,1-
phenyleneoxy)]bis- 

39730 1.6937 H H 

23 013417-01-1 1-Octanesulfonamide, N-[3-(dimethylamino)propyl]-
1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro- 

1300 -0.3446 M H 

24 013680-35-8 Benzenamine, 4,4'-methylenebis[2,6-diethyl- 15070 1.8689 H M 
25 014295-43-3 Benzo[b]thiophen-3(2H)-one, 4,7-dichloro-2-(4,7-

dichloro-3-oxobenzo[b]thien-2(3H)-ylidene)- 
1461 1.3684 M H 

26 015667-10-4 Peroxide, cyclohexylidenebis[(1,1-dimethylpropyl) 28610 1.9254 H M 
27 016090-14-5 Ethanesulfonyl fluoride, 2-[1-

[difluoro[(trifluoroethenyl)oxy]methyl]-1,2,2,2-
tetrafluoroethoxy]-1,1,2,2-tetrafluoro- 

12710 0.8345 H H 

28 017527-29-6 2-Propenoic acid, 3,3,4,4,5,5,6,6,7,7,8,8,8-
tridecafluorooctyl ester 

45320 0.8418 H H 

29 024108-89-2 Anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-
1,3,8,10(2H,9H)-tetrone, 2,9-bis(4-ethoxyphenyl)- 

14640 0.8899 H H 

30 025637-99-4 Cyclododecane, hexabromo- 6211 1.9548 H M
31 026628-47-7 Spiro[12H-benzo[a]xanthene-12,1'(3'H)-

isobenzofuran]-3'-one, 9-(diethylamino)- 
26190 1.8829 H M 

32 029512-49-0 Spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3-one, 6'-
(diethylamino)-3'-methyl-2'-(phenylamino)- 

23790 1.5734 H H 

33 031148-95-5 1-Phenanthrenecarbonitrile, 1,2,3,4,4a,9,10,10a-
octahydro-1,4a-dimethyl-7-(1-methylethyl)-, [1R-
(1.alpha.,4a.beta.,10a.alpha.)]- 

13900 1.9209 H M 

34 031506-32-8 1-Octanesulfonamide,1,1,2,2,3,3,4,4,5,5,6,6,7,7, 
8,8,8-heptadecafluoro-N-methyl- 

2355 0.0673 M H 
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35 040567-16-6 Butanoyl chloride, 2-[2,4-bis(1,1-
dimethylpropyl)phenoxy]- 

19450 1.9678 H M 

36 041556-26-7 Decanedioic acid, bis(1,2,2,6,6-pentamethyl-4-
piperidinyl) ester 

1351 0.9971 M H 

37 050598-28-2 1-Hexanesulfonamide, N-[3-(dimethylamino)propyl]-
1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro- 

14300 0.3006 H H 

38 051461-11-1 Butanamide, N-(3-amino-4-chlorophenyl)-4-[2,4-
bis(1,1-dimethylpropyl)phenoxy]- 

4393 1.3375 M H 

39 051772-35-1 1-Naphthalenamine, N-[(1,1,3,3-
tetramethylbutyl)phenyl]- 

1333 1.8096 M M 

40 054079-53-7 Propanedinitrile, [[4-[[2-(4-
cyclohexylphenoxy)ethyl]ethylamino]-2-
methylphenyl]methylene]- 

3996 1.6579 M H 

41 058798-47-3 3H-Indolium, 2-[[(4-
methoxyphenyl)methylhydrazono]methyl]-1,3,3-
trimethyl-, acetate 

1952 1.9594 M M 

42 064022-61-3 1,2,3,4-Butanetetracarboxylic acid, tetrakis(2,2,6,6-
tetramethyl-4-piperidinyl) ester 

24930 0.4125 H H 

43 067584-54-7 1-Heptanesulfonamide, N-[3-(dimethylamino)propyl]-
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoro- 

27380 -0.022 H H 

44 067584-57-0 2-Propenoic acid, 2-
[methyl[(tridecafluorohexyl)sulfonyl]amino]ethyl es-
ter

29550 0.636 H H 

45 068084-62-8 2-Propenoic acid, 2-
[methyl[(pentadecafluoroheptyl)sulfonyl]amino]ethyl 
ester

7529 0.3134 H H 

46 068259-36-9 1-Naphthalenamine, N-phenyl-ar-(1,1,3,3-
tetramethylbutyl)- 

1333 1.9294 M M 

47 068555-73-7 1-Heptanesulfonamide, N-ethyl-
1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoro-N-(2-
hydroxyethyl)- 

35110 0.4216 H H 

48 068555-76-0 1-Heptanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-
pentadecafluoro-N-(2-hydroxyethyl)-N-methyl- 

14700 0.4526 H H 

49 106246-33-7 Benzenamine, 4,4'-methylenebis[3-chloro-2,6-diethyl- 9015 1.3034 H H 

50 106917-30-0 2,5-Pyrrolidinedione, 3-dodecyl-1-(1,2,2,6,6-
pentamethyl-4-piperidinyl)- 

1457 1.8888 M M 
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QSARs

BCFs were estimated using EPI Suite’s BCFWin program 
(http://www.epa.gov/oppt/exposure/docs/episuitedl.htm). BCFs were esti-
mated from the log octanol-water partition coefficient (log KOW) and a se-
ries of structural correction factors (Meylan et al., 1999). The ITC uses 
BCFs of >1,000 and > 5,000 to screen chemicals for bioconcentration po-
tential. Chemicals with 1000 < BCF < 5,000 are assigned a medium (M) 
bioconcentration potential. Chemicals with BCF > 5,000 are assigned a 
high (H) bioconcentration potential (cf. Table 1). 

Persistence predictions were estimated using EPI Suite’s BioWin pro-
gram (http://www.epa.gov/oppt/exposure/docs/episuitedl.htm). The ulti-
mate aerobic biodegradation probabilities (BDPs) from the ultimate survey 
model in BioWin were used to predict persistence potential. These predic-
tions were based on expert opinions that different structural groups could 
be used to estimate a chemical’s biodegradation potential (Boethling et al, 
1994). The ITC uses BDPs of < 2 and < 1.75 as surrogates for chemicals 
that are likely to persist for approximately 2 and 6 months, respectively.  
Chemicals with BDP < 2 were associated with a medium (M) persistence 
potential. Chemicals with BDP < 1.75 were assigned a high (H) persis-
tence potential (cf. Table 1).

Partial Order Ranking 

The theory of partial order ranking has been presented in previous papers 
(Carlsen et al. 2001, Brüggemann et al. 2001a, Carlsen et al. 2002). In 
brief, Partial Order Ranking is a simple principle, which a priori includes 
“�” as the only mathematical relation. If a system is considered, which 
can be described by a series of descriptors pi, a given compound A, charac-
terized by the descriptors pi(A) can be compared to another compound B, 
characterized by the descriptors pi(B), through comparison of the single 
descriptors, respectively. Thus, compound A will be ranked higher than 
compound B, i.e., B � A, if at least one descriptor for A is higher than the 
corresponding descriptor for B and no descriptor for A is lower than the 
corresponding descriptor for B. If, on the other hand, pi(A) > pi(B) for de-
scriptor i and pj(A) < pj(B) for descriptor j, A and B will be denoted in-
comparable. In mathematical terms this can be expressed as 

B  A  pi(B)  pi(A) for all i                (1) 
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In partial order ranking – in contrast to standard multidimensional statis-
tical analysis - neither assumptions about linearity nor any assumptions 
about distribution properties are made. Partial order ranking may be con-
sidered as a parameter-free method. Thus, there is no preference among the 
descriptors. The graphical representation of the partial ordering is typically 
given in a so-called Hasse diagram (Halfon and Reggiani 1986, Brügge-
mann et al. 2001b, Brüggemann et al. 1995, Hasse 1952), where compara-
ble elements are connected with lines, whereas incomparable elements ap-
pear as unconnected. Substances being ranked identically, i.e. these 
substances cannot be distinguished by the partial order ranking are located 
in the same levels in the diagram. Thus, substances that on a cumulative 
basis are ranked, as the most hazardous, are located in level 1. 

Note that the enumeration of levels follows convention. In other chap-
ters of this book the enumeration begins with the bottom level. Patil & 
Taillie, 2005 introduce in that context the concepts level and co-level. In 
the present study, the QSAR derived estimates for persistence and biocon-
centration were descriptors for the construction of the Hasse diagrams us-
ing the WHASSE software (Brüggemann et al., 1995). 

Results

Partial order ranking of the substances was made using the 50 BCF and 
BDP estimates (cf. Table 1) and applying the WHASSE software (Fig. 1).  

Fig. 1 consists of 11 levels, 4 maximal elements, i.e., only those con-
nected to lower-ranked elements (15, 28, 43, 47) and 5 minimal elements, 
i.e., only those connected to higher-ranked elements (11, 23, 41, 39, 46), 
respectively.

Discussion 

Ranking the 4 chemicals in level 1 based on BCF alone (Table 1) would be 
28 > 47 > 43 >> 15. However, based only on BDP just the opposite rank-
ing would occur, viz., 15 > 43 > 47 > 28. However, partial order ranking 
allows both descriptors to be taken into account simultaneously leading to 
the conclusion that all 4 compounds 15, 28, 43 and 47 apparently are the 
environmentally more problematic. In the case of compound 15, displaying 
only a medium level bioaccumulation, the high ranking is associated with 
a very high environmental persistence.
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Fig. 1. Hasse Diagram displaying the partial order ranking of the substances stud-
ied using the BCF and BDP estimates as descriptors 

Conclusions 

The present study has demonstrated that substances can be prioritized or 
ranked using a partial order ranking technique, e.g., based on their PB 
characteristics. Simple “yes/no” classification or total linear ranking can be 
obtained based on QSARs alone with reference to selected PB criteria. 
However, partial order ranking provides more valuable information with 
regard to which substances are environmentally hazardous because it si-
multaneously takes into account the persistence and bioaccumulation of 
the substances under investigation. As such, the combination of QSAR 
modelling and partial order ranking constitute an effective decision support 
tool that could be used to facilitate pollution prevention activities by regu-
lated and regulatory communities. 
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3 Quantitative Structure Activity Relationships 

Chemistry and Environmental Chemistry are confronted with the crucial 
question how to obtain numerically information about properties of inter-
est. The scientific discipline how to achieve this is associated with the con-
cept: Quantitative Structure Activity Relationships (abbreviation: QSARs). 
Already in the first section the reader could be introduced to the way of 
thinking in this field of research. In the chapters in this section the focus is 
to establish structure - activity relationships by means of order relations. 
The order relations in turn are derived from sets of properties of the 
chemicals.  

In the first chapter written by Carlsen an important step is the introduc-
tion of "noise - deficient" QSARs. The basics of HDT are briefly repeated 
before the central item how to get information about unknown properties is 
discussed. In comparison to usual methods, which are well known and 
widespread in the scientific literature, the approach shown by Carlsen does 
neither assume linearity in the property-property relationships nor any dis-
tribution properties. The method can be considered as parameter free. 
"Giving the molecules an identity" is the very idea how to rank a chemical 
whose environmental relevant data are unknown but some structural de-
scriptors. Although the incomparabilities may be considered as "Achilles 
heel" Carlsen shows in his chapter how to handle such situations by means 
of linear extensions, probability distributions and the concept of averaged 
ranks.

In the chapter of Pavan et al. the reader may learn more about the theo-
retical handling of partial order. Especially a useful description of partial 
order by matrices can be found here. The main topic, however, is devoted 
to the QSAR problem. The authors suggest and describe how molecular 
descriptors can be found in order to find useful partial orders. They de-
scribe genetic algorithms to find the best model poset and to derive from 
these unknown properties. "Experimental ranking and Model ranking" are 
at the heart of this chapter. The interpolation problem, already discussed in 
the first section by Klein& Ivanciuc, and later within this section by Carl-
sen, plays an important role in the chapter of Pavan et al. A discussion of 
the prediction uncertainty rounds this chapter. As examples phenyl urea 
herbicides and their toxicity is chosen. 
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Abstract

The interplay between Quantitative Structure-Activity Relationships 
(QSARs) and partial order ranking appears as an advantageous method to 
assess and prioritize chemical substances, e.g., due to their potential envi-
ronmental hazard taking several parameters simultaneously into account. 
Especially the application of so-called ‘noise-deficient’ descriptors is em-
phasized in order to eliminate the natural fluctuation of experimental as 
well as simple QSAR derived data. Further partial order ranking appears as 
an attractive alternative to conventional QSAR methods that typically rely 
on the application of stochastic methods. The latter use of partial order 
ranking may be applicable both to direct QSARs as well to solving inverse 
QSAR problems. The present chapter summarizes the various types of in-
terplay between of partial order ranking and QSAR modelling. 

Introduction

The number of chemical substances that are in use and constitute a poten-
tial risk to the environment exceeds today 100.000 (EEA 1998). Even with 
the proposed new system for registration, evaluation and authorisation of 
chemicals, REACH, the number of chemicals that will be included in this 
scheme will be approx. 30.000 (COM 2001; COM 2003). It is obvious that 
it is not practically possible experimentally to generate all necessary input 
for the risk assessment of these compounds. Information concerning the 
fate and effects of these substances in the environment is needed and may 
be obtained through modelling, e.g., by comparison with structurally re-
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lated, well-investigated compounds. Thus, within the REACH scheme a 
widespread use of QSAR modelling to retrieve physico-chemical and toxi-
cological data are foreseen.  

A priori the evaluation and prioritization of chemical substances can be 
based on experimental or QSAR generated data alone. This would give 
rise to a classification of the substances based on fulfilment of single crite-
ria only. However, typically it is desirable to include a series of criteria si-
multaneously in the assessment. Thus, to further qualify the assessment the 
substances may be ranked by a simultaneous inclusion of a series of crite-
ria such as, e.g., biodegradation, bioaccumulation and toxicity hereby dis-
closing those substances that on a cumulative basis appear to be the envi-
ronmentally more problematic. In this respect partial order ranking appears 
as a highly attractive tool (Brüggemann et al. 2001b; Carlsen et al. 2001; 
Carlsen et al. 2002; Davey and Priestley 1990). 

To further elucidate the mutual ranking of the substances linear exten-
sions may be brought into play, leading to the most probably linear (abso-
lute) rank of the substances under investigation (Brüggemann et al. 2001a; 
Davey and Priestley 1990; Fishburn 1974; Graham 1982). Further the con-
cept of average rank (Brüggemann et al. 2004) can be applied. 

Partial order techniques may also be applied directly as QSAR method 
as illustrated by the use of the QSAR descriptors as input to the ranking 
(Carlsen et al. 2001; Carlsen et al. 2002). On the other hand partial order 
ranking based on QSAR descriptors may also be applied as “inverse” 
QSARs, i.e. to disclose specific characteristics of new substances to be 
synthesized, e.g., as substitutes for environmentally harmful counterparts 
(Brüggemann et al. 2001b) or simply to give a given chemical compound 
an identity by comparing specific characteristics to those of other, possibly 
less harmful substances (Carlsen 2004). 

Methods

Obviously the successful interplay between QSARs and partial order rank-
ing depends on the single techniques. Thus, in the following QSARs and 
partial order ranking, including linear extensions will be shortly presented. 
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QSARs 

The basic concept of QSARs can in its simplest form be expressed as the 
development of correlations between a given physico-chemical property or 
biological activity (endpoint), P, and a set of parameters (descriptors), Di,
that are inherent characteristics for the compounds under investigation 

P = f(Di)                   (1)

The properties (endpoints), P that has been subjected to QSAR model-
ling comprises physico-chemical properties as well as biological activities.  

In general models that describe/calculate key properties of chemical 
compounds are composed of three types of inherent characteristics of the 
molecule, i.e. structural, electronic and hydrophobic characteristics. De-
pending on the actual model few or many of these descriptors may be 
taken into account. Thus, eqn. 1 can be rewritten as 

P = f(Dstructural, Delectronic, Dhydrophobic, Dx) + e               (2)

The descriptors reflecting structural characteristics may e.g. be element 
of the actual composition and 3-dimensional configuration of the mole-
cule, whereas descriptors reflecting the electronic characteristics may e.g.
be charge densities, dipole moment etc. The descriptors reflecting the hy-
drophobic characteristics are related to the distribution of the compound 
between a biological, hydrophobic phase, and an aqueous phase. The 
fourth type of characteristics, Dx, accounts for possible underlying charac-
teristics that may be known or unknown, such as environmental or experi-
mental parameters as, e.g., temperature, salt content etc. The data may of-
ten be associated with a certain amount of systematic and non-quantifiable 
variability in combination with uncertainties. These unknown variations 
are expressed as "noise". Thus, the parameter, e, account for possible noise 
in the system, i.e., the variation in the property that cannot be explained by 
the model. 

In principle all types of QSAR models can be used to generate descrip-
tors for subsequent use in partial order ranking, i.e. commercially available 
generally applicable QSARs as well as more specialized custom made 
QSARs. However, as partial order ranking due to its inherent nature only 
focusing on the relation “ ” (vide infra) may be hampered by random fluc-
tuations in the descriptors, the so-called ‘noise-deficient’ QSARs (Carlsen 
2004, Carlsen 2005a; Carlsen 2005b) advantageously can be applied. 
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Thus, recent studies on organophosphates appear as an illustrative example 
on the application of ‘noise-deficient’ QSAR-derived endpoints as input 
for a subsequent partial order ranking. The descriptors are generated 
through QSAR modelling, the EPI Suite being the primary tool (Carlsen 
2005a, Carlsen 2005b; Carlsen 2004)1.

Based on the EPI generated values for solubility (log Sol), octanol-water 
partitioning (log KOW), vapour pressure (log VP) and Henry’s Law con-
stants (log HLC) new linear QSAR models are build by estimating the re-
lationships between the EPI generated data and available experimental data 
for up to 65 organophosphor insecticides, the general formula for the de-
scriptors, Di, to be used being 

Di = ai·DEPI + bi                  (3) 

DEPI being the EPI generated descriptor value and ai and bi being con-
stants. The log KOW values generated in this way are subsequently used to 
generate log BCF values according to the Connell formula (Connell and 
Hawker 1988) 

log BCF = 6.9·10-3· (log Kow)4 – 1.85·10-1· (log Kow)3

+ 1.55· (log Kow)2 – 4.18·log Kow + 4.72               (4) 

The model was somewhat modified (Carlsen 2005a, Carlsen 2005b; 
Carlsen 2004). Thus, a linear decrease of log BCF with log KOW was as-
sumed in the range 1 < log KOW < 2.33, the log BCF = 0.5 for log KOW  1, 
the latter value being in accordance with BCFWin (EPI 2000). 

Subsequently, these QSAR generated endpoints may be applied for a 
partial order ranking of the substances using two or more of the endpoints 
as descriptors for the ranking exercise. 

                                                     
1  The EPI Suite is a collection of QSAR models for physical chemical and toxic-

ity endpoint developed by the EPA’s office of Pollution Prevention Toxics and 
Syracuse Research Corporation (EPI 2000). 
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Partial Order Ranking 

The theory of partial order ranking is presented elsewhere (Davey and 
Priestley 1990) and application in relation to QSAR is presented in previ-
ous papers (Carlsen et al. 2001; Brüggemann et al. 2001b; Carlsen et al. 
2002; Carlsen and Walker 2003). In brief, Partial Order Ranking is a sim-
ple principle, which a priori includes “ ” as the only mathematical rela-
tion. If a system is considered, which can be described by a series of de-
scriptors pi, a given compound A, characterized by the descriptors pi(A)
can be compared to another compound B, characterized by the descriptors 
pi(B), through comparison of the single descriptors, respectively. Thus, 
compound A will be ranked higher than compound B, i.e., B  A, if at least 
one descriptor for A is higher than the corresponding descriptor for B and 
no descriptor for A is lower than the corresponding descriptor for B. If, on 
the other hand, pi(A) > pi(B) for descriptor i and pj(A) < pj(B) for descrip-
tor j, A and B will be denoted incomparable. In mathematical terms this 
can be expressed as 

B  A pi(B) pi(A) for all i                (5) 

Obviously, if all descriptors for A are equal to the corresponding de-
scriptors for B, i.e., pi(B) = pi(A) for all i, the two compounds will have 
identical rank and will be considered as equivalent.  It further follows that 
if A  B and B  C then A  C. If no rank can be established between A 
and B these compounds are denoted as incomparable, i.e., they cannot be 
assigned a mutual order. 

In partial order ranking – in contrast to standard multidimensional statis-
tical analysis - neither assumptions about linearity nor any assumptions 
about distribution properties are made. In this way the partial order ranking 
can be considered as a non-parametric method. Thus, there is no prefer-
ence among the descriptors. However, due to the simple mathematics out-
lined above, it is obvious that the method a priori is rather sensitive to 
noise, since even minor fluctuations in the descriptor values may lead to 
non-comparability or reversed ordering. An approach how to handle loss 
of information by using an ordinal in stead of a matrix can also be found in 
the chapter by Pavan et al., see p. 181). 

In partial order ranking – in contrast to standard multidimensional statis-
tical analysis - neither assumptions about linearity nor any assumptions 
about distribution properties are made. Partial order ranking may be con-
sidered as a parameter-free method. Thus, there is no preference among the 
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descriptors. A main point is that all descriptors have to the same designa-
tions, i.e., “high” and “low” (cf. p. 70). This means that some descriptors 
may be multiplied by –1 in order to achieve identical designations. As an 
example bioaccumulation and toxicity can be mentioned. In the case of 
bioaccumulation, the higher the number the more problematic the sub-
stance, whereas in the case of toxicity, the lower the figure the more toxic 
the substance. Thus, in order to secure identical directions of the two de-
scriptors, one of them, e.g., the toxicity figures, has to be multiplied by –1. 
Consequently, both in the case of bioaccumulation and in the case of toxic-
ity higher figures will now correspond to more hazardous compounds. 

The graphical representation of the partial ordering is often given in a 
so-called Hasse diagram (Hasse 1952; Halfon and Reggiani 1986; Brüg-
gemann et al. 2001a; Brüggemann et al. 1995). In practice the partial order 
rankings are done using the WHASSE software (Brüggemann et al. 1995). 

Linear Extensions 

The number of incomparable elements in the partial ordering may obvi-
ously constitute a limitation in the attempt to rank e.g. a series of chemical 
substances based on their potential environmental or human health hazard. 
To a certain extent this problem can be remedied through the application 
of the so-called linear extensions of the partial order ranking (Fishburn, 
1974; Graham 1982). A linear extension is a total order, where all compa-
rabilities of the partial order are reproduced (Davey and Priestley 1990; 
Brüggemann et al. 2001a). Due to the incomparisons in the partial order 
ranking, a number of possible linear extensions corresponds to one partial 
order. If all possible linear extensions are found, a ranking probability (cf. 
p. 99) can be calculated, i.e., based on the linear extensions the probability 
that a certain compound have a certain absolute rank can be derived. If all 
possible linear extensions are found it is possible to calculate the averaged 
ranks (cf. p. 86) of the single elements in a partially ordered set (Winkler 
1982; Winkler 1983). 

Averaged Ranks 

The average rank is simply the average of the ranks in all the linear exten-
sions. On this basis the most probably rank for each element can be ob-
tained leading to the most probably linear rank of the substances studied. 
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The generation of the averaged rank of the single compounds in the 
Hasse diagram is obtained applying the simple relation recently reported 
by Brüggemann et al. (2004) (see also p. 86). The averaged rank of a spe-
cific compound, ci, can be obtained by the simple relation 

Rkav = (N+1) - (S+1)·(N+1)/(N+1-U)               (6) 

where N is the number of elements in the diagram, S the number of succes-
sors to ci and U the number of elements being incomparable to ci (Brüg-
gemann et al. 2004), counting from top to bottom. 

Partial Order based QSARs 

QSAR - Quantitative Structure Activity Relationships - in general terms 
denotes models, which, based on the variation in structural and/or elec-
tronic features in series of selected, molecules, describe variation in a 
given end-point of these molecules. These end-points may be, e.g., bio-
logical effects or physical-chemical parameters, which experimentally can 
be verified. Based on the developed QSAR model end-points of new, 
structurally related compounds, hitherto not being experimentally studied, 
may be predicted. 

Since the variation in, e.g., biological effects or physical-chemical pa-
rameters typically cannot be described by one single descriptor QSAR 
modelling relies heavily on statistical methods. Further, since QSAR mod-
elling may often involve seeking unknown relations between several de-
scriptors and a given end-point, traditional statistical approaches such as 
simple multiple linear regression (MLR) may not be the ideal choice al-
though widely used. Thus, development of QSAR models are often suc-
cessfully based on multivariate projection methods, such as principal com-
ponent analysis (PCA) followed by MLR using the principal components 
as descriptors or, more common, partial least square (PLS) projection, as 
the modelling in many cases can be described by linearization of complex 
unknown relations.  

Partial Order Ranking (Brüggemann et al. 1995), which from a mathe-
matical point of view constitute extremely simple, appears as an attractive 
and operationally simple alternative to the above rather demanding statisti-
cal method. 
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The partial order ranking method allows ranking of series of well inves-
tigated compounds, e.g., octanol-water distribution coefficients based on 
structural and/or electronic parameters of the compounds. The mutual 
ranking of the compounds can then be compared to the ranking based on 
the experimentally derived values for octanol-water distribution coeffi-
cients. If the ranking model resembles the experimental ranking of the pa-
rameters under investigation, the model is validated and other compounds 
not being experimentally investigated, can be assigned a rank in the model 
and hereby obtain an identity based on the known compounds, see how-
ever chapter Klein and Ivanciuc, p. 35. 

Direct QSARs 

An example of the possible applicability of partial order ranking as a tool 
for QSAR modelling has been reported by Carlsen et al. (2002). Thus, a 
series of non-hydrogen bond donor molecules, which have previously been 
studied using statistically based QSAR’s in order to verify the applicability 
of the partial order ranking method to a well-known system were selected. 
Thus, octanol-water distribution coefficients (Kamlet et al. 1988) and 
solubilities (Kamlet et al. 1987) were retrieved for a group of approx. 40 
compounds exhibiting rather different structural and electronic characteris-
tics. The experimental data was closely mimicked through a Linear Solva-
tion Energy Relationship (LSER) approach (Carlsen 1999; Kamlet et al. 
1977; Kamlet et al. 1988), the corresponding statistical approach being 
MLR. Carlsen et al. (2002) successfully applied the same molecular de-
scriptors as the LSER studies, i.e., the molecular volume (Vi/100), the po-
larity ( *) and the hydrogen bond basicity (ß) (Kamlet et al. 1987; Kamlet 
et al., 1988) as demonstrated using the same basis set of compounds. 

Contrary to the method reported by Pavan et al. (see p. 181) giving the 
results as intervals, the approach by Carlsen et al. (2002) suggested spe-
cific values. Thus, the model derived values for a given compound X (Val-
ueX) was obtained by simple arithmetic means between the lowest value of 
the comparable compounds ranked above X (minAbove) and the highest 
value of the comparable compounds ranked below X (maxBelow).

ValueX = (minAbove + maxBelow)/2                (7) 

The predicted values are compared to the corresponding experimentally 
derived values as depicted in Fig. 1. 
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It is immediately noted (Fig. 1) that in the partial order ranking based 
models solubilities reasonably well reproduce the experimentally derived 
values. However, it should be noted that the actual distance between the 
minAbove and maxBelow elements is crucial. Thus, the larger the distance 
between these two values the larger the potential uncertainty in the predic-
tion (Carlsen et al. 2001). 

Fig. 1. Experimental vs. predicted solubilities 

Inverse QSARs 

Quantitative structure-activity relationships are often based on standard 
multidimensional statistical analyses and applying sophisticated local and 
global molecular descriptors, assuming linearity as well as implying nor-
mal distribution behaviour of the latter. Thus, the aim is to develop a tool 
helpful to define a molecule or a class of molecules that fulfils predes-
cribed properties, i.e. an inverse QSAR approach. However, if QSARs 
based on highly sophisticated descriptors are used for this purpose, the 
structure of potential candidates and thus the actual synthetic pathways 
may be hard to derive. On the other hand, descriptors, from which the syn-
thesis recipe can be easily derived, seem appropriate to be included in such 
exercises. Unfortunately, if descriptors simple enough to be useful for de-
fining syntheses recipes of chemicals are used, the accuracy of an arithme-
tic expression may fail. Brüggemann et al. (2001b) suggested a method, 
based on the very simple elements of the theory of partially ordered sets, to 
find a qualitative basis for the relationship between such fairly descriptors 
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on the one side and a series of ecotoxicological properties, on the other 
side. The obvious advantage of the partial order ranking method has to be 
sought for in the fact that this method does not assume neither linearity nor 
normal distribution of the descriptors. 

In the study of Brüggemann et al. (2001b) a series of synthesis specific 
descriptors, i.e. simple structural descriptors such as the number of specific 
atoms and the number of specific bonds were included in the analyses 
along with graph theoretical and quantum chemical descriptors. On this 
basis a 6-step procedure was developed to solve inverse QSAR problems. 

Although the approach a priori appears as an attractive alternative more 
chemicals have to be considered in order further to develop the technique. 
Assuming this lead to more comparabilities and more neighbouring objects 
for a specific chemical, then the property space stretched by the order theo-
retical environment is smaller, which may lead to higher accuracy for es-
timation of toxicity data for a "new" chemical. 

Giving molecules an identity 

The basic idea of using partial order ranking for giving molecules an iden-
tity is illustrated in Fig. 2. Thus, let us assume that a suite of 10 com-
pounds has to be evaluated and that the evaluation should be based on 3 
pre-selected criteria, e.g., persistence, bioaccumulation and toxicity. Let 
the resulting Hasse diagram be the one depicted in Fig. 2A. If we apply the 
3 descriptors representing biodegradation, bioaccumulation and toxicity, 
respectively, so the more persistent, the more bioaccumulating and the 
more toxic a substance would be the higher in the diagram it would be 
found, Fig. 2A discloses that the compounds in the top level, i.e., com-
pounds 1, 3, 4, 7 and 8 on a cumulative basis can be classified as the envi-
ronmentally more problematic of the 10 compounds studied with respect to 
their PBT characteristics, whereas compound 10 that a found in the bottom 
of the diagram is the less hazardous. 

Subsequently we can introduce compounds solely characterized by 
QSAR derived data in order to give this new compound, X, an identity, 
e.g., in an attempt to elucidate the environmental impact of X. Adopting 
the above discussed 10 compounds and the corresponding Hasse diagram 
(Fig. 2A) we introduced the compound X. The revised Hasse diagram, 
now including 11 compounds is visualized in Fig. 2B. It is immediately 
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disclosed that compound X has now obtained an identity in comparison to 
the originally well-characterized compounds, as it is evaluated as less envi-
ronmentally harmful than compounds 4 and 7, but more harmful than 
compound 10. Thus, through the partial order ranking the compound, X, 
has obtained an identity in the scenario with regard to its potential envi-
ronmental impact. 

Fig. 2. Illustrative Hasse diagram of A: 10 compounds using 3 descriptors and B: 
the same 10 compounds plus 1 new compound X 

Hasse diagrams are characterized to the presence of a number of com-
parisons. The actual number of incomparisons is roughly speaking a result 
of interplay between the number of compounds and the number of descrip-
tors (Sørensen et al. 2000). Thus, increasing the number of descriptors 
will, for the same number of compounds, increase the number of incom-
parisons.
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A priori the incomparisons may turn out as an Achilles' heel of the par-
tial order ranking method. However, the adoption of the linear extension 
approach apparently remedies this, at least to a certain extent. 

Turning back to the model diagram (Fig. 2B) it can be noted that e.g. the 
compounds 4 and 7 are incomparable, i.e. looking just for these two com-
pounds it cannot from the Hasse diagram be concluded which of them are 
the more hazardous. However, bringing the linear extensions into play 
gives us the probability for these two compounds to have a certain absolute 
rank. In Fig. 3A the probability distribution for the compounds 4 and 7 for 
the possible absolute ranks is visualized. It is easily seen that the probabil-
ity for finding compound 4 at rank 1 or 2 are higher than for compound 7 
(Rank 1 is equal to top rank). On the other hand, compound 7 is more 
probable to be found at rank 4-7 than compound 4. On this basis we can 
conclude that comparing compounds 4 and 7, the most probable absolute 
ranking will place compound 4 above compound 7. In Fig. 3B the prob-
ability distribution for compound 10 is shown. The probabilities of finding 
compound 10 at rank 11 are approx. 70 % and at rank 10 approx. 30 %. 
The incomparability between compounds 10 and 2 accounts for this since 
compound 2 has an approx. 30 % probability to be occupy rank 11. 

The 'new' compound, X, introduced in the diagram displayed in Fig. 2B 
apparently is comparable only with compound 4, 7 and 10 and thus incom-
parable with the remaining 7 compounds in the scenario. The high number 
of incomparisons immediately indicates the presence of a relative broad 
probability distribution for compound X. This is nicely demonstrated in 
Fig. 4 displaying the probability distribution of compound X for being 
found at specific absolute ranks. 

The probability distribution of compound X in relation to compounds 4, 
7, 10 and X is visualized in Fig. 5. It must in this connection be remem-
bered that although the probability distribution of compound X overlaps 
those of compounds 4, 7 and 10, compound X must be located between 
compounds 4 and 7 and compound 10 (cf. Fig. 2B). 

To further elucidate how the single compounds under investigation can 
be assumed to behave on a combined basis, e.g. taking all descriptors si-
multaneously into account the concept of average rank (Carlsen 2005a; 
Carlsen 2005b; Carlsen 2004; Brüggemann et al. 2004; Lerche et al. 2002) 
can be adopted. In Table 1 the averaged rank calculated according to eqn. 
6 is given. 
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Fig. 3. Probability distribution of A: compounds 4 and 7 and B: compound 10 to 
occupy specific absolute ranks (rank 1 and 11 is top and bottom rank respectively) 

Thus, from the above discussion on the probabilities for specific ranks, 
it was concluded that the new compound X must be located between the 
compounds 4 and 7 and compound 10 (cf. Fig. 2B), which is further sub-
stantiated by the figures in Table 1. Assuming that if the averaged ranks, 
Rkav, of two compounds are close, the two compounds will on an average 
basis display similar characteristics as being determined by the set of de-
scriptors applied, the analysis of average rank discloses, cf. Table 1, that 
compounds X most closely resembles compounds 6 and 9. Consequently, 
compound X has now obtained an identity compared to the basis set of 
compounds, i.e., compounds 1-10. 
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Fig. 4. Probability distribution of compound X to occupy specific absolute ranks 

Fig. 5. Probability distribution of compound X in relation to compounds 4, 7 and 
10 to occupy specific absolute ranks 
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Table 1. Averaged ranks of the 11 compounds included in the Hasse diagram dis-
played in Figure 2B

Compound No. Averaged Rank (Rkav)
1 2.4 
2 9.0 
3 4.0 
4 1.7 
5 6.0 
6 8.0 
7 2.0 
8 2.4 
9 8.0 
10 10.9 
X 7.2 

Conclusions and Outlook 

Partial order ranking and QSAR modelling supplement each other and 
constitute an effective tool in various areas of chemical sciences. Thus, the 
interplay between QSAR and partial order ranking constitute an effective 
decision support tool to assess the chemical substances, e.g. in relation to 
their potential environmental hazard. Thus, the combined application of 
QSAR modelling and partial order ranking offers the possibility to assess a 
large number of chemicals based on several parameters, such as, e.g., per-
sistence, bioaccumulation and toxicity simultaneously and through this ef-
fectively disclose the environmentally more problematic substances that 
requires immediate attention. Thus, this decision support tool may well 
find extended application in connection with the new proposed chemical 
legislation, i.e., REACH, within the European Union. It is in this connec-
tion worthwhile to note that also economic parameters may be included in 
the partial order ranking analyses. 

The QSAR-partial order ranking system further appears as an appropri-
ate tool to give specific molecules an identity in relation to others and thus 
constitute as a support tool in the development of less hazardous substi-
tutes to acknowledged harmful substances. In this connection partial order 
ranking potentially also constitute a rather strong tool to solve inverse 
QSAR problems, e.g., to develop suitable synthetic pathways for new sub-
stances.
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The direct application of partial order ranking as QSAR modelling tool 
provides an attractive alternative to conventional methods, as partial order 
ranking is a parameter free method. The predicting ability of the partial or-
der models is acceptable and the technique may accommodate otherwise 
non-comparable descriptors. However, further improvement of the preci-
sion of the models is desirable (cf. also Pavan et al., p. 181). 
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Abstract

Partial and total order ranking strategies, which from a mathematical point 
of view are based on elementary methods of Discrete Mathematics, appear 
as an attractive and simple tool to perform data analysis. Moreover order 
ranking strategies seem to be a very useful tool not only to perform data 
exploration but also to develop order-ranking models, being a possible al-
ternative to conventional QSAR methods. In fact, when data material is 
characterised by uncertainties, order methods can be used as alternative to 
statistical methods such as multiple linear regression (MLR), since they do 
not require specific functional relationship between the independent vari-
ables and the dependent variables (responses).  

A ranking model is a relationship between a set of dependent attributes, 
experimentally investigated, and a set of independent attributes, i.e. model 
variables. As in regression and classification models the variable selection 
is one of the main step to find predictive models. In the present work, the 
Genetic Algorithm (GA-VSS) approach is proposed as the variable selec-
tion method to search for the best ranking models within a wide set of pre-
dictor variables. The ranking based on the selected subsets of variables is 
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compared with the experimental ranking and evaluated both in partial and 
total ranking by a set of similarity indices and the Spearman’s rank index, 
respectively. A case study application is presented on a partial order rank-
ing model developed for 12 congeneric phenylureas selected as similarly 
acting mixture components and analysed according to their toxicity on 
Scenedesmus vacuolatus. 

Introduction

The increasing complexity of the systems analysed in scientific research 
together with the significant increase of available data require availability 
of suitable methodologies for multivariate statistics analysis and motivate 
the endless development of new methods. Moreover, the increasing of 
problem complexity leads to the decision processes becoming more com-
plex, requiring the support of new tools able to set priorities and define 
rank order of the available options. The huge number of chemicals used 
and released in the environment is one of the complex problems the scien-
tific community has to deal with. Since it is not possible to generate ex-
perimentally all necessary input for the risk assessment of these chemicals, 
information on the environmental fate and effects of the chemicals is usu-
ally performed by Quantitative Structure - Activity Relationships (QSAR) 
regression modelling.  

In QSAR models structural, steric and/or electronic features in series of 
selected chemicals are associated with modification in a given biological 
or physical-chemical end-point of the chemicals. QSAR modelling usually 
looks for unknown relations between several descriptors and the end-
points; however, when a relationship between a toxic activity and molecu-
lar descriptors is searched for, it should be kept in mind that toxicity data 
are typically multiple response endpoints, i.e. the chemical toxicity is ana-
lysed at different concentrations to detect both acute and chronic effects. 
Furthermore, toxicity data often include large uncertainties and measure-
ments errors. Thus, if the aim is to point out the more toxic and thus haz-
ardous chemicals and to set priorities before final decisions are taken and 
data material is characterised by uncertainties, order models can be an at-
tractive complement to statistical methods such as multiple linear regres-
sion (MLR). Despite conventional QSAR methods, order ranking strate-
gies do not require a priori knowledge of specific functional relationships. 
Moreover, they are suitable in all those environmental problems whose 
aim is to define order relations among several chemicals, to point out the 
more hazardous chemicals and to set priorities before final decision are 
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taken. (Halfon et al. 1986; Halfon 1989; Halfon et al. 1998). For these pur-
poses order-ranking models, which allow finding out not a quantitative re-
sponse for each chemical but the inter-relationships among different 
chemicals, seem a promising approach in supporting environmental deci-
sion-making processes. By partial and total ranking method, compounds 
can be ranked on independent variables (model ranking) and the resulting 
ranking can be compared to the ranking based on the experimentally de-
rived values for given end-points (experimental ranking). If the model 
ranking agrees with the experimental ranking of the end-points under in-
vestigation, predictions of the experimental ranking of other compounds, 
not being experimentally investigated, can be performed using the ranking 
model. (Brüggemann et al. 2001a; Carlsen et al. 2001; Carlsen et al. 
2002a; Carlsen et al. 2002b; Sørensen et al. 2003). 

The Genetic Algorithm (GA-VSS) approach is here used as the variable 
selection method to search for the best ranking models within a wide set of 
candidate variables. The models based on the selected subsets of variables 
are compared with the experimental ranking and evaluated both in partial 
and total ranking by a set of similarity indices and the Spearman’s rank in-
dex, respectively. Only the best quality models are retained in the popula-
tion undergoing the evolution procedure. After a few iterations, the evolv-
ing population is usually composed of different combinations of variables 
that correlate well with the experimental ranking. 

In the present study a partial ranking model for 12 phenylurea herbi-
cides selected as similarly acting mixture components (Gramatica et al. 
2001; Backaus et al. 2004) is illustrated: the aim to compare their concen-
tration-response curves by the partial ranking model (Hasse diagram) to 
provide a priority list of these chemicals for the aquatic system according 
to their overall toxicity on the freshwater algae Scenedesmus vacuolatus,
contemporary accounting for their toxicity at the complete range of effect, 
and finally to model the ranked toxicity profiles (cf. attribute profiles, p. 
68) by structural molecular descriptors.  

Theory

Partial ranking method: Hasse diagram technique 

The Hasse diagram technique is a very useful tool to perform partial order 
ranking (POR). It has been introduced in environmental sciences by Hal-
fon. (Halfon et al. 1986; Halfon 1989; Halfon et al. 1998) and refined by 
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Brüggemann (Brüggemann et al. 1999; Brüggemann et al. 2001b). In this 
approach the basis for ranking is the information collected in the full set of 
attributes, which is called the "information basis" of the comparative 
evaluation of elements. 

