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Supervisor’s Foreword

In his doctoral thesis Tarik Berrada conducted a series of experiments to realize a
Mach-Zehnder interferometer with trapped, interacting Bose-Einstein condensates
(BEC) of Rubidium 87 atoms confined on an atom chip. The interferometer relies
on the coherent manipulation of a BEC in a magnetic double-well potential and a
novel matter-wave recombiner. One fundamental difference between atomic BECs
and lasers fields is the presence of atomic interactions, yielding an intrinsic non-
linearity. Interactions lead to phase diffusion and limit the interrogation time of
trapped BEC interferometers. On the other hand, interactions can be used to gen-
erate nonclassical (e.g., squeezed) states to improve the sensitivity of interfero-
metric measurements beyond the standard quantum limit (SQL). Studying and
exploiting the effect of interactions in the implemented trapped atom interferometer
is a central physics result of this thesis. The thesis gives a brief introduction to the
theoretical framework needed and a concise overview of the experimental apparatus
and the key experimental techniques. The main part describes the physics experi-
ments: the implementation of a Mach-Zehnder interferometer for trapped interact-
ing Bose-Einstein condensates. The three main results are:

e A detailed study of the splitting process by transforming a single well into a
double well allows to generate significant (>7 dB) number-squeezing.
Measuring the phase uncertainty of the resulting interference Tarik Berrada was
able to show that the splitting process is close to the limit allowed by the
Heisenberg relations for phase-number uncertainty, a remarkable achievement
for quantum superposition of external (position) states of a many-body system.
The very high contrast of the resulting interference demonstrates large
spin-squeezing. From this he estimated that after the splitting the BEC with N =
1200 atoms has to contain states with typically 100 entangled atoms across the
two trapped clouds in the double well. Such spin squeezed states can in future
experiments potentially yield a sensitivity improvement beyond the SQL.
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Supervisor’s Foreword

By developing a recombiner for the two split clouds, Tarik Berrada was able to
implement a Mach-Zehnder interferometer (MZI) for trapped BECs on the atom
chip that can be read out by counting atoms on the final double well. He thereby
investigated both a standard recombiner based on the Josephson coupling in a
double well when the barrier is lowered, and a new “sudden” recombiner, which
resulted in higher contrast of the final read-out pattern.

Combining both, Tarik Berrada was able to perform the first direct experimental
demonstration of the link between number fluctuations and interaction-induced
phase diffusion, and show how the use of a nonclassical, number-squeezed state
can help extending the interrogation time of a matter-wave interferometer. The
experiments described in this chapter constitute an important step toward the use
of BECs for matter-wave interferometry and contributes to the understanding of
interacting many-body quantum systems including the generation, manipulation,
and detection of nonclassical atomic states.

Vienna Prof. Jorg Schmiedmayer
November 2015



Abstract

Mach-Zehnder interferometry with interacting Bose-Einstein condensates in a
double-well potential

Particle-wave duality has enabled the construction of interferometers for massive
particles such as electrons, neutrons, atoms, or molecules. Implementing atom
interferometry has required the development of analogues to the optical
beam-splitters, phase shifters, or recombiners to enable the coherent, i.e.,
phase-preserving manipulation of quantum superpositions. While initially demon-
strating the wave nature of particles, atom interferometers have evolved into some
of the most advanced devices for precision measurement, both for technological
applications and tests of the fundamental laws of nature. Bose-Einstein condensates
(BEC) of ultracold atoms are particular matter waves: they exhibit a collective
many-body wave function and macroscopic coherence properties. As such, they
have often been considered as an analogue to optical laser fields and it is natural to
wonder whether BECs can provide to atom interferometry a similar boost as the
laser brought to optical interferometry.

One fundamental difference between atomic BECs and lasers fields is the
presence of atomic interactions, yielding an intrinsic nonlinearity. On one hand,
interactions can lead to effects destroying the phase coherence and limiting the
interrogation time of trapped BEC interferometers. On the other hand, they can be
used to generate nonclassical (e.g., squeezed) states to improve the sensitivity of
interferometric measurements beyond the standard quantum limit (SQL).

In this thesis, we present the realization of a full Mach-Zehnder interferometric
sequence with trapped, interacting BECs confined on an atom chip. Our interfer-
ometer relies on the coherent manipulation of a BEC in a magnetic double-well
potential. For this purpose, we developed a novel type of matter-wave recombiner,
an element which so far was missing in BEC atom optics.

We have been able to exploit interactions to generate a squeezed atomic state
with reduced atom number fluctuations that could potentially yield a sensitivity
improvement beyond the SQL. We used this state to study the interaction-induced
diffusion of the quantum phase. For the first time we directly evidenced the link
between fundamental atom number uncertainty and phase diffusion, and

ix



X Abstract

demonstrated extended coherence times by use of a nonclassical state. This con-
stitutes an important step toward the use of BECs for quantum-enhanced
matter-wave interferometry and contributes to the understanding of interacting
many-body quantum systems. It opens new possibilities for the generation,
manipulation, and detection of nonclassical atomic states, and calls for further
studies of the role of interactions as a resource for matter-wave interferometry.



Preface

“Weil hab i erst des nétige Quantum do drin

dann merk i net was fiir a Trottl i bin”
Gerhard Bronner and Helmut Qualtinger,
“Kriigerl vor’m G’sicht”, 1960.

An interferometer is a device that makes use of the effect of wave interference.
Optical interferometers rely on the interference of light waves. Since the middle
of the nineteenth century, interferometry has become a key technique in physics,
bringing new insight into the nature of light and the laws of nature. The celebrated
interferometry experiment conducted by A. Michelson and E. Morley in 1887 is
generally considered to have ruled out the theory of aether and indirectly con-
tributed to the founding of special relativity. The development of lasers since the
early 1960s has renewed the field of optics and considerably enhanced the power of
interferometers by providing a bright, directed, and coherent source of light for
interferometry. Today, optical interferometers range among the most sensitive
measurement devices, both for fundamental (gravitational wave detection, astro-
physics, ...) and technical (inertial sensing for navigation of planes, satellites, ...)
applications.

Particle-wave duality, stated at the beginning of the twentieth century, enables
the construction of interferometers for matter waves. Since the first observations
demonstrating the wave nature of massive particles, ground-breaking interferometry
experiments with electrons, neutrons, atoms, or molecules have allowed studying
quantum phenomena, investigating the properties of matter, testing the fundamental
laws of physics, and performing precision measurements [1].

Over the last decades, in particular with the progress of laser cooling and fre-
quency combs, atom interferometers have evolved into devices at the leading edge
of precision measurements. Long-lived coherent superpositions of internal atomic
states have been used in atomic clocks to measure time with unprecedented
accuracy, providing the definition of the second since 1967. Interferometers using
quantum superposition of atomic motional states can also measure accelerations and
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rotations to high precision. It has been argued that due to the high rest mass of
atoms, compared to the energy of an optical photon, atom interferometers could
yield a considerable gain in sensitivity to inertial forces.

Bose-Einstein condensates (BEC) are particular matter waves. Since the first
realization of a BEC in an atomic vapor in 1995 [2], ultracold gases of bosons have
been intensively studied as a unique example of a well-controllable system with
enhanced quantum properties. In this context, matter-wave interferometry with
BECs has proven to be a powerful tool to explore the rich physics of these
many-body quantum systems. In particular, it is a unique probe to access the
quantum phase of the condensate wavefunction and study its macroscopic coher-
ence, i.e., the existence of a well-defined condensate phase in space and time.

Because of this macroscopic coherence, beautifully demonstrated by the first
interference experiments from 1997 on [3], BECs have often been compared to
atom lasers [4]. Indeed, like lasers, BEC are characterized by the macroscopic
occupation of a single spatial mode. For this reason, it is natural to wonder whether
BECs can provide to atom interferometry a similar boost as the laser brought to
optical interferometry.

Because BECs are extremely sensitive probes of their environment, they are also
fragile. In fact, only the development of ultrahigh vacuum techniques as well as
“contract-free” methods to manipulate and trap atoms with optical and magnetic
fields at the microscopic level has enabled the experimental realization of BECs.
Developing techniques to preserve the phase coherence of atomic quantum
superpositions is a challenging requirement for BEC interferometry.

One fundamental difference between atomic BECs and laser fields rises from the
presence of interactions. Atom-atom interactions drive the physics of confined
BECs, leading to a rich quantum phase diagram. In the context of atom interfer-
ometry, the impact of interactions is ambivalent. On the one hand, interactions are
responsible for intrinsic phase diffusion effects which ultimately limit the coherence
time of BEC interferometers. On the other hand, they can be exploited to generate
nonclassical correlations between atoms and produce entangled states. Atomic
squeezed states are an example of such nonseparable states, and have been shown to
potentially reduce the effect of interaction-induced phase diffusion or improve the
sensitivity of interferometric measurements beyond the sensitivity limit for uncor-
related particles, the standard quantum limit (SQL). For these reasons, studying the
effect of atomic interactions is crucial to perform precise interferometric measure-
ment with trapped BEC as well as to understand the physics of complex many-body
quantum systems.

Condensates in a double-well potential implement the textbook case of a
two-mode BEC. At the same time, they provide a prototypical configuration for
matter-wave interferometry, reminiscent of Young’s double-slit experiment. For
these reasons, they have stimulated great theoretical interest [5]. It was recognized
very early that a BEC in a double well implements a cold atom analogue of a
superconducting Josephson junction, where the Cooper pairs are replaced by
neutral atoms and the thin insulating layer by a potential barrier, justifying the name
of “bosonic Josephson junction” (BJJ). A tunable BJJ offers a conceptually simple
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playground to investigate the interplay of tunnel coupling and atomic interactions in
BECs, yielding a rich variety of dynamical regimes. Most importantly, tuning the
parameters of a BJJ also offers a handle to engineer the many-body state of the
BEC.

In this thesis, we present the implementation of a Mach-Zehnder interferometer
for BECs on an atom chip setup, and its use for the study of interactions in our
trapped, interacting BECs.

Since the first demonstration of the phase-preserving splitting of a BEC in 1998
[6], various techniques have been developed to build atom-optics analogues to
beam splitters, phase shifters, or recombiners. Our scheme relies on the coherent
manipulation of a condensate in a tunable double-well potential. The splitting was
implemented by smoothly deforming the potential from a single to a double well.
An adjustable phase shift was applied by imposing an energy difference between
the two wells. In order to close the interferometric sequence, we developed two
novel phase-sensitive recombiners for trapped BECs, the first one relying on con-
trolled tunneling through the BJJ, the second on a fast manipulation of the confining
potential.

Taking advantage of interactions during the splitting, we were able to produce
and characterize a nonclassical “squeezed” atomic state featuring reduced number
fluctuations with respect to a coherent state. We showed that the state produced in
the interferometer could potentially yield a significant metrology gain beyond the
SQL.

We used this state to study interaction-induced phase diffusion in our interfer-
ometer. For the first time, we could unambiguously evidence the link between
fundamental atom number uncertainty and the rate of diffusion of the quantum
phase, and demonstrated a coherence time extended by more than a factor of two by
use of a nonclassical state.

This work constitutes an important step toward the use of BECs for
quantum-enhanced matter-wave interferometry and contributes to the understand-
ing of interactions in BECs. It opens new possibilities for the generation, manip-
ulation, and detection of nonclassical quantum states, and calls for further studies
of the role of interactions as a resource for matter-wave interferometry.

The manuscript is structured as follows:

e In Chap. 1, the theoretical framework which forms the basis for the results of
this thesis is introduced. It comprises mainly a basic description of interacting
BECs, with emphasis on elongated geometries, followed by a presentation of the
two-mode model describing the physics of a condensate in a double-well
potential.

e Chap. 2 is devoted to a description of the apparatus on which the experiments
were conducted, with focus on the techniques of magnetic trapping on an atom
chip, in particular the radio frequency-dressing used for the creation of
double-well potentials, as well as the imaging systems used to probe the atoms.


http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_2
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e Chap. 3, which is the central part of this thesis, presents each stage of the
Mach-Zehnder interferometric sequence and the corresponding results.

e Finally, Chap. 4 gives an outlook on effects beyond the two-mode description

of the BJJ in the light of new experimental observations.
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Chapter 1
Introduction and Theoretical Background

The aim of this chapter is to set the framework and give the theoretical tools to
analyze the experiments presented in this thesis. It is organized as follows:

e The first part introduces some basic concepts of the theory of atomic Bose-Einstein
condensates. In particular, the many-body Hamiltonian for a system of bosons in
the weakly interacting regime is presented. A mean-field picture, leading to the
Gross-Pitaevskii equation, is studied with particular emphasis on the ground state
properties of elongated condensates. The Bogoliubov approach is described with
the aim of obtaining a classical field picture of elementary excitations.

e The second part is devoted to the two-mode description of a condensate in a
double-well potential. The two-sites Bose-Hubbard Hamiltonian is derived from
the full many-body Hamiltonian, and its different regimes are studied with focus
on the fluctuations of the physical observables. A connection is established to the
collective spin formalism to introduce the notion of atomic squeezed states. A
mean-field picture is derived and used to describe the dynamics of the bosonic
Josephson junction.

1.1 Elements of the Theory of Bose-Einstein
Condensation in Atomic Gases

The experimental realization of an atomic Bose-Einstein condensate (BEC) in
1995 [1] has been a striking demonstration of the phase transition predicted by
Albert Einstein in 1925 [2], as a direct consequence of the statistics Satyendra Nath
Bose had proposed one year before for photons [3]. Einstein showed that at fixed
temperature, increasing the density of a uniform ideal Bose gas would cause the
bosons to pile up in the quantum state with the lowest kinetic energy while all the
other excited states would be saturated, in analogy with the condensation of water in

© Springer International Publishing Switzerland 2016 1
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2 1 Introduction and Theoretical Background

a saturated vapor. The order parameter of this transition is the fraction of particles in
the ground state. The occupation of one quantum state by a non-negligible fraction
of the total number of bosons is at the center of the enhanced quantum properties of
Bose-Einstein condensates.

1.1.1 Condensation of the Ideal Bose Gas

1.1.1.1 Uniform Ideal Bose Gas

The simple case of an ideal Bose gas in a uniform potential already contains some of
the essence of the phenomenon of Bose-Einstein condensation.! Let us consider N
identical, non-interacting bosons in a square box of size L* with periodic boundary
conditions (PBC). The single particle eigenstates in this uniform potential are plane
waves with quantized wave vectors and energies given by:

- 2T, . . .
k; = T (lxx +1L,y+ lzz) , (1.1)

Rk 2R
T 2m T ml?

€ Z+5+12). (1.2)
where (I, [y, I;) are the three integers labeling the state [, I is the reduced Planck
constant (see Appendix B for the list of symbols used in this manuscript), and m
the mass of one boson. At thermal equilibrium in the grand-canonical ensemble, the
mean number of particles in the state / is given by the Bose statistics

1 z
el e’ — 7

N; (1.3)
Here 3 = 1/kgT where kp is the Boltzmann constant and 7 the temperature. The
chemical potential p is implicitely defined by the constraint of the fixed total atom
number through "7 N; = N. In the right hand side, we have introduced the fugacity
z defined as

c= e, (1.4)

z must be between 0 and 1 to ensure that for any state I , N; > 0.z — 0 corresponds
to the classical limit where Maxwell-Boltzmann statistics is recovered. Conversely,
Eq. (1.3) shows that in the limit z — 1, the occupation number N of the ground state

! Among the many general references on Bose-Einstein condensation in atomic gases, the books by
Pitaevskii and Stringari [4] and Pethick and Smith [5] as well as the Yvan Castin’s lecture notes for
the Les Houches Physics Summer School [6] have been widely used in this section.
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divelrges.2 Since Nj is an increasing function of z, one sees that this can be achieved
by increasing the density of the gas at constant temperature.

More precisely, Bose-Einstein condensation corresponds to a saturation of the
excited states: since for any state /, the occupation number is always smaller
than e, the total population of the excited states N’ is bounded. In the ther-
modynamic limit (N — oo, L — oo but the density nop = N/L is kept constant),
we can find a simple upper bound for the number of particles in the excited states:

N/EZN;

1#0
—Ber > L3 2 —h2k>B/2m
< ze b~ —2k e dk
1£0 k=0 2T
kaT 3/2
=223 (ﬂ) . (1.5)

This means that when the number of particles (or equivalently the density) of the gas
is increased, the population of the excited states saturates at a given value depending
on the temperature. If the density is further increased, the particles pile up in the
ground state. The exact maximum for N’ can be computed using the Riemann ¢
function and gives the prefactor ¢(3/2) ~ 2.61 instead of 232 =~ 2.83, see for
example [7].

Introducing the de Broglie thermal wavelength

A — 2mh? (16)
r= kaT ’

gives a physical interpretation to Eq. (1.5): the BEC forms when the typical de Broglie
wavelength of the bosons becomes of the order of the mean inter-particle distance:

noA3 ~ 1. (1.7)

It can be related to the notion of phase space density [8]. In quantum mechanics, the
Heisenberg uncertainty relation

AxAp > (1.8)

SIS

sets the lower bound V = (27/2)* to the volume a quantum state can occupy in phase
space. The phase space density

2Here, ¢y = 0. If the origin of the energies is chosen differently, the ground state energy can be
absorbed in the chemical potential: it — 1 — €.
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N 1

P kT L
Qrhy Z,¢ (1.9)

represents the mean number of particles in an elementary cell of phase space of
volume V around (7, p). The partition function Z; is a normalization constant which
can be related to the density in real space ng through

no—/f(r,p)dp— A3TZI. (1.10)
The condition (1.7) means that the phase space density at the origin (0, 0) is of the
order of V~!. In other words, condensation occurs when there is on average more
than one boson per elementary cell of phase space. More generally, this condition
corresponds—even for a gas of fermions—to the quantum degeneracy limit beyond
which the classical description is no more appropriate.

Equation (1.7) defines the critical temperature of the Bose-Einstein condensation
in a non interacting gas of bosons in a uniform three-dimensional potential

22
= a2, (1.11)

c
ka

1.1.1.2 Other Geometries

The exact form of the criterion (1.7) for condensation depends—if applicable—on
the geometry of the system. For example, for an ideal Bose gas trapped in a harmonic
potential, the condensation threshold becomes [6]:

noA3 ~ ((3/2) ~ 2.61 (1.12)

where in contrast to the uniform case, 1 is the density at the minimum of the potential.
In Chap. 4, we will see that in certain geometries, Bose-Einstein condensation is not
possible, and that a degenerate Bose gas may form a quasi-condensate with reduced
phase-coherence, affecting the tunneling properties of BJJs.

1.1.2 The Weakly Interacting Bose Gas

The ideal Bose gas model, assuming non-interacting particles, predicts Bose-Einstein
condensation and gives for instance fair estimates for the critical temperature 7, or
the condensate fraction, see for example [4—6]. Nevertheless, interactions are a key
ingredient to explain many features of trapped BECs.

We will first briefly present a model for atomic interactions steming from the
quantum theory of elastic scattering in a dilute gas and then use it to express the
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Hamiltonian in second quantized form for an ensemble of bosons in the weakly
interacting regime.

1.1.2.1 Ultracold Collisions

This section is largely inspired by the lecture notes by Walraven on the Thermo-
dynamics and Collisional Properties of Trapped Atomic Gases [8]. For a review on
ultracold collisions, see Ref. [9]. A key result of the quantum scattering theory is that,
at sufficiently low energy, and looking at a sufficiently large distance with respect
to the range of the interaction potential, the collision between two identical bosons
can be described as an isotropic scattering event (s-wave scattering). More precisely,
the wavefunction describing the motion of two bosons, written in the relative coor-
dinate system, can be expressed as the sum of an incoming and a scattered wave (see
Fig. 1.1). The wavefunction of the scattered wave is given by

elkr

Use A P sin nge’™, (1.13)

k is the wave vector of the relative motion of the colliding particles, while r is
the relative distance between the two bosons. Here 7y represents the phase shift of
the wave emerging from the scattering center. This is the key quantity describing the
scattering process, because far from the origin, this phase shift is the only track left
by the collision. It is used to define the s-wave scattering length:

o
s = ——. 1.14
a p (1.14)
The s-wave scattering length is related to the collisional cross-section by
2
0y = Ta, (1.15)

Fig. 1.1 Schematics of
s-wave scattering. Adapted
from Walraven [8].
Schematic of the s-wave
scattering in the
center-of-mass coordinate
system of the two bosons. k
denote the wave vector of the
relative motion and 7 is the
relative coordinate
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which underlines the role of a, as the measure of the interaction strength in the s-wave
regime. The result of Eq. (1.13) is crucial, as it allows to describe the whole scattering
process through a single quantity, regardless of the details of the interaction potential.
This description of the asymptotic effect of the collision is expected to hold as long
as the “collisional size” a; is much smaller than the typical interparticle distance
(weakly interacting regime):

nlas]® < 1. (1.16)

The physical meaning of the sign of a;, becomes clear when looking at how the total
energy of a pair of atoms is affected by interactions. Considering two atoms confined
in a sphere of radius L, it is shifted by an amount [8]

22

X ——dy.
2mL3 "

SE (1.17)

For a; > 0, the total energy is increased, meaning that the interactions are repulsive,
while a; < 0 corresponds to attractive interactions. Remarkably, in some special
cases, Feshbach resonances [10] allow tuning both the magnitude and the sign of a;
by changing an external parameter such as the magnetic field.

For the species used in this thesis, the 8’Rb isotope inits F = 1, mp = —1
state, the repulsive contact interaction is associated with the scattering length a; =
100.4(1) ap = 5.3 nm [11], where ag is the Bohr radius. It means that the weakly-
interacting regime is achieved for a density lower than ~ 10'® atoms/cm?, which is
always the case in the experiments presented in this thesis.

A notable consequence of the s-wave scattering description is that there is no
need to know the real interaction potential V;,; (? — r/) to describe the effect of
interactions. It can be replaced by a pseudo-potential defined in order to yield the
same asymptotic behavior as Eq. (1.13). The simplest mathematical form satisfying
this condition is given by the delta-function potential [8]:

47h?

UGES ag 6(r) (1.18)

——
83D

where § is the Dirac delta function. The choice of the delta function reflects the
assumption of a contact interaction, which only affects the atoms when they are close
to each other. The prefactor defines the 3D interaction constant g3p, which measures
the strength of the contact interaction. For 8Rb in the F = 1,mp = —1 state,
gip/h =7.77 x 10712 cm? - Hz. This sets the typical energy scale of interactions:
for a typical peak density of np = 1.3 x 10'* atoms/cm?® in our condensates, the
associated energy® gspnyg is of the order of 4 x 1 kHz.

3We will see in Sect.1.1.3.2 that this energy is precisely equal to the chemical potential in the
Thomas-Fermi approximation (Eq. 1.45).
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1.1.2.2 Hamiltonian for Weakly Interacting Bosons

To describe a system with a large number (typically N ~ 1000 in our experiments)
of identical bosons, we work in the formalism of second quantization. For a tutorial
introduction to the second quantization, see for example Refs. [12] or [13].

Let us first consider the Hamiltonian 2" for a single particle in an external
potential V (F):

2
gmzﬂé%A+@. (1.19)

Its eigenstates {|/)} define a basis of modes for the system. We use this single-particle
basis to define the operators in second quantization.

The creation and annihilation operator &ZT and q;, describing the creation (respec-
tively the destruction) of one boson in the mode |/), obey the bosonic commutation
relations:

an.ar] =0, [a].a}] =0, [aal ]| = . (1.20)

One also defines the field operators Ut and ¥ corresponding respectively to the
creation or annihilation of one boson at position 7 :

Vi) =D (Flba (1.21)
1
Vi) =D e (1.22)

l

where |F) are the eigenvectors of the position operator. They also obey a bosonic
commutation relation:

[\11(7), \if(?/)] —0, [\iﬁ(?), \iﬁ(?/)] —o, [\i/(?), \iﬁ(?/)] —6(F — 7). (1.23)

The many-body Hamiltonian can be separated into a sum of single-particle terms
like 2" describing the kinetic energy and the potential energy of the ith particle on
the one hand, and interaction terms involving several particles on the other hand.
In the weakly interacting limit, where binary interactions dominate, and using the
pseudo-potential of Eq. (1.18), the full Hamiltonian can be written:
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R ) )
H :/liﬂ'(?)%AlIJ(?)dF—k/\I/T(?)V(F)lIJG)d?

ﬁkin Hpol

+ %@T(?)\iﬁ(?)\ij(?)\i/(f)d? . (1.24)

I:Iim

The Heisenberg equation of motion gives the time evolution of the field operator:

ﬁaa_‘f ~[.9]

. . s n
S AV VY + g3p TP (1.25)
m

Note the absence of factor 1/2 in front of the interaction term due to the commutation
rule for the field operators.

Equation (1.25) allows in principle to compute the full dynamics of the many-
body system. In practice, methods to compute the full many-body wavefunction are
extremely demanding and it is necessary and useful to resort to approximations.

1.1.3 Mean-Field Model: The Gross-Pitaevskii Equation

Here, we will first consider the case of an almost pure condensate where N is large
and most of the atoms occupy the same single-particle wavefunction. If we replace
the field operator W and its conjugate by a complex function ¢, we can derive a
classical field model:
V(@ 1) — VNU@E D),
UH(F, 1) — VNY*F, 1). (1.26)

‘We have chosen to normalize v to unity: f |4|2d¥ = 1. Inserting the functions (1.26)
in the Hamiltonian (1.24), we find the Gross-Pitaevskii energy functional:

83D

2
E[Y] = /d? [h—mwf + NVI)? + —N2|¢|4} . (1.27)
2m 2

As for the Hamiltonian (1.24), we identify the three contributions to the total energy
of the gas:

h? -
Exin = —N/ |V |27 (1.28)
2m
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Epw =N / V()| 2dF (1.29)
Ey = ‘%Nz/wﬁdf. (1.30)

Note that these three terms have to be divided by N to obtain the mean energy per
particle. Provided that the origin of energies is fixed at the minimum of V', both kinetic
and potential energies are positive. The sign of the interaction term depends only on
the sign of gsp = 4wha,/m, and confirms that repulsive interactions are associated
with a positive scattering length while attractive interactions are associated with a
negative scattering length.

The ground-state wavefunction )y can be found by minimizing the Gross-
Pitaevskii energy functional with a constraint on the norm of ). With the Lagrange
multiplier £ for the constraint | |4|>d7 = 1, minimizing the functional

F[y] = E[1] —MN/ [ |2d7 (1.31)

yields the Gross-Pitaevskii equation (GPE), independently derived by Gross [14] and
Pitaevskii [15]:

2

R N
— 5 AU V@Y + NPy = uy. (1.32)

In analogy with the Schrodinger equation, we identify the interaction term g3p N 1|2
to a potential proportional to the local atomic density n(#) = N|¢|?. This mean-field
energy can be seen as an effective potential each particle is subjected to because of
the interaction with all other atoms. The Lagrange multiplier ¢ has the dimension
of an energy and can be identified with the chemical potential, as can be seen from
deriving the energy functional with respect to N [6]:

OE

=N (1.33)

I

Inserting Eq. (1.26) into the Heisenberg equation (1.25) yields on the other hand the
time-dependent GPE

L0 _ » :
ih— = ——AyY + V()Y + gapN|yY|“Y. (1.34)
ot 2m

Validity of the Mean-Field Treatment
As we will see next, the GPE is a powerful tool to describe many aspects of the
equilibrium properties of the condensate as well as its dynamics. The mean-field
treatment crucially relies on the assumption that all atoms share the same single-
particle wavefunction. An equivalent derivation of the GPE consists in finding an
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approximate dynamical equation for the one-body density matrix p; = AR by
replacing the higher-order terms by some function of p; (see for example [6]). In the
presence of a large condensate fraction, one can drop the contribution of all excited
states and p; becomes essentially the projector onto the condensate single-particle
wavefunction:

p1 = Noltho) (ol + py = Nlibo) (ol (1.35)

From this, we see that the mean-field approximation is expected to hold when the con-
densate fraction is large, which at thermal equilibrium means that 7'/ T, is small. This
is essentially a classical field approximation, in the sense that it neglects quantum cor-
relation. We will see that it cannot describe many-body correlations, or fluctuations.

In the next sections, we will briefly present some cases where the time-independent
GPE has (at least approximate) analytical solutions and mention the numerical res-
olution methods that have been used in this thesis. We will treat only the case of
repulsive interactions (gsp > 0).

1.1.3.1 Uniform Potential
The simplest case is that of a uniform potential V () = 0. Let us consider a uniform
potential of size L* with periodic boundary condition. Although PBC do not corre-

spond to most of the realistic trapping geometries, they offer a simplified description
of the bulk of a trapped gas, without caring about the edges. The ground state wave-

function of Eq. (1.32) is simply:
. 1
W(r) = e (1.36)

with the uniform density ng = N/L>. The ground state energy E reads:

Ey = Ein = LV (1.37)
0 = Lint = 2g?)D I3 .
and the chemical potential:
0Ey
= = 1.38
H= 5N = 8D (1.38)

An important property of the mean-field interaction is that it will generally disfavor
density fluctuations. Assuming repulsive interactions (g3p > 0), a density modula-
tion dn(x) = dnsinkx on top of the uniform density ny will increase the energy
by a relative amount (6n/n¢)>. Repulsive interactions therefore generally tend to
smoothen the density profile.
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1.1.3.2 The Thomas-Fermi Limit

In general, the time-independent GPE cannot be solved analytically for an arbitrary
potential. A useful case is however the Thomas-Fermi (TF) limit, for which the

interaction and the potential energy dominate over the kinetic energy. In this case,
Eq. (1.32) becomes

V(#) + gap NP ~ . (1.39)

L p=v@E
v g&pN (1.40)

for 7 such that > V (¥) and 0 elsewhere. For a harmonic potential

The general solution is:

o
V) =3m [wix? + wly® + wiZ?], (1.41)

we find that the density profile in each direction is parabolic:

. 2 y 2 2 \2
n(r) =ng 1_(R_x) _(R_y) —(R—) . (1.42)

The extension of the trapped condensate in each spatial direction is given by its
Thomas-Fermi radius:

a 23"’
R, = [151\1’;27] (1.43)

where w = (a)xwywz) s the geometric mean of the trap frequenciesandi = x, y, z.
Note that the TF radii are increasing functions of N: if atoms are added, the repulsive
interactions tend to inflate the condensate. The chemical potential p is related to the
number of atoms and to the trap parameters through

1 a. 2/5
= Eh@ (ISNi) (1.44)

where ap, = +/h/mw is the harmonic oscillator length. A simple relation links p to
the density n (0) at the center of the cloud:

= gzpn (0) . (1.45)
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We can check a posteriori the consistency of the TF approximation by evaluating the
different contribution to the total energy using Eq. (1.40). We find using Eqs. (1.29)
and (1.30) that:

3

Epu = =Np (1.46)
2

Ew = 2Ny (1.47)

The kinetic energy cannot be self-consistently evaluated using (1.40) because the
integral in Eq. (1.28) diverges. We can however estimate it for each spatial direction
using the TF radii as typical sizes of the condensate:

hz
Eyin,i ~ N_mR2 (1.48)

(i = x, y, 2). The condition for the Thomas-Fermi approximation becomes, for each
spatial direction:

E in hw,‘ 2
JL%(—J < 1. (1.49)
Eint 1%

The TF approximation is expected to be valid as long as the chemical potential is
higher than the typical energy associated with the trapping potential.

1.1.3.3 Condensates in Elongated Harmonic Potentials

Most of the experiments presented in this thesis were performed in elongated traps
with aspect ratio A = w /wy up to ~300 (see Fig. 1.2). Typical trapping frequencies
for the experiments presented in this thesis are w; ~ 27 x 1.3 kHz in the radial,
tightly confined direction and wj &~ 27 x 12 Hz in the longitudinal direction. If we
evaluate the chemical potential using Eq. (1.44) for N = 1200 atoms, we find y =
27h x 1 kHz. While this value clearly satisfies condition (1.49) in the longitudinal
direction, the kinetic energy cannot be neglected in the transverse direction.

1D Thomas-Fermi Regime
The simplest way to describe such an elongated condensate in the mean-field regime
is to assume that due to the large difference in energy scales, the wavefunction is

separable into a radial and a longitudinal part [16, 17]

P(F) = o(p)p(2). (1.50)
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Fig. 1.2 Schematics of an V ( )
L\p

elongated condensate. The z
axis corresponds to the
direction of shallow
confinement V (z) while in
the transverse (x, y) plane,
the potential V| (p) is
strongly confining

Here both ¢ and ¢ are normalized to unity. We also assume a separable potential

- - 1
V(@) = Vi(p) + gmejz. (1.51)
The GPE (1.32) reads
R & 1 n?
—— =0+ smwiZ 0 + g NG lplPdp = |n+ -—ALd—Vig|p
2m 0z 2 2m
(1.52)

By integration over the radial coordinate p, we get an effective 1D TF equation for
the longitudinal wavefunction:

R e 1
5 + mw”Z >0+ giNlple = pipy (1.53)
m 072
with
¢ib = gpN / 16147, (1.54)
_hz * 2 - 0
I %QS Ap+Viol")dp=p—ET. (1.55)

g1p is the effective 1D interaction parameter. The effective 1D chemical potential p;p
is simply obtained by subtracting the ground-state energy of the radial wave-function
EY from the true chemical potential p1. The ground state wavefunction reads
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[ 2
_ 1%50)) ( z
p(z) = /ngN 1 (Rm) (1.56)

Integrating (1.32) over z, we get a similar result for the radial wavefunction

—hK?

S AL+ Vi +aINIold = pio. (1.57)
If we assume that radially, the kinetic energy dominates over the interaction energy,
we can assume that the radial wavefunction is in the non-interacting ground state.
For a radial harmonic potential V; = mz,uf_p2 /2, the non-interacting ground state
reads

b(p) = e~P 12l (1.58)
a, /2
and we get
gip = 2hway, (1.59)
3 2/3

aj
w=hw, 1+(—Nas—2) , (1.60)

22 aj

where we have defined the harmonic oscillator lengths in radial and axial direction
a, = /h/mw,y . a; =~ 300 nmis a typical value for the experiments presented
in this thesis. Note that in the 1D Thomas-Fermi limit, the chemical potential and
the Thomas-Fermi radius have a different scaling with the atom number N. The 1D
Thomas Fermi radius explicitely read

3o N\ /3
RTFlDZ(_ng ) ) (1.61)

2 mw?

As pointed out in [16, 18], the dimensionless parameter

gapN/alay

= Nasa, /ap =
X L/ap W /mal

(1.62)

appearing in the chemical potential roughly represents the ratio between the interac-
tion energy and the kinetic energy in the radial direction: We can use it to recast the
chemical potential in the 3D and in the 1D TF cases

1
prsp = S hwi (1507, (1.63)

1
uwm=§m1p+6m”} (1.64)



1.1 Elements of the Theory of Bose-Einstein Condensation in Atomic Gases 15

Physically, x allows to distinguish between the validity range of the 1D and the
3D Thomas-Fermi models. x > 5 corresponds to the 3D Thomas-Fermi limit—
sometimes referred to as three-dimensional cigar [4]—where the interaction energy
dominates over the kinetic energy in all directions. Conversely, when xy <« 5, the
condensate is in the /D mean-field regime where the transverse motion is “frozen” and
the radial wavefunction is very close to the non-interacting radial ground state, up to
some corrections of order aznp, where np is the linear density (see next section).
For the typical parameters given above, we find y = 0.2, and prpip = 27hx 1.8 kHz,
meaning that the experiments have been performed close to the TF 1D limit.

Crossover Between 1D and 3D Thomas-Fermi Regime

In the previous section, we have assumed that the radial and longitudinal degrees
of freedom are decoupled. This is of course a crude assumption, since interactions
couple all directions. It is still possible to derive a semi-analytical model to find the
mean-field ground state wavefunction in the crossover between 1D and 3D Thomas-
Fermi regime, where most of the experiments in this thesis take place. Instead of
assuming a separable wavefunction, the idea is to compute the radial wavefunction
locally, at each position along the longitudinal axis.

Following Refs. [17, 18], we assume local equilibrium in each slice of the elon-
gated condensate (local density approximation). For a harmonic radial potential
V, = %mwipz, it is legitimate to assume that the radial wavefunction is not very
different from the non-interacting ground state and to make the following Ansatz

2

1 A
)= ¢ W) 1.65
o(p) 27rw(nm)e D (1.65)

whose width w is kept as a variational parameter depending on the local 1D density
nip(z) = [n(F)dp. The expression for w(np) is found by minimizing the local
energy functional and reads:

h
w (nip) = ,/M (1 + 2a,np)'* (1.66)

(note that in Ref. [18], the author minimizes the local chemical potential, which
yields a factor 4 instead of 2 before in the square root). This means that the local
width differs from the non-interacting ground state size by a correction term of the
order of aynp, which is small but not negligible for the typical 1D densities of the
experiment presented in this thesis (n;p &~ 30 atoms/pum). Repulsive interactions
tend to inflate the cloud transversely, and this effect is stronger in the center of the
condensate, where the density is higher. The local-equilibrium chemical potential
reads [17]
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14 3asnip(z)
V1 +2an1p(z)

and the longitudinal density profile for a harmonic potential is given by [18]*

nip(z) = lg;s [a (1- %)2 +4} (1 _ (%)2) . (1.68)

Here L = aﬁﬁ /a. is the longitudinal radius of the condensate (for our typical
parameters, L &~ 25 pm, to be compared to a; =~ 0.3 wm) and the value of o =
2 (u/hwy — 1) is found by solving numerically the equation:

tie(2) = hwy ( ) ~ gipnip(z) (1.67)

o’ (a4 5)% = (15y)2. (1.69)

« is equal to twice the ratio between the chemical potential (after subtraction of
the radial zero-point energy fw, ) over the radial zero-point energy. For the typical
parameters given in Sect. 1.1.3.3, « = 2 x0.33 and p— hw,; = 27h x 0.44 kHz. One
can check that depending on the value of x, the model smoothly interpolates between
the predictions of the 1D and 3D TF approximations (see Fig. 1.3). Furthermore, it
has been checked [18] that it gives very good agreement with numerical resolution
of the 3D GPE for p and of the axial density profile throughout the crossover.

How Strong Are the Interactions Transversely?

In the rest of this thesis, we will be mostly concerned by the transverse dynamics of
a condensate in a double-well potential. Indeed, the geometry of our radio-frequency
dressed double wells implies that the splitting occurs transversely, and thus that
the tunneling dynamics occurs mostly along one direction. For this reason, we will
often resort to approximations or numerical calculations restricted to the transverse
dimension.

This is partly motivated by the large aspect ratios of our traps: while the transverse
motion of the condensate occurs on the ms timescale, longitudinal oscillations have
a typical period of 50 to 100 ms. Moreover, we have seen that the transverse kinetic
energy largely dominates over the interaction energy (y ~ 0.2).

We can evaluate the impact of the interactions on the transverse wavefunction in a
(single) harmonic potential from Eqs. (1.66) and (1.68). Using the radial GPE (1.57),
we see that in the perturbative approach of Ref. [17], the kinetic, potential and
interaction energies (per particle) in the transverse plane read

4Note that two numerical factors are wrong in equation (5) of Ref. [18].
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Fig.1.3 Comparison between the models for elongated condensates. Left pannel chemical potential
1 evaluated using the 3D Thomas-Fermi (red), the 1D Thomas-Fermi (blue) or the cross-over model
(black). N = 1200 atoms, w is kept constant at 27 x 1.3 kHz while the aspect ratio ) is changed by
varying w|. Black dashed line A\ = 105 (w =27 x 12.4 Hz), corresponding to typical experimental
parameter for the experiments in this thesis. Right pannel Linear density profile np(z) computed
using each model (same color code) for the parameters of to the black dashed line of left panel

Eyin = hwy x [1 —agnip(2)], (1.70)
Epot = hwy x [1 +agnip(z)], (L.71)
Eint = hwy x asnip(2), (1.72)

to the first order in a,np. For a peak linear density of 30 atoms/pum such as in our
condensate before they are split, a;np(0) = 0.16, meaning that interactions are
responsible by a ~7 % increase of the transverse radius and a 14 % increase of the
transverse energy compared to the non-interacting ground state. Transversely, the
interaction energy amounts for about 10 % of the total energy. The correction is even
weaker after splitting, when the linear density is divided by two.

This justifies why, when the motion of the condensate is excited along one trans-
verse direction only, it is fair to assume that it does not strongly couple to the other
transverse directions and to resort to one-dimensional GPE simulations along this
direction. In appendix A, we explain how we compute the corresponding effective
transverse interaction constant.
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1.2 Bose-Einstein Condensate in a Double Well: Two-Mode
Theory of the Bosonic Josephson Junction

The aim of this section is to provide the basic theoretical tools to describe the physics
of a Bose-Einstein condensate in a double-well potential. Such a bosonic Josephson
Jjunction (BlJ), consisting of two superfluids weakly tunnel-coupled through a thin
potential barrier shows strong similarities with a superconducting Josephson junc-
tions [19, 20]. In this section, we will first introduce the two-mode approximation
which allow to simplify the many-body description of an interacting condensate in
the double well to a two-sites Bose-Hubbard (BH) model. We will see that within
the two-mode approximation, all observables can be computed numerically. We will
present the two conjugated macroscopic observables—number difference and rela-
tive phase—describing the state of the BJJ and compute their fluctuations in different
regimes. We will eventually introduce a mean-field picture which is valid in the limit
of large atom numbers and which allows describing the dynamics of the BJJ by
mapping it to that of a single fictitious particle.

It is interesting to note that many results presented in this chapter hold for other
types of two-mode systems, such as a condensate in a superposition of two internal
states (internal BJJ, in contrast to the external BJJ in a double well), as implemented
and studied in Refs. [21, 22]. A comprehensive topical review of the two-mode theory
of the BJJ can be found in [23].

1.2.1 Two-Mode Approximation

A natural approximation to describe an ensemble of atoms in a double-well potential
is to restrict its wavefunction to a superposition of two static, localized spatial modes,
from now on referred to as left and right mode ¢y g (¥). This has the effect of
limiting the dimension of the Hilbert space which contains all the possible states of
the BJJ to 2V Furthermore, we will see that if we assume that the particles cannot be
distinguished, as in a BEC, the dimension of the Hilbert space is N 41, allowing exact
calculations even for realistic atom numbers N ~ 1000 such as in the experiments
presented in this thesis.

In a symmetric double-well potential, the two modes can be built as a linear
combination of the ground and the first excited state (see Fig. 1.4):

b = % (1.73)
¢r = %J;E (1.74)

In a single-particle picture, we can use the two lowest-energy solutions of the
Schrodinger equation in the double-well potential:



1.2 Bose-Einstein Condensate in a Double Well: Two-Mode Theory ... 19

Fig. 1.4 Two-mode
approximation. Typical level
structure in a symmetric
double-well potential.
Provided all the energy
scales (energy, chemical
potential, temperature) are
small with respect to the
energy of the higher excited
states, the dynamics of the
system can be restricted to
the the two lowest energy
levels E, and E,. The left

and right modes can be
constructed from the ground Q

state (¢¢, symmetric) and 6
e

first excited state (¢, )
wavefunctions

il(l)ﬁzsg,e = Eg,e¢g,e~ (1.75)

Since ¢, g are not eigenstates of the system, an atom prepared in one of these two
modes will oscillate between left and right at the angular Rabi frequency Qgapi =
(E. — E,)/h[24].

For an interacting system, the definition of the spatial modes is less obvious: first,
it is not possible to assume static spatial modes since their shape will depend on their
occupation. This will be addressed in more detail in Chap. 4. A possible choice is to
take the two first stationary solutions of the GPEs.> They correspond to a situations
where all the atoms are in the ground (respectively the first excited) state. In principle,
this choice is not critical as long as the interactions do not significantly modify the
spatial modes. As discussed in Sect. 1.1.3.3, this is likely to be a good approximation
in the case of elongated double-well potentials.

Secondly, as time evolves, a linear superposition of ground and excited state will
not remain in the subspace spanned by ¢, and ¢,. Still, it is reasonable to restrict
the dynamics to the two lowest-lying states as long as no higher-energy state is
accessible. This will typically be true as long as the temperature and the energy scale
associated with interactions are lower than the energy spacing to the second excited
state (see Fig. 1.4).

In an asymmetric double well, there is no general way of defining two localized
modes. If the two lowest energy eigenstates are localized each in a different well, it

SWhich can be readily computed numerically knowing the potential.
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seems reasonable to define label them as ¢, g, meaning that in this case, no tunneling
will spontaneously occur when the system is initialized in one mode.

In any case, we will derive a two-mode model (2MM) without assumption on
the nature of the two modes, and show that all the parameters of the models can be
expressed as functions of the spatial modes ¢; g (F).

1.2.2 Two-Mode Bose-Hubbard Hamiltonian

1.2.2.1 Derivation from the Full Many-Body Hamiltonian

We want to derive a full many-body description assuming that the atoms can only
populate two arbitrary static modes. We start from the Hamiltonian (1.24) and follow
the derivation presented for example in Refs. [25-28] (double-well potential) or [29,
30] (internal states). An excellent presentation of the model can be found in the
topical review by Gati et al. [31].

The first step consists in writing the field operator as a superposition of the left
and right modes only®:

U (F) = ¢ (F)ar + ¢g (F) ag. (1.76)

We assume without loss of generality that ¢, and ¢y are real functions. Here again,
we omit the hats on the operators a; and ag. They obey the bosonic commutation
relations:

lar, ar]l =0, [a],ax]l =0, [ar,a}] = [ag, ag] = 1 (1.77)
Following Ref. [25], we insert Eq. (1.76) into the Hamiltonian (1.24) and reorder the
terms using the number operators n; = a, a;
A 0 0 I 40 1
Hom =Ejnp + Egng + 51 np (np — 1) + 51(0,4) ng(ng —1)
- J (azaR +a};aL)
— JGD aZaR — 743 a;aL +1GD nr (aZaR + a}aL) + 113 nr (azaR +a£aL)
1 T o
+ 21D ping + 51(2'2) (aLaiaRaR +aRaILaLaL) (1.78)

where E is the sum of the mean kinetic and potential energy in the mode i and

160 = gap, [ ¢, ¢}dF. Note that each term of the Hamiltonian conserves the total
atom number N = n + ng. The first line corresponds to the total energy of the left

Note that although the modes are labeled left and right, we don’t need at this stage to assume that
they are localized.
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and right modes, including interactions. The second line describes the tunneling of
one particle between the two modes, with the coupling strength:

(W

2m

J does not explicitly depend on the interaction strength gsp, but the wavefunctions
¢, and ¢ usually do. The minus sign is chosen such that J is positive, as will appear
below.

The last two lines correspond to interaction-induced transfers of particle between
the two modes. In Ref. [28], the authors derived a consistent “improved” two-mode
description of the BJJ where they retained all these terms, showing that they could
be responsible for significant deviations from the “standard” 2MM generally used
in literature. Here we motivate why we can generally neglect these terms. However,
it is useful to take them into account to make quantitative predictions over the BJJ
(see Sect. 1.2.5.4).

To compare the magnitude of the different terms responsible for particle transfer,
we can approximate the double-well potential by two harmonic potentials of fre-
quency wy centered in +xg (see Fig. 1.5) [25]. For simplicity, we treat the problem
in one dimension with the effective interaction parameter g in the direction of the
double well. We define the left and right mode as the two non-interacting Gaussian
ground states centered at £x(. The integrals in (1.78) and (1.79) can be perfomed
and we find [25]

Fig. 1.5 Double well in the
harmonic approximation.

\ / /

When the separation is large \ \ , /
enough, the double-well

potential can usually be \ ’\ {
approximated by two

harmonic potentials, which \ , \
yields analytical expressions | ¢P

for the tunneling term and ’

the interaction-induced \ /

transfer terms

-
e 8
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hwo ( x2
st (_20 _ )e—xé/aﬁo’ (1.80)
Ay
03 = 6 = & ~6/25/a, (1.81)
2T an,
100 = 8 -2gid, (1.82)

A 2man,

where ap, = +/I/(mwy) is the the harmonic oscillator length. From this we see that
the ratio between the tunnel coupling term and the (dominant) term responsible for
interactions-induced particle transfer scales as:

I o eotno i,
703) g

(1.83)

We find that interaction-induced particle transfer is negligible as long as the kinetic
energy dominates over the interaction energy in the direction of the double well,
which is precisely one of the condition of validity of the two-mode approximation.
Moreover, as discussed in Sect. 1.1.3.3, this condition is generally satisfied for the
elongated double-well potentials used in this thesis. Additionally, Eq. (1.80) shows
that the tunnel coupling strength J is positive for a large enough x¢ and exhibits
a Gaussian decay as a function of the well spacing xy on the length scale of the
condensate wavefunctions. In practice, the exact dependence of J will depend on
the geometry of the barrier, but this scaling has to be kept in mind to evaluate how
much the tunneling properties depend on the tuning of the double-well parameters
(see Sect.3.4.4).

Neglecting the interaction-induced transfer terms from the Hamiltonian (1.78) we
obtain the two-mode Bose-Hubbard Hamiltonian

o= — 7 (o t Ay
Hgy = J ajagp +agpar ) + 2(nL ng)

2 g = D1+ S g = D, (1.84)

where
A=E} - EY, (1.85)
Ug = g3D/¢‘,‘_’Rd7. (1.86)

Figure 1.6 displays a sketch of condensate in the double well and summarizes the
parameters of the two-mode Bose-Hubbard Hamiltonian.
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Fig. 1.6 Schematics and notations for the 2-mode BH model. The two sites are denoted left and
right, and are associated to the corresponding bosonic operators ay g and aZ, g 9L.r are the
wavefunctions associated to the left and right mode (we assume that they do not depend on the
occupation of the modes). J represents the strength of tunnel coupling, Uy, and U are proportional
to the interaction energies in each site. A is the zero-point energy difference between the two wells

1.2.2.2 Link Between U, g and the Chemical Potential

From the definition (1.30), it is clear that the terms in factor of U and Uy correspond
to the interaction energies in each mode. In the limit where J = 0, we can take ¢,
and ¢y as the ground state of the GPE (1.32) in each well, with the corresponding
chemical potentials:

h? s - - -
om quider—I—/V(r)qbi,Rdr+g3DNL,R/¢i’Rdr = LR (1.87)

Neglecting the implicit dependence of the mode wavefunctions with the atom num-
ber, we have

O
Ur~ ——

N (1.88)

N=Np r

The interaction constant is equal to the derivative of the chemical potential with
respect to the atom number, evaluated for each mode. The meaning of this expression
will become clearer in Sect. 3.5.2.

