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Supervisor’s Foreword

In physics, there are only a few fundamental laws that decide what is possible and
what is not. Among them, the second law of thermodynamics is the most important
law in physics which prohibits perpetual motion machines and distinguishes what is
possible and impossible with regard to heat and energy. Around 1867, through a
Gedankenexperiment (thought experiment), J.C. Maxwell demonstrated that the
second law of thermodynamics can be violated by postulating an imaginary demon
that can observe and operate microscopic states. The so-called Paradox of
Maxwell’s Demon caused prolonged debates on information and thermodynamics.
Nowadays, we are able to observe single-molecule dynamics and even manipulate
them, thanks to development of modern technology. Thus, Maxwell’s demon
comes closer to reality. Later, it was clarified that Maxwell’s demon does not
contradict the second law of thermodynamics, implying that one can convert
information to free energy in principle. Recent development of fluctuation theorems
in non-equilibrium statistical mechanics moved us to the next stage for under-
standing well the relation between information and thermodynamics. The so-called
information thermodynamics deals with the simplest Maxwell’s demon system,
Szilard’s engine, which can extract work from an isothermal system by a feedback
control. By separating Szilard’s engine into two subsystems, i.e., the demon that
observes and performs feedback control and the system controlled by the demon
and considering mutual information between two subsystems, our understanding
of the relation between information and thermodynamics made great advances and
finally the paradox was resolved.

However, when the feedback system has a complicated internal structure or is
composed of multiple parts, the aforementioned framework of information ther-
modynamics is inadequate. The author of this book, Sosuke Ito, took on the
challenge of this problem and succeeded in formulating information thermody-
namics applicable to the systems having complex network structures. He considered
a feedback system as a causal network by introducing ideas of transfer entropy and
a Bayesian network and then succeeded in giving tighter bounds to the relation
between information and thermodynamics. The result includes the third law
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of thermodynamics. Dr. Ito applied his theory to a biology-related problem. The
problem was to give a thermodynamic constraint toward adaptation behavior of
bacterial chemotaxis. He obtained the thermodynamic constraint for the adaptation
behavior based on stochastic dynamics of a simplified biochemical signal trans-
duction network. The result was a similar structure with Shannon’s theory for the
capacity of noisy communication channels. Although the network under consid-
eration is the simplest one in biochemical networks, the result gives a concrete
result and the tightest bounds to the fluctuations remaining after adaptation by
taking into account information transfer inside a signal transduction network.

This book is the doctoral thesis of Sosuke Ito, summarizing his work related to a
new formalism of information thermodynamics. Although it is concise, the book
includes reviews of classical information theory, stochastic thermodynamics of
small systems, information thermodynamics under feedback control, Bayesian
networks, and causal networks. The body of the work, information thermodynamics
of causal networks, is then described with the introduction of transfer entropy.
Application to a biochemical signal transduction system is given in Chap. 7. In
Chap. 8, information thermodynamics for a multidimensional causal network is
described as a generalization of Chap. 6. The book is readable and useful for
understanding the cutting edge of the advancement of information thermodynamics.

Tokyo, Japan Prof. Masaki Sano
June 2016
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Chapter 1
Introduction to Information
Thermodynamics on Causal Networks

Abstract This presents the main purpose of this thesis. In this thesis, we mainly
discuss the relationship between nonequilibrium thermodynamics and information
theory from the view point of Maxwell’s demon which is the thought experiment in
the 19th century. As a generalization of the study of Maxwell’s demon, we propose
the graphical thermodynamic theory of information processingwhich is applicable to
quite a broad class of nonequilibrium dynamics. Characterizing the complex dynam-
ics by the Bayesian networks, we obtain a nobel generalization of the second law
of thermodynamics with complex information flow. We also discuss the biophysical
meaning of the information flow inside the cell as an application of its theory. At the
end of this chapetr, we summarize the organization of this thesis.

Keywords Stochastic thermodynamics · Signal transduction · Information theory ·
Information thermodynamics · Causal networks
After the publication of Shannon’s influential paper about an artificial communi-
cation [1], the importance of information theory has been increasing and several
fields of informational study has been emerging [2, 3]. Our study in this thesis is a
challenge for developing a novel field of physicswith information, so-called informa-
tion thermodynamics as a fundamental theory of nonequilibrium physics including
biophysics.

Nowadays, we can see information device such as a computer everywhere. On the
basis of Shannon’s information theory, the information quantity such as the mutual
information gives the coding redundancy and the accuracy of information transmis-
sion in artificial channel coding [1, 2]. From the viewpoint of the artificial informa-
tion transmission, the classical information theory has been well established, and we
can quantitatively discuss the efficiency of coding and the accuracy of information
transmission using the entropic quantities. The classical theory of communication
(i.e., the noisy-channel coding theorem) is completely based on the assumption of
the existence of artificial coding devices (i.e., the encoder and the decoder). Without
artificial channel coding, the physical meaning of informational quantity is elusive in
terms of the accuracy of signal transmission. The non-existence of channel coding is
crucial in living systems. For example, the biochemical signal transduction network
inside or outside cells is an example of nonequilibrium fluctuating dynamics, which

© Springer Science+Business Media Singapore 2016
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2 1 Introduction to Information Thermodynamics on Causal Networks

describes information transmission without artificial coding devices [4, 5]. Many
researchers intuitively believe the importance of information flow in biochemical
system to maintain life, and several studies have tried out to reveal the role of the
information transfer on biochemical networks. For example, the informational quan-
tity such as the mutual information in the biochemical signal transduction has been
calculated theoretically [6], and measured experimentally for several biochemical
systems [7–11]. However, due to the lack of the fundamental information theory for
the biological systemwithout the explicit artificial channel coding, the application of
the information theory to the biological system has been unclear. Thus, the physical
meaning of the mutual information inside the biochemical system can be just a mea-
sure of independence between two fluctuating components by definition. Although
we usually say “information” in a natural sense of the biochemical signal transduc-
tion, we do not have a fundamental theory of information for living systems like the
noisy-channel coding theorem for artificial communication. To discuss the physical
meaning of “information” in living systems, we believe that we need more physical
and fundamental theory of information transmission in nonequilibrium dynamics
instead of the conventional information theory.

On the other hand, the study of thermodynamics [12–15] for a stochastic non-
equilibrium system (e.g., a Brownian particle, bio-polymer, enzyme, and molecular
motor) with information has been intensively discussed recently [16–66], in relation
to the study of Maxwell’s demon which is the thought experiment about the validity
of thermodynamics for a small systems in the 19th century [13, 67, 68]. Before
Shannon established the classical information theory, Leo Szilard had discussed the
minimal model of Maxwell’s demon, and show the relationship between the “Shan-
non” entropy and thermodynamics in 1929 [69]. In the last two decades, nonequi-
librium equalities that are universally valid for a nonequilibrium small system, have
been found [70–87], and experimentally verified for several systems including the
biopolymer and the molecular motor [88–98]. Based on the backgrounds of nonequi-
librium equalities, thermodynamics under the feedback control has been established
by considering Maxwell’s demon as a feedback controller [25] and experimentally
verified [64–66] as a refinement of the discussion by Leo Szilard. While the relation-
ship between information and thermodynamics has been studied in several simple
setups with the demon [26–49], the general theory that can be applied to the com-
plex situations, such as biochemical signal transduction, had been elusive before
publishing our results [50].

In this thesis, we develop the general formalism of nonequilibrium dynamics
on causal networks, by using the information theory and nonequilibrium statistical
physics [50]. We mainly discuss the following two questions:

• Beyond the simple setup of Maxwell’s demon, how do we develop the theory of
stochastic thermodynamics with information that should be generally valid for
complex nonequilibrium dynamics?

• What is the physical meaning of information flow in biochemical signal transduc-
tion, to which we cannot explicitly apply the noisy-channel coding theorem?
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As a generalization of the studyofMaxwell’s demon,wepropose a general formal-
ism of the study of nonequilibrium thermodynamics with complex information flows
induced by interactions between multiple fluctuating systems [50]. Characterizing
the complex dynamics by the causal networks (i.e., theBayesian networks)which can
represent quite a broad class of nonequilibrium dynamics such as multiple Brownian
particles and complex structure of the biochemical signal transduction [99–104], we
obtain a novel generalization of the second law of thermodynamics with complex
information flows. In our generalization of the second law, the transfer entropy [105],
which is a measure of the causal relationship and information flow [106–109], plays
a crucial role as a lower bound of the entropy production in a small subsystem.

Our study can be regarded as a general graphical formalism of thermodynamics
with information flow so-called “information thermodynamics on causal networks”,
which gives thermodynamics for a small subsystemdescribed by the causal networks.
Focusing on information flow characterizing the topology of the causal networks, we
show the fact that thermodynamical entropy production in a partial target system is
generally bounded by the information flow (i.e., the transfer entropy) from the target
system to outside worlds. In the generalization of the second law of thermodynamics,
we propose a novel information quantity called “backward” transfer entropy [59], as
an inevitable loss of thermodynamical benefit by information flow.

We apply our general result to a simple biochemical signal transduction of E.
coli bacterial chemotaxis [59], as a simple examination of the signal transmission in
nonequilibrium biochemical system. We find that our information thermodynamics
performs as a biochemical theory of communication without artificial channel cod-
ing device.We generally show that the robustness of biochemical signal transduction
against the environmental noise is bounded by the conditional mutual information
between input and output. While it is remarkable that this information thermody-
namic argument is very similar to the argument of Shannon’s noisy-channel coding
theorem, there is a crucial difference between information thermodynamics and the
noisy-channel coding theorem. In the biological signal transduction, it is impossible
to define the archivable rate as the accuracy of signal transduction in the sense of
the noisy-channel coding theorem, because the signal transduction is achieved by a
coupled chemical reaction and there exists no artificial encoding or decoding device
that produces a redundant bit sequence. In contrast, the thermodynamic definition of
the robustness of the signal transduction proposed in our study is intrinsically related
to the dynamics of the biochemical signal transduction, and therefore powerful to
characterize its robustness. Our result can be experimentally validated by measuring
the amount of proteins during signal transduction in the same way as in the previ-
ous experiments [8–11], and we can discuss the thermodynamic efficiency of the
information transmission inside cells without explicit coding device.
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Fig. 1.1 The network of this thesis. Each chapter has such a cause-effect relationship, which is
described by directed edges (→) between nodes (i.e., Chaps. 2–9). In our thesis, such a network
plays a crucial role to discuss stochastic thermodynamics with information flow

We organize this thesis as follows [see also Fig. 1.1]. The review parts are in
Chaps. 2–5. The main results of this thesis are in Chaps. 6–9.

In Chap.2, we review the basis of the classical information theorywell established
by Shannon. We introduce the informational quantities (i.e., the Shannon entropy,
the relative entropy, the mutual information and the transfer entropy), which play
a crucial role in this thesis. We discuss the argument of the classical information
transmission through a noisy communicational channel by Shannon (i.e., the noisy-
channel coding theorem), for comparison with our main result of biochemical signal
transduction in Chap.7.

In Chap.3, we summarize the modern thermodynamic theory for small classical
systems called the stochastic thermodynamics [72–74]. We review stochastic ther-
modynamics in terms of the relative entropy. We derive the second law of thermody-
namics from the nonnegativity of the relative entropy. We discuss two applications
of stochastic thermodynamics (i.e., the steady-state thermodynamics [110–112] and
feedback cooling [31, 39, 113–118]).

In Chap.4, we focus on the relationship between stochastic thermodynamics and
information theory. In particular, we review the study of Maxwell’s demon, which
is the second law of thermodynamics under the feedback control (i.e., the Sagawa–
Ueda relation [25, 43]). In the case of feedback control, the mutual information gives
a bound of an apparent violation of the second law. We discuss the minimal model of
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Maxwell’s demon (i.e., Szilard engine [69]) as an example of the trade off between
information and thermodynamic entropy.

In Chap.5, we introduce the probabilistic graphical model well known as the
Bayesian networks or causal networks [99, 100, 102, 104], which is a basis of our
main study in this thesis. We introduce the mathematical definition of the causal
networks, and show how to use causal networks for several physical situations.

Chapter 6 is the main part of this thesis. Characterizing complex nonequilibrium
dynamics by causal networks, we construct a general formalism of the information
thermodynamics and derive the generalized second law of thermodynamics with
information flow.On causal networks, we show the fact that the entropy production of
the target system is generally bounded by the informational quantity, which includes
themutual information of the initial correlation between the target system and outside
worlds, the mutual information of the final correlation between them, and the the
transfer entropy from the target system to outside worlds during the dynamics. Our
result can be a novel law of thermodynamics with information flow for classical
small subsystems.

In Chap.7, we apply our main result to the biochemical signal transduction of
the sensory adaptation and discuss the accuracy of the signal transmission in bio-
logical systems, where any explicit channel coding device does not exist in contrast
to the noisy-channel coding theorem in Chap.2. We find the analogical similarity
between our information thermodynamic result and Shannon’s noisy-channel coding
theorem. We believe that our information thermodynamic approach is more relevant
and measurable in biochemical systems than Shannon’s noisy-channel coding the-
orem. We analytically and numerically show that the signal transduction model of
E. coli chemotaxis is highly dissipative as a thermodynamic engine, but efficient as
an information transmission device.

In Chap.8, we discuss further generalizations of our main result in Chap. 6. First
we focus on information thermodynamics for a multi-dimensional Markov process,
and show the several relationship of information thermodynamics. We also derive
another expression of our main result using the Fokker–Planck equation [119]. From
this expression, our result can be interpreted as the stochastic thermodynamics for
small subsystem.Next,we discuss the importance of the “backward” transfer entropy,
which is the novel information quantity that we introduced in Chaps. 6 and 7. From
the data processing inequality [2], we derive that the bound involving the backward
transfer entropy is tighter than the informational quantity discussed in Chap.6, as a
lower bound of the entropy production.

In Chap.9, we generalize our main result for the steady-state thermodynamics
introduced inChap.3.Wealso apply ourmain result to the feedback cooling.We show
that the transfer entropy gives a lower bound of the kinetic temperature, and discuss
the relationship between our main result and the third law of thermodynamics [120],
as the refinement of our previous study [31].

In Chap.10, we conclude this thesis and discuss our future prospect.
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Chapter 2
Review of Classical Information Theory

Abstract This chapter presents a review of the classical information theory which
plays a crucial role in this thesis. We introduce the various types of informational
measures such as Shannon entropy, the relative entropy, the mutual information
and the transfer entropy. We also briefly discuss the noisy-channel coding theorem
which represents the meaning of informational measures in the artificial information
transmission over a communication channel.

Keywords Information theory · Noisy-channel coding theorem

We review the classical information theory in this chapter. The classical information
theory had been well established by Shannon in his historical paper entitled “A
mathematical theory of communication” [1]. Shannon discussed the relationship
between the entropy and the accuracy of the information transmission through a
noisy communication channel with an artificial coding device, which is well known
as the noisy channel coding theory. In this chapter, we introduce various types of the
entropy (i.e., the Shannon entropy, the relative entropy, the mutual information and
the transfer entropy [2]) as measures of information, and the noisy channel coding
theorem [1, 3, 4].

2.1 Entropy

First of all, we briefly introduce various types of the entropy,which quantifymeasures
of information [1, 3].

2.1.1 Shannon Entropy

We first introduce the Shannon entropy, which characterizes the uncertainty of ran-
dom variables. Let p(x) be the probability distribution of a discrete random variable
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x . The probability distribution p(x) satisfies the normalization of the probability and
the nonnegativity (i.e.,

∑
x p(x) = 1, 0 ≤ p(x) ≤ 1). The Shannon entropy S(x) is

defined as

S(x) := −
∑

x

p(x) ln p(x). (2.1)

In the case of a continuous random variable x with probability density function
p(x) which satisfies the normalization and the nonnegativity (i.e.,

∫
dxp(x) = 1,

0 ≤ p(x) ≤ 1), the Shannon entropy (or differential entropy) is defined as

S(x) := −
∫

dxp(x) ln p(x). (2.2)

In this thesis, the logarithm (ln) denotes the natural logarithm. To discuss the discrete
and continuous cases in parallel, we introduce the ensemble average 〈 f (x)〉 for any
function f (x) as

〈 f (x)〉 = 〈 f (x)〉p
:=

∑

x

p(x) f (x) (2.3)

for a discrete random variable x and

〈 f (x)〉 = 〈 f (x)〉p
:=

∫

dxp(x) f (x) (2.4)

for a continuous random variable x . From the definition of ensemble average Eqs.
(2.3) and (2.4), the two definitions of the Shannon entropy Eqs. (2.1) and (2.2) are
rewritten as

S(x) = 〈− ln p(x)〉
= 〈s(x)〉, (2.5)

where we here say s(x) := − ln p(x) is a stochastic Shannon entropy. The Shannon
entropy S(X) of a set of random variables X = {x1, . . . , xN } with a joint probability
distribution p(X) is also defined as

S(X) := 〈− ln p(X)〉
= 〈s(X)〉. (2.6)

Let the conditional probability distribution of X under the condition Y be p(X |Y ) :=
p(X,Y )/p(Y ). The conditional Shannon entropy S(X |Y ) with a joint probability
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p(X) is defined as

S(X |Y ) := 〈− ln p(X |Y )〉
= 〈s(X |Y )〉, (2.7)

where s(X |Y ) := − ln p(X |Y ) is a stochastic conditional Shannon entropy. We note
that its ensemble takes an integral over a joint distribution p(X). From 0 ≤ p ≤ 1,
the Shannon entropy S satisfies the nonnegativity S ≥ 0.

By the definition of the conditional probability distribution p(X |Y ) := p(X,Y )/
p(Y ), we have the chain rule in probability theory. The chain rule in probability
theory produces the product of conditional probabilities:

p(X) = p(x1)
N∏

k=2

p(xk |xk−1, . . . , x1). (2.8)

From this chain rule Eq. (2.8) and the definitions of the Shannon entropy Eqs. (2.6)
and (2.7), we obtain the chain rule for (stochastic) Shannon entropy:

s(X) = s(x1) +
N∑

k=2

s(xk |xk−1, . . . , x1). (2.9)

S(X) = S(x1) +
N∑

k=2

S(xk |xk−1, . . . , x1). (2.10)

The chain rule indicates that the (stochastic) joint Shannon entropy is always rewritten
by a sum of the (stochastic) conditional Shannon entropy.

2.1.2 Relative Entropy

We next introduce the relative entropy (or the Kullback–Leibler divergence), which
is an asymmetric measure of the difference between two probability distributions.
The thermodynamic relationships (e.g., the second law of thermodynamics) and
several theorems in information theory can be derived from the nonnegativity of the
relative entropy. The relative entropy or the Kullback–Leibler divergence between
two probability distributions p(x) and q(x) is defined as

DKL(p(x)||q(x)) = 〈ln p(x) − ln q(x)〉p. (2.11)

We will show that the relative entropy is always nonnegative and is 0 if and only if
p = q.
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To show this fact, we introduce Jensen’s inequality [3]. Let φ( f (x)) be a convex
function, which satisfies φ(λa+(1−λ)b) ≤ λφ(a)+(1−λ)φ(b)with ∀a, b ∈ f (x)
and ∀λ ∈ [0, 1]. Jensen’s inequality states

φ(〈 f (x)〉) ≤ 〈φ( f (x))〉. (2.12)

The equality holds if and only if f (x) is constant or φ is linear.
We notice that − ln( f (x)) is a convex nonlinear function. By applying Jensen’s

inequality (2.12), we can derive the nonnegativity of the relative entropy,

DKL(p(x)||q(x)) = 〈− ln[q(x)/p(x)]〉p
≥ − ln〈q(x)/p(x)〉p
= − ln 1

= 0, (2.13)

where we used the normalization of the distribution q, 〈q(x)/p(x)〉p = ∫
dxq(x) =

1. The equality holds if and only if q(x)/p(x) = c, where c is a constant. Because
p and q satisfy the normalizations

∫
dxp(x) = 1 and

∫
dxq(x) = 1, a constant c

should be c = 1, and we can show that the relative entropy DKL(p(x)||q(x)) is 0 if
and only if p = q.

From the nonnegativity of the relative entropy, we can easily show that S(x) ≤
ln |x | where |x | denotes the number of elements of a discrete random variable x with
the equality satisfied if and only if x is uniformly distributed. Let pu(x) = 1/|x | be
a uniform function over x . The relative entropy DKL(p(x)||pu(x)) is calculated as
DKL(p(x)||pu(x)) = ln |x | − S(x), and its negativity gives S(x) ≤ ln |x |.

The joint relative entropy DKL(p(X)||q(X)) is defined as

DKL(p(X)||q(X)) = 〈ln p(X) − ln q(X)〉p (2.14)

and the conditional relative entropy DKL(p(X |Y )||q(X |Y )) is defined as

DKL(p(X |Y )||q(X |Y )) = 〈ln p(X |Y ) − ln q(X |Y )〉p. (2.15)

The joint and conditional relative entropy satisfy DKL ≥ 0 with the equality satisfied
if and only if p = q. The chain rule in probability theory Eq. (2.8) and the definition
of the relative entropy Eqs. (2.15) and (2.14) give the chain rule for relative entropy as

DKL(p(X)||q(X))

= DKL(p(x1)||q(x1)) +
N∑

k=2

DKL(p(xk |xk−1, . . . , x1)||q(xk |xk−1, . . . , x1)).

(2.16)
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2.1.3 Mutual Information

We introduce the mutual information I , which characterizes the correlation between
random variables. The mutual information between X and Y is given by the rel-
ative entropy between the joint distribution p(X,Y ) and the product distribution
p(X)p(Y ):

I (X : Y ) := DKL(p(X,Y )||p(X)p(Y ))
= 〈ln p(X,Y ) − ln p(X) − ln p(Y )〉
= 〈s(X) + s(Y ) − s(X,Y )〉
= S(X) + S(Y ) − S(X,Y )

= S(X) − S(X |Y )
= S(Y ) − S(Y |X). (2.17)

The mutual information quantifies the amount of information in X about Y (or
information in Y about X ). From the nonnegativity of the relative entropy DKL ≥ 0,
the mutual information is nonnegative I (X : Y ) ≥ 0 with the equality satisfied if and
only if X and Y are independent p(X,Y ) = p(X)p(Y ). This nonnegativity implies
the fact that conditioning reduces the Shannon entropy (i.e., S(X |Y ) ≤ S(X)). From
the nonnegativity of the Shannon entropy S ≥ 0, the mutual information is bounded
by the Shannon entropy of each variable X or Y (I (X : Y ) ≤ S(X) and I (X : Y ) ≤
S(Y )). To summarize the nature of the mutual information, the following Venn’s
diagram is useful (see Fig. 2.1).

Fig. 2.1 The Venn’s
diagram which represents the
nature of the mutual
information (i.e., Eq. 2.17).
The mutual information
between X and Y represents
the correlation between them
in the sense of the Shannon
entropy



16 2 Review of Classical Information Theory

The conditional mutual information between X and Y under the condition Z is
also defined as

I (X : Y |Z) := DKL(p(X,Y |Z)||p(X |Z)p(Y |Z))
= 〈ln p(X,Y |Z) − ln p(X |Z) − ln p(Y |Z)〉
= 〈s(X |Z) + s(Y |Z) − s(X,Y |Z)〉
= S(X |Z) + S(Y |Z) − S(X,Y |Z)
= S(X |Z) − S(X |Y, Z)
= S(Y |Z) − S(Y |X, Z). (2.18)

For Z independent of X and Y (i.e., p(X,Y |Z) = p(X,Y )), we have I (X : Y |Z) =
I (X : Y ). The conditional mutual information is also nonnegative I (X : Y |Z) ≥ 0
with the equality satisfied if and only if X and Y are independent under the condition
of Z : p(X,Y |Z) = p(X |Z)p(Y |Z) (or p(X |Y, Z) = p(X |Z)). We also define
the stochastic mutual information i(X : Y ) and the stochastic conditional mutual
information i(X : Y |Z) as

i(X : Y ) := s(X |Z) + s(Y |Z) − s(X,Y |Z) (2.19)

i(X : Y |Z) := s(X |Z) + s(Y |Z) − s(X,Y |Z) (2.20)

From the chain rule for (stochastic) Shannon entropy Eq. (2.10) and the defin-
ition of the mutual information Eqs. (2.17) and (2.18), we have the chain rule for
(stochastic) mutual information

i(X : Y ) := i(x1 : Y ) +
N∑

k=2

i(xk : Y |xk−1, . . . , x1), (2.21)

I (X : Y ) := I (x1 : Y ) +
N∑

k=2

I (xk : Y |xk−1, . . . , x1). (2.22)

2.1.4 Transfer Entropy

Here, we introduce the transfer entropy, which characterizes the directed information
flowbetween two systems in evolving time X = {xk |k = 1, . . . , N } andY = {yk |k =
1, . . . , N }. The transfer entropy was ordinarily introduced by Schreiber in 2000 [2]
as a measure of the causal relationship between two random time series. The transfer
entropy from X to Y at time k is defined as the conditional mutual information:

TX→Y := I (yk+1 : {xk, . . . , xk−l}|yk, . . . , yk−l ′)

= 〈s(yk+1|xk, . . . , xk−l , yk, . . . , yk−l ′) − s(yk+1|yk, . . . , yk−l ′)〉
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= 〈ln p(yk+1|yk, . . . , yk−l ′) − ln p(yk+1|xk, . . . , xk−l , yk, . . . , yk−l ′)〉.
(2.23)

The indexes l and l ′ denote the lengths of two causal time sequences {xk, . . . , xk−l}
and {yk+1, yk, . . . , yk−l ′ }. Because of the nonnegativity of the mutual information
I (yk+1 : {xk, . . . , xk−l}|yk, . . . , yk−l ′), the transfer entropy is always nonnegative
and is 0 if and only if the time evolution of Y system at time k does not depend on
the history of X system,

p(yk+1|yk, . . . , yk−l ′) = p(yk+1|xk, . . . , xk−l , yk, . . . , yk−l ′). (2.24)

Thus, the transfer entropy quantifies the causal dependence between them at time k.
If the dynamics of X and Y is Markovian (i.e., p(yk+1|xk, . . . , xk−l , yk, . . . , yk−l ′) =
p(yk+1|xk, yk)), the most natural choices of l and l ′ becomes l = l ′ = 0 in the sense
of the causal dependence.

Here,we compare other entropic quantitieswhich represent the direction exchange
of information. Such conditionalmutual informations have been discussed in the con-
text of the causal codingwith feedback [5].Massey defined the sumof the conditional
mutual information

IDI(X → Y ) :=
N∑

k=1

I (yk : {x1, . . . , xk}|yk−1, . . . , y1), (2.25)

called the directed information. It can be interpreted as a slight modification of the
sum of the transfer entropy over time. Several authors [6, 7] have also introduced
the mutual information with time delay to investigate spatiotemporal chaos.

In recent years, the transfer entropy has been investigated in several contexts. For
aGaussian process, the transfer entropy is equivalent to theGranger causality test [8],
which is an economic statistical hypothesis test for detecting whether one time series
is useful in forecasting another [9, 10]. Using a technique of symbolization, a fast
and robust calculation method of the transfer entropy has been proposed [11]. In a
study of the order-disorder phase transition, the usage of the transfer entropy has
been also proposed to predict an imminent transition [12]. In relation to our study,
thermodynamic interpretations of the transfer entropy [13, 14] and a generalization
of the transfer entropy for causal networks [15] have been proposed.

2.2 Noisy-Channel Coding Theorem

In this section, we show the fact that the mutual information between input and
output is related to the accuracy of signal transmission. This fact is well known as
the noisy-channel coding theorem (or Shannon’s theorem) [1, 3]. The noisy-channel
coding theorem was proved by Shannon in his original paper in 1948 [1]. In the case
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of Gaussian channel, a similar discussion of information transmission was also given
by Hartley previously [4].

2.2.1 Communication Channel

We consider the noisy communication channel. Let x be the input of the signal and y
be the output of the signal. Themutual information I (x : y) represents the correlation
between input and output, which quantifies the ability of information transmission
through the noisy communication channel. Here, we introduce two simple examples
of the mutual information of the communication channel.

2.2.1.1 Example 1: Binary Symmetric Channel

Suppose that the input and output are binary states x = 0, 1 and y = 0, 1. The noise
in the communication channel is represented by the conditional probability p(y|x).
The binary symmetric channel is given by the following conditional probability,

p(y = 1|x = 1) = p(y = 0|x = 0) = 1 − e, (2.26)

p(y = 1|x = 0) = p(y = 1|x = 1) = e, (2.27)

where e denotes the error rate of the communication. We assume that the distribution
of the input signal is given by p(x = 1) = 1 − r and p(x = 0) = r . The mutual
information between input and output is calculated as

I (x : y) = (1 − e) ln(1 − e) + e ln e − (1 − e′) ln(1 − e′) − e′ ln e′, (2.28)

where e′ := (1 − e)r + e(1 − r). This mutual information represents the amount
of information transmitted through the noisy communication channel. In the case of
e = 1/2, we have I (x : y) = 0, which means that we cannot infer the input signal
x from reading the output y. The mutual information depends on the bias of the
input signal r . To discuss the nature of the communication channel, the supremum
value of the mutual information between input and output with respect to the input
distribution. Let the channel capacity for the discrete input be

C := sup
p(x)

I (x : y). (2.29)

For a binary symmetric channel, the mutual information has a supremum value with
r = 1/2, and the channel capacity C is given as

C = ln 2 + e ln e + (1 − e) ln(1 − e). (2.30)
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2.2.1.2 Example 2: Gaussian Channel

Suppose that the input and output have continuous values: x ∈ [−∞,∞] and y ∈
[−∞,∞]. The Gaussian channel is given by the Gaussian distribution:

p(y|x) = 1
√
2πσ2

N

exp

[

− (x − y)2

2σ2
N

]

, (2.31)

whereσ2
N denotes the intensity of the noise in the communication channel.Weassume

that the initial distribution is also Gaussian:

pP(x) = 1
√
2πσ2

P

exp

[

− x2

2σ2
P

]

, (2.32)

where σ2
P = 〈x2〉 means the power of input signal. The mutual information I (x : y)

is calculated as

I (x : y) = 1

2
ln

(

1 + σ2
P

σ2
N

)

. (2.33)

In the limit σ2
N → ∞, we have I (x : y) → 0, which indicates that any information

of input signal x cannot be obtained from output y if the noise in communication
channel is extremely large. We have I (x : y) → ∞ in the limit σ2

P → ∞, which
means that the power of input is needed to send much information.