The typical data matrix contains n elements (rows) and R attributes
(columns). The entry yir of the matrix is the numerical value of the r-th at-
tribute of the i-th element. Let IB be the information basis of evaluation, 
i.e. the set of R attributes, and E the set of n elements: the two elements s
and t are comparable if for all yr  IB either yr(s) yr(t) or yr(s) yr(t). If 
yr(s) yr(t) for all yr  IB then s t, while if yr(s) yr(t) for all yr  IB 
then s t.

The request "for all" is very important and is called the generality prin-
ciple:

s, t  E; s t y(s) y(t)

y(s) y(t) yr(s) yr(t) for all yr  IB 
(1)

If there are some yr, for which yr(s) < yr(t) and some others for which 
yr(s) > yr(t) then s and t are incomparable, and the common notation is ts .
A partial order ranking is easily developed by the Hasse diagram technique 
comparing each pair of elements and storing this information in the Hasse 
matrix which is a (n x n) antisymmetric matrix: for each pair of elements s
and t the entry hst of this matrix is: 

otherwise   0
 allfor      if    1 -
 allfor     if   1 

IB y(t) y(s)y
IB y(t)y(s) y

h rrr

rrr

st

(2)

The results of the partial order ranking are visualized in a diagram, 
named Hasse diagram, where each element is represented by a small circle, 
comparable elements which belong to an order relation are linked, while 
incomparable elements are not connected by a sequence of lines. Conven-
tionally the elements are located in the drawing plane at the same geomet-
rical height and as high as possible in the diagram, thus the diagram exhib-
its a level structure (see also Brüggemann and Carlsen). The elements at 
the top of the diagram are called maximal elements and they have none 
element above; the elements which have none element below are called 
minimal elements. In environmental field the main assumption is that the 
lower the numerical value of the criteria the lower the hazard. Therefore, 
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the maximal elements are the most hazardous and are selected to form the 
set of priority elements. 

Total ranking methods 

Total order ranking methods (TOR) are multicriteria decision making 
techniques used for the ranking of various alternatives on the basis of more 
than one criterion. The criteria, which are the standards by which the ele-
ments of the system are judged are not always in agreement, they can be 
conflicting, motivating the need to find an overall optimum that can devi-
ate from the optima of one or more of the single criteria. 

Desirability and utility functions are well-known multicriteria decision-
making methods (Massart et al. 1997; Keller et al. 1991; Hendriks et al. 
1992; Lewi et al. 1992; Harrington 1965), based on the definition of a de-
sirability/utility function for each attribute in order to transform values of 
the attributes to the same scale. Each attribute is independently trans-
formed into a desirability dir by an arbitrary function, which transforms the 
actual value of each element into a value between 0 and 1: 

10)( irirrir dyfd (3)

r being the selected criterion, f the function chosen and yir the actual value 
of the i-th element for the r-th criterion.  

Once the kind of function and its trend for each criterion is defined, the 
global desirability D and the global utility U of each i-th element can be 
evaluated as follows: 
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In addition each criterion can be weighted in order to take into account 
criterion importance in the decision rule. In the case of weighted functions 
the overall desirability and utility of the i-th element are defined as fol-
lows:
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wr being the weight of the r-th criterion and .1
1

R

r
rw

The use of a weighting scheme introduces arbitrariness into the analysis 
and thus it can be useful whenever additional information is available and 
the decision maker opinion can to be taken into account; see chapters by 
Brüggemann et al., pp. 237 and Voigt, Brüggemann, pp. 327 for a more 
detailed discussion of this point. 

Once D or U for each element has been calculated, all the elements are 
ranked according to their D (or U) value. The overall desirability is calcu-
lated combining all the desirabilities through a geometrical mean. It must 
be highlighted that the desirability product is very strict: if any desirability 
dir is equal to 0 the overall desirability Di will be zero, whereas the Di will 
be equal to one only if all the desirabilities have the maximum value of 
one. The overall utility is calculated less severely: in fact the overall qual-
ity of an element can be high even if a single desirability/utility function is 
zero.

Order ranking models 

Partial and total ranking methods have been widely used to perform data 
exploration, investigate the inter-relationships of objects and/or variables 
and set priorities. However it appears a very useful tool even for modelling 
purposes. Mathematical models have become an extremely useful tool in 
several scientific fields like environmental monitoring, risk assessment, 
QSAR and QSPR, i.e. in the search for quantitative relationships between 
the molecular structure and the biological activity/ chemical properties of 
chemicals.  

A ranking model is defined as a relationship between one or more de-
pendent attributes, investigated experimentally, and a set of independent 
attributes, also called model attributes, which are usually theoretical calcu-
lated variables such as molecular descriptors:  

),...,,(),...,,( 2121 ipiiiRiii xxxfyyyrank (8)

where f is a ranking function applied on the training set elements (TS), R
the number of dependent attributes and p the number of independent at-
tributes. A model ranking development is based on the following steps: 
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1. Experimental ranking: a total or partial ranking method is applied 
to experimental attributes (dependent attributes).  

2. Model ranking: the total or partial ranking method is applied to a 
subset of selected model attributes (independent attributes). 

3. Experimental and model ranking comparison: evaluation of the 
degree of agreement between two rankings, i.e. analysis of model 
ranking reliability. 

4. Model ranking evaluation: for each element the interval of each 
experimental attribute is compared with the interval derived from 
the model ranking. 

Thus, the ranking model is given by the chosen ranking function and the 
ordered training set. 

In the first phase, elements are ranked according to the experimental at-
tributes describing them. Thus, a partial or total ranking method is selected 
and applied to the experimental attributes providing a diagram of partially 
ordered elements or a totally ordered element sequence, respectively. In 
the second phase the same ranking method previously applied to the ex-
perimental attributes, is now applied to a selected subset of model attrib-
utes, and the elements are ranked according to the selected model attrib-
utes.

Then, the two rankings are compared to evaluate the model ranking ca-
pability to reproduce the element ranking based on the experimental attrib-
utes. In this way the similarity between two partially or totally ordered se-
quences, is measured. Finally, if the agreement between the model ranking 
and the experimental ranking is considered satisfactory, the model ranking 
can perform predictions of the ranking of other elements, not being inves-
tigated experimentally. As in multiple linear regression (MLR) methods, 
the selection of variables (attributes) is crucial to developing an acceptable 
ranking model. The aim of variable subset selection is to reach optimal 
model complexity in predicting response variables by a reduced set of in-
dependent variables (Hocking 1976; Miller 1990). Ranking models based 
on the optimal subsets of a few predictor attributes have the great advan-
tage of being more statistically stable, interpretable and showing higher 
predictive power. One of the simplest techniques for variable selection, -
 “sentimental selection”-, is based on the a priori selection of a few vari-
ables, by experience, tradition, availability, opportunity or previous 
knowledge. Another more mathematically based, but common, method of 
performing variable selection is the one based on an exhaustive examina-
tion of all the possible k variables models (the model size) obtained by a 
set of p variables. However, when many variables are available, an exhaus-
tive examination of all possible models is not feasible as, given the ex-
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tremely high number of possible variable combinations, it requires exten-
sive computational resources and is time consuming. In such cases a vari-
able selection technique is needed. The Genetic Algorithm (GA-VSS) ap-
proach is used here as the variable selection method to search for the best 
ranking models within a wide set of variables.  

GA-VSS applied to partial ranking models 

Genetic algorithms (GA) are an evolutionary method widely used for 
complex optimisation problems in several fields such as robotics, chemis-
try and QSAR (Goldberg 1989; Wehrens et al. 1998). Since complex sys-
tems are described by several variables, a major goal in system analysis is 
the extraction of relevant information, together with the exclusion of re-
dundant and noisy information. A specific application of GA is variable 
subset selection (GA-VSS) (Leardi et al. 1992; Leardi 1994; Luke 1994; 
Leardi 1996; Todeschini et al. 2004). Variable selection is performed by 
GAs by considering populations of models generated through a reproduc-
tion process and optimised according to a defined objective function re-
lated to model quality. The procedure is illustrated in Figure 1. 

It consists in the evolution of a population of models, i.e. a set of ranked 
models according to some objective function, based on the crossover and 
mutation processes, which are alternatively repeated until a stop condition 
is encountered (e.g., a user-defined maximum number of iterations) or the 
process is ended arbitrarily. 

It is to be highlighted that the GA-VSS method provides not a single 
model but a population of acceptable models; this characteristic allows the 
evaluation of variable relationships with response from different points of 
view. Moreover, when variable subset selection is applied to a huge num-
ber of variables, the genetic strategy can be extended to more than one 
population, each based on different variable subsets, evolving from each 
other independently. In this case, after a number of iterations, these popu-
lations can be combined according to different criteria, obtaining a new 
population with different evolutionary capabilities (Todeschini et al. 
2004).
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Fig. 1. Genetic algorithm procedure  

Partial ranking optimisation parameters 

Variable subset selection is performed by GAs, optimising populations of 
models according to a defined objective function related to model quality. 
In partial ranking models objective function is an expression of the degree 
of agreement between the element ranking resulting from experimental at-
tributes and that provided by the selected subset of model attributes.  

For the same n elements the correlation between the experimental partial 
ranking and the model ranking (denoted as E and M, respectively) can be 
evaluated by a set of similarity measures, called Tanimoto indices (Rogers 
et al. 1960; Brüggemann et al. 1995; Bath et al. 1993; Moock et al. 
1998; Sørensen et al. 2003). Each Tanimoto index can be used as the 
measure of “goodness of fit” (degree of agreement) as it is the ratio of the 
number of agreements over the number of disagreements, i.e. contradic-
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tions in the ranking of two elements in the model and experimental rank-
ing, weighting differently model and experimental incomparabilities. 

Another similarity index is here proposed as a measure of the agreement 
between two partial rankings. It is calculated comparing the experimental 
and model Hasse matrices, denoted E and M respectively, according to the 
following expression: 

1S01S ),(
1)(n2n

hh
),( st

M
st

E
st

MEME
(9)

where hst is the entry of the Hasse matrix for each pair of elements s and 
t and S(E,M), being a similarity index, ranges from 0 (no similarity) to 1 
(complete similarity) and expresses the differences between the two com-
pared matrices; if two elements (s and t) have the same mutual rank in both 
rankings, their contribution is 0. Thus it can be forecast that if two ele-
ments (s and t) have different ranks, but not opposite ones, in the two rank-
ings ( 1E

sth  and 0M
sth , or 0E

sth  and 1M
sth ), then their contribu-

tion is 1, while if the mutual ranks are opposite ( 1E
sth  and 1M

sth , or 

1E
sth  and 1M

sth ), their contribution is 2. In this way the discrepan-
cies due to opposite mutual rankings are evaluated more deeply than those 
due to comparable element pairs that have become incomparable, and vice 
versa.

Fig. 2 shows the procedure used to compare the partial experimental 
ranking and the partial model ranking. 

Total ranking optimisation parameters 

In total ranking models the degree of agreement between the element rank-
ing resulting from experimental attributes and that provided by the selected 
subset of model attributes is measured by the Spearman’s rank index 
(Kendall 1948). 

Applying a total order ranking method, like desirability or utility func-
tions, to the experimental attributes y1, … , yR, an experimental ranking, 

exp, is calculated. According to the experimental ranking, a specific ex-
perimental rank is associated to each i-th element: 

exp
iiRi2i1

exp
i rank)y,...,y,f(y

(10)
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Fig. 2. Scheme of the procedure used for to compare the experimental and model 
ranking 

In the next step, the total order ranking method is applied to the model 
attributes x1, … , xp, defining a model ranking, mod and according to that, a 
model rank is associated to each i-th element: 

mod
iipi2i1

mod
i rank)x,...,x,f(x (11)
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The correlation between the two rankings ( exp, mod) can then be evalu-
ated by Spearman’s rank correlation coefficient rS, according to the follow-
ing expression: 

11
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s r
nn

r
r

(12)

where ri is the rank difference for the element i in the two rankings and 
n is the total number of elements. Fig. 2 shows the procedure used to com-
pare the total experimental ranking and the total model ranking. 

Ranking predictions 

Once the “goodness of fit” of the model ranking has been verified, predic-
tions can be performed for new elements. The experimental ranking of 
new compounds that have not yet been investigated experimentally can be 
estimated by the ranking model; from the set of model attributes xu1,…,
xup  describing any unknown element u, prediction of the experimental 
ranking of element u can be performed on the basis of the training set (TS) 
elements: 

uupu2u1 rankx,...,x,xf settraining (13)

Thus, in a first step the ranking of the unknown element u is predicted 
with respect to the training set elements and, in the second step, the ex-
perimental responses are predicted. In this case, despite the regression 
models, the ranking model provides not a single response value but an in-
terval.

To explain ranking predictions, a directed connectivity operator C is in-
troduced. Being s and t two diverse elements in a ranking, and N the set of 
integer numbers, then the connectivity operator C(s,t) is defined as fol-
lows:

Nt)C(s,tsandTSts,if (14)

tsifft)C(s,

tsifft)C(s,

)t(stsifft)C(s,

belowisN

aboveisN

withleincomparabis0
(15)
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The term "iff" means: if and only if and is a typical mathematical idiom. 
The operator C(s,t) has the following properties:  

tytransitivi0qp,ifqpz)C(s,z)C(t,andt)C(s,
ryantisymmets)C(t,t)C(s,

1Lk0ifft)C(s,

qp

k
(16)

where the k absolute value is the topological distance between the two 
elements s and t in the Hasse diagram, i.e. the shortest path length in the 
diagram, and L the number of levels in the ranking, i.e. the maximum dis-
tance in the diagram. According to the first property, the operator is an in-
teger number, taking a value equal to the path length between s to t. If s is 
above t, and is located in the level immediately above t then C(s,t) takes a 
value equal to 1. The maximum length of a ranking, which in the Hasse 
diagram is the maximum number of lines in the longest chain, is equal to 
L-1, L being the number of ranking levels. If no path exists between s and 
t, meaning that s and t are incomparable ( ts ), then C(s,t) equals 0. Re-
flecting the ranking order relation properties, the connectivity operator has 
antisymmetry and transitivity properties. Thus, through the connectivity 
operator, predictions of the experimental ranking of any unknown element 
u can be performed looking for the two elements s and t which satisfy the 
following conditions: 

0and0and0 tsts yymint)C(u,minu)C(s,min   (17) 

where s and t are the two elements connected (comparable) to u, i.e. C(s,u)
> 0 (with s above u) and C(u,t) > 0 (with u above t), located on the shortest 
path, and whose experimental difference value constitutes the smallest 
positive interval. Moreover, C(s,u) represents the u-above rank radius and 
C(u,t) the u-below rank radius, whereas C(s,t) is the u rank diameter.

A numerical example for partial ranking model is here provided to bet-
ter explain the prediction calculation. For the sake of simplicity, let us con-
sider an experimental ranking developed on two experimental attributes y1
and y2; Table 1 shows their numerical values. Fig. 3 shows the resulted ex-
perimental Hasse diagram together with the ranking model developed on 
the training set composed by 9 elements a, b, c, d, e, f, g, h, i , described 
by an arbitrary set of independent attributes. 
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Table 1. Numerical values of the experimental attributes 

Element y1 y2

a 180 400 
b 150 420 
c 130 240 
d 140 270 
e 90 190 
f 100 230 
g 120 200 
h 90 235 
i 82 88 

a b

d

c

g

e

f h

i

a b

d

e

g

i

f h

Experimental ranking Model ranking

c

Fig. 3. Experimental and model Hasse diagram 

The model’s agreement with the experimental ranking is S(E,M) = 0.92; 
T(0,0) = T(0,1) = T(1,1) = 0.91. 

Fig. 4 shows the model ranking projection of the new unknown element 
u in the model ranking diagram. 

To predict the experimental response intervals of the unknown element 
u, a search is made for the element pair located on the shortest path from u
and with an experimental value difference that constitutes the smallest 
positive interval. 

Firstly, an examination is made of the elements comparable to u and lo-
cated on a path length equal to 1. The experimental values y1 and y2 of 
elements e, f, g and h are taken into account and the differences between e
(located above u) and f, g and h (located below u) are investigated. 
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g

i

f h
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e

Fig. 4. Projection of the unknown element u in the model ranking diagram 

As far as concerns the experimental attribute y1, on the basis of u loca-
tion in the model the following intervals can be evaluated (Note that in 
chapter by Carlsen, p. 163 the intervals are only implicitly used): 

1010090f1e1 yy
3012090g1e1 yy

09090h1e1 yy

(18)

All three intervals are rejected, as they are not positive interval. Thus the 
elements located on a path length (relatively to element u) equal to 2 are 
examined. For example, the elements c and i are considered and the fol-
lowing intervals examined: 

30100130f1c1 yy
10120130g1c1 yy

090130h1c1 yy
88290i1e1 yy
4882130i1c1 yy

(19)

The smallest positive interval for y1 is the one provided by elements e
and i, thus the experimental value y1 of the unknown element u is predicted 
as:
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9082 u1e1u1i1 yyyy (20)

It can be observed that element e and i satisfy all the conditions required 
to perform a ranking prediction, i.e.: 

)0(8and0)(2and)0(1 ie yymini)C(u,u)C(e, (21)

In the same way the following intervals are provided for y2:
40230190f2e2 yy
10200190g2e2 yy
45135190h2e2 yy

(22)

All the three intervals are rejected, and again the intervals provided by 
elements c and i located at a length path equal to 2 are examined: 

10130240f2c2 yy
40130240g2c2 yy
5235240h2c2 yy

10288190i2e2 yy
152882402ic2 yy

(23)

The smallest positive interval for y2 is the one provided by elements c
and h, thus the experimental value y2 of the unknown element u is pre-
dicted as: 

402352 u2c2u2h2 yyyy (24)

Elements c and h satisfy all the conditions required to perform a ranking 
prediction, i.e.: 

)0(5and0)(1and)0(2 hc yyminh)C(u,u)C(c, (25)

According to the position of the unknown element u in the model rank-
ing, four different cases can be identified, each characterized by specific 
prediction:
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srurtr yyyu chainainlocatedis

srur yyu minimalais

urtr yyu maximalais
?isolatedis uryu

s and t being two elements in the Hasse diagram respectively located 
above and below u. In particular, for case 2, being u a minimal, its rank is 
predicted to be smaller than the lowest value of the comparable elements 
ranked above; thus, the rule is the following: 

ss yminu)C(s, and1 (26)

which means that the estimated interval of u is open on the left and only 
the first shell of neighbourhoods above is taken into account.  

Moreover, for case 3 where u is a maximal, there is no comparable ele-
ment above, and its rank is predicted to be larger than the highest value of 
the comparable elements ranked below; thus, the rule is: 

tt ymaxt)C(u, and1 (27)

which means that the estimated interval of u is open on the right and only 
the first shell of neighbourhoods below is taken into account. 

In the last case u is an isolated element, i.e. it is not comparable with 
any of the elements of the training set, thus its rank cannot be predicted by 
the model ranking developed. 

Prediction uncertainty 

According to the proposed prediction calculation procedure, it is clear that 
the actual distance between the two elements s and t, which satisfies the 
prediction conditions for any unknown element u, is crucial, and the larger 
the distance the larger the potential uncertainty in the prediction. Thus, a 
first topological measure of the prediction precision is provided by the 
connectivity operator C(s,t) previously defined: the precision decreases for 
increased C(s,t).

11and11 Lt)C(u,Lu)C(s, (28)
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Moreover a normalised distance measure for each prediction from the 
upper and lower limits of the interval can be evaluated according to the 
expression:

10and
2

1 sup
u

sup
u D

L
-u)C(s,D

(29)

10and
2

1 inf
u

inf
u D

L
-t)C(u,D

(30)

s and t being the two elements which, satisfying the prediction conditions 
are selected to predict the experimental interval of the unknown element u. 

sup
uD  and inf

uD  give a measure of the normalised rank uncertainty, above 
and below respectively. Note that if u is a priority element (maximal) 
C(s,u) is not defined, as no element exists above u, thus sup

uD  is not de-
fined and only inf

uD  can be evaluated. Analogously, if u is a minimal 
element C(u,t) is not defined, as no element exists below u, thus inf

uD  is 
not defined and only sup

uD  can be evaluated. 
Another way to measure prediction uncertainty is to evaluate the ex-

perimental interval width of the prediction on the r-th experimental attrib-
ute:

10 ur
ryry

trsr
ur Ry

minmax
yy

Ry
(31)

where sry  and try  are the experimental values of s and t for the r-th at-
tribute respectively, and 

rymax  and 
rymin  the maximum and minimum 

experimental values of the r-th attribute. The greater the width, the greater 
the uncertainty. For maximal and minimal elements Ryur is not defined, as 
their estimated interval is an open interval. Therefore, sup

uD  and inf
uD

measure the normalised rank uncertainty of the estimated interval, above 
and below respectively, whereas Ryur measures the experimental uncer-
tainty. 
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Model validation 

Further verification of model ranking applicability can be obtained by ap-
plying the described ranking prediction procedure to the training set ele-
ments initially used to develop the model. This results in the creation of a 
number of modified data sets from which the elements will be deleted 
from the data one by one. For each element of the training set the experi-
mentally derived intervals are calculated from the experimental ranking; 
the other training set elements are then used to calculate the experimental 
intervals of that element from the experimental ranking. In the same way, 
the model calculated intervals are obtained by using the other training set 
elements to calculate the model intervals of the each element from the 
model ranking. Thus, it is similar to a leave – one – out cross validation 
procedure (LOO technique), where each element is taken away, one at a 
time and the response for the deleted element is calculated from the model. 
Thus, given n objects, n reduced models have to be calculated. This tech-
nique is particularly important as this deletion scheme is unique and the 
predictive ability of the different models can be compared accurately.  

Once having obtained the experimentally derived intervals and the cal-
culated intervals, they are compared to establish the model ranking quality.  

On comparing two intervals, six different cases, illustrated in Figure 5, 
can be identified. 

As A and B are respectively the lower and upper values of the experi-
mental interval, and C and D those of the model interval, Cases 1 and 2 
represent disjoint intervals; Cases 5 and 6 intervals contained one in the 
other, and Cases 3 and 4 partially overlapped intervals.  

Analysing one experimental attribute at a time, for each i-th element the 
disagreement i r  between its experimentally derived interval (A-B) and its 
model calculated interval (C-D) on the r-th attribute is calculated, assum-
ing the worst case, according to the following expressions: 

Case 1: ADir

Case 2: CBir

Case 3, 4, 5, 6: BDACir
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Fig. 5. Interval comparison 

A standardised interval disagreement for the i-th element on the r-th at-
tribute is then derived as: 

rr

ir
yy

ir*

minmax
(32)

rymax  and 
rymin  being the maximum and minimum values of the r-th at-

tribute respectively. 
The average disagreement between the experimental and the model cal-

culated intervals is then calculated: 

N

N

1i

*

r

ir

(33)
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and a measure of the ranking model quality, as far as concerns the r-th at-
tribute is calculated as: 

rr -Q 1 (34)

The overall ranking model quality, i.e. taking into account all the R re-
sponses, can be evaluated by the following expressions: 

rM
R

R1G

R

1r
r

T QminQQ...QQ
R

Q
Q (35)

QT being the arithmetic mean of all the R attributes of the ranking model 
represents the least demanding parameter for evaluating overall model 
ranking quality. Instead the geometric mean QG is a more severe parame-
ter, able to display models not able to reproduce a correct experimental 
ranking for only a few attributes. The most demanding evaluation parame-
ter of model quality is QM, which assumes minimum quality among the R,
calculated as the representing overall model quality. This procedure for 
evaluating model ranking quality is based on ranking interval comparison. 
Moreover, as the metric scale is usually seen as a “stronger” property than 
the ordinal scale, it is of interest to measure the loss of information due the 
replacement of the original “quantitative” information with rank orders. 
Thus, being the quantitative experimental values intervals with equal lower 
and upper values, they are compared with the experimentally derived in-
tervals (A-B), and for each r-th attribute the standardised interval dis-
agreement *

ir
0 is calculated the same way, as described above. The arith-

metic mean of the average disagreement between the quantitative 
experimental values and their derived intervals on the r-th attribute pro-
vides a measure of the uncertainty increase due to the replacement of a 
metric scale with an ordinal scale and is calculated as: 

N

N

1i

*
ir

r
~

(36)

This quantity is as greater as more loss of information. 
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Partial order ranking QSAR model for similarly acting 
phenylurea herbicides 

Natural environments and ecosystems are not exposed to individual 
chemicals but to complex multi-component mixtures of chemicals of vari-
ous origins. Nevertheless, most ecotoxicological research and chemical 
regulation focus on hazard and exposure assessment of individual chemi-
cals only and the chemical mixtures in the environment are ignored to a 
large extent. Therefore, there is the need for developing risk assessment 
procedures no longer restricted to single toxicants and instead considering 
combined effects resulting from multiple chemical exposures. The predic-
tive mixture toxicities approaches imply that the chemical composition of 
the mixture of interest in known. Two different concepts, termed Concen-
tration Addition and Independent Action, are thought of being more gener-
ally applicable and allow calculating expected mixture toxicity on the basis 
of known toxicities of the single components of a mixture. As these two 
concepts are based on opposite assumption with respect to the similarity of 
the mechanism of action of the individual components, the first step in 
mixture risk assessment procedure is to evaluate the similarity of the 
mechanism of action of the individual components (Faust et al. 2001; 
Faust et al. 2003).

The similarity in mode of action of different toxicants is frequently de-
scribed by analysis of their Effect-Concentration curves, where the concen-
trations of the toxicants that are estimated to cause a predefined effect are 
plotted. The Hasse diagram technique has been proposed as an useful tool 
to compare and rank chemical toxicities, not limited to one single level of 
biological response (as usually by EC50), but taking into account more than 
one single response at the same time. The Hasse diagram can give infor-
mation regarding the similarity of action comparable to the different EC 
profiles. Then, since it is not practically possible experimentally to gener-
ate all the necessary input information for the risk assessment of the 
chemicals, the second step in mixture risk assessment procedure is to ob-
tain part of the information concerning the chemicals fate and effect in the 
environment by models. The development of efficient and inexpensive 
technologies for effective risk assessment and to predict physical, chemical 
and biological properties of new compounds is now driven by the require-
ments of Commission Directive 93/67/EEC on Risk Assessment for New 
Notified Substances and Commission Regulation (European Commission 
(EC) No. 1488/94 on Risk Assessment for Existing Substances (EEC 
1993; EEC 1994). In the EU, the proposed system for registration, evalua-
tion and authorization of chemicals, REACH system is likely to have im-
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portant applications for the development and application of QSARs for 
predicting chemical toxicity (EC 2002).  

Quantitative Structure - Activity Relationships (QSARs) are estimation 
methods developed and used to predict certain effects or properties of 
chemical substances, which are primarily based on the structure of the 
chemicals. The development of QSARs often relies on the application of 
statistical methods such as multiple linear regression (MLR) or partial least 
squares regression (PLS). However, since toxicity data often include un-
certainties and measurements errors, when the aim is to point out the more 
toxic and thus hazardous chemicals and to set priorities, order models can 
be used as alternative to statistical methods such as multiple linear regres-
sion.

Toxicity experimental data 

The analysed data set consists of 12 congeneric phenylureas previously se-
lected and studied in a EU project on mixture toxicity (Prediction and as-
sessment of the aquatic toxicity of mixtures of chemicals, PREDICT pro-
ject) (Gramatica et al. 2001; Backaus et al. 2004). These chemicals, 
frequently found in surface waters where aquatic organisms are exposed to 
mixture of them, share a common specific mechanism of action (inhibitors 
of the photosynthetic electron transport). They were tested for toxicity on 
freshwater algae Scenedesmus vacuolatus by the research group of Bremen 
University, coordinator of the EU project: Bridging Effect Assessment of 
Mixtures to Ecosystem Situations and Regulation (BEAM) (Backhaus et 
al. 2003). The dependent variables selected for describing their toxicity 
were the reproduction inhibition responses with 4 concentrations ( mol/L) 
provoking 1% (EC01), 10% (EC10) 50% (EC50), 90% (EC90) effect, respec-
tively. Table 2 shows the EC toxicity values of the 12 phenylureas 
(Scholze et al. 2001). The Fig. 6 reports the effect-concentration curves of 
the 12 phenylureas, numbered as in Table 2. 
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Table 2. Toxicity data of 12 phenylureas 

Log(1/EC)
ID Substance CAS EC01 EC10 EC50 EC90 
1 Buturon 3766-60-7 1.877 0.897 0.111 -0.390 
2 Chlorbromuron 13360-45-7 3.244 2.059 1.222 0.824 
3 Chlortoluron 15545-48-9 2.523 1.576 0.815 0.332 
4 Diuron 330-54-1 3.071 2.223 1.538 1.109 
5 Fenuron 101-42-8 0.927 0.137 -0.633 -1.214 
6 Fluometuron 2164-17-2 2.030 0.772 -0.173 -0.849 
7 Isoproturon 34123-59-6 2.226 1.363 0.642 0.166 
8 Linuron 330-55-2 3.155 1.990 1.056 0.463 
9 Metobromuron 3060-89-7 1.430 0.630 -0.019 -0.490 
10 Metoxuron 19937-59-8 2.320 1.209 0.319 -0.249 
11 Monolinuron 1746-81-2 2.058 0.920 0.007 -0.575 
12 Monuron 150-68-5 2.569 1.367 0.402 -0.212 
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Fig. 6. Effect-Concentration curves of 12 phenylurea herbicides. Crossing of lines 
are indicated 
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Molecular descriptors 

The chemical structures of the phenylureas have been described with more 
than 1500 molecular descriptors, in order to catch all the structural infor-
mation.

The molecular descriptors have been calculated by the Dragon program 
(Todeschini et al. 2004) on the basis of the minimum energy molecular ge-
ometries optimized by HyperChem package (HYPERCHEM 1995) (PM3 
semiempirical method). In this study the following sets of molecular de-
scriptors have been calculated: constitutional descriptors, topological de-
scriptors (Bonchev 1983; Devillers et al. 2000), walk and path counts, 
connectivity indices (Kier et al. 1986), information indices, Moreau-Broto 
2D-autocorrelations (Moreau et al. 1980a; Moreau et al. 1980b; Broto 
1984), edge adjacency indices (Estrada 1995), BCUT descriptors 
(Pearlman et al. 1998; Pearlman 1999), topological charge indices (Gálvez 
et al. 1994; Gálvez et al. 1995), eigenvalue based indices (Balaban et al. 
1991), Randi  molecular profiles (Randi  1995; Randi  1996), geometrical 
descriptors, radial distribution function descriptors (Hemmer et al. 1999), 
3D-MoRSE descriptors (Schuur et al. 1996; Schuur et al. 1997), WHIM 
descriptors (Todeschini et al. 1994; Todeschini et al. 1997), GETAWAY 
descriptors (Consonni et al. 2002), functional group counts and atom cen-
tred fragments. Definitions and further information regarding all these mo-
lecular descriptors can be found in the ‘Handbook of Molecular Descrip-
tors’ (Todeschini et al. 2000). 

Experimental ranking 

The Hasse Diagram Technique applied on the four toxicity responses of 
algae reproduction inhibition with the concentrations provoking different 
levels of biological response (EC01, EC10, EC50 and EC90) is shown in Fig. 
7.

It is a quite simple diagram arranged in seven levels. It identifies two 
maximals: chlorbromuron (2) and diuron (4), highlighted as the most toxic. 
They are incomparable since some contradictions exist among their EC 
values: diuron is more toxic than chlorbromuron on EC10, EC50 and EC90
levels, but it is less toxic on EC01 Nevertheless, taking into account the mi-
nor reliability of the EC01 value, diuron is certainly the most toxic of this 
data set: actually, it is included in priority lists of organic pollutants for 
aquatic systems. Fenuron (5) is the less toxic substance in this set of herbi-
cides, as it is characterised by the lowest effect of all the concentration 
values.
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Fig. 7. Experimental Hasse diagram of 12 phenylureas 

The Hasse diagram is characterised by a few number of incomparabili-
ties: 18 over 132 comparisons, highlighting that not too many contradic-
tions in the EC values exist when chemicals have a common mechanism of 
action. Actually, the phenylureas are all inhibitors of photosynthesis. It is 
interesting to compare the Hasse diagram with the EC curves of Fig. 6: the 
shapes and slopes of the EC curves appear quite similar, but they are not 
strictly parallel (as usually happen with similarly acting chemicals); the 
majority of the intersections between the curves (highlighted in Figure 6) 
correspond to the Hasse diagram incomparabilities. These differences in 
EC curve shape and slope and, similarly, these incomparabilities in Hasse 
diagram may be interpreted in terms of different toxicokinetic properties 
and/or indicate different binding behaviour (Backaus et al. 2004).

The analysis performed by the Hasse diagram not only allows to rank 
the phenylureas according to their overall toxicity values and to provide a 
priority list, but also highlights in a clear and simple way the EC curves 
crossing.
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Model ranking 

The correlations between the overall toxicity of the considered chemicals 
and the molecular descriptors have been estimated by the partial ranking 
Hasse Diagram Technique (HDT). However as an exhaustive search for 
the best ranking models within a wide set of descriptors requires extensive 
computational resources and is time consuming, given the extremely high 
number of possible descriptor combinations, the Genetic Algorithm (GA-
VSS) approach has been used as the variable selection method. Starting 
from a population of 100 random models with a number of variables equal 
to or less 3, the algorithm has explored new combinations of variables, se-
lecting them by a mechanism of reproduction/mutation similar to that of 
biological population evolution. The models based on the selected subsets 
of variables have been tested and evaluated by maximising the similarity 
index S(E,M). All of the calculations have been performed by the in-house 
software RANA for variable selection for WINDOWS/PC (Todeschini et 
al. 2003).  

The best model obtained is a very simple model, based on two variables: 
a 3D-MoRSE descriptor of signal 9 weighted by atomic mass (Mor09m) 
and a functional group count accounting for the number of substituted 
aromatic carbons (nCaR). The maximal elements of the experimental 
Hasse diagram are the more toxic element (priority elements), whereas the 
minimal elements are the less toxic. According to the model Hasse dia-
gram, the more toxic elements are those with a greater number of substi-
tuted aromatic carbons and with a greater value of Mor09m. The model 
Hasse diagram is shown in Fig. 8: it is arranged on ten levels and charac-
terized by 61 comparable pairs of elements and 10 contradictions. The two 
model descriptor values are illustrated in Table 3.  

The diagram points out chlorbromuron (2) as maximal element, being 
characterized by the highest nCaR value (nCaR = 3) and the highest 
Mor09m value (Mor09m = -0.242).  

Diuron (4), experimentally the most toxic chemical has the same value 
of nCaR and very close value of Mor09m (Mor09m = -0.335). Fenuron (5) 
and metobromuron (9) are identified as minimal elements, the former is 
characterised by the lowest nCaR value (nCaR = 1), the latter by the low-
est Mor09m value (Mor09m = -1.332). 

The agreement degree between experimental and model diagrams is 
quite satisfactory (S(E,M) = 89.4). The Tanimoto indices have been calcu-
lated (Sørensen et al. 2003): 

T(0,0) = 98.1   T(0,1) = 85.2  T(1,1) = 80.0 (37) 
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Fig. 8. Model Hasse diagram developed with Mor09m and nCaR descriptors 

The “goodness of fit” of the partial ranking model calculated by the 
similarity index is lower than that calculated by T(0,0) but higher than the 
one by T(0,1) and T(1,1), confirming that the similarity index S(E,M) is a 
reasonable compromise between the over optimistic and the over pessimis-
tic evaluation provided by T(0,0), and T(0,1), T(1,1), respectively. 

Interval estimation 

The experimental ranking of each chemical has been estimated according 
to the procedure described above. The calculated intervals have been com-
pared to the corresponding experimentally derived intervals, obtained by 
deleting each chemical from the experimental ranking diagram; and using 
the remaining training set elements to calculate the experimental intervals 
of the deleted element from the experimental ranking diagram.  

Analysing one experimental response at a time, for each chemical the 
standardised disagreement ir  between its experimentally derived interval 
and model-calculated interval has been calculated. The experimentally de-
rived intervals and the calculated intervals for Log(1/EC01), Log(1/EC10),
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Log(1/EC50), Log(1/EC90), together with the corresponding standardised 
disagreements are illustrated in Table 4, 5, 6 and 7, respectively. 

Table 3. Model descriptors value for 12 phenylureas 

ID Substance Mor09m nCaR 
1 Buturon      -0.973 2 
2 Chlorbromuron -0.242 3 
3 Chlortoluron -0.661 3 
4 Diuron -0.335 3 
5 Fenuron -1.102 1 
6 Fluometuron -1.077 2 
7 Isoproturon -0.803 2 
8 Linuron -0.517 3 
9 Metobromuron -1.332 2 
10 Metoxuron -0.990 3 
11 Monolinuron -1.136 2 
12 Monuron -0.935 2 

Table 4. Experimental Log(1/EC01) interval estimation (bold fonts indicate dis-
joint intervals)

Response: Log(1/EC01) Experimental Calculated 
ID Substance Min Max Min Max EC01
1 Buturon 1.430 2.226 2.030 2.569 0.407 
2 Chlorbromuron > 3.155 - > 3.071 - 0.036 
3 Chlortoluron 2.320 3.071 2.320 3.155 0.036 
4 Diuron > 2.569 - 3.155 3.244 0.253 
5 Fenuron - < 1.430 - < 2.030 0.259 
6 Fluometuron 0.927 2.058 0.927 1.877 0.078 
7 Isoproturon 2.058 2.523 2.569 3.155 0.493 
8 Linuron 2.569 3.244 2.523 3.071 0.095 
9 Metobromuron 0.927 1.877 - < 2.058 0.078 

10 Metoxuron 2.058 2.523 2.030 2.523 0.012 
11 Monolinuron 2.030 2.226 1.430 2.030 0.344 
12 Monuron 2.320 3.071 1.877 2.226 0.556 
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Table 5. Experimental Log(1/EC10) interval estimation (bold fonts indicate dis-
joint intervals)

Response: Log(1/EC10) Experimental Calculated 
ID Substance Min Max Min Max EC10
1 Buturon 1.209 0.630 0.772 1.367 0.563 
2 Chlorbromuron > 1.990 - > 2.223 - 0.112 
3 Chlortoluron 1.363 1.990 1.363 1.990 0.000 
4 Diuron > 1.576 - 1.990 2.059 0.198 
5 Fenuron - <0.630 - < 0.772 0.068 
6 Fluometuron 0.137 0.920 0.137 0.897 0.011 
7 Isoproturon 0.920 1.576 1.367 1.576 0.214 
8 Linuron 1.576 2.059 1.576 2.223 0.079 
9 Metobromuron 0.137 0.897 - < 0.920 0.011 

10 Metoxuron 0.920 1.363 0.772 1.576 0.173 
11 Monolinuron 0.772 1.209 0.630 0.772 0.278 
12 Monuron 1.209 1.990 0.897 1.363 0.450 

Table 6. Experimental Log(1/EC50) interval estimation (bold fonts indicate dis-
joint intervals)

Response: Log(1/EC50) Experimental Calculated 
ID Substance Min Max Min Max EC50

1 Buturon -0.019 0.319 -0.173 0.402 0.109 
2 Chlorbromuron > 1.056 - > 1.538 - 0.222 
3 Chlortoluron 0.642 1.056 0.642 1.056 0.000 
4 Diuron > 0.815 - 1.056 1.222 0.111 
5 Fenuron - < -0.173 - < -0.173 0.000 
6 Fluometuron -0.633 0.007 -0.633 0.111 0.048 
7 Isoproturon 0.111 0.815 0.402 0.815 0.134 
8 Linuron 0.815 1.222 0.815 1.538 0.146 
9 Metobromuron -0.633 0.111 - < 0.007 0.048 

10 Metoxuron 0.111 0.402 -0.173 0.815 0.321 
11 Monolinuron -0.173 0.319 -0.019 -0.173 0.298 
12 Monuron 0.319 1.056 0.111 0.642 0.287 
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Table 7. Experimental Log(1/EC90) interval estimation (bold fonts indicate dis-
joint intervals)

Response: Log(1/EC90) Experimental Calculated 
ID Substance Min Max Min Max EC90
1 Buturon -0.490 -0.249 -0.849 -0.212 0.170 
2 Chlorbromuron > 0.463 - > 1.109 - 0.278 
3 Chlortoluron 0.166 0.463 0.166 0.463 0.000 
4 Diuron > 0.332 - 0.463 0.824 0.056 
5 Fenuron - < -0.849 - < -0.849 0.000 
6 Fluometuron -1.214 -0.575 -0.575 -0.390 0.355 
7 Isoproturon -0.390 0.332 -0.212 0.332 0.077 
8 Linuron 0.332 0.824 0.332 1.109 0.123 
9 Metobromuron -1.214 -0.390 - < -0.575 0.080 

10 Metoxuron -0.390 -0.212 -0.849 0.332 0.432 
11 Monolinuron -0.849 -0.249 -0.490 -0.390 0.215 
12 Monuron -0.249 0.463 -0.390 0.166 0.189 

As example the interval disagreement for the Buturon between its ex-
perimentally derived interval and its model calculated interval on the 
Log(1/EC90) is calculated as follows: 

396.0249.0212.0-490.0849.0-EC90 Buturon
(38)

The standardised interval disagreement is then derived according to 
equation 1.32 as: 

170.0
)214.1109.1(

396.0*
EC90 Buturon

(39)

Overall model quality 

By comparing the experimentally derived intervals with the calculated 
ones, an average disagreement has been calculated on each response: 

164.0144.0180.0221.0 )Log(1/EC90)Log(1/EC50)Log(1/EC10)Log(1/EC01
 (40) 

The average disagreement between the quantitative experimental values 
and their derived intervals has been calculated: 
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223.0~235.0~270.0~262.0~
)Log(1/EC90)Log(1/EC50)Log(1/EC10)Log(1/EC01

(41)

The uncertainty increase due to the replacement of a metric scale with 
an ordinal scale, calculated as arithmetic mean on all the four experimental 
attributes, is equal to 0.248.  