1.2.2.3 Diagonalization in the Basis of Fock States

Since the BH Hamiltonian (1.84) conserves the total atom number N, a natural basis
to describe the wavefunction is that of the Fock states, containing a well-defined
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number of atoms in each mode:
{INL. =0,Ng =N),|I,N—1) ... |[N,0)}. (1.89)

It spans a Hilbert space of dimension N + 1. This means that withing the two-mode
approximation, the full many-body problem can be solved exactly for reasonable
total atom numbers (such as N ~ 1200 for the experiments carried out in this thesis).
All operators can be written as simple (N + 1) x (N + 1) matrices on this basis
(see [31] for details). For example, the tunneling operator reads

0 VN 0 0
VN 0 V2Z(N=T1) ---
ajag+agar=| o N =D - SO (1.90)
0 0 . WN
0 0 -+ JN 0
The full Hamiltonian can be diagonalized numerically [25, 31]. A typical spectrum
is represented in Fig. 1.7, as well as some of the corresponding eigenstates (Fig. 1.8).
It is linear at low energy (like the spectrum of a harmonic oscillator) and quadratic

at high energy, where the levels are pairwise (almost) degenerate, corresponding to
localized states where most of the atoms are either in the left well or in the right well.

Fig. 1.7 Typical energy
spectrum of the two-mode
BH Hamiltonian. N = 41
atoms, vy = U/2J = 0.25
(Josephson regime, see

Sect. 1.2.3.2). Crosses
Energy of the eigenstates in
increasing order. Continuous
Lines approximate
expressions in the low
energy (linear) part and in
the high energy (quadratic
part) of the spectrum. The
states surrounded by a circle
are represented on Fig. 1.8

state label
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state label: 1 state label: 2
0.25 0.2
0.2 n
0.15
— 0.15 —
0.1
0.05
0.05 H H
il il
-20 0 20 -20 0 20
n = (nL—ng)/2 n=(np—ng)/2
state label: 36 state label: 37
0.8 0.6
0.6
0.4
E 04 £
IS8 SH
0.2
0.2
0 . o L
-20 0 20 -20 0 20
n=(np—ng)/2 n=(n,—ng)/2

Fig. 1.8 Four eigenstates of the two-mode BH Hamiltonian in number distribution. N = 40 atoms,
v = U/2J = 0.25. Probability distribution of the half number imbalance n = (n; — ng)/2 for
four eigenstates of the Hamiltonian (1.112). The four eigenstates corresponds to the red circles on
Fig. 1.7. Note that the low energy states (linear part of the spectrum) are localized around n = 0
while the high energy state are localized pairwise in the left or the right well

1.2.2.4 Time Evolution

Using the eigenstates |v);) of the Hamiltonian and the corresponding energies E;, the
state of the BJJ can be computed at any time from its initial state | ¥ (0)) through the
linear evolution’

"Note that in the many-body picture of the BH model, the evolution of the N + 1-dimensional
vector representing the state of the BJJ obeys the linear Schrodinger equation, even in presence of
interactions. This is different from the mean-field picture, where the interactions act as a non-linear
term in the GPE.
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N+1

(W) = D (i [WO)e ™ H/ M ) . (1.91)

i=1

Equivalently, the time evolution of any operator A built using the creation and anni-
hilation operators in the left and right mode can be computed from the Heisenberg
equation of motion

iha—A - [H A]. (1.92)

We will use this result in Sect. 1.2.4.3 to compute the dynamics of the full many-
body wavefunction and the physical observables.

1.2.2.5 Macroscopic Observables

In the two-mode approximation, the state of the condensate is characterized by two
key observables, similar to a position and a momentum variable: the population
imbalance and the relative phase. As we will see in Sect.3.2, our setup allows
accessing both observables experimentally.

Number Difference

The corresponding observable is defined as the half-number difference operator:

np —ngR

5 (1.93)

7

which is diagonal in the Fock basis, with eigenvalues ranging from —N/2 (all atoms
in the left well) to N/2 (all atoms in the right well).® We can label the Fock states
using the eigenvalues of 7

m=|Y -0y (1.94)
n_2 n,2 n). .

8The choice of the factor 1/2 is motivated by the fact that conversely to N; — Ng, n is incremented
or decremented by 1 when an atom tunnels from one well to the other.
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Relative Phase

Defining an operator for the phase difference between left and right is less obvious.
This relates to the more general problem of defining a phase operator in quantum
mechanics. For a historical (and entertaining) discussion on this topic, see Ref. [32].
Considering for example a single mode of the electromagnetic field, it seems natural
to define a Hermitian phase operator qAS such that:

a=vNe, (1.95)
at = e VN, (1.96)

Here N = a'a The commutation relation [a, aT] = | imposes that gZ; would verify
the Lerner criterion:

[, Q] = e (1.97)
or the commutation relation proposed by Dirac [33]
[g@, N] =i (1.98)

However, this leads to a contradiction: to ensure (1.98), the matrix elements of é in
the basis of Fock states would have to verify:

(m —n) (n| g lm) = id,,, (1.99)

which doesn’t make sense. Furthermore the commutation relation (1.98) would
imply the uncertainty product AN A¢ > 1/2, which would impose that Aqﬁ — 00
when AN — 0, which is not obvious as the phase is defined on [—7, 7].

It is therefore difficult to rigorously define a phase operator. Still, it is possible to
define operators for periodic functions of the phase such as ¢’ or the quadratures
cos ¢ and sin ¢ [34, 35].

While the notion of the phase of a single mode of the electromagnetic field, or that
of a single Bose-Einstein condensate, remains a delicate question, the experiments
in matter-wave interferometry with BECs since the work by Andrews et al. [36] have
allowed probing the relative phase between two condensates [37]. They have also
shown that in practice, one always measure a quadrature of the phase.
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We can try to give a theoretical description of the relative phase between the two
modes of the field, following the work by Paraoanu et al. [38], based on the phase
states defined by Pegg and Barnett [39]

N/2

Z e~ "% |n) . (1.100)

‘?bp) \/W =,

They are only defined for discrete values of the phase ¢, = 27p/(N + 1), p =
—N/2,...,N/2. Note that when N — 00, we recover a continuous phase over
[—m, 7]. The {|¢ p)} form a complete basis of the Hilbert space. The probability

distribution of the phase for any state W = > ¢, |n) is given by the modulus of the
discrete Fourier transform of W

N/2

p(en) = l(0p| O = oo | D0 ¢ - (1.101)

n=—N/2

Note that in the continous limit (N — 00), we can replace the discrete sums on
number or phase states by integrals

N/2
—>/ dn.
N/2
N/2
N+1 [®
> ) — == [ do.s). (1.102)
N2 T )

The phase states can be used to define the phase exponential operator

N/2

F= Y o

p=—N/2

ép) (0] (1.103)

which satisfies the Lerner criterion (1.97). Similarly, the quadrature operators are
defined by

@:%(ﬂJre/—\O) (1.104)
@:%(ﬂ—ﬁ) (1.105)

Even if we have not defined an operator for the relative phase that would satisfy
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the commutation relation [(;AS, ], let us introduce the phenomenological uncertainty
relation between relative phase and half-number difference’

ARAG > (1.106)

N =

In Sect. 1.2.4, we will show that a N-particle two-mode system can be described
by an effective spin verifying angular momentum commutation relations. These
commutation relations imply uncertainty relations between certain observables and
we will motivate they are consistent with the formal uncertainty relation (1.106)
when the number and phase spread are small enough. In Sect. 1.2.5, we will present
a mean-field model valid in the “continous limit” N — oo and show that the half-
number difference and the phase are canonical conjugate variables linked by

.0
n= —18—¢. (1.107)

which by the correspondence principle also motivates Eq. (1.106).

Physically, the uncertainty relation (1.106) implies that the number difference
and the relative phase of the BJJ cannot be measured simultaneously with arbitrary
accuracy.

1.2.2.6 Bose-Hubbard Hamiltonian in Number-Phase Representation

There is a link between the tunneling operator and the operator for the cosine of the
phase (1.104). In the Fock basis, the matrix elements of the tunneling operator read
(see Eq. 1.90)

N N
(m| aZaR + a;reaL ) Z\/(g + m) (E —m+ 1)5m,n+1
N N
+ \/(? - m) (E +m + 1)6111,11—1 (1108)

while that of the cosine operator read

— 1
(m| COSd) In) = 5 (5m.n+1 + 6m,n71) . (1.109)

We see that for n, m < N/2, one can identify both operators:

Note that in the following, unless stated, A F'2 represents the variance of the quantity F, and AF
its standard deviation.
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(m|ajag +ahay |n) ~ N (m|cos |n) . (1.110)

Therefore, an approximate expression for the BH Hamiltonian in number-phase
representation (dropping a constant energy offset for clarity) is given by

A ~ —J/N? — 4ii2cos & + UR* + ei (1.111)

with the interaction constant U = (U + Ug) /2 and the detuninglo e = (UL —
Ur)(N —1)/2 4+ A.

The tunneling term takes the form of a Josephson energy, which associates a flow
of particles between the two wells to the cosine of the relative phase between the
sites. We will see in Sect. 1.2.5.3 that the analogy with the Josephson effect appears
even more clearly in the dynamics of number imbalance and phase. The term in
factor of U is quadratic in 7 and represents the interactions energy and corresponds
to the cost (for repulsive interactions) of putting more atoms on one side than on the
other. The linear term is due to the energy difference between the sites caused by
the detuning A on one hand, and by the difference of Op/ON on the other hand (see
Sect. 1.2.2.2).

1.2.3 Regimes of the Two-Mode Bose-Hubbard Model

In the following, we assume a symmetric double well, such that A = 0 and U, =
UR =U:

. . ) U
Aon == J (ajag +ajar) + = e (= D +ne e = D] (L112)

— UN
%—J\/N2—4ﬁzcosgb+Uﬁ2~|—T(N—Z). (1.113)

In this case, the properties of the BH Hamiltonian depend only on the atom number
N and the dimensionless parameter

U

1.114
77 ( )

v

which represents the ratio of the interaction energy per particle over the total tunneling
energy.

10We distinguish between the difference in zero-point energy A and the detuning e which contains
also a difference of interaction energy coming for example from different confinement frequencies
in the two wells.
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1.2.3.1 Two Limiting Cases

It is useful to look at the two limiting cases U = 0 and J = 0 [27, 40]:

In the Absence of Interactions (U = 0)

In this case, the BH Hamiltonian is diagonal in the basis of the non-interacting ground
and first excited states of the double-well potential (see Fig. 1.4):

H = E,ala, + E.a}a, (1.115)
and J = (E. — Eg) /2 = hQRrapi/2. At zero temperature, the particles all condense

in the single-particle ground state ¢,. In the basis of the left and right mode, this
corresponds to the product state

_ oo\
|\D)_m(aL+aR) 10) (1.116)

where |0) is the vacuum state. This is an atomic coherent state [41], with relative
phase O (it is clear from Eq. (1.111) that the phase minimizing the energy is 0). In
the Fock basis, it reads!! [27]:

N/2
v / 1.117
W) = \/_ Z]\;/z N/2+n ( )

This shows that the (half-)population imbalance of the ground state follows a bino-
mial distribution between —N/2 and N/2. This has a simple interpretation: in absence
of interactions, the ground state (1.116) is a product state of each atom being in a
symmetric superposition of left and right mode. When the number imbalance is mea-
sured, each atom is independently projected with equal probability either on the left
or the right mode, yielding a binomial distribution. In particular, the variance of the
half-number difference in the ground state reads:

o N
AR = (1.118)

(or equivalently, the variance of the number difference A (n;, —n ®)> = N). The
probability distribution of n and ¢ are represented in Fig. 1.9 for a coherent state

1T'We use the binomial coefficients

ny n!
(k) k(= k)
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Fig. 1.9 Ground state in absence of interactions. N = 40 atoms, U = 0. Grey bars Histogram of
the half-number difference distribution (/eft) and the relative phase distribution (right) in the ground
state. Continuous lines probability distribution in the continous approximation. Note that already
for 40 atoms, it matches well the discrete probability distribution

with N = 40 atoms. In the limit N — oo where 7 and dg have a continuous spec-
trum, the binomial distributions tend towards normal distributions and the probability
distributions for n and the ¢ are given respectively by:

1
p(n) = \/2_—5”2/(2”5), (1.119)
T,

p(@) = ———e "1, (1.120)

with 012\, = N/4and ai = 1/N.Note eventually that the coherent state is a minimum
uncertainty state, i.e. it saturates the Heisenberg uncertainty relation:

1
Andg = - (1.121)

In Absence of Tunneling (J = 0)

In this case, the BH Hamiltonian (1.113) is diagonal in the Fock basis and one
immediately sees that the state minimizing the energy is the twin Fock state'?

12We have assumed an even N. Otherwise, the ground state is
1

7 (J(N=1/2,(N+1)/2) +|(N +1)/2, (N —1)/2)) (1.122)
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W) = |n = 0) = |[N/2, N/2) (1.123)

with well-defined, identical atom number left and right. It has zero number-difference
fluctuations, and its phase distribution is uniform (as that of any Fock state), meaning
that the phase is completely random. It is a limiting case for the uncertainty rela-
tion (1.106), implying infinite variance of the phase (which for a circular variable is
to some extent a matter of definition, see below).

1.2.3.2 In-Between: Rabi, Josephson and Fock Regimes

Between these two cases, the regimes of the two-mode Bose Hubbard model can be
characterized by looking at the number and phase fluctuations of the ground state (see
Fig. 1.10). The number fluctuations are quantified by the variance of the half-number
imbalance An2. For the phase distribution, the usual definition of the variance can
be extended to angular variables [42]. Here we define the variance of the phase as
the square of the circular standard deviation S in the state |\W)

N/2

()] ==2m]| 3 loplwFe||. a2

p=—N/2

S?[¢] = —21n[

For a gaussian state, i.e. a state with normally distributed number difference and
phase, such as for instance a coherent state with N sufficiently large, we have

/ cospe P27 dp A~ e 12, (1.125)

™

implying that the circular standard deviation coincides with the usual definition of
the standard deviation, while that of a Fock state is infinite.

Interestingly, in the case of repulsive interactions, the ground state is always
number-squeezed, meaning that the half number difference fluctuations in the ground
state are always smaller than Ang,p = VN /2, and that all the more as U/2J —
oo [30]. Intuitively, this can be understood by the fact that interactions disfavor
number differences, as they are energetically costly. The ground state fluctuations
show that three different regimes appear, depending on the the value of ~:

Rabi Regime

As long as




34 1 Introduction and Theoretical Background

1

Fock

S2[¢]

=)

Fig. 1.10 Variance of number and phase difference in the ground state. N = 1000 atoms. Light
blue line variance of 7, in units of the variance for a coherent state An = /N /2, as a function
of v = U/2J. Red line circular variance S?[¢] of the relative phase as a function of ~. The
black vertical dashed lines correspond respectively to v = 1/N and v = N, identifying the Rabi,
Josephson and Fock regimes. Note that the harmonic approximation (red and blue dashed lines)
describes extremely well the fluctuations of n and ¢ in the ground state in the Rabi regime and deep
into the Josephson regime

U 1
7 < N (1.126)
tunneling dominates over atomic interactions. The physics of the bosonic Josephson
junction does not significantly depart from the non-interacting case. The ground state
is close to a coherent state with well-defined phase and binomial number difference
fluctuations. The many-body spectrum is essentially linear, like that of a harmonic
oscillator, with energy levels evenly spaced by the Rabi energy 2J.

Fock Regime

U
— >N 1.127
27> (1.127)

Conversely, when atomic interactions dominate over tunneling, the ground state
exhibits strongly suppressed number difference fluctuations while the phase is almost
random. In Ref. [27], an approximate analytical expression for the half-number dif-
ference fluctuations in the ground state is derived and reads

1 2JN
8v2 U

An = <1 (1.128)
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The energy spectrum is essentially quadratic (PAI ~ Un?) with pairwise (almost)
degenerate states with opposite imbalance (|Ny, Ng) , |[Ng, Np), see Fig. 1.8). These
states are often said to be fragmented, meaning that they cannot be written as a product
of single-particle states.

Josephson Regime

1 U
—_« — «N 1.129
N < 27 < ( )
In the intermediate regime, both contributions are comparable and the energy spec-
trum exhibits both a linear and a quadratic part (see Fig. 1.7). For high energy eigen-
sates, the interaction term dominates in the Hamiltonian

. UN
A ~ Un® + - (N-2), (1.130)

and the energy spectrum is quadratic while at low energy, it is linear. As long as the
the low-energy eigenstates have small fluctuations of number-difference and phase
(we will check this afterwards), the BH Hamiltonian (1.113) can be linearized and
reads

N hiw (;52 72
Ham = 4 — ). 1.131
BH 2 (2037 + 20?2 ( )

with:
hwy = 2JV1+ A, (1.132)
JIF+A
ol = ; : (1.133)
ol = N (1.134)
AT A '

A=UN/2J. (1.135)

We identify the Hamiltonian of a 1D harmonic oscillator where the phase plays
the role of the position, and the number difference corresponds to the momen-
tum. The dimensionless parameter 1 << A < N? in the Josephson regime represents
the ratio between interaction energy and tunneling. The energy scale is given by the
Josephson frequency wy, which is the frequency of the tunneling oscillations in pres-
ence of interactions'? (see Sect. 1.2.5.3). Equivalently, it is the frequency of the lowest
Bogoliubov mode of the bosonic Josephson junction [38]. o2 and oé are respectively

13Sometime refereed to as plasma oscillations.
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the variance of n and ¢ in the ground state and their product saturates the Heisenberg
uncertainty relation (1.106). The fluctuations of n and ¢ in the kth excited state scale
as /2 (k + 1/2)0, 4, their product as k + 1/2.

Figure 1.7 shows a comparison between the fluctuations of n and ¢ in the ground
state computed by the exact numerical diagonalization of (1.112) and the harmonic
approximation. This approximation is expected to be valid in the linear part of the
energy spectrum, i.e. for state whose energiy is smaller or of the order'* of J N. This
in turn sets a limit to the maximal phase and number spread for which the harmonic
approximation is valid

Ap* <1, (1.136)
N2

The condition on An? simply tells us that the description of the BJJ as a har-
monic oscillator in number and phase difference breaks down when entering the
Fock regime. Equivalently, in terms of normalized population imbalance z =
(N — Ng)/N,itreads Az < 1//A+ 1.

1.2.3.3 Link Between Phase Fluctuations and Coherence

The fluctuations of the relative phase can be directly connected to the notion of
first-order coherence between the two modes [31, 40]. Provided there is no signif-
icant spatial overlap between the two wavefunctions and n; & ng, the first-order
coherence function between the left well and the right mode reads

(G ¥ ()
S GO ) (1 Gr)w G)

_lajag +agar)
N
~ (cos ¢). (1.138)

H,~ -
gV (L, 7r) =

From the definition of the circular standard deviation (1.124) and assuming a sym-
metric phase distribution,

14More precisely, when N is sufficiently large, as it is always the case in our experiments, the
crossover energy between the linear and the quadratic part of the spectrum (see Fig.1.7) occurs
between 0.07 x JN (A =1)and2 x JN (A = N?), where the origin of the energies is set to the
ground state energy minus fiw; /2, like in a harmonic oscillator.
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$*[6] = —21n ((cos 9))
~ —2In[g" (7. Fp)] (1.139)

(cos ¢) is often called the coherence factor. It measures the visibility of the average
of interference fringes obtained by matter wave interferometry .

1.2.4 Collective Spin Representation

In this section, we will introduce the concept of a collective spin mapped to an
ensemble of two-level atoms. We will show the link between the uncertainty product
of n and ¢ and the commutation relations for an angular momentum operator. We will
see that the collective spin is a useful tool to study and visualize many-body states
of the BJJ and introduce the concept of atomic squeezed states. A comprehensive
introduction to the notion of collective spins and spin squeezing, particularly in the
context of atom interferometry is given in the tutorial by Gross [43].

1.2.4.1 Collective Spin Associated to an Ensemble of Atoms

Spin 1/2 Associated to a Single Two-Level System

A single two-level system can associated to a fictitious spin 1/2 5 [44]. Considering an
atom in a double-well potential, the left and right modes can be mapped onto the two

eigenstates of §, with eigenvalues respectively +1/2. Any coherent superposition of
the two modes

0 _. 0 .
) = cosze_m’/z |L) + sin Ee'W |R) (1.140)
can be represented as a point on the Bloch sphere (see Fig. 1.11).
The effect of a linear Hamiltonian H acting on the two-level system can be

represented by an effective external magnetic field B the spin is coupled to

H o B -5 = B,§, + By§, + B.5.. (1.141)

Collective Spin N2 for N Identical Two-Level Systems

Similarly, an ensemble of N identical two-level systems can be associated with the
collective spin N/2
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5 1)

s=S"5", (1.142)

i=1

The connection to a two-mode many-body system in the formalism of second quan-
tization has been established by Schwinger [45, 46]. When all operations done
on the spin ensemble act on each spin in the same way, the full Hilbert space of
dimension 2" can be reduced to the (N + 1)-dimensional subspace corresponding
to §2 = (N/2)(N/2 + 1) [43]. The spin components read'’

¢ Ly i

S=3 ( Tag +aRaR) , (1.143)
¢ _ Ly t

S =5 (akar —alar). (1.144)
~ 1 .

§.=3 (aZaL — al'eaR) . (1.145)

Importantly, they obey the circular commutation relations for angular momentum
operators16

A

[Sks SI:I = [€km S, (1.146)

and must therefore satisfy the corresponding uncertainty relations

A A 1
ASLAS > E

<Sm>‘ (1.147)

Fig. 1.11 Bloch sphere The V4
north and south poles ! W)
correspond respectively to -
|L) and | R). The latitude is /!
proportional to the / L
probability of measuring the [
atom in the left or the right s !
mode, and the angle ¢ of the . !
projection onto the ! _
equatorial plane corresponds ! \ >y

1

1

1

to the phase of the quantum
superposition

I5We chose to denote the spin components S; to avoid confusions with the coupling energy J.
166, denotes the Levi-Civita symbol.
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N-particle spin states can be visualized employing the Husimi Q-representation on
a generalized Bloch sphere [43, 47] (see Fig. 1.12).

1.2.4.2 How Do We Recover the Number-Phase Representation?

The spin picture, through the circular uncertainty relations (Eq. 1.146) between the
components of the spin, contains all the uncertainty relations between the physical
observables. How does it relate to the number-phase representation introduced in
Sect. 1.2.2.5? First, n = §Z. The basis of Dicke states and the Fock basis are exactly
the same (the Dicke state with the eigenvalue n for S’Z coincides with the Fock state
n)).

The link to the phase is less straightforward. Let us first note that S is equal to the
tunneling operator (1.90). For a state which is well-localized around a given position
on the Bloch sphere,'” such as that of Fig. 1.12, we see from Egs. (1.108) to (1.109)
that the phase quadrature operators are approximately given by

S, ~ % N2 — 4(A) cos &, (1.148)
N 1 a2
§,~ SN - 4(7)’sin . (1.149)

As in the single particle case, the relative phase corresponds to the angle of the

projection of the spin onto the equatorial plane with respect to the x axis.
The link to the phase-number uncertainty can be established (at least formally)

if we take such a localized spin state and linearize (Acos ¢)? and (Asin ¢)? close to
the mean orientation of the spin, we can write

N
a8 (a3 +a8) =5 (

) =5 (j80]+[80])
& 3N — a2 (|G| a0 + |G| a6) = 11/ 4 (|5 + |
1
©=3

2
(1.150)

This has a simple geometrical interpretation: when the spin state is well-localized, it
is sufficient to consider its immediate vicinity on the generalized Bloch sphere and the
problem can be reduced from a 3D representation to a 2D representation on the plane
tangent to the mean orientation of the spin. The projection of the state in this plane can
be described by only two conjugated observables, for example 7 and ngS verifying the
uncertainty relation (1.106). But strictly speaking, only the commutation relations
and the uncertainty products for the spin components are well-defined.

17For example, a coherent state with N large enough, see Sect. 1.2.4.4.



40 1 Introduction and Theoretical Background

Sz

Fig. 1.12 Spin states on the generalized Bloch sphere. Adapted from http://www.stanford.edu/
group/kasevich/cgi-bin/wordpress/?page_id=57. N-particle collective spins can be visualized as
a density distribution on a generalized Bloch sphere of radius N/2. The fuziness of the red spot
represents the uncertainty on the different spin components. Left coherent state. Right number-
squeezed state (Color figure online)

1.2.4.3 Bose-Hubbard Hamiltonian in Spin Representation
In spin representation, the BH Hamiltonian (1.84) reads
Hpy = —2JS, + €S, +US? (1.151)

(a constant energy offset has been dropped). The time evolution of an arbitrary state
[¢)) under this Hamiltonian follows

ZJSAxfeﬁszS“f)dt/h

(e +dry) = ¢ ). (1152)
The tunneling term can therefore be seen as a rotation around the x axis of the Bloch
sphere'® at the angular velocity 2. /A. In the same way, the detuning term represents
a rotation around the z axis at the angular velocity €//. Note however that as soon
as both terms are acting, the motion of the collective spin is not a rotation anymore.

The interaction term on the other hand represents a shearing transformation. It
can be seen as a rotation around the z axis, but with an angular velocity ~Un/h
depending on the latitude on the Bloch sphere.

The time evolution of the spin components is obtained from the Heisenberg equa-
tion of motion (1.92), making use of the commutation relations (1.146). It yields the
three equations [25]

I8 A rotation of angle 0 around the i axis reads R; () = i1
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A

ds, € A U /A~ « A A

i =S g (8888, (19
d§ 2J - € U /~ - A A

_dt) =7 S; + ﬁSx + E( Oz + zSX)v (1.154)
ds. 2J 4

d_; = _75’“ (1.155)

They will be used in Sect. 1.2.5.3 to compute the time evolution of the macroscopic
observables n and ¢ in the classical limit.

1.2.4.4 Some Many-Body States in the Spin Representation

The spin representation is a convenient tool to study and visualize many-body states
of the bosonic Josephson junction. Two types of states are particularly relevant for
the work presented in this thesis:

Coherent Spin States (CSS)

CSS are product states obtained from putting all the atoms in the same superposition
of the two modes [41]

Fig. 1.13 Schematic (a)

illustration of a collective

spin. Taken from Kitagawa

et al. [48]. a Coherent spin

state constructed from 2§ 1/2 random

uncorrelated spin 1/2. —
b Squeezed state constructed @?@
from 2 correlated spin 1/2

258

(b)

12 correlated

TEEP
s
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0 ..., 0 N
10, 3o = cos—e’¢/2ai+sin§e“”/2a};) |vac) (1.156)

7w (3

(Jvac) denotes the vacuum state). The ground state of the BJJ in absence of interac-
tions (see Eq. (1.116)) isa CSS with § = 7/2 and ¢ = 0. Wlthout loss of generality,
let us consider |7/2,0).,,. The spin points along x ((S )y = (S,) = 0) with the

length ( S) =N /2. Transversely to the mean spin direction x, the fluctuations are
isotropically distributed (see Fig. 1.12, left panel)

AS2 = AS? = AS? = N/4, (1.157)

where S| = cos S y + sin aS’Z. CSS are miminum uncertainty states saturating the
product (1.147)

(1.158)

Figure. 1.13a, taken from Kitagawa et al. [48], illustrates this result: the variance of
the orthogonal components of a single spin 1/2 pointing in x direction are given by
A§7 = 1/4. Summing up N such uncorrelated spins, the variances simply add up to
N/A. CSS are minimum uncertainty states with isotropic fluctuations in the direction
orthogonal to the mean spin orientation.

Squeezed States

In 1993, M. Kitagawa and M. Ueda introduced the concept of spin-squezed states
to describe states such that the variance of one spin component normal to the mean
spin vector is smaller than the standard quantum limit [48]. Such states involve an
anisotropical redistribution of the fluctuations of the collective spin, which still has
to satisfy the uncertainty relation (1.147). This means that noise reduction for one
spin component implies excess noise in another direction.

A state such that AS’ZZ < N/4, or equivalently A (N, — NR)2 < N, is said to be
number squeezed (see Fig. 1.12, right panel). The number squeezing factor

AS. A (N, — Ng)
= = 1.159
w JN/2 VN (1.159)

quantifies the amount of number squeezing by comparing the fluctuations of the
number difference to that of a coherent state. Number squeezed states are character-
ized by £y < 1. A Fock state for example is perfectly number-squeezed (it can be
represented by a circle of latitude on the Bloch sphere). As pointed out by Kitagawa
et al. [48], correlations between the atoms are necessary to produce number squeez-
ing (see Fig. 1.13b). However, these correlations can be classical: for example, the
state of two condensates produced independently with a given finite number of atoms
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(in each condensate) is number-squeezed, although there exists no phase coherence
between both.

Importantly, as mentioned in Sect. 1.2.3.2, the ground state of the BH Hamiltonian
in presence of repulsive interactions is always number-squeezed (see Fig. 1.10). In
the Rabi and the Josephson regimes, the square of the number squeezing factor reads

2 1

&y = \/A:—i-l <1 (1.160)

By extension, one can also define phase-squeezed states as states with a phase
spread smaller than 1/+/N. They are characterized by the phase squeezing factor

A
=_—7 1.161
“ 1/vN ( )

Because it is saturating the Heisenberg number-phase inequality, the ground state
of the two-modes BH Hamiltonian with repulsive interaction is always anti phase-
squeezed. In the Josephson and Rabi regimes, it reads

E=vA+1>1. (1.162)

Coherent Spin Squeezed State (CSSS)

In 1994, Wineland et al. defined a particular class of atomic squeezed states charac-
terized by the measure of useful (or coherent) spin squeezing [49]

AS | i
£ = VN2 (1.163)

~
5

(S)

&s measures the ratio of the minimal fluctuations transversely to the spin mean
direction over the spin mean length. In particular, for a spin pointing along x and
where the direction of minimal uncertainty is z, this definition translates into
An En
£s = — = —
~/ N /2{cos ¢) (cos @)

(1.164)

Not all atomic squeezed states satisfy the definition (1.163), as it requires a high
coherence together with suppressed fluctuations of one observable. The Fock states,
for which An = 0 and (@) = 0 are a particular case for which the amount of
useful spin squeezing is not defined. Importantly, the ground state of a BJJ with
repulsive interactions and finite tunnel coupling is always spin-squeezed [30]. In the
Rabi and the Josephson regime (A < N?), the square of the useful squeezing factor
reads
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1
5§:A_+lexp («/1+A/N) <1 (1.165)

We will show in Sect. 3.4.3 that the state that we produce by coherently splitting
a Bose-Einstein condensate is also a coherent spin squeezed state.

1.2.4.5 Spin Squeezing and Interferometry

The concept of atomic spin squeezing has been largely investigated as a potential
resource for enhanced precision in interferometry. The idea of enhancing the sensi-
tivity of an interferometric measurement by engineering the noise fluctuations of the
quantum state in the interferometer originated in the field of quantum optics with
photons [50].

A prototypical interferometer is the Ramsey/Mach-Zehnder interfometer (MZI,
see Fig.3.1). In Sect. 3.1, we will come back to the distinctions between the different
schemes investigated in literature, but conceptually, they are all based on the same
principle: an ensemble of particles is prepared in a coherent superposition of two
modes by means of a first /2 pulse (separation beam splitter). They are allowed to
evolve for a given time during which the superposition picks up a relative phase ¢.
A second 7/2 pulse (recombination beam-splitter) eventually maps the phase ¢ onto
the population of the two modes. The phase ¢ can be inferred from the measured
population imbalance.

The Non-interacting Case

In the collective-spin picture, and assuming no interactions, the Ramsey/MZI
sequence can be represented by a series of rotations on the generalized Bloch sphere.
The beam-splitters correspond to rotations of angle /2 around the (x)-axis, while
the phase accumulation corresponds to a rotation of angle ¢ around the (z)-axis (see
Sect. 1.2.4.3). For example, if the atoms initially all share the same mode, which is
similar to illuminating only one input port of an optical MZI, the initial state corre-
sponds to the Dicke state located on one of the poles of the Bloch sphere. The first
/2 pulse brings the spin onto the equator, then the phase accumulation rotates it by
an angle ¢ in the equatorial plane. The second 7 /2 pulse eventually rotates the spin
in a way such that ¢ is mapped onto the projection of the spin along the vertical axis
of the Bloch sphere.

Alltogether, in absence of interactions, the MZI sequence is equivalent to a rotation
of angle ¢ around the y-axis of the Bloch sphere!® [51]:

19Note that the choice of the axes and the orientation of the rotations may differ depending on the
conventions and on the exact procedure. For example, in traditional optical MZI built with half-
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(W) = 35710507155 |y )

= e 1 0y,) (1.166)

The phase picked-up during the phase accumulation stage is mapped onto the pop-
ulation imbalance in the output state

(S)ou = — sin ¢(S,)in + cos A(S.); (1.167)

In classical wave optics, it is common to present MZI setups where only one input port
is illuminated, yielding (71)oy = cos ¢. In a double-well matter-wave interferometer,
the input state is generally a symmetric superposition of left and right mode ((S‘Z) =
0), in which case

(Aout = —(Sx)in sin . (1.168)

The imbalance of the output state varies sinusoidally with the accumulated phase. In
an ideal interferometer, the contrast?’ of the interference fringes is determined only
by the degree of coherence (S'x) of the input state. If an atomic coherent state is sent
into the interferometer, the contrast is maximal and equal to one.

The sensitivity of the MZI to phase shifts, i.e. its ability to detect a small devia-
tion A¢ from a given phase ¢y, is commonly estimated from Eq. (1.168) by error
propagation to the first order?! and reads

Aﬁout(QSO)
Ap= ———MM—— 1.169
® = o) 1001, (109

Figure 1.14 illustrates the meaning of Eq. (1.169): the sensitivity to small phase
shifts is equal to the ratio of the uncertainty on the population imbalance over the
slope of the averaged fringe.

The variance of 71,y is given by

AR, = sin® G(AS?)in + cos? G(AS2)iy — 4sin ¢ cos (S, 8. )in, (1.170)

where we have assumed that the input state is symmetric ((i)in = 0) and that its
spin is aligned along x ((Sy)in = 0) [51]. The last term is linked to the correlations
between number and phase fluctuations of the input state. If we assume that they are
independent,”” we get

silvered mirrors, care has to be taken about the fact that reflexions on the front or the rear face of
the beam-splitters have a different phase shift.

201p the following, we will use equivalently the terms contrast and visibility.

2IFor ¢y = /2, it is not a meaningful quantity since both numerator and denominator are equal to
Zero.

22Such a state can be represented by a noise ellipse with eigenaxes parallel to (y) and (z), such as
displayed in Fig. 1.12.
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Fig.1.14 Phase sensitivity in Mach-Zehnder interferometry. Adapted from Gross [43]. Comparison
between the phase sensitivity achieved with a coherent state, and with a spin-squeezed state. The
visibility V of the MZI/Ramsey fringes is higher with a coherent state (V = 1) than with a
spin-squeezed state. Nevertheless, the precision of the phase estimation with a spin-squeezed state
outperforms that of a coherent state, because the projection noise is suppressed by a larger amount
(see caption)

sin” ¢ (AS82)i, + cos? (Z)Q(Aﬁzz)m

AQ? = X
(Sy)2, cos? ¢y

(1.171)

In an ideal, i.e. noise-less and interaction-free MZI, the sensitivity depends only on
the input state and the working point ¢y. Equation 1.171 is minimal at the points of
steepest fringe slope ¢9 = 0 and ¢y = 7, and reads

(1.172)

If the input state of the interferometer is a coherent atomic state, Eq. (1.172) yields
the standard quantum limit (SQL), also referred to as quantum projection noise:

1
AgsqL = —. (1.173)

VN

This result simply reflects the fact that the absence of correlation between the atoms
implies a binomial number distribution between the two output ports (shot noise).
The SQL represents the best sensitivity achievable with uncorrelated atoms.

On the other hand, Eq. (1.172) indicates that sub-shot noise sensitivity can be
achieved with coherent spin-squeezed states. The condition A¢nyin < A¢sqr, corre-
sponds precisely to the definition of useful squeezing introduced in Ref. [49]. The
value of &g expresses the potential sensitivity gain achievable with the resource of a
given spin-squeezed state. As shown in Fig. 1.14, the states defined by Eq. (1.163)
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yield reduced fluctuations of the output imbalance (number squeezing) at the expense
of a moderate loss of fringe contrast, allowing for an overall sensitivity gain.

The sensitivity defined in Eq. (1.172) is fundamentally limited by the fact that
the number of atoms in each mode can be at best counted one by one, while the
coherence is smaller or equal to 1. This defines the Heisenberg limit

1
Adw =+, (1.174)

which is believed to be the best precision achievable by an interferometric measure-
ment [52]. Note however that the simple expression (1.169) for the phase sensitivity
assumes Gaussian probability distributions, which is not in general the case for non-
classical states. Finding the best possible sensitivity requires to find both an optimal
input state and an optimal estimation method [53-55].

The Interacting Case

The above discussion is however only valid in the non-interacting limit. If inter-
actions are present, the Hamiltonian describing the evolution of |W) is not linear
anymore, and the sensitivity of the interferometer depends also on the details of the
interferometer sequence. It was recognized in Ref. [56] that sub-shot noise sensitivity
could be achieved in a double-well interferometer by taking advantage of the strong
correlations appearing in the Fock regime. In Ref. [57], the authors derived the scal-
ing of the sensitivity for a MZI with interacting BECs in the Rabi (A¢ o« N~1/2),
Josephson (A¢ oc N=3/4) and Fock regimes (A¢ o« N~1).

Experimentally, interferometric measurements beyond the SQL have been recently
achieved in internal BJJ [58, 59]. In Ref. [58], controlled interaction during the first
7/2 beam-splitter resulted in the creation of a strongly spin-squeezed state. It yielded
a 15 % metrology gain over a similar sequence in which the first beam-splitter was
well into the Rabi regime.

Whether or not such a scheme is extendable to an external BJJ in a double-well
potential is still an open question. Several aspects of this question will be discussed
in the next chapters. Nevertheless, numerical simulations of the full many-body
dynamics in a realistic 1D double well, together with the use of Bayesian phase
estimation protocols, suggest that sub shot-noise measurements should be achievable
with an interacting BEC [60].

1.2.4.6 Spin Squeezing and Entanglement
Entanglement in many-body systems is defined as the non-separability of the density

matrix (see the review [61]), meaning that the density matrix of the system cannot
be written as a product of single-particle density matrices
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p=> pr" ® - @p". (1.175)
k

The difficulty in characterizing many-body entanglement comes from the exponen-
tially increasing number of measurements necessary to reconstruct the full density
matrix. However, entanglement criterions based on collective measurements were
proposed. Sgrensen et al. [62] showed that for distinguishable bosons, the same cri-
terion that quantifies useful (or coherent spin-) squeezing (Eq. 1.163) detects entan-
glement. The same year, a criterion to quantify the depth of entanglement from a
measurement of two collective operators was derived in Ref. [63].

The idea of this criterion is that, for a collection of spin-S§ particles, there exists a
lower bound for the fluctuation of one component of the associated collective spin,
given the value of its mean projection onto an orthogonal direction [63]:

AS? > % |:S(S+ 1) — (8,)> — \/(S(S+ D - (§x)2) —~ <Ax)2}
= Fy ((SX)). (1.176)

In other words, this inequality sets a lower bound to the fluctuations of 7 for a given
coherence (cos ¢) and a given atom number N. It can be used to estimate the optimal
spin-squeezed state for an interferometric measurement, given the requirement of a
certain contrast. F' is not a tight bound but is close to the actual minimum when the
coherence is large.

Inequality (1.176) can be used to define a measure of the extent to which a system
of distinguishable bosons is entangled. Any separable state of M spin-J particles
(ji,i = 1... M) verifies

AT? = MJ Fy[(J)/(MJ)] (1.177)

where J = zl]‘i 1 ;, [63]. For example, with J = 1/2, we recover the coherent spin-
squeezing condition Eq. (1.163). For two values M and J such that MJ = N /2, if
the measured values of Ajzz/(MJ) = ¢y and (J,)/MJ =~ {(cos ¢) do not satisfy
the inequality (1.177), the degree of spin-squeezing excludes that the density matrix
of the system can be written as a direct product of blocks all involving less than M
particles.

It must be however underlined that originally, the criterion (1.177) has been
derived for distinguishable particles [43]. The question of whether atoms in a BEC
are distinguishable, has been heavily debated and is beyond the scope of this thesis
manuscript. A discussion of entanglement and spin-squeezing in BECs can be found
in the tutorial by Gross [43] .
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1.2.5 Mean-Field Model in the Josephson Regime

The aim of this section is to derive a mean-field version of the BH Hamiltonian to
gain more insight into the dynamics of the macroscopic observables as well as their
fluctuations.

1.2.5.1 Continuous Limit

We have seen in Sect. 1.2.2.5 that in the limit N — o0, the (half-)number difference
operator and the phase quadrature operators have a continuous spectrum. In this
“continous limit”, we assume that there exist real functions n and ¢ such that the
creation and annihilation operators in the left and right mode can be replaced by the
complex numbers [38]

a, —> /N + ne /2, (1.178)
ar —> /N — ne'?’?, (1.179)

This approximation is expected to hold as long as the fluctuations on the number
difference and the phase spread are small enough, as it is typically the case in the
Josephson and in the Rabi regime when N > 1.

In the continuous limit, the spin components read

. 1
S, — 5\/N2—4ncos¢, (1.180)
. 1
S, — 5\/1\72 — dn'sin ¢, (1.181)
S. —>n, (1.182)

and the full BH Hamiltonian (1.84) becomes

Hyr = —JV/' N2 — 4n2cos ¢ + Un* + en. (1.183)

Inserting Eqgs. (1.180)—(1.182) into the Heisenberg equations of motion (1.153)—
(1.155) yields the two coupled differential equations for the time evolution of the
macroscopic observables

J
n= —E\/mgnqﬁ, (1.184)

. e 22U 4J n
¢p=—-+—n+
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On the other hand, partial derivation of Hyr with respect to n and ¢ shows that they
obey Hamilton’s equations

% = ho, (1.186)
n
O0Hwr )
= —hn. 1.187
90 n ( )

This proves that in the continuous limit, n and ¢ are two canonical conjugated
variables and motivates the uncertainty relation (1.106) between n and ¢ in the
quantum limit. Furthermore, it implies that

.0
n=—18—¢. (1.188)

¢ can be identified to a position variable and » to a momentum variable.

1.2.5.2 Effective Schrodinger Equation in Phase Representation

Considering the BJJ in the continous limit allows to developing an intuitive mean-
field picture for the dynamics and the fluctuations of the full many-body
wavefunction. The state of the system can be described by an effective single-particle
wavefunction [¢)) evolving under the mean-field Hamiltonian (1.183). It can be either
written in phase or in half-number difference representation, both beeing linked by
Fourier transform

nln, 1) = J%—W / ol e "dg. (1.189)

The wavefunction in phase representation (¢, ) obeys the effective Schrodinger
equation”?

oy 2 0

Equation (1.190) maps the evolution of the many-body wavefunction to the motion
of a fictitious particle of mass o 1/2U in a cosine potential with the unusual feature
that its steepness depends on the momentum of the particle. It is often compared
to the motion of a classical momentum-shortened pendulum, i.e. a pendulum, the
length of which decreases as a function of its angular momentum.

23(from now on, we consider only the wavefunction in phase representation and omit the subsript o)
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Fig. 1.15 Effective potential and some eigenstates in the mean-field approximation. Effective
potential Vegr (¢) = ncos ¢ (continuous black line) and harmonic approximation (dashed black
line) for the mean-field Hamiltonian (n = 40). Gray lines energies of the ten lowest eigenstates.
Red, blue, green lines phase distribution (non normalized) for the three lowest eigenstates. Note
that the picture of an effective potential is only meaningful for small population imbalances (Color
figure online)

Neglecting this term, which is possible when An <« N/2, and rewriting
Eq. (1.190) using the dimensionless time?* 7 = 2Ut /A yields

oY 1 9% )
R - —iE— 1.191
167 ( 200 7 COS ¢ zea¢)w, (1.191)
with
NJ N?
§= % (1.193)

For large values of 7, the effective potential Veg (¢) = 1 cos ¢ is deep, corresponding
to localized ground state with a narrow phase width (see Fig. 1.15). It illustrates the
fact that tunneling tends to lock the relative phase between the condensates. On the
contrary, when 7 is small, interactions cause a spread of the phase distribution, giving
rise to interaction-induced phase diffusion (see Sect. 3.5.2, where the crossover value
of n is discussed).

241n the following, we will sometimes also use the dimensionless time 7 = 2J/Az. In one case, it
mean measuring the time in units of %/2J, in the other, in units of #/2U. Which variable is used
depends on whether one is interested respectively in the limit U — O or / — 0.
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In the case of an inbalanced double well, the term containing € represents a constant
momentum applied to the fictitious particle. We can perform the transformation

¢—€er —> ¢, (1.194)
Y(¢ — eT) —> Y(9), (1.195)
to get
oy (10 .
ZE— (—Ew—ncos(gb—ﬁ)) . (1.196)

It corresponds to going to a frame moving with the velocity €. In this frame,
the fictitious particle is evolving in a time-dependent cosine potential shifting at the
velocity €.

When n <« N/2 and ¢ < 1, we can develop the Hamiltonian (1.183) to the
second order to recover the harmonic approximation® of Sect. 1.2.3.2

L0 2J\ &* N ,

(we have assumed € = 0). This the Schrodinger equation of an effective particle of
mass (U + %)_1 in a harmonic potential of frequency w; = 2J+/1 + A/h. The
harmonic approximation consists in restricting the motion of the fictitious particle to
the quadratic part of the cosine potential.® The validity condition E < J N ensures
that this condition is satisfied.

1.2.5.3 Dynamical Modes in the Mean-Field Regime

Without resorting to the small imbalance approximation, Egs. (1.184) and (1.185)
can be used to describe the dynamics of the BJJ by computing the time evolution
of the mean phase and number difference. It is convenient to rewrite them using
the dimensionless time 7 = 2J¢/h and the normalized population imbalance 7z =
(np, —ng)/N = 2n/N. In dimensionless form, they read

z=—+/1—22(7)sin¢(1), (1.198)

. € z(7)
¢ = 37 + Az(T) + TZ() cos ¢(7). (1.199)

T

25 Actually, the condition on 7z is more stringent, as we have seen from the many-body results
(Sect. 1.2.3.2) that the harmonic approximation breaks down already whenn ~ N/2- (14 A)~'/2,
26Note that if the momentum-shortening term is neglected, one gets w; = 2.J+/A. In the Josephson
regime (1 < A < N?), both expression coincide.
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Fig. 1.16 Phase portraits of the classical BJJ. Trajectories of the state of the symmetric BJJ in
phase space {n, ¢} for four different values of A. In absence of interactions (A = 0), all trajectories
are closed paths around the two fixed points (0, 0) (blue) and (0, 7) (green, corresponding to the
m-modes). The black lines correspond to the maximum-amplitude oscillation between z = —1 and
1. Interactions change the topology of the phase portrait. When A exceeds 1, a bifurcation occurs:
the point (0, 7) bifurcates in two new stable fixed points with opposite population imbalances, while
(0, m) becomes a hyperbolic fixed point. For even larger interactions (A > 2), self-trapped modes
appear with a free running phase (red lines) while the 7-phase mode are wedged in the corners of the
phase portrait (green lines). MQST modes and m-modes are parted from the Josephson oscillations
(blue lines) by a separatrix (black line)

These equations can also be derived directly from a mean-field picture by inserting
a two-mode Ansatz in the time-dependent GPE [64]. The dynamics of z(¢) and ¢(t)
result from the interplay between tunneling, detuning and interactions. Figure 1.16
displays the phase portrait of the BJJ for different values of A. Let us review three
dynamical modes which have been studied in the experiment presented in this thesis.
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Fig. 1.17 Josephson oscillations and self-trapping. Evolution of the population imbalance z () and
the relative phase ¢(¢) from the dynamical equations (1.198) and (1.199) in two different modes:
Josephson oscillations (blue) and Macroscopic Quantum Self-Trapping (red). A = 10,e =0

Josephson Oscillations

Here and in the following paragraph, we assume € = 0. To treat small oscillations
close to the minimum of Vg (see Fig. 1.15), we can linearize Egs. (1.198) and (1.199)
to find the oscillatory solutions

z(t) = z(0) cos [wyt + ¢ (0)], (1.200)
.z
o(t) ~ A+D sin [wyt + ¢ (0)] (1.201)

(see Fig. 1.17, blue lines). Physically, this represents small-amplitude tunneling oscil-
lations of the atoms between the two wells at the Josephson angular frequency wy
given by Eq. (1.132). Note that in presence of interactions, the Josephson frequency
can be significantly larger than the Rabi frequency 2.J /A for the tunneling of non-
interacting atoms.

At higher amplitude, the tunneling oscillation become increasingly anharmonic,
and their period increases, as the system undergoes a critical slowing-down with a
logarithmic divergence [64]. It means in particular, as we will see in Sect.3.6.1.3,
when tunneling oscillations are initiated with ¢(0) close to 7 and z(0) = 0, their
period diverges like In(1/ |¢(0) — 7]).
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Macroscopic Quantum Self-Trapping (MQST)

Solving Egs. (1.198) and (1.199) for a stronger initial population imbalance (red lines)
shows that z and ¢ do not undergo symmetric oscillations around zero. Instead, z
exhibits small amplitude oscillations around a non-zero value z while ¢ essentially
winds up linearly (see Fig. 1.17, red lines). Making the corresponding approximations
in Egs. (1.198) and (1.199) yields

/1 _ 52
)~ 7 — % cos (1), (1.202)
&(1) ~ ZUN1/h + 6(0). (1.203)

We can understand MQST by looking at how the (conserved) total energy is distrib-
uted between the tunneling energy Ey,, and the interaction energy Ej, (see Fig.1.17,
right pannel). At any time, the Hamiltonian (1.183) imposes that

— JN < Egn < JN, (1.204)

1
0 < Eint < ZUNZ. (1.205)

This means that as long as the total energy (which is determined by A and the
initial conditions z(0), ¢(0)) is smaller than the maximum value allowed by the
tunnel coupling, it will oscillate between the tunneling term and the interaction term,
resulting in oscillations of ¢ and z which are symmetric around 0. In the opposite
case, only a fraction of the interaction energy can be converted into tunneling energy,
resulting in oscillations of z around an non zero value. This sets the condition for
self-trapping [64] (see Fig. 1.18)

%Z(O)2 — V1 —=2(0)%cos [¢(0)] > 1. (1.206)

In particular, this condition determines the maximum amplitude of the Josephson
oscillations (see Fig. 1.16)

A -1

c=2
|zl N

(1.207)

Note that Macroscopic Quantum Self-Trapping, despite its name, is an effect of
interactions already contained in the mean-field description.