In the continuous case, the definition of the channel capacity is modified with the
power constraint:

C = sup
〈x2〉≤σ2

P

I (x : y). (2.34)

The channel capacity C is given by the mutual information with the initial Gaussian
distribution Eq. (2.33),

C = 1

2
ln

(

1 + σ2
P

σ2
N

)

. (2.35)

To show this fact, we prove that the mutual information Iq(x : y) = 〈ln p(y|x) −
ln

∫
dxp(y|x)q(x)〉 for any initial distribution q(x) with 〈x2〉 = σ2

P ′ ≤ σ2
P is always

lower than the mutual information for a Gaussian initial distribution Eq. (2.33).

I (x : y) − Iq(x : y) = −〈ln pP(y)〉pP + 〈ln q(y)〉q
≥ −〈ln pP ′(y)〉pP′ + 〈ln q(y)〉q
= −〈ln pP ′(y)〉q + 〈ln q(y)〉q
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= DKL(q(y)||pP ′(y))

≥ 0, (2.36)

where pP(x, y) := p(y|x)pP(x), q(x, y) := p(y|x)q(x), and we use 〈− ln
pP(y)〉pP = 2−1 ln[2π(σ2

P + σ2
N )] + 2−1.

2.2.2 Noisy-Channel Coding Theorem

We next review the noisy-channel coding theorem, which is the basic theorem of
information theory stated by Shannon in his original paper [1].

Here, we consider the situation of information transmission through a noisy com-
munication channel (see also Fig. 2.2). First, the input message is encoded to gen-
erate a sequence of the signal (e.g., 0010101010). Second, this signal is transmitted
through anoisy communication channel. Finally, the output signal (e.g., 0011101011)
is decoded to generate the output message.

To archive the exact information transmission through a noisy communication
channel, the length of encoding should be sufficiently large to correct the error in
output signal. The noisy-channel coding theorem states the relationship between the
length of encoding (i.e., the archivable rate) and the noise in the communication
channel (i.e., the channel capacity). Strictly speaking, the noisy-channel coding the-
orem contains two statements, the noisy-channel coding theorem and the converse
to the noisy-channel coding theorem. The former states the existence of coding, and
the latter states an upper bound of the coding length. In this section, we introduce
the noisy-channel coding theorem for a simple setting.

Encoder Decoder

Output

message

Input

message

Communication

channel

Input Output

Fig. 2.2 Schematic of the communication system. To send an input message Min through a noisy
artificial communication channel, the input message should be encoded in a redundant sequence
of bits by a channel coding protocol, and the encoded bits sequence X is transmitted through a
noisy communication channel p(yk |xk) (e.g., a Gaussian channel). The output sequence Y does not
necessary coincide with the input sequence X , because of the noise in the communication channel.
However, if the redundancy N of the encoded bit sequence is sufficiently large, one can recover the
original input message Mout = Min correctly from the output sequence Y . This is a sketch of the
channel coding
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Let the input message be Min ∈ {1, . . . ,M}, where M denotes the number of
types of the message. The input message is assumed to be uniformly distributed:
p(Min) = 1/M (Min = 1, . . . ,M). By the encoder, the input message is encoded
as a discrete sequence X (Min) := {x1(Min), . . . , xN (Min)}. Through a noisy com-
munication channel defined as the conditional probability p(yk |xk) (e.g., the binary
symmetric channel), the output signal Y = {y1, . . . , yN } is stochastically obtained
from the input signal X :

p(Y |X (Min)) =
N∏

k=1

p(yk |xk(Min)), (2.37)

which represents a discrete memoryless channel. The output message Mout(Y ) is a
function of the output signal Y . We define the rate as

R := lnM

N
, (2.38)

which represents the encoding length N to describe the number of the input messages
M . A code (M, N ) indicates (i) an index set {1, . . . ,M}, (ii) an encoding function
X (Min) and (iii) a decoding function Mout(Y ). A code (eN R, N )means (�eN R�, N ),
where �. . . � denotes the ceiling function. Let the arithmetic average probability of
error Pe for a code (eN R, N ) be

Pe := 1

M

M∑

j

p(Mout(Y ) 
= j |X (Min = j)). (2.39)

In this setting, we have the noisy-channel coding theorem.

Theorem (Noisy-channel coding theorem) (i) For every rate R < C, there exists a
code (eN R, N ) with Pe → 0.

(ii) Conversely, any code (eN R, N ) with Pe → 0 must have R ≤ C.

The converse theorem (ii) can be easily proved using the nonnegativity of the
relative entropy. Here, we show the proof of the converse theorem. From the initial
distribution p(Min), we have

N R = S(Min)

= I (Min : Mout) + S(Min|Mout). (2.40)

We introduce a binary state E : E := 0 forMin = Mout and E := 1 forMin 
= Mout.
From S(E |Min,Mout) = 0, we have
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S(Min|Mout) = S(Min|Mout) + S(E |Min,Mout)

= S(E |Mout) + S(Min|E,Mout)

≤ ln 2 + PeN R, (2.41)

where we use S(Min|E,Mout) = PeS(Min|E = 0,Mout) ≤ PeS(Min), and
S(E |Mout) ≤ S(E) ≤ ln 2. This inequality (2.41) is well known as Fano’s inequality.

The Markov property p(Min, X,Y,Mout) = p(Min)p(X |Min)p(Y |X)p(Mout|Y )
is satisfied in this setting. From the Markov property, we have I (Min : Mout|Y ) = 0,
I (Min : Y |X) = 0, and

I (Min : Mout) ≤ I (Min : Y ) + I (Min : Mout|Y )
≤ I (X : Y ) + I (Min : Y |X)
= I (X : Y )
= 〈ln p(Y )〉 −

∑

k

〈ln p(xk |yk)〉

≤
∑

k

I (xk : yk)

≤ NC. (2.42)

The inequality using the Markov property (e.g., Eq. (2.42)) is well known as the data
processing inequality. From Eqs. (2.40)–(2.42), we have

R ≤ C + ln 2

N
+ PeR. (2.43)

For sufficiently large N , we have ln 2/N → 0. Thus we have proved the converse to
the noisy-channel coding theorem, which indicates that the channel capacityC gives
a bound of the archivable rate R with Pe → 0. We add that the mutual information
I (Min : Mout) (or I (X : Y )) also becomes a tighter bound of the rate R with Pe → 0
from Eq. (2.42).
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Chapter 3
Stochastic Thermodynamics for Small
System

Abstract This chapter presents a review of the stochastic thermodynamics which is
the nonequilibrium thermodynamics for small systems.We discuss the second law of
thermodynamics and the nonequilibrium equalities (i.e., the Jarzynski equality and
the integral fluctuation theorem). We show the relationship between the stochastic
thermodynamics and the informational measure such as the relative entropy. We
also discuss the steady-state thermodynamics and thermodynamics of the feedback
cooling as a generalization of the stochastic thermodynamics.

Keywords Stochastic thermodynamics · Steady state thermodynamics

In this chapter, let us consider a classical small system attached to a large heat bath
(e.g., a Brownian particle, bio-polymer, enzyme, and molecular motor). The dynam-
ics of the classical small system is generally described by a stochastic process (e.g.,
the Langevin dynamics and the Master equation). For a small system, thermody-
namics in a stochastic description, so-called stochastic thermodynamics has been
developed in the last two decades [1–56]. We here introduce the stochastic thermo-
dynamics for a small system, and the relationship between information theory and
stochastic thermodynamics for a small system.

3.1 Stochastic Thermodynamics

First of all, we introduce the stochastic thermodynamics, which is a framework
for describing classical thermodynamic quantities such as the work, the entropy
production and the heat in a stochastic level.

3.1.1 Detailed Fluctuation Theorem

Historically, the stochastic thermodynamics was numerically discovered as the fluc-
tuation theorem byEvans et al. [6]. The fluctuation theorem had been proved bymany
researchers for a chaotic dynamics [7], a stochastic process [8], and diffusive dynam-
ics [9]. C. Jarzynski has derived a nonequilibrium equality [11], called the Jarzynski

© Springer Science+Business Media Singapore 2016
S. Ito, Information Thermodynamics on Causal Networks and its Application
to Biochemical Signal Transduction, Springer Theses,
DOI 10.1007/978-981-10-1664-6_3

25
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equality or the integral fluctuation theorem, which is a generalization of the second
law. G. Crooks [13] has indicated that the Jarzynski equality can be derived from
the fluctuation theorem. The fluctuation theorems and the Jarzynksi equality have
been confirmed experimentally for several systems such as the colloidal particle, the
electric circuit and the RNA folding [20–26, 29]. Such a nonequilibrium relationship
can be derived from the detailed fluctuation theorem, which is the refinement of the
detailed balance property [57].

We here consider the time evolution of a system X from time t to time t ′. Let
xt = {x+

t , x−
t } be the phase space of a system at time t , where x+

t denotes an even
function of themomentum (e.g., the position, and the chemical concentration) at time
t , and x−

t denotes an odd function of the momentum (e.g., the velocity, the magnetic
field) at time t . The transition rate from xt to xt ′ depends the external parameter λt

at time t , where we assume that the external parameter is an even function of the
momentum. If themicroscopic dynamics of a system such as aHamiltonian dynamics
satisfies the reversibility, we have a detailed balance property:

p(x+
t ′ , x

−
t ′ |x+

t , x−
t ;λt )peq(xt ;λt ) = p(x+

t ,−x−
t |x+

t ′ ,−x−
t ′ ;λt )peq(xt ′ ;λt ), (3.1)

where peq(xt ;λt ) is the equilibrium distribution with the fixed external parameter
λt . The detailed balance property can be derived to a small system interacting with
multiple heat baths, and its generalization is sometimes called the detailed fluctuation
theorem in the context of the fluctuation theorem [1]. For example, the Hamiltonian
derivation of the detailed fluctuation theorem was given by C. Jarzynski [14].

Let T be the temperature of the heat bath attached to the system from time t to t ′.
Here we consider the time evolution of the small system xt interacting with a single
heat bath, where the interaction Hamiltonian between the system and heat bath is
sufficiently small and negligible. The equilibrium distribution with the fixed external
parameter is given by

peq(xt ;λt ) = Z−1 exp

[

−U (xt , t)

kBT

]

, (3.2)

where kB is the Boltzmann constant,U (xt , t) is the internal energy (the Hamiltonian)
of the system X at time t and Z := ∫

dxt exp[−U (xt , t)/(kBT )] is the partition func-
tion. From the detailed balance property (3.1) and Eq. (3.3), the detailed fluctuation
theorem for a small system is given by

ln
p(xt ′ |xt )
pB(xt ′ |xt ) = �sbath, (3.3)

�sbath := −U (xt ′ , t) −U (xt , t)

kBT
, (3.4)

where we introduce the backward transition probability defined as pB(xt ′ |xt ) :=
p(x+

t ′ ,−x−
t ′ |x+

t ,−x−
t ;λt ). The quantity �sbath indicates the sum of the entropy

changes in heat bath caused by the time evolution of the system from xt to xt ′ ,
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because the Hamiltonian difference Qt→t ′ := U (xt ′ , t) − U (xt , t) means the heat
dissipation from the system to heat bath from time t to t ′. The heat dissipation satisfies
the first law of thermodynamics

U (xt ′ , t
′) −U (xt , t) = Qt→t ′ + Wt→t ′ , (3.5)

where Wt→t ′ := U (xt ′ , t ′) −U (xt ′ , t) is the work performed on system X from time
t to t ′ due to the change of the external parameter. The detailed fluctuation theorem
states that the entropy changes in heat baths is given by the ratio between the forward
transition probability p and the backward transition probability pB .

This description of the entropy changes in the heat baths is useful even for the
stochastic model where the Hamiltonian of the heat bath is not explicitly defined.
For example, we show the case of the following overdamped Langevin equation:

γ ẋ(t) = −∂xU (x, t) + ξx (t),

〈ξx (t)〉 = 0,

〈ξx (t)ξx(t ′)〉 = 2γkBT
xδ(t − t ′), (3.6)

where γ is the friction constant, U (x, t) is the time dependent inertial energy, ∂x

denotes the partial derivative symbol with respect to x , and ξx (t) is a white Gaussian
noise of the heat bath with a temperature T x .

The stochastic differential equation (3.6) is mathematically defined as the follow-
ing discretization:

γxt+dt = γxt − ∂xU (xt , t)dt + √
2γkBT xdBt , (3.7)

where we define xt := x(t), xt+dt := x(t + dt) with an infinitesimal time interval
dt . dBt := ∫ t+dt

t dtξx (t)/
√
2γkBT x = Bt+dt − Bt is given by a Wiener process Bt ,

distributed as the normal distribution:

p(dBt ) = 1√
2πdt

exp

[

− (dBt )
2

2dt

]

. (3.8)

Substituting Eq. (3.7) to (3.8), we have the forward transition probability of the
Langevin equation (3.6) at time t :

p(xt+dt |xt ) = Nx exp

[

− (γxt+dt − γxt + ∂xU (xt , t)dt)
2

4γkBT xdt

]

=: G(xt ; xt+dt ; t), (3.9)

where xt := x(t) denotes the state at time t , and Nx is the normalization constant
which satisfies

∫
dxt+dt p(xt+dt |xt ) = 1. The backward transition probability of the

Langevin equation (3.6) at time t + dt is defined as
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pB(xt |xt+dt ) := G(xt+dt ; xt ; t + dt)

= Nx exp

[

− (γxt − γxt+dt + ∂xU (xt+dt , t + dt)dt)2

4γkBT xdt

]

. (3.10)

Thus, the ratio between the forward and backward transition probabilities is
calculated as

ln
p(xt+dt |xt )
pB(xt |xt+dt )

= − 1

kBT x

∂xU (xt , t) + ∂xU (xt+dt , t + dt)

2
(xt+dt − xt )

= −∂xU ◦ dx(xt , t)

kBT x

= − (ξx (t) − γ ẋ(t)) ◦ dx

kBT x
, (3.11)

where dx = xt+dt − xt and ◦ denotes the Stratonovich integral defined as f ◦
dx(x, t) := [ f (xt+dt , t + dt) + f (xt , t)](xt+dt − xt )/2 for any function f (x, t).
The Stratonovich product ∂xU ◦ dx = (ξx − γ ẋ) ◦ dx gives the definition of the
heat flow for the Langevin equation, which has been historically developed by K.
Sekimoto [3]. Thus, the ratio ln[p(xt+dt |xt )/pB(xt |xt+dt )] can be considered as the
entropy change rate in the heat bath with a temperature T x .

3.1.2 Entropy Production

Next, we define the entropy production, which is the sum of the stochastic entropy
changes in a small system and in heat baths. Let xk be the state of the system X at
time k = 1, . . . , N . We assume that the dynamics of X is given by theMarkov chain:

p(X) = p(x1)p(x2|x1) · · · p(xN |xN−1), (3.12)

where X := {x1, . . . , xN } also denotes the stochastic trajectory of the system X .
From the detailed fluctuation theorem, the entropy changes in heat baths from time
k to k + 1 is given by

�skbath = ln
p(xk+1|xk)
pB(xk |xk+1)

, (3.13)

The entropy change in a small system from time 1 to N is defined as

�sx := ln p(x1) − ln p(xN ). (3.14)

This ensemble average gives the Shannon entropy difference 〈�sx 〉 = S(xN )−S(x1).
The entropy production from time k = 1 to k = N is defined as
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σ := �sx +
N−1∑

k=1

�skbath

:= ln
p(x1)p(x2|x1) . . . p(xN |xN−1)

p(xN )pB(xN−1|xN ) · · · pB(x1|x2) . (3.15)

Here, we consider the physical meaning of the entropy production. If the initial
probability distribution p(x1) and the finial distribution p(xN ) are given by the equi-
librium distributions, the probability distributions are given by the inertial energy
U (xk, k) and the free energy F(k):

p(x1) := peq(x1)

:= exp[β(F(1) −U (x1, 1))], (3.16)

p(xN ) := peq(xN )

:= exp[β(F(N ) −U (xN , N ))], (3.17)

where β denotes the inverse temperature of the heat bath. The entropy change in
the bath from time k = 1 to k = N is rewritten by the heat absorption in the small
system Q such as

−βQ :=
N−1∑

k=1

�skbath. (3.18)

Here, the inertial energyU (xk, k) and Q are stochastic variables of the path X . From
the first law of thermodynamics, a stochastic work performed by the small system
W is defined as

W := −Q − [U (x1, 1) −U (xN , N )]. (3.19)

Thus, the entropy production can be rewritten by the work W and the free energy
difference �F := F(N ) − F(1), if the initial and final states are in equilibrium:

σ := β(W − �F). (3.20)

3.1.3 Relative Entropy and the Second Law
of Thermodynamics

If the dynamics is given by the Markov chain, we generally derive the second law of
thermodynamics, i.e., the ensemble average of the entropy production is nonnegative.
The second law of thermodynamics is related to the nonnegativity of the relative
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entropy. First, we define the stochastic relative entropy dKL(p(x)||q(x)) as

dKL(p(x)||q(x)) := ln p(x) − ln q(x). (3.21)

Its ensemble average gives the relative entropy and is nonnegative,

〈dKL(p(x)||q(x))〉p = DKL(p(x)||q(x))

≥ 0. (3.22)

If the dynamics is given by the Markov chain Eq. (3.12), the entropy production is
given by the stochastic relative entropy

σ = dKL(p(X)||pB(X)), (3.23)

pB(X) = p(xN )pB(xN−1|xN ) · · · pB(x1|x2), (3.24)

where the backward path probability pB(X) satisfies the nonnegativity pB(X) ≥ 0
and the normalization

∑

X

pB(X) =
∑

x2,...,xN

[
∑

x1

pB(x1|x2)
]

pB(x3|x2) · · · pB(xN−1|xN )p(xN )

=
∑

x2,...,xN

pB(x3|x2) · · · pB(xN−1|xN )p(xN )

= · · ·
=

∑

xN

p(xN )

= 1. (3.25)

From the nonnegativity of the relative entropy Eq. (3.22), we have the nonnegativity
of the ensemble average of the entropy production:

〈σ〉 ≥ 0, (3.26)

which is well known as the second law of thermodynamics [3, 5]. From the property
of the relative entropy, we derive the fact that the equality holds if and only if the
reversibility of the path is achieved, i.e., pB(X) = p(X). If the initial and final states
are in equilibrium, we have another expression of the second law Eq. (3.26) from
(3.20),

〈W 〉 ≥ �F, (3.27)

which means that the free energy difference gives a lower bound of the work.
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3.1.4 Stochastic Relative Entropy and Integral Fluctuation
Theorem

We here derive the nonequlibrium identity called the integral fluctuation theorem [1]
or the Jarzynski equality [11] using the definition of the stochastic relative entropy.
We have the following identity of the stochastic relative entropy,

〈exp[−dKL(p(x)||q(x))]〉p = 〈q(x)/p(x)〉p
=

∑

x

q(x)

= 1. (3.28)

In the case of aMarkov chain, the entropy production is a stochastic relativity entropy,
and we have the identity

〈exp[−σ]〉 = 1, (3.29)

which is called the integral fluctuation theorem. This integral fluctuation theorem is
a generalization of the second law of thermodynamics, because the second law of
thermodynamics can be derived from Eq. (3.29):

exp(0) = 〈exp(−σ)〉
≥ exp(−〈σ〉), (3.30)

〈σ〉 ≥ 0, (3.31)

where we used Jensen’s inequality Eq. (2.12) for a convex function exp[ f (x)].
If we assume that initial and final states are in equilibrium, the integral fluctuation

theorem can be rewritten as

exp(−β�F) = 〈exp(−βW )〉. (3.32)

This expression is well known as the Jarzynski equality [11]. This equality gives an
exact expression of the free energy in terms of the work distribution, i.e., �F =
−β−1 ln〈exp(−βW )〉.

3.2 Steady State Thermodynamics and Feedback Cooling

The integral fluctuation theorem is an identity of the stochastic relative entropy
dKL(p(x)||q(x)), and the identity can be generalized by selecting the probability
distribution q(x) in a stochastic relative entropy dKL(p(x)||q(x)). One influential
application of the identity is the generalization of the second law for a steady state,

http://dx.doi.org/10.1007/978-981-10-1664-6_2
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which is called the steady-state thermodynamics [17, 21, 58–63]. Another applica-
tion is a cooling process controlled by a velocity-dependent force, called the entropy
pumping or feedback cooling [41, 64–68]. In this section, we introduce these iden-
tities in terms of the stochastic relative entropy.

3.2.1 Housekeeping Heat and Excess Heat

If a system is driven by a time-independent force, the systemwill reach a nonequilib-
rium steady state. The steady state thermodynamics is a phenomenological attempt
to construct thermodynamics for a nonequilibrium steady state, which has been intro-
duced by Oono and Paniconi [58]. For a simple Langevin model, the generalizations
of the heat dissipation for a steady state (i.e., the housekeeping heat, and the excess
heat) are well-defined [17]. We show that the generalizations of the heat dissipation
are related to the relative entropy.

Let us consider the following one-dimensional Langevin model:

γ ẋ(t) = fex(x,λ(t)) − ∂xU (x,λ(t)) + ξx (t),

〈ξx (t)〉 = 0, (3.33)

〈ξx (t)ξx (t ′)〉 = 2γβ−1δ(t − t ′),

where fex is an external nonconservative force and λ(t) is the control parameter. To
generalize thermodynamics for a steady state, the nonequilibrium potential φ(x,λ)

is defined as

φ(x,λ) = − ln pss(x;λ), (3.34)

where pss(x;λ) is the steady-state distribution for a fixed value of the control para-
meter λ. The mean local velocity of the nonequilibrium steady state is defined as

γvss(x,λ) = fex(x,λ) − ∂xU (x,λ) + β−1∂xφ(x .λ). (3.35)

The housekeeping heat Qhk is defined as

Qhk :=
∫

dt ẋ(t) ◦ γvss(x(t),λ(t)), (3.36)

which is regarded as the steady heat dissipation. The conventional heat absorption
Q is defined as

Q := −
∫

dt ẋ(t) ◦ [ fex(x,λ) − ∂xU (x,λ)], (3.37)
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and we can break down the dissipative heat −Q into the housekeeping heat and the
rest called the excess heat dissipation:

−Q = Qhk + Qex, (3.38)

Qex := −β−1
∫

dt ẋ ◦ ∂xφ(x .λ)

= −β−1[�φ −
∫

dt λ̇ ◦ ∂λφ(x .λ)], (3.39)

where �φ := ∫
dt φ̇ is the nonequilibrium potential change, and we used the chain

rule of the Stratonovich integral φ̇ := λ̇ ◦ ∂λφ(x .λ) + ẋ ◦ ∂xφ(x .λ).

3.2.2 Stochastic Relative Entropy and Hatano–Sasa Identity

In this section, we show the relationship between the steady-state thermodynamics
and the stochastic relative entropy. From the nonnegativity of the relative entropy,
we have generalizations of the second law of thermodynamics for a steady-state. In
the steady-state thermodynamics, we have two equalities and their corresponding
inequalities:

β〈Qhk〉 ≥ 0, (3.40)

〈exp(−βQhk)〉 = 1, (3.41)

and

〈�φ〉 ≥ −β〈Qex〉, (3.42)

〈exp(−�φ − βQex)〉 = 1. (3.43)

Equation (3.43) is well known as the Hatano–Sasa equality [17].
We consider the path X = {x1, . . . , xN }, where xk := x(kdt) and λk := λ(kdt)

denote the state of X and the control parameter at time t = kdt , respectively, with
an infinitesimal time interval dt . We assume that the initial distribution is in a steady
state pss(x1). The path integral of the Langevin dynamics Eq. (3.33) is given by

p(X) = pss(x1)p(x2|x1) · · · p(xN |xN−1), (3.44)

p(xk+1|xk) = Nx exp

[

− (γxk+1 − γxk − ftot(xk,λk)dt)
2

4γβ−1dt

]

, (3.45)

where ftot(x,λ) := fex(x,λ) − ∂xU (x,λ) denotes the total force.
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First, we derive Eqs. (3.40) and (3.41) from the stochastic relative entropy. Here,
we consider an imaginary dynamics with the force ftot − 2γvss, which is called the
dual dynamics, where the sign of the steady mean local velocity vss is the opposite
of the sign of the original one. The dual dynamics is related to the house keeping
heat and the excess heat dissipation, because the steady mean local velocity vss is a
cause of the house keeping heat. As shown below, the house keeping heat is given
by the stochastic relative entropy between probability distributions of the original
dynamics and of the dual dynamics.

The forward path probability of the dual dynamics pD(X) is given by

pD(X) = pss(x1)pD(x2|x1) · · · pD(xN |xN−1), (3.46)

pD(xk+1|xk) = Nx exp

[

− (γxk+1 − γxk − ftot(xk,λk)dt + 2γvss(xk,λk)dt)
2

4γβ−1dt

]

.

(3.47)

Up to the order o(1), the stochastic relative entropy dKL(p(X)||pD(X)) is
calculated as

dKL(p(X)||pD(X)) = β
∑

k

dt
xk+1 − xk

dt

γvss(xk,λk) + γvss(xk+1,λk+1)

2
(3.48)

= βQhk. (3.49)

From the identity Eq. (3.28) and the nonnegativity of the relative entropy (i.e.,
DKL(p(X)||pD(X)) ≥ 0), we can derive the equality and inequality of the house-
keeping heat Eqs. (3.40) and (3.41).

Next, we derive Eqs. (3.42) and (3.43) from the stochastic relative entropy. The
backward path probability of the dual dynamics pBD(X) is given by

pBD(X) = pss(xN )pBD(xN−1|xN ) · · · pBD(x1|x2), (3.50)

pBD(xk |xk+1)

= Nx exp

[

− (γxk − γxk+1 − ftot(xk+1,λk+1)dt + 2γvss(xk+1,λk+1)dt)
2

4γβ−1dt

]

= Nx exp

[

−
(
γxk − γxk+1 + ftot(xk+1,λk+1)dt + 2β−1∂xφ(xk+1,λk+1)dt

)2

4γβ−1dt

]

.

(3.51)

Up to the order o(1), the stochastic relative entropy dKL(p(X)||pBD(X)) is
calculated as
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dKL(p(X)||pBD(X)) = �φ −
∑

k

dt
xk+1 − xk

dt

∂xφ(xk,λk) + ∂xφ(xk+1,λk+1)

2

= �φ + βQex. (3.52)

From the identity Eq. (3.28) and the nonnegativity of the relative entropy (i.e.,
DKL(p(X)||pBD(X)) ≥ 0), we have Eqs. (3.42) and (3.43).

3.2.3 Stochastic Relative Entropy and Feedback Cooling

As a technique of the opto-mechanics, the feedback cooling (or cold damping)
has been developed to reduce the fluctuation of a mechanical degree of freedom
[64–68]. For example, to measure the spontaneous velocity of a Brownian particle,
1.5 mK cooling of a Brownian particle optically trapped in the vacuum has been
achieved experimentally [67]. As a molecular refrigerator, the feedback control with
the velocity-dependent force has been discussed from a thermodynamic point of
view [41]. Here, we discuss the nonequilibrium identity about the feedback cooling
derived by K.H. Kim and H. Qian [41] in terms of the stochastic relative entropy.

We consider the following underdamped Langevin equation:

mẍ(t) = −γ ẋ(t) − ∂xU (x(t)) + ffb(ẋ(t)) + ξx (t),
〈
ξx (t)ξx (t ′)

〉 = 2γβ−1δ(t − t ′), (3.53)
〈
ξx (t)

〉 = 0,

where m is the mass of the particle, ffb(ẋ(t)) means a velocity-dependent feedback
force, which generally depends on the spontaneous velocity ẋ(t). With an infini-
tesimal time interval dt , we discretize the dynamical variables xk ≡ x(kdt) and
ẋk ≡ ẋ(kdt). We consider the trajectories of the position and the velocity from time
k = 1 to k = N , denoted as X ≡ {x1, . . . , xN } and Ẋ ≡ {ẋ1, . . . , ẋN }, respectively.
The path probability p(X, Ẋ) is given by

p(X, Ẋ) = p(x1, ẋ1)p(x2, ẋ2|x1, ẋ1) · · · p(xN , ẋN |xN−1, ẋN−1), (3.54)

p(xk+1, ẋk+1|xk , ẋk) = N exp

[

− dt

2m
∂ẋ ftot(x̄k , ¯̇xk)

]

δ(xk+1 − xk − ¯̇xkdt)

× exp

[

−
[
m(ẋk+1 − ẋk) + γ(xk+1 − xk) − ftot(x̄k , ¯̇xk)dt

]2

4γβ−1dt

]

,

(3.55)

where x̄k := (xk+1 + xk)/2, ¯̇xk := (ẋk+1 + ẋk)dt/2, ftot(x, ẋ) := −∂xU (x) +
ffb(ẋ) andN exp[−dt∂ẋ ftot/(2m)] is the normalization prefactor, i.e., the Jacobian
determinant.
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The backward path probability for a feedback cooling pB(X, Ẋ) is defined as

pB(X, Ẋ) = p(xN , ẋN )pB(xN−1, ẋN−1|xN , ẋN ) · · · pB(x1, ẋ1|x2, ẋ2),
(3.56)

pB(xk , ẋk |xk+1, ẋk+1) = N exp

[
dt

2m
∂ẋ ftot(x̄k , ¯̇xk)

]

δ(xk+1 − xk − ¯̇xkdt)

× exp

[

−
[
m(ẋk+1 − ẋk) + γ(xk − xk+1) − ftot(x̄k , ¯̇xk)dt

]2

4γβ−1dt

]

,

(3.57)

where the sign of the velocity in the feedback force ftot(xk+1, ¯̇xk) does not change
in this backward process.

