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Preface

Theory of the engineering structures is a fundamental science. Statements and meth-
ods of this science are widely used in different fields of engineering. Among them
are the civil engineering, ship-building, aircraft, robotics, space structures, as well
as numerous structures of special types and purposes — bridges, towers, etc. In recent
years, even micromechanical devices become objects of structural analysis.

Theory of the engineering structures is alive and is a very vigorous science.
This theory offers an engineer-designer a vast collection of classical methods of
analysis of various types of structures. These methods contain in-depth fundamen-
tal ideas and, at the present time, they are developed with sufficient completeness
and commonness, aligned in a well-composed system of conceptions, procedures,
and algorithms, use modern mathematical techniques and are brought to elegant
simplicity and perfection.

We now live in a computerized world. A role and influence of modern engi-
neering software for analysis of structures cannot be overestimated. The modern
computer programs allow providing different types of analysis for any sophisti-
cated structure. As this takes place, what is the role of classical theory of structures
with its in-depth ideas, prominent conceptions, methods, theorems, and principles?
Knowing classical methods of Structural Analysis is necessary for any practical
engineer. An engineer cannot rely only on the results provided by a computer. Com-
puter is a great help in modeling different situations and speeding up the process
of calculations, but it is the sole responsibility of an engineer to check the results
obtained by a computer. If users of computer engineering software do not have suf-
ficient knowledge of fundamentals of structural analysis and of understanding of
physical theories and principal properties of structures, then he/she cannot check
obtained numerical results and their correspondence to an adopted design diagram,
as well as explain results obtained by a computer. Computer programs “. .. can make
a good engineer better, but it can make a poor engineer more dangerous” (Cook
R.D, Malkus D.S, Plesha M.E (1989) Concepts and applications of finite element
analysis, 3rd edn. Wiley, New York). Only the knowledge of fundamental theory
of structures allows to estimate and analyze numerical data obtained from a com-
puter; predict the behavior of a structure as a result of changing a design diagram
and parameters; design a structure which satisfies certain requirements; perform
serious scientific analysis; and make valid theoretical generalizations. No matter
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how sophisticated the structural model is, no matter how effective the numerical
algorithms are, no matter how powerful the computers are that implement these
algorithms, it is the engineer who analyzes the end result produced from these al-
gorithms. Only an individual who has a deep knowledge and understanding of the
structural model and analysis techniques can produce a qualitative analysis.

In 1970, one of the authors of this book was a professor at a structural engineer-
ing university in Ukraine. At that time computers were started to be implemented
in all fields of science, structural analysis being one of them. We, the professors
and instructors, were facing a serious methodical dilemma: given the new technolo-
gies, how to properly teach the students? Would we first give students a strong basis
in classical structural analysis and then introduce them to the related software, or
would we directly dive into the software after giving the student a relatively in-
significant introduction to classical analysis. We did not know the optimal way for
solving this problem. On this subject we have conducted seminars and discussions
on a regular basis. We have used these two main teaching models, and many differ-
ent variations of them. The result was somewhat surprising. The students who were
first given a strong foundation in structural analysis quickly learned how to use the
computer software, and were able to give a good qualitative analysis of the results.
The students who were given a brief introduction to structural analysis and a strong
emphasis on the computer software, at the end were not able to provide qualitative
results of the analysis. The interesting thing is that the students themselves were
criticizing the later teaching strategy.

Therefore, our vision of teaching structural analysis is as follows: on the first
step, it is necessary to learn analytical methods, perform detailed analysis of dif-
ferent structures by hand in order to feel the behavior of structures, and correlate
their behavior with obtained results; the second step is a computer application of
engineering software.

Authors wrote the book on the basis of their many years of experience of teaching
the Structural Analysis at the universities for graduate and postgraduate students as
well as on the basis of their experience in consulting companies.

This book is written for students of universities and colleges pursuing Civil or
Structural Engineering Programs, instructors of Structural Analysis, and engineers
and designers of different structures of modern engineering.

The objective of the book is to help a reader to develop an understanding of the
ideas and methods of structural analysis and to teach a reader to estimate and explain
numerical results obtained by hand; this is a fundamental stone for preparation of
reader for numerical analysis of structures and for use of engineering software with
full understanding.

The textbook offers the reader the fundamental theoretical concepts of Structural
Analysis, classical analytical methods, algorithms of their application, comparison
of different methods, and a vast collection of distinctive problems with their detailed
solution, explanation, analysis, and discussion of results; many of the problems
have a complex character. Considered examples demonstrate features of structures,
their behavior, and peculiarities of applied methods. Solution of all the problems is
brought to final formula or number.
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Analyses of the following structures are considered: statically determinate and
indeterminate multispan beams, arches, trusses, and frames. These structures are
subjected to fixed and moving loads, changes of temperature, settlement of supports,
and errors of fabrication. Also the cables are considered in detail.

In many cases, same structure under different external actions is analyzed. It
allows the reader to be concentrated on one design diagram and perform complex
analysis of behavior of a structure.

In many cases, same structure is analyzed by different methods or by one method
in different forms (for example, Displacement method in canonical, and matrix
forms). It allows to perform comparison analysis of applied methods and see ad-
vantages and disadvantages of different methods.

Distribution of Material in the Book

This book contains introduction, three parts (14 chapters), and appendix.

Introduction provides the subject and purposes of Structural Analysis, principal
concepts, assumptions, and fundamental approaches.

Part 1 (Chaps. 1-6) is devoted to analysis of statically determinate structures.
Among them are multispan beams, arches, trusses, cables, and frames. Construc-
tion of influence lines and their application are discussed with great details. Also
this part contains analytical methods of computation of displacement of deformable
structures, subjected to different actions. Among them are variety loads, change of
temperature, and settlements of supports.

Part 2 (Chaps. 7-11) is focused on analysis of statically indeterminate structures
using the fundamental methods. Among them are the force and displacement meth-
ods (both methods are presented in canonical form), as well as the mixed method.
Also the influence line method (on the basis of force and displacement methods) is
presented. Analysis of continuous beams, arches, trusses, and frames is considered
in detail.

Chapter 11 is devoted to matrix stiffness method which is realized in the mod-
ern engineering software. Usually, the physical meaning of all matrix procedures
presents serious difficulties for students. Comparison of numerical procedures ob-
tained by canonical equations and their matrix presentations, which are applied to
the same structure, allows trace and understands meaning of each stage of matrix
analysis. This method is applied for fixed loads, settlement of supports, temperature
changes, and construction of influence lines.

Part 3 (Chaps. 12—14) contains three important topics of structural analysis. They
are plastic behavior of structures, stability of elastic structures with finite and infinite
number of degrees of freedom, including analysis of structures on the basis of the
deformable design diagram (P—A analysis), and the free vibration analysis.

Each chapter contains problems for self-study. Answers are presented to all
problems.
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Appendix contains the fundamental tabulated data.
Authors will appreciate comments and suggestions to improve the current
edition. All constructive criticism will be accepted with gratitude.

Coquitlam, Canada Igor A. Karnovsky
Vancouver, Canada Olga l. Lebed
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Introduction

The subject and purposes of the Theory of Structures in the broad sense is the branch
of applied engineering that deals with the methods of analysis of structures of dif-
ferent types and purpose subjected to arbitrary types of external exposures. Analysis
of a structure implies its investigation from the viewpoint of its strength, stiffness,
stability, and vibration.

The purpose of analysis of a structure from a viewpoint of its strength is de-
termining internal forces, which arise in all members of a structure as a result of
external exposures. These internal forces produce stresses; the strength of each
member of a structure will be provided if their stresses are less than or equal to
permissible ones.

The purpose of analysis of a structure from a viewpoint of its stiffness is determi-
nation of the displacements of specified points of a structure as a result of external
exposures. The stiffness of a structure will be provided if its displacements are less
than or equal to permissible ones.

The purpose of analysis of stability of a structure is to determine the loads on a
structure, which leads to the appearance of new forms of equilibrium. These forms
of equilibrium usually lead to collapse of a structure and corresponding loads are
referred as critical ones. The stability of a structure will be provided if acting loads
are less than the critical ones.

The purpose of analysis of a structure from a viewpoint of its vibration is to
determine the frequencies and corresponding shapes of the vibration. These data are
necessary for analysis of the forced vibration caused by arbitrary loads.

The Theory of Structures is fundamental science and presents the rigorous treat-
ment for each group of analysis. In special cases, all results may be obtained in
the close analytical form. In other cases, the required results may be obtained only
numerically. However, in all cases algorithms for analysis are well defined.

The part of the Theory of Structures which allows obtaining the analytical results
is called the classical Structural Analysis. In the narrow sense, the purpose of the
classical Structural Analysis is to establish relationships between external exposures
and corresponding internal forces and displacements.

XXi
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Types of Analysis

Analysis of any structure may be performed based on some assumptions. These
assumptions reflect the purpose and features of the structure, type of loads and op-
erating conditions, properties of materials, etc. In whole, structural analysis may
be divided into three large principal groups. They are static analysis, stability, and
vibration analysis.

Static analysis presumes that the loads act without any dynamical effects. Moving
loads imply that only the position of the load is variable. Static analysis combines
the analysis of a structure from a viewpoint of its strength and stiffness.

Static linear analysis (SLA). The purpose of this analysis is to determine the
internal forces and displacements due to time-independent loading conditions. This
analysis is based on following conditions:

1. Material of a structure obeys Hook’s law.

2. Displacements of a structure are small.

3. All constraints are two-sided — it means that if constraint prevents displacement
in some direction then this constraint prevents displacement in the opposite di-
rection as well.

4. Parameters of a structure do not change under loading.

Nonlinear static analysis. The purpose of this analysis is to determine the dis-
placements and internal forces due to time-independent loading conditions, as if
a structure is nonlinear. There are different types of nonlinearities. They are physi-
cal (material of a structure does not obey Hook’s law), geometrical (displacements
of a structure are large), structural (structure with gap or constraints are one-sided,
etc.), and mixed nonlinearity.

Stability analysis deals with structures which are subjected to compressed time-
independent forces.

Buckling analysis. The purpose of this analysis is to determine the critical load
(or critical loads factor) and corresponding buckling mode shapes.

P-delta analysis. For tall and flexible structures, the transversal displacements
may become significant. Therefore we should take into account the additional bend-
ing moments due by axial compressed loads P on the displacements caused by the
lateral loads. In this case, we say that a structural analysis is performed on the basis
of the deformed design diagram.

Dynamical analysis means that the structures are subjected to time-dependent
loads, the shock and seismic loads, as well as moving loads with taking into account
the dynamical effects.

Free-vibration analysis (FVA). The purpose of this analysis is to determine the
natural frequencies (eigenvalues) and corresponding mode shapes (eigenfunctions)
of vibration. This information is necessary for dynamical analysis of any structure
subjected to arbitrary dynamic load, especially for seismic analysis. FVA may be
considered for linear and nonlinear structures.
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Stressed free-vibration analysis. The purpose of this analysis is to determine the
eigenvalues and corresponding eigenfunctions of a structure, which is subjected to
additional axial time-independent forces.

Time-history analysis. The purpose of this analysis is to determine the response
of a structure, which is subjected to arbitrarily time-varying loads.

In this book, the primary emphasis will be done upon the static linear analysis of
plane structures. Also the reader will be familiar with problems of stability in struc-
tural analysis and free-vibration analysis as well as some special cases of analysis
will be briefly discussed.

Fundamental Assumptions of Structural Analysis

Analysis of structures that is based on the following assumptions is called the elastic
analysis.

1. Material of the structure is continuous and absolutely elastic.

2. Relationship between stress and strain is linear.

3. Deformations of a structure, caused by applied loads, are small and do not change
original design diagram.

4. Superposition principle is applicable.

Superposition principle means that any factor, such as reaction, displacement, etc.,
caused by different loads which act simultaneously, are equal to the algebraic or
geometrical sum of this factor due to each load separately. For example, reaction of
a movable support under any loads has one fixed direction. So the reaction of this
support due to different loads equals to the algebraic sum of reactions due to action
of each load separately. Vector of total reaction for a pinned support in case of any
loads has different directions, so the reaction of pinned support due to different loads
equals to the geometrical sum of reactions, due to action of each load separately.

Fundamental Approaches of Structural Analysis

There are two fundamental approaches to the analysis of any structure. The first ap-
proach is related to analysis of a structure subjected to given fixed loads and is called
the fixed loads approach. The results of this analysis are diagrams, which show a dis-
tribution of internal forces (bending moment, shear, and axial forces) and deflection
for the entire structure due to the given fixed loads. These diagrams indicate the most
unfavorable point (or member) of a structure under the given fixed loads. The reader
should be familiar with this approach from the course of mechanics of material.
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The second approach assumes that a structure is subjected to unit concentrated
moving load only. This load is not a real one but imaginary. The results of the sec-
ond approach are graphs called the influence lines. Influence lines are plotted for
reactions, internal forces, etc. Internal forces diagrams and influence lines have a
fundamental difference. Each influence line shows distribution of internal forces in
the one specified section of a structure due to location of imaginary unit moving
load only. These influence lines indicate the point of a structure where a load should
be placed in order to reach a maximum (or minimum) value of the function under
consideration at the specified section. It is very important that the influence lines
may be also used for analysis of structure subjected to any fixed loads. Moreover, in
many cases they turn out to be a very effective tool of analysis.

Influence lines method presents the higher level of analysis of a structure, than
the fixed load approach. Good knowledge of influence lines approaches an immea-
surable increase in understanding of behavior of structure. Analyst, who combines
both approaches for analysis of a structure in engineering practice, is capable to
perform a complex analysis of its behavior.

Both approaches do not exclude each other. In contrast, in practical analysis
both approaches complement each other. Therefore, learning these approaches to
the analysis of a structure will be provided in parallel way. This textbook presents
sufficiently full consideration of influence lines for different types of statically de-
terminate and indeterminate structures, such as beams, arches, frames, and trusses.
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Chapter 1
Kinematical Analysis of Structures

Kinematical analysis of a structure is necessary for evaluation of ability of the
structure to resist external load. Kinematical analysis is based on the concept of
rigid disc, which is an unchangeable (or rigid) part of a structure. Rigid discs may
be separate members of a structure, such as straight members, curvilinear, polygonal
(Fig. 1.1), as well as their special combination.

Any structure consists of separate rigid discs. Two rigid discs may be connected
by means of link, hinge, and fixed joint. These types of connections and their static
and kinematical characteristics are presented in Table 1.1.

The members of a structure may be connected together by a hinge in various
ways. Types of connection are chosen and justified by an engineer as follows:

1. Simple hinge. One hinge connects two elements in the joint.

2. Multiple hinge. One hinge connects three or more elements in the joint. The mul-
tiple hinge is equivalent to n—1 simple hinges, where » is a number of members
connected in the joint. Hinged joints can transmit axial and shear forces from one
part of the structure to the other; the bending moment at the hinge joint is zero.

1.1 Classification of Structures by Kinematical Viewpoint

All structures may be classified as follows:

o Geometrically unchangeable structure. For this type of structure, any distortion
of the structure occurs only with deformation of its members. It means that this
type of structure with absolutely rigid members cannot change its form. The
simplest geometrically unchangeable structure is triangle, which contains the
pin-joined members (Fig. 1.2a).

o Geometrically changeable structure. For this type of structure, any finite dis-
tortion of the structure occurs without deformation of its members. The sim-
plest geometrically changeable system is formed as hinged four-bar linkage
(Fig. 1.2b, ¢). In Fig. 1.2¢c, the fourth bar is presented as ground. In both cases,
even if the system would be made with absolutely rigid members, it still can
change its form.

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 3
DOI 10.1007/978-1-4419-1047-9_1, (© Springer Science+Business Media, LLC 2010
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Fig. 1.1 Types of the rigid discs

Table 1.1 Types of connections of rigid discs and their characteristics

Type of
connection Link Hinge Fixed joint
Presentation and @_@ CK) C:.:)
descnpt}on of D, D, D, D, D, D,
connection
Rigid discs D and D, Rigid discs D and D, Rigid discs D and D, are
are connected by link are connected by connected by fixed joint
(rod with hinges at the hinge
ends)
Kinematical Mutual displacement of [Mutual displacements All mutual displacements of
characteristics both discs along the of both discs in both both discs (in horizontal,
link is zero horizontal and vertical vertical, and angular
directions are zeros directions) are zeros
Static Connection transmits one |Connection transmits two |Connection transmits two
characteristics force, which prevents forces, which prevent forces, which prevent
mutual displacement mutual displacements mutual displacements in
along the link in vertical and vertical and horizontal
horizontal directions directions, and moment,
which prevents mutual
angular displacement

d

e
7 LR

Fig. 1.2 Types of structure by kinematical viewpoint

It is pertinent to do the following important remark related to terminology. Some-
times terms “stable” and “unstable” are applied for the above-mentioned types of
structures. However, the commonly accepted term “stable/unstable” in classical
theory of deformable systems is related to concept of critical load, while term “geo-
metrically unchangeable/changeable” is related to way of connection of rigid disks.
There is the fundamental difference between kinematical analysis of a structure on
the one hand, and analysis of stability of a structure subjected to compressed load,
on the other hand. Thus, in kinematical analysis of structures, we will use the term
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“unchangeable structure” instead of “stable structure,” and term “changeable struc-
ture” instead of “unstable structure.” Stability analysis is considered in Chap. 13.

Instantaneously changeable structure. This system allows infinitesimal relative
displacements of its members without their deformation and after that the struc-
ture becomes geometrically unchangeable (Fig. 1.2d).

Instantaneously rigid structure. This system allows infinitesimal relative dis-
placements of its members without their deformation and after that the structure
becomes geometrically changeable (Fig. 1.2e). The term “instantaneously” is re-
lated to initial condition of the structure only.

In structural engineering only geometrically unchangeable structures may be

accepted.

1.2 Generation of Geometrically Unchangeable Structures

In order to produce a rigid structure in a whole, the rigid discs should be connected
in specific way. Let us consider general rules for formation of geometrically un-
changeable structures from two and three rigid discs.

—

If a structure is formed from two discs, then their connections may be as follows:

Connection by fixed joint (Fig. 1.3a)

Connection by hinge C and rod AB, if axis of AB does not pass through the hinge
C (Fig.1.3b)

Connection by three nonparallel rods. Point of intersection of any two rods
presents a fictitious hinge C’. In this case, the other rod and fictitious hinge cor-
responds to Case 2 (Fig. 1.3c)

am E/{:}D cﬂj;::::: e

Fig. 1.3 Geometrically unchangeable structures formed from two discs

If a structure is formed from three discs, then their connections may be as follows:

1.

Connection in pairs by three hinges A, B, and C, which do not belong to one
line (Fig. 1.4a).

2. Connection in pairs by two (or more) concurrent links, if points of their intersec-

tions A, B, and C do not belong to one line (Fig. 1.4b).
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Case 1.4a may be presented as shown in Fig. 1.4c: additional joint A is attached to
rigid disc D by two links 1 and 2. This case leads to a rigid triangle (Fig. 1.2a),
which is a simplest geometrically unchangeable structure. This is the main principle
of formation of simplest trusses.

Fig. 1.4 Geometrically unchangeable structures formed from three discs

a b
5 B == C

Fig. 1.5 (a) Structure with required constraints; (b) structure with redundant constraints

Required and Redundant Constraints

All constraints of any structure are divided into two groups.

Required constraint of a structure is such a constraint, eliminations of which
change a kinematical characteristic of the structure. It means that the entire un-
changeable structure transforms into changeable or instantaneously changeable one,
instantaneously changeable transforms into changeable, and changeable transforms
into changeable with mobility more by unity. Note that constraint assumes not only
supports, but elements as well. For example, elimination of any member of truss in
Fig. 1.5a transforms this structure into changeable one, so for this structure all the
elements are required.

Redundant constraint of a structure is such a constraint, eliminations of which
do not change a kinematical characteristic of the structure. It means that the entire
unchangeable structure remains the unchangeable (Fig. 1.5b), changeable structure
remains changeable one, and instantaneously changeable remains instantaneously
changeable structure. The structure in Fig. 1.5a has no redundant constraints. For
structure in Fig. 1.5b, the following constraints may be considered as redundant: 1 or
2, and 3 or 4, and one of the supports — B or C, so the total number of redundant
constraints is three.

Constraint replacing. In case of unchangeable structure, the constraints may be
replaced. It means that the required constraint may be eliminated and instead of
that another required constraint should be introduced, or the redundant constraint
is replaced by another redundant constraint. This procedure allows from a given
structure to create a lot of other structures.
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1.3 Analytical Criteria of the Instantaneously
Changeable Structures

Kinematical analysis of a structure can also be done using the static equations. The
following criteria for instantaneously changeable systems may be used:

(a) Load has finite quantity but the internal forces have infinite values
(b) Load is absent and the internal forces are uncertain (type of 0/0)

Let us discuss these criteria for structure shown in Fig. 1.6a.

a b

P

Fig. 1.6 Kinematical analysis using the static equations

Internal forces in members of the structure are N = P/ (2 sing). If ¢ = 0
(Fig. 1.6b), then N = oo. Thus, external load P of finite quantity leads to the
internal forces of infinite values. It happens because the system is instantaneously
changeable. Indeed, two rigid discs are connected using three hinges located on the
one line.

Figure 1.7 presents the design diagram of the truss. This structure is generated
from simplest rigid triangle; each next joint is attached to previous rigid disc by
two end-hinged links. The structure contains three support constraints, which are
necessary minimum for plane structure. However, location of these supports may be
wrong. Thorough kinematical analysis of this structure may be performed by static
equations.

Reaction R of support may be calculated using equilibrium condition

Pb

ZMA=O—>R><a—be=0—>R= )
a

S

Fig. 1.7 Kinematical analysis of the truss
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1. If a = 0, then for any external load P the reaction of the left support is infinitely
large (R = Pb/0)

2. Ifa = 0and P = 0, then reaction R is uncertain (R = 0/0). Thus, if all lines
of support constraints are concurrent at one point (¢ = 0), then this case leads to
instantaneously changeable system.

Instantaneously changeable systems may occur if two rigid discs of a structure join
inappropriately. Two such connections of rigid discs are shown in Fig. 1.8. If a sys-
tem may be separated into two rigid discs (shown by solid color) by a section cutting
three elements, which are parallel (Fig. 1.8a, elements 1, 2, 3), or concurrent in
one point (Fig. 1.8b, point A4, elements a, b, ¢), then the system is instantaneously
changeable one.

a

Fig. 1.8 Instantaneously changeable systems

However, in practice, connection of two rigid discs by two (or more) parallel
members may be used in special condition of loading. Figure 1.9 presents the rigid
beam (disc D), which is supported by vertical hinged-end rods 1-3 (disc D, is a
support part). The system may be used if the axial forces in members 1-3 are tensile
(Fig. 1.9a). However, the system cannot be used if the axial forces in members 1-3
are compressive (Fig. 1.9b).

Fig. 1.9 Geometrically changeable systems

Evolution of the structure caused by changing the type of supports is shown in
Fig. 1.10. Constraint A (Fig. 1.10a) prevents two displacements, in vertical and hor-
izontal directions. If one element of the constraint A, which prevents horizontal
displacement, will be removed, then the structure becomes geometrically change-
able (Fig.1.10b), so the removed constraint is the required one. In case of any
horizontal displacement of the structure, all support constraints A, B, and C remain
parallel to each other.



1.3 Analytical Criteria of the Instantaneously Changeable Structures 9

a c
B

b

A—Z— L X C

Fig. 1.10 (a) Geometrically unchangeable structure; (b) geometrically changeable structure;
(c) instantaneously changeable system

The next evolution is presented in Fig. 1.10c. If any support, for example sup-
porting element B will be longer than other supports, then structure becomes
instantaneously changeable system. Indeed, in case of any horizontal displacement
of the structure, the support constraints will not be parallel any more.

It is worth to mention one more static criterion for instantaneously changeable
and geometrically changeable structures: internal forces in some element obtained
by two different ways are different, or in another words, analysis of a structure leads
to contradictory results. This is shown in the example below.

Design diagram of the truss is presented in Fig. 1.11a: the constraint support B
is directed along the element BC. The system has the necessary minimum number
of elements and constraints to be geometrically unchangeable structure. Let us pro-
vide more detailed analysis of this structure. Free body diagrams and equilibrium
conditions for joints A, 1, and B are shown in Fig. 1.11b.

b
N Npe
Nyc SN
N, 1 N N B
) N, 184 B

Fig. 1.11 Kinematical analysis of instantaneously changeable system
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Equilibrium conditions for joints A, 1, and B and corresponding results are pre-
sented below.

Joint 4. X =0—> Ng_; =0,

Y =0: Nc_jsina— P =0—> Nc_1 = —
sin o

Jointl. Y X =0: N;—p— Nc—jcose =0 — Ni—p = Nc—jcosa = P cotw

> Y =0: Npcsin+ Rpsinf =0— Ngc = —Rp
Joint B. > X =0: —Nj_p— Npccosf—Rpcosp=0—> Ni_p =0

Two different results for internal force Ni—pg have been obtained, i.e., P cote and
zero. This indicates that the system is defective. From mathematical point of view,
this happens because the set of equilibrium equations for different parts of the
structure is incompatible. From physical point of view, this happens because three
support constraints are concurrent in one point C for any angle ¢. Any variation
of this angle ¢ remains the system as instantaneously changeable. If constraint at
support C will be removed to point A, or angle of inclination of support B will be
different, then system becomes geometrically unchangeable structure.

Let us show this criterion for system presented in Fig. 1.12. Note that hinges D
and E are multiple similarly to hinges C and F.

Reaction

Pbh
RA—)ZMBZO—)RAZm.

>}

Fig. 1.12 Kinematical analysis of geometrically changeable system
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Equilibrium conditions leads to the following results:

Ry Pb
Joint A. Y=0: R4q—Nising=0— N; = = ,
om Z 4 15109 - sing (a + b)sing
Pb

Joint C. ZY =0: N4+ Nysing =0 — Ny = —Njsing = —W,
a

Joint D. ZYzO: Ns = 0.

We received for internal force N4 two contradictory (or inconsistent) results. Why
this happens? To answer on this question let us consider the very important concept
“degrees of freedom.”

1.4 Degrees of Freedom

A number of independent parameters, which define configuration of a system with-
out deformation of its members is called the degree of freedom. The number of
degrees of freedom for any structure may be calculated by the Chebushev’ formula

W =3D —2H — So, (1.1)

where D, H, and Sy are the number of rigid discs, simple hinges, and constraints
of supports, respectively.
For trusses the degrees of freedom may be calculated by formula

W =2J-5-3So, (1.2)

where J and S are the number of joints and members of the truss, respectively.
Special cases. There are three special cases possible.

1. W > 0. The system is geometrically changeable and cannot be used in engineer-
ing practice.

2. W = 0. The system has the necessary number of elements and constraints to
be geometrically unchangeable structure. However, the system still can be in-
appropriate for engineering structure. Therefore, this case requires additional
structural analysis to check if the formation of the structure and arrangement of
elements and constraints is correct. This must be done according to rules, which
are considered above. For example, let us consider systems, which are presented
in Fig. 1.13a—c.
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a2 3 6 7 10 b
NANA - NXN
c . d
N 2
1 Ji U 1
l X X

v

Fig. 1.13 Different ways of truss formation. For cases (a), (b), and (c) degrees of freedom W = 0,
for case (d) W = —1. Only case (a) may be adopted as engineering structure

Degrees of freedom W for these cases according to formula (1.2) equal to zeros.
Indeed:

Casea:J =10, S =17, So=3, so W=2x10-17-3=0,
Caseb: J =10, S =17, So=3, so W=2x10—-17-3=0,
Casec:J =10, S =16, So=4, so W=2x10—-16—4=0.

The degrees of freedom for trusses may be calculated also by the Chebushev for-
mula. The truss in Fig. 1.13a contains 17 bars, which are considered as the rigid
discs, and 3 support constraints. The number of the equivalent simple hinges H
can be calculated as follows: only two hinges are simple (joints 1 and 9) and
all other hinges are multiple. The each multiple hinge at joints 2, 3, 5, 7, 10 are
equivalent to two simple hinges; the each multiple hinge 4, 6, 8 are equivalent
to four simple hinges. Thus, the total number of equivalent simple hinges is
H=2x1+45x2+3x4 = 24, The Chebushev formula leads to the fol-
lowing result W = 3D —2H — Sg = 3 x 17 — 2 x 24 — 3 = 0. The same results
may be obtained for Cases (b) and (c).

Even if W = 0 for systems in Fig. 1.13a—c, only system (a) may be used as en-
gineering structure. System (b) has a rigid disc (shown as solid) and geometrically
changeable right part. System (c) consists of two rigid discs, which are connected
by two members 1 and 2 (while for generation of geometrically unchangeable struc-
tures two rigid discs must be connected by three nonconcurrent members), and
therefore it is geometrically changeable system.

3. W < 0. The system has redundant constraints. However, existence of redun-
dant constraints still does not mean that the structure can resist load, because the
structure can be generated incorrectly. The system in Fig. 1.13d contains one re-
dundant constraint; indeed, the degrees of freedomis W = 2x10—17—4 = —1.
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However, the assembly of the elements is wrong and therefore, this system can-
not be considered as engineering structure. Indeed, the left and right rigid disks
(shown by solid) are connected by two elements 1 and 2. Therefore, this structure
is geometrically changeable.

Let us return to Fig. 1.12. The system contains members with hinges at ends. The
number of joints is J = 6, the number of members is S = 8§, and the number of
support constraints is So = 3. Degrees of freedom of the system is calculated as for
truss, i.e., W = 2x6—8—3 = 1. (The Chebushev formula leads to the same result,
ie., W =3x8-2x10—-3 = 1, where 10 is a total number of simple hinges). There-
fore, the system does not have a required minimum of elements in order to provide
its geometrical unchangeability, and cannot be used as engineering structure. This
system is geometrically changeable, because two rigid discs ACD and BEF are con-
nected incorrectly, i.e., by fwo members 3 and 5. In other words, this system contains
the hinged four-bar linkage CDEF. Therefore, if one more rigid element would be
introduced correctly, then system would become geometrically unchangeable. Such
additional element may connect joints C and E or joints D and F.

Problems

1.1. Perform the kinematical analysis of the following design diagrams:

a b c d
& o & X 2 & X2 2 5

Fig. P1.1

b c
4 BAl !BAI B 4 B AR 9B 4 B

Fig. P1.2

Fig. P1.3




14 1 Kinematical Analysis of Structures

N AN AN

Fig. P1.4

Fig. P1.5




Chapter 2
General Theory of Influence Lines

Construction of influence lines for one span simply supported and cantilevered
beams in case of direct and indirect load applications are considered. All influence
lines are constructed using analytical expressions for required factor. Applications
of influence lines for fixed and moving loads are discussed. This chapter forms the
set of concepts which creates a framework for comprehensive analysis of different
statically determinate structures.

2.1 Analytical Method for Construction of Influence Lines

The engineering structures are often subjected to moving loads. Typical exam-
ples of moving loads on a structure are traveling cars, trains, bridge cranes, etc.
In classical structural analysis, the term “moving load” requires one additional
comment: this concept means that only the load position on the structure may be
arbitrary.

It is obvious that internal forces and displacements in any section of a beam
depend on the position of a moving load. An important problem in analysis of struc-
tures is the determination of maximum internal forces in a structure caused by a
given moving load and the corresponding most unfavorable position of this load.
This problem may be solved using influence lines. Influence line is a fundamental
and very profitable concept of structural analysis. Their application allows perform
a deep and manifold analysis of different types of structures subjected to any type
of fixed and moving loads. Influence lines method becomes especially effective tool
analysis if a structure is subjected to different groups of loads.

Definition: Influence line is a graph, which shows variation of some particular function Z
(reaction, shear, bending moment, etc.) in the fixed cross section of a structure in terms of
position of unit concentrated dimensionless load P = 1 on the structure.

Each ordinate of influence line means the value of the function, for which in-
fluence line is constructed, if the unit load is located on the structure above this
ordinate. Therefore, the unit load P, which may have different positions on the
structure, is called a moving (or traveling) load. The term “moving load” implies

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 15
DOI 10.1007/978-1-4419-1047-9_2, (© Springer Science+Business Media, LLC 2010
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only that position of the load is arbitrary, i.e., this is a static load, which may have
different positions along the beam. The time, velocity of the moving load, and any
dynamic effects are not taken into account. Thus, for convenience, from now on,
we will use notion of “moving” or “traveling” load for static load, which may have
different position along the beam.

Influence line for any function Z at a specified section of a structure may be
constructed using its definition as follows: the required function should be calcu-
lated for different position of unit load within the loaded portion. These values
are plotted at the points, which correspond to the position of the load. After that
all ordinates should be connected. However, such procedure is extremely annoy-
ing and cumbersome (especially for statically indeterminate structures). Because
of repetitive procedure of construction of influence lines, their advantages are
questionable.

In this book, the construction of influence lines is performed on the bases of a
different approach, i.e., deriving an equation of influence line for required func-
tion Z; this equation relates values of Z and position x of the unit load P. Thus
the required factor Z is presented as analytical function of the position of the
load. Such way of construction of influence lines is called static method. Appli-
cation of this method for construction of influence lines for reactions is presented
below.

2.1.1 Influence Lines for Reactions

The following types of beams are considered: simply supported beam, beam with
overhang, and cantilever beam.

2.1.1.1 Simply Supported Beam (Fig.2.1)

The beam AB is loaded by moving load P = 1. The moving load is shown by circle
and the dotted line indicates the loaded contour for possible positions of the load on
the structure The distance from the left-hand support to the load is x.

Influence Line for R 4

Equilibrium equation in form of moments of all external forces about the support B
allows determine the reaction R 4 in terms of x:

_ P —x)

RA—>ZMB=O: —R4-l+P(I—x)=0— Ry ;
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Fig. 2.1 Simply supported
beam. Influence lines for
reactions

0.75 §
1 i
| : Inf. line R,
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Reaction R4 may be calculated for any location x of the load P. Therefore, last
equation should be considered as a function R 4(x). This function is called the in-
fluence line for R 4 and denoted as IL(R 4). Since P = 1, then equation of influence
line for reaction R4 becomes

IL(R4) = / (2.1)
If x = 0 (at support A), then ordinate of influence line IL(R4) = 1. If x = [
(at support B), then ordinate of influence line IL(R4) = 0. These two points are
connected by straight line, since function (2.1) is linear. Influence line for R4 is
presented in Fig. 2.1.

We can see that units of influence line ordinates for reaction is dimensionless. In
general, units of influence line ordinates for any factor Z are defined as quotient of
two units, mainly, unit of the factor Z and unit of the load P (kN). Thus, unit of
influence line for reactions and shear is dimensionless because kN/kN; for bending
moment: KNx m/kN = m; for linear deflection m/kN; for angular deflection rad/kN.

Influence line IL(R4) can be used for analysis of reaction R4 only. Positive
ordinates mean that reaction of R4 is directed upward for any position of the con-
centrated load. If load P = 1 is located above point A, then reaction of R4 is equal
to 1; it means that load P completely transmits on the support 4. If load P = 1 is
located above point B, then reaction of R4 is equal to zero. If load P = 1 has, for
example, coordinate x = 0.25/, then reaction of R4 is equal to 0.75.

Analytical presentation of equation of influence line allows to avoid many times
repeated computation of function Z for different location of the force P; this is a
huge advantage of analytical approach for construction of influence lines. Note a
following fundamental property: influence lines for reactions and internal forces of
any statically determined structures are always presented by straight lines.



18 2 General Theory of Influence Lines

Influence Line for Rp

Equilibrium equation in form of moments of all the external forces about support A
leads to the following expression for reaction Rp in terms of position x

P-x
Rp—Y Mg=0: Rp-l-P-x=0-Rp= -
The last equation leads to the following equation of influence line:
X
IL(Rp) = 7 2.2)

If x = 0 (at support A), then ordinate of influence line IL(Rp) = 0. If x = [
(at support B), then ordinate of influence line IL(Rg) = 1. Influence line for Rp
is presented in Fig.2.1. This graph can be used for analysis of reaction Rp only.
If load P = 1 is located above point A, then reaction of Rp is equal to zero. It
means that load P does not get transmitted on to the support B, when the load P
is situated directly over the left-hand support. If load P = 1 is located above point
B, then reaction of Rp is equal to 1. If load P = 1 has, for example, coordinate
x = 0.25/, then reaction of Rp is equal to 0.25.

2.1.1.2 Simply Supported Beam with Overhang (Fig.2.2)

The equilibrium equations and corresponding equations for influence lines of
reactions are

RA—>ZMB=O:

— —]
—RAl—P(x—l)=0—>RA=_PXT_>IL(RA)=_XT7

Rp— > Ms=0: RBZ—Px:0—>RB:P;—>IL(RB):x

7 23

! m %
: ‘é_Lu Inf. line R,
Fig. 2.2 Simply supported 1
beam with overhang. ; ]
: Inf. line Ry

Influence lines for reactions



2.1 Analytical Method for Construction of Influence Lines 19

Influence lines of reactions are shown in Fig.2.2. If load P = 1 is situated at point
D (x = [+d), thenreaction R4 = —d/I. The negative sign means that the reaction
R 4 is directed downward. The maximum positive reaction R4 occursifload P = 1
stands at point A, the maximum negative reaction R4 occurs if load P = 1 stands
at point D.

If load P = 1 is situated at point D, then Rp = (I + d)/I. This means, that
reaction Rgp > P = 1 and is directed upward. The maximum positive reaction Rp
occurs if load P = 1 stands at point D; the negative reaction Rp does not be arise.

Equations (2.1)—(2.3) for influence lines of reactions show that overhang does not
change the equations of influence lines; therefore an influence line within the over-
hang is an extension of influence line within the span. This is a common property
of influence lines for any function (reaction, bending moment, and shear). Thus,
in order to construct the influence lines for reaction of a simply supported beam
with overhang, the influence lines for reaction between supports should be extended
underneath the overhang.

2.1.1.3 Cantilevered Beam (Fig.2.3)

At the fixed support A, the following reactions arise: vertical and horizontal forces
R4 and H 4, and moment My; for the given design diagram the horizontal reaction
H 4 = 0. Positive reactions R4 and M, are shown in Fig.2.3.

The Vertical Reaction R 4

This reaction may be calculated considering the equilibrium equation in form of the
projections of the all external forces on the vertical axis

RA—>ZY=O: Ri—P=0-—Ry=P.

T
Inf. line R,
Fig. 2.3 Cantilevered beam. I I

Design diagra}n and influence W ; Inf. line M,
lines for reactions

~LJ
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Since P = 1, the equation of influence line becomes
IL(R4) = 1. 2.4)

It means that reaction R 4 equals to 1 for any position of concentrated load P = 1.

The Moment My at Support A

This moment may be calculated considering the equilibrium equation in form of
moment of all the external forces with respect to point A

My—Y Mg=0: —Mo—Px=0—>M=—Px.
Since load P = 1, then equation of influence line is
IL(Mp) = —x. (2.5)
It means that moment varies according to linear law. If the load P = 1 is located at
x = 0 (point A), then the moment M at the fixed support does not arise. Maximum

moment at support A corresponds to position of the load P = 1 at point B; this
moment equals to —1/. The units of the ordinates of influence line for M are meters.

2.1.2 Influence Lines for Internal Forces

Simply supported beam subjected to moving unit load P is presented in Fig.2.4.
Construction of influence lines for bending moment and shear force induced at sec-
tion k are shown below.

2.1.2.1 Bending Moment Mj

The bending moment in section k is equal to the algebraic sum of moments of all
forces, which are located to the left (or right) of section k, about point k. Since the
expression for bending moment depends on whether the load P is located to the
left or to the right from the section k, then two positions of the load P need to be
considered, i.e., to the left and to the right of section k.

Load P = 1Is Located to the Left of Section k

In this case, it is convenient to calculate the bending moment My using the right
forces (Fig.2.4). The only reaction Rp is located to the right of point k, so the
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bending moment is
M — Y M '=0: Mg =Rg-b.

If position of the load P is fixed, then reaction Rp is a number and the bending
moment is a number as well. However, if load P = 1 changes its position along the
left portion of the beam, then reaction R p becomes a function of position of the load
P and, thus, the bending moment is a function too. Thus, the expression for bending
moment is transformed to the equation of influence line for bending moment

IL(My) = b -IL(Rp). (2.6)

So for the construction of influence line for bending moment we need to construct
the influence line for reaction Rp, after that multiply all ordinates by parameter b,
and, as the last step, show the operating range of influence line. Since load P is
located to the left of section k, then the operating range is left-hand portion of in-
fluence line, i.e., the above equation of influence line is true when the load P is
changing its position on the /eft portion of the beam. Hatching the corresponding
part of the influence line reflects this fact.

X 5 P=1
k
Al | ettt B
' e
A a | b A
R, s Ry
bIL (Ry)
ab|1 1-b
Load P=1 left at section k

iOperating rangei
— 5

aIL(R,); abfl

- \W
h Load P=1 right at section k

Operating range |
-—

Fig. 2.4 Simply supported
beam. Construction of
influence line for bending
moment at section k

b

Inf. line M, (m)

Load P = 1 Is Located to the Right of Section k

In this case, it is convenient to calculate the bending moment M} using the
left forces. The only reaction R4 is located to the left of point k, so the bending
moment is

My — > M =0: Mg =Ry4-a.
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As above, the expression for bending moment is transformed to the equation of
influence line for bending moment

IL(M}) = a - IL(R ). @.7)

For construction of this influence line, we need to construct the influence line for
reaction R4, then multiply all ordinates by parameter a, and finally, to show the
operating range of influence line. Since load P is located to the right of section k,
we obtain right-hand portion of influence line as the operating range. Corresponding
influence line My, is presented in Fig. 2.4.

Since units of ordinates IL(R4) and IL(Rp) are dimensionless, then units of
ordinates IL(M}) are units of length (for example, meter). Ordinate of influence line
at section k is (ab/[). Sign of influence line for bending moment My for simply
supported beam is positive, which means that extended fibers at section k are located
below longitudinal axis for any position of the load P.

Henceforward, all mathematical treatment concerning to construction of influ-
ence lines will be presented in tabulated form. The above-mentioned discussions
are presented in the following table.

Load P = 1 left at section k Load P = 1 right at section k
M, — Y M®" =0, M, — Y. M =0,
My, = Rp-b — IL(Mk) =b 'IL(RB) My =Ry-a— IL(Mk) =a 'IL(RA)

To summarize, in order to construct the influence line for bending moment at section
k it is necessary to:

1. Plot ordinates @ and b on the left and right vertical lines passing through the
left-hand and right-hand support, respectively.

2. Join each of these points with base point at the other support; both lines intersect
at section k.

3. Show the operating ranges of influence line. The hatching (operating range) cor-
responds to the position of the load but not to the part of the beam which is used
for computation of bending moment.

2.1.2.2 Influence Line Q

Since the expression for shear depends on whether the load P is located to the
left or to the right from the section k, then two positions of the load P need to be
considered. The procedure of construction of influence line for shear is presented in
tabulated form. In the table we show the position of the load (left or right at section
k — this is the first line of the table) and part of the beam, the equilibrium of which
is considered.
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Load P =1 left at section k Load P = 1 right at section k
Qk — Z Yright — 0’ Qk - Z chft — 0,
Ok = —Rp = IL(Qk) = —IL(Rp) Ok = Ry = IL(Q)) = IL(R4)

Using these expressions, we can trace the left-hand portion of the influence line
for shear as the influence line for reaction Rp with negative sign and right-hand
portion of the influence line for shear as influence line for reaction R4 (Fig.2.5).
Units of ordinate IL(Q) are dimensionless.

Load P=1 left at section k
1Operating range |
—— 55

| —IL(R
IL(R ) (Rp)

i - © Load P=1 right at section k
1 Operating range
| —eeeeeee .

Fig. 2.5 Simply supported
beam. Construction of
influence line for shear at
section k

Inf. line Q,

In order to construct the influence line for shear at section k the following proce-
dure should be applied:

1. Plot ordinate +1 (upward) and —1 (downward) along the vertical lines passing
through the left-hand and right-hand support, respectively

2. Join each of these points with base point at the other support

Connect both portions at section k

4. Show the operating range of influence line: operating range of left-hand portion
is negative and operating range of right-hand portion is positive

et

The negative sign of the left-hand portion and jump at section k may be explained
as follows: If the load P =1 is located on the left part of the beam, then shear
Or =R4 — P < 0. When load P is infinitely close to the section k to the left,
then shear O =—Rp. As soon as the load P = 1 moves over section k, then shear
Ok = Ra.

It is obvious, that the influence line for shear for the section which is infinitely
close to support A coincides with influence line for reaction Ry4, i.e., IL(Q) =
IL(Ry4). If section is infinitely close to support B, then the influence line for
shear coincides with influence line for reaction Rp with negative sign, i.e.,
IL(Q) = — IL(Rp).
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Fig. 2.6 Beam with
overhangs. Construction of
influence lines for bending
moment and shear at

section k
P=1-variable position P-fixed position
g Load contour l Extended fibers
R I A— B se— e B
P T X Lo k ==
A a | b 4 1 4 | b |
R, I ! Ry 1 L Ry
a
/ b p aTb
a = ! Bending moment

Inf. line M, (m) diagram M (kNm)

Fig. 2.7 Influence line for bending moment at section k£ and bending moment diagram due to load
P, which is located at point k&

Now let us consider a simply supported beam with overhangs (Fig. 2.6). Assume
that section k is located between supports. In order to construct influence line for
bending moment and shear at section k, it is necessary to:

1. Ignore overhang and construct corresponding influence line for simply supported
beam

2. Extent of the latter until its intersection with the vertical passing through the end
of overhang

2.1.2.3 Discussion

At this point, emphasis must once again be placed on differentiating between in-
fluence line for bending moment at point k¥ and bending moment diagram due to
load P, which is located at point k (Fig.2.7). This diagram is constructed on the
tensile fibers.

Even though both diagrams look similar and have same sign (ordinates of bend-
ing moment diagram are positive) and same ordinate at section k (if P = 1), they
have completely different meanings and should not be confused. The difference be-
tween them is presented in Table 2.1
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Table 2.1 Comparison of influence line for bending moment and bending moment diagram

Influence line M} Bending moment diagram M

This graph shows variations of bending moment | This graph shows distribution of bending
at the section k only; load P = 1 is moving moment in all sections of the beam; load
and has different locations along the beam P is fixed and acts at section k only

The following example generalizes all cases considered above for construction
of influence lines of internal forces for different sections in case of simply supported
beam with overhangs (Fig. 2.8).

i Inf. line
a_b \%\tl\ Ql
[
¢ b Inf. line
2 ) T
Q Inf. line 1 0,
M,
‘ ‘ ‘é‘ ‘ Inf. line
Inf. line 1 Q3Ieft
¢y M,
e Inf. line
e Inf. line Q. riet
¢ M, 1 3
1 .
Inf. line - Ille. Il;;tle
a d [\44 W 1 4
= Inf. line q ‘ ‘ <+)‘ ‘ Inf. line
ds Ms Q4righr

®| | Inf. line

05

Fig. 2.8 Beam with overhangs. Influence lines for bending moments and shear forces for different
sections

Bending Moment My and Shear Force Q1

The influence line of bending moment at the section 1 for simply supported
beam without overhangs presents a triangle with maximum ordinate ab/I, where
| =a + b. The influence line is extended within the overhang. If load P is located
within the span, then bending moment in section 1 is positive, i.e., the extended
fibers are located below the longitudinal axis. If load P is located outside of the
span, then bending moment in section 1 is negative.
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Fig. 2.9 Construction of
influence lines for section 2
on the overhang

The influence line for shear in section 1 for the simply supported beam should be
extended through support points to the end of overhangs.

Shear Force Q, and Bending Moment M, (Fig.2.9)

Since expressions for bending moment and shear at section 2 depend on position of
the load P (to the left or to the right of the section 2), then for deriving equations of
influence lines two positions of the load should be considered.

P =1 left at section 2 P = 1right at section 2

0> XYM =0—>0,=-"P 0> 3V =0—>0,=0
IL(Qy) = —1 IL(Q>) =0

My =Y My =0—My=—Px | My—> Y My =0—> M, =0
IL(M,) = —x IL(M;) =0

At x=0: IL(M;)=0

At x=c: IL(Mp)=—c

Note that for any position of the load P = 1 (left or right at section 2) we use the
equilibrium equations )" Y™ = 0 and )~ M) = 0, which take into account forces
that are located left at the section. Similarly, for section 5 we will use the forces that
are located right at the section 5.

Construction of influence lines for bending moments and shear at sections 3, 4,
and 5 are performed in the same manner.

Pay attention that influence lines of shear for sections 3" and 3"€", that are
infinitesimally close to support point, (as well as for sections 4'° and 47¢") are
different. These sections are shown as 3’ and 3”, 4’ and 4”.

Influence lines for bending moments and shear forces at all pattern sections 1-5
are summarized in Fig. 2.8. These influence lines are good reference source for prac-
tical analysis of one-span beams subjected to any type of loads. Moreover, these
influence lines will be used for construction of influence lines for multispan hinged
statically determinate beams.
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2.2 Application of Influence Lines for Fixed and Moving Loads

Influence lines, which describe variation of any function Z (reaction, bending
moment, shear, etc.) in the fixed section due to moving concentrated unitload P = 1
may be effectively used for calculation of this function Z due to arbitrary fixed
and moving loads.

2.2.1 Fixed Loads

Three types of fixed loads will be considered: concentrated loads, uniformly dis-
tributed loads, and couples as shown in Fig. 2.10. Let us consider effect of each load
separately.

A1 s ™

1

72 | Inf. line for Z

Fig. 2.10 Application of
influence line for fixed loads @

(04

Concentrated Loads

If a structure is loaded by a load P(P # 1), then function Z due to this load is
Z = £ Py, with y the ordinate of influence line for function Z at the point where
load P is applied. The sign of Z depends on the sign of ordinate y of influence line.
If a structure is loaded by several loads P;, then according to superposition principle

Z=x) Piy. (2.8)

In order to compute the value of any function (reaction, internal forces in any section
of the beam, frame, or any member of the truss, etc.) arising under the action of
several concentrated loads P;, the corresponding influence line must be constructed,
each load should be multiplied by the ordinate of the influence line measured at the
load point, and the obtained products must be summed up.

It is easy to check that units of ordinate of influence lines, which have been
discussed early, lead to the required units for function Z.
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Uniformly Distributed Load

Value of any function Z due to action of uniformly distributed load ¢ is determined
by formula Z = +qw, with w the area of influence line graph for function Z within
the portion where load ¢ is applied. If the influence line within the load limits has
different signs then the areas must be taken with appropriate signs. The sign of the
area coincides with sign of ordinates of influence line.

Couple

If a structure is loaded by couple M, then function Z, due to this moment is
Z =+ M tana, where « is the angle between the base line and the portion of in-
fluence line for function Z within which M is applied. If couple tends to rotate
influence line toward base line through an angle less than 90 then sign is positive; if
angle is greater then 90 then sign is negative.

Summary

Influence line for any function may be used for calculation of this function due to
arbitrary fixed loads. In a general case, any function Z as a result of application of
a several concentrated loads P;, uniform loads intensity ¢ ;, and couples M} should
be calculated as follows:

Z=Y Pyi+)Y qoj+ Y Mtana, (2.9)

where y; is the ordinates of corresponding influence line, these ordinates are mea-
sured at all the load points; w; the area bounded by corresponding influence line,
the x-axis, and vertical lines passing through the load limits; and o is the angle of
inclination of corresponding influence line to the x-axis.

The formula (2.9) reflects the superposition principle and may be applied for any
type of statically determinate and indeterminate structures. Illustration of this for-
mula is shown below. Figure 2.11 presents a design diagram of a simply supported
beam and influence line for reaction R 4.

P M

q
VI3 IIIIIIIIIY
£

R AT v 12 T R,

Fig. 2.11 Design diagram of
the beam

! Inf. line R,
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The value of reaction R4 due to given fixed loads P, g, and M equals

1 1 1 P I M
Ra=Py+qot+Mung = P-——tq-5 11 +M-—— = E+%+—.
—— —— ~——
y [} tano

The change of values of loads and/or their position does not change the procedure of
calculation of any factor using corresponding influence line. From this example we
observe an advantage of influence line: once constructed influence line may be used
for calculation of relevant function due to arbitrary loads.

Example 2.1. A design diagram of the simply supported beam with overhang is
presented in Fig.2.12. Calculate shear at section n using influence line. The loads
are P; = 12kN; P, = 8kN; g1 = 3kN/m; g, = 2kN/m.

P, P,
a q, v /5 v
' AEEEER AR
£ 1 B
4 6m i 4m T 3m |
RAI ‘ lRB i
1 0.4

. Inf. line Q,

1 0.3
Fig. 2.12 Design di f b 14 14 8
ig. 2. esign diagram o .
the beam. (a) Influence line Y IIID:I Shear diagram Q
for shear Q,,. (b) Shear force :
diagram 159

Solution. First of all, the influence line for required shear at section n should be
constructed (Fig. 2.12a).

The shear force at section n caused by the fixed loadsis O, = Y P;y;i +>_ qiw;.
If load P; is located infinitely close to the left of the section n, then ordinate
y1 = —0.6. If load P; is located infinitely close to the right of section 7, then
ordinate y; = 0.4. Ordinate y, = —0.3. Areas of the influence line within the
distribution loads ¢; and g, are

1 1
w1 = —5 X6x06=—-1.8m; wr, = —3 x3x0.3=-045m.
The peculiarity of this problem is that force P; is located at the section where it is
required to find shear. Therefore, we have to consider two cases when this load is
located infinitely close from the left and right sides of the section 7.

If load P; is located to the left of section n, then

On = 12 x (—0.6) + 8 x (=0.3) 4+ 3 x (—1.8) + 2 x (=0.45) = —15.9kN.
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If load P; is located to the right at section n, then
0, =12x0.4+8x(—0.3) +3 x (—1.8) + 2 x (—0.45) = —3.9kN.

In order to understand the obtained results, we need to calculate the shear Q, for
section n and show shear force diagram. Reaction of the support A is R4 = 14.1 kN.

If the load P; is located to the left of section n, then the force P; must be taken
into account

On— Y Y"=0->0,=Rs—q1-6—P; =141-3x6—12=—159kN.

If the load P; is located to the right of section n, then the force P; must not be taken
into account
On=R4—q1-6=141-3x6=—-3.9kN.

Shear force diagram Q is presented in Fig. 2.12b.

This example shows the serious advantage of influence lines: if we change the
type of loading, the amount of the load, and its locations on the beam, then a corre-
sponding reaction (or internal forces) may be calculated immediately.

Since the amount of the load and its location does not affect on the influence
lines, then influence lines should be considered as fundamental characteristics of
any structure.

2.2.2 Moving Loads

Influence line for any function Z allows us to calculate Z for any position of a
moving load, and that is very important, the most unfavorable position of the moving
loads and corresponding value of the relevant function. Unfavorable (or dangerous)
position of a moving load is such position, which leads to the maximum (positive
or negative) value of the function Z. The following types of moving loads will be
considered: one concentrated load, a set of loads, and a distributed load.

The set of connected moving loads may be considered as a model of moving
truck. Specifications for truck loading may be found in various references, for ex-
ample in the American Association of State and Highway Transportation Officials
(AASHTO). This code presents the size of the standard truck and the distribution of
its weight on each axle. The moving distributed load may be considered as a model
of a set of containers which may be placed along the beam at arbitrary position.

The most unfavorable position of a single concentrated load is its position at
a section with maximum ordinate of influence line. If influence line has positive
and negative signs, then it is necessary to calculate corresponding maximum of the
function Z using the largest positive and negative ordinates of influence lines.
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In case of set of concentrated moving loads, we assume that some of loads may
be connected. This case may be applicable for moving cars, bridge cranes, etc. We
will consider different forms of influence line.

Influence Line Forms a Triangle

A dangerous position occurs when one of the loads is located over the vertex of
an influence line; this load is called a critical load. (The term “critical load” for
problems of elastic stability, Chap. 13, has a different meaning.) The problem is to
determine which load among the group of moving loads is critical. After a critical
load is known, all other loads are located according to the given distances between
them.

The critical load may be easy defined by a graphical approach (Fig.2.13a). Let
the moving load be a model of two cars, with loads P; on the each axle. All distance
between forces are given.

Step 1. Trace the influence line for function Z. Plot all forces Py, P, P3, P4 in
order using arbitrary scale from the left-most point A of influence line; the
last point is denoted as C.

Step 2. Connect the right most point B with point C.

Step 3. On the base line show the point D, which corresponds to the vertex of in-
fluence line and from this point draw a line, which is parallel to the line CB
until it intersection with the vertical line AC.

Step 4. The intersected force (in our case P,) presents a critical load; unfavorable
location of moving cars presented in Fig.2.13a.

Step 5. Maximum (or minimum) value of relevant functionis Z = )_ P; - y;.

Fig. 2.13 Graphical definition of the unfavorable position of load for triangular influence line.
(a) Set of concentrated load. (b) Uniformly distributed load of fixed length /
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Influence Line Forms a Polygon

A dangerous position of the set of moving concentrated loads occurs when one
or more loads stand over vertex of the influence line. Both, the load and the apex
of the influence line over which this load must stand to induce a maximum (or
minimum) of the function under consideration, are called critical. The critical apex
of the influence line must be convex.

In case of Uniformly distributed moving load, the maximum value of the function
Z corresponds to the location of a distributed load ¢, which covers maximum one-
sign area of influence line. The negative and positive portions of influence line must
be considered in order to obtain minimum and maximum of function Z.

The special case of uniformly distributed moving load happens, if load is dis-
tributed within the fixed length l. In case of triangular influence line, the most
unfavorable location of such load occurs when the portion ab = [/ and base AB
will be parallel (Fig.2.13b).

Example 2.2. Simply supported beam with two overhangs is presented in Fig. 2.14.
Determine the most unfavorable position of load, which leads to maximum (posi-
tive and negative) values of the bending moment and shear at section k. Calculate
corresponding values of these functions. Consider the following loads: uniformly
distributed load ¢ and two connected loads P; and P, (a twin-axle cart with differ-
ent wheel loads).

Solution. Influence lines for required functions Z are presented in Fig. 2.14.

Action of a uniformly distributed load ¢ = 1.6 kN/m. Distributed load leads to
maximum value of the function if the area of influence lines within the distributed
load is maximum. For example, the positive shear at the section k is peaked if
load ¢ covers all portions of influence line with positive ordinates; for minimum
shear in the same section the load ¢ must be applied within portions with negative
ordinates.

1
Qk(max+) =1.6x 5(0.3 X3+ 0.4 x4) =2kN;
1
Ok(max—) = —1.6 X 5(0.6 x 6+ 0.3 x3) = —-3.6kN,
1
My (max+) = 1.6 X 3 X 10x 2.4 =19.2kNm;
1
My (max—) = —1.6 X 5(1.2 x3+18x%x3)=—-72kNm.

Positive value of M} .« means that if load is located between A B, the tensile
fibers of the beam at section k are located below longitudinal axis of the beam.
If load is located within the overhangs, then bending moment at section k is nega-
tive, i.e., the tensile fibers at section k are located above the longitudinal axis of the
beam.
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Inf. line M, (m)

Fig. 2.14 Design diagram of the beam, influence lines, and most unfavorable positions of two
connected loads

Action of the set of loads P; = 5kN and P, = 8 kN. Unfavorable locations
of two connected loads are shown in Fig. 2.14. Critical load for bending moment at
section k (triangular influence line) is defined by graphical method; the load P, is a
critical one and it should be placed over the vertex of influence line.

Ok(max+) = 5x0.4+8x0.2=3.6kN;
Okmax—) = —(5x0.4+48x0.6) = —6.8kN,
Mimax+) = 5x 1.6 +8x2.4 =27.2kNm;
Mi(max—) = —(56x0.6 + 8 x 1.8) = —17.4kNm.

If a set of loads P; and P, modeling a crane bridge then the order of loads is fixed
and cannot be changed. If a set loads P; and P, is a model of a moving car then we
need to consider case when a car moves in opposite direction. In this case the order
of forces from left to right becomes P, and P;.

2.3 Indirect Load Application

So far, we have been considering cases when external loads were applied directly
to the beams. In practice, however, loads are often applied to secondary beams (or
stringers) and then are transmitted through them to the main beam (or girder) as
shown in Fig.2.15. Stringers are simply supported beams. Each stringer’s span is
called a panel d and each point where the stringer transmits its load onto the main
beam is called a panel point or a joint. The load is transmitted from the secondary
beams onto the main beam only at panel points.
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Fig. 2.15 Indirect load P=1
1 1 R 1_ X R
appllcatlon Stringer\ m ﬁ: A Floor beam

i Main beam|
ynl i

| Inf. line Z

Influence line for any function Z in case of direct load application is presented
in Fig. 2.15 by dotted line. Ordinate of influence line for parameter Z at the panel
points m and n are y,, and y,, respectively. If load P = 1 is located at point m or n
in case of indirect load application, then parameter Z equals y,, or y,.Ifload P = 1
is located at any distance x between points m and 7, then reactions of stringers R,
and R, are transmitted on the main beam at points m and 7. In this case function Z
may be calculated as

Z = Rmym + Rnyn~

Since
_Pd-x) d-x Px

’Rn=_=

X
d d d d’

then the required parameter Z becomes

Rm

d—x X
Z=——Ym+ =Vn=Ym+

1
d d =(Vn — Yym)x. (2.10)

d

Thus, the influence line for any function Z between two closest panel points 2 and
n is presented by a straight line. This is the fundamental property of influence lines
in case of indirect load application.

Influence lines for any function Z should be constructed in the following
sequence:

1. Construct the influence line for a given function Z as if the moving load would
be applied directly to the main beam.

2. Transfer the panel points on the influence line and obtained nearest points con-
nect by straight line, which is called as the connecting line.

This procedure will be widely used for construction of influence lines for arches and
trusses.

Procedure for construction of influence lines of bending moment and shear at
section k for simply supported beam in case of indirect load application is shown
in Fig. 2.16. First of all we need to construct the influence line for these functions if
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load P would be applied directly to the main beam A B. Influence line for bending
moment presents triangle with vertex ab/[ at the section k; influence line for shear
is bounded by two parallel lines with the jump at the section k. Then we need to
indicate the panel points m and n, which are nearest to the given section k, and
draw vertical lines passing through these points. These lines intersect the influ-
ence lines at the points m’ and n’. At last, these points should be connected by a
straight line.

P=1 Stringer
Floor beam
A ! —— = = B
j LI
mi k " "Main beam —2—
A H H A
‘a | b
’ !
R, : Ry
Connecting line
V § b
; 7
a m
‘ I 2 Inf. line M,
: Inf. line Q,

Fig. 2.16 Influence lines in
case of indirect load
application

Connecting line

Pay attention, that if a floor beam m will be removed, then the influence line
for Oy becomes the positive one-sign function instead of a two-sign function, as
presented in Fig. 2.16. If the floor beam n and all following ones (except floor beam
at the support B) will be removed, then the influence line for Oy becomes the one-
sign function too, but a negative one.

2.4 Combining of Fixed and Moving Load Approaches

So far we showed an application of influence lines Z for analysis of this particu-
lar function Z. However, in structural analysis, the application of influence lines
is of great utility and we can use influence line for Z; for calculation of another
function Z,. For example, design diagram of the beam and influence line for re-
action R4 is shown in Fig.2.17. How we can calculate the bending moment at
section k?

Using fixed loads approach we need to calculate the reaction, which arises in right
stringer; transmit this reaction through floor beam to panel joint onto main beam;
determine reactions R4 and Rp and, after that, calculate Mg by definition using
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Fig. 2.17 Calculation of P

bending moment M using l

influence line for R 4 T I T T C T
"
R AT<_“—> TRB
. : "‘“’“‘—K . Inf. line R,

Ye

R4 (or Rp). Using moving load approach, we need to construct the influence line
for bending moment at section k. However, we can combine both approaches. For
this, show the influence line for reaction R 4. According to this influence line, the
reaction R4 = Pyc. Immediately, the bending moment at section K equals Mg =
Rga = Pyca. This idea will be used later for analysis of structures.

2.5 Properties of Influence Lines

Fundamental properties of influence lines are the following:

1. For statically determinate structures influence lines for reactions and internal
forces are linear

2. In case of a simply supported beam with overhangs, the influence lines for reac-
tions and internal forces for section between supports should be constructed as
for beam without overhangs and extended along the overhangs

3. In case of indirect load application influence line between two joint points is
linear

4. Units of ordinate of any influence line of factor Z are unit of Z divided by unit
of load P (kN, Ib)

Influence lines describe fundamental properties of a structure, which are inde-
pendent from the load; therefore, they may be considered as a fundamental and
reference data for the structure. Influence lines allow finding internal forces and re-
actions in case of fixed and moving loads. Influences lines allow performing quick
analysis of a structure when it is modified, in particularly in case of indirect load
application.

Influence line for some factor is used for determination of this factor only; and
after this factor may be used for determination of some other parameters. For exam-
ple, we can determine reactions due to any fixed loads using influence line. Then this
reaction can be used for determination of internal forces by definition. Such com-
bination of two approaches is a very effective way of analysis of complex statically
determinate structures and especially of statically indeterminate structures.
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Problems

2.1. The simply supported beam AB is subjected to the fixed loads as shown in
Fig. P2.1. Analyze the structure using the fixed and moving load approach.

Fixed load approach Determine the reaction at the supports and construct the in-
ternal force diagrams, caused by given loads.

Moving load approach

(a) Construct the influence lines for reaction at the supports 4 and B

(b) Construct the influence lines for bending moment and shear force for section k

(c) Construct the influence lines for bending moment and shear force for sections
infinitely close to the left and right the support B

(d) Calculate reaction of the supports, bending moment and shear force for all
above mentioned sections using corresponding influence lines

(e) Compare the results obtained by both approaches

Ans. R4 =3.9kN; Rp =14.1kN; My =23.4kNm; Q" =3.9kN;
0" = —8.1kN.

P=12kN ¢=2kN/m
4 l BV Iy
£ koo
| a=em  [p=dm| 3m |
I I T ’I

Fig. P2.1

2.2. Simply supported beam is subjected to linearly varying load shown in Fig. P2.2.
Determine the reactions of supports and construct the bending moment and shear
diagrams. Compute the reaction of the left support using influence line.

ql ql V3 5
Ans. Ry = —; Rp = —; My = —ql”.
s a4 =rgs BB =5 274

Fig. P2.2

2.3. Cantilever beam AB is subjected to the fixed loads as shown in Fig.P2.3.
Analyze the structure using the fixed and moving load approach.
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Fixed load approach Determine the reaction of support B; Construct the internal
force diagrams.

Moving load approach

(a) Construct the influence lines for vertical reaction Rp and moment Mp at the
clamped support

(b) Construct the influence lines for bending moment and shear for section k

(c) Calculate reactions at the support B, bending moment and shear for section k
using corresponding influence lines
(d) Compare the results obtained by both approaches

Ans. Rg = 14.0kN(1); Mp = 57kNm.

J'P_SkN ¢=2kN/m

4 XX XXX
| 3m ]|€ 3m

! I

Fig. P2.3

2.4. The beam A B is subjected to the fixed uniformly distributed loads as shown in
Fig. P2.4. All dimensions are in meters.

(a) Calculate the bending moment and shear at section k caused by the given fixed
load using influence lines for Mg and Q g, respectively

(b) Calculate the bending moment and shear force at section k caused by the given
fixed load, using influence lines for reaction R 4

(c) Compare the results

Ans. My = 9kNm; Qf = 1.8kN.

¢=2kN/m
A XX XXX
pis — pd

Fig. P2.4

2.5. Explain the meaning of the graph, which is obtained from any influence line
by its differentiation with respect to axial coordinate x.



Chapter 3
Multispan Beams and Trusses

This chapter is devoted to the analysis of statically determinate multispan beams and
trusses, subjected to moving loads. Methods for the generation of beam and trusses,
and the construction of influence lines are discussed. Different types of trusses are
considered; among them are trusses with subdivided panels and some special types
of trusses.

3.1 Multispan Statically Determinate Beams

Multispan hinged beams (Gerber—Semikolenov beams) are geometrically unchange-
able and statically determinate structures consisting of a series of one-span beams
with or without overhangs connected together by means of hinges. The simplest
Gerber—Semikolenov beams are presented in Fig. 3.1.

L L % | B

Fig. 3.1 Simplest Gerber—Semikolenov beams

3.1.1 Generation of Multispan Statically Determinate
Hinged Beams

The following rules of distribution of hinges in beams, which have no clamped ends,
provide their unchangeableness and statical determinacy:

1. Each span may contain no more than two hinges.

2. Spans with two hinges must alternate with spans without hinges.

3. Spans with one hinge may follow each other, providing that first (or last) span
has no hinges.

4. One of support has to prevent movement in the horizontal direction.

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 39
DOI 10.1007/978-1-4419-1047-9_3, (© Springer Science+Business Media, LLC 2010
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a

b
& L X X 2 &I
c d
E X L L 3 S X I X

Fig. 3.2 Distribution of hinges in beams with simply supported ends

Figure 3.2 shows some examples of the hinges distribution in beams without
fixed ends.
The distinctive properties of multispan statically determinate beams:

1. Structure with intermediate hinges has less stiffness than structure without in-
termediate hinges. This leads to substantial reduction of bending moments as
compared with continuous beams spanning the same opening.

2. Possibility of control stresses by variation of hinges locations.

Advantages of multispan hinged beams are as follows:

1. Change of temperature, settlements of supports, imperfect of assembly does not
create stresses.

2. Failure of one of the support may not destroy the entire system.

3. Relatively short members of multispan beams are well suited for prefabrication,
transportation, and installation using standard equipment.

4. Multispan hinged beams are usually more economical than a series of discon-
nected simply supported beams spanning the same opening.

3.1.2 Interaction Schemes and Load Path

Gerber—Semikolenov beams may be schematically presented in the form, which
shows the interaction of separate parts and transmission of forces from one part of
the beam to another. Gerber—Semikolenov beams consist of two types of beams,
namely a main (or primary) and suspended (or secondary) beam.