For each response, the model quality has been evaluated by complement 
of the average disagreement between experimental and calculated intervals 
(Qr):

836.0856.0

820.0779.0

)Log(1/EC90)Log(1/EC50

)Log(1/EC10)Log(1/EC01

QQ

QQ (42)

The overall ranking model quality, i.e. taking into account all the four 
responses, has been evaluated from the above parameters by arithmetic 
mean (QT), geometric mean (QG) and by the minimum value obtained on 
the four responses (QM):

779.0822.0823.0 MGT QQQ (43)

The present case study reveals that partial order ranking and its model-
ling by structural molecular descriptors provides an attractive alternative to 
conventional QSAR modelling tools. The method appears, from a mathe-
matical point of view, robust and transparent. It is thus possible using par-
tial ranking techniques to develop ranking models and it is suggested that 
ranking models have a general potential in the area of risk assessment of 
environmentally hazardous chemicals. However, further analyses of the 
proposed method appear appropriate to investigate validation techniques 
suitable for ranking models and to evaluate the potential of ranking models 
for QSAR modelling. 

Conclusions 

Being based on elementary methods of Discrete Mathematics, ranking 
methods are a very useful and simple tool of QSAR modelling for expo-
sure analyses and risk assessment, not to substitute conventional statistics 
but to supplement them. A complete procedure to perform a ranking model 
has been here proposed, based on the following main steps: experimental 
and model ranking development, comparison of the experimental and 
model rankings to evaluate model reliability, and finally interval estima-
tions to provide experimental ranking from the ranking model obtained. In 
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order to allow processing of data described by a wide set of variables the 
Genetic Algorithm (GA-VSS) approach has been proposed as the variable 
selection method. It is worthwhile to highlight that the procedure proposed 
can be located between fitting and predictive approaches, since the interval 
estimation and the model validation appear combined in one step. In fact, 
the model calculated intervals are obtained by deleting one element at a 
time from the model ranking, and using the remaining training set ele-
ments to calculate the model intervals of the deleted element from the 
model ranking. Thus, it is similar to a leave – one – out cross validation 
procedure (LOO technique), where each element is taken away, one at a 
time and the response for the deleted element is calculated from the model. 
In ranking model searching, the validation is not performed during the 
evolutionary optimisation procedure, but the model predictive ability is 
simulated once the model has been defined. The approach proposed seems, 
from a mathematical point of view well grounded. However, further analy-
ses of the interval estimation procedure as well as of the uncertainty 
evaluation are required. Moreover, one of the main theoretical aspect not 
yet fully investigated concerns the search for validation techniques suitable 
for ranking models. 
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4 Decision support 

The very idea behind partial order is to compare objects and by doing this 
to learn from them. Hence, it is obvious that partial order may also be use-
ful in decision support. Indeed partial orders play implicitly an important 
role in many established multi-criteria decision aid models. Being aware 
that there is important literature about this topic, the motto of the chapters 
presented here is to let speak the partial order alone - as far as possible. 

In the chapter of Simon et al., the water management strategies of the 
urban area Berlin-Potsdam are analyzed. Strategies and their expected suc-
cess are evaluated on the basis of hydrological and hydrochemical indica-
tors. Hence, a multi-attribute problem evolves and it is analyzed by means 
of the Hasse diagram technique (or more recently used: "partial order rank-
ing"). Instead of indicators the different strategies ("scenarios") may quali-
tatively be evaluated by experts who had designed the strategies. Beside 
the background information about complex decision problems the reader 
will learn something about similarity of Hasse diagrams and about the 
concept of antagonistic indicators.  

In the second chapter of Brüggemann et al. the approach of utility func-
tions and of PROMETHEE is compared with that of HDT. As example 
chemicals are serving. The renewed interest for evaluation of chemicals, 
initiated by the European Commission’s proposal for a new system for as-
sessing and regulating chemicals, REACH, may support our decision. The 
main methodological tool is the use of Monte Carlo simulations and the 
comparison of the Monte Carlo simulations with the rank probability of 
chemicals. The comparison, albeit restricted to only two competing meth-
ods, suggests the advantageous partial order in decision problems. 
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Abstract

In the cities of Berlin and Potsdam nine water management strategies (sce-
narios) were evaluated with respect to their ecological effects to the system 
of surface water. Scenarios were generated by combining different water 
management measures such as wastewater and storm water treatment. In-
dicators were qualitatively modelled as well as quantitatively evaluated by 
experts’ knowledge. For decision support Hasse Diagram Technique 
(HDT) was used. The scenario modular structure increases the transpar-
ency of the evaluation process and brought up the question whether time 
and work consuming calculation of data by mathematical models is needed 
or experts’ knowledge is sufficient for evaluation. To clarify this question, 
the results of two evaluation examples were compared: (a) data based and 
(b) experts expectations. Beyond the concept of antagonistic indicators the 
similarity-profile is introduces as a new tool to compare HDT evaluation 
results. Our study revealed that in the present investigation evaluation by 
expert knowledge is not satisfactory. The shift in the type of indicators 
from state to pressure and the effect of up scaling from local to regional 
may be the reason. 



222      Simon, U., Brüggemann, R., Pudenz, S. and Behrendt, H. 

Introduction

In a research project about sustainable water management in the cities of 
Berlin and Potsdam (Germany), an interdisciplinary working group, in-
cluding ecologists, landscape architects and civil engineers developed a 
framework to evaluate water management strategies (Steinberg et al. 2002, 
Weigert & Steinberg 2002). As an evaluation tool the Hasse Diagram 
Technique (Halfon & Reggiani 1986, Brüggemann et al. 2001 and 2003) 
was applied. Altogether nine water management strategies (scenarios) 
were evaluated with respect to their ecological effects to the system of sur-
face water. The scenarios are considered of being composed of different 
modules describing measures for (A) hydrological boundary conditions, 
(B) waste water treatment, and (C) management of storm water. The 
modular structuring of scenarios follows the idea of Saaty (1994) to handle 
complex problems by dividing them into smaller, manageable compart-
ments. While progressing the evaluation process, however, in our research 
project an unexpected side effect occurs. Members of the working group 
start arguing about being able to predict the evaluation result, even without 
using any modelled data. One reason was the modular structure of the sce-
narios, by which the transparency of the evaluation problem is increased 
and by which the impression might be given to know already which sce-
nario will be the best. 

To clarify the question whether indicator values based on calculated 
data by mathematical models are needed or solely knowledge of experts is 
sufficient to evaluate our water management strategies, we analyzed the 
results of both approaches, the data based evaluation and the evaluation by 
expert knowledge. The question about the need of modelled data is closely 
related to two topics, which are of general importance in every decision 
process: the efficient use of project resources - data modelling is time and 
work consuming - and the acceptance of the evaluation result. Stake-
holders will hardly approve results, which distinctly disagree with their 
expectations (Lahdelma et al. 2000). The comparison of the evaluation re-
sult based on data calculated by the model MONERIS (Behrendt et al. 
1999 and 2002) with the evaluation result based on data representing the 
experts’ expectations was carried out by the HDT originated tools of an-
tagonistic indicators and by a similarity-profile. The similarity-profile we 
introduce as a new approach to compare the evaluation results, namely the 
structures of Hasse Diagrams (HD) in a detailed and objective way.  
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Methods

Research Area 

Object of research is the complex surface water system of the cities of Ber-
lin and Potsdam (Fig. 1). To evaluate the ecological effects of the water 
management strategies on the surface waters, not only the evaluation of 
each indicator representing a certain scenario characteristic is of interest, 
but also where these patterns appear. Thus, to detect local effects of the 
scenarios, the water system has been split into 14 sections, each of which 
contributes its own characteristics to the decision procedure. 
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Fig. 1. Schematic diagram of the surface water system of Berlin and Potsdam. 
River sections: (1) Spree Köpenick (including Dahme), (2) Spree Mühlendamm, 
(3) Spree Sophienwerder, (4) Erpe (Neuenhagener Mühlenfließ), (5) Wuhle, (6) 
Inflow to lake Tegeler See, (7) Dahme Schmöckwitz, (8) Teltowkanal, (9) Upper 
Havel, (10) Lower Havel, (11) Havel Caputh, (12) Nuthe Babelsberg, (13) 
Sacrow-Paretzer-Kanal, (14) Havel Ketzin. Waste water treatment plants: 
Obg=Oranienburg, Sld=Schönerlinde, Fkb=Falkenberg, Mnh=Münchehofe, 
Rul=Ruhleben, Snd=Stahnsdorf, Mfd=Marienfelde, Wmd=Waßmannsdorf, 
Wsd=Wansdorf, PdN=Potsdam Nord. Dashed lines show wastewater pipe lines. 
Shaded area = administrative border of the city of Berlin 
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Water Management Strategies 

Altogether, nine water management strategies, 1a, 1, 2, 3, 4, 5, 6i, 6ii and 
6iii, in the following called scenarios, were evaluated. Each scenario con-
sists of three modules comprising measures for: (A) hydrological boundary 
conditions, in particular the amount of water flowing into the area and its 
nutrient concentrations; (B) wastewater treatment, including the technical 
equipment of the wastewater treatment plants (wwtp), as well as the spatial 
and quantitative distribution of purified waste water; and (C) quality and 
quantity of storm water discharge into river section. The current state rep-
resented by scenario 1a is the reference for all other scenarios. The meas-
ures, belonging to each scenario are summarised in Table 1. A more de-
tailed description can be found in Simon et al. (2004a, 2004b). 

Table 1. Water management strategies. Abbreviations of wastewater treatment 
plant names are given in Fig. 1. Example how to read Table 1: Scenario 2 includes 
the following measures: Module (A) reduced amount of water flowing towards 
Berlin, carrying same nutrient concentration as in the current state. Module (B) 
technical upgrade of all operating wwtps. Three Wwtps, namely Falkenberg (Fkb), 
Marienfelde (Mfd) and Oranienburg (Obg) are assumed to be shut down. Module 
(C) current state of storm water discharge into the surface waters 

Abbr. of 
scenarios 

Measures of 
module (A): hy-

drological 
boundary condi-

tions 

Measures of module (B):  
wastewater treatment 

Measures of 
module (C): 

entry of storm 
water

  Purification 
technique

shut down of 
wwtps 

1a current state (average of the years 1993-1997) 
1 reduced amount    
2 of water technical upgrade Fkb, Mfd,   
3 reduced amount advanced waste Obg  
4 of water water treatment Mfd, Odg emission 
5 and (micro-filtration) Fkb, Mfd,  50% 
6i lower nutrient alternative Obg reduced 
6ii concentrations sanitary  

technique
Mfd, Obg, 
Mnh, Snd 

6iii   Mfd, Obg, 
Mnh, Sld 
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Indicators of data based evaluation 

In the first example, the data based evaluation, the nine scenarios (Table 1) 
are characterised by a set of four indicators. For better recognition the 
„dat“ subscript is added to the indicator abbreviations: 

Qdat: Reduction of the discharge in river sections 
Pdat: Difference of phosphorus concentration from target concentration 
Ndat: Concentration of total nitrogen 
Sdat: Short-term pollution of surface waters by storm water 

Each of these indicators gets numerical values separately for the 14 river 
sections. The Qdat, Pdat and Ndat indicators have been calculated with the 
model MONERIS, which is described in (Behrendt et al. 1999 and 2002). 
These indicators are metric quantities. Although the quantitative calcula-
tion of the Sdat indicator values is included in the MONERIS modelling, 
the Sdat indicator is evaluated qualitatively. The reason is that quantitative 
effects turned out to be not significant within the uncertainty of the model. 
The Sdat indicator is evaluated best, if there is no direct influence of the 
river sections by storm waters at all. The reduction of emissions by storm 
water events of about 50% (SenSUR 1999) is evaluated middle and the 
present state is evaluated worse. Thus the Sdat indicator is considered as an 
ordinal quantity. The simultaneous consideration of quantities of different 
scaling levels (metric together with ordinal ones) is one of the core advan-
tages of HDT. Note, that for consistent orientation of indicators, here high 
values always represent a bad evaluation. Consequently, a high value in 
one of the measures implies automatically a rather high rank (bad evalua-
tion). As each of the 14 river sections is evaluated separately, a large ma-
trix of 9 scenarios multiplied by 4 indicators multiplied by 14 river sec-
tions equals 504 entries is obtained, which we would like to introduce as 
the data based evaluation matrix. 

Indicators of evaluation by experts’ knowledge 

The modular structure of the scenarios as described in section Water Man-
agement Strategies facilitates to predict the ecological effects of the meas-
ures within each module, at least as an ordinal quantity. Therefore, an 
evaluation solely based on the knowledge of experts, here by members of 
the project group, becomes possible. To transform the experts’ expecta-
tions into a data matrix, indicators for qualitative evaluation of the meas-
ures within each module are defined (see below). For consistent compari-
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son of evaluation results, high indicator values again represent a bad 
evaluation. Note, that interactions among measures cannot be considered. 
Indicators representing the experts’ expectations are labelled with the 
„exp“ index. The indicator values defined by members of our project 
group are shown in Table 2. 

Indicators to evaluate measures of module (A): Hydrological bound-
ary conditions: 

Haexp: Amount of water entering the research area. The indicator is 
evaluated in two classes. A good evaluation of the present state (indicator 
value 0) and a worse evaluation in case of scenarios 1 to 6iii, comprising a 
reduced amount of water entering Berlin (indicator value 1). 

Hqexp: Quality of water entering the research area. Scenarios 1a, 1 and 2 
represent the present state and got a bad evaluation (indicator value 1), 
whereas the scenarios 3 to 6iii are evaluated better (indicator value 0) be-
cause of lower nutrient concentration due to an improved technical stan-
dard of wwtps in the catchments area upstream of Berlin.  

Table 2. Evaluation matrix based on expectations. High values are representing a 
bad evaluation 

Indicator/ 
Scenario 

Pexp Nexp Sexp Haexp Hqexp

1a 2 2 1 0 1 
1 2 2 1 1 1 
2 1 2 1 1 1 
3 0 1 0 1 0 
4 0 1 0 1 0 
5 0 1 0 1 0 
6i 0 0 0 1 0 
6ii 0 0 0 1 0 
6iii 0 0 0 1 0 

Indicators to evaluate measures of module (B): waste water treatment: 
Pexp: phosphorus emission of the wwtps. Scenarios 1a, and 1 get the 

highest indicator value (2), representing the worse evaluation. Scenario 2 
comprises technically upgraded wwtps with a reduction of phosphorus 
emissions. Consequently it is given the indicator value 1. Scenarios 3 to 
6iii are evaluated best (indicator value 0). Advanced wastewater treatment 
and alternative sanitary technique will reduce phosphorus emissions of the 
plants significantly. 

Nexp: nitrogen emission of the wwtps. Scenarios 1a, 1 and 2 are evalu-
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ated equivalently worse (indicator value 2). Scenarios 3 to 5 assuming 
technical upgrade of all wwtps is evaluated middle (indicator value 1). 
Scenarios suggesting alternative sanitation technique (6i to 6iii) are evalu-
ated best (indicator value 0). Due to separation of urine and faeces, the dis-
charge of nitrogen into the surface water will be drastically reduced. 

Indicators to evaluate measures of module (C): short term pollution of 
surface waters by storm water 

Sexp: A bad evaluation (indicator value 1) is given to scenarios 1a, 1 and 
2, representing the present state. Scenarios 3 to 6iii are evaluated better 
(indicator value 0), as storm water events are reduced for about 50%, ac-
cording to the Sewage Disposal Plan (SenSUR 1999). 

Hasse Diagram Technique and the concept of antagonistic 
indicators

The Hasse Diagram Technique (HDT) is a method to sort options (here 
scenarios) evaluative with respect to all indicator values simultaneously, 
however without aggregation of indicators. The HDT evaluation is based 
on a simple  comparison of the options indicator values within every sin-
gle indicator. For consistent evaluation, all indicator values have to be ori-
ented uniformly: for instance, high values always have to represent a bad 
evaluation. More technical details can be found for example in Brügge-
mann and Carlsen, p. 61 and in references Halfon & Reggiani (1986), 
Brüggemann et al. (2001, 2003) and Brüggemann and Drescher-Kaden 
(2003). The evaluation result is depicted in a so-called Hasse Diagram 
(HD). Connective vertical lines show that the indicator values of the op-
tions will simultaneously increase (upwards) or decrease (downwards). 
Note that the evaluation of options is only deduced following exactly one 
vertical direction. Options not being connected with a sequence of vertical 
lines are not comparable with each other because of antagonistic indica-
tors. For explanation let us consider two incomparable objects: There is at 
least one pair of indicators in which one indicator is better evaluated with 
respect to one option and worse in the other. The other indicator is evalu-
ated in the reverse sense. Thus the incomparability among objects indicates 
differences in their profile of characteristic properties and can be analysed 
by the HDT-originated tool of antagonistic indicators, which formalizes 
the set of advantages and disadvantages with respect to each indicator. 
Note, that more than two indicators can be necessary to explain the com-
plete separation of any of two objects or group of objects. The reason is 
possible overlapping of the antagonistic indicator intervals. Overlapping 
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indicator intervals can explain the incomparability among objects only to a 
certain percentage. Consequently, more than two antagonistic indicators 
are needed to explain total separation of objects (Simon 2003).  

By automated identification of antagonistic indicators with the 
WHASSE software, immanent conflicts in the evaluation matrix can be 
discovered in a convenient way, and thus the advantages and disadvan-
tages of each option under discussion can be named. The precise knowl-
edge about antagonisms supports the stakeholders’ decision process as fur-
ther discussions can focus on these immanent evaluation conflicts. The 
methodologically strategy how to solve these conflicts is one of the most 
crucial steps of the evaluation process (Strassert 1995). 

Similarity of Hasse Diagrams 

Similarity indices are well known in statistical literature and also discussed 
in this book by Pavan et al., p. 181, especially their S(E,M)-index. Mostly 
similarity indices, however only provide highly aggregated information, 
and for that reason they imply a lost of information. For detailed compari-
son of HDT results, visualized by Hasse Diagrams (HD), we introduce a 
new tool, the similarity-profile. By the similarity-profile the structural ac-
cordance and discordance between any two HDs can be described in detail. 
As explained in the chapter by El-Basil, p. 3 and in chapter Brüggemann 
and Carlsen, p. 61, Hasse Diagrams are graph theoretical structures. There-
fore the comparison of evaluation results is not only to relate one object to 
other ones, but also to investigate the graph as a whole. In that sense we 
are speaking of a structure of an evaluation result. 

Our similarity-profile is adapted from an approach proposed by Søren-
sen et al. (2004), see also the more general discussion about correlation in 
chapter by Sørensen et al., p. 259. The relation of each option to another 
one is written down in a matrix, separately for both diagrams. Altogether 
four possible relations can occur:  

> scenario x is evaluated better than scenario y.  
<  scenario x is evaluated worse than scenario y.  
~ scenario x is equivalent to scenario y and 
|| scenario x is incomparable to scenario y. 

Consequently, maximal 16 combinations of relations can be found if 
two diagrams are compared with each other. The similarity-profile how-
ever describes four different kind of relations: 
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(1) Parallel relations of options in both diagrams, such as ,  and 
~ ~. E.g., the parallel relation < < means that scenario x < scenario y 
in HD1, and scenario x < scenario y in HD2. Parallel order relations 
indicate a similar ranking of options in the two compared Hasse Dia-
grams and thus there is no evaluation conflict. 

(2) Indifferent relations of options in both diagrams, such as > ~, < ~, 
and ~ >, ~ <. While in one Hasse Diagram the options are evaluated 
equivalent, in the other Hasse Diagram the options are ranked. Thus 
„indifferent“ shows a difference in the evaluation, but not a conflict 
as strong as „anti-parallel“. 

(3) Anti-parallel relations of options in both diagrams, such as  and 
. They show contrary rankings of options in two Hasse Diagrams, 

and thus discover a strong evaluation conflict. 
(4) Uncertain relations of options in both diagrams arise, when an option 

is incomparable to others in at least one of the diagrams. Uncertainty 
includes: || <, || >, || ~, || || and < ||, > ||, ~ ||. To generate an incompa-
rability, there must be at least one pair of antagonistic indicators. For 
that reason „uncertainty“ expresses also a strong conflict of the com-
pared evaluation results. 

The similarity-profile can be generated by counting all relations of each 
of the four groups and can be visualized by a bar plot. 

Evaluation Results 

The Hasse Diagrams, visualising the results of the two evaluation exam-
ples are shown in Fig. 2. By the data based evaluation (Fig. 2, left dia-
gram) the three scenarios 4, 6i and 6ii are identified as favourable, whereas 
by expectations of experts (Fig. 2, right diagram) four scenarios results as 
best possible solutions. These are 1a, 6i, 6ii and 6iii. However the scenar-
ios 6i, 6ii and 6iii are equivalent, i.e. they have got an identical evaluation 
in all indicators. The incomparability between the winner scenarios within 
each evaluation example can be explained by analysing the antagonistic 
indicators, revealing the advantages and disadvantages of each scenario 
(Fig. 3, left hand side). In case of the data based evaluation two reasons 
were identified to cause the incomparability: (1) thematic antagonisms oc-
cur because different indicators such as phosphorus concentration (Pdat)
and discharge reduction (Qdat) are involved. And (2) spatial antagonisms, 
as different river sections such as the tributaries Erpe (section no. 4) and 
Wuhle (section no. 5) are affected. In contrast, in the evaluation based on 
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experts expectations incomparability is only caused by thematic antago-
nisms: The higher amount of water entering the research area (Haexp) is 
identified of being the only advantage of scenario 1a, whereas the four in-
dicators phosphorus (Pexp), nitrogen (Nexp), short term pollution (Sexp) and 
the quality of water entering the research area (Hqexp) are evaluated better 
in the scenarios 6i, 6ii and 6iii (Fig. 3, right hand side).  
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Fig. 2. Results of the two evaluation examples. Circles symbolize scenarios. For 
description of scenario abbreviations see Table 1. Segments of circles symbolize 
equivalent evaluation of scenarios. Left diagram: result based on modelled data. 
Right diagram: result based on experts knowledge 

Beyond differences between both evaluation examples concerning the 
scenarios, which are evaluated, the best, optical inspection of both Hasse 
Diagrams reveals further obvious dissimilarities. These structural differ-
ences can be described in more detail and objectivity by the similarity-
profile (Fig. 4). When the structure of both HD’s are compared, only few 
parallel relations (about 17%) can be found, indicating total agreement in 
the evaluation of scenarios in both evaluation examples. There are also 
only few indifferent relations (about 2.7%), showing differences in the 
evaluation of scenarios: while in one HD the scenarios are ranked, they are 
evaluated equivalent in the other HD. Indifferent relations can be ad-
dressed to the evaluation result based on experts knowledge (Fig. 2, left 
diagram). There are no anti-parallel relations, which would indicate severe 
evaluation conflicts because of converse ranking of options in both HD’s. 
However, there is a clear dominance of uncertainties (about 80%), discov-
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ering severe disagreements in how the scenarios are ranked in both evalua-
tion examples. This high amount of uncertainties is caused by incompara-
bility among scenarios and can be addressed to the existence of three hier-
archies in the databased Hasse Diagram. These differences, however, need 
to be traced back in more detail. They discover conflicts between modelled 
data and experts expectation and therefore they will reduce the acceptance 
of the evaluation result. 
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Fig. 3. Antagonistic indicators of favourable scenarios. Note that here only the 
better-evaluated indicators of the antagonisms are given. They represent the ad-
vantage of one of the two incomparable options, which implies to be the disadvan-
tage of the other one. An example how to read the graphic: In the first evaluation 
example scenario 6ii is incomparable to 6i (||), because in 6ii the indicators phos-
phorus load and discharge reduction, both concerning the river section Wuhle 
(5Ploc, 5Qloc) are evaluated better than in 6i. In contrast, in 6i the indicator dis-
charge reduction concerning the river section Erpe (4Qloc) is evaluated better than 
in 6ii 

Discussion 

In our study, the comparison of the evaluation results based on modelled 
data and based on experts expectations, prove the need to calculate data by 
a mathematical model to obtain sufficiently detailed and precise results. 
The insufficiency of evaluation based on expectations can be mainly ad-
dressed to two topics: (1) A shift in the type of indicators from pressure to 
state and (2) a shift in the geographical scale from local to regional. 



232      Simon, U., Brüggemann, R., Pudenz, S. and Behrendt, H. 

0

10

20

30

Parallel Antipar.

to
ta

l n
um

be
r o

f r
el

at
i

Fig. 4. Similarity-profile of the evaluation examples 

According to the P-S-R-approach of the OECD, indicators can be classi-
fied into three basic groups (OECD 1994): Pressure indicators (P) are de-
scribing the causing factors such as emissions of technical assets. State in-
dicators (S) represent the present state, for example the trophic state of an 
aquatic ecosystems. Response indicators (R) are mapping reactions of the 
society to a certain problem. In our case study, all the data input by ex-
perts’ knowledge can be characterized as pressure indicators. For example: 
indicators characterizing the impact of waste water treatment plants on the 
surface waters, only provide information about emission of phosphorus 
and nitrogen and the amount of waste water which is discharged into river 
sections. In contrast, by using the model MONERIS, the final nutrient con-
centrations and discharges of the river sections are calculated. Thus the 
original input data representing pressure indicators are transformed into 
state indicators describing resulting effects. In addition, by the modelling 
of data the interactions between the original pressure indicators can be im-
plemented. The final nutrient concentration for example, results from mul-
tiple sources such as initial level of water pollution and emissions of sev-
eral different pathways such as wastewater treatment and storm water.  

When the evaluation is based on expert knowledge, only pressure indi-
cators can be relevant. Whereas precise information about emissions into 
the surface waters can be available, the prediction or estimation of the re-
sulting concentrations of substances as well as the final discharge is almost 
impossible. However, under certain conditions it might be manageable to 
predict state indicators sufficiently. For example if there is only one source 
of emission and only one river section. In our case study this for instance 
was true for the river section Wuhle. Experts with precise local knowledge 
were able to predict the effects of the shut down of the wwtp Falkenberg 
precisely, including the resulting degradation of the water quality. If ad-
vanced wastewater treatment is assumed, the discharge of sewage from the 
wwtp into the river Wuhle will actually cause a dilution of the nutrient 
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concentration. However, having more than one source of emission and a 
complex system of surface water including tributaries, a precise prediction 
of effects (state indicators) is impossible to derive from pressure indicators 
alone.

Beyond the type of indicators (pressure-state-respond) also different 
geographical scales are addressed when data based evaluation is compared 
with that of experts’ knowledge. Data based evaluation can be referenced 
to a local scale. Thus spatial effects can be detected in more detail, even 
though the definition of the river sections is determined on the one side by 
the official monitoring program, surveying the quality and quantity of the 
flowing waters, and on the other side by the need to observe the influence 
of tributaries. In contrast, data based on information about emissions (pres-
sure indicators) can be only addressed to the directly affected river sec-
tions. Consequently the evaluation will be incomplete with respect to the 
entire system of surface waters. Alternatively, emissions can be summarily 
evaluated, which rather equals a regional scale. Thus up scaling is taking 
place, because as stated before it is not possible to detect spatially differen-
tiated effects by expectations if a large system of surface water is investi-
gated.

The topics discussed above showed that the decision whether effort of 
time and manpower to model data is legitimated, or experts’ expectations 
are sufficient for evaluation, largely depends on the complexity of the 
problem. Complexity might be related to the geographical extend of the 
study, e.g., a complex system of surface water, or might be caused by the 
variety of influencing variables, such as social or political interests to be 
represented by indicators. In our study the complexity of a local referenced 
evaluation required data calculated by a mathematical model. Therefore 
the effort to model data can be legitimated by the advantage of precise in-
formation. Experts’ expectations would provide insufficient information to 
evaluate the effects of water management strategies with respect to the sur-
face water system of the cities of Berlin and Potsdam. The corresponding 
loss of information is expressed in the similarity-profile high number of 
uncertainties. In some cases there can be a better efficiency in using pro-
ject resources such as time, manpower and knowledge, if the evaluation is 
solely based on experts knowledge. The evaluation of single river sections 
such as the river Wuhle, which is briefly described above, is an example. 
As expectations provide sufficient precise results, modelling of data cannot 
be legitimated by an increase of information. However, the efficiency in 
using project resources will be not detectable in the similarity index, as 
both evaluation results, data based and expectations, should be in good 
agreement.  

Between the unambiguous extremes of a total preference of modelled 
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data and expectations respectively, there is a wide range where both ap-
proaches increasingly conform with each other with respect to the agree-
ment of their results and efficiency of project resources respectively. How-
ever, this range might include that the choice of the method is not adequate 
to the problem. For example: evaluation on a regional scale is inappropri-
ate to decide about local referenced water management strategies, inde-
pendently from the methodological question whether modelled data or ex-
perts expectations should be the data base. Again, such a spatial 
inadequacy is not detectable by a tool such as the similarity profile, as data 
based evaluation as well as expectations both might provide sub-optimal 
results. The specific problem of finding the adequate scale and method in-
cluding the generation of a complete set of indicators and a broad variety 
of options cannot be supported by methodological tools but has to be 
solved discursive by the stake holders and public respectively. The latter is 
concerned to the topic of participation (Lahdelma et al. 2000, Munda 2004, 
De Marchi & Ravetz 2001). Methodological tools such as the similarity-
profile, however can help to analyze and to explain discrepancies between 
experts expectations and modelled data. Mediation between both evalua-
tion results can be important to increase both, transparency and acceptance 
of decisions. 

Conclusions and Prospect 

The comparative study of evaluation results based on modelled data and 
obtained by experts expectations respectively, revealed that in the present 
investigation the evaluation by expert knowledge is not satisfactory. Even 
though there are agreements in both results, such as scenarios which are 
identified as potential winners in both approaches, the dominance of dif-
ferences (disagreements) prove the need of modelled data to obtain suffi-
ciently detailed and precise results. The insufficiency of evaluation based 
on expectations can be mainly addressed to two topics: A shift in the type 
of indicators from pressure to state and a shift in the geographical scale 
from local to regional. 

The modular structure of the water management strategies (scenarios) 
facilitates to solve the complex problem by split it into manageable parts 
(Saaty 1994). Consequently transparency is increased as demanded by the 
“Lokale Agenda”. The model MONERIS and the Hasse Diagram Tech-
nique respectively support this strategy. MONERIS, which is of modular 
structure as well, facilitates to adapt the input data to changing conditions 
such as adding or modification of scenarios. Furthermore in practical ap-
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plication the model is holding excellent balance between generalization 
and detailed information. HDT is providing convenient tools for data 
analysis.  

It is somehow paradox, that the good transparency supported by modu-
lar scenarios gives the impression that expectations will offer sufficient 
evaluation results, superfluous the need to model data. Anyway, discrep-
ancies between expected and modelled evaluation results need to be re-
moved, as stakeholders will hardly accept an evaluation result, which ex-
tensively disagrees with their expectations. HDT-originated analysis tools 
such as the antagonistic indicators and the similarity profile proved to be 
helpful in such conflicts. Thus beyond the application of HDT in the field 
of multicriteria decision aid (MCDA) the approach might be a helpful tool 
to mediate the whole decision process. 
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Abstract

An alternative to time-consuming risk assessments of chemical substances 
could be more reliable and advanced priority setting methods. Hasse Dia-
gram Technique (HDT) and/or Multi-Criteria Analysis (MCA) provide an 
elaboration of the simple scoring methods. The present chapter evaluates 
HDT relative to two MCA techniques. The main methodological step in 
the comparison is the use of probability concepts based on mathematical 
tools such as linear extensions of partially ordered sets and Monte Carlo 
simulations. A data set consisting of 12 High Production Volume Chemi-
cals (HPVCs) is used for illustration. 

It is a paradigm in this investigation to claim that the need of external 
input (often subjective weightings of criteria) should be minimized and 
that the transparency should be maximized in any multicriteria prioritisa-
tion. This study illustrates that the Hasse Diagram Technique (HDT) needs 
least external input, is most transparent and is therefore the least subjective 
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of the techniques studied. However, HDT has some weaknesses if there are 
criteria, which exclude each other. In such cases weighting is needed. 
Multi-Criteria Analysis (i.e. Utility function approach and PROMETHEE 
as examples) can deal with such mutual exclusions because their formal-
isms to quantify preferences allow participation e.g. weighting of criteria. 
Consequently MCA include more subjectivity and loose transparency. The 
recommendation, which arises from this study, is that a first step in deci-
sion-making is to run HDT and as a second step possibly to run one of the 
MCA algorithms. 

Introduction

Many chemical substances have adverse effects on human health and the 
environment. Thus, within the European Union the risk from chemicals on 
the European market are to be assessed and the use successively regulated 
if necessary (EEC, 1993). The suggested introduction of the REACH 
scheme reflects the increased interest in ranking of chemicals. (see EEC, 
2001 and also chapter by Carlsen, p. 163). At present, due to the lack of 
data, only a rather limited number of risk assessments have been adopted. 
Considering, the 100106 existing chemical substances registered in Europe 
(EEC, 1996), an efficient alternative to the present risk assessment proce-
dure is needed. With the OMNIITOX programme, (see Larsen et al. 2004), 
a broad study is ongoing, where some simple sorting schemes are com-
pared and where the Hasse Diagram Technique (HDT) is compared to 
other very simple ranking schemes, like EDIP, EURAM, Priofactor 
method etc. (see Larsen 2004, for further references) The present chapter 
does the other way round: It compares Hasse Diagram Technique with 
methods which usually are considered as well equipped and more sophisti-
cated decision analysis tools. As examples we select MAUT (Schneeweiss 
1991) (in its simplest version) and PROMETHEE (Brans, Vincke 1985, 
Brans et al. 1986). 

One of the MCA methodologies, the Utility Function (MAUT), covers 
the general principle of scoring methods. The conclusion from the com-
parison of HDT with the Utility Function can therefore to some degree be 
transferred to the scoring methods mentioned above. The Utility Function 
is sometimes also referred to as the Index Function or the Quality Func-
tion.

When priority setting methods are compared or evaluated the following 
two criteria should be kept in mind (see for a very good compilation of 
relevant criteria this book): 
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Subjectivity/ Transparency. Political or subjective considerations should 
only be involved when strictly necessary. It appears that the transpar-
ency of a methodology is often inversely related to the degree of subjec-
tive consideration involved. 
Precision. The result needs to be precise enough to allow useful deci-
sions.

The main methodological step in the comparison is to use probability con-
cepts based on mathematical tools like linear extensions of partial ordered 
sets and Monte Carlo simulations. Finally, a first step in the identification 
of a general mathematical scheme to evaluate the ranking methods is con-
sidered.

A data set consisting of 12 High Production Volume Chemicals (HPVC) 
is used for illustration (EEC, 2000). 

Survey of the Ranking Methods 

Hasse Diagram Technique 

Hasse Diagram Technique (HDT) is based on partial order theory (see this 
book, chapter by El-Basil, p. 3 and Brüggemann et al. 2001). The HDT 
appears as a simple method, which a priori includes “ ” as only mathe-
matical relation. As the HDT is explained in chapter by Brüggemann and 
Carlsen, p. 61, we establish here only the main notation:  
X: a set of chemicals. Here this set contains 12 chemicals. 
IB: is a set of characterizing descriptors, i.e. the information basis of the 
evaluation.
qj(xi): the value of the jth descriptor  IB of the ith chemical  X
If all descriptors for a substance x1 are equal to the corresponding descrip-
tors for the substance x2, i.e. qj(x2) = qj(x1), the two substances will have 
identical rank and will be considered as equivalent, x1  x2. (For more de-
tails concerning equivalence, see Brüggemann, Bartel 1999). 

The concept of Linear Extensions is of specific importance in this chap-
ter (for details see the Chapter by Brüggemann and Carlsen, p. 61).  

To illustrate the principle a simple Hasse diagram is constructed for five 
substances x1,x2,..,x5 using two descriptors in Fig. 1. 
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Substance q1 q2

x1 5 5 
x2 5 0 
x3 3 2 
x4 1 4 
x5 1 1 

Fig. 1a. HDT exemplified by five objects x1, x2,…,x5

Fig. 1b. Calculation of the Ranking frequencies (left table) and ordinal ranking 
probabilities (right table) and of averaged ranks 

In Fig. 1 it is illustrated that the substance x1 is related to the highest 
rank since, x1, obviously is placed above all other substances in all the lin-
ear extensions. On the other hand, the substance x3 is equally related to 
three ranking levels, as it may be located  

below x5

between x5 and x3 and 
between x3 and x1

without hurting the already given order relations.  
For the substance x3 the ordinal ranking probability for rank no. 5 is 

equal to 0 and for rank no. 4 it is 0.375. Note that one can apply symmetry 
considerations (i.e. in mathematical terms, analyze the automorphism 
group of a Hasse diagram (see Schröder 2003)): For example x3 "sees" the 

SubstancesRank 
x1 x2 x3 x4 x5

5 1 0 0 0 0 
4 0 0.25 0.375 0.375 0 
3 0 0.25 0.375 0.375 0 
2 0 0.25 0.25 0.25 0.25 
1 0 0.25 0 0 0.75 

      
Average 5 2.5 3.125 3.125 1.25 

SubstancesRank 
x1 x2 x3 x4 x5

5 8 0 0 0 0 
4 0 2 3 3 0 
3 0 2 3 3 0 
2 0 2 2 2 2 
1 0 2 0 0 6 

Ranking frequency from the total 
set of linear extensions 

Five substances and 
two descriptors 

                   
                                                           Total set of linear extensions 
               written as linear sequences  
           Hasse Diagram                      (LE- no are arbitrarily given)        

Ordinal ranking probabilities and the 
average ranks 

LE1: x5<x3<x4<x2<x1

LE2: x5<x3<x2<x4<x1

LE3: x5<x2<x3<x4<x1

LE4: x2<x5<x3<x4<x1

LE5: x5<x4<x3<x2<x1

LE6: x5<x4<x2<x3<x1

LE7: x5<x2<x4<x3<x1

LE8: x2<x5<x4<x3<x1

x1

x
2 x

3 x 4

x
5



A Comparison of Partial Order Technique with Three Methods      241 

same order theoretical environment as x4. Therefore the ordinal ranking 
probabilities of these two objects (see chapter by Brüggemann and Carl-
sen, p. 61) are the same and consequently all derived quantities.  

When all possible linear extensions are found it is also possible to calcu-
late the averaged ranks of the substances in a partially ordered set 
(Winkler, 1982 and 1983; Lerche, Sørensen, 2003, Lerche et al. 2003). The 
averaged rank is simply the average of the ranks in all the linear exten-
sions. Using Fig. 1 as an example, the averaged rank of the substance  

2.50.2510.2520.2530.254)Rkav(x2                (1) 

For the substance x3 the averaged rank analogously is found to be 3.125. 
Therefore in the linear rank, x3 will be given a higher rank than x2. In the 
example given in Fig. 1 the most probable sequence of ranks is:  
x1 > x3= x4 > x2> x5.

The HDT does not need any additional knowledge which goes beyond 
the data matrix, given by set X and set IB. Therefore the extent of external 
input, which we would like to call EXT, is 0. Formally we write EXTHDT = 
0.

Utility Function Approach 

In contrast to HDT, when using the Utility Function, each (normalized to 
the scale [0,1] and then called instead of qi now pi) descriptor is given a 
weight indicating the relative importance of that particular descriptor. 
More complex assumption, how a descriptor can be transformed into an 
"individual" preference function can be found by Schneeweiss (1991), 
where also the axiomatic foundation of this method is discussed. Instead of 
the simultaneous consideration of the descriptors the function 

i
ix )(xpg)( iii                  (2) 

whereby pi(xi) are the normalized descriptors for element xi and gi are the 
individuals’ weights reflecting the agreed mutual importance of the single 
descriptors. i is ranging from 1 to m. Thus, the utility function induces the 
ranking of chemicals according to their (xi) - values, i.e. substances are 
totally ordered according to the -function. 
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Considering the descriptors used in this paper, it is thus necessary to de-
cide if, for example, the bioaccumulation expressed by log Kow is more or 
less important than acute toxicity for fish expressed by LC50. Weighting of 
the descriptors is a way to take into account additional external judge-
ments. It can be seen as formalism to introduce the participation principle 
in the ranking procedure.  

Thus, beyond the "internal" information given by the data values of the 
pi's, at least m additional information in form of weights is needed. This 
additional information, which is classically the result of political, ethical, 
sociological preferences we call "external" knowledge. Thus EXTUtility = 
m. This is important information since the participation principle seams to 
play a more and more important role in modern environmental policy-
making.

PROMETHEE 

The Preference Ranking Organisation METHod for Enrichment Evalua-
tions (PROMETHEE) was originally developed as a tool in operational re-
search, up to now it has only proved limited applications in environmental 
sciences (Le Teno 1999, Poschmann et al. 1998, Drechsler 2004).  

In contrast to the utility function approach the various descriptors of 
each substances are not aggregated. However a preference function pri will 
be constructed based on the mutual comparison with respect to one de-
scriptor qi (note that we return to the original attributes qi) of any two sub-
stances. The preference function needs -as in the utility function approach- 
weights and information about the significance of numerical differences 
between the descriptor values of two substances, here called q0. Any dif-
ference qj(xi) - qi(xk) will be assigned to the preference function pri. i and k 
are ranging from 1 to m. In the simplest case the preference function may 
be formulated as follows: 

0))(xq)(x(qif0
q))(xq)(x(q0if))(xq)(x(q)(1/

q))(xq)(x(qif1
)x,(xpr

kjij

0
jkjijkjij

0
j

0
jkjij

kij          (3)

By equation 1 the ith, kth entry of a matrix is calculated. Thus a number 
of m  m matrices, corresponding to the number of descriptors, are 
formed, as any chemical is to be compared with any other in dependence 
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of qi. Therefore m additional parameters, describing the shape of the pref-
erence function prj(xi,xk) are needed. 