Up to the order o(1), the stochastic relative entropy dKL(p(X, Ẋ)||pB(X, Ẋ)) is
calculated as

dKL(p(X, Ẋ)||pB(X, Ẋ))

= �sx − β
∑

k

dt
xk+1 − xk

dt

m(ẋk+1 − ẋk) − ftot(x̄k, ¯̇xk)dt
dt

−
∑

k

dt

m
∂ẋ ftot(x̄k, ¯̇xk)

= �sx − β

∫

dt ẋ(t) ◦ (ξx (t) − γ ẋ(t)) − m−1
∫

dt∂ẋ ffb(ẋ(t))

= σ − �spu, (3.58)

where the entropy change in a bath is defined as �sbath := −β
∫
dt ẋ(t) ◦ (ξx (t) −

γ ẋ(t)), the entropy production is defined as σ := �sx + �sbath, and the entropy
pumping �spu is defined as �spu := m−1

∫
dt∂ẋ ffb(ẋ(t)). The entropy pumping

�spu canbenegative the velocity-dependent force, if the velocity-dependent feedback
force ffb exists.

From the identity Eq. (3.28) and the nonnegativity of the relative entropy (i.e.,
DKL(p(X, Ẋ)||pB(X, Ẋ)) ≥ 0), we have the identity and the generalization of the
second law:

〈exp(−σ + �spu)〉 = 1, (3.59)

〈σ〉 ≥ 〈�spu〉. (3.60)

If the velocity-dependent feedback force ffb exists, a lower bound of 〈σ〉 can be neg-
ative. Thus, the inequality (3.60) indicates that the ensemble average of the entropy
production can be negative if the feedback control exists. This discussion of feedback
cooling is closely related to the problem of Maxwell’s demon, but this discussion of
feedback cooling completely depends on the Langevin equation (3.54). In Sect. 4.1,
we give a general discussion of Maxwell’s demon and the entropy production under
a feedback control in a different and informational way.

http://dx.doi.org/10.1007/978-981-10-1664-6_4


References 37

References

1. D.J. Evans, D.J. Searles, The fluctuation theorem. Adv. Phys. 51, 1529 (2002)
2. D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. (Cam-

bridge University Press, Cambridge, 2008)
3. K. Sekimoto, Stochastic Energetics (Springer, New York, 2010)
4. U. Seifert, Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423

(2008)
5. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep.

Prog. Phys. 75, 126001 (2012)
6. D.J. Evans, E.G.D. Cohen, G.P.Morriss, Probability of second law violations in shearing steady

states. Phys. Rev. Lett. 71, 2401 (1993)
7. G. Gallavotti, E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics.

Phys. Rev. Lett. 74, 2694 (1995)
8. J. Kurchan, Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 31, 3719

(1998)
9. J.L. Lebowitz, H. Spohn, A Gallavotti-Cohen-type symmetry in the large deviation functional

for stochastic dynamics. J. Stat. Phys. 95, 333 (1999)
10. D.J. Searles, D.J. Evans, Fluctuation theorem for stochastic systems. Phys. Rev. E 60, 159

(1999)
11. C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690

(1997)
12. C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: a

master-equation approach. Phys. Rev. E 56, 5018 (1997)
13. G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for

free energy differences. Phys. Rev. E 60, 2721 (1999)
14. C. Jarzynski, Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77

(2000)
15. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models.

J. Phys. Soc. Jpn. 66, 1234 (1997)
16. K. Sekimoto, Langevin equation and thermodynamics. Prog. Theor. Phys. Supp. 130, 17 (1998)
17. T. Hatano, S.-I. Sasa, Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86,

3463 (2001)
18. G.E. Crooks, Nonequilibrium measurements of free energy differences for microscopically

reversible Markovian systems. J. Stat. Phys. 90, 1481 (1998)
19. G. Hummer, A. Szabo, Free energy reconstruction from nonequilibrium single-molecule

pulling experiments. Proc. Nat. Acad. Sci. 98, 3658 (2001)
20. J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco, C. Bustamante, Equilibrium information from

nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 296,
1832 (2002)

21. E.H. Trepagnier, C. Jarzynski, F. Ritort, G.E. Crooks, C.J. Bustamante, J. Liphardt, Experi-
mental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Nat. Acad. Sci.
USA 101, 15038 (2004)

22. R. Van Zon, S. Ciliberto, E.G.D. Cohen, Power and heat fluctuation theorems for electric
circuits. Phys. Rev. Lett. 92, 130601 (2004)

23. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Verification of the
Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231 (2005)

24. S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, U. Seifert, Experimental test of the fluctuation
theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602
(2005)

25. C. Tietz, S. Schuler, T. Speck, U. Seifert, J. Wrachtrup, Measurement of stochastic entropy
production. Phys. Rev. Lett. 97, 050602 (2006)

26. D.Andrieux, P.Gaspard, S. Ciliberto, N.Garnier, S. Joubaud,A. Petrosyan, Entropy production
and time asymmetry in nonequilibrium fluctuations. Phys. Rev. Lett. 98, 150601 (2007)



38 3 Stochastic Thermodynamics for Small System

27. S. Toyabe, T. Okamoto, T. Watanabe-Nakayama, H. Taketani, S. Kudo, E. Muneyuki, Non-
equilibrium energetics of a single F1-ATPase molecule. Phys. Rev. Lett. 104, 198103 (2010)

28. K. Hayashi, H. Ueno, R. Iino, H. Noji, Fluctuation theorem applied to F1-ATPase. Phys. Rev.
Lett. 104, 218103 (2010)

29. J.Mehl, B. Lander, C. Bechinger, V. Blickle, U. Seifert, Role of hidden slow degrees of freedom
in the fluctuation theorem. Phys. Rev. Lett. 108, 220601 (2012)

30. C. Maes, The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367 (1999)
31. C. Maes, F. Redig, A. Van Moffaert, On the definition of entropy production, via examples. J.

Math. Phys. 41, 1528 (2000)
32. J. Farago, Injected power fluctuations in Langevin equation. J. Stat. Phys. 107, 781 (2002)
33. R. Van Zon, E.G.D. Cohen, Extension of the fluctuation theorem. Phys. Rev. Lett. 91, 110601

(2003)
34. R. Van Zon, E.G.D. Cohen, Stationary and transient work fluctuation theorems for a dragged

Brownian particle. Phys. Rev. E. 67, 046102 (2003)
35. D. Andrieux, P. Gaspard, Fluctuation theorem and Onsager reciprocity relations. J. Chem.

Phys. 121, 6167 (2004)
36. D. Andrieux, P. Gaspard, Fluctuation theorem for cuurents and Schnakenberg network theory.

J. Stat. Phys. 127, 107 (2007)
37. Jarzynski C., Nonequilibrium work theorem for a system strongly coupled to a thermal envi-

ronment, J. Stat. Mech: Theor. Exp. (2004) P09005
38. C. Jarzynski, D.K. Wójcik, Classical and quantum fluctuation theorems for heat exchange.

Phys. Rev. Lett. 92, 230602 (2004)
39. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem.

Phys. Rev. Lett. 95, 040602 (2005)
40. Chernyak V. Y., ChertkovM. & Jarzynski C., Path-integral analysis of fluctuation theorems for

general Langevin processes, J. Stat. Mech. (2006). P08001
41. K.H. Kim, H. Qian, Fluctuation theorems for a molecular refrigerator. Phys. Rev. E 75, 022102

(2007)
42. T. Harada, S.-I. Sasa, Equality connecting energy dissipation with a violation of the fluctuation-

response relation. Phys. Rev. Lett. 95, 130602 (2005)
43. T. Speck, U. Seifert, Restoring a fluctuation-dissipation theorem in a nonequilibrium steady

state. Europhys. Lett. 74, 391 (2006)
44. M. Baiesi, C. Maes, B. Wynants, Fluctuations and response of nonequilibrium states. Phys.

Rev. Lett. 103, 010602 (2009)
45. R. Kawai, J.M.R. Parrondo, C. Van den Broeck, Dissipation: the phase-space perspective. Phys.

Rev. Lett. 98, 080602 (2007)
46. H. Touchette, The large deviation approach to statistical mechanics. Phys. Rep. 478, 1 (2009)
47. T. Nemoto, S.-I. Sasa, Thermodynamic formula for the cumulant generating function of time-

averaged current. Phys. Rev. E. 84, 061113 (2011)
48. K. Kanazawa, T. Sagawa, H. Hayakawa, Stochastic energetics for non-gaussian processes.

Phys. Rev. Lett. 108, 210601 (2012)
49. T. Munakata, M.L. Rosinberg, Entropy production and fluctuation theorems for Langevin

processes under continuous non-Markovian feedback control. Phys. Rev. Lett. 112, 180601
(2014)

50. C. Van den Broeck, Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95(19),
190602 (2005)

51. T. Schmiedl, U. Seifert, Efficiency at maximum power: An analytically solvable model for
stochastic heat engines. Europhys. Lett. 81, 20003 (2008)

52. M. Esposito, L. Katja, C. Van den Broeck, Universality of efficiency at maximum power. Phys.
Rev. Lett. 102, 130602 (2009)

53. Y. Izumida, K. Okuda, Onsager coefficients of a finite-time Carnot cycle. Phys. Rev. E 80,
021121 (2009)

54. U. Seifert, Efficiency of autonomous soft nanomachines at maximum power. Phys. Rev. Lett.
106, 020601 (2011)



References 39

55. K. Brandner, K. Saito, U. Seifert, Strong bounds on Onsager coefficients and efficiency for
three-terminal thermoelectric transport in a magnetic field. Phys. Rev. Lett. 110, 070603 (2013)

56. M. Esposito, C. Van den Broeck, Three detailed fluctuation theorems. Phys. Rev. Lett. 104,
090601 (2010)

57. N.G.VanKampen,Stochastic Processes inPhysics andChemistry (Elsevier,Amsterdam, 1992)
58. Y. Oono, M. Paniconi, Steady state thermodynamics. Prog. Theor. Phys. Suppl. 130, 29–44

(1998)
59. S.-I. Sasa, H. Tasaki, Steady state thermodynamics. J. Stat. Phys. 125, 125 (2006)
60. T.S.Komatsu,N.Nakagawa,Expression for the stationary distribution in nonequilibrium steady

states. Phys. Rev. Lett. 100, 030601 (2008)
61. T.S. Komatsu, N. Nakagawa, S.I. Sasa, H. Tasaki, Steady-state thermodynamics for heat con-

duction: microscopic derivation. Phys. Rev. Lett. 100, 230602 (2008)
62. T. Sagawa, H. Hayakawa, Geometrical expression of excess entropy production. Phys. Rev. E

84, 051110 (2011)
63. E.H. Lieb, J. Yngvason, The entropy concept for non-equilibrium states. Proc. R. Soc. A 469,

20130408 (2013)
64. D. Kleckner, D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator.

Nature 444, 75 (2006)
65. M. Poggio, C.L. Degen, H.J. Mamin, D. Rugar, Feedback cooling of a cantilever’s fundamental

mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007)
66. T.J. Kippenberg, K.J. Vahala, Cavity optomechanics: back-action at the mesoscale. Science

321, 1172 (2008)
67. L. Tongcang, S. Kheifets,M.G. Raizen,Millikelvin cooling of an optically trappedmicrosphere

in vacuum. Nat. Phys. 7, 527 (2011)
68. J. Gieseler, B. Deutsch, R. Quidant, L. Novotny, Subkelvin parametric feedback cooling of a

laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012)



Chapter 4
Information Thermodynamics Under
Feedback Control

Abstract This chapter presents a review of the stochastic thermodynamics under
feedback control corresponding to the information processing by Maxwell’s demon.
In this chapter, we show the derivation of the generalized second law of thermody-
namics with information. The generalized second law of thermodynamics indicates
that the mutual information between the target system and the feedback controller
gives a lower bound of the entropy production. We also discuss the Szilard engine
which is a minimal model of the Maxwell’s demon.

Keywords Information thermodynamics · Maxwell’s demon

Recently, the stochastic thermodynamics of information processing by “Maxwell’s
demon” has been intensively developed, leading to unified theory of thermodynam-
ics and information [1–51]. Historically, the connection between thermodynamics
and information in a small system was first discussed in the thought experiment of
Maxwell’s demon in the 19th century [52–57], where Maxwell’s demon is regarded
as a feedback controller. With a feedback control in a small system, the second law of
thermodynamics seems to be violated, i.e., the entropy production can be negative.
In this chapter, we introduce the formalism of information thermodynamics for a
small system under feedback control.

4.1 Feedback Control and Entropy Production

Here, we discuss thermodynamics under a feedback control with a single measure-
ment. Let xk be a state of a small system X andm1 be a memory state. At time k = 1,
a measurement of the initial state x1 is performed and its outcome is preserved in a
memory statem1. The measurement is given by the conditional probability p(m1|x1)
and the dynamics of a small system depends on the memory state m1 because of the
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effect of the feedback control. The time evolution of the system X from time k = 1
to k = N is given by the following path-probability:

p(x2|x1,m1)p(x3|x2,m1) · · · p(xN |xN−1,m1). (4.1)

Thus, the joint probability p(x1, . . . , xN ,m1) is given by

p(x1, . . . , xN ,m1) = p(x1)p(m1|x1)p(x2|x1,m1) · · · p(xN |xN−1,m1). (4.2)

In this protocol, we consider the detailed fluctuation theorem under a feedback con-
trol. When the system X is changed from xk to xk+1, the memory statem1 play a role
of an external parameter. Thus, the detailed fluctuation theorem is modified as

�skbath := ln
p(xk+1|xk,m1)

pB(xk |xk+1,m1)
, (4.3)

where pB is the probability of the backward process. The detailed fluctuation theorem
is the consequence of the detailed balance property, so that the backward probability
is defined as pB(xk |xk+1,m1) = p(x+

k ,−x−
k |x+

k+1,−x−
k+1,m

+
1 ,−m−

1 ), where xk =
{x+

k , x−
k } (m1 = {m+

1 ,m−
1 }), x+

k (m+
1 ) denotes an even function of the momentum,

and x−
k (m−

1 ) denotes an odd function of the momentum. The entropy production for
a feedback control is defined as

σ := ln p(x1) − ln p(xN ) +
N−1∑

k=1

�skbath

= ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk,m1)

pB(xk |xk+1,m1)

]

. (4.4)

We stress that this entropy production is not a stochastic relative entropy, so that its
ensemble average can be negative.

4.1.1 Stochastic Relative Entropy and Sagawa–Ueda Relation

We next consider the generalization of the second law for a feedback control. In the
case of a feedback control, the entropy production is not a stochastic relative entropy.

Let the stochastic mutual information between X and Y be i(X : Y ) :=
ln p(X,Y ) − ln p(X) − ln p(Y ). Its ensemble average gives the mutual informa-
tion I (X,Y ) = 〈i(X : Y )〉. Here, we show that the sum of the entropy production
and the stochastic mutual information difference can be rewritten by the stochastic
relative entropy such as
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σ + i(x1 : m1) − i(xN : m1) := ln
p(x1)p(m1|x1)p(x2|x1,m1) · · · p(xN |xN−1,m1)

p(xN )p(m1|xN )pB(xN−1|xN ,m1) · · · pB(x1|x2,m1)

:= dKL(p(x1, . . . , xN ,m1)||pB(x1, . . . , xN ,m1)). (4.5)

pB(x1, . . . , xN ,m1) := p(xN )p(m1|xN )pB(xN−1|xN ,m1) · · · pB(x1|x2,m1).

(4.6)

The backward path probability pB satisfies the normalization of the probability:

∑

x1,...,xN ,m1

pB(x1, . . . , xN ,m1) :=
∑

xN ,m1

p(xN )p(m1|xN )

= 1. (4.7)

From the identity Eq. (3.28) and the nonnegativity of the relative entropy (i.e.,
DKL(p(x1, . . . , xN ,m1)||pB(x1, . . . , xN ,m1)) ≥ 0), we have the identity and the
generalization of the second law:

〈exp(−σ + �i)〉 = 1, (4.8)

�i := i(xN : m1) − i(x1 : m1), (4.9)

〈σ〉 ≥ �I, (4.10)

�I := I (xN : m1) − I (x1 : m1), (4.11)

which are known as the Sagawa–Ueda relations [10, 28]. The mutual information
difference�I gives the bound of the ensemble average of the entropy production 〈σ〉.
In general, themutual information difference can be negative. The equality 〈σ〉 = �I
holds if and only if the reversibility with a memory state, i.e., p(x1, . . . , xN ,m1) =
pB(x1, . . . , xN ,m1), is achieved.

If the initial state p(x1) and the final state with a memory state p(xN |m1) are in
equilibrium:

p(x1) = peq(x1)

:= exp[β(F(1) −U (1, x1))], (4.12)

p(xN |m1) = peq(xN |m1)

:= exp[β(F(N ,m1) −U (N , xN |m1))], (4.13)

the Sagawa–Ueda relation is rewritten by the free energy and the work such as

〈exp[−β(W (m1) − �F(m1)) − i(x1 : m1)]〉 = 1, (4.14)

β(〈W (m1)〉 − 〈�F(m1)〉) ≥ −I (x1 : m1), (4.15)

where the work W (m) is defined as W (m1) := β−1 ∑
k �skbath − (U (1, x1) −

U (N , xN |m1)), and the free energy difference is given by �F(m1) := F(N ,m1) −
F(1). The mutual information between the initial state x1 and the memory state m1

gives the bound of the apparent second law violation.

http://dx.doi.org/10.1007/978-981-10-1664-6_3
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4.1.2 Maxwell’s Demon Interpretation of Sagawa–Ueda
Relation

The Sagawa–Ueda relation describes trade off between information and thermody-
namic entropy. One of the essential applications of the Sagawa–Ueda relation is
the problem of Maxwell’s demon, which performs a feedback control to reduce the
entropy of the system.

Here, we introduce the Szilard engine, which is aminimal model of theMaxwell’s
demon discussed byLeo Szilard in 1929 [53], and an application of the Sagawa–Ueda
relation to the Szilard engine model. The Szilard engine is given by the following
five steps (see also Fig. 4.1).

(i) At first, a single particle gas exists in a box with a volume V . The box is
attached to the heat bath with a temperature T = 1/(kBβ), and the probability of the
position of the particle is uniformly distributed. (ii) Next, the partition is added to
divide the box to two equal parts. x1 denotes the state of the position of the particle
at this step (ii), and x1 = L (x1 = R) means that the particle is in the left-hand
(right-hand) side of the box. The probability p(x1) is given by

p(x1 = L) = 1

2
, (4.16)

p(x1 = R) = 1

2
. (4.17)

(i) (ii)

(iii)

(iv)

(v)

Measurement

Feedback

V

T

Maxwell’ s demon

? ?

Fig. 4.1 The schematic of the Szilard’s engine. Maxwell’s demon measure a state of the position
of a single particle x1, and performs feedback control using the measurement outcome m1. In a
cycle, Maxwell’s demon can extract the work from the heat bath attached to the box. That fact is
the apparent violation of the second law of thermodynamics
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(iii) Maxwell’s demon performs a measurement of the position of the particle. In
general, the measurement outcome denoted as m1 does not coincide with the real-
ization of the position of the particle because of the measurement error. Here, we
consider that a measurement error like the binary symmetric channel such as

p(m1 = L|x1 = L) = p(m1 = R|x1 = R) = 1 − e, (4.18)

p(m1 = R|x1 = L) = p(m1 = L|x1 = R) = e. (4.19)

(iv) Depending on the measurement outcome m1, Maxwell’s demon quasi-statically
move the partition to expand the volume of a single particle gas. The work can be
extracted by this movement. (v) Finally, Maxwell’s demon reduce the partition and
wait for a long time to equilibrate the system,

In a cycle (i)–(v), we can extract the work at the step (iv). Nevertheless, the
free energy change from (i) to (v) is zero. The entropy production in this cycle
becomes negative. This apparent violation of the second law of thermodynamics
has been discussed by many researchers for a long time [52], although Leo Szilard
had mentioned the relationship between thermodynamic entropy and information
crucially and proactively in his original paper [53]. Here, we discuss this problem of
Maxwell’s demon from the viewpoint of the Sagawa–Ueda relation. The Sagawa–
Ueda relation gives a clear explanation of this Maxwell’s demon problem in terms
of the stochastic thermodynamics.

The extracted work Wext(m) := −W (m) at the step (iv) can be calculated using
the conventional thermodynamics. Let the position of the partition be λ = [0, 1],
where λ = 0 denotes the left edge of the box, λ = 1/2 denotes the position at a step
(ii), and λ = 1 denotes the right edge of the box. The finial position of the partition
depends on the memory state m1. The finial positions of the partition with memory
states m1 = L and m1 = R denotes λL and λR , correspondingly. The final volume
of the single particle gas depends on both the initial position of the particle and the
final position of the partition such as

Vfin(x1 = L ,m1 = L) = VλL , (4.20)

Vfin(x1 = R,m1 = L) = V (1 − λL), (4.21)

Vfin(x1 = L ,m1 = R) = VλR, (4.22)

Vfin(x1 = R,m1 = R) = V (1 − λR). (4.23)

In a quasi-static process, the pressure of a single particle gas is maximized in
any expansion of the volume, and is given by 1/(βV ′) with the volume of a single
particle gas V ′. The ensemble average of the extracted work is calculated as
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〈Wext(m1)〉 ≤
∑

x1,m1

p(x1,m1)

∫ Vfin(x1,m1)

V/2
dV ′ 1

βV ′

= β−1
[
e

2
ln(2λR) + 1 − e

2
ln 2(1 − λR) + e

2
ln(1 − λL ) + 1 − e

2
ln(2λL )

]

≤ β−1 [ln 2 + e ln e + (1 − e) ln(1 − e)] . (4.24)

The equality holds if λR = e, and λL = 1 − e are satisfied.
The free energy difference from the step (i) to the step (v) is zero, i.e., 〈�F(m1)〉 =

0. The mutual information between the initial state x1 and the memory state is the
same as the mutual information of the binary symmetric channel Eq. (2.30):

I (x1 : m1) = ln 2 + e ln e + (1 − e) ln(1 − e). (4.25)

Thus Eq. (4.24) becomes an example of the Sagawa–Ueda relation: β(〈W (m1)〉−
〈�F(m1)〉 ≥ −I (x1 : m1).

4.2 Comparison Between Sagawa–Ueda Relation
and the Second Law

Here,we compare theSagawa–Ueda relationwith the second lawof thermodynamics.
If we consider the total system as a system X and a memory system M , the Sagawa–
Ueda relation can be considered as the second law of thermodynamics for the total
system X and M .

4.2.1 Total Entropy Production and Sagawa–Ueda Relation

Let us consider the Markovian dynamics of a system X and a memory system M ,

p(X, M) = p(x1,m1)p(x2,m2|x1,m1) · · · p(xN ,mN |xN ,mN ), (4.26)

where (X, M) = {(x1,m1), · · · , (xN ,mN )} denotes a trajectory of the total system
X and M . The entropy production of the total system σXM is defined as

σXM := ln
p(x1,m1)

p(xN ,mN )
+

∑

k

ln
p(xk+1,mk+1|xk,mk)

pB(xk,mk |xk+1,mk+1)
. (4.27)

http://dx.doi.org/10.1007/978-981-10-1664-6_2
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The entropy production σXM is a stochastic relative entropy

σXM := dK L(p(X, M)||pB(X, M)), (4.28)

pB(X, M) := p(xN ,mN )

N−1∏

k=1

pB(xk,mk |xk+1,mk+1), (4.29)

so that its ensemble average is nonnegative,

〈σXM 〉 ≥ 0, (4.30)

which is the second law of thermodynamics for the total system. We assume that the
memory state M does not change in the dynamics such as

p(mk+1|xk+1,mk, xk) = δ(mk − mk+1). (4.31)

The backward process is also assumed as

pB(mk, xk |mk+1, xk+1) = δ(mk − mk+1)pB(xk |xk+1,mk+1), (4.32)

where pB(xk |xk+1,mk+1) denotes the backward transition probability under the con-
dition of the memory state mk+1. In case that memory state does not change, the
second law of thermodynamics for the total system can be rewritten as

〈σXM 〉 =
∑

X,M

p(X, M)

[

ln
p(x1,m1)

p(xN ,mN )
+

∑

k

ln
p(xk+1|xk ,mk)

pB(xk |xk+1,mk+1)

]

=
∑

X,m1

p(x1)p(m1|x1)p(x2|x1,m1)p(x2|x1,m2 = m1) · · · p(xN |xN−1,mN = m1)

×
[

ln
p(x1)

p(xN )
+

∑

k

ln
p(xk+1|xk ,mk = m1)

pB(xk |xk+1,mk+1 = m1)
+ ln

p(x1,m1)p(xN )

p(xN ,mN = m1)p(x1)

]

=
∑

X,m1

p(X,m1) [σX + i(x1 : m1) − i(xN : m1)]

=〈σX 〉 + I (x1 : m1) − I (xN : m1) ≥ 0. (4.33)

where p(X,m1) = p(x1)p(m1|x1)p(x2|x1,m1) · · · p(xN |xN−1,m1) and the entropy
production of the system X is defined as

σX := ln
p(x1)

p(xN )
+

∑

k

ln
p(xk+1|xk,mk = m1)

pB(xk |xk+1,mk+1 = m1)
. (4.34)

Thus, the second law of thermodynamics for the total system Eq. (4.30) repro-
duces the Sagawa–Ueda relation Eq. (4.33). This fact implies that Maxwell’s demon
problem does not indicate the violation of the second law of thermodynamics.
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To consider the dynamics of the system X and the memory M , the bound of
the entropy changes in heat bathes should not be the Shannon entropy change of
the system �SX := 〈ln[p(x1)/p(xN )]〉, but be the total Shannon entropy change
�SXM := 〈ln[p(x1,m1)/p(xN ,m1)]〉. The difference between �SXM and �SX ,
gives the mutual information difference

I (x1 : m1) − I (xN : m1) = �SXM − �SX . (4.35)
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Chapter 5
Bayesian Networks and Causal Networks

Abstract This chapter presents a review of the causal networks (i.e., the Bayesian
networks) which is a probabilistic directed acyclic graphical model. In this thesis, we
use the causal networks to describe the complex nonequilibrium stochastic dynamics.
We show examples of the causal networks for several physical situations such as the
Markov chain, the feedback control and the coupled Langevin equations.

Keywords Bayesian networks · Causal networks

We next introduce the theory of a probabilistic directed acyclic graphical model well
known as Bayesian networks or causal networks [1–3]. In this thesis, we construct
an information thermodynamic theory on the Bayesian networks. Bayesian network
itself has a long history as early as 1963 [4]. Bayesian network had been developed
in 1980s [1, 5] in the context of causal modeling. By using the network, we can
automatically apply Bayes’ theorem to complex problems where random variables
interact with each other. In recent years, Bayesian network has been intensively
studied as a technique of the machine learning and pattern recognition [6]. The
Bayesian network is applicable in a wide range of fields, for example, computational
biology, document classification, image processing, risk analysis, financial marketing
and information retrieval.

5.1 Bayesian Networks

We here introduce the mathematical definition of Bayesian networks.

5.1.1 Directed Acyclic Graph

The Bayesian network is given by a directed acyclic graph. First we show the defini-
tion of a directed acyclic graph. Let G = (V, E) be a directed graph, where V denotes
a finite set of nodes (vertices) and E ⊆ V×V denotes a set of edges (arcs). An element
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Fig. 5.1 An example of a
directed graph

: Node

: Edge

of E is given by an ordered pair of nodes, which have a direction associated with it.
For example, we show a directed graph V = {a1, a2, a3} and E = {(a1, a2), (a1, a3)}
in Fig. 5.1. If (a j , a j ′) ∈ E , we write a j → a j ′ and say that a j ′ is a child of a j and
a j is a parent of a j ′ .

A directed graph is acyclic if there is no directed path a j → · · · → a j ′ with
a j = a j ′ . For example, a directed graph V = {a1, a2, a3} and E = {(a1, a2), (a2, a3),

(a3, a1)} is not acyclic, because there is a directed path a1 → a2 → a3 → a1.
Because of the acyclicity, we have the ordering such that a j cannot be a parent of
a j ′ with j > j ′. This ordering is called the topological ordering (or topological
sorting). The topological ordering of a directed acyclic graph is not necessarily
unique. For instance, in the case of a directed acyclic graph V = {a1, a2, a3} and
E = {(a1, a2), (a1, a3)} (Fig. 5.1), we have two topological orderings a1, a2, a3 and
a1, a3, a2.