A main beam is designed to carry a load, which is applied to this beam as well
as to maintain a suspended beam. Therefore, the main beam carries a load, which
is applied to this beam, as well as a load, which is transmitted on the main beam
as a reaction of the suspended beam. Interaction schemes for simplest Gerber—
Semikolenov beams are presented in Fig. 3.3.

In these cases, beams 1 are primary and beams 2 are secondary ones. Obviously,
that failure of the beam 1 causes the collapse of the entire structure while failure of
the beam 2 does not cause failure of the beam 1. There is only one way of presenting
multispan beams using an interaction diagram.

Interaction schemes allow to clearly indicate the load pass from one part of a
structure to another. Also they are helpful for construction of internal force diagrams
as well as for more advanced analysis.
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1 2 1 2

2 : : P2

R S L BT

Fig. 3.3 Interaction schemes for simplest Gerber—Semikolenov beams

Five-span beam and its interaction diagram is presented in Fig. 3.4. Since the
structure in a whole is restricted against the horizontal displacement owing to sup-
port A, then each part of the structure has no displacement in horizontal direction
as well. That is why the rolled supports C and E on the interaction diagram are re-
placed by pinned supports. Restrictions for suspended beams also prevent horizontal
displacements. This replacement is conventional.

H,  H, H,  H

& T X X7 X &
A B i P L E F

CD::
g3 & 3
N S 3z L

Fig. 3.4 Interaction diagram of Gerber—Semikolenov beam

Beams ABH; and H; H, present the main and suspended beams, respectively.
It means that collapse of the main beam A BH; leads to the collapse of suspended
beam, while collapse of suspended beam does not affect on the main beam. Collapse
of the beam H4 EF leads to the collapse of the beam H3 H4 only, and does not affect
on other parts of the structure.

The entire structure contains five discs, four simple hinges, and seven constraints
of supports. Degree of freedom of the structure is

W=3D—-2H—-Cy=3x5-2x4-7=0,

so entire system is statically determinate and geometrically unchangeable structure.
On the other hand, in general case of loads there are seven reactions of supports
arise in the structure. For their calculation we can use three equilibrium equations
and four additional conditions, i.e., bending moment at each hinge is equal to zero.
Therefore, the structure is statically determinate one.

Another four-span beam and its interaction diagram is presented in Fig. 3.5.

The entire structure contains four discs, three simple hinges, and six constraints
of supports. Degree of freedom of the structure is

W =3D—-2H—-Cy=3%x4-2x3-6=0,
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Fig. 3.5 Interaction diagram of Gerber—Semikolenov beam

S0 entire system is statically determinate and geometrically unchangeable structure.
On the other hand, in general case of loads there are six reactions of supports arise
in the structure; they are five vertical reactions at supports and one horizontal reac-
tion at support A. For their calculation we can use three equilibrium equations and
three additional conditions, i.e., the bending moment at each hinge is equal to zero.
Therefore, the structure is statically determinate one.

The beam H, H3 is both main for H3 E beam and suspended for H; C H, one.
Therefore, the load P, which is applied to the beam H, Hj is transmitted only to
beams located below and does not transmitted to the beams located above this one.

It is not difficult to form the rules of distribution of hinges which transforms the
continuous beam with one (or two) clamped ends into Gerber—Semikolenov beam.

3.1.3 Influence Lines for Multispan Hinged Beams

For construction of influence lines of reactions and internal forces for statically de-
terminate multispan beams the following steps are recommended:

Step 1. The entire multispan hinged beam should be presented in the interaction
diagram form. This helps to classify each element of the structure as primary
or secondary beams, and visualize the load path from the secondary beam
on the primary one.

Step 2. Consider structural element of a multispan beam, which contains a support
or section for which the required influence line should be constructed. This
element is the primary or secondary simply supported beam with/without
overhangs or cantilevered beam. Then we need to construct an influence
line for the required function for this beam only.

Step 3. Take into account the influence of moving load which is located on the adja-
cent suspended beam and distribute the influence line which is constructed
in step 2 along this secondary beam. For this it is necessary to connect an
ordinate of influence line at the end point (hinge) with a zero ordinate at the
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second support of the suspended beam. This procedure is called as distribu-
tion of influence lines within the suspended beam.

Step 4. The beam distribution procedure should be applied for the following sus-
pended beam.

To illustrate this procedure for statically determinate multispan beams we will
consider a structure as in Fig3.6. It is necessary to construct the influence lines
for reactions, bending moment, and shear for indicated sections. We are starting
from kinematical analysis of a structure: this beam is statically determinate and
geometrically unchangeable structure.

P=1
B C D
______________________________ l.
H n

| Inf. line R,
0.333] ; ; P
1 3 1.5 P
; 3 m ' Inf. line
e T 1 LM, (m)
0333 | 1 05 1
I A -
: . . 5 3 wm\q Inf. line Q,
§ .1 ; ; % 0.5\\\*\; 1 g
mw Inf. line Q;
- .o %
§ ; P08 § i
: ; I e o e e o — S : .
Inf. line
RN M, (m)

2

Fig. 3.6 Multispan statically determinate beam. Influence lines for reactions, bending moment
and shears at some sections

Influence Line for R

The structural element is beam H3CD. Influence line for reaction Rp within the
span CD is a straight line with ordinate 1 at support D, zero at support C, and
extended within left-hand and right-hand overhangs.
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Ifload P =1 is located on the suspended beam H, H3, then fraction of this force
is transmitted to the primary beam H3CD. If load P = 1 located at point H3 of
suspended beam H, H3, then this force is completely transmitted to the primary
beam H3CD. Thus, influence line has no discontinuity at point Hs.

Ifload P = 1 islocated at point H; on the suspended beam H, H3, then this force
is completely transmitted to the primary beam Hy BH; and thus, has no influence on
the reaction Rp. Therefore, influence line of Rp has zero ordinate at point H». If
unit load is located within H, H3, then the pressure transmitted from the secondary
beam H, H3 to the primary beam H3CD at point H3 varies proportionally to the
distance of the unit load from point H,. Therefore, ordinate of influence line at point
H3 should be connected with zero ordinate at point H».

If load P = 1 is located on the beam H; BH>, then force is not transmitted to
the suspended beam H» H3; the load does not influence on reaction R p. Therefore,
ordinates of influence line along A H| BH, are zeros.

If load P = 1 (or any load) is located on the beam H,C, then reaction Rp is
directed downward. Maximum positive reaction Rp appears if load P = 1 will be
located at the extremely right point of the beam; maximum negative reaction Rp
appears if load P = 1 will be located at the point H3.

Influence Lines for Shear O, and Bending Moment M, at Section &k

Suspended beam H, H3 is subjected to loads, which act on this beam only, while
a load from other parts of the beam (A H, and H3 D) cannot be transmitted on the
beam H, H;. Therefore influence lines for internal forces at section k are same as
for simply supported beam without overhangs.

Influence Lines for Shear Q,, and Bending Moment M,, at Section n

Influence lines for section n should be constructed as for simply supported beam
with overhang H3C. At point H3 this beam supports the beam H, H3, which is sus-
pended one. Therefore, ordinates of influence lines at point H3 should be connected
with zeros ordinates at point H5.

Influence Lines for Shear Q,, and Bending Moment M, at Section s

When the load travels along portion A H;, then construction of the influence lines
for section s is exactly the same as for a cantilevered beam.

Ifload P =1 is located on the suspended beam H; H,, then fraction of this force
is transmitted to the primary beam AH;. If load P = 1 is located at point H; of
suspended beam H; BH», then this force is completely transmitted to the primary
beam A H;. Therefore, influence line has no discontinuity at point Hj.



3.1 Multispan Statically Determinate Beams 45

If load P = 1 is located at point B on the suspended beam H; BH», then this
force is completely transmitted to the support B and no part of this force is taken by
the support H; and thus, no force is transmitted to the main beam A H;. Therefore,
influence lines for shear and moment at section s has zero ordinates at point B. If
unit load is located within the Hy BH>, then the pressure from the secondary beam
on the primary beam at point H; varies proportionally to the distance of the unit
load from point B.

Similar discussions should be used, when unit load travels along the suspended
beam H, Hs.

If load travels along the beam H3C D, then no part of this load is transmitted to
the beam A H,. Therefore, ordinates on influence lines for Q¢ and M, along the part
H;CD are zeros.

If load is located within the part s- B, then bending moment at section s is nega-
tive. It means, that the extended fibers at section s are located above the neutral line.
If any load will be distributed within BH3, then extended fibers at section s will be
located below the neutral line.

3.1.4 Summary

For construction of influence lines for multispan statically determinate hinged beam
it is necessary to show interaction diagram, and to show the part of the entire beam,
which contains the support or section under consideration; this part is clamped-free
or simply supported beam with or without overhangs. Next we need to construct
the required influence lines considering the pointed portion of a beam and then
distribute influence line along the all beams which are suspended with respect to
pointed one. Thus construction of influence lines for multispan hinged beams is
based on the influence lines for three types of simple beams and does not requires
any analytical procedures.

Influence lines of reactions and internal forces for Gerber—Semikolenov beams,
as for any statically determinate structure, are linear.

Example 3.1. Load is applied to stringers and transmitted to the Gerber—
Semikolenov beam ABHCD by floor beams at points m, n, s, and ¢t (Fig.3.7).
Construct the influence lines for reaction at A and for bending moment at section k.

Solution. First of all, show the interaction scheme for entire multispan hinged beam.
Influence line for R 4:

1. Influence line for R4 without floor beams and stringers is presented by polygon
ahd by dotted line.

2. Draw vertical lines from floor beams’ points m, n, s, and ¢ to the intersection
with the influence line.

3. Draw vertical lines from extreme left and right points E and F of the stringers
to the intersection with the base line. Corresponding points of intersections have
the notation e and f'.
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4. Connect nearest intersection points by connecting lines.
5. Influence line as a result of indirect load application is bounded by broken line
emnstf.

P=1 :
é /Strmger Floor beam  Girder

Inf. line M,
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Fig. 3.7 Gerber—Semikolenov beam with indirect load application, its interaction diagram and
influence lines

Influence line for My:

If the load is applied to the beam AHD directly, then the influence line for My is
bounded by akhd points. In case of indirect load application, the influence line is
bounded by emnstf points.

Discussion

1. Because of the indirect load application, the reactions and internal stresses arise
in the beam A D even if the load is applied outside the beam A D (close to sup-
ports E or F).

2. Influence lines are convenient to use for analysis of structures, with modified de-
sign diagram. For example, for the given structure the bending moment at section
k is positive, if any load is located within the stringer beam Em. It means that the
extended fibers in the section k are located under the neutral axis of the beam.
However, if a floor beam m will be removed and two stringers Em and mn will
be replaced by one stringer En, then the points e and n on influence line for My
should be connected. In this case bending moment at section k becomes negative,
e.g., the extended fibers in the section k will be located above the neutral line.
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3.2 The Generation of Statically Determinate Trusses

The trusses according to their generation are subdivided into simple, compound, and
complex ones.

3.2.1 Simple Trusses

Simple trusses are formed on the basis of a hinge-connected triangle with any addi-
tional joint attached by means of two additional members. The relationship between
the number of bars (.5) and joints (J) for simple statically determined and geomet-
rically unchangeable trusses is expressed as

S =2J-3. 3.1

This formula can be derived using two principally different approaches.

1. The unchangeability condition of a truss. A simple truss has an initial triangle
disc and each new joint is attached to the previous rigid disk using two bars
(Fig. 1.4c¢). The total number of bars is S =3 + 2 (J — 3). In this formula, the
first number represents the three bars used for the initial rigid disc. The 3 within
the brackets arises from the three joints of the initial triangle, so J — 3 represents
the number of joints attached to the initial triangle. The coefficient 2 stems from
the number of bars associated with each additional joint. Therefore, the total
number of bars is given by (3.1).

2. The statically determinacy condition of a truss. For each joint, two equilibrium
equations must be satisfied: Y X = 0, >.Y = 0. The number of unknown
internal forces is equal to the total number of members S. The total number
of unknowns, including the reactions of the supports, is S + 3. The number of
equilibrium equations equals 2J. Therefore, a truss is statically determinate if
S =2J-3.

Thus, the two different approaches both lead to the same (3.1) for the kinematical
analysis of a simple truss. Therefore, if a simple truss is statically determinate, its
geometry must be unchangeable and vice versa. Note, however, that (3.1), while
necessary, is an insufficient condition on its own to determine that a truss is geomet-
rically unchangeable. It is indeed possible to devise a structure which satisfies (3.1)
yet connects the bars in such a way that the structure is geometrically changeable.
For more examples see Chap. 1.

If the number of bars S >2J — 3, then the system is statically indeterminate;
this case will be considered later in Part 2. If the number of bars S <2J — 3,
then the system is geometrically changeable and cannot be used as an engineering
structure.
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3.2.2 Compound Trusses

A compound truss consists of simple trusses connected to one another. There are
different ways to connect simple trusses in order to construct a compound truss.

First approach uses three hinges, not arranged in line. Such an interconnection
can be considered as a simple triangle on the basis of its three rigid discs. In the
examples below, two of the trusses are represented by disks D; and D, (Fig. 3.8).
Two immovable (pinned) supports may be treated as rigid disk D3 (the earth).

Dy is earth

Fig. 3.8 The generation of a rigid disk by means of three hinges

Another approach uses hinge C and a rod R, which does not pass through the
hinge (Fig.3.9).

Fig. 3.9 The generation of a rigid disk by means of a hinge and a rod

A third method uses three rods, which are not parallel and do not all intersect at
the same single point (Fig. 3.10).

Fig. 3.10 The generation of a rigid disk by means of three rods

In addition, compound trusses can be composed of members that are themselves
also trusses (Fig.3.11). Such trusses suit structures carrying considerable loads, in
which the truss designs would require heavy solid members. In these cases it is often
more efficient to replace solid members with truss members.
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Fig. 3.11 A truss with compound members

The analysis of this truss should be performed as if all the compounded mem-
bers are solid rods. The obtained internal forces should be applied to the compound
member and then that member is considered as a truss. Since each compound mem-
ber is subjected to two balanced forces, the reactions of the supports are each zero.
Therefore, the supports of each compound member can be disregarded.

3.2.3 Complex Trusses

Trusses that are complex use other ways to connect two (or three) rigid discs.
Figure 3.12a presents a connection of two rigid discs using hinge H, two bars
1 and 2, and an additional support C. This connection arrangement produces a
Wichert truss. Figure 3.12b presents a connection of three rigid discs using hinge
C and three hinged end bars 1, 2, and 3.

a H
C

b

Fig. 3.12 Complex trusses

3.3 Simple Trusses

Construction of influence line for internal forces in trusses is based on analytical
methods used for computing internal forces induced by fixed loads. However, con-
struction of influence line for internal forces in a truss has specific features, which
will be considered while using this method. We direct the reader’s attention to the
next important and fundamental point: as in the case of beams, the construction of
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influence lines for trusses will be based not on the repeated calculation of a required
factor (reactions, internal forces) for successive position of a unit load as it moves
across the span, but on the deriving of the function for the required factor.

For construction of influence lines of internal forces, we will use the method
of sections and method of isolation of joints. The following are some fundamental
features of the joints and cuts methods.

Using the joint isolation method, three types of position of a unit moving load on
a load chord should be considered:

1. A moving load at the considered joint
2. A moving load anywhere joint except the considered one
3. A moving load within the dissected panels of a load chord

Using the cuts method, three types of position of a unit moving load on load chord
should be considered:

1. A moving load on a left-hand part of dissected panel of load chord
2. A moving load on a right-hand part of dissected panel of load chord
3. A moving load within the dissected panel of load chord

Design diagram of the simple truss is shown in Fig. 3.13. Influence lines for reac-
tions R4 and Rp for truss are constructed in the same manner as for reactions for
one-span simply supported beam.

Fig. 3.13 Design diagram of the triangle truss

The following notation for internal forces will be used: U for bottom chord; O
for top chord; V' for vertical elements; and D for diagonal elements.

Influence Line for Force Oy4-¢ (Section 1-1, Ritter’s Point 7, Fig. 3.14a)

The sectioned panel of the loaded chord (SPLC) is panel 5-7. It is necessary to
investigate three position of unit load on the loaded chord: outside the panel 5-7
(when load P is located to the right of the joint 7 and to the left of joint 5) and within
the panel 5-7. Load-bearing contour (or loaded chord) is denoted by dotted line.
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Fig. 3.14 (a) Free-body diagrams for left and right parts of the truss. (b) Free-body diagrams for
specified joints of the truss. (c) Influence lines for truss with lower loaded chord
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1. When unit load P is to the right of the sectioned panel, it is more convenient to
consider the equilibrium of the left-hand part of the truss

Os6 = Y My =0— O4er + Ra3d =0 — Oy = ——Ra.

The last equation for force O46 should be transformed into the equation of in-
fluence line for O46. When load P has a fixed position, then reaction Ry is a
specified number and Og4¢ is a number as well. However, if load P is changing
its position, then reaction R 4 is changing its value as well, so it becomes a func-
tion (influence line) and therefore internal force O4¢ becomes a function as well.
Thus, equation of influence line for O46 may be expressed in term of influence
line of reaction R 4

3d
IL(O46) = _TIL(RA)-
Thus, to construct influence line for Oy4-¢, the following steps are necessary:

(a) Show the influence line for R 4

(b) Multiply all ordinates by factor —3d /r

(c) Draw a shaded region, which corresponds to location of the load P (to the
right of the sectioned panel), but not part of the truss, which is considered as
a free body for equilibrium (!).

2. Similar discussions are applied for the construction of influence line when the
unit load P is to the /eft of joint 5. In this case, it is more convenient to consider
the equilibrium of the right-hand part of the truss

Oy — ZM;ight =0— O46r + Rp3d =0 — Oy = —TRB.

The last equation should be transformed in the equation of influence line. When

load P has a fixed position, then reaction Rp is a number and Og4¢ is a number

as well. However, if load P has various positions, then reaction Rp becomes a

function (influence line) and thus, internal force O46 becomes a function as well.
Therefore,

3d
IL(O46) = —TIL(RB).

Thus, influence line for Oy is obtained from influence line for Rp by multiply-
ing its ordinates by corresponding value (—3d/r). Hatching shows region 1-5,
which correspond to the position of the load.

Note, that the point of intersection of the left-hand portion and right-hand one
is always located under the Ritter’s point. If the Ritter’s point is in the infinity,
then the left-hand and right-hand portions are parallel.

3. Load P = 1 is located within the sectioned panel 5-7; since external load should
be applied at joints only, then this case corresponds to indirect load application.
Therefore, the influence line connects ordinates of influence lines at points 5
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and 7; connecting line is always a straight line. The completed influence line is
presented in Fig. 3.14c. As can be seen, the element O4-¢ is always compressed
for any location of the moving load. Maximum internal force O4-¢ occurs when
concentrated load is located at point 7.

It is very convenient to represent all information related to construction of influ-
ence lines in tabulated form as follows.

Force O4-¢ (Section 1-1, SPLC Is Panel 5-7, Ritter’s Point 7)

P =1 left at SPLC P = 1right at SPLC

O = Y MU =0 = O4gr + Rp3d =0, | O4g — Y. MM =0 — O4r + Ry3d =0,
3d 3d 3d 3d

Oy = _TRB — IL(O4-6) = —TIL (R) | O46=— TRA — IL(O4-6)= — TIL(RA)

Analytical expressions for influence lines of internal forces for the remaining
elements of the truss are obtained in the same manner as above. From now on we
will be presenting analytical expressions for construction of influence lines in tabu-
lated form. The tabulated form contains all necessary information for construction
of influence line.

Force D47 (Section 1-1, SPLC Is Panel 5-7, Ritter’s Point 1)

P =1left at SPLC P = 1right at SPLC

Dy = X M™ =0 Dygr| + Rp6d =0, | D4y = > M = 0 — Dyyry =0,
6d 6d

Dy7=——Rp > IL(Dy7) = ——IL(Rp) |[D47=0—>1IL(Dy7) =0
i I

The left-hand portion of influence line for D4-7 is obtained by multiplying all or-
dinates of influence line for Rp by a constant factor (—6d/rq). Ordinates of the
right-hand portion of influence line for D4-7 are zeros. Connecting line connects
the joints 5 and 7. Thus, if any load is located within portion 7-12, then internal
force in member Dy4-7 does not arise. Maximum force D4-7 occurs, if load P is
placed at joint 5.

Force Us-7 (Section 1-1, SPLC Is Panel 5-7, Ritter’s Point 4)

P =1 left at SPLC P = 1right at SPLC

- 2 2
Usr = Y M =0 — Us13h = Rpdd =0, | Us1— > Mkt = 0—>Us73h=R42d =0,

6d 6d 3d 3d
Us.; = TRB — IL(Us-7) = TIL(RB) Uss; = TRA — IL(Us7) = TIL(RA)
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The left-hand portion of influence line for Us-7 is obtained by multiplying all ordi-
nates of influence line for Rp by a constant factor 64/ k. The right-hand portion of
influence line for Us-7 is obtained by multiplying all ordinates of influence line for
R4 by a constant factor 3d/h. Connecting line runs between points 5 and 7. The
force Us-7 is tensile for any location of load on the truss.

Force Vg.7 (Section 2-2, Equilibrium of Joint 6, Fig. 3.14b)

ZX =0— —04-6cos¢ + Og-gcosp =0 — O4-¢ = Og-3,
Z Y =0— —V6_7 - 204-6 sin(p =0— V6_7 = _204-6 sin<p — IL(V6_7)
= —2sing - IL (O4-¢)

The influence line for Vs-7 is obtained by multiplying all ordinates of influence
line for O4-6 by a constant factor (—2 sin ¢). The maximum ordinate of this influ-
ence line equals to (3d/r)sing = 1. This result may be obtained using the other
approach: if load P = 1 is located at point 7, then internal forces in all vertical
members (except Vg-7) and diagonal members are zero; equilibrium equation of
joint 7 leads to Vg7 = 1.

Force Uj-3 (Section 3-3, Equilibrium of Joint 1, Fig. 3.14b)

P = 1 applied at joint 1 P =1 applied at joint 3 or to the right of joint 3

h
U —> Y MM =0 Us > L My =0— U1-3§ — Ryd =0,
h
—)U|_3§+1’d_RAd =0,

3d 3d
Ryj=1—->U;3;=0— IL(U|_3) =0 U3 = TRA d IL(U1_3) = TIL(RA)

The right-hand portion of influence line for U, -3 is obtained by multiplying all ordi-
nates of influence line for R4 by a constant factor (3d / h). Connecting line connects
the joints 1 and 3.

All the above-mentioned influence lines are presented in Fig. 3.14c.

3.4 Trusses with Subdivided Panels

Trusses with subdivided panels present are simple trusses with additional mem-
bers. Figure 3.15a shows the Pratt truss with two additional members within each
panel; for first panel they are 3-k and k-n. Figure 3.15b shows the Parker truss with
three additional members within each panel; they are a-b, a-c¢ and b-c. In both ex-
amples additional elements divide a panel (vertical member k-n in first case and
inclined members a-c and b-c in the second case). In the analysis of such trusses,
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an immediate application of the joints and through section methods might lead to
some difficulties.

tt

Fig. 3.15 Trusses with subdivided panels with their main and secondary trusses. Note: Shaded
zone in (a) and (b) are discussed in the kinematical analysis

3.4.1 Main and Auxiliary Trusses and Load Path

Analysis of trusses with subdivided panels can be performed in an orderly fashion
using the concepts of the main and secondary (auxiliary) trusses. The main truss is
a simple truss, which is enhanced by additional members. The secondary truss is a
conventional truss, which contains additional real members (3-k and k-n for truss
in Fig. 3.15a) and some imaginary members. These imaginary members coincide
with members of the main truss. The secondary trusses are shown by dotted lines.
The concepts of the main and secondary trusses allow us to consider trusses with
subdivided panels as compound trusses. Combinations of two trusses — a main and
sets of secondary trusses are shown in Fig. 3.15. In all cases, the secondary trusses
are supported by the joints of the main truss.
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The main purpose of a secondary truss is to transmit a load, which is applied
between the joints of a main truss, fo the joints of a main truss.

How can we distinguish between the main and the secondary trusses? The rule is
that elements of the secondary truss are connected with the main truss in such a way
that a vertical load, which acts on the joint of the secondary truss, is transmitted only
as a vertical load to the joints of the main truss. The secondary trusses in Fig. 3.15
are shown by dotted lines. Figure 3.15a also shows an incorrect presentation of a
secondary truss, since in this case the vertical, as well as the horizontal reactions
are transmitted to the joints of the main truss.

Aucxiliary trusses add joints to the loaded chord and serve different goals:

1. Secondary elements (i.e., the elements of the auxiliary truss) transmit loads ap-
plied to the lower (or upper) chord to the joints of the same chord of the main
truss (Fig.3.15a, b).

2. Secondary elements transmit loads applied to the upper (or lower) chord to the
joints of the other chord of the main truss (Fig. 3.15c).

3. Vertical elements of an auxiliary truss can divide a compressed member of
the upper chord, leading to increased load-carrying capacity of this element
(Fig.3.15¢).

It is possible to have a combination of two types of auxiliary trusses so that a load is
transmitted to both chords of the main truss as shown in Fig. 3.15d. In this case hinge
6 belongs to bottom auxiliary truss 5-8-7-6, while hinge 4 belongs to top auxiliary
truss 1-2-3-4. Members 3-4 and 7-8 have no common points. If load P is located
at point 4, then the load is transmitted to the upper chord (to joints 1 and 2) of the
main truss. If load P is located at point 6, then the load is transmitted to the lower
chord (to joints 5 and 7) of the main truss. If load P is located between points 4 and
6, then part of the load is transmitted to joint 4 and part to joint 6, and from there it
is transmitted from joint 4 to an upper chord and from joint 6 to lower chord.

Kinematical Analysis

For kinematical analysis of the truss in Fig.3.15a, we show the initial rigid disc
1-3-k. Each subsequent hinge is connected using two bars with hinges at the ends,
thus part 1-2-4-3 of the truss presents a rigid disc. The next joint cannot be obtained
in this way, so instead consider the truss from the right where the base rigid triangle
is 6-7-n. Similarly, each subsequent hinge is connected using two bars with hinges
at the ends, so part 5-6-7-4 presents a second rigid disc. Both discs are connected by
hinge 4 and member 2-5 according to Fig. 3.9; this compound truss is geometrically
unchangeable. The trusses in Fig. 3.15b,c can be analyzed in a similar way.

For all the design diagrams presented in Fig. 3.15, the relationship S =2J — Sy
is satisfied. For example, for structures (a,c) S =33 and J = 18; for structures (b,d)
S =25, and J = 14. All these structures are statically determinate and geometri-
cally unchangeable compound trusses.
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The elements of trusses with subdivided panels can be arranged into three groups
as follows:

1. The elements belonging to the main truss only. The internal forces in these ele-
ments are not influenced by the presence of secondary trusses. Such elements are
labeled #1 in Fig. 3.15c.

2. The elements belonging to the secondary system only. The internal forces in these
elements arise if a load is applied to the joints of the secondary system. Such
elements are labeled #2.

3. The elements belonging simultaneously to both the main and the secondary
trusses. The internal forces in such members are obtained by summing the inter-
nal forces, which arise in the given element of the main and also of the secondary
trusses, calculated separately. Such elements are labeled #3.

3.4.2 Baltimore and Subdivided Warren Trusses

The Baltimore truss is widely used in bridge-building for cases involving partic-
ularly long spans and large loads. The classical Baltimore truss is a Pratt truss
strengthened by two additional members in each panel (members 2-4 and 3-4 in
Fig.3.16a). The modified Baltimore truss is a Pratt truss strengthened by three ad-
ditional members in each panel (members 3-4, 2-4, and 4-6 in Fig. 3.16b). In both
cases, truss 1-2-3-4 should be treated as a secondary truss. This triangular truss is
supported by joints 1 and 3 of the main truss. In both cases, the vertical load, which
is applied to the loaded chord and acts at joint 2, leads to vertical reactions of the
secondary truss. These reactions are transmitted as active loads on the joints of the
same chord of the main truss.

a N N

KT

Fig. 3.16 Baltimore truss

In order to reduce the length of the compressed member of the upper chord,
member 2-4 is used in case (a) and additional member 4-6 in case (b).

Analysis of such trusses can be performed by considering the entire structure
as a combination of a Pratt truss (the main truss) and a set of additional triangular
trusses: one of them is additional truss 1-2-3-4.

There are three groups of elements: the ones that belong to the main truss only
(bars 3-5 and 4-5), the ones that belong to the secondary truss only (bars 2-4, 3-4,
and 4-6); and others that belong to both the main and the secondary trusses (bars
1-4, 1-2, and 2-3).
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The internal forces in the elements of the secondary truss should be calculated
considering only load, which is applied at the joints of the secondary truss. In other
words, in order to find the internal forces in elements 2-4 and 3-4 (due to the load
applied at joint 2), we need to consider the secondary truss, so the following notation
isused: Vo4 = V55 and D34 = D5%,. Since joints 1 and 3 represent the supports
of the secondary truss, if the load is applied at these joints it has no affect on the
elements of the secondary truss. Therefore, this load impacts the elements belonging
only to the main truss.

Internal forces in the members of the first group should be calculated consid-
ering only the main truss. In this case, the load that acts at joint 2 should be
resolved into two forces applied at joints 1 and 3 of the main truss and then
Vis = V4" Dys = DY,

Internal forces in the members of the third group should be calculated by consid-
ering both the main and the secondary trusses and by summing the corresponding
internal forces:

_ main sec . __ ,main sec
Di-4 = DT5" + D% O12 = O1%5" + O7%5,.

The same principle will be used for the construction of influence lines.

Another type of this class of trusses is the subdivided Warren truss. This truss is
generated from a simple Warren truss using the same generation principle used for
a Baltimore truss.

Let us consider a detailed analysis of a subdivided Warren truss presented in
Fig.3.17. The moving load is applied to the lower chord. As usual, we start from
a kinematical analysis. This truss is geometrically unchangeable because the rigid
discs are connected by means of hinges and bars.

Fig. 3.17 Kinematical analysis of the Warren truss

In order for the structure to be statically determinate the number of bars S and
joints J must satisfy the formula S = 2J — 3. In our case S = 49, J = 26, so
S =2J -3 = 52—-3 = 49. Therefore, this structure is geometrically unchangeable
and statically determinate.

Once again the necessity of kinematical analysis must be emphasized, espe-
cially for trusses that are not simple and contain many elements. For example, what
happens if the entire structure in Fig. 3.18 is modified by removing the following
symmetrical set of members: case (1) 4’-5" and 6'-7’; case (2) 4'-5', 4'-7, 6/-7’, and
6'-7'; or case (3) 4'-7 and 6'-7? Detailed kinematical analysis, as carried out above,
shows that this structure remains geometrically unchangeable for modifications (1)
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and (2). However, for modification (3) this structure becomes geometrically change-
able and cannot be used as an engineered structure. Unfortunately, some modern
software will work out a numerical analysis for any structure, even if the structure
is changeable. Therefore, in order to avoid structural collapse, each engineer must
complete a kinematical analysis as the very first step.

The entire structure in Fig.3.18 can be represented as a combination of main
and secondary trusses. A feature of this subdivided Warren truss is the following:
if the load is located on joints 1/, 3/, 5, etc. of the secondary trusses on the lower
chord, then the reactions of the secondary trusses are transmitted as active loads to
the joints of the lower chord of the main truss.

Entire
structure

o
Main truss

! Inf. line ¥, 5

sec

{ Inf. line D, ,=D, s

sec Sec

{ Inf. line U5 =Us"s

. Inf. line D, _g

~Right-hand portioni

sina ; . . o
' Connecting line for D5"¢"

i Connecting line for Us'%"

3d 1 t\‘ : ' y
h 2 tana s Right-hand portion o
AT
Inf. line Us_g

Fig. 3.18 Influence lines for internal forces for subdivided Warren truss

LAN

Now we will consider the construction of influence lines for reactions and in-
ternal forces of elements belonging to three different groups, i.e., to the main truss
only, to a secondary truss only, and to both trusses simultaneously. These elements
are indicated in Fig. 3.18.
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Influence lines for reactions are constructed in the same manner as in the case of
a simple truss. These influence lines are not shown.

The construction of influence lines for internal forces is presented in tabulated
form below.

Force V»-3
Vertical member 2-3 belongs to the main truss only; therefore, its influence line is

obtained by considering the main truss only. Consider the equilibrium of joint 3 of
the main truss:

P =1is applied at joint 3 P = 1is applied at any joint except 3
V2-3—>ZY=0—>V2-3—P=O, V2_3—>ZY=O—>V2-3=O,
Vocz = P = IL(Vz-3) =1 IL(V-3) =0

Forces Dy -7, Uss,e_c7

To calculate these forces we need to consider secondary truss 5-4'-7-5’ (Fig. 3.19).

5 8’0’ : .q.f::‘g7 <« 7
5, sec
Us_;
Fig. 3.19 Secondary truss P=1
loading 0.5

Assume that load P = 1 is located at point 5’. Then the reactions at points 5 and
7 will equal 0.5.
The equilibrium condition of joint 7 (Fig. 3.19) leads to the following results:

D4/_7 = ——1 S/ec = 1
2sine’ >

2tana

These influence lines are shown in Fig. 3.18.
It is obvious that IL(D4-7) = IL (DZ?ES) and IL (U;,e_c7) =1L (Uss,e_cs).

Force D4r -5

Diagonal member 4'-5 belongs simultaneously to the main and to a secondary truss.
Therefore, an influence line should be constructed considering the main truss and
secondary truss 5-4’-7-5" together:

Dy.s = DI + D55 — IL(Dy-s) = IL (D2") + IL (D3S5) -
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Force Ds.¢, Main Truss: The SPLC Is Panel 5-7; Ritter’s Point Is at Infinity

P = 1left at SPLC P = 1right at SPLC
DI — Y yreht =0 DIan_ 3 yleft = 0— DN sino + R4=0,
— —D&"sina + Rp =0,

. 1 ) 1 ) 1 .
D maimn __ R N IL D main J— IL R D mamn __ R S IL D main
56 " ina © ( 36 ) sin« (Rs) 56 sina ? ( 576 )

1
= ———IL(Ry)
Sin o

This influence line presents two parallel lines with ordinates 1/ sin & on the supports
and a connecting line within panel 5-7. Ordinate 1/ sin« on the right support is not
shown.

The influence line for internal force DZ%, is already known. The required influ-
ence line for Dy 5 is presented in Fig. 3.18. We can see that if load P is located at
joint 5’ or within the portion 5’-7, then the secondary truss within panel 5-7 leads to
a significant increase of compressed force Dy/-s.

Force Us/ 5

Member 5’-5 belongs simultaneously to the main and to the secondary truss.
Therefore, an influence line should be constructed considering the main truss and
secondary truss 5-4'-7-5":

Us.-s = UMM 4+ USs — IL (Us-s) = IL (UZSM) + IL (USSs)

where IL( ;?fS) = IL( ;?f7) has already been considered above. The influence
line for Us/-5s is presented in Fig. 3.18. We can see that if this truss is subjected to
any load within portions 1-5 and/or 7-13, the secondary trusses do not affect internal
force Uss_5. The influence of the secondary truss in panel 5-7 on internal force Us/-5
occurs only if any load is located within panel 5-7.

3.5 Special Types of Trusses

The following trusses are considered in this section: Three-hinged trusses, trusses
with a hinged chain, and complex trusses. Each of the above-mentioned trusses has
some peculiarities.

3.5.1 Three-Hinged Trusses

A three-hinged truss is actually two trusses connected by the hinge C as shown in
Fig.3.20a. Both supports are pinned. The fundamental feature of this structure is
that horizontal reactions appear even if the structure is subjected to a vertical load
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only. These horizontal reactions H4 = Hp = H are called thrust. Often such types
of structures are called thrusted structures. Some examples of three-hinged trusses
are presented in Fig. 3.20. Supports may be located at the same or different levels.
Truss (a) contains two pinned supports and the thrust is taken by these supports. A
modification of a three-hinged truss is presented in Fig. 3.20b. This structure con-
tains pinned and rolled supports. Instead of one “lost” constraint at support B, we
have introduced an additional member that connects both trusses. This member is
called a tie; the thrust is taken by the tie.

Fig. 3.20 Three-hinged trusses

The structure (a) is geometrically unchangeable. Indeed, two rigid discs, AC and
BC are connected to the ground by two hinges, A and B, and line AB does not pass
through the intermediate hinge C. Similarly, the kinematical analysis can be carried
out for truss (b).

All three-hinged trusses shown in Fig. 3.20 are statically determinate structures.
Indeed, the structures in Fig. 3.20a have four unknown reactions, i.e., two vertical
reactions, R 4, Rp and two horizontal reactions, H 4, Hp. For scheme (b) we have
three unknown reactions (R 4, R g, and horizontal reaction H4) as well as internal
force H (thrust) in the tie. For their determination, three equilibrium equations can
be formulated considering the whole system. Since the bending moment at hinge C
is zero, this provides an additional equation of equilibrium. It means that the sum
of the moments of all external forces located on the right or on the left part of the
structure with respect to hinge C is zero, i.e.,

ZMC =0 or ZMczo.

left right

These four equations of equilibrium determine all four unknowns.

Three-hinged symmetrical truss is shown in Fig. 3.21; the span [ = 6d. We need
to construct the influence lines for the reactions and for the internal force in indicated
member Uj-s. It is obvious that the influence lines for vertical reactions R4 and Rp
are the same as for a simply supported beam.
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The construction of the influence line for thrust H is presented here in tabulated
form. It is evident that Hy = Hp = H.

P =1 left at joint C P = 1right at joint C
) / [
H—>2Mé‘g‘“=0—>_Hf+RB§=0, H_)ZMg:ftz()—)Hf_RA5=0’
Rpl l Ryl /
H=———>1IL(H) = —IL(R H=— IL(H) = —IL(R
2~ LD = S7IL(Ry) 2 = ILUD = 37 IL(R)

The left portion of influence line H can be obtained from the influence line for
Rp by multiplying all ordinates by factor //2 f. The maximum thrust caused by
concentrated load P is P/ /4f. This happens if the force is located at hinge C.

| L
: Left-hand portion; ——
5 / | ’ Y Right-hand porti !
LI I . ight-hand portion | F7
3 LED 2
; ‘ Inf. line H

Construction of

b | ib g | Inf. line Uy
: a : :
e T T i . Inf. line U,
c W
m

Fig. 3.21 The influence lines of the symmetrical three-hinged truss

Having the influence line for the thrust allows us to determine the internal force
in any member due to arbitrary load. Assume for example, that the right half of the
truss is loaded by uniformly distributed load ¢g. In this case,

y T R S Y "
= =—-———-g=— an =———q=—.
1°=547297 165 47322977
N —
w

After that, finding the internal force in any member is a matter of elementary cal-
culation. So the influence line for thrust should be regarded as a key influence line.
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Force Ujs-5 (Section 1-1, SPLC Is Panel 4-6; Ritter’s Point is 4)

P = 1leftat SPLC P =1right at SPLC
Ups = Y M =0 Usys > Y Mt =0
—U3_5I'+R35d—Hf =0—>U3.5 U3-5F—RAd+Hf =0—>l]3_5
1 1
= ~ (Ry5d — Hf) = —(Rad —HJ)
5d . d ..
L) =y - L o | Lwe=two-Lue 6

The first term in formulas (i) and (ii) corresponds to a common nonthrusted truss
(such as a pinned-rolled truss with additional member 7-8). These formulas show
that the thrust decreases the internal force in member 3-5; such an influence of the
thrust on the distribution of the internal forces is typical for thrusted trusses.

For the construction of influence line Us-5 in the case of P = 1 left at SPLC, we
need to find the difference (5d/r)-IL (Rp)—(f/r)-IL (H). This step is carried out
graphically after both terms in this equation have been plotted (Fig. 3.21a). Ordinate
ab corresponds to the first term in formula (i), while ordinate bc corresponds to the
second term in formula (i). Since ab > bc, then the difference between the two
functions (5d/r)-1IL (Rp) and ( f/r)-1L (H) leads to the positive ordinates for the
final IL (U3-5) within this part of the truss.

Similarly, we can find the difference (d/r) - IL (Rp) — (f/r) - IL (H) for the
case of P = 1 right at SPLC. The specified ordinate nm shown in the final influence
line is

d f 1 d 3d d
= ng mms =5, raf  2r 2r 1’
Note that the ordinates of the influence line within the right portion are negative.
The final influence line for Us-5 is shown in Fig. 3.21b.

The influence line for Us-5 shows that this element of the bottom chord in this
three-hinged truss may be tensile or compressed, depending on the location of the
load. This is because the thrust acts as shown in Fig.3.21, i.e., external force P
tends to extend element 3-5, while thrust H tends to compress this element.

3.5.2 Trusses with a Hinged Chain

Some examples of trusses with a hinged chain are presented in Fig. 3.22. In all cases
these systems consist of two trusses, AC and CB, connected by hinge C and stiff-
ened by additional structures called a hinged chain. The hinged chain may be located
above or below the trusses. Vertical members (hangers or suspensions) connect the
hinged chain with the trusses. The connections between the members of the chain
and the hangers are hinged. In case (c), all the hinges of the hinged chain are located
on one line. In cases (a) and (b), a load is applied to the truss directly, while in case
(c), the load is applied to the joint of the hinged chain and then transmitted to the
truss.
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Hinged chain

Hinged chain

Fig. 3.22 Trusses with hinged chain

The typical truss with a hinged chain located above the truss is shown in Fig. 3.23.
Assume that the parameters of the structure are as follows: d = 3m,h =2m, f =
7m, and L = 24 m. We need to construct the influence lines for the reactions and
the internal forces in hanger, V},. As usual we start with the kinematical analysis of
the structure: it shows that the structure is geometrically unchangeable and statically
determinate.

S
h
RB
[11] Inf. line H
Left portion lllIIIIIIIIIIIIIIII l
Connecting line - A
Inf. line V,

Fig. 3.23 Truss with a hinged chain: design diagram and influence lines
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Reaction of Supports and Internal Forces

Reactions R4 and Rp for any load can be calculated using following equilibrium
conditions:

RA—>ZMB:0; RB—>ZMA:0.

For calculation of the internal forces that arise in the members of the hinged chain,
we need to show the free-body diagram for any joint n (Fig. 3.23). The equilibrium
equation » X = 0 leads to the relationship

Spcosae = Sy—jcosy = H. (3.2)

Thus, for any vertical load acting on the given truss, the horizontal component of the
forces, which arise in the all members of the hinged chain, are equal. The horizontal
component H of the forces S,, S,—; is called a thrust.

Now we will provide an analysis for the case of a moving load. The influence
lines for reactions R4 and Rp are the same as for a simply supported beam. How-
ever, the construction of an influence line for thrust H has some special features.
Let us consider them.

Thrust H (Section 1-1, SPLC Is Panel 7-C; Ritter’s Point is C)

Internal force S, which arises in the element m-k of the hinged chain, is denoted as
Siefc and Syighe. The meaning of the subscript notation is clear from Fig. 3.23.

If load P = 1 is located to the left of joint 7, then thrust H can be calculated
by considering the right part of the structure. The active forces are reaction Rp
and internal forces S7-¢, Ss-c, and Siigy. The last force Syigne can be resolved into
two components: a horizontal component, which is the required thrust H, and a
vertical component, which acts along the vertical line C-k. Now we form the sum
of the moment of all forces acting on the right part of the truss around point C, i.e.,
H—>>M Egm = 0. In this case, the vertical component of force Sygn produces no
moment, while the thrust produces moment Hf.

If load P = 1 is located right at joint C, then thrust H can be calculated by
considering the left part of the structure. The active forces are reaction R4 and
internal forces S7-¢, Sg-c, and Si. The force S, which is applied at joint m,
can be resolved into a horizontal component H and a vertical component. The latter
component acts along vertical line m-7. Now we find the sum of the moment of
all the forces, which act on the left part of the truss, around point C. In this case,
the vertical component of force Sif; produce the nonzero moment around joint C
and thrust H has a new arm (m-7) around the center of moments C. In order to
avoid these difficulties we translate the force Sy along the line of its action from
joint m into joint k. After that we resolve this force into its vertical and horizontal
components. This procedure allows us to eliminate the moment due to the vertical
component of S, while the moment due to the horizontal component of ' is easily
calculated as Hf.
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Construction of the influence line for H is presented in the table below.

P = 1 leftat SPLC P = I right at SPLC
H—>YM®™ =0—> Rgdd + Hf =0, | H—> Y. MS"=0— Ry4d + Hf =0,

H= —“f—‘,’RB —IL(H) = —%IL(RB) H= —%RA — IL(H) = —%IL(RA)

The left portion of the influence line for H (portion A-7) presents the influence
line for Rp multiplied by coefficient —4d /f and the right-hand portion (portion
C-B) presents the influence line for R4 multiplied by the same coefficient. The
connecting line is between points 7 and C (Fig. 3.23). The negative sign for thrust
indicates that all members of the arched chain are in compression.

Force V,

Equilibrium condition for joint n leads to the following result:
ZY =0: —V,+4 Sysina—S,—1siny =0—V, = H (tana —tany).

Therefore,
IL (V) = (tana —tany) - IL(H).

Since @ < y and H is negative, then all hangers are in tension. The corresponding
influence line is shown in Fig. 3.23.

The influence line for thrust H can be considered the key influence line, since
thrust H always appears in any cut-section for the entire structure. This influence
line allows us to calculate thrust for an arbitrary load. After that, the internal force in
any member can be calculated simply by considering all the external loads, the
reactions, and the thrust as an additional external force.

Discussion

For any location of a load the hangers are in tension and all members of the chain are
compressed. The maximum internal force at any hanger occurs if load P is placed
at joint C.

To calculate the internal forces in different members caused by an arbitrary fixed
load, the following procedure is recommended:

1. Construct the influence line for the thrust

2. Calculate the thrust caused by a fixed load

3. Calculate the required internal force considering thrust as an additional external
force

This algorithm combines both approaches: the methods of fixed and of moving loads
and so provides a very powerful tool for the analysis of complex structures.
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Example 3.2. The structure in Fig. 3.23 is subjected to a uniformly distributed load
q within the entire span L. Calculate the internal forces 7" and D in the indicated
elements.

Solution. The thrust of the arch chain equals

o o 1 L 2d qglLd
= q H= —q—= —_— =,
2 f f
where Qp is area of the influence line for H under the load g. After that, the required
force T' according to (3.2) is

H qlLd

cos g f cosay’

We can see that in order to decrease the force 7" we must increase the height f
and/or decrease the angle oy .

To calculate force D, we can use section 2-2 and consider the equilibrium of the
right part of the structure:

D—>Y=0:
1 L Ld
Dsinf+ Rp + Tsinoy =0— D = —— = _ 1 tanoy | .
sinf \ 2 f

Thus, this problem is solved using the fixed and moving load approaches: thrust H
is determined using corresponding influence lines, while internal forces D and T
are computed using H and the classical method of through sections.

3.5.3 Complex Trusses

Complex trusses are generated using special methods to connect rigid discs. These
methods are different from those used to create the simple trusses, three-hinged
trusses, etc. analyzed in the previous sections of this chapter. An example of a com-
plex truss is a Wichert truss.

Figure 3.24 presents a design diagram of a typical Wichert truss. As before, stat-
ical determinacy of the structure can be verified by the formula W = 2J — § — Sj,
where J, S, and Sy are the number of hinged joints, members, and constraints of

Fig. 3.24 Wichert truss
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supports, respectively. For this truss, we have W = 2 x 14 — 24 — 4 = 0. Thus, the
truss in Fig. 3.24 is statically determinate.

In this truss two rigid discs are connected using members 1, 2, and the rolled
support C. If the constraint C was absent, then this structure would be geometrically
changeable. However, the connections of both discs to the ground using constraint
C lead to a geometrically unchangeable structure.

A peculiarity of this multispan truss is that even though this structure is stati-
cally determinate, its reactions cannot be determined using the three equilibrium
equations for the truss as a whole. Therefore, the Wichert truss requires a new
approach for its analysis: the replacement bar method, also called the Henneberg
method (1886). The main idea behind this method is that the entire structure is
transformed into a new structure. For this, the intermediate support is eliminated
and a new element is introduced in such a way that the new structure becomes ge-
ometrically unchangeable and can be easily analyzed. The equivalent condition of
both systems, new and original, allows us to determine the unknown reaction in the
eliminated constraint.

As an example, let us consider the symmetrical Wichert truss supported at points
A, B, and C and carrying a load P, as shown in Fig.3.25a. Assume that angle
o = 60°.

Fig. 3.25 (a) Design diagram of a Wichert truss; (b) Substituted system

To analyze this system, let us replace support C by an additional vertical member
and apply external force X ¢, which is equal to the unknown reaction of support C
(Fig.3.25b). The additional element CK is called a substituted bar. According to the
superposition principle, the internal force in the substituted bar is Fc + Fp,i.e., itis
the sum of the internal forces due to unknown reaction X¢ of support C and given
external load P. Both systems (a) and (b) are equivalent if the internal force in the
substituted bar is zero, i.e., F¢c + Fp = 0. In expanded form, this equation may be
written as:

FXc+Fp=0, (3.3)

where Fp is the internal force in the substituted bar due to external force P; F is the
internal force in the substituted bar due to unit force X¢ = 1; and F X¢ represents
the internal force in the substituted bar due to unknown reaction X¢.

Two conditions should be considered. They are P-loading and X¢-loading. De-
sign diagram for both conditions present a truss simply supported at points A and B.
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For each condition, the force in the substituted bar can be found in two steps: first,

compute the force Ny in the member LC (using section 1-1) and then find required

force in substitute bar, considering joint C. This procedure is presented in Table 3.1.
According to (3.3), the unknown reaction of support C equals

F —0.672P
Xe=——2 = 2720 5 048P. (3.4)
F —0.328

After this, the calculation of reactions R4 and Rp presents no further difficulty. As
soon as all the reactions are known, the calculation of the internal forces in all the
members can be carried out as usual.

Discussion

1. For the given Wichert truss, loaded by vertical force P directed downward, the
vertical reaction of the intermediate support is also directed downward. This
surprising result can be easily explained. Imagine that support C is removed.
Obviously, point K would be displaced downward, rigid disc AKL would rotate
clockwise around support A and rigid disc KBR would rotate counterclockwise
around support B. Therefore, support C would be displaced upward, so the re-
action of support C is directed downward.

2. If the substituted member is a horizontal bar (between joints L and R), then

3. — 31 . .
Fp = ZP, F = > T3 = 0.366 and for reaction X¢ we obtain the same
result.
3. A Wichert truss is a very sensitive structure with respect to angle «. Indeed, if
— 0.707P
angle o = 45°,then Fp = 0.707P and F = 0,s0 X¢ = — . This means

that the system is simultaneously changeable. If angle « = 30°, then reaction X¢
is positive and equals 3.55P.

3.5.4 Summary

Analysis of any truss can be performed using two different analytical methods: the
fixed and moving load approaches.

The fixed load approach (methods of joints and through sections) allows us to
calculate the internal force in any selected member of a truss.

The moving load approach requires the construction of influence lines. The
following approach for the construction of influence lines may be used: the mov-
ing load, P = 1, is placed at each successive joint of the loading chord and
for each such loading the required internal force is calculated by the method
of joints or method of cuts. This procedure leads to a correct picture of the
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influence line, but this procedure is repetitive and bothersome; mainly, it is essen-
tially pointless.

This harmful inefficient approach is based on the calculation of the required force
for the different locations of the load in order to show the influence lines. In this
case the whole necessity of the influence line is lost, since by constructing influence
lines this way we already determined the internal forces for all positions of the
load P = 1.

On the contrary, we need the influence line in order to find the value of the re-
quired internal force for any location of the load. By no means should this graph be
plotted using repeated computation. In principal, such a flawed approach defeats the
purpose of the influence line as a powerful analytical tool.

This book contains an approach to the construction of influence lines, based on
accepted methods of truss analysis: using the joint and through section methods we
obtain an expression for the required force and after that we transform this expres-
sion into an equation for the influence line. The algorithm described above allows
the influence line to be presented as a function (in contrast to a set of numerical
ordinates for the influence line). Stated as functions, influence lines can realize their
full potential as extremely versatile tools for providing different types of analysis.

A very important aspect of this approach is that it allows us to find specific or-
dinates of the influence lines in terms of the parameters of the structure, such as
heights, panel dimensions, angle of inclination of diagonals, etc. This allows us to
determine the influence of each parameter on a required force and so provides opti-
mization analysis.

Both fundamental approaches, fixed and moving loads, complement each other.
This combination is very effective for truss analysis with some peculiarities (espe-
cially for statically indeterminate trusses). Also, the combination of both approaches
is an effective way to analyze the same truss in different load cases (snow, dead, live,
etc.). For example, for a thrusted truss with supports on different levels, we can find
the thrust by considering the system of equilibrium equations. Then, knowing the
thrust, we can find all the required internal forces. This is not difficult, but if we
need to do it many times for each loading, then it would be much wiser to con-
struct the influence line for the thrust only once. Then we could find its value due
to each loading. It is obvious that in this case the influence line for the thrust should
be treated as the key influence line. In the case of a truss with a hinged chain, the
internal force in the member of the chain under analysis (or better, the thrust as
the horizontal component of such an internal force) should be considered to be the
key influence line. Clearly, for a complex truss, such as the Wichert truss, the key
influence line is the influence line for the reaction of the middle support.

Problems

3.1. Provide kinematical analysis for beams in Fig.P3.1. Construct interaction
scheme, point the main and suspended beams, and explain a load path.
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Fig. P3.1

3.2. Vertical settlement of support A of the beam in Fig. P3.2 causes appearance of
internal forces in the portion

1. ABC;2. CDE; 3. Nowhere; 4. Everywhere

A B D F

S b L E &

Fig. P3.2

3.3. Beam in Fig.P3.3 is subjected to change of temperature. As a result, internal
forces appear in the portion

1. ABC; 2. CDE; 3. Nowhere; 4. Everywhere

A B D E

L S S

Fig. P3.3

3.4. Find direction of all reactions if uniformly distributed load is located within
portion CD (Fig. P3.4)

L
L

Fig. P3.4

Ans. R4y <0(]); Rc >0(1); R =0.
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3.5. Where concentrated load P should be located (Fig. P3.5)

(a) For maximum positive (negative) reaction of support A; (b) In order to reaction
Rp =0

Fig. P3.5

3.6. Analyze the design diagram of two-span Gerber beam is shown in Fig. P3.6.

(a) Find location of distributed load in order to reaction at support C will be equal
Zero

(b) Find portion of the beam which is not deformable if concentrated load P is
located at point B

(c) Where are located extended fibers within the portion AB if concentrated load P
is located at point D

C E
X D %

s+

Fig. P3.6

3.7a-b. Provide kinematical analysis for trusses in Fig. P3.7.

Fig. P3.7

3.8. Design diagram for a simple truss with a lower loaded chord is presented
in Fig. P3.8. Consruct the influence lines of the internal forces at the indicated
members.

Based on the constructed influence lines check the correct answer:

1. Force V; is the maximum tension, if concentrated load P is located at joint
1.E;2.C;3. K
2. Force V, is always 1. positive; 2. negative; 3. zero
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3. Force Us is maximum tensile, if distributed load ¢ is located within the portion
1.AC;2.KB; 3. AB

4. If load P is located at joint K then the force in members 5 and 6 are
1. D5 > Dg; 2. D5 < Dg; 3. D5 = Dg.

Fig. P3.8

3.9. A single-span K-truss is shown in Fig. P3.9. Construct the influence lines for
the internal forces at the indicated members. Using the constructed influence lines,
calculate these forces if uniformly distributed load ¢ is distributed within the three
panels on the right and concentrated force P is applied at the middle of the span.

Fig. P3.9

3 qd? d 3 P
AHSUZEq——i—P—,V:—qu__, D1:D2_

3 qd P
h h 4 ~ 8sina 4 sina’

3.10a,b. Two trusses with subdivided panels are presented in Fig. P3.10a, b. For
case (a) the diagonal members of the main truss are angled downward in the left
part of the truss and angled upward in the right part. In case (b) all the diagonal
members of the main truss are angled downward. Construct the influence lines for
the indicated members and compare the influence lines for the two cases. Using the
constructed influence lines, calculate these forces if load P is placed at joint n and
uniformly distributed load ¢ is distributed within the panel A-n.

Fig. P3.10

Ans. b))V = — +

qgd P
8 4"
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3.11. A design diagram of a truss is presented in Fig. P3.11. Moving loads are
applied to the lower chord.

(a) Perform the kinematical analysis; (b) Construct the influence lines for the inter-
nal forces in the indicated members; (c) Using the constructed influence lines,
compute the indicated internal forces if external forces P; and P, are placed at
joints 7 and 9, respectively.

Fig. P3.11

9d d 3 1
Ans. U7.g = — P — Py Dysg = — P P
18- 279 4h 1+ plrrE 8cosa 1—+_Zcosoc 2

3.12. A design diagram of a truss with over-truss construction is presented in
Fig. P3.12. Pinned supports A and B are located at different elevations. Panel block
1-2-3-4 has no diagonal member. The vertical members (links) are used only to
transmit loads directly to the upper chord of the truss. Provide kinematical analy-
sis. Construct the influence line for thrust /. Using the constructed influence line,
compute H if forces P; and P, are placed at joints 1’ and 2/, respectively. What
happens to the structure if supports A and B are located at one level?

Fig. P3.12

Ans. H = - p,_3Lp
ns. H = —P; — —
P R



Chapter 4
Three-Hinged Arches

The arches are widely used in modern engineering. Arches permit to cover a larger
span. The greater is the span than an arch becomes more economical than a truss.
From esthetic point of view the arches are more attractive than trusses. Materials of
the modern arches are concrete, steel, and wood. The body of the arch may be solid
or consist of separate members.

The arches are classified as three-hinged, two-hinged, and arch with fixed sup-
ports. A three-hinged arch is geometrically unchangeable statically determinate
structure which consists of two curvilinear members, connected together by means
of a hinge, with two-hinged supports resting on the abutment. This chapter is de-
voted to analyze only three-hinged arches. Two-hinged arch and arch with fixed
supports will be considered in Part 2.

4.1 Preliminary Remarks

4.1.1 Design Diagram of Three-Hinged Arch

The arch with overarched members is shown in Fig.4.1a. The arch contains three
hinges. Two of them are located at the supports and third is placed at the crown.
These hinges are distinguishing features of the three-hinged arch. Design diagram
also contains information about the shape of the neutral line of the arch. Usually this
shape is given by the expression, y = f(x).

Fig. 4.1 (a) Design diagrams for deck-arch bridge; (b) Design diagram of three-hinged arch

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 77
DOI 10.1007/978-1-4419-1047-9_4, (© Springer Science+Business Media, LLC 2010
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The each post which connects the beams of overarched structure with arch itself
has the hinges at the ends. It means that in the poles only axial force arises. Idealized
design diagram of the three-hinged arch without overarched members is shown in
Fig.4.1b.

Degrees of freedom of three-hinged arch according to Chebushev formula (1.1)
is W = 0, so this structure is geometrically unchangeable. Indeed, two rigid discs
AC and BC are connected with the ground by two hinges A and B and line AB does
not pass through the intermediate hinge C.

This structure has four unknown reactions, i.e., two vertical reactions R4, Rp
and two horizontal reactions H4, Hp. For their determination, three equilibrium
equations can be formulated considering the structure in whole. Since bending
moment at the hinge C is zero, this provides additional equation for equilibrium of
the part of the system. It means that the sum of the moments of all external forces,
which are located on the right (or on the left) part of the structure with respect to
hinge C is zero

> Mc=0 or Y Mc=0. (4.1)

left right

These four equations of equilibrium determine all four reactions at the supports.
Therefore, three-hinged arch is a geometrically unchangeable and statically deter-
minate structure.

4.1.2 Peculiarities of the Arches

The fundamental feature of arched structure is that horizontal reactions appear even
if the structure is subjected to vertical load only. These horizontal reactions H4 =
Hp = H are called a thrust; such types of structures are often called as thrusted
structures. One type of trusted structures (thrusted frame) was considered in Chap. 3.

It will be shown later that at any cross section of the arch the bending moments,
shear, and axial forces arise. However, the bending moments and shear forces are
considerably smaller than corresponding internal forces in a simply supported beam
covering the same span and subjected to the same load. This is the fundamental
property of the arch thanks to thrust. Thrusts in both supports are oriented toward
each other and reduce the bending moments that would arise in beams of the same
span and load. Therefore, the height of the cross section of the arch can be much
less than the height of a beam to resist the same loading. So the three-hinged arch is
more economical than simply supported beam, especially for large-span structures.

Both parts of the arch may be connected by a tie. In this case in order for the
structure to remain statically determinate, one of the supports of the arch should be
rolled (Fig.4.2a, b).

Prestressed tie allows controlling the internal forces in arch itself. Tie is an el-
ement connected by its ends to the arch by mean of hinges, therefore the tie is
subjected only to an axial internal force. So even if horizontal reactions of supports
equal zero, an extended force (thrust) arises in the tie.
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Fig. 4.2 (a, b) Design diagram of three-hinged arch with tie on the level supports and elevated tie

Elevated

Thus, the arch is characterized by two fundamental markers such as a curvilin-
ear axis and appearance of the thrust. Therefore the structure in Fig. 4.3 presents
the curvilinear trustless simply supported element, i.e., this is just members with
curvilinear axis, but no arch. It is obvious that, unlike the beam, in this structure
the axial compressed forces arise; however, the distribution of bending moments for
this structure and for beam of the same span and load will not differ, while the shear
forces are less in this structure than that in beam. Thus, the fundamental feature of
the arch (decreasing of the bending moments due to the appearance of the thrust)
for structure in Fig. 4.3 is not observed.

Fig. 4.3 Simply supported R T TR
thrustless curvilinear member 4 B

4.1.3 Geometric Parameters of Circular and Parabolic Arches

Distribution of internal forces in arches depends on a shape of the central line of
an arch. Equation of the central line and some necessary formulae for circular and
parabolic arches are presented below. For both cases, origin of coordinate axis is
located at point A (Figs.4.1b and 4.2).

Circular Arch

Ordinate y of any point of the central line of the arch is defined by formula

=/ R? ! x2 R+ f; R—f—i—lz 4.2)
I 2 L RT T '
where X is the abscissa of the same point of the central line of the arch; R the radius
of curvature of the arch; f and [ are the rise and span of the arch.
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The angle ¢ between the tangent to the center line of the arch at point (x, y) and
horizontal axis is shown in Fig. 4.1b. Trigonometric functions for this angle are as
follows:

1 1
sing = (I — 2x) ﬁ; cosp =(y+R—f) z 4.3)

Parabolic Arch

Ordinate y of any point of the central line of the arch

1
y=4fx(l—x)l—2. 4.4)

Trigonometric functions of the angle between the tangent to the center line of the
arch at point (x, y) and a horizontal axis are as follows

dy _4f
tang = — =

== ; sing = cosp -tang  (4.5)

(I —2x); cosp =

1
V1 + tan?¢

For the left-hand half-arch, the functions sing > 0, cosg > 0, and for the right-hand
half-arch the functions sing < 0 and cosg > 0.

4.2 Internal Forces

Design diagram of a three-hinged symmetrical arch with intermediate hinge C at the
highest point of the arch and with supports A and B on one elevation is presented in
Fig.4.4. The span and rise of the arch are labeled as [ and f', respectively; equation
of central line of the arch is y = y (x).

Reactions of Supports

Determination of internal forces, and especially, construction of influence lines for
internal forces of the three-hinged arch may be easily and attractively performed
using the conception of the “reference (or substitute) beam.” The reference beam is
a simply supported beam of the same span as the given arch and subjected to the
same loads, which act on the arch (Fig. 4.4a).

The following reactions arise in the arch: R4, Rp, H4, Hp. The vertical reac-
tions of three-hinged arches carrying the vertical loads have same values as the
reactions of the reference beam

R4 = RY%; Rp = RY. (4.6)
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Fig. 4.4 Three-hinged arch. (a) Design diagram and reference beam. (b) Positive internal forces
at any section k

The horizontal reactions (thrust) at both supports of three-hinged arches subjected
to the vertical loads are equal in magnitude and opposite in direction

H4q=Hp =H.

4.7)
Bending moment at the hinge C of the arch is zero. Therefore, by definition of the
bending moment

) l l
MC:RAE_PI (E—xl)—Pz(E—XZ)—HA'fZO.

0
MC

Underlined set of terms is the bending moment acting over section C of the ref-

erence beam (this section is located under the hinge of the arch). Therefore last
equation may be rewritten in the form

M —Husf =0,

which allows immediately to calculate the thrust

0
H— % 4.8)

Thus, the thrust of the arch equals to bending moment at section C of the reference
beam divided by the rise of the arch.
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Internal Forces

In any section k of the arch, the following internal forces arise: the bending moment
My, shear Qp, and axial force Ni. The positive directions of internal forces are
shown in Fig.4.4b. Internal forces acting over a cross section k may be obtained
considering the equilibrium of free-body diagram of the left or right part of the
arch. It is convenient to use the left part of the arch. By definition

My = Raxg — Y Pi (xg — xi) — Hyx.
left

Ok = (RA — Z P) cosgr — H singy,

left

Nie = - (RA -2 P) singi — H cosg., 4.9)
left

where P; are forces which are located at the left side of the section k; x; are corre-
sponding abscises of the points of application; xg, yx are coordinates of the point
k; and ¢ is angle between the tangent to the center line of the arch at point k and a
horizontal.

These equations may be represented in the following convenient form

My = M — Hyy,

O = Qpcosgy — H singy,
N = —Q,?singok — H cosyyg, (4.10)

where expressions M ,? and Qg represent the bending moment and shear force at the
section k for the reference beam (beam’s bending moment and beam’s shear).

Analysis of Formulae [(4.8), (4.10)]

—_—

Thrust of the arch is inversely proportional to the rise of the arch.

2. In order to calculate the bending moment in any cross section of the three-hinged
arch, the bending moment at the same section of the reference beam should be
decreased by value Hyy. Therefore, the bending moment in the arch is less than
in the reference beam. This is the reason why the three-hinged arch is more eco-
nomical than simply supported beam, especially for large-span structures.

In order to calculate shear force in any cross section of the three-hinged arch, the
shear force at the same section of the reference beam should be multiplied by
cos@y and this value should be decreased by H singy.

3. Unlike beams loaded by vertical loads, there are axial forces, which arise in

arches loaded by vertical loads only. These axial forces are always compressed.
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Analysis of three-hinged arch subjected to fixed loads is presented below. This anal-
ysis implies determination of reactions of supports and construction of internal force
diagrams.

Design diagram of the three-hinged circular arch subjected to fixed loads is pre-
sented in Fig. 4.5. The forces P; = 10kN, P, = 8kN, ¢ = 2kN/m. Itis necessary
to construct the internal force diagrams M, O, N.

P =10kN ¢=2kN/m

Design diagram

Fig. 4.5 Three-hinged circular arch. Design diagram, reference beam, and corresponding internal
force diagrams

Solution.

Reference beam The reactions are determined from the equilibrium equations of all
the external forces acting on the reference beam

Ry —> Mp=0:

—RY x32+ P x244+gx8x12+ P, x4=0— Ry = 14.5kN,
Ry >y My=0:

RY x32— Py x8—gx8x20— P, x28 =0— RY% = 19.5kN.

The values of the two reactions just found should be checked using the equilibrium
equation .Y = Ry + R} — P —gx8—P, =145+195-10—2x8—-8 =
34—-34=0.



84 4 Three-Hinged Arches

The bending moment M° and shear Q° diagrams for reference beam are pre-
sented in Fig.4.5. At point C (x = 16 m) the bending moment is M2 = 152kNm.

Three-hinged arch The vertical reactions and thrust of the arch are

o . M2 152
Ra= Ry =145kN. Rp = Rp = 195KN. H = =€ = == = 19kN,

For construction of internal forces diagrams of the arch, a set of sections has to
be considered and for each section the internal forces should be calculated. All
computations concerning geometrical parameters and internal forces of the arch are
presented in Table 4.1.

Table 4.1 Internal forces in three-hinged circular arch (Fig. 4.5); (R4 = 14.5kN; Rp = 19.5kN;
H =19kN)

M H, M, Q) O« Ny
Section| x(m) y(m) sing cosg (kNm) (kNm)  (kNm) (kN) (kN) (kN)
0 1 2 3 4 5 s 6 7 8 9
A 0.0 00 0.8 0.6 0 0.0 0 145 —6.5 —23
1 4 4 0.6 0.8 58 76 —18 14.5 0.2 —23.9

14.5 5.6892 —23.213
8 6.330 0.4 09165| 116 12027 —4.27 —
4.5 —3.4757 —19.213

10 7.0788 0.3 0.9539( 125 134.497 —9.497 4.5 —1.4074 —19.474
12 7.596 0.2 0.9798| 134 144.324 —10.324 4.5 0.6091 —19.516
16 8.0 00 1.0 152 152 0.0 4.5 4.5 —19.00
20 7.596 —0.20 0.9798( 154 144324 9.676 —3.5 0.3707 —19.316
24 6.330 —0.40 0.9165( 124 120.27 373 —11.5 —2.9397 —22.013
26 5.3205 —0.50 0.8660( 101 101.089 —0.089 —11.5 —0.459 —22.204

- N R SR It I )
~
a
N

28 4 —06 08 78 76 , S22 =221
Z195 —42  —269
195 —42  —269
B 3200 —08 06 0 00 0  —195 35 —27

Notes: Values in nominator and denominator (columns 8 and 9) mean value of the force to the left
and to the right of corresponding section. Values of discontinuity due to concentrated load equal
Pcosg and Psing in shear and normal force diagrams, respectively

The column O contains the numbers of sections. For specified sections A,
1-7, and B the abscissa x and corresponding ordinate y (in meters) are presented
in columns 1 and 2, respectively. Radius of curvature of the arch is

R f+l2 8+322 20
=4+ —==-—+4+—=20m.
2 "8f 2 8-8

Coordinates y are calculated using the following expression

2
y=y) = RZ—(é—x) — R+ f = /400 — (16— x)* — 12.