Since the first prediction of an “oscillatory exchange of atoms between two trapped
condensates” in 1986 [19], Josephson oscillations between BECs have been inten-
sively studied theoretically (see for example [25, 65]). The concept of MQST has
been introduced in Ref. [65]. Both effects were observed for the first time by Albiez
et al. in 2005 [66] in an optical double well. A comprehensive experimental study of
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the modes of an internal BJJ has been carried out in [22], demonstrating a classical
bifurcation when A = 1.

Running Phase

Let us now assume a double well with an arbitrary detuning € and no tunnel coupling
(J = 0). In this case, the phase evolves linearly at a rate depending on the energy
difference

e UN
nr|\-+—7z])t. 1.208
0 ( ‘Y z) (1.208)
It contains both the difference in zero-point energy between the wells and differential
terms due to interactions.

1.2.5.4 Improved Two-Mode Model

In the derivation of the Hamiltonian of the BJJ in the two-mode approximation, we
have neglected the “mixed terms” involving overlap integrals between the two modes
of order higher than one 13, 13D and 1?2 _ It has allowed us deriving a simple
two-mode Bose Hubbard Hamiltonian where the strength of the tunnel coupling J
and the on-site interaction energy U are expressed as integrals of the wavefunctions
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of the two modes. For static orbitals, these two parameters are constant and do not
depend on the state of the BJJ.

Retaining all the terms in the two-mode expansion, Ananikian and Bergeman
derived a refined version of the mean-field two-mode model, often refereed to as
“improved two-mode model” (I2MM) [28]. It contains corrections from the stan-
dard two-mode model (S2MM). In particular, the coupling terms responsible for
the transfer of atoms between the two mode becomes explicitly dependent on the
time-dependent occupation of the two orbitals and read

A A
Jowns = 7“ - TV () = o (1) (1) (1.209)

(similar expression for Jpmm g) Where Ay is the chemical potential difference
between the ground and the first excited GPE eigenstate in the potential, v and
C are time-independent factors involving integrals of the ground and first excited
state wavefunctions and i = L, R [28]. The complex numbers 1, (t) represent the
occupation of the two modes and a linked to the total mean-field wave function
through

(1) = VN [V oL F) + Yo ()] . (1.210)

Although it relies on the assumption of two static orbitals, the I2MM turns out
to reproduce the predictions of the full multimode mean-field dynamics (GPE)
much more accurately than the S2MM. Figure 1.19 shows for example a comparison
between the Josephson oscillation frequency in different double wells (labeled by the
parameter RF ;) computed with the standard two-mode model, the improved two-
mode model as well as the one-dimensional GPE in the transverse potential and the
3D GPE. In the rest of this manuscript, we have been mostly using the standard version
of the two-model model, because it yields much insight into the interplay between
tunneling and interactions. However, when quantitative predictions are needed, the
I2MM often gives reliable results.

1.3 Conclusion of the Theoretical Part

In the first part of this chapter, we have reviewed some basic concepts of Bose-
Einstein condensation and sketched the framework for the description of a system
of interacting bosons. We have applied the GPE to give a mean-field description of
our elongated condensates in the ground state. The main result is that, for our typical
parameters, the cloud is well within the 1D Thomas-Fermi regime. It implies that
while interactions determine the longitudinal shape of the condensate, transversely,
the system is close to its non-interacting ground state. Aspect ratio of the order of
several hundreds allow us very often to restrict the dynamics of the BEC during the
experimentally relevant timescales to one or two dimensions.
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Fig. 1.19 Josephson oscillation frequency in different double wells. Comparison between mea-
sured Josephson oscillation frequencies in different double wells (data of Fig.4.2) and the fre-
quencies computed using the standard two-mode model (S2MM), the improved two-mode model
(I2MM), a 1D GPE simulation in a transverse cut of the potential and a full 3D GPE simulation in
the double-well potential. The parameter RFam, represents the intensity of the splitting (a higher
value means a weaker tunneling and thus a lower Josephson oscillation frequency)

Interestingly, although interactions appear transversely as a perturbative term,
we have seen that not only they are a key feature to understand the physics of the
condensate in a double well, but very often they drive the evolution of the many-body
wavefunction.

In the second part of this chapter, we have seen that the state of a condensate in a
double-well potential can be described in a two-mode approximation, assuming that
its wavefunction can only occupy two static spatial modes ¢; () and ¢ (7). In the
formalism of second quantization, this approximation allows restricting the system
to a N + l-dimensional Hilbert space in which all observables can be computed
exactly. In particular, the quantities n (half number difference) and ¢ (relative phase)
appear like two natural conjugate observables defining the many-body state of the
BIJJ. In fact, care has to be given to the exact definition of ¢, and it is generally
preferable to work instead with the coherence factor.

We have seen that within this approximation, the many-body problem could be
solved exactly. In particular, the two-mode Bose Hubbard Hamiltonian can be diag-
onalized, yielding the eigenstates of the BJJ and allowing to compute the time-
evolution of any initial state. An important feature of the symmetric BJJ with repul-
sive interactions is that its ground state is always number- and spin-squeezed. We
have seen that the 2MM can be recast in a collective spin formalism which illustrates
more precisely the number-phase uncertainty and turns out to be particularly adapted
for interferometry.

In the limit of large atom numbers, and provided the number imbalance is suffi-
ciently small, it is possible to derive a mean-field picture in the Josephson regime
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which allows gaining insight into both the equilibrium properties and the dynamics
of the BJJ.

However, it is crucial to keep in mind that by writing the state of the BEC as
a time-dependent superposition of the two static “orbitals” ¢, (¥) and ¢ (F), we
ignore its spatial dynamics. In fact, the motion of the wavefunction is absorbed in
the time-evolution of the amplitudes of the two static modes. This model, which
is very powerful to describe the tunneling dynamics of the BJJ, cannot capture its
coupling to the spatial degree of freedom. This is true both for the external BJJ, where
the 2MM ignores the motion of the condensate in the double well [67], as for the
internal BJJ, where it for example fails to describe the demixing dynamics observed
in superpositions of internal states [68]. In Chap.4, we will present observations
which clearly go beyond the two-mode approximation, and discuss extensions to the
theoretical models.
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Chapter 2
Experimental Setup and Techniques

Most of the experiments presented in this thesis have been performed on the Vienna
atom chip setup internally labeled as “Rb2”. The current setup has been developed
in Heidelberg starting from 2002 and moved, rebuilt and extended in Vienna from
2006. The first section will be devoted to a brief description of the apparatus. The
second section will focus on the techniques used to create, control and characterize
magnetic double-well potentials on our atom chip setup. The last section will present
the imaging systems used to probe the atoms.

2.1 Experimental Setup

As in most BEC experiments, a different atomic sample (a cold thermal cloud or
a Bose-Einstein condensate) is prepared at each experimental cycle, before it is
manipulated and eventually released and destructively imaged. A Magneto Optical
Trap (MOT) is used to trap Rubidium atoms from the background gas. The atoms are
optically cooled down by an optical molasses an then optically pumped and confined
in a magnetic loffe-Pritchard-type trap created by a macroscopic copper structures
behind the atom chip. After a first step of radio-frequency evaporative cooling, the
atoms are transferred into the actual chip trap and further cooled down. Eventually,
the condensate is released from the trap and imaged in time of flight (tof), either by
an absorption or a fluorescence imaging system. Each experimental cycle of the Rb2
machine lasts about 37 s, including 18 s in the MOT and 10's of cooling and trapping
in the the two magnetic traps. The aim of this section is to present the main steps of
the experimental cycle and the hardware used to realize them. Figure 2.1 shows an
overview of the Rb2 setup.

The status of the experiment, as presented in this thesis, shows little difference to
that described in the previous theses of the students who worked on the experiment,
in particular the Ph.D. thesis of Biicker [1] (2013). The following sections will briefly
recapitulate the most important features of our setup, with emphasis on the techniques
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science area

Fig. 2.1 Overview pictures of the Rb2 setup. Adapted from Ref. [1]. Left front view, right side
view. a Science area, surrounded by Helmholtz coil pairs, b Chip mounting flange, ¢ Ti-sublimation
pump, d LIAD viewport, e Cluster flange with vacuum valve and ion gauge, f (behind panel)
Ion getter pump, g NEG pump, h Light sheet illumination optics, j Light sheet objective (facing
upwards), k Various fiber couplers for optical pumping beams, m Fiber coupler for absorption
imaging, n (behind panel) Absorption imaging camera. Inset science area (octagon) with viewports
and dispenser current feedthrough (left)

used in the experiments presented in this thesis. More specific information can be
found in the Ph.D. and diploma theses of the students who worked on the Rb2
experiment in Heidelberg and Vienna, as well as in the publications of the Rb2 team:

e initial design and general aspects of atom chip experiments: Kriiger [2],
Wildermuth [3], Gimpel [4], Becker [5], Haupt [6] and Hofferberth [7]

e radio-frequency dressed potentials, in particular double wells: Schumm [8],
Hofferberth [9], Betz [10] and Refs. [11-14]

e chip manufacturing and characterization: Groth [15], Manz [16] and Ref. [17]

e upgrades performed after the move to Vienna: Manz [16], Betz [10],
Biicker [1, 18]

e imaging systems: Biicker [1, 18] and Refs. [19-21].

e micro-wave and radio-frequency systems: Koller [22], Plisson [23].

e experiment control: Bradjic [24], Rohringer [25] and Ref. [26]

2.1.1 Vacuum Chamber and Rubidium Source

The experiments take place in a single stainless steel ultrahigh vacuum chamber. It
contains the atom chip and its mounting, which is suspended by a large vacuum flange
at the top of the vessel. The vacuum pumps (an ion pump,’ a passive non-evaporative
getter pump” and a Titanium sublimation pump (TSP), the filaments of which are

1Varian StarCell, 500L/s.
2SAES Getters.
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heated every few weeks) are mounted in the chamber on dedicated flanges. The chip
is located in the lower half of the chamber and is surrounded by an octagonal vessel
equipped with anti-reflection coated viewports (>11in. clear aperture diameter) on
seven of its faces, providing optical access for the MOT, optical pumping and imaging
beams, as well as the Rubidium dispensers on the eighth face. Another dispenser is
placed directly behind a viewport to be used as a Light Induced Desorption source
(LIAD, not implemented yet). The bottom flange is a large viewport used for two of
the MOT beams as well as the fluorescence imaging.

On the one hand, experiments with BECs require a low background pressure
(of the order of 10~!'! mbars) to ensure a good lifetime, but on the other hand, a
background pressure of 10~° mbars is necessary to load the MOT from the ambient
Rb vapor. This means that the pressure changes by two order of magnitude during
each experimental cycle. This is achieved by pulsing the current in the dispensers
for about 17 s at the beginning of each cycle to desorb gaseous Rb. The MOT is held
for another ~1.5 s with dispenser off to allow the pumps to capture the remaining
hot background gas before the rest of the cooling sequence starts.

2.1.2 External Coils

Coils

Uniform magnetic fields are required throughout the sequence. They are created by
six pairs of coils located outside the vacuum chamber. For each spatial direction,
each of the two pairs is operated close to Helmholtz configuration to produce a
homogeneous magnetic field close to the center, but with opposite orientation, labeled
as Big and Small Bias field in the horizontal x direction, Big and Small Ioffe field in
the horizontal z direction and Big and Small Up-Down field in the vertical y direction
(see Fig.2.1 for the orientation of the axes). For each direction, one pair of coils is
made of thick copper wires (Big-) to create fields up to tens® of Gauss, while the
other pair (Small-) is made of thinner wires to provide smaller fields of a few G. This
configuration with two sets of coils is advantageous when changes in field magnitude
and direction are needed on a timescale which cannot be met by the current sources.
It also allows using unipolar current supplies and matching the current and voltage
ranges to the requirements of each coil.

Current Sources

The current sources* are operated in current-stabilized mode to output a constant
current and avoid long-term thermal drift. The current target is set by an analog
control voltage from the sequencer. The only exception is the offset field providing

3Fields magnitude larger than 100 G should be achievable but not required in the current experi-
mental cyclee.

“HP/Agilent 65xx series, excepted for the small Up-Down field, where a bipolar supply (High-
Finesse BCS-5/5) is used.
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the trap bottom in the final chip trap (small Ioffe field, see Sect.2.2.1.2). In particular
for extremely cold samples obtained by radio-frequency evaporative cooling close
to the trap bottom, the stability of the small Ioffe field determines the reproducibility
of the BEC production. It is also crucial for the stability of the dressed double
wells, because fluctuations of the small Ioffe field translate into fluctuations of the
RF dressing detuning (see Sect.2.2.2.2), and hence of the shape of the potential.
Particularly in the kHz regime (of the order of the transverse trapping frequency),
noise at the mG level has to be suppressed, because it would result in a technical
heating of the BEC.

To take advantage of the fact that the supply for the small Ioffe turns out to be
less noisy in controlled-voltage mode, it is voltage-stabilized on a 12 precision
resistor’ (temperature coefficient < 1 ppm/K) connected in series with the coil,
yielding a relative current stability better than 107> at 0.5 G. Details of the small
Ioffe stabilization setup and noise characteristics can be found in Biicker’s Ph.D.
thesis [1].

Switches

Fast switching (<0.1 ms) is achieved using home-made field-effect transistor (FET)
switches to stand currents up to 60 A and induced voltages uo to 400 V. Still, the coils
switches are among the devices which break more frequently on the experiment.

2.1.3 Chip Mounting and Copper Structure

The chip mounting (see Fig. 2.2a) hangs upside down in the vacuum chamber so that
the atoms can levitate below the chip surface (see Fig. 2.2b), allowing to perform tof
measurements. The chip mounting consists of 10 copper rods and ceramic spacers,
as well as “macroscopic” copper wires (~1 mm thickness) embedded in a ceramic
block ensuring electrical insulation as well as heat conductivity. These copper wires
form an additional layer of current carrying structures approx. 1 mm behind the chip
surface in order to produce non-homogenous magnetic fields (see Fig.2.2c):

e a broad H-shaped structure, electrically connected as a U wire, is used together
with the big Bias field and the big Up-Down field to create the MOT quadrupole
approximately 1cm below the chip surface, in a region where the MOT beams
intersect [5, 27, 28]. In contrast to the standard MOT configuration with three
pairs of counterpropagating beams, the mirror MOT is created by replacing two
beams by reflection of the beams impinging on the surface of the atom chip, tilting
the beam configuration by 45° with respect to the chip surface [28]. Scanning the
magnitude of the two external fields allows changing the position of the MOT
as well as the orientation of the quadrupole axes, in order to match the beam
configuration. It is often necessary to optimize iteratively these parameters, for

SIsabellenhiitte RUG-Z.
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Fig. 2.2 The atom chip and its mounting. Adapted from Ref. [1]. a Chip mounting. At the bottom,
the vacuum flange with feedthroughs for high-current copper rods and chip wires is seen. The steel
tube in the center can be used for water cooling. Near the fop, the copper rods and chip connection
pins are guided by a ceramic (Shapal) block. When mounted, the copper structrue hangs upside
down. b Atom chip, glued to ceramic mounting block. Near the edges of the atom chip, bond wires
between connection pins and pads on the chip are seen. ¢ Copper structures underneath the atom
chip. Z-, U- and outer confinement wires are traced in green, blue, and red, respectively

example to ensure that the MOT is not located in the shadow of one of the chip
wire.

Besides, the copper U is also used as a radio-frequency antenna for evaporative
cooling.

e aZ-shaped wire is used together with the big Bias field and the small Ioffe field to
create a loffe-Pritchard magnetic trap [27, 29, 30]. After the molasses phase, the
atoms are optically pumped into the magnetically trappable state F' = 1,mp = —1
(see Sect.2.2.1.1) and transferred into the Z trap located a few mm below the chip
surface, where the RF evaporative cooling starts.

e any of the two I shaped wires perpendicular to the long axis of the chip trap can
be used to create a longitudinal gradient for Stern and Gerlach separation of the
magnetic spin states during tof (see Sect.3.2).

The copper mounting is connected to the top vacuum flange which is equipped
with electrical high current feedthroughs (up to 60 A) for the macroscopic copper
wires, as well as pins for the Kapton wires connected to the atom chip (1 < 1 A).
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I,

Fig. 2.3 Layout and of the Rb2 chip. Adapted from Ref. [16]. Left The blue and green wires
(perpendicular to the long axis of the trap) belong to the first layer (deepest with respect to the chip
surface). The black and gray wires (parallel to the long axis of the trap) belong to the second layer
(closest to the surface). The light gray area is coated with gold as well, and serves as a mirror for
the MOT beams. Top Right Wire in the second layer climbing up an insulation pad. Bottom right
electron microscope image of the central part of the chip showing six wires in the second layer, in
particular the main trapping wire (80 wm wide) and the two wires used for the RF dressing (10 um
wide) (Color figure online)

2.1.4 Atom Chip

The chip currently used on the Rb2 setup has been designed and manufactured by
Groth in the group of 1. Bar-Joseph at the Weizmann institute [17]. Details of the
manufacturing can be found in Ref. [17] and in the Ph.D. thesis of Groth [15],
characterization in the Ph.D. thesis of Manz [16]. It consists of a double-layer gold
surface on a silicon substrate (see Fig.2.3). The current-carrying structures are gold
wires on two levels separated by an insulating layer to allow wire crossings. The rest
of the surface is coated with gold and serves as a mirror for the MOT. A simplified
sketch of the layout can be found in Sect.2.2.

Currents up to 1 A (depending on the wires) are sent through connection pads
placed all around the chip, excepted in the middle of each edge to ensure good
optical access. Each pad is bonded with a copper pin connected to an electrical
feedthrough on the base flange. The atom chip is directly glued onto the mounting.
The heat produced by current flowing in the microwires is evacuated through the
substrate into the mounting, which is water cooled.

Despite insulation pads at the position of the wire crossing, it turned out that some
of the wires were electrically in contact. To avoid current leaks, the current driver for
each wire is floating and connected to an independent set of car batteries (£12 V) to
supply the wire and the current source. Great care has to be taken to avoid grounding
of the wire. In the long run, the heat dissipated by the microwires slightly bends
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Fig. 2.4 Hyperfine structure N F=3
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the chip surface, which affects the position of the mirror MOT and the molasses. To
operate the experiment in steady state, current is always sent in the wires during the
same amount of time at each experimental cycle, implying a buffer time at the end
of the sequence. When used continuously, the car batteries have to be reloaded every
week.

2.1.5 Optics and Laser System

Lasers are used for the MOT, repumping, optical pumping and imaging of the atoms
(see Fig.2.4). One laser source is used for each of the transitions between the two
hyperfine states F = 1 and 2 of the 8’Rb electronic ground state (52S;/,) and the
excited state 52P3,» (D2 line). Their wavelength is approximately 780.2nm (the
frequencies of the lasers differ by v ~ 6.85 GHz). Both lasers are external-cavity
diode lasers (ECDL). Each is locked on the corresponding line (or crossover line) of a
Rb vapor in a cell at room temperature through a Doppler-free saturated spectroscopy
scheme (the description of a locking system similar to the one used on our experiment
can be found in the diploma thesis of Wilzbach [31]). The structure of the laser system
is sketched on Fig.2.5.

Cooler Laser

The cooler laser® is mounted in a Master Oscillator Power Amplifier (MOPA) con-
figuration. The Tappered Amplifier (TA) produces up to 1 W optical power which is
launched into a single-mode, polarization-maintaining (SMPM) fiber. About 90 % of
the optical power at the output of the fiber is transferred to a second fiber which out-
puts about 240 mW. Most of it is used for imaging, allowing to tune the intensity of

Toptical Photonics TA100.
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Fig. 2.5 Laser setup. Updated from Ref. [1]. Red and orange lines indicate F = 2 (cooler) and F=1
(repumper) beam paths, respectively. The greyed-out parts belong to the former longitudinal imag-
ing, which is not in use currently. The upper part of the drawing shows the laser spectroscopy
setups for the F = 1 (left) and F = 2 (right) lasers, which are placed in a separate box to provide
better thermal and acoustic isolation from the environment. The F = 2 laser uses a dual spec-
troscopy setup to simultaneously provide a normal Doppler-free spectroscopy and an additional
path for Pound-Drever-Hall locking using an electro-optical modulator (EOM) for sideband modu-
lation. Both lasers are coupled into single-mode polarization-maintaining fibers and brought to the
BOOSTA amplifier (right) and to the AOM and beam distribution setup shown in the lower part.
Finally the beams are guided to their destinations by free-field beam lines (MOT) or single-mode
fibers (imaging, optical pumping)

the absorption imaging system up to 8 times the saturation intensity (see Sect.2.3.1).
The rest (a few mW) is used to drive the transition’ F = 2, F’ = 2. It has been used
in the past to optically pump atoms into the magnetically trapped (F = 2, mg = 2)
state. Currently, since we trap the atoms in (F = 1, mp = —1), we only employ this
line to “repump” atoms from the F' = 2 state into F' = 1 after the molasse phase,

7The notation F = n denotes a hyperfine state of the ground state while F’ = m denotes a hyperfine
state of the excited state.
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before optically pumping them with the F = 1 <> F’ = 1 transition. The remaining
output power of the TA (~40 mW) is used to seed a second laser amplifier,® which is
also coupled to a SMPM fiber (about 600 mW available optical power at the output
of the fiber). It is used exclusively for the MOT beams.

Repumper

Since repumping and optical pumping on the other hand do not require large intensi-
ties, the repumper’ consists of a single ECDL coupled into a SMPM fibre, yielding
an output power of 40 mW. It is used for standard repumping during the MOT +
molasse phase as well as to bring the atoms into the imaging transition. A small
fraction of the light is used for the optical pumping into (F' = 1, mg = —1).

Frequency Shifting

The hyperfine splittings in the excited state of 3’Rb are small enough (tens of MHz) to
be addressed by Acousto-Optical Modulators (AOM) downstream in the beam paths
(see Fig.2.5) and in the same time large enough to be well-resolved. The cooler
(MOT + molasses) beams, the detuning of which need to be dynamically changed
during the cycle, as well as the imaging beam, are frequency-shifted by a double-
pass AOMs. Typical detunings (with respect to the F = 2 <> F’ = 3 transition)
lie between —15MHz (MOT) and —70MHz (molasse). The other beams are sent
through single-pass AOMs and are frequency shifted by a fixed amount to be resonant
with the corresponding transitions.

2.1.6 Radio-Frequency Evaporative Cooling

Radio-Frequency Cooling Electronics

The radio-frequency (rf) source used for evaporative cooling is a digital arbitrary
waveform generator.'” The rf field frequency has to range from several MHz down
to the Larmor frequency at the center of the trap (typically a few hundred kHz). This
is achieved in Direct Digital Synthesizer (DDS) mode by concatenating waveforms
consisting of a single period of a cosine wave at different frequencies spanning
the desired range. This way, no phase jump occurs, but the frequency changes by
discrete steps. The size of the frequency steps is chosen to decrease exponentially as
the frequency approaches the trap bottom. While loading all the wave forms into the
memory of the signal generator can take several minutes, the instruction sequence
sent at each experimental sequence only contains the order of the basic waveforms
and the number of times they have to be looped, and can be uploaded in a few s,
during the MOT loading phase. This way, arbitrary frequency ramps can be produced
and optimized in order to improve the cooling process.

8Toptica Photonics BoosTA.
9Toptica Photonics DL100.
10Tabor Electronics, WonderWave Series.
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The tf field is radiated onto the atoms through the macroscopic copper U-wire
on the chip mounting (see Fig.2.2¢). The waveform generator produces a constant-
amplitude voltage and is not current-stabilized.

Cooling Sequence

Forced rf evaporative cooling starts after the atoms have been optically pumped to
the (F = 1, mp = —1) state and loaded into the Z trap. After the first ramp (3 s), the
Z trap is compressed and brought closer to the chip. Approximately 2 million atoms
at T ~ 50 mK are transferred into the chip trap. Further evaporation is performed
in the chip trap for another 3 s, before the chip trap is compressed and brought to
its final position ~60 pm below the surface of the chip. A final evaporation ramp
(25s) is performed to reach degeneracy and produce a Bose-Einstein condensate with
typically a few thousand atoms.

Other Oscillating Fields

Note that besides rf evaporative cooling, time-varying magnetic fields in the kHz
to GHz frequency range are used on the Rb2 setup for rf dressing of the potential
(~900kHz), controlled displacement of the trap (~3kHz) and addressing of the
ground state hyperfine transition (6.834 GHz). While the rf dressing electronics will
be addressed in detail in Sect.2.2.2, a description of the electronics for the trap posi-
tion modulation (“shaking”) can be found in Biicker’s Ph.D. thesis [1] and Refs. [32,
33]. A description and a characterization of the rf/microwave setup which has been
used in particular to address the clock states F = 1,mp = —l and F =2, mp = 1
can be found in Koller’s Ph.D. thesis [22] and in Plisson’s Master thesis [23].

2.1.7 Computer Control and Acquisition

The sequencer'! is the spinal cord of the experiment. It is a stand-alone, real-time
computer controlling 32 analog voltage channels (16 bits, 10 V) and 64 digi-
tal Transistor-Transistor Logic (TTL) channels (0-5 V) used a triggers. The whole
experimental cycle is coded as a matrix describing a sequence of values for each
channel—in a similar fashion as a musical score [34]—with a minimal time step
size of 25 ws. The sequence is transmitted from a dedicated computer through an
link at the beginning of each cycle. Programming the sequence occurs through a
Matlab interface which is also used to address devices which are not controlled by
the sequencer, including the imaging cameras and the rf sources. The acquisition
also relies on a Matlab interface for the read-out of analog control probes,'? the read-
out and the storage of camera pictures and the real time preprocessing of the data.
Informations are exchanged between the computers (currently 6 different computers
+ the sequencer) through a local network by shared Windows drives and TCP/UDP
connections.

" Jiger ADwin Pro.
12National Instruments USB-6218.
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2.2 Trapping Atoms Magnetically with an Atom Chip

In this section, we will present the techniques used to trap atoms with magnetic
fields on our atom chip setup. In particular, we will describe how the technique of rf
dressing can be employed to create a tunable double-well potential.

2.2.1 Magnetic Trapping with Static Fields

2.2.1.1 Magnetic Trapping of Neutral Atoms

Magnetic trapping of neutral atoms relies on the local interaction between the
magnetic field and the magnetic moment of the atoms. When the magnetic field
is sufficiently weak so that the Zeeman shift is small compared to the hyperfine
splitting (see Ref. [35] for the ®’Rb data), the total angular momentum Fisa good
quantum number to describe the coupling of an atom to the field and the interaction
Hamiltonian reads

H =i B. (2.1

In the 8’Rb ground state (525, /2), the hyperfine splitting between F' = 1 and F' =2
is approximately 6.8 GHz. For typical magnetic fields of a few G, the Zeeman shift
is of the order of a few MHz. Furthermore, if the Larmor angular frequency w, =
gris|B|/ h, where ug is the Bohr magneton, is large compared to the rate at which
the field probed by the atoms changes

|0B /0t| < wy|B], (2.2)

the magnetic moment aligns adiabatically to the local magnetic field, so that the
interaction takes the form of a potential

Vinag (F) = mpgpps|B (7) |- (2.3)

In the F = 1 hyperfine state, the Landé factor gr & —1/2. Since Wing’s theorem
forbids the existence of a local field maximum in free space [36], the only Zeeman
substate of F' = 1 which can be trapped is mp = — 1. The conversion factor between
potential energy and field magnitude is x = |gp| ug = h x 0.7 MHz/G. Note that
atoms in F' = 2, mp = 1, 2 can also be trapped. The choice of F = 1 on the Rb2
setup was partly motivated by observations showing that the three-body loss rate in
a BEC was higher for F = 2 [37, 38]. Experiments coupling the two clock states
(F =1,mg = —1; F =2, mg = 1), which experience the same potential, with a
two-photon (microwave + rf) transition were also performed on the Rb2 setup [23].
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Fig. 2.6 Chip wires layout and schematics. Left Layout of the chip wires (at scale). Red main
trapping wire (width: 80 um), flanked by the two RF wires (blue, width: 10 wm). Green the two
H-wires responsible for the longitudinal confinement (width: 500 wm). The dimple wire (width:
18 pm), located at 290 wm from the origin, can be used to locally deform the longitudinal potential
for measurements of w;. The orange arrows indicate the orientation of the DC currents. The purple
arrows indicate the orientation of the uniform external fields. The trap is located close to the origin.
The typical length (in the z direction ) of a BEC is 50 um. The height of the wires (in y direction)
is about 1 pm. Right Schematics of the configuration to create a double well. The DC current in the
main trapping wire, together with the Bias field Bb, creates a magnetic quadrupole ~60 wm below
the chip. The external loffe field BO completes the Ioffe-Pritchard configuration. AC currents in the
two RF wires located at 55 pm on each side of the main trapping wire create a linearly polarized
RF field. Its orientation (angle o) can be tuned by changing the current balance and the relative
phase between the RF wires. They produce a tunable double well oriented along an axis tilted by
the angle —a with respect to the horizontal direction (red spots)

For an atom oscillating in a trap at the angular frequency w, (amplitude of the
orderof a; = /h/mw, ) around the potential minimum characterized by the Larmor
angular frequency w;y,, the adiabaticity criterion (2.2) imposes w; < wy.

2.2.1.2 Static Trap

A few years after the first demonstration of atom trapping with a free-standing
wire [39], microfabricated structures were developed to trap atoms [40, 41], before
Bose-Einstein condensation on an atom chip was achieved in 2001 [42, 43]. Atom
chips can produce strong confinements in the vicinity of the current carrying
microstructures, while offering a high degree of control and robustness. Besides
the review by Folman et al. [27], the book edited by Reichel and Vuletic [44] gives
a comprehensive overview on atom chips and their applications for cold atoms, ions
and molecules.

The Vienna Rb2 setup implements the so-called side guide trap [27] geometry
to create a single elongated harmonic potential a few tenths of microns below the
chip surface. Figure 2.6 sketches the layout of the chip structures used to produce the
trapping potential. The following sections describe how the confinement is obtained
and discuss the details of the implementation.
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Fig. 2.7 Static transverse confinement. Left The uniform bias field (blue) and the field created
by the trapping wire (green) cancel each other in only one point, defining the center of the guide
(black dot). The direction of the current in the trapping wire is indicated by the cross. Right Field
magnitude (colorscale) and field lines using the infinite wire approximation. In the vicinity of the
point of zero-field, the magnetic field can be approximated by a quadrupole field tilted by 45° with
respect to the (x, y) axis (red lines) (Color figure online)

Transverse Confinement

An elongated magnetic guide for atoms can be created using a DC current [ in a
single microwire in combination with a uniform bias field B, = Bpé, orthogonal to
the wire. In the following, we always assume By, > 0 and the current / oriented in the
same direction as z. In the plane (x, y) orthogonal to the wire, both fields cancel each
other in only one point (see Fig.2.7, left panel). This defines a line of zero-magnetic
field parallel to the wire, at a distance

I
d=1 (2.4)
27TBb

(we have assumed a infinitely long and thin trapping wire). For typical parameters
B, =295Gand I = 1A, we find d = 68 wm. Expanding the field to the first order
in the vicinity of the field minimum yields the quadrupole configuration (the origin
of the coordinate system is chosen at the point where the magnetic field vanishes)

B, = —Grsin = —Gy,
By, = —Grcost = —Gx, 2.5)

with the magnetic gradient at the origin

GE‘VE

L (2.6)
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(see Fig.2.7, right panel). This elongated guide does not allow confining atoms
efficiently because close to the line of zero-field, they have a high probability to
undergo spin flips into non-trapped states [45]. The guide hence has to be plugged
by adding a constant offset field By in z direction (Ioffe field). In the vicinity of the
potential minimum, the potential reads

1
Vix,y) =W+ Emwi (x2 + yz) 2.7)

with

= kB (2.8)
27 B} B}
w = |22 (BT (2.9)
m ./ Bo m pol /B IV B

For By = 1.17 G, the Larmor frequency at the trap bottom'® V;/ h ~ 820 kHz and
w, & 27 x 3.5 kHz, satisfying the adiabaticity criterion (2.2). Note that atom chips
allow much higher field gradients, and therefore higher trapping frequencies than
magnetic trapping geometries using only external coils. In practice, the transverse

confinement is varied by changing the Bias field, which also shift the position of
the trap.

Longitudinal Confinement

The geometry presented so far creates a cylindrical guide with an isotropic harmonic
confinement in the (x, y) plane. To create a confinement in all three directions, the
translational invariance along z is broken by a pair of wires (H-wires) located at a
distance L/2 = 1 mm on each side of the main trapping wire (see Fig.2.6) and
orthogonal to the main trapping wire. When a current [, is sent in each wire (both
with the same orientation) a ﬁeld oriented along z is produced, creating a harmonic
potential V, (z) = Vrp + mw z with

Ad ol
Vig = K (Bo + “°2h) , (2.10)
mL
4 1, 1,
w, R n o fh 2.11)

= — (0'¢ s
mwL? /By /By

provided z,d « L. Since L is much larger than the other length scales, the longi-
tudinal potential is very shallow. The resulting 3D trap is in good approximation an
elongated harmonic potential. For a typical current I, = 0.5 A, the correction to the
trap bottom due to the H-wires is of the order of 10 % and the expected longitudinal

13Simply referred to as: the trap bottom.
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frequency is approximately w, ~ 27 x 15 Hz, yielding an aspect ratio w, /w, ~ 200.
In practice, however, it is difficult to control the longitudinal frequency close to the
chip, as will be explained in the next section.

2.2.1.3 Realistic Static Trap
Finite Size Wires

The model of infinitely long and thin wires presented above gives fair estimates of the
trap frequencies and of the trap bottom. In practice, the finite size of the wires cannot
be neglected, in particular when d becomes comparable to the width and height of
the wires. The dimensions of the wires are given in the caption of Fig.2.6. In Ref. [9],
an analytical expression is given for the field produced by a rectangular wire in three
dimensions. We use it to model the chip layout and compute the static field. The
parameters of the computation (fields, currents) are calibrated with measured trap
parameters (see Sect.2.2.3). The trap frequencies along the three eigen-axes of the
potential are computed by diagonalizing its Hessian matrix at the center of the trap.

The trap frequency is proportional to the field gradient as the position of the trap.
As explained in Ref. [46], for a square wire of width and height a, the gradient of
the field saturates at a value proportional to //a. The maximal current applicable
is limited by the heat transfer out of the wire, and scales as a®/? [47], so that the
maximal gradient scales as 1/+/a, motivating the interest in miniaturized structures.

Gravity

The effect of gravity can also be accounted for in the simulations. It is responsible
for a shift of the potential minimum downwards (gravitational sag) of the order of
Ay = g/w? ~ 30 nm for typical parameters. For comparison, the half-width of the
radial wavefunction is a; ~ 200 nm.

Corrugation

An effect which cannot be easily accounted for is the corrugation of the longitudinal
potential [8, 46, 48, 49]. Bulk inhomogeneities in the wires, as well as the roughness
of the wire surface and edges distort the current flow into directions orthogonal to
the wire orientation z. This produces a spatially disordered but temporally constant
magnetic field along z, and hence a disordered longitudinal potential V (z). This
effect is particularly deleterious close to the chip, where it causes the longitudinal
fragmentation of cold atomic clouds when their temperature is of the order of the
potential roughness (LK), and sets a limit to the highest achievable aspect ratios of
chip traps. For our parameters, corrugation is already dominant in the longitudinal
direction, yielding measured trap frequencies significantly higher than the one com-
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puted from the finite-size-wire simulations. It seems that the condensate forms in
a potential dip created by the corrugation. Still, the additional field in z direction
caused by corrugation remains negligible compared to the offset loffe field, so that
the trap bottom is hardly affected.

It is possible to attenuate the effect of corrugation averaging it out through a rapid
modulation of the wire current [50]. This requires however a trapping geometry based
on microwires only, since the high inductance of external coils forbids modulation
in the kHz range.

2.2.2 Double-Well Potentials Created by Radio-Frequency
Dressing

The dressing of the internal states of an atom by a strong laser field has been studied
extensively and is at the foundation of optical trapping techniques [51]. Using strong
rf magnetic fields to couple different internal states of an atom, that experience
different spatial potentials, is at the heart of the concept of rf-dressed adiabatic
potentials. The spatial dependence of the new energy eigenstates (dressed states)
emerging from the coupling of the bare atomic states to the rf field can be engineered
to create new trapping geometries. A tutorial introduction to rf dressed adiabatic
potentials can be found in the Les Houches summer school lecture notes by Perrin [52]

The first rf-dressed adiabatic potentials were proposed in 2001 [53] to realize
a 2D curves sheet at the bottom of a magnetic “shell”-potential, and implemented
3years later [54]. The approach of Ref. [53] was extended by accounting for the
vector nature of the magnetic field to propose various trapping geometries including
double wells [55], ring traps [55, 56] and periodic arrays of microtraps [57].

The most promiment application of radio-frequency dressing has been the real-
ization of tunable double-well potentials on atom chips. They were used for BEC
interferometry [14, 58—61] and to study the dynamics of a superfluid junction [62].
Elongated rf-dressed double wells served as a playground to study pairs of indepen-
dent [63, 64] or tunnel-coupled [11] 1D quasicondensates. In Refs. [12, 13] and [33],
we used rf-dressing to control the anharmonicity of a single elongated potential in
order to manipulate coherently motional states of a trapped BEC. Very anisotropic
dressed magnetic traps have also been used to study 2D degenerate Bose gases [65].

In Sect.2.2.2.3, we present the electronics used to radiate the rf fields on the atoms.
In Sect.2.2.2.1, we describe the coupling of a 3’Rb atom to an oscillating magnetic
field. In Sect.2.2.2.2, we use the rotating wave approximation (RWA) to derive an
approximate expression of the adiabatic potential and show how rf dressing can be
used to create a double-well potential. Eventually, we explain how the potential can
be computed beyond the RWA (Sect.2.2.2.4).
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2.2.2.1 Coupling of an Atom to an Oscillating Field

Following Lesanovsky et al. [55], we describe the coupling of a ’Rb atom in F = 1,
mpg = —1 to acombination of a static, spatially varying magnetic field, and a uniform
oscillating RF field

B = B, (¥) + Bgg cos (wt) . (2.12)

Since the coupling term (2.1) is local, the Hamiltonian has to be diagonalized for each
position in space For an arbitrary point 7, itis convenient to use a local coordinate
system {x’, y’, '} such that B, = B, and Bgp = Brr €. + Bre.1@y. In this
coordinate system, as a consequence of the adiabaticity hypothesis (2.2), the total
angular momentum F is also oriented along 7’. It means that only the component
of the RF field which is orthogonal to 7’ can couple the different Zeeman states. We
introduce the Rabi frequencies for the static and the oscillating field

Q () = EBS, (2.13)

Qrr (F) = —BRF L (2.14)

In the basis of the m r states ({—1, 0, 1}), the wavefunction obeys the time-dependent
Schrodinger equation

Cfl(t) Qq S\Z/REF Ccos (wt) 0 Cfl(t)
ia co(@) | = % cos (wt) . 0 % cos (wt) co(t) ). (@2.15)
c1 (1) 0 "I cos (wi) —Q (1)

In absence of RF coupling, the stationary solution of (2.15) are the three bare mp
states ({—1, 0, 1}) with the corresponding energies {A€2,, 0, —h€2s}. The off-diagonal
terms mix the bare states into new states dressed by the RF field, which are solution
of Eq. (2.15).

2.2.2.2 Rotating Wave Approximation

The simplest way to solve Eq. (2.15) consists in making the substitution

ci(t) = - (e ™, (2.16)
co(t) = Co(2), (2.17)
c1(t) = & ()e™, (2.18)

which is equivalent to moving to a frame rotating at the frequency of the rf photons.
Provided the rf Rabi frequency Qgr and the detuning § (¥) = w — € are both small
compared to the static Rabi frequency €2, the “rapidly oscillating terms” at ~2w can
be neglected (rotating wave approximation, RWA). This yields the time-independent
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Hamiltonian
e
T
HRwA 1ot fr. = hbar - ﬁ% 0 2_\% . (2.19)
0 &
2v2
The new “dressed” energy levels
- , NP P
V (r) = mghy[6* (r) + ZQRF ). (2.20)

arising from the coupling of the atom to the magnetic field are found by diag-
onalizing the RWA Hamiltonian. Their are labeled by the new quantum number
my € {—1,0, 1}. Inserting the approximate expression for the static field

By (F) = —Gr (sin 0é, + cos 0é,) + Boé., (2.21)

the RWA potential reads, in polar coordinates [55]:

o hw 2 BRrr 2 2 ) . . 2
VRwaA (1, 0) = mpr [\ Bs — — ) + [Bo—i-G r< (cos a:sin 6 + sin v cos 0) ]

K 2| Bs|
(2.22)

where « is the angle between the direction of the rf magnetic field and the vertical
axis:

Brr = Bge (—sin aé, + cos aé,) . (2.23)

(see Fig.2.8).

The static potential is approximately harmonic and transversely isotropic. If the
rf amplitude is increased (keeping the rf frequency constant), the potential smoothly
becomes anisotropic and flattens along a direction tilted by —« with respect to the
x-axis. In Refs. [12, 13, 33], we took advantage of the anisotropy and anharmonicity
induced by weak rf dressing to single out the two lowest vibrational levels and
manipulate non-classical motional states of a trapped BEC. The axis of splitting (red
line in Fig.2.8) corresponds to the direction where the quadruopole component of
the static magnetic field is parallel to the rf field [59].

Above a certain critical value B, of the rf dressing amplitude, a potential hump
emerges at the center of the trap, creating two minima along the splitting axis. If the
rf intensity is further increased, the distance between the minima gets larger while
the potential barrier rises. This geometry hence allow to create a tunable double well
controlled by the amplitude'* of the rf field. In Ref. [55], Lesanowsky et al. give

141t is also possible to split the potential by ramping the rf frequency towards the Larmor frequency
of the static trap, as was done for example originally in Ref. [58].
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Fig. 2.8 Dressed double-well potential within the RWA. All energies are given in kHz, polar
representation in the transverse (x, y) plane (polar radius in wm, polar angle in °). Left Detuning
term. For a negative detuning (w < €2s), it simply corresponds to the transversely isotropic parabola
of the static potential. Center RF Rabi frequency. Blue line direction of polarization of the RF field
(o = —30°). The coupling to the RF breaks the polar symmetry by creating a potential barrier
oriented along —« with respect to the y axis. Right The resulting RWA potential (Eq. (2.22))
exhibits two local minima along an axis (red line) tilted by an angle —a with respect to the x axis.
The origin of energies is chosen at the minima of the potential. Same parameters as in Sect.2.2.1.2
and § = —27 x 30 kHz and Brr = 0.85 G (Color figure online)

useful approximate expressions for the position +ry of the potential minima, the
angular trap frequency wqy, of each well along the splitting axis, the correction to the
trap bottom Brg and the critical splitting field B.:

1
ro = —
0 NeTe

T r  G*r
w — s 2.25
w mBtg By (223

Bgrr hdo
Bp=——/1——, 2.26
B > ~Bo (2.26)

[ hé
B, =2,/ —By—2 (2.27)
K

(00 = w—k/hByis the detuning at the minimum of the static trap. For our parameters,
do < 0).Equations (2.24)—(2.27) donot always give accurate quantitative predictions,
but they capture the right dependence on the rf amplitude Bgrg and the detuning dy.

Conveniently, the transverse double-well potential can generally be well approx-
imated by the simple polynomial [59]

Bk — B? (2.24)

c?

Vow = bx? + dx*. (2.28)

It is important to keep in mind that when tuning the double well with one control
parameter only (in our case the rf dressing amplitude), ry and wgy, cannot be adjusted
independently. We will see in Sects.3.4.1 and 3.6.1 that this sets some constraints
on ensuring adiabatic motion of the condensate in the double well.


http://dx.doi.org/10.1007/978-3-319-27233-7_3
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Itis also interesting to note that Eq. (2.22) allows also to realize a double well with
positive detuning (hw > kBy). The main difference is that the spatial dependence of
the detuning term has the shape of the bottom of a bottle-of-wine, with a “resonant
ring” of points where the detuning term vanishes (£ (¥) = w). This causes a larger
well spacing than in the negative detuning case, for the same rf amplitude (see
Eq. (2.24)), but also a higher sensitivity of the well position to noise on the loffe
field. For a full analysis of the effects of noise on the double well, see the Ph.D. thesis
of Schumm [8].

2.2.2.3 Implementation

The rf magnetic field is induced by AC currents sent through two wires (width: 10 um)
parallel to the main trapping wire, located on each side at a distance of / = 55 pm (see
Fig.2.6, right panel). Peak-to-peak intensities up to ~100 mA can be sent through
each wire, resulting in rf field amplitudes up to ~2.5 G. In first approximation, the
rf field can be considered uniform over the region where the atoms are trapped. Its
polarization can be tuned by varying the relative intensity between both wires as well
as their relative phase

Irp1 = 11 (coswt),
Irpr = I (cos wt + ¢13) , (2.29)

where w is the angular frequency of the RF (by convention, the amplitudes 7, I, > 0).
To create double-well potentials with an arbitrary splitting axis in the (x, y) plane,
the rf field must be linearly polarized, meaning that ¢, = 0 or 7. To rotate the double
well in the (x, y) plane by an angle —« with respect to the horizontlal (x)-axis (see
Fig.2.8), Brr must be rotated by an angle +a with respect to the vertical (y)-axis
(see Fig. 2.6, right panel). To keep the well spacing constant when changing «, the
amplitudes 7, I, and the relative phase ¢, must obey

sin «
L =1 cosa—m ,
_ sin o
I, = Iy |cosa + @njd|’
o1 =0if amod[7] € [0, B+ 7/2], ¢1o = 7 otherwise. (2.30)

Here tan 3 = d/l = 42.5° and I is the amplitude in each wire for a vertical
polarization (a = 0), as required for a horizontal double well: I, = I, = Iy, ¢ = .
Note that the polarization axis can be rotated on [0, 27r] without discontinuity of the
current because each time ¢, jumps between 0 and 7, either /; or I, is equal to 0.
To achieve full control over amplitudes and phase, each rf wire is connected to
a separate output of the digital arbitrary waveform generator. Although it can be
programmed to generate arbitrary signals, we used it only to produce sinusoidal
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Fig. 2.9 Schematics of the rf electronics. The two rf microwires, with resistance R| » &~ 44 Q2 are
connected each to one output of the digital arbitrary waveform generator through a low-pass filter
(LP1,2), arf switch (MiniCircuits ZX80-DR230-S+) and a 1:1 rf isolation transformer (MiniCircuits
T1-1T) to ensure a floating ground. The rf source is controlled digitally through an Ethernet link
and can be triggered with a TTL signal. Both channels (RF; ) can be controlled independently.
Two low pass filters (cutoff frequency: 1.9 MHz) are used to suppress higher harmonics of the DDS
generator. The rf switches can also be triggered, bust most of the time the switching on and off was
performed using the rf output. Two alternative current probes (Tektronix CT-6, CPq 2) were used
to monitor the rf currents on an oscilloscope. Note that although the two rf circuits are in principle
identical, they may have different response functions, so that the current balance and the relative
phase have to be adjusted carefully on a common probe

signals with time-dependent amplitudes. Figure2.9 shows a schematics of the RF
control electronics. The main limitation to the complexity of the rf control sequence
is set by the capacity of the memory of the digital RF source. Although basic patterns,
such as a period of a sine wave at constant amplitude, can be indefinitely looped, the
rf amplitude ramps had to be programmed point by point. To allow decreasing the
sampling rate of the arbitrary waveform generator without distorting the signal, low-
pass filters (cutoff frequency: 1.9 MHz) were added at the output of each rf channel.
The maximum ramp duration for our rf dressing carrier frequency of 880kHz allowed
a maximum total ramp duration (for each channel) of more than 55 ms, limited by
the size of the memory. An analog control of the amplitude of the RF source is also
available, but it doesn’t allow tuning each output independently, as needed to turn
the polarization of the RF field, and it is expected to be noisier than the sole digital
control.

For the experiments presented in the next chapters, RF currents up to /"™ =
79.5 mA pp (in the case of horizontal splitting, o = 0) were used. In the rest of this
thesis, instead of giving the absolute value of the current in mA pp, we will often refer
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to the RF amplitude RFy,p in units of 7™ (0 < RF,yp < 1). The corresponding
values of I}, and ¢, for a tilted RF polarization are given by Eq. (2.30).

2.2.2.4 Beyond the Rotating Wave Approximation

For the dressed potential presented in this thesis, [0] = 30 kHz « €, = 910 kHz
at the center of the trap. Nevertheless, high rf amplitudes, up to Qrr = €5 are
commonly used to achieve large splitting distances (2rp ~ 4 pwm). It is therefore
necessary to compute the dressed potential beyond the RWA. The standard method
to solve a Schrodinger equation with any periodic, time-dependent Hamiltonian has
been given by Shirley in 1965 [66]. In our case, it consists in transforming the system
of three differential equations (2.15) into an infinite system of linear equations with
time-independent coefficients. This is achieved by expanding the time-dependent
coefficients of the wavefunction as Fourier series

co1(t) =D e, 2.31)
nez
cot) = z eV eminer, (2.32)
nez
c(t) = Z Wil (2.33)
nez

Solving Eq. (2.15) (for each point of space) is then exactly equivalent to diagonalizing
the infinite-dimension matrix

000a+whb O 000 O b O 000
000 » 0 b 000 O O b 000
000 0 b—a+w00OO O O O 000
000 00 0 abO 0O O O 0bO
M=) b0oo 0 0 0 »0b 0 O 0 00b |, (234
0b0 0 0 0 Ob—a O O O 000
000 0 0 0 000a—wb O 000
000 b 0O 0 000 b O b 000
000 0 b 0 000 O b—a—-w00O
with
a=Q,, (2.35)
Q
p=—RE (2.36)
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M consists of 3 x 3 diagonal blocks (for example, red block in the center) and off-
diagonal terms (blue). M has an infinite number of eigenvalues which, due to the
invariance by the transformation w — p + w (for any integer p) are all equal to
one of three principal eigenvalues, modulo w. In practice, it can be diagonalized
approximately by truncating M to a finite sized matrix and keeping the three central
eigenvalues.