From the local matrices pr the "global" matrix PR can be written as fol-
lows:

PR = (1/m) ·  gPROMETHEE
i · pri                (4) 

Therefore, once again m weights are needed (see below and for more 
details Lerche et al. 2002). The outcome of PROMETHEE is usually di-
vided into two parts: By PROMETHEE I a dominance, d , and a sub-
dominance indicator, sd , is found. The dominance indicator describes 
how much a substance is preferred over all other. If "preference" means: 
necessity to analyse this chemical more carefully as this chemical may be a 
hazardous one, then d i is the sum over the entries of the ith row of PR, 
whereas the subdominance indicator d j (sum over the jth column of PR) 
describes how much all other substances are preferred over some specific 
substance. In PROMETHEE II just the difference (i) = d i - sd i is 
formed. By the quantity (i) the substance i can be ranked, i.e. a total order 
is formed.

This means: In total (in the simple form, given by equation 1) 2·m ex-
ternal parameters are needed.  

 EXTPROMETHEE = 2· m                  (5) 

Data

Data for 12 HPVC are found in the IUCLID database (EEC, 2000). Four 
characteristic properties (descriptors of molecular/environmental proper-
ties) are used to describe the environmental impact of the pesticides, see 
Table 1.

The pesticides, their CAS1 no., the abbreviations used in figures and ta-
bles and the descriptors are given in Table 2. The data in Table 2 thus form 
the decision matrix, which is the basis for both HDT and the MCAs. 

                                                     
1 CAS: Chemical Abstracts Service 
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Table 1. Descriptors (syn. attributes or indicators used in this study) 

Descriptor abbreviation name orientation remark 
q1 PV production        

volume 
(Exposure) 

1 as the higher 
PV the higher 
the risk 

q2 log Kow n-Octanol-Water 
partition coeffi-
cient
(accumulation) 

1 as the higher the 
log Kow the 
higher the bio-
accumulation 

q3 LC50 Toxicity -1 as the higher 
LC50 the less 
the hazard 

q4 BD Biodegradation -1 as the higher 
BD the less the 
persistance 

The Hasse Diagram 

Fig. 2 shows the Hasse diagram for the 12 substances included in this in-
vestigation. It is convenient to arrange the substances in levels and to avoid 
crossings of the lines (see also chapter by Brüggemann and Carlsen, p. 61). 
The Hasse diagram in Fig. 2 is arranged into four levels. In the highest 
level (corresponding to the highest environmental impact) there are four 
substances (malathion (MAL), linuron (LIN), 1-chloro-4-nitrobenzene 
(CNB) and thiram (THI)) and in the lowest there is only one substance 
(chlormequat chlorid (CHL)). In the present study four descriptors for 
twelve substances are used.  

The Hasse diagram (Fig. 2) reveals two groups of substances and an iso-
lated substance. These groups are also called hierarchies and motivate for 
the analysis of antagonisms (see chapter by Simon et al., p. 221). The larg-
est group includes eight and the small nontrivial group includes three sub-
stances. The production volume and log Kow are denoted “antagonistic” in-
dicators because they are capable of separating the Hasse diagram in two 
groups. Malathion (MAL) is an isolated substance because it has the low-
est LC50 and at the same time the fastest biodegradation. 

Using all linear extensions the probability distribution of ranks for each 
substance can be found. Table 3 gives the ordinal probability for the indi-
vidual substances to occupy a certain rank. The ranking probabilities are 
spread out in the interval of possible ranking positions. Clearly the prob-
abilities of isolated objects, like malathion (MAL) (compare Fig. 2) will be 
spread equally out over the whole interval providing an averaged rank of 
6.5.
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Table 2. Data on production volume (PV), acute toxicity for fish (LC50), the n-
octanol-water partitioning coefficient (log Kow) and bio-degradation (BD) for 12 
pesticides 

CAS No. Abbr. Name PV* LC50
(mg/l) 

log Kow BD 
(%/day) 

100-00-5 CNB 1-chloro-4-
nitrobenzene 

4 1.5 2.6 0.2 

100-01-6 4NA 4-nitroaniline 2 35 1.4 0 
100-02-7 4NP 4-nitrophenol 1 7 1.9 0.1 
1912-24-9 ATR atrazin 2 4.3 2.5 0.5 
999-81-5 CHL chlormequat chlorid 2 80 -2.2 1 
333-41-5 DIA diazinon 1 2.6 3.3 0 
60-51-5 DIM dimethoate 2 7.5 0.7 0 

26761-40-0 LIN ethofumesate 1 11 2.7 0.4 
1071-83-6 GLY glyphosate 2 52 0.002 0.3 
34123-59-6 ISO isoproturon 2 3 2.5 30 
121-75-5 MAL malathion 3 0.04 2.7 100 
137-26-8 THI thiram 2 0.3 1.7 0 

*(1 = 5.000 – 10.000 tons/year, 2 = 10.000 – 50.000 tons/year, 3 = 50.000 – 100.000 tons/year and 4 = 
100.000 – 500.000 tons/year) 

The highest probability for a position is only 0.553 for chlormequat 
chlorid (CHL) on rank no. 1. The averaged rank is presented in the HDT-
column in Table 4. 

Fig. 2. Hasse diagram of twelve chemicals 

MAL DIA 

4NP ETH ISO

CNB THI 

ATR

CHI

GLY

DIM 4NA 
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Table 3. The probability distribution of ranks when using all linear extensions 
(HDT)

Sub-
stance/
Rank

12 11 10 9 8 7 6 5 4 3 2 1 

CNB 0,285 0,228 0,177 0,132 0,092 0,055 0,025 0,007 0 0 0 0 

4NA 0 0,059 0,107 0,141 0,161 0,163 0,147 0,116 0,074 0,031 0 0 

4NP 0 0,023 0,043 0,061 0,077 0,091 0,102 0,111 0,118 0,123 0,125 0,125 

ATR 0 0,031 0,059 0,084 0,106 0,123 0,136 0,141 0,135 0,114 0,072 0 

CHL 0 0 0 0 0 0 0,002 0,011 0,042 0,118 0,273 0,553 

DIA 0,250 0,205 0,164 0,127 0,095 0,068 0,045 0,027 0,014 0,005 0 0 

DIM 0 0,059 0,107 0,141 0,161 0,163 0,147 0,116 0,074 0,031 0 0 

ETH 0 0,023 0,043 0,061 0,077 0,091 0,102 0,111 0,118 0,123 0,125 0,125 

GLY 0 0 0 0 0,010 0,041 0,094 0,162 0,228 0,259 0,207 0 

ISO 0 0,026 0,049 0,068 0,085 0,098 0,107 0,112 0,114 0,114 0,114 0,114 

MAL 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 0,083 

THI 0,382 0,263 0,169 0,100 0,053 0,024 0,008 0,002 0 0 0 0 

Table 4. The most probable rank obtained by using all linear extensions (HDT) 
and the rankings obtained when using the Utility Function and PROMETHEE 
with equal weightings (gj = 0.25) 

Rank
HDT
All linear 
extensions

HDT
average
rank 

The Utility 
Function

Utility
PROMETHEE 

PRO.a)

12 CNB 10.71 CNB 0.963 CNB 29.40 
11 THI 10.71 ATR 0.782 ATR 10.95 
10 DIA 9.75 THI 0.760 THI 7.91 
9 4NA 7.28 DIA 0.742 DIA 7.02 
8 DIM 7.28 ISO 0.713 ISO 2.73 
7 MAL 6.50 DIM 0.692 DIM -0.01 
6 ATR 5.93 ETH 0.687 ETH -0.10 
5 ISO 5.09 4NP 0.664 MAL -0.63 
4 4NP 4.88 MAL 0.639 4NP -3.32 
3 ETH 4.88 4NA 0.638 4NA -4.95 
2 GLY 3.84 GLY 0.520 GLY -16.24 
1 CHL 1.69 CHL 0.331 CHL -32.75 
a): PROMETHEE will be abbreviated by PRO 
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Results of Multi-Criteria Analysis 

The Utility Function 

To illustrate the methodological differences between HDT and the two 
MCA, the rank using equal weights (gj = 0.25) is calculated (Table 4, col-
umn “The Utility Function”). Compared with the rank obtained when us-
ing the HDT average rank, the most significant differences are atrazin 
(ATR) that changes from position no. 6 to no. 11 and 4-nitroaniline (4NA) 
that changes from position no. 9 to 3. The change in position of 4-
nitroaniline (4NA) can probably be ascribed to the rather low LC50. When 
using a metric method, such as the Utility Function, the actual numbers 
obviously influences the result more than when using a non-metric 
method, such as HDT. Thus, if a substance, like 4-nitroaniline (4NA) has a 
descriptor with a very low value, the ranking result may vary significantly. 
Note that there are other examples of inversion like 4-nitrophenol (4NP) 
and malathion (MAL): They switch their positions, when the ranking by 
HDT is compared with that of the Utility function. 

If a set of weights is chosen it will result in one definite rank. If another 
set of weights is selected another rank will occur. To illustrate the range of 
possible ranks the influence of the weights is estimated by a Monte Carlo 
Simulation. In the Monte Carlo Simulation random weights (from 0 to 1) 
are repetitively chosen and the utility, , for each substance and the linear 
rank is calculated (number of runs = 10000) (Table 5a). The average util-
ity, average, is calculated and based on the linear ranks; the ranking prob-
abilities are calculated and given in Table 5.  

Comparing the ranking probabilities for the Utility Function with the 
ordinal ranking probabilities found by HDT it appears that the probabilities 
for the Utility Function are less spread out and clearly higher. As an illus-
trative example the probability for 1-chloro-4-nitrobenzene (CNB) on rank 
no. 12 is as high as 0.944. Fig. 3 exemplifies how the ordinal HDT ranking 
probabilities are more spread out than those for the Utility Function. It can 
thus be seen that the non-metric approach (HDT) generally supplies more 
ranking possibilities than the variation of weights. Note that not all linear 
extensions can necessarily be considered as result of a Utility function ap-
proach. Because of the metric nature of the Utility function many different 
sets of weights may mapped onto the same linear extension, which ex-
plains the different distributions found by HDT and Utility function ap-
proach respectively. 
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Fig. 3. Probability distributions of 4 of the twelve chemicals to demonstrate the 
differences in the three approaches. For a full description, see (Lerche et al.) 
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PROMETHEE 

The -values derived from PROMETHEE and the ranks deduced from 
them are shown in Table 4. The calculation was performed using equal 
weights (gj = 0.25), like for the Utility function and q0

j= 0.5 · std(qj)
(std(qj): standard deviation of qj) taken from the data matrix (Table 2). 
Compared with the ranking based on the Utility Function no significant 
changes in positions are observed, only malathion (MAL) and 4-
nitrophenol (4NP) changes position. As for the Utility Function, the 
weights of the descriptors play a crucial role for the ranking of the sub-
stances in PROMETHEE. The possible rankings, which can be obtained 
due to the variation of the weights, are again illustrated by a Monte Carlo 
Simulation using random weights. The simulation result is shown in Table 
5b (number of runs = 10000). Comparing the ranking probabilities for 
PROMETHEE with the ordinal probabilities found by HDT then the rank-
ing probabilities are less spread out and clearly higher. As an example the 
probability for 1-chloro-4-nitrobenzene (CNB) on rank no. 12 is as high as 
0.929. Compared with the Utility Function the pattern seems similar. 

Table 5. The distributions of ranking probabilities when using a Monte Carlo 
simulation on the weights for a: the Utility Function and b: PROMETHEE 

Table 5a.  Utility Function

Substance
\ Rank 

12 11 10 9 8 7 6 5 4 3 2 1 

CNB 0.944 0.055 0.001 0 0 0 0 0 0 0 0 0 
4NA 0 0 0 0.023 0.064 0.064 0.109 0.139 0.288 0.312 0 0 
4NP 0 0 0 0 0.017 0.165 0.156 0.244 0.212 0.151 0.044 0.012 
ATR 0 0.424 0.477 0.086 0.012 0.001 0 0 0 0 0 0 
CHL 0 0 0 0 0 0 0.008 0.003 0.011 0.010 0.093 0.876 
DIA 0.055 0.176 0.137 0.188 0.112 0.149 0.106 0.046 0.021 0.009 0 0 
DIM 0 0 0 0.164 0.118 0.150 0.187 0.200 0.152 0.030 0 0 
ETH 0 0 0.007 0.091 0.150 0.123 0.233 0.179 0.140 0.054 0.018 0.004 
GLY 0 0 0 0 0 0.023 0.013 0.030 0.038 0.225 0.671 0 
ISO 0 0 0.015 0.145 0.341 0.179 0.118 0.115 0.057 0.022 0.009 0 

MAL 0 0.196 0.038 0.042 0.022 0.065 0.051 0.042 0.082 0.187 0.165 0.109 
THI 0.001 0.148 0.325 0.261 0.163 0.081 0.021 0.001 0 0 0 0 
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Table 5b. PROMETHEE 
Substance

\ Rank 

12 11 10 9 8 7 6 5 4 3 2 1 

CNB 0.929 0.070 0 0 0 0 0 0 0 0 0 0 

4NA 0 0 0 0.021 0.067 0.068 0.113 0.171 0.242 0.319 0 0 

4NP 0 0 0 0 0.015 0.148 0.126 0.229 0.206 0.195 0.059 0.021 

ATR 0 0.368 0.510 0.107 0.014 0.001 0 0 0 0 0 0 

CHL 0 0 0 0 0 0 0.010 0.005 0.014 0.016 0.074 0.880 

DIA 0.070 0.191 0.146 0.176 0.109 0.128 0.095 0.049 0.022 0.015 0 0 

DIM 0 0 0 0.136 0.127 0.127 0.197 0.190 0.181 0.040 0 0 

ETH 0 0 0.008 0.104 0.144 0.103 0.231 0.164 0.140 0.070 0.029 0.007 

GLY 0 0 0 0 0 0.028 0.014 0.034 0.053 0.164 0.707 0 

ISO 0 0 0.017 0.109 0.320 0.231 0.117 0.102 0.063 0.026 0.015 0 

MAL 0 0.230 0.052 0.067 0.034 0.062 0.060 0.054 0.079 0.154 0.115 0.092 

THI 0.001 0.141 0.266 0.280 0.169 0.105 0.036 0.002 0 0 0 0 

Discussion 

The Generality of and additional information obtained from 
HDT

The range of possible ranks for the Monte Carlo version of the MCA 
methods are all within the range of the minimum and maximum limits as 
defined by the Hasse diagram (cf. Fig. 3 and Tables 5a and 5b). In general 
the distribution of the ranking probabilities is narrower and the probabili-
ties are higher for the two Multicriteria Decision Tools, examined here. 
HDT can thus be characterised as being the most conservative and due to 
the neglecting of weights the least subjective method. Evaluating the find-
ings one should consider three cases.  

Case C: There is coincidence of HDT with all other two methods, i.e. 
the ranking is approximately the same when applying the different 
methods
Case W: There are different results, between HDT and the other two 
methods, and the other two methods coincide rather well, i.e. HDT de-
livers a rank for a substance, which differs from that of the other meth-
ods. Utility function approach, and PROMETHEE deliver approxi-
mately the same ranks. 
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Case S: There is no coincidence between HDT and the other two meth-
ods. However among the Utility function - and PROMETHEE - ap-
proach there are also conflicting results, i.e. each of the three methods 
deliver another rank for a substance. 

In case C, the general coincidence, there is no further discussion needed. In 
principle the result of ranking does not depend on weights, and other sub-
jective information. 

In case S, the result depends on the algorithm used, on weights, on the 
use of preference functions; discrepancies to HDT are due to the specific 
choices within the MCAs. Therefore in the case of uncertainties in the se-
lection of weights, preference functions, it seems that HDT is transparent 
displaying the ranking interval. (HDT may be on the safe side in priority 
setting exercises.)

Case W: This is the worst case to be interpreted. In general terms it can 
be stated that this situation arises when a metric algorithm (Utility function 
approach, PROMETHEE) is to be compared with a non-metric (HDT) one. 
It can be expected that isolated substances or substances only loosely con-
nected with the others in the Hasse diagram will be candidates for the case 
W, because then the ranking depends severely on the kind how participa-
tion is included (for example by weightings). If the number of comparable 
compounds is counted (for example ATR has 2, DIM 3, MAL 0 THI 4 
comparable compounds, etc) then the case W is found for such substances, 
which have a low number of connections to others. The cases C and S are 
associated with substances having a higher number of connections. Note 
that a loose connection of a substance does not necessarily lead to a broad 
distribution over the diverse ranks if metric algorithms are applied. It may 
be possible

that for example by a weighted sum some single linear extensions can 
not be realized (because of the restricted functional form)  
that in the case of a weighted sum, the dominant part of the space of 
weights leads nevertheless to a small variation of the ranks (see below 
and the chapter by Voigt and Brüggemann, p.327) and 
the conclusions based on the linear extensions of HDT can be found for 
many different datasets, if they lead to the same Hasse diagram. 

Table 6 discloses the single compounds belonging to the three cases C, S 
and W, respectively. 

If the three cases are identified, how do we come to decisions? 
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Case C: This does not lead to a problem at all, because the results are 
coincident. Then HDT is most convenient, because it does not need to find 
weights, reference substances etc. 

Case S: HDT will display an extra ranking. So what to do? Once again, 
HDT shows that obviously the ranking result depends on the kind how 
preferences are formulated. Therefore -if a decision is needed- HDT warns 
that the actual decision is severely depending on the algorithmic realiza-
tion due to the two methods (Utility function approach, PROMETHEE). 

Case W: In these cases case the numerical values of the descriptors al-
low a rather unique decision by MCA. The discrepancy with HDT arises 
from a high amount of incomparabilities. Therefore the selection of 
weights can, but must not strongly influence the results. 
Summarizing: 
In sum we conclude that in case C a limited uncertainty is observed for 
both the HDT and the MCA, whereas in case S the ranking uncertainty is 
large for the MCA. Case W is related to substances where the uncertainty 
of the rankings done by HDT are large and where those of the MCA are 
small. 

The classification of the 12 substances is given in Table 6 with respect 
to the cases C (Coincidence among all four methods), S (the rank of a sub-
stance depends on the method and therefore on the formalisms to include 
participation. HDT, as a method based purely on the data matrix seems to 
be on the safe side) and case W (“Worst” case, discrepancies arise because 
of the different approaches (non-metric (HDT) vs. metric (the other three 
methods)).

Table 6. Summary of the cases C, S, W 

Cases Substancesa Remarks 

C CNB, CHL, (DIA), GLY, 
(DIM)

More or less the same ranking 
results 

S 4NA, (DIA), (DIM), ETH, 
THI

Different rankings at all 

W ISO, 4NP, ATR, MAL HDT differs from the results of 
the others 

a Substance identifiers in parentheses mean that the classification may not be 
convincing; such substances may also be listed in different classes 

For the MCA methods the uncertainty associated with the input data has 
a significant influence on the results, whereas it has been demonstrated 
that HDT is relatively robust to uncertainties on the input data (Sørensen et 
al. 2000). This is due to the fact that HDT is not concerned with the metric 



A Comparison of Partial Order Technique with Three Methods      253 

value, but simply the relative difference between the descriptors. Thus, 
HDT demonstrates to be more reliable, even though, or actually because it 
is a less specific method. The transparency of HDT is regarded to be 
higher than that of the MCAs, since only a minimum of, if any external in-
put is needed. 

The issue of subjectivity in ranking methods 

When comparing priority setting methodologies it is important to identify 
additional external information. For all the methods considered a choice is 
made by choosing the descriptors. The choice of descriptors is however of-
ten based on key parameters from risk assessment schemes or environ-
mental fate models, which makes it less subjective. In the present chapter 
exposure (given by production volume), aquatic toxicity, bioaccumulation 
and persistence were chosen as descriptive parameters. For HDT the selec-
tion of the descriptors is the main contribution of subjectivity. Addition-
ally, some indirect weighting can be added if the data are separated into 
classes. 

For the MCAs another level of subjectivity is added when the descrip-
tors are weighted or weights are introduced elsewhere in the algorithm. 
Then the more important descriptors have to be identified. This often 
raises more debate than the actual choice of the descriptors. It is easy to 
imagine discussions concerning the relative importance for the ranking of, 
for example, persistence and bioaccumulation or even between exposure 
and effect. The choice of the weights might thus be considered more sub-
jective than the choice of descriptors. In HDT the descriptors are not 
weighted. A priori we argue that this makes the method more scientifically 
based than the MCAs. Note, however that HDT can be extended by a 
stepwise aggregation of descriptors. The principle of stepwise inclusion of 
weights is explained in the chapter "Information System and Databases" 
(Voigt and Brüggemann; this book) and is called METEOR (Method of 
Evaluation by Order theory). As the number of possible Hasse diagrams is 
finite if weights (varying continuously between 0 and 1) are introduced, 
the infinite number of points in a space of weights is mapped onto finite 
subspaces characterized by one and only one Hasse diagram. A first at-
tempt to describe METEOR from a systematic point of view was published 
by Simon et al., 2005. 

Compared with the Utility Function approach, PROMETHEE contain 
an additional level of subjectivity: On top of the choice of the weights for 
the descriptors PROMETHEE needs information on delta zero value.  
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Even though not analysed in the present paper, MCA methods, like the 
Analytical Hierarchy Process (AHP) (Saaty 1994), are available, which 
rely solely on participation. If an estimation of EXT is done for AHP, then 
approximately it is found: EXTAHP = n2·m + m2. The number n counts the 
objects and as before m is the number of descriptors, i.e. criteria as the 
concept "descriptor" does not match the algorithm of AHP.  

The various ranking methods are built on sets of assumptions. In the 
Utility Function it is assumed that there is a numerical (often linear) rela-
tion among the individual descriptors. When ranking is made based on 
PROMETHEE it is assumed that all preferences are linearly comparable. 
The HDT do not assume anything about linearity among the descriptors. It 
only assumes one can find a common orientation of the descriptors. 

Conclusion

In addition to providing the most general rank, HDT further provides addi-
tional information on levels, groups and the importance of the descriptors. 
It is rather insensitive to data uncertainty and seems methodologically 
transparent. This makes HDT suitable as an individual ranking tool, but 
also as an additional tool for MCAs. Nevertheless, if scientifically well-
founded information or agreement can be obtained on weights and on the 
delta zero ( qj

o) and the assumptions on the relation among the descriptors 
are fulfilled, the MCAs do give a more specific rank than the HDT. 

The difference between the HDT and the MCA also illustrates the con-
cept of scientifically based ranking versus public participation. The study 
reveals that if a ranking of high scientific degree is desired, HDT is to be 
preferred, whereas if some room for public participation or negotiation 
among parties is desired one of the MCA methods might be a better 
choice.

Based on the conclusion the following tired approach for obtaining the 
most scientific rank is suggested. A priori a HDT analysis should be per-
formed. The result can be thus considered as the scientific base result. On 
top of this analysis, if needed, MCAs can be undertaken allowing the use 
of additional external information on the ranking that are not sufficiently 
clarified by HDT. 
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5 Field, Monitoring and Information 

This section focuses at similar examples as described in the chapters in 
section 2, i.e., sampling sites, river sections, landscape regions, etc. Some 
methodological steps are presented and the reader will see that the problem 
of chemical pollution has another important aspect, namely that of infor-
mation.

The chapter by Sørensen et al., concerned with monitoring results of 
chemicals in Danish small streams is mainly a methodological paper. 
Thus, partial order induced by simultaneous inclusion of more than one at-
tribute can be seen as an expression of rank correlation. A slim Hasse dia-
gram indicates that the attributes correlate; a broad Hasse diagram indi-
cates an anti-correlation. Hence, similarity among Hasse diagrams 
indicates some degree of correlation between groups of attributes. The 
reader may learn how to make use of different attribute groups by con-
structing "agreement diagrams" and "conflict diagrams" and he will see 
that by Monte Carlo type simulations a confidence analysis can be ob-
tained.

The application of partial order in an empirical context is hampered by 
the problem of possibly insignificant numerical differences. In the chapter 
by Helm this problem is carefully analyzed and a rounding algorithm is 
proposed. The German Environmental Specimen Bank serves as an illus-
trative example, including samples representing terrestrial, limnic and ma-
rine environments. Beside others the samples are characterized by their 
content of contaminants. Here the consideration is concerned with samples 
from German rivers. Cluster analysis, Principal component analysis to-
gether with an analysis based on partial orders allows a comprehensive 
view about the pollution pattern. The concept of averaged ranks is applied 
to finally obtain a well readable Hasse diagram, indicating that the river 
Elbe is stronger contaminated than the river Rhine. 

In the chapter of Myers and Patil a further aspect is considered. Here the 
potential habitat suitability is assessed for species groupings of the verte-
brate fauna. This chapter introduces once again many important methodo-
logical ideas: How can we take use of the charm of Hasse diagrams if the 
number of objects is very high? Here the authors present ideas to over-
come this difficulty. The concept of Rank range runs is represented for 184 
watersheds according to species richness. The final result will select some 
of the habitats having a superior status. Hence, this chapter is not only in-
formative for biologists and ecologists, but also for decision makers. 



258      5 Field, Monitoring and Information 

The last chapter comes back to chemicals, i.e. it considers 12 high pro-
duction volume chemicals and how information can be obtained from the 
EU database IUCLID. A brief description of the Hasse diagram technique 
is given. It may be worth to mention the "four-point-program", which can 
be considered as some kind of protocol applying partial orders in empirical 
context. The reader will see that - as in other chapter - the prioritization is 
not uniquely found. Hence, an extension of partial order theory is shown, 
which is called METEOR (Method of Evaluation by Order Theory). The 
central point is that within METEOR a stepwise aggregation of indicators 
is performed which finally leads to a linear rank. The advantage above 
other Multi-criteria support systems is that the introduction of additional 
knowledge can be better controlled, hence the transparency of the decision 
making process is enhanced. 
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Abstract

The corner stone in the development of decision support systems is to se-
cure that the partial ordering of descriptors does reflect reality. The simi-
larity between descriptor ranking and field scale data ranking is thus highly 
critical and this chapter shows how to establish this linkage. The partial 
order technique is used as a robust and non-parametric similarity quantifi-
cation method and illustrated using monitoring data of pesticide findings in 
streams of Denmark. The approach has a general appeal where the conse-
quence of false positives (accidentally identification of a similarity) is 
critical and/or only rough knowledge exist about relations between the data 
sets that are going to be analysed for similarity. A simple and transparent 
mapping of a correlation profile is possible and the software named Po 
Correlation supports the principle described in this chapter. The principle 
is an extension of the conventional Kendalls Tau that is modified to in-
clude ordering using more than two data sets simultaneously and thus be-
ing a kind of a multi-variate rank correlation analysis. The multi-variate 
nature opens up for several measures of discordance that shows different 
aspects of discrepancy between the data set. A graphical display using 
Hasse diagrams of respectively concordant and discordant rankings shows 
how individual objects are respectively correlated and anti-correlated with 
regard to all the other objects. A testing algorithm using randomized data 
sets are included in order to test for statistically significance of both simi-
larity and discrepancy. 
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Introduction

The analysis of similarity is often the corner stone in scientific work or re-
lated areas and this chapter will show how the partial order technique can 
contribute to the toolbox of similarity quantification methods. Ranking 
will be the methodological basis, so, the concept will be non-parametric, 
without being based on specific functional relationships including parame-
terisation of functional parameters. In general a non-parametric procedure 
on one side is relatively robust as data interpretation, but on the other hand 
it is a rough approach that may over look important information. The clas-
sic discussion of parametric vs. non-parametric data interpretation is rele-
vant here, where the usage of partial orders for data analysis can be charac-
terised as a robust but also rough methodological approach. This problem 
of method selection is governed by the dilemma between confidence and 
completeness: Confidence has to be maximised in order to increase the sta-
tistically strength of the conclusion. Completeness has to be maximised in 
order to secure that no important similarity remains undiscovered. The 
confidence and the completeness form a complementary pair, however. A 
highly confident analysis can only focus on the most obviously relations 
missing finer similarity structures and thus violates the completeness. On 
the other side, if finer structures of the similarity are going to be identified 
in a more complete analysis then there will be a danger for modelling of 
noise and thus for violating the confidence. So, there is no easy answer to 
the problem of selecting the method, but the following good praxis is rele-
vant: (1) If both detailed and valid knowledge about functional relations 
exist between the data sets then a parametric method will benefit from be-
ing most complete and still rather confident due to the relatively well 
known conditions. (2) If the consequence of false positives (accidentally 
identification of a similarity) is critical then a non-parametric method will 
most safe. (3) If only rough knowledge exist about relations between the 
two data sets then non-parametric methods become attractive. A more de-
tailed description of non-parametric methods can be seen in Conover 
(1999) and Gibbons (1993).  

Partial ordering is useful as technique for rank correlation analysis, 
where a simple and transparent mapping of a correlation profile is possi-
ble. The principle described in this chapter is supported by the software 
named “Po Correlation” presented by Sørensen et al. (2005) and the con-
tent of this chapter is based on that paper. Non-commercial use of the 
software for research and education is free if reference is given to Sørensen 
et al., (2005) and can be made available by contacting the first author of 
this chapter. Two other software products exist for application of Partial 
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Order Theory in decision support: (1) the software WHASSE (Brügge-
mann et al. 1999); (2) The software ProRank© (Ver. 1.0) (Pudenz 2004). 
The software Po Correlation differs from the other applications by focus-
ing on the correlation analysis between two partially ordered sets. 

The method is an extended and improved version of the methodology 
for assessing ranking similarity as first presented by Sørensen et al. (2003). 
This paper will not made a comprehensive review of ranking correlation 
methods, however, and for a more general discussion of ranking correla-
tion see e.g. Brüggemann et al. (2001), Conover (1999), Gibbons (1993), 
Pavan (2003) and Pudenz (1998). 

Data background for illustration 

The increasing accessibility to environmental data makes it more and more 
attractive to investigate the similarity between full-scale environmental 
conditions on one side and either laboratory conditions or human activity 
on the other side. Such a similarity analysis will typically face the chal-
lenge of having high complexity and thus ill-defined knowledge regarding 
specific relations between the variables in the data sets. The rank correla-
tion is attractive for this type of data as illustrated in the following. 
The data set, selected for illustration, is taken from the Danish Monitoring 
Program (NOVA 2003) and includes pesticides finding during year 2000 
in small streams, see Table 1. The data set is made based on 23 sampling 
stations, each covering a separated catchments area. At each station, 6 wa-
ter samples were analysed for a series of pesticide active ingredients in the 
following denoted pesticides. The detection frequency (DetFreq) is de-
fined as the frequency for a pesticide to be detected above detection limit 
in the joint set of measurement from the 23 sample stations. If the set of 
stations is assumed representative for Danish conditions then the DetFreq
is a measure for the propagation of a given pesticide in the stream water 
environment in Denmark. For each station and for each pesticide, the 
maximum measured concentration level among the 6 single samples is 
identified. This yields 23 maximum concentration values and the median 
(MedMax) is subsequently calculated characterising the level of contami-
nation. So, the two numbers DetFreq and MedMax together form an eco-
toxicological meaningful way of characterising occurrence by taken into 
account both propagation (DetFreq) and level (MedMax) as discussed by 
Sørensen et al. (2003). 

The ranking of pesticides using data of DetFreq and MedMax together 
will be compared with two variables for the usage due to the human activ-
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ity of agriculture in form of recommended dosage level (Dose in g/ha) and 
sprayed area at country scale level (SpArea in 1000 ha). The use data is 
taken from the Danish sales statistics and the reported recommended dos-
age. The data set is shown in Table 1. Some of the pesticides in the moni-
toring program has been banned since year 1995 and are thus not used in 
year 2000. They are identified in Table 1 as: Dose=0 and SpArea=0.

The primary topic for the correlation analysis is to investigate the coin-
cidence between the ranking of pesticides based on the measured variable 
set DetFreq and MedMax on one side (Set 1) and the usage variable set 
Dose and SpArea on the other side (Set 2). The variables DetFreq and 
MedMax are thus denoted the predicted variables while Dose and SpArea
are denoted the predicting variables. 

Correlation analysis 

A simple fundamental rank correlation measure is Kendalls Tau (Kendall, 
1938). The principle in Kendalls Tau is closely linked to a partial order as 
explained in the following. For a set of two variables as e.g. the variables 
DetFreq and MedMax in Table 1, the ranking of two objects (pesticides in 
Table 1) can be done using either the first or the second variable. If the 
ranking using the first variable is equivalent with the ranking using the 
second variable then the ranking is claimed to be concordant. A pair of ob-
jects is discarded if at least one of the variables is equal or equivalent. In 
Table 1, a concordant ranking is seen for the ranking of Id. 13 above Id. 8, 
where Id. 13 > Id. 8 for both the variables DetFreq (76>2 in Table 1) and 
MedMax (220>200 in Table 1). A discordant order (also later simply 
called ' discordant ranking') appears when there is discordance between the 
rankings induced by the single variables. The variable pair formed by the 
Ids. 6 and 13 is an example of a discordant ranking, where DetFreq (1<73 
in Table 1) and the MedMax (380>220 in Table 1) yielding a different 
ranking of the two objects. The number of concordant rankings is denoted 
C and the number of discordant rankings is denoted D. A modified Ken-
dalls Tau was suggested by Goodman and Kruskal (1963) as 

DC
DC

                   (1) 
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Table 1. The data set of pesticide finding in streams and related usage in agricul-
ture used for methodological illustration

  Predicted variables 
Set 1 

Predicting variables 
Set 2 

Id Substances DetFreq 
(%)

MedMax 
(ng/l) 

Dose
(g/ha) 

SpArea
 (1000 ha) 

1 2,4_D 2 40 0 0
2 Atrazine 9 30 0 0
3 Bentazone 36 20 523 91 
4 Bromoxynil 6 80 383 110 
5 Carbofuran 0 0 659 1
6 Chloridazon 1 380 0 0 
7 Chlorsulforon 2 30 0 0
8 Cyanazin 2 200 0 0 
9 Diclorprop 7 70 847 2

10 Dimethoat 2 40 304 81 
11 Ethofumesat 5 90 491 31 
12 Fenpropimorph 2 70 477 249 
13 Glyphosat 76 220 1172 573 
14 Ioxynil 6 30 349 113 
15 Isoproturon 40 130 2750 4

16 Maleinhydrazid 1 10 1790 0.3 
17 MCPA 20 140 1410 101 
18 Mecoprop 17 30 900 13 
19 Metamitron 8 90 2098 48 
20 Metribuzine 1 50 250 27 
21 Metsulfuron 

methyl 
1 10 5 151 

22 Pendimethalin 12 40 1368 178 
23 Pirimicarb 4 30 135 7
24 Propiconazole 6 20 6837 3
25 Terbuthylazine 33 100 1500 22 

The  value is 1 for complete ranking agreement and –1 to complete 
disagreement between rankings of the two variables. 

The correlation between two variables can also be graphically displayed 
as a partial order using a Hasse diagram. This is illustrated in the following 
for the variables DetFreq and MedMax in Fig. 1. In this diagram two pesti-
cides are ranked if there are no discordance between the ranking of respec-
tively DetFreq and MedMax. A discordant ranked pair of objects in the 
Hasse diagram do not have downward connecting lines between the two 
objects as seen for the object pair formed by the Ids. 6 and 13 in Fig. 1. A 
more detailed discussion about these relationships can be seen in Brügge-
mann and Bartel (1999) or else where in this book (see chapter by Brüg-
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gemann and Carlsen, p. 61). The value for C and D in case of the ranking 
correlation between DetFreq and MedMax is respectively: C = 169 and 
D = 97 and = 0.24, indicating a positive but not strong correlation. 

Fig. 1. Hasse diagram using DetFreq and MedMax as parameters. The numbering 
is referring to the Id's in Table 1. (Figure drawn using Po correlation) 

The value of is calculated for all combinations of variable pairs in Po 
Correlation as shown in Table 2. The correlation in Table 2 shows only the 
correlation of pairs while more complex correlation formed by combined 
ranking of several variables will be investigated in the following. 

Table 2. values for all parameter combinations using the complete data set in 
Table 1 

Predicted variables Predicting variables 
 DetFreq MedMax Dose SpArea 
DetFreq 1,00 0,27 0,42 0,24 Predicted variables 
MedMax 0.27 1,00 0,07 0,07 
Dose 0,42 0,07 1,00 0,20 Predicting variables 
SpArea 0,24 0,07 0,20 1,00 

Two partial ordered sets are defined: (1) Set 1, composed by DetFreq
and MedMax as shown by the Hasse diagram in Fig. 1; (2) Set 2 composed 
by Dose and SpArea. Both concordant and discordant rankings are com-
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pared between the two sets for all pair of objects. This procedure is illus-
trated for two pair of objects in Fig. 2. 

Fig. 2. Example of the comparison between Set 1 and Set 2

1

5
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1
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flict

19

11

19

11
Agreement
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In Fig. 2 the Set 1 is the partial ordered set for respectively DetFreq and 
MedMax and Set 2 the partial ordered set for respectively the Dose and the 
SpArea. All pesticides in Table 1 are included The similarity of the rank-
ings between the sets is graphically displayed in a agreement diagram in 
form of a Hasse diagram where all variables in the two sets are applied for 
ranking in one diagram as defined by Sørensen et al. (2003). This is shown 
in Fig. 3, where the variables DetFreq, MedMax, Dose and SpArea are in-
cluded.

Fig. 3. Graphical displays of the agreements (agreement diagram) between Set 1 
and Set 2 (The sets shown in Figure 2). (Figure drawn using PO correlation)

The agreement diagram has a complementary diagram denoted the con-
flict diagram (Sørensen et al. 2003) in where the Set 1 parameters are 
ranked upward while the Set 2 parameters are ranked downward (inverse 
rank). Such a diagram is shown in Fig. 4, where the variables: DetFreq,
MedMax, negative Dose and negative SpArea are used. No ranking can ex-
ist simultaneously in both the agreement diagram and the conflict diagram. 
These two diagrams show important elements of the correlation profile for 
each single object in relation to the other objects. The conflict diagram 
maps the conflicting ranking for each object. In this way Id. 8 is seen to be 
ranked above several objects in the conflict diagram telling that Set 1 tends 
to rank Id. 8 upward while the Set 2 tends to rank Id. 8 downward. The top 
objects in the conflict diagram having multiple comparisons to other ob-
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jects are dominated by pesticides banned in 1995 and thus not used in year 
2000 (The Ids.: 1, 2, 6, 7, 8). Hence the conflict diagram indicates that the 
correlation between measured occurrence and usage the year of measure-
ment is damaged by the fact that some of the pesticides have not been used 
since 1995. It also tells that there are only a few conflicts between the pes-
ticides, which are still in use. This will be analysed later in this chapter. 

Fig. 4. Graphical displays of the conflicts (conflict diagram) between Set 1 and Set
2 (The sets shown in Fig. 2). (Figure drawn using Po correlation) 

A series of different indexes describes various part of the similarity and 
a single number is unable to capture all possible information. So, the simi-
larity between partial orders is a multi-dimensional problem and any one-
dimensional representation in a single number will discard information. 
The principle of the modified Tanimoto index as a similarity index, 
T(...,...) and the linkage to other concepts are shown by Sørensen et al. 
(2003).

The quantification of similarity in Po Correlation is based in the follow-
ing counting of object pairs covering all basic properties of similarity:  

a. Concordant ranked in both sets having the same rank in the two 
sets (see Figure 2: agreement). 

b. Concordant ranked in both sets but having different rank in the 
two sets (see Figure 2: conflict).  
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c. Concordant1 ranked in Set 1 and discordant2 ranked in Set 2.
d. Concordant ranked in Set 2 and discordant ranked in Set 1.
e. Concordant ranked in Set 1 and concordant ranked in Set 2 simul-

taneously (e=a+b).
f. Discordant ranked in both sets simultaneously.  
g. Equivalent in Set 1 and not equivalent in Set 2.
h. Equivalent in Set 2 and not equivalent in Set 1.
i. Equivalent in both Set 2 and Set 1 simultaneously. 

These definitions will be used in the following tables showing the corre-
lation between the two sets. The similarity of Set 1 and Set 2 is analysed as 
shown in Table 3. 

Table 3. The correlation results between Set 1 and Set 2 as shown in Fig. 2 

Comparison 
n=25 

Counting Probability for 
larger or equal 

value 
a 82 0.067 
b 25 0.993 
c 91 0.030 
d 72 0.030 
e 107 0.980 
f 25 0.980 
g 2 0.932 
h 10 0.932 
i 0 1.000 

T(0,0) = a/(a+b) 0.77 0.014 
T(1,0) = a/(a+b+c) 0.41 0.078 
T(0,1) = a/(a+b+d) 0.46 0.078 
T(1,1) = a/(a+b+c+d) 0.30 0.124 

The number of agreements between Set 1 and Set 2 is relatively high 
(a=82) compared with the number of disagreements (b=25). Obviously 
some positive correlation seems to exist between the predicting and pre-
dicted variables as also indicated in Table 2. All the pairs of objects that 
contribute to the a value are ranked in the agreement diagram, Fig. 3, 
while all the pairs contributing to b are ranked in the conflict diagram, Fig. 
4.

The confidence is estimated as the probability for a randomly formed 
value to be equal or larger than the actual value. This procedure will be 
explained below. If the probability estimate is close to zero the actual 

                                                     
1 concordant ranked objects x, y: x y
2 discordant ranked objects x, y: x || y 
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value is “relatively large” and contrary estimates close to one shows that 
the actual value is “relatively low”. So, the T (0,0) value of 0.77 is seen to 
be relatively large by having a probability of 0.014 for a randomly formed 
estimate to be at least 0.77. A concordant ranking in one set tends to be 
discordant in the other set as seen in Table 3, where the c and d values are 
significantly high (related probability estimate of 0.030). This is supported 
by relatively low values for e and f. This shows some degree of correlation 
within the two pairs (DetFreq, MedMax) and (SpArea, MedMax), which is 
not reflected in a corresponding correlation between the pairs. E.g. there 
are some positive internal correlation between DetFreq and MedMax (see 
Table 2) and the high c value indicates that this positive correlation is not 
reflected completely in the similarity with Set 2. This is very important 
knowledge because it reveals some structure in Set 1 that is not explained 
by Set 2.