5.1.2 Bayesian Networks

We next define the Bayesian networks as a directed acyclic graph G = (V, E) (see
also Fig. 5.2). A set of nodes V = {a1, . . . , aNV } represents a set of random variables,
where a1, . . . , aNV is a topological ordering. From the chain rule in probability theory
Eq. (2.8), we have

p(V) = p(a1)p(a2|a1)p(a3|a2, a1) . . . p(aNV |aNV−1, . . . , a1). (5.1)

On Bayesian networks, an edge a j → a j ′ represents a statistical dependence between
a j and a j ′ . Let a set of parents of a j be pa(a j ). We have pa(a j ) ⊆ an(a j ), where
an(a j ) := {a1, . . . , a j−1} is called ancestors of a j . Statistical dependence between
variables are given by the local Markov property:

p(a j |an(a j )) = p(a j |pa(a j )). (5.2)

http://dx.doi.org/10.1007/978-981-10-1664-6_2
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Cause (Parents)

Effect (Child)

:Node - Random variable

:Edge - Causal relationship

Fig. 5.2 A schematic of Bayesian network. The edge represents the causal relationship between
random variables (i.e., nodes). The transition probability p(a j |a j ′ , a j ′′ , a j ′′′ ) is given by the topology
(edges) of the network

The local Markov property indicates that a j and its ancestors an(a j ) are conditionally
independent given events of its parents pa(a j ), because from Eq. (5.2) we have the
following conditional independence,

p(a j , an(a j )|pa(a j )) = p(a j |pa(a j ))p(an(a j )|pa(a j )), (5.3)

where we used p(a j , an(a j )|pa(a j ))/p(an(a j )|pa(a j )) = p(a j |an(a j )). From the
local Markov property Eq. (5.2), we have a chain rule for Bayesian networks:

p(V) =
NV∏

j=1

p(a j |pa(a j )), (5.4)

where we used p(a1|pa(a1)) = p(a1|∅) = p(a1). [∅ denotes an empty set.] From
this chain rule Eq. (5.4), we also have p(an(a j+1)) = ∏ j

j ′=1 p(a j ′ |pa(a j ′)).
We also add that p(a j |pa(a j ),V ′) = p(a j |pa(a j )) for any set V ′ ⊆ [an(a j )\

pa(a j )], where \ denotes the relative complement of two sets:

p(a j |pa(a j ),V ′) = p(a j , pa(a j ),V ′)
p(pa(a j ),V ′)

=
∑

an(a j+1)\{a j ,pa(a j ),V ′} p(an(a j+1))
∑

an(a j+1)\{pa(a j ),V ′} p(an(a j+1))

= [p(a j |pa(a j ))][∑an(a j+1)\{a j ,pa(a j ),V ′}
∏ j−1

j ′=1 p(a j ′ |pa(a j ′))]
[∑a j

p(a j |pa(a j ))][∑an(a j+1)\{a j ,pa(a j ),V ′}
∏ j−1

j ′=1 p(a j ′ |pa(a j ′))]
= p(a j |pa(a j )). (5.5)
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5.2 Causal Networks

Here, we introduce how the Bayesian network represents the causal relationship.

5.2.1 Causal Networks

Bayesian networks are often used to represent the causality [2]. In general, edges
on Bayesian networks need not represent the causal relationship. For example, we
consider a Bayesian network V = {a1, a2, a3} and E = {(a1, a2), (a2, a3)} (or equiv-
alently a1 → a2 → a3). In the context of causality, we consider a j → a j ′ as the
causal relationship from a j to a j ′ . However, a mathematical definition of this causal
network is given by p(a1, a2, a3) = p(a1)p(a2|a1)p(a3|a2). Using the fundamental
rule, we also get

p(a1, a2, a3) = p(a1)p(a2|a1)p(a3|a2)

= p(a1, a2)
p(a3, a2)

p(a2)

= p(a1|a2)p(a2)
p(a2|a3)p(a3)

p(a2)

= p(a3)p(a2|a3)p(a1|a2). (5.6)

Therefore, a causal network a1 → a2 → a3 reproduces exactly the same chain
rule for a Bayesian network a3 → a2 → a1. To discuss causal relationships using
Bayesian networks, we explicitly add the causality between nodes.

J. Pearl [2] defined the causal Bayesian networks. In his definition of causal
Bayesian networks, a probability of V under the condition of a constant a j = a
(a ∈ a j ) is given by

Proba j=a(V) =
∏

j ′ �= j

p(a j ′ |pa(a j ′))|a j=a, (5.7)

which is known as the truncated factorization product. This definition indicates that
the relationships should be causal.

In a physical situation, the causal network can be obtained if the topological
ordering is taken as the time ordering. When the index j is in the time ordering,
the transition probability of the past variable p(a j ′ |pa(a j ′)) does not depend on the
realization of the future variable a j = a with j ′ < j , and Eq. (5.7) is satisfied. To
discuss the causality of the physical model using Bayesian networks, we might not
need to care about the precise definition of causal networks, but need to make sure
that the topological ordering should be the time ordering and that the conditional
probability p(a j ′ |pa(a j ′)) should be a transition probability of a physical model.
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Classical physical stochastic dynamics can be represented by causal networks in
general, because physical dynamics holds the causality. We next introduce how to
use causal networks for several physical situations.

5.2.2 Examples of Causal Networks

We show several examples of causal networks for physical situations.

5.2.2.1 Example 1: Markov Chain

We consider the Markov chain {xk |k = 1, . . . , N }, where index k denotes the time.
The Markov chain is defined as

p(xk |xk−1, . . . , x1) = p(xk |xk−1). (5.8)

Therefore, a causal network of the Markov chain is given by V = {x1, . . . , xN } and
E = {(x1, x2), (x2, x3), . . . , (xN−1, xN )}. We have pa(xk) = xk−1 with k ≥ 2 and
pa(x1) = ∅ (see also Fig. 5.3).

Example 1 Example 2

Fig. 5.3 Examples of causal networks. Example 1Markov chain. Example 2 Feedback control with
a single measurement
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5.2.2.2 Example 2: Feedback Control with a Single Measurement

We next consider a system under feedback control with a single measurement. Let xk
be a state of a system X at time k (k = 1, . . . , N ). At time k = 1, a measurement of
the state x1, which is initially distributed with a probability p(x1), is performed, and
its outcome is preserved in a memory state m1. The measurement generally includes
the error and is given by the conditional probability p(m1|x1). The outcome m1 is
used for the feedback control. The joint probability p(x1, . . . , xN ,m1) is given by

p(x1, . . . , xN ,m1) = p(x1)p(m1|x1)p(x2|x1,m1)p(x3|x2,m1) · · · p(xN |xN−1,m1).

(5.9)

Thus, a causal network of the feedback control is given by V = {x1,m1, x2, . . . ,

xN } and E = {(x1, x2), (x2, x3), . . . , (xN−1, xN ), (x1,m1), (m1, x2), . . . , (m1, xN )}.
We have pa(xk) = {m1, xk−1} with k ≥ 2, pa(x1) = ∅ and pa(m1) = x1 (see also
Fig. 5.3).

5.2.2.3 Example 3: Repeated Feedback Control with Multiple
Measurements

Here, we consider another version of feedback control. Let xk be a state of a system
X at time k (k = 1, . . . , N ), and mk be a memory state corresponding to xk . At time
k, a state xk is measured by the memory state mk with the conditional probability
p(mk |xk). The outcome mk can be used for the feedback control after time k+1. The
time evolution of the system X from time k = 1 to N = 1 is given by the following
path-probability:

p(x2|x1,m1)p(x3|x2,m1,m2) · · · p(xN |xN−1,m1, . . . ,mN−1). (5.10)

Therefore, a causal network of the repeated feedback control with multiple measure-
ment is given by V = {x1,m1, x2,m2, . . . , xN ,mN } and pa(xk) = {m1, . . . ,mk−1,

xk−1} with k ≥ 2, pa(x1) = ∅ and pa(mk) = xk (see also Fig. 5.4).

5.2.2.4 Example 4: Coupled Langevin Equations

The method of causal networks is applicable even for the stochastic differential
equations. We consider the following coupled Langevin equations:
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Example 3 Example 4

Fig. 5.4 Examples of causal networks. Example 3 Repeated feedback control with multiple mea-
surements. Example 4 Coupled Langevin equations

ẋ(t) = fx (x(t), y(t)) + ξx (t),

ẏ(t) = fy(x(t), y(t)) + ξy(t),

〈ξx (t)〉 = 0,

〈ξy(t)〉 = 0,

〈ξx (t)ξx (t ′)〉 = 2T xδ(t − t ′),
〈ξy(t)ξy(t ′)〉 = 2T yδ(t − t ′),
〈ξx (t)ξy(t ′)〉 = 0, (5.11)

where x(t) (y(t)) denotes the state of system x (y) at time t , fx ( fy) is any force
function of x(t) and y(t), ξx (t) (ξy(t)) is a white Gaussian noise with zero mean and a
variance 2T x (2T y). Noises ξx (t) and ξy(t) are independent such that 〈ξx (t)ξy(t ′)〉 =
0, where 〈· · · 〉 denotes the ensemble average.

The stochastic differential equations (5.11) are mathematically defined as the
following discretizations:

xt+dt = xt + fx (xt , yt )dt + √
2T xdBt ,

yt+dt = yt + fy(xt , yt )dt + √
2T ydB ′

t , (5.12)



58 5 Bayesian Networks and Causal Networks

where we define xt := x(t), xt+dt := x(t + dt), yt := y(t) and yt+dt := y(t + dt)
with an infinitesimal time interval dt . dBt := ∫ t+dt

t dtξx (t)/
√

2T x = Bt+dt − Bt

(dB ′
t := ∫ t+dt

t dtξy(t)/
√

2T y = B ′
t+dt − B ′

t ) is given by a Wiener process Bt (B ′
t ),

distributed as the normal distribution:

p(dBt ) = 1√
2πdt

exp

[

− (dBt )
2

2dt

]

. (5.13)

Substituting Eq. (5.12) to (5.13), we have the Jacobian transformation of conditional
probabilities:

p(xt+dt |xt , yt ) = Nx exp

[

− (xt+dt − xt − fx (xt , yt )dt)2

4T xdt

]

, (5.14)

p(yt+dt |xt , yt ) = Ny exp

[

− (yt+dt − yt − fy(xt , yt )dt)2

4T ydt

]

, (5.15)

where Nx := (4πT xdt)−1/2 [Ny := (4πT ydt)−1/2] indicates the normalization
prefactor. The coupled dynamics from time t to t + dt is given by the condi-
tional probabilities Eq. (5.15). The distribution of (xt , yt ) is generally correlated
[i.e., p(xt , yt ) = p(xt )p(yt |xt ) �= p(xt )p(yt )]. Thus, the joint probability of the
coupled Langevin dynamics p(xt , yt , xt+dt , yt+dt ) is given by

p(xt , yt , xt+dt , yt+dt ) = p(xt )p(yt |xt )p(xt+dt |xt , yt )p(yt+dt |xt , yt ). (5.16)

A causal network which represents the Langevin dynamics Eq. (5.16) is given
by V = {xt , yt , xt+dt , yt+dt }, pa(xt ) = ∅, pa(yt ) = xt , pa(xt+dt ) = {xt , yt } and
pa(yt+dt ) = {xt , yt } (see also Fig. 5.4).

5.2.2.5 Example 5: Coupled Dynamics with a Time Delay

We note that the delayed dynamics can also be represented by a Bayesian network.
Here we consider the coupled dynamics with a time delay such that

p(yt−�τ , xt , yt , xt+dt ) = p(yt−�τ , xt , yt )p(xt+dt |xt , yt−�τ , yt ). (5.17)

In this dynamics, the time evolution from xt to xt+dt does not depend on yt , but
depends on yt−�τ , where�τ denotes the time delay. From the chain rule in probability
theory, we have

p(yt−�τ , xt , yt ) = p(yt−�τ )p(xt |yt−�τ )p(yt |xt , yt−�τ ). (5.18)
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Example 5 Example 6

Fig. 5.5 Examples of causal networks. Example 5 Coupled dynamics with a time delay. Example
6 Complex dynamics

Thus, the time evolution of the coupled dynamics with a time delay is given by
a causal network V = {yt−�τ , xt , yt , xt+dt , yt+dt }, pa(yt−�τ ) = ∅, pa(xt ) = yt−�τ ,
pa(yt ) = {xt , yt−�τ }, pa(xt+dt ) = {xt , yt−�τ } and pa(yt+dt ) = {xt , yt } (see also
Fig. 5.5).

5.2.2.6 Example 6: Complex Dynamics

We note that causal networks can generally represent the complex dynamics in
multiple fluctuating systems. The causal network in Fig. 5.5 describes an exam-
ple of complex three-body interactions. The causal network is given by V =
{y1, x1, z1, x2, z2, y2, x3, z3}, pa(y1) = ∅, pa(x1) = y1, pa(z1) = y1, pa(x2) =
{x1, z1}, pa(z2) = {x1, z1}, pa(y2) = {y1, x2, z2}, pa(x3) = {x2, y2} and pa(z3) =
{z2, x2}, where xk (yk, zk) denotes the state of the system X (Y, Z ) in the time order-
ing k. We note that time of the state xk is not same as one of yk . We assume that
the time ordering of states is given by the topological ordering of the causal network
y1, x1, z1, x2, z2, y2, x3, z3. The joint probability p(V) is given by

p(V) = p(y1)p(x1|y1)p(z1|y1)p(x2|x1, z1)

× p(z2|x1, z1)p(y2|x2, z2, y1)p(x3|x2, y2)p(z3|x2, z2), (5.19)

which describes the path probability of this complex dynamics in multiple fluctuating
systems.
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Chapter 6
Information Thermodynamics on Causal
Networks

Abstract This chapter presents the information-thermodynamic theory based on
the causal networks, which is one of the main results in this thesis. Characterizing
the complex dynamics by the causal networks, we obtain the generalized second
law of thermodynamics with information flow which is applicable to quite a broad
class of dynamics. We show the fact that the entropy production of the subsystem is
generally bounded by the information flow from the subsystem to the outside world.
We also discuss the generalized second law of thermodynamics in the model of the
coupled chemical reaction.

Keywords Information thermodynamics · Causal networks

We here construct the general theory of the relationship between information and
stochastic thermodynamics. Characterizing complex nonequilibrium dynamics by
causal networks, we derive the generalized second law of thermodynamics with
information flow. This chapter is the refinement of our result [Ito S., & Sagawa T.,
Phys. Rev. Lett. 111, 180503 (2013)] [1].

6.1 Entropy on Causal Networks

6.1.1 Entropy Production on Causal Networks

First of all, we clarify how to introduce the entropy production on causal networks.
Let V = {a1, . . . , aNV } be a set of nodes of causal network, where ak represents a
random variable. We here introduce a set of the random variables, which represents
the time evolution of the target system X = {x1, . . . , xN }. xk denotes the state of the
target system X at time k. X is a subset of V , i.e., X ⊆ V . We assume the following
properties of xk such that

xk ′−1 ∈ pa(xk) (k ′ = k), (6.1)

xk ′−1 /∈ pa(xk) (k ′ �= k), (6.2)

© Springer Science+Business Media Singapore 2016
S. Ito, Information Thermodynamics on Causal Networks and its Application
to Biochemical Signal Transduction, Springer Theses,
DOI 10.1007/978-981-10-1664-6_6
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with k > 2. The former assumption indicates that the time evolution of the target
system X is characterized by the sequence of edges x1 → x2 → · · · → xN . The
latter assumption corresponds to the Markov property of the physical dynamics. We
stress that the latter assumption does not prohibit the non-Markovian dynamics of V
at all. Next, we define the other system as

C = {c1, . . . , cN ′ } := V \ X. (6.3)

Because cl is an element of V , we can rewrite cl as cl = a j . We can introduce the
time ordering of cl from the topological ordering of V . We assume that l ′ < l with
j ′ < j if cl = a j and cl ′ = a j ′ . This assumption indicates that c1, . . . , cN ′ is ordered
as the time ordering.

The probability of p(V) is given by the chain rule of the Bayesian networks
Eq. (5.4) such that

p(V) = p(X, C)

=
N∏

k=1

p(xk |pa(xk))
N ′
∏

l=1

p(cl |pa(cl)). (6.4)

The conditional probabilities
∏N

k=1 p(xk |pa(xk)) represent the path-probability of

the target system X , and the conditional probabilities
∏N ′

l=1 p(cl |pa(cl)) represent
the path probability of the other systems C.

We introduce a set of random variables Bk+1 := pa(xk+1) \ {xk}, which affect
the time evolution of the target system X from state xk to xk+1 at time k (see also
Fig. 6.1). Bk+1 is a subset of the variables in the other system, i.e., Bk+1 ⊆ C. By
definition of Bk+1, the transition probability in X at time k is rewritten as

p(xk+1|pa(xk+1)) = p(xk+1|xk,Bk+1), (6.5)

which indicates that, in the time evolution from state xk to xk+1, Bk+1 plays a role of
a set of external parameters (e.g., a memory in a feedback system). Thus, the entropy
change in heat baths at time k is given by

�skbath = ln
p(xk+1|xk,Bk+1)

pB(xk |xk+1,Bk+1)
, (6.6)

which is a modification of the detailed fluctuation theorem [e.g., Eq. (4.3)]. pB
describes the probability of the backward process. The definition of the backward
probability is given by pB(xk |xk+1,Bk+1) = p(x+

k ,−x−
k |x+

k+1,−x−
k+1,

B+
k+1,−B−

k+1), where x+
k (B+

k+1) denotes an even function of the momentum, and
x−
k (B−

k+1) denotes an odd function of the momentum. The entropy production σ in
the target system X from time k = 1 to k = N is defined as

http://dx.doi.org/10.1007/978-981-10-1664-6_5
http://dx.doi.org/10.1007/978-981-10-1664-6_4
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Time evolution

Other systems

(e.g., Memory)

Fig. 6.1 A schematic of X and Bk+1 on causal networks. Bk+1 represents a set of random variables
which can affects the time evolution in X from time k to k + 1

σ := ln p(x1) − ln p(xN ) +
N−1∑

k=1

�skbath

= ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk,Bk+1)

pB(xk |xk+1,Bk+1)

]

. (6.7)

6.1.2 Examples of Entropy Production on Causal Networks

We here show that the definition of the entropy production σ is well-defined in three
examples (i.e., the Markov chain, the feedback control with a single measurement,
and the coupled Langevin equations).

Example 1: Markov Chain

The causal network corresponding to the Markov chain is given byV = {x1, . . . , xN },
pa(xk) = xk−1 with k ≥ 2, and pa(x1) = ∅ (see also Fig. 6.2). We set X =
{x1, . . . , xN } and C = ∅, so that we have Bk+1 = pa(xk+1) \ {xk} = ∅. Thus,
the entropy production on causal networks Eq. (6.7) gives the entropy production for
the Markov chain Eq. (3.15):

http://dx.doi.org/10.1007/978-981-10-1664-6_3


64 6 Information Thermodynamics on Causal Networks

Example 1 Example 2 Example 3

Fig. 6.2 Examples of X and C on causal networks. Example 1 Markov chain. Example 2 Feedback
control with a single measurement. Example 3 Coupled Langevin equations.

σ = ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk)
pB(xk |xk+1)

]

. (6.8)

Example 2: Feedback control with a single measurement
The causal network corresponding to the system under feedback control with the
single measurement is given by V = {x1,m1, x2, . . . , xN }, pa(xk) = {m1, xk−1} with
k ≥ 2, pa(x1) = ∅, and pa(m1) = x1 (see also Fig. 6.2). We set X = {x1, . . . , xN } and
C = {c1 := m1}, so that we have Bk+1 = pa(xk+1) \ {xk} = {m1} with k ≥ 2. Thus,
the entropy production on causal networks Eq. (6.7) gives the entropy production for
a feedback control Eq. (4.4):

σ = ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk,m1)

pB(xk |xk+1,m1)

]

. (6.9)

Example 3: Coupled Langevin equations
Here we discuss the following coupled Langevin equations

http://dx.doi.org/10.1007/978-981-10-1664-6_4
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ẋ(t) = fx (x(t), y(t)) + ξx (t),

ẏ(t) = fy(x(t), y(t)) + ξy(t),

〈ξx (t)〉 = 0,

〈ξy(t)〉 = 0,

〈ξx (t)ξx (t ′)〉 = 2T xδ(t − t ′),
〈ξy(t)ξy(t ′)〉 = 2T yδ(t − t ′),
〈ξx (t)ξx (t ′)〉 = 0, (6.10)

where xt (yt ) is a dynamical variable of the system X (Y ). The corresponding
Bayesian Network is given by V = {xt , yt , xt+dt , yt+dt }, pa(xt ) = ∅, pa(yt ) = xt ,
pa(xt+dt ) = {xt , yt } and pa(yt+dt ) = {xt , yt } (see also Fig. 6.2). The entropy pro-
duction on causal networks Eq. (6.7) gives

σ = ln

[
p(xt )

p(xt+dt )

p(xt+dt |xt , yt )
pB(xt |xt+dt , yt )

]

, (6.11)

where we set X = {x1 := xt , x2 := xt+dt }, C = {c1 := yt , c2 := yt+dt }, andB2 = yt .
For the coupled Langevin dynamics, we can explicitly calculate the entropy change
in heat baths �sk=1

bath . The conditional probability p(xt+dt |xt , yt ) is given by

p(xt+dt |xt , yt ) = Nx exp

[

− (xt+dt − xt − fx (xt , yt )dt)2

4T xdt

]

, (6.12)

and the backward probability pB(xt+dt |xt , yt ) is defined as

pB(xt |xt+dt , yt ) := Nx exp

[

− (xt − xt+dt − fx (xt+dt , yt )dt)2

4T xdt

]

, (6.13)

where we assume that xt and yt are even functions of the momentum. Up to the order
o(dt), the entropy change in heat baths �sk=1

bath is calculated as

�sk=1
bath := ln

p(xt+dt |xt , yt )
pB(xt |xt+dt , yt )

= fx (xt , yt ) + fx (xt+dt , yt )

T x
(xt+dt − xt )

= fx (xt , yt ) + fx (xt+dt , yt+dt )

T x
(xt+dt − xt )

= (ξx (t) − ẋ(t)) ◦ ẋ(t)

T x
dt. (6.14)

Here, (ξx (t) − ẋ(t)) ◦ ẋ(t) is Sekimoto’s definition of the heat flow in the system
X for the Langevin equations [2]. We add that, up to the order o(dt), �sk=1

bath can be
rewritten as
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�sk=1
bath = fx (xt , yt ) + fx (xt+dt , yt+dt )

T x
(xt+dt − xt )

= ln
p(xt+dt |xt , yt )

pB(xt |xt+dt , yt+dt )
, (6.15)

where the backward probability is defined as

pB(xt |xt+dt , yt+dt ) := Nx exp

[

− (xt − xt+dt − fx (xt+dt , yt+dt )dt)2

4T xdt

]

. (6.16)

This fact indicates that it does not matter whether we select the condition of the back-
ward probability yt or yt+dt if we discretize the dynamical variables with infinitesimal
time interval dt .

6.1.3 Transfer Entropy on Causal Networks

We here discuss the transfer entropy on causal networks. On causal networks, we have
two time series X = {x1, . . . , xN } and C = {c1, . . . , cN ′ }. The transfer entropy is a
measure of the causal dependence in the dynamics. Thus the most natural choice of
the transfer entropy from X to C depends on the set of parents pa(cl) in the transition
probability p(cl |pa(cl)).

The set of parents pa(cl) generally includes both elements of X and C. We
define the intersection of two sets X (C) and pa(cl) as paX (cl) := X ∩ pa(cl)
(paC(cl) := C ∩ pa(cl)), where ∩ denotes the symbol of intersection. The set of
parents pa(cl) is rewritten as pa(cl) = {paX (cl), paC(cl)}, so that the transition prob-
ability p(cl |pa(cl)) is calculated as

p(cl |pa(cl)) = p(cl |paX (cl), paC(cl))

= p(cl |paX (cl), cl−1, . . . , c1), (6.17)

where we used the property of the Bayesian network Eq. (5.5). In the transition
probability p(cl |pa(cl)), the set paX (cl) indicates the causal dependence of the target
system X in the dynamics from {cl−1, . . . , c1} to cl . By comparing the transition
probability in C and that under the condition paX (cl), we introduce the transfer
entropy from X to C at l such as

I ltr := 〈ln p(cl |paX (cl), cl−1, . . . , c1) − ln p(cl |cl−1, . . . , c1)〉
= 〈ln p(cl |pa(cl)) − ln p(cl |cl−1, . . . , c1)〉. (6.18)

This transfer entropy can be rewritten as the conditional mutual information

I ltr = I (cl : paX (cl)|cl−1, . . . , c1). (6.19)

http://dx.doi.org/10.1007/978-981-10-1664-6_5
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From the nonnegativity of the mutual information, we have I ltr ≥ 0 with equality if and
only if p(cl |paX (cl), cl−1, . . . , c1) = p(cl |cl−1, . . . , c1) [or equivalently paX (cl) =
∅]. We also define the stochastic transfer entropy i ltr as

i ltr = ln p(cl |pa(cl)) − ln p(cl |cl−1, . . . , c1). (6.20)

The sum of the transfer entropy
∑

l I
l
tr is a quantity similar to the directed information

I DI , Eq. (2.25).

6.1.4 Initial and Final Correlations on Causal Networks

We here define two types of mutual information which represent the initial and final
correlations between the target system X and the outside world C.

First, we define the initial correlation on causal networks. The initial state x1

is initially correlated to its parents pa(x1), because the state of x1 is given by the
transition probability p(x1|pa(x1)). pa(x1) is the set of variables in outside world,
i.e., pa(x1) ⊆ C. A natural quantification of the initial correlation between X and C
is the mutual information between x1 and its parents:

Iini := I (x1 : pa(x1)). (6.21)

From the nonnegativity of the mutual information, we have Iini ≥ 0 with the equality
satisfied if and only if p(x1|pa(x1)) = p(x1) [or equivalently pa(x1) = ∅].

Next, we define the final correlation on causal networks. The dynamics in the
target system X generally depends on the ancestors of the final state xN , an(xN ). We
introduce the set C ′ := an(xN ) ∩ C, which is the history of the outside world C that
can affect the finial state xN . Thus, a natural quantification of the finial correlation
between X and C is given by the mutual information between xN and C ′:

Ifin := I (xN : C ′). (6.22)

We also define the stochastic initial correlation and the stochastic final correlation as

iini := i(x1 : pa(x1))

= ln
p(x1|pa(x1))

p(x1)
, (6.23)

ifin := i(xN : C ′)

= ln
p(xN , C ′)
p(xN )p(C ′)

, (6.24)

respectively.

http://dx.doi.org/10.1007/978-981-10-1664-6_2
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6.2 Generalized Second Law on Causal Networks

We now state the main result of this thesis. In the foregoing setup, we have the
generalized second law for subsystem X in the presence of the other system C.

6.2.1 Relative Entropy and Generalized Second Law

Here, we define the key informational quantity � characterized by the topology of
the causal network:

� := ifin − iini −
∑

l|cl∈C′
i ltr. (6.25)

This quantity � indicates the total stochastic information flow from the target system
X to the outside world C ′ in the dynamics from x1 to xN , where ifin and iini mean the
boundary terms. Its ensemble average 〈�〉 gives the total information flow given by
the mutual information and the transfer entropy.

We show that the difference between the entropy production and the informational
quantity σ − � can be rewritten as the stochastic relative entropy

σ − � = ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk,Bk+1)

pB(xk |xk+1,Bk+1)

]

− ln
p(xN , C ′)
p(xN )p(C ′)

+ ln
p(x1|pa(x1))

p(x1)

+
∑

l|cl∈C′
ln

p(cl |pa(cl))

p(cl |cl−1, . . . , c1)

= ln

[∏N
k=1 p(xk |pa(xk))

∏
l|cl∈C′ p(cl |pa(cl))

∏N−1
k=1 pB(xk |xk+1,Bk+1)p(xN , C ′)

]

= ln

[
p(V)

∏N−1
k=1 pB(xk |xk+1,Bk+1)p(xN , C ′)

∏
l|cl /∈C′ p(cl |pa(cl))

]

= dKL(p(V)||pB(V)), (6.26)

where we define the backward path probability pB(V) as

pB(V) =
N−1∏

k=1

pB(xk |xk+1,Bk+1)p(xN , C ′)
∏

l|cl /∈C′
p(cl |pa(cl)). (6.27)

The backward path probability satisfies the normalization of the probability such as
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∑

V
pB(V) =

∑

X,C′

N−1∏

k=1

pB(xk |xk+1,Bk+1)p(xN , C ′)

=
∑

xN ,C′
p(xN , C ′)

= 1. (6.28)

The definition of this backward path probability pB(V) indicates that the condi-
tional probability in the target system X is given by the backward path proba-
bility (i.e.,

∏N−1
k=1 pB(xk |xk+1,Bk+1)) and the conditional probability in the other

systems C is given by the probability distribution of the forward process (i.e.,
p(xN , C ′)

∏
l|cl /∈C′ p(cl |pa(cl))). It implies that we consider the backward path only

for the target system X under the condition of stochastic variables C, where the
distribution of C is given by the distribution of a forward process p(V).