4.2 Internal Forces 85

Column 3 and 4 contain values of sing and cosg, which are calculated by formulae

[—2x 32—-2x _Y+R-f y+12

Y= TR T T a0 T R 20

Values of bending moment and shear for reference beam, which are presented in
columns 5 and 7, are taken directly from corresponding diagrams in Fig.4.5. Val-
ues for Hy are contained in column 5’. Columns containing separate terms for
Q°osp, Q%ing, Hcosp, Hsing are not presented. Values of bending moment,
shear and normal forces for three-hinged arch are tabulated in columns 6, 8, and 9.
They have been computed using (4.10). For example, for section A we have

Qa4 = Q%cosps — Hsingy = 14.5%x0.6—19x 0.8 = —6.5kN,
Ng = —QYsings — Hcospy = —14.5x 0.8 —19x 0.6 = —23kN.

The final internal force diagrams for arch are presented in Fig. 4.6.

8 iz

2321 19.47 0.1 7

1921 Psing, 26.9
Fig. 4.6 Design diagram of three-hinged circular arch. Internal forces diagrams

Bending moment diagram is shown on the side of the extended fibers, thus the
signs of bending moments are omitted. As for beam, the bending moment and shear
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diagrams satisfy to Schwedler’s differential relationships. In particularly, if at any
point a shear changes sign, then a slope of the bending moment diagram equals zero,
i.e., at this point the bending moment has local extreme (for example, points 2, 7,
etc.).

It can be seen that the bending moments which arise in cross sections of the arch
are much less than in a reference beam.

4.3 Influence Lines for Reactions and Internal Forces

Equations (4.6), (4.8), and (4.10) can be used for deriving of equations for influ-
ence lines.

Vertical reactions The equations for influence lines for vertical reactions of the arch
are derived from (4.6). Therefore the equations for influence lines become

IL(R4) =IL(RY): IL(Rp)=1IL(RY}). (4.11)

Thus, influence lines for vertical reactions of the arch do not differ from influence
lines for reactions of the reference simply supported beam.

Thrust The equation of influence lines for thrust is derived from (4.8). Since for
given arch arise f is a fixed number, then the equation for influence lines become

IL(H) = % IL (MQ). (4.12)

Thus, influence line for trust H may be obtained from the influence line for bending
moment at section C of the reference beam, if all ordinates of the latter will be
divided by parameter f.

Internal forces The equations for influence lines for internal forces at any section
k may be derived from (4.10). Since for given section k, the parameters yg, singg,
and cosyy are fixed numbers, then the equations for influence lines become

IL (My) = IL (M) — y - IL(H),

IL (Qx) = cosgy - IL (Q}) — singy - IL (H)
IL (Ni) = —singy - IL (Q°) — cosgy - IL (H) . 4.13)

In order to construct the influence line for bending moment at section k, it is neces-
sary to sum two graphs: one of them is influence line for bending moment at section
k for reference beam and second is influence line for thrust A with all ordinates of
which have been multiplied by a constant factor (—yy).

Equation of influence lines for shear also has two terms. The first term presents
influence line for shear at section k in the reference beam all the ordinates of which
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have been multiplied by a constant factor cosgi. The second term presents the
influence line of the thrust of the arch, all the ordinates of which have been mul-
tiplied by a constant factor (—singy). Summation of these two graphs leads to the
required influence line for shear force at section k. Similar procedure should be ap-
plied for construction of influence line for axial force. Note that both terms for axial
force are negative.

Analysis of three-hinged arch subjected to moving loads is presented below. This
analysis of loads implies the construction of influence lines for reactions and internal
forces and their application for analysis in cases of fixed and moving load.

-1
-1
1

Inf. line H

Inf. line Q,°

1.0

Inf. line M,° (m)

Fig. 4.7 Three-hinged arch. Design diagram and influence lines for reactions of supports and
internal forces at section k for substitute beam

Figure 4.7 presents the arched structure consists from the arch itself and overar-
ched construction, which includes the set of simply supported beams and vertical
posts with hinged ends. Unit load, which moves along the horizontal beams, is
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transmitted over the posts on the arch at discrete points. Thus, this design diagram
corresponds to indirect load application. Parameters of the arch are same as in
Fig.4.5.

4.3.1 Influence Lines for Reactions

According to (4.11), influence lines for vertical reactions R4 and Rp of the arch do
not differ from influence lines for reaction of supports of a simply supported beam.
Influence line for thrust may be constructed according to (4.12); the maximum or-
dinate of influence line for bending moment at section C of the reference beam is
equal to (acbc) /1 = 1/4 = 8 (m). Therefore the maximum ordinate of influence
line for thrust H of the arch becomes

1 acbc_ / _ 32 _1
f 1 T 4f  4x8

Influence lines for reactions of supports of the arch and internal forces for reference
beam are shown in Fig.4.7.

4.3.2 Influence Lines for Internal Forces at Section k

The section k is characterized by the following parameters:

ar = 10m, by =22m, yr = 7.0788 m, sing; = 0.30, cos¢; = 0.9539.

4.3.2.1 Bending Moment
Influence line for M at section k may be constructed according to (4.13)
IL (M) =1L (M,?) —yx-1IL(H). (4.13a)

Step 1. Influence line for bending moment at section k of reference beam M,?
presents the triangle with maximum ordinate (agby) /I = (10 x 22) /32 =
6.875 m at section k and 5.0 m at section C (Fig.4.7).

Step 2. Influence line for thrust H presents triangle with maximum ordinate
[/4f = 1 at the section C. Term yy - IL (H) presents the similar graph; the
maximum ordinate is yi - 1 = 7.0788 m. So the specified ordinates of graph
vk - IL (H) at section k and C are 4.42425 m and 7.0788 m, respectively.

Step 3. Procedure (4.13a) is presented in Fig. 4.8, Construction Inf. Line M}. Since
both terms in (4.13a) has different signs, then both graphs, IL (M,)) and
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vk -IL (H) should be plotted on the one side on the basic line. The ordinates
of required IL (M) will be located between these both graphs. Specified
ordinates of final graph (4.13a) at section k and C are

6.875—4.42425 = 2.45075m and 5.0 —7.0788 = —2.0788 m.
Step 4. Influence line between joints 2 and 3 presents a straight line because of in-

direct load application. Final influence line IL (M) is presented in Fig. 4.8;
the connected line between joints 2 and 3 is shown by solid line.

Construction
Inf. line M,

Inf. line M;(m)

Fig. 4.8 Three-hinged arch. Design diagram and construction of influence line for bending mo-
ment at section k of the arch

4.3.2.2 Shear Force

This influence line may be constructed according to equation

IL (Q) = cosgy - IL (Q,?) — singy - IL (H). (4.13b)

Step 1. Influence line for shear at section k for reference beam is shown in Fig. 4.7,
the specified ordinates at supports A and B equal to 1.0. The first term
cos ¢ - IL (Q](c)) of (4.13b) presents a similar graph with specified ordinates
cospr = 0.954 at supports A and B, so ordinates at the left and right of
section k are —0.298 and 0.656, while at crown C is 0.477.
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Step 2. Influence line for thrust is shown in Fig. 4.7; the specified ordinates at crown
C equals to 1.0. The second term sin ¢ - IL (H) of (4.13b) presents a sim-
ilar graph with specified ordinates 0.3 x 1.0 = 0.3 at crown C. Specified
ordinate at section k is 0.1875.

Step 3. Procedure (4.13b) is presented in Fig.4.9. As in case for bending mo-
ment, both terms in (4.13b) has different signs, therefore both graphs,
cosgy - IL (Qg) and singy - IL (H) should be plotted on the one side on
the basic line. Ordinates between both graphs present the required ordinates
for influence line for shear. Specified ordinates of final graph (4.13b) left
and right at section k are

0.298 + 0.1875 = 0.4855 and 0.656 —0.1875 = 0.4685.

At crown C ordinate of influence line Qy is 0.477 — 0.3 = 0.177.

Step 4. Influence line between joints 2 and 3 presents a straight line; this connected
line is shown by solid line. Final influence line IL (Qy) is presented in
Fig.4.9.

P= lg Tangent at k
]

cosg,=0.954
Construction
Inf. line Q,
cosg,
cosg,
Inf. line Q,

* Connecting line
I

]
0.4855

Fig. 4.9 Three-hinged arch. Design diagram and construction of influence line for shear at section
k of the arch
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4.3.2.3 Axial Force
This influence line may be constructed according to equation
IL (Ny) = —singy - IL (Qf) — cosg - IL (H) . (4.13¢)

Step 1. Influence line for shear at section k for reference beam is shown in Fig. 4.7.
The first term singy - IL (Q) of (4.13c¢) presents a similar graph with spec-
ified ordinates sing; = 0.30 at supports A and B, so at the left and right of
section kordinates are 0.09375 and —0.20625, while at crown C is —0.15.

Step 2. Influence line for thrust is shown in Fig. 4.7; the specified ordinates at crown
C equals to 1.0. The second term cosgy - IL (H') of (4.13c) presents a similar
graph with specified ordinates 0.9539x 1.0 = 0.9539 at crown C. Specified
ordinate at section k is 0.59618.

Step 3. Procedure (4.13c) is presented in Fig. 4.10. Both terms in (4.13c) has same
signs, therefore both graphs, singy - IL (QY) and cosgy - IL (H), should
be plotted on the different sides on the basic line. Ordinates for required
IL (N ) are located berween these both graphs.

Specified ordinates of final graph (4.13c) left and right at section k are

—(0.59618 — 0.09375) = —0.50243 and
—(0.59618 + 0.20625) = —0.80243.

At crown C ordinate of influence line Ny is — (0.9539 4+ 0.15) = —1.1039.

; Construction
{03 Inf. line N,

0.15 sinqiokJL(ijO)

‘ : / Inf. line IV,
0.2759
0.5519

1.1039
0.80243  Connecting line

Fig. 4.10 Three-hinged arch. Design diagram and construction of influence line for axial force at
section k of the arch
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Step 4. Influence line between joints 2 and 3 presents a straight line; this connected
line is shown by solid line. Final influence line IL (Ng) is shown in
Fig.4.10.

4.3.2.4 Properties of the Influence Lines for Internal Forces

1. Influence line for bending moment has significantly less ordinates than for ref-
erence beam. This influence line contains the positive and negative ordinates. It
means that at section k extended fibers can be located below or above the neutral
line depending on where the load is placed.

2. Influence line for shear, as in case of reference beam, has two portions with
positive and negative ordinates; all ordinates are significantly less than in the
reference beam. Influence line for axial force has only negative ordinates. So in
case of arbitrary load the axial forces in arch are always compressed.

4.3.3 Application of Influence Lines

Assume that arch is subjected to fixed loads as shown in Fig. 4.5. The reactions of
supports and internal forces caused by fixed load may be calculated by formula

Z=3 Pyi+Yy 4,2,

where Z is any force, for which the influence line is constructed; y the ordinate of
influence line under the concentrated load P; and 2 is the area of influence line
graph under the distributed load g.

Reactions of Supports

Ordinates of influence line for R4 at the points of application the loads P; and P,
are 0.75 and 0.125, respectively. The area of the influence line under the uniformly
distributed load is

0.5+4+0.25 "

2

Therefore, the reaction Ry = P; x 0.75+ g x 3 4+ P, x 0.125 = 14.5kN
The thrust H of the arch, using influence line equals

Q 8 = 3.0.

1+0.5

H=P x05+4+¢ x 8+ P, x0.25 = 19kN.

These values of reactions coincide with those computed previously in Sect. 4.2.1.
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Internal Forces in Section &

The internal forces can be found in a similar way, using the relevant influence lines.
They are the following:

2.0788 + 1.0394

My = Py x 1.96—qf x 8 — P, x0.5194 = —9.500 kN m,
0.177 + 0.0885

Qr = —P1 x0.3883 + qf x 8 + P x 0.04425 = —1.405kN,
1.1039 4 0.5519

N = —P1 x0.40194 — q+ x 8 — P> x0.2759 = —19.473kN.

The magnitudes of just found internal forces My, Qk, and Ny coincide with those
computed in Sect. 342 and presented in Table 4.1.

Example 4.1. Let us consider design diagram of the arch in Fig. 4.7. It is necessary
to find bending moment in section 3 due to the force P = 10kN, applied at point 7.

Solution. The feature of this problem is as follows: we will compute the bending
moment at the section 3 without influence line for M3 but using influence line for
reaction. As the first step, we obtain the vertical reaction and thrust, which are nec-
essary for calculation of internal forces.

Step 1. Find H and R4 from previously constructed influence lines presented in
Fig.4.7

Ry =P xyp =10x0.125 = 1.25kN;
H =P xyg =10x0.25=2.5kN,

where yg and y g are ordinates of influence line for R4 and H , respectively,
under concentrated force P.
Step 2. The bending moment in section 3, considering left forces, becomes

Msy=—H-y3+ Rg-x3 =—-25%x7.59 + 1.25 x 12 = —3.99kN m,

where x3 and y3 are presented in Table4.1.

This example shows that one of advantages of influence line is that the influence
lines for reactions and thrust constructed once may be used for their computation
for different cases of arbitrary loads. Then, by knowing reactions and thrust, the
internal forces at any point of the arch may be calculated by definition without using
influence line for that particular internal force.

This idea is the basis of complex usage of influence lines together with fixed
load approach, which will be effectively applied for tedious analysis of complicated
structures, in particularly for statically indeterminate ones.
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4.4 Nil Point Method for Construction of Influence Lines

Each influence line shown in Figs. 4.8—4.10 has the specified points labeled as (*).
These points are called nil (or neutral) point of corresponding influence line. Such
points of influence lines indicate a position of the concentrated load on the arch, so
internal forces M, Q, and N in the given section k would be zero. Nil points may be
used for simple procedure for construction of influence lines for internal forces and
checking the influence lines which were constructed by analytical approach. This
procedure for symmetrical three-hinged arch of span [ is discussed below.

4.4.1 Bending Moment

Step 1. Find nil point (NP) of influence line M. If load P is located on the left half
of the arch, then reaction of the support B pass through crown C. Bend-
ing moment at section k equals zero, if reaction of support A pass through
the point k. Therefore, NP (M) is point of intersection of line BC and Ak
(theorem about three concurrent forces). The nil point (*) is always located
between the crown C and section k (Fig.4.11).

Step 2. Lay off along the vertical passing through the support A4, the abscissa of
section k, i.e., x.

Step 3. Connect this ordinate with nil point and continue this line till a vertical
passing through crown C and then connect this point with support B.

Step 4. Take into account indirect load application; connecting line between joints
2 and 3 is not shown.

" Inf. line M,

Fig. 4.11 Construction of Influence line My using nil point method
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Location of NP (M}) may be computed by formula

Lf xk
uy = ———————.
M b+ f

4.4.2 Shear Force

Step 1. Find nil point (NP) of influence line Q. If load P is located on the left half
of the arch, then reaction of the support B pass through crown C. Shear
force at section k equals zero, if reaction of support A will be parallel to
tangent at point k. Therefore, NP (Q) is point of intersection of line BC
and line which is parallel to tangent at point k. For given design diagram
and specified section k the nil point (*) is fictitious one (Fig. 4.12a).

a P=1
Tangent at k

Parallel t}o
| tangent at k

cosgy

Inf. line O,

Parallel to
tangent at k

cosgy

Inf. line Q,

| P i RHP-2

Fig. 4.12 (a) Construction of influence line Qj using nil point method. The case of fictitious nil
point. (b) Nonsymmetrical three-hinged arch. Construction of influence line Qj using nil point

method. The case of real nil point
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Step 2. Lay off along the vertical passing through the support A, the value cosgy.

Step 3. Connect this ordinate with nil point. A working zone of influence line is por-
tion between section k and vertical passing through crown C — Right-hand
portion 1 (RHP-1). Then connect the point under crown C with support B
— Right-hand portion 2 (RHP-2).

Step 4. Left-hand portion (LHP) is parallel to right-hand portion 1 and connects two
points: zero ordinate at support A and point under section k.

Step 5. Take into account indirect load application; connecting line between joints
2 and 3 is not shown.

Figure. 4.12b presents a nonsymmetrical three-hinged arch with real nil point for
influence line Qy; this point is located within the span of the arch. Therefore, we
have one portion with positive shear and two portions with negative shear.

Location of NP (Qy) (Fig.4.12a, b) may be computed by formula

[ tan

"o = tanB + tangy

4.4.3 Axial Force

Step 1. Find nil point (NP) of influence line Ng. If load P is located on the left half
of the arch, then reaction of the support B pass through crown C. Axial
force at section k equals zero, if reaction of support A will be perpendicular
to tangent at point k. The nil point (*) is located beyond the arch span
(Fig. 4.13).

Step 2. Lay off along the vertical passing through the support A, the value singy.

Step 3. Connect this ordinate with nil point and continue this line till vertical passes
through crown C. A working zone is portion between section k and vertical
passing through crown C (right-hand portion 1 — RHP-1). Then connect the
point under crown C with support B (right-hand portion 2 — RHP-2).

Step 4. Left-hand portion (LHP) is parallel to Right-hand portion 1 and connects
two points: zero ordinate at support A and point under section k.

Step 5. Take into account indirect load application; connecting line between joints
2 and 3 is not shown.

Location of NP (Ny) may be computed by formula

[ tanf

uy = —————.
tanf — cotyy
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P=1
Tangent at k %
\

NP(N,)
! Perpendicular
to tangent at k

' Inf. line N,

RHP-1

Fig. 4.13 Construction of influence line N; using nil point method

4.5 Special Types of Arches

This section is devoted to analysis of special types of arches. Among them are arch
with support points located on the different levels and parabolic three-hinged arch
with complex tie.

4.5.1 Askew Arch

The arch with support points located on the different levels is called askew (or ris-
ing) arch. Three-hinged askew arch is geometrically unchangeable and statically
determinate structure. Analysis of askew arch subjected to the fixed and moving
loads has some features.

Design diagram of three-hinged askew arch is presented in Fig.4.14. Let the
shape of the arch is parabola, span of the arch/ = 42 m and support Bis A = 3.5m
higher than support A. The total height of the arch at hinge C is f + fo = 8m.
The arch is loaded by force P = 10kN. It is necessary to calculate the reactions
and bending moment at section k, construct the influence lines for thrust and bend-
ing moment M, and apply influence lines for calculation of bending moment and
reactions due to fixed load.

Equation of the axis of parabolic arch

y=4(f + fo) (L=x) 75, (4.14)
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where span for arch A — C — B’ with support points on the same level is L =
! + 1o = 48 m. For x = 42 m (support B) the ordinate y = A = 3.5m, so

A 3.5
tana = T = o) = 0.0833 — cosa = 0.9965 — sina = 0.08304.

R, L=48m

Fig. 4.14 Design diagram of an askew three-hinged arch
Other geometrical parameters are

fo =actane = 24tane =2.0m — f =8 —-2=6m — @)
h = fcosae =6-0.9965 = 5.979m.

For x = 6 m (section k), the ordinate y; = 3.5m.

4.5.1.1 Reactions and Bending Moment at Section k

Reactions of supports It is convenient to resolve total reaction at point A into two
components. One of them, R’A, has vertical direction and other, Z 4, is directed along
line AB. Similar resolve the reaction at the support B. These components are R’
and Zp. The vertical forces R, and R’; present a part of the total vertical reactions.
These vertical forces may be computed as for reference beam

Ry—YMp=0: —R,-42+P-12=0- R, =2.857kN,

b
Ry —> My=0: Rp-42—P-30=0— Ry =7.143kN. ®)
Since a bending moment at crown C is zero then
M2 2857 x24
z MEWO: Zayh—ME=0— Zy=—5="—"""=11.468kN,
4= 2 MEN: 74 cTIT AT, 5.979

Za=Zp =12,

(c)

where M g is a bending moment at section C for reference beam.
Thrust H presents the horizontal component of the Z, i.e.,

H = Zcosa = 11.468 x 0.9965 = 11.428kN. (4.15)
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The total vertical reactions may be defined as follows

R4 = R+ Zsina = 2.857 + 11.468 x 0.08304 = 3.809kN,
Rp = Ry — Zsina = 7.143 — 11.468 x 0.08304 = 6.191kN.  (4.16)

Bending moment at section k:

My = M,? — Hy =3809%x6—11.428 x3.5=—17.144kN. 4.17)

4.5.1.2 Influence Lines for Thrust and Bending Moment M.

Thrust Since H = (Mg /H ) cosa, then equation of influence line for thrust
becomes
coso
IL(H) = — -IL (MQ). (4.18)

The maximum ordinate of influence line occurs at crown C and equals

cosa acbc  0.9965 24 x 18

= X = 1.71428.
h [ 5979 24418
Bending moment Since My = M ,? — Hyy, then equation of influence line for
bending moment at section k becomes
IL (My) =1L (MQ) — yx - IL(H). (4.19)

Influence line may be easily constructed using the nil point method. Equation of the
line Ak is

35
y = ?x = 0.5833x. (d)

Equation of the line BC is
4.5
y—yc =m(x—xc) —>y—8=—ﬁ(x—24)—>y =14—-0.25x, (e)

where m is a slope of the line BC.

The nil point NP (M},) of influence line for M}, is point of intersection of lines Ak
and BC. Solution of equations (d) and (e) is xo = 16.8 m. Influence lines for H and
M, are presented in Fig. 4.15. Maximum positive and negative bending moment at
section k occurs if load P is located at section k and hinge C, respectively. If load P
is located within portion xg, then extended fibers at the section k are located below
the neutral line of the arch.
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Inf. line H

D

x,=6m 257141 117143
: \i L/ Inf. line M, (m)

Xo=16.8m
—

Fig. 4.15 Three-hinged askew arch. Design diagram and influence lines

The thrust and bending moment at the section k& may be calculated using the
relevant influence lines

H =Py =10x1.1428 = 11.428 kN,
My = Py =10 x (—1.7143) = —17.143kNm.

These values coincide exactly with those calculated by formulas (4.15) and (4.17).

As before, the influence lines for thrust constructed once may be used for its
computation for different cases of arbitrary loads. Then, knowing the vertical reac-
tions and thrust, the internal forces at any point of the arch may be calculated by
definition without using influence line for that particular internal force.

4.5.2 Parabolic Arch with Complex Tie

Analysis of such structure subjected to fixed and moving load has some features.

Design diagram of the symmetrical parabolic arch with complex tie is presented
in Fig. 4.16. The arch is loaded by vertical uniformly distributed load ¢ = 2kN/m.
We need to determine the reactions of the supports, thrust, and bending moment at
section k (ar = 18 m, y; = 11.25m, cos ¢ = 0.970, sin ¢ = 0.2425) as well as
to construct the influence lines for above-mentioned factors.
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1 q=2kN/m

VIIIIIIY

Parabolic
arch

f=12m
- B/
———————————————————————————————————————————————————————————————————————————————————————— B— —_ X
H, 4 a,=18m T
= 12 4
- /=48m -
R, Rp

Fig. 4.16 Design diagram of the arch with complex tie

4.5.2.1 Reactions and Bending Moment at Section &k

The vertical reactions are determined from the equilibrium equations of all the
external forces acting on the arch

Ri—> Y Mp=0: —Rg4x48+¢gx12x6=0— R4 =3kN,

Rp— > Mg=0: Rpx48—¢gx12x42=0— Rp =21kN. (@

Horizontal reaction at support A is H4 = 0.
The thrust H in the tie (section 1-1) is determined from the following equation

I M
H—Y M =0: —RA§+H(f—fo)=0—>H=f € _ —72kN.

— Jo
(4.20)

Equilibrium equations of joint F' lead to the axial forces at the members of AF and
EF of the tie.
Internal forces at section k for a reference simply supported beam are as follows:

MY = Ry-xx =3x18 = 54kNm,

0% = R4 = 3KN. ®)

Internal forces at the point k for three-hinged arch are determined as follows:

M = M,? —H (yx— fo) =54—-72(11.25-2) = —12.6kNm,

Ok = Q,?coswk — H sin ¢ =3 x0.970 — 7.2 x 0.2425 = 1.164 kN,

Ni = — (Qgsin ¢x + Hcos gok) = —(3x0.2425+ 7.2 x0.970) = —=7.711 kN.
(4.21)
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Note, that the discontinuity of the shear and normal forces at section E left and right
at the vertical member EF are Ngrcos ¢ and Ngpsin @, respectively.

4.5.2.2 Influence Lines for Thrust and Bending Moment at the Section k

Vertical reactions Influence lines for vertical reactions R 4 and R p for arch and for
reference simply supported beam coincide, i.e.,

IL(R4) =IL(RY): IL(Rp)=IL(RY}).

Thrust According to expression (4.20), the equation of influence line for thrust be-
comes

IL(H) = L (MQ). (4.22)

1
f =
The maximum ordinate of influence line for H at crown C

1 / 48

—Jfo) 4 ax(z—2 % ©

Influence line for thrust may be considered as key influence line.

Bending moment According to expression (4.21) for bending moment at any sec-
tion, the equation of influence line for bending moment at section k becomes

IL(My) =1L (M) — (yk — fo) - IL(H) =IL (M) —9.25-IL(H). (4.23)

Influence line M ,? presents a triangle with maximum ordinate
(axbr)/1 = (18 x 30)/48 = 11.25m at section k, so the ordinate at crown C
equals to 9m. Influence line for thrust H presents the triangle with maximum
ordinate 1.2 at crown C. Ordinate of the graph (yx — fo) - IL(H) at crown C
equals (11.25 — 2) x 1.2 = 11.1m, so ordinate at section k equals 8.325 m. De-
tailed construction of influence line My is shown in Fig.4.17. Since both terms in
(4.23) has different signs, they should be plotted on the one side on the basic line;
the final ordinates of influence line are located between two graphs IL (M,?) and
9.25-IL(H).

Maximum bending moment at section k occurs if load P is located above section
k and crown C. Bending moment at section k may be positive, negative, and zero.
If load P is located within the portion A-NP (My), then extended fibers at section
k are located below neutral line of the arch.

Figure. 4.17 also presents the construction of influence lines for bending moment
using nil points; pay attention that construction of this point must be done on the
basis of conventional supports A" and B’.
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Inf. line H

Construction
i — * ! Inf. line M
11.25-8.325=2.925 ¢ | ! ; i (m)

L E j Inf. line M
W (m)
NP(M ) 1.05

11.1-9.0=2.1

Fig. 4.17 Three-hinged arch with complex tie. Influence lines for H and Mj

Problems

4.1. Design diagram of symmetrical three-hinged arch is presented in Fig. P4.1.
Construct the influence lines for internal forces at section 7 using the nil point
method.

Fig. P4.1

4.2. Design diagram of nonsymmetrical three-hinged arch is presented in Fig. P4.2.
Construct the following influence lines (a) for vertical reactions at arch supports A
and B; (b) for thrust; and (c) for internal forces at sections k and n. Use the nil point
method. Take into account indirect load application.
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Fig. P4.2

4.3. Design diagram of three-hinged arch is presented in Fig. P4.3.

(a) Find the location of uniformly distributed load so tensile fibers at section k
would be located below the neutral line and as this takes place, the bending
moment would be maximum

(b) Find the location of concentrated force P for shear at section k to be positive
and maximum value

(c) Find a portion of the arch where clockwise couple M should be placed for shear
at section k to be positive and maximum value.

Fig. P4.3

4.4. Design diagram of three-hinged arch is presented in Fig. P4.4.

1. For the axial force at section 7 to be maximum, the uniformly distrubuted load
should be located (a) left at the section 7; (b) right at the section #; and (c) within
all span AB.

2. For the axial force at section n to be maximum a concentrated force P should be
located
(a) left at the section 7; (b) right at the section n; (c) at the hinge C; (d) left at
hinge C; (e) right at hinge C.

3. The vertical settlement of support A leads to appearance of internal forces at
the following part of the arch: (a) portion AC; (b) portion CB; (c) all arch AB;
(d) nowhere.
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4. Decreasing of external temperature within the left half-arch AC leads to appear-
ance of internal forces at at the following part of the arch: (a) portion AC; (b)
portion CB; (c) all arch AB; (d) nowhere.

Fig. P4.4

4.5. Three-hinged parabolic nonsymmetrical arch span [ is subjected to concen-
trated force P at the hinge C (Fig. P4.5). Determine the effect of the location of the

1 M2
hinge C on the value of the trrust H. (Hint: y = 4 fox(/ — x)l—z, H = f_C)
c

Fig. P4.5

Ans. H Pl
ns. H = —
4fo

4.6. Three-hinged arch with tie is subjected to concentrated force P at the hinge C
(Fig. P4.6). Determine the effect of the location fy of the tie on the axial force H in
the tie.
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4.7. Three-hinged askew arch span [ is subjected to concentrated force P at the
hinge C (Fig. P4.7). Determine the effect of the parameter f, on the thrust of the
arch. (Hint: H = Zcosa).

Fig. P4.7

Pl

22f = /o)
4.8. Three-hinged symmetrical arch is loaded by uniformly distributed load ¢ (Fig.
P4.8). The span and rise of the arch are / and f, respectively. Derive the equation
of the rational axis of the arch.

(Note: the arch is called as rational if the bending moments do not arise at all the
cross sections of the arch. The equation of the rational axis of the arch depends on
the type of loading).

Ans. H =

YIIIV IV IVIIV VI V9

Fig. P4.8

Ans.y=4f)l—c(1—§)

4.9. Three-hinged symmetrical arch is loaded by distributed load g as shown in Fig.
P4.9. Derive the equation of the rational axis of the arch.

mg
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4.10. Three-hinged symmetrical arch is loaded by distributed load ¢ as shown in
Fig. P4.10.
Find equation of the rational axis of the arch.

4.11. Three-hinged symmetrical arch is loaded by the radial distributed load gq.
Show that the rational axis of the arch presents the circle.






Chapter 5
Cables

This chapter is devoted to analysis of cables under fixed loads of different types.
Among them are concentrated loads, uniformly distributed load along the hori-
zontal line and along the cable itself. Important formulas for analysis of the cable
subjected to arbitraryloads are derived; they allow determining the changingof re-
actions, internal forces and shape due by any additional live loads. Relationships
between the thrust, internal forces and total length of a cable are established. The
influence of elastic properties of a cable is discussed.

5.1 Preliminary Remarks

The cables as the permanent members of the load-bearing structures are used exten-
sively in modern engineering. Some examples of cabled structures are as follows:
suspension bridges, anchoring systems of different objects such as guy-rope of the
masts, sea drilling platforms, stadium covering, cableways, floating breakwaters,
light-vessel, etc. Cables are also used as the temporary guys during erection of the
structures. Suspension bridge is shown in Fig. 5.1.

Cables are made from high-strength steel wires twisted together, and present a
flexible system, which can resist only axial tension. The cables allow cover very
large spans. This may be explained by two reasons. (1) In axial tension, the stresses
are distributed uniformly within all areas of cross section, so the material of a ca-
ble is utilized in full measure; (2) Cables are made from steel wires with very high
ultimate tensile strength (0, = 1, 860 MPa, while for structural steel ASTM-A36
0y = 400 MPa). Therefore the own weight of a load-bearing structure becomes rela-
tively small and the effectiveness application of cables increases with the increasing
of the spans. Modern suspension bridges permit coverage of spans hundreds of me-
ters in length.

A cable as a load-bearing structure has several features. One of them is the verti-
cal load that gives rise to horizontal reactions, which, as in case of an arch, is called
a thrust. To carry out the thrust it is necessary to have a supporting structure. It may
be a pillar of a bridge (Fig.5.1) or a supporting ring for the covering of a stadium.
The cost of the supporting structure may be a significant factor in the overall cost of
the whole structure.

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 109
DOI 10.1007/978-1-4419-1047-9_5, (© Springer Science+Business Media, LLC 2010
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Anchorage

, Anchor | Main span |
span ' '

Fig. 5.1 Suspension bridge

Another feature of cables is the high sensitivity of their shape, depending on the
total length of the cable, type of the load as well as a load location along the span.
The fundamental feature of a cable is its unknown shape in advance. Defining the
shape of a cable is one of the important problems.

The following types of external loads will be considered:

1. Cable with self-weight ignored (a cable subjected to concentrated loads, to uni-
formly distributed load as well as to arbitrary dead load and after that additional
any live load).

2. Cable with self-weight.

Under these loads the cable shape takes different forms. Shape of a cable in case of
concentrated loads is referred to slopes of straight portions of a cable. Shape of a
cable in case of distributed load along horizontal and along cable itself are parabola
and catenary, respectively.

Assumptions

1. The cable is inextensible one (elastic properties of the cable will be considered
in Sect. 5.6).

2. The cable is perfectly flexible, i.e., the cable does not resist to shear and bending.
In this case the internal force in any point of a cable is tensile one, which is
directed along the tangent to this point of a cable.

Horizontal component of a tension force is called a thrust. Later it will be shown
that thrust remains constant along the length of the cable.

5.1.1 Direct and Inverse Problems

The simplest problem is finding thrust, internal forces, and total length of a cable
if the shape of a cable is given. Solution of this problem is well known. However,
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for practice this type of problem does not have a reasonable sense because shape
of the cable cannot be known in advance. Instead, an engineer knows allowable
horizontal force, which a tower can resist at the top. Based on this, we will consider
the following two fundamental practical problems for cables under fixed loads:

1. Find the shape of a cable and internal forces, if a thrust is given. This type of
problem is called the thrust—shape problem.

2. Compute thrust and internal forces, if a total length of a cable is given. This type
of problem is called the length—thrust problem.

5.1.2 Fundamental Relationships

Let us consider a cable shown in Fig.5.2a. The cable is loaded by some vertical
concentrated loads P; (the distance from left support are x;) and arbitrary load ¢
distributed along horizontal. The self-weight of the cable may be neglected if this
weight comprises no more than 10% of an external load on the cable. Since the cable
is perfectly flexible, then axial force N, at any section is directed along tangent at
this section. Axial forces N4 and Np at the supports A and B are resolved into
two directions. They are the vertical direction and direction A—B. These forces are

X

A
i ' " ‘\
le !
N X _ldx] E Ry p
A : '
) ! Vv

K
M 4
J T4 ' R KN‘“‘)
e A“ ! X x
H 1e "B~~~
e ¥ L /’:NB
Lo Tellfe == 5 H
K Telic Iy Z
¢ |C B| 0(x)
' | N(x)
Cc

Fig. 5.2 (a) Cable subjected to arbitrary load; (b) free-body diagram of the part of the cable;
(c) free-body diagram of the elementary portion of the cable
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denoted as r4 and h 4 for support A and rp and hp for support B. Summing of all
forces on the horizontal axis leads to the relationship hy = hp = h.
The vertical component of the reaction at B

> Pixi + [gq(x)dx
7

/

rB—>ZMA=O: rBZ—ZPI»x,-—/q(x)dx=0—>rB=

I
(5.1)

This expression coincides with general formula for reaction of simply supported
beam. Therefore if axial forces at supports are resolved as shown in Fig. 5.2a, then a
vertical component of axial force at support equals to corresponding reaction of the
reference beam.

Now we can calculate ordinate of the cable at the section C with abscissa c.
Since the bending moment at any section C is zero, then

Mc =VA-C—hA-flc—ZPi(C—xi)—/Q(X)(C—X)dx=0
0
rare = Pile —xi) — [ q(0)(c — x)dx
0

fic = A

(5.2)

where fic is a perpendicular to the inclined chord AB.
It is obvious that nominator presents the bending moment at the section C of the

reference beam. Therefore
Mg
fic = o (5.3)

To determine the vertical coordinate of the point C we need to modify this formula.
For this we need to introduce a concept of a thrust. The thrust H is a horizontal
component of the axial force at any section. From Fig. 5.2b we can see that equilib-
rium equation ) X = 0 leads to the formula H = const for any cable subjected to
arbitrary vertical loads. At any support # = H/ cos¢. Since fic = fc cos ¢, then
expression (5.3) can be rewritten as f¢ cos¢ = Mg / (H/ cos¢), which leads to

the formula:
M
e ="

where fc is measured vertically from the inclined chord AB. This parameter is
called the sag of the cable.

The formula (5.4) defines the shape of the cable subjected to any load. The sag
and y-ordinate are equal if and only if supports are located on the same elevation,
the origin is placed on the horizontal chord AB and y-axis is directed downward.

Now the total vertical reactions of supports may be determined as follows:

(5.4)

Ry=rg+hsing =rgq+ H tang,
Rp =rp—hsing =rg — H tang. (5.5)
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The concept of “shear” at the any section of the reference beam will be helpful. The
portion length of x is loaded by uniformly distributed load ¢, concentrated force P,
reaction R4, thrust H, and axial force N(x) as shown in Fig. 5.2b. The beam shear
is Q(x) = R4 — P — gx. At the section x (point K) three concurrent forces acts.
They are Q(x), N(x), and H. It is obvious that for any section

N(x) = VH? + 02(x). (5.6)

Now let us derive the differential relationships between load ¢ and ordinate of the
cable y. The angle 6 between the axial line of a cable and x-axis (Fig. 5.2b) obeys
to equation

dy _ 0
tan = s (5.7
To derive a relationship between Q and intensity of the load ¢, consider a free body
diagram of the elementary portion of the cable (Fig.5.2c). The axial forces at the
left and right ends of a portion are N and N + dN, respectively. Their components
are H and Q at the left end, while at the rightend H and Q + dQ.
Equilibrium equation > ¥ = 0 leads to the following relationship: dQ/dx = q.
Taking into account (5.7), the required relationships between y and g becomes:

?y ¢
— = —. 5.8

dx2 H (5:8)
The first and second integration of (5.8) leads to the expressions for slope and y ordi-
nate, respectively. The constant integration should be determined from the boundary
conditions.

5.2 Cable with Neglected Self-Weight

This section contains analysis of the perfectly flexible inextensible cables subjected
to concentrated loads, as well as distributed loads along horizontal foot of the cable.
For both loadings (concentrated and distributed), the thrust—shape and length—thrust
problems are considered.

5.2.1 Cables Subjected to Concentrated Load

In this case of loading each portion of the cable between two adjacent forces presents
the straight segment. The simplest design diagram of a cable, subjected to one con-
centrated load, is presented in Fig. 5.3a. Parameters of the system are a = 10m,
[ =25m, P = 20kN.



114 5 Cables

120kNm

Fig. 5.3 (a) Design diagram of the cable; (b) free-body diagram; (c) reference beam and corre-
sponding bending moment diagram

5.2.1.1 Direct Problem

Determine a shape of the cable, if the thrust of the system is given H = 24 kN.
Vertical reactions of the cable

P(l—a) _ 20(25—10)

RA—>ZMB=O: Ry = 1 = 12kN,
Pa  20x10

I 25

RB—>ZMA=O: Rp =

We can see that the vertical reactions do not depend on the value of the trust H. It
happens because supports A and B are located on the same elevation. The forces
acting on the segment at support A and corresponding force polygon is shown in
Fig. 5.3b. For assumed x—y coordinate system the angles oy and «; belong to the
fourth and first quadrant, respectively, so a shape of the cable is defined as follows

t R4 12 1 2
anQyg = ——— = —— = —= —> COSUp = ——
0= "g 24~ 2 ="/
. B 8 1 3
an¢] = — = — = — > C0S¢] = ——.
Y"H T 24 3 VT

The y-ordinate of the cable at the location of the load P is
y=ataneyg = —10x 0.5 =-5m.

The negative sign corresponds to the adopted x—y coordinate system. The sag at the
point C is f = 5m.

Tensions in the left and right portions of the cable may be presented in terms of
thrust as follows:

H 24 5 H 24 x 4/10
_ x5 =26.83kN, Np_; = X
COS 0 2 coS o1

=25.30kN.
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Increasing of the thrust H leads to decreasing of the angle «g and «; as a result, the
sag of the cable is decreasing and tension in both parts of the cable is increasing. In
fact, we used, here, the obvious physical statement: in case of concentrated forces
the cable presents a set of straight portions.

The tensions in the left and right portions of the cable can be determined using
expression (5.6).

Shear forces are Q 41 = R4 = 12kN, Q,-p=R4— P = —Rp = —8kN.
Therefore

N1 = /0%, + H> = V122 4 242 = 26.83kN;
Nl—B = ‘,Q%—B_i_Hz: (—8)2+242=2530kN

Now let us consider the same problem using the concept of the reference beam
(Fig. 5.3¢c). The bending moment at point C equalsM¢ = Pab/l = (20x 10x 15)/
25=120kNm. According to (5.4) the sag f at point C is fc=M2/H =
120/24 = 5m. Obtained result presents the distance between chord AB and
cable and does not related to adopted x—y coordinate system.

5.2.1.2 Inverse Problem

Determine a thrust of the cable, if total length L of the cable is given.
Length of the cable shown in Fig. 5.3a equals

/-
L = a + a=a\/1+tan2a0+(l—a)\/1+tan2a1.

cosagy  cosaj

Length of the cable in terms of active force P and thrust H may be presented as

follows
P2 (] —a\? P2 g2
L=a\/1+m(T) a1t

Solving this equation with respect to H leads to following expression for thrust in
terms of P, L, and a

205(1 — §)
JId = 213282 — 28+ 1) + 482 — 45 + 1

H=P . o=

L a
—, 5=
[ l

Let§d =04, L = 1.2] =30m, so lp = 1.2. In this case the thrust equals

» 2% 1.2x0.4(1 — 0.4)
VI2P —2x1222%x 047 —2x04 + 1) + 4x 042 —4x04 + 1

=0.7339P
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After that, the shape of the cable and internal forces in the cable may be defined
easily.
The special case a = 0.5/ leads to the following results for thrust and sag

There are some interesting numerical results. Assume that [y = % = 1.01. In this
case f = 0.071/, so if the total length of the cable L exceeds the span [ only by
1%, then sag of the cable comprises 7% of the span.

5.2.2 Cable Subjected to Uniformly Distributed Load

Distributed load within the horizontal projection of the cable may be considered
for the case when the hangers (Fig.5.1) are located very often. Design diagram of
flexible cable under uniformly distributed load is presented in Fig. 5.4.

Y

A B X

H yx H
RAT q TRB
VIV IN IV IV v

/

Fig. 5.4 A cable under
uniformly distributed load

5.2.2.1 Direct Problem
Thrust H of the cable is given. Determine the shape of the cable and calculate dis-
tribution of internal forces. For solving of this problem we will use two approaches.

1. Integration of fundamental equation of a flexible cable (5.8) leads to following
expressions for slope and shape of the cable

dy ¢
— = Zx+Cy,
dx Hx !
qx
=L 4 Cix+GC,
Y H 2 1 2
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Constant of integration are obtained from boundary conditions: at x = 0 (support A)
y = 0and at x = [ (support B) y = 0. These conditions applied to equation y(x)

lead to following constants of integration: C, = 0 and C; = —ql/2H. Now the
shape of a cable and slope in terms of load ¢ and thrust H is described by equations
ql?> (x x?

=1L (Z_—_ 5.9

v =-22 (7 - %) 5.9
dy ql X

ang = = = (22— 1). 5.9b
nf = 3o = 5 (27 -90)

Equation y (x) presents symmetrical parabola. At x = /2 a maximum y-coordinate
equals to

ql*
max = ———. 5.10
y v (5.10)
The tension N at any section x in terms of thrust His
H q?l? ; x 2
N@x) = —— = HYT +1 29=H\/1 (27 -1)". 5.11
(x) cosf +tan + 4H?2 \"| (5.11)

This equation may be obtained from (5.6), where shear Q = R4 — gx.
At the lowest point (x = //2) a tension N = H. The maximum tension occurs

at supports
q212
Nmax =H 1 + m (512)

2. The concept of the reference beam leads to the following procedure. The bend-
ing moment for reference beam at any section x is M2 = (q//2)x — gx?/2.
According to (5.4) and taking into account the direction of the y-axis (Fig.5.4),
we immediately get the expression (5.9a) for y(x), and as result, the formulas
(5.9b-5.12) for slope, Ymax, tension N(x), and maximum tension Nyax.

5.2.2.2 Inverse Problem

Expression for total length L of the cable is

! 2
L:/‘ll+ (—) dx. (5.13)
dx
0

Since the sag of the cable is f = ql?/8H, then expression (5.9b) for slope at any x
in terms of sag f'may be presented as

dy gl (2x _4f (2x
dx_ZH(l 1)_1 ! ok (5-14)
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Therefore, the total length L of the cable in terms of sag according to (5.13) becomes
Z 4F\* (2x 2
L= / 1+ (T) (T - 1) dx. (5.13a)
0

Approximate Solution of Length Determination

The binomial theorem to expand radical in a series
(«/1 +ex=1+4 %8 - %82 + ) allows presenting (5.13a) as follows:

=[BT -G

Integration of this relation leads to the following approximate expression:

B 8 (F\> 32/(f\* 256(fF\°
L—l|:1+§(7) —?(T) +T(7) —:| (5.16)

This expression allows calculating the sag f of the cable in terms of total length L
and span /. Since f = qI?/8H, then length of the cable in terms of thrust H may
be presented as follows

dx. (5.15)

122 1 g
1 1 +.} (5.16a)

L=1I|1+—-2°>_ __%°
[+24H2 640 H*

This expression allows calculating thrust H in terms of span [, total length of the
cable L, and load g.

Gentile Cable

If f < 0.1/, then a cable is called the gentile one. Taking into account two terms in
equation (5.16a), we get the following equation

1 g?I?
L=1 (l + ﬁ?) (5.16b)

Therefore, thrust in terms of total length of the cable L and span / may be presented

in the form ; | L
q
H=——. , o= —. 5.16¢
26 -1 "1 (5.16c)
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The maximum y-coordinate of the cable in terms of total length L and span / is

V3 L
max = ———=14/ = — 1. 5.16d
Y 22 VI ( )

Exact Solution of the Length Determination

Integrating equation (5.13a) leads to the following exact expression for total length
in terms of ¢, [, and H

l gl \* H L ql
L=-4/1 — —sinh™" —. 1
> +(2H) + qsm 20 (5.16¢)

Table 5.1 contains results of numerical solution of approximate equation (5.16a) for
different total length L of the cable. Three and two terms of this equation have
been hold. Results of numerical solution compared with solution of exact equation
(5.16¢). The problems are solved for ¢ = 2kN/m and / = 30 m.

Table 5.1 Cable under Total length of a cable L (m)

uniformly distributed load.

Thrust H, kN of the cable vs. 32 34 36

the total length L Two terms 47.4342 33.5410 27.3861
Three terms |45.8884 31.1147 23.9464
Exact solution|46.0987 31.7556 25.3087

We can see that even two terms of (5.16a) leads to quite sufficient accuracy.
Moreover, since Hterms < Hex.sol < Haterms, then two-term approximation is more
preferable for design.

Example 5.1. Design diagram of flexible cable with support points A and B on
different levels, is presented in Fig.5.5. The cable is subjected to uniformly dis-
tributed load g. Find shape of the cable and determine distribution of internal forces,
if thrust H of the cable is given. Parameters of the system are: / = 30m, ¢ = 3m,
H = 40kN, ¢ = 1.8kN/m. Use two approaches (a) integrating of differential
equation (5.8) and (b) the concept of the reference beam.

Solution.
(a) Differential equation of a flexible cable is d?y/dx? = ¢g/H ; its integration leads

to following expressions for slope and shape

dy ¢
dx

|

|
=
+
0

y:
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X
Xy \ O(x)=R,—gx
! N)

Fig. 5.5 (a) Cable under action of uniformly distributed load; (b) free-body diagram of the part of
the cable

Constants of integration should be calculated from the following boundary condi-
tions: at x = 0 (support A) y = 0 and at x = [ (support B) y = c. Constants of
integration are C; = 0 and

Now the shape of the cable and its slope for any x may be presented in the form

) ql? (x2 x)+ X 1.8X302<x2 x)+3x 0675()62 ol
x)="—|—=—= c— = —_—— — =0. — —Xx x,
g 21 I~ T2x40 \302 30 30 30

tanf = % = % (2%—1) + % = lfxxééo (23"—0 —1) + % =O.675(lx—5— 1) +o.l.

Equation y(x) presents nonsymmetrical parabola. In the lowest point the slope of
the cable equals zero

This equation leads to corresponding xo-coordinate

H (ql ¢ 40 (1.8%x30 3
Xo=—|Z2-2)=— —— ) =12.78m.
g \2H I 1.8\ 2x40 30

The maximum y occurs at xo

2

1
Ymax = y(12.78) = 0.675( - 12.78) +0.1x12.78 = —3.674m.
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Reaction of support A equals

o ql? _ _ql Hc

RA%ZMB—O. _RAI_HC+7_O_)RA_7_T
Free-body diagram of the left part of the cable and corresponding force triangle are
presented in Fig. 5.5b. Since shear Q(x) = R4 — ¢x, then tension at any section

according to (5.6) equals

2
N(x) = VH? 4+ (Rg — qx)* = \/H2—|— (%—#—qx) :

The tension in the lowest point

I H 2 1.8x30 40x3 2
N(x0)=\/H2+<%_Tc_qu) =\/H2+< ; - 3: —1.8x12.78)

= VH?+ (27—-27 = H.

Maximum tension occurs at supports

1.8x30 40x3 2
N(O):\/402+( ; - 3: —1.8x0) — 46.14kN,

1.8x30 40x3 2
N(l)=\/402+( ; - 33 —1.8><30) = 50.60kN

(b) The reaction of the reference beam is R% = g//2. The bending moment of the
reference beam and parameter f(x) measured from the inclined chord AB are

/ 2
MOx) = Ly 2
2 2

MO 1 / 2
Sy = L (%x_ %)

Distance y° between the horizontal line x and cable becomes

2
¥0(x) = f(x) —x tan¢g = % (qz—lx_ %) _Sy

Condition dy%/dx = 0 leads to the parameter xo = 12.78 m obtained above. The
distance between the cable in the lowest point and horizontal line becomes

oy — - (18X30,, 26 18X 12787\ 3 o L
X0) = — . - | — — . = J. m.
R T 2 30
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5.3 Effect of Arbitrary Load on the Thrust and Sag

So far we considered behavior of the cables that are subjected to concentrated or
distributed load only. In case of different loads acting simultaneously formula (5.4)
is most appropriate. However in engineering practice another type of loading is
possible, mainly: the cable is subjected to any dead load and after that additional
live load is applied. How will this change the shape and state of the cable? This
problem may be effectively solved by knowing the expression related to the total
length of the cable, the thrust, and external loads.

Consider a cable supported at points A and B and subjected to any loads
(Fig.5.6). Assume that a cable is inextensible, and support points of the cable do
have the mutual displacements. The covered span is /, while a total unstressed length
of acableis L.

q(x)
v W II IV T W Vs .

) R A
L
Fig. 5.6 Cable carrying S / |

arbitrary dead and live load 1

The total length of the cable is defined by exact equation (5.13). For gentile cable

a slope is small, so
dy 2 dy
1 — ] =1 5.17
+ ( dx) 41 ( > (5.17)

and expression for L becomes
1 I
dy 2 1 (dy 2
L = 1 — ] dx = 14+ - dx. 5.18
/v+(dx)x /[*2(@ g o1
0 0

According to (5.4), the shape of the cable is defined by expression y = M/H,
where M is a bending moment of the reference beam, and H is a thrust. Therefore
the slope can be calculated as follows

dy _d (M) _ 1dM _ Q(x)
dx ~ dx H dx  H

where Q(x) is shear at any section of the reference beam. After that expression
(5.18) becomes

L= Ofl[ ((x))} —l—l—m/Q(x)dx
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Usually this formula is written in the following form

L=1+— 2H2’ /Q (x)dx (5.19)

Table A.21, contains the load characteristic D for most important cases of loading.
Equation (5.19) allows present the thrust H in terms of load characteristic D as

follows
= b o = £ (5.20)
“V2d-1 ° T '

It is possible to show that if support points A and B of the cable are located on the
different elevation then

) N D
cosgp 2H?

L= cos> ¢,

where ¢ is angle between chord A B and x-axis.

Formulas (5.18)—(5.20) entirely solve the problem of determination of the thrust
of inextensible gentile cable with supports without their mutual displacements, sub-
jected to arbitrary vertical load. These formulas are approximate since for their
deriving have been used in approximate relationship (5.17).

Application of expression (5.20) for some classical loading cases is shown below.

1. A cable with total length L and span / carries a concentrated force P throughout
distance a starting from the left end of the cable (Fig.5.3). Let’s dimensionless
parameters be /o = L/l = 1.2 and £ = a/l = 0.4. Load characteristic D
(Table A.21)is D = P2I£(1 — &) = P21-0.4(1 —0.4) = 0.24P?].

D 0.24P2] ..
The thrust H = = = 0.7746 P. The exact solution is
2l(lp — 1) 21(1.2—-1)

H = 0.7339P (Sect.5.2, Inverse problem). Error is 5.54%.

2. The cable of total length L and span [/ carries a uniformly distributed load
q (Fig.5.4). Load characteristic is D = ¢?13/12 (Table A.21). According to
formula (5.16)

L 8 f2
lo=—=1+4+ -=—.
oCTEIT3e

Therefore the thrust becomes

_\/ D e g2
“V2uily-1) 8 f2 Co8f
12x2[(1+§l—2—1)

This exact result has been obtained earlier by using formula (5.10).
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The formulas above allows considering very important problem determining the
change of the parameters of the cable if additional live loads are applied.

Example 5.2. The flexible, inextensible, and gentile cable is suspended between
two absolutely rigid supports of same elevation. The total length of the cable is L
and span equals /. The cable is subjected to uniformly distributed dead load g within
the horizontal line; corresponding thrust and sag are H, and f;. Calculate a change
of the thrust and sag of the cable, if the entire cable upon the load g is loaded by
additional concentrated live load P at the axis of symmetry of the cable (Fig.5.7).

R, ¢ 12 2 AR,
'Z 4 ‘1"1"1/‘11‘1"1"1'4"1'\1'(1\1'3_]1
L/
/"/\yq
Fig. 5.7 Cable carrying Ygrr

uniformly distributed load g
with additional force P

Solution. If a cable is loaded by uniformly distributed load g only then load char-
acteristic is D, = ¢213/12.

Corresponding trust and sag are H, and f;. In this case (5.19) becomes
q2 13

L=t
NEVERT

(a)

If additional load P is applied at the middle of the cable then load characteristic
accordingly (Table A.21, line 5) becomes (the subscript 1 is omitted)

Dgyp = ﬂ(1 +3y +3y?), y= £
12 ql
Thus (5.19) becomes
1 q%
L=1+——">1—(1+3y+3y?), (b)
2HZ p 12

where H, p is thrust due to the both loads ¢ and P.
Since the cable is inextensible then left parts of the (a) and (b) are same, therefore

273 273
q-l 1 g7l 2
+ o =t o (L + 3y +3y%),
2HZ 12 2H; p 12
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which leads to the required relationship

Hyyp = Hg/1+ 3y + 3y2.
The sag of the cable

ql®> Pl
Mgeam _ ? + T 1+ 2)/ qlz

fusp = = = Cf=
! Hgvp  Hg/1+3y +3y2 T 3y + 3y2 ‘7 8H,

Lety = p/ql = 0.2. In this case the thrust and sag of the cable are

Hyip = HgvV/1+3x02+3x022=131H,,

14+2x0.2

P:
Jax qu1+3x0.2+3x0.22

= 1.068f,.

i.e., application of additional concentrated force P = 0.2¢!/ leads to increasing
of the thrust and sag of the nonextensible cable on 31% and 6.8%, respectively.
Timoshenko was the first to solve this problem by other approach (1943).

5.4 Cable with Self-Weight

This section is devoted to analysis of cable carrying a load uniformly distributed
along the cable itself. Relationships between parameters of cable, its length, shape,
and internal forces are developed. The direct and inverse problems are considered.

5.4.1 Fundamental Relationships

A cable is supported at points A and B and loaded by uniformly distributed load
qo along the cable itself. This load presents not only dead load (self-weight of the
cable), but also a live load, such as a glazed ice. Cables of this type are called
the catenary (Latin word catena means a ‘“chain”). It was named by Huygens in
1691. The y-axis passes through the lowest point C. Design diagram is presented
in Fig. 5.8. The following notations are used: s is curvilinear coordinate along the
cable; W = qqs is a total weight of portion s; N is a tension of the cable and H
presents a thrust of the cable.

For any point of the cable, relationship between N, H, and W obeys to law of

force triangle:
N=+vVH?>+ W2, (5.21)
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B
y
Design diagram N
ds
&A\ / '
s dx

~__C ~ _ H

< H W=q,s

H a W=gqys

Base of catenary X Free body diagram
o

Fig. 5.8 Design diagram of the catenary. Free body diagram for portion CD and force triangle

The final results may be conveniently expressed in terms of additional parameter
a = H/qy. This parameter is measured from the lowest point C of the cable and
defines an origin O and the line O-x called a base of catenary (or chain line). In
terms of a and s the normal force, accordingly (5.21) becomes

N = qgova? + s2. (5.22)

The relationship between coordinates x and s in differential form is

d d 0—d H ago d ads
x =dscosf =ds— = s = .
N qo /a2 + S2 /a2 + s2

Integrating this equation from point C(0, a) to D(x, y) allows us to calculate the
x-coordinate of any point of the cable in terms of s anda = H/qo

S
ads S
x=| ———— =asinh! = (5.23)
! /a2 + S2 a

The inverse relation, i.e., the solution of (5.23) with respect to s is
s = asinh 2. (5.24)
a

This formula allows us to obtain some useful relationships in terms of intensity load
qo and thrust H.
The length of the cable from lowest point C to D(x, y) is

H . qo
Lc—_p = —sinh ﬁx. (5.25)

qo
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Formula (5.22) for tension at any point can be rewritten as follows

. q0 qo
N(x)=H,/1 h? Zx = H cosh = x. 5.26
(x) + sin Hx cos Hx ( )

The minimum tension N = H occurs at x = 0, to say in the lowest point.
In order to obtain equation of the catenary, we need to express y in terms of x

w
dy =dx tanf = —dx = @dx = sinh de.
H aqo a

After integrating this equation from point C to point D, we get

y x
X
/dy =/sinh£dx—> Yy =a cosh =
a alo
a 0

The equation of the curve, assumed by the cable, and corresponding slope at any
point are

X H
y(x) = a cosh — = — cosh q—ox
a

q0
d
tanf = o sinh q—Ox. (5.27)
dx H

Below is presented analysis of typical cases of cables carrying a uniformly dis-
tributed load along the cable itself:

1. Supports located at the same level

2. Supports located at different elevation and saddle point within the span

3. Supports located on the different elevation and cable has not a saddle point within
the span

5.4.2 Cable with Supports Located at the Same Level

In this case a cable has the axis of symmetry. It is pertinent here to derive the simple
and useful expression for maximum tension for the cable in terms of gg, f, and H.
Maximum tension Ny,.x occurs at the supports (x = =£//2), then

L al ., ql N2,
Nmax = H /1 + sinh? % — sinh? ;ILH = o, (5.28)
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The sag of the cable f at the axis of symmetry (x = 0) in terms of ordinate y(//2)
of the cable at support is

l H ! H
f=y(—)—a=—coshql——

2 o 2H  qo
H I ! 2
= q_o (cosh% — 1) — cosh? ZLH = (% + 1) . (5.29)

Since sinh? z = cosh? z— 1, then expressions (5.28) and (5.29) lead to the following
formula

Nmax =KJOf+H (5.30)
Example 5.3. A uniform cable weighting go = 1.25kN/m is suspended between
two points A and B of equal elevation, which are /| = 20m apart as shown in
Fig.5.9.

1. Thrust—shape problem. Determine shape of the curve assumed by the cable, dis-
tribution of tension, and length of the cable, if a thrustis H = 5.6 kN

2. Length—thrust problem. Determine thrust of the cable and shape of the cable, if a
total length L = 42 m.

7 ) Nonax

4 B )em(lx

N)TICIX
S
C T 4

o
| /=20m | H

Fig. 5.9 Cable carrying a uniformly distributed load along the cable itself. Design diagram and
force triangle for CB portion

Solution.

1. Thrust-shape problem. Parameter of catenary a = H/qo = 5.6/1.25 = 4.48 m.
Equation of the curve assumed by the cable and slope are

H
y(x) = — cosh L2x = 4.48 cosh(0.2232x)
o N (a)

tan § = sinh qﬁox = sinh(0.2232x).

Coordinates of point B are x = 10m; y(10) = 4.48 cosh(0.2232 x 10) =
21.11m.

Therefore, sag of the cable at point C becomes f = y(10) —a = 21.11 —
4.48 = 16.63m.
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Slope at point B is

tan O = sinh(0.2232 x 10) = 4.6056 —
Sin Opax = sin(tan™! 4.6056) = 0.9772, cos Opmax = cos(tan™ ! 4.6056) =0.2122.

Tension at any point is

. qo
N=H,/I h? = x,
+ sin H X

and maximum tension occurs at point B and equals

Npax = 5.6\/1 + sinh2(0.2232 x 10) = 26.39KkN.

Since shape of the cable is symmetrical, then total length of the cable is

L = 2asinh X

10
=2x4.48 sinh—— = 41.27m.
a 4.48

—1
X=3

Control Iftotallength L = 41.27m, then total weight of the cable equals 41.27 %
1.25 = 51.58kN, and force W, considering portion CB, equals 51.587/2 =
25.79kN. From a force triangle we can calculate

H = Npax €08 Omax = 26.39 x 0.2122 = 5.6 kN,

W = Nmax 8in Omax = 26.39 x 0.9772 = 25.79kN,

w2579
tan emax = F = 7 = 4.605.

The maximum tension according to (5.30) equals
Nuax = qof + H=12521.11 —4.48) + 5.6 = 26.39kN.
2. Length—thrust problem. We assume that a total length L of a cable is given and
it is required to find the thrust, shape of the cable, and sag. Since the cable is
symmetrical with respect to y-axis, then total length of the cable equals L =

2a sinh(xp/a), where L = 42m and xg = [/2 = 10 m. Unknown parameter a
may be calculated from transcendental equation (5.25), i.e.,

.10
42 = 2a sinh —.
a

Solution of this equation leads to @ = 4.42 m. Thrust of the cable is H = aqo =
4.42 x 1.25 = 5.525kN.
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Equation of the curve and ordinate y for support points are

H qo
y(x) = — cosh —x = 4.42 cosh 0.22642x,
qo H

5.525

Ymax = 4.42 cosh 10 = 21.46 m.

Sag of the cable at lowest point C is f = 21.46 —4.42 = 17.04 m.

5.4.3 Cable with Supports Located on the Different Elevations

In this case the shape of the cable is nonsymmetrical and position of the lowest
point C is not known ahead. Availability of only two parameters, such as load per
unit length of the cable go and span /, are not enough for cable analysis. For deter-
mination of location of point C we need to formulate additional condition for curve
y(x) passing through points A and B. One of the additional parameter may be as
follows (1) Value of thrust H; (2) Total length L; (3) Coordinates of any additional
point of the cable. Two different cases are considered below. They are a saddle point
within or outside of the span.

5.4.3.1 Saddle Point Within the Span

The following example illustrates the thrust-length procedure of analysis of the
cable and corresponding peculiarities.

Example 5.4. A uniform cable with self-weight g9 = 1.25kN/m is suspended be-
tween two points / = 20 m apart horizontally, with one point of support 18 m higher
than the other as shown in Fig. 5.10. Thrust of the cable is H = 5.6 kN. Determine
shape of the cable, tension at supports, and total length of the cable. Assume that a
saddle point is placed between supports.

18m
\ L h

Fig. 5.10 Cable, carrying a < h

uniformly distributed load I a
o X

along the cable itself
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Solution. Let a vertical y-axis pass through the lowest point C. Location of this
point is defined by parameters /; and 1, which are unknown before head, while
l1 + I = 20 m. For this direct problem, the parameter of catenary (Fig.5.10) may
be calculated immediately, i.e., a = H/qo = 5.6/1.25 = 4.48 m.

Shape of the cable is defined by equation

H
y(x) = — cosh q—Ox = 4.48 cosh(0.2232x). (a)
qgo H

Conditions of the catenary passing through two points A and B are as follows:

At x = I, (point B) the ordinate y = a + h = 4.48 + h.

Atx = —I; = —(20 — I,) (point A) the ordinate y = a + h + 18.
Therefore, (a) for points B and A becomes

Point B: 4.48 cosh(0.2232/5) = 4.48 + h (b)

Point A: 4.48 cosh[—0.2232(20 — [,)] = 4.48 + h + 18.

These equations contain two unknowns / and /5. Expressing from both equa-
tions’ unknown parameter /2 and after that equating the two expressions, we obtain

4.48 cosh(0.22321,) = 4.48 cosh(0.22321, — 4.464) — 18.

The root of this equation is /; = 8.103m, which leadsto/y =1 — I, = 11.897 m.
Therefore, vertical distance & between points C and B according to formula (b)
equals

h = 4.48 cosh(0.2232 x 8.103) — 4.48 = 9.555 m.

Now we can consider the right and left parts of the cable separately.
Curve CB. Equation of the curve and slope are

y(x) = 4.48 cosh(0.2232x),

d
tanf = = = sinh(0.2232x).
dx

Ordinate y and slope at the point B are

y(x = 8.103) = 4.48 cosh(0.2232 x 8.103) = 14.034m,
tan 6(x = 8.103) = sinh(0.2232 x 8.103) = 2.969,
Op = 71.38°; sinfp = 0.9476.

The tension at the point B is

Np = H /1 + sinh? %xg = 5.6\/1 + sinh?(0.2232 x 8.103) = 17.544 kN.
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Length of the portion CB is Lcp = a sinh(xp/a) = 4.48 sinh(8.103/4.48) =
13.303m

Curve AC. Equation of the curve and slope are

y(x) = 4.48 cosh(0.2232x),

d
tanf = =2 = sinh(0.2232x).
dx

Ordinate y and slope at the point A are

$(=11.897) = 4.48 cosh(0.2232 x (—11.897)) = 32.034 m,
tan 6(—11.897) = sinh(0.2232 x (—11.897)) = —7.0796,
04 = 81.96°; sinf4 = 0.990.

Calculated coordinates y for support points A and B satisfy to given design diagram
y4a—yB =32.034—-14.034 = 18 m

Tension at the point A4 is

N4 = H /1 + sinh? qﬁOxA = 5.6\/1 + sinh?(0.2232 x 11.897) = 40.04kN

Length of the portion CA and total length of the cable are

11.897
4.48
L=Lyac + Lcg = 31.725+ 13.303 = 45.028 m

Lea = a sinh 22 = 4,48 sinh —31.725m
a

Control. The tension at the support points and total weight of the cable must satisfy
to equation Y ¥ = 0. In our case we have

N4 sinf4 + N sinfp — Lqo
= 40.04 x 0.990 + 17.544 x 0.9476 — 45.028 x 1.25 = 56.264 — 56.285.

The relative error equals 0.035%.

5.4.3.2 Saddle Point Outside of the Span

Now let us consider the cable with total length L, which is suspended between two
points A and B, as shown in Fig. 5.11. Peculiarity of this design diagram, unlike the
previous case, is that the curve AB of the cable has no point, for which tan6 = 0,
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since the lowest point C is located beyond the curve AB. Let the distance between
support points in horizontal and vertical directions be Dy and hy, respectively; g is
weight per unit length. It is required to determine the shape of the cable, thrust H,
and tension N4 and Np at supports.

Fig. 5.11 Design diagram of
the catenary; saddle point C
beyond the span

VB

Xp

For this length—thrust problem parameter a = H/qo cannot be calculated right
now because thrust H is unknown yet. However, this parameter may be calculated
analytically having the total length of the cable Ly and dimensions Dy and h¢. For
this some steps should be performed previously.

1. The length of the curve from point C to any point (x, y) according to
(5.25) is Lc—x = a sinh(x/a), so the length of curves CB and CA are
Lcp =a sinh(xg/a), Lcyg = a sinh(xy/a). Therefore, the total length AB
of a cable is

Lo=Leg—Lea =a sinh 2 — g sinh 4. (5.31)
a a

2. Equation of the curve assumed by cable according to (5.27) is y(x) = a cosh 7.
Therefore, ordinates of points B and A are yp = a coshZ£, y4 = a cosh 74
and vertical distance between two supports is

ho = yB — ya :acoshx—B—a COth—A. (5.32)
a a

Equations (5.31) and (5.32) present relationships between parameters a = H/qo,
Lo, ho, and Dy = xp — x4 and contains two unknowns parameters. They are a and
xp (or x4).

For given geometry parameters Lo, Dy, and /¢ the analytical solution of (5.31)
and (5.32) leads to following results.

Parameter a is determined from transcendental equation

D L2 —n?
cosh—0=1+M

. S (5.33)
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or in equivalent form

D 1
sinh =0 _ _
2a 2a

Coordinates x 4 and x4 of the points A and B are

L2 —h2 (5.33a)

h D
x4 = atanh™! (L—O) - 70 xp = x4 + Do. (5.34)
0

The thrust of the cable equals H = gopa. Also, equation of the curve and slope
according to (5.27) are

X X
y(x) =a cosh—; tan6(x) = sinh —
a a
Slopes at support points A and B are
tan 84 = sinh X—A; tan O = sinh 1B (5.35)
a a

Tension at points A and B according (5.1), (5.2), and (5.34) are

Na=H [1+sinh>2: Np=H |1+sinh? 2 (5.36)
a a

Example 5.5. Let us consider the cable, which is presented in Fig. 5.11. The cable
has following parameters: Lo =117.7m; Do=100m; ho=577m; ¢q¢ =
0.014 kN/m. Determine the shape of the cable, thrust, and tension.

Solution. Parameter a of the catenary can be calculated from (5.33a)

100 1
sinh — = —+/117.72 = 57.72 > a = 127.41 m.

2a 2a

Coordinate x of the support A is x4 = 127.41 tanh™'(57.7/117.7) — (100/2) =
18.34 m.
Slopes at supports A and B

. 18.34 .
tan 4 = sinh = 0.1446; sinf4 = 0.1431; cosfy4 = 0.9897
127.34
18.34 + 100
tan fp = sinh ﬁ = 1.0694; sinfp = 0.7304; cosfp = 0.6830.