The similarity between Set 1 and Set 2 is governed by the following 
three factors: 

1. The value setting of the descriptors, within the sets. This is illustrated 
in Table 3 where the value setting of both Dose and SpArea shows 
several zero values in pairs and thus many equal objects in Set 2. This 
tends to reduce the number of concordant rankings and thus the poten-
tial number of rankings, which can be compared with rankings done in 
Set 1.

2. More or less internal correlation within the variable in a set is critical 
for the number of concordant rankings within each set and thus also 
for the potential correlation between the two sets. 

3. Correlation between the ranking of the predicted descriptors in Set 1
compared to the ranking of the predicting descriptors in Set 2.

Only the third factor is important when the confidence of correlation be-
tween Set 1 and Set 2 are going to be assessed. So, the challenged is to de-
sign a statistical test that can hold the two first factors constant (take them 
as conditions) and only test the correlation between the two sets of descrip-
tors. Keeping the structure of the Hasse diagram of Set 2 constant as a 
condition for the test is one way to solve this problem. Such a procedure is 
shown in the following by using a simple example. 

The following simple example will use two, small and arbitrary chosen, 
partial ordered sets for illustration of the probability estimates, see Fig. 5. 
Consider two partial ordered sets: Set 1 and Set 2. The ranking of the ob-
jects named A, B, C and D is done in Set 1 using predicted variables (like 
e.g., DetFreq and MedMax) and the same objects are ranked in Set 2 using 
predicting variables (like e.g. SpArea, MedMax). The box in top of Fig. 5 
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shows the two Hasse diagrams of respectively Set 1 and Set 2 and the 
small table between them shows the actual values for the parameters de-
fined in Table 3. 

The concept of testing is based on a fixed Hasse diagram structure for 
Set 2, in where positioning of the objects in this Hasse diagram is varied. 
This mean that all possible naming of objects are allowed in the Hasse dia-
gram and the procedure is to test all these combinations for similarity to 
Set 1. This yield 24 possible Hasse diagrams in Fig. 5, listed from high 
correlation towards lower correlation measured positive for a high value 
for a and a low value for b. In this way it is seen that Set 2 belongs to the 
Hasse diagram, which is among the four best in similarity with Set 2. The 
probability for an a value to be equal of larger than the actual a value of 3 
is seen to be 6/24 and the probability for a b value to be equal or larger 
than the actual value of 0 is 20/24. 

Actual           Set 1                                             Set 2
similarity   a 3 

b 0 
c 2 
d 1 
e 3 
f 0 

A

B

D

C

A

C

D

B

B

A

D

C

C

A

D

B

A

C

D

B

B

C

D

A

a 4 4 3 3 
b 0 0 0 0 
c 1 1 1 2 
d 0 0 2 1 
e 4 4 3 3 
f 1 1 0 0 
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C

B

D

A

A

B

D

C

A

D

C

B

B

C

A

D

   a 3 3 2 2 
b 1 1 1 1 
c 1 1 2 2 
d 0 0 1 1 
e 3 4 3 3 
f 1 1 0 0 

B

D

A

C

B

D

C

A

B
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A

B

C
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   a 2 2 2 1 
b 1 1 1 2 
c 2 2 2 2 
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   a 1 1 1 1 
b 2 2 2 2 
c 2 2 2 2 
d 1 1 1 1 
e 3 3 3 3 
f 0 0 0 0 

D

A

C

B

D

B

C

A

A

D

B

C

C

D

B

A

   a 1 1 1 1 
b 2 2 3 3 
c 2 2 1 1 
d 1 1 0 0 
e 3 3 4 4 
f 0 0 1 1 

A

C

B

D

C

A

B

D

D

C

B

A

D

A

B

C

   a 0 0 0 0 
b 3 3 4 4 
c 2 2 1 1 
d 1 1 0 0 
e 3 3 4 4 
f 0 0 1 1 

Fig. 5. A simple example of the confidence tests using all possible object combi-
nations in Set 2 
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This simple example shows that there exist a variety of interrelations be-
tween the single similarity parameters. The four objects have six possible 
ranking relations between each other (generally for n as the number of ob-
jects: n  (n-1)/ 2). Every relation can either be a concordant or a discor-
dant ranking (Note: we have neglected equivalence). Thus the vertical sum 
of the comparison parameters (neglecting e, which just is the sum a + b)
will always be 6. The total number of discordant rankings are 3 (one in Set 
1 and two in Set 2), so the relation c + d + f = 3 needs to be valid due to the 
constancy of the Hasse diagram structure. Similar, the number of concor-
dant rankings in Set 2 is 4, so a + b + d = 4 and for Set 1 there are 5 con-
cordant rankings yielding a + b + c = 5. Another example of interaction is 
seen for d and e, where d = 1 for e = 4 and d = 2 for e = 3. These simple 
interrelations become more complex when some objects are equivalent in 
Set 1 and/or Set 2. However, there will still be a close interrelation between 
the single comparison parameters as seen in Table 3, where the probability 
estimates for respectively (c, d), (e, f) and (g, h) in pairs are equivalent. 

The number of possible Hasse diagram versions for testing of Set 2 is n!
(4!=24 diagrams in Fig. 5). So, it will never be computational realistic to 
test more than about 10 objects using the outlined method directly and a 
method of approximation is applied in order to solve this problem. The full 
number of possible Set 2 versions is replaced in this procedure by a ran-
dom sampled subset, see Fig. 6. Every random sample is found by mixing 
up the object Ids in Set 2. In other words, first id. 1 is by random choice in-
terchanged with e.g. id. 5. This procedure is repeated for all the other ob-
ject id.’s 2, 3, ...n ending up with a Hasse diagram, where the object nam-
ing is randomly distributed. The correlation between Set 1 and the original 
Set 2 is first calculated yielding the “actual” correlation result (AC). Then 
subsequently a series of randomly formed Hasse diagrams are generated as 
explained above and a comparison with Set 1 generates a correlation esti-
mate (RC). A sum (sum in Fig. 6) counts the number of times that RC>AC
is true out of totally I randomly formed Hasse diagrams. The ratio I/sum is 
an estimate for the probability for a randomly formed correlation to exceed 
the actual correlation. 

The value of I needs to be high enough to secure a robust probability es-
timate, however, the analysis has an upper limited for a meaningful incre-
ment of the I value around the factorial value for the number of objects 
(n!). For higher values of I only limited additional information will be 
gained by further increasing I value. However, in case of 25 objects as in 
Table 3, the factorial value is 1.6 1025 and thus far above any realistic 
value for I. Different values of I are tested for the data set in Table 1 and 
the results is shown in Fig. 7. 
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Fig. 6. Significance testing principle. The probability is estimated for a randomly 
formed similarity value to be of higher or equal the true similarity between Set 1 
and Set 2. A randomised version of Set 2 denoted Set 2i is formed by mixing the 
Ids (names) for the rows in the data table of Set 2. 

Randomized  
Similarity, RCi

Original data table 
Set 1 Set 2 Substances 

DetFreq 
(%)

MedMax 
(ng/l) 

Id
Dose
(g/ha) 

SpArea
(1000ha) 

2,4_D 2 40 1 0 0 
Atrazine 9 30 2 0 0 

Bentazone 36 20 3 523 91 
- - - - - - 
- - - - - - 

Terbuthylazine 33 100 25 1500 22 

„Actual“ similarity
result, AC

sum=0 
For i=1 to I do 
       If AC<RCi    Then  

sum=sum+1 
Estimate probability: 

sum / I 

Random 
row 
permu- 
tation 

Set 1 Set 2i
i=1, … , I 
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Fig. 7. The principle shown in Fig. 6 applied for different values of I and for test-
ing a=82 from Table 3. The line shows an estimate of the “true” probability using 
I=106

The probability estimate is graphically shown in Po Correlation, in form 
of a significance plot, see Fig. 8. This figure shows two numbers for the 
correlation quality and every point is formed based on Set 2i for i=1, 2..,I.
The quality number on the x-axis is T (0,0) as a measure for the goodness 
of correlation as discussed by Sørensen et al. (2003). The quality number 
on the y-axis describes the total completeness of tested correlation. This 
quality number is calculated as the ratio between the number of rankings, 
which are included as either an agreement or a conflict (a + b in Table 3), 
and the total number of possible ranking relations in the data set (n (n-
1))/2. The highlighted circle is the actual correlation estimate. In Fig. 8 the 
actual estimate is located in the high end of the point cluster in the direc-
tion of T (0,0), which indicates some degree of correlation. On the y-axis 
the actual estimate is located close to the lower edge of the point cluster 
showing some misfit between the comparability in Set 1 and in Set 2. This 
was also seen in Table 3 as discussed above, where quite high probability 
is seen (0.980) for randomly formed e values to equal or larger than 107. 
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Fig. 8. Significance plot based on Set 2i for i=1,2,..,I (I=100000) using the data set 
in Table 1. The highlighted circle is equal to the actual value from Table 3. (Fig-
ure drawn using Po Correlation) 

In the following the banned pesticides, which have not been used in a 4-
5 years period before the measurements was sampled (Ids. 1, 2, 6, 7, 8) are 
excluded from the data set and the correlation analysis is repeated. The re-
sults for the  correlation are shown in Table 4. The efficiency of the prod-
uct between Dose and SpArea as correlation variable is tested. This prod-
uct may be an effective variable, having unit of used amount per year 
(kg/year). However, it has been shown for the Swedish data that this prod-
uct is far from being complete (Sørensen et al. 2003). The correlation in 
Table 4 has changed substantial compared with Table 2. The correlation 
between the predicted and predictive variables has improved. The product 
Dose SpArea has the best correlation to both DetFreq and MedMax.

The correlation between Set 1 and Set 2 is recalculated for the data set 
without the banned pesticide and the results are displayed in Table 5. 

The numbers in Table 5 are smaller compared to Table 3 due to a 
smaller number of pesticides. However, a much more confident positive 
correlation is seen having only 3 conflicting rankings and thus a T (0,0) 
value of 0.94. 



Developing decision support based on field data and partial order theory      277 

Table 4.  values for all parameter combinations using the data set in Table 1, 
where the banned and thus not used pesticides, Ids. 1, 2, 6, 7 and 8, are excluded

Predicted variables Predicting variables 
 DetFreq MedMax Dose SpArea Dose S

pArea

DetFreq 1.00 0.49 0.41 0.14 0.46 Predicted 
variables MedMax 0.49 1.00 0.22 0.21 0.43 

Dose 0.41 0.22 1.00 -0.22 0.17 
SpArea 0.15 0.22 -0.22 1.00 0.61 

Predicting 
variables 

Dose SpArea 0.46 0.43 0.17 0.61 1.00 

Table 5. Correlation results between Set 1 and Set 2, where the banned pesticides 
having the Ids. 1, 2, 6, 7 and 8 are withdrawn from the analysis leaving 19 pesti-
cides in the correlation analysis. 

Comparison 
n=19 

Value Probability for larger or 
equal value 

a 51 0.003 
b 3 1.000 
c 91 0.273 
d 20 0.273 
e 54 0.815 
f 25 0.786 
g 1 1.000 
h 0 1.000 
i 0 1.000 

T(0,0) = a/(a+b) 0.94 0.000 
T(1,0) = a/(a+b+c) 0.35 0.003 
T(0,1) = a/(a+b+d) 0.69 0.003 
T(1,1) = a/(a+b+c+d) 0.31 0.006 

The significance plot also shows an improved confidence compared to 
Fig. 8, as graphical displayed in Fig. 9. A more clear separation between 
the actual correlation (highlighted circle) and the cluster of points is seen. 
It is also seen in Fig. 9 that the actual correlation is placed in the centre of 
the cluster in the direction on the y-axis. This indicates absence of infor-
mation within the sets, which is not reflected in the correlation between the 
two sets. The latter is also seen in Table 4, where the probability level for a 
higher e value has moved away from unity (0.980 in Table 3 down to 
0.815 in Table 4). 
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Fig. 9. Significance plot formed by random testing for the data set (I=100000), 
where the banned pesticides are neglected (Ids. 1, 2, 6, 7, 8). (Figure drawn using 
Po Correlation) 

The 3 disagreements in Table 5 need to be analysed using the conflict 
diagram before the final conclusion is possible, see Fig. 10. The conflict 
diagram shows separated pairs of rankings, where no pesticide is con-
nected to more than one single pesticide. This indicates that there is no 
single responsible pesticide for the conflicts. The inclusion of other vari-
ables like physico-chemical parameters and the analytical detection limit is 
discussed by Sørensen et al. (2003) in relation to South Sweden monitor-
ing data. However, any further addition of ranking variables will increase 
the number of discordant rankings in Set 2 and thus tend to damage the 
completeness of the correlation analysis. In this way there is a trade off be-
tween the number of variables to be included and the completeness of the 
correlation analysis. So, it seems not relevant to consider any additional 
variables and the simple information about usage seems to be rather pow-
erful for describing the occurrence of current used pesticides in streams. 
This is not a trivial conclusion because the main paradigm for pesticides 
exposure behaviour is based on the hypothesis that basic physico-chemical 

Actual value 
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properties including degradation and adsorption are governing factors for 
the quantification of differences in exposure for pesticides. 

Fig. 10. Conflict diagram for the data set where the banned pesticides are ne-
glected (1, 2, 6, 7, 8). (Figure drawn using Po Correlation) 

The correlation profile of the single predictive variables and their inter-
action will be investigated in the following. This is easy to do using Po 
Correlation by repeating the correlation analysis only for respectively Dose
and SpArea as single variable in Set 2. Inspection of the conflict diagrams 
shows how the two variables are acting as single variables and in relation 
to each other. In Fig. 11 the conflict diagram is displayed, where only the 
Dose is included as single variable in Set 2. The three pesticides (Ids. 5, 16 
and 24) are ranked strongly downward having many concordant rankings. 
This tells that the Dose variable tends to rank these pesticides upward 
while downward rankings are more likely to happen for the variables Det-
Freq and MedMax together. The values in Table 1 also show that these 
pesticides are characterised by having a relatively high Dose value and a 
low SpArea value. Hence the occurrence seems limited due to limited 
propagation of use (limited sprayed area) event though the dose level is 
rather high when they are applied in the field. The Id. 13 is concordant 
ranked in the conflict diagram above 6 other pesticides and also associated 
with a very high SpArea value, which is not reflected in a high Dose value. 
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Fig. 11. Conflict diagram for the data set where the banned pesticides are ne-
glected (1, 2, 6, 7, 8) and where the only variable used in Set 2 is Dose. (Figure 
drawn using Po Correlation) 

The conflict diagram using only the SpArea variable as Set 2 is shown in 
Fig. 12. Two strongly top ranked pesticides are identified (Ids. 15 and 9) 
having many concordant rankings downward. They both have a high Dose
value and small SpArea value in Table 1 and thus cases where a low rank 
due to SpArea is in conflicts with the occurrence because of a high dose 
level. The complementary situation is also seen in Fig. 13 for Id. 21. This 
pesticide is ranked strongly downward in Fig. 13 and also a pesticide, 
which has low dose level and large sprayed area in according to Table 1. 
The Id. 21 is a very low dosage pesticide and this low dose level seems to 
prevent the pesticide to occur in the stream water even though the sprayed 
area is rather large. 

The common set of rankings for Fig.’s 11 and 12 is displayed in Fig. 11, 
so only three rankings are in common between the Fig.’s 12 and 13. This 
shows that the two variables Dose and SpArea are working together by de-
scribing different parts of the information captured by DetFreq and Med-
Max. This is supported by the negative correlation between SpArea and 
DetFreq in Table 4.

In Fig. 13 a graphical display is made for a series of different variable 
combinations. The x and y axis is similar the axis in the significance plot 
(Fig.’s 8 and 9). Six different correlation analyses are performed for the 
pesticides, which have not been banned in year 2000. 
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Fig. 12. Conflict diagram for the data set where the banned pesticides are ex-
cluded (Ids. 1, 2, 6, 7, 8) and where the only variable used in Set 2 is SpArea.
(Figure drawn using Po Correlation) 

The numbered circles show the correlation results for a series of differ-
ent variable combinations used for respectively Set 1 and Set 2, which also 
refer to the columns in the Table to the right in Fig. 13. The small circles 
in this table identify the included variables. So e.g. for analysis no. 1, Set 1
was made by the two variables DetFreq and MedMax and Set 2 was made 
by only Dose. The variable denoted PRODUCT is the product between 
Dose and SpArea as presented by Table 4. The analysis 1, 2 and 3 is a test 
of every single variable including PRODUCT in relation to Dose and 
SpArea as Set 1. The product is best as single variable followed by respec-
tively Dose and SpArea and this follows naturally the  values in Table 4. 
However, the analysis no. 4 shows that the partial order of Dose and 
SpArea together performs better than the product if only the T (0,0) value 
is considered. The value drop on the y-axis from analysis no. 3 to analysis 
no. 4 is due to increased discordance in the ranking introduced when two 
variables are included in Set 2 instead of only a single one. The use of re-
spectively DetFreq and MedMax as single variable in Set 1 is also tested as 
respectively no. 5 and no. 6. Neither analysis no. 5 nor 6 can make the 
same good correlation measured by T (0,0) as analysis no. 4.
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Fig. 13. A graphical display of the correlation result for a series of different vari-
able combinations. The numbered circles refer to the numbering in the top row in 
the table to the right. Each number is a correlation analysis and the small circles in 
the tables indicate which variables that have been used in respectively Set 1 and 
Set 2. The x and y axis is similar to the axis in the significance plot as explained 
for Fig. 8. (Figure drawn using Po Correlation) 
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Abstract

The construction of posets or Hasse diagrams is a profitable means for the 
evaluation of biomonitoring data. In contrast to other statistical approaches 
the Hasse Diagram Technique enables the consideration of multiple attrib-
utes at the same time and will result in at least partially ordered data sets. 
Moreover, the calculation of averaged ranks allows the construction of a 
total order for a given data set. For the evaluation of biomonitoring data, as 
obtained for the German Environmental Specimen Bank, the Hasse dia-
gram technique was applied to achieve partially or totally ordered data. 
The following scheme was applied: i) Careful rounding of the original data 
to increase the number of comparabilities; ii) splitting of the data in 
smaller sub-sets; iii) construction of the posets for each sub-set; iv) con-
struction of the total order for each sub-set (by means of averaged ranks) 
and, v) synopsis of the sub-sets. 

Introduction

At about the same time when Hasse published his famous book about al-
gebraic topics and made Hasse diagrams popular (Hasse 1967), the envi-
ronmental pollution reached its first depressing climax in Middle Europe. 
DDT, for example, which was invented during World War II, being the 
most powerful insecticide the world had ever known, was used with gay 
abundance in such large quantities, that this abuse caused the death of 
countless song birds and, as it accumulated in the food chain, prevented 
breeding success of the birds of pray, thus motivating Rachel Carson to 
write her famous book The Silent Spring (Carson 1962) – actual data on 
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DDT are summarised in Sørensen et al. 2004. DDT was so popular in these 
times that even the plant enthusiast treated ornamental pot plants in the 
home with this pesticide, often in too large a quantity and in a negligent 
fashion (Buxbaum 1958). In Germany the banks of the River Rhine were 
regularly covered with froth and the corpses of innumerable fish during the 
late 1960ies and the 1970ies. Acid rain killed trees in coniferous wood-
lands. Traffic-borne lead (from leaded gasoline) reached about 1970 an av-
erage air concentration of 125 ng/m3 in the Hamburg area; human body 
burden was estimated retrospectively to be about 150 µg per litre blood at 
the same time (von Storch et al. 2003). (Actual values: approx. 20 ng lead 
per cubic metre air und 19 µg lead per litre blood for the student partici-
pants of the Environmental Specimen Bank (ESB). In due time, these 
alarming figures prompted the governments to action. In 1963 the Conven-
tion on the International Commission for the Protection of the Rhine 
against Pollution (Bern Convention) was signed by Switzerland, France, 
Luxembourg, Germany and the Netherlands. The European Economic 
Community joint in as contracting party in 1976. The DDT Act from 1972 
prohibited production and use of DDT in Germany. The Petrol Lead Act of 
1971 accomplished reduction of airborne pollution from lead in gasoline. 

The German Environmental Specimen Bank 

To monitor the effects of these and other activities of the legislative, the 
ESB was brought into being by the Federal Environment Ministry (FEM) 
of Germany in the 1970ies as a component of ecological environment sur-
veillance (FEM 2000) and started sampling in 1981. After a series of de-
velopment and trial phases, expansion of the ESB to full-scale operation 
(13 ecosystems and 4 human sampling sites) started on 1 January 1994. 
According to the concept (FEM 2000), the ESB, collects ecologically rep-
resentative environmental and human specimens, which are analysed for 
environmentally relevant substances, and stored. Long-term storage is per-
formed under conditions, which exclude any change in composition or 
chemical properties over a period of several decades. This archive retains 
specimens for retrospective analytical characterisation concerning unpre-
dictable questions, which may arise in future. Although the specimens are 
analysed for a number of environmental substances prior to storage (moni-
toring), the genuine value of the ESB is the storage of samples (archive) to 
serve as records for the conservation of eco-toxicological and toxicological 
evidence. In order to attain a high level of quality assurance, all stages 
from sampling itself, to the transportation of specimens, the preparation 
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and analysis of specimens, through to long-term storage, are set out in 
mandatory standard operating procedures (SOPs) for all types of environ-
mental and human specimens. The environmental specimens are obtained 
from representative areas (ecosystems); representative ecosystems from 
the terrestrial, limnetic (riverine) and marine environment have been se-
lected as examples. With regard to its entire composition each ecosystem 
is depicted by the biological, physical and chemical characterization of 
specimens taken from this system: producer, consumer, and destructor 
(FEM 2000). Table 1 gives an overview of the sampling programme of the 
ESB.

Table 1. Sampling programme of the ESB 

Sampling area Sampling 
sites Ecosystem type Specimens sampled 

BR/NP Wadden Sea 3 Marine 1 - 4 
Bodden NP of West-
ern Pomerania 3 Marine 1 - 4 

River Elbe 5 Riverine 5, 6, 15 
River Rhine 4 Riverine 5, 6, 15 
Bornhoeved Lake Dis-
trict 1 Agrarian 6 - 11, 14 

Upper Bavarian Terti-
ary Uplands 1 Agrarian 7 - 9, 11, 14 

Solling 1 Forestry 7 - 9, 11, 14 
Palatinate Forest BR 1 Forestry 7 - 9, 11, 14 
Saarland conurbation 3 Close to conurbation 5 - 7, 9 - 12, 14, 15 
Dueben Heath 2 Close to conurbation 6, 9 - 13 
Upper Harz NP 1 Nearly natural 7 - 9, 14 
Berchtesgaden BR/NP 1 Nearly natural 7 - 9, 14 
Bavarian Forest 
BR/NP 1 Nearly natural 7 - 9, 14 

Human 4 Universi-
ties Urban Blood, urine, hair, 

saliva 
Abbreviations: BR = UNESCO Biosphere Reserve (MAB programme); NP = Na-
tional Park; 1 = common bladder wrack (Fucus vesiculosus); 2 = common mussel 
(Mytilus edulis); 3 = eelpout (Zoarces viviparus); 4 = herring gull's egg (Larus ar-
gentatus); 5 = zebra mussel (Dreissena polymorpha); 6 = bream (Abramis brama); 
7 = spruce (Picea abies); 8 = beech (Fagus sylvatica); 9 = roe deer (Capreolus 
capreolus); 10 = domestic pigeon's egg (Columba livia f. domestica); 11 = earth 
worms (Lumbricus terrestris or Aporrectodea longa); 12 = Lombardy poplar (Po-
pulus nigra ,Italica’); 13 = pine (Pinus sylvestris); 14 = soil; 15 = sediment 
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Most specimens are sampled in yearly intervals. Sampling is regulated 
by prescribed sampling timetables and by standard operating procedures 
(FEM 2000). Individual samples from each sampling site are pooled to 
give a pooled sample of approx. 5 kg wet weight. Further processing of the 
pooled samples includes grinding and freeze drying, resulting in a fine 
homogeneous powder, which is packaged as 10 g portions. These are 
stored for the long term over liquid nitrogen in the gas phase at tempera-
tures below -150 °C. Results of the measurements prior to the storage are 
published in comprehensive reports (e.g. FEA 1999).  

Evaluation Methods 

The univariate approach 

Since the temporal changes are of interest, investigations of trends are per-
formed applying the Mann-Kendall-Test and the estimator of Theil (Con-
quest 2000). Fig. 1 shows a simple example of a trend analysis. Thallium 
values from 1994 to 2003 from bream musculature (Abramis brama) were 
obtained from pooled samples from the two Saarland sampling sites Reh-
lingen barrage weir und Güdingen barrage weir. 

Fig. 1. Thallium measured in the musculature of the Bream (Abramis brama) from 
the Saarland conurbation. Closed circles: Rehlingen barrage weir; open circles: 
Güdingen barrage weir. The solid line shows the linear component of the trend as 
estimated with the Theil estimator and the dotted line depicts the trend estimator 
for data linearised prior to the analysis 
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Whilst the Mann-Kendall-Test found no trend in the Güdingen data (p = 
0.054), the testing resulted in a positive trend for the Rehlingen data (p < 
0.001) due to an input of the industrial zone of Dillingen located ca. 1 km 
up-stream from the Rehlingen weir. Theil estimator calculated the linear 
component of the trend to be an annual increase of 1.26 ng Thallium per g 
dry weight. Linearisation of the measurement values (by calculation of 
log10 values) prior to the Mann-Kendall-Test yielded a better fit of the 
trend line (dotted line in Fig. 1). What is much needed for the evaluation of 
biomonitoring data is a procedure that can evaluate the samples in terms of 
their contamination with environmental substances. In the above example, 
Rehlingen is always more strongly contaminated than Güdingen with the 
sole exception of 1998. For all other years one would order the both sites 
as Rehlingen > Güdingen when only Thallium is considered. (See also the 
chapter by Pudenz and Heininger p.111, where the results of ecotoxi-
cological tests in river sediments are presented and analyzed.) 

The multivariate approach 

Like many other statistical methods for the evaluation of biomonitoring 
data, the above-depicted example of a trend analysis considers only a sin-
gle variable. Although the multivariate procedures consider several meas-
ured variables at the same time, their results are often only limited mean-
ingful. Cluster analyses can reveal structures in a given data set; principal 
component analyses concentrate the information contents of many vari-
ables in a set of a few latent variables, which are difficult to interpret cor-
rectly. 

Fig. 2 depicts the result of a cluster analysis performed on the data in 
Table 2. Sampling sites are combined to clusters according to the similar-
ity of their contamination pattern rather than the magnitude of this con-
tamination. Consequently, four clusters are formed: cluster 1 consisted of 
the sites Weil, Koblenz, Cumlosen, Blankenese and Barbay; cluster 2 of 
Saale, Güdingen and Mulde; cluster 3 comprised the sites Iffezheim, 
Bimmen and Rehlingen; and the fourth cluster, more isolated, was com-
posed by Prossen and Zehren. Even if this partition could reveal interesting 
structures, it was not possible to identify the most severely contaminated 
sites, let alone to order them according to their contamination. Similar re-
sults were obtained by principle component analysis (PCA; see Fig. 3). 
PCA yielded four principal components, which explained 82 % of the en-
tire information (formerly distributed in 11 measured variables). The first 
component was dominated by DDE, OCS, HCB, Hg, and Pb. The second 
summarised the information of PCB, Cu and As. The third component was 
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dominated by Tl and HCH, whereas the fourth component represented Se. 
The clusters differed somehow from those detected by cluster analysis 
(Fig. 3). Additionally, the sampling sites could be ordered along the com-
ponent axes. In respect to component 1, Zehren was mostly contaminated 
whereas Güdingen and Rehlingen appeared to be the cleanest sites. In con-
trast to this, Rehlingen was the most contaminated site when component 2 
was considered. Thus, no unequivocal order could be achieved. 

Fig. 2. Result of a hierarchical cluster analysis of the data in Table 2 

The partial order approach: Evaluation of ESB data with the 
Hasse diagram technique 

Neither cluster analysis nor PCA could order the sampling sites consid-
ering the complete information. One approach to judge more than one 
measured variable at the same time is the calculation of an index, which is 
supposed to summarise the information of all single variables. This ap-
proach, however, arises new problems, which are difficult to solve. First, 
the calculation of an index would require correct weighting factors for all 
single variables and secondly, before adding up the values all variables 
must be transformed to the same numeric scale. Consider, for example, the 
third row in Table 2. The index for Blankenese would be approx. 3 µg/g 
for the organic compounds when the weighting factors for all substances 
would be set to 1. This would mean that neither HCB nor the very much 
more toxic DDE will contribute equal amounts (this is, each approx. 20 %) 
to the index's value. 
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Fig. 3. Result of PCA performed on the data in Table 2 

Since this is obviously unjustified we need to apply weighting factors 
accounting for the ecotoxicity of each compounds, but the problem is that 
we do not know them. An additional disadvantage of the index is the loss 
of information since all data are lumped together to give a stew. 

The Hasse Diagram Technique (HDT) is a method out of the scale of 
the mathematical order theory, which was already applied productively to 
ecological and ecotoxicological problems (e.g. Brüggemann et al. 1999; 
Brüggemann 2001a; Brüggemann and Halfon 1997; Brüggemann and 
Steinberg 2000). More recent applications of the HDT in the environ-
mental sciences can be seen elsewhere in this book. The principle of the 
technology is based on the fact that 'objects' (e.g. ecological systems, habi-
tat diversity, field data, chemicals, databases, sampling sites of the envi-
ronmental sample bank) are compared each with one another and ordered 
on the basis of their attributes (e.g. measured values of xenobiotics). Each 
comparison of objects considers all attributes at the same time. An object 
is classified to be 'worse' than another, if it is 'worse' or at least 'equal' in 
respect to each of the attributes than the other object (or, in other words, if 
the product order relation is fulfilled). The designation of the relation is 
then: '>'. In ecology the term 'better' can be replaced by 'more contami-
nated' since we consider higher concentrations to be 'worse'. If two objects 
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are equal for all attributes, the symbol for their relation is '='; they are 
equivalent. Controversial or inconsistent results of a comparison will result 
when object a is 'better' than object b in respect of one attribute but at the 
same time 'worse' in respect to another. This will be labelled with the sym-
bol '||'. In terms of the HDT the two objects are 'not comparable' and can, 
thus, not put into any order.  

In short,
a > b means that object a is more contaminated than b 
a = b means that object a and b are contaminated in the same way 
a || b means that objects a and b cannot be compared with another 

Table 2. Original data for bream from 2002 (inorganic compounds in terms of dry 
weight; organic compounds related to the fat contents of the musculature) 

Sampling HCB -HCH OCS PCB DDE As Pb Cu Hg Se Tl
site [µg/g] [µg/g] [ng/g] [µg/g] [ng/g] [µg/g] [ng/g] 

Barby 1.60 0.027 0.262 2.38 2.10 0.38 86.4 1.40 1050 3.40 2.7
Bimmen 0.24 0.016 0.089 7.40 0.57 0.72 128.8 1.15 927 2.30 8.8
Blankenese 0.57 0.038 0.193 1.58 0.58 0.54 62.3 2.04 524 2.45 0.5
Cumlosen 0.98 0.025 0.301 2.17 1.48 0.43 59.0 1.93 1270 1.91 6.4
Güdingen 0.10 0.033 0.002 7.25 0.61 0.24 91.8 1.48 507 1.47 7.5
Iffezheim 0.56 0.017 0.054 4.22 0.41 0.66 87.8 1.08 1155 2.53 1.8
Koblenz 0.17 0.012 0.012 1.36 0.23 0.43 62.4 1.00 426 2.82 0.8
Mulde 1.16 0.033 0.392 2.71 5.19 0.42 98.2 2.72 1520 2.49 12.3
Prossen 1.47 0.017 0.620 6.54 5.14 0.37 150.0 1.44 1585 1.83 1.5
Rehlingen 0.06 0.043 0.003 7.16 0.34 0.56 66.9 1.31 603 3.17 14.8
Saale 0.20 0.042 0.047 2.29 2.54 0.34 149.0 1.24 1638 2.28 2.0
Weil 0.12 0.013 0.058 2.64 0.46 0.45 51.1 1.51 841 2.27 1.4
Zehren 3.15 0.022 0.711 8.54 9.28 0.47 151.5 1.29 1973 2.25 16.6

For all objects, which meet the order relation, a (partial) order can be 
constructed. The position of any given object within this order enables di-
rect reading of the relative ecological or ecotoxicological load of this ob-
ject. Additionally, the applied software, WHASSE (Hasse for Windows, 
producer: GetSynapsed GmbH, München) allows presenting the pollutant 
profile as bar chart, increasing the information content of the Hasse dia-
grams (Bücherl et al. 1995). The differences made visible in this way al-
low conclusions to contamination processes and pathways (Brüggemann 
2001a). The most crucial advantage of the HDT is the synoptic view of 
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several attributes, without the need of an index or a quality function (Brüg-
gemann 2001b). This synoptically view enables an ecosystemical evalua-
tion. The helpfulness of the HDT to the comparison of ecological systems 
in respect to their environmental loading had been already demonstrated 
(Brüggemann et al. 1994). 

Some terms often used in connection with the HDT must be explained 
since they are necessary to understand and interpret a Hasse diagram. 
Please note, that Hasse diagrams are read top-down or exclusively bottom-
up. In this chapter the top-down view is preferred. 

Anti-chain: An alignment of objects, which are not comparable with 
one another. Elements of the same level (see chapter by Brügge-
mann and Carlsen, p. 61) are incomparable. They can be considered 
to be similarly polluted but with different pollution patterns. As 
sometimes the construction of levels cannot be done uniquely, their 
interpretation needs some care. 
Chain: An alignment of objects, which are all comparable with one 
another. The elements of a chain are connected with a line. Often a 
common mechanism is responsible for the formation of the chain, 
which leads to the synchronous, at least weakly monotonous in-
crease of some attributes. 
Equivalence: Two objects are equivalent, if all attributes have equal 
values.
Incomparability: Two objects are not comparably with one another 
if the first object is, in respect to at least one attribute, 'worse' than 
the other and, simultaneously, in respect to another attribute, 'better'. 
In the Hasse diagram incomparable objects are not connected with 
lines.
Isolated object: Objects, which are comparable with none of the 
other objects in the data set. Because of conservatism isolated ob-
jects are always assigned to the highest diagram level. This corre-
sponds with the assumption that high pollutant concentrations indi-
cate a high endangerment. The software Hasse for Windows 
automatically adopts the correct arrangement. 
Maximal objects: Objects, for which no other objects exist in the 
data set, which can be classified 'worse' are called maximal objects. 
In WHASSE maximal objects are assigned to the uppermost level in 
the diagram. 
Minimal objects: Objects, for which no other objects exist in the 
data set, which can be classified 'better' are called minimal objects. 
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Product order relation: The product order relation is fulfilled if i) an 
object is, in regard to at least one attribute, 'worse' than another and 
at the same time 'equal' in respect to all remaining attributes, or if ii) 
an object is, in regard to at least one attribute, 'better' than another 
and at the same time 'equal' in respect to all remaining attributes. 
The existence of the product order relation is the prerequisite for the 
construction of chains. 
Predecessor: An object ranked above a given object x. In our case 
the predecessor is more contaminated than x. 
Sensitivity: A measure for the importance of a particular attribute. 
How strongly will the omittance of a given attribute change the re-
sulting Hasse diagram? Most often the matrix W, calculated in 
WHASSE, is used to perform sensitivity studies. 
Stability: An estimator for changes in the diagram to be anticipated, 
if any attributes will be added or omitted. Symbol: P(IB). Since 
P(IB) is normalised and can only take values between 0 and 1 it can 
easily be interpreted. If P(IB) = 1, then all objects are arranged in an 
anti-chain – the inclusion of additional attributes will not change the 
structure. If P(IB) = 0, then all objects are arranged in a chain or 
they are equivalent to each other - the chain (and/or the equivalence) 
remains, if attributes are omitted. 
Successor: An object ranked below a given object. 

The Data Set 

Specimens

The bream (Abramis brama Linné 1758, Cyprinidae) is a predominantly 
carnivorous teleost fish of the carp family inhabiting lakes and quiet parts 
of slowly running rivers and is widespread throughout Europe (Bond 
1979). It feeds mainly on small molluscs (e.g. Pisidium, Anisus), tubifex 
and insect larvae (e.g. Chironomus), sucking in sediment with the aid of its 
protrucible mouth while foraging and extracting the food from the sedi-
ment, but will also take plant material occasionally. 

Data were obtained for the bream's swimming musculature as collected 
for the ESB in 2002. Different numbers of 4 to 19 years old bream (n = 16 
– 28) have been captured after the breeding season in each of the 13 differ-
ent sampling areas. HCB, -HCH, octachlorostyrole (OCS), PCB 101, 
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PCB 118, PCB 138, PCB 153, PCB 180, and 4,4'-DDE were measured via 
GC-MS. The 5 PCB congeners were added up to give the sum parameter 

PCB. With the exception of mercury, which was measured via DMA, all 
metal analyses were carried out using ICP-MS. 

Fig. 4. The bream (Abramis brama), a specimen for the ESB (Photograph by Dr. 
Roland Klein, University of Trier) 

Sampling areas 

Bream were collected in 13 sampling areas belonging to the three riverine 
zones of Elbe, Rhine and Saar. ESB samples of bream were collected at 5 
different sampling sites along the river Elbe; these are – in down-stream 
direction: Prossen (river km 13), Zehren (km 93), Barby (km 296), Cum-
losen (km 470), and Blankenese near the Port of Hamburg (km 633). Addi-
tionally, bream from the Elbe tributaries Saale and Mulde (the latter near 
the mouth), were sampled too. In 2002, the year of the Elbe flood, at all 
sites (with the exception of Blankenese) bream were collected during the 
first days of the announcing flood. The Blankenese specimens were col-
lected after the flood (in September). River Rhine was represented by sam-
pling areas Weil (river km 174), Iffezheim (km 334), Koblenz (km 590,3), 
and Bimmen near the German-Dutch border (km 865). Bream from the 
river Saar stemmed from the barrage weirs of Güdingen (km 93) and Reh-
lingen (km 54). 
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Hasse Diagrams or POSETs 

Hasse diagram for the entire data set 

The entire raw data set, as listed in Table 2 (13 objects, 11 attributes), was 
used to construct a Hasse diagram. The result (Fig. 5A) is a single anti-
chain, due to very individual contaminant patterns of the 13 sampling ar-
eas. None of the sampling areas is comparable to any other. This result, be-
ing somewhat unpromising, leads us to the development of a double fold 
stratagem (Helm 2002). Firstly, since the incomparableness of the objects 
is, in many cases, due to only minor differences of the measured values, 
many of them being in the magnitude of the measurement uncertainty, an 
appropriate, carefully performed rounding of the data will better the dia-
gram. Take, for example, the As values for the Elbe sampling areas Cum-
losen (0.43 [µg/g dw]) and tributary Mulde (0.42 [µg/g dw]). Since 0.43 is 
greater than 0.42, Cumlosen can be considered to me more contaminated 
than Mulde. This difference, however, lies within the measurement uncer-
tainty of approx. 10% and is, therefore, not justified. (Note the similar 
ideas of "smoothing" of data (noise deficient QSAR) in chapter by Carlsen, 
p. 163). 

Secondly, splitting the entire data set into two or more sub-sets, each 
with a lower number of attributes, will yield more comparabilities since a 
greater number of attributes will reduce the probability that the product or-
der relation is fulfilled: P((an > bn)  (am > bm)) < P(an > bn).

Let us first focus on the rounding procedure. Desirable as it may be, 
rounding of the data according to the overall data error is not possible, due 
to the simple fact that we do not know it. The complete data error is com-
posed by i) the simple (or multiple) measurement uncertainty, ii) the long-
term lab error and iii) the sampling error. The simple measurement uncer-
tainty is – depending on the contaminant and its concentration – about 10 
to 20 %. The long-term lab error is even more important because the series 
of measurement in biomonitoring can easily span many years (like in 
ESB). Unfortunately the latter is unknown and the same is true for the 
sampling error. Thus we better adjust the rounding of the data to the scale 
of the measured values. 
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Pre-processing: Rounding of the raw data 

A good measure for the scale (or magnitude) of data is the median. Other 
than the arithmetic mean the median is insensitive to the distribution of the 
data. After calculation of the median for every data column of Table 2, 
data are to be rounded to the k. decimal place. 

k = trunc(log10(median)) – 1 if median < 1 (1)
k = trunc(log10(median)) + 1 if median  1 (2)

If k is negative, the data will be rounded to kth position after the decimal 
point; if k is positive, the data will be rounded to kth position prior to the 
decimal point. Two examples illustrate the method (HCB and Hg from 
sampling area of Prossen, river Elbe). 

Fig. 5. Hasse diagram for the raw data (A) and for the rounded data (B) 
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Table 3. Stepwise implementation of the rounding process 

Step # Example 1 Example 2 
1. Measured value 1.47 1585
2. Median of the data column 0.559 1050.00 
3. The logarithm of the median -0.253 3.021 
3. Truncation of the decimal 0 3 
4. decrement, if median  1, or, -1
    increment, if median 1  4 
5. k -1 4
6. Resulting rounded value 1.5 2000 

In example 1 k is -1, which means that the HCB values will be rounded 
to the first digit after the decimal point, and the mercury values will be 
rounded to the fourth digit before the decimal point, because k is 4 in this 
case. The rounded data are listed in Table 4. 