From the identity Eq. (3.28) and the nonnegativity of the stochastic relative entropy
DKL(p(V)||pB(V)) ≥ 0, we have the generalizations of the integral fluctuation
theorem and the second law of thermodynamics,

〈exp(−σ + �)〉 = 1, (6.29)

〈σ〉 ≥ Ifin − Iini −
∑

l|cl /∈C′
I ltr. (6.30)

The equality in Eq. (6.30) holds if and only if a kind of reversibility p(V) =
pB(V) holds. Application of the generalized second law to specific problems is

Fig. 6.3 Schematic of the
generalized second law on
causal networks. We
consider two fluctuating
subsystems X and C. The
entropy production of X is
generally bounded by the
informational quantity 〈�〉
which includes the initial
correlation Iini between X
and C, the final correlation
Ifin between them, and the
transfer entropy Itr from X
to C′ during the dynamics.
We can automatically
calculate the informational
quantity 〈�〉 using the
graphical representation by
causal networks.

http://dx.doi.org/10.1007/978-981-10-1664-6_3
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straightforward by using the expression of the causal networks (see also Fig. 6.3).
We next show several applications to stochastic models.

6.2.2 Examples of Generalized Second Law on Causal
Networks

We here illustrate that the generalized integral fluctuation theorem Eq. (6.29) and the
generalized second law Eq. (6.30) can reproduce known nonequilibrium relations in
a unified way, and moreover can lead to novel results.

Example 1: Markov Chain

We consider the causal network corresponding to the Markov chain: V :=
{x1, . . . , xN }, pa(xk) = {xk−1} with k ≥ 2, and pa(x1) = ∅ (see also Fig. 6.4).
We here set X = {x1, . . . , xN } and C = ∅. We have ifin = 0, iini = 0 and i ltr = 0.
From the generalized integral fluctuation theorem Eq. (6.29) and the generalized sec-
ond law Eq. (6.30), we reproduce the conventional integral fluctuation theorem Eqs.
(3.29) and (3.31):

〈exp(−σ)〉 = 1, (6.31)

〈σ〉 ≥ 0. (6.32)

Example 2: Feedback Control with a Single Measurement

We consider the causal network corresponding to the system under feedback control
with a single measurement : V := {x1,m1, x2, . . . , xN }, pa(xk) = {xk−1,m1} with
k ≥ 2, pa(m1) = {x1}, and pa(x1) = ∅ (see also Fig. 6.4). We here set X =
{x1, . . . , xN } and C = {m1}. We have ifin = i(xN : m1), iini = 0 and i1

tr = i(x1 : m1).
From the generalized integral fluctuation theorem Eq. (6.29) and the generalized
second law Eq. (6.30), we reproduce Sagawa–Ueda relations Eqs. (4.8) and (4.10):

〈exp[−σ + i(xN : m1) − i(x1 : m1)]〉 = 1, (6.33)

〈σ〉 ≥ I (xN : m1) − I (x1 : m1). (6.34)

Example 3: Repeated Feedback Control with Multiple Measurement

We consider the causal network corresponding to the system under feedback con-
trol with multiple measurements : V := {x1,m1, x2,m2, . . . , xN ,mN }, pa(xk) =
{xk−1,mk−1, . . . ,m1} with k ≥ 2, pa(ml) = {xl}, and pa(x1) = ∅ (see also Fig. 6.5).
We here set X = {x1, . . . , xN }, C = {m1, . . . ,mN }, and C ′ = {m1, . . . ,mN−1}. We
have ifin = i(xN : {m1, . . . ,mN−1}), iini = 0 and i ltr = i(xl : ml |ml−1, . . . ,m1).
From the generalized integral fluctuation theorem Eq. (6.29) and the generalized
second law Eq. (6.30), we have the following relations:

http://dx.doi.org/10.1007/978-981-10-1664-6_3
http://dx.doi.org/10.1007/978-981-10-1664-6_3
http://dx.doi.org/10.1007/978-981-10-1664-6_4
http://dx.doi.org/10.1007/978-981-10-1664-6_4
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Example 1 Example 2

Fig. 6.4 Examples of the generalized second law on causal networks. Example 1 Markov chain.
Example 2 Feedback control with a single measurement

〈

exp

⎡

⎣−σ + i(xN : {m1, . . . ,mN−1}) −
N−1∑

l=1

i(xl : ml |ml−1, . . . ,m1)

⎤

⎦

〉

= 1, (6.35)

〈σ〉 ≥ I (xN : {m1, . . . ,mN−1}) −
N−1∑

l=1

I (xl : ml |ml−1, . . . ,m1). (6.36)

On the other hand, Horowitz and Vaikuntanathan [3] have derived the information
thermodynamic equality in the case of the repeated feedback control such as

〈

exp

[

−βWd −
N−1∑

l=1

i(xl : ml |ml−1, . . . ,m1)

]〉

= 1, (6.37)

where β is the inverse temperature of the heat bath, and Wd is the dissipated work
defined as βWd := ∑N−1

k=1 �skbath + ln peq(x1)− ln peq(xN |m1, . . . ,mN−1) [peq indi-
cates the equilibrium distribution]. If the initial and final states of the system X are
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Example 3 Example 4

Fig. 6.5 Examples of the generalized second law on causal networks.Example 3Repeated feedback
control with multiple measurements. Example 4 Coupled Langevin equations

in thermal equilibrium, βWd is equivalent to σ − ifin such that

βWd :=
N−1∑

k=1

�skbath + ln peq(x1) − ln peq(xN |m1, . . . ,mN−1)

=
N−1∑

k=1

�skbath + ln peq(x1) − ln peq(xN ) − i(xN : {m1, . . . ,mN−1})

= σ − ifin, (6.38)

where we use a thermal equilibrium condition, i.e., i(xN : {m1, . . . ,mN−1}) =
ln peq(xN |m1, . . . ,mN−1) − ln peq(xN ). Thus our general results Eqs. (6.29) and
(6.30) can reproduce the known result for the system under feedback control with
multiple measurements.

Example 4: Coupled Langevin Equations

We consider the causal network corresponding to the coupled Langevin equations
Eq. (6.10): V := {xt , yt , xt+dt , yt+dt }, pa(xk+dt ) = {xt , yt }, pa(yt+dt ) = {xt , yt },
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pa(xt ) = ∅, and pa(yt ) = {xt } (see also Fig. 6.5). We here set X = {x1 := xt , x2 :=
xt+dt }, and C ′ = C = {c1 := yt , c2 := yt+dt }. We have ifin = i(xt+dt : {yt , yt+dt }),
iini = 0, i1

tr = i(xt : yt ), i2
tr = i(xt : yt+dt |yt ). The informational quantity � is

calculated as

� = i(xt+dt : {yt , yt+dt }) − i(xt : yt+dt |yt ) − i(xt : yt )
= i(xt+dt : {yt , yt+dt }) − i(xt : {yt , yt+dt })
= i(xt+dt : yt+dt ) − i(xt : yt ) + i(xt+dt : yt |yt+dt ) − i(xt : yt+dt |yt ). (6.39)

From the generalized integral fluctuation theorem Eq. (6.29) and the generalized
second law Eq. (6.30), we have the following relations:

〈
exp

[−σ + i(xt+dt : {yt , yt+dt }) − i(xt : {yt , yt+dt })
]〉 = 1, (6.40)

〈σ〉 ≥ I (xt+dt : {yt , yt+dt }) − I (xt : {yt , yt+dt }), (6.41)

or equivalently,

〈
exp

[−σ + i(xt+dt : yt+dt ) − i(xt : yt ) + i(xt+dt : yt |yt+dt ) − i(xt : yt+dt |yt )
]〉 = 1,

(6.42)

〈σ〉 ≥ I (xt+dt : yt+dt ) − I (xt : yt ) + I (xt+dt : yt |yt+dt ) − I (xt : yt+dt |yt ).
(6.43)

Equation (6.14) gives the entropy production σ as

σ = − j x (t)dt

T x
+ ln p(xt ) − ln p(xt+dt ) (6.44)

j x (t) := (ẋ(t) − ξx (t)) ◦ ẋ(t). (6.45)

The generalized second law Eq. (6.30) can be rewritten as

−〈 j x (t)〉dt
T x

+ dSx |y(t) ≥ I (xt+dt : yt |yt+dt ) − I (xt : yt+dt |yt ), (6.46)

where dSx |y(t) := 〈ln p(xt |yt )−ln p(xt+dt |yt+dt )〉 is the Shannon entropy difference
of the system X under the condition of the system Y . The equality holds if and only
if the local reversibility

p(xt+dt |xt , yt )p(yt+dt |xt , yt )p(xt , yt )
= pB(xt |xt+dt , yt+dt )p(yt |xt+dt , yt+dt )p(xt+dt , yt+dt ) (6.47)

holds.
In a stationary state, we have p((xt+dt : yt+dt ) = p(xt : yt ), and the Shannon

entropy vanishes, i.e., dSx |y(t) = 0. Even in a stationary state, the transfer entropy
from X to Y , I (xt : yt+dt |yt ), and the term I (xt+dt : yt |yt+dt ) still remain. We
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here call I (xt+dt : yt |yt+dt ) the “backward transfer entropy”, which indicates the
conditional mutual information under the condition of the future variables. From
the nonnegativity of the conditional mutual information, the transfer entropy I (xt :
yt+dt |yt ) gives an upper bound of the stationary entropy reduction in the target system
X and the backward transfer entropy I (xt+dt : yt |yt+dt ) gives a lower bound of the
stationary dissipation in the target system X . Thus, for the coupled dynamics, the
information flow defined as the transfer entropy and backward transfer entropy from
the target system to the outside world, gives a bound of the stationary heat flow
〈 j x (t)〉 in the target system.

Example 5: Coupled Dynamics with a Time Delay

We here consider the causal network given in Fig. 6.6: V :=
{yt−�τ , xt , yt , xt+dt , yt+dt }, pa(xk+dt ) = {xt , yt−�τ }, pa(yt+dt ) = {xt , yt }, pa(xt ) =
{yt−�τ }, pa(yt ) = {yt−�τ , xt } and pa(yt−�τ ) = ∅. We set X = {x1 := xt , x2 :=
xt+dt }, and C = C ′ = {c1 := yt−�τ , c2 := yt , c3 = yt+dt }. We have iini = i(xt :
yt−�τ ), ifin = i(xt+dt : {yt−�τ , yt , yt+dt }), i1

tr = 0, i2
tr = i(xt : yt |yt−�τ ), and

i2
tr = i(xt : yt+dt |yt , yt−�τ ). In this case, the informational quantity � is calculated

as

Example 5 Example 6

Fig. 6.6 Examples of the generalized second law on causal networks.Example 5 Coupled dynamics
with a time delay. Example 6 Complex dynamics
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� = i(xt+dt : {yt−�τ , yt , yt+dt }) − i(xt : yt−�τ ) − i(xt : yt |yt−�τ ) − i(xt : yt+dt |yt , yt−�τ )

= i(xt+dt : {yt−�τ , yt , yt+dt }) − i(xt : {yt−�τ , yt , yt+dt }). (6.48)

From the generalized integral fluctuation theorem Eq. (6.29) and the generalized
second law Eq. (6.30), we have the following relations:

〈
exp

[−σ + i(xt+dt : {yt−�τ , yt , yt+dt }) − i(xt : {yt−�τ , yt , yt+dt })
]〉 = 1, (6.49)

〈σ〉 ≥I (xt+dt : {yt−�τ , yt , yt+dt }) − I (xt : {yt−�τ , yt , yt+dt })
=I (xt+dt : {yt , yt+dt }) − I (xt : {yt , yt+dt })

+ I (xt+dt : yt−�τ |yt , yt+dt ) − I (xt : yt−�τ |yt , yt+dt ). (6.50)

The crucial difference between this model and the coupled Langevin equations
[Example 4], is the dependence of the time delayed variable yt−�τ . In the case
of the time delayed dynamics, the mutual information difference I (xt+dt :
{yt−�τ , yt , yt+dt }) − I (xt : {yt−�τ , yt , yt+dt }), which gives a bound of the entropy
production, includes the variable yt−�τ . Equation (6.50) gives the effect of the time
delay for the entropy production in X as the difference I (xt+dt : yt−�τ |yt , yt+dt ) −
I (xt : yt−�τ |yt , yt+dt ).

Example 6: Complex Dynamics

We here consider the causal network corresponding to complex dynamics given in
Fig. 6.6: V := {y1, x1, z1, x2, z2, y2, x3, z3}, pa(y1) = ∅, pa(x1) = y1, pa(z1) = y1,
pa(x2) = {x1, z1}, pa(z2) = {x1, z1}, pa(y2) = {y1, x2, z2}, pa(x3) = {x2, y2} and
pa(z3) = {z2, x2}. We set X = {x1, x2, x3}, C = {c1 := y1, c2 := z1, c3 := z2, c4 :=
y2, c5 := z3}, and C ′ = {y1, z1, z2, y2}. We have iini = i(x1 : y1), ifin = i(x3 :
{y1, z1, z2, y2}), i1

tr = 0, i2
tr = 0, i3

tr = i(x1 : z2|y1, z1), and i4
tr = i(x2 : y2|y1, z1, z2).

From the generalized integral fluctuation theorem Eq. (6.29) and the generalized
second law Eq. (6.30), we have the following relations:

〈exp(−σ + �)〉 = 1, (6.51)

� = i(x3 : {y1, z1, z2, y2}) − i(x1 : y1) − i(x1 : z2|y1, z1) − i(x2 : y2|y1, z1, z2),

(6.52)

〈σ〉 ≥ I (x3 : {y1, z1, z2, y2}) − I (x1 : y1) − I (x1 : z2|y1, z1) − I (x2 : y2|y1, z1, z2).

(6.53)

6.2.3 Coupled Chemical Reaction Model with Time-Delayed
Feedback Loop

We here discuss an application of our general result to coupled chemical reaction
systems with a time-delayed feedback loop. The model is characterized by a feedback
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loop between two systems: output system O and memory system M . We assume that
each of O and M has a binary state described by 0 or 1. The model is driven by the
following master equation:

d

dt
pX

0 (t) = −ωX
0,1(t)p

X
0 (t) + ωX

1,0(t)p
X
1 (t), (6.54)

d

dt
pX

1 (t) = −ωX
1,0(t)p

X
1 (t) + ωX

0,1(t)p
X
0 (t). (6.55)

where pX
0 (t) (pX

1 ) is the probability of the state 0 (1) with X = O, M at time t . The
normalization of the probability is satisfied, i.e., pX

0 (t) + pX
1 (t) = 1. The transition

rate of a chemical reaction ωX
i ′, j ′ (i ′, j ′ = 0, 1) is given by

ωX
i ′, j ′ = 1

τ X
exp[−βX (DX

i ′ j ′ − FX
i ′ (t))], (6.56)

where τ X is a time constant of the system X , βX is the inverse temperature of a heat
bath coupled to the system X , FX

i ′ (t) is the effective free energy of the state i ′ at time
t , and DX

i ′ j ′ is the barrier of X between states i ′ and j ′ that satisfies DX
i ′ j ′ = DX

j ′i ′ .
This transition rate is well-established in chemical reaction models [2].

Here we consider the feedback loop between O and X (see also Fig. 6.7). We
introduce the random variables (o1, o2,m1,m2), where o1 is the state of O at time
t , o2 is the state of O at time t + �t , m1 is the state of M at time t − �t ′, and m2

Fig. 6.7 Schematic of the coupled chemical reaction model with a time-delayed feedback loop.
The previous states of O and M determine the effective free energy landscapes FO or FM . A
blue directed arrow indicates the effect of time-delayed feedback loop. This time-delayed effect is
introduced by m1-dependence of FO
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Fig. 6.8 The causal network
corresponding to the coupled
chemical reaction model
with a time-delayed
feedback loop

is the state of M at time t + �t − �t ′ with �t > �t ′. The feedback loop between
O and X is described by the dependence of ok and mk in the effective free energy
FX

μ (t). From time t to t + �t , the effective free energy FO
μ (t) depends on m1 and

m2, where m1-dependence indicates the effect of a time-delayed feedback control.
FO
i ′ (m1,m2) denotes the effective free energy of the state i ′ in O under the condition

of (m1,m2). From time t − �t ′ to t + �t − �t ′, the effective free energy FM
μ (t)

depends on o1. FM
i ′ (o1) denotes the effective free energy of the state i ′ in M under

the condition of o1. The joint probability distribution of this model is given by

p(m1, o1,m2, o2) = p(m1, o1)p(m2|o1,m1)p(o2|o1,m1,m2). (6.57)

The chain rule p(m1, o1) = p(m1)p(o1|m1)gives the causal network corresponding
to this model as V = {m1, o1,m2, o2}, pa(o2) = {o1,m1,m2}, pa(m2) = {o1,m1},
pa(o1) = {m1}, and pa(m1) = ∅ (see also Fig. 6.8).

Information Thermodynamics in the Memory System M

We next treat the output system O as the target system X . If we set M = {x1 :=
m1, x2 := m2}, C = {c1 := o1, c2 := o2}, and C ′ = {o1}, the entropy change �sk=1

bath
in a heat bath attached to the system M is given by

�sk=1
bath = ln

p(m2|m1, o1)

pB(m1|m2, o1)
, (6.58)

where we used B2 = pa(m2) \ {m1} = {o1}, and the backward probability is defined
as pB(m1 = i ′|m2 = j ′, o1) := p(m2 = i ′|m1 = j ′, o1). From time t − �t ′ to
t + �t − �t ′, the master equation of the system M can be rewritten as

d

dt
pM

0 (t) = −[ωM
0,1(o1) + ωM

1,0(o1)]pM
0 (t) + ωM

1,0(o1), (6.59)

ωM
i ′, j ′(o1) = 1

τM
exp[−βM(DM

i ′ j ′ − FM
i ′ (o1))], (6.60)
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and we get the solution of Eq. (6.59) as

pM
0 (t + �t − �t ′) = pM

0,eq(o1) + (pM
0 (t − �t ′) − pM

0,eq(o1)) exp[−ωM(o1)�t],
(6.61)

pM
1 (t + �t − �t ′) = 1 − pM

0 (t + �t − �t ′), (6.62)

where ωM(o1) := ωM
0,1(o1) + ωM

1,0(o1), and pM
0,eq(o1) is an equilibrium distribution

of the state 0 in M under the condition of o1 defined as

pM
0,eq(o1) := exp[−βM FM

0 (o1)]
exp[−βM FM

0 (o1)] + exp[−βM FM
1 (o1)] . (6.63)

Substituting pM
0 (t) = 0, 1 into the solutions of Eqs. (6.61) and (6.62), we have the

conditional probability p(m2|m1, o1):

p(m2 = 0|m1 = 0, o1) = pM
0,eq(o1) + (1 − pM

0,eq(o1)) exp[−ωM(o1)�t], (6.64)

p(m2 = 0|m1 = 1, o1) = pM
0,eq(o1) − pM

0,eq(o1) exp[−ωM(o1)�t], (6.65)

p(m2 = 1|m1 = i ′, o1) = 1 − p(m2 = 0|m1 = i ′, o1). (6.66)

From Eqs. (6.64), (6.65) and (6.66), we have

�sk=1
bath = ln

p(m2|m1, o1)

pB(m1|m2, o1)

=
⎧
⎨

⎩

0 (m1 = m2)

ln[1 − pM
0,eq(o1)] − ln pM

0,eq(o1) (m1 = 0,m2 = 1)

ln pM
0,eq(o1) − ln[1 − pM

0,eq(o1)] (m1 = 1,m2 = 0)

= −βM�FM , (6.67)

where �FM is the effective free energy difference defined as �FM := FM
m2

(o1) −
FO
m1

(o1). The entropy change in a heat bath gives the effective free energy difference
in the memory system M .

On the causal network corresponding to this model, we have ifin = i(m2 : o1),
iini = 0, and i1

tr = i(m1 : o1) (see also Fig. 6.9). Informational quantity� is calculated
as

� = i(m2 : o1) − i(m1 : o1)

= ln p(m1) − ln p(m2) + ln p(m2, o1) − ln p(m1, o1). (6.68)

From the generalized second law Eq. (6.30), we have the following relation

〈σ〉 ≥ I (m2 : o1) − I (m1 : o1), (6.69)
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Fig. 6.9 The generalized
second law in M on the
causal network
corresponding to the coupled
chemical reaction model
with a time-delayed
feedback loop

or equivalently

−〈βM�FM〉 ≥ 〈ln p(m2, o1)〉 − 〈ln p(m1, o1)〉. (6.70)

This result is equivalent to the Sagawa-Ueda relation, which is valid for a system
under the feedback control. A bound of the effective free energy difference 〈�FM 〉
is given by the two-body Shannon entropy difference.

Information Thermodynamics in the Output System O

We next treat the output system O as the target system X . If we set X = {x1 :=
o1, x2 := o2} and C = C ′ = {c1 := m1, c2 := m2}, the entropy change �sk=1

bath in a
heat bath attached to the system O is given by

�sk=1
bath = ln

p(o2|o1,m1,m2)

pB(o1|o2,m1,m2)
, (6.71)

where we used B2 = pa(x2) \ {x1} = {m1,m2}, and the backward probability is
defined as pB(o1 = i ′|o2 = j ′,m1,m2) := p(o2 = i ′|o1 = j ′,m1,m2). To obtain
the analytical expression of �s1

bath, we here calculate the conditional probability
p(o2|o1,m1,m2). From time t to t + �t , the master equation of the system O can
be rewritten as

d

dt
pO

0 (t) = −[ωO
0,1(m1,m2) + ωO

1,0(m1,m2)]pO
0 (t) + ωO

1,0(m1,m2), (6.72)

ωO
i ′, j ′(m1,m2) = 1

τ O
exp[−βO(DO

i ′ j ′ − FO
i ′ (m1,m2))], (6.73)
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and we get the solution of Eq. (6.72) as

pO
0 (t + �t) = pO

0,eq(m1,m2) + (pO
0 (t) − pO

0,eq(m1,m2)) exp[−ωO(m1,m2)�t],
(6.74)

pO
1 (t + �t) = 1 − pO

0 (t + �t), (6.75)

where ωO(m1,m2) := ωO
0,1(m1,m2) + ωO

1,0(m1,m2), and pO
0,eq(m1,m2) is an equi-

librium distribution of the state 0 in O under the condition of (m1,m2) defined as

pO
0,eq(m1,m2) := exp[−βO FO

0 (m1,m2)]
exp[−βO FO

0 (m1,m2)] + exp[−βO FO
1 (m1,m2)] . (6.76)

Substituting pO
0 (t) = 0, 1 into the solutions of Eqs. (6.74) and (6.75), we have the

conditional probability p(o2|o1,m1,m2):

p(o2 = 0|o1 = 0,m1,m2) = pO0,eq(m1,m2) +
(

1 − pO0,eq(m1,m2)
)

exp
[
−ωO (m1,m2)�t

]

(6.77)

p(o2 = 0|o1 = 1,m1,m2) = pO0,eq(m1,m2) − pO0,eq(m1,m2) exp
[
−ωO (m1,m2)�t

]
(6.78)

p(o2 = 1|o1 = i ′,m1,m2) = 1 − p(o2 = 0|o1 = i ′,m1,m2). (6.79)

From Eqs. (6.77)–(6.79), we have

�sk=1
bath = ln

p(o2|o1,m1,m2)

pB(o1|o2,m1,m2)

=
⎧
⎨

⎩

0 (o1 = o2)

ln[1 − pO
0,eq(m1,m2)] − ln pO

0,eq(m1,m2) (o1 = 0, o2 = 1)

ln pO
0,eq(m1,m2) − ln[1 − pO

0,eq(m1,m2)] (o1 = 1, o2 = 0)

= −βO�FO , (6.80)

Fig. 6.10 The generalized
second law in O on the
causal network
corresponding to the coupled
chemical reaction model
with a time-delayed
feedback loop
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where �FO is the effective free energy difference defined as �FO := FO
o2

(m1,m2)−
FO
o1

(m1,m2). The entropy change in a heat bath gives the effective free energy dif-
ference in the output system O .

On the causal network corresponding to this model, we have ifin = i(o2:{m1,m2}),
iini = i(o1 : m1), i1

tr = 0 and i2
tr = i(o1 : m2|m1) (see also Fig. 6.10). Informational

quantity � is calculated as

� = i(o2 : {m1,m2}) − i(o1 : m1) − i(o1 : m2|m1)

= i(o2 : {m1,m2}) − i(o1 : {m1,m2})
= ln p(o1) − ln p(o2) + ln p(o2,m1,m2) − ln p(o1,m1,m2) (6.81)

From the generalized second law Eq. (6.30), we have the following relation

−〈βO�FO〉 ≥ 〈ln p(o2,m1,m2)〉 − 〈ln p(o1,m1,m2)〉. (6.82)

The right hand side of Eq. (6.82) is the change in the three-body Shannon entropy,
not in the two-body Shannon entropy. This three-body Shannon entropy includes
the states of different times m1 and m2. This is a crucial difference between the
conventional thermodynamics and our general result. Our general result is applicable
to non-Markovian dynamics such as the time-delayed feedback loop, where the

Fig. 6.11 Numerical illustration of the nonnegativity of 〈σ〉 − 〈�〉 = −〈βO�FO 〉 +
〈ln p(o1,m1,m2)〉 − 〈ln p(o2,m1,m2)〉. We here assume that o1 and m1 are independent, i.e.,
p(o1,m1) = p(o1)p(m1). We set the parameters as follows: �t = 0.5, βO = βO = 0.01,
τO = τM = 0.001, DO

01 = DM
01 = 100, FM

0 (x1 = 0) = FM
0 (x1 = 1) = 100, FM

1 (x1 = 0) = 10,
FM

1 (x1 = 1) = 30, FO
0 (m1 = 0,m2 = 0) = FO

0 (m1 = 1,m2 = 0) = FO
0 (m1 = 0,m2 =

1) = FO
0 (m1 = 1,m2 = 1) = 100, FO

1 (m1 = 0,m2 = 0) = 30, FO
1 (m1 = 1,m2 = 0) = 10,

FO
1 (m1 = 0,m2 = 1) = 20, and FO

1 (m1 = 1,m2 = 1) = 5
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conventional second law is not valid. In our general result, the Shannon entropy
includes the state of different times plays a important role of the generalized second
law for non-Markovian dynamics.

Here we numerically illustrate the validity of Eq. (6.82) in Fig. 6.11. In this model,
the equilibrium distribution is numerically calculated as pO

0,eq(m1 = 0,m2 = 0) =
0.332, pO

0,eq(m1 = 0,m2 = 1) = 0.310, pO
0,eq(m1 = 1,m2 = 0) = 0.289, and

pO
0,eq(m1 = 1,m2 = 0) = 0.278. We note that the value of 〈σ〉 − 〈�〉 in Fig. 6.11

is close to 0 when the initial states are close to the equilibrium distribution of the
output system, which is similar to the probability pO

0,eq(m1,m2).
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Chapter 7
Application to Biochemical Signal
Transduction

Abstract This chapter presents the application of the information-thermodynamic
theory based on the causal networks to the biochemical signal transduction. We dis-
cuss the role of thermodynamics of information processing in sensory adaptation
such as the E. coli chemotaxis. We theoretically shows that the robustness of adap-
tation is thermodynamically bounded by the information flow inside the cell. We
discuss the similarity and the difference between our thermodynamic result and the
noisy-channel coding theorem in the classical information theory. We also numer-
ically shows that the signal transduction of E. coli chemotaxis is efficient as an
information-thermodynamic engine.

Keywords Signal transduction · Information thermodynamics

In Chap.6, we showed that our general theory of information thermodynamics on
causal networks is applicable to a broad class of nonequilibrium dynamics, such
as a feedback controlled system, coupled Brownian particles and a chemical model
with time-delayed feedback control. In this chapter, we discuss an application of
our general result to a biochemical signal transduction, and show that information
thermodynamic inequality reveals the fundamental limit of the robustness of signal
transduction against environmental fluctuations. Our information-thermodynamic
approach is applicable to biochemical communication inside cells, where there is
not any explicit channel coding in contrast to the case of artificial communication,
i.e., the noisy-channel coding theorem. This chapter is the refinement of our paper
[Ito S., and Sagawa T., Nature Communications. 6, 7498 (2015).] [1].

7.1 Biochemical Signal Transduction

A biochemical signal transduction in living cells is vital to maintain life itself, where
the information transmission in a highly noisy environment plays a significant role
[2, 3]. For example, the ligand activates the receptor on the cell surface, and the
ligand binding triggers the biochemical reaction inside the cell to create the response.
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Fig. 7.1 The main
components of sensory
adaptation are the ligand
input l, the kinase activity a
and the memory m. The
negative feedback loop is in
a and m

Kinase activity

Ligand input

Memory

Here we discuss the sensory adaptation, which is achieved by a biochemical signal
transduction with a negative feedback loop [4].

7.1.1 Sensory Adaptation

Sensory adaptation is an example of the biochemical signal transduction which
responds to the stimulus change (e.g., a bacterial chemotaxis, an osmotic sens-
ing in yeast, an olfactory sensing in mammalian neurons, and a light sensing in
mammalian neurons) [5]. To become suited to the stimulus change, a negative feed-
back loop plays a crucial role. For example, a bacterial chemotaxis is a simple model
organism for sensory adaptation [6], where the concentration of the kinase activ-
ity does not depend on the current concentration of the ligand, but depends on the
change of the ligand density. Kinase activity activates a flagellar motor to move
bacteria toward a direction of the higher ligand density. To detect the change of the
ligand density, the current concentration of the ligand is stored in the memory degree
of freedom, and a negative feedback is achieved between the memory and the kinase
activity. Thus, the various types of adaptive signal transductions characterizes three
components, i.e., the ligand input l, the kinase activity a and the memorym [see also
Fig. 7.1].