The physical meaning of these blocks becomes obvious when writing the mag-
netic field in the formalism of second quantization (see for example Ref. [67]). They
are associated to processes implying the exchange of more than one rf photon. Diag-
onalizing the full quantum-mechanical Hamiltonian shows that the dressed states are
grouped into three-state manifolds separated by one rf photon energy (see Fig.2.10,
taken from Perrin’s lecture notes [67]). The summation over Z in the Fourier series
expansion implicitly means that the field is assumed to contain an infinite (very large)
number of photons, as it is the case with a classical coherent field. Retaining only one
Floquet multiplicity (red central block in (2.34)) is equivalent to applying the RWA,
see Eq. (2.19) for comparison. It implies neglecting the non-resonant coupling terms
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Q
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Fig. 2.10 Schematics of the dressed states picture. Taken from Perrin’s lecture notes [67]. The
dressed states of the atom and the electromagnetic field can be groupped into three-state manifolds
separated by one photon energy Aw. In the RWA, only the coupling terms within one manifold are
retained (red arrows and red terms in Eq.2.34), and each manifold can be treated independently
(blue bubble). The blue terms (blue arrows) couple the nth manifold to n + 2 and n — 2 and are
responsible for beyond RWA effects, which cannot be neglected when Qrp or A become comparable
to 2 and the manifolds are not clearly decoupled (Color figure online)
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Fig. 2.11 Beyond RWA calculation of the dressed potential. Left Potential computed retaining
ng = 1,2, 3 Floquet multiplicities at a moderate 1f intensity. Taking into account the first order
correction to the RWA (ng = 2) differs significantly from the RWA result (np = 1). However,
increasing ng above 2 doesn’t improve much the result. Right (For each ng, both m{; = =1 are
represented by a full and dashed line respectively). For even higher rf intensities, needed for the full
separation of the clouds, the coupling between the multiplicities leads to avoided crossings which
complicate the calculation of the potential experienced by the atoms. Whether or not the atoms see
the avoided crossing depends on their velocity (see Sect.2.2.1.1)

to the n+2 and n — 2 multiplicities (blue terms in (2.34) and blue arrows in Fig. 2.10).
This is valid as long as the detuning is small enough so that the multplicities do not
overlap, and as long as the rf Rabi frequency is weak enough to neglect the coupling
between different multiplicities. In practice, for our parameters, it is enough to retain
up to ng = 5 Floquet multiplicities for the numerical computations (see Fig.2.11).

2.2.3 Characterization of the Potential and Calibration
of the Simulations

The quantitative description of the dynamics of the condensate in the double well
requires a precise knowledge of the shape of the potential. This is achieved by com-
puting it as explained in the previous section. The parameters of the simulations are
adjusted using measurements of the trap. This section describes the whole calibra-
tion procedure which has been used to simulate the traps in which the experiments of
Chap. 3 have been performed. The good agreement between measurement and simu-
lations of many different quantities is a convincing demonstration of the reliability of
the calibration procedure. This section is organized as follows: first, the calibration
of the static trap is presented, then that of the rf dressing and of the dressed potentials.
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2.2.3.1 Static Trap

To calibrate the static trap, we use the fact that the trap bottom Vg depends essentially
on the Ioffe field By and the current in the longitudinal confinement wires I, (see
Eq.2.10), while the radial trap frequency depends mainly on the bias field By and
the current / in the main trapping wire (with a weak dependence on the loffe field,
see Eq.2.9). The trap bottom is measured by means of rf spectroscopy, while the
trap frequencies along the three eigenaxes of the potential are measured by exciting
dipolar oscillations of a condensate (see Fig.2.12).

Trap Bottom Spectroscopy

The value of the Larmor frequency at the center of the trap vrg = Vrg/ h is probed by
means of rf spectroscopy [68]. We use the same 1f electronics as for the evaporative
cooling, but strongly reduce the rf intensity to resonantly couple atoms between
the trapped state mg = —1 and the untrapped state mr = 0 without dressing the
potential. We apply a 7 = 20 ms pulse rf pulse at constant frequency vrg onto the
trapped condensate. At resonance, i.e. when vgg = v/, atoms are maximally coupled
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Fig. 2.12 Static trap characterization. a Trap bottom spectroscopy. A weak rf pulse is applied
to resonantly outcouple atoms from the trap. The maximum losses (dip) is achieved when the rf
frequency is equal to the Larmor frequency in the center of the trap. The red line is a guide to
the eye. b—d Trap frequencies in transverse horizontal (b), transverse vertical (c¢) and longitudinal
(d) direction, obtained by exciting dipolar oscillations (sloshing) and measuring the position of the
center-of-mass after expansion. Note the difference of time scale between transverse and longi-
tudinal oscillations, as well as the damping of the longitudinal sloshing. It is probably due to the
anharmonicity of the longitudinal potential caused by corrugation, as well as technical heating. The
values of the trap parameters are summarized in Table 2.1 (Color figure online)
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to mp = 0 and fall off the trap. After a few ms of holding time ensuring that the
outcoupled atoms leave the imaging region, the remaining atoms are released and
counted. The trap bottom is inferred from the frequency of the loss dip in the number
of remaining atoms when v is scanned (see Fig.2.12a).

The width of the loss dip is influenced by several effects, including: power
broadening (the intensity of the rf spectroscopy pulse has to be chosen weak
enough), the resolution in frequency (the pulse duration 7 = 20 ms imposing
Av = 1/T = 0.05 kHz was chosen in order to average over one period of the
characteristic 50 Hz electric noise), the stability of the trap bottom (dominated by
the stability of the Ioffe field By, see [1]), the chemical potential of the condensate
(i/h ~ 1 kHz) and the gravitational sag [69]. For most experiments, the typical rms
width of the static trap spectroscopy was about 4 kHz.

Note that the same technique can be used in rf dressed trap to measure the effective
trap bottom by coupling atoms between the trapped dressed state and mp = 0. In
Ref. [70], this technique has been used to demonstrate the existence of beyond RWA
resonances between different Floquet multiplicities. We observe that resonances in
the dressed potentials are typically twice narrower than in the static trap (see Fig. 2.14,
upper panel). This might come from the fact that the effective trap bottom is twice
less sensitive to fluctuations of By (see Eq. (2.26)), because a variation of By is partly
compensated by a variation of the detuning, similarly to what has been investigated
in Ref. [71].

Trap Frequencies

The trap frequencies are probed by exciting dipolar (sloshing) oscillations of the
condensante along each of the three eigenaxis of the nearly harmonic potential.

In the vertical transverse direction (y), a small kick is applied by suddenly
(< 25 ps) varying the current in the main trapping wire by ~1 %. It excites a center-
of-mass oscillation of amplitude approximately four times the transverse oscillator
length. The motion is recorded by imaging the atoms in the (z,y) plane with the
absorption imaging system (see Sect.2.3.1) after 17 ms tof (see Fig.2.12b).

In the horizontal transverse direction (x), the condensate is prepared in one well
of a horizontal (dressed) double-well potential (this is achieved by slowly splitting
the condensate in the vertical direction, and then leveling the double well). The rf
current is then rapidly ramped off so that the position of the cloud does not change.
The atoms find themselves displaced horizontally with respect to the center of the
static trap and start oscillating (see Sect.3.2.2.1. The motion is recorded by imaging
the atoms with the “light sheet” imaging system Sect.2.3.2 in the (x, y) horizontal
plane after 46 ms of tof (see Fig.2.12c).

The longitudinal frequency w, is measured by slowly, slightly distorting the lon-
gitudinal potential, and returning abruptly to the original potential. This is achieved
by means of a weak current pulse produced by a wire (see Fig.2.6) orthogonal to
the main trapping wire. The measurement of the slow longitudinal sloshing (typical
frequency: 20Hz) is limited by its damping time (typically 200 ms, see Fig.2.12d),
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Table 2.1 Trap calibration
Measured parameters

Trap bottom Vg /h 910+ 1 kHz
Horizontal transverse trap freq. wy /27 297 £0.01 kHz
Vertical transverse trap freq. wy /27 2.98 £0.01 kHz
Longitudinal trap freq. w, /27 223+ 0.3Hz
Settings used for simulations

Current in main trapping wire / 1A

Current in longitudinal confinement wires I 05A

Bias field By, 295G

Ioffe field By 1.17G

Max. rf current (in each wire) ;"™ 79.5 mApp

rf relative phase ¢ —2°

Upper part measured trap parameters, with the corresponding experimental uncertainty. Lower part
Parameters used in the chip trap simulations

associated to the heating of the cloud and the anharmonicity caused by potential
corrugation.

Calibration of the Static Trap Simulations

The currents in the main trapping wire and in the longitudinal confinement wire /
and I, are measured with a precision multimeter meter!> and the values are used for
computation of the potential. The value of By for the simulation is adjusted to match
approximately the measured trap bottom. Both values of By and By, are iteratively
fine-tuned to reproduce exactly the measured radial trap frequencies and trap bottom.
This leaves some indeterminacy between By and By, which can then be lifted from
the measurements of the dressed trap (see next section). The potential simulations
usually strongly underestimate the longitudinal trap frequency (typically by a factor
4) because they do not take corrugation into account. Table 2.1 summarizes the values
of the measured trap parameters and the corresponding settings for the simulations.

2.2.3.2 RF Dressing

Once the static trap has been characterized, the rf dressing must be calibrated. The
first step is to characterize and adjust the rf amplitudes /; and I, in each wire as
well as the relative phase ¢, (see Eq. (2.29)). The second step is to adjust and
check these parameters in the simulation by comparing them to measurements of

ISKeithley 2000 digital Multimeter.
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Fig. 2.13 Adjustment of the RF intensity balance and the relative phase. Left The trap bottom
spectroscopies for a trap dressed by only RF wire at a time overlap, ensuring that I} = I». Right
The effective trap bottom is measured as a funtion of the relative phase ¢1» between the two
wires (blue dots). The result of the simulations has to be shifted by approximately 6° to match the
measurement. This is probably caused by some differential filtering in the RF electronics of each
channel (Color figure online)

the effective trap bottom, trap frequencies, well spacing etc. in a series of dressed
potentials obtained for different rf intensities.

Balance of the RF Currents in the Two Wires

The rf generator produces a given AC voltage. Since the resistance of each wire
(including the leads and the rf electronics for each output port) may be different,
the currents have to be balanced using a common probe. The high-frequency current
probes mounted on each wire give an estimate of the currents, but the atoms are a
much more precise probe of the magnetic field. For some arbitrary intensity /y, the
effective trap bottom is measured by rf spectroscopy with one rf wire on at a time.
The voltage of each output port of the rf source is tuned to equalize the trap bottoms
(see Fig.2.13, left panel), ensuring I; = I,. Furthermore, comparing the measured
value of the trap bottom to simulations enables to calibrate the absolute values of
I 5.

Relative Phase Between the RF Wires

The control of the relative phase between the two rf wires is important to ensure
the right linear polarization to turn the axis of the double well. Different delays due
to different filtering in the rf leads may shift ¢, with respect to the value defined
by the rf generator. This effect is accounted for by correcting the phase difference
between the two output of the rf generator by an amount which is determined by
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measuring the dependence of the trap bottom with respect to the relative phase (see
Fig.2.13, right panel). The dependence of the effective trap bottom with ¢, is not
trivial but can be simulated. It is related to the relative contribution of the o+ and
o~ polarization which couple the different mp states. Note that the geometry of the
dressed potential can change between a double well and a ring trap, depending on ¢,
[55]. We found that ¢, had to be corrected by 6° with respect to the nominal value
to get a linear polarization. For the experiments presented in chapter , this value has
been slightly over-corrected. For this reasons, all simulations of the potential were
performed with ¢, = —2°.

Additional Checks

In principle, the calibration procedure presented above is sufficient to constraint all
parameters of the static trap and of the rf dressing. Nevertheless, a series of additional
measurements were performed to benchmark the simulations of the potential.

The dependence of the effective trap bottom with the rf amplitude was checked,
recovering the linear behaviour given by Eq. (2.26) (see Fig.2.14).

The transverse trap frequencies in each well of the dressed potentials were also
compared to simulations (see Fig.2.15, left pannel). The vertical trap frequency
was measured in the same way as in Sect.2.2.3.1. The horizontal trap frequency
waw (Eq. (2.25)) was measured by slightly changing the rf amplitude to excite an
oscillation of the spacing between the two parts of the condensate in the double-
well. This results in an oscillation of the fringe spacing of the interference pattern
measured after tof (see Sect.3.2.1). Note that in this strongly anharmonic direction,
the notion of trap frequency is less obvious, explaining partly the poor agreement of
experiment and simulation.

The spacing d = 2r( between the two wells (Eq. (2.24)) was also inferred from
the fringe spacing of the interference patterns. Assuming Gaussian wave packets and
a ballistic expansion during a time ¢, the fringe spacing is

AA (2.37)

It shows a very good agreement with the simulations for strongly split double wells,
where the effect of interactions is less significant [58].

Note that for both d and wgy, the beyond-RWA simulations are in excellent agree-
ment with the dependence on the rf dressing amplitude expected from the approx-
imate RWA expressions (2.24) and (2.25). Fitting them to the data of Fig.2.15, we

found that the critical splitting point is reached for RFy, = = 0.42.
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Fig. 2.14 RF amplitude calibration. The effective trap bottom Vrp is measured by rf spectroscopy
for different values of the amplitude of the rf current (/1 = I»). Top panel rf spectroscopies for 5
values of R Famp between 0 and 0.65 (five first points of bottom panel). Note that the loss dips are
narrower in the dressed potentials as compared to the static trap. Bottom panel effective trap bottom
VrB/ h as a function of R Famp, showing good agreement with the beyond RWA simulations. Note
that the RWA prediction (dashed curve) underestimates the trap bottom by a few kHz only

2.3 Imaging Systems

Most of the experimental information gathered on Bose-Einstein condensates in
atomic gases has been obtained by optical measurements, that is to say photographs of
the atoms. Notable exceptions are for example the temporally and spatially resolved
detection of a BEC of metastable Helium with a microchannel plate [72] or the use
of scanning electron microscopy (SEM) [73].

Among the various optical imaging methods used to probe ultracold gases [74],
two independent systems are implemented on the Rb2 setup (see Fig.2.16):

e an absorption imaging system,
e and a fluorescence imaging (often referred to as Light Sheet).

Both allow imaging destructively the atom cloud in tof, meaning that for each
experimental cycle, the atomic sample can be observed only once. Figure 2.17 shows
typical images of condensates taken with both imaging systems. The following
section briefly presents both imaging systems, with emphasis on the methods we
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Fig. 2.15 Transverse trap frequencies and well spacing. Left Transverse trap frequencies (quadratic
term in the Taylor expansion of the potential) in the double-well (red wqy in the direction of splitting,
blue orthogonal direction) as a function of the rf amplitude. Points measurements. Lines beyond
RWA simulations. Black dashed fit of the beyond RWA simulation with the approximate expression
(2.25). Note the typical kink of wgy at the critical value RF3, =~ = 0.42, corresponding to the
splitting point. Right Spacing between the potential wells, inferred from (3.2). Points measurement.
Blue line beyond RWA simulation. Black dashed line fit of the beyond RWA simulation with the
approximate expression (2.24). Note that both quantities are very well described qualitatively by
the RWA approximate analytical expressions (Color figure online)
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Fig. 2.16 Schematics of the two imaging systems. The absorption beam is oriented along the x-
axis to image the atoms in a plane parallel to the long axis of the trap (z). The shadow cast by the
atoms is imaged through an objective on a CCD camera. The fluorescence imaging is oriented along
the y-axis to image photons scattered by the atoms while falling through the light sheet. Light is
collected by an objective located below the chamber and detected by a EMCCD camera. When the
BEC is released from a horizontal double well, imaging along (x) integrates over the matter-wave
interference pattern, while the fringes can be resolved with the fluorescence imaging system
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Fig. 2.17 Images of quasi-condensates. Pictures of quasi-BECs with ~1000 atoms taken 6 ms
(absorption imaging system, left) and 46 ms (fluorescence imaging systems, right) after release
from a (in this case single-well) trap. The axes are the same as in Fig. 2.16: (z) is the axis of shallow
confinement and gravity is oriented along (y). Note that both pictures exhibit characteristic patterns
perpendicular to the (z)-axis. They correspond to density fluctuations emerging in tof as a result of
the initial longitudinal phase fluctuations [16]

used to determine the absolute atom number in our condensates. A more detailed
description of the hardware as well as the characterization of both imaging systems
can be found in the diploma and Ph.D. thesis of Biicker [1, 18] as well as in the Ph.D.
theses of Manz [16] and Betz [10].

2.3.1 Absorption Imaging

Absorption imaging is probably the most commonly used imaging technique in cold
atom experiments [74]. A comprehensive discussion of absorption imaging on atom
chip setups can be found in Ref. [75]. The Ph.D. theses of Gring [76] and Jacqmin [77]
contain detailed descriptions of absorption imaging systems implemented in different
configurations on atom chip experiments similar to our setup.

The absorption imaging system implemented on Rb2 is oriented along the x-axis
to image the atoms in the (y, z) plane. It allows inferring the integrated column
density 71(y, z) = [ n(¥)dx from the attenuation of a laser beam passing through the
atomic cloud [74]. The shadow cast by the atoms is imaged onto a back illuminated
Charge Coupled Device camera'® (CCD) through an objective consisting of two
doublet lenses, each operating at near-infinite conjugate ratio. The optics is adjusted
to obtain a magnification of x 3.78. The corresponding pixel size (in object space)
is 3.44 x 3.44 um?. The numerical aperture (NA) of 0.12 determines the diffraction

16princeton Instruments MicroMax 1024 BFT.
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limit, which lies slightly below 4 pum. The field of view (3 x 3 mm) allows for
tofs up to ~25ms. When the cloud is imaged too close to the chip (tof < 2ms),
unavoidable reflection and refraction of the imaging light on the surface of the chip
cause distortions of the image [75]. The fast frame-transfer readout enables taking
the absorption and the reference picture within tens of ms, in order to mitigate the
effect of mechanical vibrations.

The absorption imaging system can be used to image thermal clouds (after short
tofs) or BECs. We use it routinely to monitor center-of-mass oscillations in order
to measure trap frequencies (see Sect.2.2.3.1), image BECs after short tofs (2 ms)
to access their in-situ density profile, and to measure the atom number in our BECs
(see next section). In Ref. [20], it was used to measure density fluctuations (density
ripples) of expanding 1D quasi-condensates. The fast frame-transfer readout has also
been used to image successively atoms in the two hyperfine states F = 2 (without
repumper) and F' = 1 (with repumper), which would be necessary for experiments
with internal states of a BEC (see Sect.3.1.2.1).

Note that it cannot be used to image the matter-wave interference patterns obtained
fromreleasing a BEC from a horizontal double well (see Sect. 3.2.1) since the fringes,
which are parallel to the (y, z) plane, are integrated out (see Fig.2.16).

2.3.1.1 Atom Number Calibration by Saturation Absorption Imaging

Aswewillseein Sect. 3.4.3, precise number-squeezing measurements imply a correct
estimation of the absolute atom number in our BECs. So far, N can only be inferred
from absorption pictures. For this reason, it is absolutely necessary to characterize
our absorption imaging system to obtain a reliable estimation of N.

We followed the approach proposed in Ref. [78], comparing the optical density
of identical atomic samples measured at different intensities, well below and above
saturation. At resonance, the photon scattering rate of a two-level atom reads

U 1/

I . S (2.38)
21+ 1L

ph

where I" is the natural line width of the optical transition. For the optical transitions
of the D2 line of Rb, I' = 27 x 6.07 MHz [35]. The saturation intensity Igy is
connected to the resonant cross section oy through

hw
Igo =T —. (2.39)

g0

To maximize the absorption signal, we chose to work in the configuration yielding
the highest cross section, namely by using o™ polarized light to address the cycling
transition F =2, mg =2 < F’' =3, mg = 3. For this transition, oy = 2.91 x
10~ cm? and I = 1.67 mW / cm? [35]. Note that to access this transition, we must
first repump the atoms (see Sect.2.1.5) from F = 1 to F’ = 2. The repumper light,
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which is superimposed to the path of the imaging beam, is shone for ~200 s right
before the imaging pulse.

In practice, however, the actual cross section is likely to be smaller than this
value, depending on the exact configuration of the beam direction, polarization and
the orientation of the magnetic field defining the quantization axis. To ensure that the
atoms experience a o' polarization, we use the small Bias coil (see Sect.2.1.2) to
apply a uniform magnetic field parallel to the optical axis (see Ref. [1]). Nevertheless,
besides the imperfect alignment of the quantization field with respect to the optical
axis, transient pumping effects are also expected to slightly reduce the effective cross
section.

Following Ref. [ 78], we take into account the specific configuration of our absorp-
tion imaging by defining an effective cross section

)

Oett = — (2.40)
a

with o« > 1 and the corresponding effective saturation intensity /& = o l,.
From the scattering rate (2.38), we can express the attenuation of a laser beam
passing through an atomic cloud. After it has traveled through an infinitesimal dis-

tance dx in a cloud of density 7n(#), the intensity of the imaging beam drops by

dl = n(r)dx. (2.41)

1
O ——————
eff 1+ I/Ieff

sat

Integrating Eq. (2.41), we can express the optical density (OD) opn as the sum of
two terms:

- I I — I
ooi(y,z) =aln|— )+ ——, (2.42)
Iy Isal
—_———
log sat

where I; and Iy are respectively the intensity of the imaging beam before and after
propagation through the atomic cloud. Far below the saturation intensity (I; < Ig),
the logarithmic term dominates. This is the regime where most absorption imaging
systems are operated. The column density is given by the Beer-Lambert law

I;
n(y, z) = oefr In (—) ; (2.43)
Iy

which has the important property that n, and hence the total atom number
N = [ [dydz do not depend on the intensity of the imaging beam, provided it is
sufficiently small.'” However, it depends linearly on v, meaning that the atom num-
ber computed by absorption might be systematically underestimated when using the
theoretical value o of the resonant cross section.

" Typically, this is true as long as I < Isy/10.



2.3 Imaging Systems 97

8000 T T

7000

6000

5000

4000

atom number

3000

2000

1000 [

] / Isat,

Fig. 2.18 Calibration of the absolute atom number in absorption. Measured atom number N in a
BEC for different imaging beam intensities. For each intensity, the atom number was computed using
Eq. (2.42). Black points atom number assuming o = 1. Red points atom number corrected for v =
1.12, in order to ensure a constant N regardless of 1 / Iy (note that the points corresponding to the two
lowest intensities, for which the pictures were very noisy, were not used to estimate ). Continuous
lines logarithmic (lavender blue) and saturation (medium turquoise) terms (the logarithmic term

has been computed for & = 1.12). Both contributions are equal for / = I;flf

The second term becomes dominant above saturation, i.e. when I;, I 7 > Iy It
does not depend on the effective cross section, because if all the atoms are saturated,
their scattering rate is simply equal to I'/2.

The method proposed in Ref. [78] consists in inferring « from absorption pic-
tures of identical atomic clouds taken at different intensities, spanning a large range
below and over I, . It relies on the assumption that (a) the atom number of all the
observed atomic samples is the same, (b) the correction factor « is independent on
the intensity of the probe beam. While the first assumption depends on the atom num-
ber stability of the experiment, which for us is of the order of 10 %, the second one
was checked within our group by solving the optical Bloch equations for different
imaging configuration close to ours.

We calibrated our absorption imaging system by taking images of a BEC with
~6000 atoms at different intensities ranging from 0.02 I to 8 I55. The number of
scattered photons Ny, was kept approximately constant by adjusting the imaging
pulse duration. We also checked experimentally that no significant Doppler shift
was reducing the effective cross section even for the largest number of photons
(Nph ~ 300).'

Figure2.18 shows an example of the atom numbers computed with the full
Eq. (2.42). Assuming o = 1 (black points), we observed that the computed N
was slightly increasing with increasing intensity, indicating that the logarithmic term
in Eq. (2.42) was underestimated. Repeating the measurement for different values of

181t needs approximately 350 scattered photons for a 3”Rb atom to be Doppler-shifted by I'/2.
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Nph, we found that the values of o ensuring a constant atom number (red points) was
lying between 1.05 and 1.15. Furthermore, independent measurements of the axial
Thomas-Fermi radius of a trapped condensate (see Sect. 1.1.3.3.) confirmed that we
can exclude underestimating the atom number by more than 20 %.

2.3.2 Fluorescence Imaging System (Light Sheet)

Most of the data presented in the next chapters has been acquired with our fluores-
cence imaging system [1, 18, 19]. It is aligned along the vertical y-axis to image
atoms in the horizontal (x, z) plane. It consists of a thin (waist radius: 20 pm) hori-
zontal “sheet” of resonant (or slightly red-detuned) laser light located roughly 1cm
below the atom chip. When atoms are released from the trap, they expand and fall
through the light sheet (LS) after a ~46 ms tof. Each atom typically scatters hundreds
of photons during the ~100 s it spends in the LS. A small fraction (around 2 %) of
the fluorescent light is captured by an objective located below the vacuum chamber,
and detected by an electron multiplying CCD camera!® (EMCCD), yielding a typical
sensitivity of p = 15 detected photons per atom on average.

The LS is created by superimposing two identical counter-propagating laser
beams, each of them coupled out of an optical fiber outside the chamber and sent
through a cylindrical lens to obtain a highly anisotropic “flat” sheet of light (waist
in horizontal direction: 4.5 mm). The optical axis of the LS is rotated by 45° with
respect to the x and z-axis. A lin-_L-lin polarization configuration was chosen to
avoid creating an intensity grating, resulting in a polarization grating perpendicular
to the optical axis. The total optical power (a few WW) can be adjusted to tune p. It
is actively stabilized against slow drifts by sampling a fraction of the optical power
and readjusting the AOM amplitude accordingly every second experimental cycle,
i.e. once per minute.

The custom objective [1] was sized in such a way that the geometric spot size
and the diffraction limit remain smaller than the object space camera pixel size
(4 x 4pm?) over the whole field of view (2 x 2mm?). An advantage of the LS
configuration is that the depth of field can be matched to the thickness of the LS.
This allows imaging thermal clouds after long tofs, which are generally larger than
the depth of field set by our relatively high NA of 0.34 and would otherwise look
blurred. The vertical position of the LS determines the tof. It can be adjusted by
means of a translation stage, but changing the tof implies refocussing the optics, so
that in practice, conversely to the absorption imaging system, we have to work with a
fixed tof (46 ms), although we can adjust the duration of the LS pulse to image slices
of the atomic cloud [21]. Imaging several slices of the same atomic cloud should be
in principle possible, but is currently limited by the readout speed of the camera.

Currently, the main factor limiting the resolution of our fluorescence imaging
system is the diffusion of the atoms in the LS [18]. The atoms perform a random

19 Andor iXon+ 897.
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walk in momentum space due to the stochastic absorption and re-emission events.
This result in a real-space spot size for the fluorescence signal coming from each
atom of typically 10 wm rms size, whereby the shape of the anisotropic fluorescence
pattern depends on the detail of the scattering events.

The main asset of our fluorescence imaging system is its high sensitivity together
with a high dynamical range [18], allowing us to detect single atoms as well as
dense BECs. For each atom crossing the LS, we detect on average a number of
photons sufficiently large so that the probability of not detecting an atom can be
made vanishingly small. The mean number of detected photons per atom p can be
increased by increasing the LS intensity, at the expense of the spatial resolution. We
usually worked with p =~ 15. Together with an extremely low background noise (the
CCD chip is thermoelectrically cooled down to —90 °C), our single-atom sensitivity
has been a crucial condition to detect strong number squeezing [12, 14], as will be
detailed in Sect. 3.2.2.2. It should be noted however that single-atom sensitivity does
not mean the ability to resolve atoms in dense clouds, because of our limited resolu-
tion. Nevertheless, high signal-to-noise ratio associated with a relatively long tof are
particularly advantageous to probe the high-k tails of the momentum distribution of
thermal clouds and BECs, and has allowed studying the emission of high-momentum
correlated atom pairs [12, 79].

The LS imaging system is oriented as to image the atoms from below, which is
well-suited to image matter-wave interference patterns emerging from the recombi-
nation of a horizontally split condensate (see Sect.3.2.1). In particular, it allowed
probing the spatial phase correlations of a 1D BJJ [11]. It was also used to demon-
strate Hanbury Brown and Twiss (HBT) correlations across the BEC threshold [21].

2.3.2.1 Calibration of Fluorescence Picture

In an EMCCD camera, each photon impinging on a pixel of the CCD chip is converted
into a primary electron, which is amplified to a large number (up to about 1000) of
secondary electrons. To calibrate the raw fluorescence picture, the gain of the electron
multiplying unit is calibrated from a second picture taken immediately afterward,
but without light. The second picture hence only contains technical noise, which is
essentially due to clock-induced charges, i.e. charges created before the amplification
process and therefore indistinguishable from real photons. Nevertheless, since the
EM amplification is a stochastic process, the distribution of counts per pixel in the
calibration picture can be fitted to retrieve the amplification gain (see Fig.2.19, left
pannel) [19]. It also provides information on the background level and the additional
noise added by the readout stage. The fitted values are used to compute the processed
fluorescence picture (in photon number/pixel) from the raw picture. An important
consequence from the stochastic amplification is that it adds extra shot noise: the
variance of the signal on a camera pixel with on average s photons is two times §
(see Sect.3.4.3.1).

An additional background contribution is caused by stray light from the LS beams.
When working with cold condensates well-located in the center of the picture, this
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Fig. 2.19 Calibration of the fluorescence pictures. Left Taken from Ref. [19]. Distribution of the
number of counts per pixel in a single image acquired without any light. The detected signal is
only due to CIC. The continuous line is a fit of the distribution (see Ref. [19] for the fit model)
allowing to extract the EM gain, the baseline and the readout noise. The dashed line marks the
threshold of the readout cutoff. The inset shows the same distribution in linear scale. Right Etaloning.
Reflections between the nearly parallel front and back surface of the narrow, back-illuminated CCD
chip interfere, causing distortions of the images. Since it is constant over time, etaloning can
be characterized from averaging hundreds of images of a hot thermal cloud to ensure uniform
illumination, and accounted for as a position-dependent gain factor

usually uniform background can be calibrated from the edges of the images and sub-
tracted. Another, non-uniform, contribution is due to etaloning, i.e. the interference
of coherent light on the CCD chip acting as a non uniform Fabry-Perot etalon. While
this does not affect significantly the signal integrated over a sufficiently large area, it
leads to local distortions of the image. It can be highlighted by averaging hundreds
of pictures of a sufficiently hot thermal cloud (to ensure a uniform illumination),
see Fig.2.19. Fortunately, as it doesn’t change over time, it can be corrected for, for
example to fit the profile of a cloud.

So far, the absolute column density (in atom/pix) cannot be easily deduced from
the fluorescence pictures only, although alternative schemes based on the corre-
lation properties of the fluorescence signal are currently being investigated. The
average number of detected photons per atom p is hence inferred from imaging
a series of (typically 20) condensates prepared in the same conditions, alternat-
ing between fluorescence and absorption imaging. It yields an uncertainty on p
of the order of 10 %.

2.4 Conclusion of the Experimental Part

In this chapter, we have presented the apparatus on which the experiments presented
in this thesis have been conducted. The main features of our compact ’Rb BEC
machine are
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the atom chip, which enable the creation of elongated magnetic traps with trans-
verse frequencies in the kHz range and longitudinal frequencies between 10 and
20Hz,

the possibility to apply rf-dressing to manipulate the transverse confinement and
realize a tunable double-well geometries,

a light sheet fluorescence imaging system which allows probing the BECs with
single-atom sensitivity.
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Chapter 3

A Mach-Zehnder Interferometer

for Trapped, Interacting Bose-Einstein
Condensates

In this chapter, we present the main results of this thesis:

e the implementation of a Mach-Zehnder interferometer (MZI) for trapped, inter-
acting BECs on our atom chip setup, including the development of a novel type
of BEC recombiner,

e the generation of number- and spin-squeezed states of a BEC with N & 1200 atoms
in a double-well potential,

o the first direct experimental demonstration of the link between number fluctuations
and interaction-induced phase diffusion, underlining how the use of a non-classical
state can help extending the interrogation time of a matter-wave interferometer.

These results have been summarized in our 2013 publication [1]. Here we motivate
our research, explain in detail how our results have been achieved, discuss their
physical meaning and consider them in the light of related findings reported on other
BEC experiments.

3.1 Introduction

3.1.1 A Prototypical Interferometer

The BEC interferometer implemented on our atom chip is meant to be a matter-wave
analogue of the prototypical interferometer developed by Ludwig Mach and Ludwig
Zehnder at the end of the XIXth century (see Fig.3.1). An optical interferometer is a
device that makes use of the effect of interference of light waves. Most interferometers
rely on the splitting of one input beam on a beam-splitter (separation BS). Each beam
is exposed to a different external influence, such as transmission through media
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Fig. 3.1 Mach-Zehnder
interferometer. Photons (or
atoms, neutrons,

molecules...) entering each
of the two input ports are ar, out
aR out

coherently split by the
separation beam-splitter. The
two paths pick up a phase d)

difference ¢ before beeing

recombined on the second I

beam-splitter. The atoms
exiting the interferometer are
counted separately by two

AL in
detectors. Generally, —
particles enter only from one

nput port

AR in

with different refractive indices, or propagation along paths of different length, and
picks up a certain phase. The two beams are recombined on a second beam-splitter!
(recombiner). The differential phase between the two beams is read out either from
the difference of intensities between the two output ports (number fringes) or from
the spatial distribution of the intensity (spatial fringes).

Note that the MZI can be operated in both ways: if the interferometer is perfectly
aligned (full mode overlap), the phase information is encoded in the intensity differ-
ence between the two output ports only. For example, it can be adjusted in a way such
that all the power exits through one single output port. If the beams are slightly mis-
aligned, both outputs will exhibit spatial fringe patterns. The phase will be encoded
in the spatial intensity distribution, while the total power in each output-port will
be hardly phase-dependent. MZI can also be used for white-light interferometry, i.e.
using a broad-band source, in which case interference is observed in a narrow range
around the point of zero arm length difference.

3.1.2 Interferometry with Bose-Einstein Condensates

Particle-wave duality enables the construction of interferometers for matter-wave [2].
Atom interferometry requires the ability to manipulate coherently the internal and
external (motional) state of atoms, making use of techniques developed for atom
optics [3] and atomic spectroscopy [4]. It is a key experimental technique to probe
quantum properties of matter and fundamental laws of nature, and yields rich appli-
cations in metrology.

1Some interferometers, like the Michelson interferometer, make use of the same BS to split and
recombine the light.
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Bose-Einstein condensates are particular matter waves with macroscopic coher-
ence properties. They have often been compared to atom lasers [5]. It is natural to
wonder whether macroscopic spatial coherence and high phase density would make
BECs an ideal bright, single-mode source for atom interferometry. In particular in the
context of Bragg interferometers (see next section), the narrow momentum spread
0p K hk, where k is the wave vector of the light, allows achieving close to 100 %
contrast [6]. It has also been underlined that trapped BECs could constitute a small,
localized probe for weak shot-range interactions such as the Casimir-Polder force [7],
and recently, a BEC has been used as a scanning probe to map out the microwave
field near the surface of an atom chip [8].

However, the analogy between lasers and BECs should not conceal the fact that
they are two very different physical systems. A fundamental distinction is the pres-
ence of atom-atom interactions. While they can usually be neglected in freely expand-
ing atomic clouds, interactions dominate the physics of confined BECs, leading
to mean-field shifts and dephasing effects, which ultimately limit the coherence
time of interferometers [1, 9—11]. On the other hand, we have seen in Sects. 1.2.4.4
and 1.2.4.5 that interactions can be utilized to generate non-classical correlations
between the atoms, which can be used to improve the phase sensitivity of a BEC
interferometer beyond the SQL. We will show that it can also reduce the effect of
interaction-induced dephasing and extend the interrogation time of an interferom-
eter (see Sect.3.7). The question still remains open how and to which extent the
detrimental effects of interactions can be overcome and whether precision measure-
ments can be performed with trapped BECs. However, as we will motivate below,
a BEC interferometer certainly is as a powerful tool to probe interacting quantum
many-body systems.

In the next sections, we give a brief review on the techniques that have been used
to realize BEC interferometry and list some examples of the physical questions that
have been addressed with BEC interference experiments. Many examples of BEC
interferometers are given in the 2009 review on atom interferometry by Cronin et al.
[2], as well as in the 2014 Varenna lecture notes by Schaff et al. [12], with focus on
double-well interferometers.

3.1.2.1 BEC Interferometry Experiments: State of the Art

BEC interferometry has been a very active field of research on ultracold atoms since
the first demonstration of the macroscopic coherence of a Bose-Einstein condensate
in 1997 [13].

BEC interferometer rely on the coherent splitting and recombination of a BEC
between (at least) two external and/or internal modes, and on the possibility to apply
and read out a phase shift. This basic scheme, illustrated schematically in Fig.3.1
should not conceal one fundamental difference between interferometers based on
the interaction of a two-level atom with an electromagnetic field (for example
Bragg interferometers, or interferometers with internal-state labeling, see below), and
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interferometers where splitting and recombination are carried out by transforming
the confining potential (for example double-well interferometers).

In the first case, the electromagnetic (rf, microwave or laser) coupling drive has
also the function of a reference oscillator [14]. Once the first 7/2 pulse has put the
BEC in a coherent superposition of the two modes, the phase between them evolves
at a rate proportional to their energy difference. During this time, the coupling drive
also accumulates a certain phase. The second 7/2 pulse eventually recombines the
two halves, comparing the phase accumulated by the condensates to that accumulated
by the drive. The resulting phase-dependent number or spatial fringes stem from the
beat note between the condensate and the reference oscillator. This has the important
consequence that such interferometers can serve locking the reference oscillator on
the atomic transition (like in atomic clocks) or measuring a shift of the atoms with
respect to a moving, standing wave (like in Bragg gravimeters).

Several denominations are used concurrently in literature to distinguish the differ-
ent types of interferometer: while many schemes where the two modes are spatially
separated are called Mach-Zehnder interferometers (including in particular the inter-
ferometer presented in this thesis), some authors prefer calling Michelson interfer-
ometer systems where the separation and recombination BS are at the same spatial
position [15]. The term Ramsey interferometer generally refers to schemes with
internal-state labeling, but we also chose to refer to the vibrational-state interferom-
eter presented in Ref. [16] as a (temporal) Ramsey-like interferometer, to underline
the fact that both modes are located in the same (single-well) potential.

Although the denominations are sometime not consistent, the main distinction
concerns schemes involving a finite enclosed area, i.e. where the center-of-mass
of the two modes are spatially separated and recombined, such as for example the
Mach-Zehnder, Ramsey-Bordé or spatial Ramsey interferometer; and the schemes
where the center-of-mass of the two modes stay essentially at the same location
(temporal Ramsey interferometers). While the first can be used to measure inertial
forces (acceleration and rotations), the latter are only sensitive to effects that cause
the two states to acquire phase at different rates, such as an intrinsic energy difference
(hyperfine splitting in clocks) or different Zeeman or Stark shifts.

Most BEC interferometers to date can be assigned to one of these three broad
categories:

Interferometers with Internal-State Labeling

A first group consists of “time-domain separated-oscillatory-field” Ramsey inter-
ferometers [4], where rf or microwave fields are used to drive coherent transi-
tions between internal atomic states. Following the first measurement of the relative
phase in a two-component BEC in 1998 [14], several interferometers with internal-
state labeling (ISLI) were implemented with optically trapped condensates [17-19].
Ramsey interferometry has also been performed with magnetically trapped BECs,
using rf pulses to couple the different Zeeman states [20], enabling the realization
of multi-path interferometers [21]. A related approach, inspired by the progress on
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atom lasers [22] has consisted in using rf pulses to coherently outcouple and recom-
bine atoms from a BEC [23, 24], with the distinction that interference is detected in
spatial fringes instead of number fringes.

Even if the recoil due to rf or microwave photons can generally be neglected
in experiments with trapped condensates, the transition between internal states is
always accompanied by a modification of the external wavefunction. The coupling
between internal and external degrees of freedom is particularly spectacular in exper-
iments where the two internal states experience different external potentials. This is
for example the case in Ref. [25] where a bimodal condensate was confined in a
microwave-dressed state-dependent potential. In Ref. [24], free-falling as well as
trapped condensates were split and recombined using Stern-Gerlach field-gradient
BS. Another example of the coupling between internal and external dynamics is
the dramatic loss of Ramsey contrast in two-components BECs caused by demixing
effects [9] as well as (in magnetic traps) the relative center-of-mass motion of the
different Zeeman states [20, 21].

Stimulated Raman transitions can also serve as BS between low-lying internal
states. Although Raman interferometers have been widely used with non-condensed
atoms since 1991 [26], there are very few examples of BEC Raman interferometers.
One exception is the interferometer described in Ref. [27], where atoms coherently
rf-outcoupled from a BEC fall through two Raman BS implemented using copropa-
gating beams, resulting in a negligible momentum-transfer.

Bragg Interferometers

Bragg interferometers (BI) rely on the coherent splitting of a matter-wave in momen-
tum space, i.e. the diffraction on a light grating caused a momentum transfer, which
then translates into a spatial shift. Along with the first experiments on temporal [28]
and spatial [29] coherence of BECs, the first BIs for condensates were developed
around 2000 [6, 30], resorting to the three light grating configuration already imple-
mented with cold atoms [31, 32]. Three optically induced Bragg pulses (7 /2-m-7/2),
created by two off-resonant (to avoid spontaneous emission) counterpropagating laser
beams with different wave vectors are used to coherently split, reflect and recombine
a BEC. Owing to the possibility of large momentum transfer using nth-order Bragg
pulses [33, 34] and long expansion times [35], the two arms of the interferometer
can be separated by hundreds of wm. Extensions to this scheme included asym-
metric MZI [29, 35], where a temporal mismatch causes a partial spatial overlap of
the wavefunctions and encodes the relative phase into spatial interference fringes; a
three-path interferometer [36], where the phase is encoded into the contrast of the
spatial interference pattern; or guided Michelson interferometers [15, 37], where the
BEC:s are split and recombined at the same location in space. While some condensate
BIs—together with most of the BIs using cold, non-condensed atoms—are operated
with free falling BECs, including the extreme case of BECs in microgravity [35],
experiments were also performed with trapped [10, 29, 38], or guided [10, 15, 29,
34, 37, 39] condensates.
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A related approach, also based on the diffraction of a matter wave on a light
grating, is the Bloch oscillation interferometer (BOI) [40—43], where the macroscopic
interference between different Wannier states gives rise to oscillations of the density
pattern at a frequency proportional to the applied phase shift.

Double-Well Interferometers

The interferometer presented in this chapter belongs to the category of double-well
interferometers (DWI), i.e. trapped BEC interferometers where the atoms share the
same internal state while their external wavefunction is in a superposition of two
localized modes in a double-well potential [12]. Coherent splitting is achieved by
smoothly deforming the external potential from a single well to a double well. Split-
ting occurs in position space, in contrast to Bragg interferometers, where it happens
in momentum space.

A few years after the observation of interferences from independent condensates
in an optical double well [13], the first DWI was realized in 2004 with an optically
trapped BEC [44]. One year later, the first magnetic DWI was implemented on
an atom chip [45], using the same technique of rf dressing as in the experiments
presented in this thesis (see Sect.2.2.2). Double wells created by rf dressing have
been widely used for BEC interference experiments, owing to their high degree
of control allowing to access different regimes of tunnel coupling [1, 11, 46, 47].
In particular, many experiments were performed with phase fluctuating BECs in
elongated double wells [48-52].

BEC interference experiments have also been performed in double wells, or arrays
of wells in one [53], two [54] or three [55] dimensions created using optical lattices.

Most DWI rely on time-of-flight recombination: the condensates are released,
expand and overlap in tof, creating a fringe density pattern similar to a double slit
interference experiment, from which the phase can be extracted (see Sect.3.2.1).
Some exceptions are for example the technique presented in Ref. [56], where the
phase was inferred from a phase-dependent heating when the two halves of the
condensate are merged, and the trapped recombiners presented in this thesis (see
Sect.3.6) [1].

Other Types of BEC Interferometers

Besides these three categories, one should also mention a BEC interferometer based
on the coherent diffraction of a BEC on a magnetic lattice [57] as well as the Ramsey-
like interferometer with vibrational states of a trapped BEC that we recently devel-
oped on our experiment [16].
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3.1.2.2 Example of BEC Interference Experiments

Matter-wave interferometry (MWI) has proven to be a powerful tool to probe many-
body quantum systems. In particular, it is the only experimental technique which
allows accessing the quantum phase, nearly without equivalent in other fields of
physics.

MWT has been performed to demonstrate the temporal [28] and spatial [29] coher-
ence of BECs and has allowed probing the phase fluctuations of degenerate Bose
gases in low dimensions [38, 48, 50, 51]. It has also been used to observe phase
defects such as vortices [23, 58] or solitons [30] in BECs.

Since the first observation of Bloch oscillations as a macroscopic quantum
interference effect [40], MWI has been used to observe Josephson oscillations and
macroscopic quantum self-trapping through the evolution of the phase between two
condensates in an optical double-well potential [55], illustrate the difference between
independently created and coherently split BECs [46] and study the thermal phase
fluctuations at equilibrium in a pair of coupled condensate in 1D [51], 2D [54] and
3D [59].

Atomic interactions, which seem currently to be the main factor limiting the
interrogation time of BEC interferometers, have been studied by means of MWL
Mean-field effects have been observed in trapped or guided BECs, including the
demixing dynamics of coherent superpositions of two internal states with slightly
different scattering lengths [9, 14] and spatially inhomogeneous, density-dependent
phase dynamics [10, 19]. Many-body effects, such as interaction-induced phase
diffusion, which will be discussed in detail in Sect. 3.5.2, have been studied in Ref. [1,
11]. It has also been experimentally demonstrated that these effects could be limited
by controlling interactions with a Feshbach resonance [39, 41, 43]. Magnetic dipolar
intractions have also been studied by MWI [60].

MWTI has allowed characterizing non-classical many-body states of a BEC in a
double well [1, 61, 62]. Quantum enhanced interferometry was demonstrated with
internal states of a BEC [8, 17].

Recently, in our group, a series of MWI experiments with a pair of 1D quasi-
condensates has brought new insight in the physics of out-of-equilibrium quantum
systems, highlighting the mechanisms of prethermalization [49, 52, 63] and the
emergence of thermal correlations [64, 65] after a quench.

Although currently most matter-wave metrology experiments such as clocks or
inertial sensors use cold, non-condensed atoms, the three-path Bragg contrast inter-
ferometer of Ref. [36] has been used to measure precisely the photon recoil energy.

3.1.3 The Vienna BEC Mach-Zehnder Interferometer

The design of our BEC interferometer is based on previous work of our group in
Heidelberg and Vienna [45, 46, 51]. It relies on the coherent splitting and recom-
bination of a BEC in a tunable rf-dressed double-well potential, where the matter
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Fig. 3.2 Schematics of the Mach-Zehnder interferometric sequence. A Bose-Einstein condensate
is coherently split by transforming a single trap into a double-well potential. A relative phase ¢
between the two arms is imprinted by tilting the double well during a time ¢, (phase accumulation
time). A phase sensitive recombination, similar to the action of a beam-splitter, is performed during
the time g, to transform the phase ¢ into a population imbalance between the two wells. The atoms
are eventually separated and the atom number in each well is read out by fluorescence imaging

wave is confined at all times. Figure 3.2 shows a schematics of the interferometric
sequence: a single BEC is first coherently split by smoothly transforming the single
well into a double well. Thanks to a spatial separation of ~2 um between the two
wave packets, our setup is sensitive to inertial forces. A relative phase between the
two arms is imprinted by tilting the double well. By adjusting the time during which
the double well is tilted out of the horizontal plane, we can tune the relative phase
between the two interferometer arms. The two condensates are then recombined by
reducing the splitting between the two wells in a way such that the double well acts
an atomic beam splitter, transforming the relative phase into a population imbalance.
We have implemented two different strategies based on a slow, adiabatic deforma-
tion of the double-well potential (Josephson recombiner) and on a fast, non-adiabatic
deformation of the potential (non-adiabatic recombiner). After recombination, the
atom clouds are separated and the particle number is read out using our fluorescence
imaging system. The state of the condensate can be characterized at each step of the
interferometric sequence by interrupting the MZI transformation and measuring the
two macroscopic observables number and phase difference.

In the following sections, we describe, characterize and discuss each stage of the
interferometric sequence. We start by presenting the methods used to probe the state
of the BEC (Sect. 3.2). We then turn to the matter-wave source (Sect. 3.3). In Sect. 3.4,
we present the splitting stage and show that the output state is strongly spin-squeezed
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and features reduced number fluctuations compared to a classical coherent state. In
Sect.3.5, we study the evolution of the phase during the phase accumulation stage
and show that the deterministic phase accumulation is accompanied by a randomiza-
tion of the phase distribution that we attribute to interaction-induced phase diffusion.
In particular, we compute the phase diffusion rate and connect it to the number fluc-
tuations of the BEC in the interferometer. In Sect. 3.6, we present and compare the
two BEC recombiners. Eventually, in Sect.3.7, we present and discuss the interfer-
ometric signal resulting from the full MZI sequence, underlining the effect of phase
diffusion and demonstrating how the use of a number-squeezed state extends the
interrogation time of our interferometer by more than a factor of 2.

3.2 Number and Phase Estimation

During each experimental run, we can interrupt the sequence at any stage to mea-
sure either one or the other conjugate observable phase and number difference (see
Sect. 1.2.2.5). This way, we can characterize the state of the condensate after each
step of the interferometric sequence. The fact that we can experimentally infer the rel-
ative phase for each individual realization is an important feature of bosonic Joseph-
son junctions, which has no counterpart in superconducting Josephson junctions or
superfluid helium. One should however keep in mind that beyond the two-mode
approximation, the two macroscopic observables are not enough to characterize the
state of the BEC.

The following section discusses the methods used on our setup to estimate both
phase and number difference, and evaluates the sensitivity of each.

3.2.1 Relative Phase Measurement

3.2.1.1 Principle

We have seen in Sect. 1.2.2.5 that it is not obvious to give an unambiguous definition
of the relative phase between the two parts of a Bose-Einstein condensate. Nor is
it to relate the concept of a quantum phase to the outcome of a phase measurement
process. An enlightening discussion has been led in the 1997 article by Castin and
Dalibard [66], where the authors showed that no measurement, nor series of mea-
surements, could allow distinguishing between a coherent state with random phase
and a Fock state. In this section, we assume that the BEC has been prepared in a
coherent state with a well-defined phase ¢ = 0 (see Sect. 1.2.4.4).

The relative phase between two condensates cannot be directly measured. Instead,
it can be inferred from observables which are functions of the quadratures of the
phase. For this, some kind of beam-splitter is needed. In Sect.3.6, we will discuss
some of the techniques which have been used to recombine BECs and read-out their
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phase. Here, we focus on the time-of-flight recombination method, which is the BEC
analogue of the famous Young’s double-slit experiment. It was first used in 1997 to
observe the interference between two independently created BECs [13].