Thrust of the cable is H = goa = 0.014 x 127.41 = 1.7837kN.
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Expressions (5.36) allows calculating the tension at supports A and B

18.34
N4 = 1.7834,/1 + sinh? —— = 1.802kN:
127.41
18.34 + 100
Np = 1.78344/1 + sinh®> ————— = 2.609kN.
5 = 1783 ‘/ +sin 127.41

Control. Ordinates of support points are

18.
ya=a coshx—A = 127.41cosh = 128.73 m;
a 127.41
18.34 + 100
yp = 127.4lcosh——————— = 186.43 m.
127.41

Vertical distance between points A and B equals hp = yp — y4 = 186.43m —
128.73m = 57.7m.
Equilibrium equation ) _ Y = 0 for cable in whole leads to the following result

—Nysinfy + Npsinfp — Log = —1.802 x 0.1431 + 2.609
x0.7304 — 117.7 x 0.014
—1.9057 4+ 1.9056 = 0.

Pay attention that vertical reaction of the support A4 is directed downward as shown
in Fig.5.11.
Trust can be calculated by formulas

H = Njcosf4 = 1.802 x0.9897 = 1.783,
H = Npcosfp = 2.609 x 0.6830 = 1.782.

5.5 Comparison of Parabolic and Catenary Cables

Let us compare the main results for parabolic and catenary cables. Assume, that
both cables are inextensible, supported on same elevation, and support points does
not allow to mutual displacements of the ends of the cable. Both cables have the
same span [, subjected to uniformly distributed load ¢. If the load ¢ is distributed
within the horizontal foot then a curve of the cable is parabola (parabolic shape),
if the load is distributed within the cable itself, then curve of the cable is cate-
nary. Table 5.2 contains some fundamental parameters for both cables. They are
dimensionless sag—span ratio f/I, slope tan 6 at the supports and dimensionless
maximum cable tension—thrust ratio Ny,.x/H . Correspondence formulae are pre-
sented in brackets. The formulas for parabolic cable may be derived if hyperbolic
functions to present as series sinhz = z+ (z3/3!) +...; coshz = 1 4+ (z2/2) +.. ..
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Table 5.2 Comparison Parabolic cable | Catenary
of parabolic and 71 I ]
catenary cables / — (5.10 — ( sh — — 1) 5.29
y s | s o7 (com 1) 629
/ l
tan O | o~ (5.9b) sinh - (5.27)
2H 2H
N, max ql ? 12 ql
—_— 1 — 5.12 1 h® — 5.28
H + (2 H) (5.12) + sin S0 (5.28)

Some numerical results are presented in Fig. 5.12 and 5.13. Comparison is made

for two types of cables having the same ¢//H ratio.

Fig. 5.12 Dimensionless Y/
sag—span ratio vs. total
load—thrust ratio for parabolic 0.6 7
and catenary cables -

0.5

Catenary—,~
0.4 z
0.3
“[A<Parabolic shape

0.2

0.1

0.0

0.5 1.0 15 20 25 30 35 q/H
Fig. 5.13 Dimensionless N, /H
maximum cable
tension—thrust ratio vs. total 3.4
load—thrust ratio for parabolic /
and catenary cables 3.0 7
/
Catenary
2.6
/
2.2
1.8 —+
Parabolic shape
1.4 =
1.0 =
0.5 1.0 15 20 25 30 35 gl/H

For thrust-shape problem the ratio ¢//H is known. For relatively small
ql/H(<1.5), dimensionless sag f// and maximum tension Ny, ,H for parabolic
and catenary cables practically coincide. If load ¢ is fixed, then increasing of ¢//H
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caused by decreasing of the thrust leads to increasing of the sag. If thrust H is fixed,
then increasing of ¢//H caused by increasing of the load ¢ leads to increasing of
the slope of the cable at support point, and as a result, increase in maximum internal
force Npax in cable.

5.6 Effect of Axial Stiffness

So far we have considered behavior of a cable without accounting for elastic prop-
erties of a cable itself. Elastic properties of a cable have considerable importance
in the distribution of tension of a cable and value of sag. Procedure of analysis of
elastic cables is presented below. Two cases are considered: cable with concentrated
and uniformly distributed loads.

5.6.1 Elastic Cable with Concentrated Load

Design diagram of elastic cable is presented in Fig. 5.14. The force P is applied at
x = [/2. In the deformable state of the cable the sag and inclination are f and o,
respectively. Nondeformable length of the cable is L. It is necessary to calculate
the thrust and sag of the cable taking into account the stiffness of the cable EA.

Fig. 5.14 Elastic cable
subjected to concentrated
load

It is evident that the angle of inclination, y-coordinate, and sag of the cable at
point C are

Ry P
tang = —— = ———
H 2H
lt Pl ¥ Pl
= —tanw = ———, = —.
=3 4H 4H

Tension in the left and right portions of a cable may be presented in the form

H P2
N:—=H\/1+tan2a=H\/1+ )
cosa 4H?
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The total length of the cable

p2
L=2_L:l\/1+tan2a:lwl+—. (5.37)
sin o 4H2

Now let us introduce the elastic properties of the cable. Let the stiffness of the cable
be EA, where E is modulus of elasticity; A4 is cross-sectional area of the cable. The
strain of the cable

N H P2

_N _H | 5.38
C=Ea - AV T3 (5.38)

H?
If the initial length of the cable is L, then the length of the cable upon the load is
L = Lo(1 + ¢). (5.39)

Equations (5.37)—(5.39) lead to one resolving equation

2 L
%—1, pg==2. (5.40)
(1-24%)

This equation allows to calculate unknown thrust H for given P, EA, initial length
Ly, and span /.
The sag of elastic cable is

P =2H

_ Pl B2
fe]—m—z ﬁ—l. (5.41)
0

Limiting cases

1. The cable is nondeformable (EA = oo, Lo = L). In this case, the sag

[ [L?
=5\ -1

2
This result also may be obtained from geometrical consideration of the design
diagram. Let us evaluate increasing of the sag for elastic cable. If § = 1.5 and
H = 0.01EA,then f,; = 1.35f,4, i.e., a sag increased to 35%.

2. The initial length of a cable equals to the span (Lo = /); it means that the cable
may be treated as a string. In this case f = 1 and (5.40) becomes

P=2H | — 1 (5.42)
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This equation may be rewritten in equivalent form

22 [H3 H
P = JES - 5.42
" VEA 2EA (5.422)
EA

1—
Since H/EA < 1, then (5.42a) may be presented as
VP2EA (5.43)

Pl [ 3/ P
S = =3VEa G449

Equations (5.43) and (5.44) show that the relationships P-H and P-f are
nonlinear.

or

Corresponding sag is

5.6.2 Elastic Cable with Uniformly Distributed Load

Now let us consider a gentile cable of the span /. In this case a distributed load may
be considered as sum of external load and the weight of a cable itself. Since the
cable is gentile, we assume that the tension in the cable is constant and equal to the
thrust

dy 2
N=H1+|—] ~H. (5.45)
dx
According to (5.16b) we have
L 1 g2I?
L_, Llee
/ 24 H?

Solution of this equation leads to the following expression for a thrust (in terms of
span [, total length L of the cable, and load ¢)
ql 1
H=———. (5.45a)
26 [L |
/

The length L of the cable under load is L = Lo(1 + ¢), where L is initial length
of the cable and e = H/EA, so

H
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Thus (5.45a) for thrust H may be presented as

szﬁ\/mzzﬁ H , -
Lo 40 (14 25) -

So for computation of the thrust A the equation (5.46) may be rewritten in the
following form

(5.46)

B 3 2 ‘]212
—H —-1HH" = —.

This is noncomplete cubic equation with respect to H. Solution of this equation

for string (8 = 1) is
2I2EA
H=1 - (5.462)

The reader is invited to derive the following expression for sag of an gentile cable:

_ V3 H
f_mlwg (1+2) 547

Hint. Use formula f = ¢/?/8H (formula 5.10) and expression (5.46).
We can see that consideration of the elastic properties of a cable leads to the
nonlinear relationships H—¢q and f-H.

Limiting cases

1. In case of nondeformable cable (EA = o0), formulas (5.46) and (5.47) coincide
with formulas (5.16¢) and (5.16d) for the case of gentile cable carrying uniformly
distributed load.

2. If Lo = I then formulas (5.46a) and (5.47) lead to the following nonlinear rela-

tionships f—q :
=—4/ = 5.48
S =3V Ea .45

Problems

5.1. Design diagram of a cable is presented in Fig. P5.1. Supports A and B are
located on different elevations. Parameters of the system are: a; = 10m, a, =
22m,¢c =3m,/ =30m, Py = 18kN, P, = 15kN.

Determine the thrust H of the cable, if total length of the cable L = 34 m.

Ans. H = 23.934kN
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a,=10mY P =18kN |

a,=22m

1
[=30m

Fig. P5.1

5.2. The cable is subjected to two concentrated forces P = 30kN at joints E and
C, and unknown force N at joint D, as shown in Fig. P5.2. The thrust of the cable
structure is H = 60kN. Determine the force N and corresponding shape of the
cable, if the portion CD of the cable is horizontal.

Fig. P5.2

Ans. N = 18kN; fg = 5.0m.

5.3. The cable with support points on the same levels has span/ = 36 mis subjected
to uniformly distributed load ¢ = 2kN/m along horizontal projection of the cable.
The sag of the cable is f = 6 m. Determine the thrust of the cable H, maximum
axial tension Ny, and slope at the support.

Ans. H = 54KkN; Npax = 64.89kN

5.4. The cable with support points on the same levels has span / = 36 m and is
subjected to uniformly distributed load ¢ = 2 kN/m along horizontal projection of
the cable. The thrust of the cable is H = 108 kN. Determine the sag of the cable,
maximum axial tension Ny,x, and slope at the support.

Ans. f = 3m; Ny = 113.84kN

5.5. The cable with support points on the same levels is subjected to uniformly
distributed load ¢ along horizontal projection of the cable. The span of the cable
is [. If load ¢ increases by two times, but the sag f remains the same, then
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(a) Thrust H is (1) remains the same; (2) twice as much; (3) half as much

(b) Maximum axial force is (1) remains the same; (2) twice as much; (3) half as
much

(c) Slope at the support is (1) remains the same; (2) twice as much; (3) half as much

5.6. The cable with support points on the same elevation is subjected to uniformly
distributed load ¢ along horizontal projection of the cable. The span of the cable is
[ m. If load ¢ increases by two times, but the thrust H remains the same, then

(a) Sag of the cable is (1) remains the same; (2) greater; (3) twice as much; (4) half
as much.

(b) Maximum axial force is (1) remains the same; (2) greater; (3) twice as much;
(4) half as much.

(c) Slope at the support is (1) remains the same; (2) greater; (3) twice as much; (4)
half as much.

5.7. The flexible inextensible cable with support points on the same levels is sub-
jected to uniformly distributed load ¢; and g, within the horizontal line, as shown
in Fig. P5.7; the span of the cable is / m and maximum sag is f . Calculate the thrust
of the cable. Consider limiting cases ¢; = ¢, and g» = ¢;.

q
1 @
VYV VVVVVVVVVB

AT
N
\ Ao

Fig. P5.7

2
(q14* + 2g2b1 — g2b?)

8Q2f12
5.8. The flexible inextensible cable with support points on the same elevation is

subjected to uniformly distributed load g within the horizontal line; the span of the
cable is / m. Derive expression for maximum tension Ny,,x in terms of sag-to-span

ratioa = f/I.

/1
Ans. Nyoy = %—\/1 T 1602
(07

Ans. H =

5.9. A uniform cable of weight g per unit length is suspended between two points
at the same elevation and a distance / apart. Let the maximum axial force Ny, and
total weight of the cable W be related as Ny.x = kW, where k is any positive
number.
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(a) Derive equation, which connects parameters qo, [, H, and k

(b) Calculate the sag—span ratio for which the maximum tension in the cable is
equal to 0.75 of the total weight of the entire cable and corresponding value of
maximum tension Npax.

I
Ans. (a) (4k2 — 1) sinh? ZLH = 15 (b) 0.2121, Nyax = 0.8337¢0l

5.10. A uniform cable of weight g per unit length, is suspended between two points
at the same elevation and a distance / apart. Determine the sag—span ratio, for which
the maximum tension is as small as possible.

Ans. 4 = 0.3377

5.11. A uniform cable of weight g per unit length is suspended between two points
at the same elevation and a distance / apart. The sag of the cable, total length, and
thrust are denoted as f, L, and H, respectively. Calculate the maximum tensile
force. Present the result in three following forms (1) in terms of H, qo, /; (2) in
terms of H, go, f; (3) in terms of H, qo, L

qo! qoL 2
Ans. (1) Npax=H h —; (2) Npax= H; (3) Nnax=H /1 —
ns. (1) cosh 202 2) Nuwe=go f + H: () +(2H)

5.12. Design diagram of flexible cable with support points A and B on different
levels, is presented in Fig. P5.12. The cable is subjected to linearly distributed load
q. At the middle point C the sag is f = 4.5 m. Find the shape of the cable, thrust,
and calculate distribution of internal forces. Parameters of the system are: [ = 60 m,
¢ = 12m, g = 2.0kN/m. Use the concept of the reference beam.

Fig. P5.12

Ans. H = 100kN, N4 = 107.76kN, Np = 101.83kN, R4 = 40kN, Rp =
20kN






Chapter 6
Deflections of Elastic Structures

This chapter describes some effective methods for computing deflections of
deformable structures. The following structures are considered: beams, frames,
arches, and trusses subjected to different actions, such as variety of external loads,
change of temperature, settlements of supports, and errors of fabrication. Compu-
tation of different types of deflections is shown. They are linear, angular, as well
as the mutual linear and angular deflections. Advantages and disadvantages of each
method and field of their effective application are discussed. Much attention is
given to a graph multiplication method which is a most effective method for bend-
ing structures. Fundamental properties of deformable structures are described by
reciprocal theorems; they will be widely used for analysis of statically indeterminate
structures.

6.1 Introduction

Any load which acts on the structure leads to its deformation. It means that a struc-
ture changes its shape, the points of the structure displace, and relative position of
separate points of a structure changes. There are other reasons of the deformation
of structures. Among them is a settlement of supports, change of temperature, etc.
Large displacements could lead to disruption of a structure functioning properly and
even its collapse. Therefore an existing Building Codes establish limit deflections
for different engineering structures. Ability to compute deflections is necessary for
estimation of rigidity of a structure, for comparison of theoretical and actual de-
flections of a structure, as well theoretical and allowable deflections. Beside that,
computation of deflections is an important part of analysis of any statically inde-
terminate structure. Deflections computation is also an integral part of a dynamical
analysis of the structures. Thus, the computation of deflections of deformable struc-
tures caused by different reasons is a very important problem of Structural Analysis.

Outstanding scientists devoted theirs investigations to the problem of calcula-
tion of displacements. Among them are Bernoulli, Euler, Clapeyron, Castigliano,
Maxwell, Mohr, etc. They proposed a number of in-depth and ingenious ideas for the
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solution of this problem. At present, methods for computation of the displacements
are developed with sufficient completeness and commonness for engineering pur-
poses and are brought to elegant simplicity and perfection.

The deformed shape of a bend structure is defined by transversal displacements
y(x) of every points of a structural member. The slope of the deflection curve is
given by (x) = dy/dx = y’(x). Deflected shapes of some structures are pre-
sented in Fig. 6.1. In all cases, elastic curves (EC) reflect the deformable shape of
the neutral line of a member; the EC are shown by dotted lines in exaggerated scale.

ay
0(x
4 9
== ;:;T;_._;.;_/.;;/_ —— 1=
6,=0 yx)
Tangent at B
C Ac
=i
> > —
:?\Inﬂection
point
A
e 4 H

Fig. 6.1 (a—d) Deflected shapes of some structures. (e, f) Deflected shape of beams caused by the
settlement of support B

A cantilever beam with load P at the free end is presented in Fig. 6.1a. All points
of the neutral line have some vertical displacements y(x). Equation y = y(x) is the
EC equation of a beam. Each section of a beam has not only a transversal (vertical
in this case) displacement, but an angular displacement 6(x) as well. Maximum
vertical displacement A g occurs at B; maximum slope 6p also happens at the same
point. At the fixed support A, both linear and angular displacements A 4 and 64 are
Zero.

The simply supported beam with overhang is subjected to vertical load Pas
shown in Fig. 6.1b.The vertical displacements at supports A and B are zero. The
angles of rotation 64 and 6p are maximum, but have different directions. Since
overhang BC does not have external loads, the elastic curve along the overhang
presents the straight line, i.e., the slope of the elastic curve 6 within this portion is
constant. The angles of rotation of sections, which are located infinitely close to the
left and right of support B are equal.
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Figure 6.1c shows the frame due to action of horizontal force P. At fixed support
A the linear and angular displacements are zero, while at pinned support B the angle
of rotation 6 # 0. The joints C and D have the horizontal displacements Ac and
A p; under special assumptions these displacements are equal. Joints C and D have
angular displacements 8¢ and 6p (they are not labeled on the sketch). The linear
and angular displacements of joints C and D lead to deformation of the vertical
members as shown on the sketch. Since support 4 is fixed, then the left member AC
has an inflection point.

Figure 6.1d shows the frame with hinged ends of the cross-bar CD; the frame is
subjected to horizontal force P. In this case the cross-bar and column BD has a dis-
placement but does not have deflection and members move as absolutely rigid one —
the motion of the member CD is a translation, while the member BD rotates around
point B. Thus, it is a possible displacement of the member without the relative dis-
placements of its separate points. So a displacement is not always accompanied by
deflections, however, deflections are impossible without displacement of its points.

Figure 6.1e, f shows the shapes of the beams caused by settlement of support. In
case 6.1e, a new form of statically determinate beam is characterized by displace-
ment of portion H-B as absolutely rigid body, i.e., without deflection of the beam.
In case 6.1f, a new form of the beam occurs with deflection of the beam.

There are two principle analytical approaches to computation of displacements.
The first of them is based on the integration of the differential equation of the elas-
tic curve of a beam. Modification of this method leads to the initial parameters
method. The second approach is based on the fundamental energetic principles. The
following precise analytical methods represent the second group: Castigliano theo-
rem, dummy load method (Maxwell-Mohr integral), graph multiplication method
(Vereshchagin rule), and elastic load method.

All methods from both groups are exact and based on the following assumptions:

1. Structures are physically linear (material of a structures obey Hook’s law);
2. Structures are geometrically linear (displacements of a structures are much less
than their overall dimensions).

6.2 Initial Parameters Method

Initial parameters method presents a modification of double integration method in
case when a beam has several portions and as result, expressions for bending mo-
ments are different for each portion. Initial parameter method allows us to obtain an
equation of the elastic curve of a beam with any type of supports (rigid or elastic)
and, most important, for any number of portions of a beam.

Fundamental difference between the initial parameter and the double integration
method, as it will be shown below, lies in the following facts:

1. Initial parameters method does not require setting up the expressions for bending
moments for different portions of a beam, formulating corresponding differ-
ential equations and their integration. Instead, the method uses a once-derived
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expression for displacement. This expression allows us to calculate slope, bend-
ing moments, and shear along the beam and is called the Universal equation of
elastic curve of a beam.

2. Universal equation of the elastic curve of a beam contains only two unknown
parameters for any number of portions.

A general case of a beam under different types of loads and the corresponding no-
tational convention is presented in Fig. 6.2a. The origin is placed at the extreme left
end point of a beam, the x-axis is directed along the beam, and y-axis is directed
downward. Support A is shown as fixed, however, it can be any type of support or
even free end. Load ¢ is distributed along the portion DE. Coordinates of points of
application of concentrated force P, couple M, and initial point of distributed load
qare denoted as a with corresponding subscripts P, M, and g. This beam has five
portions (AB, BC, CD, DE, and EL), which leads to the ten constants of integrating
using the double integration method.

a
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Fig. 6.2 Initial parameters method notation

The initial parameter method requires the following rules to be entertained:

1. Abscises x for all portions should be reckoned from the origin; in this case
the bending moment expression for each next portion contains all components
related to the previous portion.

2. Uniformly distributed load may start from any point but it must continue to the
very right point of the beam. If distributed load is interrupted (point E, Fig. 6.2a),
then this load should be continued till the very right point and action of the added
load must be compensated by the same but oppositely directed load, as shown in
Fig. 6.2a. The same rule remains for load which is distributed by triangle law. If
load is located within the portion S-7 (Fig. 6.2b), it should be continued till the
very right point L of the beam and action of the added load must be compen-
sated by the same but oppositely directed loads (uniformly distributed load with
intensity k¢ and load distributed by triangle law with maximum intensity k—k¢
at point L). Both of these compensated loads start at point 7" and do not interrupt
until the extremely right point L.

3. All components of a bending moment within each portion should be presented
in unified form using the factor (x—a) in specified power, as shown in Table 6.1.
For example, the bending moments for the second and third portions (Fig. 6.2a)
caused by the active loads only are
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M(x3) = —P(x2 —ap),
M(x3) = —P(x3 —ap) — M(x3 —an)°.

4. Integration of differential equation should be performed without opening the
parenthesis.

All of these conditions are called Cauchy—Clebsch conditions.
Initial parameters method is based on the equation E 1 y” = —M (x). Integrating
it twice leads to the following expressions for slope and linear displacement

EI0 :—fM(x)dx+C1,
Ely :-/dx/M(x)dx+C1x+D1. (6.1)

The transversal displacement and slope at x = 0 are y = yo ,0 = 6. These
displacements are called the initial parameters. Equations (6.1) allow getting the
constants in terms of initial parameters
D1 = Elygand C; = EIfy.

Finally (6.1) may be rewritten as

EIO = EIfy — / M(x)dx,

Ely = Elyo + EIfyx — / dx / M(x)dx. (6.2)
These equations are called the initial parameter equations. For practical purposes,

the integrals from (6.2) should be calculated for special types of loads using the
above rules 1-4. These integrals are presented in Table 6.1.

Table 6.1 Bending moments in unified form for different type of loading

M pl k=tanf

Ay j> Aap qu a;.

X X X X
y y y y

—a)? 3

M(x) EM(x —ay)° +P(x —ap)! q(x zaq) ik(xz ;lk)
— 2 _ 3 _ 4

M(x)dx +M(x —ay) L Px—ar) iQ(x aq) LR —a)

( 2 2-3 2-3-4
— 2 _ 3 _ 4 - 5

[ dx [ M(x)dx iM(x am) iP(x ap) iq(x a,) :I:k(x ar)

2 2-3 2-3-4 2-3-4-5
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Combining (6.2) and data in Table 6.1 allows us to write the general expressions
for the linear displacements y(x) and slope 8(x) for a uniform beam:

EIy(x)= EI yo+ EI eox—ZiM, (6.3)
n!
. F(x —ap)"!

where EI is the flexural rigidity of the beam; F is any load (concentrated, couple, or
a distributed one); yo and 6 are transversal displacement and slope at x = 0; aF is
the distance from the origin of the beam to the point of application of a concentrated
force, couple, or to the starting point of the distributed load and 7 is the parameter,
which depends on the type of the load.

Types of load F and corresponding parameter n are presented in Table 6.2.

Table 6.2 Initial parameters Type of load F
method. Parameter n for the
specific loads

Concentrated load
Uniformly distributed load

F
Couple M
P
q
The load distributed by triangle law k

Ul-bb)l\)z

Equation (6.3) is called the Universal equation of elastic curve of a beam. This
equation gives an easiest way of deriving the equation of elastic curve of uniform
beam and calculating displacement at any specified point. This method is applicable
for a beam with arbitrary boundary conditions, subjected to any types of loads.

Notes:

1. The negative sign before the symbol X corresponds to the y-axis directed
downward.

2. Summation is related only to loads, which are located to the left of the section
x. It means that we have to take into account only those terms, for which the
difference (x — a) is positive.

3. Reactions of supports and moment of a clamped support must be taken into ac-
count as well, like any active force.

4. Consideration of all loads including reactions must start at the very left end and
move to the right.

5. Sign of the load factor =(F(x — ag)”)/n! coincides with the sign of bending
moment due to the load, which is located at the left side of the section x.

6. Initial parameters yo and 6y may be given or be unknown, depending on bound-
ary conditions.

7. Unknown parameters (displacements or forces) are to be determined from the
boundary conditions and conditions at specified points, such as the intermediate
support and/or intermediate hinge.
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For positive bending moments at x due to couple M, force P, and uniformly dis-
tributed load ¢, the expanded equations for displacement and slope are

M(x —ap)? _ P(x—ap)? B q(x —aq)4

El y(x) = El yo + EI 6px —

2! 3! 41 '
(6.5)
P(x—ap)? q(x—ay)?
EIO(x) =FEl0y— M(x —apm) — 7 — G . (6.6)
Expressions for bending moment and shear force may be obtained by formula
M(x) = —EIy"(x), Q(x) =—EIy"(x). (6.7)

Advantages of the initial parameters method are as follows:

1. Initial parameters method allows to obtain the expression for elastic curve of the
beam. The method is very effective in case of large number of portions of a beam.

2. Initial parameters method do not require to form the expressions for bending
moment at different portions of a beam and integration of differential equation
of elastic curve of a beam; a procedure of integration was once used for deriving
the Universal equation of a beam and then only simple algebraic procedures are
applied according to expression (6.3).

3. The number of unknown initial parameters is always equals two and does not
depend on the number of portions of a beam.

4. Initial parameters method may be effectively applied for beams with elastic sup-
ports and beams subjected to displacement of supports. Also, this method may
be applied for statically indeterminate beams.

Example 6.1. A simply supported beam is subjected to a uniformly distributed load
q over the span (Fig. 6.3). The flexural stiffness EI is constant. Derive the expres-
sions for elastic curve and slope of the beam. Determine the slope at the left and
right supports, and the maximum deflection.

Solution. The origin is placed at the left support, the x-axis is directed along the
beam and the y-axis is directed downward. The forces that should be taken into

R ,=0.5¢g/
Initial 44 4

4 1D=0
parameters: v ¥ \l/ R R ERER \
0=0, 6,20 ~<<f--h\_K_o_----- - g x
Fig. 6.3 Design diagram of Yo 0 % l\y(JX\)\ymax
simply supported beam and ! / |

its deflected shape y
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account according to the universal equation (6.3) are reaction R4 of the support 4
and uniformly distributed load ¢g. The expression of elastic curve is

(a)

P _ 3 _ 4
EIy(x):EIyo—i-EIOox—[ (x—ap)” _qlx—dq) }

3! 41

where P = R4 = 0.5g/, ap = 0, a; = 0; the initial parameters are yo = 0 and
Bo # 0.

The negative sign before the brackets means that the y-axis is directed downward.
The signs before the first and second terms in the brackets indicate that bending
moments at x due to a reaction P = R4 and distributed load ¢ are positive and
negative, respectively. Equation (a) contains one unknown parameter 8y, which can
be calculated taking into account the boundary condition at the right support. Since
the vertical displacement at B is zero, i.e., y(/) = 0, then

gl 13 ql*
EI =EIl ———4+—=0 b
() =160 - L=+ L ®)

This equation leads to EI 0y = gl3/24. Therefore, the expression (a) of the elastic
curve becomes

()

ql® gl x> gx* ql* (x x3 N x4
= X — —_—— _—— _— —_—
24 2 6 24 24 \ ] 34

An expression for slope of the beam may be derived from (c) by differentiation

dy ¢l x? x3
) =Bl =25 15 T45

The slopes at the left and right supports are EI9(0) = ¢l3/24 and EI0(]) =
—ql3/24.

Since the elastic curve is symmetrical with respect to the middle point of the
beam, then the maximum displacement occurs at the point x = 0.5/. Thus, from (c)
we can obtain the following result

5
Elymax = ﬁql4
The positive sign indicates that the displacement occurs in positive direction of the
y-axis.

Example 6.2. A uniform cantilevered beam has a uniform load g over the interval
a of the beam, as shown in Fig. 6.4. Derive the equation of the elastic curve of the
beam. Determine the slope and deflection of the beam at the free end.
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Fig. 6.4 Design di f =
ig. esign diagram o Tundtial a R=qa

cantilevered beam and its
deflected shape parameters: yx) ¢

yo—oeo—OC EXEENEREEEE IR

»»»»»»»»»»» 1.
N e v x
My="3 [ !
y

Solution. Since a distributed load is interrupted at x = a then an additional dis-
tributed load should be applied from the point x = a until point x = [ and this
additional load must be compensated by the load of same intensity in the opposite
direction. Expression for the elastic curve is

El y(x) = El yo + EI 6px

Ma(x =00  Ra(x=0)* g(x—-0)* g(x—a)*
_[_ T TR T AT }

where the initial parameters are yo = 0 and 6y = 0; the third and fourth terms in
parentheses take into account the uniformly distributed load over the all length of
the beam and the compensated distributed load. The reactions are M4 = ga?/2 and
R4 = ga. So the equations of elastic curve and slope become

2

3 4
qa
Ely(x) = EN

x2 x> gx* q(x—a)*
——gqa— 4+ = -
2 6 " 24 24

’

ga’x qax®* gx® q(x—a)?

Elf(x) = > 3 7

The beam with compensated load has two portions so the last term in both equations
must be taken into account only for second portion (¢ < x < ), i.e., for positive
values of x —a.
The transversal deflections of the beam at the point x = a and at the free end are:
2,2 3 4 4
qa‘ a a qa qa
EI =———-—qga—+ — = —,
V@) =y T T e T
ga®l?>  qal® N gl* q(l—a)*

Ely(l) =
v 4 6 ' 24 24

The right part of the beam is unloaded and has no constraints, therefore the second
portion (¢ < x < [) is not deformable and the slopes for any point at this portion
are equal

3
El6(a) = E16(]) = %.
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As can be seen in this example, the initial parameters yo and 8y for the given struc-
ture are known right away, so there is no necessity to use the boundary conditions
at the right end.

Example 6.3. A uniform beam with clamped left support and elastic support at the
right end is subjected to a concentrated force P at point C, as shown in Fig.6.5;
stiffness parameter of the elastic support is k. Derive the equation of elastic curve.
Compute the reaction of a clamped support and consider the special cases k = 0
and k = oo.

Initial

parameters: T Ry P R

7=0, 6,=0 T B

i | v X

Fig. 6.5 Design (_hagram.of C e N — % Parameters
one-span beam with elastic M, 0.5/ at x=/:
support and its deflected / | y=0, 620
shape y '

Solution. The general expression for elastic curve according to (6.3) and (6.5) is

Ma(x=0  Ra(x=07  P(x—05I)°

El y(x) = El yo + EI 6px + o 3l 3

(a)

The last term should be taken into account only for positive (x — 0.57).
Initial parameters are yo = 0 and 8y = 0. These conditions lead to the equation

Max? Rqx® P(x—0.50)3
Ely(x) = et ( g ), (b)

which contains the unknown reaction R4 and reactive moment M 4 at the clamped
support A. For their determination we have two additional conditions:

1. The bending moment at support B is zero, therefore
/
M(l)=—-M4+ Ryl — P Z_E =0

and the reactive moment M 4 in terms of R4 becomes

Pl
MA:RAZ_T. (C)

This expression allows us to rewrite (b) for elastic curve of a beam as follows:

PI\ x> Rax® P A
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Thus, displacement at point B equals

P\ 13> Rul® P (1)’
E1y(l)=(RA—E)3—AT+E(5). ()

2. Deflection at point B and stiffness k are related as yp = (Rp/k) = (P — Ry)/k,
therefore P_R
Ely(I) = EI _k 4 )

Solving system of equations (e, f) leads to an expression for the reaction at
support A
. 11 kI3
- 48 E1
3EI

Substitution of the last expression into (d) leads to the equation of elastic curve
for the given system.

Special cases:

1. If k = 0 (cantilever beam), then R4 = P
2. If k = oo (clamped-pinned beam), then R4 = 11P /16 and Rp = 5P/16.

Example 6.4. The continuous beam in Fig. 6.6 is subjected to a uniform load gin
the second span. Flexural stiffness EI is constant. Derive the equation of the elastic
curve of the beam. Calculate the reactions of supports.

Initial 0 y(1)=0 q »20)=0
parameters: 4 ___=Z-y - - BE Y LIV IV Y VC x
=0, 6,%0 R =2
yO Oi -C%- y(Y) _________

= L

R, /

y

Fig. 6.6 Design diagram of two-span continuous beam and its deflected shape

Solution. The universal equation of elastic curve of a beam is

EI y(x) = EI yo + EI fpx — [RA(X_0)3 n Rp(x—=1)° q(x—l)“]

3! 3! 41

Since the initial parameter yo = 0 then

Ely(x) = EI px —

3 N3 _ 74
RA6x _RB(x ) +q(x I)' @

6 24
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This equation contains the unknown initial parameter 8y and two unknown reactions
R4 and Rp. For their calculation we have three additional conditions. They are
Ely(l)=0,Ely(2l) =0, M(2]) = 0.

1. Displacement at x = [ (support B):

Ral®

EI y(l) = EI 6l — 0. (b)

2. Displacement at x = 2/ (support C):

R4(21)*  Rp(2l-1)° N q@l -D*

EI y(2l) = EI 6y2] — 0
y(2I) o g 54 or
8R4I> Rpl3 *
EIG2l — 24 BB 4 _ ©
6 6 24
3. Bending moment equation may be presented as
— 1?2
M(x) = —EIly"(x) = Rax + Rp(x — 1) — %.
The bending moment at the support C is
21 —1)? 12
MQl) = RA~21+RB(21—Z)—¥ —0 or RAZH—RBI—% — 0. (d)
Solution of (b), (c), and (d) leads to the following results
1 5 ql3
Ry=——ql, Rp=—ql, EIf=——.
4 64 B =29 o % (e)

The negative sign of initial slope shows that the angle of rotation at point A is in the
counterclockwise.

Substitution expression (e) in the general expression (a) leads to the following
equation for elastic curve

ql3 1 x> 5 (x=03 qkx-D*
EI =—— —ql— — —ql .
YO =9 6 e T3l T m
The following terms should be taken into account: for the first span — the first and
second terms only and for the second span — all terms of the last equation.

Example 6.5. The beam AB is clamped at the left end and pinned at right end. The
beam is subjected to the angular displacement 6 at the left end as shown in Fig. 6.7.
Derive the equation of the elastic curve and compute the reactions of supports.
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Fig. 6.7 Fixed-rolled beam
subjected to the angular

7
Initial
ttl t of t
settlement of suppor parameters: C B

¥5=0, 6, N ________ V:gf

M, |RA %" N e |
/

f

Solution. According to (6.5), the expression for elastic curve is

Ra(x — 0>  My(x —0)2
EIy(x)=E1y0+E190x—|: A(xy L A(); )]

Since the initial parameter yy = 0, then

Rax3  Myx?
6 2

Ely(x) =EIfy-x — (a)

This equation contains two unknowns M4 and R4. For their calculation we have
two additional equations.

1. The transverse displacement at the right support equals zero

Mal?  Ryl?
Ely(l) = El6y-1 — ;‘ - ‘é =0. (b)

2. Bending moment at support B equals zero. The expression for bending moment
may be obtained by twice differentiating (a)

M(x) = —EIy"(x) = M4 + Rux. (c)
At x = [ we have
M(l)= M4+ Ryl =0. (d)

Solving (b) and (d) with respect to M 4 and R 4 leads to the following expressions
for reactions

Myg=—>=06), R4=-——0o. (e)

The formulas (e) are presented in Table A.3; they are necessary for analysis of
statically indeterminate frames by the displacement method (Chap. 8).

Example 6.6. The beam AB is clamped at the left and right ends. Derive equation
of the elastic curve for the beam if the vertical relative displacement of supports is
Ap (Fig. 6.8). Calculate corresponding reactions.
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Fig. 6.8 Fixed-fixed beam 5l
subjected to linear settlement A |

of support o

Solution. According to (6.5), the expression for elastic curve is

R —0)3 M m2
EIy(x)=E1y0+E]Q0x_|: 4(x —0) N 4(x —0) :|

3! 2!
Since initial parameters are yo = 0 and 8y = 0 then

Rax®  Myx?

El = —
y(x) c : (a)
For right fixed support the displacement is A g, therefore
Ral®>  Myl?
EIy(l) = — ’é - ;‘ —EI- A (b)

Expression for slope is EI y'(x) = —(R4x%/2) — M 4x. For right fixed support the

slope is zero, so

R4l?

EIY() = — — Myl =0. ©)

Solution of (b) and (c) leads to the following results:

12E1 6EI
Ry = l—3AB(T)7 My = _Z_ZAB' (d)
Substitution of (d) into (a) allows calculating the transversal displacement of any
point of the beam.
Other required reactions may be determined considering the equilibrium
equations:
12E1 6EI
Rp =— E Ap(}) and Mp = —l_zAB~ (e)
The negative signs show that actual directions for reactions and moments do not
coincide with adopted direction in Fig. 6.8.
Formulas (d) and (e) will be used for analysis of statically indeterminate frames
by the displacement method (Chap. 8).
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6.3 Maxwell-Mohr Method

The Maxwell-Mohr procedure presents a universal method for computation of
displacement at any point of any deformable structure. Also, the Maxwell-Mohr
procedure allows calculating mutual displacements. Different sources, which may
cause displacements of a structure, are considered. They are different types of loads
and change of temperature.

6.3.1 Deflections Due to Fixed Loads

For bending systems, the Castigliano’s theorem for computation of linear and angu-
lar displacements at point k may be presented as follows

[ M(x) 0M(x)
- El 3P

[ M(x) IM(x)

dx. 6 = d 6.8
Y Tk El op, 6.8)

Yk

where M (x) is bending moment at section x, Py and M} are force and couple at
section k.

Both formulas (6.8) may be simplified. For this purpose let us consider, for ex-
ample, the simply supported beam subjected to force P and couple M (Fig.6.9).

A x
. . R a Ry
Fig. 6.9 Simply supported 4 /
beam loaded by P and M d
Reaction
l—a 1
R4=P + M-

) )

and the bending moment for the left and right portions of the beam are

(I —a)
)

M(x) = Rqyx = P x—l—M; (x <a),

M(x) = Rax — P(x —a) = P%l(l —0+ M)l—“ (x > a).
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Both expressions present the linear functions of the loads P and M . In general case,
suppose a structure is subjected to the set of concentrated loads P;, P, ..., couples
My, M;, ..., and distributed loads ¢1, ¢2, . . .. This condition of structure is called as
P-condition (also known as the actual or loaded condition). In case of P—condition,
a bending moment at the any section x is a linear function of these loads

M(x)=a1Pr+aPr+--+biMi +boMy+ -+ c1q1 +c2g2 + -+, (6.9)

where coefficients a;, b;, and ¢; depend on geometrical parameters of the structure,
position of loads, and location of the section x.

If it is required to find displacement at the point of application of P, then,
as an intermediate step of Castigliano’s theorem we need to calculate the partial
derivative of bending moment M (x) with respect to force P;. This derivative is
dM (x)/dP1 = ay. According to expression for M (x), this parameter a; may be con-
sidered as the bending moment at section x caused by unit dimensionless force
(P1 = 1). State of the structure due to action of unit dimensionless load (unit force
or unit couple) is called unit state. Thus, calculation of partial derivatives in (6.8)
may be changed by calculation of a bending moment caused by unit dimension-
less load

, (6.10)

M (x) OM (x) M (x) My,
yk:f El 0P dx:/ T

where My is bending moment in the unit state. Keep in mind that My, is always a
linear function and represents the bending moment due to a unit load, which corre-
sponds to the required displacement.

In a similar way, terms, which take into account influence of normal and shear
forces, may be transformed. Thus, displacements caused by any combination of
loads may be expressed in terms of internal stresses developed by given loads and
unit load, which corresponds to required displacement. That is the reason why this
approach is termed the dummy load method. A general expression for displacement
may be written as

S — S — S —
M, My, Np Ny 93Y:
Akpzz/ o ds—i—Z/ o ds+2/,u cx s 61D
0 0 0

Summation is related to all elements of a structure. Fundamental expression (6.11)
is known as Maxwell-Mobhr integral. The following notations are used: A, is dis-
placement of a structure in the kth direction in P-condition, i.e., displacement in
the direction of unit load (first index k) due to the given load (second index p); M,
Np, and QO are the internal stresses (bending moment, axial and shear forces) in
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P-condition; and My, Ng, Q , are the internal stresses due to the unit load, which
acts in the kth direction and corresponds to the required displacement. GA is
transversal rigidity, @ is non-dimensional parameter depends on the shape of the
cross-section. For rectangular cross section this parameter equals 1.2, for circular
section it equals 10/9. The unit load (force, couple, etc.) is also termed as the
dummy load.

For different types of structures, relative contribution of first, second, and third
terms of expression (6.11) in the total displacement Ay, is different. For practical
calculation, depending on type and shape of a structure, the following terms from
(6.11) should be taken into account:

(a) For trusses — only second term

(b) For beams and frames with ratio of height of cross section to span 0.2 or less —
only first term

(c) For beams with ratio of height of cross section to span more than 0.2 — the first
and third terms

(d) For gently sloping arches — the first and second terms

(e) For arches with ratio of radius of curvature to height of cross section 5 or more —
all terms

In case of trusses, the displacement should be calculated by formula

l _

N,N

Aip =Y | = ds. (6.12)
0

Since all elements are straight ones and axial stiffness EA is constant along all length
of each element, then this formula may be presented as

NpN
Ap =Y 2Ak1. (6.13)

Procedure for computation of deflections using Maxwell-Mohr integral is as
follows:

1. Express internal forces in P-condition for an arbitrary cross section in terms of
its position x

2. Construct the unit condition. For this we should apply unit load (dummy load),
which corresponds to the required displacement:

(a) For linear displacement, a corresponding dummy load represents the unit
force, which is applied at the point where displacement is to be determined
and acts in the same direction

(b) For angular displacement, a corresponding dummy load is the unit couple,
which is applied at the point where angle of rotation is to be determined
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(c) For mutual linear displacement of two sections, a corresponding dummy load
represents two unit forces, which are applied at the points where displacement
is to be determined and act in the opposite directions

(d) For mutual angular displacement of two sections, a corresponding dummy
load represents two unit couples, which are applied at given sections and act
in the opposite directions.

3. Express the internal forces in unit condition for an arbitrary cross section in terms
of its position x
4. Calculate Maxwell-Mohr integral

Positive sign of displacement means that the real displacement coincides with the
direction of the unit load, or work performed by unit load along the actual direction
is positive.

Example 6.7. A cantilever uniform beam is subjected to a uniformly distributed
load g (Fig. 6.10a). Compute (a) the angle of rotation and (b) vertical displacement
at point A. Take into account only bending moments.

Actual
state Y4

M(x)=—1-x
a M=1 _ 4
. M(x)=-1 B3
Unit A
state for 6, X Unit state for y

Fig. 6.10 Design diagram of the beam; (a) Unit state for 64; (b) Unit state for y 4

Solution.(a) The angle of rotation may be defined by formula

1
1 _
= E/Mp(x)de. (a)
0

Now we need to consider two states, mainly, the actual and unit ones, and for
both of them set up the expressions for bending moments. For actual state, the
bending momentis M,(x) = —gx?/2. Since it is required to determine the slope
at point A, then the unit state presents the same structure with unit couple M = 1
at point A (Fig. 6.10a); this dummy load may be shown in arbitrary direction. For
unit state, the bending momentis M = —1 for any section x. The formula (a) for
required angle of rotation becomes

1
1 ql®
—5/( ) (-ax =L (b)
0
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(b) The vertical displacement at A may be calculated by formula
1 1
ya= o / Mp(x)Mdx, ©
0

where expression for bending moment M, (x) in the actual state remains without
change. In order to construct the unit state, it is necessary to apply unit concentrated
force P = 1 at the point where it is required to determine displacement (Fig. 6.10b).

For unit state, the bending moment is A = —1 - x. The formula (c) for vertical
displacement becomes
1 qx? ql*
= — ——) - (-1-x)dx = —. d
ya= g [E5 roa =40 @
0

The positive sign means that adopted unit load make positive work on the real dis-
placement, or other words, actual displacement coincides with assumed one.

Example 6.8. Determine the vertical displacement of joint 6 of symmetrical truss
shown in Fig. 6.11. Axial rigidity for diagonal and vertical elements is EA and for
lower and top chords is 2EA.

Actual

state sina = 3/5
cosa =4/5

Unit

l()
TT?AZO.S P=1 TRB:0-5

Fig. 6.11 Design diagram of the truss (actual state) and unit state

Solution. All elements of the given structure are subjected to axial loads only, so
for required displacement the following formula should be applied:

1 _
V6 = ZaNkal, (@)

where N, and N are internal forces in actual and unit state, respectively.
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Actual state. Reaction of supports R4 = Rp = P. As usual, the axial forces in
the members are taken positive in tension. Equilibrium equations lead to the follow-
ing internal forces:

4
O35> > ME"=0: —R4q-2d + Pd — O35h =0 — O35 =3P

4

Uss —> Yy M¥"=0: —RAd+U24h=0—>U24=§P (b)
. 5
D23—>ZYleﬁ=O: D23sma+RA=0—>D23=—§P

D36—>Zyleﬁ=0: R4— P — Dsgsina =0 — D3g =0

Unit state. Unit vertical load P = 1 is applied at the point where vertical displace-
ment is to be determined. Reaction of supports R4 = Rp = 0.5. Internal forces in
unit state are:

- _ - - 4
035—>2Méeﬁ:01 —RA'Zd—O35h:0—>035:—§

- _ - - 2
U24—>ZM31’eﬂ=02 —RAd+U24h=0—>U24=§

N left _ . N : P, — N —

D23—>ZY =0: Dosina+Rgq =0— Dyz3 =—- (c)

_ o _ 5
D3g— Y Y™ =0: Rg— Dssina =0— D3s = <

Table 6.3 contains the data which is necessary for computation of displacement ac-

cording to (a). They are the length of the elements, their axial rigidity, and internal

forces in all members in actual and unit states. The last column contains application
of (a) for each member separately.

Summation of the last column of this table leads to the required displacement of
joint 6

NpNI  506P
=2 TEa = TeEA"

(d)

Note. For calculation of displacement of all joints of the bottom (upper) chord of
the truss, the different unit states should be considered. For each unit state, the pro-
cedure presented in Table 6.3 should be repeated. Thus, the Maxwell-Mohr integral
requires calculation of the internal forces in all members of the truss for each unit
state. This procedure is cumbersome and will be extremely simplified using the
elastic load method.
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Table 6.3 Calculation of vertical displacement of the joint 6 of the truss

Length of the Axial forces _ N, NI

Bar bar (m) Axial rigidity | Actual state (N,) | Unit state N EA
013 4 2FA 0 0 0

O3_s 4 2EA —4P/3 —4/3 64P/18EA
Os5_7 4 2FA —4P/3 —4/3 64P/18EA
079 4 2FA 0 0 0

Uy—y 4 2EA 4P/3 2/3 32P/18EA
Us—¢ 4 2FA 4P/3 2/3 32P/18EA
Us—s 4 2EA 4P/3 2/3 32P/18EA
Us—1o 4 2FA 4P/3 2/3 32P/18EA
Vi 3 EA 0 0 0

Vi_y 3 EA 0 0 0

Vs—e 3 EA 0 0 0

Vi—sg 3 EA 0 0 0

Vo_10 3 EA 0 0 0

D)5 5 EA —5P/3 —-5/6 125P/18E
D3, 5 EA 0 5/6 0

D¢ 5 EA 0 5/6 0

D719 5 EA —5P/3 —5/6 125P/18E

6.3.2 Deflections Due to Change of Temperature

It is often in engineering practice that the members of a structure undergo ther-
mal effects. In case of statically determinate structures, the change of temperature
leads to displacements of points of a structure without an appearance of temperature
internal forces, while in case of statically indeterminate structures the change of
temperature causes an appearance of temperature internal forces. Often these inter-
nal forces may approach significant values. Analysis of any statically indeterminate
structure subjected to change of temperature is based on calculation of displacement
of statically determinate structure. So, calculation of displacements due to change of
temperature is a very important problem for analysis of both statically determinate
and indeterminate structures.
Two first terms of Maxwell-Mohr’s integral (6.11) may be rewritten as follows

1 ]
Arp = ZkaAgp + Z/NkAx,,, (6.14)
0 0

where Ag, = (M,/Eldx is the mutual angular displacement of both sections
faced apart at a distance dx due to the given load and A,, = (N,/EA)dx is the
mutual axial displacement of both sections faced apart at a distance dx due to the
given load.

These terms may be easily computed for the case of temperature change. Let
us consider elementary part of a structure with length dx. The height of the cross
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section of the member is sg. The upper and bottom fibers of the member are
subjected to temperature increase ¢; and t, respectively, above some reference
temperature. Corresponding distribution of temperature (temperature profile) is pre-
sented in Fig. 6.12. If the change of temperature for bottom and uppers fibers is equal
(t1 = 1), then this case presents the uniform change of temperature; if #; # ¢, then
this case is referred as nonuniform change of temperature.

A2 +, Upper fibers
———————————————————————— . +1,
Ay /2 Ay, 12
A2 Iy A2 t+t,
2
\\_ ____________ / +l‘7
A2+t A, /2 <

Fig. 6.12 Distribution of temperature and displacements within the height of cross section

The expansion of the upper and bottom fibers equals to A, = «#;dx and Ap =
atrdx, respectively; these expressions contain coefficient of thermal expansion «
of member material. In the case of symmetrical cross section, the expansion of the
fiber at the mid-height equals to

nh+1un

Axi =« 5

dx. (a)

The mutual angle of rotation of two plane sections, which are located apart from
each other on distance dx

-t
Aoy = ol (b)
ho
Now we can substitute (a) and (b) into (6.14). Finally the displacement in kth direc-
tion due to change of temperature may be presented in the following form:

t t
Ak,_Z/ 1+ 2des+Z/ Md (6.15)

where M, N are bending moment and axial force due to the unit generalized force
in kth direction; this force should be corresponding to required temperature dis-
placements.

A difference 1 — ¢ is a temperature gradient; a half-sum (¢; +1,)/2 is a temper-
ature at the centroid of the symmetric cross section (the axis of symmetry coincides
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with neutral axis). If the cross section is nonsymmetrical about its neutral axis, then
the term (¢; 4 #2)/2 must be replaced by t, + ((t; —12)/2)y, where y is the distance
of the lower fiber to the neutral axis.

The term (¢; + £;)/2 means that a bar is subjected to uniform thermal effect; in
this case all fibers are expanded by the same values. The term |¢; — 3|/ hp means
that a bar is subjected to nonuniform thermal effect; in this case a bar is subjected to
bending in such way that the fibers on the neutral line have no thermal elongation.
So, the first and second terms in (6.15) present displacements in kth direction due
to uniform and nonuniform change of temperature, respectively. Integrals | Myds
and [ Nyds present the areas of bending moment and axial force diagram in unit
condition, which corresponds to required displacement.

The presentation of Maxwell-Mohr integral in formula (6.15) allows us to cal-
culate any displacement (linear, angular, mutual linear, mutual angular) caused by
uniform or nonuniform change of temperature. This formula does not take into ac-
count the influence of shear. The procedure of summation in formula (6.15) must
be carried over all members of the system. The signs at all terms in this formula
will be obtained as follows: if the displacements of the element induced by both the
change of temperature and by the unit load occur at the same direction, then the
corresponding term of the equation will be positive.

Procedure for analysis is as follows:

1. Construct the unit state. For this we should apply unit generalized force X, which
corresponds to the required displacement

2. Construct the bending moment and axial force diagrams in the unit state

3. For each member of a structure to compute the term | Nydx, which is the area
of axial force diagram in the unit state

4. For each member of a structure to compute the term | My dx, which is the area
of bending moment diagram in the unit state

5. Apply formula (6.15).

Example 6.9. Determine the vertical displacement of point C at the free end of
the knee frame shown in Fig. 6.13, when the indoor temperature rises by 20°C and
outdoor temperature remains constant. The height of the element AB and BC are b
and d, respectively.

Design diagram Unit state for A,

~

o d
B0 C

1
+20° — —
b J'\AC — lX=1 —] lXII
—|— T
h ] E N
+0°]+20° — My — X=1
14 — —

Fig. 6.13 Design diagram of the frame and unit state for A¢
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Solution. Since the required displacement is Ac, then a structure in the unit state
is loaded by unit force X = 1 at point C. The bending moment and axial force di-
agrams are shown in Fig. 6.13. General expression for displacements due to change
of temperature is

S S
W+ 1 - 1 — 1| -
Ars :Z/a ! . 2dexJFZ/oc' lho 2|Mkdx. (a)
0 0

For member AB of the structure integral f dex = h - 1, while for member BC
integral [ Ngdx = 0.

For members BC and AB of the frame, the integral [ My dx equals to (1/2)1 -1
and [ - h, respectively. Therefore, for the given structure the required displacement
becomes

0420 0 — 20| 10— 20|

Ac = —« ‘h-1—« leh. (b)

1
-]l —«
2

firstterm 6.15 second term 6.15

The first term of (b), which takes into account axial forces, is negative, since the
strains of the element AB induced by the variation in temperature is positive (elon-
gation) and by the unit load is negative (compressed). The second and third terms of
(b), which take into account bending moment, are negative, since the tensile fibers of
the elements AB and BC induced by the variation in temperature are located inside
of the frame, and by the unit load are located outside of the frame.

The final result for the required displacement is

2 lh
Ac = —10ah+ —+2—].
Cc a( +d+ b)

Negative sign shows that the actual displacement A¢ due to the variation in tem-
perature is opposite with induced unit load X .

Example 6.10. Determine the horizontal displacement of point B of the uniform
semicircular bar in Fig. 6.14a, if the indoor and outdoor temperature rises by ¢;C
and 1;C, respectively. The height of cross section bar is ho.

Solution. A temperature effect related to curvilinear bar, therefore the general ex-
pression for temperature displacement should be presented in terms of curvilinear
coordinate s instead of x as for straight member

S S
t i - 11 — 1| -
AB,=Z/a1;szds+Z/a|lh02|Mkds. (a)
0 0
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a C b C
hy ¥y ds

R +\ T o |R +1\t1,

P W

A 9
—> <
HA-&- X:l—g— ~
R

R ] R I

Fig. 6.14 Curvilinear bar. Design diagram and unit state

Unit load X = 1 (Fig. 6.14b) corresponds to required horizontal displacement at
B. In the unit state reaction H4 = 1 and internal forces due to unit load X are as
follows

Thus equation (a) for displacement at B becomes

t t
Ap =« 1+2/( 1-sing)ds + o

R

-t

11 = £2] /(—R-singp)ds. (c)
0

0

Integration is performed along a curvilinear road of length mR. In the polar
coordinates

d ds . y

= —, sing = =,
=R TR
the limits of integration become 0 —

T

t
/(—1 - sing) Rdy + a|
0

h+1t
2

1 — 12|

Ap =« /(—R - sing) Rdg. (d)
0

Thus, for required displacement we get the following expression

——=(=2R?*) = —aR(t; + 1) — 20 Rzmh 2l (e)

ll+lz |11 — 12
h 0

Ap=oa0—(—2R)+«

Negative sign in (e) means that unit force X produces negative work on the real
displacement, i.e., the displacement of the point B due to temperature changes is
directed from left to right.

For uniform change of temperature (i.e., when gradients for indoor and outdoor
temperatures are the same), i.e., #; = f;, a difference #{—#, = 0 and only first term of
(6.15) or (e) should be taken into account. In this case, the horizontal displacement
equals to Ap = —2uaRt.
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6.3.3 Summary

1. Maxwell-Mohr integral presents the fundamental and power method for calcu-
lation of arbitrary displacements of any elastic structure. Displacements may be
the result of any types of loads and change of temperature.

2. In order to calculate any displacement, it is necessary to consider two states of
a structure, i.e., given and unit states. Unit state presents the same structure, but
loaded by unit generalized force corresponding to the required displacement.

3. According to the type of structure, which terms of (6.11) should be taken into
account can be decided. For both states, given and unit, it is necessary to set up
expressions for corresponding internal forces and calculate the required displace-
ment by the Maxwell-Mohr integral.

6.4 Displacement Due to Settlement of Supports
and Errors of Fabrication

A settlement of supports often occurs in engineering practice. If the settlement of
support happens in direction of reaction of this support, then in case of statically
determinate structures such influence leads to a new position of structure without
deformation of its separate members; it means that internal stresses are not induced.
Computation of displacement of any point of statically determinate structures due
to settlement of supports is considered below.

Let us consider a portal frame; support B settles on A as shown in Fig. 6.15a. The
new position of the frame members after settlement of support B is shown by dotted
line. It is necessary to calculate the linear displacement Ay of the point k. Unit state
presents the same frame subjected to unit force X, which acts in the direction of the
required displacement Ay (Fig. 6.15b). This unit force X produces the reaction R
at the support B. Assume that direction of this reaction coincides with settlement A
of support.

by C

Fig. 6.15 (a) Settlement of support B; (b) unit state; (¢) displacements at point K

Effective method for solution of this type of problem is the principle of virtual
displacements

> W = 0. (6.16)
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According to this principle, the elementary work done by all the active forces on any
virtual displacement, which is compatible with constraints, is zero. This principle
may be applicable for structure with finite displacements. The force R should be
considered as active one and (6.16) becomes

X -Ar+R-A=0.

Since X =1, then
Ay = —R-A. (6.17)

The formula (6.17) may be generalized for case of displacements caused by settle-
ments of several supports

Akd =—ZR-A, (6.18)

where Ay is the displacement in kth direction due to settlement of supports, A is
the given settlement of support, and R is the reaction in the support which is settled;
this reaction caused by unit load which corresponds to the required displacement.
Summation covers all supports.

Procedure for computation of displacement caused by the settlement of support
is as follows:

1. At the point K where displacement should be determined we need to apply unit
generalized force X = 1 corresponding to the required displacement

2. To show reactions R at the settled support, caused by unit generalized force
X =1 and compute these reactions

3. Calculate the work done by these reactions on the displacements of the support;
multiply this result by negative unity

Discussion. Equation (6.18) reflects a kinematical character of problem; it means
that displacements of any point of statically determinate (SD) structure are deter-
mined by the geometrical parameters of a structure without taking into account the
deformations of its elements. Any settlement of support of SD structure leads to
displacement of its separate parts as rigid discs. Displacements of any point of SD
structure caused by settlement of supports do not depend on the stiffness of the
structure.

Let us consider a procedure (6.18) for portal frame in more detail. The support
B is moved on A as shown in Fig. 6.15a; it is necessary to calculate the angular
and linear displacements of the joint K (Fig. 6.15c). Procedure (6.18) is presented
in Table 6.4. The first line of this table presents unit generalized force X; = 1 which
corresponds to required displacements. Each unit force may be shown in arbitrary
direction. The second line of the table shows the reaction, which arise at the settled
support; each of these reactions is caused by unit generalized force X; = 1.

Example 6.11. Two structures are hinged together at C as shown in Fig.6.16a.
Compute the horizontal displacement of point K due to the following settlements of
the support A: A1 = 0.02m, A, = 0.03m, 8 = 0.01 rad (scales for displacements
Ay, A,, and 0 and for dimensions of the structure are different).
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a

b R:
Actual state Unit state
H

c e
1 MC [ ]

, K x=1
A B

ij2 Tf:— a

Al

Fig. 6.16 (a) Hinged structure and settlements of support A; (b) Interaction diagram and unit state

Solution. 1. Apply the unit dimensionless horizontal force X = 1 corresponding

2.

to the required horizontal displacement at point K.
Now we have to calculate reactions at the settled support A. Since support A
has the horizontal and vertical component of the settlements as well as the angle
of rotation, i.e., Ay, A,, and 6, then we need to calculate reactions in these
directions, i.e., H4, R4, and M 4.

For secondary structure CBK the following reactions arises:

RB—>ZMC:O: X-3—Rp-6=0— Rg = 0.5,
Rc=Rp=05, Hc=P=1.

Reactions Hc and R¢ from the secondary structure are transmitted on the pri-
mary structure AC as active forces H(. and R.. Reactions, which arise at support
A, are

Hy=1, R4=Rp=05 My=Rq-4+H--5=1.

All reactions are dimensionless, while the M 4 is measured in the unit of length;
in our case M4 = 7m. All these reactions are shown in real direction which
corresponds to direction of X = 1.

The principle of virtual displacements is

Z Woet = 0. ()

The work done by all active forces on the displacements, which are compatible
with constraints, is zero, i.e.,

XA+ HqA1 —Rq-Ay— M40 =0. (b)
Since X = 1, then

A=—H4qA1 + Ry - Ay + M4b. (c)
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In fact the formula (c) is expression (6.18) in the expanded form. The required
horizontal displacement at point K equals

A=-1x0.0240.5x0.0347x0.01 =0.065m. (d

The positive sign for required displacement A means that the direction of real
horizontal displacement of the point K caused by settlements of support A and
direction of unit load X are same.

Example 6.12. The telescope mirror is placed on the inclined CD element of the
truss (Fig. 6.17). Determine the angle of rotation of the support bar CD due to the
vertical settlements of supports A and B: A; = 0.02m, A, = 0.03m.

\1::0.2
X?} D
PZO.E\CJ” HED/

C

D'

A B
T T
T g
4m R }L,T R
4 B

Fig. 6.17 Design diagram of a truss and unit states

Solution. 1. For required angle of rotation Ocp we have to apply unit couple X =1
to the bar CD. This couple is presented as two forces P = 1/dy = 0.2, where
dy is the length of the bar CD. Reaction of the supports caused by two forces
P = 0.2 are:

Rp—>>Y Mgq=0: Rp-4—02d =0— Rp =0.25,
RA—>ZY=02 RAZRBZO.ZS.

2. Application of principle of virtual displacements leads to following expression

X-QCD+RA'A1—RB-A2=0. (a)
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However, X = 1, and therefore the required displacement, according to (6.18)
equals

Ocp =—Y Rd =—(Ra-A1— R Ay). (b)

For given A; (i = 1, 2), the angle of rotation of bar CD becomes
Ocp = —0.25 x 0.02 + 0.25 x 0.03 = 0.0025 rad

Positive sign of the required displacement means that the adopted clockwise cou-
ple X within the real angular displacement produce the positive work. It is obvious,
that the horizontal displacement at support A does not affect on the angle of rotation
of any bar, since horizontal reaction at point A due to applied unit couple is zero.

Deflections of the structural members may occur as a result of the geometric
misfit. This topic is sometimes referred to be the name geometric incompatibility.

The following procedure may be applied for this type of problems:

1. At the point K where displacement should be determined we need to apply unit
generalized force X = 1 corresponding to the required displacement

2. Compute all reactions caused by unit generalized force X = 1

3. Calculate the work done by these reactions on the displacements

Example 6.13. The tie AB of the arch ACB in Fig. 6.18 is A = 0.02 m longer then
required length 1. Find the vertical displacement at point C, if / = 48 m, f = 6 m.

Actual state Unit state l A=l
C

Fig. 6.18 Design diagram of the arch (error fabrication) and unit state

Solution. The actual position of the tie is A B’ instead of project AB position. For
computation of the vertical displacement A¢c we have to apply unit vertical force
at C. Reactions of the three-hinged arch and thrust in tie caused by force P = 1
equals Ry = Rp =05, H = Mg/f =1/4f =2.

Application of principle of virtual displacements leads to the following
expression
X-Ac—H-A=0.

Since X = 1, then the required displacement becomes

Ac =+4+H-A=+40.04m (downward).
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It is obvious that the effect of geometric incompatibility may be useful for regulation
of the stresses in the structure. Let us consider a three-hinged arch which is loaded
by any fixed load. The bending moments are

M(x) =M°— Hy,

where M ? is a bending moment in the reference beam. If a tie is fabricated longer
then required, then the thrust becomes H = H; + H», where H; and H, are thrust
due to fixed load and errors of fabrication, respectively.

Discussion. For computation of displacement due to the settlement of supports
and errors of fabrication, we use the principle of virtual work. The common con-
cept for this principle and for Maxwell-Mohr integral is the concept of generalized
coordinate and corresponding generalized unit force.

6.5 Graph Multiplication Method

Graph multiplication method presents most effective way for computation of any
displacement (linear, angular, mutual, etc.) of bending structures, particularly for
framed structures. The advantage of this method is that the integration procedure
according to Maxwell-Mohr integral is replaced by elementary algebraic procedure
on two bending moment diagrams in the actual and unit states. This method was
developed by Russian engineer Vereshchagin in 1925 and is often referred as the
Vereshchagin rule.

Let us consider some portion AB which is a part of a bending structure; the bend-
ing stiffness, EI, within of this portion is constant. The bending moment diagrams
for this portion in actual and unit state are M, and M . Both diagrams for portion
AB are presented in Fig. 6.19. In general case, a bending moment diagram M, in the
actual state is bounded by curve, but for special cases it may be bounded by straight
line (if a structure is subjected to concentrated forces and/or couples). However, it

M, (x) dQ=M(x)dx  Centroid of M, graph

y
?< M, (Actual state)

) A L dx| B

X : x| lQp

tva Y M (Unit state)
o) PR S 2 2 ]/M/’C/

X
X,
1

Fig. 6.19 Graph multiplication method. Bending moment diagrams M, and M in actual and unit
states
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is obvious that in the unit state the bending moment diagram M is always bounded
by the straight line. Just this property of unit bending moment diagram allows us to
present the Maxwell-Mohr integral for bending systems in the simple form.

Ordinate of the bending moment in actual state at section x is M (x). Elemen-
tary area of a bending moment diagram in actual condition is d§2 = M ,(x)dx.
Since M = x tana, then integral in Maxwell-Mohr formula may be presented as
(coefficient 1/EI by convention is omitted)

/Mpde :/(xtana)Mpdx =tanoz/xd.Q. (6.19)

Integral [ xd$2 represents the static moment of the area of the bending moment
diagram in actual state with respect to axis Oy. It is well known that a static moment
may be expressed in terms of total area §2 and coordinate of its centroid x. by
formula f xd§2 = 2px.. It is obvious that xctan« = y.. Therefore, the Maxwell-
Mohr integral may be presented as follows

1 0
— | MyMdx = Z22C.

6.20
El El (6:20)

The procedure of integration [ M »Mdx = 2, is called the “multiplication” of
two graphs.

The result of multiplication of two graphs, at least one of which is bounded
by a straight line (bending moment diagram in unit state), equals to area 2 of
the bending moment diagram M, in actual state multiplied by the ordinate y,
from the unit bending moment diagram M, which is located under the centroid
of the M, diagram.

It should be remembered, that the ordinate y. must be taken from the diagram
bounded by a straight line. The graph multiplication procedure (6.20) may be pre-
sented by conventional symbol (x) as

MPXMk

1 -
Akp = E/MpMkdx = El (6.21)

It is obvious that the same procedure may be applicable to calculation of similar
integrals, which appear in Maxwell-Mohr integral, i.e., [ N, Ndx and [ Q , Odx.

If the structure in the actual state is subjected to concentrated forces and/or cou-
ples, then both the bending moment diagrams in actual and unit states are bounded
by the straight lines (Fig. 6.20a). In this case, the multiplication procedure of two
diagrams is commutative. It means that the area §2 could be calculated on any of
the two diagrams and corresponding ordinate y. will be measured from the second
one, i.e., §£21y1 = £2,y,. This expression may be expressed in terms of specific
ordinates, as presented in Fig. 6.20b.
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Fig. 6.20 Multiplication of two bending moment diagrams

In this case, the displacement as a result of the multiplication of two graphs may
be calculated using two following rules:

1. Trapezoid rule allows calculating the required displacement in terms of extreme
ordinates

where the crosswise end ordinates has unity coefficients. This formula is precise.
2. Simpson’s rule allows calculating the required displacement in terms of extreme
and middle ordinates

A= @(ab +def +cd). (6.23)

Equation (6.23) may also be used for calculation of displacements, if the bend-
ing moment diagram in the actual condition is bounded by a curveline. If the
bending moment diagram M, is bounded by quadratic parabola (Fig. 6.20c), then
the result of multiplication of two bending moment diagrams by formula (6.23) is
exact; this case occurs if a structure is carrying uniformly distributed load. If the
bending moment diagram M, is bounded by cubic parabola, then the procedure
(6.23) leads to the approximate result.

If a graph M, is bounded by a broken line, then both graphs have to be divided
by several portions as shown in Fig. 6.20d. In this case, the result of multiplication
of both graphs is

/M,,de =21y1 + 22)5. (6.24)
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Sometimes it is convenient to subdivide the curved bending moment diagram by a
number of “good” shapes, for example in Fig. 6.20e. In this case

/MpMdX =21y1 + 2292 + £23y3. (6.25)

Signs rule. According to (6.21), the displacement will be positive, when the area
of the diagram M, and the ordinate y. of the diagram M have the same sign. If
ordinates in (6.22) or (6.23) of bending moment diagram for actual and unit states
are placed on the different sides of the basic line, then result of their multiplication
is negative. The positive result indicates that displacement occurs in the direction of
applied unit load.

Procedure for computation of deflections by graph multiplication method is as
follows:

1. Draw the bending moment diagram M, for the actual state of the structure.

2. Create a unit state of a structure. For this apply a unit load at the point where the
deflection is to be evaluated. For computation of linear displacement we need
to apply unit force P = 1, for angular displacement to apply unit couple
M =1, etc.

3. Draw the bending moment diagram M for the unit state of the structure. Since
the unit load (force, couple) is dimensionless, then the ordinates of unit bending
moment diagram M in case of force F = 1 and moment M = 1 are units of
length (m) and dimensionless, respectively.

4. Apply the graph multiplication procedure using the most appropriate form:
Vereshchagin rule (6.20), trapezoid rule (6.22), or Simpson’s formula (6.23).

Graph multiplication method requires the rapid computation of graph areas of dif-
ferent shapes and determination of the position of their centroid. Table A.1 contains
the most typical graphs of bending moment diagrams, their areas, and positions of
the centroid. Useful formulas for multiplication of two bending moment diagrams
are presented in Table A.2.

Example 6.14. A cantilever beam AB, length [, carrying a uniformly distributed
load g (Fig. 6.21). Bending stiffness EI is constant. Compute (a) the angle of rotation
04; (b) the vertical displacement A 4 at the free end.