Wehere show the case ofE. coli (Escherichia coli) bacterial chemotaxis in Fig. 7.2.
Themethylation level of the receptor play a role of thememory degree of the freedom
m, and restrict the ligand signal l towards the kinase activity a.

7.1.2 Mutual Information in Biochemical Signal
Transduction

Biochemical signaling networks can be highly noisy [7, 8]. To understand the
information transmission in noisy environment, the mutual information is a nat-
ural measure of information transmission. To address the question how information
is transmitted correctly in the presence of noisy biological environment, the mutual
information in biochemical signaling networks has been studied theoretically and
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Methylation level

Ligand

CheB

Receptor Flagellar motor

: Negative feedback loop

CheA

CH3

Kinase activity

Chemotaxis

Fig. 7.2 Schematic of the E. coli bacterial chemotaxis

Encoder Decoder

Noise

Channel capacity

Achievable information rate

(Accuracy of information transmission against noise)

Input Output

Fig. 7.3 Thenoisy channel coding theorem in a feedback loop.The transfer entropy I(at : mt+dt |mt)

is related to the achievable information rate R in case of a feedback loop

experimentally. Since the transfer entropy is the conditional mutual information
under the condition of the past value, it gives the channel capacity in an artificial
communication channel with a feedback loop [see also Fig. 7.3]. However, as there
is no channel coding inside living cells, the role of the transfer entropy in biological
communication is still unclear.

7.2 Information Thermodynamics in Biochemical Signal
Transduction

Wehere apply our general theory of information thermodynamics for the biochemical
signal transduction. To discuss the information-thermodynamic effect in biochemical
signal transduction, we analyze the coupled Langevin model of sensory adaptation.
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7.2.1 Coupled Langevin Model of Sensory Adaptation

Let at be the kinase activity at time t, mt be the memory degree of freedom (e.g., the
methylation level of the receptor in E. coli bacterial chemotaxis) at time t, and lt be
the ligand signal at time t. The model of adaptive signal transduction is given by the
following coupled Langevin equations [5, 9, 10]:

ȧt = − 1

τ a
[at − āt(mt, lt)] + ξat , (7.1)

ṁt = − 1

τm
at + ξmt (7.2)

where āt is the stationary value of the kinase activity under the instantaneous values
of thememorymt and the ligand signal lt at time t. ξxt (x = a,m) is thewhite Gaussian
noise at time t with 〈ξxt 〉 = 0 and 〈ξxt ξx′

t′ 〉 = 2Tx
t δxx′δ(t− t′). Tx

t describes the intensity
of the environmental noise at time t, which is not necessarily thermal inside cells.
The time constants satisfy τm � τ a > 0, which implies that the relaxation of a to āt
is much faster than that of m.

In the case of E. coli chemotaxis, the stationary value of the kinase activity
āt(mt, lt) is given by the Monod–Wyman–Changeux allosteric model, which
describes the effects of the receptor cooperativity on kinase activity. The Monod–
Wyman–Changeux allosteric model [2] is given by the equilibrium distribution of
the receptor such as

āt(mt, lt) = exp[−�F(mt, lt)]
1 + exp[−�F(mt, lt)] , (7.3)

where �F is the free energy difference between the active and inactive state of the
receptor. The free energy difference �F(mt, lt) is given by

�F(mt, lt) = NFm(m̄ − mt) + N ln
1 + lt/KI

1 + lt/KA
, (7.4)

where N is the number of coupled receptor dimers, Fm is a linear constant of free
energy of the methylation level, m̄ is the methylation value in zero ligand binding,
KI is the dissociation constant corresponding to the inactive state of the receptor, and
KA is the dissociation constant corresponding to the active state of the receptor. In
the case of E. coli chemotaxis, the dissociation constants satisfy KA � KI . When the
stimulus variation of the ligand is within the most sensitive regime of the sensory
system (i.e., KA � lt � KI ), we can approximate āt as

āt(mt, lt) = αmmt − αl lt (7.5)
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time

Fig. 7.4 Typical dynamics of adaptation with the ensemble average. Suppose that lt changes as a
step function (red solid line). Then, at suddenly responds (green solid line), followed by the gradual
response of mt (blue solid line). The adaptation is achieved by the relaxation of at to āt (orange
dashed line). The methylation level mt gradually changes to āt(mt, 1) = 0 (blue dashed line)

by linearizing it around the steady-state value. Because the ligand signal lt only
appears in the stochastic differential equation of at , the noise intensity Ta

t character-
izes the ligand fluctuations.

Here we explain themechanism of sensory adaptation using the coupled Langevin
model Eqs. (7.1) and (7.2) [see also Fig. 7.4]. Suppose that the system is initially in a
stationary state with at = āt(mt, 0) = 0 at time t < 0, and lt suddenly changes from
0 to 1 at time t = 0 as a step function. Then, at rapidly equilibrates to āt(mt, 1) so that
the difference at − āt becomes small. Next, mt gradually changes to āt(mt, 1) = 0
so that at returns to 0, where at − āt remains small.

7.2.2 Information Thermodynamics and Robustness
of Adaptation

We now consider the generalized second law of information thermodynamics for
coupled Langevin equations Eqs. (7.1) and (7.2), which can be obtained from Eq.
(6.46):

dI trt − dIBtrt + dSa|mt ≥ Jat
Ta
t
dt, (7.6)

where dI trt is the transfer entropy defined as dI trt := I(at : mt+dt|mt), dIBtrt is the
transfer entropy defined as dIBtrt := I(at+dt : mt|mt+dt), dS

a|m
t is the conditional

Shannon entropy change defined as dSa|mt = 〈ln p(at|mt)〉 − 〈ln p(at+dt|mt+dt)〉, and

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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Jat is defined as Jat := 〈ȧ ◦ [ξat − ȧt]〉. In the case of the coupled Brownian particles,
Jat corresponds to the heat absorption in a. Since the environmental noise is not
necessarily thermal in the present situation, Jat is not exactly the same as the heat
absorption. To clarify the role of the transfer entropy dI trt , we consider the weaker
bound of Jat as

Jat
Ta
t
dt ≤ dI trt − dIBtrt + dSa|mt

≤ dI trt + dSa|mt , (7.7)

where we used the nonnegativity of the conditional mutual information dIBtrt ≥ 0.
In a stationary state, the conditional Shannon entropy change vanishes (i.e., dSa|mt ),
and thus the transfer entropy gives the upper bound of Jat in a stationary state, i.e.,
dI trt ≥ (Jat dt)/T

a
t .

Here we discuss the biophysical meaning of the quantity Jat . The quantity J
a
t can

be rewritten by the violation of the fluctuation-dissipation theorem as

Jat = 〈[ξat − ȧt] ◦ ȧt〉
= 1

τ a

[

〈[at − āt] ◦ ξat 〉 − 1

τ a
〈(at − āt)

2〉
]

= 1

τ a

[

Ta
t − 1

τ a
〈(at − āt)

2〉
]

, (7.8)

where we used the relation of the Stratonovich integral 〈g(at,mt, lt) ◦ ξat 〉 =
Ta
t 〈∂atg(at,mt, lt)〉 for any function g. This quantity represents the difference

between the intensity of the ligand noise Ta
t and the mean square error of the degree

of the signal transduction 〈(at − āt)2〉. Thus, the quantity Jat characterizes the robust-
ness of adaptation against environmental noise. The larger Jat is, the more robust the
signal transduction is against the environmental noise.

To clarify the central idea of our study, we focus on the case of stationary state.
If there was no feedback between a and m, information thermodynamics Eq. (7.7)
would reduce to

〈(at − āt)
2〉 ≥ τ aTa

t , (7.9)

which, as naturally expected, implies that the fluctuation of the signal transduction
is bounded by the intensity of the environmental noise. In contrast, in the presence
of a feedback loop, information thermodynamics Eq. (7.7) indicates that 〈(at − āt)2〉
can be smaller than τ aTa

t , owing to the transfer entropy dI trt in the feedback loop,

〈(at − āt)
2〉 ≥ τ aTa

t

[

1 − dI trt
dt

τ a

]

. (7.10)



7.2 Information Thermodynamics in Biochemical Signal Transduction 89

Methylation level
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Receptor Flagellar motor

: Negative feedback loop

CheA
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Maxwell’ s demon

Measurement
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Kinase activity

Fig. 7.5 Maxwell’s demon in E. coli chemotaxis. From the viewpoint of thermodynamics, the
methylation level m plays a similar role to the memory of Maxwell’s demon, which reduces the
effect of the environmental noise on the kinase activity

This is analogous to the central feature of Maxwell’s demon, which implies that
information transfer in the feedback loop reduces the effect of the environmental
noise on the target system (see also Fig. 7.5). This inequality reveals the role of the
transfer entropy in biochemical signal transduction; the transfer entropy characterizes
the lower boundof the accuracy of the signal transduction in the biochemical network.
We add that Yuhai Tu had discussed Maxwell’s demon in a biological switch in a
different context in 2007 [11].

7.2.3 Information Thermodynamics and Conventional
Thermordynamics

We next compare the conventional thermodynamics with information thermodynam-
ics. The conventional second law for total systems a and m is given by

dSamt ≥ Jat
Ta
t
dt + Jmt

Tm
t
dt, (7.11)

where dSamt is the total Shannon entropy difference defined as dSamt := 〈ln p(at,
mt)〉 − 〈ln p(at+dt,mt+dt)〉, which also vanishes in a stationary state, and Jmt is the
heat absorption in m defined as Jmt := 〈ṁ ◦ [ξmt − ṁt]〉 = −〈a2t 〉/(τm)2. In Fig. 7.6,
we show the comparison between the conventional thermodynamics and information
thermodynamics. In a stationary state, the conventional second law implies that the
dissipation in m should compensate for that in a, i.e., −Jmt /Tm

t ≥ Jat /T
a
t .

We here show numerical comparison between our information thermodynamics
and the conventional thermodynamics. We have two upper bounds of the robustness
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Conventional thermodynamics Information thermodynamics

information flow

Heat flowHeat flowHeat flow

Fig. 7.6 Information thermodynamics and conventional thermodynamics. The second law of infor-
mation thermodynamics characterizes the entropy change in a subsystem in terms of the information
flow between the subsystem and the outside world (i.e., dI trt + dSa|mt ≥ dI trt − dIBtrt + dSa|mt ≥
−Jat dt/T

a
t ). In contrast, the conventional second law of thermodynamics states that the entropy

change in a subsystem is compensated for by the entropy change in the outside world (i.e.,
−Jmt dt/T

m
t + dSamt ≥ Jat dt/T

a
t )

Jat , which are given by information thermodynamics and the conventional thermody-
namics. Let �info

t := dI trt + dSa|mt be the upper bound of Jat dt/T
a
t , which is given by

the information thermodynamic inequality Eq. (7.7). Let �SL
t := −Jmt dt/T

m
t + dSamt

be the upper bound of Jat dt/T
a
t , which is straightforwardly obtained from the con-

ventional second law of thermodynamics Eq. (7.11). Figure7.7 shows Jat dt/T
a
t ,�

info

and �SL in six different types of dynamics of adaptation, where the ligand signal
and noise are given by step functions (Fig. 7.7a), sinusoidal functions (Fig. 7.7b),
linear functions (Fig. 7.7c), exponential decays (Fig. 7.7d), square waves (Fig. 7.7e)
and triangle waves (Fig. 7.7f). These results confirm that �info gives a tight bound
of Jat , implying that the transfer entropy characterizes the robustness well. Remark-
ably, information thermodynamic bound �info gives a tighter bound of Jat than the
conventional thermodynamic bound�SL

t such that�SL
t ≥ �Info

t ≥ Jat dt/T
a
t for every

non-stationary dynamics shown in Fig. 7.7. This fact indicates that the signal trans-
duction of E. coli chemotaxis is highly dissipative as a thermodynamic engine, but
efficient as an information transmission device.

7.2.4 Analytical Calculations

In the case ofE. coli chemotaxis, we have āt = αmmt−αl lt and the coupled Langevin
equations Eqs. (7.1) and (7.2) become linear. In this situation, if the initial distribution
is Gaussian, we can analytically obtain the transfer entropy up to the order of dt,
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and compare the information-thermodynamic bound �Info with the conventional
thermodynamic bound �SL analytically.

We here generally derive an analytical expression of the transfer entropy for the
coupled linear Langevin system:

ẋ1t =
∑

j

μ
1j
t x

j
t + f 1t + ξ1t ,

ẋ2t =
∑

j

μ
2j
t x

j
t + f 2t + ξ2t ,

〈ξitξjt′ 〉 = 2Ti
t δijδ(t − t′)

〈ξit〉 = 0,

(7.12)

where i, j = 1, 2, f it and μ
ij
t are time-dependent constants, Ti

t is the time-dependent
variance of the white Gaussian noise ξit , and 〈. . . 〉 denotes the ensemble average.
The model of the E. coli bacterial chemotaxis is given by Eqs. (7.1) and (7.2) with
āt = αmmt −αl lt . To compare the notations of Eq. (7.12), we set {x1t , x2t } = {at,mt},
μ11
t = −1/τ a, μ12

t = αm/τ a, f 1t = −αl lt/τ a, μ21
t = −1/τm, μ22

t = 0, f 2t = 0,
T 1
t = Ta

t , and T 2
t = Tm

t . The transfer entropy from the target system x1 to the other
system x2 at time t is defined as dI trt := 〈ln p[x2t+dt|x1t , x2t ]〉 − 〈ln p[x2t+dt|x2t ]〉.

Here, we analytically calculate the transfer entropy for the case that the joint
probability p[x1t , x2t ] is a Gaussian distribution:

p[x1t , x2t ] = 1

(2π)
√
det�t

exp

⎡

⎣−
∑

ij

1

2
x̄itG

ij
t x̄

j
t

⎤

⎦ , (7.13)

where �
ij
t is the covariant matrix �

ij
t := 〈xitxjt〉 − 〈xit〉〈xjt〉, and x̄jt := xjt − 〈xjt〉.

The inverse matrix Gt := �−1
t satisfies

∑
j G

ij
t �

jl
t = δil and Gij

t = Gji
t . The joint

distribution p[x2t ] is given by the Gaussian probability:

p[x2t ] = 1
√
2π�22

t

exp

[

−1

2
(�22

t )−1(x̄2t )
2

]

. (7.14)

We consider the path-integral expression of the Langevin equation (7.12). The
conditional probability p[x2t+dt|x1t , x2t ] is given by

p[x2t+dt|x1t , x2t ] = N exp

⎡

⎣− dt

4T 2
t

⎛

⎝
x2t+dt − x2t

dt
−

∑

j

μ
2j
t x

j
t − f 2t

⎞

⎠

2⎤

⎦

= N exp

[

− dt

4T 2
t

(
F2
t − μ21

t x̄1t
)2

]

, (7.15)
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� Fig. 7.7 Numerical results of the information thermodynamic bound �Info (green curves) and
conventional thermodynamic bound �SL (blue curves) of the robustness Jat dt/T

a
t (red curves). The

initial condition is the stationary state with āt = αmmt − αl lt , fixed ligand signal αl lt , and noise
intensity Ta = 0.005. We numerically confirmed that �SL

t ≥ �Info
t ≥ Jat dt/T

a
t holds for the six

transition processes. These results imply that, for the signal transduction model, the information-
thermodynamic bound is always tighter than the conventional thermodynamic bound. The para-
meters are chosen as τa = 0.02, τm = 0.2, αm = 2.7, and Tm

t = 0.005, to be consistent with
the real parameters of E. coli bacterial chemotaxis [5, 9, 10]. a, Step function: αl lt = 0.01 and
Ta
t = 0.5 for t > 0. b, Sinusoidal function: αl lt = 0.01 sin(400t) and Ta

t = 0.5| sin(400t)|+0.005
for t > 0. c, Linear function: αl lt = 10t and Ta

t = 100t + 0.005 for t > 0. d, Exponential
decay: αlLt = 0.01[1 − exp(−200t)] and Ta

t = 0.5[1 − exp(−200t)] + 0.005 for t > 0. e,
Square wave: αl lt = 0.01[1 + 
sin(200t)�] and Ta

t = 0.05[1 + 
sin(200t)�] + 0.005 for t > 0,
where 
. . . � denotes the floor function. f, Triangle wave: αl lt = 0.01|2(100t − 
100t + 0.5�)| and
Ta
t = 0.5|2(100t − 
100t + 0.5�)| + 0.005 for t > 0

where N is the normalization constant with
∫
dx2t+dtp[x2t+dt|x1t , x2t ] = 1. For the

simplicity of notation, we set F2
t = (x2t+dt − x2t )/dt − μ21

t 〈x1t 〉 − μ22
t x2t − f 2t . From

Eqs. (7.13) and (7.15), we have the joint distribution p[x2t+dt, x
2
t ] as

p[x2t+dt, x
2
t ] =

∫

dx1t p[x2t+dt|x1t , x2t ]p[x1t , x2t ]

= N
√

4π det�t

(
dt
4T 2

t
(μ21

t )2 + G11
t
2

)

× exp

⎡

⎢
⎣− dt

4T 2
t
(F2

t )
2 − 1

2
G22

t (x̄2t )
2 +

(
G12

t x̄2t − μ21
t F2

t

2T 2
t
dt

)2

4
(

dt
4T 2

t
(μ21

t )2 + G11
t
2

)

⎤

⎥
⎦ .

(7.16)

From Eqs. (7.14)–(7.16), we obtain the analytical expression of the transfer
entropy dI trt up to the order of dt:

dI trt :=〈ln p[x2t+dt |x2t , x1t ] + ln p[x2t ] − ln p[x2t+dt, x
2
t ]〉

= − dt

4T2
t

〈(F2
t − μ21

t x̄1t
)2〉 − 1

2
ln

[
2π�22

t

] − 1

2
(�22

t )−1〈(x̄2t )2〉

+ 1

2
ln

[

4π det�t

(
dt

4T2
t

(μ21
t )2 + G11

t

2

)]

+ dt

4T2
t

〈(F2
t )

2〉 + 1

2
G22

t 〈(x̄2t )2〉 −

〈(
G12

t x̄2t − μ21
t F2

t
2T2

t
dt

)2〉

4
(

dt
4T2

t
(μ21

t )2 + G11
t
2

)

=μ21dt

2T2
t

〈F2
t x̄

1
t 〉 − dt

4T2
t

(μ21
t )2�11

t − 1

2
+ (μ21

t )2dt

4G11
t T2

t
+ 1

2
G22

t �22
t
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− (G12
t )2�22

t

2G11
t

[

1 − dt

2G11
t T2

t
(μ21

t )2
]

+ μ21
t dt

2G11
t T2

t
G12

t 〈F2
t x̄

2
t 〉 − (μ21

t )2dt

4G11
t T2

t
+ O(dt2)

=μ21dt

2T2
t

〈F2
t x̄

1
t 〉 + μ21

t dt

2G11
t T2

t
G12

t 〈F2
t x̄

2
t 〉 − (μ21

t )2dt

4G11
t T2

t
+ O(dt2)

= (μ21
t )2

4T2
t

det�t

�22
t

dt + O(dt2)

=1

2
ln

(

1 + dPt

Nt

)

+ O(dt2), (7.17)

where we define dPt := (μ21
t )2(det�t)dt/(�22

t ), and Nt := 2T 2
t . In this calculation,

we usedGij
t = Gji

t ,�
ij
t = �

ji
t ,G

i1
t �1l

t +Gi2
t �2l

t = δij, 〈(F2
t )

2〉dt2 = 2T 2
t dt+O(dt2),

〈F2
t x̄

1
t 〉 = μ21

t �11
t , 〈F2

t x̄
2
t 〉 = μ21

t �12
t , and G11

t = (�22
t )/(det�t).

In the model of the E. coli bacterial chemotaxis, we have Nt = 2Tm
t and

dPt = 1

(τm)2

[〈a2t 〉 − 〈at〉2][〈m2
t 〉 − 〈mt〉2] − [〈atmt〉 − 〈at〉〈mt〉]2

〈m2
t 〉 − 〈mt〉2 dt

= 1 − (ρamt )2

(τm)2
V a
t dt, (7.18)

where V x
t := 〈x2t 〉 − 〈xt〉2 indicates the variance of xt = at or xt = mt , and

ρamt := [〈atmt〉 − 〈at〉〈mt〉]/(V a
t V

m
t )1/2 is the correlation coefficient of at and mt .

The correlation coefficient ρamt satisfies −1 ≤ ρamt ≤ 1, because of the Cauchy–
Schwartz inequality. We note that, if the joint probability p(at,mt) is Gaussian, the
factor 1 − (ρamt )2 can be rewritten by the mutual information Iamt as

1 − (ρamt )2 = exp[−2Iamt ], (7.19)

where Iamt is defined as Iamt := ∫
datdmtp[at,mt] ln[p[at,mt]/[p[at]p[mt]]]. This fact

implies that, if the target system at and the other system mt are strongly correlated
(i.e., Iamt → ∞), no information flow exists (i.e., dI trt → 0).

From the analytical expression of the transfer entropy Eq. (7.17), we can analyt-
ically compare the conventional thermodynamic bound (i.e., �SL

t := −Jmt dt/T
m
t +

dSamt ≥ Jat dt/T
a
t ) with the information-thermodynamic bound (i.e., �Info

t = dI trt +
dSa|mt ≥ Jat dt/T

a
t ) for the model of E. coli chemotaxis [Eqs. (7.1) and (7.2) with

āt = αmt − βlt] in a stationary state, where both of the Shannon entropy and the
conditional Shannon changes vanish, i.e., dSa|mt = 0 and dSamt = 0. Thus, the con-
ventional thermodynamic bound is given by the heat emission from m such that
�SL

t = −Jmt dt/T
m
t , and the information thermodynamic bound is given by the infor-

mation flow such that �Info
t = dI trt . The information thermodynamic bound is given

by �Info
t = (1 − (ρamt )2)[〈a2t 〉 − 〈at〉2]dt/[2(τm)2Tm

t ]. The conventional thermo-
dynamic bound is given by �SL

t = 〈a2t 〉dt/[(τm)2Tm
t ]. From −1 ≤ ρamt ≤ 1 and
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〈at〉2 ≥ 0, we have the inequality �SL
t ≥ �Info

t . This implies that the information-
thermodynamic bound�Info

t is tighter than the conventional bound�SL
t for the model

of E. coli bacterial chemotaxis:

�SL
t ≥ �Info

t ≥ Jat dt/T
a
t . (7.20)

7.3 Information Thermodynamics and Noisy-Channel
Coding Theorem

We discuss the similarity and the difference between our result and Shannon’s noisy
channel coding theorem.

7.3.1 Analogical Similarity

The noisy channel coding theorem states that the upper bound of archivable infor-
mation rate R is given by the channel capacity C. The channel capacity C is defined
as the supremum value of mutual information between input and output with a finite
input power. The mutual information can be replaced by the transfer entropy dI trt in
the presence of a feedback loop. R describes how long bit sequence is needed for a
channel coding, to realize errorless communication through a noisy channel where
errorless means the coincidence between the input and output messages. On the other
hand, information thermodynamics states that the robustness of the biochemical sig-
nal transduction Jat is bounded by the transfer entropy dI

tr
t . Therefore both of J

a
t and

R characterize the robust information transmission against noise and are bounded by
the transfer entropy dI trt . In this sense, there exists an analogy between the second
law of thermodynamics with information and the noisy channel coding theorem, in
spite of the fact that they are very different in general (see also Fig. 7.8).

7.3.2 Difference and Biochemical Relevance

In general, the archivable rate R is different from the robustness Jat . In the case
of biochemical signal transduction, information thermodynamic approach is more
relevant, because there is not any explicit channel coding inside cells.Moreover,while
Jat is an experimentally measurable quantity [12, 13], R cannot be properly defined
without any artificial channel coding [14]. Therefore, Jat is an intrinsic quantity to
characterize the accuracy of the information transduction inside cells without any
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Encoder Decoder

Noise

Channel capacity

Achievable information rate

(Accuracy of information transmission against noise)

(a)

(b)

Input Output

transfer entropy

Robustness of signal transduction against noise

in a stationary state

Fig. 7.8 Analogy and difference between our approach and Shannon’s noisy channel coding the-
orem. a, Information thermodynamics for biochemical signal transduction. The robustness Jat is
bounded by the information flow dI trt in stationary states, which is a consequence of the second law
of information thermodynamics. b, Information theory for artificial communication. The archiv-
able information rate R, given by the redundancy of the channel coding, is bounded by the channel
capacity C = max dI trt , which is a consequence of the Shannon’s second theorem. If the noise is
Gaussian as is the case for E. coli chemotaxis, both of the transfer entropy and the channel capacity
are given by the power-to-noise ratio C = dI trt = (2)−1 ln(1 + dPt/Nt), under the condition that
the initial distribution is Gaussian

artificial channel coding process. From the information thermodynamic point of
view, we can discuss the efficiency of information without any assumption of the
channel coding inside cells. We can also discuss the thermodynamic efficiency as a
heat engine in parallel.
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Chapter 8
Information Thermodynamics as Stochastic
Thermodynamics for Small Subsystem

Abstract This chapter presents further generalizations of the information-
thermodynamic theory introduced in Chap.6. We show other expressions of the
second law of thermodynamics with information flow for a Markov process. We also
discuss that the novel informational measure called the backward transfer entropy
plays a crucial role in the generalizations. This generalization of the information-
thermodynamic theory gives a tighter informational bound of the entropy production
in the subsystem.

Keywords Information thermodynamics · Causal networks · Transfer entropy
In this chapter,wefirst focus on information thermodynamics for amulti-dimensional
Markov process. We will show that information thermodynamics can be considered
as the stochastic thermodynamics for small subsystems. Froma thermodynamic point
of view, the backward transfer entropy plays an important role as the conventional
transfer entropy.Wenext generalize information thermodynamics on causal networks
using the backward transfer entropy. Our generalization gives a tighter lower bound
of the entropy production in a subsystem.

8.1 Information Thermodynamics for Small Subsystem

In Chap.6, we have given the general formalism of information thermodynamics
for two-dimensional Langevin system [1]. We here focus on the case of a multi-
dimensional Markov process.

8.1.1 Information Thermodynamics for a Multi-dimensional
Markov Process

We consider a situation that dynamics of multi-dimensional system {X1, . . . ,Xnsys}
is Markovian, where nsys is a number of small fluctuating systems. Let the path of a
© Springer Science+Business Media Singapore 2016
S. Ito, Information Thermodynamics on Causal Networks and its Application
to Biochemical Signal Transduction, Springer Theses,
DOI 10.1007/978-981-10-1664-6_8
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small subsystemXi beXi = {xik|k = 0, 1, . . . ,N}, and the path of the other system be
X−i = {x−i

k |k = 1, . . . ,N} = {xν
k |ν = 1, . . . , i − 1, i + 1, . . . , nsys, k = 1, . . . ,N},

where k denotes time. We assume that the path probability p(Xi,X−i) is given by

p(Xi,X−i) = p(xi1, x
−i
1 )

N−1∏

k=1

p(xik+1|xik, x−i
k )p(x−i

k+1|xik, x−i
k )

= p(xi1, . . . , x
nsys
1 )

N−1∏

k=1

nsys∏

ν=1

p(xν
k+1|xik, . . . , xnsysk ). (8.1)

From the path probability Eq. (8.1), we calculate the joint probability p(xik+1, x
−i
k+1,

xik, x
−i
k ) with 1 ≤ k ≤ N − 1 as

p(xik, x
−i
k+1, x

i
k, x

−i
k ) =

∑

{Xi,X−i}\{xik+1,x
−i
k+1,x

i
k ,x

−i
k }

p(Xi,X−i)

= p(xik, x
−i
k )p(xik+1|xik, x−i

k )p(x−i
k+1|xik, x−i

k ). (8.2)

We next consider a causal network for Eq. (8.2) (see Fig. 8.1). This causal network
shows a single time step of theMarkovian dynamics from time k to time k+1. By the
discussion in Chap.6, the entropy production for a small subsystem Xi is bounded
by the information quantity �, which is given by the graph Fig. 8.1 as

� := ifin − iini −
2∑

l=1

iltr, (8.3)

iini = i(x1 : pa(x1))
= i(xik : x−i

k ), (8.4)

Fig. 8.1 A causal network
corresponding to Eq. (8.2)

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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i1tr = i(c1 : paX(c1))

= 0, (8.5)

i2tr = i(c2 : paX(c2)|c1)
= i(xik : x−i

k+1|x−i
k ), (8.6)

ifin = i(x2 : C ′)

= i(xik+1 : {x−i
k , x−i

k+1}), (8.7)

where we set X = {x1 = xik, x2 = xik+1}, C = C ′ = {c1 = x−i
k , c2 = x−i

k+1},
pa(xik) = x−i

k , paX(x−i
k ) = ∅, and paX(x−i

k+1) = xik .
Let σk be the entropy production for the single time step σk := ln p(xik) −

ln p(xik+1) + �skbath, where �skbath is the entropy change in heat baths from time
k to k + 1 by the system Xi. We then have the inequality 〈σk〉 ≥ 〈�〉 for each k such
as

S(xik+1) − S(xik) + 〈�skbath〉 ≥ I(xik : {x−i
k , x−i

k+1}) − I(xik+1 : {x−i
k , x−i

k+1}), (8.8)

or equivalently

S(xik+1|x−i
k+1) − S(xik|x−i

k ) + 〈�skbath〉 ≥ IBtrk − I trk , (8.9)

where I trk := I(xik : x−i
k+1|x−i

k ) is the transfer entropy from a small subsystem Xi to the
outside worlds X−i at time k and IBtrk := I(xik+1 : x−i

k |x−i
k+1) is the backward transfer

entropy from a small subsystem Xi to the outside worlds X−i at time k. We note that
the difference IBtrk − I trk gives the net information flow in the dynamics at time k. To
sum up Eq. (8.9) with k = 1, . . . ,N − 1, we have the information thermodynamic
inequality for subsystem Xi as

〈σi|−i〉 ≥
N−1∑

k=1

IBtrk −
N−1∑

k=1

I trk

≥ −
N−1∑

k=1

I trk , (8.10)

where σi|−i := ∑N−1
k=1 �skbath − ln p(xiN |x−i

N ) + ln p(xi1|x−i
1 ) gives the conditional

entropy production in a small subsystem Xi.
The sums of the transfer entropy

∑N−1
k=1 I trk and of the backward transfer entropy

∑N−1
k=1 IBtrk play crucial roles in stochastic thermodynamics for a small subsystem. The

conditional entropy production in a small subsystem can be negative, and its lower
bound is given by the sum of transfer entropy [i.e., 〈σi|−i〉 ≥ −∑N−1

k=1 I trk ]. This
fact implies that the sum of the transfer entropy

∑N−1
k=1 I trk gives the thermodynamic



102 8 Information Thermodynamics as Stochastic Thermodynamics …

benefit in a small subsystem Xi. On the other hand, the sum of backward transfer
entropy

∑N−1
k=1 IBtrk gives the thermodynamic loss in a small subsystem Xi. The back-

ward transfer entropy
∑N−1

k=1 IBtrk can be considered as the inevitable dissipation in a
small subsystem, because Eq. (8.10), which includes the backward transfer entropy,
gives a tighter bound of the conditional production compared to the inequality
〈σi|−i〉 ≥ −∑N−1

k=1 I trk .
We add the continuous case ofEq. (8.10). Let xi(t) be the state of a small subsystem

Xi at continuous time t, andx−i(t)be the states of the outsideworldsX−i at continuous
time t. In the continuous limit of Eq. (8.10), we have

〈σi|−i〉 ≥
∫ τ

t=0
dt
dIBtrt

dt
−
∫ τ

t=0
dt
dI trt
dt

, (8.11)

where σi|−i := �sbath − ln p(xi(τ )|x−i(τ )) + ln p(xi(0)|x−i(0)) is the conditional
entropy production in a small subsystem with entropy change in heat baths �sbath
by a small subsystem Xi from time t = 0 to t = τ , dIBtrt /dt is the backward transfer
entropy flow defined as dIBtrt /dt := I(xi(t + dt) : x−i(t)|x−i(t + dt))/dt, and dI trt /dt
is the transfer entropy flow defined as dI trt /dt := I(xi(t) : x−i(t+dt)|x−i(t))/dt with
an infinitesimal time interval dt.