Although recombining a split double-well allows the readout of the relative phase
as a population imbalance between the two modes, as we will show in Sect. 3.6,
interactions make this operation hard to control. Because the free expansion reduces
strongly the non-linearity, tof recombination has generally been preferred in double-
well interferometers [44, 45]. Time-of-flight recombination has also been used in
asymmetric Bragg MZIs [29], particularly in the drop tower setup Ref. [35], where
the choice of a method where interference can be seen at each single shot was
justified by the expense of the experiment. Local information can be extracted from
the spatial fringes, particularly with quasi-condensates in low dimensions [48, 49,
51, 52, 54], or to demonstrate phase defects [23]. For all the experiments presented
in this chapter, although our experiment provides sufficient resolution to probe axial
phase fluctuations [51], we chose to discard all spatial information by integrating the
interference pattern along the longitudinal direction of the cloud (z). In Chap.4, we
will discuss what information could be extracted from spatial phase fluctuations.

Implementation

In our setup, tof recombination is achieved by abruptly switching off the double-
well potential to release the atoms, letting them expand for 46 ms and imaging
them with the LS fluorescence detector (see Fig.3.3a). Due to the high transverse
trapping frequency in the direction of splitting (several kHz), the two BEC clouds
quickly expand and overlap. A characteristic interference pattern emerges in the
density distribution in tof (see Fig.3.3c). Assuming that the double well can be
approximated by two harmonic potentials (see Fig. 1.5) of frequency w, located in
+d /2, and that the transverse wavefunctions remain Gaussian during expansion with
the time-dependent rms width o (¢), the transverse density profile reads

2~ N 7x2/202(t)
()] ~ —me 1+ cos (ko(t)x + @) |, (3.1)

interference term

envelope

where ¢ denotes the relative phase and N is the total atom number. The interference
pattern consists of a Gaussian envelope modulated by an interference term. The phase
appears as a shift in the position of the fringes with respect to the envelope. Note
that for two spatially phase-coherent BECs, and in absence of any technical noise,
the contrast of each single realization, i.e. the amplitude of the interference term,
is expected to be maximal and equal to 1. We will see in Chap.4 that this is also
true for 1D quasi condensates immediately after splitting, as long as the axial phase
fluctuations are equal in each cloud. The time-dependent fringe spacing
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Fig.3.3 Double-slit experiment with Bose-Einstein condensates. a Schematics of the time-of-flight
recombination. After 46 ms, the transverse width of each cloud is much larger than the distance
between the two wells and an interference pattern emerges in the density profile imaged with the
Light Sheet. b Fluorescence image (averaged over 20 identical experimental runs) of the three mp
components after time of flight. The Stern & Gerlach separation is achieved by applying a magnetic
field gradient along the longitudinal z-direction. Only the central cloud (mg = 0, insensitive to
magnetic fields), which contains up to half of the atoms, is used for phase analysis. Color scale
2D density in atoms/pixel. ¢ Zoom on the central cloud (blue box in pannel b) showing a typical
interference pattern. Black line density profile after integration along z, as used for the phase
estimation. The bright fringe in the center of the cloud indicates a phase close to 0. The contrast is
of the order of 80 % (Color figure online)
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A (t) = (3.2)

is a decreasing function of the splitting distance d. Atomic interactions during the
early stage of the expansion tend to increase the fringe spacing compared to Eq. (3.2),
but this effect becomes negligible when d is sufficiently large [67]. To ensure a
constant fringe spacing regardless of the actual working trap, we chose to always
ramp the rf dressing intensity to the same final value RF5,, = 0.65 (corresponding
to the splitting trap, see Fig.3.11) before releasing the atoms. Given the 46 ms tof,
and d = 2 um, it yields a fringe spacing Ay & 105 pm, to be compared to the rms
width of the optical point spread function, which is of the order of 10 um, and to the
transverse extension of the expanded BEC (40 = 360 wm), so that about 5 bright
fringes fit into the envelope (see Fig.3.3c).
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Because of unavoidable mismatches between the switch-off time of the rf dressing
and the trapping wire (<1 ws) on the one hand, and that of the bias field (0.1 ms) on
the other hand, the atoms experience a rapidly varying magnetic field. When their
Larmor frequency becomes lower than the rate of change of the local magnetic field,
the adiabaticity hypothesis (Eq. (2.2)) breaks down and the atoms are projected onto
the three mp states. We observe that the transverse positions of the three clouds are
slightly shifted, probably under the effect of spurious magnetic gradients during the
tof. This reduces the contrast of the interference pattern after integration along z.
Furthermore, since the projection depends on the exact configuration of the fields at
switch off, the ratio between the mp states occupation, and hence the contrast of the
fringes, depends on the experimental parameters.

To mitigate this issue, we chose to deliberately apply a magnetic field gradient
in the longitudinal direction (z) by pulsing current in one of the I-shaped copper
wires (see Fig.2.2). This realizes Stern and Gerlach separation of the three Zeeman
components. Furthermore, we chose to perform phase analysis only on the magnetic-
field insensitive mg = 0O state (see Fig.3.3b). When possible, the switch off was
optimized® to maximize the population in mg = 0 (up to 50% of the total atom
number). Adiabatic rapid passage (ARP) of all the atoms into a field insensitive state
using a rf or microwave pulse [68] is currently under study.

3.2.1.2 Analysis of the Interference Pattern

Two methods to extract the relative phase from the interference patterns have been
tested and compared. In both cases, the phase is extracted from the transverse density
profile n(x) obtained from integrating the fluorescence picture along the z-axis of
the cloud , so that no information about the local axial phase is retained, and axial
phase fluctuations are integrated out (see Fig.4.1).

It is important to note that since the phase is a 27 periodic angular variable, the
usual definitions of ensemble average, standard deviation etc. have to be adapted to
extract meaningful statistical quantities [69]. Considering a set of phases {¢,},n =
1,..., m, the following quantities will be used throughout this thesis:

o the resultant R = 1 > | /% is a complex number inside the trigonometric
disc, the argument of which corresponds to the average phase, while its modulus
is a measure of the coherence (see Sect. 1.2.3.3). For a sample of m uniformly
distributed phases, the mean modulus of R scales like 1//m.

e the circular mean is defined as (¢) = argR.

e the circular standard deviation A¢ = /—21n |R] is defined in such a way that
it coincides with the rms width for a circular normal distribution. For a sample of
m uniformly distributed phases, the mean circular standard deviation scales like

VInm.

2The projection ratio onto the three m  states can be tuned by changing the phase of the rf dressing
field at the moment when the potential is switched off.
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Fig. 3.4 Interference pattern analysis. left fit. Black interference pattern obtained from a single
experimental realization (N & 600 atoms, retaining only the atoms in mg = 0). Note that the central
bright fringe is shifted with respect to the center of the envelope, indicating ¢ # 0. Red line fit
with the model of Eq. (3.3), yielding ¢5; = —0.73 rad. Blue Gaussian envelope only. Gray residual
(shifted by —0.5 for clarity). right Fourier transform. Red line complex argument of the Fourier
transform G (k) of the same density profile as in the left panel, displaying three plateaus. The central
plateau, with value around 0, corresponds to the envelope of the cloud, while the side plateaus with
opposite argument around k = £0.05 um ™! stem from the interference term. The relative phase is
extracted from one of the side plateau by averaging G (k) in the region defined by the two vertical
black lines. This yields ¢ppr = —0.72 rad (dashed red lines). Pale blue line modulus |G (k)|

Fit

The first method consists in fitting the density profile n(x) with a model following
Eq.(3.1)

na(x) = Age” 0 290 1 4 Cgcos (ki (x — Xeer) + d)]. (3.3)

Details of the implementation can be found in T. Betz’s PhD thesis [70]. The con-
trast term 0 < C < 1 accounts for finite imaging resolution, averaging over spatial
fluctuations of ¢(z) as well as a slight angle between the camera and the splitting
axis. xrer is not a fit parameter but a fixed reference point on the camera image (see
discussion in Sect. 3.2.1.3). Figure 3.4, left panel, displays an example of the fit of the
interference pattern obtained from a single experimental realization. An advantage
of the fit procedure is that most fitting routines readily give confidence intervals and
estimators of the goodness of the fit which can be used to automatically reject some
realizations when analyzing large amount of data.
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Fourier Transform

The main drawback of the fit model (3.3) is that it relies on a harmonic approxima-
tion of the double-well and neglects interactions in the trap and in tof. One could in
principle simulate numerically the whole expansion, but it wouldn’t yield a simple
analytical model. A less model-dependent method consists in extracting the phase
from the complex argument of the Fourier transform of n(x). Assuming that a generic
interference pattern consists of an generic envelope g(x) modulated by an interfer-
ence term

n(x) = g(x)[1 + Ccos (kox + ¢)], 3.4

the Fourier transform of n reads
C . g
F(k) = V271G (k) * [6(k) + 3 (e6(k — ko) + e "5k + ko))] (3.5)

where G (k) is the Fourier transform of the envelope, d(k) is the Dirac distribution
and * denotes the convolution product. The pale blue line in Fig.3.4, right panel,
shows the modulus of G (k). It consists of three peaks corresponding to the envelope
and the two sidebands around +ky. The phase is computed by averaging the complex
argument of the Fourier transform over one side band

ko+Ak/2
¢rr = arg [/k G(k)} . (3.6)

0—Ak/2

As long as the side bands can be resolved from the central peak (in other words:
as long as a sufficiently large number of fringes fit within the envelope), the result
does not crucially depend on Ak. The choice of the origin of the x axis however
is not incidental, since a shift in real space corresponds to a phase gradient for the
complex argument. In practice, it is chosen as the center of the envelope.

3.2.1.3 What is the Best Way of Extracting the Phase?

The measured value of the phase always depends on the estimation method. The
phase can be extracted from a fit or from the Fourier transform of the interference
pattern. In either case, it can be defined with respect to a fixed pixel on the image or
with respect to the center of the cloud (center of mass, or center of the envelope...)
for each realization. To the best of our knowledge, there is no definite argument as
what method is more appropriate. It probably depends on what source of technical
noise (vibrations of the double-well, momentum kick when the cloud is released...)
dominates during the formation of the interference pattern. Arguably, this issue relates
to the distinction between phase shift and envelope shift discussed for example in
Ref. [71]. In Ref. [44], the phase was defined with respect to a fixed position, while
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Fig. 3.5 Comparison between the phase extraction procedures. Left Blue dots phase extracted from
the Fourier transform procedure versus phase extracted from the fit procedure for 2000 experimental
interference patterns (Ng ~ 600 atoms in mg = 0) with different phases spanning the interval
[0, 27]. Red line y = x. The width of the blue trace indicates the average discrepancy between the
two methods A (¢rT — ¢¢) = 0.018 rad. In both cases, the phase was defined with respect to a
fixed pixel on the camera. Right Red dots phase defined with respect to a fixed reference pixel on
the camera ¢t versus phase defined with respect to the center of the envelope (for each realization)
Genv, for 234 experimental interference patterns created in the same conditions (¢ ~ 0). In both
cases, the phase was extracted from the Fourier transform. ¢ep, exhibit larger fluctuations than
¢ret. Blue same for the data of the left panel (¢ € [0, 27]). The pale blue area shows the average
discrepancy A (¢ref — Penv) = 0.44 rad between both methods. Black line y = x

in Ref. [47], the authors chose to define it with respect to the fitted center of the
Gaussian envelope.

Both fit and Fourier transform methods were tested by estimating the phase of
over 2000 experimental interference patterns (see Fig. 3.5, left panel). They yielded
similar results, with an average discrepancy between both methods A (¢pr — ¢) =
0.018 rad, to be compared to the SQL (see Sect.1.2.4.5) for Ny = 600 detected
atoms, Ag¢sqr = 0.041 rad. Besides being faster than the fit, the Fourier transform
procedure proved also to be more robust (fewer outliers) and was preferred for phase
analysis.

To decide whether to use a fixed reference pixel on the camera or the center of
the envelope as the origin of phases, over 200 interference patterns recorded in the
same experimental conditions (¢ ~ 0) were compared, yielding A¢,s = 0.16 rad,
A@eny = 0.26 tad and /covar (Pref, Peny) = 0.07 rad (see Fig.3.5, right panel).
The discrepancy between both definitions of the phase, computed on over 2000
realizations with different phases amounts to 0.44 rad, which is ten times larger than
AgsqL-

A possible reason why the phase defined with respect to the envelope displays
stronger fluctuations is that it relies on an extra fitted parameter (xo ). For these
reasons, we chose to always define the phase with respect to an absolute reference
point on the camera
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3.2.1.4 Noise of the Phase Estimation

In order to observe non-classical states of a bosonic Josephson junction, one must be
capable of measuring precisely phase fluctuations. One way of stating the question
is: what is the most narrow phase distribution which is measurable by our setup?
One difficulty is that the phase spread depends on the state of the BEC. Assuming
that there is an intrinsic readout noise A¢y of the phase extraction procedure, one
could think of measuring it using a perfectly phase squeezed state. Since we cannot
produce such a state, we chose to resort to numerical simulations. Instead of a non-
classical state, which involves computing the (N + 1) x (N + 1) density matrix, we
estimated the detection noise A¢q for a coherent state.

Simulation of the Interference Patterns

We assume that the BEC is in a product state where all atoms share the wavefunction
of Eq. (3.1). The intrinsic phase uncertainty for such a state is Agsqr. = 1/ VN (see
Fig. 1.9), which sets the fundamental limit for the sensitivity of the phase inference
procedure. We estimate A ¢y from applying our phase extraction procedure on a large
number of artificial interference patterns with ¢ = 0. The simulated interference
patterns are generated stochastically in the following way, extending the simulations
performed by Betz [51]:

e The position x; of each of the Ny detected atoms is picked up independently by
sampling the spatial probability distribution (3.1).

e For each atom, the number of detected photons n; is picked up from a normal
distribution with average p and variance o, = 2p reflecting both photon shot
noise and the amplification noise of the camera.

o the position x; ; at which each photon is detected is picked up from a normal distri-
bution of width opg = 10 um centered around x;, crudely modeling the diffusion
of the atoms in the Light Sheet and the finite optical resolution.

e Eventually, all the photon positions are binned on a grid with a camera object space
pixel size of 4 pm

Figure 3.6, left panel, shows an example of such a simulated interference pattern.
For each numerical realization, the phase is estimated using the Fourier routine.’
The circular standard deviation A¢yg is computed over the results of the estimation*
(see Fig. 3.6, right panel). Table3.1 shows the cumulative error budget for typical
experimental parameters. The main contribution turns out to be the fit error linked to
the atomic shot noise on the grid, i.e. the fact that when the condensate wavefunction
is sampled, the number of atom n; in the ith pixel has 4/7; fluctuations. Computing

3Note that the fit procedure yields slightly lower phase uncertainty since the artificial interference
patterns precisely implement the fit model.

“Note that the error of the estimation process is actually A¢q//m (standard error of the mean),
where m is the number of measurement.
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Fig. 3.6 Simulation of the phase estimation procedure. Left Numerical simulation of interference
patterns for typical experimental parameters. Black one single numerical realization, blue average
over 2000 realizations. Right Histogram of the phases estimated from the 2000 numerical runs. Red
Gaussian fit to the histogram, yielding A¢q = 0.078. Black Gaussian distribution with RMS width
ApsqL (Color figure online)

Table 3.1 Noise of the phase estimation method

A

Standard quantum limit (N = 1100)

1/+/N = 0.030 rad

Standard quantum limit (Ng = 550)

1/+/Ng = 0.043 rad

Atom shot noise (Ng = 550). .. 0.073 rad
- - -+ photon shot noise 0.076 rad
- - - + diffusion in LS 0.078 rad

Circular standard deviation of the phase estimated from 4000 simulated interference patterns with
¢ = 0, taking into account successively (a) the atom shot noise (b) the photon shot noise (c) the
diffusion of the atoms in the Light Sheet

Ay for different numbers of detected atoms yields Agg & 2/+/Nq (see Fig.3.7). In
particular, assuming we perform the phase estimation on half of the atoms, A¢g =
2.8 x A¢sqr. Increasing the fraction of detected atoms (for example by ARP transfer
to mp = 0) would improve the sensitivity by a factor v/2 to Agg = 0.55 rad.

Optimal Sensitivity

It is not obvious to obtain an analytical expression to see how the phase sensitivity
scales with the different parameters of the model. Nevertheless, neglecting photon and
camera shot noise, as well as imaging resolution, we can estimate the best sensitivity
for a phase estimation strategy based on a fit of the interference pattern [72]. We
assume that for each pixel Ax; (i =1, ..., M) on the spatial grid, the probability
distribution of the number of detected atoms n; (¢) conditional to the phase ¢ is
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Fig. 3.7 Sensitivity of the phase estimation procedure (simulations). Left Black dots Noise on the
phase measurement A¢g computed for different values of the number of detected atoms N4. Red
standard quantum limit (A¢sqr, = 1+/Ng). Blue fitto the data, yielding y = 1.91x 05!, Right Noise
on the phase measurement A¢g computed for different pixel sizes (Ng = 550). Red y = A¢psqL.-
Blue pixel size (4 um) (Color figure online)

known. This is in particular the case for a coherent state when the single particle
wavefunction is known. For example, the expectation value of n; reads

() =N /A |15 (0)| dx 3.7)

where 1(¢) is the wavefunction of Eq.(3.1). In this case, the best sensitivity is
obtained from a fit of the density profile, because this method precisely implements
the maximum likelihood estimator for the phase [73]. The best sensitivity is given by
the Cramer-Rao bound A¢?> = F~! where F is the Fisher information (see Ref [72]
and references therein)

M

1 (o))
Fm;Im;A—n%(—aé ) ) (3.8)

Equation (3.8) reflects the fact that the sensitivity is improved when (a) the average
density n; on each pixel is more sensitive to a variation of the parameter ¢ (b)
when the statistical fluctuations in each pixel are reduced.’ In Ref. [74], the authors
evaluate F' and find that for a coherent state, it precisely corresponds to the SQL:
F = mN. The fact that our estimation method is still at least twice less sensitive
than the optimal method comes from technical limitations as well as the fact that in
practice, the wavefunction (conditional to ¢) is not known in advance. It has been

5The prefactor m simply indicates that the standard error scales as 1/./m for m independent mea-
surements.



3.2 Number and Phase Estimation 123

proposed [74] to first conduct a calibration where the actual interference patterns
would be recorded for different, well-controlled values of ¢, before proceeding to
the phase estimation for an unknown ¢.

Increasing the pixel size, for example by binning adjacent pixels, decreases the
atom shot noise fluctuations but also decreases the sensitivity of the mean profile
to the fit parameter (in the limit where all the data is binned in one pixel, no phase
can be extracted). This suggests that there is an optimal pixel size. However, our
numerical simulations (see Fig. 3.7, right panel) do not indicate any improvement
above the (object space) camera pixel size Ax = 4 wm, which was therefore kept
for the analysis.

Note eventually that the model did not take into account effects such as the finite
contrast of the interference pattern (e.g. due to phase axial fluctuation), fluctuations of
Njy or of the fringe spacing etc. which would further deteriorate the phase sensitivity.

3.2.2 Number Difference Measurement

3.2.2.1 Methods

Conceptually, at least, it is more obvious to measure the number difference between
the two modes of the BEC than their relative phase. It consists, ideally, in projecting
the many-body wavefunction on the basis of Fock states (see Sect. 1.2.2.5). For this,
tunnel coupling must be instantaneously turned off. When J = 0, the Fock states are
the eigenstates of the system, so that the number difference distribution p(n) cannot
evolve.

In practice, this is achieved by ramping up the barrier between the two wells non-
adiabatically with respect to the inverse Josephson frequency and then increasing the
separation between the two clouds so that they can be resolved on the camera pictures
after tof. The atom number difference can then be deduced from the difference of
fluorescence intensity from each cloud. We have used to different techniques to
separate the clouds:

e Method 1 (see Fig.3.8a). It consists in rapidly increasing the splitting between
the two potential wells by ramping up the rf dressing amplitude. This gives a
transverse kick with opposite outward momentum to each cloud. Then the potential
is switched off and the two clouds fly away from each other. After a 46 ms tof,
they are imaged with the LS detector.

e Method 2 (see Fig.3.8b) [47]. This method is inspired from a technique used
to produce collisions between condensates [75]. It consists in rapidly switching
off the RF dressing, so that the atoms find themselves in the static (harmonic)
potential, but displaced from its minimum. For that, the switch off must be non-
adiabatic with respect to the motion in the static trap. On the other hand, it must be
adiabatic with respect to the variation of the Larmor frequency, to avoid projecting
some of the atoms onto non-trapped mg states. In practice, we ramped down the
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Fig. 3.8 Atom clouds separation. a Left Method 1. The RF dressing amplitude is raised to RFymp =
1 within 0.1 ms in order to apply a transverse kick in opposite direction for each cloud. The potential
is switched off immediately after, and the two clouds separate during tof. Right Typical f luorescence
picture (averaged over 10 realizations with identical settings). When they are imaged, the two clouds
are separated by about Imm. Note that due to stray magnetic gradients during tof, the three mp
components of each cloud are slightly shifted longitudinally. b Left Method 2. The RF dressing is
rapidly switched off (360 ps), so that the atoms find themselves shifted with respect to the minimum
of the bare harmonic potential and start accelerating towards the center. The potential is switched
off when they have gained maximum velocity. The two clouds cross each other while expanding
and can be resolved after tof. Right Typical fluorescence picture (averaged over 10 realizations),
exhibiting a population imbalance of the order of 40 %. Note that for method 2 the position of the
left and right clouds are swapped

dressing in 360 ps. After the first quarter of an oscillation in the static trap, i.e.
when the clouds have attained maximal inwards velocity, the potential is switched
off. The clouds cross each other, separate and can be resolved once they fall through
the LS.

The main advantage of method 1 is that the two clouds do not need to cross
each other and that the overlap between the two clouds, as well as their transverse
extension after tof, turns out to be smaller (see Fig. 3.9, right panel). For this reason,
it was preferred for measurements where a precise counting of the atoms in each
cloud was needed (see Sect.3.4.3.1). On the other hand, when the splitting between
the two wells is too weak, method 1 fails because of the atoms which remain on
the tunnel barrier while it is ramped up and end up between the two clouds after
expansion. Method 2 proved to be robust for a large variety of initial double-wells,
and was used for all measurements were atom counting was not critical.

Collisions

Furthermore, atom collisions while the two clouds cross each other turn out not to
be a limitation. The two parts of the BEC cross each other with a relative velocity
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vrel & 40 mm/s, ensuring that collisions occur in the s-wave regime (a; X vy < 7,
see Sect. 1.1.2.1). A rough estimate of the total number of collisions when the BEC
cross is [75]

1
Reol = ENn()ﬂ_azvrechol (39)

where N is the total atom number, n( the peak density of one cloud and 7. =
24/2a 1/Vrel & 20 s is the time during which the two clouds overlap. For an elon-
gated condensate in the 1D Thomas-Fermi regime (see Sect. 1.1.3.3),

2/3
Mol = —(SN) / aBa T Pg 3

2\/§S 1 I

where a| and g are the harmonic oscillator lengths in transverse and longitudinal
direction respectively. For typical parameters, n., =~ 2. This relatively low value
(note that it is an upper bound, because the density is overestimated) is a consequence
of the elongated geometry of the cloud in the direction orthogonal to the collision,
as well as the relatively small atom number.

It was checked experimentally (by not switching off the static trap and letting
the clouds undergo several oscillations through each other) that the first hints of
atom scattering events appeared only after ~10 consecutive collisions. Note that by
increasing n.o, BEC collisions could be studied, benefiting from the high detection
efficiency of the Light Sheet imaging.

(3.10)

3.2.2.2 Analysis and Noise

To estimate the number difference from the fluorescence images, a region of inte-
gration (ROI) is defined around each cloud (see Fig.3.9). Note that to keep the area
of the ROI small and minimize background intensity, no Stern-Gerlach gradient was
applied. In our setup, the precise determination of the number difference benefits
from the almost background-free fluorescence imaging. It has to be stressed that
single atom sensitivity is crucial for number-squeezing measurements (see below).
It has already allowed demonstrating strong number squeezing between correlated
atom pairs in our experiment [76]. We will show in Sect.3.4.3.1 how we could aslo
show number-squeezing in a double well.

The model to describe the fluorescence signal has been described extensively in
the PhD thesis of R. Biicker [77]. Let us review it here briefly to estimate the noise on
a number difference measurement. The starting point are raw fluorescence camera
pictures, namely a 512 x 512 matrix of counts. Using the values for the gain g.,, and
the baseline ¢ fitted on the background image (see Sect.2.3.2.1), the fluorescence
signal (in photon/pixel) is reconstructed by computing
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Fig. 3.9 Number difference measurement. Left Region of integration of the fluorescence
signal from each of the two cloud for atom counting. Right Fluorescence signal (integrated along
z—integration length: 80 pixels). The black lines correspond to the x-boundaries of the integration
regions defined in the left panel. Blue signal from the left panel, obtained with separation method 1
(without crossing). Between the two integration regions, the signal is close to its background level.
Red signal from Fig. 3.8a, obtained with separation method 2 (with crossing). The overlap is more
significant, as well as the fraction of atoms outside the field of view, which would increase the
measured number fluctuations (Color figure online)

I(x,y) =[c(x,y) — col /gcam- (3.11)

Calling the number of atoms in the left (respectively: right) ROI N g, the total
fluorescence signal in each ROI is modeled by assuming that:

e for each atom, a certain number of photons p; is detected. We model the p;’s by
independent realization of a random process of mean p and variance af,. Due to
the amplification noise of the camera, the variance is 0[2, ~2p [78].

e clectronic noise on the CCD as well as stray light from the Light Sheet and flu-
orescence light reflected on the chip are respon51ble for a non-zero background.
Assuming that the background is uniform,® we model it by a random noise b
(average b, variance o7) and assume that each pixel implements an independent

realizations b; of b.

The total fluorescence signal S, g = [ 4 I (x,y)dxdy in each ROI reads

SL—Zpl+ZbJ, (3.12)

i=1

SR—Zp,—i-Zb/, (3.13)

i=I

6Background photons are out of focus.
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where A is the number of pixels in each ROI. This allows to estimate the noise on
the fluorescence signal difference s = S; — Sk. In the case of a perfectly number-
squeezed sample (N, = Ng = N/2), the variance of s reads

As® =2Np + 240}, (3.14)

This shows that the ROI must be kept as small as possible to minimize background. On
the other hand, assuming a perfect background-free detector and exactly p detected
photons per atoms, the signal variance would be

As? = p?A (N, — Ng)*. (3.15)

The detection noise scales like +/p while the signal scales like p. For most of the
experiments presented in this thesis, p &~ 16 photons/atom, but higher values can be
achieved, at the expense of a reduced spatial resolution. Eventually, this sets a limit
to the best observable squeezing. Equating (3.14) to (3.15), we get the estimate

& 2 2A0;
MUp N

(3.16)

For p = 16 photons/atom and N = 1200 atoms, the second term is almost negligible
and &4 ~ 0.38. Equation (3.16) shows that owing to its high sensitivity and low
background, fluorescence imaging can give access to number fluctuations beyond
the standard quantum limit. It also suggests that for squeezing measurements, we
should crank up the LS intensity, as long as the two clouds remain clearly separated
on the images. It also

3.2.3 Conclusion on Number and Phase Measurements

We have seen in this section that different detection methods exist for the two macro-
scopic observables. Importantly, they can be used at any time in the sequence to
characterize the state of the condensate at each step of the interferometric sequence.
We modeled our fluorescence imaging system to estimate the detection noise on each
measurement, showing that while detecting number fluctuations below the standard
quantum limit should be possible, the noise on the phase measurement using inter-
ference pattern is more than two times above the SQL.

This doesn’t tell us how strongly phase-squeezed a BEC should be for us to be
able to detect sub-shot noise phase fluctuations, but answering this question requires
simulations of the full density matrix, which are beyond the scope of this thesis.
Furthermore, this analysis underlines the fact that, owing to the highly sensitive
detection methods already currently available, counting atoms can be much more
precise than inferring the phase from an interference pattern [61, 79, 80]. It motivates
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Table 3.2 Preparation trap parameters

Preparation trap (RFamp = 0.3)

Horizontal transverse single-particle level spacing (simulated) Ey/h =1.02kHz
Vertical transverse trapping frequency wy/2m = 1.75kHz
Longitudinal trapping frequency w,/2m = 12.4Hz

Unless stated, all parameters have been directly measured

the search for new recombination methods for double-well interferometers allowing
to map a phase difference into a number difference, as will be discussed in Sect. 3.6.

How the sensitivity of both phase and number difference measurements vary with
the atom number is currently being investigated. It raises interesting questions about
how a measurement performed on a fraction of the atoms impacts the state of the
quantum superposition. Furthermore, while so far either one or the other observable
could be measured in each experimental cycle, one could think of methods to measure
both number and phase in the same time, for example by changing the switch off
procedure.

3.3 Matter Wave Source

The matter wave source for the BEC interferometer is a single quasi-condensate in a
slightly anharmonic trap. Instead of preparing the condensate in the static, harmonic
trap, we chose to perform the last stage of the rf evaporative cooling in a weakly
dressed trap (RFamp = 0.3), below the splitting point RFfme = 0.42, in order to
minimize excitations of the collective modes during the splitting (see Fig.3.11). The
potential is essentially harmonic along the longitudinal (z) and transverse vertical
(y) direction, while it has a significant quartic component in the horizontal (splitting)
direction (see schematics in Fig. 1.2). Table 3.2 summarizes the trap parameters.

The atom number N =~ 1200 is controlled by the final frequency of the rf evapora-
tion knife (10 % fluctuations from shot to shot). For these parameters, the condensate
is well described by a 1D Thomas-Fermi model (see Fig. 1.3) and 1z &~ h x 450 Hz.”
The temperature of about 20 nK is estimated from the longitudinal profile after
expansion using a stochastic model to describe the phase fluctuations along the quasi-
condensate [81] (see Fig.3.10). This rough estimate is compatible with the absence
of an isotropic thermal fraction and excludes a temperature higher than 50nK.

The fact that kgT, 1 < hvy, cloud lies in the weakly interacting 1D quasi-
condensate regime [82, 83]. The corresponding phase coherence length [] (computed
from the peak 1D density of 35 atoms/pum) lies between 10 and 20 pum, which is less
than the length of the cloud L &~ 50 wm. However, as will be discussed in Sect. 3.4.5,
it seems that for matter-wave interferometry, only the coherence properties of the

"Here, the zero-point energy is substracted from the chemical potential.
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Fig. 3.10 Temperature estimation. The temperature of the initial quasi-condensate is estimated
from its longitudinal profile (averaged over several realizations) after expansion, using a stochastic
model to model the thermal axial phase fluctuations and assuming ballistic expansion. Blue, orange,
red lines: density profiles computed for T = 5, 20 and 50 nK respectively. Dashed line computed
in situ profile. Note that in the longitudinal direction, the expansion is much slower than in the
transverse, tightly confined directions. The wings of the density distribution are compatible with a
temperature of 20 nK, yielding an axial phase coherence length of 20 wm at the center of the cloud
(Color figure online)

relative phase between the two halves of the condensate are relevant, regardless of
the phase coherence of a single BEC.

For this reason, in the following, we will most of the time refer to our quasi-1D
condensate simply as a Bose-Einstein condensate, and apply tools which, strictly
speaking, have been developed for true condensates. In Chap.4, we will question
this simplistic assumption and discuss the implications of the multimode nature of
our matter-wave source.

3.4 Coherent Splitting and Generation of Atomic
Squeezed States

The first step of the interferometer sequence consists in splitting a single condensate
into a quantum superposition of two spatially separated, localized modes with a well-
defined (i.e. reproducible) relative phase. The dynamics of splitting must be always
be considered with respect to different timescales: on the one hand, the timescales
associated to the external degree of freedoms (motion of the condensate along the
different spatial directions in the trap), on the other hand, that associated to the
tunneling of the particles. Adiabaticity or non-adiabaticity of the splitting always
refers to one particular timescale.


http://dx.doi.org/10.1007/978-3-319-27233-7_4

130 3 A Mach-Zehnder Interferometer for Trapped, Interacting ...

In Sect.3.4.1, we explain how adiabatic splitting of the external wavefunction of
the BEC is achieved on our atom chip using rf dressed potentials. In Sect.3.4.2, we
show how near-to-adiabatic splitting of the interacting many-body wavefunction of
the BEC inherently produces a spin-squeezed state. In Sect.3.4.3, we present the
results of the measurements of the number and phase distributions to characterize
the state of the BEC right after splitting, and we evaluate the achieved degree of
squeezing. Eventually, in Sect.3.4.4, we compare our results to the prediction of a
simple model for the evolution of the many-body wavefunction in the two-mode
approximation.

3.4.1 Coherent Splitting of a Condensate

3.4.1.1 Coherent Splitting Techniques

Coherent splitting of a BEC is achieved by means of an atomic beam splitter. Different
types of BS have been developped for BEC interferometry. In interferometers with
internal-state labeling, the BS consists generally in a 7w/2 rf and/or microwave pulse,
see for example Ref. [14], or in a two-photon Raman coupling pulse [27]. In Bragg
interferometers, coherent splitting relies on the diffraction of the atoms by a moving
light grating, which acts as a phase grating for the atomic de Broglie waves and
creates coherent, displaced copies of the BEC [6, 32]. A related approach relies
on the coherent diffraction of a BEC on a magnetic phase grating created by the
superposition of a static lattice potential and an oscillating field on an atom chip [84].

In double-well interferometers, coherent splitting is achieved by smoothly deform-
ing the confining potential from a single well to a double well. In the limit where
the rate of transformation of the potential is slow compared to the timescale of the
transverse motion (typically the inverse transverse trap frequency), a BEC prepared
in the transverse ground state of the initial single-well potential will adiabatically
follow the instantaneous ground state and end up in the ground state of the double-
well potential.® Hence, in a symmetric double well, adiabatic splitting produces a
superposition of two localized states (one in each well) with the same phase. In a
sense, this is merely a consequence of the definition of the two modes: we have seen
in Sect. 1.2.1 that in a symmetric double well, it is natural to define the left and right
modes as the sum and the difference of the to first eigenstates. In this case, the ground
state corresponds necessarily to a symmetric superposition of left and right modes
with ¢ = 0. Restricting the dynamics of the BEC to the two lowest-lying eigenstates
also underlines the fact that an adiabatic separation BS realizes a unitary operation.
The second input port of a “’Y-shaped beam splitter” such as the one presented in this
thesis corresponds to the first excited state.

8Note that, at least for a non-interacting system, this argument remains true for any eigenstate of
the potential and has motivated the proposal of a multimode interferometer [85].
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Note that the situation is different in an asymmetric double well, where the eigen-
states “collapse” in the left and right mode when the energy difference between the
trap minima becomes comparable to the energy difference between the two lowest
eigenstates (see Ref. [12] for a discussion of the sensitivity of adiabatic splitting to
potential asymmetry in the non-interacting case.). Asymmetric splitting can instead
be used to prepare a BEC with a finite population imbalance [86]. Adiabatic splitting
of an interacting BEC in a double-well created using the corrugation of a magnetic
film has even been used to characterize the potential asymmetry [87].

A beam splitter for cold atoms realized with a Y-shaped magnetic guide was
demonstrated in 2000 [88]. Coherent, i.e. phase-preserving splitting of a BEC was
first achieved in 2004 with an optical double-well implemented with a focused laser
beam passed through an AOM driven by two rf signals [44]. One year later, the
first DWI using rf-dressed potentials was demonstrated on atom chip [45]. The same
year, the first BJJ was realized by superimposing a 1D optical lattice to an optical
harmonic potential, realizing a single weak link [55].

In Ref. [16], we were able to demonstrate symmetric coherent splitting of a BEC
between the ground and the first excited state of a single well through a non-adiabatic
manipulation of the potential (“shaking”). In principle, in a given anharmonic trap (for
example a double well) where two modes can be singled-out, it is possible to create
any coherent superposition by appropriately manipulating the confining potential, if
needed by means of optimal control methods [89]. Arguably, this is similar to the
splitting methods used in Ramsey or Bragg interferometers, where the phase of the
coherent superposition is imprinted by the driving field (rf, microwave or laser).

3.4.1.2 Implementation in Our Setup

As explained in Sect.2.2.2, we use essentially the same splitting technique as in
Ref. [45], with the minor difference that we tune the rf dressing intensity instead of
the rf detuning. Figure3.11 shows how the rf dressed potential is smoothly trans-
formed from a single well to a double well as RFap,, is increased. Transversely, the
potential first flattens until a point where the quadratic term completely vanishes.
At the splitting point RFy,,, = 0.42, a local maximum emerges in the center. As the
dressing amplitude is further increased, the height of the barrier, the well spacing and
the trapping frequency increase in each well (see Sect.2.15). Table 3.3 summarizes
the parameters of the final double well used in most of the experiments presented in
this thesis (RFppp = 0.65).

To prepare a population imbalance, the splitting axis is tilted by an angle o with
respect to the horizontal plane (see Fig. 2.8) by scaling the intensities in each RF wire
following Eq. (2.30). This way, a larger fraction of the wavefunction is localized in
the lowest potential well (see Fig.3.12).
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Fig. 3.11 Splitting the rf dressed potential. Left 1D cut along the splitting axis (x) of the simulated
potential for different values of the rf dressing intensity. In absence of dressing (RFamp = 0), the
potential is harmonic. When the RF amplitude is increased over the critical value RFg,, = 0.42
(green line), two minima appear which are separated by a potential barrier. The blue lines represent
respectively the preparation trap (RFamp = 0.3), the trap used for the recombination (RF,p,, = 0.55)
and the splitting trap (RFamp = 0.65). Right 2D cut of the RF,mp = 0.65 potential in the transverse
(x, y) plane (z = 0, gravity is pointing downwards). The white line represents the trajectory of the
potential minima from RFamp = 0 to 0.65 (White cross static trap, green and blue crosses same as
in left panel). Note the downward sag before RFme is reached, which is mostly caused by gravity.
The typical transverse rms size of the ground state wavefunction is of the order of 200 nm. Color
map (in both panels): potential in kHz.

Table 3.3 Parameters of the double well at the end of the splitting ramp
Splitting double well (RFpmp = 0.65)

Horizontal trap frequency (in each well)

wy /271 = 1.44kHz

Vertical transverse trap freq. (in each well)

wy/2m = 1.84kHz

Longitudinal trap freq. (in each well)

w./27 = 13.2Hz

Well spacing (simulated, in agreement with fringe spacing) 2.1 pm
Barrier height (simulated) h x 3.7kHz
Tunnel coupling energy (simulated) J/h ~0.1Hz

Unless stated, all parameters have been directly measured. Note the finite value of the estimated
coupling

3.4.1.3 Motion of the Condensate During Splitting
Adiabaticity in the Direction of Splitting

One common requirement for coherent splitting is that the deformation of the poten-
tial should be adiabatic with respect to the motion of the trapped condensate. Oth-
erwise, excitations in the BEC will cause heating and decoherence. In Ref. [44],
axial breathing modes excited by the splitting led to a strong curvature of the spatial
interference fringes, eventually rendering phase readout impossible after a few ms.
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Fig. 3.12 Splitting with imbalance. Normalized population imbalance as a function of the splitting
angle (a parameter used in Eq. (2.30)). Note that for this particular measurement, « is offset by 2°,
probably because of a slight asymmetry of the currents in the supposedly balanced configuration
(v = 0). This offset was carefully checked and readjusted whenever needed. The linear fit (red)
yields a sensitivity for the number difference preparation of 53 + 2 atoms by degree (N = 1200)
(Color figure online)

Our elongated geometry is characterized by two timescales: transversely, trapping
frequencies in the kHz range impose to manipulate the potential at the ms timescale.
Longitudinally, the trapping frequency is of the order of 10-20 Hz, corresponding to
hundreds of ms. Considering a system initially in the eigenstate |n) of the Hamiltonian
(energy E,), a commonly used criterion for adiabaticity is

ZM«I (3.17)
m#£n En_Em ' ’

where the summation is performed over all other eigenstates [90]. For a single particle
initially in the ground state of a harmonic trap with a time-dependent frequency w(?)
and position x¢ (), it translates into

RO, o)
warn N S € '

(de)compression displacement

This criterion can never be fulfilled during the entire splitting because when RFzp,p =
0.42, the transverse trapping frequency vanishes (w — 0 )° while in the same time,
xo grows like the square root of the dressing amplitude (see Fig.2.15).

9Strictly speaking, at the splitting point, the transverse potential becomes quartic so that the criterion
(3.18) does not apply anymore. Nevertheless, the adiabaticity constraint becomes more stringent
since the spacing between the energy levels diminishes.
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Fig. 3.13 Splitting a Bose-Einstein condensate. Left Transverse density profile (in atoms/pm) as
a function of time (1D GPE simulation, the initial state is the ground state of the preparation trap
RFymp = 0.3). Starting at r = 0, the RF intensity is ramped up linearly for 5 ms, and then held at
the final value RF,mp = 0.65. The green dotted line indicates the splitting point (RFymp = 0.42),
the blue one the end of the splitting ramp. The black line indicates the position of the minima of the
potential at each time. Note the small residual transverse oscillation after the end of the splitting.
Right Breathing of the longitudinal density profile (in atoms/pum) of one cloud after symmetric
splitting, obtained by solving numerically the scaling equation (3.19). The dotted lines show the
evolution of the Thomas-Fermi Radius. Between a maximum and a minimum of the axial breathing
oscillation, the length of each cloud shrinks by 40 % while its peak density is increased by 80 %
(Color figure online)

We chose to minimize the excitations by starting from an already dressed potential
and increase linearly the dressing amplitude in 5 ms from RF,p, = 0.3 to the final
value RF,pp = 0.65. We checked that no transverse excitation was detectable after
the end of splitting, in agreement with simulations predicting an overlap better than
90 % with the instantaneous ground state at all times (see Fig.3.13, left panel). In
contrast, for ramps shorter than 1 ms, a strong heating of the cloud was observed.
Optimal control techniques may enable faster splitting with high fidelity [16].

Axial Breathing

The splitting occurs on a time scale much shorter than the longitudinal motion. This
results in an axial breathing mode (see Fig.4.1). Two effects contribute unequally to
the breathing: first, each part of the condensate has only half of the initial atom number
(or any other proportion, depending of the choice of the imbalance). Secondly, the
longitudinal frequency of the final trap (w, = 27 x 13.2 Hz) is slightly different from
the initial one. After splitting, each condensates initially sees its shape unaffected,
while its atom number and the potential it experiences suddenly changes. The cloud is
thus “too long” compared to its new equilibrium size, and it begins to breath inwards,
as could be observed in tof.

More precisely, using the explicit expression for the 1D Thomas-Fermi radius at
equilibrium (Eq. 1.61) with the number N; atoms (i = L, R) in each well, we see that
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in the case of a symmetric splitting (N, = Ng = N/2), the cloud is 25 % too long.
Following the scaling approach of Refs. [91-93], the evolution of the Thomas-Fermi
radius can be described by a scaling factor b(¢t) = R(¢)/ Ry which in 1D evolves
according to

. w?

b+wib = 7 (3.19)
(see Fig.3.13, right panel). For a small perturbation (b(¢) = 1 + e(¢) with € < 1),
the oscillation of the TF radius is close to harmonic at the frequency wgy = V3w, ~
27 x 22.8 Hz (we measured w, = 23 £ 5 Hz). Importantly, it implies that after
splitting, both condensates are out-of-equilibrium, causing the phase to evolve both
in space and time (see Sect.3.5.3). One way of mitigating this effect would be to
take advantage of the dependence of w, with the dressing amplitude. By choosing
a preparation trap such that the change of trap frequency compensates the change
of interaction energy after the atom number has been divided by two, we hope to
strongly suppress the breathing mode.

3.4.2 Squeezing and Adiabatic Splitting

We now turn to the dynamics of the many-body wavefunction during the splitting.
As we have seen in Sect. 1.2.3, the ground state of a bosonic Josephson junction with
repulsive contact interaction is always number-squeezed (see Fig. 1.10). The basic
idea of number squeezing generation by adiabatic splitting is to reduce fluctuations of
the number imbalance by increasing the ratio A = U N /2J—generally by decreasing
J—between interaction energy and tunnel coupling.

Number squeezing in a BEC was observed in an array of weakly linked traps
(optical lattice) in 2001 [94]. In 2008, the number and the phase distribution of
a condensate in an optical double well (as well as an optical few-well potential)
were measured to demonstrate number and spin squeezing [61]. Sub-binomial numer
fluctuations were also observed in a cloven BEC in a magnetic double well on an
atom chip [95]. In the last years, number or spin squeezing between internal states of
aBEC was reported in various setups [17, 62]. An extreme case of number-squeezing
is the generation of twin atomic states, for example in our setup using collisions in
an elongated BEC [76], or spin exchanging collisions [80, 96].

Figure3.14 shows how the characteristic energy scales of our BJJ depend on
the control parameter of the double well (the dressing amplitude R Fapp). How these
parameters were computed is detailed in appendix A. As R Fanp is increased, the tun-
nel coupling energy drops by several orders of magnitude while the interaction energy
varies by less than a factor of 2. Note that our simulations indicate that as long as
R Famp < 0.53 (vertical black dotted line), the chemical potential of the first excited
state is larger than the barrier height, meaning that the two-mode approximation is
not expected to give accurate quantitative results. According to the simulations, the
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Fig. 3.14 Parameters of the bosonic Josephson junction. Result of numerical simulations of the
BJJ for different rf dressing amplitudes and N = 1200 atoms. Pale blue line tunnel coupling energy,
black line interaction energy, red Josephson frequency. The dashed blue line is a fit to the simulated
coupling energy with the analytical model (3.31). The splitting point, where a second potential
minimum appears, corresponds t0 RFamp = 0.42. At the end of the splitting ramp, RFamp = 0.65
(the blue circle shows the expected final value of the coupling J/h = 0.1 Hz). The vertical dotted
line represents the crossover between Rabi and Josephson regimes A = 1 (purple) and the point
where the chemical potential y, of the first excited state is equal to the barrier height Vj, setting a
lower bound for the validity range of the two-mode approximation. Note that the crossover between
the Josephson and the Fock regime is outside the plotting range (Color figure online)

transition between the Rabi and the Josephson regime occurs around R Fapp < 0.48
(vertical purple dotted line). Importantly, it means that our BJJ can essentially be
tuned in the Josephson and Fock regimes. This is an important limitation of our BJJ:
for our typical atom numbers (N ~ 1000), the interaction energy (roughly measured
by the chemical potential) and the oscillation frequencies are both of the order of
1 kHz. For this reason, it is impossible to reach the Rabi regime within the validity
range of the two-mode approximation. One could think of strongly reducing U by
reducing the atom number, but besides the technical challenge of preparing a stable,
low number of atoms, at some point, the mean-field description of the BJJ would
break down.

We recall here the expressions given in Sect. 1.2.4.4 for the number-, phase- and
spin squeezing factors in the ground state of the BJJ, in the Rabi and Josephson
regimes:

S (3.20)
N — A T 17 .

&=vVA+1, (3.21)
2 1 ~ 2

§= o («/1 i A/N) ~ & (3.22)
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In the final RF,y, = 0.65 double well, VA ~ 2400, so that the spin squeezing
factor is approximately equal to the number-squeezing factor.

Starting from the ground state of a BJJ with finite (and usually small) A, an
arbitrarily high amount of number squeezing could be in principle achieved as long as
the system adiabatically follows its instantaneous ground state. In the limit J = 0, the
ground state is nothing else than the perfectly number-squeezed twin Fock state [97].
Of course, this would require splitting infinitely slowly because in this limit, the
inverse Josephson frequency wj_l diverges. In practice, splitting can be adiabatic in
the beginning, until a point where it breaks down and the number distribution is
frozen (no atom can tunnel). Note that in this regard, the breakdown of adiabaticity
is necessary to achieve coherent splitting, since the relative phase of the twin Fock
state is completely undetermined.

We expect this to happen in our double well, where simulations predict that the
final value of the coupling energy is J/h ~ 0.1 Hz, corresponding to a Josephson
period of the order of 100ms, much longer than the splitting time. We will come
back in Sect. 3.5.2.4 on the implications of the fact that the final coupling has a finite
value.

3.4.3 Results: State of the BEC After Splitting

To characterize the state of the condensate right after splitting, we measured the
distribution of the two conjugated macroscopic observables number difference and
relative phase (see Fig.3.15). This was achieved by inferring either number or phase
for a large number of condensates prepared in the same conditions, using the methods
explained in Sect.3.2.

3.4.3.1 Number Distribution

The number difference distribution was computed from fluorescence images of the
two clouds after separation (see Fig.3.8). For each picture, the total fluorescence
coming from each of the two cloud (S, Sg) was integrated over a region located
around the cloud (see Fig.3.9). Figure 3.15, top pannel, shows the histogram of the
fluorescence signal difference s = S; — Sk from around 230 independent experi-
mental realizations. We observed a bell-shaped distribution centered around 0 with
a sample variance As> = 8.5 x 10%. The statistical uncertainty on the variance was
estimated to be of the order of 0.8 x 10*. To deduce the fluctuations of n from
that of s, we resorted to the model presented in Sect. 3.2.2.2. Assuming a fixed total
number of atoms N = N, + Ny and using the law of total variance, the variance
As? of the fluorescence signal is connected to A(N; — Ng)? by

As* = 240}  + 2Np + p*A (N, — Ng)2. (3.23)
~—— ——
background noise  photon detection noise
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Fig. 3.15 Number and phase distributions after splitting. 7Top, Histogram of the difference between
the fluorescence signals of the left and right clouds s = Si. — Sr, in units of the standard deviation
expected for a coherent state Ascon. The curves indicate a normal distribution corresponding to
the measured number squeezing factor {n = 0.41 £ 0.04 (solid black); the distribution expected
in the limit {N = 0, where only detection noise is responsible for fluctuations (dotted red); and
the distribution expected for a coherent state in the absence of detection noise (dashed blue).
The inset shows a typical fluorescence picture used for measuring Sy, and Sg. Bottom, Histogram
of the measured relative phases ¢ in units of the circular standard deviation of a coherent state
A¢eon. The curves indicate a normal distribution with the measured standard deviation A¢ =
5.4+0.5 x A¢op (solid black); and the distributions expected for a coherent state in the absence
(dashed blue) and in the presence (dash-dot green) of detection noise. The inset shows a typical
matter-wave interference pattern from which the phase is extracted. Each histogram was obtained
from ~230 independent experimental realizations (Color figure online)
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(see Ref. [77] for a more detailed and comprehensive analysis of number fluctuation
measurements). The first two terms correspond to the detection noise (dashed red
curve of Fig.3.15, see also Eq.(3.14)), while the third term describes the actual
quantity we want to measure. The mean number of photons per atom p = 15.6 + 1.3
is estimated by comparing images of condensates prepared in the same conditions
taken either with the absorption or the fluorescence imaging. We replace N by the
average atom number N = 1110. The background noise is estimated from a region
of area 2A containing no atom, and amounts to 6 % of the total variance, while the
photon detection noise contributes to about 40 %. This sets an upper bound to the
atom number fluctuations. If we first neglect the background noise and assume that
we detect exactly p photons per atom, the non-corrected number squeezing factor is

As?
ENune = P =0.56 £ 0.04. (3.24)

Correcting for detection noise, we get from Eq. (3.23)

As? —2Np — 2Ac}
&v = =T =0.41 £ 0.04. (3.25)
p

It is also common to express the number squeezing factor in decibel: 512\, =
—7.8 £ 0.8 dB. It indicates that the fluctuations of the atom number difference
A (Np — Ng) = 13 atoms are more than a factor of two smaller than that expected
for aclassical coherent state (dashed blue curve in Fig. 3.15). This proves that the split-
ting process generates a number-squeezed state. However, this value is about three
times higher than the value expected in the ground state of the split trap ({y =~ 0.14),
suggesting that the splitting is not truly adiabatic and/or that the BEC is not initially
in the ground state.