Table 4. Rounded data for bream from 2002 (inorganic compounds in terms of 
dry weight; organic compounds related to the fat contents of the musculature) 

Sampling HCB -HCH OCS PCB DDE As Pb Cu Hg Se Tl
site [µg/g] [µg/g] [ng/g] [µg/g] [ng/g] [µg/g] [ng/g] 

Barby 1.6 0.03 0.26 2 2.1 0.4 90 1 1000 3 3
Bimmen 0.2 0.02 0.09 7 0.6 0.7 130 1 1000 2 9
Blankenese 0.6 0.04 0.19 2 0.6 0.5 60 2 1000 2 1
Cumlosen 1.0 0.02 0.30 2 1.5 0.4 60 2 1000 2 6
Güdingen 0.1 0.03 0.00 7 0.6 0.2 90 1 1000 1 7
Iffezheim 0.6 0.02 0.05 4 0.4 0.7 90 1 1000 3 2
Koblenz 0.2 0.01 0.01 1 0.2 0.4 60 1 0 3 1
Mulde 1.2 0.03 0.39 3 5.2 0.4 100 3 2000 2 12
Prossen 1.5 0.02 0.62 7 5.1 0.4 150 1 2000 2 2
Rehlingen 0.1 0.04 0.00 7 0.3 0.6 70 1 1000 3 15
Saale 0.2 0.04 0.05 2 2.5 0.3 150 1 2000 2 2
Weil 0.1 0.01 0.06 3 0.5 0.4 50 2 1000 2 1
Zehren 3.1 0.02 0.71 9 9.3 0.5 150 1 2000 2 17

The Hasse diagram constructed for the rounded data is depicted in Fig. 
5B. As a consequence of the rounding, the number of levels increased 
from 1 to 2, the number of incomparabilities was reduced from 156 to 146. 
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Five chains have been formed, from which three do represent intra-river 
segments, indicating an increase of pollution for the river Elbe from 
Prossen towards Zehren, a decrease from tributary Mulde towards Cum-
losen, and, for the river Rhine, a decrease of the pollution from Iffezheim 
towards Koblenz. However, the chains are very short (each comprising 
only two elements) and there are still 5 isolated objects (Blankenese, Saale, 
Güdingen, Rehlingen, Bimmen). The stability, P(IB), is 0.94, indicating, 
that the diagram is very near an anti-chain and that the inclusion of addi-
tional attributes will not change the structure. On the other hand, the exclu-
sion of attributes may very well change the structure. This leads to the sec-
ond stratagem, the splitting of the data set. The data set will be splitted into 
two sub-sets; one containing the inorganic components and the other con-
taining the organic substances. 

Hasse diagram for the inorganic compounds 

The resulting Hasse diagram or Partial Order for the six inorganic com-
pounds was similarly poorly structured as the Hasse diagram for all 11 pol-
lutants when the original raw data were used (Fig. 6A). The diagram con-
sisted of only two levels; 9 objects were assigned to an anti-chain. Only 
two short chains were formed, each of which consisted of two objects and 
none of these short chains represented intra-river segments. Application of 
rounded data produced an additional level and the number of incompara-
bilities was reduced from 152 to 130. Two three-link chains and 6 two-link 
chains were formed; some of them corresponded to river segments, thus al-
lowing deriving a partial order for these streams with an enriched degree 
of comparabilities (Fig. 6B). Within the first chain for river Elbe the sam-
pling site of Zehren appeared to be most contaminated, followed by 
Prossen and tributary Saale. The second Elbe chain showed site Mulde to 
be stronger contaminated than Cumlosen and within the Rhine segment 
site Koblenz was cleaner than site Iffezheim. Most important for the order 
achieved are Cu (W = 14) and Se (W = 10); of no importance is Hg (W = 
0). The stability value (P(IB)) was reduced from 0.97 to 0.83 by the round-
ing of the data, but is still near that of an anti-chain. 

Hasse diagram for the organic compounds 

When the same scheme was applied to the sub-set of the five organic com-
pounds, the improvement achieved by the rounding of the data was far less 
pronounced. The number of incomparabilities was reduced from 116 to 
114; the number of levels remained 4 and that of the isolated objects re-
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mained 2 for both, the raw data and the rounded data. This remarkably 
lesser improvement can be attributed to the fact that the organic com-
pounds are stronger correlated with each other than the inorganic com-
pounds with each other and thus are more often increased simultaneously. 
The maximum chain length was 4. 

In terms of inter-fluvial segments, both Bimmen and Iffezheim were 
recognised to be more contaminated than Koblenz (River Rhine), addition-
ally Bimmen was more strongly contaminated than Weil. Within the Elbe 
segment the order Zehren > Prossen > Cumlosen was found. Elbe tributary 
Mulde was more strongly contaminated than Cumlosen. Güdingen and 
Rehlingen from river Mosel proved to be incomparable. 

In general, the Elbe sites and tributaries appeared in the upper part of the 
diagram, whereas the river Rhine sites appeared in the lower half, allowing 
a tentative assessment of the contamination for both streams. The most 
important substances for the partial order shown in Fig. 7 are HCH and 
PCB-sum (for each: W = 17). The stability P(IB) is 0.73, indicating that the 
order achieved is still near an anti-chain. 

Fig. 6. Hasse diagram for 6 inorganic compounds; A: raw data;  
B: rounded data 
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Fig. 7. Hasse diagram for 5 organic compounds; rounded data 

From partial to total order: Calculation of averaged ranks 

Though some improvement have been achieved, the Hasse diagrams or 
partially ordered sets shown in Fig.’s 6B and 7 are not entirely satisfactory. 
To overcome this, linear extensions can be constructed for each partially 
ordered set of objects. A linear extension is a total order where all compa-
rabilities will be conserved (Brüggemann et al. 2004; see also chapters by 
Brüggemann and Carlsen, p. 61 and Carlsen, p. 163). This will yield a 
number of linear extensions for a given partially ordered set, taking all 
possible locations of the incomparable objects into account. Take e.g. the 
Hasse diagram for the inorganic compounds (Fig. 6B). To simplify the 
matter we will only consider the subgraph consisting of Zehren, Prossen, 
Saale and Güdingen. The possible linear extensions for this subgraph, 
when all comparabilities are preserved, are as follows. 

Zehren > Güdingen > Prossen > Saale 
Zehren > Prossen > Güdingen > Saale 
Zehren > Prossen > Saale > Güdingen 

Please note, that in all cases the orders Zehren > Prossen > Saale and 
Zehren > Güdingen, respectively, have been preserved. In a likewise man-
ner all possible linear extensions for any partially ordered set can be con-
structed. Most unfortunately the number of linear extensions will increase 
exceedingly with the number of objects and incomparabilities in the given 
set. In case of Fig. 6B not less than 13,414,830 linear extensions can be 
constructed. When all possible linear extensions are known the most prob-
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able rank for each object can be calculated, thus yielding a totally ordered 
set (Brüggemann et al. 2004) without the use of weights or assuming a 
rank index function. Since, however, the calculation of all possible linear 
extensions will require an impracticably long computing time this ap-
proach cannot be taken in most cases. To solve this obstacle, a method 
based on Monte Carlo calculations was developed (Sørensen et al. 2001, 
Lerche et al. 2003) and Brüggemann et al. (2004) gave a simple and 
straightforward equation for the calculation of averaged ranks which are 
very close estimations of the 'true' ranks obtained by the examination the 
cumbersomely calculated full set of all linear extensions (Brüggemann et 
al. 2004), counting from bottom to top. 

Rkav(x) = (S(x) + 1) · (N + 1) / (N + 1 – U(x)) (3) 

where Rkav(x) is the averaged rank of object x, S(x) is the number of succes-
sors of x (objects ranked below x), U(x) is the number of objects incompa-
rable to x and N is the total number of objects in the set. It must be men-
tioned that an object with many successors will tend to get a higher 
averaged rank than one, which has instead many predecessors. Therefore 
the partial order must be well justified, and only with significant compara-
bilities and incomparabilities the averaged rank approach is a reasonable 
one (Brüggemann et al. 2004). 

Application of the averaged ranks approach to the partially ordered set 
of inorganic compounds (Fig. 6B) yielded the totally ordered set depicted 
in Fig. 8A. In words, the order is: 

{Zehren, Mulde} > {Barby, Blankenese, Rehlingen, Iffezheim, Bim-
men} > Prossen > Cumlosen > Saale > {Güdingen, Koblenz, Weil};  

corresponding to the averaged ranks 2.8, 4.6, 7.0, 8.4, 10.5 and 11.2, re-
spectively. (Please note that in Fig. 8 equivalent objects are 'hidden be-
neath' the first object of each equivalence group.) 

Likewise a totally ordered set can be obtained for the organic data (Fig. 
8C). The resulting order is: 

Mulde > {Zehren, Prossen} > {Saale, Barby, Blankenese} > {Rehlingen, 
Bimmen, Güdingen} > Iffezheim > Cumlosen > Weil > Koblenz; 

corresponding to the ranks of 2.8, 3.5, 4.6, 7.0, 8.4, 9.3, 11.6 and 12.7, re-
spectively. 
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Fig. 8. Complete order sets for the inorganic (A), the organic compounds (C), and 
a synopsis of both (B), achieved by the calculation of averaged ranks. Note that 
there are equivalent objects (see text) 

Synopsis of inorganic and organic data 

We have now two different totally ordered sets; each one for the organic 
and the inorganic compounds which parallel in same respects. In both 
cases, the sampling sites of Mulde, Zehren, Barby and Blankenese appear 
at or near the top and can thus be considered to represent the mostly con-
taminated sites. In contrast, Koblenz, Weil and Cumlosen are assigned to 
the bottom end of the order. When defining the averaged ranks of both 
groups of compounds as new attributes the order as shown in Fig. 8B can 
be obtained. The stability (P(IB)) of this poset is 0.14, indicating nearness 
to a chain. This poset has 8 levels, only one minimal and one maximal ob-
ject, and the number of comparabilities is 69 (the maximum number). The 
corresponding total order, achieved by the calculation of averaged ranks, is 
Mulde > Zehren > {Barby, Blankenese} > Prossen > {Rehlingen, Bim-
men} > Saale > Iffezheim > {Güdingen, Cumlosen} > Weil > Koblenz. 

This means that the Elbe sites are stronger contaminated than those of 
river Rhine, if all 11 compounds are considered. Within river Elbe and its 
tributaries we found the order: Mulde > Zehren > {Barby, Blankenese} > 
Prossen > Saale > Cumlosen. The order for the river Rhine sites is Bim-
men > Iffezheim > Weil > Koblenz. Since none of these orders corre-
sponds to the course of the streams we must assume a complex interplay of 
contamination and subsequent dilution and degradation processes. Coming 
from the Czech Republic the Elbe is medium strongly contaminated. Up to 
the mouth of tributary Mulde this contamination is strongly increased, but 
tributary Saale, bringing cleaner water, will dilute this contamination. 

CBA
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Barby, located at the mouth of tributary Saale, and Cumlosen have de-
creasingly less contamination, whereas Blankenese (located in close prox-
imity and down-stream from the Port of Hamburg) shows a new increase 
of contamination. Whether this is due to local inlet of contaminants or the 
sampling time (after the flood) cannot be decided here. The river Rhine, 
too, starts with medium contamination, which is increased between Weil 
and Iffezheim, whereas the contamination is diluted (or otherwise reduced) 
in down-stream direction until to Koblenz. But the industrial regions lo-
cated at the Lower Rhine seem to increase the contamination anew, so that 
location Bimmen, near the German-Dutch border, is the most strongly con-
taminated site of the river Rhine. River Saar, represented by only two 
sampling sites, shows the order Rehlingen > Güdingen; an order which re-
verses the direction of the stream. As already mentioned above, this is due 
to an input of the industrial zone of Dillingen located ca. 1 km up-stream 
from the Rehlingen weir. 

Conclusions and Outlook 

The construction of a partial or even total order is a valuable means for the 
evaluation of biomonitoring data. A critical point is the number of incom-
parabilities. To reduce this number the data should be pre-processed. For 
this contribution pre-processing was done by rounding the data according 
to the magnitude of the median. A somewhat more sophisticated approach 
could be a rounding procedure, which considers the measurement uncer-
tainty, thus expressing the data as multiples of the measurement uncer-
tainty, taking into account different uncertainties for different chemicals. 
Another possibility for pre-processing is the cluster analysis (Luther et al. 
2000), resulting in a smaller number of objects, which can be used as input 
for the Hasse Diagram Technique. Disadvantage of this approach is, how-
ever, the loss of information. 

It should be stressed that there are more possible applications for posets 
in biomonitoring. One promising application for the Hasse Diagram Tech-
nique is the ranking of chemicals. When chemicals are expressed as frac-
tions of the corresponding guide values or limit value, a partial order as 
shown in Fig. 9 will result. Prior to the ranking, the data of six chemicals 
obtained from the sampling sites of river Elbe, including the two tributar-
ies Mulde and Saale, have been transformed according to guide values of 
the EC. Then the data table was transposed so that the rows became col-
umns and vice versa, thus making the chemicals to objects and the sam-
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pling sites to their attributes. The resulting partial order reveals that mer-
cury is the most relevant chemical, whereas -HCH is of least importance. 

Fig. 9. Ranking of chemicals for the sampling sites of river Elbe 

Analysis of the temporal course of contaminations is another example 
for further applications (Fig. 10). Based on essentially the same chemicals 
it seems that human beings experience an increasingly better protection 
than wild live. For bream sampled from 1997 to 2003 at the barriage weir 
of Rehlingen the improvement of the environment did not parallel the time 
course (Fig. 9A), since the order of contamination is, obviously, 1999 > 
{1997, 2001} > 2000 > {2002, 2003} > 1998. In contrast, samples taken 
from students of the Münster University show a clear parallel between 
time and bettering of the body burden. This would mean, that man is better 
protected against the chemical released into the environment by him than 
wild life is. But since man is an inseparable part of the environment con-
taminations will always backfire on the mankind. 
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Fig. 10. Temporal course of contamination for environmental samples (A: bream 
from sampling site Rehlingen) and human samples (B: students of the University 
of Münster) 
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Abstract

Potential habitat suitability was assessed for species groupings of verte-
brate fauna in the State of Pennsylvania, USA as part of a nationally coor-
dinated GAP Analysis Program to find gaps in provision for conservation 
of important habitats. Diversity values were compiled spatially at a resolu-
tion of one square kilometre from species models developed at 30-meter 
resolution. Diversity patterns differ in varying degrees among species 
groups for mammals, birds, amphibians, snakes/lizards, turtles, and fishes. 
Comparing the patterns for partial ordering on watershed extents using sta-
tistical indices of ranking can facilitate determination of inter-group com-
monality and contrast. This helps to designate watersheds as having impor-
tance from multi-group and particular group perspectives. Partial ordering 
on the basis of rank-range runs is particularly informative when combined 
with levels of counter-indication corresponding to levels in a Hasse dia-
gram. This serves to segregate sets having combinatorial clarity of condi-
tion relative to conservation from settings where disparate conditions may 
offer opportunities for targeted restoration. Disparity of conditions on mul-
tiple bio-indicators may arise from habitat heterogeneity as well as differ-
ential degradation. Broadening the spectrum of indicators will usually in-
crease the apparent complexity of the conservation context. 



310      Myers, W. L., Patil, G. P. and Cai, Y.  

Introduction

Patil and Taillie (2004) consider partially ordered sets (posets) in environ-
mental contexts from the perspective of political contention whereby there 
is need for inferential extension of the observed data on multiple indicators 
in order to obtain a single induced ordering that resolves contentious issues 
(see for example Simon et al. 2004). There are, however, numerous envi-
ronmental contexts in which incomplete orderings become directly useful 
from management perspectives without forcing a single induced ordering 
by inferential extension. In particular, incomplete orderings can answer 
four important questions pertaining to conservation and potential for reme-
diation.

(1) The first question is which ones among a disparate population of n
cases (landscape units) have consistency of expression (concordance) rela-
tive to a suite of p indicators. Subsets of the cases having consistent ex-
pression are subject to direct comparative ordering to address further ques-
tions.

(2) How to sort out superior cases for priority attention in conservation 
and protection and/or to serve as reference standards for comparative as-
sessment.  

(3) How can cases (landscape units) be recognized that are severely de-
graded in all relevant respects to the degree that preservation and protec-
tion concerns are effectively absent.  

(4) Among the remaining cases that lack concordance in varying de-
gree, are there cases of landscape units that could be elevated to superior 
status by remedial attention in some particular regard. These are the better 
cases for which there is consistency of expression among p-1 of the p indi-
cators. The degree to which consistency is improved by deleting the most 
discordant indicator shows both the benefit that would accrue to targeted 
remediation and the level of effort that remediation would entail. 

Our primary focus here is on these questions where partial or incom-
plete orderings are directly informative to conservation, remediation, or al-
location issues of environmental management. Biodiversity and ecosystem 
health are multifaceted concerns that are most readily and objectively ap-
proached through suites of indicators. Prioritization of landscape units in 
these regards is also intrinsically complex. If a subset of indicators is es-
sentially concordant across all cases of observation, then the indicators in 
the (sub)set are also substantially redundant. On the other hand, indicators 
representing largely independent dimensions of biodiversity or ecosystem 
health will almost necessarily complicate prioritization processes because 
there will be less consistency in how the respective landscape units reflect 
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the indicators. There are also issues of scale related to the well known 
‘species-area effect’ and its extensions whereby greater diversity is en-
countered as the extent of area under consideration is expanded. For prac-
tical purposes of conservation and ecosystem management, multiple indi-
cators need to express related but at least somewhat different senses of the 
issues under consideration and also have a common polarity with regard to 
superior versus inferior. Substantially different indicator dimensions are 
going to present substantially different problems of prioritization that will 
then have to be reconciled to some degree in allocating scarce resources 
for management. The latter question will essentially be one of how to di-
vide resources in dealing with different types of problems and conflicting 
priorities, which is beyond our present scope. The scale of landscape units 
is expected to span some divergence in level of spatial heterogeneity. 

Pennsylvania Biodiversity Context 

Our conservation context arises from model-based assessment of verte-
brate biodiversity in the State of Pennsylvania (Myers et al., 2000) as part 
of a larger biodiversity assessment program known as GAP Analysis cov-
ering the entire United States, whereby ‘GAP’ refers to a gap in provisions 
for conservation. GAP Analysis is a coarse filter geographic approach to 
biodiversity assessment. Habitat factors for each of the vertebrate species 
that breed regularly in the state were mapped as layers in geographic in-
formation systems (GIS), and then combined into a potential habitat model 
for the species using GIS overlay analysis of the map layers (Scott et al., 
1993). Land cover information as a component of models for all species 
was derived from remotely sensed data obtained from Landsat TM (The-
matic Mapper) at a spatial resolution of 30-meter pixels. Therefore, the po-
tential habitat maps were also prepared initially at a 30-meter scale. The 
habitat suitability mapping for each species was then generalized to a 
coarser scale resolution of 1-km2 by considering a species to be present in 
the 1-km2 cells if it is present in any 30-meter component pixel of the 1-
km2 cells. This provides for a richness value related to an ith 1-km2,
R(1000m,i)=   b(i,j ), j=1,…, q,  b(i)  {(0,1)q} , b(i,j) the jth component 
of the tuple b(i). The digits 0 or 1 indicate absence or presence of the jth 
species, and q is the number of species being considered. 

Species (habitat) richness was thus compiled on a 1-km2 basis for six 
taxonomic and life history groupings of species along with regional habitat 
importance ratings (Myers et al., 2001). The six species groupings were 
mammals, birds, amphibians, snakes and lizards, turtles, and fishes as p = 
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6 indicators of biodiversity. For the analyses that we present here, the 
mean of the kilometre-level species richness values was tabulated for each 
of these six species groups across each of 184 watersheds. For the ith wa-
tershed the group richness is Rg(watershed,i)= [  Rg(1000m,j ), j=1,…, t]/t 
where t is the total number of 1-km2 cells in the ith  watershed.  

Fig. 1a. Location of State of Pennsylvania in North-eastern USA 

Fig. 1b. Location of watersheds in Piedmont Plateau and South Mountain regions 
of Pennsylvania 

Pennsylvania is situated in North-eastern USA, and the watersheds are 
located in the Piedmont and South Mountain physiographic regions in 
South-eastern Pennsylvania (Fig. 1). Other physiographic regions of the 
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state could equally well have been included in the analysis, but this geo-
graphic extent was chosen for reasons of both presentational clarity and 
land use history. The Piedmont Plateau has moderate topography and the 
geologic materials weather into deep and fertile soils that have been con-
ducive to extensive agricultural and urban development. Therefore, the 
natural forest cover has become highly fragmented in many areas and ver-
tebrate habitat degradation is substantial. Thus, the areas where habitat 
degradation is less pervasive become high priority areas for cooperative 
conservation efforts among conservancies and landowners through reser-
vation incentive programs such as easements that preclude development. 

Mean species richness values in a watershed for the six groups provide 
us six indicators of biodiversity for the watershed as a case or landscape 
unit. Thus the objects (cases) to be analyzed are the watersheds as land-
scape units – or briefly ‘units’, the characterization of these units being 
done in terms of the six indicators. For comparative purposes, these six in-
dicators can also be condensed to two indicators by adding together the 
amphibians, turtles, and fishes as an indicator of lowland habitats; and do-
ing likewise for the mammals, birds, and snakes/lizards as an indicator for 
upland habitats. Henceforth, the latter two super-groups will be referred to 
as upland and lowland indicators. Hence two data matrices are to be ana-
lyzed: the first one consisting of 184 watersheds (the ‘units’) and six indi-
cators, the second one consisting of 184 such units and two indicators, 
lowland and upland indicators, respectively.

Progression of partial and incomplete orderings 

Conflicts in rankings can be viewed from two major perspectives. One 
perspective is that any conflict of rankings makes the units intrinsically in-
comparable. A second perspective attempts to resolve some of the conflicts 
on the basis of more liberal criteria. 

Adopting the first perspective allows us to segregate subsets of land-
scape units whereby there is intrinsic ordering between the subsets but not 
within a subset among its members. These subsets are partially ordered 
sets (posets) corresponding to the levels that would be depicted on Hasse 
diagrams (Neggers and Kim 1998). If the positive direction for each indi-
cator is better, then the primary (number 1) subset consists of units that are 
not dominated by any other unit. There is domination if some unit is equal 
to or better than another on all indicators. The secondary (number 2) subset 
is found by removing the primary subset and then finding the non-
dominated subset of the remaining units. The tertiary (number 3) and sub-
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sequent subsets are found by applying the process recursively (levels and 
their construction, see chapter by Brüggemann and Carlsen, p. 61). Multi-
ple units with identical values on all indicators are precluded if the subsets 
are to be posets in the mathematical sense because of the anti-symmetry 
condition (Patil and Tallie 2004). One may also define a quasi order; see 
Brüggemann and Bartel (1999). For practical purposes, identical units can 
be re-introduced retrospectively by placing identically. The conventional 
computational formalities are typically presented in terms of matrices. 
Computational efficiency for large numbers of units is better served, how-
ever, by recursively marking non-dominated units among the unmarked re-
sidual units. Identical units are easily accommodated from the outset in the 
latter approach to reach the same retrospective result as the matrix meth-
ods. We refer to these orderings of subsets as counter-indication (CI) lev-
els because of the interpretive information that they convey. One superior 
indicator is sufficient to place a unit in the primary set, regardless of how 
inferior other indicators may be. However, a unit in the highest numbered 
subset will not have any superior indicators. In a general sense, the level of 
agreement regarding inferior status increases with increasing subset num-
ber.

Under the strict perspective of intrinsic ordering with inadmissibility of 
inconsistent evidence, the ranking of units would remain incomplete ex-
cept for appeal to cover relations in depiction as a Hasse diagram. Since 
Hasse diagrams lose their utility rapidly with increasing numbers of units, 
we do not pursue that route here. This is because we may be faced with 
need to consider several thousand landscape units such as watersheds. Fur-
ther progress depends on supplementing the poset CI level results through 
less restrictive criteria. 

Patil and Taillie (2004) seek to induce a full ordering by considering 
the cumulative distribution of ranks that are not directly expressed in the 
data matrix, but which exploit the observed consistencies (linear exten-
sions) in the data matrix. The concept of linear extensions is broadly used 
(Brüggemann et al. 2001; Brüggemann et al. 2004; Carlsen et al. 2002; 
Lerche et al. 2003; Lerche and Sørensen 2003; Sørensen et al. 2001); see 
the chapters by Brüggemann and Carlsen, p. 61; Carlsen, p. 163 and Helm, 
p. 285. The number of initial rankings to be considered becomes very large 
rapidly as the number of indicators increases, causing need for recourse to 
Monte Carlo Markov Chain (MCMC) methods. To avoid the somewhat 
nebulous nature of indirect evidence, we restrict ourselves here to supple-
mental views based entirely on direct evidence that help to clarify the pri-
oritization picture while allowing the orderings to be incomplete. 

Although CI (poset) levels can be determined directly from the indica-
tor data matrix without conversion to ranks, we proceed immediately to 
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convert the data for each indicator to rank numbers. To be consistent with 
the interpretive sense of CI levels, we adopt the ‘place’ convention for 
ranks whereby the first place (rank 1) is superior. We then liberalize the 
criteria for comparison so that only the best rank and the worst rank among 
any of the indicators are considered for each unit along with the rank 
range. If a unit is equal or superior to another in its best rank and also bet-
ter in its worst rank, then there is superiority in a limited sense. Likewise, 
there is superiority if a unit is better than another in the best rank and better 
than or equal in the worst rank. Additionally, units with a narrow range of 
ranks reflect consistently on the indicators, whereas a wide range of ranks 
shows divergent expression among the indicators. These properties provide 
the basis for a series of internally ranked subsets that speak to the man-
agement questions that were raised earlier, and can be readily coupled with 
intrinsic partial orderings for enhanced insights. 

As a simple example, consider the data in Table 1 on five hypothetical 
units. This table shows the best and worst ranks for each unit on an un-
specified number of indicators. There are two series of progressive superi-
ority based on extreme ranks. One series is E > B > C > D, where the > 
symbol implies superiority of the left member to the right member. The 
other series is E > A > C > D. These two series differ only in exchanging 
A for B. The wider range of ranks for A relative to B gives the second se-
ries more dissonance or discrepancy (less consensus) than in the first.  

Table 1. Example of five hypothetical units 

Unit Best rank Worst Rank 
A 1 4 
B 2 3 
C 3 5 
D 4 5 
E 1 3 

Rank range runs 

Fig. 2 shows a series of watershed sequences that comprise ordered subsets 
according to rank range relations. Of course, rank range relations only 
have meaning when there are two or more indicators. Conversion of indi-
cators to ranks is a preparatory operation for sequencing of rank ranges. In 
converting an indicator to ranks, we treat the best value as having rank 
number 1 and tied units are assigned the average of the tied ranks. Ranking 
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is, of course, a form of rescaling that removes all statistical differences in 
the distribution of indicators.  

Rank Range Runs for six species groups
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Fig. 2. Rank range runs for 184 watersheds according to species richness of six 
taxonomic groups as indicators. The dots along the lines show the position of the 
median rank for the watershed 

Therefore, the focus shifts from indicator to landscape unit (watershed 
in this case). Statistics are computed on the set of rank values for each 
landscape unit (watershed). Statistics needed for the present operation are 
minimum rank, maximum rank, and median rank. These become three de-
rived observational variables for each landscape unit (watershed). Given 
these preparatory computations, the operations for rank range sequencing 
are as follows: 

a) First, order the landscape units according to increasing value of 
minimum rank. 

b) Suborder any tied units according to increasing value of maximum 
rank.

c) Suborder any tied units according to increasing value of median 
rank.

d) Create an empty stack for shifting (landscape/watershed) units, and 
set series number to 1. 

e) Proceeding from end of ordered list of units toward beginning of 
list, remove any unit to the top of the stack if a unit having lesser 
maximum rank follows it in the remaining list. 
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f) Upon reaching the head of the list, assign the current series number 
to all units remaining in the list. 

g) Increment the series number. 
h) Apply steps d) through g) to units in the stack working from bottom 

of stack toward top of stack. 
i) Append this series to the previous series and then return to h) if the 

stack is not empty. 
j) Assign sequential numbering (rank range run sequence) to the en-

tire list. 

Fig. 3. Flowchart for obtaining rank range runs 

Fig. 3 gives a flowchart of the process except for the final sequence num-
bering across the entire set of series. This algorithm allows the computer 
scientist ample opportunity for exercising strategic skills of their craft in 
designing the implementation. For example, a single data array can be 

Order units by increasing value of mini-
mum rank.

Suborder any tied units by increasing value 
of maximum rank.

Suborder any tied units by increasing value 
of median rank.

Make empty stack. Set series number 1. 

Select unit at rear of list. 

If next forward unit has 
greater max rank, move 
forward unit to stack top. 

If not head of list, select 
next remaining forward 
unit. 

If stack not empty, move stack 
to list and increment series 
number.
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handled in three portions that are dynamically repartitioned. The leading 
portion contains the rank range series that have been processed, the middle 
portion contains the units that are currently being processed, and the tail 
portion contains the stack of residuals. Large numbers of units can be ac-
commodated relatively easily. 

The graph in Fig. 2 is termed a “stock chart” in Microsoft Excel spread-
sheet software that is intended for depicting the activity of a stock market 
during a day. Before making the chart, the landscape units must be sorted 
in the spreadsheet according to ascending value of the rank range run se-
quence number assigned in the j) step above. 

Hereafter, we refer to each series in Fig. 2 as a rank range run (RRR).
Each unit appears as a member of only one run. It will be observed that the 
ranges of the units generally increase for each successive rank range run, 
as shown in Fig. 4. This means that the lower numbered rank range runs 
contain landscape units that have greater consistency with respect to the 
indicators than do higher numbered rank range runs. Additionally, each 
successive member of a rank range run is ‘better’ than the unit that follows 
it.

Rank Range (Y) vs. RRRsequence number (X)
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Fig. 4. Trend of rank range with progression along rank range run sequence for six 
species richness indicators on watersheds 

It may be possible to ‘graft’ part of one rank range run into another 
rank range run as a replacement for some of its members. An example of 
this can be found in the illustrative data of Table 1 referenced earlier. The 
RRR process would yield a first run of E > B > C > D, with A trailing as a 
unitary second run. As noted earlier, the A unit can be grafted into the first 
sequence as a replacement for the B unit. Part of an RRR series can be 
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grafted into another if (1) both minimum and maximum rank of the leading 
unit in graft are greater than or equal to those of the unit (if any) that it fol-
lows, and (2) both minimum and maximum rank of the trailing unit in the 
graft are less than or equal to those of the unit (if any) that it precedes. The 
rank range runs and their possible inter-run grafts define (incomplete) or-
dering relations among the units according to the rank range criteria. 

The position of the median mark relative to the midpoint of a range line 
adds information on the distribution of ranks for that unit. Having the me-
dian mark off-centre toward the lower end implies a tight grouping of bet-
ter ranks and more dispersion of poorer ranks. Having the median mark 
off-centre toward the higher end implies the reverse. This is a reflection of 
skewness in the distribution of ranks for the particular unit. A symmetric 
distribution of ranks for a unit would place the median at the midrange. 
When the median is below the midrange, there is a concentration of lower 
numbered (better) ranks below the midrange with a tail of higher num-
bered (poorer) ranks above. 

An apparent tendency toward cyclic variation in rank range within a se-
ries can also be noted for Fig. 4. The middle members of a series tend to 
have greater rank range than the end members. This is an empirical obser-
vation that bears study for other contexts. 

Fig. 5. Poset CI level in relation to rank range run sequence for watersheds with 
six species richness indicators 

Fig. 5 shows graphical combination of intrinsic ordering by poset CI 
level with rank run sequencing. It is notable that the RRR series toward the 
left-hand side have a strong correspondence of CI level with position in the 
rank range run, but this relationship weakens progressively with shift to-
ward the right. Answers to the first three managerial prioritization ques-
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tions posed at the outset are to be found in the rank range runs toward the 
left side of a graph like that of Fig. 5. The challenge is how to portray this 
information in a manner that is easily interpreted. 

When working with mapped information, this challenge can be met by 
strategic use of red-green-blue (RGB) coloration for the map units. Each 
unit has a colour component of red proportional to its CI level and a colour 
component of green inversely proportional to its CI level. A colour com-
ponent of blue is added in proportion to the RRR series number. In this 
colour regime, inferior units in low numbered (low dissonance) RRR series 
will appear strongly red, whereas superior units will appear strongly green 
and intermediate units will appear yellowish. As RRR series number and 
dissonance increase, the increasing blue component will grade red into 
magenta and green into cyan. Likewise, yellow will grade into grey and 
then further into blue-grey. Unfortunately, direct illustration of this regime 
for visualization would require prohibitively expensive colour figures.  
However, Fig. 6 shows the watershed units that appear strongly black in 
such a display and thus reflect consensus of indicators regarding superior 
characteristics. These watersheds primarily occupy highland areas having 
relatively less impact of development and agriculture. 

Fig. 6. Watersheds indicated as having superior status 

An important advantage of this approach is that it facilitates working 
with large numbers of units that would have Hasse diagrams so complex as 
to be completely lacking in interpretability. Even if units do not lend them 
to portrayal in map form, the RRR series can be sorted with a spreadsheet 
according to series number and extracted one or a few a time for progres-
sive graphical display and interpretation. The RRR series are logical sets 
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for comparison with regard to the management questions posed at the be-
ginning. Furthermore, adjacent RRR series are more readily comparable 
than series that are farther apart in their numbering. It should also be noted 
that sorting the units according to the final composite RRR sequence num-
ber also serves to place the RRR series in order by number.  

It is interesting to explore how the structure changes for the watershed 
context when the six species richness indices are combined into only two 
indices that represent predominantly upland species versus predominantly 
lowland species. Of course, the segregation is neither absolute nor neces-
sarily in opposition relative to watersheds. Complex topography will 
imbed both uplands and lowlands in the same watershed, thus creating 
units having greater habitat diversity. Such complex topographic units tend 
to be of special interest for conservation both because the rugged terrain 
discourages development and because there is opportunity to capture a 
spectrum of habitats in an area of relatively modest size. 

Rank Range Runs for two species groups
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Fig. 7. Watershed rank range runs for upland and lowland species richness groups 
as indicators 

Fig.’s 7, 8, and 9 are the two-indicator counterparts of Fig.’s 2, 4 and 5 
for six indicators. There are similarities and differences that invite specula-
tion regarding both the general utility and propensities for the approach. 
The lower numbered rank range run series (to the left) in Fig. 7 are even 
more distinctive than those in Fig. 2 where there are more indicators. Fig. 
8 is like Fig. 4 in exhibiting an increase of rank range with RRR sequence 
and a propensity of the rank range to increase in the middle of each series. 
However, there are more units with narrow ranges in Fig. 8 that give the 
trend a concave (upward) shape instead of a somewhat convex shape. Fig. 



322      Myers, W. L., Patil, G. P. and Cai, Y.  

9 exhibits considerably more posets CI levels than Fig. 5, and there is sub-
stantial linearity between CI level and position within the rank range run 
series. However, it is to be noted that moderately good classes of intrinsic 
ordering (posets) occur even in substantially conflicted cases (rightward 
rank run series). 

Rank Range (Y) vs. RRRsequence number (X)
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Fig. 8. Trend of rank range with progression along rank range run sequence for 
upland/lowland species groups on watersheds 

Fig. 9. Poset CI level in relation to rank range run sequence for watersheds with 
upland/lowland species richness indicators 

These observations suggest robustness in the nature of the patterns, and 
a sharpening of the patterns with increasing concordance of indicators. The 
rank correlation (after Spearman) is 0.411 between upland and lowland in-
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dicators, and rank correlations among the six indicators are highly varied 
as shown in Table 2. Among the six, the maximum rank correlation is 
0.778 between birds and mammals. The rank correlation is 0.517 between 
amphibians and turtles, and 0.530 between amphibians and snakes/lizards. 
All other rank correlations are less than 0.400 among the six. Four of the 
rank correlations are essentially indicative of independence, having magni-
tude less than 0.01 and even carrying a negative sign. Reversing polarities 
is not appropriate for any of the indicators since it would induce negativity 
of a larger magnitude in other pairs of rank correlations. It should also be 
kept in view that these are correlations between the ranks rather than be-
tween the observed species richness data. For the present biodiversity con-
text, there is some compensatory interaction among the indicators as evi-
denced by the result of aggregation to upland versus lowland perspective. 

Table 2. Rank correlations between six species richness indicators of biodiversity 

 Mammals Fishes Amphibians Turtles Snake/Lizard 
Birds 0.778 0.383 0.343 -0.001  0.329 
Mammals  0.292 0.278 -0.092  0.187 
Fishes   0.215 -0.071 -0.007 
Amphibians    0.517  0.530 
Turtles      0.357 

Performing principal component analysis on the ranks can help to as-
sess the dimensionality of the ordering context. Since the marginal distri-
butions of the ranks are the same except for ties, the difference between 
covariance matrix and correlation matrix is not critical. If there are subsets 
of indicators that segregate strongly in their loadings, then complexity is 
confirmed and it may be prudent to consider partitioning of the prioritiza-
tion process.

Rank range end-member elimination effect 

The management question regarding opportunities for remediation and res-
toration has still not been addressed. This question can be approached 
through rank ranges by considering the reduction in rank range for a unit 
that would be obtained by deleting one of the end-members that determine 
the range. We call this the ‘End-member Elimination Effect’ (EEE). If the 
greatest rank range reduction is obtained by eliminating the lowest num-
bered rank, then the EEE is given a negative sign. If a greater reduction of 
rank range for the unit is obtained by eliminating the highest numbered 
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rank, then the EEE is given a positive sign. Units having a large positive 
EEE value offer the opportunity to improve the rank range standing con-
siderably by ameliorating a single indicator factor. Conversely, units hav-
ing large negative EEE values indicate that the overall standing can worsen 
considerably by deterioration in a single indicator factor. 

EEE (Y) versus RRRsequence number (X)
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Fig. 10. End-member elimination effect versus rank range run sequence number 
for six indicators on watersheds 

The end-member effects for six watershed indicators are plotted against 
RRR sequence number in Fig. 10. As would be expected the effects are 
small toward the left where rank ranges are small, with larger effects ap-
pearing more frequently toward the right where rank ranges are larger. 
Rank range reduction is not applicable to the case of only two indicators, 
since eliminating either of them would also eliminate the range.

Second order analysis 

Managers may also be interested in the comparative differences between 
perspectives provided by rank summary statistics such as median rank, 
mean rank, and midrange of ranks. The rank range approach can also pro-
vide an interesting alternative for conducting such comparative analysis. 
The statistics of interest can be treated as second-order multiple indicators 
for the units instead of using the indicator data from which the statistics 
were derived. Poset CI level and rank range analyses are then conducted in 
a parallel manner to the procedures described above. It would not be in-
formative, however, to consider the end-member elimination effects in this 
manner.
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Abstract

The main objective of the European Commission's White Paper on a future 
chemicals strategy (EEC 2001) is to facilitate the risk assessment of 
chemicals leading to, where necessary, risk reduction. Important roles play 
the chemical and environmental databases, which can be regarded as an in-
formation turnover. In this paper the emphasis lies on the evaluation of 12 
numerical databases available on the free Internet, which focus on envi-
ronmental fate and ecotoxicity as well as on high production volume 
chemicals. Hence we analyse a 12x27 data-matrix in the first place. Two 
multi-criteria evaluation and decision support instruments are applied: The 
Hasse Diagram Technique (HDT), a method derived from discrete mathe-
matics, and the Method of Evaluation by Order Theory (METEOR). The 
original data-matrix of 12 databases (objects) and 27 parameters (attrib-
utes) will be subject to several logical aggregation steps. The aim of the 
aggregation procedure that can be performed by applying iteratively the 
Hasse Diagram Technique (HDT) is to get a unique prioritisation scheme. 
Significant data gaps even on the chosen well-known high production vol-
ume chemicals as well as on ecotoxicity and environmental fate parame-
ters are identified by the chosen methods and weighting procedures. This 
indicates an alarming signal concerning the new existing chemicals policy 
of the EEC.
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Environmental Data, Databases and Information Systems 

Future Chemicals’ Policy in the EEC 

The current number of existing substances marketed in volumes above 1 
ton is estimated at 30.000 (EEC 2001). These substances amount to more 
than 99 % of the total volume of all substances on the market. In the so-
called White Paper, the paper on the Strategy for a future Chemicals Policy 
of the Commission of the European Communities, the testing and evalua-
tion of a large number of existing substances in the coming 10 years is en-
visaged. Initiative was taken to collect data on chemicals for their risk as-
sessment leading to, where necessary, risk reduction (Heidorn et al. 2003).  

The gap in knowledge about intrinsic properties of existing substances 
should be closed to ensure that equivalent information to that on new sub-
stances is available. The available information on existing substances 
should be thoroughly examined and best use made of it in order to waive 
testing, wherever appropriate. Studies show significant gaps in publicly 
available knowledge of existing chemicals especially in environmental fate 
and pathways as well as in ecotoxicity parameters (Allanou et al. 2003). 

Environmental Chemicals’ Databases and Information Systems 

It is evident that the topic “environmental chemicals’ data” is strongly re-
lated to the subject of structuring and archiving them in environmental and 
chemical databases (Page and Voigt 2003). These databases are not only 
found in every medium, that is to say online, CD-ROM, and on the Inter-
net, but are quite varied in their type and contents. The interested commu-
nity urgently needs support in finding relevant information and data about 
environmental chemicals. Recently a very valuable and unique guide for 
searching scientific and technical information online, CD-ROM and Inter-
net was published (Poetzsch 2004). Furthermore it is of utmost importance 
to give precise indications of the importance and quality of the databases. 
This means performing a comparative evaluation of databases with respect 
to several different evaluation criteria. Several approaches exist. Compari-
sons of eight large chemical structural databases are performed (Voigt et 
al. 2001). Another evaluation approach for structural and reaction data-
bases is given by Cooke and Schofield (2001). Approaches using the 
mathematical method of partial orders are also used to evaluate environ-
mental and chemical databases. A comparative evaluation of data-sources 
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of online databases and databases on CD-ROM based on research results 
gained in the years 1996/1997 is given by the first author (Voigt 1997), 
(Voigt et al. 2000). An overview on evaluation approaches for chemical 
databases was also published recently (Voigt and Welzl 2002a). 