Solution. Analysis of the structure starts from construction of bending moment dia-
gram M, due to given external load. This diagram is bounded by quadratic parabola
and maximum ordinate equals /2 /2.

(a) Angle of rotation at point A. The unit state presents the same beam subjected
to unit couple M = 1 at the point where it is required to find angular displacement;
direction of this couple is arbitrary (Fig. 6.21a). It is convenient that both unit and
actual state and their bending moment diagrams locate one under another.
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The next step is “multiplication” of two bending moment diagrams. The area of
square parabola according to Table A.1 is

Centroid of this diagram is located on the distance / /4 from fixed support. Cor-
responding ordinate y. from diagram M of unit state is 1. Multiplication procedure
is presented in Table 6.5.

This table also contains computation of required displacement using the Simpson
rule (6.23). Ordinates a and b are taken from the bending moment diagrams for
actual and unit states, respectively, at the left end of a beam (point A); ordinates e
and f are taken at the middle of the beam AB, and ordinates ¢ and d at the right end
(point B).
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Table 6.5 Graph multiplication procedures

General formula (6.20)
1 -
Displacement A= E_ch Simpson rule (6.23) A = El (ab +4def 4+ cd)
1 1ql? kS ? ?
(a) Angular op=— -1 bi=—=(0-1 +4q— 1+q—
~ El 3 2  ~—— 6EI
_ Mp X M N——— Ye ab \—»—’ \q»—-’
A= El 2 def cd
_ar ql?
T 6EI = GEl
1 1g? 3 l ? l ?
(b) Linear AA=_'—ﬂl'—'1'l Ay = — 0.0+4[]_.1._+q_.1.]
v EI 32 4 6El \~—~— 8 2 2
_ MF XM N—— ab N———— N——
Ag= EI 2 Ye def cd
_a ql*
8EI = BEI

(b) Vertical displacement at point A. The bending moment diagram M, for actual
state is shown in Fig. 6.21b; this diagram for problems (a) and (b) is same. The unit
state presents the same structure with concentrated force P = 1, which acts at
point A; direction of the unit force is chosen in arbitrary way. The unit state with
corresponding bending moment diagram M is presented in Fig. 6.21b.

Computation of displacements using Vereshchagin rule in general form and by
Simpson rule are presented in Table 6.5.

Discussion:

1. Elastic curve of the beam is shown by dotted line. The tensile fibers for actual
and unit states are located above the neutral axis of the beam. Bending moment
diagrams are plotted on side of tensile fibers. In the general formula and Simpson
rule we use positive sign, because bending moment diagrams for actual and unit
states are located on the same side of the basic line. Positive signs in the resulted
displacement mean that displacement occurs in the direction of the applied unit
load. The units of the ordinates M, and M are (kN m) and (m), respectively.

2. The results, which are obtained by formula (6.20), are precise. Formula (6.23) is
approximate one, but for the given problem it leads to the exact result, because
the beam is loaded by uniformly distributed load, the bending moment diagram
presents quadratic parabola, and total order of curves presenting two bending
moment diagrams in the actual and unit states is equal to three. If the total orders
are more than three, then formula (6.23) leads to the approximate result.

3. The reader is invited to solve the problems above by double integration method,
initial parameters method, conjugate beam method, Castigliano theorem,
Maxwell-Mohr integral, compare their effectiveness with graph multiplication
method, and make personal conclusion about its proficient.

Example 6.15. Design diagram of symmetrical nonuniform simply supported
beam of length / is shown in Fig. 6.22. Bending stiffness equals EI for segments AD
and EB; while kEI for segment DE; parameter k is any positive number. The beam
is carrying force P. Determine the vertical displacement of point C.
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Fig. 6.22 Design diagram P
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Solution. Bending moment diagrams in actual and unit states are presented in
Fig. 6.24. For computation Ac = (M, x M)/EI, we have to subdivide bending
moment diagrams on the parts, within which the bending stiffness is constant. These
parts for the left half of the beam are AD = [/4 and DC = [ /4. The Vereshcha-
gin rule for multiplication of diagrams M, and M within portion AD leads to the
following result

Acl= — +—m om0 = — = . (a)

For portion CD the trapezoid rule is applied. According to (6.22) we get

1/4 pl I Pl Ll Pl I Pl I 7 PI3
2= 6 kEI R R R 768k el O
—— N—— —— ——
2ab 2cd ad ch

Finally, the vertical displacement at C becomes

pe o PP, 7 PP _ PP
€= “\768E1 " 768kEI) " 48EI"

where n = (1/8) + (7/8k); factor 2 takes into account symmetrical part CEB of the
beam. If k = 1, thenn = 1.

Example 6.16. A portal frame is subjected to horizontal force P as shown in
Fig. 6.23. The bending stiffness for each member is shown on design diagram. Cal-
culate (a) the horizontal displacement at the rolled support B and (b) the angle of
rotation at the same point B.
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a Design diagram Actual state Unit state for 4,
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Fig. 6.23 (a) Portal frame. Actual and unit states and corresponding bending moment diagrams.
(b) Portal frame. Actual and unit states and corresponding bending moment diagrams. (¢) Design
diagram and elastic curve for portal frame

Solution. As usual, the analysis starts from construction of bending moment dia-
gram in actual state.

Reactions of supports are H = P, R4 = Rp = Ph/I. The real directions
of reactions are shown in Fig. 6.23a. The tensile fibers on elements CD and AC are
located below and right from the neutral lines of the elements, respectively. Bending
moment ordinates at point C for vertical and horizontal members are Ph.

(a) Horizontal displacement at B. For required displacement Ay, the unit state
presents the same frame with horizontal force P = 1, which is applied at point B.
Direction of the unit force is chosen in arbitrary way. Only horizontal reaction
H = 1is induced. The tensile fibers are located outdoor of the frame. The bending
moments at rigid joints C and D and within cross bar equal to 1 - A.

Multiplication of the bending moment diagrams should be performed for mem-
bers AC, CD, and DB separately. For horizontal member CD, the area of the bending
moment diagram in actual state is £2; = (1/2)Ph - [ and corresponding ordinate
from unit state is y; = 1-/. We assume that horizontal portion CD of both bending
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moment diagrams is located one under the other and vertical portion AC is located
one besides the other. For vertical member AC, the area of the bending moment
diagram in actual state is £2, = (1/2)h - Ph. Corresponding ordinate from unit
bending moment diagram is y, = (2/3)-1-h (Fig. 6.23a). Using Vereshchagin rule
and taking into account the different flexural rigidities for the vertical and horizontal
members, we find the required displacement:

s
1 . 1 1 2 1 1
Ap :Z—/MpMds =——-h-Ph-=-1-h——-=Ph-1- 1-h
EI El; 2 3 El, 2 ——
Ye
AC element CD element
PR PLR? ©
T T3El, 2EL a

Each term of the expression for horizontal displacement has negative sign, because
the bending moment diagrams for actual and unit states are located on different
sides of the basic line of the frame. The result of multiplication of diagrams within
the vertical member BD equals to zero, since in actual state the bending moments
within the member BD are zeros. A final negative sign means that assumed unit
force produces a negative work along the real horizontal displacement Ap.

(b) Angle of rotation at B. The bending moment diagram for actual state is shown
in Fig. 6.23b; this diagram for problems (a) and (b) is same. For required displace-
ment 0, the unit state presents the same structure with concentrated couple M = 1,
which acts at point B; direction of the unit couple is chosen in arbitrary way. In the
unit state, only vertical reactions 1/ arise. The extended fibers are located indoor of
the frame. The centroid and area §2 of bending moment diagram in actual state and
corresponding ordinate y. from bending moment diagram for unit state are shown
in Fig. 6.23b.

The result of multiplication of diagrams within two vertical members AC and BD
equals to zero. Indeed, for these portions the procedure M, x M = 0because M =0
for member AC, and M, = 0 for member BD. For member CD, the Vereshchagin
rule leads to the following result

S
1 _ 11 | Plh
0p =5 — | MyMds = — - —Ph-1- =1 = ——". b
B ZEI/ PV =L 3 6El, ®)
0 2 ¥y
CD element

The positive sign is adopted because the bending moment diagrams for actual and
unit states are located on one side of the basic line CD of the frame. A final positive
sign means that assumed unit couple produce a positive work along the real angular
displacement 8p. Or by other words, the actual direction of angular displacement
coincides with the chosen direction for unit couple M, i.e., the section at support B
rotates counterclockwise.
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Discussion. In actual state, the bending moment along the right vertical bar does
not arise; as a result, multiplication of bending moment diagrams for this element
for both problems (a) and (b) equals to zero. Therefore, the final result for problems
(a) and (b) does not contain a term with stiffness E£73. This happens because in actual
state the element BD does not subjected to bending, i.e., this member has displace-
ment as absolutely rigid body. Elastic curve of the frame is shown in Fig. 6.23c.

6.6 Elastic Loads Method

Elastic load method allows simultaneous computation of displacements for set of
points of a structure. This method is based on conjugate beam method. The method
especially effective for computation of displacements for set of joints of the truss
chord; for trusses this method leads to the precise results.

Elastic loads W are fictitious loads which are applied to the conjugate structure.
Bending moments of the conjugate structure and displacements of the real structure
at the point of application of elastic loads coincide. A final expression for elastic
load at joint n of the truss may be calculated by formula

N, -N,-I
W,,:Z% (6.26)

This formula uses the following notation: N, is internal forces due to given load and
N,, is internal forces in all members of the truss in the unit state.
The right part of the formula (6.26) is similar to formula (6.12), however left part
of 6.26 is elastic load, while in Maxwell-Mohr formula - left part is displacement.
Computation of displacements procedure is as follows:

—

Calculate the axial forces N, in all elements of the truss caused by given load.
2. Calculate the elastic load at a joint n. For this:

a. Show a fictitious truss. If a real truss is simply supported then the fictitious
truss is also simply supported.

b. Apply two unit couples M = 1 to members, which are adjacent to the joint n.
Present each couple using forces F,—; = 1/d,—1 for span d,—; and F,, =
1/d, for span dj,, as shown in Fig. 6.24.

c. Calculate the axial forces N, in all elements of the truss caused by forces in
Fig. 6.24.

d. Calculate the elastic load W}, at the joint n by formula (6.26).

3. Calculate the elastic loads W for remaining joints of the truss chord, as explained
in pos. 2.

4. Show the fictitious simply supported beam subjected to all elastic loads W. If
the elastic load is positive, then it should be directed downward, i.e., in the same
direction as the adjacent forces of neighboring couples.
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Fig. 6.24 Unit state for
calculation of elastic load
at joint n

5. Construct the bending moment diagram for fictitious beam on the tensile fibers.
This diagram will present the precise displacements of all joints of the entire real
truss.

Example 6.17. Design diagram of the truss is presented in Fig. 6.25a. The truss is
carrying two equal forces P. The axial stiffness of the upper and lower chords is 2EA
and diagonal and vertical members have axial stiffness EA. Compute displacements
of the joints of the lower chord.

Solution. Calculation of internal forces in all members of the truss due to applied
loads P may be performed by analytical method. Corresponding diagram N, of
internal forces is presented in Fig. 6.25b.

Since it is required to find displacements of the joints of the lower chord, therefore
the elastic loads should be applied to the joints of the same chord.

Elastic load Wy This load is related to joint 1 and represents the mutual angle of
rotation of members 0-1 and 1-2. In order to find the elastic load W;, we need to
apply two unit couples (consisting of forces 1/d = 1/4) to members 0-1 and 1-2
and compute the internal forces in all members of the truss induced by these four
forces. Corresponding distribution of internal forces is presented in diagram N;
(Fig. 6.25¢).

Magnitude of elastic load W; is obtained by “multiplication” of two axial force
diagrams Ny and N,

Ni-Np-l
wi=>" —p (a)
The summation should be extended over all members of the truss. For members 0—a
and a—2, internal forces in actual condition are equal 5P /3 and have opposite signs,
while in unit conditions are equal —5/12 for both members. Therefore summation
within these members equals to zero. Summation within members 0-1and 1-2 of the
truss leads to the following result
Ny Np-I 1 4P 1 64 P
W=y ——r X4x2=——. (b)
EA 2EA 3 3 36 EA

This procedure explains why the elastic load method is very effective. The four
forces present the self-equilibrated set of forces. Therefore the reactions of supports
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are zero, the members with nonzero internal forces are located within only two
panels of the truss, and as a result, multiplication of both axial force diagrams related
to only for members which belong to two adjusted panels.

a P P
Actual state a 2EA wbh ¢ d e

3m

+4P/3 +8P/3 +4P/3

+1/2 N,
+1/3 2

1/4T 1/41 11/4 T1/4

d -1/3

ITTTTTITIT T 0 e

1 ~3 3
1/4T 1/4111/4 T1/4

Fig. 6.25 (a, b) Design diagram of the truss, and internal forces due to given loads. (¢) Calculation
of elastic load W;. (d) Calculation of elastic load W,

Elastic load W, Two unit couples are applied to members 1-2 and 2-3. Correspond-
ing distribution of internal forces is presented in diagram N, (Fig. 6.25d).

Elastic load W5 is obtained by “multiplication” of two axial force diagrams N,
and N,. Multiplication of diagrams within only three members (a — b, b — ¢, and
a — 2) has nonzero result.

— — X=X4X24+ ——Xx—=x5=

W ZN2~N,,-I 1 8P 1 1 5P 5 253 P ©
= —_— = —_— . ¢
2 EA 2EA 3 3 EA 3 12 36 EA
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Elastic load W3 Two unit couples are applied to members 2-3 and 3-4. Performing
similar procedure we get

128 P
> 36 EA’

A fictitious beamis a simply supported one, which is loaded at joints 1,...,5 by
elastic loads W;, i = 1,...,5. The elastic loads W; are positive, so they must be
directed downward (Fig. 6.26).

W, W, W, w, Wy
Fictitious () 1 l 21 3 l 4l 5 l 6
beam 1 M7=A,,,
(factor P/EA)
R T 42.33 &
77.55 84.66

Fig. 6.26 Fictitious beam with elastic loads and bending moment diagram

Since the truss under consideration is symmetrical, then W) = W5 and W, = Wy.
Reactions of supports of the fictitious beam are R = Rg = (381/36) x (P/EA).

Bending moments at the specific points of the fictitious beam caused by elastic
loads are

f f P
M{ =R}-4=14233—
EA
Mszf.S—Wl.4=7755i )
2 0 M EA

P
M} =Ry-12—W;-8—Ws-4=84.66—
3 0 1 3 EA
Ordinates of the bending moment diagram of the fictitious beam present the vertical
displacement of the joints of the lower chord of the truss, M = A,..

P P P
Ay =4233—, A, =7755—, A3 =284.66—. (e)
EA EA EA

Discussion. For calculation of displacement at joint 1 by the Maxwell-Mohr inte-
gral, it is necessary to apply unit force at this joint and calculate all internal forces
(for given truss 21 forces) and then calculate 21 standard term (N - N p» - 1)/EA.
For calculation of displacements of joints 1, 2, and 3 the total number of unknown
forces in the unit states is 3 x 21 = 63 and the number of standard terms according
to Maxwell-Mohr integral is 63.

Application of elastic loads to each joint of a truss leads to appearance of internal
forces only in the members of two adjacent panels. As a result, for given truss the
total number of unknown forces in the all unit states is 16 and the number of terms
for elastic loads, according to (6.26), equals 4.
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Summary

The elastic load method is based on conjugate beam method. According to this
method, displacement of any point of a real structure is proportional to bending
moment at the same point of fictitious beam (factor 1/EI). Based on this, the elastic
load method uses external resemblance of displacements of elastic structure and
bending moment diagrams.

Elastic load at joint n presents the mutual angle of rotation of two members of
the truss chord, which is adjacent to joint .

Elastic load method presents very effective way for computation of displace-
ments for ser of the joints of a truss chord. For trusses this method leads to the
precise results. The advantage of the method is that the procedure (6.26) is not re-
lated to all members of a truss, but only to small subset of the members.

Elastic load method is also applicable for beams and arches, but for such struc-
tures this method is approximate and cumbersome. However, it has advantages over
exact methods (for example, Initial Parameters method); this fact can be seen in case
of beam with variable cross section.

6.7 Reciprocal Theorems

Reciprocal theorems reflect fundamental properties of any linear statical deter-
minate or indeterminate elastic systems. These theorems will be extensively
used for analysis of statically indeterminate structures. Primary investigations
were performed by Betti (1872), Maxwell (1864), Lord Rayleigh (1873-1875),
Castigliano (1872), and Helmholtz (1886).

6.7.1 Theorem of Reciprocal Works (Betti Theorem)

Let us consider elastic structure subjected to loads P; and P, separately; let us call
it as first and second states (Fig. 6.27). Set of displacements A,,, for each state are
shown below. The first index m indicates the direction of the displacement and the
second index n denotes the load, which causes this displacement. Thus

Ajq and Ay, are displacements in the direction of load P; due to load P; and
P5, respectively

Ay and Ajp; are displacements in the direction of load P, due to load P; and
P,, respectively.

Let us calculate the strain energy of the system by considering consequent appli-
cations of loads P; and P», i.e., state 1 is additionally subjected to load P,. Total
work done by both of these loads consists of three parts:

1. Work done by the force P; on the displacement A;;. Since load P; is applied
statically (from zero to P; according to triangle law), then Wy = (1/2) P1 Aq;.
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Fig. 6.27 Two state of the elastic structure. Computation of work done by the load P; and addi-
tional load P,

2. Work done by the force P, on the displacement A,,. Since load P, is applied
statically, then W, = (1/2) P, Azs.

3. Work done by the force P; on the displacement Aj,; this displacement is
caused by load P,. The load P; approached its maximum value P; early (be-
fore application of P,). Corresponding P;—A diagram is shown in Fig. 6.27, so
W3 e P1A12.

Since potential energy U equals to the total work, then
1 1
U= 5P1411 +§P2A22+P1412- (6.27)

On the other hand, considering of application of load P, first and then Py, i.e., if
state 2 is additionally subjected to load Pj, then potential energy U equals

1 1
U= 3 2422+§P1A11+P2421- (6.28)
Since strain energy does not depend on the order of loading, then the following
fundamental relationship is obtained

P1A12 = P2A21 or W12 = W21. (629)

The theorem of reciprocal works (6.29) said that in any elastic system the work
performed by load of state 1 along displacement caused by load of state 2 equals
to work performed by load of state 2 along displacement caused by load of
state 1.

6.7.2 Theorem of Reciprocal Unit Displacements
(Maxwell Theorem)

Let us consider two states of elastic structure subjected to unit loads P; = 1 and
P, = 1. Displacement caused by unit loads is called the unit displacements and
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denoted by letter &, . The first index m indicates the direction of the displacement
and the second index n denotes the unit load, which causes this displacement.

Thus, 811 and ;5 are displacements in the direction of load P; duetoload P; =1
and P, = 1, respectively;

821 and 8,5 are displacements in the direction of load P, due to load P; = 1 and
P, = 1, respectively.

In case of unit loads, the theorem of reciprocal works P, Ay, = P; Ay, leads to
the following fundamental relationship §1, = §5;. In general,

Snm = Smn. (6.30)

This equation shows that in any elastic system, displacement along nth load
caused by unit mth load equals to displacement along mth load caused by unit
nth load. The term “displacement” refers to linear or angular displacements, and
the term “load” means force or moment.

This theorem is demonstrated by the following example. Simply supported beam
is subjected to unit load P in the first condition and unit moment M in the sec-
ond condition (Fig. 6.28). Displacements 811 and & are linear displacements along
force P in the first and second states; displacements §,; and 8, are angular dis-
placements along moment M in the first and second states.

P=1
State 1 8,
& oa
Lo |
I T J
M=1
State 2 q
Fig. 6.28 Theorem of Ly / """"" g/_/g_
P (o8}

reciprocal unit displacements

In the first state, displacement due to load P = 1 along the load of the state 2 is

1-12
16EI

1 =0=

In the second state, displacement due to load M =1 along the load of the
state 1 is
1-7?
16EI

Theorem of reciprocal displacements will be widely used for analysis of statically
indeterminate structures by the Force method. Theorem of reciprocal unit displace-
ments was proved by Maxwell (1864) before the more general Betti theorem;
however, Maxwell’s proof was unoticed by scientists and engineers. Mohr proved
this theorem in 1864 independently from Betti and Maxwell.

8]2:)]:
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6.7.3 Theorem of Reciprocal Unit Reactions
(Rayleigh First Theorem)

Let us consider two states of elastic structure subjected to unit displacements of
supports. They are Z; = 1 and Z, = 1 (Fig.6.29a). Reactions caused by unit
displacements are called the unit reactions and denoted by letter r;,,. The first index
m indicates constrain where unit reaction arises and the second index n denotes
constrain, which is subjected to unit displacement.

Thus ry; and 75 are reactions in the constrain 1 due to displacement Z; = 1
and Z, = 1, respectively and r,; and rp, are reactions in the constrain 2 due to
displacement Z; = 1 and Z, = 1, respectively.

a Z,=1 b z-=1

1
[71/ State 1 | [71/ State | X
! I ‘I\)’él S
3 T 1
1y (1\‘ State 2 ||7/ C 1 State 2 )
| "\)r” e

X

Fig. 6.29 Theorem of reciprocal unit reactions

The theorem of reciprocal works r11 -0 + 121 - 1 = r12 - 1 + rap - 0 leads to the
following relationship 71 = r12. In general,

'nm = I'mn. (6.31)

The theorem of reciprocal reactions said that in any elastic system reaction r,,,,
which arises in nth constrain due to unit displacement of constrain m, equals
reaction r,,,, which arises in mth constrain due to unit displacement of con-
strain n.

This is demonstrated by the following example (Fig. 6.29b). Unit displacements
of the clamped-pinned beam are Z; = 1 is a unit angle of rotation of the clamped
support and Z, = 1 is a vertical linear displacement of the pinned support. Unit
reactions are as follows: r,1 is vertical reaction in constrain 2 caused by unit angular
displacement of support 1 and rq2 is moment in constrain 1 caused by unit vertical
linear displacement of support 2.

Using Table A.3 (pos. 1 and 2), unit reactions may be written as roy =r1,=3EI/I?.
Theorem of reciprocal reactions will be widely used for analysis of statically inde-
terminate structures by the displacement method.
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6.7.4 Theorem of Reciprocal Unit Displacements and Reactions
(Rayleigh Second Theorem)

Let us consider two states of elastic structure subjected to unit displacement Z; = 1
and unit load P, = 1 (Fig. 6.30a). Reaction r1, arises in constrain 1 due to unit load
P,. Displacement §,; occurs in direction of load P, due to unit displacement Z;.

a z-=1
State 1

1 1

Fig. 6.30 Theorem of reciprocal of unit displacements and reactions

The theorem of reciprocal work in extended form should be presented as follows
—ri2 -1 =168, so we get that —r;5 = 851. In general,

rjk = —Skj. (632)

The theorem of reciprocal unit displacements and reactions said that reaction in jth
constrain due to unit load of kth direction and displacement in kth direction
due to unit displacement of jth constrain are equal in magnitude but opposite
in sign.

This theorem is illustrated in Fig. 6.30b. In order to find a vertical displacement
at the point A due to unit rotation of the support B, apply unit force F = 1 in the
direction 8§ 4 g. Moment at fixed support due to force F = 1isrpy = —F(a + b).
Since F = 1, therefore the vertical displacementis §4p = a + b.

Theorem of reciprocal reactions and displacements will be used for analysis of
statically indeterminate structures by mixed method. In general form, this theorem
was considered by Rayleigh (1873—-1875). The form (6.32) was presented by Prof.
A.A. Gvozdev (1927).

6.7.5 Summary

There are two principle approaches to computation of displacements. The first of
them is based on the integration of differential equation of an elastic curve of a
beam. The second approach is based on the fundamental energetic principles. Rela-
tionships between different methods of calculation displacement and their evolution
are presented in Fig. 6.31.
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Computation of displacements

Double integration method Initial parameters method

ElY"(x)=+xM (x) Fix—a,)"
Ely(x)= Ely, + EI6) x- o Fomap)

n!

Fictitious beam method

9

' Strain elzlel'gz Work-strain energy method E
i M “(x)dx > W=U '
| U= IV !
i ZJ. 2EI !
i Castigliano theorem Maxwell-Mohr integral Graph multiplication method | |
| _oU “ M, Mk 1 — |
: %=20 Aep :20 7w Er My Mdx==p7 |

Elastic loads method

N Np-I

W, =2
EA

Fig. 6.31 Two fundamental approaches to calculation of displacements of elastic structures

Group 1 This group contains the double integration method, initial parameters
method, and conjugate beam method (fictitious beam method). All methods of this
group are based on the differential equation of the elastic curve of the beam.

e Double integration of differential equation allows finding the equation of an elas-
tic curve of a beam. Integration procedure should be performed for each specified
problem. This procedure leads to appearance of the constants, which should be
determined from the boundary conditions. The number of the constants is twice
more than the number of portions of a beam. For beams with two or more por-
tions, this method becomes very cumbersome.

o Initial parameters method is a modification of double integration method. This
method is effective for deriving equation of elastic curve for uniform beams with
large number of portions and any types of loads. The integrating procedure is
performed once at the deriving of universal equation and therefore, practical ap-
plication of this method reduces only to the algebraic procedures.

e Conjugate beam method also presents the modification of the double integration
method and allows computing the linear and angular displacements at specified
section of the beam. This method required constructing the fictitious beam and
computing the fictitious bending moment and shear at specified section. In case
of complex loading, this method leads to the cumbersome computation.
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Group 2 This group presents methods, which are based on the concept of the strain
energy. The following precise analytical methods are presented in the second group:
strain energy method (Clapeyron and Castigliano theorems), Maxwell-Mohr inte-
gral (dummy load method), and Vereshchagin rule (graph multiplication method).
All methods of this group use a concept of generalized force and corresponding
generalized coordinate.

e Work-strain energy method allows calculating displacement at specified points.
Even if a numerical procedure of this method is very simple, the area of applica-
tion of this method is limited.

e Castigliano theorem allows calculating any displacement at specified direction
as a partial derivative of the strain energy with respect to generalized force. This
theorem has a fundamental character.

e Maxwell-Mohr integral presents the principal formula for computation of dis-
placement at any specified direction. This formula is presented in terms of
internal forces caused by a given load (or change of temperature) and unit gen-
eralized force, which corresponds to required generalized coordinate. In general,
application of this method reduced to integration procedure.

e The graph multiplication method is the modification of the Maxwell-Mohr
integral and presents extremely convenient procedure for computation of dis-
placements at specified points for bending structures. This approach allows us to
avoid the integration procedure and requires plotting only two bending moment
diagrams due to given loads and unit load. After that simple algebraic procedures
over them should be performed. In fact, this is the most effective method for cal-
culation of displacement of any nonuniform beams and frames. For trusses, the
graph multiplication method coincides with Maxwell-Mohr integral.

The graph multiplication method is so much simple and effective that it is hard to
expect that new methods for calculation of displacements of elastic structures may
be developed.

e FElastic load method presents the combination of conjugate beam method and
Maxwell-Mohr integral. This method allows calculating displacements at the set
of points simultaneously. The method is especially effective for computation of
displacements of the joints of a truss.

Problems

Problems 6.1 through 6.8 should be solved by initial parameter method. The flexural
rigidity, E1, is constant for each beam; the span of the beam is /.

6.1. The cantilevered beam is subjected to uniformly varying load as shown in
Fig. P6.1. The maximum ordinate of load is ¢g. Derive an equation for the elastic
curve of the beam. Determine the vertical displacement and slope at the free end.
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Fig. P6.1

ql* 5x  x° ql* ql3
Ans. y(x) = . I, LA L
ns. y (%) 3OEI( 377 as) MM T 3Er T TumE

6.2. The uniform beam is subjected to distributed load g within the portion a = &/,
as shown in Fig. P6.2. Derive an equation for elastic curve of the beam.

q
A\l; :]; ;]; IV :], B
& B
a=¢&1
y 1
Fig. P6.2
2
qa“l 5
Ans. 64 = 1-0.5&)".
ns. 64 6EI( £)

6.3. The uniform simply supported beam is subjected to uniformly varying load
(Fig. P6.3). The maximum ordinate of load is g. Derive an equation of the elastic
curve. Determine the maximum vertical displacement, its location, and slope at the
supports A and B.

q
AWB
e _?IS_ X

|

| /
N

Fig. P6.3

~ 360EI \ ' 1 I3 I5 768 EI'’
7 ql3 0 8 ql3

l4 3 5 5 14
Ans. y, = q (7i 105+ 3x_) s Ymax = a

04 = —, = .
47360 E1° T 7360 EI

6.4. Fixed-sliding beam A-B is subjected to action of concentrated force P
(Fig. P6.4). Derive an equation of the elastic curve for the beam. Determine the

displacement of the beam at the right end.
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Fig. P6.4

P13 ( x?2 _x3 Pl3

Ans. El y(x) = P (3 2 213 ) i Ely() = 7

6.5. A beam pinned with torsion spring at the left end and pinned at the right end

is subjected to uniformly distributed load g. Torsion stiffness parameter equals k.

Calculate the reaction R 4 and slope 6. Derive an equation of the elastic curve. The

reactive moment and slope at A4 are related by expression M 4 = k;o0(0). Consider
limiting cases ko = 0, and ko = 00. Find the range of R4 for any stiffness k.

rot | q

(I IIIIIIVY X

A

y
Fig. P6.5
5 kiol
al " " 12 FI I ql?
Ans. Ry = ——==— OGy=Rp— — ,
A 2 krotl 0 4 kro[ 2krot
1+ —
3EI

0.5¢/ <R 4<0.625¢q! for any stiffness k.

6.6. The fixed-pinned beam is subjected to uniformly distributed load g (Fig. P6.6).
Derive an equation of elastic curve of the beam

q
N AT EXEEEEAERERR 3
| gB

:

y

Fig. P6.6

ql?x?> 5 x3 gx*
AnS.EIy(X)=?7—§q1?+H.
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6.7. The uniform beam is subjected to vertical displacement A of support A as
shown in Fig. P6.7. Stiffness of elastic support is k. Determine the reactive moment
at the clamped support A and vertical displacement at the elastic support B. Re-
action Rp of elastic support B and its vertical displacement Ap satisfy equation
Rp = kAp.

A B
AI | A
f """""" ! |
v
Fig. P6.7
3EI A 3EI A
Ans. M = — . ——— . y() = .
2 3EI 773 1 4, 3EI
2 1+ 3 kI3 1+ 3L

6.8. A beam is clamped at the left end and pinned with torsional spring support
at right end. Torsional stiffness parameter equals k.. Derive an equation of the
elastic curve for the beam subjected to the unit angular displacement at the left end.
Calculate the reactions of supports. Moment at elastic support B and stiffness are
related as Mg = 6(l)k.o. Analyze the limiting cases (kyop = 0, kit = 00).

0,=1
|
)
A Tt M
M, Ry / | ?
by |
Fig. P6.8
3i + kit 6EI 1 3i + keot . EI
B I e S S A e R
1+ i I+

Limiting cases: kot = 0: M4 = 3EI/l; R4 = —3EI/I?;
krot:OO:MA:4E1/Z; RA:—6EI/12.

Problems 6.9 through 6.16 should be solved by Maxwell-Mohr integral.

6.9. The simply supported beam AB carrying uniformly distributed load ¢ and con-
centrated force P applied at midspan point C (Fig. P6.9). Determine the vertical
displacement at x = //2 and slope at support A.
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(clockwise direction).

6.10. The truss in Fig. P6.10 supports the concentrated force P, which is applied
at joint 3. Axial rigidity for diagonals and vertical elements equal EA, for lower and
top chords equal 2EA. Calculate the relative displacement of joints 4 and 7 along
the line joining them and the angle of rotation of the element 5-7.

Fig. P6.10

Ans. A = 3054P( t); 6 —12014P ( ter clockwise)
ns. Ag—7 = —3. 7 apart); 657 = 1. 7 counter clockwise).

6.11. Semicircular simply supported bar of radius R with uniform cross section (EI
is a flexural stiffness) is presented in Fig. P6.11. Determine the horizontal displace-
ment of support B.

P
v
C
y
R 4,
A Bl /) X
& X
Fig. P6.11
PR3
Ans. Ag = ———

2FI
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6.12. A uniform circular bar is clamped at point B and carrying the couple My, the
forces P and H at free end A (Fig. P6.12). Compute the following displacements at
the free end A (¢ = 0): (a) vertical; (b) horizontal; (c) angle of rotation. Check the
reciprocal unit displacement theorem.

Fig. P6.12

Ans.

Displacement caused by

P H M,
7 7
El Aven L B MyR?
4 2
R3 5 3m (T
El A | P | HR (T—z) MR (3—1)
R
EI 6 PR HR> (E - 1) MO”7

6.13. Three-hinged uniform semicircular arch of radius R carrying the concentrated
force P at point C (Fig. P6.13). The flexural stiffness of the arch is EI. Calculate
the vertical displacement of the hinge C.

Fig. P6.13
3

PR
Ans. Ac = ——(7 —3).

2EI
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6.14. A circular bar with central angle 80° is clamped at point A and free at point
B. The bar is subjected to horizontal force P at the free end B (Fig. P6.14). The
area A of cross section of the bar and moment of inertia / are constant. Calculate
the horizontal displacement A g at point B. All the three terms of Maxwell-Mohr’s
integral should be used. Estimate each term for the following data: cross section
is rectangular (2 = 2b), h/R = 0.1, the shear modulus G = E/2(1 + v), the
Poisson’s coefficient v = 0.25 and coefficient u = 1.2.

y
R
B AB A
—
°l_=&_|

—_—

P X

Fig. P6.14

PR®*7w PRm puPRm

El 2 EA2 GA 2
6.15. Find the horizontal and angular displacement at support C of the frame shown
in Fig. P6.15, when the indoor temperature rises by 10°C and outdoor temperature
rises by 30°C and 20°C for elements AB and BC, respectively. The height and tem-
perature coefficients of the elements BC and AB are by, a; and by, oz, respectively.

+20° %ba
B 11C

—_ <—b2 o,

+30° |+10°

Ans. Ap =

h

e

Fig. P6.15

h h? by
Ans. Ac; =51l | — +3 )+ 10— |1+ 2—] (—),
bl bz l

[ h .
Oc = Salb— + 200:27 (clockwise).
1

6.16. Design diagram of the truss is shown in Fig. P6.16. Temperature of the top
chord of the truss decreases by 30°C, and of the bottom chord increases by +45°C;
the temperature of diagonals and vertical elements remain constant. The coefficient
of thermal expansion of material is . Compute the
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(a) Vertical displacement of joint 4

(b) Mutual (relative) displacement of joints 2 and 3
(c) Angle of rotation of the bar 1-3

(d) Mutual angle of rotation of the bars 1-3 and 3-5

1 3 -30°C 5

Fig. P6.16

Ans. (a) A4y = 800 (m)({); (b) Azz = 321a(m);
(c)013 = 80« (radian) (clockwise); (d)f13—35 = 60« (rad).
Problems 6.17 through 6.28 are to be solved by graph multiplication method.

6.17. Cantilevered nonuniform beam is subjected to concentrated load P
(Fig. P6.17). Calculate the vertical displacement of free end.

P
EI, EI,
| Al
| |
| ——ee |

Fig. P6.17

P3 1 I
Ans.y =1+ —, n=--1 n=—
Y ( + 7 )3E11 i n & 11
6.18. A nonuniform cantilevered beam AB carrying the distributed load g
(Fig. P6.18). Bending stiffness equals EI on the segment CB = 0.5/ and kEI
on the segment AC = 0.5]; parameter k is any positive number. Calculate the
vertical displacement A 4 at the free end. Analyze the limiting case.

q
AV VYV VYV VYV VYV,
kEI C Elﬁ
/2 |

Fig. P6.18
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1 ql* 15 ql*  ql* 1 15
Ans. Ay = — D¢ 9 22
S A4 = visEr T8 EL sElT " 16k 16

6.19. Uniform simply supported beam is subjected to concentrated force P as
shown in Fig. P6.19. Determine the vertical displacement at point Cand slope at
supports A and B.

P
A l B
& ¢ b
a | b
I
/
Fig. P6.19
Pa?b? Pab(l +b) Pab(l + a)
Ans.yo= ——, Og=———, = —=
3EI 6EIl 6EI
6.20. Two span statically determinate beam is subjected to uniformly distributed
load ¢ = 3kN/m. Parameters of the beam are [y = 6m, [, = 5m,a = 2m

(Fig. P6.20). Determine the vertical displacement at point C and slope at supports
Aand D.

AXEEET
C B
| |

A D
e 25
! I ! a A

Fig. P6.20

80 15 30
Ans. y, = E(down), 04 = E(counter clockwise), 6p = E(clockwise).
6.21. Design diagram of the frame is presented in Fig. P6.21. The bending stiffness
for all members is EI. Determine the horizontal displacement at points A and B.
BV IV IV V!

A h
0.5h

o
Fig. P6.21

2712 252

qlh= . h ql*h
ht), Ahor =
TeEr et Ay =T

Ans. AM" =

(right).
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6.22. The frame is subjected to horizontal force Pacting at point K (Fig. P6.22).
The numbers 1 and 2 in the circles show the relative stiffness, which mean the
bending stiffness 1E7 and 2EI, respectively. Determine the horizontal displacement
of support C.

o ¢
O]
Pk
O.SI
£,
—

Fig. P6.22

Ph?l 11 Ph3

Ans. Ahor — S
"S- AC = pr T s E

6.23. Compute the mutual linear displacement and mutual angular displacement
at points A and B for structure shown in Fig. P6.23. Bending stiffness is EI; for
horizontal element and EI, for vertical ones.

A B
, ) EIL

R EEERER
L B &

e |

Fig. P6.23
13h 13
Ans. Agp = A 0 |

12EL A% T 12EL

6.24. Design diagram of the frame is shown in Fig. P6.24. The relative stiffnesses
are shown in the circles. The frame is subjected to uniformly distributed load ¢ =
4kN/m. Compute the vertical and horizontal displacements at point C, and angular
displacement at points C and D.

q=4 kN/m

710
SEL? @L @C'Em
Cm T |

Fig. P6.24
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1024 192 192 .
Ans. Ayey = F(U; Apor = —E(—))J Oc = ¥ (clockwise);
120
Op = 7 (counterclockwise).

6.25. The portal simply supported frame is subjected to horizontal uniformly dis-
tributed load ¢ = 4 kN/m, as shown in Fig. P6.25. Calculate the horizontal displace-
ment of cross-bar CD.

C EIL D
EI EL, | |#=6m
A B
L
/=10m
Fig. P6.25
1080 1440
Ans. ASD —

hor EL + El,

6.26. A three-hinged frame carrying uniformly distributed load ¢ = 4kN/m is
shown in Fig. P6.26. The hinge C is located at the middle span AB. The flexural
stiffness of each member is shown in design diagram. Compute the mutual angular
rotation of points £ and D and horizontal displacement of the cross-bar ED.

E C D
EIL,
q El h=6m EI,
A B

| /=10m

Fig. P6.26

e 6 108 72
ns. = 4+ —;
ED =% " El

o _ 32436 216
ED ™ EI, " ElL, ' El3’
6.27. Design diagram of the three-hinged frame with elastic tie is presented in
Fig. P6.27. The bending stiffness of all members is EI, the axial stiffness of the

tie is FA. Determine the vertical displacement at point C. All dimensions are in
meters.
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Fig. P6.27

R R
8- 8¢ =35 24)

6.28. Design diagram of a structure is shown in Fig. P6.28. The top part of the
structure presents semicircular bar. Bending stiffness EI = constant for all parts
of the structure. Calculate the horizontal displacement at point B due to horizontal
uniform distribute load ¢ which acts within a portion AE. Hint: for curvilinear part
apply the Maxwell-Mohr integral.

q X

EI
h
A Bo——

[=2R

Fig. P6.28

Ans Ah"r:iﬁ 1+§5 n+2E
T8 T 24 FEI 5h nll

6.29. The truss in Fig. P6.29 is carrying two equal forces P. The axial stiffness
of all the members is EA. Compute the displacements of the all joints of the lower
chord. Apply the elastic load method.

Fig. P6.29
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637 P _ 1146 P _ 1274 P

Ans.y1 = —— y2= —/——0
=79 2779 Ea

3 -

9 EA

Problems 6.30 through 6.33 are to be solved using the reciprocal theorems

6.30. Calculate the angle of rotation of point A caused by given load P and dis-
placement along the P caused by moment M at point A. The flexural stiffness ET is
constant for all members.

a P b C P
‘ B I I ‘ l Ih ‘ ! Ih
] DI PR

Fig. P6.30

lh lh
M

Ans. 64 = P—; =M-—.
ns. (a) 04 El VB Foi

6.31. Show elastic curves for both states and displacements 81 for first state and
815 for second state. Verify of reciprocal unit displacements theorem (Fig. P6.31).

State 1 lP =1

State 2 l p=l
| !

Fig. P6.31

5 13
Ans. 815 = 8y = — —
18- 012 = 021 = Yo by

6.32. A fixed—fixed beam is subjected to unit vertical displacement of the right sup-
port (point j). Calculate the vertical displacement of point k located at / /4 from the
left support. The length of the beam is / and flexural stiffness is EI. (Hint: use the
displacement and reactions reciprocal theorem)



208 6 Deflections of Elastic Structures

L.
I k

|ul=l4]  vI=304 )
* . |

State 1 &, , A_Il
I e I

J

State 2

Fig. P6.32

Ans. 8gj = —rjk;  rip = —ut(l1+2v) = —5/32, &, =5/32.

6.33. A fixed—fixed beam is subjected to unit angular displacement of the right sup-
port (point j). Calculate the vertical displacement of point k located at / /4 from the
left support. The length of the beam is / and flexural stiffness is EI. (Hint: use the
displacement and reactions reciprocal theorem).

State 1 Skj o .
O |

[ k |j

|ul=l4]  vI=304

* } |

State 2 Tk
| I
| |
T P=1

Fig. P6.33

3
Ans. —/.
64






Part 11
Statically Indeterminate Structures



Chapter 7
The Force Method

The force method presents a powerful method for analyzing linear elastic statically
indeterminate structures; this method also has a wide application in problems of
stability and dynamics of structures. The method is very attractive because it has
clear physical meaning, which is based on a convenient and well-ordered procedure
of calculation of displacements of deformable structures, and presently, this method
has been brought to elegant simplicity and perfection. In this chapter, the reader
find the numerous examples of application of this method for analysis of different
structures subjected to external loads, temperature change, settlements of supports,
and errors of fabrication.

7.1 Fundamental Idea of the Force Method

Definitions. Statically indeterminate structures are called the structures for which all
reactions and internal forces cannot be determined solely using equilibrium equa-
tions. Redundant constraints (or excess) are constraints, which are not necessary for
geometrical unchangeability of a given structure.

7.1.1 Degree of Redundancy, Primary Unknowns
and Primary System

Degree of redundancy, or statical indeterminacy, equals to the number of redun-
dant constraints whose elimination leads to the new geometrically unchangeable
and statically determinate structure. Thus, degree of statical redundancy is the dif-
ference between the number of constraints and number of independent equilibrium
equations that can be written for a given structure.

Primary unknowns represent reactions (forces and/or moments), which arise in
redundant constraints. That is the reason why the method is called the Force Method;
this method also is called the flexibility method or the method of consistent deforma-
tions. Unknown infernal forces also may be treated as primary unknowns. Primary

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 211
DOI 10.1007/978-1-4419-1047-9_7, (© Springer Science+Business Media, LLC 2010



212 7 The Force Method

system (principal or released structure) is such structure, which is obtained from
the given one by eliminating redundant constraints and replacing them by primary
unknowns.

Let us consider some statically indeterminate structures, the versions of primary
systems, and the corresponding primary unknowns. A two-span beam is presented
in Fig.7.1a. The total number of constraints, and as result, the number of unknown
reactions, is four. For determination of reactions of this planar set of forces, only
three equilibrium equations may be written. Therefore, the degree of redundancy is
n = 4 — 3 = 1, where four is a total number of reactions, while three is a number
of equilibrium equations for given structure. In other words, this structure has one
redundant constraint or statical indeterminacy of the first degree.

d e X f
! X, _ Wrong primary system
ﬁéﬁ & 3 L X &

Fig. 7.1 (a) Design diagram of a beam; (b—e) The different versions of the primary system;
(f) Wrong primary system

Four versions of the primary system and corresponding primary unknowns are
shown in Fig. 7.1b—e. The primary unknown X; in cases (b) and (c) are reaction
of support B and C, respectively. The primary unknown in cases (d) and (e) are
bending moments. In case (d), the primary unknown is the bending moment at any
point in the span, while in case (e), the primary unknown is the bending moment at
the support B. Each of the primary systems is geometrically unchangeable and stat-
ically determinate; the structure in Fig. 7.1d is a Gerber—Semikolenov beam; in case
(e), the primary system is a set of simply supported statically determinate beams.
The constraint which prevents the horizontal displacement at support A cannot be
considered as redundant one. Its elimination leads to the beam on the three parallel
constrains, i.e., to the geometrically changeable system. So the structure in Fig. 7.1f
cannot be considered as primary system. The first condition for the primary system —
geometrically unchangeable — is the necessary condition. The second condition —
statical determinacy — is not a necessary demand; however, in this book we will
consider only statically determinate primary systems.

The statically indeterminate frame is presented in Fig. 7.2a. The degree of redun-
dancy isn = 4 — 3 = 1. The structure in Fig. 7.2b presents a possible version of
the primary system. Indeed, the constraint which prevents horizontal displacement
at the right support is not a necessary one in order to provide geometrical unchange-
ability of a structure (i.e., it is a redundant constraint) and it may be eliminated,
so the primary unknown presents the horizontal reaction of support. Other version
of the primary system is shown in Fig.7.2c; in this case the primary unknown
presents the bending moment at the rigid joint.
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Nahy!

X

Fig. 7.2 (a) Design diagram of a portal frame; (b—c) The different versions of the primary system;
(d) Wrong primary system

The system shown in Fig. 7.2d is geometrically changeable because three remain-
ing support bars would be incapable of preventing rotation of the frame with respect
to the left pinned support. Indeed, the constraint which prevents vertical displace-
ment at the right support is a necessary constraint in order to provide a geometrical
unchangeability of a structure (i.e., it is not a redundant one). It means that the sys-
tem shown in Fig. 7.2d cannot be accepted as a version of primary system.

Another statically indeterminate frame is presented in Fig.7.3a. The degree of
redundancyisn = 6 —3 = 3.

1 1

(2]

Closed
contour
X

A &L

Fig. 7.3 (a) Statically indeterminate frame; (b—e) The different versions of the primary system;
(f) A concept of closed contour

One version of the primary system and corresponding primary unknowns is
shown in Fig.7.3b. The primary unknowns are reactions of support. The structure
shown in Fig.7.3c presents the primary system where primary unknowns are in-
ternal forces (axial force X, shear X, and moment X3), which appear in pairs.
Figure 7.3d presents another version of the primary system. In this case, we elim-
inate two constraints which prevent two displacements (horizontal and angular) at
support and one constraint which prevents mutual angular displacement, i.e., the
primary unknowns are a combination of reactions X; and X, and internal moment
X3. Is it obvious that three-hinged frame (Fig.7.3e) can be adopted as the primary
system.

The structure shown in Fig.7.3a can also be considered as a system with
closed contour (Fig.7.3f). One closed contour has three degrees of redundancy,
and primary system can be similar as in Fig. 7.3c.
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More complicated statically indeterminate frame is presented in Fig.7.4a. This
structure contains three support bars and one closed contour. All reactions of sup-
ports may be determined using only equilibrium equations, while the internal forces
in the members of the closed contour cannot be obtained using equilibrium equa-
tions. Thus, this structure is externally statically determinate and internally statically
indeterminate. The degree of redundancy is n = 3. The primary unknowns are in-
ternal forces as shown in Fig. 7.4b. They are axial force X, shear X,, and bending
moment X3.

£ DN e £ _Ei-sz £

Fig. 7.4 (a, b) Internally statically indeterminate structure and primary system and (c, d) exter-
nally and internally statically indeterminate structure and primary system

The frame in Fig. 7.4c contains five support bars and one closed contour. So this
structure is externally statically indeterminate in the second degree and internally
statically indeterminate in the third degree. A total statical indeterminacy is five.
Primary unknowns may be chosen as shown in Fig. 7.4d.

Degree of statical indeterminacy of structures does not depend on a load. It is
evident that inclusion of each redundant constraint increases the rigidity of a struc-
ture. So the displacements of statically indeterminate structures are less than the
displacements of corresponding structures without redundant constraints.

The different forms of the force method are considered in this chapter. However,
first of all we will consider the superposition principle, which is the fundamental
basis for the analysis of any statically indeterminate structure. The idea of analysis
of a statically indeterminate structure using the superposition principle is presented
below.

7.1.2 Compatibility Equation in Simplest Case

Two-span beam subjected to arbitrary load P is shown in Fig.7.5. This structure
is statically indeterminate to the first degree. Two versions of primary system are
shown in Table 7.1.

Assume that the middle support B is the redundant one (Version 1 of the primary
system). Thus the reaction of this constraint, i.e., Rp = X, is a primary unknown.
For the given structure, the displacement at point B is zero. The primary unknown
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Fig. 7.5 Statically P
1I}determ1nate beam. Design H, A B l c
diagram and reactions of — _g_
supports —g—
Wl wl el
Table 7.1 Analysis of statically indeterminate beam by superposition method
Version 1 Version 2
Primary P P
system H. A4 B H, 4 B
- s 1
X=R T T T X=R
R AT B R, R, Ry c
Primary X =Rp X = R¢
unknown
Displacement lP l P
C?\lflesr?(ioz}(lis 4 z - c Ao, L ¢
g oS /l -------- X pay R b Ve
Ypp)
Displacement Vax)
caused by A N T A_____ B . | vew)
primary g B ? LT ¢
unknown X
_ X=R
X=Rp c
Compatibility yp =0 ye =0
equation ye = ye) T Vo) =0 ye = yew) + ye =0

X should be determined from the following condition: behavior of the actual beam
and primary system must be identical. Since point B has no displacement in the
actual state, then the compatibility condition is yp = 0. The displacement of point
B in the primary system is caused by given load P, as well as by the primary
unknown Rp = X. So the compatibility condition may be written in the following
form

yB =YB(P) T YBX) =0, (7.1)

where yp(p) and yp(x) are displacement of point B in the primary system due
to given load P, and primary unknown Rp = X, respectively. The compati-
bility equation means that both structures — the given and primary ones — are
equivalent. These displacements may be calculated by any method, which are
described in Chap. 6. The solution of compatibility equation allows calculating
the primary unknown X. The obtained value X=Rp should be considered as
active external load, which acts (together with given load P) on the statically
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determinate beam. Analysis of this beam (calculation of all reactions, con-
struction of the internal force diagram, and elastic curve) creates no difficulties
at all.

The version 2 of the primary unknown and corresponding compatibility equation
is shown also in Table7.1. The primary systems 1 and 2 are not unique. Using a
rational primary system can significantly simplify the analysis of a structure.

The following procedure may be recommended for analysis of statically indeter-
minate structures by the superposition principle:

1. Determine the degree of statical indeterminacy

2. Choose the redundant unknowns; their number equals to degree of statical
indeterminacy

3. Construct the statically determinate structure (primary structure) by eliminating
all redundant constraints

4. Replace the eliminated constraints by primary unknowns. These unknowns
present reactions of eliminated constraints

5. Form the compatibility equations; their number is equal to degree of statical in-
determinacy. Each compatibility equation should be presented in terms of given
loads and primary unknowns

6. Solve the system of equations with respect to primary unknowns

7. Since reactions of the redundant constraints are determined, then the computation
of all remaining reactions and analysis of the structure may be performed as for
the statically determinate structure

Example 7.1. Determine the reactions of the beam shown in Fig. 7.6 and construct
the bending moment diagram. Bending stiffness ET is constant.

q q
Actual W,— Reactions of Wl—
A B A B

state r' supports N> Hp
, e )
— ls, "
Ry

B
RB

Fig. 7.6 Design diagram of the beam and reactions of supports

Solution. The structure has four unknown reactions (the vertical reactions R 4, Rp,
horizontal reaction H g, and support moment M p), so the structure is the first degree
of statical indeterminacy. A detailed solution for two versions of primary systems is
presented in Table 7.2.
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Table 7.2 Two versions of primary system and corresponding solution using principle of super-
position

Version 1 Version 2
Primary unknown Vertical reaction X = Ry Support moment X = Mp
Primary system q

q
IJ VIV VvV Alllll
A { B E 2%
X=R, X=M;
Compatibility ya=20 0 =0
condition

Displacement due to q

given load ¢ in p, VI3 VY
primary system l_'_

Displacement due to i
primary Yaxp__
unknown X
in primary
system

Solution of
compatibility
equation Vg = . Vax = ——

B
I
>
S

[

|
=2

Statically q
determinate A\v JIVV |
structure and
bending moment T :
diagram M for 1 8 112
entire structure M: g

7.2 Canonical Equations of Force Method

Canonical equations of force method offer a unified procedure for analysis of stat-
ically indeterminate structures of different types. The word “canonical” indicates
that these equations are presented in standard, or in an orderly fashion form. Very
important is that canonical equations of the force method may be presented in a
matrix form. Thus, this set of equations is a first bridge between classical analytical
methods and numerical ones.

7.2.1 The Concept of Unit Displacements

Analysis of any statically indeterminate structure by the force method begins with
determination of degree of statical indeterminacy. Primary system is obtained by
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elimination of redundant constraints and replacing them by reactions of these con-
strains. Primary unknowns X; represent reactions (forces or moments) in eliminated
redundant constrains.

Let us consider a simple redundant structure, such as clamped-pinned beam. The
number of redundant constraints is # = 4 — 3 = 1. Assume that the right rolled
support is the redundant one. Thus the reaction of this constraint, X, is a primary
unknown. Given and primary systems are shown in Fig.7.7.

P P P
Given rimary
structure %ﬁ system )i‘B
Xl
P
iﬁ Oy I_ﬁ——“"‘_ 51X i__l_ :r‘kA
Tt 1P
X=1 X,

Fig. 7.7 Simple redundant structure. The idea of the force method and the concept of unit
displacement

The compatibility condition may be written in the following form

yB =YB(P) T ¥B(X;) =0, (7.2)

where yp(p) is displacement of point B in primary system due to given load P,
and yp(x,) is displacement of point B in primary system due to primary unknown
Rp = Xi.

Displacement y p(x,) caused by unknown X| may be presented as

YB(x;) = 811 X1, (7.22)

where §;; presents the displacement in direction 1 (first index) caused by the force
X1 = 1 (second index). Coefficient 8;; is called the unit displacement since it is
caused by unit primary unknown X; = 1. The term §;; X presents the displacement
in the direction of the eliminated constraint 1 caused by the actual primary unknown
X. If displacement in direction 1 caused by given load yp(p) is denoted as A p,
then (7.2) may be rewritten in the following form

§11X1 4+ Arp = 0. (7.3)

Left part of equation presents a total displacement in the direction of eliminated
constraint 1 (first index) caused by primary unknown X; and a given load. If this
total displacement is zero, then behavior of both structures (entire structure sub-
jected to given load and primary structure subjected to given load as well as primary
unknown X) is identical.

The compatibility equation in form (7.4) is called the canonical equation of the
force method for any structure with one redundant constraint; the free term Ap is
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called the loaded term (loaded displacement, free term). The solution of the canoni-
cal equation allows us to calculate the primary unknown X1, i.e., X1 = —A1p/811.

General case of canonical equations. The canonical equations of the force
method for a statically indeterminate structure with n redundant constraints are
written as follows

SuuX1+80pXo+ -+ 8 Xy +41p =0
821 X1+ 602Xo+ -+ 6o Xy + Azp =0 (7.4)

8n1X1 +8n2X2 + "'+8nan + AnP =0

The form of presentation of the canonical equations as shown in (7.4) is always the
same; it does not depend on the type of a structure, its peculiarities, and type of
external exposures (forces, support settlements, temperature change, fabrication er-
ror). The number n of these equations equals to the degree of statical indeterminacy
of a given structure.

All coefficients §;; of canonical equations represent a displacement of the pri-
mary structure due to unit primary unknowns; these coefficients are called the unit
displacements.

Coefficient §;; is the displacement along the direction of unknown X; due to
action of unit unknown Xy ; term §; X presents displacement along the direction of
unknown X; due to action of real unknown Xy. Coefficients §;, which are located
on the principal diagonal (i = k) are called the principal (main) displacements. All
other displacements 8;; (i # k) are called the secondary unit displacements.

Free term A;p presents displacement along the direction of unknown X; due to
action of actual load in primary system. Displacements A;p caused by applied loads
are called the loaded terms or free terms.

Physical meaning of the canonical equations. The left part of the ith equation
presents the total displacement along the direction of unknown X; due to action of
all real unknowns Xj as well as applied load. Total displacement of the primary
structure in directions of eliminated restrictions caused by primary unknowns and
applied load equals zero. In this case, the difference between the given and primary
structures is vanished.

7.2.2 Calculation of Coefficients and Free Terms
of Canonical Equations

Computation of coefficients and free terms of canonical equations presents signif-
icant and very important part of analysis of any statically indeterminate structure.
For their calculation, any methods can be applied. The graph multiplication method
is best suited for beams and framed structures. For this, it is necessary in primary
system to construct bending moment diagrams M 1, Ma, ..., M, due to unit primary
unknowns X;, i = 1,...,n and diagram M g due to given load. Unit displacements
and loaded terms are calculated by formulas
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M -M M: - M°
8ik = Z/ ldeS, AiP = Zf %ds (75)

Accordingly to expression 6.21, these formulas may be presented in conventional
forms. Properties of unit coefficients are as follows:

1. Main displacements are strictly positive (8;; > 0).
2. Secondary displacements 6;%, I 7# k may be positive, negative, or zero.
3. Secondary displacements satisfy the reciprocal displacement theorem

Sik = Oki- (7.5a)

It means that unit displacements symmetrically placed with respect to principal di-
agonal of canonical equations are equal.

The unit of displacements §; presents the ratio of unit for displacement accord-
ing to index i and units for force according to index k.

Construction of internal force diagrams. Solution of (7.4) is the primary un-
knowns X;, i = 1,...,n. After that the primary system may be loaded by de-
termined primary unknowns and given load. Internal forces may be computed as
for usual statically determinate structure. However, the following way allows once
again an effective use of the bending moment diagrams in primary system. The final
bending moment diagram M p may be constructed by formula

Mp =My - X1+ My-Xo+-+ My X, + Mp. (7.6)

Thus in order to compute the ordinates of the resulting bending moment diagram,
it is necessary to multiply each unit bending moment diagrams My by correspond-
ing primary unknown Xj and summing up with bending moment diagram due to
applied load in the primary system M g. This formula expresses the superposition
principle. Advantage of formula (7.6) is that it may be effectively presented in tab-
ulated form.

Shear forces may be calculated on the basis of bending moment diagram using
Schwedler theorem and axial forces may be calculated on the basis of shear force di-
agram by considering equilibrium of joints of the structure. Finally, having internal
force diagrams, all reactions are easy to determine.

Procedure for analysis The following procedure provides analysis of statically in-
determinate beams and frames using the canonical equations of the force method:

1. Provide the kinematical analysis and define the degree of statically indetermi-
nacy n of a structure.

2. Choose the primary system and replace the eliminated redundant constraints by
corresponding primary unknowns X;,i = 1,...,n.

3. Formulate the canonical equations of the force method.

4. Apply the successive unit forces X; = 1, Xo = 1,..., X, = 1 to primary
system and for each unit primary unknown construct corresponding bending
moment diagrams Ml, Mz, e, Mn.
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hd

Calculate the unit coefficients §;.

6. Construct the bending moment diagram M 1‘3 due to applied load in primary
system and calculate the load terms A;p of (7.4).

7. Solve the system of equations with respect to primary unknowns X1, X», .. ., Xj.

8. Construct the bending moment diagrams by (7.6), next compute the shear and
construct corresponding shear force diagram, and lastly compute axial forces
and construct the corresponding axial force diagram.

9. Having internal force diagrams, calculate the reactions of supports. Other way is
consider primary system subjected to determined primary unknowns and given
load and provide computation of all internal forces by definition; this way is less
effective.

10. Provide the static control for all structure (or any its part).
11. Provide the kinematical control (7.2) for displacements of an entire structure in
direction of primary unknowns.

Intermediate checking of computation These verifications are recommended to be
performed before solving canonical equations for determining primary unknowns
X;, i.e., on the steps 5 and 6 of the algorithm above. For control of unit displace-
ments and free terms, it is necessary to construct summary unit bending moment
diagram My = M; 4+ My + --- + M,,. The following types of controls are sug-
gested as follows:

(a) Row verification of unit displacements: Multiply summary unit bending
moment diagram My, on a primary bending moment diagram M;:

MEX]\;IZ' _

. - _ _ ds
Tl Z/(M1+M2+"'+Mn)'MiE:8i1+5i2+"'+8in-

The result of this multiplication equals to the sum of unit displacements of the
i-equation.
(b) Total verification of unit displacements: Multiply the summary unit bending
moment diagram My, on itself.
M » X M b))
EI

n
=811+ F+8n+SutF bty = Z Sik-
N——
ik=1

1stequation 2nd equation nthequation

The result of this multiplication equals to the sum of all unit displacements of canon-
ical equations. It is quite sufficient to perform only total control, however, if errors
occur, then the row control should be performed for tracking the wrong coefficient.

(c) Verification of the load displacements: Multiply summary unit bending moment
diagram My on a bending moment diagram M 3.
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MEXMI(;
E

1
Y Y - ds
= /(M1+M2+---+Mn)-M° =A1p+ App 4o+ Ayp.

PEI
The result of this multiplication equals to the sum of all free terms of canonical
equations.

7.3 Analysis of Statically Indeterminate Structures

This section contains application of the force method in canonical form to detailed
analysis of different types of structures. Among them are continuous beams, frames,
trusses, and arches.

7.3.1 Continuous Beams

Let us consider two-span continuous beam on rigid supports (Fig. 7.8a). Figure 7.8b
shows one version of the primary system, which presents the set of statically de-
terminate beams. The primary unknown X; is bending moment at the intermediate
support.

Canonical equation of the force method is §1; X; + A;p = 0, where 8, is
a displacement in direction of first primary unknown due to unit primary unknown
X1 = 1; Ay p is displacement in the same direction due to applied load. This canon-
ical equation shows that for the adopted primary system the mutual angle of rotation
at the support 1 caused by primary unknown X; and the given load P is zero.

For calculation of displacements 837 and Ajp, it is necessary to construct the
bending moment diagrams in the primary system caused by unit primary unknown
X1 = 1 and acting loads; they are shown in Fig. 7.8c, d, respectively.

For calculation of unit displacement, we need to multiply the bending moment
diagram M by itself

Spp=—— L =0 —xIxIxZxl=
11 X1 X[ X X KNm

M, x M, 11 2 2/ rad
EI EI2 3 3EI :

For calculation of free term, we need to multiply the bending moment diagram
M3} by M,

Mlng /
Ap = ———L = —_[1x(2-04)+0x(1+0.4)]x0.24PI

EI 6EI
Pl )
= O.O64E (Table A.2, line 5)
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Fig. 7.8 (a, b) Design diagram of a beam and primary system. (¢, d) Bending moment diagrams
in the primary system due to unit primary unknown (M) and given load (M 9). (e) Primary system
loaded by primary unknown and given load; (f) Final bending moment diagram. (g) Shear force
diagram and reactions of supports

Primary unknown (bending moment at support 1)is X; = —A1p /811 = —0.096 P1.

Construction of bending moment diagram The bending moment diagram can be
constructed considering each simply supported beam separately under action of
applied load and obtained bending moments at supports, as shown in Fig.7.8e;
constraints at the support 1 are shown apart for convenient. Final bending moment
diagram is shown in Fig. 7.8f.

Computation of shear Having the bending moment diagram we can calculate a
shear using differential relationships Q = dM/dx. In our case we get
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0.096P1
Qo1 = ———— = ~0.096P.
0.1824P1 — (—0.096 P1)
o — 0.696P,
Q1 0.41
0.1824P1
On-2 0.6

Final shear force diagram is shown in Fig. 7.8g.

Reactions of supports Having shear force diagram we can calculate the reaction of
all supports. They are following:

Ro = —0.096P, R, = Q¥ — Q' = 0.696P — (—0.096P) = 0.792P,
R> = 0.304P.

Static verification Equilibrium condition for all structure in whole is
Z Y = —0.096P + 0.792P + 0.304P — P = —1.096P + 1.096 P = 0.

Discussion:

1. Adopted primary system as a set of simply supported beams leads to the simple
(triangular) shape of bending moment diagrams in each unit states. The bend-
ing moment diagram due to given load is located only within each loaded span.
Therefore, computation of coefficients and free terms of canonical equations is
elementary procedure.

2. Canonical equations of the force method allow easy to take into account the
different bending stiffness for each span.

7.3.2 Analysis of Statically Indeterminate Frames

Design diagram of the simplest frame is presented in Fig. 7.9a. The flexural stiffness
for all members is EI. It is necessary to construct the bending moment diagram and
calculate a horizontal displacement of the cross bar.

Primary system and primary unknown. The structure has four unknown reac-
tions, so the degree of redundancy is # = 4 — 3 = 1. Let us choose the primary
unknown X be a vertical reaction at point 1. The primary system is obtained by
eliminating support 1 and replacing it by X; (Fig.7.9b).

Canonical equation of the force method is §11 X1 + A1p = 0. This equation
shows that for the adopted primary system the vertical displacements of the left
rolled support caused by primary unknown X and the given load g is zero.

Bending moment diagrams in the primary system caused by unit primary un-
known X; = 1 and given load are shown in Fig. 7.9¢c, d. These graphs also show the
displacements along eliminated constraint.
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Fig. 7.9 (a, b) Design diagram of a frame and primary system. (¢, d) Unit and loaded states and
corresponding bending moment diagrams. (e) Construction of bending moment diagram using the
superposition principle. (f) Unit state for calculation of horizontal displacement. (g) New version
of primary system and corresponding bending moment diagrams

The unit displacement §;, is obtained by “multiplying” the M, graph by itself,
i.e.,

fj1=————=—X=-axaX-a+-—xaxaxa=—-—
EI EI 2 3 El 3EI

My x M, 1 1 2 1 443 <m)
KN/ -
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Displacement in the primary system due to applied load is

My x M} 1 1 gqa? 3 1 ga? 5qa*
——f = ——X-X—XaxX-a——X—Xxaxa = ——— (m).
EI El 3 2 4 EI 2 8 EI

Ap =
The negative sign at each term means that ordinates of the two bending moment
diagram M; and Ml?, are located on different sides of the neutral line of the cor-
responding members of the frame. The primary unknown is X; = —A;p /811 =
%qa (kN). The positive sign shows that the chosen direction for the primary un-
known coincides with its actual direction.

Construction of bending moment diagram The final bending moment diagram will
be constructed based on the superposition principle M = M - X, + M 2. The first
term presents the bending moment diagram due to actual primary unknown X; =
(15/32) ga; the procedure above for construction of bending moment diagram is
presented in Fig. 7.9e.

The ordered calculation of bending moments at specified points of the frame is
presented in Table 7.3. Signs of bending moments are chosen arbitrarily and used
only for convenience of calculations; these rules do not influence the final bending
moment diagram. In our case, signs are accepted as shown below.

Table 7.3 Calculation of bending moments

Points M, M, - X, M) M- X, + M)

1 0 0 0 0 signs of

2 —a/2 —15/64 +1/8 —7/64 bending moments
3 —a —15/32 +1/2 +1/32

3 +a +15/32 ~1/2 —1/32 o 9|©
4 +a +15/32 —-1/2 —1/32

Factor qa? qa? qa®

The bending moment diagram is presented in Fig. 7.9e. This diagram allows us
to trace a corresponding elastic curve of the frame; this curve is shown on Fig.7.9¢
by dotted line. Rolled support at point 1 does not prevent horizontal displacement
of the cross-bar. Therefore, this structure presents the frame with sidesway (cross-
bar translation). In this case, all ordinates of bending moment diagram for vertical
member 3—4 are located on one side and therefore, elastic curve for this member has
no point of inflection.

Kinematical verification Displacement in the direction of constraint 1 in the origi-
nal system has to be zero. This displacement may be calculated by multiplication of
two bending moment diagrams, i.e., one is final bending moment diagram for given
structure Mp (Fig.7.9¢), and the second is bending moment diagram M, in unit
state (Fig.7.9¢).
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Mp x M 17 1
Alzgzi 0x0+44x-ax—qga*—ax —qa®
EI 6EI 2 64 32

horizontal portion, Simpson rule

2 _ qa4 qa4 _
— —Xaxax-—qa = — =
EI 32 32EI  32EI

vertical element

Horizontal displacement of the cross bar Unit state is shown in Fig. 7.9f. Required
displacement is

MpxM 11 qa®>  gqa*
D — X —— =

EI EI?2 32 64EI

Apor =

The positive result means that crossbar shifted from right to left. Corresponding
elastic curve for frame in whole is shown in Fig.7.9e by dashed line. Note that
inflection point for vertical member is absent.

Another version of the primary system and corresponding bending moment dia-
grams M, and M}Q are shown in Fig. 7.9g.

In this case

4a qa®
din=z-—, Aip= .
"T3Er TV T aE
A primary unknown X; = —qa?/32; this is bending moment at the rigid joint, as

presented in Fig. 7.9e.

Property of Statically Indeterminate Frames of the First Degree
of Redundancy

Let us consider important property of any statically indeterminate frames of the first
degree of redundancy. Design diagram of the frame is presented in Fig. 7.10.

Two primary systems and corresponding bending moment diagrams for the unit
conditions are presented in Fig. 7.10 and are denoted as versions 1-2. For version 1,
the primary system is obtained by eliminating of the support constraint; and for

A X-
jl:h lh/l
Version 1
1

2o
4 &
R fo v T

Fig. 7.10 Property of a primary system for structure of the first degree of redundancy

c B
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version 2 by introducing a hinge at the joint C. Therefore, the primary unknown
in version 1 is reactions of support; primary unknown in the version 2 is bending
moment at joint C, so the dimensions of the §;; is m/kN for version 1 and rad/kN m
for version 2.