The uncertainty on £y was computed by error propagation, assuming that the
measured parameters (As?, P, ...) were uncorrelated. The main contribution comes
from the uncertainty on As2, which scales like 1/4/k, k beeing the number of mea-
surements. The main potential source of systematic error is the value of p (or equiv-
alently the mean number of atoms), which is calibrated using the absorption imaging
system (see Sect.2.3.1.1). Overestimating p by 20 % yields a higher value £y ~ 0.46.
It would be useful to compare the measured fluctuations to a binomial distribution,
such as the fluctuations expected from splitting a non-interacting cloud. A method
to mimic this situation, for example by performing a rf or microwave Rabi 7/2 pulse
between two internal states, is currently under investigation.

3.4.3.2 Phase Distribution

Here as well, the phase distributions was reconstructed from the results of the
analysis of ~230 independent interference patterns obtained in the same condi-
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tions (see Fig.3.15, bottom panel). The phase was extracted by Fourier transform
(see Sect.3.2.1.2). It displays a bell-shaped distribution with vanishing average and
circular standard deviation

A¢p =0.16 £ 0.01 rad, (3.26)

(black curve, the error reflects the uncertainty on the sample variance). The phase
spread is larger than the intrinsic phase uncertainty for a classical coherent state
A¢psqr = 0.03 rad (dashed blue curve). It is also larger than the circular standard
deviation expected for a coherent state, taking into account our detection noise Ag,; =
0.08 rad (dashed green curve, see Sect.3.2.1.4). Unlike the atom number difference,
there is no easy way to correct the phase distribution for detection noise. Still, the
phase fluctuations are smaller than that expected in the ground state of the split trap
(A¢ ~ 0.22 rad), indicating again that the splitting is not fully adiabatic.

The coherence o = (cos ¢) = 0.987 £ 0.001 is very close to 1, due to the rela-
tively small phase fluctuations.!”

3.4.3.3 Uncertainty Product and Spin Squeezing

From the measured values of the phase and number-difference spread, we compute
the uncertainty product

A (N, — Ng) Ap =23+ 0.4, (3.27)

which is about twice the minimal value allowed by the Heisenberg uncertainty rela-
tion. Altogether, the state of the condensate exhibits reduced number fluctuations
and a high coherence, yielding a spin squeezing factor (see Eq. 1.164)

es = — 041+ 0.04. (3.28)

(cos ¢)

Note that the value of g is here identical to that of £y thanks to the large coherence
factor.

It proves that the output state of the separation beam splitter is a spin-squeezed
state with a potential metrology gain of 7.8 £ 1 dB over the standard quantum limit
(see Sect. 1.2.4.5). It also demonstrates that splitting produces a non-separable state
(see Sect. 1.2.4.6). According to the criterion (1.177), the measured fluctuations and
the coherence factor imply that our BEC contains ~150 entangled particles. We can
exclude entanglement of less than 67 atoms with more than 90 % probability (see
Fig.3.16).

This figure can be compared to depth of entanglement reported in different exper-
iments with BECs. In Ref. [17], M = 170-atom entanglement was demonstrated in a

19Note that « is insensitive to A¢ to the first order.
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Fig. 3.16 Depth of entanglement. Each curve displays the lower bound Eq. (1.177) for £y as
a function of the coherence factor (cos ¢), for a collection of spin N/2 particles. Our measured
number and phase fluctuations (black points) exclude that the density matrix of the system can be
written as a direct product of blocks all involving less than ~150 atoms. The error bars indicate
two times the standard error of the mean, allowing to exclude entanglement of less than 67 atoms
with more than 90 % probability

BEC containing N = 2300 atoms following the one-axis twisting scheme proposed
in Ref. [98]. The same year, M = 4-atom entanglement for N = 1250 was reported
in an experiment using state-dependent potentials [62]. Very recently, Dicke states
with at least 28 entangled atoms (out of 8000) [99] and 13 (out of 40) [100] were
demonstrated.

3.4.4 A Simple Model to Describe Adiabatic Splitting

The main hurdle when trying to get a quantitative description of adiabatic split-
ting lies in the fact that the parameters of the BJJ can vary over several orders of
magnitude during splitting, making direct dynamical simulations strenuous [101].
Involved numerical methods have been used to compute [102] and optimize [103]
number squeezing.

In order to get an intuition about the amount of squeezing we expect from adiabatic
splitting, we make a simple two-step model following that proposed by Legget and
Sols [104] and extended by Javanainen and Ivanov [101]. We assume that, initially, the
BEC is in the ground state of the BJJ for RFsp, = 0.42, i.e. the point where the trap
starts to split in two wells. At this stage, tunnel coupling dominates over interaction
(A < 1). As the dressing intensity is increased, the system follows adiabatically its
instantaneous ground state, meaning that the number fluctuations decrease while the
phase fluctuations increase. We assume that, at some point, adiabaticity breaks down
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and that the number fluctuations are immediately frozen at their current value (at this
stage, conversely to Ref. [102] we neglect further evolution of the phase fluctuations.
We will come back to this in Sect.3.5.2). With this model, the amount of number
squeezing is hence fully determined by the point at which adiabaticity breaks down.

Adiabaticity condition

To define a condition for the breakdown of adiabaticity, we apply the criterion (3.17)
to the Hamiltonian of the BJJ in the mean field description (see Sect. 1.2.5.2). In the
Josephson regime (1 < A < N?), the Hamiltonian (1.197) reads

JN
Hparm = 7¢2 +Un®. (3.29)

It is the Hamiltonian of a harmonic oscillator of angular frequency w; =~ ~/2JUN
and (effective) mass M = 1/2U (see Fig. 1.15). In our setup, J varies over almost
four orders of magnitude while U stays essentially constant (see Fig.3.14). The
splitting is thus formally equivalent to the decompression of a harmonic trap, and
the adiabaticity criterion (3.18) becomes

11 i

Alf) = —
O = hm® IO

(3.30)

To model the variation of J with the control parameter (amplitude of the tf dressing),
we consider its dependence as a function of the well spacing and well frequencies in
the harmonic approximation (Eq. (1.80)) and resort to the description of the dressed
double-well potential in the RWA (Eqs. (2.24) and (2.25)) to find that the coupling
should scale o< exp[— (I3 — II%F.C)3/ %1, where Igg is the dressing intensity and Igg
is its value at the point where the second minima appears. This motivates the Ansatz

_ 52
J (Irp) = Jo exp |:— (M) :| (3.31)

ORF

which we find to be in fair agreement over four orders of magnitude with the
numerical simulations of the double well beyond the RWA (see Fig.3.14) with
Jo = h x 355 Hz, Igp = 0.39 and orr = 0.11 (both intensities are given like RFzmp
in units of 15" = 79.5 mA pp). Note that this dependence reflects both the effect of
the increasing spacing between the wells and that of the compression of each well
during splitting, and is therefore stronger than the exponential decay assumed for
example in Refs. [101-103].

Linear splitting ramp

We consider a linear ramp of the dressing intensity

Irg = Il;F + ot (3.32)


http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_2
http://dx.doi.org/10.1007/978-3-319-27233-7_2

3.4 Coherent Splitting and Generation of Atomic Squeezed States 143

]
10°
205 -
10° - 0
- 045 05 055 06 0.65
10
107
WG 5
107" e 0
0 10 20 30 40 50 045 05 055 06 0.65
time [IHS] RFamp

Fig.3.17 Breakdown of adiabaticity during splitting. Left Measure of adiabaticity A(¢) (Eq.(3.33))
as a function of time for different ramp durations evenly spaced from 1 ms (left) to 57 ms (right).
The blue line corresponds to the experimental value of 5 ms. The ramp are linear and the duration
includes the whole splitting process between RFamp = 0.3 and 0.65 (all ramps starting at ¢ = 0),
although A is only computed from the splitting point RFfmp = 0.42 on. The black dashed line
A = 1 corresponds to the expected breakdown of adiabaticity. Right Evolution of number-(fop) and
phase- (bottom) squeezing factor as a function of RFamp (note that for a linear ramp, the time axis
is proportional to the RFamp axis.). Black lines adiabatic prediction (number and phase squeezing
factor in the ground state. The black circles correspond to the final trap RFamp = 0.65). Red lines
final squeezing values for the same ramp durations as in the left panel, assuming sudden freezing
of the fluctuations when A reaches unity. The plots can be understood in this way: the state of the
system first follows the black curve, until adiabaticity breaks down (A = 1) after which number and
phase fluctuations are frozen. The black points with the error bars show the measured amount of
number and phase squeezing and the corresponding uncertainty. Our model overestimates slightly
the degree of number squeezing, and underestimates the phase spread (Color figure online)

at the splitting rate « to give an explicit expression for the degree of adiabaticity as
a function of time

5 (a )\ e 1 ar\*?
App(t) = —— (—) —exp| = (—) . (3.33)
: 1632 \ orr wy(0) P12 ORF

Figure3.17 shows how A varies for different splitting rates. Assuming that adi-
abaticity suddenly breaks down when A(¢) = 1 (dashed line in left panel), this sets
the level of number and phase fluctuations at the end of the splitting process. We find
a rough agreement with the amount of number squeezing that we have measured,
suggesting that for our 5 ms splitting ramp, adiabaticity breaks down after 4.2 ms,
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at RFamp = 0.6. On the other hand, phase fluctuations are underestimated by our
model, suggesting that other effects contribute to their broadening (see next section).
However, to really assess the model, we would need to measure number and phase
fluctuations for different ramp durations, which we have not yet done.

We can use this model to estimate how long it would take to achieve a given
amount of number squeezing with a linear splitting ramp. By imposing that Ay, (¢) is
smaller than 1 at all times during the splitting, we find that the ramp duration diverges
x —Inéy /512\, when &y — 0. It means that it would need over 200 ms to achieve
&y = 0.1, suggesting that a linear splitting ramp is not the best protocol to achieve
strong number squeezing, especially as other effects like atom losses and technical
heating might interfere, as observed in Ref. [95].

Equation (3.33) could be used to infer an Ansatz for the optimal Igrp(?). In
Ref. [103], the authors applied optimal control theory to a many-body, time-
dependent description of a realistic condensate to propose tailored squeezing proto-
cols much faster than adiabatic splitting. Simulating the many-body dynamics still
remains a difficult task when trying to include finite temperature effects and the
coupling to the motion in the two directions orthogonal to the splitting direction.
Furthermore, it relies on a precise knowledge of the double-well potential. Imple-
menting such protocols on our setup to achieve enhanced squeezing is currently
under study.

3.4.5 Discussion

Altogether, we have seen that the transformation of the potential acts as a coherent
beam-splitter for our Bose-Einstein condensates, creating a superposition of two
spatial modes separated by 2 pum, still retaining a high phase coherence ({cos ¢) =
0.987 £ 0.01). While the deformation of the trap is almost adiabatic with respect to
the transverse motion, it triggers a collective breathing excitation in the longitudinal
direction.

The interplay between tunnel coupling and atomic interactions during the split-
ting generates strong number squeezing ({y = 0.41 £ 0.04), which together with
the high phase coherence yields a spin-squeezing (or useful squeezing) factor
&s = 0.41 = 0.04. This implies a potential metrology gain of 7.8 + 1 dB beyond
the standard quantum limit. In other words, feeding this state into an ideal, noiseless
Mach-Zehnder interferometer would allow measuring a phase shift with a sensitivity
twice better than obtained with a coherent state. Figure 3.18 shows how our result
compares to other measurements of spin-squeezed states of Bose-Einstein conden-
sates reported in litterature.

We conjecture that the relatively high degree of spin-squeezing that we observed—
one of the highest ever observed with external states of a BEC—is linked to the
elongated geometry of our double well, which ensures that the system is initially in
its transverse ground state. Although the energy difference between ground and first
excited state shrinks considerably during splitting, we believe that the occupation
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Fig. 3.18 Squeezing in Bose-Einstein condensates. Some measured number squeezing and phase
coherence factors reported in literature (the uncertainty is displayed when available). For the results
labeled in italic letters, one of the two quadrature was indirectly inferred. The continuous black
line corresponds to £y = 1, the dashed lines to constant values of the spin-squeezing factor {5 =
&N/ (cos @). Red experiments with external states. MIT 2007: adiabatic splitting in a rf-dressed
double well [11] ({y was inferred from the phase diffusion rate); Heidelberg 2008: adiabatic splitting
in an optical few-well potential [61]; Paris 2010: adiabatic splitting in a magnetic double well [95]
(coherence computed from a theoretical model); Vienna 2013: our result. Blue: experiments with
internal states. Munich 2010: control of interactions in state-dependent potentials [62]; Heidelberg
2010: interaction control with a Feshbach resonance [17] (Color figure online)

of the transverse states mimics an extremely low temperature, much lower than
that associated to the occupation of the many accessible longitudinal modes, hence
approaching the ideal zero-temperature limit.

We also observe that the product of the uncertainties on the conjugated variables
n and ¢ is about two times larger than the minimum allowed by the Heisenberg
uncertainty relation. Although the amount of number squeezing seems consistent
with our simple model for adiabatic splitting, the phase fluctuations are stronger
than expected. Note that while the measured number fluctuations can be corrected
for detection noise, the intrinsic phase fluctuations are probably overestimated.

In any case, our zero-temperature model cannot explain deviation from the min-
imum uncertainty product (unless it is assumed that the system is not initially in
the many-body ground state). In Ref. [105], Pitaevskii and Stringari evaluated the
reduction of coherence due to both quantum and thermal fluctuations. In the clas-
sical regime, where both number and phase fluctuations are small, the coherence at
thermal equilibrium at the temperature 7" reads

B J™ cos¢exp(JN cos¢/kpT)de
el = ffﬂ exp(JNcosp/kgT)dp

(3.34)
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These results were successfully applied by R. Gati et al. to infer the temperature of
the thermal phase fluctuations in a BJJ [59]. In their experiment, the phase coherence
was measured after the BEC was slowly split by ramping up the tunnel barrier over
hundreds of ms. This temperature showed fair agreement with that given by an
independent thermometry method. Evaluated immediately after splitting, Eq. (3.34)
yields in our case an effective temperature of the phase fluctuations T, ~ 0.2 nK,
using the simulated value of the tunnel coupling in the split trap (J = k x 0.1 Hz).
This is two orders of magnitude below the initial temperature of the condensate,
indicating that the system is strongly out of equilibrium. If the atoms are held in
the symmetric RFsp, = 0.65 double well, the phase coherence factor then relaxes
within a few ms to a plateau value ~0.8 (T ~ 2 nK, see Fig.3.26, right). As we
will see in Sect.3.5.2, the high value of the coherence factor for tens of ms can be
attributed to the spurious tunnel coupling (J/h =~ 0.1 Hz). We also observe that the
contrast of the interference patterns integrated along the direction remain also very
high for tens of ms.

These observations seem to go along the lines of the investigations performed in
our group on the relaxation of split 1D quasi-BECs to a prethermalized state [52, 63].
The authors showed that the spatial coherence properties of the relative phase of two
quickly split 1D quasi BEC exhibited a seemingly thermal behaviour associated to an
effective temperature determined by the relative number fluctuations after splitting.
Indeed, for our parameters, which are very close to that of Ref. [52], the effective
temperature in presence of number-squeezing is roughly given by

nganlD

~ 61K, 3.35
2%, n (3.35)

Tpreth =

where gip = 2ha,w) isthe 1D effective interaction constantand n1p = 35 atoms/pwm
is the peak density of the initial unsplit BEC. The corresponding 1D phase correlation
length [106]

2n1Dh2
Aoy = 2D o m, 3.36
preth mkp Tpreth pm ( )

exceeds the length of the cloud, in agreement with the high contrast we observe after
integration of individual interference patterns along the longitudinal direction (see
Fig.3.21).

For these reasons, we believe that at short times, it is legitimate to resort to a two-
mode description ignoring the axial fluctuations of the relative phase. At long times
(t > 80 ms), a reduction of contrast is observed, caused by axial phase fluctuations
in the individual interference patterns, which will be discussed in Chap.4. Taking
the multimode nature of the quasi BECs into account when studying their squeezing
properties is an extremely interesting task, that is beyond the scope of this thesis.
However, we are confident that further experiments on our setup will contribute to the
understanding of squeezing, and in particular clarify the role of finite temperature.
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3.5 Phase Evolution

The second element needed to build an atom interferometer is a phase shifter, i.e.
an element capable of imprinting a controlled phase shift to the quantum superpo-
sition. As our interferometer is symmetric, the phase shift is applied by deliberately
introducing an energy difference between the two modes. By varying the time f;4
during which the two modes are subjected to this energy difference, we can adjust its
relative phase ¢. Additionally, we observe that the deterministic phase accumulation
was accompanied by a dephasing which eventually causes the relative phase between
the two halves of the BEC to become completely random.

In Sect.3.5.1, we explain how a deterministic phase shift can be applied, and
discuss the measured phase accumulation rate. In Sect. 3.5.2, we describe our obser-
vations of the evolution of the interference fringes after splitting in a symmetric and in
a tilted double well and motivate why we the randomization of the phase in the tilted
double wells can be attributed to interaction-induced, many-body phase diffusion.
In Sect.3.5.2, we investigate phase diffusion in absence and in presence of tunnel
coupling. In Sect.3.5.3, we compute the phase diffusion rate in two independent
ways, and compare it to the results of our measurements.

3.5.1 Phase Accumulation

3.5.1.1 Phase Shifts in BEC Interferometers

In quantum mechanics, the phase picked up by an atom traveling along a certain tra-
jectory in phase space is equal to the integral of its Lagrangian £ along the path [107].
To compute the phase shift between the two arms of an interferometer, it is often
sufficient to estimate the action integrals along the classical trajectories [12, 108]

; “ L v
o(r, ty) = |:/ —dti| — |:/ —dti| . (3.37)
0 h path 1 0 h path 2

The differential phase in an interferometer may come from an energy difference
between the two arms.'! It can be the energy difference between two internal states,
for example the hyperfine splitting in Ramsey interferometers [14], or a difference in
kinetic or potential energy. The phase can be adjusted either by changing the energy
difference or the time during which it is acting on the atoms.

Various effects have been used to apply controlled phase shifts in BEC interferom-
eters. In Bloch oscillation interferometers such as the one presented in Ref. [40], the
phase shift comes from an external force, for example gravity. In the guided Bragg

1n general, the differential phase is also position-dependent (Eq. (3.37)). It means for example that
in a magnetically trapped Ramsey-interferometer, the accumulated phase varies at a rate proportional
to the local difference in chemical potential [14].
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interferometer of Ref. [15], a differential phase shift was applied either taking advan-
tage of the Zeeman effect with a magnetic field gradient, or with an initial condensate
velocity. The corresponding fringes were observed by scanning either the amplitude
of the gradient, or the propagation time in the waveguide. In Ref. [44], inhomoge-
neous AC Stark shifts were applied by pulsing off the optical power generating the
double-well potential. In Ref. [45], the evolution of the relative phase was controlled
by deliberately tilting the double-well. The same technique was employed for exam-
pleinRefs. [11, 47] as well as in the experiments presented in this thesis [1]. We will
come back to the origin of the energy difference induced by this technique below.
In the vibrational-state interferometer that we recently implemented [16], the phase
evolution rate is essentially equal to the difference of chemical potential (includ-
ing the single-particle motional energy) between the ground and the first excited
eigenstates of the confining potential.

Interestingly, even when using a BEC with thousands of atoms, we always measure
a one-atom phase shift (up to the corrections due to interactions). For example, if a
differential gravitational potential energy is applied by lifting one half of the BEC
with respect to the other by a height Az, the phase will evolve at the rate mgAz/h,
where g = 9.81 m/s? and m is the mass of one ’Rb atom.

However, when an oscillating field is driving the BS transitions, there is an addi-
tional contribution from the interaction of the atom with the drive. In fact, as shown
by Storey and Cohen-Tannoudji [108], in a symmetric 7/2 — m — 7/2 configuration
such as the three-grating Bragg or Raman MZI used in gravimetry experiments [26],
in absence of a perturbation, the two arms are expected to pick up the same phase, so
that the differential phase comes only from the interaction with the laser beams. This
allows scanning the interferometer phase shift by varying the phase of the recombi-
nation BS pulse with respect to that of the separation BS [6, 26]. This is also the case
in Ramsey interferometers where the interference signal is obtained from the beating
note between the coherent atomic superposition and the drive. In this case, the phase
of the interference signal can be varied by changing the Ramsey time between the
two BS pulses [14], the detuning of the drive with respect to the atomic transition [27]
or the phase difference between the BS pulses [17].

3.5.1.2 The Phase Shifter

Once the condensate has been split in two, it starts accumulating a relative phase at
a rate proportional to the difference in chemical potentials between the two halves
(including the zero-point energy). Note that depending on the details of the splitting,
the phase evolution can be driven by the difference in potential energy between the
two minima of the double well (assuming for example the same number of atom in
each well, as in this section), by the difference in chemical potential between two
BECs with different atom number (in a symmetric double well, see Fig.3.28) or, as
in earlier experiments [45], by a combination of both.
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Fig.3.19 Phase shifter. Linear evolution of the mean phase for various energy differences e induced
by tuning the angle « of the splitting axis with respect to the horizontal plane (each curve corresponds
to one of 7 values of a evenly spaced between —9° and +12°). Each point corresponds to the
circular mean of the phase over a few realizations (error bars: one circular standard deviation).
The values of € shown in the legend are obtained from linear fits to the data (black dashed lines).
Inset: “Carpet” obtained from integrating the interference patterns for ¢/h = —349 Hz along the
longitudinal direction and concatenating them to show the time evolution

To apply a well-defined phase shift, we tilt the double well out of the horizontal
plane in order to create a difference of potential energy e. After a time ¢4 spent in the
tilted trap, the BEC accumulates a relative phase [12]

¢~ [%/V(x(t))dt} — [%/V(x(t))dt} (3.38)
left path right path

€ty

= 2 . 3.39
A + o (3.39)

Figure 3.19 shows the linear evolution of the mean phase for different tilt angles,
yielding different phase evolution rates. For each measurement, we start with the
coherent superposition obtained after splitting ({(n) = 0, (¢) = 0) and tilt the double
well by an angle o between —9° and +-12° by ramping linearly the current in each rf
wire to its final value given by Eq. (2.30). This way, the well spacing is kept constant
while the axis of the double well is tilted. The duration of the tilt ramp was set to 3 ms
to ensure adiabaticity with respect to the transverse motion in the trap. Given a well
spacing of 2 wm, the tilt velocity is much smaller than the velocity spread of each
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individual BEC. Indeed, no vertical sloshing excitation was observed. After the phase
has accumulated for a variable time 7,4, the tilt is reversed in another 3 ms. Note that
the phase evolution starts already during the tilting ramp, which is responsible for
the phase offset ¢y (), independent of 7, which has been substracted in Fig. 3.19.

Eventually, the atoms are released and the phase is read out from the interference
patterns in tof (see Sect.3.2.1). The data of Fig.3.19 proves that the phase evolution
is linear for all angles and the high reproducibility of the mean phase for 5 < 10 ms
allows to determine the phase evolution rate for each value of o with less than 2 Hz
uncertainty. Note that similarly to Ref. [15], we can chose to adjust ¢ by changing
either € or #,.

3.5.1.3 Origin the Phase Accumulation Rate

From a linear fit to the values of e(a) obtained in Fig.3.19, we can estimate the
“slope” of the phase shifter

de

ol = h x 44 +2.9Hz/ [°] (3.40)

exp

We expect the main contribution to € to stem from the difference of gravitational
potential energy due to the difference of height between the two wells. The grav-
itational potential energy gradient for one 8’Rb atom is mg/h = 2.14 Hz/nm. For
small angles, using the well spacing d = 2.1 pm given by the trap simulations, in
agreement within 10 % with the value deduced from the measured fringe spacing
(see Fig.2.15), we expect

de

da

=mgd =h x75Hz/[°], (3.41)

grav

which is significantly higher than the experimental value.

In fact, as studied in Ref. [47], a double-well interferometer on an atom chip
does not only measure the gravity gradient. Because of the small distance to the chip
wires, introducing a height difference causes the two halves of the BEC to experience
different rf fields. In Ref. [47], the difference in magnetic energy between the two
wells, measured by rf spectroscopy, was found to be twice larger than the difference
in gravitational potential energy.

Performing beyond-RWA simulations of our rf-dressed potential to include this
effect, we found |de/da| = h x 70.1 Hz/ [°], still 60 % above the measured value.
Furthermore, the correction due to the magnetic field difference in Ref. [47] was
found to add up to the gravity gradient, yielding a stronger dependence of ¢ with
the height difference, while we measure of weaker dependence than expected from
gravity only.


http://dx.doi.org/10.1007/978-3-319-27233-7_2

3.5 Phase Evolution 151

The contribution to e due to the slight difference in radial trap frequencies between
the two wells, which modifies both the zero-point energy and the chemical potential
difference [47], cannot be held responsible for this discrepancy, as it should not
account to more than 2 % of the energy difference. The variation of the longitudinal
trapping frequencies (for which the trap simulations can not be trusted due to potential
corrugation, see Sect.2.2.1.3) when the double well is tilted has not been measured.
However it seems extremely unlikely that they would vary by the factor ~2.4 needed
to explain the discrepancy with the measured value of |de/da|.

We currently don’t have an explanation for the fact that we observe a slope |de/da|
significantly lower than expected from the gravity gradient. Unfortunately, con-
versely to Refs. [46, 47], we are missing an imaging system parallel to the long
axis of the trap, which would allow us to directly measure the splitting angle «;, and
hence infer the height difference between the wells. Furthermore, other systematic
effects may contribute to the energy difference, such as uncontrolled inhomogeneous
electric fields close to the chip.

3.5.2 Phase Diffusion

3.5.2.1 Evolution of the Phase and Contrast Distributions

We now turn to the evolution of the phase distribution. It can be conveniently
displayed using the full distribution function (FDF) sketched in Fig.3.20 [64].
Furthermore, it provides information on the intensity of the axial phase fluctua-
tions along the BJJ, revealing 1D effects which we have ignored so far. It has been
used in our group to evidence the multimode dynamics arising in the relative phase
profile of coherently split 1D quasi BECs [64].

Ya) ) r(b) . R ((O A
%’\ ’
\_ VAN VAN J

Fig. 3.20 Phase and contrast distribution. Adapted from Ref. [64]. The distribution of the phase
and the contrast (full distribution function, FDF) of the matter-wave interference patterns can be
displayed as a polar plot. For each individual realization, the phase ¢ and the contrast C are extracted
from the longitudinally integrated interference fringes and plotted as a point in polar coordinates
(a). The whole process is repeated up to 50 times and the scatter plot (b) is smoothed to produce a
density plot (¢)
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Fig.3.21 Evolution of the FDF in the symmetric double well. Measured FDF of the contrast and the
phase as a function of the phase accumulation time 74 in the symmetric RFapp = 0.65 double well
(estimated coupling strength: J/h =~ 0.1 Hz). Note that a time offset of 6 ms has been substracted to
the total holding time in the symmetric double well to enable comparison with the data in Fig. 3.22,
where tilting and leveling back the potential took 6 ms. The two white circles indicate 50 % and
100 % contrast. In the symmetric double well, the phase distribution remains peaked at all times
(A¢ =~ 0.6rad), while its mean undergoes slow oscillations. The contrast of the interference patterns
remains higher than 50 % up to 7, ~ 80 ms.

We resorted to this representation to monitor the evolution of the phase and contrast
distribution in the symmetric (Fig.3.21) and in the tilted (Fig.3.22) RFzpy, = 0.65
double well (¢/ h = 350Hz, orange curve in Fig. 3.19). Each FDF is the result of the
analysis of about 50 interference pattern obtained in the same experimental condi-
tions. Note that conversely to Ref. [64], we always integrated the fringes over the
whole cloud length.'?

After splitting into the symmetric RFy,,, = 0.65 double well, we observed a
peaked phase distribution associated to a high coherence and a high fringe con-
trast for all individual realizations. The phase spread remained roughly constant
(circ. standard deviation A¢ = 0.6rad) over more than 90 ms, while the mean phase
underwent small amplitude oscillations at a frequency f ~ 16 Hz. The contrast of the
interference fringes, which we found to be close to 85 % immediatly after splitting,
slowly decreased to about 50 % after more than 80 ms holding time in the symmetric
double well.

In the tilted RFppp = 0.65 double well, on the other hand, we observed that
the deterministic, linear evolution of the mean phase at the rate ¢/ h = 350Hz was
accompanied by a broadening of the phase distribution. After 30ms, the phase

12je. L ~ 100 wm, depending on the axial breathing, see Fig.4.1.
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Fig. 3.22 Evolution of the FDF in the tilted double well. Measured FDF of the contrast and the
phase as a function of the phase accumulation time ¢, in the tilted RFppyp = 0.65 double well
(e/h = 350 Hz). At short times, the deterministic linear evolution of the phase at the rate ¢/ can
still be seen. The phase spread increases until the FDF is isotropic, indicating a random relative
phase after #, ~ 30ms. The characteristic ring shap of the FDF is a signature of phase diffusion:
although the phase is random, each interference pattern exhibits a high contrast. Only after ~75 ms,
the contrast of individual fringe patterns start to drop significantly

distribution was found to be essentially isotropic, implying that the phase coher-
ence between the two halves of the BEC was completely lost. Strikingly, the loss
of phase coherence did not imply a loss of contrast: even after 60ms in the tilted
double well, the BEC exhibited interference patterns with on average more than 60 %
contrast (Fig.3.23).

At longer times (¢, 2 70ms), we observed a significant drop of contrast both in
the symmetric and the tilted double wells. We will come back to the mechanisms
that are responsible for the degradation of contrast in Chap. 4.

We observed a similar behaviour (phase randomization within 20-30ms associ-
ated to a high contrast of the individual interference patterns) for all tilted double
wells used in Fig.3.19. The broadening of the phase distribution can be quantified
by measuring the circular standard deviation of the phase A¢ (see Sect.3.2.1.2) as
a function of #, (see Fig.3.24). At short times, we observed a linear increase of the
phase spread. The dashed line in Fig.3.24 corresponds to the average value for the
circular standard deviation expected from k = 50 phases sampled from a uniform
distribution, Ay = +/Ink, showing that the measured phase spread is compatible
with a random distribution.

We attribute the randomization of the relative phase to atomic interactions. It is
well-known that atom-atom interactions dramatically affect the evolution of the phase
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Fig. 3.23 Evolution of contrast during the phase accumulation stage. Mean fringe contrast of the
tof interference patterns as a function of the holding time 7, in the symmetric (blue) and tilted (red)
RFpmp = 0.65 double well. The black point at —6ms displays the constrast measured immediatly
at the end of the splitting ramp (see Sect.3.4.3). The sudden drop of contrast at #;, > 70ms is not
fully understood yet. It is probably essentially caused by axial phase fluctuations, although the axial
breathing mode and the fact that the number of atoms in the m g = 0 state used for phase analyzes
depends on #, (see Sect.3.2.1) might play also a role

of a confined BEC. Currently, they represent a fundamental limitation for both the
accuracy and the sensitivity of trapped BEC interferometers. An excellent discussion
of the impact of interactions in Ramsey and Bragg interferometers can be found in
the thesis of Altin [109].

Interactions affect the performance of BEC interferometers in essentially two
ways:

e Mean-field interactions modify the energy of the two modes and give rise to a
systematic shift limiting the accuracy of trapped atoms interferometers. Mean-field
shifts are one of the main source of systematic errors in trapped atomic clocks [110].
In our vibrational-state interferometer [16], it was responsible for a shift of the
phase accumulation rate of the order of 5 %. Interactions are also responsible for
a degradation of the interferometric contrast comparable to an inhomogeneous
broadening effect: in Ramsey interferometers, for example, the inhomogeneous
mean-field energy causes the phase between the two modes to precess at a spatially-
dependent rate [ 14]. This results in a loss of contrast when averaging over the whole
BEC. Furthermore, the mean-field driven demixing dynamics in binary mixtures
leads to a variation of the overlap between the states, and hence to a degradation
of the contrast [9]. A similar effect was observed [15] and investigated [10] in
guided Bragg interferometers. Importantly, mean-field shifts are deterministic and
could be in principle accounted for. The “spatial dephasing” caused by mean-
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Fig. 3.24 Randomization of the phase. Top Phase distributions measured at three different phase
accumulation times 4 for €/ h = —349 Hz (orange curve of Fig.3.19). It exhibits phase diffusion:
at short times 75 < 30 ms the mean phase is well defined (blue points); on the contrary, for longer
times the phase distribution cannot be distinguished from a random distribution. Botfom Evolution
of the circular standard deviation of the phase A¢. The red line is a fit to the blue points with the
model of Eq. (3.57). Shaded area theoretical prediction without free parameter, taking into account
the measured number squeezing (see (3.69)). Black line expected behaviour if the initial state were
classical (i.e. not number-squeezed). Note that at 7, = 0 phase diffusion has already started (Color
figure online)

field interactions is still compatible with a perfect contrast in each point in space,
meaning that by not discarding the spatial dependence of the output signal in
Ramsey or Bragg interferometers, one could retrieve all the information.

e In an interacting many-body quantum system, the fundamental phase uncertainty
is known to increase in time as a result of the initial number uncertainty. This effect
of interaction-induced phase diffusion will be detailed in the following sections.
Importantly, it causes a randomization of the relative phase between the two arms
of the interferometer and cannot be captured by a mean-field description, while
still being compatible with a high contrast for each experimental realization. In
the Bloch oscillations interferometer of Ref. [43], the dephasing effect due to the
inhomogeneous mean-field shift was compensated by applying a external potential.
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Because we observe that the contrast of individual realizations is preserved while
the coherence is completely lost after averaging over identical realizations, we
attribute the observed randomization of the phase to interaction-induced phase diffu-
sion. The randomization of the phase between two superconductors after suppression
of the Josephson coupling has been studied as early as 1994 [111]. In the context of
atomic Bose-Einstein condensates, the question of how the phase of a single BEC
with a fixed atom number is defined has been the subject of intense theoretical inves-
tigations, see for example Refs. [112—114]. It was shown in 1997 that the relative
phase between the two halves of a split BEC should undergo a characteristic diffu-
sion under the effect of interactions [66, 115]. The link between the rate at which
the phase randomizes and the initial relative number uncertainty was highlighted in
Refs. [104, 116], where it was conjectured that reduced number fluctuations would
imply a lower phase diffusion rate.

Experimentally, the difficulty in studying phase diffusion comes from the fact that
it is difficult to disentangle interaction-induced phase diffusion from the technical
shot-to-shot fluctuations which are believed to have limited the coherence time of the
first double-well experiments [44, 45]. In 2007, coherence times a factor of ten longer
than expected from a coherent state with binomial number fluctuations were reported,
and attributed to strong number squeezing in a Sodium BEC [11]. The link between
phase diffusion and interactions was demonstrated in Bloch oscillations experiments,
where the coherence time was massively extended by tuning the s-wave scattering by
means a Feshbach resonance [41, 43]. The link between phase diffusion and number
fluctuations was also studied in optical lattices, where extended coherence times
were observed, in agreement with the inferred degree of number squeezing [117].

In Sect.3.5.3, we will show that the measured diffusion rate is compatible with
the rate expected from many-body phase diffusion. In Sect.3.5.2.2, we describe the
effect of phase diffusion and show how the evolution of the phase spread in absence
of tunnel coupling can be computed. In Sect. 3.5.2.4, we include the effect of a weak
spurious tunnel coupling and of a finite energy detuning.

3.5.2.2 Phase Diffusion in Absence of Tunnel Coupling

Interaction-induced phase diffusion is a consequence of the fact that, in a two-mode
BEC with repulsive interactions, it costs more energy to have different numbers of
atoms in each mode. Trivially, if the interaction energy in each mode is Eiy; =
U/2 x Niz, where i = L, R, the total energy reads

1 1
Ein = 5U (N} + N) = §UN2 + Un?, (3.42)

(n = (Np — Ng)/2) and is minimal for Ny = Ng.

Each Fock state with a well-defined » has a different energy. Hence, any state
which is in a superposition of different Fock states will see its different components
dephase, leading to a broadening of its phase distribution.
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To describe the evolution of the phase distribution of the BEC after the end of the
splitting, we follow the lines of Refs. [66, 104, 115]. We start from the Bose-Hubbard
Hamiltonian (1.111) in absence of tunnel coupling

Hgy = UR® + eh. (3.43)

with the interaction constant U = (U, + Ug) /2 and the detuning € = (Uy — Ug)
(N —1)/2 + A =~ A. Note that here, we assume that there is no residual coupling
in the split trap, which is not strictly true in our case. However, we will show in the
following section that as soon as A is sufficiently large, the results of this section
remain valid.

When J = 0, the Fock states are the eigenstates of the many-body Hamiltonian.
We can decompose any initial state in this basis and compute its time evolution using
Eq. (1.91). It reads

N/2

W)= D cie B n). (3.44)

n=—N/2

where ¢, = (n| W (¢t = 0)) and E, = Un? + en. Note that in the absence of tunnel-
ing, the number distribution cannot change (only the phases wind up). For simplicity,
we assume that p(n) is symmetric around zero (no net imbalance).

Because of interactions, the energy of the Fock state varies quadratically with 7.
Note that in Refs. [66, 104, 115], this quadratic dependence is obtained by expand-
ing the energy of the Fock states up to the second order in n. Here, the quadratic
dependence is already contained in the approximations leading to the two-mode Bose
Hubbard Hamiltonian.

To compute the evolution of the phase distribution, we write the many-body
wavefunction in the basis of the phase states (see Sect. 1.2.2.5), which corresponds to
computing the discrete Fourier transform of Eq. (3.44). To obtain a simple analytical
result, we take the continuous limit (N — oo, ¢, — ¢(n)) and replace the sums by
integrals (Eq. (1.102)). The wavefunction in phase representation is given by the
Fourier transform of the wavefunction in number representation

1 o0 . . )
i, t) = — c(n)e Ui/l g=ient/ho=idnq, (3.45)
o I
g(n)
— G (¢ —et/h) (3.46)

where G (¢) is the Fourier transform of g(n). We immediately identify the overall
phase shift at the rate ¢// driven by the energy difference (see also Sects. 1.2.4.3
and 1.2.5.2). Note that the linear detuning term is responsible for a shift of the whole
phase distribution (and hence of its mean) but cannot broaden it nor squeeze it.


http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1

158 3 A Mach-Zehnder Interferometer for Trapped, Interacting ...

We rewrite the product in the Fourier transform Eq. (3.45) as a convolution product

(0—et/h—o

o P
(¢, 1) = i i

1 .,
Jm/_wcw‘o)“l’[
to see that the interaction term is responsible for a Gaussian broadening of the initial
phase probability distribution. This shows that interactions tend to broaden the phase
distribution at a rate oc U.

The mean-field model presented in Sect. 1.2.5 gives a good picture of phase dif-
fusion, even if it has to be used carefully in the limit of zero coupling. Assuming an
initially well-localized wave packet in phase representation (see Fig.1.15), J =0
means that the effective potential experienced by the wavefunction is flat. The kinetic
energy term, which is proportional to U (see Eq. (1.197)), causes the spread of the
wavefunction.

A Particular Case: Gaussian Ground State

We first treat the particular case of a system initially in a Gaussian, minimal-
uncertainty state, such as the ground state of the bosonic Josephson junction at finite
coupling strength. This would correspond for example to the output state of the split-
ting model of Sect.3.4.4, where we assume that the BEC follows adiabatically the
instantaneous ground state until adiabaticity breaks down. The initial half-number
difference and phase distributions read

1
pn) = ——— e (3.48)
O,
1 2 2
(@) = ——=——¢ /%0 (3.49)
P& 210 4(0)

with 0, = éy+/N/2 and 0,04 (0) = 1/2. Inserting Eq. (3.49) in Eq. (3.47), we find
that the phase distribution remains Gaussian with a time-dependent variance [66,
104]

o2(t) = (N) " + R (3.50)
where the phase diffusion rate R is
U
R= fN‘/NE- (3.51)

R is proportional to both the interaction constant U and the initial number fluctu-
ations. In particular, as pointed out in Ref. [104], the phase diffusion can be sig-
nificantly slowed-down in presence of number squeezing ({5 < 1). At long times
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(t* > h?/(0%U?)), the phase spread grows linearly with time, which actually resem-
bles more a dispersive than a diffusive behaviour, as pointed out in Ref. [115]. The
coherence can also be computed by averaging over the phase distribution. It exhibits
a typical Gaussian decay [114]

(cos @) (1) = exp [—03(1)/2] = exp[—03(0)/2] exp[—1*/272,]  (3.52)

where the phase coherence time is defined as 7o, = R™.

Extension to a Non-minimal-uncertainty Gaussian State

In practice, however, we do not start in a minimum-uncertainty state (we have mea-
sured 0,04 &~ 1.2 > 0.5, see Sect.3.4.3.3). We lift this assumption, still assuming
Gaussian distributions for n and ¢, and introduce the discrepancy 3 > 0 defined as

6= f40202(0) - 1. (353)

In this case, the variance of the phase distribution follows

4U (Bt

— R?1%. (3.54)

o () =07 (0) +

Note that this does not affect the phase diffusion rate, which depends only on the
initial number fluctuations. At long times, we recover the same behaviour as in
Eq.(3.50). The term in factor of 3 is usually neglected (see Fig.3.25), but can be
significant if the initial state is far from a minimum-uncertainty state.

3.5.2.3 Full Many-Body Treatment: Collapses and Revivals

In the above section, we have resorted to the continuous approximation (N — 00)
to obtain analytical results. However, the integrals computed in the continuous limit
N — oo only make sense when the phase spread is much smaller than 27r. Otherwise,
the periodic nature of the phase cannot be neglected. Still, numerical computation
of Eq.(3.44) for typical parameters shows good agreement with Eq.(3.54) up to
times where the phase distribution could not be experimentally distinguished from
a uniform random distribution (see Fig. 3.25, left panel).

The passage to the continuous limit conceals however one interesting phe-
nomenon, namely that for a finite number of particles, the collapse of coherence
should alternate with revivals, where a high value of the coherence factor should be
observed [66, 111, 112, 114], similar to that observed in Ref. [118]. Revivals occur
when the phases of all the Fock states in the superposition (3.44) resynchronize. For
the quadratic Hamiltonian (3.43), this happens periodically every Tievivat = 7/ U (for
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Fig. 3.25 Phase diffusion: numerical simulation. Circular standard deviation of the relative phase
(left) and coherence factor (right) as a function of time after suppression of tunnel coupling (J = 0).
The initial state was chosen such as to have the same number and phase fluctuations as the state
characterized in Sect. 3.4.3. The interaction parameter U = h x 0.57 Hz was adjusted to yield the
same phase diffusion rate as observed experimentally. Red full numerical resolution of Eq. (3.44).
Dotted blue analytical prediction (Eq.(3.54)). Dotted black same, omitting the term in factor of
(. The analytical prediction for the phase spread is in good agreement with the numerical result
up to times where A¢ =~ 2, after which the circular standard deviation ceases to be a relevant
estimator of the phase spread. The effect of the linear term in Eq. (3.54) remains below ~0.15 rad at
all times, which is of the order of the experimental uncertainty. Conversely to the analytical model,
the numerical simulation displays a revival of the coherence every Tiey =~ 0.9 s (note the difference
of time scales between the two panels). So far, though, no revival has been experimentally observed
(Color figure online)

an initial state with a symmetric distribution of 7, Treyivas = h/2U, see Fig. 3.25, right
panel). So far, no revivals could be observed in our setup, possibly because of the
effects of 1D dephasing, losses or technical heating over such a long timescale.

3.5.2.4 Phase Diffusion in Presence of (Weak) Tunnel Coupling

So far, we have considered phase diffusion in the limit where tunnel coupling is
switched-off and the broadening of the phase distribution is governed by interactions
only. In fact, we estimate from the simulations of the double-well potential that
there should be a residual tunnel coupling in the RFppm, = 0.65 trap of the order of
Joplit/ B =~ 0.1 Hz (see Fig.3.14). Indeed, when the condensate is held in the untilted
double well (¢ = 0), no phase diffusion was observed (see Fig.3.26, blue curve of
left panel). Still, as soon as a tilt was applied to drive the phase accumulation, we
observed phase diffusion and full randomization of the phase after ~25 ms (red
curve). Repeating the experiment for the different tilt angles of Fig.3.19 yielded
essentially the same diffusion rate.
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Fig. 3.26 Phase diffusion with and without tunnel coupling. Coherence factor as a function of the
phase accumulation time in the RFamp = 0.65 trap (left) and in the RFamp = 0.86 trap (right),
for which simulations of the double-well potentials yield respectively J/h ~ 0.1 Hz and J/h =~
4 x 107! Hz. In presence of residual tunnel coupling (left), phase diffusion occurs only when the
detuning e is sufficiently large. When J is vanishingly small, phase diffusion occurs regardless of
the detuning. Continuous lines: fit to the data, see Table3.4. Dotted gray line in the right panel
same as the blue line in the left panel, for comparison. The slightly faster phase diffusion in the
RFamp = 0.86 double well could be due to the higher transverse trap frequency, yielding a larger
interaction energy

Symmetric Double Well

This behaviour can be understood looking at the mean-field model for the BJJ
(Sect. 1.2.5), where the many-body wavefunction is identified to that of a single fic-
titious particle of mass o 1/U in a cosine potential of depth o< J N. It illustrates the
fact that tunnel coupling tends to confine (or lock) the phase distribution, counteract-
ing the effect of interactions. We can use the harmonic approximation (Eq. (1.197))
to derive a boundary between the phase-locking regime and phase-diffusion regime
(here we assume a balanced double well, e = 0). Imposing that the depth 2J N of the
cosine potential be larger than the zero-point energy in the harmonic approximation
hwy /2, which roughly sets the condition for having at least one bound state, yields
that no phase diffusion occurs as long as

U
J&KJ = — 3.55
< N (3.55)

This is the condition for entering the Fock regime (see Sect. 1.2.3.2). For our parame-
ters, we estimate J./ h & 2 X 10~*Hz, whichis compatible with the absence of phase
diffusion in the RFp,p, = 0.65 trap. Full numerical simulation of the two-mode Bose-
Hubbard Hamiltonian confirm that phase diffusion is inhibited for J/A > 1073 Hz
(see Fig.3.27, left panel). We checked this by repeating the experiment in a more

split trap (RFamp = 0.86), for which simulations predict a negligible coupling, and
indeed observed clear evidence of phase diffusion (see Fig. 3.26, right panel).
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Fig. 3.27 Phase diffusion in presence of tunnel coupling. Coherence factor as a function of time for
different values of the tunnel coupling J in a symmetric double well (¢ = 0) (left); and for different
values of the detuning € at J/h = 0.1Hz (results of numerical resolution of the Bose-Hubbard
Hamiltonian, U = h x 0.57 Hz). Dotted black line analytical prediction in absence of coupling.
The oscillations of coherence appearing in the right panel at low detuning correspond to a slow
“breathing” mode of the many-body wavefunction at twice the Josephson frequency. It is due to the
fact that the initial phase distribution is initially more narrow than the ground state at this coupling.
Such a breathing is expected to occur at the moment where adiabaticity breaks down during the
splitting but was not observed experimentally

It is interesting to note that although the ratio of interaction and tunnel coupling in
the RFppmp = 0.65 trap strongly suppresses Josepshon oscillations (the self-trapping
threshold |z.| is estimated to about 40 atoms, see (1.206)) and that the Josephson
period should be of the order of 100 ms (2MM prediction), tunnel coupling is still
strong enough to lock the relative phase and inhibits phase diffusion. Interestingly, the
improved 2MM (see Sect. 1.2.5.4) predicts a period of 72 ms (in agreement with 1D
transverse GPE simulations), which could match that of the observed low-amplitude
oscillations of the mean phase, f = 15.6 & 4Hz (see Fig.3.21)."3

It sheds light on a distinction between the Josephson and the Fock regime: in
the Josephson regime (1/N <« U/2J « N), the interactions are strong enough to
modify or even strongly suppress tunneling, but conversely to the Fock regime, they
are sufficient to maintain low phase fluctuations, allowing for a classical (or mean-
field) description of the many-body wavefunction.

Tilted Double Well

However, since the currents in the wire are changed in a way to keep the spacing
between the wells constant, the coupling energy is not expected to vary much when
the trap is tilted. The observed phase diffusion, which seems to be compatible with an
absence of coupling, is triggered by the energy detuning, similar to the way tunneling

13Note that other effects, such as the slow axial breathing and the different projection onto the
Zeeman substates at switch off also affect the interference pattern on a comparable timescale.
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can be frustrated in an optical lattice by applying a large energy gradient [117]. In
Sect. 1.2.5.2, we have seen that € acts as a drive for the mean phase. In the mean-field
picture, it corresponds to a constant momentum applied to the fictitious particle. In
a time-coordinate system evolving at the rate €/ &, the fictitious particle experiences
a time-dependent cosine potential shifting at the velocity —e/h. When |e| is suf-
ficiently large, the wavefunction cannot adiabatically follow the drive and feels a
time-averaged, flat potential, as in the zero-coupling limit. We can once again resort
to the adiabaticity criterion (3.18) (this time, we use the shift term) to estimate that
the detuning will overcome the effect of the tunnel coupling as soon as

€> €.~ J2Uhwy. (3.56)

In the RFpmp = 0.65 trap, this implies that €./ >> 4 Hz. This (a) confirms that
even for the smallest tilts in Fig.3.19, the tunnel coupling is too weak to prevent
phase diffusion (b) the fact that we observe no phase diffusion in the horizontal
double well indicates that it is balanced to better than # x 4 Hz, which is compatible
to the precision we have on the phase accumulation rate (2 Hz, see Sect.3.5.1).
The physical interpretation of this behaviour is that while tunnel coupling favors a
relative phase close to zero with little spread (because it is energetically favorable),
it cannot maintain ¢ ~ 0 adiabatically in presence of a strong drive. Full numerical
simulation of the two-mode Bose-Hubbard Hamiltonian at finite tunnel coupling
strength J/h = 0.1 confirm that at short times (f < 25 ms), the evolution of A¢ in
presence of a tilt cannot be distinguished from phase diffusion in absence of tunnel
coupling. Interestingly, it implies that in order to cut the tunneling link between the
BECs, it is sufficient to apply a detuning, without splitting the double well further
apart.