Selection of Databases (Objects) and Parameters and 
Chemicals (Attributes) 

Selection of Environmental Chemical Databases 

A huge amount of environmental databases is available worldwide. Most 
of these databases can be accessed via the Internet. However one must dis-
tinguish between fee-based and non-fee based databases. In our approach 
we only take databases on the free Internet into account. The second focus 
we have in mind is that we only chose numerical and full-text databases. In 
these databases the data and information can be retrieved immediately. For 
further reading on the types of environmental databases the article of the 
first author in the Handbook of Chemoinformatics, edited by Gasteiger and 
Engel is recommended (Voigt 2003). All the chosen 12 non-fee databases 
are incorporated in the DAIN - Metadatabase of Internet Resources for 
Environmental Chemicals, which can be found under http://www.wiz.uni-
kassel.de/dain (Voigt 2000). As in this database more than 100 numerical 
databases can be found, we selected those ones which are commonly 
known and recommended in several publications (Wexler 2004), (Russom 
2002), (Felsot 2002). Besides the US databases we added two German 
data-sources, one Japanese database and one Australian information 
source. Furthermore we selected the international database Screening In-
formation Data Sets that is described in recent publications (Gelbke et al. 
2004), (CERHR 2004). 

The entire study was performed in late 2002. The authors are aware that 
the selection is arbitrarily and that many more interesting sources for in-
formation on environmental chemicals exist worldwide. The possibility of 
the move or remove of sites exists. The chosen databases which are listed 
together with their later used abbreviations and their Internet address (URL 
= Uniform Resource Locator) are given in Table 1. Three different types of 
numerical databases can be distinguished: 
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Single databases which cover only one data collection (BID, CIV, 
HSD, UMW) 
Multi-database databases which encompass several databases under 
the same name and search interface (ECO, ENV, EFD, EXT) 
Monograph databases, which cover extensive reviews on very few 
chemicals (EHC, NRA, PES, SID). 

Table 1. List of Chosen Numerical Databases Focusing on Environmental Chemi-
cals

Name off Database Abb. URL 
Biocatalysis/Biodegradation  
Database

BID http://umbbd.ahc.umn.edu/   

Chemicals Information System 
for Consumer-relevant Substan 
ces (CIVS) 

CIV http://www.bgvv.de/cms/detail.php?te
mplate=internet_en_index_js  

ECOTOX ECO http://www.epa.gov/ecotox/ 
Envirofacts ENV http://www.epa.gov/enviro/html/emci/

chemref/ 
Environmental Fate Database EFD http://esc.syrres.com/efdb.htm  
Environmental Health Criteria 
Monographs (EHCs) 

EHC http://www.inchem.org/pages/ehc.html  

EXTOXNET EXT http://ace.ace.orst.edu/info/extoxnet/ 
HSDB HSD http://toxnet.nlm.nih.gov/cgi-

bin/sis/htmlgen?HSDB  
NRA Chemical Review Program NRA http://www.nra.gov.au/chemrev/chemr

ev.shtml  
Pesticide Database, Japan PES http://chrom.tutms.tut.ac.jp/JINNO/PE

SDATA/00alphabet.html 
SIDS SID http://www.chem.unep.ch/irptc/sids/sid

spub.html
UmweltInfo UMW http://www.umweltinfo.de/ui-such/ui-

such.htm  

Selection of Environmental Parameters 

The environmental fate and pathways and the ecotoxicity parameters im-
plemented in the IUCLID database (Allanou et al. 1999) will be looked 
upon. These are: 

Environmental fate and pathways: photodegradation, stability in water, 
stability in soil, monitoring data (environment), transport between envi-
ronmental compartments, distribution, mode of degradation in actual use, 
biodegradation, BOD5, COD or BOD5/COD ratio, bioaccumulation. 

Ecotoxicity: acute/prolonged toxicity to fish, acute toxicity to aquatic 
invertebrates, toxicity to aquatic plants e.g. algae, toxicity to microorgan-
isms, e.g. bacteria, chronic toxicity to fish, chronic toxicity to aquatic in-
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vertebrates, toxicity to soil dwelling organisms, toxicity to terrestrial 
plants, toxicity to other non-mammalian terrestrial species, biological ef-
fects monitoring, biotransformation and kinetics.  

In Table 2 a list of these attributes with their abbreviations and their 
membership to a class of super-attributes is given (see text). 

Table 2. Environmental Parameters 

a see eqn. 3 

Selection of Environmental Chemicals 

The databases are not only looked upon with respect to their parameters 
but also with respect to some selected chemicals. The selection of a prag-
matic number of existing chemical substances, which are not only relevant 
in one aspect, is difficult and here solved rather pragmatically. The follow-
ing 12 high production volume chemicals are chosen which are listed in 
Table 3. 

Parameter Abbre- 
viation 

 Super-
attributea

photodegradation PHO  
stability in water SWA
stability in soil SSO
biodegradation BDE FATE 
BOD5, COD or BOD5/COD ratio BOD 
bioaccumulation BAC 

acute/prolonged toxicity to fish ATF 
acute toxicity to aquatic invertebrates ATD 
toxicity to aquatic plants e.g. algae ATP 
toxicity to microorganisms, e.g. bacteria ATB 
chronic toxicity to fish CTF ETOX
chronic toxicity to aquatic invertebrates CTD 
toxicity to soil dwelling organisms TSO 
toxicity to terrestrial plants TTP
toxicity to other non-mammalian  
terrestrial species 

TNT
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Table 3. List of Chosen Chemicals for the Evaluation of Environmental Chemi-
cals' Databases 

CAS
Number 

Chemical Name Remarks  Super-
attribute 

100-00-5 1-chloro-4-nitrobenzene HPVC  
100-01-6 4-nitroaniline HPVC
100-02-7 4-nitrophenol HPVC 
1912-24-9 Atrazine  HPVC, ED 
999-81-5 Chlormequat chloride HPVC 
333-41-5 Diazinon HPVC 
60-51-5 Dimethoate  HPVC CHID 
26761-40-0 Ethofumesate HPVC 
1071-83-6 Glyphosate HPVC 
34123-59-6 Isoproturon  HPVC 
121-75-5 Malathion HPVC, ED  
137-26-8 Thiram HPVC 

HPVC= High Production Volume Chemical, ED = endocrine disruptor, CHID, see 
eqn. 3  

The chemicals were taking of a ranking approach for chemical sub-
stances performed by Lerche et al. (2002). Note that we are aware that pes-
ticides are not covered by REACH; anyway: here the chemicals serve as 
an example how to analyze data availability. 

The 12 databases (objects) will be evaluated by 27 attributes (environ-
mental parameters and chemicals). Recently this 12x27 data-matrix was 
analysed putting the emphasis to different order theoretical issues (Voigt et 
al. 2004a).

Environmetrical and Chemometrical Methods Used 

For analyzing environmental chemicals’ data well-known chemometrical 
and environmetrical methods are used. A good overview of established 
methods of chemometrics and environmetrics is given in the literature 
(Massart et al. 1997), (Einax et al. 1997), (Stoyan et al. 1997), (El-
Shaarawi and Hunter 2002), (Welzl et al. 2004). As the data situation in 
environmental sciences in combination with chemical substances becomes 
more and more complex, this poses a great challenge for establishing new 
data-analysis methods. Einax summarizes in a recent publication important 
new chemometrical methods (Einax 2003). One of these challenging new 
chemometrical and environmetrical method is the method of evaluation by 
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order theory, based on the theory of partially ordered sets, and its specific 
application, known in literature as the Hasse Diagram Technique (HDT).  

Hasse Diagram Technique (HDT) 

Introduction of the History of HDT 

The Hasse Diagram Technique is well explained in a variety of different 
environmental and chemical as well as statistical journals. Brüggemann, 
Carlsen in the chapter p. 61, explains the scientific background. Further 
comprehensive descriptions can be found in Brüggemann et al. (2001) and 
Brüggemann and Welzl (2002). A comparison of the Hasse Diagram Tech-
nique with multi-variate statistical methods is given by Voigt et al. 
(2004b). Therefore only some few aspects will be explained, which will be 
useful in the subsequent application. Hasse diagrams visualize the order re-
lations within objects: Two objects, also called elements (if the aspect of 
belonging to sets is important) x, y of an object set are considered as being 
ordered, e.g. x  y, if all attribute values (often called scores) of x are less 
or equal than those of y. Hasse diagrams are acyclic digraphs and objects 
are drawn as small circles together with an appropriate identifier. The 
edges of this graph are the cover-relations; that means, edges, which ex-
press simply the transitivity, are omitted, as they bear redundant informa-
tion. In our applications the circles near the top of the page (of the Hasse 
diagram) indicate objects that are the "better" objects according to the cri-
teria used to rank them: The objects not "covered" by other objects are 
called maximal objects. Objects, which do not cover other objects, are 
called minimal objects. In some diagrams there exist also isolated objects, 
which can be considered as maximal and minimal objects at the same time. 
Sometimes it is useful to call those elements as ‘proper’, which are not at 
the same time both, maximal and minimal elements. When there is exactly 
one maximal and one minimal element respectively, then these unique ob-
jects are called greatest and least element, respectively. 

The WHASSE program is developed, improved and updated by Brüg-
gemann (a brief technical information about the WHASSE-program, writ-
ten in DELPHI, can be found in Brüggemann et al. (1999) and is available 
for non-commercial use from the second author. For commercial applica-
tions it is recommended to contact the company Criterion – Evaluation and 
Information Management (Criterion 2004). Further theoretical develop-
ments concerning order theoretical tools in environmental sciences and 
their applications are discussed in regularly held workshops.
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Notation and some theoretical background of HDT 

Attributes are -in the case of the object “x” denoted as q(1,x), 
q(2,x),...,q(m,x) and often written as a tuple q(x). We avoid the term vec-
tor, because the properties of a linear space are not needed in the HDT. Of-
ten the properties are gathered to a set without reference to actual values 
realized by the objects. This set of properties is called an information base 
IB. If METEOR is to be applied, often subsets of IB are needed.

The main frame of HDT is therefore (the four-point-program): 

1. Selecting a set of elements of interest which are to be compared, E.
The so-called ground set. 

2. Selecting a set of properties, by which the comparison is performed, 
called the information basis IB.

3. Find a common orientation for all properties, according to the criteria 
they are assigned. 

4. Analysing x,y E whether one of the following relations is valid: 
x ~ y (equivalence, we call the corresponding equivalence relation, 
the equality of two tuples q(x), q(y)) 
x  y or x  y (comparability) 

x || y (incomparability, there is a “contradiction in the data of x and y”, 
see also the chapter by Simon, p. 221 where -based on incomparabili-
ties- the concept of antagonistic attributes (syn. indicators, descriptors) 
is outlined.). 

The relation defined above among all objects is indeed an order relation, 
because it fulfils the axioms of order, namely 

reflexivity (one can compare each object with itself) 
anti-symmetry (if x is preferred to y then the reverse is only true, if 
the two objects are equal (or equivalent) 
transitivity (if x is better than y, and y is better than z, then x is better 
than z). 

A set E equipped with an order relation is said to be an ordered set (or 
partially ordered set) or briefly "poset" and is denoted as (E ). Because 
the -comparison depends on the selection of the information basis (and of 
the data representation (classified or not, rounded, etc.) we also write (E,
IB) to denote this important influence of the IB for any rankings (Brügge-
mann and Welzl 2002). 



Information Systems and Databases      335 

Sometimes it is useful to refer to the quotient set, which is induced by 
the equivalence relation of equality, R (see for details: Brüggemann and 
Bartel 1999). As usual we write E/R for the quotient set, and (E/R, IB) for 
the partially ordered quotient set. 

If empirical posets are to be examined it is important to establish orien-
tation rules, i.e. which value of attributes are considered to contribute to 
badness and which values to goodness. Concerning the evaluation of the 
ecotoxicity of environmental chemicals by lethal concentrations i.e. LC50
values for example, the orientation is the other way round. Here the fol-
lowing situation arises; see Brüggemann and Carlsen, p. 70: 

small values: "good", relatively unhazardous, objects are drawn in the 
lower part of the Hasse diagram. 

large values: "bad", relatively hazardous, objects are drawn in the up-
per part of the Hasse diagram. 

This consideration is very important and relates to point 3 of the four-
point program: One has clearly to state, which orientation is selected and 
what is related with the bottom-top gradient of a Hasse diagram. 

Concerning the evaluation of environmental chemical databases with re-
spect to environmental parameters and chemicals, the value 1 means avail-
able information, hence "good", the value 0 means information unavail-
able, hence "bad".

The total number of comparabilities V and incomparabilities U and their 
local analogues (i.e. the no of comparabilities V(x) and incomparabilities 
U(x) of a certain element x are useful quantities for the documentation of 
the Hasse diagram and for the estimation of ranking uncertainties (Brüg-
gemann and Welzl 2002). 

W-Matrix (Dissimilarity Matrix)  

The theoretical background of this dissimilarity matrix, which describes 
the influence of the attributes on the Hasse diagram, is given by Brügge-
mann and Carlsen, p. 61.  

The entries of the W-matrix are a measure for the metric distance among 
posets, based on the same ground set of objects, but induced by different 
subsets of IB of m-1 attributes, i.e. subset generated by IB – {qi}, i= 1,…, 
m. The definitions of the entries of the W-matrix depend on the actual se-
lected subset of elements of E. Mostly the full ground set E is used. More 
details can be found in Brüggemann et al. (2001). For further reading we 
refer to background publications by Brüggemann and Welzl (2002). 
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METEOR - Method of Evaluation by Order Theory  

Aggregation procedures of the data-matrix will be performed by applying 
METEOR (Method of Evaluation by Order Theory). The basic idea is that 
subsets of the IB can be combined by weighted sums; see Brüggemann and 
Pudenz (2001). In order to combine attributes freely, a common scaling 
level must be assumed. Each positive monotonous combination of -say- 
two attributes, leading to a “superattribute” corresponds order theoretically 
to an order-preserving map. Therefore the role of weighting can be traced 
back, when the final result, a linear order, is found by a stepwise aggrega-
tion. Note that an aggregation of an ordinal quantity with a metric one or 
the aggregation of ordinal attributes must be carefully examined. Often it 
is better to stop the aggregation than to mix attributes of different scaling 
level.

Furthermore, checking the local incomparability of any element, it is 
possible to identify weight-sensible and weight-insensible elements of the 
ground set E and E/R, respectively, see Brüggemann et al. (2001). Further 
explanations concerning the mathematical background are given in a re-
cent publication (Voigt et al. 2004b). 

Averaged Ranking

The application of weighting schemes as performed by METEOR is not 
the only way to get linear orders. Another possibility was found by 
(Winkler 1982) and worked out by Lerche and Sørensen (2003), Brügge-
mann et al. (2004). The principle to get a linear order is first to find all or-
der preserving maps of an empirical poset. Hereby a set of linear exten-
sions, LE is found, where each element of this set is a single linear order 
preserving all -relations of the empirical poset. The set LE can be very 
large. A very crude upper estimation of LT, the number of all linear exten-
sions of an empirical poset is n!, with n the number of all elements of the 
quotient set. The set LE of all linear extensions can be interpreted as prob-
ability space: Let us assume that the rank of an object x, found for one 
specific linear extension, rk(x) has a certain value, Rk. Then the probabil-
ity of x to get this value Rk is the number of linear extensions where rk(x) 
= Rk, L(rk(x) = Rk), divided by LT (see chapter by Brüggemann and Carl-
sen, p. 86). We write 

prob(rk(x) = Rk) = L(rk(x) = Rk)/LT               (1) 
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and then the averaged rank Rkav(x) is defined by: 

Rk
Rk)Rk)x(rk(prob)x(Rkav                (2)

Application of Evaluation Methods to Data-Matrix 

Hasse Diagram Technique 

As described in detail in section ‘Selection of Databases (Objects) and Pa-
rameters and Chemicals (Attributes)’ we have to cope with 12 databases 
(objects), which we want to analyse by 27 criteria (attributes). These crite-
ria are divided into environmental parameters and chemicals. Hence we 
will evaluate a 12x27 data-matrix in a first step. We calculate a Hasse dia-
gram for this data-matrix (see Fig. 1). It can be seen that the databases 
ECO - ECOTOX, EXT – EXTONNET, EFD – Environmental Fate Data-
base show best results as well as HSD – Hazardous Substances Database. 
These objects are proper maximal objects. There are no other databases, 
which are better in all aspects than these proper maximal objects. UMW – 
UmweltInfo, ENV – EnviroFacts Databases, BID – Biocatalysis / Biodeg-
radation Database and PES – Pesticide Database give bad results in com-
parison to most other databases. These are the proper minimal objects. The 
databases NRA – NRA Chemical Review Programme and SID – Screen-
ing Information Datasets from the OECD are so-called isolated objects. 
They cannot be compared to any other object. Hence four proper maximal, 
four proper minimal and two isolated objects are found in the diagram.  

For example the successor set of the maximal object ECO is composed 
of the objects CIV, EHC, PES and UMV. The maximal object EFD has 
only two successors, namely ENV and BID. There are four levels: 

Level 1: {ENV, BID, PES, UMW} 
Level 2: {EHC} 
Level 3: {CIV} 
Level 4: {EFD, HSD, EXT, ECO, NRA, SID} 
Level 1 < Level 2 <Level 3 < Level 4 

"bad"   "good" 
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Fig. 1. Hasse diagram of 12x27 Data-Matrix 

This Hasse diagram displays many incomparabilities and only few com-
parabilities. The condensed information on this diagram is listed in Table 
4.

As we have to cope with a broad data-matrix, that is to say more attrib-
utes than objects, data reduction procedures on the attributes’ side seem to 
be appropriate.  

Application of METEOR 

Weighting Schemes (Overview)  

The original data-matrix of 12 databases (objects) and 27 parameters (at-
tributes) will be subject to several logical aggregation steps. The aim of the 
aggregation procedure, which can be performed by applying the Hasse 
Diagram Technique Program WHASSE (Brüggemann and Welzl 2002) is 
to get a unique prioritisation scheme or at least a greatest or least element. 

EFD HSD EXT ECO NRA SID

CIV

EHC

ENV BID PES UMW
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Fig. 2. Different Weighting Schemes 

Several different weighting procedures are considered and performed 
(Fig. 2).

1. Aggregation to get three super indicators concerning environmental 
fate (FATE), ecotoxicity (ETOX), and chemical information (CHID) 
(Section ‘Aggregation equal weight of environmental Parameters and 
Chemicals’) 

2. W-Matrix: 1 attribute is left out; all other 26 attributes are kept (Sec-
tion ‘W-Matrix: Leaving out the most important attribute’). Based on 
this finding, the remaining 26 attributes are equally weighted, 
whereas the weight of the omitted attribute is formally considered as 
0. This is an example of an extreme case of weighting  

3. Two different weighting, normalization to 1, n=27 (Section ‘Different 
weighting schemes’) 

Aggregation Equal Weight of Environmental Parameters and 
Chemicals

The aggregation of the data-matrix will be performed and the results pre-
sented by the application of METEOR (Method of Evaluation by Order 
Theory). The criteria (attributes) encompass ecotoxicity as well as envi-
ronmental fate. As all the chemical substances are high production volume 
chemicals and used as pesticides, we aggregate them into one group. 
Hence we cope with three aggregation groups; where each of the following 

n=27, 1/(n-1) 
W-Matrix 

n=27
normalization to 1  

n1=15 parameters n2=12 chemicals

FATE (6) ETOX (9) CHEM (12) 
n=27, 
 3 groups: ag-
gregation to 3 
super indicators  
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super indicators "FATE", "ETOX", and "CHID" are calculated by a sum 
with equal weights. For example see eqn. 3: 

6/1w
BAC,...SWA,PHO,

BACSWA,...,PHO,qqwFate

i

6

1
iii

IB

IB
i

i
Fatetalenvironmen

         (3)  

Aggregation of 6 environmental fate attributes:   FATE 
Similarly: Aggregation of 9 ecotoxicity parameters:   ETOX 
Similarly: Aggregation of 12 chemicals:    CHID. 

By this aggregation the aspects of fate, ecotoxicity and chemicals are 
maintained and kept separately for further analysis. This "thematic" aggre-
gation can be interpreted as taking a more abstract level of consideration: 
Not which specific fate parameter is important, but the whole concept of 
fate in comparison to other criteria.  

Some visible changes took place comparing the original Hasse diagram 
of the 12x27 data-matrix (Fig. 1) with the reduced 12x3 data-matrix (Fig. 
3). Nevertheless all  - relations found in the Hasse diagram of Fig. 1 are 
reproduced in this "enriched" Hasse diagram. For examples, see Table 4: 

Table 4. Comparison between Hasse diagrams based on 27 attributes (HD27) and 
that on 3 attributes (HD3)

HD27 HD3 Remarks 

ENV < EFD ENV < EFD cover relation in HD27 , 
cover relation in HD3

BID < EFD BID < EFD cover relation in HD27
EHC < ECO EHC< ECO in both Hasse diagrams no 

cover relation 
UMW || NRA UMW < NRA An incomparability is van-

ishing due to compensation 
and a < - relation appears. 



Information Systems and Databases      341 

Fig. 3. Hasse diagram of IB= {FATE, ETOX, CHID}, 12x3 Data-Matrix 

Any -relation of the original poset will be maintained by this kind of 
aggregation. This is generally true if as aggregation function positive weak 
monotonous functions with respect to the attributes are applied.  

NRA is now a maximal object and no longer an isolated object. The 
only isolated object in this approach is SID. ENV is no longer a minimal 
object but one level above. Further differences are found in Table 4 where 
three diagrams are compared.  

EFD HSD EXT ECO NRA SID 

CIV

EHC

ENV

BID PES UMW 
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W-Matrix: Leaving out the most important attribute 

As explained earlier, the W-matrix describes the influence of the attributes 
on the Hasse diagram. The W-matrix is calculated for all objects given in 
the original diagram in Fig. 1. It reveals that the criterion acute fish toxic-
ity is the most important attribute in this approach. Three changes take 
place leaving out this criterion acute fish toxicity. The Hasse diagram of 
this described case is given in the following diagram (Fig. 4). 

Fig. 4. Hasse diagram of Case 7 (leaving out the attribute acute fish toxicity) 

Visible changes took place, e.g. HSD is no longer a maximal object but 
found in the second highest level. ENV is no longer a minimal object. Sev-
eral differences can be detected while reducing the initial 12x27 data-
matrix applying the METEOR method and the W-Matrix. In our examples 
we reduced the data-matrix to a matrix of 12x3 (equal weighting) and to 
12x26 (W-Matrix). The results are listed in Table 5. 

EFD

HSD 

EXT ECO NRA SID

CIV

EHC

BID PES UMW

ENV
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Table 5. Comparison of Three Hasse diagrams 

Data-matrix 12x27 12x3 12x26 
Number of Levels 4 4 4
Objects in largest level 6 6 5 
Equivalent objects 0 0 0
Maximal objects 4 5 3
Minimal objects 4 3 3
Isolated Objects SID, NRA SID SID, NRA 
Comparabilities V(N) 14 21 17 
Contradictions U(N) 104 90 98

All three diagrams also show some similarities. They all have 4 levels 
and no equivalent objects. The number of comparabilities decreases with 
the number of attributes. For the number of incomparabilities the situation 
is the other way round. In other words: The more attributes the data-matrix 
encompasses, the less comparabilities are found.

The next logical step is the aggregation of all attributes 1/26 = 0,03846 
and the setting of acute fish toxicity ATF = 0. The linear order Hasse dia-
gram is given in Fig. 5, left hand side. 

Different weighting schemes 

The next step is to weight in a logical and subject-oriented way selected at-
tribute-groups differently. For example: One might be more interested in 
parameters than in chemicals or verse visa. 

For the first attempt we weight the parameters double with respect to the 
chemicals. 

Let n1 and n2 be the numbers of attributes in two attribute groups (here: 
parameters and chemicals, respectively), w1 and w2 the weights by which 
the attributes of the one group and those of the other group are combined, 
and m the relative weight. Then, maintaining the normalization to 1 the 
weights can be calculated as follows in eqn. 4 and 5: 

w2 =
2n)m1n(

1
      (4) 

21 wmw        (5)

Equivalent Objects: {NRA;SID}, {PES;UMW}(left), {BID;PES} {EFD;EXT} 
{HSD;NRA}(middle), {BID;PES}(right)
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Fig. 5. Linear orders represented in tabular form (ECO > EFD > CIV >…). First 
column: ATF=0 and all other attributes: weights 1/26 equivalence classes: {NRA, 
SID}, {PES, UMW}, Second and third column: Parameters and Chemicals aggre-
gated with different weights (see text); equivalence classes (2nd column) {BID, 
PES}, {EFD, EXT}, {HSD, NRA}; (3rd column) {BID, PES}  

As the parameters are considered to be more important than the chemi-
cals, m must be selected > 1. Here for m, arbitrarily the value 2 is given:

w1 = (weight of parameters) = 0,0238 
w2 = (weight of chemicals) =  0,0476 

ECO  ECO  ECO 

EFD  CIV  EFD 

CIV  EFD  CIV 

HSD  SID  HSD 

EXT  HSD  ENV 

ENV  ENV  EXT 

NRA  EHC  NRA 

EHC  UMW  EHC 

BID  BID  SID 

PES    BID 

    UMW 
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The corresponding Hasse diagram is given in the Fig. 5 in the middle 
section.

Clearly this Hasse diagram comprises a linear order, not a partial order. 
Three equivalence classes are shown: {BID;PES} {EFD;EXT} 
{HSD;NRA}. The database ECO comes best whereas the databases BID 
and PES are the least important ones considering the parameters to be of 
higher importance than the chemicals. UMW is also not recommendable as 
it is found on the second lowest level. 

Alternatively we weight the chemicals double with respect to the envi-
ronmental parameters, i.e. m=0.5.  

w2 = (weight parameters) = 0.0256 
w1 = (weight chemicals) = 0.0513 

the corresponding Hasse diagram being given in the Fig. 5, right hand side. 
In this diagram only one equivalence class {BID;PES} is given. The 

maximal object is still ECO like in the diagram where the emphasis is put 
on the parameters. This means that ECO is a very comprehensive database 
as well for chemicals as for parameters. In this diagram UMW is the 
minimal object and BID / PES can be found on the second lowest level. 
These three databases are neither recommendable for chemicals nor for pa-
rameters. The location of SID in both diagrams is worth discussing. 
Whereas it can be found on a rather good position in the diagram where 
the parameters are important (weighted higher than chemicals), it is situ-
ated at a comparably low position in the Hasse diagram in which the 
chemicals are of more importance. This means that SID comprises a huge 
range of parameters but only on a small amount of chemicals. The varia-
tion of the ranking position of SID is expected: SID is an isolated element, 
therefore any aggregation can locate SID everywhere, whereas objects, 
which are related to others by the -relation must preserve this relation in-
dependent which kind of weighting one is applying. Note however that dif-
ferent weighting schemes will not necessarily lead to very different rank-
ing positions, even if the object is isolated. See for example the object 
NRA. This object is isolated in HD27, however its ranking variation is not 
large -at least in comparison to the object SID.  

Discussion of Linear Orders

All diagrams Fig. 5 left (W-Matrix – AKF weighted 1/26), Fig. 5 middle 
(parameters more important than chemicals), Fig. 5 right (chemicals more 
important than parameters) show linear orders. These diagrams will be 
compared now. Six objects are arbitrarily selected, not to overburden the 
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Hasse diagram: ECO, CIV, SID, ENV, EHC, and UMV. The equivalence 
classes are left out (Table 5) (Fig. 6).  

Table 6. Comparison of Linear Orders 

Subset of objects 
/numbers 

Fig. 7 (middle)  
parameters more 
important than 
chemicals 

Fig. 7 (right)  
chemicals more 
important than pa-
rameters 

Fig. 7 (left) 
Attribute fish tox-
icity left out, the 
other uniformly 
weighted 

ECO 6 6 6 
CIV 5 5 5 
SID 4 2 3 
ENV 3 4 4 
EHC 2 3 2 
UMV 1 1 1 

ECO

CIV

SID ENV

EHC

UMW

Fig. 6. Hasse diagram of the Rankings Induced by the Linear Orders 

Obviously different weighting schemes even that for which the most 
important attribute is neglected lead to the more or less same ranking. The 
main uncertainty for this evaluation is found for the database SID. Its rank 
position will severely depend on how the weights are selected. Once more, 
the advantage of the inclusion of order theoretical tools is evident. 
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Averaged Ranking

By applying the average ranking procedure briefly explained above in sec-
tion ‘Averaged Ranking’ and in more detail in chapter Brüggemann and 
Carlsen, p. 61 the following result is obtained: ECO > EFD > EXT > HSD 
> CIV > NRA > SID > ENV > EHC > UMW > BID > PES. 

Performing the averaged rank, nearly the same ranking effect than that 
which is induced by a specific weighting scheme, namely parameters two 
times more important than chemicals, can be detected. This means that an 
averaged ranking is often a good policy for a first screening of priorities. If 
no knowledge is known about weightings, it might be a pragmatic way to 
estimate the linear order by calculating the averaged ranks (Brüggemann et 
al. 2004), (Lerche and Sørensen 2003). Additionally probability distribu-
tion, prob(rk(x) = Rk) as a function of Rk can be derived by which the un-
certainty of any rank can be calculated. For example the probability distri-
bution of three databases is shown in Fig. 7. 
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Fig. 7. Probability Distribution of Ranks of Three Databases 

Thus a broad and nearly uniform distribution of ranks is typical for ob-
jects, which are isolated (SID) or nearly isolated (ENV). EHC has many 
connections and can be therefore more safely ranked. This is seen by the 
relatively sharp unimodal curve in Fig. 7. One can see that even if a single 
number is generated by the averaged ranking procedure, the same theoreti-
cal setting helps to identify uncertainties (Brüggemann et al. 2004). 
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Discussion and Conclusion 

The availability of environmentally relevant parameters (environmental 
fate and ecotoxicity) as well as the availability of data on 12 high produc-
tion volume chemicals in 12 well-known international databases on the 
free Internet was analysed. Different mathematical and statistical methods 
were taken into account. The emphasis is set on the METEOR – Method of 
Evaluation by Order Theory, a discrete mathematical method. All methods 
revealed significant shortcomings in the databases. The Hasse diagram of 
the complete data-matrix 12 objects (databases) x 27 attributes (parameters 
+ chemicals) revealed that the databases ECO- ECOTOX, EFD – Envi-
ronmental Fate Database and EXT Extoxnet, also called multi-database da-
tabases came best. One has to consider the fact that these databases com-
prise different sizes of data. Whereas EFD comprises approximately 
20.000 chemicals, ECO encompasses data on approximately 8.000 chemi-
cals, and EXT only on 400 chemicals. EXT has extended profiles on high 
production volume chemicals. HSD – Hazardous Substances Database has 
a broad data collection on 4.500 chemicals. Most single databases, which 
are specialised, are found in a minimal position in the Hasse diagram. 
These are BID- Biocatalysis/Biodegradation Database, PES – Pesticide 
Database, and UMW – UmweltInfo.  

The aggregation of environmental parameters and chemicals (equal 
weight) leads to a slimmer data-matrix on the attribute side. However, no 
significant differences are found in the “best” and “worst” objects. The ag-
gregation procedure, assigning different weights to either parameters or 
chemicals, which lead to linear order diagrams, also reveals that the multi-
database databases get a high position. Differences can be detected in the 
other positions. The monograph databases EHC, ENV, EFD, EXT come in 
the low positions when the chemicals are weighted twice, they come in 
middle and low positions when the weighting of parameters is emphasised. 
This is a slight indication that monograph databases have a huge variety of 
parameters but comprise only few chemicals.  

Performing the averaged rank, a very similar ranking effect than that 
which is induced by a specific weighting scheme, namely parameters twice 
as important as chemicals, can be detected. This means that getting an av-
eraged ranking might be a good policy for a first screening of priorities. 
This approach will be followed in our future studies. 

The whole approach indicates a rather bad situation on the data avail-
ability on existing chemicals and hence an alarming signal concerning the 
new existing chemicals policy of the EEC.  
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For future steps concerning the data availability of chemicals five ways 
should be taken into account: 

Foster many data-sources (timeliness) 
Foster new publications and enter the data into the numeric databases 
Estimate data by well-established methods (QSAR) and fill up data 
gaps indicating that the data are estimated ones. 
Test chemicals in the described way by the EEC according to the 
White Paper (EEC 2001) 
Evaluate dynamically the actually best databases 

Only by improving the data situation extensive testing can be reduced to 
a pragmatic size. 
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6 Rules and Complexity 

Partial order has for its own a rich mathematical theory and there is a 
manifold of relations to combinatorics, graph theory and algebra. Even re-
lations to experimental designs and variance analysis can be established. 
However, mathematicians like to find more structure for their objects to be 
studied. In that sense posets are poor, because there is only one binary op-
erator, i.e., the -relation. Comparing with the daily life example where we 
have addition and multiplication as binary operators the mathematical mul-
titude in posets is somewhat restricted. Should this deficiency bother the 
applications? This question can be answered with "yes" if the chapters of 
Kerber and of Seitz are examined. 

In the chapter by Kerber a posetic structure is explained, which obeys 
the axioms of order but fulfil additional properties, namely those of lat-
tices. Similar to daily life calculations lattice theory combines the objects 
of interest by two operators. Kerber shows by a very simple chemical ex-
ample (what is standard knowledge) how one can derive systematically a 
classification for chemical systems. He uses the Brønsted definition of ac-
ids and shows by a stepwise process how additional knowledge can be sys-
tematically introduced. In a second example Kerber shows how implica-
tions about the pollution status in regions of Baden-Württemberg, 
Germany, can be derived and how general characteristics, like density of 
forests, or of traffic roads could be related to the pollution status. Method-
ologically the reader gets an impression about the powerful Formal Con-
cept Analysis, which is a variant of lattice theory. 

Lattices can be obtained by several approaches. In the chapter by Seitz 
the lattice of Young diagrams is introduced and applied to study of com-
plexity. Complexity as a research area is of high interest as this concept 
can be applied to almost all disciplines where interactions (in a very gen-
eral sense; for example stock market analysis, chemical structures, social 
structures) are studied. Clearly the question arises, what is complexity, 
how can we measure it. Indeed Seitz states that there are "dozens of mutu-
ally inconsistent definitions". Nevertheless, similar to the concept of biodi-
versity the item 'complexity' has begun to have a life for its own.  Seitz re-
lates complexity with the degree of order in a Gaussian like fashion. 
Hence, a total order (a chain) and a complete disorder (an anti-chain) are 
examples of non-complexity, whereas in between the degree of complexity 
takes a maximum value. In his chapter, Seitz describes this concept and 
how it is quantified by means of the lattice of Young diagrams. For small 
systems one may derive a complexity measure just by optical inspection of 
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the Hasse diagram of Young diagrams. In the general case a measure is 
needed which is computational tractable, which is derived in Seitz's chap-
ter. Three examples clarify the arguments.  
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Abstract

We give a brief introduction to the notion of concept, a mathematical 
model of conceptual thinking. It serves very well in the organization of in-
terviews, tests and evaluations, since it allows a systematic way of drawing 
conclusions and establishing hypotheses. Thus, it can be considered as an 
efficient tool for decision support, for example, in environmental risk 
management. In fact, it models a certain way of doing research by gather-
ing examples and trying pattern recognition. 

Contexts and their concepts 

Suppose that we are given information on properties of certain objects, say 
on chemical substances and their environmental properties. We call this 
knowledge a context, and we should like to explore the information con-
tained in it. For example, we should like to  

visualize its content  
to draw conclusions 
or to form hypotheses  

based on the context and on nothing else. For this purpose, we can use 
concept analysis, introduced by R. Wille about twenty-five years ago, the 
standard reference is Ganter and Wille (1999). Its main tool is the notion 
of lattice of concepts, which is a particular partial order that beautifully re-
flects the information contained in the given context. Hence, the notion of 
concepts applies in particular to situations, where the information given is 
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of the form  

The object  has (has not) the attribute  for a given set of objects 
 and a given set of attributes  A. Such a set of information can be 

gathered e.g. in the form of a table, a context. Fig. 1 shows the oldest con-
text of environmental chemistry (Bartel 1995), it describes the classical 
“four elements”:

 / w c d h 
F ×  ×  
E  × ×  
W  ×  ×
A ×   ×

Fig. 1. The context of the “four elements” 

Its objects are: Fire, Earth, Water, Air, and the attributes: warm, cold, 
dry, humid. The entry at the intersection of the row corresponding to an 
object  and the column of the attribute  is put × if the object has this 
property, otherwise it is left empty.  

The concepts reflect its information content. They are pairs (B, C), B 
, C  A, such that the corresponding entries form a rectangle of ×’s, not 

contained in a bigger rectangle full of ×’s. In this case, the set of objects B 
is called the extent, while the set of attributes C is the intent of the concept. 
For example, if B = {b1, … , bm} is the extent of a concept and C = {c1, … 
,cn} its intent, the situation looks as follows (after a suitable rearrangement 
of rows and columns, if necessary).  

 / c1 cn

      
     

b1  × ×

bm  × ×
     

In formal terms: If we define the derivation of B by  

B : = {  A | each  B has the attribute }                     (1) 
and, analogously, the derivation of C:  
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C : = {  | each  C is an attribute of }                  (2) 

then (B, C) is a concept, if and only if B = C  and C = B .

The concepts obtained from a given context form a partial order , de-
fined by  

(B, C)  (D, E)  B  D  C  E               (3) 

(B, C) being said to be a subconcept of (D, E), (D, E) a superconcept of (B, 
C). It is even a lattice, i.e. for two concepts there exists both an infimum (= 
the biggest subconcept of both of them) and a supremum (= the smallest 
superconcept of them). Hence we may call this partial order the lattice of 
concepts corresponding to the context in question. Fig. 2 shows, for exam-
ple, the Hasse diagram of the lattice of concepts corresponding to the con-
text on the “four elements”. 

Fig. 2. The lattice of concepts of the context on the “four elements” 

The letters F, A, E, W label the smallest concepts containing the objects 
F, A, E, W in their content. F for example, labels the concept (B, C) = 
({F} , {F} ). Correspondingly, the attribute  say, labels the concept (B, 
C) = ({ } , { } ).

It is most important to note that the lattice of concepts given obviously 
allows reconstructing the context of Fig. 1. In fact, also in the general case, 
the lattice of concepts, better say the Hasse diagram of the lattice of con-
cepts perfectly reflects and visualizes the information contained in the con-
text in question! For example, we can easily read off from the above dia-
gram, that fire is supposed to be warm and dry (and neither humid nor 
cold). This is why Hasse Diagram Technique (HDT) is so helpful and im-
portant.

WEAF

chdw
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Such contexts can be replaced by 0-1-matrices. For example, the above 
context about the “four elements”, by Moreover, there are contexts that 
contain, besides 0, more than just one entry.  

 / w c d h
F 1 0 1 0
E 0 1 1 0
W 0 1 0 1
A 1 0 0 1

Fig. 3. The context of the “four elements” as 0-1-matrix 

For example, in order to express that water is “more humid” than air, we 
may establish the many-valued context of Fig. 4. 

 / w c d h
F 1 0 1 0
E 0 1 1 0
W 0 1 0 2
A 1 0 0 2

Fig. 4. A multi-valued context on the “four elements” 

Such many-valued contexts give, via scaling (see Ganter and Wille 
1999), one-valued contexts, in our example by replacing the attribute h by 
two attributes h 1 and h 2, say. 

Implications 

For sake of simplicity, we start with a description of the conclusions that 
can be drawn from a context. For sets of attributes A1, A2  A we say that 
we have the implication  

A1  A2                    (4) 

if A 1  A 2, i.e. if each object which has all the attributes  A1 has all 
the attributes  A2 as well. The crucial point is that there exist bases of 
the set of all these implications! In order to describe a particular basis, we 
note that for A1, A2, X  A, 

X respects the implication A1  A2 iff it respects A1, A2) i.e. iff A1

X  A2  X. 
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A1  A2 follows from a set L of implications, iff each X that 
respects every element of L respects A1  A2.

L is complete iff every implication follows from L.
L is reduced iff no (A1  A2) L follows from L \{A1  A2}.

In order to describe such a complete and reduced set of implications, 
we define pseudo contents P  A recursively as follows, supposing  and 
A to be finite: 

P  P  and [pseudo content Q  P implies Q  P]              (5) 

The main result, which is very interesting for various applications, is  

Theorem (Duquenne/Guigues)

I: = {P  P  | P pseudo content}                (6) 

The set I is a complete and reduced set of implications, the Du-
quenne/Guigues-basis. 

Here are two important applications:
1. If you are given a context, and the Duquenne/Guigues-basis contains 

unacceptable implications, then you need further information, i.e. 
knowledge on further objects and their properties!  

2. Otherwise, the implications in the Duquenne/Guigues-basis are either 
acceptable or you just don’t know, in which case you may consider 
them as being hypotheses!

Here is a simple didactic example that I owe to Brüggemann (see e.g. 
Bell 1974). Suppose we want to find out what Brønsted’s concept of acid 
might be, along examples. For this purpose we consider the following set 
of attributes:

H: contains H,
Cl: contains Cl,
O: contains O,
diss.: dissociates in water by protonating it,  
AH  A- + H+, H+ + H2O  H3O+.
Br.: is an acid in the sense of Brønsted. 