8.1.2 Transfer Entropy for Multi-dimensional Linear
Langevin System

Wehere show an analytical expression of the transfer entropy for amulti-dimensional
linear Langevin system, which gives a lower bound of the conditional entropy pro-
duction in a small subsystem Xi, i.e., 〈σi|−i〉 ≥ − ∫ τ

t=0 dt[dI trt /dt]. We calculate the
transfer entropy from one of nsys pieces of variables to the other nsys − 1 pieces
of variables; this calculation is a generalization of Sect. 7.2.4. We here consider the
following nsys-dimensional linear Langevin equation:

ẋit =
∑

j

μ
ij
t x

j
t + f it + ξit ,

〈ξitξjt′ 〉 = 2Ti
t δijδ(t − t′)

〈ξit〉 = 0,

(8.12)

where i, j = 1, . . . , nsys. f it and μ
ij
t are time-dependent constants at time t. Ti

t is
the time-dependent variance of the white Gaussian noise ξit . x

−i
t := {xν

t |ν �= i} is
the variables of the other systems X−i. The transfer entropy from the target system
Xi to the other systems X−i at time t is given by dI trt := 〈ln p(x−i

t+dt|xit, x−i
t )〉 −

〈ln p(x−i
t+dt|x−i

t )〉. The covariance matrix is defined as �
ij
t := 〈xitxjt〉 − 〈xit〉〈xjt〉. We

assume that the joint probability p(xit, x
−i
t ) is a Gaussian distribution of the form

http://dx.doi.org/10.1007/978-981-10-1664-6_7
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p(xit, x
−i
t ) = 1

(2π)
nsys
2

√
det�t

exp

⎡

⎣−
∑

ij

1

2
x̄itG

ij
t x̄

j
t

⎤

⎦ , (8.13)

where x̄jt := xjt − 〈xjt〉. The inverse matrix Gt := �−1
t satisfies

∑
j G

ij
t �

jl
t = δil and

Gij
t = Gji

t , where δil is Kronecker’s delta. The joint distribution p(x−i
t ) is given by

the Gaussian probability,

p(x−i
t ) =

∫

dxitp(x
i
t, x

−i
t )

= 1

(2π)
nsys−1

2

√
det �̃t

exp

⎡

⎣−
∑

i′j′

1

2
x̄i

′
t G̃

i′j′
t x̄j

′
t

⎤

⎦ , (8.14)

where i′, j′ ( �= i) denote the indexes of the other systems. �̃
i′j′
t is the covariance

matrix which satisfies �̃
i′j′
t = 〈xi′t xj

′
t 〉 − 〈xi′t 〉〈xj

′
t 〉,

∑
j′ G̃

i′j′
t �̃

j′l′
t = δi′l′ and Gii

t =
(det �̃t)/(det�t).

We consider the path-integral expression of the Langevin equation (8.12). The
conditional probability p(x−i

t+dt|xit, x−i
t ) is given by

p(x−i
t+dt|xit, x−i

t ) = N exp

⎡

⎣−
∑

j′

dt

4Tj′
t

(Fj′
t − μj′ix̄it)

2

⎤

⎦ , (8.15)

where N is the prefactor, and we set Fj′
t = μj′ix̄it + ξ

j′
t . To obtain the analytical

expression of the transfer entropy, we calculate the joint probability distribution
p(x−i

t+dt, x
−i
t ). From Eqs. (8.13) and (8.15), we have the joint distribution p(x−i

t+dt, x
−i
t )

as

p(x−i
t+dt, x

−i
t )

=
∫

dxitp(x
−i
t+dt |xit, x−i

t )p(xit, x
−i
t )

= N
(2π)

nsys
2

√
det�t

∫

dx̄it exp

⎡

⎣−
∑

j′

dt

4Tj′
t

(Fj′
t − μj′i x̄it)

2 −
∑

i′j′

1

2
x̄i

′
t G

i′j′
t x̄j

′
t

⎤

⎦

= N
(2π)

nsys
2

√
det�t

exp

⎡

⎣−
∑

j′

dt

4Tj′
t

(Fj′
t )2 −

∑

i′j′

1

2
x̄i

′
t G

i′j′
t x̄j

′
t

⎤

⎦

×
√
√
√
√
√

π
(
∑

j′
dt

4Tj′
t

(μ
j′i
t )2 + Gii

t
2

) exp

⎡

⎢
⎢
⎢
⎣

[
∑

j′

(

Gij′
t x̄j

′
t − μ

j′ i
t Fj′

t

2Tj′
t

dt

)]2

4

(
∑

j′
dt

4Tj′
t

(μ
j′i
t )2 + Gii

t
2

)

⎤

⎥
⎥
⎥
⎦

. (8.16)
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From Eqs. (8.14)–(8.16), we obtain the analytical expression of the transfer
entropy dI trt up to the order of dt as

dI trt := 〈ln p(x−i
t+dt |xt) + ln p(x−i

t ) − ln p(x−i
t+dt, x

−i
t )〉

= lnN −
∑

j′

dt

4Tj′
t

〈(
Fj′
t − μ

j′i
t x̄it

)2
〉

− 1

2
ln
[
(2π)nsys−1(det �̃t)

]
−
∑

i′j′

1

2
〈x̄i′t G̃i′j′

t x̄j
′
t 〉

− lnN + 1

2
ln[(2π)nsys (det�t)] +

∑

j′

dt

4Tj′
t

〈(Fj′
t )2〉 +

∑

i′j′

1

2
〈x̄i′t Gi′j′

t x̄j
′
t 〉

− 1

2
ln π + 1

2
ln

⎛

⎝
∑

j′

dt

4Tj′
t

(μ
j′i
t )2 + Gii

t

2

⎞

⎠ −

〈[
∑

j′

(

Gij′
t x̄j

′
t − μ

j′ i
t Fj′

t

2Tj′
t

dt

)]2
〉

4

(
∑

j′
dt

4Tj′
t

(μ
j′i
t )2 + Gii

t
2

)

=
∑

j′

(μ
j′i
t )2dt

4Gii
t T j′ −

∑

j′

dt

4Tj′
t

(μ
j′i
t )2�ii

t +
∑

j′

μj′idt

2Tj′
t

〈Fj′
t x̄

i
t〉 −

∑

i′

δi′i′

2

+
∑

i′j′

δi′i′ − Gi′i
t �ii′

t

2
+
∑

i′

Gi′i
t �ii′

t

2

⎛

⎝1 −
∑

j′

dt

2Gii
t T

j′
t

(μ
j′i
t )2

⎞

⎠

+
∑

i′j′

μ
j′i
t dt

2Gii
t T

j′
t

Gii′
t 〈Fj′

t x̄
i′
t 〉 −

∑

j′

(μ
j′i
t )2dt

4Gii
t T

j′
t

+ O(dt2)

=
∑

j′

μj′idt

2Tj′
t

〈Fj′
t x̄

i
t〉 +

∑

i′j′

μ
j′i
t dt

2Gii
t T

j′
t

Gii′
t 〈Fj′

t x̄
i′
t 〉 −

∑

j′

(μ
j′i
t )2dt

4Gii
t T

j′
t

+ O(dt2)

=
∑

j′

(μ
j′i
t )2

4Tj′
t

det�t

det �̃t
dt + O(dt2)

= 1

2
ln

⎛

⎝1 +
∑

j′

dPj′
t

Nj′
t

⎞

⎠+ O(dt2), (8.17)

where we define dPj′
t := [(μj′i

t )2 det�tdt]/(det �̃t), and Nj′
t := 2Tj′

t , In this
calculation, we used Gii

t = (det �̃t)/(det�t),
∑

j′ �=i G
i′j′
t �

j′l′
t = δi′l′ − Gi′i

t �il′
t ,

〈Fj′
t x̄

i′
t 〉 = μ

j′i
t �ii′

t and 〈(Fj′
t )2〉dt2 = 2Tj′dt + O(dt2).

8.1.3 Relative Entropy and Integral Fluctuation Theorem
for Small Subsystem

We show the integrated fluctuation theorems for a small subsystem which gives
Eq. (8.10). Due to the detailed fluctuation theorem, �skbath is given by the ratio of the
forward path probability and backward path probability such as
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�skbath := ln
p(xik+1|xik, x−i

k )

pB(xik|xik+1, x
−i
k+1)

, (8.18)

where pB is the backward path probability. Here we assume that the time interval
between k and k + 1 is infinitesimal. The conditional entropy production is given as

σi|−i = ln

[
p(xi1|x−i

1 )

p(xiN |x−i
N )

N−1∏

k=1

p(xik+1|xik, x−i
k )

pB(xik|xik+1, x
−i
k+1)

]

(8.19)

Let itrk be the stochastic transfer entropy defined as itrk := i(xik : x−i
k+1|x−i

k ), and iBtrk be
the stochastic backward transfer entropy defined as iBtrk := i(xik+1 : x−i

k |x−i
k+1). From

Eqs. (8.1) and (8.18), we have

σi|−i −
N−1∑

k=1

iBtrk +
N−1∑

k=1

itrk

= ln

[
p(xi1|x−i

1 )

p(xiN |x−i
N )

N−1∏

k=1

p(xik+1|xik, x−i
k )

pB(xik|xik+1, x
−i
k+1)

p(x−i
k+1|xik, x−i

k )

p(x−i
k+1|x−i

k )

p(x−i
k |x−i

k+1)

p(x−i
k |xik+1, x

−i
k+1)

]

= ln

[
p(xi1, x

−i
1 )

p(xiN , x−i
N )

N−1∏

k=1

p(xik+1|xik, x−i
k )

pB(xik|xik+1, x
−i
k+1)

p(x−i
k+1|xik, x−i

k )

p(x−i
k |xik+1, x

−i
k+1)

]

= dKL(p(X
i,X−i)||pB(Xi,X−i)), (8.20)

pB(X
i,X−i) := p(xiN , x−i

N )

N−1∏

k=1

pB(x
i
k|xik+1, x

−i
k+1)p(x

−i
k |xik+1, x

−i
k+1), (8.21)

where we used the Bayes rule p(x−i
k+1|x−i

k )p(x−i
k ) = p(x−i

k |x−i
k+1)p(x

−i
k ).

pB(Xi,X−i) satisfies the normalization of the probability such as

∑

Xi,X−i

pB(X
i,X−i)

:=
∑

{Xi,X−i}\{xi1,x−i
1 }

p(xiN , x−i
N )

N−1∏

k=2

pB(x
i
k|xik+1, x

−i
k+1)p(x

−i
k |xik+1, x

−i
k+1)

= · · ·
=

∑

{xiN ,x−i
N }

p(xiN , x−i
N )

= 1. (8.22)
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From the nonnegativity of the stochastic relative entropy, we have Eq. (8.10):

〈σi|−i〉 −
N−1∑

k=1

IBtrk +
N−1∑

k=1

I trk ≥ 0, (8.23)

with equality if and only if p(Xi,X−i) = pB(Xi,X−i). The property p(Xi,X−i) =
pB(Xi,X−i) means that the local reversibility of a small subsystem Xi under the
condition of the outside worlds X−i. From the identity Eq. (3.28), we can also prove
the integrated fluctuation theorems corresponding to Eq. (8.10) as

〈

exp

[

−σi|−i +
N−1∑

k=1

iBtrk −
N−1∑

k=1

itrk

]〉

= 1. (8.24)

We also show the integrated fluctuation theorem for a small subsystem which
gives the weaker inequality 〈σi|−i〉 ≥ −∑N−1

k=1 I trk . σ
i|−i + ∑N−1

k=1 itrk can be rewritten
by the stochastic relative entropy as

σi|−i +
N−1∑

k=1

itrk

= ln

[
p(xi1|x−i

1 )

p(xiN |x−i
N )

N−1∏

k=1

p(xik+1|xik, x−i
k )

pB(xik|xik+1, x
−i
k+1)

p(x−i
k+1|xik, x−i

k )

p(x−i
k+1|x−i

k )

]

= dKL(p(X
i,X−i)||p′

B(X
i,X−i)), (8.25)

p′
B(X

i,X−i)) := p(xiN |x−i
N )p(x−i

1 )

N−1∏

k=1

pB(x
i
k|xik+1, x

−i
k+1)p(x

−i
k+1|x−i

k ), (8.26)

where p′
B(X

i,X−i) satisfies the normalization of the probability as

∑

Xi,X−i

p′
B(X

i,X−i) :=
∑

X−i

p(x−i
1 )

N−1∏

k=1

p(x−i
k+1|x−i

k )

= 1. (8.27)

From the nonnegativity of the relative entropy and the identity Eq. (3.28), we have

〈σi|−i〉 ≥ −
N−1∑

k=1

I trk , (8.28)

http://dx.doi.org/10.1007/978-981-10-1664-6_3
http://dx.doi.org/10.1007/978-981-10-1664-6_3
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〈

exp

[

−σi|−i −
N−1∑

k=1

itrk

]〉

= 1. (8.29)

8.1.4 Stochastic Energetics for Small Subsystem

From the energetic point of view,we can consider Eq. (8.11) as a relationship between
work and free energy for a small subsystem Xi under the condition of other systems
X−i. We here consider the particular case in which the temperature of each heat bath
is uniform Ti = 2/β and the initial state and final state are set in equilibrium. The
probability distribution in initial and final state is given by

peq(x
i, x−i) = Z−1 exp[−β(HS(x

i) + HE(x−i) + HI(x
i, x−i))], (8.30)

where HS(xi) is the Hamiltonian of the target system Xi, HE(x−i) is the Hamiltonian
of the other systems X−i, HI(xi, x−i) is the interaction Hamiltonian between them,
and Z is the partition function:

Z =
∫

dx−idxi exp[−β(HS(x
i) + HE(x−i) + HI(x

i, x−i))]. (8.31)

The conditional probability in initial and final state peq(xi|x−i) is given by

peq(x
i|x−i) = peq(x−i)/

[∫

dxipeq(x
i, x−i)

]

= [Zi(x−i)]−1 exp[−βHeff(x
i|x−i)], (8.32)

where we define the effective Hamiltonian in the system i as Heff(xi|x−i) :=
HS(xi)+HI(xi, x−i).Zi(x−i) is the partition function for the systemXi with fixedX−i:
Zi(x−i) = ∫

dxi exp[−βHeff(xi|x−i)]. Let effective free-energy be �Feff(x−i) :=
−β−1 ln Zi(x−i(τ )) + β−1 ln Zi(x−i(0)). We define the effective work as
Weff(xi|x−i) := ∑

k �skbath + Heff(xi(τ )|x−i(τ )) − Heff(xi(0)|x−i(0)).
Then Eq. (8.10) can be replaced by

β(〈Weff(x
i|x−i)〉 − 〈�Feff(x−i)〉) ≥

∫ τ

0
dt
dIBtrt

dt
−
∫ τ

0
dt
dI trt
dt

(8.33)

≥ −
∫ τ

0
dt
dI trt
dt

. (8.34)

If the other systems X−i are completely separated from the subsystem Xi, we have
HI(xi, x−i) = 0,

∫ τ

0 dt[dIBtrt /dt] = 0 and
∫ τ

0 dt[dI trt /dt] = 0. The definitions of
the free energy and the work become the conventional ones which do not depend
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on the outside worlds X−i. Thus we can reproduce the conventional second law of
thermodynamics, i.e., β(〈W 〉 − �F) ≥ 0 from Eq. (8.33).

8.2 Further Generalizations

We here discuss other expressions of information thermodynamic inequality, which
are consistent with Eq. (8.10). We also show a generalization of information thermo-
dynamics on causal networks, and importance of the backward transfer entropy.

8.2.1 Generalization for Fokker–Planck Equation

We here consider the following Langevin equation:

ẋi(t) = f i(x1(t), . . . , xnsys(t)) + ξi(t),

〈ξi(t)ξj(t′)〉 = 2Ti
t δijδ(t − t′),

〈ξi(t)〉 = 0,

(8.35)

with i = 1, . . . , nsys, and the Fokker–Planck equation corresponding to the Langevin
equation (8.35):

∂tp(x
i, x−i, t) = −

∑

i

∂xi j
xi(xi, x−i, t), (8.36)

jx
i
(xi, x−i, t) :=f i(xi(t), x−i(t))p(xi, x−i, t) − Ti∂xip(x

i, x−i, t), (8.37)

where x−i := {x1, . . . , xi−1, xi+1, . . . , xnsys} denotes the dynamical variables of the
other systems X−i. The mean local velocity for a small subsystem Xi is defined as

νxi(xi, x−i, t) := jx
i
(xi, x−i, t)

p(xi, x−i, t)

= f i(xi(t), x−i(t)) − Ti∂xi ln p(x
i, x−i, t). (8.38)

This mean local velocity gives the ensemble average of ẋi under the condition of
(xi, x−i, t) [2]. We here introduce a key quantity ṡx

i
(xi, x−i, t) defined as

ṡx
i
(xi, x−i, t) := ẋi(t)νxi(xi, x−i, t)

Ti

= 1

Ti
ẋi(t)f i(xi, x−i, t) − ẋi(t)∂xi ln p(x

i, x−i, t)

= σxi − ẋi(t)∂xi i(x
i : x−i; t), (8.39)
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where σxi is the entropy production defined as

σxi := 1

Ti
ẋi(t)f i(xi, x−i, t) − ẋi(t)∂xi ln p(x

i, t), (8.40)

and i(xi : x−i; t) is the stochastic mutual information defined as

i(xi : x−i; t) := ln
p(xi, x−i, t)

p(x−i, t)p(xi, t)
. (8.41)

We here show that the ensemble average of a key quantity ṡx
i
(xi, x−i, t) is non-

negative,

〈
ṡx

i
(xi, x−i, t)

〉
=
〈
ẋi(t)νxi(xi, x−i, t)

Ti

〉

=
〈

[νxi(xi, x−i, t)]2
Ti

〉

=
∫

dxidx−i [jxi(xi, x−i, t)]2
Tip(xi, x−i, t)

≥ 0, (8.42)

with equality if and only if jx
i
(xi, x−i, t) = 0. Thus we have an information thermo-

dynamic inequality

〈σxi〉 ≥ 〈ẋi(t)∂xi i(x
i : x−i; t)〉. (8.43)

The inequality equivalent to Eq. (8.43) have been derived in several papers [3–6].
This information thermodynamic inequality Eq. (8.43) corresponds to Eq. (8.8) in
the infinitesimal time-interval limit:

S(xik+1) − S(xik) + 〈�skbath〉 ≥ I(xik : {x−i
k , x−i

k+1}) − I(xik+1 : {x−i
k , x−i

k+1}). (8.44)

Using the Fokker–Planck expression Eq. (8.42), we here discuss a relationship
between the conventional second law and information thermodynamic inequality.
The sum of the ensemble averages of key quantities gives

∑

i

〈ṡxi(xi, x−i, t)〉 =
∑

i

1

Ti
〈ẋi(t)f i(xi, x−i, t)〉 − d

dt
〈ln p(xi, x−i, t)〉, (8.45)

where we used [d/dt] ln p(xi, x−i, t) = ∑
i ẋ

i(t)∂xi ln p(xi, x−i, t). Thus, the sum of
the ensemble averages of key quantities is equal to the ensemble average of the total
entropy production. The second law of thermodynamics is given by
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∑

i

〈ṡxi(xi, x−i, t)〉 ≥ 0, (8.46)

with equality if and only if jx
i
(xi, x−i, t) = 0 for all i. The second law of thermo-

dynamics always gives a weaker bound of the entropy production 〈σxi〉 compared to
the information thermodynamics, i.e.,

〈σxi〉 ≥ 〈ẋi(t)∂xi i(x
i : x−i; t)〉 (8.47)

≥ 〈ẋi(t)∂xi i(x
i : x−i; t)〉 −

∑

j �=i

〈ṡxj (xj, x−j, t)〉, (8.48)

where Eqs. (8.47) and (8.48) correspond to information thermodynamics and the
conventional thermodynamics, respectively.

We stress that the term 〈ẋi(t)∂xi i(xi : x−i; t)〉 includes the contributions of both the
transfer entropy and the backward transfer entropy in Eq. (8.8). If we did not consider
the backward transfer entropy (e.g., Chap. 7), the bound of the entropy production
〈σxi〉 given by the transfer entropy would not be always tighter than the bound given
by the second law of thermodynamics.

8.2.2 Backward Transfer Entropy and Final Correlation

We here discuss the importance of the backward transfer entropy in the study of
information thermodynamics on causal networks. We first consider the following
dynamics

p(Xi,X−i) = p(xi1, x
−i
1 )

N−1∏

k=1

p(xik+1|xik, x−i
k )p(x−i

k+1|xik, x−i
k ). (8.49)

We can consider a causal network for Eq. (8.49) (see Fig. 8.2). This causal network
shows multi-time steps of the Markovian dynamics from time 1 to time N . By the
discussion in Chap.6, the entropy production for a small subsystem Xi is bounded
by the information quantity �, which is given by the graph Fig. 8.2 as

� := ifin − iini −
N∑

l=1

iltr, (8.50)

iini = i(x1 : pa(x1))
= i(xi1 : x−i

1 ), (8.51)

http://dx.doi.org/10.1007/978-981-10-1664-6_7
http://dx.doi.org/10.1007/978-981-10-1664-6_6
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Fig. 8.2 A causal network
corresponding to Eq. (8.49)

i1tr = i(c1 : paX(c1))

= 0, (8.52)

iltr = i(cl : paX(cl)|cl) [2 ≤ l ≤ N]
= i(xil−1 : x−i

l |x−i
l−1, . . . , x

−i
1 ), (8.53)

ifin = i(xN : C ′)

= i(xiN : {x−i
N , . . . , x−i

1 }), (8.54)

where we set X = {x1 = xi1, . . . , xN = xiN }, C = C ′ = {c1 = x−i
1 , . . . , cN = x−i

N },
pa(xi1) = x−i

1 , paX(x−i
1 ) = ∅, and paX(x−i

l ) = xil−1 with 2 ≤ l ≤ N . Thus, the
information thermodynamic inequality Eq. (6.30) gives

〈σ〉 ≥ 〈�〉

= I(xiN : {x−i
N , . . . , x−i

1 }) − I(xi1 : x−i
1 ) −

N∑

l=2

I(xil−1 : x−i
l |x−i

l−1, . . . , x
−i
1 )

= I(xiN : x−i
N ) − I(xi1 : x−i

1 )

+
N∑

l=2

I(xiN : x−i
l−1|x−i

l , . . . , x−i
N ) −

N∑

l=2

I(xil−1 : x−i
l |x−i

l−1, . . . , x
−i
1 ). (8.55)

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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On the other hand, the causal network for the single time step [see Fig. 8.1] gives
another information thermodynamic inequality which corresponds to Eq. (8.10):

〈σ〉 ≥ I(xiN : x−i
N ) − I(xi1 : x−i

1 ) +
N∑

l=2

I(xil : x−i
l−1|x−i

l ) −
N∑

l=2

I(xil−1 : x−i
l |x−i

l−1)

= I(xiN : x−i
N ) − I(xi1 : x−i

1 )

+
N∑

l=2

I(xil : x−i
l−1|x−i

l , . . . , x−i
N ) −

N∑

l=2

I(xil−1 : x−i
l |x−i

l−1, . . . , x
−i
1 ), (8.56)

where we used p(x−i
l |xil−1, x

−i
l−1) = p(x−i

l |xil−1, x
−i
l−1, . . . , x

−i
1 ) and p(x−i

l−1|xil, x−i
l ) =

p(x−i
l−1|xil, x−i

l , . . . , x−i
N ).

Here we have the following conditional Markov property:

p(xiN , xil, x
−i
l−1|x−i

l , . . . , x−i
N )

= p(x−i
l−1|x−i

l , . . . , x−i
N )p(xil |x−i

l−1, x
−i
l , . . . , x−i

N )p(xiN |xil, x−i
l , . . . , x−i

N ). (8.57)

Then we have I(xiN : x−i
l−1|xil, x−i

l , . . . , x−i
N ) = 0 and the following data processing

inequality:

I(xiN : x−i
l−1|x−i

l , . . . , x−i
N ) ≤ I(xil : x−i

l−1|x−i
l , . . . , x−i

N ) + I(xiN : x−i
l−1|xil , x−i

l , . . . , x−i
N )

= I(xil : x−i
l−1|x−i

l , . . . , x−i
N ). (8.58)

Thus the difference between two information bounds is nonnegative, and we have

〈σ〉 ≥ I(xiN : x−i
N ) − I(xi1 : x−i

1 ) +
N∑

l=2

I(xil : x−i
l−1|x−i

l ) −
N∑

l=2

I(xil−1 : x−i
l |x−i

l−1)

≥ I(xiN : {x−i
N , . . . , x−i

1 }) − I(xi1 : x−i
1 ) −

N∑

l=2

I(xil−1 : x−i
l |x−i

l−1, . . . , x
−i
1 ).

(8.59)

This calculation indicates that the sumof information thermodynamic inequalities for
the single time step [e.g., Eq. (8.56)] gives a tighter bound of the entropy production
rather than the multi-time steps (e.g., Eq. (8.55)). This fact suggests a possibility of
further generalization of information thermodynamics on causal networks using the
backward transfer entropy instead of the final correlation Ifin.
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8.2.3 Further Generalization: Information Thermodynamics
on Causal Networks Including Backward Transfer
Entropy

Wehere consider the replacement of the final correlation Ifin by the backward transfer
entropy in the study of information thermodynamics on causal networks in Chap.6.
LetN ′′ be the number of elements ofC ′ [i.e.,C ′ = {c1, . . . , cN ′′ }]. The final correlation
is calculated as

Ifin = I(xN : C ′)

= I(xN : cN ′′) +
N ′′−1∑

l=1

I(xN : cl|cl+1, . . . , cN ′′). (8.60)

We here define the set of children of cl, ch(cl) := {ak|cl ∈ pa(ak)}. Let chX(cl) be
the intersection of X and ch(cl), i.e., chX(cl) := ch(cl) ∩ X. Here we define the set
Dl as

Dl :=
l⋃

l′=1

chX(cl′). (8.61)

Because Dl is the subset of X [i.e., Dl ⊆ X], we can uniquely define

xsup(cl) := xk, (8.62)

which satisfies k ≥ k′ for all xk′ ∈ Dl. In the case of Dl = ∅, xsup(cl) is given by
xsup(cl) := ∅. The variable xsup(cl) denotes the latest state of X, where the history of
the other systems {c1, . . . , cl} can affect as a child.