3.5.3 Estimation of the Phase Diffusion Rate

To extract a phase diffusion rate from the data of Fig. 3.24, we compared the measured
evolution of phase spread to that expected at short times from the theoretical predic-
tion for a Gaussian state (Eq. (3.54)). We used a Rayleigh non-uniformity test [69] to
distinguish the points compatible with a uniform phase distributions from the others.
Only the points with a P-value below 5 %, indicating a probability below 5 % to be
compatible with the distribution of kK = 47 samples drawn from a uniform random
distribution, were retained (blue points), similarly to what was done in Ref. [11].
The data of Fig. 3.24 was fitted with

AP (ts) = A + R*(ts — 1;)%, (3.57)

yielding


http://dx.doi.org/10.1007/978-3-319-27233-7_1

164 3 A Mach-Zehnder Interferometer for Trapped, Interacting ...

Table 3.4 Phase coherence times

RF Amp J/h [Hz) le/ h| [Hz] Teoh = 1/R [ms]
0.65 0.1 3 195 + 95

0.65 0.1 349 20+3

0.86 <1010 10 174425

0.86 <1010 175 15142

Phase coherence times extracted from the phase diffusion model of Eq.(3.57), for two different
dressing amplitudes (data of Fig.3.26). The coupling J was estimated from simulations of the
double well, the detuning was measured as in Sect. 3.5.1

Rexp = 51 & 4 mrad/ms, (3.58)
A¢y = 300 £ 90 mrad (3.59)
(red line). t; = —6 ms is a constant offset accounting for the 3 ms used before and

after the phase accumulation stage to incline and level the double well, during which
phase diffusion is also expected to occur. The uncertainties correspond to the 95 %
confidence interval of the fit. Note that retaining the linear term in Eq. (3.54) does
not change the fit result within the uncertainty, as expected from Fig. 3.25.

Alternatively, one can extract the phase coherence time 7 = 1/R from the
Gaussian decay of the coherence factor (Eq. (3.52)) with the fit model

(cos (¢ — (9))) (ts) = exp[—Ady/2] exp[— (t — 11)* /270, ] - (3.60)

This has the advantage that no points must be excluded for the fit. Table 3.4
summarizes the phase coherence times measured for different couplings and different
detunings (see Fig.3.26).

To give a quantitative prediction for the phase diffusion rate, we estimated R in
two independent ways.

3.5.3.1 Ab initio Calculation

In absence of coupling, the phase diffusion rate is expected to be proportional to
U, i.e. to the derivative of the chemical potential with respect to the atom number,
evaluated for N /2 in the case of a symmetric splitting (see Sect. 1.2.2.2).

o
U= —— . (3.61)
oN N=N/2

In case of asymmetric splitting (N; # Ng), Uy g is different in each well, and the
partial derivative must be evaluated at the corresponding atom number (see Eq. 1.88).

However, on our setup, splitting is not adiabatic with respect to the longitudinal
motion. This triggers a slow axial quadrupole mode and the condensates are not
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at equilibrium during phase accumulation (see Sect.3.4.1.3). More precisely, right
after splitting, each condensate conserves the longitudinal profile of the initial BEC,
while its suddenly sees its atom number divided by two (in the case of a symmetric
splitting). It implies that immediately after the end of splitting, the effective chemical
potential of each breathing condensate is different from that of a BEC at equilibrium
in the same trap and with the same atom number.

Consequently, the chemical potential entering the term Oy, /ON is not the correct
quantity describing the phase evolution. It must be replaced by an effective chemical
potential

eff _ h%

, 3.62
i i (3.62)

wherei = L, R and ¢, (¢) is the time-dependent global phase of each breathing BEC.
An expression for the time-dependent wavefunction is given by the scaling approach
of Refs [91-93]. It shows that the axial wavefunction of each BEC subjected to
breathing obeys

H1D,i

' 1 o z » m b,
(pl(zvt)—m@TF,l (bi(t))e)(pl: l( h T,(I) th,»(t)Z ):|v (363)

where ¢p ; is the 1D Thomas-Fermi ground-state wavefunction in the new trap (see
Eq. (1.56)), with the corresponding equilibrium chemical potential . p ; (Eq. (1.64)).
The scaling parameter b; (¢) follows Eq. (3.19) and the rescaled time 7; is defined by

() = / | du (3.64)
S o by '

Right after splitting (#+ = 0), the axial profile of each condensate is still equal to that
of the initial unsplit BEC, but with a lower atom number. Each condensate starts
breathing inwards, as shown on Fig.3.13. Using the explicit expression for the 1D
Thomas-Fermi radius (1.61), and taking into account the fact that the longitudinal
frequency in the final trap . is slightly different from that of the initial trap w., we

find
I\ 2/3 1/3 1/3
N N
b; (0) = (w—> (—) ~ 1.04 x (—) > 1, (3.65)
Wy N,‘ Ni

b (0) = 0. (3.66)

At times short compared to the breathing period Ti, &~ 40 ms, we can assume b
constant and the phase of each condensates follows

poi Lo o) (3.67)
h b0  p&Rtib :

@i(t) ~

ff
It
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where gp is the 1D interaction constant in the new trap (we assume that transversely,
the splitting is adiabatic) and 7, (0) is the initial peak linear density of each (out-of-
equilibrium) BEC.

In case of a sudden splitting, the longitudinal profile of each cloud first remains
unaffected so that n;(0) = n(0)N; /N, where n(0) is the peak linear density of the
unsplit cloud. Because of this linear dependence of ;<™ with the number of atoms

1
N; in the condensate,

eff
aa/jv = %Dn(O). (3.68)

From the estimated peak linear density in the initial BEC n(0) = 36 atoms/pm and
the transverse trap frequencies in each individual well, we get U/ h = 0.52 Hz.
Note that this value differs significantly from that estimated from the the equilibrium
chemical potential of the initial unsplit BEC (U/h = 0.33Hz) or the equilibrium
chemical potential in each single well (U/h = 0.40Hz).

Using the measured squeezing factor £y = 0.41, the expected phase diffusion
rate is

Ry = 46 £ 4 mrad/ms, (3.69)

or equivalently 7.on = 22 + 2 ms. The uncertainty on Ry, is computed by error
propagation from the experimental uncertainty on each parameter. This theoretical
prediction with no free parameter, represented as a gray shaded area in Fig.3.24, is
in fair agreement with the experimental value, suggesting that the axial breathing
cannot be ignored.

3.5.3.2 Chemical Potential Measurement

To further confirm our understanding of phase diffusion, we performed an inde-
pendent measurement of 9u /ON. This was done by measuring the rate of phase
accumulation driven by a difference of chemical potential between the two conden-
sates. For that, we split the BEC with an angle in order to prepare a well-controlled
population imbalance (see Fig. 3.12). The double well was then leveled (A = 0) and
we observed a linear phase evolution with a rate dependent on (z).

In a symmetric double well (A = 0), the energy difference which drives the phase
accumulation stems from the difference of interaction energy'* U (N, — Ng) (see
Eq. (1.208)). Assuming that both wells are identical,

1
(@) (1) = EUN (z) 1, (3.70)

14Strictly speaking, the phase accumulation rate is proportional to the difference of du/ON
multiplied by the corresponding atom number. For a Hamiltonian such as that of the Bose-Hubbard
mode, which is quadratic in n, this is equivalent to the difference of chemical potential.
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Fig. 3.28 Direct measurement of Ayx(z) when the condensate is split to yield a population imbal-
ance. The numbers labelling the points are the angles (in °) used during splitting to obtain the
measured imbalance. The obtained population imbalance is responsible for Ap measured in the
leveled double well. The dashed line is a linear fit to the data from which gn(0) is extracted accord-
ing to Eq.(3.71). The horizontal error bars are 1 standard error of the mean. The vertical error
bars representing 1 standard error of the fitted energy difference are smaller than the points

where (z) is the average population imbalance.
Here also, we have to take into account the fact that the condensates are not at
equilibrium. For ¢ « Ty, Eq. (3.67) yields

1
(@)(1) = 7 81pn(0) (2) 7. (3.71)

The phase accumulation rate is simply proportional to du°/ON . Repeating this
measurement for 6 different values of the imbalance (z), we indeed observed that the
phase accumulation rate depends linearly on the population imbalance and extracted
the slope gipn(0)/h = 763 + 53 Hz (see Fig.3.28). This yields a third value of the
phase diffusion rate

R, =57 £ 5 mrad/ms, (3.72)

(Teon = 17.5 £ 2 ms), in agreement with both previous values.

3.5.4 Conclusion on the Phase Evolution

In this section. we have shown how to apply a reproducible phase shift to our con-
densate by tilting the double well. This triggers a deterministic linear evolution of
the mean phase with a rate that we can measure with a precision of the order of 2 Hz.
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If e were only equal to the difference of gravitational potential energy, this sensitivity
would allow detecting the energy gained by one 8’Rb atom lifted 1 nm. However,
we cannot explain quantitatively this rate from the known sources of phase drive.
We speculate that the ~60 % discrepancy between the expected and the measured
values of the phase accumulation rate comes from a an unknown behaviour of the
tilted trap. For this reason, performing a precision measurement of gravity with a
double-well interferometer on chip seems challenging.

We observe a randomization of the relative phase within a few tens of ms as soon
as the two wells are detuned, even in presence of tunnel coupling. The high inter-
ferometric contrast observed in single realizations long after the coherence has been
lost indicates a phase diffusion process. Both the theoretical value of the interaction-
induced dephasing rate and the value inferred from measurement of the interaction-
driven phase accumulation are in agreement with the observed diffusion rate, strongly
suggesting that atom-atom interactions are responsible for the decay of phase coher-
ence. Importantly, the fact that the BECs are out-of-equilibrium after the end of the
splitting has to be taken into account.

The measured phase diffusion rate is in agreement with the measured fluctu-
ations of the relative atom number in our two-mode BEC. Through the use of a
number-squeezed state, we report a coherence time 7., = 20 &+ 3 ms, twice longer
than expected with a coherent, uncorrelated state (7.on & 9 ms). Extended coherence
times have already been observed and attributed to number squeezing [11, 117], but
without directly measuring the number fluctuations. To the best of our knowledge,
our measurement constitutes the first direct evidence of the link between number
uncertainty and phase diffusion. It calls for the improvement of methods to produce
controlled number squeezing, in order to systematically verify the way how phase
diffusion varies with the amount of number squeezing. The development of these
methods is currently in progress on our experiment.

Moreover, this result shows that the interrogation time of our interferometer is
currently limited by atomic interactions, and not by technical noise. The use of
number-squeezed states is a first way by which to extend the coherence time. The
control of atomic interactions, for example by the use of a Feshbach resonance, seems
a more promising option. By strongly reducing the s-wave scattering length in a 3K
BEC, coherence times up to ~1 s, limited by technical noise, were demonstrated [41].
Similarly, both inhomogeneous mean-field shifts and interaction-induced phase dif-
fusion could be reversed by interaction control together with the application of a
spin-echo-like technique, enabling the observation of a revival of the interferometric
contrast [43]. The high degree of control of interactions offered by Feshbach reso-
nances motivate the strive for high-precision BEC interferometers, such as the ones
which are currently being built in Canberra [39] or Florence. '’

Bhttps://sites.google.com/a/lens.unifi.it/quantum-interferometry/.
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3.6 Two Phase-Sensitive Condensate Recombiners

The last element needed to close the interferometric sequence is a phase-sensitive
recombiner (see Fig. 3.2). In an optical Mach-Zehnder interferometer, this operation
is realized by means of a recombination beam splitter, such as a half-silvered mirror
or a fiber coupler. Its function is to transform the phase difference between the two
paths of the interferometer into a measurable signal: usually an intensity difference
between the two output ports.

Conceptually, this operation is exactly symmetric to the separation beam splitter.
Indeed, Bragg or Ramsey interferometers use essentially identical '° rf, microwave or
laser pulses to split and recombine the matter waves. In contrast, most trapped BEC
interferometers rely on the tof recombination scheme detailed in Sect. 3.2.1. The fact
that tof expansion greatly reduces the interactions when the condensates overlap is
generally put forward as an advantage of this method.

Different techniques have been suggested to read out the phase between trapped
BEC:s. In Ref. [56], the phase-dependent heating at the merging of two condensates
has been used to infer their relative phase. Recently, we have developed a scheme
to read-out the phase from a trapped BEC prepared in a superposition of vibrational
states by monitoring the evolution of its momentum distribution [16].

Here we have explored new methods to recombine trapped BECs in a way to
map their relative phase into a population imbalance between the two wells. One
motivation to seek for such a scheme has been mentioned in Sect. 3.2.1.4: while the
sensitivity of our phase readout from the spatial interference fringes seems incompat-
ible with measurements beyond the SQL, our fluorescence imaging already enables
atom counting with a precision better than the shot noise. More generally, it has
been shown that even though phase estimation based on a fit to the tof interference
pattern can in principle reach sub-shot-noise sensitivity(A¢ < 1/+/N) [119], it is
fundamentally bounded by N?/3 and hence cannot reach the Heisenberg scaling of
the sensitivity [120].

A related motivation is the development of methods to manipulate coherently
the state of an external BJJ. We have seen in Sect. 1.2.4.3 that in the collective spin
representation, the coherent manipulation of the many-body wavefunction requires
rotations around the axes of the Bloch sphere. Such techniques have been already
implemented with high performance in internal BJJ, making use of rf and microwave
pulses. While the energy detuning applied during the phase accumulation stage (see
Sect.3.5.1) acts as a rotation around the (z)-axis, tools to perform rotations around
the (x) and (y) axis efficiently are still to be developed.

Several interferometric schemes based on the splitting and recombination of
trapped atoms have been proposed. In Ref. [121] a “conveyor belt” was imple-
mented on an atom chip and used to merge two clouds of thermal atoms. This exper-
iment motivated the proposal for a trapped-atom interferometer using a time-varying

16Up to the relative phase of the two BS pulses, which can be tuned to vary the interferometric
phase.
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Fig. 3.29 Josephson and non-adiabatic recombiner. Normalized population imbalance z of the
output state of the Josephson (left) and non-adiabatic (right) recombiner, as a function of the phase
¢o of the input state. Each black dot corresponds to the ensemble average over ~18 independent
experimental realizations (error bars: standard error of the mean). The phase of the input state
is varied by scanning the phase accumulation time over ~3 ms (phase accumulation rate: €/ h &~
350 Hz). Continuous lines fit to the data with a two-harmonic model (see text). Dashed line Lowest
harmonic of the fit (sine)

magnetic potential [122]. A similar multimode interferometer consisting in two
Y-shaped beam splitter was proposed in 2002 [85].

Several authors have suggested to make use of the controlled tunneling of atoms
in a double well potential in order to read out the phase either directly from the
mean population imbalance [102, 123] or from its fluctuations [124]. Although it
was discussed that the effect of interactions during the recombination procedure
would degrade the performance of the beam splitter [119, 125], it has been pointed
out that controlled interactions could in contrary allow for phase estimation beyond
the standard quantum limit. Even more, J. Grond et al. showed that the Heisenberg
scaling of the phase sensitivity could be reached in a fully trapped double-well
interferometer [123].

On our experiment, we explored two different approaches to perform a phase-
sensitive recombination, i.e. to transform a state with a given phase ¢y and no popula-
tion imbalance into another state, whose imbalance is a function of ¢ (see Fig. 3.29).
The first method (Sect. 3.6.1) consists in using Josephson oscillations to achieve con-
trolled phase-dependent tunneling. The second approach (Sect. 3.6.2) relies on a fast
transformation of the potential to make use of the double well as a semi-reflective
barrier. The population imbalance of the output state is the result of the interference
between the reflected and the transmitted parts of the matter wave. For each case, we
will explain the principle of the recombiner, present its implementation and discuss
some of its limitation. This section will finish by a comparison of the two schemes.
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The inverse recombiner

Following Refs. [85, 122], the most straightforward recombining beam splitter for
our Mach-Zehnder interferometric scheme is to time-reverse the splitting Sect. 3.4.1,
i.e. to ramp down the tunnel barrier and to merge the two condensates into a single
one. Provided the transformation of the potential can be performed adiabatically
with respect to the transverse motion, the state of the condensate prior recombination
should be mapped onto a superposition of the ground and first excited state of the
single-well potential [122]. The population of these two states, as well as their relative
phase, could be inferred from monitoring the evolution of the wavefunction during a
holding time after the end of the merging, as was already done in our experiment to
analyze superpositions of vibrational states [16, 76, 126]. The value of the relative
phase prior merging could also be inferred from the position of the center-of-mass
of the merged cloud.

However, the merging of two interacting Bose-Einstein condensates is expected
to result in a phase-dependent heating, due to the decay of excitations which are
created at the phase discontinuity [127]. When ¢y = 7, the merged condensate is
even expected to contain a dark soliton. It has been pointed out that enhanced phase
sensitivity could be achieved by observing the dynamics of the soliton [128]. By
monitoring the phase-dependent reduction of the condensate fraction, Jo et. al. could
obtain an interferometric signal with up to ~20 % contrast [56]. Our first attempts
to merge the condensates indeed produced highly excited clouds. We could even
observe indications of the decay of transverse excitations into longitudinal modes,
probably following the same mechanism as in Ref. [76].

3.6.1 Josephson Recombiner

3.6.1.1 Principle

The idea of using Josephson oscillations as a way to coherently transform a state
with no imbalance and a given relative phase into a state whose imbalance is a
function of the phase has been studied in various publications [102, 123, 125]. A
Josephson beam-splitter is conceptually very similar to a /2 Rabi pulse between
two internal states coupled by a radio-frequency field, as used for example in Ramsey
interferometry [4]. It is also not without similarity with fiber couplers used in laser
optics.

Let us assume that initially, the BEC is in a coherent superposition of left and right
mode with vanishing average imbalance ({z) = 0) and a mean relative phase ¢;. This
corresponds for example to the state of the BEC after the phase accumulation stage.
If the tunnel coupling energy J is suddenly set to a finite value,'” by lowering the
potential barrier, the phase difference triggers an oscillating tunnel current of atoms

17We assume here that initially, J=0, although in practice there is a slight residual coupling even
before recombination.
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between the two condensates (see Sect. 1.2.5.3). Neglecting interactions, we find by
solving Egs. (1.198) and (1.199) for A = 0 and € = 0 that z undergoes sinusoidal
Rabi oscillations, the amplitude of which is equal to the sine of the initial phase'®

z(t) = sin¢g sin (2J¢t/h). (3.73)

After a quarter of a Rabi oscillation (Tgs = //8J), the final population imbalance
is simply equal to the sine of the initial phase. In particular, when ¢y = /2, the
maximal value z (Tgs) = 1 is reached. The evolution of z can then eventually be
frozen by ramping up the barrier again (J — 0).

In the collective spin representation (see Sect. 1.2.4), the beam-splitter operation
precisely corresponds to a rotation of angle 7 /2 around the x-axis of the Bloch sphere
(see Fig.1.12). In absence of interactions, Eq. (1.152)) reads

2J . 4
|4 (Tgs)) = exp (iFTBSSx) 19(0)) (3.74)

where the coupling J is applied during the beam-splitter time Tgs.

In practice, the tunnel coupling is dynamically varied by ramping up and down
the rf dressing intensity. For a non-interacting system, the condition for a 7/2 pulse
becomes

1 Tes ™
— 2J(t)dt = —, 3.75
h/o () > (3.75)

namely that the area of the pulse should be equal to 7/2.

3.6.1.2 Implementation

We implemented the Josephson beam-splitter by ramping down the dressing intensity
in 3 ms from its initial value RFamp = 0.65 (J/h ~ 0.1 Hz) to a lower value RFKIsnp,
corresponding to a more coupled trap (see Figs.3.14 and 3.35). The duration of the
recombination ramp was chosen as to avoid excitations of transverse modes of the
BEC. The condensates were then held for an adjustable time #gg in the coupled trap,
before the barrier was raised again to separate the atoms for counting as described
in Sect. 3.2.2.1. The beam-splitting procedure is illustrated in Fig. 3.30.

To find the optimal recombiner parameters, i.e. maximize the contrast of the
read out, we prepared a state with (¢) = /2 at the input of the recombiner and
repeated the operation for different values of RFJABn?p' For each value, we scanned
the beam-splitter time #gg, looking at the extrema of the Josephson oscillations.

Figure3.31 shows Josephson oscillations recorded in the RFomp = 0.55 trap, for

18Note that ¢(t), on the other hand, has a non trivial time-dependence. For instance, when ¢g = 7/2,
¢(t) flips between =£7/2 every half-period (square oscillations).
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Fig. 3.30 Simulation of the Josephson recombiner. Evolution of the transverse density profile
during the beam-splitter operation (fgs = 0.225 ms), for an initial state with z = 0, ¢9 = 0 (top)
and z = 0, ¢9 = 7/2 (middle), obtained by solving numerically the 1D GPE in the transverse
potential. The continuous black lines indicate the position of the potential minima at each time.
The vertical dotted lines show the duration of the recombination ramp, the beam-splitter time s
and the separation ramp (¢t = 0 corresponds to the beginning of the recombination ramp). While
for ¢9 = 0, the density profile is symmetric at all times, an imbalance builds up when ¢9 = /2.
Note the transverse excitations for ¢ > 4 ms caused by the separation ramp. Bottom Evolution of
the normalized population imbalance during the beam-splitter operation (gray area beam-splitter
time fgs). Atoms already start tunneling through the potential barrier during the 3 ms recombination
ramp, explaining why the maximal final imbalance is obtained for a very small value of 7gs

which we obtained the highest amplitude (z,,) ~ 0.2 at fgs = 0.225 ms. From the
measured frequency of the Josephson oscillation, we estimate J/h ~ 40 Hz and
A = 7. Repeating the whole procedure for different values of the initial phase, we
observed a sine-like dependence of the final imbalance, as displayed in Fig. 3.29, left
panel.

The contrast of the recombiner is given by the amplitude of z(¢y). Note that
because of phase diffusion, (z,,) is not the right quantity to infer the recombiner
contrast, as we will see in Sect.3.7.2: the measured final imbalance is the result of
the averaging over different initial phases, which has the effect of decreasing the
contrast. However, correcting for this effect, we still find a contrast of the order of
20 % (see Sect.3.7.2.1).
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Fig. 3.31 Optimization of the Josephson recombiner. Final population imbalance z as a function
of the beam splitter time #gs in the RFay double well, showing damped Josephson oscillations
triggered by the initial phase difference ¢9 ~ 7/2 (no initial population imbalance). Black ensemble
average over up to 5 single individual realizations (gray dots). Red fit with a sine multiplied by
a Gaussian damping, yielding a rms decay time of 14 4= 7 ms. The arrow indicates the maximum
amplitude z = 0.23 obtained for the optimal beam-splitter time rgs = 0.225 ms, which was used
for the recombiner sequence. Note that even for rgs = 0, atoms have already tunneled through the
barrier during the 3 ms recombination ramp

The fact that the final imbalance differs from zero even when tgs = 0 shows that
atoms have already started to tunnel before the end of the recombination ramp. Indeed,
simulations show that most of the tunneling occurs while the barrier is beeing lowered
(see Fig.3.30). We also observed a strong damping of the Josephson oscillations over
~10ms (see Chap.4), which sets a drastic limit to the duration of the recombiner
sequence.

3.6.1.3 Limitations of the Josephson Recombiner
Maximum Contrast

Interactions modify the functioning of the Josephson recombiner. First, in pres-
ence of interactions, the period of (low-amplitude) Josephson oscillations, 7 =
h/(2Jv/T+ A) (see Eq. (1.132)), is shorter than that of the Rabi oscillations
T = h/2J. Secondly, the maximum imbalance that can be achieved starting from
a zero-imbalance initial state is set by the self-trapping threshold and reads (see
Eq.3.76)

VAT
Jocl = 27— —. (3.76)
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For RFamp = 0.55, we find |z.| ~ 0.7 while for RFzp, = 0.6, |z.| is already lower
than 0.2 (see Fig.3.41). This shows that in order to achieve a high contrast, the
recombination must be performed in a strongly coupled double well. Ideally, this
would impose lowering the dressing down to a trap where A < 2 and entering the
Rabi regime. In our double well, however, this would imply ramping the dressing
amplitude down to a potential where the barrier is lower than the ground state energy,
which effectively means merging the two condensates.

Adiabaticity

Moreover, our two-mode description of the Josephson recombiner relies on the
assumption that at each time, the wavefunction can be written as a superposition
of the two modes of the double well, as introduced in Sect. 1.2.1. When the trans-
verse motion is fast with respect to the transverse trap frequency (w, /27 ~ 1 kHz),
this assumption breaks down. It means that in order to reach low values of A while
still remaining adiabatic at all times, the recombination must be carried out slowly,
probably over tenths of ms. This however seems challenging, given the strong damp-
ing observed over a few ms.

Anharmonicity

Interactions are also responsible for a non-linearity of the response of the recombiner
(see Fig. 3.29, left panel). In absence of interactions, the final imbalance is at all times
proportional to the sine of the initial phase (see Eq. (3.73)). For an interacting system,
however, the simulations of the recombiner show that z(¢¢) is anharmonic, with a
steeper slope around ¢y = 7 (see Fig. 3.32, left panel).'”

We can understand the shape of z(¢) by looking at the phase portrait of the BJJ
in presence of interactions (Fig. 3.32, right panel). It suggests that, conversely to the
non-interacting case, the best contrast is obtained by following the separatrix (black
line), i.e. for ¢pg = m. However, (z = 0, ¢9 = m) is a hyperbolic fixed point, meaning
that the system cannot evolve from this point. For ¢ close to, but different from
7, the trajectories are close to the separatrix but the period of the oscillations of z
diverges as — In |¢g — 7| [129] (see Fig.3.42).

The final imbalance z(¢y) is a periodic function of ¢y. Accounting for the sym-

metry z(—¢o) = —z(¢o), we can express it as a Fourier series
M
2(d0) = D aysin (nho) . (3.77)
n=1

19The central symmetry around ¢ = 7 comes from the fact that the whole BJJ equations are invariant
under the transformation z — —z,¢0 — ¢o = ¢o + 7, which is simply equivalent to swapping the
left and the right mode.
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Fig. 3.32 Effect of interactions. Left Final population imbalance z as function of the phase ¢g
of the state at the input of the Josephson recombiner, in absence (red) and in presence (blue) of
interactions (full 1D GPE simulation of the recombiner sequence). Interactions are responsible
for the anharmonicity of the blue curve. Note the steep slope close to ¢g9 = . Right Classical
phase portrait of the BJJ for A = 10 (gray lines). The blue points on the z = 0 axis correspond to
input states of the recombiner with different initial phases. The blue lines represent the trajectory
each state travels in phase space during a fixed time equal to 7/2wy, i.e. a quarter of a Josephson
oscillation. Note that w; represents only the period of the small amplitude Josephson oscillations.
As the initial state gets closer from the hyperbolic fixed point (¢o9 = 7, z = 0), the oscillations
become increasingly slow and approach asymptotically the separatrix (black line) (Color figure
online)

Note that since it relies only on the periodicity and symmetry of z(¢y), this decompo-
sition is very general and can describe the signal of any phase-sensitive recombiner.
The anharmonicity of the data in Fig. 3.29, left panel, is already reasonably accounted
for by retaining the two first harmonics (M = 2, blue line). However, as we will see
in Sect.3.7.2.1, it is necessary to characterize the phase distribution of the input state
of the recombiner to infer the amplitude of the harmonics of the recombiner response.
Although ¢ is a 27-periodic variable, it is scanned in practice by varying the phase
accumulation time. The mere fact that the time-evolution of the BEC is not linear
indicates that the final imbalance is not likely to be a periodic function of time.

Anharmonicity also implies that the value of the phase maximizing the imbalance
depends on the beam-splitter duration. Strictly speaking, this invalidates the proce-
dure that we used to find the optimal parameters by keeping the initial phase equal
to /2. It is thus not straightforward to find the parameters maximizing the contrast
of the Josephson recombiner. For a given value of RFiBn?p, both tgs and ¢g must be
varied to find the best working point. The simulations displayed in Fig.3.42 show
that in the RFpp,, = 0.55 double well, up to 80 % contrast can be achieved, while
for a more split trap (RFamp = 0.6), the oscillations of z do not exceed 25 %.

The discrepancy between the highest values of the contrast we could observe
(of the order of 20 %) and the theoretical mean-field predictions shows that effects
beyond the zero-temperature, 1D dynamics are limiting the contrast, as suggested
by the strong damping of the Josephson oscillation we observed. These effects, in
particular the coupling between the different spatial directions, are currently being
investigated by Bruno Julid-Diaz and Artur Polls at the University of Barcelona.
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3.6.2 Non-Adiabatic Recombiner

Because it requires adiabaticity with respect to the transverse motion of the conden-
sate, the Josephson recombiner cannot simultaneously meet the constraints of high
contrast and fast operation. A slow transformation of the potential, however, does
not allow for a high contrast, because of the fast damping observed on a few ms
timescale.

Instead, we decided to lift the adiabaticity constraint and to seek for a fast beam-
splitter operation. Rather than slowly ramping down the rf dressing to tunnel-couple
the two halves of the condensate, we tried to abruptly launch them on the potential
barrier. As we will see, this mimics the operation of a half-silvered mirror in optics:
a wave packet impinging on the beam splitter is split between a reflected and a
transmitted wave. The intensity at each output port is the result of the interference
between reflected and transmitted waves, and hence depends on the initial phase
difference.

3.6.2.1 Implementation
Instead of slowly ramping down the rf dressing amplitude, we abruptly?® decreased it
to a lower value RFiE]Sp. This had the effect of simultaneously reducing the height of
the potential barrier and the distance between the two wells (see Fig. 3.35). The clouds
were accelerated towards the barrier and after an adjustable time fgg, the barrier was
raised again to separate the atoms for counting. Figure 3.33 shows simulations of the
complex, phase-dependent dynamics of the wavefunction during the recombination.
Here also, we prepared a state with vanishing imbalance and a phase close to
/2 and scanned both the time tgg and the dressing amplitude RFE?HSP to find the
optimal working point for the recombiner. We recorded the highest final imbalance
7~ 0.42 for RF/‘?E‘HSP = 0.55 and s = 2.25 ms (see Fig.3.34). It is interesting to
note that the optimum was found for the same value of the dressing amplitude as for
the Josephson recombiner. Simulations indicate a spacing of 1.5 um and a barrier
height Ey,/h ~ 1 kHz in this potential (see Fig.3.35). Repeating the procedure for
different values of the initial phase, we also observed a sine-like dependence of the
output imbalance (see Fig.3.29, right panel).

3.6.2.2 Propagation of Two Non-interacting Wave Packets
in a Symmetric Potential

To gain some insight into the working principle of the non-adiabatic recombiner, it
is useful to first consider the propagation of two non-interacting wave packets with

20Within 0.25 jus, which is much lower than the inverse transverse trap frequency.
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Fig. 3.33 Simulation of the non-adiabatic recombiner. Evolution of the transverse density profile
during the beam-splitter operation (fgs = 2.25 ms), for an initial state with z = 0, ¢9 = 0 (top)
and z = 0, ¢9 = /2 (middle), obtained by solving numerically the 1D GPE in the transverse
potential. The continuous black lines indicate the position of the potential minima at each time.
The vertical dotted lines show the duration of the recombination ramp, the beam-splitter time tgs
and the separation ramp (¢ = 0 corresponds to the beginning of the recombination ramp). While for
¢o = 0, the density profile is symmetric at all times, an imbalance builds up when ¢y = 7 /2. Note
that conversely to the Josephson recombiner, the transverse profile exhibits a complex structure
due to the multiple reflections and transmissions in the double-well potential. Bottom Evolution of
the normalized population imbalance during the beam-splitter operation (gray area beam-splitter
time 1gs)

a given relative phase ¢y. We assume a 1D symmetric potential V (—x) = V (x) and
the wavefunction initially to read

Y (xat=0) = % [.00) + ()] (3.78)

where ¥, (—x) = ¥g(x). This implies in particular that the two wave packets

have opposite momenta ( ﬁ) L= ( 13) > for example both heading towards x = 0.
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Fig. 3.34 Optimization of the non-adiabatic recombiner. Measured final population imbalance z
as a function of the beam splitter duration 7gs. The input state was prepared to have (z) = 0 and
(¢o) = m/2. Each black dot is an ensemble average over a few realizations. The uneven shape
of z(tgs) reflects the complex dynamics of the wave packet in the RFamp = 0.55 double-well
potential. The arrow indicates the optimal beam-splitter time fgs = 2.25 ms, for which the maximum
imbalance (z) &~ 0.42 was observed. Dashed red line result of a 3D Gross-Pitaevskii simulation of
the BEC dynamics in the recombiner (without the separation ramp). Plain red line result of the
same simulation, multiplied by a Gaussian damping term and time-shifted to fit the experimental
points (rms time o: 2.7 ms, time shift: 0.12 ms) to heuristically account for the observed relaxation
mechanisms and the evolution of the condensate during the separation. The 3D GPE simulations
were performed by Bruno Julid-Dfaz at the University of Barcelona (preliminary) (Color figure
online)

Equation 3.78 describes for example the initial configuration in the recombiner, right
after the dressing amplitude has been abruptly decreased (see Fig.3.35).

If we assume no interaction, the evolution of the wave packets is governed by
the linear Schrodinger equation. The superposition principle and the parity of the
potential allow to write at all times

L
V2

where ¥g(x, t) = 1 (—x, t). The time-dependent population imbalance, which we
define as z(¢) = fi)oo [ dx — fooo |4 dx hence reads

V1) = — [V, 1) + P Yr(x, 1], (3.79)

z(t) = C (1) sin ¢y, (3.80)

where C(¢) = 2/00 Im [ (x, ) (x, )] dx, (3.81)
0
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Fig.3.35 Initial and final double-well potentials. Cut along the splitting direction of the double-well
potential prior recombination (RFamp = 0.65, blue) and that used for the non-adiabatic recombiner
(RFamp = 0.55, red). The horizontal lines correspond to the chemical potential of the ground and
first excited state in each potential (for RFamp = 0.65, the spacing between the levels is smaller
than the width of the line). The density distributions of left and right modes of the RFapp = 0.65
double well are also represented. When the dressing intensity is abruptly lowered to 0.55, it confers
to the atoms a potential energy equal to the height of the barrier (Color figure online)

Im [] denoting the imaginary part. At each time, the population imbalance is propor-
tional to the sine of the initial phase ¢ of the superposition. The contrast C(¢) is, for
each time, a constant number independent of ¢, and the Cauchy-Schwartz inequality
ensures that |C(#)| < 1. It is interesting to note that this simple result relies only on
the symmetry of the potential, that of the initial wavefunction, and the linearity of
the Schrodinger equation, without other assumptions on the shape of V [12].

Altogether, the propagation in a symmetric potential for a fixed time ¢ transforms
an initial state which has equal populations on both sides of the barrier and a relative
phase ¢y, into a state whose population imbalance is proportional to the sine of the
phase ¢g. For ¢g = 0 and ¢y = m, the wavefunction is even (respectively odd) at all
times and no imbalance can appear. Conversely, when ¢y = +7/2, the imbalance is
maximal |z]| = |C(¢)].

The contrast C(¢) depends on the overlap between v, (x, f) and ¥g (x, t). It is
useful to look at a few particular cases to understand how it can be maximized.

Flat Potential
The simplest situation is that of a flat potential V (x) = 0. This describes for example

the tof recombiner of Sect. 3.2.1, just after the potential has been switched off. In this
case, itis reasonable to neglect interactions during expansion. Evaluating the contrast
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with (3.81), we find that, at all times and regardless of the shape of the modes, parity
imposes that C(¢) = 0.

The absence of imbalance does not mean however that the wave packet is sym-
metric at all times. We have seen in Sect.3.2.1.2 that ¢, can be deduced from the
position of the interference fringes. It has even been shown that the phase could
be inferred from the position of the center of mass of the interference pattern with
sub-shot noise sensitivity [74].

Square Potential Barrier

The previous result suggests that a potential barrier is needed for an imbalance to
build up. A simple textbook case is that of a square potential barrier (see for example
Ref. [130]). A wave packet impinging on the barrier is split between a transmitted
and a reflected wave. For a plane matter wave of momentum Ak impinging on a
potential barrier of height Vj and size d, the the transmission coefficient reads

_ 4e(e—1) )
T = e s [Ve=na] TEW (3.82)
4e (1 —¢) )
ifE <V (3.83)

TZ%@—n+mMLmT6wq

where € = V/(h?k? /2m) is the kinetic energy of the plane wave in units of the barrier
height and L(Vy) = h/+/2mVj is the tunneling length associated to the energy Vo. L
corresponds to the extension of a wave packet of kinetic energy Vj, and is a typical
measure of the penetration depth of an evanescent matter wave into a potential barrier
of height Vj at low energy [130]. For Vy/h = 1 kHz, L = 1.5 pum gives the typical
length scale of a tunneling barrier.

Figure 3.36, left panel, shows how the transmission probability 7 depends on the
energy and the barrier. Two regimes must be distinguished:

e E >V, corresponds to a situation where classically, the particles would pass over
the barrier. Quantum mechanically, the wave packet is partly transmitted and partly
reflected. The transmission probability oscillates between [1 + 4e (e — 1)]7}
(dashed line) and 1. Transmission resonances occur whenever the energy of the
incoming wave corresponds to the existence of a standing wave in the barrier. To
build a 50:50 beam-splitter, one must achieve 7" = 0.5. The lower bound for T
imposes the (necessary) condition

142
2

In other words: a 50:50 beam-splitter can only be achieved in the classical regime
(E > Vp) if the energy is of the order of the barrier height (Vo < E < 1.2 x Vp).
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Fig. 3.36 Transmission and contrast of the square beam splitter. Left Transmission probability for
a plane wave of energy E impinging on a heightheigth Vo/h = 4 kHz and widthd = 0.4, 1 or 2
wm. Note the oscillations of 7' associated with the transmission resonances for E > V. Dashed
black line lower bound for T in the classical regime (E > Vj). Gray shaded area uncertainty on the
kinetic energy of the initial state in the double well AE = £hw/2. The red dotted line corresponds
to the transmission of a semi-reflective mirror 7 = 0.5. Right Contrast of a square beam splitter
when two plane matter waves of opposite momentum and equal intensities are impinging on it.
High contrast can be achieved in the tunneling regime (E < V{)) provided the barrier is sufficiently
narrow and in the classical regime when E &~ V{. At higher energy, secondary maxima can be
observed when a transmission resonance is reached. 100 % contrast is obtained for £ = Vj and
d = 2L (white point) (Color figure online)

e E <V corresponds to a situation where the atoms can only tunnel through the
barrier. The transmission probability is a monotonically decreasing function of E.
T = 0.5 can only be achieved as long as

d < 2L(Vp). (3.85)

This second condition simply means that in the tunneling regime, the transmission
drops when the barrier is much larger than the penetration depth.

Still, (E) =~ V, is not sufficient to achieve a high contrast. The mode-matching
condition of Eq. (3.81) shows that in order for C to be large, there must be a good
overlap between the reflected and the transmitted wave on each side of the barrier
(see Fig.3.37).

In the case of a square barrier, we can derive an explicit expression for the contrast
from the model of Ref. [130]. Assuming that two plane waves of equal intensity and
opposite momentum are impinging on the square barrier, the contrast reads

4/e(e—Dsin[e = Dd/L]

C = AT sinz[ — l)d/L] if E >V,
4Ve@—gsinh [T —ad/L] Vo. (3.86)

" 4e(1—e) + sinh? [T — 0d/L]
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Fig. 3.37 Beam-splitting with a square potential barrier. Simulation of the dynamics of two non-
interacting Gaussian wave packets with a phase difference of 7/2 impinging on a square potential
barrier for two different barrier widths (left d = 0.5 wm, right d = 3 pm). In both case, the height of
the barrier is equal to the mean kinetic energy of each wave packet. Top Density profile as a function
of time. The dotted lines denote the edges of the barrier. Middle Population imbalance as a function
of time. Bottom The final wavefunction (filled shapes with outgoing arrows) are the result of the
constructive or destructive interference between the reflected and transmitted waves originating
from the left (blue) and right (red) incoming wave packet. When d = 0.5 pm, the overlap is good
and the final imbalance is significant. When d = 3 pm, there is little overlap between the reflected
and the transmitted wave and the contrast is low (Color figure online)

The result is displayed in Fig. 3.36, right panel. As expected, the maximal contrast
C = 1is achieved when

E =V, (3.87)

2h?
and d =2L(Vy) = [ —. (3.88)
mV()

When the kinetic energy is larger than the barrier height, the contrast is approximately
equal to Vp/E. In the tunneling regime (E < Vj), high contrast can be achieved,
provided the barrier is made narrow enough. For a given energy E of the incoming



184 3 A Mach-Zehnder Interferometer for Trapped, Interacting ...

waves, taking the limit d — O imposes that V; must diverge like 1/d to ensure a
contrast of unity. This corresponds to the limit of an ideal ¢ potential, or, in optics,
to an infinitely thin half-silvered mirror.

In practice however, the wave packets are not plane waves, they have instead a
finite momentum spread which is non-negligible compared to V, (gray shaded area
in Fig. 3.35). It means that the atoms tunnel through the barrier as much as they cross
it classically. The potential barrier in our double wells also has a finite extension,
which is always comparable to the width of wave packets (see Fig.3.35).

Furthermore, in our rf dressed double wells, the well spacing and the barrier
height are not independent®': V; increases roughly like d*. From simulations of the
double wells, we find that it should be possible to fulfill d < 2L up to RFpp, = 0.6.
Interestingly, the best contrast was precisely achieved in the double well RF5p, =
0.55, for which simulations predict that the barrier height is equal to the potential
energy of the clouds (see Fig.3.35).

3.6.2.3 Dynamics of an Interacting Condensate in the Non-adiabatic
Recombiner

1D GPE Simulations

To understand the complex dynamics of the BEC in the double well during the recom-
bination stage, we simulate it by solving the 1D GPE in the RFanp = 0.55 potential
(see Fig. 3.38). It exhibits a complex density pattern arising from the multiple reflec-
tions and transmissions of the matter wave on the potential barrier, the outer edges
of the trap as well as from the interference between the condensates. Solving the
classical equations of motion for a point-like particle initially at the same position as
the center of mass of one of the BEC shows anharmonic oscillations in each single
well at the period Ty & 1.2 ms (Vann = 800 Hz, note that the oscillating pattern in
the GPE simulations has a higher frequency than the classical oscillation).

For an initial phase of /2, imbalance seems to build up after an integer number of
center-of-mass oscillations. The final imbalance can be maximized by separating the
clouds when they are at a classical turning point, i.e. when the distance between the
clouds is maximal. Indeed, the evolution of the final imbalance shows a sequence of
bumps and dips spaced by roughly 1 ms. How many center-of-mass oscillations are
necessary to reach the maximum imbalance is not obvious from the GPE simulations,
but in practice, the structure we observed experimentally (see Fig.3.34) suggests
that already after a few ms, unknown relaxation mechanisms completely damp the
coherent evolution.

21 At least, they cannot be tuned independently with only one control parameter (the dressing ampli-
tude). It has not yet been checked whether adding a new degree of freedom, such as the RF dressing
detuning, could allow tuning d and Vjy independently.
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Fig. 3.38 Dynamics of the BEC in the recombiner. Transverse density profile of the BEC in the
recombiner (top, 1D GPE simulation. ¢9 = 7/2) and corresponding population imbalance (bottom).
Att = 0, the splitting is abruptly reduced. An oscillating feature emerges in the complex dynamics
of the density pattern. It roughly corresponds to the center-of-mass oscillations of the atoms in each
well. Atregular intervals, imbalance builds up. Vertical dashed line time at which the barrier is raised
in the normal recombining procedure in order to separate the atoms for counting (fgs = 2.25 ms).
It corresponds to the turning point of the second oscillation period

Comparison to Experiment

To validate the simulations of the BEC dynamics in the recombiner, we monitored
the evolution of the wavefunction for seven different initial phases prepared using
the phase shifter (see Sect.3.5.1). For each phase, we abruptly reduced the splitting
as explained before and let the condensates evolve for a variable time rgg. Eventually,
instead of ramping up the barrier to separate the clouds, we switched off the potential
and imaged the atoms after tof. Due to the high transverse confinement, the transverse
density distribution after 46 ms expansion is almost homothetic to the momentum
distribution of the atoms in the trap. This gives us access to the momentum distribution
at any time during the recombiner sequence (Fig. 3.39).

Figure 3.40 shows the comparison between the measured transverse density pro-
files in expansion (top) and the result of the GPE simulations (the computed momen-
tum distributions were rescaled by a factor #/m, where t = 46 ms is the tof and m is
the mass of one 8’Rb atom, to be compared to the experimental data). Each experi-
mental profile is the result of the average over 3 to 5 experimental realizations. The
results of the simulations were convoluted with a 10 wm rms Gaussian function to
account for the finite imaging resolution.

For all phases, the simulations reproduce the coarse features of the measured
profiles. The beating patterns we observed are a direct proof of the coherence of the
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Fig. 3.39 Hints of longitudinal excitations appearing after the fast recombination. Fluorescence
picture after expansion of a BEC having evolved in the non-adiabatic recombiner for ~4 ms.
Symmetric pattern appear in the longitudinal (along (z)) density profile, showing hints of the
excitation of high-energy momentum modes (white boxes). The spacing between these symmetric
features and the center of the main cloud indicates a kinetic energy in longitudinal direction com-
parable to the transverse energy scale. The relaxation of the transverse excitations created during
the fast recombination into longitudinal modes might be a reason for the fast decay of the recom-
biner contrast. Note that a logarithmic colormap has been chosen to enhance the visibility of the
longitudinal features

evolution in the recombiner. The contrast of the experimental data is systematically
lower than in the simulations, probably indicating beyond mean-field effects. Atlong
times (fgs = 2 ms), we observe ablurring of the density pattern, resembling the decay
of coherence we observed in the evolution of a superposition of vibrational states [16].
We conjecture that this blurring is due to the same relaxation mechanism as the one
responsible for the damping of the Josephson oscillations (see Fig.3.31) and the one
suspected from the evolution of z in the non-adiabatic recombiner (Fig.3.34).

Interestingly, for the longest times (fgs = 5 ms), we observed features in the
longitudinal momentum distribution reminiscent of the highly excited axial modes we
studied in Ref. [76] (Fig. 3.39). It suggests that the damping is connected to the decay
of the transverse excitations into longitudinal modes. Such damping mechanisms are
currently being investigated.

3.6.3 Comparison of the Two Recombiners

We have implemented two different schemes to achieve the phase-sensitive recombi-
nation of a trapped Bose-Einstein condensate. Both rely on a controlled modification
of the confining potential. In the first case, it aims at being adiabatic with respect
to the transverse motion of the wavefunction while enabling controlled tunneling
between the two wells, in a similar fashion as a fiber coupler in laser optics. In the
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Fig. 3.40 Dynamics of the condensates in the recombiner monitored in tof. Time-evolution of
the density profile in expansion (# = 46 ms tof) during the non-adiabatic recombination, for seven
different initial phases. Top experimental profiles, averaged over 3-5 independent realizations.
Bottom Simulated momentum distributions (1D GPE), rescaled by ¢ /m and convolved witha 10 um
rms Gaussian function to account for finite imaging resolution. The vertical dashed line at tgs =
2.25 pm indicates the time at which the barrier is normally ramped up to separate and count the
atoms. At short times, the 1D transverse mean-field simulations correctly reproduce the observed
patterns. After a few ms, the measured profiles appear blurred, conversely to the simulated ones

second case, the manipulation of the potential was deliberately non-adiabatic, in
order to launch the atoms onto the semi-reflective potential barrier, as in an optical
half-silvered mirror.
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The difficulty in disentangling the timescales associated to the tunneling dynamics
from that of the motion of the wavefunction sheds light on the link between tunneling,
or superfluid oscillations, and the motion of the wavefunction in a tunable bosonic
Josephson junction in a double well, as already pointed out in Ref. [131].

Both recombiners are affected by atomic interactions. Interactions are responsible
for the anharmonicity of the response z(¢) of the recombiners. In Sect.3.7.2, we
will show that the anharmonicity of z(¢), defined as the ratio of the amplitude of
the two first harmonics 1 = |a,/ay|, is twice larger for the Josephson recombiner
(n = 0.26) than for the non-adiabatic recombiner (n & 0.12). This behaviour is only
partially captured by our 1D GPE simulations which predict = 0.28 (Josephson)
and 7 = 0.23 (non-adiabatic) respectively.”> One possible explanation for the fact
that the non-adiabatic recombiner seems to be less affected by interactions is that
the wavefunction is stretched during the non-adiabatic motion, implying a lower
mean-field energy.

The anharmonic shape of the recombiner response shows a steeper slope around
¢o = . It is not clear yet whether this feature might yield enhanced interferometric
sensitivity to small deviations from ¢y = 7, or whether the loss of amplitude of z(¢g)
caused by interactions dominates. Exploiting interactions to improve the sensitivity
close to ¢y = 7 has been proposed in Ref. [128].

It is difficult to make any general statement about the best contrast achievable
with each scheme, because it depends on the details of the control sequence as well
as on the role of interactions. We believe that the contrast—defined as the maximal
amplitude of z(¢)—of the Josephson recombiner is ultimately limited by the onset of
self-trapping (see Fig.3.41), which suggests that we should work in the Rabi regime.
However, this condition is difficult to meet in our double wells, as it requires going
down to a very weak splitting, which in turn implies slow ramps.