The unit bending moment diagrams for any primary system are similar. This
is a general property for a statically indeterminate structure with first degree of
redundancy.

After bending moment diagram is constructed, the kinematical verification must
be performed. This procedure involves multiplication of the final and unit bending
moment diagram in any primary system. It is obvious that multiplication of the final
and unit bending moment diagram for each version will be equal to zero. However,
meaning of these multiplications will be different. For example M x Myes1 = 0
means that horizontal displacement at point B is zero; M x M,yeri2» = 0 means that
mutual angle of rotation of two sections at joint C is zero.

Detailed analysis of statically indeterminate frame using canonical equations of
the force method is presented in Example 7.2; this design diagram will be analyzed
more detail at a later time (settlements of supports, change of temperature, other
methods of analysis).

Example 7.2. A frame is clamped at point A and rolled at points B and C as
presented in Fig. 7.11a. The frame is loaded by force P = 8 kN and uniformly dis-
tributed load, ¢ = kN/m. The relative flexural stiffness of each element is shown in
a circle. Construct the bending moment, shear, and normal force diagrams. Deter-
mine the reactions of supports.

Solution. 1. Primary system and primary unknowns. The structure has five un-
known reactions. The degree of indeterminacy is 7 = 5 — 3 = 2. One version of
the primary system with primary unknowns X; and X, (vertical and horizontal
reactions at points B and C) is presented in Fig. 7.11b.

Canonical equations of the force method are

S1iX1 + 812X+ A1p =0,
821 X1 + 8220Xo + Azp = 0. (a)

These equations show that for the adopted primary system the vertical displace-
ment at support B and horizontal displacement at support C in the primary
system caused by both primary unknowns and the given loads are zero.

2. The unit displacements and free terms of canonical equations. Figure7.11c—e
present the bending moment diagrams M7, M, in the unit states and diagram
MIQ caused by applied load in the primary system; also these diagram show the
unit and loaded displacements §;; and A;p.

The graph multiplication method leads following results:

M x My 1 1 1 2 666.67 / m
S = L 10x5%x 104 —— x = x 10x 10 % = x 10 = (—)
El 1EI 261 2 3 £ N
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=0: H,=062438kN — Q,=+6.2438kN
Hy=3.756kN — Q3 =-3.756kN
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Fig. 7.11 (a, b) Design diagram of a frame and primary system. (c—e) Bending moment diagrams
in primary system caused by unit primary unknowns and the given load (f) Summary unit bending
moment diagram. (g) Final bending moment diagram, elastic curve (EC) and static control. (h)
Calculation of shear for member 1-3. (i) Shear force and free body diagram for joint D. (j, k)
Axial force diagram and reactions of supports
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My x M, 1 1 2 170.67 / m
$pp = — = = — x—x8x8X = x8= —), b
22 El T R RN El (kN) ®
My x M 1 348 275
512=521=#=—XLX5X10=—(2).
EI 1EI 2 EI \kN
My x M3 1 11
Alp=——5 = ———x32x5x10——x=x25x5x%x10
EI LEI 1EI ~ 3
1 4 2,294
—— x—-x2x10+6)x32=-"""""(m),
2E X <@ x10+6)x ™
M, x M9 1 348
App = 22X Mp 1 38 e
EI 1EI
1 5 1,161.25
—1Elxg><(8x25+4><5.5><6.25+3x0)=——E1 (m). (c)

3. Verification of coefficients and free terms of canonical equations. The unit and
loaded displacement should be checked before solving of canonical equations
(a). For this purpose, we need to construct the summary unit bending moment
diagram Ms, = My + M» (Fig.7.11f).

e First row control. The sum of coefficients in the first canonical equation must
be equal to the result of multiplication the summary unit bending moment
diagram My, by a primary bending moment diagram M;. Indeed,

666.67 275  941.67

§ §12 = — = ,
11+ 012 B TE EI
while
Ms x M 1 13418 11 2 941.67
L:—LXSXIO—F——XIOXIOX—XIO: .
EI 1EI 2 2EI 2 3 EI

Therefore, the first row control is satisfactory. The second row control may be
performed similarly.

e Simultaneous control. The total sum of all coefficients and the result of multi-
plication of summary unit bending moment diagram by “itself” are

1,387.34
EI

1
B11 12+ Ba1 + 80 = - (666.67 +275 + 275 4 170.67) =

’

MsxMz 11 2 15
— = ——-Xx3Xx3x=-X%x3+—=-x(2x13x134+2x18x 18

EI ~ 1EI2 3 1EI 6
11 2 1,387.34
I3x184+18x13)+ ——x10x10x = x 0= —=",
FI3A8 4 18X13) 4 75 < 1010 37 El

e Free terms control. The sum of the loaded displacements is

3,455.25

1
Aip 4 Aop = —— (2.294 + 1.161.25) = :
1p + Asp EI( + ) El
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while the multiplication of the summary unit bending moment diagram My, by a
bending moment diagram M 2 due to applied load in the primary structure

Ms x M} 1 5 13+ 18
TEEP o 21857+ 1332 4+ 4x 3825
El 121 6
1 4 3,455.25
e X I @x1046)x32 = 20
31 <5 2110+ 6 x El

Therefore, the coefficients and free terms of equations (a) are computed correctly.
4. Primary unknowns. Canonical equations for primary unknowns X; and X,
becomes

666.67X1 + 275X, —2,294 = 0,
275X, +170.67X, —1,161.25 = 0. (d)

All coefficients and free terms contain factor 1/EI, which can be cancelled. It
means that primary unknowns of the force method depend only on relative stiff-
nesses of the elements.

The solution of these two equations leads to

X1 = 1.8915kN, X, = 3.7562kN.

5. Internal force diagrams. The bending moment diagram of the structure will be
readily obtained using the expression

M =M -X\+My-X>+ M. (e)
Location of the specified points 1-8 is shown in Fig. 7.11b. Corresponding calcula-

tion is presented in Table 7.4. The sign of bending moments is chosen arbitrarily for
summation purposes only.

Table 7.4 Calculation of bending moments at the specified points

Points M] M] 'X] Mz M2'X2 M;), M

1 —10 —18.915 —8.0 —30.049 +57.0 +8.036

2 —10 —18.915 =55 —20.659 +38.25 —1.324  signs of

3 —10 —18.915 —3.0 —11.268 +32.0 +1.817  bending moments
4 0.0 0.0 —=3.0 —11.268 +32.0 —11.268 ©

5 0.0 0.0 0.0 0.0 0.0 0.0 e @lo
6 —10 —18.915 0.0 0.0 +32.0 +13.085

7 —6.0 —11.349 0.0 0.0 0.0 —11.349

8 0.0 0.0 0.0 0.0 0.0 0.0

The resulting bending moment diagram and corresponding elastic curve are pre-
sented in Fig.7.11g.
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o Statical verification of bending moment diagram. The free-body diagram of
joint D (closed section @) is shown in Fig. 7.11g. Equilibrium condition of this
joint is

ZM = 11.268 + 1.817 — 13.085 = 0.

e Kinematical verification of bending moment diagram. Displacement in the
direction of any primary unknown in the given system must be equal to zero.
This condition is verified by multiplying bending moment diagram M p in the
actual state by bending moment diagram M; in any primary system.

Displacement in the direction of the first primary unknown is

My x Mp 1 5
= =  xZ(—8.036x10—1.817x104+4x1.324x10)
EI 1EI " 6

1 4
+E X 3 (—2 % 13.085 x 10+2 x 11.349 x 6—13.085 x 64+10x11.349)

1 1 2 1
+—x=x11349%x 6 x = x 6 = — (195.453 — 195.511) = 0.
2E1 2 3 El

Ay

The relative error is 0.029%. Similarly it is easy to check that displacement in the
direction of the second primary unknown is zero, i.e., Ay = Myx M p/er = 0.

Shear forces may be calculated using differential relationships Q =dM/dx. This
formula leads to the following results:

13.085 — (—11.349
i ) = 6.1085kN

11.349 11.268
O7-8 = — e —1.8915kN; Q45 = — 3

Q67 =

= —3.756 kN.

The portion A-3 subjected to load ¢ and couples at points A and 3 is shown in
Fig.7.11h.

Hy—» M3;=0: Hy=62438kN— Q4 = +6.2438KkN,
Hy —>Y Mg=0: Hs;=3756kN — Q3 = —3.756kN.

The final shear force diagram is shown in Fig. 7.11i.

Axial forces may be derived from the equilibrium of rigid joint D; a correspond-
ing free-body diagram is presented in Fig. 7.11i. The shear at point 3 is negative, so
this force, according to the sign law, should rotate the body counterclockwise. It is
assumed that unknown forces Ng—7 and N3—4 are tensile.

N6_7—>ZX:02 N6_7:0,
Ni_g — ZY =0: Ni;_4=—6.108kN.
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Final diagram for axial force N is presented in Fig. 7.11j. Since the member DB has
no constraints for its horizontal displacement, a normal force in this member is zero.
The similar conclusion related to the member DC.

6. Reactions of supports. Internal force diagrams M, @, and N allow us to show all
reactions of the support. The negative shear 3.756 means that horizontal reaction
at support C equals 3.756 kN and directed from right to left. The positive shear
6.444 means that horizontal reaction at clamped support A equals 6.444 kN and
this direction of the reaction R4 produces the positive shear, etc. All reactions
of supports are shown in Fig. 7.11k.

Now we can perform controls of the obtained reactions of supports. Equilibrium
equations for the frame in whole are

> X =gq-5-6244-3756=10—10=0
DY =-P+6108+1892=-8+8=0

Z M7 =2x5x%x2.5+8.036—6.108 x 4—6.244 x 5+3.756 x 34+-1.892 x 6
= 55.656 —55.652 =0

Therefore, equilibrium of the structure in a whole is held. It is left as an exercise for
the reader to check the equilibrium of some parts of the system (for example, use
a cut section through left/or right at point 7) and considering the equilibrium of the
either part of the structure.

Discussion:

1. For any statically indeterminate structure subjected to action of arbitrary exter-
nal load, the distribution of internal forces (bending moment, shear and normal
forces), as well as reactions of supports depend only on relative stiffnesses of the
elements, and does not depend on their absolute value of flexural stiffness, EI.

2. Two free-body diagrams for joint D takes into account different internal forces:
the Fig. 7.11g contains only the bending moments, while Fig. 7.11i contains the
shear and axial forces. It happens because the section is passed infinitely close to
joint D.

3. The unit bending moment diagrams are used at different steps of analysis, so the
effectiveness of these diagrams is very high.

7.3.3 Analysis of Statically Indeterminate Trusses

Statically indeterminate trusses are geometrically unchangeable structures for which
all reactions and all internal forces cannot be determined using only the equilibrium
of equations. Figure7.12 presents three types of statically indeterminate trusses.
They are (a) externally, (b) internally, and (c) mixed statically indeterminate trusses.
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a

Fig. 7.12 Trusses. Types of statically indeterminacy

The truss (7.12a) contains one redundant support member and does not contain
the redundant members in the web. This structure presents the first degree of exter-
nally statically indeterminate truss. In cases (b) and (c), the diagonal members do not
have a point of intersection, i.e., these members are not connected (nor hinged, nor
fixed) with each other. Case (7.12b) presents the internally statically indeterminate
truss to six degrees of redundancy. Case (7.12c) presents the internally statically
indeterminate truss to six degrees and externally to the first degree.

The analysis of statically indeterminate trusses may be effectively performed by
the force method in canonical form. The primary system is obtained by elimination
of redundant constraints. As in the general case (7.4) of canonical equations, X, are
primary unknowns; §; are unit displacements of the primary system in the direction
of i th primary unknown due to unit primary unknown X; = 1; A;p are displace-
ments of the primary system in the direction of i th primary unknown X = 1; 4;,
due to acting load.

For computation of coefficient and free terms of canonical equations, we will use
the second term of the Maxwell-Mohr integral (6.11).

N;i - Ng -1
Sk =) ———.
—~ " EA
N;-N3-1
AiP:Z#, (1.7)

n

where [ is length of nth member of the truss; 1\_/l~ Y . are axial forces in nth member
due to unit primary unknowns X; = 1, Xy = 1; and Ng is axial force in nth
member of the primary system due to acting load.

Summation procedure in (7.7) should be performed on all members of the truss
(subscript n is omitted).

Solution of (7.4) is the primary unknowns X; (i = 1,...,n). Internal forces in
the members of the truss may be constructed by the formula

N=N;-Xi+Ny-Xo+---+ Np. (7.8)
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Kinematical verification of computed internal forces may be done using the follow-
ing formula

_ ]
ZNNa =0. (7.9)

If a primary unknown is the reaction of support, then this equation means that dis-
placement in the direction of the primary unknown due to primary unknown and
given loads is zero. If the primary unknown is the internal force in any redundant
member of a web, then (7.9) means that a mutual displacement in the direction of
the primary unknown due to this unknown and given loads is zero.

Let us consider the symmetrical truss that carries two equal forces P = 120 kN
(Fig.7.13a). The axial stiffness for all members is EA.This structure is first degree
of statically indeterminacy. The reaction of the intermediate support is being as the
primary unknown. The primary system is shown in Fig. 7.13b.

Primary system

TM

l

Umt State M
P 12 P=120
e Vs.2,=0.0
Dy.1=79.75 Dy = 120.25 T / 6.5=120.25
H,
> __’U0_7:63.71 Us7=63.71 < _’ U s=63.71
TRO Rg

Fig. 7.13 (a, b) Redundant truss and primary system. (¢, d) Unit and loaded states. (e) The free-
body diagrams of joint 0 and 6

Canonical equation of the force method and primary unknown are

A
SuXi+Aip=0—>X; = —S;P
11

For calculation of 811, Aqp, it is necessary to show the unit and loading states
(Fig.7.13c, d).

The analysis of this statically indeterminate truss is presented in the tabulated
form (Table 7.5). Column 1 contains the flexibility for each member; the factor 1/EA
is omitted. Internal forces for all members in unit and loaded states are presented in
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columns 2 and 3, respectively. For computation of unit displacement 611, the entries

of the column 5 should be summated. Similar procedure should be performed for
computation of loaded displacement A;p (column 4).

Table 7.5 Calculation of internal forces in the members of a statically indeterminate truss

Members ELA N, Ng N]-NgEI—A NIZEI—A N, - X, N = ~ N]'NELA
NS + Ni X,

0 1 2 3 4 5 6 7 8

Vertical 1-7 3 0 120 0 0 0 120 0

members 2-6 3 0 0 0 0 0 0 0

3-5 3 0 120 0 0 0 120 0
Lower 0-7 4 —0.667| 160 | —426.88 1.774 —96.288 63.71 —169.98
chord 7-6 4 —0.667| 160 | —426.88 1.774 —96.288 63.71 —169.98
6-5 4 —0.667| 160 | —426.88 1.774 —96.288 63.71 —169.98
54 4 —0.667| 160 | —426.88 1.774 —96.288 63.71 —169.98
[Upper  chord 1-2 4 1.333]—160 | —853.12 7.107 192.43 32.43 172.92
2-3 4 1.333(—160 [ —853.12 7.107 192.43 32.43 172.92
Diagonals 0-1 5 0.833|—200 | —833 3.469 120.25 —79.75 —332.16
1-6 5 —0.833 0 0 3.469 —120.25 | —120.25 500.84
6-3 5 —0.833 0 0 3.469 —120.25 | —120.25 500.84
34 5 0.833|1—200 | —833 3.469 120.25 —79.75 —332.14

Factor 1/EA 1/EA 1/EA 1/EA
Ao 507976 35186
T EA 0 T U EA

The primary unknown is X; = —A1p /811 = 144.36 kN. Column 6 contains the
computation of the first term of (7.8). Computation of final internal force in each
element of the truss is provided according to formula (7.8) and shown in column 7.

Reaction of supports Knowing the internal forces we can calculate the reaction R
of any support. Free-body diagrams of joints 0 and 6 are presented in Fig.7.13e.
Equilibrium equations for joint 0 is

Y =0: Rg—79.75sina =0— Ry = 47.85kN.
It is obvious that R4 = Rp = 47.85kN. Equilibrium equation for joint 6
> Y =-2x12025sina + Rg = 0

leads to the following reaction at the intermediate support of the truss:
Re = 2 x 120.25 x 0.6 = 144.3kN. Pay attention, this result has been obtained
early as the primary unknown X .

Static verification For truss in whole the equilibrium equations
DY =2x47.85+ 1443 -2 x 120 = 240 — 240 = 0,

Zx:o: Ho = 0.
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The last result may be checked. For joint 0, the equilibrium equation Y~ X = 0
(Fig.7.13e) leads to the following result: Hy + 63.71 —79.75x 0.8 =0 — Hy =
63.8 — 63.71. The relative error is 0.14%.

Kinematical verification Displacement in the direction of the primary unknown due
to primary unknown and given loads is zero. According to (7.9), for computation of
this displacement we need to multiply the entries of column 7, 2, and 1 (column 8).
The sum of entries of this column equals

_ i
ZNI -NE = —1,344.24 + 1,347.52 = 3.28.

The relative error is
3.28 x 100%

1,344

= 0.24%.

Discussion:

1. If statically indeterminate truss is subjected to any loads, then distribution of
internal forces depends on relative axial stiffness EA of the members and does
not depend on their absolute value EA.

2. Fundamental property of statically indeterminate trusses: any change of rigidity
EA of specified element of the truss cannot change the sign of internal force in
this element.

7.3.4 Analysis of Statically Indeterminate Arches

Different types of statically indeterminate arches are presented in Fig. 7.14. They are
two-hinged arches with or without tie (Fig.7.14a, b), one-hinged arch (Fig. 7.14c¢),
and arch with fixed ends (Fig. 7.14d).

Fig. 7.14 Types of the redundant arches

The most effective method for analytical analysis of statically indeterminate
arches is the force method in canonical form (7.4); for two-hinged arches we have
one primary unknown, two unknowns for one-hinged arch, and three unknowns for
hingeless arch.

As for three-hinged arch, the distribution of internal forces depends on a shape
of the neutral line (parabola, circular, etc.). This should be taken into account
when calculating unit coefficients and free terms of canonical equations. In gen-
eral case, these coefficients and free terms depend on bending moments, shear, and
axial forces. In calculating displacements, we will take into account only bending
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moments for the arch itself and an axial force for the tie, while the shear and axial
forces for arch may be neglected. Since the axis of the arch is curvilinear, then the
graph multiplication method leads to approximate results.

Unlike three-hinged arches, in redundant arches, as for any statically indetermi-
nate structure, the internal forces arise in case of displacements of supports, changes
of temperature, and errors of fabrication. For masonry or concrete arches, a concrete
shrinkage should be taken into account, since this property of material leads to the
appearance of additional stresses.

Procedure for analysis of statically indeterminate arches is as follows:

—

Choose the primary system of the force method.

2. Accept the simplified model of the arch, i.e., the arch is divided into several
portions and each curvilinear portion is changed by straight member. Calculate
the geometrical parameters of the arch at specified points.

3. Calculate the unit and loaded displacements, neglecting the shear and axial forces
in arch:

P
Sik = I I ds.

() (s)

Computation of these displacements may be performed using the graph multiplica-

tion method.

Mi-M Mi-MO
k. /
ds’ iP = - =5

4. Find the primary unknown using canonical equation (7.4) of the force method.
5. Construct the internal force diagrams; the following formulas may be applied:

M =M X1+ MoXo+ -+ M}
Q=Q1X1+Q2X2+---+Q?,
N = N1 X1+ NaXo + -+ NJ,

where X; are primary unknowns; M;, Q;, N; are bending moment, shear, and

axial force caused by unit i th primary unknown X; = 1; and M 19,, (},, N 1‘3
are bending moment, shear, and axial force caused by given load in primary
system.

6. Calculate the reactions of supports and provide their verifications.

Let us show this procedure for analysis of the parabolic two-hinged uniform arch
shown in Fig.7.15a. The flexural stiffness of the cross section of the arch is EIL
The equation of the neutral line of the arch is y = (4f/1?)x(I — x). The arch is
subjected to uniformly distributed load ¢ within the all span. It is necessary to find
the distribution of internal forces.

The arch under investigation is statically indeterminate of the first degree. The
primary system is shown in Fig.7.15b; the primary unknown X; is the hori-
zontal reaction of the right support. Canonical equation of the force method is
811X1 + A1p = 0. The primary unknown X; = A;p/681;1.

Specified points of the arch The span of the arch is divided into eight equal parts;
the specified points are labeled 0-8. Parameters of the arch for these sections are
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Fig. 7.15 (a, b) Two-hinged parabolic arch. Design diagram and primary system, (c) Positive
directions of internal forces, (d) Final axial force diagram and reaction of supports

presented in Table 7.6; the following formulas for calculation of trigonometric func-
tions of the angle ¢ between the tangent to the arch and x-axis have been used:

, 4/ —2x) 1 .
fang =y = —————, CO0S¢ = —————, SIn@ = COs¢ tang.
l V1 +tan? g
Table 7.6 Geometrical Coordinates (m)
parameters of parabolic arch Points | y tang cosg sing
0 0 0.0 1.00 0.7070  0.7070
1 3 2.625 0.75 0.800 0.6000
2 6 4.500 0.50 0.8944  0.4472
3 9 5.625 0.25 09701  0.2425
4 12 6.000 00 1.0 0.0
5 15 5.625 |—0.25 0.9701 —0.2425
6 18 4500 |—0.5 0.8944 —0.4472
7 21 2.625 |—0.75 0.800 —0.6000
8 24 0.0 —1.00 0.7070 —0.7070
The length of the chord between points 7 and n-1 equals
Ji _ 2 2
w1 = (= xne) + (n — yu1) (7.10)

The chord lengths of each portion of the arch are presented in Table 7.7.
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Table 7.7 The chord length of each portion of the arch
Portion 0—1 1-2 2—-3 3—4 4-5 5—6 6—7 7—8
Length (m) 3.9863  3.5377 3.2040 3.0233  3.0233 3.2040 3.5377 3.9863

Internal forces in the unit state The arch is subjected to unit primary unknown
X1 =1 (Fig.7.15b). Horizontal reaction H = 1 and the positive directions of inter-
nal forces are shown in Fig.7.15c.

Ml =—1-y
0, =—1-sing (7.11)
N = —1-cosg.

Internal forces at specified points in the unit state according to (7.11) are presented
in Table 7.8.

Table 7.8 Internal forces of . - = -

the arch in the unit state Points | M, 4] il
0 0.0 —0.7070 —0.7070
1 —2.625 —0.6000 —0.8000
2 —4.50 —0.4472 —0.8944
3 —5.625 —0.2425 —0.9701
4 —6.00 0.0 —1.0000
5 —5.625 0.2425 —0.9701
6 —4.50 0.4472 —0.8944
7 —2.625 0.6000 —0.8000
8 0.0 0.7070 —0.7070

The unit displacement caused by primary unknown X = 1 equals

ity - o1
s = [ 2P, @
(s)

Thus the only column M, (Table 7.8) will be used for calculation of unit displace-
ment; the columns Q; and N; will be used for computation of final shear and axial
forces as indicated at step 5 of procedure.

Internal forces in the loaded state Displacement in the primary system caused by

applied load equals _
ap = MM, b)
(s)

where M 2 is bending moments in the arch in the primary system due to given load
q. Thus, as in case of unit displacement, for computation of loaded displacement we
will take into account only bending moment.

The reactions of supports of the primary system in the loaded state are R% =
ROB = 24XkN; this state is not shown. Expressions for internal forces are follows
0<x<24
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2
MO = R%x—q% = 24x — x2
0% = (R —gx)cosp = (24 — 2x) cos ¢
Ng =— (Rf‘)l - qx) sing = —(24 — 2x) sin g. (c)

Internal forces at specified points in the loaded state of the primary system are pre-
sented in Table 7.9.

Table 7.9 Internal forces of Points | M 19 Q(IJ) N g
the arch in the loaded state

108  —10.7328  —5.178
63  —14.400 —10.800
0.0 —16.968 —16.968

0 0.0 16968  —16.968
1 63 14.400  —10.800
2 108 10.7328  —5.178
3 135 5.8206  —1.455
4 144 0.0 0.0

5 135 —5.8206  —1.455
6

7

8

Computation of unit and loaded displacements For calculation of displacements,
the Simpson’s formula is applied. Unit and loaded displacements are

v v n
811 ZMZZZ—I(Q%+4C%+b%),
1

EI 6E]
Ml X Mg ~ li
Ap = —E Z SEl (arap + 4cicp + b1bp), (d)

1

where /; is the length of the i th straight portion of the arch (Table 7.7); n number of
the straight portions of the arch; a;, ap ordinates of the bending moment diagrams
M, and Mg at the extreme left end of the portion; by, bp ordinates of the same
bending moment diagrams at the extreme right end of the portion; and ¢y, cp are the
ordinates of the same bending moment diagrams at the middle point of the portion.

Calculation of the unit and loaded displacements is presented in Table7.10.
Section “Unit state,” columns aj, ¢y, andb; contain data from column M,
(Table 7.8). Section “Loaded state,” columns ap, cp, and bp contain data from
column M) (Table 7.9). As an example for portion 1-2(/;—»/6 = 3.5377/6 =
0.5896), the entries of columns 6 and 10 are obtained by following way

0.5896
= [(—2.625)2 + 4(—3.5625)% + (—4.50)2] — 45.9335/EI,
0.5896
—— [(~2.625) x 63 + 4(~3.5625) X 85.5 + (—4.50) x 108]

= —1,102.40/EI
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Table 7.10 Calculation of coefficient and free term of canonical equation

Unit state B B Loaded state _
Portion l—l ap c1 b M ap cp bp MIX—M}Q
6EI EI EI
1 2 3 4 5 6 7 8 9 10
0-1 0.6644| 0.0 —1.3125 —2.625 9.1563 0.0 315 63 | —219.75
1-2 0.5896| —2.625 —3.5625 —4.500( 45.9335| 63 85.5 108 | —1,102.40

2-3 0.5340( —4.500 —5.0625 —5.625( 82.4529| 108 120.5 135 | —1,978.87
3-4 0.5039( —5.625 —5.8125 —6.000( 102.1815( 135 139.5 144 | —2,452.35
4-5 0.5039( —6.000 —5.8125 —5.625( 102.1815| 144  139.5 135 | —2,452.35
5-6 0.5340( —5.625 —5.0625 —4.500( 82.4529| 135 121.5 108 | —1,978.87
6-7 0.5896| —4.500 —3.5625 —2.625| 45.9335| 108 855 63 | —1,102.40

7-8 0.6644| —2.625 —1.3125 0.0 9.1563 63 31.5 0.0 —219.40
Factor | 1/EI 1/EI 1/EI
479.4484 11,506.74
=20 m/kN) Ay = —— 2
S11 £l (m/kN) 1P 7l (m)

Canonical equation and primary unknown Canonical equation and primary un-
known (thrust) are

479.4484 11,506.74

—
X =0 — X; = 24.00kN.
EI EI

Construction of internal force diagrams Internal forces, which arise in the entire
structure, may be calculated by formulas

M = M X, + M)

0=01X1+0p

N = N X; + Njp. (e)
Calculation of internal forces in the arch due to given fixed load is presented in

Table 7.11; internal forces M 1 ,@1, and N 1 due to unit primary unknown X; = 1
are presented earlier in Table 7.8.

Table 7.11 Calculation of internal forces at specified points of the arch

M\X, 0,X, N X, M) 05 N M 0 N
Points | 7 2 3 4 5 6 1+4 245 346
0 00 —16.968 —16.968 | 0.0 16968 —16.968 | 0.0 0.0  —33.936
1 —63 —14.400 —19.2 63 14400 —10.80 |00 00  —30.0
2 —108  —10.733 —21.466 | 108 10733 —5.178 | 0.0 0.0  —26.644
3 —135 —5.820 —23.282 | 135 5820 —1.455[00 00  —24.737
4 —144 0.0 —24.00 | 144 0.0 00 |00 00 —24.0
5 —135 5820 —23.282 | 135 —5.820 —1.455|00 00  —24.737
6 —108 10.733 —21.466 | 108 —10.733 —5.178 | 0.0 0.0  —26.674
7 —63 1440 —1920 | 63 —1440 —10.800| 0.0 00  —30.0
8 00 16968 —16.968 | 0.0 —16.968 —16.968 | 0.0 0.0  —33.936
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Corresponding axial force diagram is presented in Fig.7.15d.

Knowing the internal forces at points 0 and 8 we can calculate the reactions at
supports A and B. Axial force Ny = 33.936 kN is shown at support A (Fig.7.15d).
Reactions of this support are Ry = Npsingg = 33.936 x 0.707 = 24 kN and
H = Nocosgy = 24kN. For primary unknown X; we have obtained the same
result.

Verification of results.

(a) Forarchinwhole > Y = R4+ Rgp —¢q-24=0.
(b) The bending moment at any point of the arch
x2 4 x?
M) = Rax — Hy — 25 — o4 — 24 -y = 95
2 12 2
for given parameters f, [, and ¢ indeed equals to zero for any x.
Discussion:

1. If two-hinged uniform parabolic arch is subjected to uniformly distributed load
within all span, then this arch is rational since the bending moments and shear
forces are equal to zero in all sections of the arch. In this case, only axial com-
pressed forces arise in all section of the arch.

2. Procedure for analysis of nonuniform arch remains same. However, in this case
the Table 7.6 must contain additional column with parameter EI for each point
0-8, Table 7.7 must contain parameter EI; for middle point of each portion, and
column 2 of the Table 7.10 should be replaced by column /; /6FEI;.

7.4 Computation of Deflections of Redundant Structures

As known, for calculation of deflection of any bending structure it is necessary to
construct the bending moment diagram in the actual state, then construct unit state
and corresponding bending moment diagram, and finally, both diagrams must be
multiplied

(7.12)

S

MpM Mp x M
Ak:/”dz”x.
El El

S

Here M p is a bending moment diagram of a given statically indeterminate structure
due to applied load, while a bending moment diagram M is pertaining to unit state.

The construction of bending moment diagram M p in the entire state is discussed
above using the superposition principle. Other presentation of superposition prin-
ciple will be considered in the following sections of the book. Now the following
principal question arises: how to construct the unit state? It is obvious that unit load
must correspond to the required deflection. But which structure must carry this unit
load? It is obvious that unit load may be applied to the given statically indeterminate
structure. For construction of bending moment diagram in unit state for statically in-
determinate structure the additional analysis is required. Therefore computation of
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deflections for statically indeterminate structure becomes cumbersome. However,
solution of this problem can be significantly simplified, taking into account a fol-
lowing fundamental concept.

Bending moment diagram M p of any statically indeterminate structure can be
considered as a result of application of two types of loads to a statically determinate
structure. They are the given external loads and primary unknowns. It means that a
given statically indeterminate structure may be replaced by any statically determi-
nate structure subjected to a given load and primary unknowns, which are treated
now as external forces. It does not matter which primary system has been used for
final construction of bending moment diagram, since on the basis of any primary
system the final bending moment diagram will be the same. Therefore, the unit load
(force, moment, etc.), which corresponds to required displacement (linear, angular,
etc.) should be applied in any statically determinate (!) structure, obtained from a
given structure by elimination of any redundant constraints.

This fundamental idea is applicable for arbitrary statically indeterminate struc-
tures. Moreover, this concept may be effectively applied for verification of the
resulting bending moment diagram. Since displacement in the direction of the pri-
mary unknown is zero, then

0, (7.12a)

where M is the bending moment diagram due to unit primary unknown. This is
called a kinematical control of the resulting bending moment diagram. Equations
(7.12) and (7.12a) are applicable for determination of deflections and kinematical
verification for any flexural system.

Kinematical verification for structure in Table 7.2 is shown below. For given
structure the vertical displacement of support A is zero. We can check this fact
using above theory. Unit state is constructed as follows: the support A is eliminated
and unit load P = 1 is applied at point A. Two bending moment diagrams, M p and
M , are shown in Fig. 7.16a. Their multiplication leads to the following results:

MP X Mp [ 6112 l qlz
AVer — = —|0x0 4 —_— - — — [)=0.
A El; 6EI( * 044 x 16 x 2 8 x

Simpson rule

Indeed, the vertical displacement of the support A is zero. Now let us calculate the
slope at support A. For this we need to show bending moment diagram M p in entire
structure (Fig. 7.16a) and apply unit moment at support A in any statically determi-
nate structure. Two versions of unit states are shown in Fig. 7.16b. Computation of
the slope leads to the following results:
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Fig. 7.16 (a) Computation of vertical displacement at support A. (b) Computation of slope at
support A. Two versions of unit state

Version 1:
MpxM | 12 12 I
Pt ek L (3OS BV LISV . LUVE ) [N, L
EI 6EI 16 8 48E]

Version 2:
Mp x M l 2 1 ql? 3
9A=—PX = — Ox1—|—4xq—x——q—x0 =q—.
EI 6EI 16 2 8 48E]

It easy to check that superposition principle leads to the same result. Indeed, in case
of simply supported beam subjected to uniformly distributed load ¢ and support
moment Mg = ¢l?/8, the slope at support A equals

ql3 Mpl ql®>  ql* 1 . ql3

T 24EI  6EI  24EI 8 6EI _ 48EI

04 =0%+64"

The reader is invited to check that slope at support B is zero. For multiplication
of both bending moment diagrams, it is recommended to apply the Simpson’s rule.
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7.5 Settlements of Supports

If any statically indeterminate structure is subjected to settlement of supports, then
internal forces arise in the members of the structure. Analysis of such structures
may be effectively performed by the force method in canonical form. The primary
system and primary unknowns should be adopted as in the case of the fixed loads.

Let us consider any statically indeterminate structure with n redundant con-
straints. Some of the supports have linear and/or angular displacements d;. Canoni-
cal equations are

SuXi+8Xo+ -+ 8 Xn+A15,=0
821 X1 + 820X + -+ + 820 Xy + A2s =0

(7.13)
81 X1 + 82 Xo 4+ - 4+ 8un Xy + Aps =0,

where free terms Ag, (K = 1,2,.. ., n) represent displacements of the primary sys-
tem in the direction of primary unknowns X} due to settlements of the supports. For
calculation of these terms, we need to use the theorem of reciprocal unit displace-
ments and reactions (Rayleigh second theorem).

Let the support i has the unit displacement ;. The displacement at any point
k may be calculated using the above-mentioned theorem, i.e., 8x; = —rig. So, the
displacement in direction k due to unit displacement at direction i may be calculated
as reaction at support i caused by unit load at direction k.

If the support i has nonunity displacement d;, then the displacement Ay at any
point k may be calculated using formula Ag; = —R;xd;, where R;; presents the
reaction at support i due to unit load at direction k. In fact, it means that both parts
of formula 8;; = —r;; are multiplied by d;. In case of several displacements d; of
the supports, the free terms of canonical equation of the force method are calculated
using the following expressions (index s — “settlements” — at Ay is omitted):

A== Ri-d;. (7.14)

In this formula R; is reaction of the constraint in the direction of a given displace-
ment d; due to unit primary unknown X; = 1. In other words, Ril and Riz are
found as reactions in the primary system due to primary unknowns X; = 1 and
X, = 1, respectively; these reactions are determined in supports, which are sub-
jected to displacement. After calculation of the primary unknowns X; construction
of internal forces is performed as usual.

The final bending moment diagram can be constructed by formula

My=My- X1 +My-Xo+--+ M, -X,. (7.15)
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Note that unlike the analysis of structures subjected to loads, the term M2 in (7.15)
is absent.

Kinematical verification of the final bending moment diagram may be performed
by the following expression

Z/M MEd + > A =0, (7.16)

where My is a summary unit bending moment diagram.
Procedure for analysis of redundant structures subjected to the settlement of sup-
ports is as follows:

1. Provide the kinematical analysis, determine the degree of redundancy, choose
the primary system of the force method, and formulate the canonical equations
(7.13)

2. Construct the unit bending moment diagrams and calculate the unit displace-

ments

Calculate the free terms of canonical equations

Solve the canonical equation with respect to primary unknowns X;

Construct the internal force diagrams

Calculate the reactions of supports and provide their verifications

SNk w

Let us consider a two-span uniform beam with equal spans. The middle support 1 is
shifted by A as shown in Fig. 7.17a. It is necessary to calculate the bending moment
at support 1.

The degree of static indeterminacy of the structure equals one. The primary sys-
tem is the set of two simply supported beams (Fig. 7.17b). Bending moment diagram
due to unit primary unknown is shown in Fig. 7.17c.

X,=1
a

0

X,=1

Ve

vy Y

Fig. 7.17 (a—c) Two-span beam. Design diagram, primary system and bending moment diagram
due to X; = 1. (d, e) Two approaches for computation of free term of canonical equation
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The canonical equation and primary unknown are 611X; + A = O,
X1 = —A/b11.
The unit displacement
M; x M 1 2 1 21
511=;:2X—lx1x—x—=—.
El 2 3 EI 3EI

The free term of canonical equation A is a displacement in direction of the primary
unknown X (i.e., the mutual angle of rotation at support 1) caused by the given
settlements of support). In this simple case, the A can be calculated by procedure
shown in Fig. 7.17d. If support 1 is shifted, then slope at supports 0 and 2 are A/,
therefore the mutual angle of rotation Ay = —(% + %) = —2%. Negative sign
means that each moment X produce the negative work on the angular displacement
A/ 1 due to the settlement of support.

The free term can be calculated using a general algorithm (7.14) as follows: let
us apply X; = 1 and compute the reaction in direction of given displacement.
As a result, two reactions each 1// arises at the support 1, as shown in Fig. 7.14e.
Expression (7.14) leads to the same result. Indeed, Ay = =2 (1/1) x A.

Canonical equation becomes (2//3EI) X1 — 2(A/I) = 0. The primary un-
known, i.e., the bending moment at support 1 equals X; = M; = 3 (EI/ZZ) A.
A positive sign shows that extended fibers are located below the longitudinal axis of
the beam. Note that bending moments at supports of uniform continuous beams with
equal spans caused by vertical displacements of one of its supports are presented in
Table A.18.

Conclusion: In case of settlements supports, the distribution of internal forces de-
pends not only on relative stiffness, but on absolute stiffness EI as well.

Example 7.3. The design diagram of the redundant frame is the same as in Example
7.2. No external load is applied to the frame, but the frame is subjected to settlement
of fixed support A as presented in Fig. 7.18a. Construct the internal force diagrams
and calculate reactions of supports. Assume that the vertical, horizontal, and angular
settlements are « = 2cm, b = 1 cm, and ¢ = 0.01 rad = 34/30”, respectively.

Solution. Let the primary system is chosen as in Example 7.2, so the primary un-
knowns are reactions X; and X, (Fig.7.18b).
Canonical equations of the force method are

811 X1+ 812X2 + A1 =0,
821 X1 + 820X + Azs =0, (a)

where §;; are unit displacements, which have been obtained in Example 7.2. They
are equal to

666.67 275 170.67
, $12=6u1=—, 6n= . b
7l 12 21 El 22 7l (b)

811 =
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X,  Primary system Ay

D_(% Design diagram

3m

2.1228 e
2.1228
1.1190 m
1.119 A
1.0038 I‘_ ) 10
MkNm /
(factor 103 EI) 1.0038 a
4.5418 Factor 103 EI

Fig. 7.18 (a, b) Design diagram, primary system and corresponding displacements. (¢) Bending
moment diagrams in unit conditions and reactions at the support A. (d) Resulting bending moment
diagram; (e) Summary unit bending moment diagram

The free terms Ay and A, present the displacements in the direction of primary
unknowns X; and X in a primary system due to settlement of support (Fig. 7.18b).
According to (7.14), we have:

Ars Z_ZRil'di = —(Ra1-a+ Rp1 b+ Ryt - ¢),
As _ZRiz'di =—(Ra2+a+ Rpz-b+ Ryz - 9), (7.3)

where a, b, and ¢ are the vertical, horizontal, and angular displacements of support
A. The unit reactions R related to support, which is subjected to the given settle-
ment. Each reaction has two indexes. The first index (a, b, or ¢) corresponds to
given direction of the settlement of the support. The second index (1 and 2) means
the primary unknown (X; or X,) which leads to appearance of unit reactions. Thus,

Ra1, Ry are reactions in direction of a-displacement due to primary unknowns
Xi=1land X, =1
Rp1. Ry, are reactions in direction of b-displacement due to primary unknowns
X1 = 1land X2 =1
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Ry1, Ryy are reactions in direction of ¢-displacement due to the same primary
unknowns

The bending moment diagrams, unit displacements §;, and reactions Ri1 Rj» in
the primary system caused by the unit primary unknowns X; and X, are shown in
Fig.7.18c.

The expressions (c¢) in an expanded form are

Ars=—(Rg1-a+ Rpy b+ Ryp1-9)=—(1-a+0-b+10-¢)
—(1x0.02+0x0.01 +10x0.01) = —0.12m, (7.4)
Asg =—(Raz-a+1§b2-b+1§¢2-go):—(0-a+1-b+8-<p)
—(0x0.02+1x0.01 +8x0.01) = —0.09m.

Canonical equations become

666.67X1 4+ 275X, — 0.12E1 = 0,
275X; + 170.67X, — 0.09EI = 0. (7.5)

The roots of these equations are

X1 = —1.119x 107*El,
X, = 7.076 x 107*EI. (7.6)

The bending moment diagram is constructed using the superposition principle ac-
cording to (7.15) B B
M =M, X1+ M- X>. (7.7)

The corresponding calculations are presented in Table 7.12.

Table 7.12 Calculation of bending moments

Points Ml MI'XI Mz Mz'Xz M
1 —10 1.119 —8.0 —5.6608 —4.5418 _
3 -10 1.119 —30 | —2.1228 —1.0038| Siensof
bending moments
4 0.0 0.0 —3.0 —2.1228 —2.1228
5 0.0 0.0 0.0 0.0 0.0 olo
6 -10 1.119 0.0 0.0 1.1190 ©
8 0.0 0.0 0.0 0.0 0.0
Factor 1073EI 1073EI 1073EI

The resulting bending moment diagram is presented in Fig. 7.18d.

Static verification A free body diagram for rigid joint of the frame is shown
in Fig.7.18d. The extended fibers are shown by dotted lines. Equilibrium of the
rigid joint

ZM = (2.1228 — 1.0038 — 1.119) x 1073EI = 0.
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Kinematical verification The summary unit bending moment diagram Ms = M+
M, is shown in Fig. 7.18e. The formula (7.16) leads to the following result

MXME
T‘FZA”

1 1 2 1 1 2 _3
=] — X =X3Xx3x=x21228——x=x10x10x =x 1.119 | x 10" °EI
1EI 2 3 2E1 2 3

portion 4-5 portion 6-8

1 5
+ a8 X 6(2 X 13 x 1.0038 4 2 x 18 x 4.5418 + 13 x 4.5418 + 18 x 1.0038) x 10 3EI

portion 1-3

+ (—0.12) 4 (—=0.09) = 0.2286 — 0.2286 = 0.
N—— N——
Ags Apg

After verification for bending moment diagram, we can construct the shear and axial
force diagrams and find reactions of supports. These procedures have been described
in Example 7.2.

Discussion: In the case of settlements of supports, the primary unknowns as well
as the reactions and internal forces (bending moment, shear, and normal force) de-
pends on both the relative and absolute stiffnesses EI. This is the common property
of any statically indeterminate structure subjected to settlement of supports.

7.6 Temperature Changes

If an arbitrary statically indeterminate structure is subjected to change of temper-
ature, then the internal forces arises in the members of the structure. Analysis of
such structure may be effectively performed on the basis of a canonical equation of
the force method. A primary system and the primary unknowns of the force method
are chosen as usual. The canonical equations for structure with n redundant con-
straints are

SuuX1+8Xo+ -+ 8 Xn + A =0
81 X1 +802Xo+ -+ 8nXn + A2 =0

(7.17)
81 X1+ 82 Xo + -+ 4+ 8punXn + Apy =0,

where X, are primary unknowns and §;; and A;; are displacements of the primary
system in the direction of 7 th primary unknown caused by the unit primary unknown
X = 1 and by the change of temperature, respectively.
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The unit displacements should be calculated as usual. The free terms
Ais (i = 1,2,...,n) should be calculated using the following expression

_ At -
Aiy = Z/OllavNids—i—Z/oeTM,-ds, (7.18)

where « is the coefficient of thermal expansion; / is a height of a cross section of a
member; N;, M; are normal force and bending moment in a primary system due to
action of unit primary unknown X;.

In case of constant «, ¢,,, At, and /& within the each member

_ At _
Ajr = Zatav/NidS + ZQT/deS. (7.18a)

Thus for computation of A, the unit primary unknown X; = 1 should be ap-
plied to the primary system and then procedure (7.18a) should be performed; the
procedure of summation is related to all members.

The temperature at axial line (average temperature) and temperature gradient are

t t
fay = % At = |ty — o], (7.19)

where #; and f, are changes of temperature on the top and bottom fibers of the
member; the average temperature f,, and temperature gradient Az are related to
uniform and nonuniform temperature changes, respectively.

The integrals | N;ds, / M;ds present area of corresponding diagram in the pri-
mary system.

Solution of (7.17) is the primary unknowns X;. Bending moment diagram is
constructed using the formula

My =M - X1+ My -Xo+--+ M, - Xp. (7.20)

Kinematical control of the final bending moment diagram may be performed using
the following expression

M, M
Z/ tTEds + > A =0, (7.21)

where My is the summary unit bending moment diagram and M, is the resultant
bending moment diagram caused by change of temperature.

Procedure for analysis of redundant structures subjected to the change of temper-
ature is as follows:

1. Provide the kinematical analysis, determine the degree of redundancy, choose
the primary system of the force method, and formulate the canonical equations
(7.17)
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2. Construct the unit bending moment and axial force diagrams

3. Calculate the unit displacements. In case of bending structures take into account
only bending moments

4. Calculate the free terms of canonical equations. For this:

(a) Calculate the average temperature and temperature gradient for each member
of a structure
(b) Apply formula (7.18a)

5. Solve the canonical equation (7.17) with respect to primary unknowns X;.
6. Construct the internal force diagrams.
7. Calculate the reactions of supports and provide their verifications.

Let us consider fixed-rolled uniform beam (the height of the cross section of the
beam is /), subjected to following change of temperature: the temperature of the
above beam is increased by 7, while below of the beam increased by the t5, 11 > £,
(Fig.7.19a).

d
¢ (T M,
X M,
Fig. 7.19 (a) Design diagram, (b) Primary system; (c) Unit bending moment diagram; (d) Final
bending moment diagram

The primary system is the simply supported beam and the primary unknown is
the moment at the fixed support (Fig. 7.19b). Bending moment diagram for unit state
in primary system is shown in Fig. 7.19c.

The canonical equation is 611 X1 + A;; = 0. Bending moment diagram due to
unit primary unknown is shown in Fig. 7.19c. The unit displacement is

My x My 1 2 1 l
1 =——==IX1IX=-X—=—.
EI 2 3 EI 3EI
The axial force N; in primary system due to the primary unknown is zero, so
the_ﬁrst term of (7.18a) is zero. The second term of (7.18a) contains the expression
J Mids, which is the area of the bending moment diagram in the unit state. In our
case the free term may be presented as

f —t 1 al
lh szxlxlz—ﬂ(tl—lz).

At -
Ay = aTIMlds =—a

area M
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The negative sign means that bending moment diagram is plotted on the more cold
fibers.
Canonical equation becomes

)

al
— X, — — (11 — 1) = 0.
3B X! 2h(1 2)

So, the bending moment at the clamped supportis X; = M; = (3aEl/2h)(t; —12).
Final bending moment diagram M; is constructed on the basis of (7.20) and
shown in Fig.7.19d.
Kinematical control leads to the following result

M, M, 1 1 2 3aEl al
d Ay = — - =Xx1Ixl-=x——({1 —th)—— (t1 — ) = 0.
/ s+ Aqg g 31X 3x—; (t — 1) 2h(l 2)

2 Ye

Discussion: Let the height of rectangular cross section of the beam is increased
by n times. In this case, the bending moment at clamped support increases by 1?2
because

E 3 EI
3aE b(nh) At=3a

= At -n?.
2k 12 o

1

Example 7.4. Design diagram of the redundant frame is same as in Example 7.2.
Stiffness for vertical and horizontal members are 1EI and 2E1, respectively. Heights
of the cross section / for vertical and horizontal members are 0.60 m. The frame is
subjected to temperature changes as presented in Fig. 7.20a. Construct the internal
force diagrams and calculate reactions of supports.

Solution. Let us accept a primary system as shown in Fig. 7.20b.

Canonical equations of the force method are

X1+ 812X2 + Ay =0,
821 X1+ 622X2 + Ay =0, (a)

where §;; are unit displacements and Ay, and A, are displacements in a primary
system in the direction of primary unknowns X; and X», respectively, due to change
of temperature.

The unit states and corresponding bending moment and axial force diagrams
caused by unit primary unknowns are presented in Fig. 7.20c. All normal forces due
to X, = 1 are zero, i.e., No = 0.

The unit displacements §;; for this primary system have been obtained in
Example 7.2; they are
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666.67 275 170.67
= , Sn=81=—, 0én= . (b)

a Design diagram b X, Primary system

M, kNm
(factor oEl)

43.99

Fig. 7.20 (a)Design diagram and temperature distribution; (b) Primary system. (¢) Bending
moment and axial force diagrams in unit states. (d) Final bending moment diagram and static
verification. (e¢) Summary unit bending moment diagram

For calculation of free terms we will use expressions (7.18a). These expressions
contain the average temperature #,, and temperature gradient At for each member;
they are
For portion 1-3

20 4 (—10
fay = % =5% At =|-10— (420)| = 30°,
for portion 4-5
0+ (-10)

= —— —5° At =|-10—0] = 10°, ©)
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for portion 6-8

0+ 20
tay = _2 =10° Ar =]0— (+20)| = +20°.

These parameters for each element of the frame are shown on the primary system
in Fig. 7.20b. Detailed calculation of free terms is presented in Table 7.13.

Table 7.13 Calculation of free terms A;; of canonical equations according to formula (7.18a)

Uty f Nids for portion a% f Mi ds for portion
1-3 4—5( 6—8| 1-3 4-5 6—8 >
Ay ax5x1x5=[0 [0 |agex10x5=|0 ax & x1Ix41917«
25a 2,500 10 x 10 =
1,666.7a
Ay |0 0 [0 [ax2xEEx|axlxIx [0 1,4500
5= 1,375 3x3 = T75a

The first term in (7.18a) is positive if normal force in the unit state and tempera-
ture of the neutral fiber #,, has the same sign (for example, for element 1-3, normal
force in the first unit state equals 41 and average temperature equals +5). The sec-
ond term in (7.18a) is positive if the bending moment diagram in the unit state is
located on the side of more heated fibers. For member 1-3, the first component is
Ay = ax5x1 x5, where 1 x 5 presents the area of the axial force diagram along
this member.

Canonical equations become

666.67X1 4+ 275X, + 4,191.7a - EI = 0,
275X; 4+ 170.67X, + 1,450« - EI = 0. (d)

Roots of these equations are X7 = —8.2988« EI, X, = 4.8759« EI. Bending mo-
ment diagram is constructed using formula (7.20). The corresponding calculation is
presented in Table 7.14. Columns M 1- X1, ]\;12 - X», and M; have to be multiplied
by factor « EI.

Table 7.14 Calculation of bending moments

Points M, M, - X, M, M, - X, M,

1 10 482998 | —80  —39.008 | +43.99 signsof

3 10 482998 | —30 —14.628 | 46837 bending moments
4 00 00 30 —14628 | —14628 _ @

5 00 00 0.0 0.0 0.0 o 9|@
6 ~10  +82.998 0.0 0.0 +82.99

8 00 00 0.0 0.0 0.0

The resulting bending moment diagram is presented in Fig. 7.20d.
Static verification.

> M = (68.37 + 14.628 — 82.99) - o EI = (82.998 — 82.99) - & EI ~ 0.
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Kinematical verification The summary unit bending moment diagram M is shown
in Fig. 7.20e.
The expression (7.21) leads to the following result:

M; - Msx, 5 13418  43.99 + 68.37
| —— > A =-— 18 x 43. 4
/ Zl ds + it 1EI><6<8X 3.99 4+ 4 x > X 3

+13 x 68.37) ~a El

1 1 2 1 1 2
—— X =X%X3%x3x=x(—-14.628) ¢ EI— — x = x 10 x 10 x = x 82.99« EI
1EI 2 3 2E1 2 3

portion 4-5 portion 6-8
+4,191.70 + 1,450 = —5,686.32«¢ + 5,685.58x = 0.
S— N——
Ay Ay

Summary: Distribution of internal forces (bending moment, shear force and nor-
mal force) as well as reactions depends on both relative and absolute stiffnesses, as
well as on coefficient of thermal expansion. This is the property of any statically
indeterminate structure subjected to change of temperature.

Statically indeterminate trusses If any members of a truss are subjected to change
of temperature, then the unit displacements and free terms of canonical equations of
the force method (7.17) should be calculated by the formulas

7
Aip=a) Ni-Ar-l, (7.22)
J

where [ is a length of jth member of the truss; Ni, Nk are internal forces in jth
member due to unit primary unknowns X; = 1, Xy = 1; At is a thermal gradient;
and o is a coefficient of thermal expansion.

In expressions (7.22), summation is done on all members of the truss (subscripts
j are not shown).

Axial force in members of the truss using the superposition principle is deter-
mined by the formula

N =N -Xi+Np-Xop+ -+ Ny X, (7.23)
where n is degree of statical indeterminacy.

Example 7.5. Design diagram of the truss is presented in Fig. 7.21. Axial stiffness
for diagonal and vertical members equals EA, for upper and lower chords equal 2EA.
Determine the reaction of the middle support and internal forces in all members of
the truss caused by temperature changes on At degrees. Consider two cases: the
temperature gradient is applied to (a) all members of the truss and (b) the lower
chord only.



258 7 The Force Method

Design diagram Primary system
2EA 2 3 4
EA g
o
NN
d=4m 264 ==
—

Fig. 7.21 Externally statically indeterminate truss. Design diagram and primary system

Solution. The primary system is obtained by eliminating the middle support. The
primary unknown X is the reaction of the middle support (Fig. 7.21).

Canonical equation of the force method is 811 X1 + Aj; = 0. The primary un-
known is X; = —Aj;/811. Final internal forces may be calculated by formula
N t = N 1° X 1

Results of the analysis are presented in Table 7.15. The column 1 contains lengths
of all members of the truss. Internal forces in the primary system caused by unit
primary unknown X; =1 are presented in column 2. The column 3 serves for
calculation of the free term of the canonical equation for the case when all mem-
bers of the truss are subjected to temperature gradient Az. In this case, Ay, =
18.994 — 19.002 = O (relative error equals 0.04%), and for primary unknown we
get X1 = 0. It means that if the change of temperature is related to a/l members of
the truss, then internal forces in the members of the truss do not arise.

Table 7.15 Statically indeterminate truss subjected to temperature change — calculation of internal
forces in all members of the truss

OlN]'Al'l Ol]\_ll'Al'l N
_ At related to all | At related to o N, = 1 /
L (m)|N, members lower chord only| N} - — Ny - X, N, —
EA EA
Members 1 |2 3 4 5 6 7
Upper chord  2'-3" (4 1.333 |5.332 0 3.554 0.580 1.546
34 |4 1.333 |5.332 0 3.554 0.580 1.546
Lower chord 1-2 4 —0.667|—2.668 —2.668 0.890 —0.290 0.387
2-3 4 —0.667|—2.668 —2.668 0.890 —0.290 0.387
3-4 4 —0.667|—2.668 —2.668 0.890 —0.290 0.387
4-5 4 —0.667|—2.668 —2.668 0.890 —0.290 0.387
Vertical 2-2 |3 0 0 0 0 0 0
members 3.3’ |3 0 0 0 0 0 0
4-4 |3 0 0 0 0 0 0
Diagonals 1-2 |5 0.833 [4.165 0 3.470 0.362 1.508
32 |5 0.833 [4.165 0 3.470 0.362 1.508
3-4 |5 0.833 [4.165 0 3.470 0.362 1.508
5-4 |5 0.833 [4.165 0 3.470 0.362 1.508
Ay =0 Ay 811
= —10.672 = 24,548 10.672
Factor - o At - At 1/EA a-At-EA|a- At

The column 4 serves for calculation of free term of the canonical equation if only
members of the lower chord of the truss are subjected to temperature change At.
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In this case,
Ay = —10.672a x At.

Column 5 is used for calculation of unit displacement of the canonical equation. In
our case,

24.548
EA

1=
These results yield the primary unknown

Ay 10.6720 x At X EA
Xi=——F5= = 0.4350 x At x EA.
S11 24.548

Column 6 contains internal forces in all members of the truss caused by temperature
changes of the lower chord only. These forces, according to (7.22), are equal to
N = N - X;. Column 7 serves for control of analysis: the sum of all terms of this
column equals to Ay; with the opposite sign.

Discussion: 1. The structure under consideration has one absolutely necessary con-
straint, the reaction of which may be determined from the equilibrium equation. This
constraint is the support bar at the joint 1, which prevents horizontal displacement. If
the truss is externally statically indeterminate, then the temperature gradient, which
is related to all members of the truss, induces a displacement in the direction of
that absolutely necessary constraint, and internal forces in all members of the truss
induced by temperature gradient are equal to zero.

2. If any member of the truss has been made by A units longer than required,
then this error of fabrication may be treated as a thermal expansion, i.e A = «atl,
where / is a length of a member; for all other members a¢/ = 0. Canonical equation
becomes §11X1 + A1 = 0, A1 = aNtl, where N is the stress induced in the same
member by a unit force X;.

Problems

Problems 7.1 through 7.6 are to be solved by superposition principle. The flexural
rigidity, EI, is constant for each beam.

7.1. Continuous two-span beam supports the uniformly distributed load ¢
(Fig.P7.1). Find the reaction of supports and construct the bending moment
diagram.

q
R EEREEER%
7SR ¢
| [N / |

Fig. P7.1

Ans. Rp = 2ql; Mp = —0.125q1%; My (0.3750) = 0.0703¢12.
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7.2. A clamped-pinned beam is subjected to couple M, at the roller support
B (Fig.P7.2). Find the reaction of supports and construct the bending moment
diagram.

Fig. P7.2
3 My
Ans. MA:—OSMO, RA:RB:ET

7.3. Fixed-pinned beam is subjected to concentrated force P at the midspan
(Fig. P7.3). Find the reaction of supports and construct the bending moment di-
agram.

Py 0.51
—

C J IB
A ¢ £

A
>
RA RB

Fig. P7.3

3 5 5
Ans. My = 16Pl, Mc = 32Pl, Rp = 16P.
7.4. The beam AB with clamped support A and elastic support B is subjected to uni-
formly distributed load ¢; the stiffness coefficient of elastic support is k (Fig. P7.4).
The deflection A of support B, reaction R p of this support and stiffness coefficient k
are related as A = Rp/ k. Determine the reaction of supports. Consider two special
cases: k= o, k = 0.

_ q
A= ‘%_;L
k
"L ]
Fig. P7.4

3 1 3EI
Ans. Rp = ~ql - a2
R T 9 E
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/

A B C
£ l DA

Fig. P7.5

7.5. Calculate the reaction and bending moment at the support B (Fig. P7.5), if the

vertical settlement of this support A.
6EI 3EI
Ans. Rp = 1—3A; Mp = Ryl = —
7.6. Pinned—pinned—pinned uniform beam is subjected to distributed load ¢
(Fig. P7.6). Construct the bending moment diagram. Consider three versions of
primary system. Primary unknown is: (1) Reaction R;; (2) Reaction R,; (3) Bendig
moment at support 1. Calculate the deflection at the middle of the first span.

q

oIIIIVIV I 2

L kL 32

| i | ! |

! |

Fig. P7.6

ql? 7 ql*
Ans. My = -1y = L1
ns- M1 16" %7 768 EI

For next problems the Canonical equations of the force method should be used

7.7-7.8. The uniform beam is subjected to concentrated force P (Figs. P7.7 and
P7.8). Calculate the reaction of supports and construct the internal force diagrams.
Show the elastic curve of the beam.

Fig. P7.7

Fig. P7.8
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Ans.
P Plu? Pl

(O Ra= = (3=v7). Mc=-—7—G-u). Ms=—"v(l-v
Pu? 1 3EI

(8 Rp = =G -wry @= 15

7.9-7.10. The uniform beam is subjected to uniformly distributed load ¢ Figs. P7.9
and P7.10). Calculate the reaction of supports and construct the internal force di-
agrams. Show the elastic curve. For problem (7.10) use the following relationship
R = Ak, where k is a stiffness coefficient of elastic support and R and A are eaction
and deflection of support B.

q
mA B
e
Fig. P7.9
q
wlg
I i
Fig. P7.10
Ans. (1.9) Ry = 2ql: M q* (7.10) Ry = gl —
ns. . = —(qi; = ——; . = — , o =
4 = g1 4 8 B =31
3EI
ER

7.11. Continuous beam with clamped left support and cantilever at the right is pre-
sented in Fig. P7.11. Compute the bending moments at the supports 1 and 2.

4= 2kN/m lP_IZkN J'F—lkN
IEEREEE R AR 3
EI=const n

a=ul=6m b=vl=4m c:2m|

|
[,=8m l,=10m

Fig. P7.11

Ans. M; = —8.013kNm, M, =—15975kNm
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7.12. The frame is subjected to uniformly distributed load ¢, as shown in Fig. P7.12.
Construct the internal force diagrams. Calculate the reactions of supports. Show the
elastic curve of the frame. Determine the horizontal displacement of the joint C.

q
I EEEEEE

1T u

EI
B2 __B
a N
< >l
Fig. P7.12
2 4
qa 15 h qa
A . M = -, R = — . A or = — (<«—).
ns. Mp =57 Ra=g59a. A= grm (<)

7.13. The frame is subjected to uniformly distributed load g, as shown in Fig. P7.13;
parameter n is any positive number. Construct the bending moment diagram. Ex-
plain relationship between moments at extreme left and right points of the cross-bar.
Show the elastic curve of the frame. Explain the influence of parameter .

g nEIl B
El h
A
/
fe————
Fig. P7.13
3gh?
Ans. Ry = ——.
4747

7.14. The portal frame is loaded by uniformly distributed load ¢, as shown in
Fig. P7.14. Calculate the axial force X in the member AB. Construct the bending
moment diagram. Determine the horizontal displacement of the cross-bar.
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A B
q
El Er|l |
C D
Fig. P7.14
Ans. X 3 b Mo = 2qh?. Mp = —gh? L
ns. = —— s = — s = — , — .
TS €= 161 b= 161 16E]

7.15. The portal frame is subjected to horizontal force P. The stiffness of verti-
cal members is EI, and horizontal member is nEI, where n is any positive number
(Fig. P7.15). Calculate horizontal reaction H at support B. Construct the internal
force diagrams. Analyze the influence parameter n on distribution of internal forces.

P nEI
EI h
A B
a
e
Fig. P7.15
Ans. H = p/2.

7.16. Construct the bending moment diagram for beam (EI = const) with clamped
ends, subjected to uniformly distributed load ¢g (Fig.P7.16). Calculate maximum
deflection.

A m B
L
Fig. P7.16
12 / I
Ans.MA:—q—, yl=)= 9 .
12 2 384EI

7.17. The beam with clamped supports is subjected to force P as shown in
Fig. P7.17. Construct the bending moment diagram. Calculate the deflection at
point C. The bending stiffness is EI
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Fig. P7.17

Pbh?
Ans. Ry = iR Ba+b), My=—-Pluv?, Mc =2Plu’*v?,
a’b3

—pl2_
Je 3EI3

7.18. The frame in Fig. P7.18 is subjected to concentrated force P and uniformly
distributed load g within the vertical element. The relative flexural stiffnesses are
shown in circle; A = 5m,/ = 10m,a = 4m,b = 6m, P = 8kN,q = 4kN/m.
Construct the bending moment diagram using different primary systems. Provide
the kinematical verification. Calculate shear and axial forces and determine the re-
actions of supports.

Trace the elastic curve and show inflection points.

Fig. P7.18

Ans. M; = 10.842kNm, M, = —13.93kNm.

7.19. Design diagram of the frame is shown in Fig. P7.19. The flexural stiffnesses
EI for all members are equal. Construct the internal force diagrams and trace the
elastic curve.

q=10kN/m
AV IV I IV VD (fl;
6m
&
| 8m | 8m |

Fig. P7.19
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Ans. Q4 =32.99kN, Qp =3.02kN, Qc =5.32kN,
Ncp = —50.03kN.

7.20. Symmetrical structure is subjected to load P, as shown in Fig. P7.20. The
cross-sectional area of the vertical member is A, and for inclined members are kA,
where k is any positive number. The length of inclined members is /. Calculate the
internal force in the vertical member.

kA \alofkA, |

Fig. P7.20

P

Ans. Nygy = —————.
"7 1 4 2kcosda

7.21. The structure consists of the truss, which is supported at points 1 and 7, and
the above truss construction. The structure carries five concentrated loads P, which
are applied at joints 2-6 of the upper chord of the truss. Axial stiffness for upper
and lower chords of the truss is 2FA, for vertical and diagonal elements of the truss
and the above truss construction is EA. Provide a kinematical analysis. Determine
internal force in the member 4-c.

Fig. P7.21

Ans. X; = 0.916P.

7.22. Uniform semicircular arch with fixed ends is loaded by uniform load ¢
(Fig. P7.22). Calculate reactions of supports. Construct the internal force diagrams



Problems 267

VY VvV vvvvvvvv ¢

R
. \ "
H — 10 H

ST R e

Fig. P7.22

Ans. Ry =qgR, H =0.56012gR, M, = 0.10658¢R?>

7.23. Design diagram of a two-hinged parabolic arch with the tie is presented in
Fig. P7.23. The equation of the neutral line of the arch is (4//1%) x (I — x). The
cross-sectional moments of inertia vary by law I, = I¢ cos @, (m*). The flexural
stiffness in the highest section of the arch is Elc. The cross-sectional area of the tie
is A(m?). Modulus of elasticity of the material of the arch and the tie are £ (kN/m?)
and E, respectively. Calculate internal axial force in the tie.

_ = 2kN/
¥ e [P7HN q m
=12 Flc 8
q !
EtAf
, /=24m '::;' ¥
l 1
Fig. P7.23
8558.67 Elc
Ans. X1 = ——, = —.
517.082 + 248 EA,

7.24. A rigid horizontal weightless beam is supported by three identical vertical
rods at points 1-3. The beam supports a load P, as shown in Fig. P7.24. The stiffness
EA is constant for all vertical rods. Determine the axial forces in members 1-3.

d_|_d /
1 2 3
[ 1

L

Fig. P7.24

Ans. Ny = 0.833P; N, =0.333P; N3 = —-0.167P.
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7.25. A rigid horizontal beam is supported by four identical vertical rods and sup-
ports a load P, as shown in Fig. P7.25. The stiffness EA is constant for all vertical
rods. Determine the axial forces in members 1-4. Neglect the weight of the beam.

TdeTdT]
T
I,

Fig. P7.25

Ans. Ny =04P; N, =03P; N3=02P; N4=0.1P

7.26. A beam with clamped support A and elastic support B is subjected to unit
angular displacement of clamped support (Fig. P7.26). The flexural stiffness EI is
constant; stiffness of elastic support is k (Rg = kApg); and the length of the beam
is /. Construct the bending moment diagram. Consider limiting cases (k = 0, and
k = ).

Fig. P7.26

3EI 1 3EI
Ans. MA = T .

1+o’ AR VER

7.27. The tie ab of a truss is subjected to thermal gradient Az, degrees. Axial stiff-
ness of the upper and lower chords of the truss is 2EA; for all other members of the
structure axial stiffness is EA. Calculate the axial force at the member ab.

2EA
EA g
on
2EA A
EA EA (gl
a <
_d=4m| _d__| A D

Fig. P7.27

Ans. X; = —0.152a x At x EA
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7.28. The portal frame is subjected to settlements a, b, and ¢ of support B. Cal-
culate the free terms of canonical equation of the force method for three different
versions of a primary system.

h

Version 1

~N
AN
Version 2 Version 3
X,
&) (&
X5 X, X,

Fig. P7.28

Ans.

Version of primary

system Aqg YAVY Aszg

1 —b +a —

2 +b —a+le| +o
b b b

3 7| ~m T th







Chapter 8
The Displacement Method

The displacement method is a powerful method for analysis of statically
indeterminate frames subjected to different external exposures.

The displacement method is effective especially for analyzing sophisticated
structures with a large number of redundant constraints. Two forms of the displace-
ment method are applied in structural engineering. One uses the expanded form and
the other the canonical form equations. In this book only canonical form will be
considered.

The displacement method was introduced in 1826 by C. L. Navier (1785-1836).
A. Clebsch (1833-1872) presented the displacement method for trusses in expanded
form (1862). This method was further developed by H. Manderla (1880), E. Winkler
(1892), and O. Mohr (1892). The application of the displacement method to frames
was presented by A. Bendixen (1914) and was called the slope-deflection method.
Later this method was developed and presented in canonical form by A. Ostenfeld
(1926). A significant contribution in the development of the canonical form was
added by S. Leites (1936).

The displacement method in canonical form is brought to elegant simplicity and
contains a deep fundamental idea. This form offers a unified and rigorous conve-
nient algorithm for analysis of different statically indeterminate structures. Among
them are the single- or multispan as well as multileveled frames with deformable
or infinitely rigid crossbars, etc. Canonical form can be effectively applied for the
analyses of structures subjected to different loads, temperature changes, settlements
of supports, and errors of fabrication. Application of the displacement method in
canonical form for the construction of influence lines is very effective and leads to
a simple and clear procedure.

Moreover, the displacement method in canonical form is a very effective tool for
the special parts of structural analysis, such as stability and structural dynamics.

8.1 Fundamental Idea of the Displacement Method

Analysis of any statically indeterminate structure by the displacement method in the
canonical form begins with determining the degree of kinematical indeterminacy.