Here we have the following conditional Markov properties:

p(cl, xsup(cl), xN |cl+1, . . . , cN ′′)

= p(cl|cl+1, . . . , cN ′′)p(xsup(cl)|cl, cl+1, . . . , cN ′′)p(xN |xsup(cl), cl+1, . . . , cN ′′),

(8.63)

and

p(cN ′′ , xsup(cN ′′), xN )

= p(cN ′′)p(xsup(cN ′′)|(cN ′′))p(xN |xsup(cN ′′)). (8.64)

Then we have I(cl : xN |xsup(cl), cl+1, . . . , cN ′′) = 0, I(cN ′′ : xN |xsup(cN ′′)) = 0
and the following data processing inequalities:

I(xN : cl|cl+1, . . . , cN ′′) ≤ I(xsup(cl) : cl|cl+1, . . . , cN ′′), (8.65)

I(xN : cN ′′) ≤ I(xsup(cN ′′) : cN ′′). (8.66)

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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We define the backward transfer entropy on causal network as

I lBtr := I(xsup(cl) : cl|cl+1, . . . , cN ′′), (8.67)

IN
′′

Btr := I(xsup(cN ′′) : cN ′′), (8.68)

with 1 ≤ l ≤ N ′′ − 1. From the data processing inequalities (8.66), the finial corre-
lation Ifin is smaller than the sum of the backward transfer entropy I lBtr,

Ifin ≤
N ′′
∑

l=1

I lBtr, (8.69)

with equality if xsup(cl) = xN for all l.

We here show that new informational quantity
∑N ′′

l=1 I
l
Btr − Iini −∑N ′′

l=1 I
l
tr gives a

lower bound of the ensemble average of the entropy production 〈σ〉. Let ilBtr be the
stochastic backward transfer entropy on causal network defined as

ilBtr := i(xsup(cl) : cl|cl+1, . . . , cN ′′), (8.70)

iN
′′

Btr := i(xsup(cN ′′) : cN ′′), (8.71)

with 1 ≤ l ≤ N ′′ − 1. We define an informational quantity �′ corresponding to
∑N ′′

l=1 I
l
Btr − Iini − ∑N ′′

l=1 I
l
tr as

�′ :=
N ′′
∑

l=1

ilBtr − iini −
N ′′
∑

l=1

iltr. (8.72)

We show that the difference between the entropy production and the informational
quantity σ − �′ can also be rewritten as the stochastic relative entropy:

σ − �′

= ln

[
p(x1)

p(xN )

N−1∏

k=1

p(xk+1|xk,Bk+1)

pB(xk|xk+1,Bk+1)

]

+ ln
p(x1|pa(x1))

p(x1)
− ln

p(cN ′′ |xsup(cl))
p(cN ′′)

−
N ′′−1∑

l=1

ln
p(cl|xsup(cl), cl+1, . . . , cN ′′)

p(cl|cl+1, . . . , cN ′′)
+

∑

l|cl∈C′
ln

p(cl|pa(cl))
p(cl|cl−1, . . . , c1)

= ln

⎡

⎣
N∏

k=1

p(xk|pa(xk))
∏

l|cl∈C′
p(cl|pa(cl))

⎤

⎦

− ln

[
N−1∏

k=1

pB(xk|xk+1,Bk+1)p(xN )

N ′′
∏

l=1

p(cl|xsup(cl), cl+1, . . . , cN ′′)

]

= dKL(p(V)||p′
B(V)), (8.73)
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where p(cl|xsup(cl), cl+1, . . . , cN ′′)
∣
∣
l=N ′′ = p(cl|xsup(cl)), and we define the new

backward path probability p′
B(V) as

p′
B(V)

:=
N−1∏

k=1

pB(xk |xk+1,Bk+1)p(xN )

N ′′
∏

l=1

p(cl|xsup(cl), cl+1, . . . , cN ′′ )
∏

l′ |cl′ /∈C′
p(cl′ |pa(cl′ )).

(8.74)

We here define the set C ′(xk) as C ′(xk) := {cl ∈ C ′|xsup(cl) = xk}. We have C ′(xk) ∩
Bk+1 = ∅. Thus the backward path probability satisfies the normalization of the
probability as

∑

V
p′
B(V)

=
∑

X,C′

⎡

⎣
N−1∏

k=1

pB(xk |xk+1,Bk+1)p(xN )
∏

cl∈C′
p(cl|xsup(cl), cl+1, . . . , cN ′′ )

⎤

⎦

=
∑

X,{C′\C′(x1)}

⎡

⎣
N−1∏

k=1

pB(xk |xk+1,Bk+1)p(xN )
∏

{cl∈C′,cl /∈C′(x1)}
p(cl|xsup(cl), cl+1, . . . , cN ′′ )

⎤

⎦

=
∑

{X\x1},{C\C′(x1)}

⎡

⎣
N−1∏

k=2

pB(xk |xk+1,Bk+1)p(xN )
∏

{cl∈C′,cl /∈C′(x1)}
p(cl|xsup(cl), cl+1, . . . , cN ′′ )

⎤

⎦

= · · ·

=
∑

xN ,{cl∈C′(xN )}

⎡

⎣p(xN )
∏

{cl∈C′(xN )}
p(cl|xsup(cl), cl+1, . . . , cN ′′ )

⎤

⎦

=
∑

xN

p(xN )

= 1. (8.75)

This new backward path probability p′
B(V) indicates that we consider the backward

path probability only for the target system X (i.e., pB(xk|xk+1,Bk+1)) under the con-
dition of other system C (i.e.,

∏
{cl∈C′(xk)} p(cl|xsup(cl), cl+1, . . . , cN ′′)) “for each time

step k”, where the probability distribution of C is given by the distribution of the
forward process p(V). This new backward path probability p′

B(V) is given by mul-
tiplication of conditional probabilities for each time step k, while pB(V) in Chap.6
(i.e., Eq. (6.27)) is given by the backward path probability for a whole time evolution
from x1 to xN .

From the identityEq. (3.28) and the nonnegativity of the stochastic relative entropy
DKL(p(V)||p′

B(V)) ≥ 0, we have the generalizations of the integral fluctuation theo-
rem and the second law of thermodynamics,

〈exp[−σ + �′]〉 = 1, (8.76)

http://dx.doi.org/10.1007/978-981-10-1664-6_6
http://dx.doi.org/10.1007/978-981-10-1664-6_3
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〈σ〉 ≥
N ′′
∑

l=1

I lBtr − Iini −
N ′′
∑

l=1

I ltr (8.77)

≥ Ifin − Iini −
N ′′
∑

l=1

I ltr, (8.78)

where we used Eq. (8.69).

8.2.4 Examples of Generalized Second Law Including
Backward Transfer Entropy

Finally, we apply this generalization Eq. (8.77) to the causal networks corresponding
to multi-time steps of the Markovian dynamics Eq. (8.49), and the complex dynam-
ics in multiple fluctuating systems discussed in Chap.6 previously. The backward
transfer entropy gives tighter bounds of the entropy production for these two causal
networks.

8.2.4.1 Example 1: Mulit-time Steps of the Markovian Dynamics

We here consider the causal networks in Fig. 8.3, which represents the multi-time
steps of the Markovian dynamics from time 1 to N . The information quantity �′ is
calculated as

Fig. 8.3 Example of the
backward transfer entropy on
causal network
corresponding to Eq. (8.49)

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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�′ :=
N∑

l=1

ilBtr − iini −
N∑

l=1

iltr, (8.79)

iini = i(x1 : pa(x1))
= i(xi1 : x−i

1 ), (8.80)

i1tr = i(c1 : paX(c1))

= 0, (8.81)

iltr = i(cl : paX(cl)|cl) [2 ≤ l ≤ N]
= i(xil−1 : x−i

l |x−i
l−1, . . . , x

−i
1 ), (8.82)

ilBtr = i(xsup(cl) : cl|cl+1, . . . , cN ′′) [1 ≤ l ≤ N − 1]
= i(xil+1 : x−i

l |x−i
l+1, . . . , x

−i
N ), (8.83)

iNBtr = i(xsup(cN ) : cN )

= i(xiN : x−i
N ), (8.84)

where we set X = {x1 = xi1, . . . , xN = xiN }, C = C ′ = {c1 = x−i
1 , . . . , cN = x−i

N },
pa(xi1) = x−i

1 , paX(x−i
1 ) = ∅, paX(x−i

l ) = xil−1 with 2 ≤ l ≤ N , xsup(x
−i
l ) = xil+1

with 1 ≤ l ≤ N − 1, and xsup(x
−i
N ) = xiN . Thus, the information thermodynamic

inequality including the backward transfer entropy Eq. (8.77) gives the following
inequality, which is equivalent to Eq. (8.56):

〈σ〉 ≥ 〈�′〉
= I(xiN : x−i

N ) − I(xi1 : x−i
1 )

+
N∑

l=2

I(xil : x−i
l−1|x−i

l , . . . , x−i
N ) −

N∑

l=2

I(xil−1 : x−i
l |x−i

l−1, . . . , x
−i
1 ). (8.85)

8.2.4.2 Example 2: Complex Dynamics

We next consider the causal networks in Fig. 8.4 which represents the complex
dynamics in multiple fluctuating systems. The information quantity �′ is calculated
as

�′ :=
N∑

l=1

ilBtr − iini −
N∑

l=1

iltr, (8.86)
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Fig. 8.4 Example of the
backward transfer entropy on
causal network of the
complex dynamics

iini = i(x1 : pa(x1))
= i(x1 : y1), (8.87)

i1tr = i(c1 : paX(c1))

= 0, (8.88)

i2tr = i(c2 : paX(c2)|c1)
= 0, (8.89)

i3tr = i(c3 : paX(c3)|c2, c1)
= i(z2 : x1|z1, y1), (8.90)

i4tr = i(c4 : paX(c4)|c3, c2, c1)
= i(y2 : x2|y1, z1, z2), (8.91)

i1Btr = i(xsup(c1) : c1|c2, c3, c4)
= i(x1 : y1|z1, z2, y2), (8.92)

i2Btr = i(xsup(c2) : c2|c3, c4)
= i(x2 : z1|z2, y2), (8.93)

i3Btr = i(xsup(c3) : c3|c4)
= i(x2 : z2|y2), (8.94)

i4Btr = i(xsup(c4) : c4)
= i(x3 : y2), (8.95)
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where we set X = {x1, x2, x3}, C = {c1 = y1, c2 = z1, c3 = z2, c4 = y2, c5 =
z3}, C ′ = {c1, . . . , c4}, pa(x1) = y1, paX(y1) = ∅, paX(z1) = ∅, paX(z2) = x1,
paX(y2) = x2, xsup(y1) = x1, xsup(z1) = x2, xsup(z2) = x2, and xsup(y2) = x3. Thus,
the information thermodynamic inequality including the backward transfer entropy
Eq. (8.77) gives the following inequality:

〈σ〉 ≥ 〈�′〉
= I(xsup(c4) : c4) + I(x2 : z2|y2) + I(x2 : z1|z2, y2) + I(x1 : y1|z1, z2, y2)

− I(x1 : y1) − I(z2 : x1|z1, y1) − I(y2 : x2|y1, z1, z2). (8.96)
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Chapter 9
Further Applications of Information
Thermodynamics on Causal Networks

Abstract This chapter presents further applications of the information-
thermodynamic theory introduced in Chap.6. We discuss its applications to the
steady-state thermodynamics and the feedback cooling.We show that the generaliza-
tion of the second law of thermodynamics with information flow can be generalized
for the steady-state thermodynamics and the feedback cooling. We also discuss the
relationship between our result and the third law of thermodynamics in the model of
the feedback cooling.

Keywords Stochastic thermodynamics · Information thermodynamics · Steady
state thermodynamics

In this chapter, we show several applications of information thermodynamics on
causal networks such as the steady-state thermodynamics (see also Sects. 3.2.1 and
3.2.2) and the feedback cooling (see also Sect. 3.2.3).We first discuss an applications
to the steady-state thermodynamics for coupled Langevin equations. The definition
of the entropy production on causal network Eq. (6.7) is given by the ratio of the
forward path probability and backward path probability. To replace the definition
of the backward path probability, i.e., pB(xk |xk+1,Bk+1), with the (backward) path
probability of the dual dynamics Eq. (3.47) (Eq. (3.51)) as in the steady-state thermo-
dynamics,we can easily show the relationship between the housekeeping heat (excess
heat) and information. We next discuss an application to the feedback cooling. By
applying our main result (6.30) to the coupled underdamped Langevin equation, we
discuss the cooling bound and the third law of thermodynamics from a view point of
information flow. Our discussion based on the information thermodynamic inequal-
ity is different from the discussion of the paper given by K.H. Kim and H. Qian [1]
(i.e., Eq. (3.60)).
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9.1 Steady State Information Thermodynamics

Here,wegeneralize the steady-state thermodynamics in termsof information transfer.
We consider the following two dimensional Langevin system:

γx ẋ(t) = f xex(x, y,λ(t)) − ∂xU (x, y,λ(t)) + ξxt ,

γy ẏ(t) = f yex(x, y,λ(t)) − ∂yU (x, y,λ(t)) + ξ
y
t ,

〈ξx (t)〉 = 0,

〈ξx (t)ξx ′
(t ′)〉 = 2γx T

xδxx ′δ(t − t ′),

(9.1)

where f xex ( f
y
ex) is an external nonconservative force, andλ(t) is the control parameter.

We here define the nonequilibrium potential φ(x, y,λ) as

φ(x, y,λ) = − ln pss(x, y;λ), (9.2)

where pss(x, y;λ) is the steady-state distribution corresponding to a control para-
meter λ. The mean local velocity of the nonequilibrium steady state in X is defined
as

γxv
x
ss(x, y,λ) = f xex(x, y,λ) − ∂xU (x, y,λ) + T x∂xφ(x, y,λ). (9.3)

We consider the path x = {x1, . . . , xN }, where xk := x(kdt), yk := y(kdt) andλk :=
λ(kdt) with an infinitesimal time interval dt . The conditional probability of the
Langevin dynamics Eq. (3.33) is given by

p(xk+1|xk, yk) = Nx exp

[

−
(
γx xk+1 − γx xk − f xtot(xk, yk,λk)dt

)2

4γx T xdt

]

. (9.4)

where f xtot(x, y,λ) := f xex(x, y,λ) − ∂xU (x, y,λ)denotes the total force in X . Here,
we introduce the dual dynamics in X . The conditional probability of the dual dynam-
ics pD(xk+1|xk, yk) is given by

pD(xk+1|xk, yk)

= Nx exp

[

−
(
γx xk+1 − γx xk − f xtot(xk, yk,λk)dt + 2γxv

x
ss(xk, yk,λk)dt

)2

4γx T xdt

]

.

(9.5)

Up to the order o(dt), the stochastic relative entropy dKL(p(xk+1, xk, yk)
||pD(xk+1, xk, yk)) is calculated as

http://dx.doi.org/10.1007/978-981-10-1664-6_3
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dKL(p(xk+1, xk, yk)||pD(xk+1, xk, yk))

= 1

T x
(xk+1 − xk)

γxv
x
ss(xk, yk,λk) + γxv

x
ss(xk+1, yk+1λk+1)

2

= 1

T x
Qx

hk(kdt), (9.6)

where the housekeeping heat Qx
hk(t) in X at time t is defined as

Qx
hk(t) := [ẋ(t) ◦ γxv

x
ss(x(t), y(t),λ(t))]dt. (9.7)

From the nonnegativity of the relative entropy DKL(p(xk+1, xk, yk)||pD
(xk+1, xk, yk)) ≥ 0, we have

〈Qx
hk(t)〉 ≥ 0. (9.8)

This housekeeping heat inequality is a generalization of the information thermody-
namic inequality for two-dimensional Langevin system, because Eq. (9.8) is equiv-
alent to the information thermodynamic inequality Eq. (8.44) if we replace the
steady state distribution pss(x, y,λ) by the conventional probability distribution
p(x(t), y(t)).

We can also derive another generalization of the information thermodynamics for
a steady state. The backward probability of the dual dynamics pBD(xk |xk+1, yk) is
given by

pBD(xk |xk+1, yk+1)

= Nx exp

[

−
(
γx (xk − xk+1) + f xtot(xk+1, yk+1,λk+1)dt + 2T x∂xφ(xk+1, yk+1,λk+1)dt

)2

4γx T xdt

]

.

(9.9)

We here define pBD(xk, xk+1, yk, yk+1) as

pBD(xk, xk+1, yk, yk+1) := pBD(xk |xk+1, yk+1)p(xk+1, yk, yk+1). (9.10)

Up to the order o(dt), the stochastic relative entropy between p and pBD is
calculated as

dKL(p(xk, xk+1, yk, yk+1)||pBD(xk, xk+1, yk, yk+1))

= ln p(xk) − ln p(xk+1) + (xk+1 − xk)
∂xφ(xk, yk,λk) + ∂xφ(xk+1, yk+1,λk+1)

2
+ i(xk : {yk, yk+1}) − i(xk+1 : {yk, yk+1})

= ln p(xk) − ln p(xk+1) + 1

T x
Qx

ex(kdt) + i(xk : {yk, yk+1}) − i(xk+1 : {yk, yk+1}),
(9.11)

http://dx.doi.org/10.1007/978-981-10-1664-6_8
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where Qx
ex(t) is the excess heat in X at time t defined as

Qx
ex(t) := − dt

T x
ẋ(t) ◦ ∂xφ(x(t).y(t),λ(t)). (9.12)

From the nonnegativity of the relative entropy, we have another generalization of the
steady state thermodynamics with information

�sx + 1

T x
〈Qx

ex(kdt)〉 ≥ I (xk+1 : {yk, yk+1}) − I (xk : {yk, yk+1}), (9.13)

where theShannonentropydifference is defined as�sx := 〈ln p(xk)〉 − 〈ln p(xk+1)〉,
which can be replaced by the nonequilibrium potential change if p(xk) and p(xk+1)

are steady state distributions. This inequality implies that the information flow term
I (xk+1 : {yk, yk+1}) − I (xk : {yk, yk+1}) is important if we consider the steady state
thermodynamics for coupled dynamics.

9.2 Feedback Cooling and Third Law of Thermodynamics

Next, we discuss the relationship between feedback cooling and information ther-
modynamics. By applying the information thermodynamic inequality (6.46) to the
coupled underdamped Langevin equation, we discuss a cooling bound of the kinetic
(effective) temperature and the information flow. This result is a generalization of
our previous discussion of feedback cooling with information [2].

We here consider the following coupled underdamped Langevin equation, which
describes the feedback cooling:

mẍ(t) = −γ[ẋ(t) − y(t)] + ξx (t), (9.14)

ẏ(t) = − 1

τ y
[y(t) − ẋ(t)] + ξy(t), (9.15)

〈ξx (t)〉 = 〈ξy(t)〉 = 0, (9.16)

〈ξx (t)ξx (t ′)〉 = 2γT x (t)δ(t − t ′), (9.17)

〈ξy(t)ξy(t ′)〉 = 2
T y(t)

τ y
δ(t − t ′), (9.18)

〈ξx (t)ξy(t ′)〉 = 0, (9.19)

where y denotes the memory state of the spontaneous velocity ẋ , τ y > 0 is a time
constant which corresponds to the operation time intervals of the feedback controller,
m is the mass of the particle, and γ is the friction constant.

The heat absorption in X [3, 4] is given by

http://dx.doi.org/10.1007/978-981-10-1664-6_6
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J x (t) := 〈ẋ(t) ◦ [ξx (t) − γ ẋ(t)]〉
= γ

m
[T x (t) − 〈mẋ2(t)〉], (9.20)

where we used the relation of the Stratonovich integral 〈ẋ(t) ◦ ξx (t)〉 = γT x (t)/m.
From the information thermodynamic inequality (7.7), we have

J x (t)

T x (t)
dt ≤ d I trt − d IBtrt − dSx |y

t

≤ d I trt − dSx |y
t , (9.21)

where the transfer entropy is defined as d I trt := 〈ln p(y(t + dt)|ẋ(t), y(t))
− ln p(y(t + dt)|y(t))〉, the backward transfer entropy is defined as d IBtrt
:= 〈ln p(y(t)|ẋ(t + dt), y(t + dt)) − ln p(y(t)|y(t + dt))〉, and the conditional
Shannonentropy is givenbydSx |y

t := 〈ln p(ẋ(t)|y(t)) − ln p(ẋ(t + dt)|y(t + dt))〉.
In a stationary state, the conditional Shannon entropy vanishes, i.e., dSx |y

t = 0, and
the information thermodynamic inequality (9.21) can be rewritten as

T x (t) − Teff(t)

T x (t)

dt

tr
≤ d I trt − d IBtrt

≤ d I trt , (9.22)

where Teff(t) := 〈mẋ2(t)〉 is the kinetic temperature and tr := m/γ > 0 is the relax-
ation time. This inequality gives a lower bound of the kinetic temperature Teff(t)
from a viewpoint of the transfer entropy d I trt .

We here assume that the probability distribution is a Gaussian distribution with
〈ẋ(t)〉 = 〈y(t)〉 = 0. From the analytical calculation in Chap.7, we analytically
obtained the transfer entropy d I trt as

d I trt = 1

2
ln

(

1 + 1 − (ρ
xy
t )2

τ y

〈ẋ2(t)〉dt
2T y(t)

)

= 1 − (ρ
xy
t )2

4τ y

Teff(t)dt

T y(t)
, (9.23)

where (ρ
xy
t ) := [〈ẋ(t)y(t)〉2]/[〈ẋ2(t)〉〈y2(t)〉] is a correlation coefficient which sat-

isfies (ρ
xy
t )2 ≤ 1. Thus, the inequality (9.22) gives

T x (t) − Teff(t)

T x (t)

dt

tr
≤ 1

4τ y

Teff(t)dt

T y(t)
, (9.24)

or

T x (t)

[
tr
4τ y

T x (t)

T y(t)
+ 1

]−1

≤ Teff(t). (9.25)

http://dx.doi.org/10.1007/978-981-10-1664-6_7
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This inequality indicates that the kinetic temperature Teff(t) can be lower than the
temperature of the heat bath T x (t) because of the feedback control effect. The lower
bound of the kinetic temperature cannot be zero, if the time constant τ y is finite. This
fact is related to the third law of thermodynamics, which states that it is impossible
for any process, no matter how idealized, to reduce the entropy of a system to its
absolute zero value in a finite number of operations [5].

We add that another statement of the third law of thermodynamics is generally
proved from the property of the transfer entropy at the zero temperature. In the
case where the system X is in a stationary state at the absolute zero temperature,
the probability distributions of X are given by the delta functions, i.e., p(ẋ(t)) =
δ(ẋ(t)) and p(ẋ(t)|y(t)) = δ(ẋ(t)). The conditional Shannon entropy vanishes [i.e.,
dSx |y

t = 0], and the transfer entropy d I trt is calculated as

d I trt =
∫

dy(t + dt)dy(t)dẋ(t)

[

p(y(t + dt), y(t)|ẋ(t))p(ẋ(t)) ln p(y(t + dt)|y(t), ẋ(t))
p(y(t + dt)|y(t))

]

=
∫

dy(t + dt)dy(t)

[

p(y(t + dt), y(t)|ẋ(t) = 0) ln
p(y(t + dt)|y(t), ẋ(t) = 0)

p(y(t + dt)|y(t), ẋ(t) = 0)

]

= 0. (9.26)

Thus, the information thermodynamic inequality (9.21) gives

�sbath := − J x (t)

T x (t)
dt ≥ 0, (9.27)

which implies that the entropy change �sbath associated with any other systems
cannot be reduced as the temperature approaches absolute zero. This is another
statement of the third law of thermodynamics [5].
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Chapter 10
Conclusions

Abstract This chapter presents the conclusion of this thesis. We summarize the
several results which is obtained in this thesis. We briefly discuss the meaning of our
results and its importance. We also discuss the possibilities of its generalizations and
applications. We also mention the other researches related to our results.

Keywords Stochastic thermodynamics · Signal transduction · Information theory ·
Information thermodynamics · Causal networks
We have studied thermodynamics with complex information flows induced by
interactions between multiple fluctuating systems. The main results are in
Chaps. 6–9. We here summarize our results in this thesis and discuss an influence of
our study, a scope of application, our future prospects.

In Chap.6, we have developed stochastic thermodynamics formultiple fluctuating
systems based on the causal networks. To divide nodes of the casual networks into two
parts, the target system and the other systems, we have discussed thermodynamics
for a small subsystem under the condition of the other systems [1]. We have defined
thermodynamical quantities and informational quantities using the terminologies of
the directed acyclic graph, (i.e., the set of parents and the topology ordering). One of
the main results is a novel generalization of the second law for a small subsystems
on causal networks. In this study, we have used the causal networks as the tool for
deriving the novel generalization of the second law of thermodynamics. We believe
that our formalism is well established because concepts of the causality, the transfer
entropy, and the second law of thermodynamics are closely related to each other.
We also add that this study would be important because thermodynamics is well
formulated on causal networks. It can be a future challenge to apply several technique
of the Bayesian networks, such as the machine learning and pattern recognition, to
the nonequilibrium thermodynamics.

We also believe that the technique in our study can be used for several studies
of causal networks. The informational quantity 〈�〉 may have a meaning even if
we do not discuss thermodynamics, but discuss the other fields of study on causal
networks (e.g., the financial marketing described by causal networks). The infor-
mational quantity 〈�〉 can be calculated in a realistic situation described by causal
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networks, because 〈�〉 is the measurable quantity given by the mutual information
and the conditional mutual information.

In Chap.7, we have discussed the biochemical signal transduction using the main
result in Chap.6 as a simple application of our study [2]. We have showed that
the transfer entropy gives the lower bound of the robustness of the biochemical
signal transduction with a feedback loop. In our discussion, we have only focused
on the simple dynamics of sensory adaptation described by the coupled Langevin
equation. From the discussion in Chap. 6, we can discuss the accuracy of any signal
transduction which has a complex structure and a time-delay effect. In general, the
robustness of the signal transduction is bounded by the informational quantity 〈�〉,
which can be calculated from the topology of signal transduction networks. In the
case of the complex biochemical signal transduction, we can use the technique of
causal networks to treat numerous experimental data.

We have also discuss thermodynamic efficiency of information transmission in
terms of thermodynamics. Our study may answer the question how to determine the
biochemical parameter (e.g., time constant) in a real biological cell. In the process
of the evolution, it is not so strange that the biochemical system may obtain the
efficient parameter, and such a biochemical parametermay be optimized tomaximize
information-thermodynamic efficiency as a total thermodynamic system.

In Chap.8, we have discussed the further generalization of the study in Chap.6.
Applying the data processing inequality, we have showed that the backward transfer
entropy, which is the novel information flow that we proposed, give a tighter bound
of the entropy production. In our generalization, the backward transfer entropy can
be considered as the inevitable loss of thermodynamic benefit. We believe that the
importance in the study of Chap.8 is the proposal of the backward transfer entropy as
a loss of benefit. We believe that the backward transfer entropy can be an important
measure of causal relationship between two time series likewise the conventional
transfer entropy. It is interesting that the relationship between the backward transfer
entropy and several applications of the conventional transfer entropy such as the
Granger causality [3, 4], the phase-transition [5], and the time series analysis [6–8].

In Chap.9, we have shown the possibilities of the application of our study. Several
nonequilibrium dynamics, such as the steady-state thermodynamics and the feedback
cooling, can be discussed using our formalism of information thermodynamics. We
believe that information flow, i.e., the transfer entropy and the backward transfer
entropy, can be an important quantity in nonequilibrium statistical physics in many
situations. We believe that several nonequilibrium dynamics of multiple fluctuat-
ing system can be discussed quantitatively characterizing the information flow. For
example, we have showed that the information thermodynamics gives the cooling
bound by information for a feedback cooling system.

We here note an influence of our research [1, 2], which include the main topic
of this thesis. Our research have led to several theoretical studies of the general-
ized second law of thermodynamics for a subsystem in a class of Markov process
[9–15] and in a class of non-Markovian process [16, 17], several theoretical stud-
ies of a relationship between thermodynamics and information in a biochemical
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sensory system [18–22], several theoretical studies of thermodynamics with
information processing [23–41] and several experimental studies on a single electron
box [42–44].

We add a limit of application of our study. Our main result Eq. (6.30) (or
Eq. (8.77)) is the relationship between the entropy productionσ and the informational
quantity� (or�′).We discuss a limit of application of our study in terms of the valid-
ity of these two definitions. First, the informational quantity is based on a classical
stochastic process with causality, therefore our main result is not directly applicable
to quantum dynamics. This fact does not mean an inability of a generalization of our
study for quantum dynamics, because thermodynamics with information processing
can be discussed for quantum dynamics in a simple setup (e.g., Ref. [26]). Second,
the definition of the entropy production σ is based on the definition of the detailed
fluctuation theorem [45–47], therefore it depends on the definition of the backward
path probability pB . As discussed in Chap.9, the definition of the backward path
probability can be replaced, and the physical meaning of σ can be changed, while
maintaining the information thermodynamic inequality (6.30). This fact suggests that
we have to take care of choice of pB in each case, to obtain a meaningful (thermody-
namic) quantity σ . For example, in the case of a Langevin equation with a colored
noise, it is difficult to define the backward path probability pB and an instantaneous
value of the entropy change in the heat baths. We add that the assumption Eq. (6.2)
is not satisfied in the case of a Langevin equation with a colored noise.

In our result, we have developed stochastic thermodynamics for a small subsys-
tem interacting with fluctuating multiple other systems, and discussed the robustness
of the biochemical signal transduction. Our theory can provide a physical basis of
nonequilibrium dynamics with information and bioinformatics as Shannon’s infor-
mation theory for artificial communication. Our study has a potential to apply to
not only several nonequilibrium dynamics, but also information dynamics on causal
networks.
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