22We found that the simulated recombiner response z(¢g) was better described by three harmonic.
In this case, the anharmonicity was defined n = (|az| + |a3]) /a;.
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Fig. 3.42 Comparison of the two recombiners. Evolution of the population imbalance for 50 dif-
ferent initial phases ¢y during the non-adiabatic recombiner sequence (fop) and the Josephson
recombiner sequence (bottom) in two different double wells (left RFamp = 0.55, for which we
obtained the best result; right less coupled RFamp = 0.6 double well). Note that the final separation
was not simulated. The origin of the time axis corresponds to the end of the recombination ramp
(vertical dashed line). The values of ¢g are evenly spaced between O (pale yellow) and 27 (dark red).
The thick black lines, corresponding to the time-dependent maximum of |z| over all phases, indicates
the recombiner contrast. The Josephson recombiner enables up to 85 % contrast for RFamp = 0.55,
and up to 20 % for RFpmp = 0.6. Note how, in the Josephson recombiner, z(¢) oscillates at a rate
which is all the more slow than ¢y is close to 7, explaining the anharmonicity of the response z(¢).
With the non-adiabatic recombiner, up to 75 % contrast are reached for RFapyp, = 0.55, and up to
30 % for RFamp = 0.6. The vertical blue dashed line att = 2.25 ms shows the duration for which
the best contrast of 42 % was observed. In any case, it shows that for each beam-splitter duration,
the value ¢y maximizing the final imbalance is different, underlining the difficulty of optimizing
the recombination procedure (Color figure online)

This constraint has been lifted in the non-adiabatic recombiner. Here, it is not clear
what ultimately limits the contrast, but the finite position and momentum spread of
the wave packets, which have to be compared to the size and the energy of the barrier,
are believed to hinder this scheme to approach the performance of an ideal, infinitely
thin §-potential barrier.

In any case, it seems that the most stringent limitation to the contrast comes from
relaxation mechanisms which are not captured by our simple 1D mean-field models.
In principle, our 1D GPE simulations indicate similar performances for both schemes,
with contrasts up to 75-80 % (see Fig.3.42), much higher than what we observed:
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C ~ 20 % (Josephson recombiner) and C ~ 42 % (non-adiabatic recombiner) (see
Sect.3.7.2.1). Our data indicate that both schemes are subjected to a strong damping
of z(tgs) over a time scale of a few ms. We suspect these effects to arise from
the coupling to the other spatial directions as well as effects beyond mean-field.
Understanding these relaxation mechanisms is a necessary step to succeed in the
robust implementation of such recombination schemes.

Alternatively, it also suggests that a fast recombiner operation is necessary. The
slightly lower total duration of the non-adiabatic procedure (3.3 ms) compared to the
adiabatic procedure (4.3 ms) might be a hint why it achieves a better performance.
Further reducing the duration of the recombination could be achieved by means of
optimal-control of the motion of the BEC [16].

3.7 Interferometer Signal

After having characterized independently each stage of the interferometric sequence,
we combined them as depicted in Fig.3.2 and recorded the output signal using
either the Josephson recombiner or the non-adiabatic recombiner.?® In Sect.3.7.1,
we describe the measured interference fringes, which we then compare to a the-
oretical model (Sect.3.7.2). In particular, we show in Sect.3.7.2.1 how to use the
interferometric signal to infer the contrast of each recombiner. Eventually, we evalu-
ate the sensitivity of our interferometer and discuss the observed decay of coherence
(Sect.3.7.3).

3.7.1 Mach-Zehnder Fringes

After having adjusted the phase shifter tilt to €/ h ~ 350 Hz, we recorded the nor-
malized imbalance z = (N; — Ng)/(NL + Ng) at the output of the recombiner, as a
function of the phase accumulation time #,. This is similar to scanning the phase shift
of an optical interferometer by varying the difference of lengths between both arms.
For each value of 74, we repeated the whole sequence up to 18 times (with each of
the two recombiners) in order to accumulate more statistics. Given our experimental
cycle time of 37 s, a complete fringe set such as that of Fig. 3.43 involves about 20
hours of data taking. Achieving the according degree of stability of the experiment
has been the result of many improvements carried on over the last years.

The imbalance for each of the ~2 x 2000 individual realizations is displayed as
a grey dot on Fig. 3.43 (Josephson recombiner) and Fig. 3.44 (non-adiabatic recom-
biner). As expected, a periodic fringe structure is observed, similar to the modula-
tion of intensity difference between both output ports of an optical Mach-Zehnder

231n the following, we will refer to them as “frapped recombiners”, in contrast to the time-of-flight
recombiner.
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Fig. 3.43 Mach-Zehnder interferometric fringes obtained with the Josephson recombiner. Normal-
ized population imbalance z as a function of the phase accumulation time #4 obtained using the
Josephson recombiner. It exhibits interference fringes which are anharmonic under the effect of
interactions in the recombiner and a damping caused by phase diffusion. Grey dots imbalance of
individual experimental realizations. Black dots ensemble average (z) at each phase accumulation
time (the error bars denote £ one standard error of the mean). Red fit with the theoretical model
(Color figure online)
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Fig. 3.44 Mach-Zehnder interferometric fringes obtained with the non-adiabatic recombiner. Nor-
malized population imbalance z as a function of the phase accumulation time 7, obtained using the
non-adiabatic recombiner (note that the scale is the same as in Fig. 3.43 for both axes). The contrast
of the fringes is higher and the anharmonicity is less obvious than with the Josephson recombiner.
Grey dots imbalance of individual experimental realizations. Black dots ensemble average (z) at
each phase accumulation time (the error bars denote + one standard error of the mean). Red fit
with the theoretical model of Eq. (3.93). Dashed blue fit with the same model, using values of the
parameters measured independently or self-consistently extracted from the data, with only ¢ and
¢ as free parameters (Color figure online)
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Fig. 3.45 Dephasing and the onset of relaxation of the Mach-Zehnder fringes. Normalized popu-
lation imbalance z as a function of the phase accumulation time #, obtained with the non-adiabatic
recombiner (same data as Fig. 3.44 at short times). The spread of the grey dots (imbalance of indi-
vidual realizations) shows that while z is completely random after ~40 ms under the effect of phase
diffusion, high contrast can still be obtained on individual realizations after up to fg ~ 70 ms. At
t, = 90 ms, we see first hints of a drop of contrast, probably due to relaxation mechanisms. Black
points ensemble average for a given phase accumulation time. For 74, > 45 ms, the error bars indicate
= one standard deviation. Red fit with the model for phase diffusion (dahsed red envelope showing
the Gaussian decay of coherence). Blue prediction for (z) in absence of squeezing. Dashed black
line + contrast of the recombiner C ~ 0.42, extracted from the full distribution of z. Note that the
time axis starts at t; = —6 ms

interferometer. As the phase accumulation time is scanned, the structure gets increas-
ingly blurred, while its envelope remains essentially constant (z &~ £0.45) for both
recombiners.

Computing for each phase accumulation time the ensemble average (z) (¢;) and
the standard deviation Az, we observe that the mean imbalance undergoes damped
oscillations over a timescale of approximately 20 ms, while the fluctuations of z
increase. After ~40 ms (see Fig.3.45), the average imbalance is essentially equal
to zero, while Az = 0.3 (for the non-adiabatic recombiner) and an imbalance larger
than 0.4 is observed on more than 5 % of the individual realizations.

This interferometric signal is a direct illustration of the dynamics of the rela-
tive phase between the two halves of the condensate: while the deterministic phase
accumulation is responsible for the oscillations of (z) at the frequency €/ h, phase
diffusion causes the spread of z to increase, until the phase is completely random,
yielding a random output imbalance with vanishing average.

To be more quantitative, we make use of the results of the previous sections to
derive a model of the interferometric signal.
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3.7.2 Model for the Interferometric Signal

We have seen in Sect. 3.5 that the distribution of the relative phase is subjected to a
linear drive (phase accumulation) at rate e together with a linear dispersion caused
by interactions, meaning that the phase spread grows linearly in time at the phase
diffusionrate R = Tcgll]. We assume that at all times, the phase distribution is Gaussian

with time-dependent mean and variance given by (see Egs. (3.39) and (3.57))

(D) (1) = o + € (16 — 1;) /I, (3.89)
AG? (t5) = AGF+ Rty — 1) (3.90)

The offset time #; accounts for the fact that phase diffusion and phase accumulation
already start during the time needed to tilt and level the double well (see Sect.3.5.3).

We model the action of the recombiner, taking into account the effect of interac-
tions, by writing the output imbalance as the Fourier series (see Eq. (3.77))

M
2(9) = Zan sin (ng) = a; sin (¢) + az sin 2¢) + - - -, (3.91)

n=1

where M is the number of harmonics. After integration over the Gaussian phase
distribution, we find that the average imbalance at the output of the recombiner reads

M
() (t5) = D e 202 e ) 2% sin [ (e (15— 1) /h+ d)]. - (3.92)

n=1

The mean interferometric signal (z)(#;) is a sum of harmonics. The contribution of
each harmonic to the total signal consists of a sine term oscillating at a multiple of
the phase accumulation rate €/ 1 (Mach-Zehnder fringes) and a Gaussian damping
associated to the rms time 7. /7. Note that in this context, the word fringe refers to
the oscillations of (z) as a function of the phase accumulation time and not to the
interference pattern which appears in the density profile after tof recombination in
each single realization (see for example Fig. 3.3).

For a weak non-linearity, we expect the weight of the harmonics to rapidly decrease
with n. Moreover, the contribution of the nth harmonic drops within the time 7., /7.
We checked by fitting the fringes with up to 5 harmonics that only the contribu-
tion of the two lowest harmonics is statistically significant within our measurement
uncertainty.

The Gaussian damping of the Mach-Zehnder interference fringes is a direct illus-
tration of the Gaussian decay of the coherence factor due to phase diffusion (see
Eq.(3.52)). It is the consequence of ensemble averaging over rising fluctuations
of the phase when 7, is increased. It must be distinguished from the damping of the
Josephson oscillations observed by scanning the evolution time #gg in the recombiner
for a constant input phase (see Fig.3.31), although both effects might be linked.
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Table 3.5 Parameters of the model for the interferometric signal

Josephson BS Non-adiabatic BS Indep. meas.
Aj 0.18 £ 0.02 0.38 + 0.02
Ar —0.04 + 0.02 —0.05 + 0.03
®o —0.32+ 0.19 rad —0.16 + 0.16 rad
c 0.03 £ 0.01 —0.01 & 0.01
Teoh 25+ 7 ms 17.1 &+ 2.2 ms 20 £ 3 ms
€ 363+ 3Hz 349+ 2 Hz 349+ 2 Hz
Ao — 160 £ 20 mrad
aj 0.18 £ 0.02 0.39 &+ 0.03
a —0.05 + 0.02 —0.05 + 0.03
n = lai/az| 0.26 £ 0.13 0.12 £ 0.09

Values of the parameters fitted to the interferometric signal obtained with the Josephson recombiner
(left column) or the non-adiabatic recombiner (central column) with the model of Eq.(3.92). The
third column recapitulates the values of the coherence time, energy difference and initial phase
spread measured with the tof recombination method. The uncertainties indicate either the 95 %
confidence of the fitor 2 ¢

The prefactor ay,e~""2%/2¢=""(1=1)" /7% represents the amplitude of each har-
monic in the Mach-Zehnder signal. Compared to the “bare” visibility a,, which is
intrinsic to the recombiner, the amplitude of the fringes after ensemble averaging is
reduced by (a) the fluctuations of the phase already present at 1 = ¢; (b) the increase in
phase spread due to phase diffusion. For this reason, we always slightly underestimate
the contrast of the recombiner when we look only at the mean output imbalance (z)
for input states which—necessarily—have a finite phase uncertainty. We will show
in next section how the “true” contrast of the recombiner can be inferred from the
statistical distribution of z.
Table 3.5 summarizes the result of fitting the two-harmonic model

2
(2) (ty) = Are™ =) 2% sin [e (15 — 1;) /B + o]
2
+ Age 201 T sin [2¢ (g — 1) /i 4 2] + ¢ (3.93)
to the interferometric signal obtained with either the Josephson recombiner or the
non-adiabatic recombiner. In both cases, the time offset #; was set to —6 ms. The

parameters a; » and A} in Eq. (3.92) are collinear and were merged into the two fit
parameters

A, = a,e " A%/2, (3.94)

(n = 1,2). c is a constant offset accounting for imperfect balancing of the double
well.
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We found that the values for € and 7, obtained from the fit to the Mach-Zehnder
fringes were consistent with that measured independently using the tof recombiner.’*
The amplitudes a; », which we suppose to be intrinsic to the recombiner, could be
inferred from the initial phase spread measured independently with the tof recombiner
(see Sect. 3.4.3.2). They were found to be very close to A; » because of the high initial
coherence. The fits confirmed that the Josephson recombiner (n = |a,/a;| ~ 0.26)
is more strongly anharmonic than the non-adiabatic recombiner (n =~ 0.12).

‘We found that the damping of the Mach-Zehnder interference fringes was correctly
described by a Gaussian decay? and that the corresponding coherence time was
consistent with that extracted from the phase diffusion data in tof (see Sect.3.5.3).

For consistency, we re-fitted the data obtained with the non-adiabatic recombiner
with the model of Eq.(3.93), using the values of € and 7., measured with the tof
recombiner. We also fixed the value of A; using the initial phase spread A ¢ measured
with the tof recombiner and the contrast C = 0.42 extracted from the distribution
of imbalance (see next section), and set A, to zero, leaving only ¢ and ¢y as free fit
parameters. The good agreement of the model with the measurement confirms that
the data taken with the non-adiabatic recombiner is consistent with that based on the
tof recombiner.

Figure 3.45 displays data obtained with the non-adiabatic recombiner over longer
phase accumulation times (up to 90 ms). It shows that while dephasing is responsible
for the complete scrambling of the fringes within 40 ms, the noise envelope only starts
to shrink after ~90 ms. This decay is consistent with the onset of the loss of contrast
observed on individual interference patterns with the tof recombiner (see Fig. 3.23).

As mentionned in Sect.3.5.3, the fact that we measured a phase diffusion rate
compatible with the measured amount of number squeezing shows that the use of
a number-squeezed state in our interferometer more than doubles its interrogation
time. The blue curve in Fig. 3.45 shows the signal expected in the absence of number
squeezing. In this case, coherence would be already lost after ~15 ms.

3.7.2.1 How to Extract the Recombiner Contrast from the Number
Distribution

Model
The difficulty in estimating the contrast of the trapped recombiners stems from the

fact that we must disentangle the reduction of fringe visibility caused by phase
diffusion from that intrinsically present due to the finite contrast of the recombiners.

24We attribute the discrepancy between the value of ¢ measured with the Josephson recombiner and
that measured with the two other methods to the fact that this measurement was carried out about
one week later and that € had not been readjusted in the meanwhile.

2In fact, to discriminate between a Gaussian damping model and, for example, an exponential
decay, we would need to measure (z) at very short times, which is not possible due to the finite
tilting and levelling time of the double well.
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Fig. 3.46 Distribution of the population imbalance. Histogram of the single-run population imbal-
ance z obtained at all times with the non-adiabatic (left) and the Josephson recombiner (grey dots
of Figs.3.43 and 3.45, excepted ¢4, > 80 ms). The histogram of the non-adiabatic recombiner data
exhibits the characteristic double structure expected from sampling the sine of a uniformly dis-
tributed phase, while that of the Josephson recombiner data is single-peaked. The contrast and
the amplitude noise of the recombiners are estimated from convolving the probability distribution
function given in Eq. (3.96) (dotted blue) with a Gaussian noise (dotted black). The red line shows
the resulting distribution fitted to the data

The ensemble-averaged imbalance (z)(t4) alone does not allow inferring precisely
the contrast of the recombiners.

Instead, we can estimate it from the full distribution of z by resorting to a
method used in atom interferometry [132] to disentangle phase and amplitude noise
(see in particular the comprehensive discussion on the robustness of the method in
Ref. [133]). We observe that even at long phase accumulation times, high imbalance
can be achieved in single realizations, and that up to ~70 ms, the noise envelope is
almost constant. We make the assumption that during the phase accumulation stage,
¢ uniformly samples the interval [0, 27r] under the combined effect of deterministic
phase accumulation and phase diffusion. It means that by “histogrammizing” the
outcome of all individual realizations, binning over all times,2® we can reconstruct
the probability distribution function of the output imbalance z corresponding to a
uniform input phase.

Figure 3.46 shows the corresponding histograms obtained with the non-adiabatic
recombiner (left) and the Josephson recombiner (right). The variance of the distrib-
ution of z is connected to the contrast of the recombiners. By integrating Eq. (3.91)
over a uniformly distributed phase, we get

26Restricting ourselves to the data at ty > 40 ms, where the phase is completely random, yields
essentially the same distribution. We decided to integrate over all times to accumulate more statistics.
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M
Sa (3.95)
n=1

Neglecting the anharmonicity of the recombiner (a, = 0 for n > 1), we simply
obtain Cy,; =~ a; = 0.43 for the non-adiabatic recombiner and 0.31 for the Joseph-
son recombiner. However, this is assuming no noise on z (amplitude noise), in which
case the output imbalance is expected to be distributed according to

A7 =

N =

1 1 .
p(2) = P if |z] <C,

=0 elsewhere, (3.96)

(pale blue dotted lines in Fig.3.46). p(z) has a characteristic double-peaked shape
due to the fact that the probability density of z diverges at the two turning points
z = %£C. In practice, these sharp peaks are broadened by amplitude noise coming
for example from technical noise of the recombiner as well as detection noise. We
assumed that the noise is independent of the value of z and took it into account by
convolving p with a normally distributed Gaussian noise of constant variance crﬁ

(dashed black curve) to fit the two histograms in Fig. 3.46 (red curves).

Non-adiabatic Recombiner

The distribution of z from the non-adiabatic recombiner is well described by our
model, yielding C = 0.42 and o4, = 0.07.

The convolution with a Gaussian noise independent from z is a simplistic model
for the amplitude noise. In fact, feeding an interaction-free, noiseless beam-splitter
of finite contrast C with a N-atom coherent state of phase ¢, should yield an output
distribution of z with mean (z)(¢) = C sin ¢ and variance

1 —C?cos? ¢

AZX(P) = ~

(3.97)

Az?(¢) simply represents the beam-splitter shot noise at a given finite atom num-
ber and reflection/transmission ratio. Even in absence of technical noise, the vari-
ance of z depends on (z). At the points of steepest slope (¢ = 0 or 7), we find
that Az? = 1/N regardless of the contrast, while at the turning points (¢ = £7/2),
Az’ = (1 — C?)/N. With C = 0.42 and N = 1200 atoms, the beam-splitter shot
noise varies between Az = 0.29 rad (¢ = 0) and Az = 0.22 rad (¢ = 7/2). The
shot noise is much smaller than the noise extracted by the fit,2” which seems to

?Uncorrelated errors add up quadratically.
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imply that we are currently limited by technical noise in the beam-splitter operation
and read out. Since we know that our imaging system is sensitive enough to detect
sub-shot noise fluctuations, we assume that the extra noise comes mostly from the
violent manipulation of the cloud during the recombiner procedure.

Josephson Recombiner

The distribution of z for the Josephson recombiner on the other hand does not exhibit
a double-peaked structure, which makes it difficult to fit with our model. Imposing
C =~ 0.2, we find rough agreement with the measured distribution for o; = 0.15, but
the result of the fit is not robust with respect to the initial guess for C. We attribute
the failure of our fit model to (a) the low contrast of the Josephson recombiner
fringes, (b) their higher anharmonicity. We also compared the measured distribution
to artificial distributions of z generated by sampling the anharmonic recombiner
function (Eq.(3.91)) with a uniform random phase and adding a random Gaussian
noise to the result. We found a strong correlation between a; and o4, indicating that
it is difficult to distinguish between a low recombiner contrast and a high amplitude
noise. Yet, the comparison to the experimental data indicates that C ~ a; < 0.2 and
o4 2 0.15.

Why the non-adiabatic recombiner yields a higher visibility than the Josephson
recombiner is still to be understood. We find it surprising that apparently, the reduced
contrast of the Josephson recombiner goes together with a stronger amplitude noise,
so that the envelope of the fringes in Figs.3.43 and 3.44 are of similar amplitude
(z &~ £0.45). These issues, as well as a full characterization of the two recombiners,
are currently beeing theoretically investigated in collaboration with Bruno Julid-Diaz
and Artur Polls at the University of Barcelona.

3.7.3 Discussion of the Interferometric Signal

3.7.3.1 Sensitivity of the BEC Interferometer
Sensitivity to Small Phase Shifts

One figure of merit to evaluate the performance of the interferometer is its ability to
detect small phase shifts. It is common to resort to the first-order sensitivity to phase
shifts introduced in Eq. (1.169):

Az

0p = ———F.
¢ |3(Z)/3¢|¢:¢0

(3.98)

It is determined by the noise on the measured imbalance (be it projection noise,
technical noise...) and the slope of the average interferometric signal at the working
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point ¢y. For a coherent state, the best sensitivity of a phase measurement is limited
by the standard quantum limit A¢sqr, = 1/ V/'N. For N = 1200 atoms, Agsqr, =
0.03 rad.

We can estimate the maximal sensitivity intrinsically allowed by the trapped BEC
recombiners, independently on the state of the BEC in the interferometer, by evaluat-
ing Eq. (3.98) using the amplitude noise and the contrast fitted from the distribution
of z at all times (see Fig.3.46)

5p~ 04/C. (3.99)

It yields d¢ ~ 0.18 rad (non-adiabatic recombiner) and d¢ = 0.75 rad (Josephson
recombiner). The poor performance of the Josephson recombiner is due to both a
high amplitude noise and a low contrast.

In practice however, both amplitude and phase noise must be taken into account.
Because of interactions, the slope of the averaged fringes is steeper for ¢g = 7 than
for @9 = 0 (see Fig.3.29). We interpolate the measured fluctuations of z to estimate
Az at the time of the first zero-crossing and compute the derivative of z(¢g) using the
model of Eq.(3.91) to find that with the non-adiabatic recombiner, 6¢ = 0.56 rad,
while with the Josephson recombiner, d¢) = 0.98 rad.

Sensitivity on the Determination of the Energy Difference

Besides the sensitivity to absolute phase shifts, it is also meaningful to ask ourselves
what is the smallest measurable phase shift relatively to the total accumulated phase,
or equivalently: what is the smallest detectable change of the phase accumulation
rate €? The value of e is inferred from the evolution of z as a function of ¢, and depends
therefore on the available interrogation time. The uncertainty on an estimation of €/
scales like 1/7.on. From the expression of the phase diffusion rate, the uncertainty
on e therefore scales like

Ae x EyV/NU. (3.100)

This result underlines the simple fact that increasing the interrogation time of the
interferometer enhances proportionally the precision at which the energy difference
between the two paths can be read out. For example, the 95 % confidence interval
on the estimation of €/ & from the fit to the data of Fig.3.45 is &= 2 Hz, consistent to
the results of the fits from the tof recombination data (Fig.3.19). It also shows that
the use of a number-squeezed state allows enhancing the interrogation time of the
trapped BEC interferometer beyond what would be possible with a classical coherent
state.
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Comparison with the Time-of-flight Recombiner

We can compare our estimations of the intrinsic sensitivity of the two trapped BEC
recombiners to the estimated sensitivity of the tof recombination for a coherent state
with N = 1200 atoms, A¢ =~ 0.08 rad (see Sect.3.2.1.4). The intrinsic noise of the
non-adiabatic recombiner is still currently about twice larger than that of the tof
recombiner. This is partly due to the moderate contrast of the trapped recombiners:
were its contrast increased to 100 %, the sensitivity of the non-adiabatic recombiner
would be comparable to that of the tof recombiner.

It must also be underlined that phase estimation based on atom counting is more
robust than phase extraction from interference patterns. First, it does not require high
imaging resolution; second, using a recombiner to convert the relative phase into a
population imbalance allows the use of the precise atom counting techniques already
available [61, 79, 80].

A more fundamental distinction between both methods is their potential sensitivity
limits. Even though phase estimation based on a fit to the tof interference pattern can
reach sub-shot-noise sensitivity [119](A¢ < 1/+/N), itis fundamentally bounded by
N?/3[120]. This lower bound holds for any entangled state used in the interferometer.
This result underlines that the Heisenberg scaling of the phase sensitivity A¢ = 1/N
will not be accessible to atom interferometers using this phase estimation strategy.
On the contrary, theoretical studies suggest that trapped BEC schemes can reach the
Heisenberg scaling of the phase sensitivity [102, 123].

Towards Scalable Quantum-Enhanced Interferometers?

Although we could demonstrate an extension of the interrogation time by the use
of a number-squeezed state, our interferometer is far from being shot noise limited.
The best sensitivity on the phase estimation is achieved using the tof recombiner.
The measured phase spread right after splitting yielded A¢ = 0.16rad, more than 5
time above the SQL. Using a coherent state, though, it should be possible to measure
a phase noise twice as large as the SQL.

Because the state of the BEC in the interferometer is number-squeezed and not
phase-squeezed, our Mach-Zehnder scheme is currently not optimized to yield the
best sensitivity. Although the two trapped BEC recombiners that we implemented
constitute a further step in the controlled manipulation of the state of a BEC in a
double well, a generic tool to perform efficiently rotations around the (x)-axis of the
Bloch sphere is still missing.

Since 2010, quantum-enhanced measurements, as well as the generation of spin-
squeezed states that could potentially yield a sensitivity gain beyond the SQL, have
been recently reported in internal-state Ramsey BEC interferometers [8, 17, 62]. In
every case, the BEC contained a few thousands of atoms (approx. 2300 atoms in
Ref. [17]). While quantum enhancement is an asset for measurements where a high
spatial resolution is required, because the number of atoms in a small volume must
be kept small to avoid collisional losses [8], it is still an open question whether the
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schemes currently under investigation are scalable up to atom numbers where sub
shot-noise measurements become competitive with current shot-noise limited atom
interferometers. A promising step in this direction has been achieved in 2010 with the
demonstration of a shot-noise limited Ramsey interferometer with N > 10* freely
propagating atoms extracted from a BEC.

3.7.3.2 Decoherence of the Quantum Superposition

The evolution of the interferometric signal with the phase accumulation time seems
to reveal the existence of two timescales resembling the 77 and 7, times commonly
referred to in Nuclear Magnetic Resonance (NMR) spectroscopy [134]: the first
timescale (75 time), of the order of 7.,, &~ 20 ms, is due to an interaction-induced
dephasing effect. Currently, this timescale is limiting the interrogation time of our
interferometer. In principle, one could think of reversing this dephasing through a
spin echo-like procedure [135], for example by performing a 7w-Rabi pulse to swap
the occupation number of the two wells. One could also think of switching either the
sign of interactions through a Feshbach resonance, or modulating the tunnel coupling
to implement a negative effective coupling [136].

On a longer timescale (7} time), of the order of hundreds of ms, even the contrast
of individual realizations is lost, suggesting that relaxation mechanisms are at work.
Conversely to the dephasing mechanism, they imply a redistribution of energy from
the degrees of freedom relevant to the 2-mode dynamics to other modes, possibly in
the other spatial directions, as will be discussed in Chap. 4.
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Chapter 4
Outlook: Bosonic Josephson Junctions
Beyond the Two-Mode Approximation

Throughout this thesis manuscript, we have analyzed our experimental observations
of the dynamics of a BEC in a double-well potential resorting to a two-mode descrip-
tion of the BJJ. We believe that the 2MM is an appropriate description at short times
in our elongated double-well geometry. Furthermore, the good agreement of the data
with the 2MM predictions, for example to infer the amount of squeezing in our BEC,
or the phase diffusion rate, shows how surprisingly well it describes our system.

Nevertheless, the 2MM is not expected to capture the complexity of a real-world
BIJJ, realized with a finite temperature BEC in an elongated, three-dimensional
double-well potential. In this outlook, we present some observations that cannot
be explained within the standard two-mode model and argue that a more elaborate
picture is needed to model the rich physics of a BEC in an elongated double-well
potential.

The two-mode formalism that we have presented in Chap. 1 relies on the two-
site Bose Hubbard Hamiltonian, giving insight into the interplay between tunnel
coupling and on-site interactions in the double well. It allows restricting the many-
body dynamics of the BEC to a finite-dimensional Hilbert space, enabling exact
calculations. The 2MM has proven to be extremely powerful to compute the fluctua-
tions of the macroscopic observables (number and phase) and describe non-classical
many-body states (in particular squeezed states) as well as the many-body phase dif-
fusion. The associated collective-spin picture appears to be a generic framework for
atom interferometry. The mean-field version of the two-mode model describes the
non-linear dynamics of the BJJ, including Josephson oscillations and macroscopic
quantum self-trapping.

However, many features of a real-world BJJ cannot be captured by this simplified
model. We have shown in Sect. 1.2.5.4 that the standard 2MM was not always able to
give reliable quantitative predictions for the Josephson oscillation frequency or the
self-trapping threshold, nor could it explain the moderate contrast of our trapped BEC
recombiners. On several occasions, we resorted to mean-field descriptions beyond the
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standard 2MM, including the improved two-mode model presented in Sect. 1.2.5.4
and the one-dimensional Gross-Pitaevskii equation in the transverse direction.

It is crucial to extend the existing theoretical models to take into account the
complexity of a real-life BJJ and explain effects beyond two mode that we are already
able to observe. In the following, we present some experimental observations that
cannot be explained within the two-mode picture and discuss what processes might
be at work, highlighting the rich physics in our elongated BJJs.

4.1 Observations Beyond the Two-Mode Picture

Emergence of 1D Axial Phase Fluctuations

In Sect.3.5.2, we observed that the “global” relative phase of the BECs (after inte-
gration along the longitudinal direction) underwent a fast randomization process
although individual interference patterns exhibited a high contrast long after the
phase coherence was lost, suggesting that a phase-diffusion process was at work.
High fringe contrast was recorded for tens of ms after splitting in a symmetric
(Fig.3.21) as well as in a tilted double well (Fig.3.22). At longer times, though,
a significant drop of contrast was observed in single images (see Fig.3.23), which
seems consistent with the loss of contrast of the Mach-Zehnder number fringes (see
Fig.3.45). We attribute this decay of contrast to the emergence of fluctuations of
the local relative phase along the long axis of the double well, as can be seen in
Fig.4.1, where individual interference patterns obtained for various holding times in
the tilted RFapp = 0.65 trap are displayed. The loss of the spatial coherence of the
relative phase in split 1D quasi BECs has been intensely studied in our group [1, 2].
The observation of wavy interference fringes is a clear sign that many axial modes
contribute to the dynamics of the relative phase.

Damping of the Josephson Oscillations

We have studied the oscillations of the population imbalance in symmetric double
wells with different tunnel coupling strengths. The BEC was initially prepared either
with a finite phase difference or with a finite population imbalance. The phase differ-
ence was adjusted by splitting a BEC symmetrically and then applying a detuning for
a given time, as explained in Sect.3.5.1.2. The number imbalance was prepared by
first splitting the BEC asymmetrically (i.e. with a finite tilt angle, see Fig. 3.12) and
then leveling back the double well.! In both cases, the manipulation of the poten-
tial was near-to-adiabatic with respect to the transverse dynamics, although strict
adiabaticity cannot be ensured.

The number or phase difference triggered oscillations of the population imbalance
symmetric around zero, as first observed in 2005 with a BEC in a single optical double
well [3]. As expected, we observed that the frequency of the oscillations of z(¢)
decreases with increasing splitting of the double well (see Fig. 4.2). We could only

INote that in this case, the evolution in the tilted double well may also cause a phase difference.
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Fig. 4.1 Evolution of the axial relative phase after splitting. Fluorescence images of individual
interference patterns in tof for different holding times in the tilted RFapp = 0.65 potential (e/h =
350Hz, J/h ~ 0.1Hz). The holding times are computed from the end of the 5ms splitting ramp.
A strong axial breathing can be observed, caused by the fact that the atom number drops by a
factor of two in each condensate after splitting in a much shorter time than the axial dynamics (see
Sect.3.4.1.3). First, the contrast remains high for tens of ms, although the global phase is random
~30ms after the end of splitting. Atlonger times, axial phase fluctuations (wavy fringes) are believed
to scramble the axial relative phase, causing a loss of contrast of the integrated interference patterns
in every individual realizations (white lines)

record such oscillations in strongly coupled double wells, where the barrier height
was of the order of the chemical potential.” In Ref. [4], the authors monitored the
continuous transition between hydrodynamic superfluid oscillations and Josephson
oscillations in a strongly coupled double well through the emergence of a second
frequency component.®

Comparing the oscillation frequencies measured for different values of the rf
dressing amplitude to theoretical predictions computed using the simulated double-
well potentials, we found fair agreement with the results of the two-mode model
computations, particularly when using its refined version [5] (see Fig.1.19). The
even better agreement obtained by simulating the whole 3D mean-field dynamics
builds a strong case for our knowledge of the double well potential (the 3D GPE
simulations were performed by B. Julid-Diaz in Barcelona).

2In the least coupled double well where we observed Josephson oscillations, we estimate that the
barrier height was 1.5 larger than the chemical potential of the first excited state (including zero-point
energy), corresponding to A & 12.

3Note that we did not see any obvious second frequency component in our data for strong coupling.
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<« Fig. 4.2 Damped Josephson oscillations. Time evolution of the normalized population imbalance
z = (N1 — Ng)/N in different double wells. Conversely to the data displayed in Fig.3.31, the
Josephson oscillations were triggered by preparing a finite initial population imbalance: the BEC
was first split asymmetrically into the RFamp = 0.65 trap to prepare z(0) A~ 0.2. The rf dressing was
then lowered in 5 ms to an adjustable value, and raised again after a variable time ¢ to separate the
atoms for counting. As expected, the Josephson oscillations become slower for decreasing tunnel
coupling strength. Continuous line fit with an exponentially damped sine, yielding 1/e¢ damping
times comprised between 4 and 8 ms. The error bars (standard error of the mean) do not indicate a
randomization of z at long times. A similar behaviour was observed for the phase of the integrated
tof interference patterns

Additionally, we systematically observed a damping of the oscillations of the
population imbalance over a few periods. Fitting z(#) with an exponentially damped
sine yielded decay times of the order of 4-9ms with an uncertainty of a few ms.
Looking at the tof interference patterns obtained in the same conditions (without
separating the atoms for counting), we also saw that the oscillations of ¢ (#) decayed
to zero over a few periods. A similar behaviour was reported in two other experiments
where Josephson oscillations were observed between a single pair of condensates [3,
4]. The decay observed in Ref. [3] was attributed to a shot-to-shot dephasing caused
by the technical fluctuations of the initial state, as well as heating. Importantly, we
observed that both z(¢) and ¢ (¢) were damped to zero in all individual realizations
at long time, while the contrast of tof interference patterns also decayed.

Decay of the Macroscopic Quantum Self-trapping

In another series of experiments, we studied the transition between Josephson oscil-
lations and macroscopic quantum self-trapping. In a double well with finite tun-
nel coupling, the population imbalance may become “self-trapped” above a certain
threshold under the effect of interactions (see Sect. 1.2.5.3). MQST was observed
for the first time in 2005 in an optical double-well potential, together with the first
Josephson oscillations [3]. In 2007, MQST was monitored with a BEC in a mag-
netic trap split with an optical potential barrier using non-destructive phase contrast
imaging [6].

By varying the initial splitting angle before leveling back the trap, we prepared
BECs with different population imbalances (up to z(0) = 1, where all the atoms
are in the same well) in a given symmetric double-well potential. Figure 4.3 shows
the evolution of z(#) in the RFznp = 0.54 double well, for which simulation predict
J =~ 60Hz. While at low initial imbalance, z(¢#) underwent symmetric Josephson
oscillations, we observed that for the strongest initial imbalances, z monotonously
decayed to zero. A Gaussian fit to the curve with the highest initial imbalance yielded
a 1/e? time of 10.8 £ 1 ms. The corresponding tof interference patterns exhibited a
strong loss of contrast with increasing initial imbalance. A fast decay of the population
imbalance was also reported in Refs. [3, 6]. In Ref. [6], a faster decay of MQST was
observed when increasing the non-condensed fraction.
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Fig. 4.3 Transition between Josephson oscillations and macroscopic quantum self-trapping. Nor-
malized population imbalance as a function of time in the symmetric RFay, = 0.54 double well
(J =~ 60Hz). Different initial population imbalances were prepared by splitting the initial con-
densate asymmetrically at different angles, before leveling back the double well (here again, the
evolution in the tilted double well may cause a different initial phase for the different imbalances).
Josephson oscillations are clearly seen for the lowest initial imbalances (blue line fit with a sine to
the curve with the lowest initial imbalance, yielding the frequency f = 315 £ 22 Hz), while for the
strongest initial imbalances, z(#) monotonously decays to zero. Dark red line fit with a Gaussian
decay to the curve with the highest initial imbalance, yielding a 1/e? time ¢ = 10.8 & 1ms. The
error bars indicate 1 std. err. of the mean (they have been omitted from the other curves for
clarity). Interestingly, the shot-to-shot fluctuations of z grow in time for the data with the highest
initial imbalance, conversely to that exhibiting Josephson oscillations

4.2 Discussion

None of the effects presented above can be explained within the two-mode model.
The mean-field version of the 2MM (even in its refined form [5]), expected to be valid
for sufficiently large number of atoms, predicts a periodic evolution of the system
(see Fig. 1.16). While the coupled equations (1.198) and (1.199) for the conjugate
variables n and ¢ contain non-linear dynamics such as bifurcations or anharmonic
oscillations, they cannot explain the damping of the Josephson oscillations and the
decay of MQST. The many-body version of the 2MM contains dephasing effects,
such as phase diffusion, and could explain a damping of the expectation value of the


http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1
http://dx.doi.org/10.1007/978-3-319-27233-7_1

4.2 Discussion 215

imbalance (see for example Ref. [7]). However, our data does not seem to indicate
that the fluctuations of z increase in time. Incidentally, this observation also rules
out the effect of technical shot-to-shot fluctuations of the initial state. Moreover, the
observation of axial phase fluctuations, and the corresponding loss of contrast of the
integrated interference patterns indicates a multimode dynamics, necessarily absent
from the 2MM, which assumes static orbitals and absorbs the spatial dynamics into
time-independent coefficients.

These observations call for more elaborate models to describe our BJJ. In the
last section of this outlook, we discuss mechanisms that could explain the observed
deviations from the two-mode dynamics and propose avenues for the study of beyond
two-mode effects that we already see, or could readily observe with our setup.

Transverse Modes

The decay of the Josephson and MQST dynamics could in principle arise from exci-
tations in the transverse plane. Indeed, the timescale of the damping of the tunneling
dynamics (5-10ms) is not fully incompatible with that of the transverse motion
(~0.5ms). In Sect. 3.6, we already resorted to 1D GPE simulations in the direction
of splitting to describe the evolution of the wave function in the recombiners. In
the non-adiabatic recombiner, in particular, the complex evolution of the wave func-
tion involved several transverse excited states (see Fig. 3.35). Yet, our 1D transverse
GPE simulations of the Josephson oscillations did not indicate any damping (see
Fig.4.4). We conjecture that this is due to the fact that the high transverse energy
scale ensures that only a few discrete transverse modes are populated. Even 1D GPE
simulations of the non-adiabatic recombiner did not suggest a “damping” of z(¢) (see
Fig. 3.38), in agreement with the fact that only a few transverse states are energetically

0.2 w
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Fig. 4.4 Mean-field simulation of the Josephson oscillations. Red numerical resolution of the 1D
GPE in the transverse double-well potential. Blue numerical resolution of the 3D GPE in the (3D)
double-well potential, performed by B. Julid-Diaz at the university of Barcelona. While the 1D GPE
simulation does not show hints of damping, the 3D GPE simulation exhibits a damping over many
periods followed by revivals (Color figure online)
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accessible (see Fig.3.35). We believe that this is a consequence of our elongated
trapping geometry, which ensures that the wave function is close to the transverse
ground state.

So far, we resorted only to mean-field simulations of the transverse dynam-
ics. Interestingly, new methods are now available to compute the many-boson
Schrodinger equation in one (transverse) dimension, enabling access to the fluctua-
tions and the correlations between the transverse modes [§—11]. Although we think
that we are not affected by the many-body dephasing studied in Ref. [10], owing
to our relatively high atom number, such methods are very powerful for example to
study the generation of non-classical states in a double well [12, 13].

Longitudinal Modes

The wavy interference patterns displayed in Fig.4.1 indicate unambiguously the
appearance of longitudinal fluctuations in the relative phase profile between the
condensates after splitting. It seems likely that longitudinal excitations also come
into play when the BECs are recoupled. We suspect that the decay of the Josephson
oscillations and of the MQST are associated to the coupling between the tunneling
dynamics and longitudinal modes: the essentially transverse tunneling dynamics may
act as a drive from which energy would be “pumped” into axial excitations.

Due to the huge difference of energy scales (our typical aspect ratios are of the
order of 100), many longitudinal modes are energetically accessible. In fact, the
longitudinal modes almost appear as a continuum, making multimode many-body
simulations extremely strenuous. Preliminary 3D GPE simulations of the BEC in
the double-well potential suggest a redistribution of the energy from the transverse
tunneling dynamics to the axial momentum modes (see Fig.4.4). The 3D mean-field,
zero-temperature model seem nonetheless to underestimate the damping rate, and
predicts revivals that we did not observe so far.

We believe that much insight into our physical system could be gained by model-
ing our elongated BJJ by a pair of coupled, truly 1D condensates [14, 15]. This would
imply discarding the transverse spatial dynamics, which seems fair as long as the
temperature, the interaction energy and the coupling strength are much smaller than
the transverse confinement energy [ 14]. Such a formalism has already been applied in
our group to describe the axial phase fluctuations of a BJJ at thermal equilibrium [16]
as well as the non-equilibrium dynamics following the sudden splitting of a 1D quasi
BEC [1, 2]. In absence of coupling between symmetric and antisymmetric modes,
the dephasing between the asymmetric axial momentum modes was shown to cause
a rapid loss of coherence and a relaxation to a state with thermal-like properties
[2, 17-19]. Interestingly, the effective temperature of such a prethermalized state
was shown to depend on the initial number fluctuations, regardless of the initial
temperature. We believe that our strong number squeezing is responsible for the
high contrast observed over tens of ms after splitting (see discussion in Sect.3.4.5).
Our ability to prepare and detect number squeezing allow us studying prethermal-
ization. In particular, it would be extremely interesting to probe the squeezing and
the coherence properties of axial excitations, for example by means of condensate
focusing [20-22].
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At longer times, the 1D BJJ is expected to thermalize under the effect of the
coupling of the symmetric and antisymmetric longitudinal modes [23]. The transition
from the prethermalized to the thermalized state is currently under investigation in
our group. It might shed some light into the role of the finite temperature of the initial
unsplit BEC in the relaxation of the relative phase.

So far, we have not applied this 1D formalism to describe the tunneling dynam-
ics of coupled elongated BECs. It was shown that in a pair of coupled 1D systems,
modulational instabilities would cause the uniform Josephson oscillation mode to
decay into axial excitations [15]. Revivals were also predicted in Ref. [15], arguably
resembling that displayed by the 3D GPE simulations (see Fig. 4.4). The same mech-
anism was invoked to show that in 1D, the MQST mode should decay into correlated
pairs of elementary axial excitations [24], and to predict the appearance of localized
defects in the relative phase profile of coupled 1D quasi BECs [25].

A pair of coupled elongated BECs is a complex quantum system. It is an exciting
playground to control and directly probe the rich interplay between tunnel coupling,
interactions, 1D physics and many-body dynamics. We believe that our observa-
tions of effects beyond the two-mode picture will contribute to the understanding
of the dynamics of coupled BECs and stimulate the development of more elaborate
theoretical models.
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Appendix A
One-Dimensional Gross-Pitaevskii
Simulations in the Transverse Potential

A.1 Effective Interaction Constant for the Transverse
GPE Simulations

Because of our elongated geometries (see Sect. 1.1.3.3) and also because the dynam-
ics of the BEC in the double wells occurs essentially in the direction of splitting, it
is often sufficient to resort to 1D simulations in the transverse horizontal direction.
The 1D Gross-Pitaevskii equation in the (x)-direction reads

2 42

il = IV vy + NI A1)
t 2m 9%x

where ¥ (x) denotes the transverse wave function and g, is the effective transverse

interaction constant. We want to derive an analytical expression for g at short times

right after splitting.

We begin by assuming that the wave function is separable, and that the initial
unsplit cloud is described by a 1D Thomas-Fermi profile ¢y(z) for N atoms at
equilibrium in the initial (close-to) harmonic trap (frequencies '’ .). The splitting
process, which occurs within ms, can be seen as non-adiabatic with respect to the
slow axial dynamics. We therefore that immediately after splitting, the axial profile
remains unchanged. In the transverse direction, on the other hand, we assume that the
wave function is close to the non-interacting transverse ground state. In particular,
we assume that in the vertical transverse direction, the potential after splitting is
harmonic with the frequency w, and that the wave function ¢ (y) in (y)-direction is
in the non-interacting Gaussian ground state.

Under these assumptions, the effective transverse interaction constant reads

g1 =g / lo(2)[* dz / B[ dy (A2)
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13
2, a?2aPo0Pw, [w,
_ Z12/3 s x Z A et
= 53 VZHB(—N O (A.3)
N — Yy
~2.09

For usual parameters, g, /h = 0.30Hz wm (to be compared for example to the
axial 1D effective interaction constant g;p = 2hw; = h x 17Hz um. It means that
in the transverse direction, where kinetic energy dominates, the effect of non-linearity
is rather weak.

A.2 Parameter Estimation of the BJJ

The parameters of the BJJ, such as displayed in Fig. 3.14, are calculated by computing
the left and right mode wave functions in the one-dimensional transverse potential
obtained from the rf-dressing simulations beyond the RWA. More precisely:

e The ground and the first excited state wavefunctions ¢, (x) and ¢, (x) of the 1D GPE
equation in the transverse potential are computed using the effective interaction
constant introduced above. We resorted to an imaginary-time evolution using the
standard split-operator method (with a symmetrized time step, ensuring that the
local error at each time step is of order O(A¢?) and the global error on the final
result is of order O(A#?) [1].

e The left and right mode wavefunctions are defined as linear combinations of ¢,
and ¢,:

¢g + e

dL(x) = i (A.4)
dr(x) = ¢g\;§¢” (A.5)

e The parameters of the BJJ in the standard two-mode model (tunnel coupling and
on-site interaction energies) are numerically computed using the integrals

hZ
J = —/ (2—V¢LV¢R +ér V¢R) dx, (A.6)
m
Uik =2g1 / 61 aldx. (A7)

To compute the spatial derivatives, we make use of the fact that the V operator
is diagonal in momentum representation and compute the Fourier transforms of
L R

e The parameters of the improved two-mode model (see Ref. [2]) can also be numer-
ically computed using ¢, and ¢..
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Great care has to be given to the choice of the space and time steps. Typical values
are Ax = 5nm (to be compared to the radial harmonic oscillator length ~250 nm)
and Ar = 5 s (to be compared to the typical transverse oscillation period ~0.5 ms).

The same propagation method can be used to compute the GPE dynamics in the
1D potential. It can be adapted to the case of a time-dependent potential, for example
to simulate the splitting and recombination ramps.



Appendix B
List of Symbols

The numerical values specific to Rubidium 87 are given for the F = 1, mp = —1
hyperfine level of the ground state (525 ).

Physical constants

Reduced Planck constant: 1.05 x 10—* m? kg s~

kp

Boltzmann constant: 1.38 x 107> m”kgs™> K~!

ao

Bohr radius: 5.29 x 10~ m

uB

Bohr magneton: 9.27 x 1072 JT~!

o

T

Vacuum permeability: 47 x 1077 Vs A~ m~

The ideal Bose gas

no

Ground state uniform density

Quantum numbers k = - (1,2 + 1,3 +1.%)

]

Kinetic energy of plane (matter-)wave

Inverse temperature in units of kp

At

Thermal de Brolie wavelength

T,

Critical temperature for Bose-Einstein condensation

The weakly interacting Bose gas

m

Mass of one boson: 1.44 x 1072 kg

ds

s-wave scattering length: 5.32 x 10~ m

T
a,,a

Bosonic creation and annihilation operator in the mode |/).

AR

Bosonic field operators.

V()

External potential

g3p =4n hzas/m 3D interaction constant: 5.14 x 10721 m?
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Elongated condensates

ai,a Harmonic oscillator length in the transverse (longitudinal) direction
X = Nasa, /aj» | x-parameter (ratio of interaction energy over radial Kinetic energy)
g1p = 2hw ay |Effective 1D interaction constant

RtriD 1D Thomas-Fermi radius

TFID 1D Thomas-Fermi chemical potential

Two-mode Bose-Hubbard model

N Total atom number

NL.r Number of atoms in the left (right) mode

oL () Spatial wave function for the left (right) mode

az R AL.R Bosonic creation and annihilation operator

Energies

J Tunnel coupling energy

UL r On-site interaction energy constant in the left (right) mode
U= Uy+Up)/2 Averaged on-site interaction energy constant

A=F 2 —E (l)e Difference of zero-point energies between the modes

€ = (UL — Ug)(N — 1)/2 4+ A|Full energy detuning

Dimensionless parameters: ratio of tunneling and interaction energy
A=UN/2J MQST threshold: A > 2

y=U/2J Rabi: y « 1/N, Josephson: 1/N < y < N, Fock: y K N
n=NJ/2U Phase diffusion threshold: n <« 1/4
Macroscopic observables

n=(NL— Ng)/2 Half-number imbalance

z=(Np — Ng)/N Normalized population imbalance

¢ = (¢ — dr)/2 Half-number imbalance

¢ = (P — Pr)/2 Half-number imbalance

(cos(¢p — (9))) Coherence factor

Squeezing factors

En = A(NL — Ng)/ VN Number-squeezing factor

£y = A(P) - VN Phase-squeezing factor

Es =&y /(cos ) (Coherent, or useful) spin-squeezing factor
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Magnetic trapping and rf-dressed potentials

gF Landé factor: 2.00

k = |gr| uB |Linear Zeeman shift: 4 x 0.7 MHz/G

V1B Trap bottom

Wy, y,z Angular trap frequencies

Qs Static field magnetic energy (over hbar)

QRF Radio-frequency field Rabi angular frequency

® rf frequency

8§ = w — Qg |rf detuning

o Tilt angle

RFAmp rf dressing intensity (in each wire) in unit of /;"** = 79.5 mApp
RFCAmp Critical splitting intensity (appearance of second minimum)

Imaging

I' =27 x 6.07 MHz |Natural line width

00 = 2.91 x 10~° cm? [ Absorption cross section

Isa = 1.67mW cm™2 [Saturation intensity

o = 00/0eff Absorption cross section correction factor

D, 0p Number of detected photons per atom, (mean, std. dev)

b, op Number of background photons per pixel (mean, std. dev.)
Sensitivity limits

ApsqL =1/ +/N|Standard quantum limit (or shot noise limit, quantum proj. noise)

A¢y =1/N Heisenberg limit

Agq Phase noise on tof phase estimation for coh. states

EN.d Minimum detectable number squeezing

Miscellaneous

Phase diffusion

R

Tecoh = 1/R|Phase coherence time

Phase diffusion rate

Timings

1y

Phase accumulation time

1BS Duration of the beam-splitter operation
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