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 271
DOI 10.1007/978-1-4419-1047-9_8, (© Springer Science+Business Media, LLC 2010
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8.1.1 Kinematical Indeterminacy

In the case of the force method, the unknowns are forces at the redundant con-
straints. Knowing these forces we can find the distribution of internal forces and
after that, displacements at any point of a structure.

The fundamental approach in the displacement method is the opposite: initially
we calculate the displacements at the ends of the members and then the internal
forces in the members. Thus, the primary unknowns in the displacement method are
the displacements.

Analysis of a structure by the displacement method is based on the following
assumptions:

1. The deformations of the members caused by axial and shear forces can be
neglected.

2. The difference between the length of the deformable element and its initial length
can be neglected.

Analysis of any statically indeterminate structure by the displacement method be-
gins with determining the degree of kinematical indeterminacy. Generally, the
degree of kinematical indeterminacy n of a structure is determined by the formula

n=n; + ng, (8.1)

where 1, is the number of unknown angles of rotation of the rigid joints of a structure
and n4 is the number of independent linear displacements of the joints.

Note that, in general, the degrees of kinematical and statical indeterminacy are
not equal.

To calculate the number of linear displacements, n4, we need to introduce the
concept of the “hinged system or scheme.” A hinged system is obtained from the
original structure by introducing hinges at all rigid joints and supports while con-
sidering all members of the hinged scheme to be absolutely rigid. The degree of
mobility of a hinged system is determined by the number of additional members,
which would transform a hinged system into a geometrically unchangeable struc-
ture. The degree of mobility in turn determines the number of independent linear
joint displacements, ng.

Let us consider the structure shown in Fig. 8.1a; the elastic curve is shown by
a dotted line. Since axial deformations are neglected and support 1 is unmovable,
the joints of the entire structure have no horizontal displacements. Since the number
of rigid joints equals two, then n, = 2. To show the hinged scheme, we introduce
hinges at all rigid joints; this scheme represents a geometrically unchangeable struc-
ture. Indeed, the structure 1-2-3 presents a rigid disc and joint 4 is connected with
this rigid disc and with the ground at support 5. So ng = 0 and the total degree of
kinematical indeterminacy equals two.

Due to the action of the external load, rigid joints 2 and 4 rotate by angles ¢, and
@4, respectively. These angular displacements, ¢, and ¢4, determine completely the
deformable shape of the structure and represent the unknowns of the displacement
method.
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Fig. 8.1 (a, b) Design diagrams of frames, deflected shapes and hinged schemes
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Fig. 8.2 Calculation of independent linear joints displacements

Figure 8.1b presents the same frame, but with a movable support 1. The number
of unknown angles of rotation of rigid joints is, as before, n, = 2; angular displace-
ments ¢, and ¢4 are not shown. In the case of rolled support 1 the structure has the
linear displacements A of joints 1, 2, and 4 as well. According to conditions 1 and 2
of the assumptions, these linear displacements A are the same for all joints. So the
number of independent linear displacements is ng = 1. Indeed, the hinged structure
presents a geometrically changeable system because support 1 is movable. To ob-
tain a geometrically unchangeable structure, only one additional member needs to
be introduced into this system (as shown by line 3-4), thus ng = 1. Therefore, the
total degree of kinematical indeterminacy equals three. The unknowns of the dis-
placement method are angular displacements ¢, and ¢4 and lateral displacement A.

Some statically indeterminate frames and their hinged schemes are presented in
Fig. 8.2. In case (a), only one additional member (shown by the dashed line) trans-
forms the hinged system into a geometrically unchangeable structure, so ng = 1; the
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number of rigid joints is 2, hence the degree of kinematical indeterminacy of the en-
tire structure equals 3: the angular displacements of rigid joints and the horizontal
displacement of the crossbar.

In case (b), the number of rigid joints equals 3 and the number of independent
linear displacements, nqy = 2, so the degree of kinematical indeterminacy equals 5.

Case (c) presents a multistorey frame. Joint C shows that member CD is con-
nected with vertical member AE by a hinge, while the member ACE does not have
a hinge at point C. To construct the hinged scheme, it is necessary to introduce
hinges at joints B, D, and joint C for member ACE (note that hinge C* includes
the original hinge at joint C and the introduced hinge). For the given structure, the
number of rigid joints is 3 (joints B, D, and C for member ACE) and the number
of independent linear joint displacements is 2, so the total number of unknowns by
the displacement method is 5.

Case (d) also presents a multistorey frame, in which the crossbars are absolutely
rigid. Since the joints cannot rotate, the number of unknown angles of rotation is
zero and the number of independent linear joint displacements is 2.

8.1.2 Primary System and Primary Unknowns

The primary system of the displacement method is obtained from the given one by
introducing additional constraints to prevent rotation of all rigid joints and all in-
dependent displacements of various joints. These introduced constraints are shown
by the shaded squares and the double lines, respectively. Primary systems for some
structures are shown in Fig. 8.3.

Primary unknowns Z; (i = 1,2,...,n) represent displacements of introduced
constraints (angles of rotations and/or linear displacements of various joints of a
frame). The number of primary unknowns, n, for each structure equals to the de-
grees of its kinematical indeterminacy.

Fig. 8.3 Design diagrams and primary systems of the displacement method
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In case 8.3a, the primary unknowns Z; and Z, are angular displacements of in-
troduced rigid joints 1 and 2; the primary unknown, Z3, is the linear displacement
of introduced constraint 3. In case 8.3b, the primary unknowns are angular displace-
ments Z1, ..., Z4 and linear displacements Zs, Z¢. In case 8.3c, the primary un-
knowns are angular displacements Z, Z,, Z3 and linear displacements Z4 and Zs.

It can be seen that a primary system of the displacement method consists of a
number of single-span redundant beams. In most cases, they are fixed-fixed and
fixed-pinned uniform beams; fixed-guided beams and beams with elastic support as
well as nonuniform beams are also possible. The next sections show how to use
the primary system and tabulated data (Tables A.3—A.8) for the analysis of statically
indeterminate structures in canonical form.

8.1.3 Compatibility Equation. Concept of Unit Reaction

The fundamental idea of the displacement method presentation in canonical form is
explained below by considering the simplest frame in Fig. 8.4a.

Entire Primary
structure system

Fig. 8.4 (a, b) Design diagram and primary system; (¢, d) The primary system is subjected to
given load P and unit rotation of introduced constrain 1

1. The elastic curve of the frame caused by given load P is shown by the dashed
line; rigid joint 1 rotates in a clockwise direction by some angle Z.

2. The primary system is obtained by introducing additional constraint 1 (Fig. 8.4b).
This additional constraint prevents angular displacement. Therefore, the reactive
moment due to external load P arises in the introduced constraint and deforma-
tion occurs in the horizontal element only. The elastic curve and reactive moment
R, p at constraint 1 in the primary system are shown in Fig. 8.4c. The difference
between the given structure and the primary one is obvious: in the primary system
the reactive moment arises at the additional constraint.

3. In order to eliminate the difference between the given and primary structures,
constraint 1 must be rotated by some angle Z; . In this case, the reactive moment
arises in constraint 1. If the angle of rotation is a unit angle (Z; = 1), then the
reactive moment is called a unit reaction and is denoted as r;;. The term “unit”
means that this moment is caused by a unit displacement of the introduced con-
straint. The first numeral in rq is the label of the constraint where the reactive
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moment arises and the second numeral is the label of the constraint, which is
rotated (in this example, they are the same).

Sign rule. If constraint 1 is rotated clockwise and after that it is released, then
this constraint tends to rotate back counterclockwise. Therefore, the reactive mo-
ment will act in an opposite direction, i.e., clockwise. Thus, the positive reaction
coincides with the positive displacement of the introduced constraint. Figure 8.4d
shows the positive directions for displacement Z; and unit reaction ry;.

4. The total reaction caused by rotation of the introduced constraint and the given
load is r11Z1 + Rip, where the first term r11 Z; is the reactive moment in con-
straint 1 due to the real angle of rotation Z;. The second term represents the
reactive moment in constraint 1 due to the actual load. Lowercase letter r means
that this reaction is caused by the unif rotation while capital letter R means that
this reaction is caused by the real external load. If this total reactive moment
(due to both the given load and the angular displacement of the included con-
straint) is equal to zero, then the behavior of the given and primary structures is
identical. This statement may be written in the following form:

r1121+R1P =0. (82)

Equation (8.2) presents the displacement method in canonical form for a structure
of the first degree of kinematical indeterminacy.

The primary unknown is obtained as Z; = —R;p/r11. Knowing the primary
unknown Z 1, we can consider each element of the frame to be a standard beam due
to the action of found angle Z; and the external load applied to this particular ele-
ment. Moments of supports for these standard beams are found in Tables A.3—A.6.
Using the principle of superposition, the final bending moment diagram for the
entire frame is constructed by the formula

Mp =M,-Zy+ M}, (8.3)

where M, is the bending moment diagram caused by the unit primary unknown;
term M, - Z, is the bending moment diagram caused by the actual primary unknown
Z1; and the bending moment diagram in the primary system caused by the given
load is denoted as M?,.

8.2 Canonical Equations of Displacement Method

8.2.1 Compatibility Equations in General Case

Now we consider an arbitrary n-times kinematically indeterminate structure. The
primary unknowns Z; (i = 1,...,n) are displacements (linear and/or angular) of
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introduced constraints. The canonical equations of the displacement method will be
written as follows:

riZi+riZy+--+rmZny+Rip=0
121+ 712022y + -+ 7120mZn+ Rop =0

(8.4)
rmZ1 +1n2Zo+ -+ rpnZy + Ryp = 0.

The number of canonical equations is equal to number of primary unknowns of the
displacement method.

Interpretation of the canonical equations Coefficient r;; represents the unit re-
action, i.e., the reaction (force or moment), which arises in the ith introduced
constraint (first letter in subscript) caused by unit displacement Z; = 1 of kth intro-
duced constraint (second letter in subscript). The term r;; Z, represents the reaction,
which arises in the i th introduced constraint due to the action of real unknown dis-
placement Zj. Free term R;p is the reaction in the ith introduced constraint due to
the action of the applied loads. Thus, the left part of the ith equation represents a
total reaction, which arises in the i th introduced constraint due to the actions of all
real unknowns Z as well as the applied load.

The total reaction in each introduced constraint in the primary system caused by
all primary unknowns (the linear and angular displacements of the introduced con-
straints) and the applied loads is equal to zero. In this case, the difference between
the given structure and the primary system vanishes, or in other words, the behavior
of the given and the primary systems is the same.

8.2.2 Calculation of Unit Reactions

The frame presented in Fig. 8.5a allows angular displacement of the rigid joint and
horizontal displacement of the crossbar. So the structure is twice kinematically inde-
terminate. The primary system of the displacement method is presented in Fig. 8.5b.

Constraints 1 and 2 are additional introduced constraints that prevent angular and
linear displacements. In constraint 1, which prevents angular displacement, only the
reactive moment arises; in constraint 2, which prevents only linear displacement,
only the reactive force arises. The corresponding canonical equations are

rmZy +ri2Z> + Rip =0,
12121+ 1r22Z2 + Rap = 0.

To determine coefficients r;; of these equations, we consider two states. State 1
presents the primary system subjected to unit angular displacement Z; = 1. State 2
presents the primary system subjected to unit horizontal displacement Z, = 1. For
both states, we will show the bending moment diagrams. These diagrams caused by
the unit displacements of introduced constraints Z; = 1 and Z, = 1 are shown in
Fig. 8.5c¢, d, respectively. The elastic curves are shown by dashed lines; the asterisk
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Fig. 8.5 (a) Design diagram; (b) Primary system of the displacement method; (¢, d) Unit states
and corresponding bending moment diagrams. Calculation of unit reactions: (e, f) Free-body dia-
grams for joint 1 and crossbar, state 1; (g, h) Free-body diagrams for joint 1 and crossbar, state 2

(*) denotes the inflection points of the elastic curves. For member 1-2, the extended
fibers are located below the neutral line. Bending moment diagrams are plotted on
the extended fibers.

First unit state (Z; = 1) Rigid joint 1 rotates clockwise (positive direction) through
angle Z; = 1. The reactions for both members (fixed-pinned and fixed-fixed) in
the case of angular displacement of the fixed supports are presented in Tables A.3
and A.4. In this case, the bending moment at joint 1 of the horizontal member
equals 3EI, /I (Table A.3, row 1); for the vertical member, the specified ordinates
are 4E1,/ h for joint 1 and 2EI;/ h at the bottom clamped support (Table A.4). As
a result of the angular displacement, unit reactive moment rj; arises in constraint
1 and reactive force rp; arises in constraint 2; all unit reactions are shown in the
positive direction.

Second unit state (Z = 1) If constraint 2 has horizontal displacement Z, = 1
from left to right (positive direction), then introduced joint 1 has the same displace-
ment and, as a result, the vertical member is subjected to bending. Unit reactive
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moment r1» and unit reactive force rp, arise in constraints 1 and 2, respectively.
The specified ordinates for the vertical member at the bottom and at point 1 are
equal to 6EI,/ h?.

Unit reactions rq1, 12 represent the reactive moments in constraint 1 for both
states and unit reactions r,1, 1o represent the reactive forces in constraint 2 for both
states. Unit reactions r;;, located on the main diagonal of the canonical equations,
are called the main reactions (r11, r»2); other unit reactions are called secondary
ones (121, r'12).

To calculate all the unit reactions, we need to consider the free-body diagrams for
joint 1 and for crossbar 1-2 for each state. The free-body diagram for joint 1 in state 1
is shown in Fig. 8.5e. The direction of moments 4E1 / h and 3EI, /[ corresponds to
the location of the extended fibers in the vicinity of joint 1 (Fig. 8.5¢); the extended
fibers are shown by dashed lines. Positive unit reactive moment rq; is shown by the
direction of unit displacement Z; .

The equilibrium condition for joint 1 is M = 0, therefore we get

4E1,  3EIl,
ri=-——

h )

To calculate unit reaction r,;, we need to consider the free-body diagram for the
crossbar. The shear force infinitely close to joint 1 is found by considering the equi-
librium of the vertical element through the following steps. Moments at the end
points of the vertical element shown in Fig. 8.5f are taken from the bending moment
diagram in Fig. 8.5c. The moments 4EI;/h at the top and 2EI;/h at the support
are equilibrated by two equal forces, 6EI;/h?. The upper force is transmitted to
the crossbar. After that, unit reaction r»; is found by considering the equilibrium
equation of the crossbar, (X Fy = 0), so

6EI,
5

1 (4ELL n 2ELL
rpp = ——
2! A\ h h

It is obvious that this reaction can also be taken directly from Table A.4, row 1.

Similarly, equilibrium equations ¥ M = 0 for the free-body diagrams for joint 1
in state 2 (Fig. 8.5g) and equilibrium X F, = 0 for the crossbar in state 2 (Fig. 8.5h)
lead to the following unit reactions:

6FI 12EL
Fi2 = T2 r22 = Tz

8.2.3 Properties of Unit Reactions

1. Main reactions are strictly positive (r; > 0). Secondary reactions r;; may be
positive, negative, or zero.
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According to the reciprocal reactions theorem, the secondary reactions satisfy
the symmetry condition ry = ry;, i.€., r12 = 721.

The dimensions of unit reaction ry are determined by the following rule: the
dimension of reaction (force or moment) at index i is divided by the dimension
of the displacement (linear or angular) at index k. In our case [ry;] = @

“rad °
[7‘12] = kNTm = kN, [}"21] = % = kN, [7’22] = %

8.2.4 Procedure for Analysis

For analysis of statically indeterminate continuous beams and frames by the dis-
placement method in canonical form the following procedure is suggested:

1.

2.
3.

10.

Define the degree of kinematical indeterminacy and construct the primary sys-
tem of the displacement method

Formulate the canonical equations of the displacement method (8.4)

Apply successively unit displacements Z; = 1, Z, = 1,...,Z, = 1 to
the primary structure. Construct the corresponding bending moment diagrams
]\_41, Mz, - M,, using Tables A.3—A.8

Calculate the main and secondary unit reactions r;jx

. Construct the bending moment diagram M g due to the applied load in the pri-

mary system and calculate the free terms R;p of the canonical equations
Solve the system of equations with respect to unknown displacements Zi,
Zy,.... 2y

. Construct the bending moment diagrams by formula

Mp =M -Z1+My-Zy+-+ My-Zy+ Mp. (8.5)

The term M,, - Z,, represents a bending moment diagram due to actual displace-
ment Z,. The term M 10, represents a bending moment diagram in the primary
system due to actual load

. Compute the shear forces using the Schwedler theorem considering each mem-

ber due to the given loads and end bending moments and construct the corre-
sponding shear diagram

Compute the axial forces from the consideration of the equilibrium of joints of
the frame and construct the corresponding axial force diagram

Calculate reactions of supports and check them using the equilibrium condi-
tions for an entire structure as a whole or for any separated part

Let us show the application of this algorithm to the analysis of a uniform contin-
uous two-span beam A-1-B (Fig.8.6a). According to (8.1), this continuous beam
is kinematically indeterminate to the first degree. Indeed, support A prevents linear
displacement of the joints and there is one rigid joint at support 1, therefore there is
only angular displacement at this support. Thus, the primary unknown is the angular
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displacement Z at support 1. The primary system is obtained from a given structure
by introducing constraint 1 at middle support 1 (Fig. 8.6a); this constraint prevents
angular displacement at support 1.

a ¢=2kN/m p=12 kNl
NEIEEEEEEX?Z B
Lo B & 3
ulzzém '012:411'1
/=8 m l,=10m
|l
z, P

; B!

& 2

b 3,]51—0375151 Z,=1 vh=4 m ¢ -~
1 0.12E1 )
) . &
: =M, 0.375E1< > 0.3E1
Extended fibers Elastic ¢
BT astic curve r;1=0.675E]

16( )20 16

»=—4.16 (kNm)

Extended fibers M
Fig. 8.6 (a) Design diagram of the beam and primary system. (b) Bending moment diagram
caused by unit angular displacement; (c¢) Calculation of ry;. (d) Bending moment diagram of a

primary system caused by a given load; (e) Calculation of free term R;p. (f) Final bending mo-
ment diagram

The canonical equation of the displacement method is

riZi+ Rip =0. (a)

To calculate unit reaction r11, we need to rotate the introduced constraint clockwise
by angle Z; = 1. The corresponding elastic curve, the location of the extended
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fibers, and the bending moment diagram caused by the unit primary unknown are
shown in Fig. 8.6b. The bending moment at the fixed support for a fixed-pinned
beam is 3EI/I (Table A.3). The free-body diagram of joint 1 from diagram M, is
shown in Fig. 8.6¢c. According to the elastic curve, the extended fibers in the vicinity
of joint 1 are located above the neutral line to the left of point 1 and below the neutral
line to the right of point 1. The moments 0.375EI and 0.3EI are shown according
to the location of the extended fibers. Unit reactive moment r;; is shown assuming
its positive direction (clockwise). Equilibrium condition > M = 0 leads to unit
reaction r1; = 0.675EI (kN m/rad).

To calculate free term R;p of the canonical equation, we need to construct the
bending moment diagram in the primary system caused by the given load. This
diagram is shown in Fig. 8.6d; each element is considered as a separate beam; the
location of the extended fibers is shown by the dashed line. The extended fibers in
the vicinity of joint 1 are located above the neutral line to the left and right of joint
1. The bending moment at the fixed support for the left span subjected to uniformly
distributed load ¢, according to Table A.3, equals

qli _q-8

14 3 8 (kN'm)

The bending moment at the specified points for the right span subjected to con-
centrated force P, according to Table A.3, equals

_12x10

x 0.4 x (1 —0.4%) =20.16 (kNm),

Pl

12 x 10
M = Tuzv B—u =

x 0.62 x 0.4 (3 —0.4) =20.736 (kNm).

The free-body diagram of joint 1 from diagram Mg is shown in Fig. 8.6e. Ac-
cording to the location of the extended fibers, the moment of 16 kN m is shown
to be counterclockwise and moment of 20.16 kN m is clockwise. Reactive moment
R, p is assumed to have a positive direction, i.e., clockwise. Equilibrium condition
> M =0leadsto Rjp = —4.16 kN m.

Canonical equation (a) becomes 0.675E[ - Z1 — 4.16 = 0. The root of this equa-
tion, i.e., the primary unknown is

6.163
Zl = 7 (rad) . (b)

The bending moments at the specified points can be calculated by the following
formula

MP=M1'Zl+Mg. (©
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In our case we have

3
M4 = —0.375E] x —16 = —18.31 kN m,

6.163

El

My = 0.12EI x & + 20.736 = 21.475kNm.
Of course, M1 4 and M, p are equal. The negative sign indicates that the extended
fibers at support 1 are located above the neutral line. The final bending moment
diagram Mp is presented in Fig. 8.6f; the location of the extended fibers is shown
by the dotted line.

Now we will consider the analysis of some frames by the displacement method
in canonical form.

Example 8.1. The crossbar of the frame in Fig.8.7a is connected with vertical
members by means of hinges. The bending stiffness is EI for all vertical members
and 2E] for the crossbar; their relative stiffnesses, 1 and 2, are shown in the circles.
Concentrated force P acts horizontally at the level of the crossbar. Construct the
internal force diagrams.

Solution. The system has two unknowns of the displacement method: the angular
displacement of joint 1 and the linear displacement of the crossbar. The primary
system is shown in Fig. 8.7b.

The introduced constraint 1 is related only to the horizontal member, but not
the vertical one. The primary unknowns of the displacement method are angular
displacement Z; of constraint 1 and linear displacement Z, of constraint 2. The
bending stiffness per unit length for the vertical and horizontal members are iyer =
1B — 0.2E], Thor = 2EI — ().333EI. The canonical equations of the displacement

5 6
method are:

rZy +ri2Z> + Rip =0,
12121 + 712275+ Rop = 0. (a)

Calculation of unit reactions To calculate coefficients r;; and r,1, we need to con-
struct the bending moment diagram M in the primary system due to the rotation of
induced constraint 1 (Fig. 8.7c).

The bending moment at the clamped support is 3i = (3 x2EIl) /6 = 1EI
(Table A.3, row 1). Because of the hinged connections of the vertical elements with
the horizontal bar, the bending moments in the vertical elements do not arise. The
positive unknown unit reactions are shown by the dotted arrow. The equilibrium of
joint 1 from bending moment diagram M leads to r1; = 2EI (kN m/rad).

The equilibrium of the crossbar, considering the bending moment diagram M,
leads to rp; = 0. Indeed, within the vertical members the bending moments do not
arise. Therefore, shear forces within these members also do not arise and equation
> X = 0 for the crossbar leads to the above result.
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Fig. 8.7 (a, b) Design diagram of the frame and primary system. (¢) Unit bending moment di-
agram due to Z; = 1 and calculation of rj; and ry;. (d, ) Unit bending moment diagram due
to Z, = 1 and calculation of r; and r,;. (f) Free-body diagram of the crossbar in the loaded
condition. (g) Final bending moment diagram and reactions of supports



8.2 Canonical Equations of Displacement Method 285

To calculate coefficients of r15 and rp; it is necessary to construct the bending
moment diagram M, in the primary system due to the linear displacement of in-
duced constraint 2 (Fig. 8.7d). The bending moment at the bottom of the vertical
members is 3i/h = (3 x 0.2EI) /5 = 0.12EI (Table A.3, row 2). The equilibrium
equation of joint 1 leads to rj» = 0.

The free-body diagram for the crossbar is presented in Fig. 8.7e, where shear in
each vertical member due to unit displacement Z, = 1 is

_ 0.12EI _ 0.12EI

= 0.024EL
h

Therefore, the equilibrium equation ) . X = 0 for the crossbar leads to the fol-
lowing result: rop = 3 x 0.024EI = 0.072EI (kN/m).

Calculation of free terms. The force P is applied at the level of the crossbar, there-
fore there is no bending of the horizontal elements in the primary system. Since
constraint 2 prevents displacement in a horizontal direction then bending of the ver-
tical members of the frame does not occur either. Thus, in the primary system there
are no elements subject to bending. But this does not imply that all reactions in
induced restrictions 1 and 2 are zero. Indeed, Rip = 0, but Rop = —P. The last
expression is obtained from the equilibrium of the crossbar subjected to the given
load P (Fig. 8.71).
The canonical equations become

2EI-Z140-Z, =0,
0-Zy +0.072El- Z, — P = 0. (b)

The roots of these equations are Z; = 0, Z, = P/0.072EI. The result Z; = 0
means that the crossbar is not deformed, but displaced in the horizontal direction as
an absolutely rigid element. This is because the crossbar is connected to the vertical
elements by means of hinges.
The bending moment diagram can be constructed using the principle of super-
position: B _
Mp=M,-Zy+My-Zy,+ M}. (c)

Since Z; =0 and acting load P does not cause bending of the members, then
formula (¢) becomes Mp = M, - Z5. The resulting bending moment diagram is
presented in Fig. 8.7g.

The bending moments at the clamped supports are

0.12ET x

= 1.667P (kNm).
0.072E1

The shear force at vertical members

1.667P 1.667P P
0 p 5 7 &N)
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Discussion:

1. The active load acts at the level of the crossbar and the bending moments in the
primary system due to this load do not arise. However, this is not to say that all
free terms of canonical equations are zero. Introduced constraints prevent angular
and linear displacements of the frame. So free terms present the reactive moment
and force in the introduced constraints. The reactive moment R;p = 0, while
the reactive force of introduced constraint R,p # 0.

2. Even if the primary system has a nonzero bending moment diagram within the
crossbar (diagram M), the resulting bending moment diagram along the cross-
bar is zero. This happens because Z; = 0, M, = 0, and M}(l =0.

3. If the flexural stiffness of the crossbar is increased n times, then unit reaction
r11 becomes r;; = 2EI - n, while all other coefficients and free terms remain
the same. So equations (b) lead to the same primary unknowns and the resulting
bending moment diagram remains same. This happens because for given design
diagram the bending deformations for crossbar are absent.

4. The length [ of the span has no effect on the bending moment diagram.

5. If the frame, shown in Fig. 8.7a, is modified (the number of the vertical members
being k), then the reaction of each supportis P/ k.

The next example presents a detailed analysis of a frame by the displacement
method in canonical form. This frame was analyzed earlier by the force method.
Therefore, the reader can compare the different analytical approaches to the same
structure and see their advantages and disadvantages.

Example 8.2. A design diagram of the frame is presented in Fig. 8.8a. The flexu-
ral stiffnesses for the vertical member and crossbar are EI and 2EI, respectively;
their relative flexural stiffnesses are shown in circles. The frame is loaded by force
P =8kN and uniformly distributed load ¢ = 2 kN/m. Construct the bending mo-
ment diagram.

Solution. It is easy to check the number of independent linear displacements
ng = 1 (the hinged scheme is not shown) and the total number of unknowns of
the displacement method is 2. The primary system is obtained by introducing two
additional constraints, labeled 1 and 2 (Fig. 8.8b). Constraint 1 prevents only angu-
lar displacement of the rigid joint and constraint 2 prevents only linear displacement
of the crossbar.

The flexural stiffness per unit length for each element of the structure is as
follows:

, 1EI , 2EI , 1EI
11-3 = T = 02EI, lg-8 = ﬁ = O2EI, lg-5 = T = O333E[,

where the subscript of each parameter i indicates an element of the frame (Fig. 8.8c).
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Fig. 8.8 (a) Design diagram; (b) Primary system; (c) Specified sections; (d) State 1. Bending mo-
ment diagram due to unit angular displacement Z; = 1 and free-body diagram for the calculation
of ;. (e) State 2. Bending moment diagram due to unit linear displacement Z, = 1 and free-body
diagram for the calculation of ry,. (f) Bending moment diagram in the loaded state and free-body
diagram for the calculation of load reaction R;p. (g) Final bending moment diagram M (kN m)
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The canonical equations of the displacement method are

rZiy +ri2Z2 + Rip =0,
1121+ 12722 + Rp =0.

To calculate unit reactions r;g, it is necessary to construct in primary system the
unit bending moment diagrams M, M». To construct unit bending moment diagram
My, it is necessary to rotate introduced constraint 1 by angle Z; = 1 clockwise. To
construct bending moment diagram My, it is necessary to shift introduced constraint
2 to the right by distance Z, = 1. The bending moment diagrams for states 1 and 2
as well as the free-body diagrams for the calculation of unit reactions r;; are shown
in Fig. 8.8d,e. The positive reactions are shown by dashed arrows.

To calculate free terms R;p, it is necessary to construct in primary system the
diagram M 1‘3 caused by the applied load (loaded state). This state and corresponding
bending moment diagram-is shown in Fig. 8.8f.

The ordinates of the bending moment diagrams for standard uniform elements
due to different loads are presented in Tables A.3—A.6. The ordinates of the M 12 dia-
gram at the specified sections according to Table A.4 (for element 1-3) and Table A.3
(for element 6-8) are

12
My, = My = q112'3 = 4.1667kNm;
_alis _ .
M, = = 2.0833kNm;
24
Pl 8 x 10
Ms = —-v (1-v%) = % 0.6(1—0.6%) = 1536 kNm;

x 10

Pl 8
M; = 7u2v GB—u) = % 0.42 x 0.6 (3 — 0.4) = 9.984 kKN m.

All the bending moment diagrams are plotted on the extended fibers of the frame
(Fig. 8.8d—f). Elastic curves are shown by dashed lines. The asterisks (*) on the
elastic curves show the points of inflection.

To calculate reactive moments r11, 12, and Rjp, it is necessary to consider the
free-body diagrams of joint 1 using My, M,, and M 1‘3 diagrams. The ordinates of
the bending moments infinitely close to the joint are taken from the corresponding
diagrams. The direction of each of these moments must correspond to the location of
the extended fibers in each diagram. The calculations of unit reactions ry;, 712, and
R, p are presented in Table 8.1. Positive reactive moments are directed clockwise;
locations of extended fibers are shown by dashed lines.

To calculate reactive forces ra1, 122, and Rpp, it is necessary to consider the
equilibrium of horizontal member 6-8. For this we need to cut off element 6-8 from
diagrams My, M,, and M g by sections infinitely close to joint 1 from above and
below. The calculations of unit reactions r,1, 722, and loaded reaction R, p are pre-
sented in Table 8.2.
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Table 8.1 Calculation of unit and loaded reactions at introduced constraint 1

Diagram |Free-body diagram of joint 1 | Equilibrium equation Reaction
M‘ 1.0EI M=0 ra =
T 2 2.4EI (KN'm/rad)
L + 0.6ET|  —r; +(1.0+0.6+08)EI =0
11y i
0.8E1
M, ™\ 0.333E1 M=0 re =
Red m Z 0.093EI (kN m/m)
it —r1p — 0.24E1 + 0.333EI = 0
kD) 024k
My > 15.36 S M=0 Rip=
R — 11.1933 kNm
1Py ' —R1p — 1536 +4.1667 =0
\ A 41667
Table 8.2 Calculation of unit and loaded reactions at introduced constraint 2
Diagram [Portion (crossbar) of the Equilibrium equation Reaction
structure
M, 0.333E1 r =
‘_I__ﬁ o > x=0 0.093EI (KN/rad)
0.24E] o ro1 + 0.24E1 — 0.333E1 = 0
Mz 0.111EI Iy =
< I__ﬁ . 2. X=0 0.207E1 (kN/m)
0.096E1 25 rp — 0.111EI — 0.096EI = 0
M} Ryp = —5kN
PlLE—— ] Txe §
> 2 Ryp +5=0

Let us consider in detail the procedure for the calculation of reactive forces r,;.
When a section is passed infinitely close to joint 1 from above (Fig. 8.8d), the mo-
ment 3i4-5 is applied. Since the extended fibers are located to the right of member
4-5, then moment 3i4-5 is directed clockwise considering the top part of the portion
4-5. Moment 3i4-5 is equilibrated by two forces, 3i4-5/l4-5 = 0.333EI. (The force
at support 5 is not shown.) Force 0.333E7 is transmitted to the horizontal member
and has an opposite direction.

Member 1-3 should be considered in a similar way: pass a section infinitely close
to joint 1 from below, apply two bending moments 4i-3 (the top of the member)
and 2i;-3 (the bottom of the member) to correspond to the location of the extended
fibers and then equilibrate them by two forces, 6i1-3/[1-3 = 0.24EIl. As the last
step, this force is transmitted to the horizontal member in the opposite direction.
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The canonical equations of the displacement method become:

11.1933
247, +0.093Zy — ——— =0

)

5
0.093Z, 4+ 0.207Z, — i 0. (a)

The roots of these equations present the primary unknowns and they are equal to

The final bending moment diagram is constructed by a formula using the principle
of superposition:

Mp=M;-Zi+My-Z,+ M.
The corresponding calculations for the specified points (Fig. 8.8c) are presented

in Table 8.3. The signs of the bending moments in the unit conditions are conven-
tional.

Table 8.3 Calculation of bending moments

Points | M, M, -Zy | M, M-Z, | MY M (kN m)

1 —0.4 [—1.5176 | +0.24 | +5.388 | +4.1667 | +8.037

2 +0.2 [4+0.7588 | 0.0 0.0 —2.0833 | —1.324

3 +0.8 |[+3.0352 | —0.24 | —5.388 | +4.1667 | +1.814

4 —1.0 |-3.794 | —0.333 | —=7.476 | 0.0 —11.27  gong of

5 0.0 0.0 0.0 0.0 0.0 0.0 bendlng moments
6 —0.6 |—22764| 0.0 0.0 |+15.36 +13.084 @

7 —0.36 |—1.3658 | 0.0 0.0 —9.984 | —11.349 ~ o oo
8 00 | 0.0 0.0 0.0 0.0 0.0

Factor EI EI

The final bending moment diagram M is presented in Fig. 8.8g. The same dia-
gram was obtained by the force method (Example 7.2).

Construction of shear and axial force diagrams, as well as computation of the
reactions is described in detail in Example 7.2.

Summary. The presentation of the equation of the displacement method in canoni-
cal form is conveniently organized and also prescribes a well-defined algorithm for
the analysis of complex structures. Special parts of structural analysis can be carried
out more easily with the canonical form of the displacement method. These include
the construction of influence lines (Chap. 10), Stability (Chap. 13), and Vibration
(Chap. 14).
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8.3 Comparison of the Force and Displacement Methods

The force and displacement methods are the principal analytical methods in struc-
tural analysis. Both of these methods are widely used, not only for static analysis,
but also for stability and dynamical analysis. Below we will provide a comparison
pertinent to the two methods’ presentation in their canonical forms.

Both methods require construction of primary systems. Both methods require
construction of bending moment diagrams for unit exposures (forces or displace-
ments). In both methods, a difference between the primary system and the original

one is eliminated using the set of canonical equations.

Fundamental differences between these methods are presented in Table 8.4. It
can be easily seen that these methods are duel, i.e., one column of the table can be
obtained from the other by linguistic restatement.

Table 8.4 Fundamental differences between the force and displacement methods

Comparison criteria

Force method

Displacement method

Primary system
(PS)

Obtained by eliminating
redundant constraints from a

Obtained by introducing
additional constraints to a

structure structure
Primary Uses forces (forces and moments), Uses displacements (linear and
unknowns which simulate the actions of angular), which neutralize the
(PU) eliminated constraints actions of introduced
constraints
Reactions of eliminated Displacements of induced
constrains are PU constraints are PU
Number of PU Equals the degree of statical Equals the degree of kinematical
indeterminacy indeterminacy
Number of PS Nonunique. PS can be chosen so Unique. PS must be constructed
and way of that all redundant constraints so that in every rigid joint an
obtaining PS must be eliminated and additional constraint is
replaced by corresponding introduced to prevent angular
reactions (forces and/or rotation; and for every
moments) independent linear
Which redundant constraints displacement an additional
should be eliminated is a matter constraint is introduced to
of choice, but the obtained PS prevent linear displacement
should be statically determinate PS presents a set of standard
statically indeterminate beams
Canonical 811X1+8|2X2+"'+A]p=0 r1121+r1222+---+R|p=0
equations

X1+ 80X+ -+ Ap =0

Number of canonical equations
equals the number of PU

rmZy+rpZ,+--+ Rp =0

Number of canonical equations
equals the number of PU

(continued)
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Table 8.4 (continued)

8 The Displacement Method

Meaning of
equations

Total displacement in the
direction of eliminated
constraints caused by the action
of all primary unknowns
(forces or moments) and
applied forces is zero

Total reaction in the direction of
introduced constraints caused
by the action of all primary
unknowns (linear or angular
displacements) and applied
forces is zero

Character of

Kinematical: the left part of

Statical: the left part of canonical

canonical canonical equations represents equations represents reactions
equations displacements
Matrix of A= R =
coefficients 811 812+ B Pl Pt Fin
of canonical 821 820 -+ 8 For Foy soe I
: 20 det A >0, 2072 7R et R > 0,
equations

Snl 8)12 Snn
where A is the flexibility
matrix

Tnl Tn2 *** Tun
where R is the stiffness matrix

Meaning of unit
coefficients

Unit displacement §;;, presents
displacement in the direction
of i th eliminated constraints
due to primary unknown
(force) Xy =1

Unit reaction ry, presents reaction
in the i th introduced
constraints due to primary
unknown (displacement)

Zr =1

Meaning of free
terms

Displacement A ;p presents
displacement in the direction
of ith eliminated constraint
due to applied forces

Reaction R;p presents reaction in
the i th introduced constraint
due to applied forces

Dimensions of
unit
coefficients

8ix — Dimension of displacement
at i is divided by dimension of
action (force or moment) at k

rix — Dimension of force at i is
divided by dimension of action
(linear or angular
displacement) at k

We are providing only the classical approach, however, an experienced reader may choose to des-
ignate the primary system of the force method as statically indeterminate, providing that he/she
has all the necessary formulas for calculating the accepted statically indeterminate primary system

8.3.1 Properties of Canonical Equations

1. The main coefficients of the canonical equations of the force and displacement
methods are strictly positive: §;; > 0; r;; > 0.
2. The matrix of coefficients of the canonical equations is symmetrical with respect
to the main diagonal: 8;3 = O;; rix = rxi- These coefficients may be positive,
negative, or zero.
3. The coefficients of the canonical equations depend only on the type of struc-
ture, but do not depend on external loads, settlements of supports, temperature
changes, or errors of fabrication.
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4. The determinant of the matrix of coefficients of the canonical equations is strictly
positive. This condition describes an internal property of structures based on a
fundamental law of elastic systems: the potential energy of a structure subjected
to any load is positive. Since D # 0, the solution to the canonical equations of
any redundant structure, subjected to any load, change of temperature, or settle-
ments of supports, is unique.

It is time to ask a question: when is it more convenient to apply the force method
and when the displacement method? The general answer is the following: the more
rigid the system due to given constraints, then the more efficient the displace-
ment method will be. This can be illustrated by considering different structures.
Figure 8.9a presents a frame with fixed supports. The frame, according to the force
method, has nine unknowns, while by the displacement method it has only one un-
known: the angle of rotation of the only rigid joint. Analysis of this structure by
the displacement method is a very simple problem. Should this structure be modi-
fied by adding more elements connected at the rigid joint, nevertheless, the number
of unknowns by the displacement method is still the same, while the number of
unknowns by the force method is increased with the addition of each new element.

a b c d

v TT 11

Fig. 8.9 Different types of structures that can be analyzed by either the force method or the dis-
placement method

Another frame is shown in Fig.8.9b. The number of unknowns by the force
method is one, while by the displacement method it is six (four rigid joints and
two linear independent displacements). Also, it is important to note that this frame
contains inclined members, which lead to additional cumbersome computations of
the reactions in the introduced constraints. Therefore the force method is more
preferable.

A statically indeterminate arch with fixed supports can also be analyzed by
both the force and displacement methods. The number of unknowns by the force
method is three. In order to analyze this kind of arch by the displacement method,
its curvilinear axis must be replaced by a set of straight members (since the stan-
dard elements of the displacement method are straight members). One version of
such segmentation of the arch is shown in Fig. 8.9c by dashed lines; in this case,
the number of unknowns by the displacement method is six. Obviously, the force
method is more preferable here. If the arch is part of any complex structure, as
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shown in Fig. 8.9d, then such a structure can be easily analyzed by the displacement
method in canonical form. Indeed, the number of unknowns by the force method
is six, while by the displacement method it is just one (the angular displacement
of the rigid joint). Detailed tables for parabolic uniform and nonuniform arches are
presented in Tables A.19 and A.20.

Figure 8.9e shows a statically indeterminate beam. The number of unknowns by
the force method is four. The number of unknowns by the displacement method is
one. It is obvious that the displacement method is more preferable in this case.

Figure 8.9f shows a statically indeterminate frame with an absolutely rigid cross-
bar. By the displacement method this structure has only one unknown no matter
how many vertical elements it has; analysis of frames of this type is considered in
Sect. 8.4.

8.4 Sidesway Frames with Absolutely Rigid Crossbars

So far it has been assumed that the each rigid joint of the frame can rotate. Such joint
corresponds to one unknown of the displacement method. This section describes
analysis of a special type of frame: sidesway frames with absolutely rigid crossbars
(flexural stiffness EI = 00).

Let us consider the frame shown in Fig. 8.10a. The connections of the crossbar
and the vertical members are rigid. A feature of this structure is that the crossbar is
an absolutely rigid body; therefore, even if the joints are rigid, there are no angles of
rotation of the rigid joints. Thus, the frame has only one primary unknown, i.e., the
linear displacement Z; of the crossbar. The primary system is shown in Fig. 8.10b.
Introduced constraint 1 prevents horizontal displacement of the crossbar. Flexural
stiffness per unit length is i = EI/ h.

The canonical equation of the displacement method is r11Z; + Rip = 0.

The bending moment diagram caused by unit linear displacement Z; is shown
in Fig. 8.10c.

Unit reaction ryq; is calculated using the equilibrium equation for the crossbar.
The bending moment for the clamped-clamped beam due to lateral unit displace-
ment is M = 6i/ h; therefore the shear force for vertical elementsis Q = 2M/h =
12i/ h?. This force is transmitted to the crossbar (Fig. 8.10d) and after that the unit
reaction can be calculated as follows:

12i 361
r11 —>ZX=—3h—2+r11 =0—>r; = R
Applied load P does not produce bending moments in the primary system. Nev-
ertheless, the free term is not zero and should be calculated using the free-body
diagram for the crossbar (Fig. 8.10e).
Equilibrium condition ) X = 0 leads to the following result: R;p = —P.
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Fig. 8.10 Frame with infinitely rigid crossbar: (a) Design diagram; (b) Primary system; (c) Bend-
ing moment diagram in unit state; (d) Free-body diagram of the crossbar. (e) Free-body diagram
of the crossbar in loaded state; (f) Final bending moment diagram

The primary unknown becomes

Rip _ PR3
rii - 36EI

VAR

The bending moment at each of the specified sections of the frame is calculated
by the formula .
Mp = M;-Z1 + MJ.

Since applied load P does not produce bending moments in the primary system,
then M g = 0 and the resulting bending moments due to applied load P are de-
termined as Mp = M, - Z;. The corresponding bending moment diagram and the
reactions of supports are presented in Fig. 8.10f.

The bending moment at the top and bottom of each vertical member is

6i Ph®>  Ph

M:——:—_
"7 W 36EI 6
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Shear within all vertical members is Q = (Mo + Mo/ h) = P /3. The reaction
of all supports Rg = Q = P /3. Figure 8.10f shows the final deflection curve of the
frame and inflection point of all vertical members.

Note that a frame with an absolutely rigid crossbar has only one unknown of the
displacement method for any number of vertical members.

8.5 Special Types of Exposures

The displacement method in canonical form can be effectively applied for analy-
sis of statically indeterminate frames subjected to special types of exposures such
as settlements of supports and errors of fabrication. For both types of problems, a
primary system of the displacement method should be constructed as usual.

8.5.1 Settlements of Supports

For a structure with n degrees of kinematical indeterminacy, the canonical equa-
tions are

rZy+ri2Zas+ -+ rinZn + Ris =0

r21Zy + 122y + -+ 12nZy + Ry =0
(8.6)

121+ tn2Zy+ -+ ranZy + Rys =0,
where the free terms R (j = 1,2,...,n) represent the reaction in the jth intro-
duced constraint in the primary system due to the settlements of a support. These
terms are calculated using Tables A.3—A.6, taking into account the acrual displace-

ments of the support. Unit reactions r;; should be calculated as before. The final
bending moment diagram is constructed by the formula

MSZMl-Z1+M2-Zz+”'+M2'Zz+MSO, 8.7)

where M? is the bending moment diagram in the primary system caused by the
given settlements of the support.

Example 8.3. The redundant frame in Fig. 8.11 is subjected to the following set-
tlement of fixed support A: a = 2cm, b = lcm, and ¢ = 0.01rad = 34'30”.
Construct the bending moment diagram.
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Fig. 8.11 Settlements of support: (a) Design diagram; (b) Primary system; (¢) Bending moment
diagram in primary system caused by settlements of support A4; (d, e) Free-body diagrams for rigid

joint and crossbar; (f) Final bending moment diagram
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Solution. The primary system of the displacement method is presented in
Fig.8.11b. The primary unknowns are the angle of rotation Z; and linear
displacement Z,.

The canonical equations of the displacement method are

riZiy +ri2Zs + Ry =0,
12121 + 12222 + Ry = 0.

The unit reactions r;x were obtained in Example 8.2; they are

ri1 = 2.4EI (kNm/rad), r;» = 0.093El (kNm/m),
ra1 = 0.093EI (kN/rad) , r2» = 0.207 (kN/m) .

Free terms R;s and Ry represent reactions in both introduced constraints in the
primary system due to the settlement of support A. They are calculated using the
bending moment diagrams caused by the displacement of support A. Diagrams M,,
My, and M, (Fig. 8.11c) present the bending moments in the primary system due to
the separate displacements of support A based on given valuesa = 2cm, b = 1 cm,
and ¢ = 0.01 rad = 34'30”, respectively. Figure 8.5a contains the numeration of the
specified points of the frame.

In the case of the vertical a-displacement of support A, only member 6-8 of the
frame in the primary system deforms. The elastic curve is shown by a dashed line;
vertical members 1-3 and 4-5 do not deform. To construct the bending moment
diagram M,, we use Table A.3.

In the case of the horizontal b-displacement, only member 1-3 deforms; in order
to construct bending moment diagram Mj, we use Table A .4.

In the case of the angular displacement of support A, only member 1-3 of the
frame in the primary system deforms. This happens because introduced constraint
1 prevents distribution of the deformation. Bending moment diagram M, is shown
according to Table A 4.

The values presented in Tables A.3 and A.4 correspond to unit displacements,
therefore in order to obtain the reactions according to the given displacements, it
is necessary to multiply the tabulated values by corresponding values a, b, and ¢.
Bending moment diagrams M, M}, and M, as well as their sum are presented in
Fig.8.11c.

To calculate the free terms, it is necessary to consider the free-body diagrams for
the rigid joint and for the horizontal element as shown in Fig. 8.11d, e.

The equilibrium condition of the rigid joint yields

Ry = 0.0064EI + 0.0012E1 = 0.0076EI.

The shear force within portion 1-3 is equals to

Ms—y + M3 0.0064 + 0.0104

= EI = 0.00336E1.
-3 5

These forces rotate the member counterclockwise. Force 0.00336FE] is transmit-
ted to horizontal member 6-8 in the opposite direction, i.e., from left to right.
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The equilibrium condition of the horizontal element is used to calculate Ry
> X =0— Ry, = —0.00336EL.

The canonical equations become

2.4Z1 +0.093Z, + 0.0076 = 0,
0.093Z; 4+ 0.207Z, — 0.00336 = 0.

The roots of these equations are

Z1 = —0.386 x 1072 rad,
Z>=1.797 x 1072 m.

The bending moment diagram is constructed by the following expression using the
principle of superposition

My=M,-Z; +M,y-Zy + M2,
where M? = M, + M, + M is the bending moment in the primary system caused
by the settlements of the support. The corresponding computation is presented in

Table 8.5.

Table 8.5 Calculation of bending moments

Points| M, | M,-Z,| M, My Z,| M, + Mg + M,| M,

1 —0.4| 0.155|+0.24 | 0.431| —1.04 —0.454 ‘

3 +0.8] —0.309| —0.24 | —0.431| +0.64 —0.100  Signsof

4 | =10 0386]—0333] —0598| 0.0 —021p  bending moments
5 0.0 00 0.0 0.0 0.0 0.0 olo
6 —0.6| 0232] 00 00 | —0.12 0.112 o

8 0.0 0.0 0.0 0.0 0.0 0.0

Factor| EI 102EI| EI 1072EI| 1072EI 102EI

The final bending moment diagram due to the settlements of the support is pre-
sented in Fig. 8.11f. This same diagram was obtained previously by the force method
(Example 7.3).

Discussion. In case of the structure subjected to external loading, the internal force
distribution depends only on the relative stiffness of the elements, while in case of
the settlements of support the distribution of internal forces depends on both the
relative and the absolute stiffness of the elements.

In the case of settlements of a support, the calculation of free terms is an ele-
mentary procedure using the displacement method, while by the force method free
terms are more difficult to calculate. Therefore, for settlement of support problems
the displacement method is preferable to the force method.
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8.5.2 Errors of Fabrication

In cases of fabrication errors, analysis of the frame can be effectively performed
by the displacement method in canonical form. Construction of the primary system
and calculation of unit reactions should be performed as usual. Canonical equations
should be presented in form (8.4), but the free terms R;p should be replaced by R;e.
These free terms present the reactions of the introduced constraints caused by the
errors of fabrication.

Example 8.4. A design diagram of the frame is presented in Fig. 8.12a. Member AB
has been fabricated A = 0.8 cm too long. The moment of inertia of all cross sections
is I = 9.9895 x 107> m*, and the modulus of elasticity is £ = 2 x 108 kN/m?
(EI = 19,979kNm?). Calculate the angle of rotation of joint B and construct the
bending moment diagram.

h=28m

13.05
M (kN-m)

Fig.8.12 (a, b) Errors of fabrication: Design diagram and primary system. (¢, d) Bending moment
diagrams for unit and loading states. (e) Resulting bending moment diagram

Solution. The primary system of the displacement method is shown in Fig. 8.12b.

The primary unknown is the angle of rotation of included constraint 1. The
canonical equation of the displacement method is 11 Z; + Rj. = 0. The primary
unknown becomes Z; = —Rj./711.
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The bending moment diagram in unit state is presented in Fig. 8.12c. The loaded
state (Fig. 8.12d) presents A-displacement of joint B. The member AB is not sub-
jected to bending; corresponding elastic curve is shown by a dashed line. The
moment Ri. is a reactive moment at the introduced constraint caused by displace-
ment A. Table A.3 presents the reactions caused by the unit displacement, therefore
the specified ordinate of the bending moment diagram is (3EI / h2) A.

It is obvious that

4E1  3EI 3EI

= Tlee = _h_ZA'

So the angle of rotation of joint B becomes

3A 3.0.008 m
Z) = e = Y = 0.001635rad.
<T+3h) 4% 28 (m) +3x2.8 (m)
The resulting bending moments at the specified points are
4E1 4 x 19979 kN m?
.Om

Myp = 05Mpyg = 13.05kNm;

3El 3EI 3% 19979kNm?

Mpe = —Z1 — —A x 0.001635 rad

h h? 2.8m
3 x 19979 kN m?

The corresponding bending moment diagram is presented in Fig. 8.12e.
Construction of shear and axial forces and computation of reactions of supports
should be performed as usual.

Discussion. We can see that an insignificant error of fabrication leads to significant
internal forces in the structure. This fact lays the basis of the inverse problem, which
can be formulated as follows: find the initial displacement of specified points of a
structure for obtaining the required distribution of internal forces. For example, let
us consider the two-span continuous beam subjected to a uniformly distributed load
shown in Fig. 8.13.

q
B AREEAEEEERER

b 1
-
L

Fig. 8.13 Controlling of the stresses in the beam by initial displacement of middle support
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In this case, the extended fibers at the center support are located above the neu-
tral line and the corresponding moment at the support is ¢/?/8. If the external load
is absent and the center support is placed below the beam level on A, then the
extended fibers at the support will be located below the neutral line and the corre-
sponding moment at the support will be (3EI/1%) A. If beam is subjected to load
q and displacement A simultaneously, then we can determine parameter A for the
required distribution of internal forces. For example, what A should be in order that
the bending moment at the center support be zero, or what A should be in order
that the maximum bending moment at the span and bending moment at the center
support be equal, etc.

8.6 Analysis of Symmetrical Structures

Symmetrical structures are used often in structural engineering. Symmetrical struc-
tures mean their geometrical symmetry, symmetry of supports, and stiffness sym-
metry of the members. For analysis of symmetrical statically indeterminate frames
subjected to any loads, the Combined Method (the combination of the force and
displacement methods) can be effectively applied.

8.6.1 Symmetrical and Antisymmetrical Loading

We start consideration of the combined method from concept of resolving a total
load on symmetrical and antisymmetrical components. Symmetrical frame sub-
jected to horizontal load P is shown in Fig. 8.14a. This load may be presented as a
sum of symmetrical and antisymmetrical components (Fig. 8.14b, c). In general, any
load may be presented as the sum of symmetrical and antisymmetrical components.

a b Symmetrical C Antisymmetrical
P E P/2 load P2 P2 load P/2
> . > j < — :
= == i AS!
Axis of / — . _/
~

symmetry
Fig. 8.14 Presentation of the load P as a sum of the symmetrical and antisymmetrical components

Symmetrical frame subjected to symmetrical and antisymmetrical components
allows simplifying the entire design diagram. This simplification is based on the
change of the entire design diagram by its equivalent half-frame (the physical basis
of such changing will be discussed below). This procedure leads to the following
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fact: the degree of statical (or kinematical) indeterminacy for a half-frame is less
than for an entire frame. Equivalent half-frames should be analyzed by classi-
cal methods. It will be shown below that for analysis of the half-frame, different
methods (Force and Displacement methods) should be applied for symmetrical and
antisymmetrical components. Therefore, the method under consideration is called
the combined method.

8.6.2 Concept of Half-Structure

In case of symmetrical structure subjected to symmetrical and antisymmetrical
loads, the elastic curve at the point on the axis of symmetry (AS) has specific
properties. Mainly these properties allow an entire frame to replace by an equiva-
lent half-frame, separately for symmetrical and antisymmetrical loading. In case of
nonsymmetrical change of temperature or settlements of supports, these exposures
could also be replaced by symmetrical and antisymmetrical components.

At any section of a member the following internal forces arise: symmetrical
unknowns, such as bending moment M and axial force N and antisymmetrical
unknown shear force Q (Fig.8.15).

M M
Fig. 8.15 Symmetrical and ‘}’ —
antisymmetrical internal N N

forces 0

At the point of the axis of symmetry (AS) the following displacements arise:
the vertical A,, horizontal Ay, and angular ¢. Considering of these displace-
ments at the AS (point A) allow us to construct an equivalent half-frame. De-
pending on loading (symmetrical or antisymmetrical), the different displacements
will be at the point A and, as result, the different support conditions for equivalent
half-frame.

Let us consider the arbitrary symmetrical frames (Table 8.6). Elastic curves in
the neighborhood of the point A on the axis of symmetry are shown by dotted line.
Assume that number of spans is odd. In the case of symmetrical load, the horizontal
and angular displacements at the point A are zero, while the vertical displacement
occurs. Therefore, an equivalent half-frame must contain a support at point A, which
would model corresponding displacements, i.e., which would allow the vertical dis-
placement and does not allow the horizontal and angular displacements. Only the
slide support corresponds to these types of displacements.
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Table 8.6 Symmetric frame and corresponding half-frame for symmetric and antisymmetric

loading
Number
of spans Symmetrical loading Antisymmetrical loading
N A AT
13,5 0 4
A Half-frame | A=o Half-frame : A=0
s [ X a0
| ¢ =0 | !
¢ #0
Number of unknowns Number of unknowns
Entire frame Half-frame Entire frame Half-frame
FM: 9 FM: 5 FM: 9 FM: 4
DM: 9 DM: 4 DM: 9 DM: 5
a3 4
11 IT 1 T
24.6,...
| ;
Half-frame —‘ A,=0 Half-frame A=0
— A, =0 > A, 0
I S o A S
Number of unknowns Number of unknowns
Entire frame Half-frame Entire frame Half-frame
FM: 12 FM: 6 FM: 12 FM: 6
DM: 10 DM: 4 DM: 10 DM: 6
Internal Bending moment diagram — symmetrical Bending moment diagram — antisymmetrical
force Normal force diagram — symmetrical Normal force diagram — antisymmetrical
diagrams |Shear force diagram — antisymmetrical Shear force diagram — symmetrical

In the case of antisymmetrical load, the horizontal and angular displacements at
the point A exist, while a vertical displacement is zero. It means that an equivalent
half-frame at point A must contain a support, which would allow such displace-
ments, i.e., which would allow the horizontal and angular displacements and does
not allow a vertical one. Only roller support corresponds to these types of displace-
ments. Table 8.6 also contains the mathematical conditions for replacing the given
frame by its equivalent half-frame. In all cases, the support at the point A for equiv-
alent half-frame simulates the displacement at the point A for entire frame.
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Now assume that the number of spans is even. It means that additional vertical
member is placed on the axis of symmetry. In the case of symmetrical load, the
horizontal and angular displacements at the point A4, as in case of odd spans, are
zero, while the vertical displacement of A is zero because the vertical member is
at axis of symmetry. Therefore, an equivalent half-frame must contain a support at
point A, which would model corresponding displacements. Only clamped support
is related with displacements described above. In case of antisymmetrical loading,
the half frame contains the member at the axis of symmetry with bending stiffness
0.5EL

Fundamental properties of internal force diagrams for symmetrical structures are
as follows:

1. In case of symmetrical loading, the internal force diagrams for symmetrical un-
knowns (M, N) are symmetrical and for antisymmetrical unknown (Q) they are
antisymmetrical.

2. In case of antisymmetrical loading, the internal force diagrams for symmetrical
unknowns (M, N) are antisymmetrical and for antisymmetrical unknown (Q)
they are symmetrical.

Table 8.6 also contains the number of unknowns for entire frame and for half-frame
by Force (FM) and Displacement (DM) methods. The rational method is shown by
bold. We can see that in case of symmetrical loading, the more effective is displace-
ment method, while in the case of antisymmetrical loading, the more effective is
the force method. From this table, we can see advantages of the combined method.
Bending moment diagram is constructed for each case and then summated (on the
basis of superposition principle) to obtain final bending moment diagram for origi-
nal frame.

The following procedure may be recommended for analysis of symmetrical
structures:

1. Resolve the entire load into symmetrical and antisymmetrical components
2. Construct the equivalent half-frame for both types of loading

3. Provide the analysis of each half-frame using the most appropriate method
4. Find the final distribution of internal forces using superposition principle

Problems

In Problems 8.1 through 8.6 provide complete analysis by the displacement method,
including the following:

1. Determine the bending moment at the support and construct the internal force
diagrams

2. Calculate the reactions of the supports and provide static control

3. Provide kinematical control (check the slope and vertical displacement at the
intermediate support)

4. Compute the vertical displacement at the specific points and show the elastic
curve
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8.1-8.2. A two-span uniform beam with pinned and rolled supports is subjected to a
fixed load (Figs. P8.1 and P8.2). Provide complete analysis for each design diagram.

\;:;q;; VYl
&> 2 &
! I L
) } 1
Fig. P8.1
P
C
& L ¢ L
! 1| oul | vl
Fig. P8.2
ql? Pl )
Ans. (8.1)M1=—E; (8.2)M1=—Tv(1—v)

8.3-8.4. A two-span uniform beam with fixed left and rolled right support is sub-
jected to fixed load (Figs. P8.3 and P8.4). Provide complete analysis.

q
10 NIV V¥
! £ X
! | L
I I 1
Fig. P8.3
P
| ll
! £ X
| | ul |l
I I U 1
Fig. P8.4
ql? ql® 2 2
Ans. 83)My=—; My =——;84) M;=—=Plv(l— .
ns. (8.3) Mo o8 1 14() 1 7 v (1-v?)

8.5. A two-span beam uniform beam with two fixed ends is subjected to fixed load
(Fig. P8.5). Provide complete analysis.
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-

Fig. P8.5

Pl
Ans. M1 = —1—6.

8.6. A two-span nonuniform beam with fixed ends is loaded as shown in Fig. P8.6.
Parameter n is any positive number. Construct the bending moment and shear force
diagrams. Show the elastic curve. Prove that My = M, /2.

[0 IRXEER T
U e X nEl |

l—r Jo |

Fig. P8.6

ql? _ql*> 243n

Ans. My = — 3% - .
BT s 2T 24 1ta

8.7. A design diagram of a two-span uniform beam is shown in Fig. P8.7. Calculate
the slope at the support 1 and compute the bending moments at the supports.

4=2kN/m lP: 12kN lF:IkN
TEEEREEEEE2 2
| EI=const
a=6m _ b=4m cIZmJ
| 1
,=8m L=10m
Fig. P8.7
10.616
Ans. Z1 = Foi rad, My =28.013kNm, M; =15975kNm.

8.8. A two-span uniform beam with fixed and pinned end supports is subjected to
vertical settlements of support, as shown in Fig. P8.8. Provide complete analysis for
both design diagrams.
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Fig. P8.8

12 EI

712
8.9. A two-span uniform beam with fixed ends is subjected to uniformly distributed
load g and vertical settlements of the intermediate support, as shown in Fig. P8.9.
Define the value of the settlement in order that: (a) the bending moment at the in-

termediate support equals zero; (b) the bending moment at the fixed supports equals
zero; (c) the bending moment at the midpoint of the span equals zero.

Ans. M; =

Fig. P8.9

ql*
72EI

Ans. (a) A = ).

8.10. A design diagram of a frame is presented in Fig. P8.10. Supports 2, 3, and 4
are fixed, sliding, and rolled, respectively. Bending stiffnesses are EI and 2EI for
vertical and horizontal members, respectively; their relative stiffnesses are shown
in circles. Compute the angle of rotation of the joint 1. Construct the internal force
diagrams.

q

d.xl/\lnll\l/\l'\lf\lfiﬂl'\lulf\lf

3||@> ] ©) 4
@ 6m

2

Fig. P8.10

8
Ans. Z; = —E—‘; (rad), Mz = o2 My = -2 My = l4q



Problems 309

8.11. A frame is subjected to uniformly distributed load ¢, as shown in Fig. P8.11.
The stiffness of the right elastic support is k(kN/m). The relative stiffnesses for
all members are shown in the circles. Calculate the angle of rotation of the joint 1.
Construct the bending moment diagram. Check the limiting cases k = co and k = 0.
Trace the elastic curves for both limiting cases. Is it possible to find a stiffness of
elastic support such that rigid joint 1 would not rotate under the given load?

q
I VI
O O 7
@ 6m

| 8m | 8m |
[ I 1
Fig. P8.11
12 24a— 2 1
Ans. 2 = ——— - —, o= ——Fm.
El 11+ 9% 1+ S

8.12a-d. Design diagrams for four I'-frames with different boundary conditions at
support 3 are shown in Fig. P8.12. All frames are subjected to uniform distributed
load g. For all frames the span is [ and height 7 = [. The flexural rigidity is EI
for all members. Construct the internal force diagrams. Trace the elastic curves and
show the inflection points. Explain the differences in structural behavior caused by
the different types of supports 3.

a q b q c q d q
[VII IV dd/iﬂl'i'»b I EEE XXX I EEEEEX
3 3l 13K 13 1
h
12 i £ 2 2
| [ | | ! | / | | / |
! 1 [ | I 1 ) 1
Fig. P8.12
ql’ ql’ ql’
Ans.(a) Z1=——;(b) Z1 = ———; 71 =—
ms. (@) Z1 = —gep 0 Zr =~ O Zv = — ey

8.13. A sidesway frame is subjected to horizontal load P along the crossbar
(Fig. P8.13). The connections of the crossbar with the left and right vertical mem-
bers are hinged while the connection with the intermediate vertical member is rigid.
The bending stiffness of all vertical members is EI and for the crossbar it is 2EI.
Will the axial forces in the crossbar be equal to zero or not? Verify your answer
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6
© l T
1 2 3
6m |
1

by constructing the internal force diagrams. Trace the elastic curve of the frame.
Calculate the reactions of supports. Provide static and kinematical verification.
Ans. Q; = Q3 = +0.1945P, O, = +0.611P.

=5m

Fig. P8.13

8.14. The structure shown in Fig. P8.14 contains a nonuniform parabolic arch. The
moment of inertia at the arbitrary section of the arch is I, = I¢/ cosa, where I¢ is
the moment of inertia of the cross section at the crown C and « is the angle between
the horizontal line and the tangent at any section of the arch. Uniformly distributed
load ¢ = 4kN/m is placed within the left half-span of the arch. Construct the
bending moment diagram. Solve this problem in two versions: (1) The axial forces
in the cross section of the arch are ignored and (2) the axial forces in the cross
section of the arch are taken into account. The moment of inertia and the area of the
cross section at the crown C are Ic = 894 x 10 mm*, Ac = 33, 400 mm?. Hint:
The reader can find all the required data for parabolic arches as standard members
in Table A.19 (uniform arches) and Table A.20 (non-uniform arches). Compare the
results obtained by each version.

¢ [T 1.=2E1
[x oC

Fig. P8.14

8.1
Ans. (1) Z; = ¥ (rad), Mi4 =81kNm, M;p=4.05kNm,

996
7 (rad) .

Mic = 1215kNm: (2) Z1 = ——

8.15. A frame with an infinitely rigid crossbar is subjected to horizontal load P.
The connections between the vertical members and the crossbar are hinged
(Fig. P8.15). Calculate the support moments and the reactions. Construct the in-
ternal force diagram. Show the elastic curve.
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P . El=c i
‘ EI ‘EI ‘EI h

Ans. My = Ph/3, Ry = P/3.

8.16. A design diagram of a frame with columns having a step-variable cross sec-
tion is presented in Fig. P8.16. The frame is subjected to uniformly distributed load
g = 5kN/m within the first span. Construct the bending moment diagram using the
displacement method in canonical form (use Tables A.7 and A.8).

Fig. P8.15

BV V4 V¥V V¥V ¥ ¥ {C E
4ET 4ET d‘;\‘
E EI EI
=l
=
I
& E 2EI 2E1
M4 DY
| [=12m | [=12m
)

Fig. P8.16

Ans. Mg = 12.41kNm, Mp = 21.02, Mp = 8.83, Mcp = 47.24,
Mcp = 14.95, Mcg = 32.29.

8.17. A design diagram of a two-storey frame is presented in Fig.P8.17. The
crossbars are absolutely rigid. Connections between the vertical members and the
crossbars are rigid. Construct the internal force diagrams. Determine the reactions
of support.

P El=c0
h

2P El=
_>H —_
2EI 2ET h
Al Bl v

b ]
Fig. P8.17
2.5Ph
Ans. QA = I.SP,Nleft = _Nright = —,MA = 0.75Ph.

l
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8.18. Resolve a given load into symmetrical and antisymmetrical components. Axis
of symmetry (AS) is shown by dotted line (Fig. P8.18).

a b c d
q :
XXX P T et Il
Fig. P8.18

8.19. Symmetrical portal frame is loaded by the force P, as shown in Fig. P8.19.
Resolve the given load into symmetrical and antisymmetrical components and cal-
culate the bending moments at specified points for corresponding loading. Calculate
the horizontal reaction H. Determine the horizontal displacement of the crossbar
and show the elastic curve.

B EL, p
T
Ern| A5 h
Al H C] H
I
Fig. P8.19
3k 1+ 3k P I, h
AnS.MBZ—Ph;MA=+—Ph; H=—; k=_2.__
2 (1 + 6k) 2 (1 + 6k) 2 I, |

8.20. The portal frame in Fig. P8.20 is subjected to horizontal uniformly distributed
load ¢g. Construct the bending moment diagram by the Combined method. De-
termine the horizontal displacement of the crossbar and show the elastic curve.
EI = constant for all members; [ = 4m, 7 = 8 m.

Fig. P8.20

Ans. MM =3.335q; MZ"™ = 1.335¢: ME™ = 7.746q; ME™ = 6.2574.



Chapter 9
Mixed Method

This chapter is devoted to the analysis of special types of structures. They are the
frames with different flexibility ranges of their separate parts. These structures have
specific properties which allow simplify their analysis.

9.1 Fundamental Idea of the Mixed Method

In engineering practice the statically indeterminate frames with specified features
may be found: one part of a structure contains a small number of reactions and
a large number of the rigid joints, while another part contains a large number of
reactions and a small number of the rigid joints. Two examples of this type of struc-
tures are presented in Fig. 9.1a, b. Part 1 of a structure (a) contains only one support
constraint (one vertical reaction at point A) and three rigid joints, while the part 2
contains nine unknown reactions and two rigid joints. We can say that parts 1 and 2
are “soft” and “rigid”, respectively. The frame (b) may be considered also as a struc-
ture with different ranges of flexibility of their separate parts 1 and 2. The part 1 is
soft while the part 2 is rigid one.

For analysis of these types of structures the mixed method should be applied.
In this method, some unknowns represent unknowns of the force method and some
represent unknowns of the displacement method. The mixed method was introduced
and developed by Prof. A. Gvozdev in 1927.

9.1.1 Mixed Indeterminacy and Primary Unknowns

It is convenient to apply the force method to the “soft” part of the structure and the
displacement method to the “rigid” part of the structure. The primary system of the
mixed method is obtained from a given structure by eliminating the redundant con-
straints in the “soft” part of a structure and introducing additional constraints at rigid
joints in the “rigid” part of a structure (Fig.9.1c, d). Thus, the primary unknowns
of the mixed method are forces and displacements simultaneously. For scheme (a)
the primary unknowns are the force X, and displacements Z, and Z3. For scheme

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 313
DOI 10.1007/978-1-4419-1047-9_9, (© Springer Science+Business Media, LLC 2010
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307 Zy
|
| I I |
Fig. 9.1 (a, b) Design diagrams of frames with different ranges of flexibility of their separate
parts; (¢, d) primary systems of the mixed method

(b) the primary unknowns of the force method are labeled as X, X», X3, while
the primary unknowns of the displacement method are Z3, Z4. A numbering of the
unknowns is through sequence.