We are now going to establish a context by collecting a few examples 
of acids that we know. For example, we may start with HCl since we have 
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heard, say, that this is an acid in Brønsted’s sense, obtaining the context  

 H Cl O diss. Br.
HCl × ×  × × 

Using a suitable software package we evaluate its Duquenne/Guigues 
basis which turns out to be { }  {H, Cl, diss., Br.}.

It says that every molecule contains H and Cl, dissociates and is an acid 
in the sense of Brønsted. The reason for that clearly unacceptable implica-
tion is the fact that we started with a single example. But, knowing the fact 
that CCl4 is not an acid in Brønsted’s sense, we obtain the following con-
text, containing our information on CCl4 in addition: 

 H Cl O diss. Br.
HCl × ×  × × 
CCl4  ×    

Its Duquenne/Guigues basis is 

{ }  {Cl}
{Br.}  {H, diss.} 
{diss.}  {H, Br.}
{O}  {H, Cl, O, diss., Br.}
{H}  {diss., Br.} 

The last one of these implications is obviously unacceptable, the pres-
ence of hydrogen does not imply that the substance is an acid in the sense 
of Brønsted. For this reason we extend the context by CH4 obtaining 

 H Cl O diss. Br.
HCl × ×  × × 
CCl4  ×    
CH4 ×     

the implication basis of which is 

{Br.}  {H, Cl, diss.} 
{diss.}  {H, Cl, Br.}
{O}  {H, Cl, O, diss., Br.} 
{H, Cl}  {diss., Br.}
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As the presence of oxygen does not mean that the molecule in question 
is an acid we extend the context in the following way:

 H Cl O diss. Br.
HCl × ×  × × 
CCl4  ×    
CH4 ×     
CH3OCH3 ×  ×   

with its implication basis 

{Br.}  {H, Cl, diss.}
{diss.}  {H, Cl, Br.}
{O}  {H} 
{H, Cl}  {diss., Br.} 

The first element of the basis means that each acid in the sense of Brøn-
sted contains chlorine. We know that this is not true, and so we add H2SO4
obtaining the context

 H Cl O diss. Br.
HCl × ×  × × 
CCl4  ×    
CH4 ×     
CH3OCH3 ×  ×   
H2SO4 ×  × × × 

with its implication basis 

{Br.}  {H, diss.}
{diss.}  {H, Br.}
{O}  {H}
{H, Cl}  {diss., Br.} 

We see that the first two implications suggest that molecules containing 
hydrogen atoms are acids in the sense of Brønsted if and only if they dis-
sociate water by protonating it. This is an interesting hypothesis! The third 
element in the basis indicates that the presence of oxygen implies the pres-
ence of hydrogen, which is obviously false, but we don’t care, we could 
easily add counter examples. The fourth element in the basis suggests that 
the presence of hydrogen and chlorine means that the substance dissociates 
water and is an acid in the sense of Brønsted, but there are counterexam-
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ples, for example CH3Cl which we add to the context, obtaining 

 H Cl O diss. Br.
HCl × ×  × × 
CCl4  ×    
CH4 ×     
CH3OCH3 ×  ×   
H2SO4 ×  × × × 
CH3Cl × ×    

with its implication basis  

{Br.}  {H, diss.}
{diss.}  {H, Br.}
{O}  {H}
{Cl, O}  {H, Cl, O, diss., Br.} 

Fig. 5. The concept lattice connected with Brønsted’s definition 

The first two implications again suggest that molecules containing hy-
drogen atoms are acids in the sense of Brønsted if and only if they dissoci-
ate water by protonating it. Generalizations to other solvents can be done, 
however here the focus is to model the typical learning process by study-
ing examples and counter examples. Any new example is narrowing the 
range of possible definitions. Although the learning process is not yet fin-
ished as the other two implications are obviously unacceptable, we stop 
here, since we arrived at two reasonable implications. In fact, if we look at 
the “Lexikon der Chemie”, 1999 we find out that dissociation of water by 
protonating it is in fact Brønsted’s definition of acid. The corresponding 
lattice of concepts is shown in Fig. 5. 

O
CH3OCH3

diss. 
Br.

H2SO4
HCl

CH3Cl

Cl
CCl4

H
CH4
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Since we have to read Hasse diagrams from bottom to top, the concept 
lattice visualizes that HCl and H2SO4 are the only acids in Brønsted’s 
sense, that they dissociate water in contrast to all the other molecules of 
the lattice, and that they contain hydrogen.  

This example, although it is very small and trivial (but the reader may 
also think of doing the same with contexts of much larger size) demon-
strates an interesting form of computer assisted learning or knowledge ac-
quisition by successively collecting information on objects. Here is a brief 
description of the method that can be used:

Algorithm:
Start from an empty context, the columns associated with the given 
elements of a set of attributes.  
Pick an object and fill the first line according to its properties.  
Evaluate the corresponding basis of implications and check if each of 
its elements is acceptable.
If there are unacceptable elements in the basis, then add a further ob-
ject (=line), until no unacceptable implications remain in the basis.  
If implications remain that are neither acceptable nor unacceptable, 
they can be considered as hypotheses and we can try to argue why 
they might be acceptable or unacceptable.

The last item shows that this method allows the automatic generation of 
hypotheses along the collection of examples and the evaluation of the Du-
quenne/Guigues–basis. Moreover, we note that this is a mathematical 
model of a popular scientific method: Collect examples and do pattern rec-
ognition!  

Here is another example, a context on environmental situations at vari-
ous places in Baden-Württemberg due to Brüggemann et al. 1998, 2003. 
The objects are regions in Baden-Württemberg, the attributes are  

F: forest
A: agriculture
T: traffic
Sm: settlement  
I: industry  
L: lead
Cd: cadmium  
Zn: zinc
S: sulfur



364      Kerber, A. 

We deduce from Brüggemann 1999 and Brüggemann et al. 1998 a 
multi-valued context, part of which is shown in Fig. 6. Its basis of implica-
tions contains – among many others – the following implications: 

{Zn  1}  {Cd  1}
{Cd  1, S  1}  {T  2} 
{Cd  2, Zn  1}  {Zn  2} 
{L  1, S  1}  {A  2} 
{L  1, Cd  1}  {A  2} 
{L  2}  {A  2, Cd  1} 
{T  2, Sm  3, I  3}  {L  1} 
{T  3}  {F  2, A  2, I  2} 

For example, the first of these implications might be considered as the 
hypothesis “zinc comes with cadmium”. The second implication relates the 
pollution of the herb layer by cadmium and sulfur with traffic. Thus, for-
mal concept analysis helps in formulating valuable working hypotheses. 

region F A T Sm I L Cd Zn S 
Lörrach 1 1 2 3 3 1 0 0 0 
Bad Säckingen 2 2 1 1 2 0 0 0 0 
Waldshut-Tiengen 2 1 2 2 3 0 0 0 0 
Stühlingen 2 3 2 2 2 0 0 0 1 
Immendingen 1 2 2 1 2 1 0 0 1 
Engen 2 2 2 2 2 1 0 0 0 
Salem 2 3 2 1 2 1 0 0 0 
Überlingen 2 1 2 2 2 1 0 0 0 
Wangen 1 2 1 1 1 0 1 2 0 
Kandern 2 2 2 2 1 1 0 0 0 
Schönau 2 1 2 1 1 1 0 0 0 
Donaueschingen 1 1 1 2 1 0 1 2 0 

         

Fig. 6. Part of a context on regions in Baden-Württemberg

The problem with applications to contexts, which are based on field 
measurements, is that outliers may completely destroy an interesting im-
plication. Hence the scaling process (see Ganter and Wille 1999) must be 
performed carefully and in fact it is more reasonable to apply concept 
analysis to contexts on Boolean attributes only.  
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Further interesting applications to chemistry can be found in particular 
in the cited literature by Bartel and Brüggemann. 
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Abstract

A partial order of longstanding interest to mathematicians and chemists, 
the Young Diagram Lattice (YDL) is discussed in the context of complex-
ity. Ruch’s (1975) identification of this partially ordered set with that ap-
propriate to a general partial ordering for mixing is discussed. A mathe-
matical quantity associated with each member of the set (the cardinality of 
maximal anti-chains for that member) is argued to provide a quantitative 
measure for complexity for members of the set. The measure has the desir-
able feature that low complexity is associated with both highly ordered and 
very random systems, while systems that have intermediate “structure” 
have larger complexity. Several quantitative examples based on the YDL 
are briefly discussed including statistical mechanics, diffusion, and bio-
polymeric complexity. Finally, a metaphor for complexity suggested by 
the YDL associates high complexity with posetic incomparability. Exam-
ples from sociology, ecology, and politics are discussed. 

Introduction

It is intuitive that the study of partially ordered sets (posets) might be re-
lated to the currently popular study of complexity. Here we use a well-
studied, mathematically beautiful, and physically fundamental poset – the 
Young diagram lattice (YDL) – to suggest an appropriate quantitative 
measure of complexity for a member of this poset, and possibly other 
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posets as well. For the YDL, the measure is currently mathematically in-
tractable for large systems, but an approximate computational approach 
can be applied. We will also propose a qualitative (and not intuitive) gen-
eral complexity metaphor that is suggested by this partial order example. 

Partial orders were first introduced in the late 19th century (Pierce 1880, 
Dedekind 1897). Shortly thereafter, in the early 1900’s Young Alfred 
Young, a cleric interested in substitution expressions, introduced diagrams. 
(Young 1900, Young 1933, Rutherford 1947) His work is used by quan-
tum theorists to generate wave functions that satisfy the Pauli exclusion 
principle (Matsen 1971). But it also has been discussed in the context of 
the general problem of mixing that arises naturally in statistical mechanics 
(Ruch 1975), as well as in diversity discussions in biology. For some more 
information about the historical development of the theory of posets, com-
pare by Halfon, p. 385 Applications of the YDL in chemistry can also be 
found in another chapter of this book, see e.g. chapter by El-Basil, p. 3. 
For reference, the YDL (poset) for 10 objects is shown in Fig. 1. 

Mixing

Statistical mixing is a concept that is not widely discussed by chemists. It 
is not the same as disorder, but clearly related. All chemists are familiar 
with the second law of thermodynamics that says that systems evolve to 
states with higher disorder – i.e. greater entropy. But how, exactly, does 
the evolution occur? Indeed, it might be true that different evolutionary 
paths exist. Each path proceeds from order to disorder in steps where each 
step results in higher entropy, but paths may differ. Since every path fol-
lows steps that increase entropy, there is no inconsistency with the second 
law. Referring to the YDL in Fig. 1, for example, one might go from top to 
bottom of the figure on many different paths that always proceed down-
ward but along different routes. So we now proceed to describe in more 
detail the partial order represented in the YDL. 

Suppose one has a set of objects each object of which may be character-
ized by some principle – e.g. a group of croquet balls with the characteri-
zation principle being colour.  Imagine many sets (of croquet balls) with 
each set containing the same number of objects (balls). Sets in which each 
object is distinct from every other are maximally mixed, while sets where 
all objects are identical are minimally mixed. Other sets are intermediate in 
terms of mixing. (Note, with regard to mixing, it doesn’t matter which col-
ours are present, i.e. a set with 6 green balls has the same mixing character 
as one with 6 white balls, and a set with 3 green, 2 blue and 1 white ball 
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would have identical mixing character as a set with 3 yellow, 2 green and 1 
black ball.) 

Fig. 1. Partitions of N=10 

After some consideration, it is obvious that mixing character of a set is 
simply the partition of objects in the set according to their classification (in 
the example above [3,2,1]). If partitions represent mixing, one need only 
seek a partial order among these partitions that appropriately represents the 
concept of increased mixing character. 
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Ruch showed in his seminal 1975 paper (Ruch 1975) that a partial order 
relation for partitions already well known to mathematicians – namely the 
majorization partial order – is precisely the same partial order that corre-
sponds to mixing. This fundamental result means that the mathematics of 
the Young Diagram Lattice applies to the physics of mixing. 

The majorization partial order for integers can be stated as follows. 
(Marshall 1979) Given a set of n objects, one can represent its mixing 
character by a partition where i is the number of ob-
jects of type i (or class i).  In general we can take ji   if i < j and 
clearly  

n
i

i
1

      (1) 

The statement of the majorization (or dominance) partial order is that a 
partition  is placed above (or exceeds) another partition if

ntom
m

i
i

m

i
i 1

11    (2) 

A few examples are given in table 1 for n = 10 (the selected partitions 
and their labels are shown in Fig. 1.1

Complexity

There are dozens of mutually inconsistent definitions of complexity. Thus 
it might be best to regard complexity theory as descriptive of the work of 
scientists endeavouring to develop meaningful, predictive tools for dealing 
with highly interconnected or mixed systems. Despite the apparent chaos 
in the field, much of use is being accomplished, with applications made to 
stock market analysis, chemical structure, military strategy, industrial 
processes, transportation, social structure and even baggage handling. 
Some applications of complexity theory to chemistry can be found in 
‘Complexity in Chemistry’, edited by Bonchev and Rouvray (Bonchev 
2003).

1 A similar definition can be made for n-tuples of real numbers, but this doesn’t 
add to the present argument. 
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Table 1. Selected partition of 10 

Partition Parti-
tion 
Label

Partial Sums in 
equation (2) 

Incompa-
rable with  

Greater
than 

Less than 

[6,4] A 6,10,10,10, …  B,C,D,E,F  

[6,2,1,1] B 6,8,9,10,10, … C D,E,F A 

[4,3,3] C 4,7,10,10 … B,D,E F A 

[4,4,1,1] D 4,8,8,10,10, … C,E F A,B 

[5,2,1,1,1] E 5,7,8,9,10,10 … C,D F A,B 

[4,2,2,1,1] F 4,6,8,9,10,10, …   A,B,C,D,E 

It is sometimes helpful to distinguish between the complexity of objects 
and that of processes. If one seeks to compare different objects to one an-
other in terms of their “complexity”; that is object complexity theory. The 
objects might be molecules, people, social structures, poems, toxins, etc…  
An enormous literature exists with much of the chemical focus being on 
molecular complexity indices that attempt to order molecular graphs ac-
cording to some measure of their complexity. While not yet directly con-
cerned with complexity, much environmental focus has been on the rela-
tive toxicity of pollutants partially ordered by their effects on different 
things.

The second type of complexity seeks to understand the behaviour of 
systems consisting of many components interacting in different ways, 
sometimes leading to novel collective properties – termed emergent prop-
erties. Again, an enormous literature exists, with much current chemical at-
tention being addressed to self-assembly of nanostructures, and with much 
biology and physics attention focused on the behaviour of neural networks. 

While there are definitions of complexity that essentially equate it to 
randomness, many scientists have come to regard complex systems as ly-
ing between fully ordered and fully disordered ones. A qualitative graph is 
shown Fig. 2 (Huberman 1986). 
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Fig. 2. Qualitative Complexity.  The x-axis represents disorder or entropy while 
the y-axis represents complexity 

According to this view of complexity, both highly ordered and highly 
disordered systems have low complexity values, with more complex sys-
tems being associated with intermediate levels of disorder. A simple ex-
ample might be of use. Consider a pure crystalline substance (low entropy) 
and then heat it through its melting point and then continue to heat it until 
it vaporizes. If one assumes a complexity curve such as Fig. 2 applies, the 
implication is that solids and gases are relatively simple compared to liq-
uids – a view quite consistent with the state of theory. We have used this 
idea elsewhere to generate a qualitative value for liquid complexity (Seitz 
2003).

General Complexity Curve

Entropy
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Complexity and the Young Diagram Lattice 

By laying the YDL for 10 objects in Fig. 1 on its side, one may see a simi-
larity to the complexity curve in Fig. 2. To partly quantify this idea we 
might simply relate complexity to the “breadth” of the diagram at any 
point (“width” in poset theory, see Brüggemann and Carlsen, p. 61).  Now 
recall that the entropy for a partitioning (mixing) of objects is simply the 
logarithm of the number of ways that they can be rearranged, i.e., for a par-
tition n] the entropy (applying the well known approxima-
tion of Stirling) is given as 

)ln()ln(
!

!ln ii

i
i

nnnnnS

so that low entropy diagrams lie at the top of Fig. 1 whereas high entropy 
diagrams lie at the bottom. But near the middle of the diagram, where the 
mixing and entropy are intermediate, there are, in general, a very large 
number of diagrams that cannot be compared – i.e. ones that are neither 
more nor less mixed than one another. Now we propose that complexity of 
any partition relates to the “breadth” of the YDL at the location of the par-
tition. This we take as the extent to which a diagram is incomparable, in 
other words the number of diagrams to which it cannot be compared by the 
majorization partial order. A more explicit definition follows.

Mathematicians have termed a set of elements in a poset that are all 
mutually incomparable an anti-chain. (See chapter by Brüggemann and 
Carlsen, p. 61 and for more detailed mathematics and definitions see 
‘Combinatorics and Partially Ordered Sets: Dimension Theory’ by Trotter 
(Trotter 1992)). If we consider all anti-chains that contain a partition [ ] as 
an element, the complexity of [ ] is the number of elements in those anti-
chains (i.e. the cardinality or size of the anti-chains) that have the maxi-
mum number of elements, maximum anti-chains. Clearly, this concept can 
be generalized to any poset, though, as we have seen, the case of the YDL 
is of particular interest and relevance to physics and chemistry.

For small YDLs (and other posets), complexity values may be obtained 
from inspection of the poset diagram, but the difficulties in dealing with 
large YDL are great because the number of partitions grows exponentially. 
For example, for n = 500 there are 1021 partitions in the lattice. Also, there 
is no known algorithmic method to obtain the sizes of maximum anti-
chains for arbitrary members of the YDL. It is therefore useful to consider 
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alternative definitions for the breadth of the YDL that can be handled nu-
merically and which yield complexities as a function of entropy. One such 
approach is discussed below. 

We define a new, computationally accessible incompatibility (complex-
ity) measure for the YDL that may be used efficiently for large systems. 
To motivate our proposed incompatibility measure, we again consider Fig. 
1. The chain of partitions along the far right hand side of the figure con-
tains diagrams that partition n into the maximum number of groups (i.e. 
types of objects, or number of rows in the Young Diagram) for a given 
level or entropy. We might call this chain the maximum diversity chain. It 
is straightforward to algorithmically generate this chain for large n. Simi-
larly, the chain along the far left hand side of the figure contains diagrams 
that partition n into the minimum number of groups, and we might call this 
the minimum diversity chain. This chain can also be generated numerically 
via a more complicated, but still straightforward numerical algorithm. 

Fig. 3 shows the entropies from equation (3) of the minimum and 
maximum diversity chains for n=500. In general, there are more minimum 
diversity partitions (for n=500 there are 495 maximum diversity partitions 
and 4387 minimum diversity partitions), but the number of partitions in 
both “extreme” chains grows linearly with n so large systems can be 
treated. It is important to recognize that the entropy range is the same for 
both chains since both begin and end at the same points. 

Finally the numerical incompatibility measure for any element in the 
diagram lattice can be defined. Compute the entropy of the element of in-
terest using equation 3 and identify partitions on the maximum and mini-
mum diversity chains with entropies closest to it. The incompatibility 
measure is then defined to be the “distance” between these maximum and 
minimum diversity partitions, where this distance is defined as the number 
of boxes (particles) that must be moved to convert the minimum diversity 
partition to the corresponding maximum diversity partition, and vice-versa. 
Fig. 4 shows these (normalized) distances for n=500. 
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Fig. 3. Entropy of maximally and minimally diverse chains for n=500 

Finally, it is possible to develop an asymptotic relationship for the nu-
merical incomparability at medium entropy. The minimally diverse parti-
tions (furthest to the left on the diagram lattice) are those that minimize the 
number of rows (for a given entropy – or vertical position on the lattice).  
This is accomplished if the rows have nearly the same number of objects 
(boxes). We let m be the number of rows in a partition in the left-hand 
chain: then there are approximately n/m boxes in each row for partitions 
on the left-hand chain to minimize m (or number of rows). 

Next consider the right-hand chain. There the maximally diverse parti-
tions (for given entropy) maximize the number of rows. If there were n-q 
elements (boxes) in the first row, then the corresponding maximally di-
verse partition would have q rows of one box each. 
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Fig. 4. Incompatibility curve for n=500. The horizontal axis is the Shannon en-
tropy from equation (3) with maximum order to the left and maximum disorder on 
the right. The vertical axis is the (normalized) per-object “distance” from maxi-
mum to minimum diversity partitions at the same entropy. Note the similarity to 
Fig.2 

(Note: partitions in the maximal diversity chain actually alternate be-
tween [n-q, 1q] and [n-q, 2, 1q-2] but this detail does not affect the asymp-
totes) At large n/m, q>>m and we see that the maximum and minimum di-
versity partitions have n/m+m-1 boxes in common so that the “distance” 
between them is n-(n/m)-m+1.

Thus the incomparability measure per site is  

nn
m

mn
mnSatIM 111)]ln([     for (n/m) large       (4)

where the entropy is that of the minimally diverse partition obtained from 
equation (3). Thus the asymptotic value for the maximum numerical in-
comparability (complexity) of a large YDL is n.
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YDL Examples 

We briefly consider some examples. The first is the microcanonical en-
semble (alluded to earlier) in statistical physics where the Young diagrams 
represent the assignment of particles to states (Ruch 1975). The top parti-
tion assigns all members of the ensemble to a single accessible state, while 
the bottom diagram (partition) corresponds to the uniform distribution over 
all allowable states (the equilibrium distribution). It is this case that Ruch 
considered and proposed the generalized time development in terms of in-
creasing mixing character discussed above. For the microcanonical ensem-
ble, the complexity of a state is the number of different states incompara-
ble to it through which evolution from order to disorder could occur 
without passing through the state itself.  

As a second example we consider the problem of diffusion (or more 
specifically random walks in two dimensions). We attempt to develop vis-
ual representations that correspond to simple and complex distributions of 
walkers. We consider a collection of N walkers each beginning at the ori-
gin on a two dimensional square lattice and each executing a random walk 
of L steps with each step randomly chosen to be right, left, up or down. 
After 1 step, all walkers are a distance 1 from the origin (approximately 25 
% moved up, 25 % down, etc…), while after two steps some are a distance 
2 from the origin, (both steps in the same direction), some are at a distance 

2 (e.g. left then up), and some are at a distance 0 (step 2 being the reverse 
of step 1). Let the integer portion of the distance of a walker classify the 
walker – then for 1-step walks, all are in the same class (distance 1) and 
for 2-step walks there are 3 classes, (distance 0,1,2). Thus it is straightfor-
ward to assign a partition (based on the integer portion of its distance from 
the origin) to each finite L-step walk, and, by applying eqn. 3, also obtain 
its entropy. Fig. 5 shows representative results for 300 walkers.  
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 (a) 5 steps    (b) 35 steps 

 (c) 271 steps    (d) 811 steps 
Fig. 5. Distributions of 300 random walkers after the indicated numbers of steps. 
(a) represents low entropy, low complexity (d) is high entropy low complexity, 
while (b) and (c) are high complexity patterns 

Fig.’s. 5(a) and 5(d) both have low incomparability measures, while 
5(b) and 5(c) have high incomparability measures.  While qualitative, it is 
interesting to observe the existence of “complex” patterns in (b) and (c) as 
opposed to (d) where the distribution of walkers appears almost random 
and (a) where the distribution is “simple”. 

A third example may be the quantification of complexity for biological 
sequences. This area has, of course, been widely investigated by many 
laboratories. Most closely related to our work is that being done at the Na-
tional Center for Biotechnology Innovation at NIH. There, Wan and Woot-
ton developed a compositional complexity measure for biological se-
quences in proteins and nucleotide sequences in terms of longest paths on 
the YDL (Wan and Wooton 2000). It is interesting to note  
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that there may be a relationship between maximum anti-chains and 
Wootton’s maximum paths suggesting that the definitions of complexity 
are related. This relationship is the subject of ongoing work in our labora-
tory.

Complexity Metaphor – Other Posets and Beyond 

The discussions so far have focused on the Young Diagram poset, but the 
general ideas may possibly be of use more widely. Clearly, since every 
(non-trivial) poset contains (non-trivial) anti-chains, the complexity meas-
ure of an element in any poset may be defined in the same way as was 
done here for the YDL poset.  However, the utility of such a quantity will 
obviously depend on the system being described by the partial ordering. 

However, the idea that incomparability is fundamental to complexity 
may be useful even where there is no clear partial ordering relation de-
fined. If we take extent of incomparability as a metaphor for complexity, a 
number of interesting observations follow. There may be different ways to 
state the metaphor depending on context. Examples are: 

The complexity of a system is the number of incomparable things in 
it.
The complexity of an object is the number of others with which it is 
incomparable. 
The complexity of an evolving system is the number of incomparable 
things in it at that point in its evolution.

Thus, if one is considering an ecosystem, one might use the first or 
third statement of the metaphor, while if one is considering a single com-
ponent of the ecosystem, the second statement would apply.   

The utility of any metaphor lies in its ability to expose subtleties so that 
new insights may be obtained. A few examples follow. 

First consider the evolution (life histories) of a group of people (who all 
have lived to an old age, say 85, and now reside in a nursing home). As 
newborns, there were few distinctions among the members – all required 
similar food and care, and all appeared quite similar (except of course to 
the parents). At the end of their lives, they are again quite similar as they 
complete their life journey. Next consider them as pre-teens – now there 
are significant differences, but still there are a relatively small number of 
different groups depending on growth rates, progress in school, etc… 
Teenagers have a larger number of incomparable groups than pre-teens due 
to the beginnings of specialization into career paths, dating, choice of col-
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lege vs. working, etc… Beginning as young adults and continuing through 
late middle age, the group has the largest number of incomparable indi-
viduals. Upon reaching retirement age, there is a reduction in the number 
of different types of people, with many retirees settling into areas with less 
and less diversity. 

The analogy to the YDL is obvious where the “approximate” classifica-
tion scheme is personal history. However it would be extremely difficult to 
make the relationship explicit. The metaphor suggests that (1) observed 
behaviour/lifestyle changes in humans is the natural consequence of evolu-
tion in a complex society, (2) the perception that the lives of mid-life indi-
viduals are more complicated than they were or will be is accurate and (3) 
there may be similarities between teen-agers and retirees yet to be explored 
(beyond their mutual fascination with Disney world). The term “second 
childhood” in the aged may reflect complexity more than mental acuity. 

As a second example consider societal structures/governments. At the 
extremes are autocracy and anarchy – complete order and complete disor-
der. In autocracy, the individuals in the state are all the same in that they 
all obey the rulings of the leader. In anarchy, each individual makes his/her 
own rules and each is unique. As social structures go, however, both autoc-
racy and anarchy can be regarded as simple – and indeed characterize less 
“civilized” societies. Intermediate structures such as democracy, commu-
nism, and socialism are more complex – entities within them are incompa-
rable. Indeed one of the most significant aspects of democracy in the US is 
the separation of powers into judicial, executive and legislative – three 
“incomparable” branches of government. 

Finally, as a qualitative quasi-scientific example, consider the classical 
evolution of a pond (Dashnowski 1912). A newly formed pond is simple 
with little life. Then algae appear followed by floating plants, submersed 
plants and finally emersed plants appear creating the mature pond where 
there is a maximum of incomparable plant-types present. However, the 
evolution of the pond does not stop there. As plants die, they sink to the 
bottom – most densely at the edge – reducing the size and complexity of 
the pond. This continues until the pond disappears entirely, returning to a 
“simpler” state.  

Another possible use for the complexity/incomparability metaphor be-
gins by determining which side of the complexity curve a system presently 
lays. Suppose we can determine that complexity is increasing with time 
under a set of conditions. Then simply allowing the system to evolve (to 
higher entropy) will result in increased complexity even if we do nothing. 
However, if complexity of a system is decreasing with time, energy must 
be provided in order to increase complexity. 
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Now consider two systems of the same complexity, one on either side 
of the complexity maximum, and suppose that the goal of each system is to 
maintain its level of complexity (or our goals as managers for the system).  
In both cases, we are far from equilibrium so that to maintain their state, 
energy must be expended to arrest evolution toward higher entropy. How-
ever, observation of the systems would show very different uses for the 
energy provided. On the left of the maximum, the natural evolution is to-
ward increased complexity so that to maintain the state, energy is ex-
pended to reduce incomparability. I.e., the energy goes to make things 
more alike. On the right hand side, complexity is decreasing, so energy is 
expended to increase incomparability, i.e. to make things more different. 

A possible example of this would be to consider the pond evolution ex-
ample. Take the “left hand side” case to be where algae, floating and sub-
mersed plants exist, but emersed plants have not appeared. To maintain 
that state requires that as emersed plants do appear naturally, they are re-
moved leaving the pond stable. The “right hand side” might be where the 
pond has begun to fill in and some plants are dieing. To maintain the pond 
requires that dieing plants be replaced with new plants to maintain the sys-
tem in a steady state. Both strategies require the introduction of energy, but 
in one case plants are removed; while in the other plants are added. The 
example may appear trivial, but there may be cases where one may be 
guided by the complexity metaphor into the choice of appropriate action to 
maintain the status quo.

Conclusion

Complexity continues to be a topic of broad interest to scientists and non-
scientists alike. We have argued that complexity and posetic incomparabil-
ity are related. However, the incomparability of a member of a poset is a 
well-defined quantity leading to a possibly useful quantification of com-
plexity. The Young Diagram Lattice was studied in detail both because of 
its rich (and complicated) mathematics and because of its relevance to the 
chemistry and physics of mixing. A numerical method was applied to this 
poset that led to a curve showing complexity, as a function of entropy – 
and that curve closely resembles the qualitative picture of complexity 
found elsewhere. Qualitative metaphors can be developed that may pro-
vide insights into complex systems where the precise partial ordering rela-
tion is either unknown or cannot be explicitly defined. 
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7 Historical remarks 

The idea behind partial order is quite old. Famous scientists like Dedekind, 
Vogt, Muirhead, Hasse, Birkhoff, and Wille may be seen as pioneers of 
developing the mathematics of partial orders. Partial order in chemistry, 
biology also has a quite long tradition. Randi , Klein, Gutman, Ruch, El-
Basil, Bartel and many others have published important papers about the 
use of partial order in chemistry. The journal "MATCH-communications in  
mathematical and in computer chemistry" publishes many papers in that 
context. In biology the publications of Patil, Taillie and Solomon may be 
mentioned.

As far as we can tell, the use of partial order in environmental systems 
started with the contributions of Halfon. We do not presume to write a 
competent chapter about the historical development of partial order in 
chemistry and in environmental sciences. However, in the proceeding 
chapter Halfon gives his view on the development of divers programs 
within the context of Hasse diagrams. The chapter shows the influence of 
Helmut Hasse, the important steps done by the Italian scientists Reggiani 
and Marchetti and the developments done by Halfon and in the period 
since 1986. 
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Abstract

This chapter describes the evolution of the use of Hasse diagrams in the 
environmental field and the development of the related software. Two Ital-
ian scientists, Marcello Reggiani and Roberto Marchetti, used Hasse dia-
grams to study the problem of model order estimation. Halfon extended 
the use of Hasse diagrams to ecological modelling and later to environ-
mental chemistry. The HASSE software was initially developed in 
FORTRAN to be run on mainframe computers. Later Halfon in Canada 
and Brüggemann in Germany reprogrammed it for use on personal com-
puters and code was added to display the diagrams interactively. Nowa-
days, scientific groups in Denmark, Germany, Italy and Sweden are ac-
tively developing new applications and developing new theoretical 
concepts.

Historical notes concerning the development of WHASSE 

The volume edited by Rainer Brüggemann and Lars Carlsen presents many 
advances that took place in the last few years. It all started from a combi-
nation of circumstances that started from a vague idea, to Italian-Canadian 
collaboration, followed by German-Canadian collaboration and continuing 
nowadays with a fruitful international collaboration among many scien-
tists.

In the nineteen seventies, two Italian scientists, Marcello Reggiani and 
Roberto Marchetti, used Hasse diagrams to study the problem of model 
order estimation. In the nineteen eighties Hasse diagrams were used by 
Halfon in ecological modelling (Halfon 1983) and later in environmental 
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chemistry (Halfon and Brüggemann 1989, Halfon 1989). Since 1989 the 
collaboration with Rainer Brüggemann has led to the development of new 
mathematical analysis tools, new graphic tools, the establishment of regu-
lar conferences, and to this book that summarizes the international research 
endeavours about Hasse diagrams in chemistry and environmental sci-
ences.

Helmut Hasse 

Helmut Hasse was a German mathematician born in 1898. Hasse had over 
200 publications including his book “Über die Klassenzahl abelscher 
Zahlkörper” that describes the graphs that took his name. Hasse left a mark 
on modern mathematics with discoveries including the "Hasse Local-
Global Principle", the "Hasse invariant", and "Hasse's Theorem" on the 
number of points of an elliptic curve over a finite field. The collected 
mathematical papers of Hasse fill three volumes. A biography and com-
plete references can be found in Brückner and Müller (1982), Frei (1985) 
and Leopoldt (1982) in the Dictionary of Scientific Biography (New York 
1970-1990), in Mac Lane (1995) and on the Internet at 
www.geometry.net/scientists/hasse_helmut.php and 
http://en.wikipedia.org/wiki/Helmut_Hasse.  

Hasse was a very gifted teacher, whose lectures and talks inspired an en-
tire generation of young number theorists, far beyond the circle of his im-
mediate students. Hasse possessed an encyclopaedic memory. His book 
"Über die Klassenzahl abelscher Zahlkörper" was written in the atrocious 
conditions of the post-war years, and he wrote it down from memory, 
without access to his notes or to a library. What is now known as "Hasse 
diagrams" in the theory of lattices and ordered sets is a legacy from the il-
lustrations of this book (see http://en.wikipedia.org/wiki/Hasse_diagram). 

Rationale on the use of partial order 

Chemical compounds are ubiquitous in the environment. Some are dis-
persed on purpose and some are released accidentally. Some have local ef-
fects while others have a global impact. This impact has been variously 
quantified (see Helm 2003 and chapter by Helm, p. 285; Brüggemann and 
Drescher-Kaden 2003; Halfon and Brüggemann 1989; Brüggemann and 
Münzer 1993). For example physico-chemical properties and environ-
mental persistence, i.e. criteria, have been combined in an index function 
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(see Halfon 1989 or for example chapter by Brüggemann et al., p. 237). 
The values of these criteria are multiplied by a weight factor, to account 
for the relevant influence on the environment, and then all these factors are 
summed up to create an index. Hasse diagrams represent a different ap-
proach to the quantification of the impact of environmental chemicals. 

Model order estimation 

The connection of Hasse diagrams and environmental chemistry took sev-
eral years to evolve: Halfon investigated the problem of developing 
mathematical models that would use the minimal number of state variables 
and parameters to describe a given ecological system (Halfon 1983, Halfon 
1979). The problem, called model order estimation, can be best described 
as the procedure to develop a mathematical model of a given system when 
limited information is available about the state variables and the values of 
the parameters. If we develop a model with more state variables and more 
parameters than the solution of the problem requires, we are adding uncer-
tainty to the model structure. This problem of model order identification is 
part of the larger problem of model identifiably. 

The problems of identifying a mathematical model and the problem of 
identifying the effects of toxic contaminants on the environment are con-
ceptually similar. On the one hand we are trying to develop a mathematical 
model with limited information about the system and on the other hand we 
are trying to identify the impact of toxic contaminants with limited knowl-
edge about the contaminants themselves and the impact of the chemicals 
on the environment. 

A literature review led Halfon to the field of research where Reggiani 
and Marchetti (1975) were active. Both engineers worked at Selenia, an 
industrial electronics company in Rome, Italy. Their approach was based 
on earlier research done a by Helmut Hasse during the 1940’s and the early 
1950’s. Collaboration with Dr. Reggiani that lasted several years (Halfon 
and Reggiani 1978, Reggiani and Halfon 1979, Halfon and Reggiani 
1986). Dr. Marchetti, a student at the time, moved on to other research en-
deavours.

Quantification of fate and impact of contaminants 

The inference that the Hasse methodology that could be applied to system 
models (Halfon 1983) could also be extended to environmental toxicology 
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developed quickly (Halfon and Reggiani 1986): While the index function 
approach was, and still is very useful, it had some weaknesses that could 
be overcome. One weakness is the use of the weight factor; another is the 
subjective formulation of the index function itself, i.e., how different crite-
ria are combined to create the index of environmental impact. This specific 
weakness is common for many other multi criteria decision tools as for ex-
ample ELECTRE or PROMETHEE or NAIADE etc (Roy 1990, Brans and 
Vincke 1985, Rauschmayer 2001). (For a comparison of Hasse diagrams 
with some other multi criteria decision tools, see also the chapter by Brüg-
gemann et al., p. 237). 

The addition operation within the index implies that the importance of 
each criterion is masked within the index: It is difficult to compute back-
ward from an index function the importance of each criterion and the inter-
actions with the other criteria in the index. 

The publication of the Halfon and Reggiani’s paper (1986) in the jour-
nal “Environmental Science and Technology” was not easy. The integra-
tion of Hasse diagrams and environmental toxicology was so innovative 
and unfamiliar that the editor of environmental science and technology al-
lowed the publication of this paper even if the methodology was new and 
still unproven. 

Development of software 

Some remarks concerning the historical development can be found in the 
chapter by Seitz, p. 367. Here the development of the software is the main 
focus. The original code of the software WHASSE was originally devel-
oped in Italy by Reggiani and Marchetti (1975), as a FORTRAN program 
that could be executed on mainframe computers to compute Hasse dia-
grams. This was a good step forward since the usual development of Hasse 
diagrams was to draw them by hand. The automation of the development 
of these diagrams meant that many hypotheses could be tested in a rela-
tively short time compared with past uses of these diagrams. In the mean-
time technology was developing and use of personal computers more 
ubiquitous. 

This code was modified and extended by Halfon (Halfon and Reggiani 
1986, Halfon 1989, Halfon and Reggiani 1986, Reggiani and Halfon 1979, 
Halfon et al. 1989) and he developed new software to visualize Hasse dia-
grams, i.e. to draw the circles and the lines connecting them Halfon et al. 
1989. This was a difficult effort since initially it is not known how many 
circles will be on each line, on each level, how they will be connected and 
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indeed whether some circles will not be connected to any others, incompa-
rable objects. The drawing of the lines between circles is also difficult, 
since if we draw the lines as straight lines, they may overlap some circles 
making the computerized diagram very difficult to understand, thus, we 
had to program subroutines that would draw curved lines around the cir-
cles rather than overlapping them. 

Halfon and Reggiani’s paper (1986) came to the attention of Dr. Rainer 
Brüggemann, at the time at GSF1 in Munich, West Germany. Brüggemann 
became interested in their effort and met personally at a conference at 
McMaster University in Hamilton, Ontario in 1986. Following this meet-
ing Brüggemann and Halfon began a collaboration (Halfon and Brügge-
mann 1989) that is still continuing. In its present formulation WHASSE it 
includes some of the original code coupled with graphics and an interac-
tive interface. The software is also used and being expanded in Denmark 
and new Italian groups. 

Brüggemann is a mathematical chemist. The areas of expertise of Hal-
fon and Brüggemann combined well and over the years they were able to 
extend the application of Hasse diagrams in environmental sciences espe-
cially environmental chemistry. The development of personal computers 
and new computer languages led to new versions of the Hasse software 
with more and more features. The Hasse program was converted from 
FORTRAN to DELPHI and the graphic subroutines properly integrated as 
well, Brüggemann et al. 1999. The computer program grew from a short 
program to one that used most space on a CDROM. Now programs written 
in JAVA (Pudenz 2004) and in PYTHON (Software PYTHON, see von 
Löwis & Fischbeck 2001) are available or under development.  

More mathematical analyses were released in the public domain and 
were eventually published. PRORANK is a new software which is cur-
rently developed and which is mainly thought of to be used for commercial 
purposes, see also page 111. Another powerful program RANA was de-
veloped by Pavan et al. (2003); see also page 181. Programs with more 
specific tasks like Po Correlation of Sørensen et al., see page 259 are cur-
rently under development. 

In 1998 the first International workshop on Hasse applications in envi-
ronmental chemistry took place in Berlin with the participation of about 30 
scientists. In 2004 the 6th International workshop took place in Bayreuth 
and was reported in local newspapers as well as in a German magazine. 
The contributions appeared in a special issue of MATCH (Brüggemann et 
al. 2005). 

                                                     
1 Now: GSF -National Research Center of Health and Environment  



390      Halfon, E. 

Professor Todeschini and his team, at JRC Ispra October 2006, will or-
ganize the next international workshop. 

Now besides Canada, there are different places in Germany where par-
tial order theory and partially its software WHASSE are used. Beyond this 
scientific groups in Denmark and Italy are actively contributing to new ap-
plications and new theoretical concepts. Table 1 lists some activities 
mainly in the field of environmental chemistry. 

Hasse diagrams are intrinsically very easy to create. All work can be 
done and crosschecked on the back of an envelope. The advent of main-
frame computers and later of personal computers with their graphic capa-
bilities has led to complex analysis and insight that were not even predict-
able years ago, but the basic simplicity is still there. 

Table 1. Activities around WHASSE 

Nation application activity theoretical activity remarks 

Denmark Pesticides, monitor-
ing, polluted sites 

probability concepts, 
correlation

NERI Silke-
borg 

Denmark Evaluation of chemi-
cals, methods to 
combine QSAR 
modeling and Partial 
Ordering. 

methods to apply par-
tial orders on QSAR 

Awareness 
Center 

Germany local water manage-
ment 

Combination with 
Cluster analysis 

BTU
Cottbus 

Germany regional water man-
agement 

Participation of 
stakeholders 

HU Berlin 

Germany information systems  GSF

Germany  software development Criterion 

Germany/Canada Ecological systems probability, graph 
theory 

IGB/Mc 
Master Uni-
versity 

Italy Pesticides, chemicals Characterizing quan-
tities, integration of 
concepts of genetic 
algorithms 

University 
Milan 
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