For frames with different ranges of flexibility of their separate parts the number
of unknowns of the mixed method is less than a number of unknowns of the force
or displacement methods. This is an advantage of the mixed method. The mixed
method may also be presented in canonical form.

Let us consider a frame shown in Fig. 9.2a; the flexural rigidity of vertical and
horizontal elements are EI and 2EI, respectively. For given structure the number
of unknowns by the force method equals 4, and the number of unknowns by the
displacement method also equals 4 (angles of rotation of rigid joints 2, 4, 5 and
linear displacement of the cross bar 4-5).

Both parts of the frame have different ranges of flexibility, mainly, the right part
is “rigid” and left part is “soft.” Indeed, the right part 1-2-3 has six constraints of
supports at the points 1 and 3, while the left part 2-4-5-A of the frame has only
one constraint support A. Therefore, for the left and right parts of the frame it is
convenient to apply the force and displacement methods, respectively.

9.1.2 Primary System

The primary system of the mixed method is obtained from the given structure by
eliminating the left vertical constraint A and introducing the additional constraint at
rigid joint 2, simultaneously (Fig.9.2b). Primary unknowns are X; and Z,, where
X1 is unknown of the force method and Z5 is unknown of the displacement method.
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a
5 stiffness 2EI 4

stiffness ZEI
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q=6kN/m
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Fig. 9.2 (a) Design diagram; (b) primary system of the mixed method; (¢) bending moment dia-
grams caused by force X; = 1; (d) bending moment diagrams caused by displacement Z, = 1.
(e) Bending moment diagram in the primary system due to given load. (f) Resulting bending mo-
ment diagram and free body diagram for joint 2. (g) Unit bending moment diagram in primary

system of the force method
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9.2 Canonical Equations of the Mixed Method

Compatibility conditions for structure in Fig.9.2 may be presented in canoni-
cal form
$11X1 4+ 81,Z> + A1p =0,

9.1
r£1X1+72222+R2P =0. ( )

Thus the mixed method for this particular design diagram reduces the number of
unknowns to two.

The first equation means that displacement in the direction of the eliminated
constraint 1, due to reaction of this constraint (primary unknown X of the force
method), rotation of the introduced joint 2 (primary unknown Z, of the displace-
ment method), and applied load must be zero.

The second equation means that reaction in the introduced joint 2 due to reaction
X of eliminated constraint 1, rotation Z, of introduced joint 2 and applied load
must be zero.

9.2.1 The Matter of Unit Coefficients and Canonical Equations

These equations contain the coefficients, which belong to four different groups, i.e.:

811 represents a displacement due to the unit force

8, represents a displacement due to the unit displacement
1y, represents a reaction due to the unit force

o represents a reaction due to the unit displacement

So, the coefficients 811 and ry, are unit coefficients of the classical force and dis-
placement method, respectively. The essence of the unit coefficients §7, and r},
is different from the coefficients §;1; and r,5: coefficient 8’12 is unit displacement
caused by the unknown of the displacement method, and coefficient ré ; 18 unit re-
action caused by the unknown of the force method.

Each term of (9.1) has the following meaning:

First equation:

° S/HX 1 = displacement in the direction of the eliminated constraint (point A,
vertical direction) caused by the unknown force X

e §1,Z, = displacement of point A in the same direction caused by the unknown
angle of rotation Z

e Ajp = displacement of point A in the same direction caused by the applied
load.

Second equation:

o 15, X1 = reaction of the introduced constraint 2 due to the unknown force X;

e 137, = reaction of the same constraint 2 due to the unknown angle of rota-
tion Z

e R, p = reaction of the same constraint 2 due to the applied loads
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Thus, the character of each equation is mixed because it is the displacement (or
reaction) caused by primary unknowns of the force method X and the displacement
method Z simultaneously. Moreover, a meaning of each equation in (9.1) is mixed
because they represent displacement along of eliminated constraint A and reaction
of introduced constraint 2.

9.2.2 Calculation of Coefficients and Free Terms

The general properties of elastic structures and reciprocal theorems provide the fol-
lowing properties and relationships between coefficients of canonical equation of
the mixed method

Sun >0, 1kk >0, Sum =0mn, Fam =Tmn, Tnm = —Omn. 9.2)

Bending moment diagrams due to the primary unknowns X; = 1 and Z, = 1
are presented in Fig. 9.2¢, d. Construction of bending moment diagram caused by
primary unknown X; = 1 is obvious. For construction of bending moment dia-
gram caused by primary unknown Z, = 1 we need to rotate introduced constraint
2 through angle Z, = 1. In this case, members of the right part only will sustain
deformation, while left part will move as absolutely rigid body. Corresponding de-
formable position is shown by dotted line. Unit displacements (611, §12) and unit
reactions (722, r5,;) are shown in the corresponding diagrams.

Ordinates of bending moment diagram for clamped—clamped beam due to the
unit rotation of joint 2 are

4EI, 2EI 4EI, 1EI
Moy = — 22 =45 — 1.0EI, My = —-1 =4— =0.5EL
lr3 8 Iy 8
Having the unit bending moment diagrams due to X; = 1 and Z, = 1 we can

calculate the coefficients and free terms of canonical equations of the mixed method.
Multiplication of bending moment diagram M ;| by itself leads to coefficient of
the force method

811 =

MM, 1 12x12 2 1 864
> ds=— = . 2. 124—12x4x12=~— (m/kN)
EI 2E1 2 3 1EI EI

Equilibrium condition of induced constraint 2 from bending moment diagram M
leads to
rhyy =—12m

The units of coefficients of canonical equations of the mixed method can be defined
as for the force and displacement methods. In general, for rl,’ o the unit of reaction
which corresponds to the index 7, should be divided by unit of factor, which corre-
sponds to the index k. In our case we get
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kN m
[r21] = [W} = [m].

Equilibrium condition of induced constraint 2 from bending moment diagram M »
leads to coefficient of the displacement method

ra2 = 1EI + 0.5EI = 1.5EI(kN m/rad).

Theorem of reciprocal displacements and reactions leads to 87, = —r},; = 12m/rad.

The unit of &, is defined by following rule: the unit of displacement, which
corresponds to the index i, should be divided by unit of factor, which corresponds
to the index k. In our case we get [85, | = [m/rad].

For calculation of free terms of canonical equations we need to construct the
bending moment diagram in the primary system due to distributed load q; this
diagram is presented in Fig.9.2e. Specific ordinates of Mg diagram are follows:
My 3 =Mz 5 =ql?/12=(6x8%)/12 =32kNm, Mc = q/? /24 = 16kNm.

From this diagram we get R,p = —32 (kN'm) and Ayp = 0.

Canonical equations of the mixed method becomes:

864X +12Z, =0
7 2 =0,
—12X1 +15E1Z, —32 = 0.

Roots of these equations are X; = —0.266kN, Z, = 19.2/El(rad)

9.2.3 Computation of Internal Forces

Resulting bending moments acting at different cross sections of the frame are cal-
culated by formula o o
Mp = M X1+ M>Z, + Mp. 9.3)

Corresponding calculation for specified points is presented in Table 9.1. Resulting
bending moment diagram is presented in Fig. 9.2f.

Verification. The static and kinematical verifications may be considered. They are:

1. Free body diagram for joint 2 is presented in Fig. 9.2f. Direction of the moments
is shown according to location of the extended fibers, which are shown by dotted
lines. Equilibrium equation ) M = 3.2 4+ 9.6 — 12.8 = 0 is satisfied.

2. Displacement in the direction of eliminated constraint A in the original sys-
tem must be zero. This displacement may be computed by multiplication of two
bending moment diagrams: one of them is the resultant bending moment diagram
M p for the entire given structure and second is bending moment diagram caused
by the X; = 1 in any primary system of the force method. One version of the



Problems 319

primary system of the force method and corresponding unit bending moment
diagram M ; are presented in Fig.9.2g.

Table 9.1 Calculation of bending moments

Points | M, M\Z, | M, MyZ, |MD Mp (kNm)
1 0.0 0.0 |—0.25 —4.38 0.0 | —4.8
2-1 0.0 0.0 |+0.5 +9.6 0.0 | +9.6
2-3 0.0 0.0 | —1.0 —19.2 | +32 +12.8
3-2 0.0 0.0 |+0.5 +9.6 | +32 +41.6
2-4 +12.0 | =32 0.0 0.0 0.0 | =32
42 +120 | =32 0.0 0.0 0.0 | =32
4-5 —12.0 |+3.2 0.0 0.0 0.0 | +32
5 0.0 0.0 0.0 0.0 0.0 0.0
C 0.0 0.0 | —0.25 —48 | —16 —20.8
Factor EI

The vertical displacement of point A for entire structure equals

MpM 11 2 1
A=Y P s = - S x12x12x £ x32— — x32x4x 12
El 2E12 3 1EI
8
12.8 % 124+ 4% 20.8 x 16 — 41.6 x 20
tox 21" + )

= —887.46 + 887.47 = 0

Construction of shear and axial force diagrams, computation of all reactions and
their verifications should be performed as usual.

Problems

9.1. Design diagram of the frame is shown in Fig. P9.1.

1. Determine the number of unknowns by the force method, displacement, and
mixed methods.

2. Show the primary system of the mixed method and set up of corresponding
canonical equations;

3. Explain the meaning of primary unknowns and canonical equations of the
mixed method.

4. Define the unit of coefficients and free term of canonical equations.

5. Describe the way of calculation of all coefficients of canonical equations and
free terms.

6. Explain the advantage of the mixed method with comparison of the force and
displacement methods.
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Fig. P9.1

9.2. Design diagrams of the nonsymmetrical frames are presented in Fig. P9.2a—e.
Choose the best method (force, displacement, or mixed) of analysis for each frame.
Explain your decision. Choose primary unknowns, show primary system, write the
canonical equations, and trace way for calculation of coefficients and free terms.

| l [ EEEX

Fig. P9.2

Ans. (a) FM-1; (b) DM-1; (c) FM-3; (d) MM-2; () MM-4

9.3. The frame is shown in Fig.P9.3. The bending stiffness for each member is
EI. Construct the bending moment diagram and perform its statical and kinematical
verifications.
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6m

Fig. P9.3

9.4. Construct the bending moment diagram for structure in Fig. P9.4. Perform the
static and kinematical control of resulting bending moment diagram.

Fig. P9.4

Ans. Mp = 4.84kNm, Mc = 41.75kNm






Chapter 10
Influence Lines Method

This chapter is devoted to construction of influence lines for different statically
indeterminate structures. Among them are continuous beams, frames, nonuniform
arches, and trusses. Analytical methods based on the force and the displacement
methods are applied. Also, kinematical method of construction of influence lines is
discussed. This method allows tracing the models of influence lines.

10.1 Construction of Influence Lines by the Force Method

Let us consider a first-degree statically indeterminate structure. In case of a fixed
load, the canonical equation of the force method is

811X1 + A1p = 0. (10.1)

In this equation, the free term A;p represents displacement caused by given fixed
load. Now we need to transform (10.1) for the case of moving load. Since moving
load is unit one, then (for the sake of consistency notations) let us replace free term
A1p by the unit free term &, p; this free term presents a displacement in primary
system in the direction of X; caused by load P = 1. The primary unknown

X, =02
$11

Unit displacement 617 presents displacement caused by primary unknown X; = 1.
Therefore, 811 is some number, which depends on the type of a structure, its param-
eters and chosen primary system and does not depend on the position of the acting
load. However, §;p depends on unit load location. Since load P =1 is traveling,
81 p becomes a function of position of this load, and as result, the primary unknown
becomes a function as well:

1
IL(X;) = —EIL((S“D). (10.2)

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 323
DOI 10.1007/978-1-4419-1047-9_10, © Springer Science+Business Media, LLC 2010
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Influence line for bending moment In case of fixed load, a bending moment at any
section k equals o
Mg =My - X1 + M (10.3)

where X is the primary unknown of the force method; M} is the bending moment
at section k in a primary system due to unit primary unknown X = 1; and M ]g is
the bending moment at section k in a primary system due to given load.

Now we need to transform (10.3) for the case of moving load. The bending mo-
ment M at any section k presents the number, because this moment is caused
by the unit primary unknown X;; the second component X; according to (10.2)
presents a function. The last component, the bending moment M, is caused by
the given load, which is considered as moving load now; therefore, the bending
moment M ]? also becomes a function of the position of this load. As a result, the
bending moment at any section k becomes a function:

IL(My) = My -IL(Xy) + IL (M) . (10.4)

Influence line for shear force In case of fixed load, the shear at any section k is a
number

Or =0y X1 + 0} (10.5)

Similarly in case of traveling load, the shear at any section k becomes a function,
therefore

IL(Qr) = O4IL (X1) +1IL(Qy). (10.6)

For the n-times statically indeterminate structure, the canonical equations of the
force method in case of a fixed load P = 1 are

811 X1 +812Xo + -+ 81n X +81p =0
(10.7)
8n1X1 + 5n2X2 +--- 4 Snan +8nP =0

Unit displacements §;; which are caused by unit primary unknowns present
numbers.

Displacements §; p are caused by unit moving load. Fundamental feature of sys-
tem (10.7) is that the free terms §;p are some functions of position of unit load
P = 1. Therefore, a solution of the system (10.7) leads to the primary unknowns
X; as the functions of the load position, in fact, to /L (X;),i = 1,...,n. Inthis case
the bending moment at the any specified section k becomes function, so influence
line should be constructed by formula

IL(My) = My -IL(X1) + My - IL (X2) + -+ + IL (M}) . (10.8)

Influence lines expressions for shear and axial force at any section may be con-
structed similarly.
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In case of statically indeterminate truss of the first degree of redundancy, the
expression for influence line of internal force, which is induced at any member k of
the truss, may be constructed by formula

IL (Sk) = Sk - IL(X1) + IL(SP). (10.9)

where Sy is the internal force in kth member of a truss caused by the primary
unknown X; =1 in the primary system and IL (S?) is the influence line for kth
member of a truss in the primary system.

Construction of influence lines for internal forces in a statically indeterminate
structure starts from construction of influence lines for primary unknowns IL (X1),
IL(X2),....

Construction of influence lines for statically indeterminate structures by the force
method is recommended to perform using the following procedure:

1. To adopt the primary unknowns and primary system. For continuous beams it is
recommended to choose a primary system as a set of simply supported beams.

2. To write the canonical equations of the force method.

3. Compute the coefficients §;; of canonical equations. These unit displacements
present some numbers.

4. Compute the free terms §;p of canonical equations. These load terms presents
the displacement in the direction of i th primary unknown due to the load which
depends on the location of unit load and therefore presents some functions.

5. Solve the canonical equations and construct the influence lines for primary un-
knowns.

6. Construct the influence lines for reactions and internal forces at specified section.

Below we will show detailed procedure for construction of influence lines by the
force method for continuous beam, hingeless nonuniform parabolic arch, and truss.
As will be shown below, the influence lines for primary unknowns, internal forces,
and reactions for statically indeterminate structures are bounded by the curved lines,
unlike statically determinate structures.

10.1.1 Continuous Beams

Let us demonstrate the above procedure for uniform two-span continuous beam ABC
with equal spans /. It is necessary to construct the influence line for internal forces
at a specified section k (Fig. 10.1a).

Primary System

The structure is the statical indeterminate of first degree. The primary system of
the force method presents two simply supported beams (Fig. 10.1b). The primary
unknown X is the bending moment at the middle support.
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Fig. 10.1 Design diagram of a

the beam and primary system 0.4/ P=1
B El=constant

Influence Line for Primary Unknown X,

Equation of influence line for primary unknown is presented by formula IL (X;) =
—(1/811)IL (81 p), where 81 is a mutual angle of rotation in direction of X; due
to primary unknown X; = 1 and §;p is a slope at the middle support in primary
system due to traveling load P = 1.

1.

For calculation of unit displacement §;; we need to construct the bending
moment diagram M in primary system due to primary unknown X; = 1
(Fig. 10.2a).

Graph multiplication method leads to the following result:

M, xM 1 2 1 21
PR ekl R S B D= D
EI 2 3 El  3El

For calculation of displacement §; p we need to place the moving load at the left
and right spans. Let the load P = 1 be located within the left span of the primary
system. The angle of rotation §; p at the right support B of the simply supported
beam is presented in terms of dimensionless parameter u, which defines the posi-
tion of the load (Fig. 10.2b). If the load P = 1 travels along the right span, then
the angle of rotation &1 p at the left support of the simply supported beam (i.e., the
same support B) is presented in terms of dimensionless parameter v (Fig. 10.2b).
Expressions for §; p in terms of parameters u and v are shown in Fig. 10.2b; they
are taken from Table A.9, pinned—pinned beam. Each span is subdivided into
five equal portions and the angle of rotation §; p is calculated for location of the
P =1 at the each point (u = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) (Table 10.1). Parameter
u is reckoned from the left support of each span, parameters u and v satisfy the
following condition: u + v = 1.
Corresponding influence line for §; p is shown in Fig. 10.2c.

. Influence line of primary unknown X is obtained by dividing the ordinates of

influence line for §; p by —811 = —2//3EI. Corresponding influence line for X
is presented in Fig. 10.2d; all ordinates must be multiplied by parameter /.

We can see that for any position of the load the bending moment at support B will
be negative, i.e., the extended fibers in vicinity of support B are located above the
neutral line.
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Load P=1 in the left span

Load P=1 in the right span
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0.048
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(all ordinates must
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Fig. 10.2 (a) Bending moment diagram in primary system due to X; = 1. (b) Location of the
load P = 1 in the left and right span; (¢) Influence line for 6, p. (d) Primary system and influence

line for primary unknown X,

Table 10.1 Calculation of §,p (coefficient /2/EI is omitted)

P =1 in the left span

P =1 in the right span

. ] =3 12
Point |Parameter Sip = Point |Parameter Sip = ———
6 EI
1(A) |u= 0.0 0.0 6(B) lu=10 0.0
2 u=20.2 0.032 7 v=20.8 0.048
3(k) |lu=0.4 0.056 8 v=20.6 0.064
4 u=0.6 0.064 9 v=038 0.056
5 u=0.8 0.048 10 v=20.2 0.032
6(B)|lu=1.0 0.0 11(C){v=0.0 0.0
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Influence line for bending Moment M

Should be constructed using formula (10.4). Bendiig moment at section k in the pri-
mary system due to primary unknown X; = 11is My = 0.4 (Fig. 10.2a), therefore

IL (My) = 0.4IL (X;) + IL (M}) . (10.10)

Construction of IL (My) step by step is presented in Fig. 10.3.

a
P=1
1 2 3 4 5 6 7 8 9 10 11
Tt T —F——— >
u k T f
[ S =T - ' © T O o '
N o o0 o0 H o0 o0 o (=)} H
— o o o ' [\ o o — '
S o o o S o o o
S o S o S S S o 041L X,
(factor /)
i Load P=1 in the left span i Load P=1 in the right span i
i MP=0 (sec primary system !
; ! in Fig. 10.1.b) |
c ¢ ; | Inf. line M?
: S > i (factor /)

0.12
0.24
------0.16
0.08

1L(Mk) =0.41L(X, )+1L(Mk) ;

0.0288
0.0384
0.0336 =
0.0192

W Inf. line M,
(factor /)

0.2064
0.1216
0.0512

Fig. 10.3 Construction of influence line for bending moment at section k

The first term 0.4IL (X;) of (10.10) is presented in Fig.10.3a. The second
term IL (M,?) is the influence line of bending moment at section k in the pri-
mary system. If load P = 1 is located in the left span, then the influence line
presents the triangle with maximum ordinate at the section k; this ordinate equals to
ab/l = (041 x0.6]) /1 = 0.24].If load P = 1 is located in the right span, then
the bending moment at section k does not arise, and the influence line has zeros
ordinates. It happens because the primary system presents two separate beams. In-
fluence line for M ,? is shown in Fig. 10.3b. Summation of two graphs 0.4IL (X) and
IL (M) leads to the final influence line for bending moment at section k; this influ-
ence line is presented in Fig. 10.3c. The maximum bending moment at the section k
occurs when the load P is located at the same section. The positive sign means that
if a load is located within the left span, then extended fibers at the section k will be
located below the neutral line. It is easy to show the following important property
of influence line for M}. The sum of the absolute values of the slopes at the left and
right of section k is equal to unity.
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Influence line for shear force Q
Should be constructed using formula (10.6). Reaction at support A in primary sys-
tem caused by primary unknown X7 = 1 equals R4 = 1// (1) (Fig.10.2a), so

the shear in primary system at section k due to primary unknown X; = 1 is
O = R4 = 1/1. Therefore

IL(Qx) = ;IL(X1) +IL(Q}). (10.11)

Construction of IL (Qj) step by step is presented in Fig. 10.4.

—

w

W

=)

-
~

o«
—

©

—_

o

—_

—

'
'

'

'

'

i
1

'

'

'

'
-1
'

'

'

'

'
|~
1

'

'

'

'

'
i ml
'

'

'

'

'

'

'

I
I
'

|

.

h

'

|

'

'

'

'
[~
'

'

'

'

'
—
'

'

'

'

'

'

2
L d

(= < O
< [~ D
S 38 3 .
=] (=] (=] —ILXI
ﬂ |
b L
H Inf. line O

(2]

/é 0.248 /é 0.2 é .
0.516 0.6
04
Ay

0.484

" ' l 1 1
IL(Q)) = 71L(X1)+IL(Q2)

0.072
0.096 -
0.084
0.480

Inf. line O,

0.304
0.128

Fig. 10.4 Construction of influence lines for shear force at section k

The first term of (10.11) is the influence line for X; scaled by 1/, so ordinates of
this graph (Fig. 10.4a) are dimensionless. The second term IL (Qg) is the influence
line of shear force at section k in the primary system. If load P = 1 is located in
the left span, then influence line of shear force for simply supported beam is shown
in Fig. 10.4b. If load P = 1 is located in the right span, then shear at section k
does not arise, and influence line has zeros ordinates. Summation of two graphs
(1/)IL(X;) and IL (Qg) leads to the required influence line for shear force at
section k; this influence line is presented in Fig. 10.4c.
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Discussion. Obtained influence lines allow calculate bending moment and shear
for any section of the beam. Let P = 10kN is located at section 9. In this case, the
moment

My = —0.0336 x [ x 10 = —0.336/ (kNm).

It means that reaction of the left supportis Ry = M /0.4] = —(0.336//0.4]) =
—0.84 kN. Negative sign shows that reaction is directed downward. Now construc-
tion of bending moment and shear diagrams has no problem. For example, the shear
is Q1 =... = Q" = —0.84kN. The bending moments at specified points are

M, = —0.84x0.2] = —0.168kNm, ..., Ms = —0.84x0.8/ =—-0.672kNm

It is obvious that same results may be obtained using influence line for X;. If load
P = 10kN is located at section 9 then moment at support B is X1 = —0.84/. Neg-
ative sign indicates that extended fibers in vicinity of support B are located above
the neutral line, i.e., this moment acts on the support B of the left span clockwise
and on the same support B of the right span in counterclockwise direction. In this
case the reaction of support A equals R4 = X;// = —(0.841/1) = —0.84kN.

Influence line for primary unknown X should be treated as a fundamental char-
acteristic for given structure. This influence line allows us to construct the bending
moment diagram in case of any fixed load.

Example 10.1. The uniform continuous beam with two equal spans / = 10m is
loaded by two forces P; = 10kN and P, = 20kN, which act at points 2 and 4
(Fig. 10.5). It is necessary to construct the bending moment diagram. Use the influ-
ence line for bending moment X at the middle support B (Fig. 10.2d).

P,=10kN| P,=20kN
A B C
&2 4 2=
i 2m 4m ‘ 4m 10m
= < \O N N O <t 0
<t [ D o~ =~ [N x© <
S S S S S o o o Inf. line X,
(factor /)

lPZ M=24kNm ‘3
T =
' : &« :
RAT | i 2%

AWTWM M kNm

27.2
41.6

Fig. 10.5 Construction of bending moment diagram using influence line for primary unknown X
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Solution. The bending moment at the middle support B using corresponding influ-
ence line is

Xy =Mp=1)_ Py=10(~10x0.048 — 20 x 0.096) = —24kNm.

After that the initial statically indeterminate continuous beam may be considered as
a set of two statically determinate simply supported beams subjected to given load
and moment at the support B. In other words, the statical indeterminacy has been
disclosed.

Reaction at support A is

_ 10x8+20x4-24

Ry = — 13.6kN.
4 10

Bending moment at specified points are

M, = 13.6 x2 =27.2kNm,
My =13.6x6—10x4 =41.6kNm,
Mp =136 x10—10x8 —20 x 4 = —24kNm.

Discussion. Influence line for X; should be considered as a reference data for
analysis of beams subjected to different set of fixed loads. If we need to analyze
a structure once due to given set of loads, we can use any classical method or use in-
fluence line as a referred data. If we need to analyze the same structure many times,
and each time the structure is subjected to different set of loads, then it is much more
convenient to construct influence line once and then use it as reference data for all
other sets of loadings. Thus, combination of two approaches, i.e., moving and fixed
load, is extremely effective for analysis of structures.

10.1.2 Hingeless Nonuniform Arches

Let us apply the general procedure for analysis of symmetrical parabolic nonuni-
form arch with clamped ends shown in Fig. 10.6a. The equation of the neutral line is

4
y = l—];(l—x)x.

Assume that the cross-sectional moments of inertia varies by law

I
cos @y
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where /¢ corresponds to the highest point of the arch (crown C); this law corre-
sponds to increasing the moment of inertia from crown to supports. It is necessary
to construct the influence lines for reactions of the support A and bending moment
at the crown C.

P1X2

X3

Primary system

! Inf. line H
: (factor I/f)

NN O 0 O T oo T © o o wn
eSS aunITRILIFLIa=28L !
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-l e e e el el e e R = === ==l =N =N NS
H ' H
d | ' =
' 1
| |
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S oA T ~FTESAN O~ OOAD
R I L e B S S T At T S B B A A
0O 00000000000 OoOoCooo oo
|
; . ;
e 3 0.4 i 0.6/ ;
WV~ 0 O w0 o I 1
PN O T A0 ® ! '
N B O O W on — !
reeeee e D .
[ e R e I = == ' Inf. line M,
; +T N0 O N OO W Al (factorl/)
! D~ =0 > =& — — o !
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| o2 o
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i i |
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R R e R e e g S = - -0 O O !
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O O o o o oo S OO oo oo Inf.lineMC
a S O W WV O =
fLexeg (factor/)
S AaYTaos
e e 2
S oo oo

Fig. 10.6 (a, b) Parabolic arch with clamped ends. (a) Design diagram; (b) Primary system. (c—f)
Parabolic non-uniform arch. Design diagram and influence lines
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This arch is statically indeterminate to the third degree. Let us accept the primary
system presented in Fig. 10.6b, so the primary unknowns are the bending moment
X1, the normal force X5, and shear X3 at the crown C of the arch.

Canonical equations of the force method are

811 X1 + 812X2 +813X3 + A1p =0,
821 X1 + 822 X2 + 623X3 + Azp =0, (10.12)

831 X1 + 632X2 + 833 X3 + Asp = 0.
The unit coefficients can be calculated by formula

I

M;- M
Six = / Mi My
El,
0

Since X; and X, are symmetrical unknowns, the unit bending moment diagrams
‘M and M, are symmetrical, while M; diagram is antisymmetrical. Is obvious
that all displacements computed by multiplying symmetrical diagram by antisym-
metrical ones equal to zero. Therefore, §13 = 831 = 0, §23 = 832 = 0, and the
canonical equations (10.12) fall into two independent systems

811 X1 +012Xo+A1p =0
and 833X3 + Azp = 0. (10.13)
821 X1 + 022X + Azp =0

Note that it is possible to find a special type of primary system in order that all
secondary coefficients will be equal to zero. Corresponding primary system is called
a rational one. We will not discuss this question.

Coefficients and free terms of canonical equations will be calculated taking into
account only bending moments, which arise in the arch. The expression for bending
moments in the left part of the primary system for unit and loaded states (the force
P = 1is located within the left part of the arch) are presented in Table 10.2.

Table 10.2 Bending moments due to unit primary unknowns and
given unit load

M,|M, M, Mp_,
1(f—y) —1(——x) M) =—1(a—x)

—

Bending moment
expression
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10.1.2.1 Unit Coefficients

] I

_ - 1
M- M, 1 x1xcospy dx dx /
811 = —ds= = — = =
EIl, Elc COSQy
0

(=}
(=}

I
B af dc  fl S
- / [f s x)x] e ~ 3Elc 2T T ag
0

EI, Elc
0 0
l 4f Zdx  fu
Z/[f_z_z(l_ ) ] Elc ~
Cc 5Elc
0

: >
M3 'M3 l dx l3
d33=2 [ ——ds =2 ——=X| = =
El, 2 Elc  12Elc
0 0

10.1.2.2 Free Terms

Since P = 1, the free terms are denoted through §; p
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Canonical equations (10.13) become

l 2
]X]+f_X2=a_
3 2
a Pxiepe(to")—o
an —_— u - — = =
1277 4 6
1l 1, 121
X _ IX=— 2(_ 2 s 22
3 it/ =—fat | =g+ qu—qu

The solution of these equations leads to the following expressions for the primary
unknowns in terms of dimensionless parameter u = a/ [, which defines the location

of the unit force P:
3 5 5
X, =u? (—— + —u— —uz)l

42 4
15 !
X2 = Zuz (1 —I/t)z 7
1 u
X3 = 1242 (_Z + E) (10.14)

These formulas should be applied for 0 < u < 0.5. Since X; and X, are symmet-
rical unknowns, the expressions for these unknowns for the right part of the arch
(0.5 < u < 1) may be obtained from expressions (10.14) by substitution # — 1 —u.
Since X3 is antisymmetrical unknown, the sign of expressions for X3 should be
changed and parameter u# should be substituted by 1 — u. Influence lines for the
primary unknowns X;, X5, and X3 may be constructed very easily.

After computation of the primary unknowns we can calculate the reaction and
internal forces at any section of the arch.

10.1.2.3 Reactions of Support A

The following reactions should be calculated: thrust, vertical reaction, and moment.
Thrust:

15 l
H:Xzzfuz(l—u)zy for 0 <u<1.0

This formula presents the thrust of the arch as the function of the dimensionless
parameter u, i.e., this expression is the influence line for H (Fig. 10.6¢). Maximum
thrust is Hyox = 0.2344 (P1/f) and it occurs, when the force P is located at the
crown C. This formula shows that decreasing of the rise f leads to increasing of
the thrust H.

Vertical Reaction:

1
RA=X3+1=12u2(—Z+g)+1 for 0 <u <05
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Since X3 is antisymmetrical unknown, for the right part of the arch it is necessary
to change sign on the opposite and make the change u — 1 — u. Therefore, if unit
load P is located on the right part of the arch then reaction R 4 is

11—
Ri=X;=-12(1-u)? (_Z+TM) for 0.5 < u < 1.0.

Corresponding influence line is presented in Fig. 10.6d.
Moment at Support A:

/ 9 5
M= —lul + X, +X2f_X3§ =u (—1 + Eu—6uz+ 5u3)1 for 0<u<0.5
! 2(3 >
MA=X1+X2f—X3§=(1—u) Eu —u)l for 0.5<u<1.0.
Corresponding influence line is presented in Fig. 10.6e.

10.1.2.4 Bending Moment at Crown C

3 5 5
Mc = X; = u? (—Z + Eu—zuz)l for 0 <u <0.5.
Since X; is symmetrical unknown, for the right part of the arch it is necessary to
make the change u — 1 — u. Therefore, if unit load P is located on the right part of
the arch, then bending moment at crown is

3 5 5
Mc = X; :(1—u)2(—z+§(1—u)—1(1—u)2)1 for 0.5 <u < 1.0.

Influence line for M¢ is presented in Fig. 10.6f.

Conclusions 1If load P is placed in the portion of 0.132/ in both sides from crown
C, then the extended fibers at C are located below the neutral line of the arch. The
direction of the support moment M 4 depends on the location of the load: if load P
is placed within 0.4/ from the left support, then extended fibers in vicinity of the A
are located outside of the arch.

Discussion

1. For given parabolic nonuniform arch we obtained the precise results. It happens
because a cross moment of inertia is increasing from crown to supports according
to formula I, = I./cos@yx. Since dx = dscos ¢y, ds/El, = dx/EI, and all
integrals are presented in exact form.

2. In arch with clamped supports subjected to distributed load along half-span the
maximum bending moments arise at supports. For this case, the following law
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for moment of inertia of cross section may be assumed: /,cos ¢x = I.. This
expression corresponds to increasing of bending stiffness of the arch from crown
to supports.

3. In arch with pinned supports, the zeros bending moments arise at supports. For
these cases, the following law for moment of inertia of cross section may be
taken as: I.cos ¢x = I,. This expression corresponds to decreasing of bending
stiffness of the arch from crown to supports. Both types of arches are presented
in Fig. 10.7.

a b
I =1-cosp,

2x |

Fig. 10.7 Types of nonuniform arches

Thus, it can be observed, that shape (10.7a) is not wise to use for pinned type of
supports, while the shape (10.7b) is dangerous to use in case of clamped supports.
It is obvious, that the laws for moment of inertia of cross section in real structures
are not limited to two considered cases above.

Example 10.2. Design diagram of symmetric nonuniform parabolic arch with
clamped ends is presented in Fig. 10.8. The cross-sectional moments of inertia
varies by law I, = I¢/ cos @y as considered above. The arch is subjected to con-
centrated load P = 30kN and uniformly distributed load ¢ = 2 kN/m, as shown on
the design diagram. Calculate the reactions of support A and internal forces (shear
and bending moment) at the crown C. Use the influence lines obtained above.

0.25/=6m l P=30kN IV VY ¢=2kN/m

M, <> My f=6m
< 02 03 04 05 06 07 08 )
17”””J1 7777777 1: 7777777777777777 T TR }}
R V=12m /2=12m 54
R, | [ Rp

Fig. 10.8 Design diagram of parabolic nonuniform arch

Solution. Influence lines for reactions and bending moment at the crown C are
shown in Fig. 10.6¢c—f. For design diagram in Fig. 10.8, the following factors should
be taken into account: [/ f = 4,and [ = 24 m.
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Internal forces may be defined using the corresponding influence lines by formula
S = P-y-+gq-S$2,where y is the ordinate of influence line under concentrated force,
§2 is area of influence line within acting distributed load. The area of curvilinear
influence line may be calculated approximately by replacing curvilinear segments
between two neighboring ordinates by straight lines (Fig. 10.9).

Fig. 10.9 Approximation for
calc1'11'at10n f’f area of ' Vol vet| Ve Vot |V
curvilinear influence line ] ]

| n | h ] | |

If a horizontal distance /, which separates these ordinates, remains constant, then
the area bounded by two ordinates y, and y,, will be given by formula

'erznZh(%+Yn+1+Yn+2+---+Ym—1+y7m)- (a)

Ordinates of influence lines in Fig. 10.6¢c—f are presented over 0.05/ = 1.2 m. Now
we can calculate all reactions at support A due to fixed load P and g.

Thrust

0.2344 0.2160
+0.2295 4

/
H = ? |:P ><0.1320+q( ) 1.2i| = 20.20kN

Vertical reaction
0.5 0.352
Ry = [P x0.844 + ¢ (7 + 0.425 + T) 1.2] = 27.36kN

Moment at support

0.0312 0.048
4 0.0418 + T) 1.2] = —33.32kNm.

My=1 [—P x0.0528+q(

Obtained values of reactions at support A (as well as the influence lines for
primary unknowns X;) allow for calculating all internal forces at any section of
the arch. For this it is necessary to eliminate all constraints at the left end of the arch
and replace them by the reactive forces just founded, i.e., to consider the given arch
as statically determinate one, which is clamped at B only and is subjected to given
load and reactions at support A. For example, bending moment at crown C, by def-
inition, equals

[ /
MczRAE—H-f—i-MA—P 5—0.251
=2736x12-20.20x 6 —33.32-30(12 - 6) = —6.2kNm.

Here we again use the fixed and moving load approaches in parallel way.
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The bending moment at crown C using the influence line

0.0468 0.008
Mc =1 [—P x 0.0127 4+ ¢q ( B + 0.0246 + T) 1.2] = —6.15kNm.

Relative error is
6.2—6.15

6.175

This error is due to approximate calculation of the area of influence lines.
Shear force at crown C is obtained by projecting all forces, located to the left of
this section, on the vertical:

QOc =R4q4— P =2736—-30=—-2.64kN.

100% = 0.8%.

Discussion. Influence lines for reactions of supports have the fundamental mean-
ing, since they allow easy calculations of reactions of statically indeterminate arch,
subjected to any fixed load. After that, calculating internal forces at any section of
the arch is performed as for statically determinate structure.

10.1.3 Statically Indeterminate Trusses

In case of trusses the general procedure for construction of influence lines has the
fundamental features. Let us consider the statically indeterminate truss shown in
Fig. 10.10a. The axial stiffness of all members equals EA. It is required to construct
the influence line for reaction at the middle support. The structure under consid-
eration is externally statically indeterminate truss of the first degree of redundancy.
Let the primary unknown X be a reaction of the middle support; the primary system
is shown in Fig. 10.10b.
Force method leads to the following expression for the primary unknown

X1 =—(1p/d11),

where 8;p is the displacement in the direction of 1-th primary unknown due to
traveling load P = 1.

Principal concept Expression for X; may be modified. According to the reciprocal
displacements theorem, 1 p = §p1 and expression for X; becomes

x, = o _ _om (10.15)
$11 $11

This equation contains the in-depth fundamental concept: instead of calculation
of displacement 81p in the direction of primary unknown X, due to the moving
load P = 1, we will calculate displacements §py at points of application of load
P =1 due to unit primary unknown X; = 1 (Fig. 10.10c). This fundamental idea
also will be used in the last section of this chapter for construction of models of
influence lines.
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Fig. 10.10 (a, b) Design diagram of a statically indeterminate truss and primary system. (c)
Reciprocal displacements theorem. (d) Internal forces N caused by unit primary unknown X; = 1.
(e) Design diagram for calculation of the first elastic load. (f) Design diagram for calculation of
the second elastic load
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Unit state and corresponding internal forces in all members of the truss are shown
in Fig. 10.10d. These internal forces will be used for calculation of §p; and §1;.

Calculation of § p1 Since the lower chord of the truss is loaded by traveling load,
we have to find the vertical displacements of the joints of the lower chord. The most
effective procedure for calculation of § p; is the elastic load method.

Elastic load W According to this method we need to apply two unit couples of
opposite directions to the members, which are located to the left and to the right from
joint 1. Let the left couple rotate counterclockwise and right clockwise; the couples
are not shown. The each couple should be presented as two forces at joints O and 1, 1,
and 2. These forces have a vertical direction and their values are 1/d = 1/4 = 0.25.
The group of four loads at joints 0, 1, 2 is shown in Fig. 10.10e. These four forces
present a self-equilibrate set of forces, therefore the reactions of supports are zeros.
Corresponding internal forces in each element of the truss in the primary system
caused by these four applied forces 0.25 each are shown in diagram N ;.
The first elastic load is determined by formula

N{-N-I
W, = Z‘E—A, (10.16)

where N is the internal force in each element of the truss in the primary system
caused by the unit primary unknown X; = 1; these forces are shown in Fig. 10.10d.
Summation is performed by all elements of the truss. The first elastic load according
to (10.16) becomes

1 5 1
Wy =2 0.666)4—— + — x 0.833 x 5 X —
1 ( )( ) —|— x X XEA

EA
members 0—1, 1—2 member 0—1/
+ ( 0.833) x 5 1 —1'776
= X 5% — —
EA EA

member 2—1/

Elastic load W» The loads 1/d = 1/4 = 0.25 are applied at joints 1 and 2, 2 and 3
as shown in Fig. 10.10f; corresponding internal forces are shown on the diagram N ».
The second elastic load becomes

W—ZM 2w L1333 at (=2 (—0833)x5xi
2T EA 3 EA ' EA

members 1/—27,2/—3/

members 1/ —2

+ > 0.833 x 5 X I _ 3%
12) EA =~ EA’

members 2—3

Elastic load W3 Similar procedure leads to the following result for third elastic load
W5 = 8.525/FEA.
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Since the structure is symmetric, the elastic loads Wy = W, and W5 = W;.

Fictitious beam presents the simply supported beam, which is loaded by elastic
loads (Fig. 10.10g). The elastic load W is positive, so this load must be directed as
forces at support 1, i.e., upward (Fig. 10.10e). Similarly, all the elastic loads should
be directed upward (Fig. 10.10g).

g
Design g
diagram | / 1O NULZZ . L. . >SNLZ L. «@
d=4m
[
86.7 911 69.648
Fictitious
beam A B M/=5Pl
-&- T T T T T —g— (Factor 1/EA)
l 1.776|  3.555| 8525 3555 [1.776 l ,
R/{ Ry
h 0803 L0 03803
0.443 0.443
Inf. line X,
i 24 4
Design g
diagram ; A
A - B
BEE == 5 6
d=4m a T
R, P=60kN  [Rc=X; P,=20kN

Fig. 10.10 (g) Fictitious beam subjected to elastic loads and corresponding bending moment di-
agram; (h) Influence line for primary unknown X;. (i) Truss subjected to fixed load P; = 60kN
and P, = 20kN

Reactions at the left and right supports of fictitious beam are 9.5935/FA. The
corresponding bending moment diagram is presented in Fig. 10.10g; factor 1 / EA
for all ordinates is not shown. The ordinates of this diagram present the displace-
ments of corresponding joints of the truss due to unit primary unknown X; = 1. It
is obvious that the unit displacement becomes §1; = 86.7/ E A.

10.1.3.1 Influence Line for Primary Unknown X
This key influence line is obtained by dividing all ordinates of diagram §p;

(Fig. 10.10g) for fictitious beam by (—8;11). Corresponding influence line X; is
presented in Fig. 10.10h.
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In case of arbitrary external load the internal force in any member can be
calculated using the influence line for primary unknown X;. For example, the truss
is loaded by concentrated force P; = 60kN at joint 3 and P, = 20kN at joint 6 as
shown in Fig. 10.10i. For this loading the primary unknown X; which is the reaction
at support C becomes Rc = X; = ) P;y; = P10.803 + P>0.443 = 57.04kN.

Now we can calculate the reaction at support A:

R4 — ZMB =0: —R46d + P14d — Rc3d + Pad =0 — R4 = 34.81kN.

After that we can calculate any internal force. For example, for force U;—_3 (sec-
tion a — a) we get:

34.81 x 4
Uiy — S ME" = 0: —R4d+U1_sh =0 — U3 = TX — 46.41kN.

Summary

1. The reciprocal displacements theorem allows to consider § p; as model of vertical
displacements of joints of the truss (within a constant multiplier which equals
—1/811).

2. For the calculation of §p; the elastic loads method have been applied. This
method is more effective in comparison of Maxwell-Mohr formula by the fol-
lowing reason. When a set of four loads is applied, then the internal forces arise
only in the members, which form the two adjacent panels of the truss. There-
fore, procedure of summation is related only to elements, which belongs to these
two panels of the truss, while using the Maxwell-Mohr integral, a summation is
related to all elements of the truss.

3. The elastic loads method also allows calculating unit displacement &q;. It is
obvious that §1; could be calculated using Maxwell-Mohr formula

N-N-I

=2 T

However, since in the unit state practically in all members of the truss arise inter-
nal forces (Fig. 10.10d), then this procedure becomes cumbersome. In fact, the
elastic load method allows calculating 6 p; for all joints and 617 in one step, as
shown in Fig. 10.10g.

4. Influence line of internal force, which is induced at any member k of the truss,
may be constructed by formula (10.9).

5. Influence line for primary unknown X; should be treated as key influence line.
Indeed, using this influence line we can calculate X in case of arbitrary fixed
load. After that, the truss should be considered as statically determinate one,
which is subjected to the given loads and the force X.
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10.2 Construction of Influence Lines
by the Displacement Method

Let us consider a first-degree kinematically indeterminate structure. In case of a
fixed load, the canonical equation of the displacement method is

riZi + Rip =0.

Now we need to transform this equation for the case of moving load. In this equation
the free term R;p represents reaction caused by given actual load. Since moving
load is unit one, then (for the sake of consistency notations) let us replace a free
term R;p by the unit free term r; p; this free term presents a reaction in primary
system in the introduced constraint 1 caused by load P = 1. The primary unknown

rip
Z) =——.

i

The unit reaction rq; presents reaction in the introduced constraint caused by unit
displacement of this constraint. Therefore, r1; is some specific number, which de-
pends on the type of a structure and its parameters and does not depend on the
position of the acting load. However, r; p depends on unit load location. Since load
P = 1 is traveling, r1 p becomes a function of position of this load, and as result,
the primary unknown becomes a function as well:

1
IL(Z)) = —EIL (r1p). (10.17)

The function IL (r; p) may be constructed using Tables A.3—A.6; nondimensionless
parameters u and v (u + v = 1) denote the position of load P.

In case of fixed load, a bending moment at any section kK may be calculated by
formula

M; =ﬁk21 +M]?.

where Z, is the primary unknown of the displacement method; M is the bending
moment at section k in a primary system due to unit primary unknown Z = 1; and
M ,? is the bending moment at section k in a primary system due to given load.

Now we need to transform this equation for the case of moving load. The bending
moment M, at any section k presents the number, because this moment is caused by
the unit primary unknown Z; the second component Z; presents a function. The
last component moment M, ,? is caused by the moving load, therefore the bending
moment M ]8 also becomes a function of the position of unit load. As a result, the
bending moment at any section k becomes a function, which can be presented as
follows

IL (My) = My -IL(Z1) + IL (MD). (10.18)
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In case of fixed load, the shear at any section k is a number

Ok =0y -Z1+ 0}.

Similarly in case of traveling load, the shear at any section k becomes a function,
therefore

IL(Qx) = 0y -IL(Z1) +IL(Q}). (10.19)

For the n-times kinematically indeterminate structure, the canonical equations of
the Displacement method in case of a fixed load P = 1 are

rmiZi+ri2Zy+ -+ rimnZy+rip=0
(10.20)
rmZ1 +1maly~+ -+ runZy +rpp =0

Unit reaction r; are caused by unit primary unknowns. They can be calculated using
the typical procedures of the displacement method; these reactions are presented as
the specific numbers.

Reaction r;p can be calculated using Tables A.3—A.6. Fundamental feature of
system (10.20) is that the free terms r;p are some functions of position of unit load
P = 1. Therefore, a solution of the system (10.20) leads to the primary unknowns
Z; as the functions of the load position, in fact, to IL (Z;),i = 1,...,n.

Bending moment at any section k in case of fixed load may be calculated by
formula

My=M-Zi+My-Zo+ ...+ MJ.

In case of moving load, the bending moment at the any specified section k becomes
function, so influence line should be constructed by formula

IL(My) = My -IL(Z1) + My - IL(Z2) + ... + IL (M) (10.21)

Influence lines for shear and axial force at any section can be constructed similarly.
Similarly to the force method, the construction of influence lines for internal
forces in statically indeterminate structures by the displacement method starts from
construction of influence lines for primary unknowns IL (Z;), IL(Z5,),....
The following procedure may be recommended for construction of influence
lines for statically indeterminate structures by the displacement method:

1. Determine the degree of kinematical indeterminacy, construct the primary system
and formulate the canonical equations of the displacement method.

2. Compute the coefficients r;; of canonical equations; they are unit reaction at
introduced constraint i caused by unit displacements of introduced constraint k.
These unit reactions present the some specific numbers.

3. Construct the expressions for free terms r;p of canonical equations. These load
terms presents reaction at introduced constraint i due to load, depends of location
of unit load and therefore present some functions.
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4. Solve the canonical equations; since the free terms are functions, the primary
unknowns will be also present the functions of location of unit load.

5. Construct the influence lines for primary unknowns. This step presents the central
and most important part of the procedure.

6. Construct the influence lines for reactions and internal forces (bending moment
and shear) at specified section.

The detailed procedure of construction of influence line for primary unknown and
internal forces for continuous beam and frame will be illustrated below.

10.2.1 Continuous Beams

Let us demonstrate the above procedure for uniform two-span continuous beam ABC
with equal spans /. The purpose of analysis is construction of influence lines for
bending moment and shear at a specified section k (Fig. 10.11a).

Primary system The structure is kinematically indeterminate of the first degree. The
primary system of the displacement method is shown in Fig. 10.11b. The primary
unknown Z is the angle of rotation of additional constraint at the middle support.

10.2.1.1 Influence Line for Primary Unknown Z;

For construction of this influence line we will have to apply the formula (10.17)

1. For calculation of r;; it is necessary to plot the bending moment diagram due to
primary unknown Z; = 1 (Fig. 10.11c¢). It is obvious that r1; = 6EI/ .

2. For calculation of ry p it necessary to consider the load P = 1 located within the
left and right span separately. Bending moment diagrams due to traveling load
P =1 are shown in Fig. 10.11d.

Expressions for reactive moment r;p for different beams are presented in
Table A.3. Note that length vl is measured from the pinned (roller) support. Or-
dinates of influence line for r; p in terms of position v of the load P =1 in the
left and right spans are presented in Table 10.3.

Table 10.3 Calculation of rp

Moving load P = 1 at the left span || Moving load P = 1 at the right span
Point|v |rp = év (1 - UZ) Point |v |rip = —%U (1 - vz)

1 0 (0 6 1.0 0O

2 0.210.096/ 7 0.8 | —0.144]

3 0.410.168/ 8 0.6 | —0.192/

4 0.6]0.192/ 9 0.4 | —0.168/

5 0.810.144/ 10 0.2 | —0.096/

6 1.0]0 11 0 0




10.2 Construction of Influence Lines by the Displacement Method 347

0.4/ P=1
B EI=constant

/ /

. H . 4 \‘
. (E
2p7 |04 ‘ 3EI T 3EI 3EI

™~ Inf. line Z,
(factor 1 2 /EI)

Fig. 10.11 (a, b) Design diagram of the beam and primary system. (¢) Bending moment diagram
caused by unit primary unknown and calculation of rq;. (d) Calculation of r;p. (e) Continuous
beam. Influence line for primary unknown Z;

3. Influence line of primary unknown Z; is obtained according to formula (10.17):
all ordinates of influence line for r{ p (Table 10.3) should be divided by

—7112—6(EI/Z)

Corresponding influence line for Z; is presented in Fig. 10.11e; all ordinates
must be multiplied by parameter /2 /EI.
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If load is located on the right span then angular displacement at support B is posi-
tive, i.e., this displacement occurs clockwise.

10.2.1.2 Influence Line for Bending Moment M

This influence line should be constructed by formula (10.18). The bending mo-
ment in primary system at section k due to primary unknown Z; = 1 is shown
in Fig. 10.11c and equals to

— 3EI EI

= _o4=—122"
k I I

<

the negative sign means that extended fibers at section k are located above the
neutral line. Therefore

IL(My) = —1.2?&(21) +1IL(MY). (10.22)

The first term —1.2 (EI/[) IL (Z;) of (10.22) is presented in Fig. 10.12a. The second
term IL (M ,?) presents the influence line of bending moment at section k in primary
system. For construction of this influence line we need to consider a load P = 1
placed within the left and right spans (Fig. 10.12b).

Load P = 1 in the left span (Fig. 10.12b). Reaction of the left supportis R =
u?/2 (3 — u) (Table A.3). The bending moment at section k depends on the location
of the load P = 1 with respect to section k (Table 10.4).

Table 10.4 Calculation of 7L (M)

Load P = 1islocated to the left of Load P = 1 is located to the right
section k(u > 0.6) of section k(u < 0.6)
Point| u M,? = R-04] — P(0.4] —vl) Point| u M,? = R-04]
w? w?
1 1 5 B—u)04 —1(04—v)=|0 k,3 106 > (3—u)0.4/] 0.1728]
2
2 0.8 % (B—u)0.4l —1(u—0.6) | 0.081617|| 4 0.4 0.0832/
k3 | 0.6 0.1728/ || 5 0.2 0.0224/
6 0 0

Load P = 1 in the right span. In this case the bending moment at section k does
not arise (because the introduced constraint), and influence line has zeros ordinates.
Influence line M} is shown in Fig. 10.12b.

The final influence line for bending moment at section k is constructed using
expression (10.18) and is shown in Fig. 10.12¢c. The same result had been obtained
early by the force method.
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Fig. 10.12 (a—c) Construction of influence line for bending moment M

10.2.1.3 Influence Line for Shear Force Q

This influence line should be constructed by formula (10.19).

According to Fig. 10.11c, the reaction at the support 1 due to Z; = 1 is directed
downward, so the shear in primary system at section k due to primary unknown
Z1 = lis Qy = 3EI/I. Therefore, (10.19) becomes

IL (Qk) = —%IL(ZO +1IL(Q}) . (10.23)

The first term — (3E1/12) - IL (Z;) of the (10.23) is presented in Fig. 10.13a. The
second term of the (10.23) presents influence line of shear at section k in the primary
system. For calculation of this term we need to consider location of the load P = 1
in both spans separately.
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Table 10.5 Calculation of IL (Q?)

10 Influence Lines Method

Load P = 1 islocated to the left of
section k, (u > 0.6)

Load P = 1 is located to the right
of section k (1 < 0.6)

Point | u O, =R-P Point | u 2 =
2 2
1 1 IL(Qp) = ”3 G-—w—1 |0 k3 | 06|1L(Q)) = ”5(3 —u) | 0432
2 |os 0296 || 4 |04 0.208
k3 |06 0s68 |5 |02 0.056
6 |o 0

Load P = 1 in the left span Shear force at section k depends on the location of
the load P = 1 with respect to section k (to the left or to the right). Calculation of

shear at section k is presented in Table 10.5.

Load P = 1 is in the right span In this case the shear at section k does not arise,
and influence line has zeros ordinates. The final influence line for shear Qy is con-
structed using the expression (10.23). This influence line is presented in Fig. 10.13c.
The same result had been obtained early by the force method.

Fig. 10.13 (a—c) Construction of influence line for shear Qj

Discussion

j BN
—_
(=}
[
—_

| Final

| Inf. line Q)

Inf. line Q,

1. Influence lines for M ]? and Qg for the force method are bounded by the straight
lines, because the primary system is a set of statically determinate simply sup-
ported beams. The same influence lines in the displacement method are bounded
by the curved lines, because the primary system is a set of statically indetermi-
nate beams.



10.2 Construction of Influence Lines by the Displacement Method 351

2. If a load is located in the right span, then M,? and Q,g are zero. In the force
method it happens because the primary system presents two separate beams;
therefore, the load from one beam cannot be transmitted to another. In the dis-
placement method it happens because the introduced support in the primary
system does not allow transmitting of internal forces from the right span to the
left one.

Example 10.3. The two-span beam with equal spans / is subjected to force P as
shown in Fig. 10.14a. The beam is divided into ten equal portions; the number of
joints is presented in Fig. 10.11e. Find the reaction at the middle support B. Solve
this problem by three different ways (a) Use the influence lines for My and Q:; (b)
use the influence lines for primary unknown of the displacement method; (c) use the
influence lines for primary unknown of the force method.

0.096P P
1 3 | 6 l 11
& i <58
0.0384 PI 04/
0.096P RB ]
| 0.4/ | 0.6/ | ! ‘
b Zy

o le—~

oy
+°-%

l dul=0.41| ul=0.6 4
R R
y | / BII / Rc

P
1 B l 11
& T
X1<~’T ~—> X, 0.6
| , Xyl TX1/1+0.6P

Fig. 10.14 (a) Design diagram of the beam and calculation of reaction at support B using the influ-
ence line for internal forces at section k. (b) Calculation of reaction at support B using the influence
line Z; of the displacement method. (¢) Calculation of reaction at support B using the influence
line X; of the force method
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Solution.(a) Since aload P is located at point 8, the internal forces at section k ac-

(b)

(©)

cording to Figs. 10.12c and 10.13c are My = —0.0384P/ and Oy = —0.096P.
Now we can make a cut section of the beam at the point 3 (k) and show cor-
responding internal forces at this section (Fig. 10.14a). Direction of the bending
moment and shear are shown according to their signs.

The free-body diagram for part 1-3 allows us to find the reaction of support
A (0.096 P downward) and to perform checking of calculation

> M4 =0.09P -0.4] —0.0384P1 = 0.

Free-body diagram for part 3-11 allows calculating all reactions and construct-
ing internal force diagrams, which correspond to given location of the force P.
For example

Rp — Z Mc =0
—Rpl 4 P -0.6] +0.096P (0.6 +[)+0.0384P1 =0 — Rp =0.792P (}).

If force P is located at point 8, then primary unknown Z; of the displacement
method (Fig. 10.11e) equals Z; = 0.032 (PlZ/EI). Now we can consider two
beams. The left pinned—clamped beam AB is subjected to angular displacement
Z1 only and the right clamped-rolled beam BC is subjected to angular displace-
ment Z; and force P (Fig. 10.14b).

The vertical reaction at support A for the left beam (according to Table A.3)
equals

3EI 3EI PI?

—Z1 = —-0.032—— =0.096P ({).

2 Z1= 5 i )

The vertical reaction at support C for the right beam (according to Table A.3)
equals

Ry =

R = JEl, L Pv 3 )_3E10032P12+PO.42
CTR Ty YT E TRy T

= 0.096P + 0.208P = 0.304P (1)

(3—0.4)

Required reaction at the support B
Rp—>» Y =0: -R4+Rp—P+Rc=0
— —0.096P + Rp — P +0.304P =0— Rp =0.792P (1).

Reaction of the support B using influence line X; of the force method is calcu-
lated by the next way. Primary unknown (bending moment at support B) equals
X1 = Mp = —P -0.096! (Fig.10.2d). Now we can consider two simply sup-
ported beams (left beam is subjected to moment Mp = X only and the right
beam is subjected to Mp = X and force P) as shown in Fig. 10.14c.
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All reactions should be calculated as follows

X1 X1 X1
RA:T =0.096P(]), RB=ZT+0.6P =0.792P, Rc =—T+0.4P=0.304P

Using the above reactions, we can calculate the bending moments for all sections of
the beam

/
M, = —0.096P§ = —0.0192P/,
21
Ms; = —0.096P€ = —0.0384P1,...

Thus, having the influence lines we can easily construct the internal force diagrams
for any fixed loads.

10.2.2 Redundant Frames

Construction of influence lines for statically indeterminate frames may be effec-
tively performed using the displacement method. As in case of the fixed load, the
displacement method is more effective than the force method for framed structures
with high degree of the static indeterminacy. Construction of influence lines for in-
ternal forces at any section of the frame starts from construction of influence lines
for primary unknowns. The following example illustrates the construction of influ-
ence line for primary unknown of redundant frame. As have been shown early, this
influence line should be treated as key influence line.

Figure 10.15a presents a design diagram of statically indeterminate frame. Bend-
ing stiffness EI is constant for all portions of the frame. We need to construct the
influence line for angle of rotation of the rigid joint.

The primary system is presented in Fig. 10.15b. The primary unknown Z; is the
angle of rotation of the rigid joint.

Equation of influence line for primary unknown Z; is IL (Z;) = —#IL (r1ip).

1. Calculation of unit reaction ry,. Bending moment diagram M | caused by unit
rotation of introduced constraint 1 and free body diagram of this constraint is
shown in Fig. 10.15¢. Equilibrium condition of rigid joint leads to r1; = 10i.

2. Calculation of free term ry p. It is necessary to consider two positions of moving
load P = 1: the load is traveling along the left and right spans. The position of
load P = 1 in the each span is indicated by parameters u and v (u 4+ v = 1).
Bending moment diagrams are shown in Fig. 10.15d. Ordinates of bending mo-
ment diagrams for pinned—fixed and fixed—fixed beams are taken from Tables A.3
and A.4, respectively. Note, in our case, the left span of the frame is a mirror
of those presented in Table A.3, however a distance from the left pinned sup-
port is labeled as ul. This should be taken into account, i.e., in formula for M 4
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P in right span

Fip -
A P
) g /ﬂ Pu*vl

Pu {)21
1

ul vl

rp= —u(1-u)?l

Inf. line Z;
Factor /%/EI

Fig. 10.15 (a, b) Design diagram and primary system. (c¢) Unit state and corresponding bending
moment diagram. (d) Calculation of free term r;p. (e) Influence line for primary unknown Z;

(Table A.3), instead of parameter v we must write the parameter u. Therefore, if
load P = 1 is located in the left span, then the free term of canonical equation
isrip = 4 (1—u?). If load P = 1 is located in the right span, then we can
directly apply formula from Table A.4, so r1p = —uv?l = —u(1 — u)?l.

3. Influence line for primary unknown. Having expressions for r1p in terms of
position P and ry; = 10i, the expressions for primary unknown Z; may be
presented as follows:

P = 1 in the left span

2
L(Z) =~ (1) = o (1 =)
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P =1 in the right span

1 5 u , 12

Left and right spans are divided for five equal portions. Calculation of ordi-
nates of influence line of primary unknown at specified points 1-10 is presented
in Table 10.6.

Table 10.6 Ordinates of influence line of primary unknown (factor /2 /El)

Load P = 1 in left span Load P = 1 in right span
2 2
Points |u  |IL(Z)) = —%(1 —uz)ll3 Points |u  |IL(Z)) = %(1 - u)zjl3
0 0.0 0.0 5 0.0 0.0
1 0.2 | —0.0096 6 0.2 10.0128
2 0.4 —0.0168 7 0.4 10.0144
3 0.6 —0.0192 8 0.6 |0.0096
4 0.8 |—0.0144 9 0.8 0.0032
5 1.0 0.0 10 1.0 (0.0
Factor 12/EI 1? ] EI

The final influence line for primary unknown Z; is presented in Fig. 10.15e.

Once constructed influence line for primary unknown presents the fundamental
data, because it carries comprehensive and important information about structure.
This key influence line can be used for analysis of structure subjected to arbitrary
load placed along the loaded counter.

10.3 Comparison of the Force and Displacements Methods

For summarizing, let us compare two fundamental analytical methods of structural
analysis for construction of influence lines; some results are presented in Table 10.7.
As in the case of the dead loads, construction of influence lines for any statically
indeterminate structures starts from determining of number and types of unknown
and presentation of corresponding primary system of the force and displacement
methods.

Notes:

1. In case of continuous beams with pinned end supports both methods lead to the
approximately same time consuming.

2. In case of continuous beams with one or two fixed end supports the displacement
method is more preferable.

3. In case of frames the preferable method depends on the number of the primary
unknowns. For frames similar to those in Sect. 10.2.2, the displacement method is
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10.3 Comparison of the Force and Displacements Methods
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more preferable; if the rolled and pinned supports of this frame will be substituted
by fixed ones, then advantages of the displacement method are obvious.

4. For construction of influence lines for arches and trusses the force method is
more preferable.

10.4 Kinematical Method for Construction of Influence Lines

The shape of influence lines allows finding the most unfavorable position of the
load. The shape of influence line is often referred as a model of influence line. The
model of influence lines may be constructed by kinematical method using Miiller—
Breslau principle, which is considered below.

Let us consider n times statically indeterminate continuous beam. It is required
to construct an influence line for any reaction (or internal force) X at any section of
a beam. Primary system of the force method is obtained by eliminating constraint,
which corresponds to required force X and replacing this constrain by force X.
Primary system presents (n — 1) times statically indeterminate structure. Canonical
equation for specified unknown X; in case of unit load P is presented in the form
811 X1 + 61p = 0. Influence line for primary unknown X becomes

1
IL (X)) = —EIL (d1p) .

where 811 is the displacement in the direction of primary unknown X; caused by
unit primary unknown X; = 1;8;p presents displacement in the direction of pri-
mary unknown caused by moving unit load P.

According to reciprocal displacements theorem, 61 p = 8 p1, where § py presents
displacement in the direction of moving load P caused by unit primary unknown
X1. Therefore, the influence line for primary unknown may be constructed by
formula

IL(X;) = —S%IL (6p1). (10.24)

The ordinates of influence line for any function X (reaction, bending moment, etc.)
are proportional to ordinates of the elastic curve due to unit force X, which replaces
the eliminated constraint where the force X arises (Miiller—Breslau principle). This
principle with elastic loads method was effectively applied previously for analytical
construction of influence lines for statically indeterminate truss. Now we illustrate
the Miiller—Breslau principle for two types of problems. They are analytical compu-
tation of ordinates of influence lines and construction of models of influence lines.
Both of these problems are referred as kinematical method. Our consideration of
this method will be limited only the continuous beams.

In order to construct the model of influence line for a certain factor X (reaction,
bending moment, shear force) by a kinematical method, the following steps must be
performed:
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Indicate the constraint or section, in which factor X arises.

Show the new system by eliminating constraint where factor X arises.

Apply the X = 1 instead of eliminated constraint.

Show the elastic curve due to X = 1 in new system. This curve is a model for
influence line of factor X.

=

Figure 10.16 presents elimination of constraint k where factor X arises and re-
placing this constraint by corresponding force X; case (a) should be used for
construction of influence line for reaction at any support of continuous beam; the
cases (b) and (c) for construction of influence lines for bending moment and shear
at any section k, respectively.

a , b c.
/ k | ! : ! \ i
s ok ' k
‘ { X=M=1 X_Q,L &

A
X=R,=1 k X=0=1

Fig. 10.16 Elimination of constraint and replacing it by corresponding force X = 1

In case (a) a support is eliminated and unit reaction is applied. In case (b) we
introduce hinge k. Now both parts of the beam can rotate at section k respect to
each other, but relative horizontal and relative vertical displacements are absent. In
case (c) we introduce special device that allows for the displacements of each part
in vertical direction, but the relative horizontal and relative angular displacements
are absent.

Figure 10.17a presents two-span uniform continuous beam. The required bending
moment at support 1 is considered as a primary unknown X;. The primary system
presents two separate simply supported beams (Fig. 10.17b). Equation of influence
line for X is described by (10.24).

P=1 P=1 —
b é X 1(, l Primary system M=x,

¢ Y=l d X,=1
\(V T R=VE ey span
s . S v DD — 2‘
SP1 Elastic curve due to X, =1 7 y py

Fig. 10.17 Design diagram, primary system and illustration of reciprocal displacement theorem
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The elastic curve caused by P = 1 in the primary system is presented in
Fig. 10.17b; 81 p is angle of rotation at support 1 caused by moving force P = 1.
Instead of calculation of 8; p for different position of P = 1, we will calculate 6py;
this displacement occurs under the force P caused by unit primary unknown X, as
shown in Fig. 10.17c.

Elastic curve § p; caused by fixed unit couple X; = 1 may be easily constructed
by the initial parameter method (Fig. 10.17d). For the left span

R(x —0)3

Ely = El8py = Elyo + El ) — ————.

where R is the reaction of the left support. Since R = 1/1, and vertical displacement
at initial point yy = 0, the equation of elastic curve becomes

1x3

Initial parameter 6y may be calculated using boundary condition at the right support

(point 6):

1173 l
Ely(l)=EI§ =FElOy — —— = = —.
y () p1 (1) o G 0— 6 CEl

Finally, displacement in the direction P caused by unit primary unknown
X1 = 1, may be written as follows

1?2 x x2
=—>(1-% 10.2
o1 6EIZ( 12) (10.25)

Now we need to compute the unit displacement §;;. Bending moment diagram
caused by unit primary unknown X is shown in Fig. 10.18b. Using the graph mul-
tiplication method we get

121
EIl ~ 3EI
Equation (10.24) leads to the following equation for influence line for bending
moment at support 1:

41 12

Influence line for bending moment at support point 6 is presented in Fig. 10.18c. It
is obvious that this influence line is symmetrical.

2
LX) =% (1 . x—) . (10.26)

Discussion. The same influence line had been obtained early in Sect. 10.1,
Fig. 10.2d. The fundamental difference between both solutions is related to the
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: 1.0 :

Cc :
Inf. line X,
(factor 1)

Fig. 10.18 Unit bending moment diagram and influence line for bending moment at support 1
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free term of canonical equation of the force method. In Sect. 10.1 we calculated a
free term §8; p, which is the angle of rotation at support 1, caused by moving unit
load. In Sect. 10.4 we calculated a free term §p;, which is the vertical displace-
ment at the point of application of the moving load caused by moment X; = 1 at
the middle support 1. Now it is evident that for the construction of influence line
for truss, as shown in Sect. 10.3, we have also used the Miiller—Breslau principle;
however for computation of displacement of the joints, which belong to the loaded
contour, the elastic load method was applied.

As shown above for calculation of 6 p; the precise analytical method has been ap-
plied. As a result, influence line was presented with computed ordinates at specified
points using formula (10.24). Without consideration of constant factor (—1/811),
this formula allows constructing the model of influence line. Thus, the model of in-
fluence line is constructed using only function § p1, which presents the elastic curve.

In other words, if we apply at point a the unit factor X, then the elastic curve
presents the model of the influence line X at point a. If we apply at point a the
unit displacement, which corresponds to the required factor X, then the elastic curve
presents genuine influence line X at point a.

Example 10.4. Design diagram for continuous beam is presented in Fig. 10.19.
Construct the models of influence lines for reactions and internal forces.

Solution.

Influence line for reactionR1 In this case we need to eliminate a constraint, where
the vertical reaction R arises and apply the positive reaction R;. Elastic curve due
to unit reaction R; in the new system is a model of influence line for R;. If load
P = 1 is located above support 1, then reaction R; = 1, therefore ordinate of



362 10 Influence Lines Method

Inf. line R,

Inf. line M;

Inf. line M,

[ Inf. line M,

({i} _2_ _2_ M Inf. line M7

T . Inf. line O,

:m Inf. line Q3R

Inf. line OF

Fig. 10.19 Continuous beam. Design diagram and models of influence lines for reactions and
internal forces

influence line at this support equals to 1. If load is located on portions 1-2 and 3-4,
then ordinates of influence lines for R; are positive, i.e., the vertical reaction R; is
directed upward.

Influence line for bending moment at the support M3 In this case we need to in-
clude the hinge at the support 3, to apply two positive unit couples M3, and show
the corresponding elastic curve which is a model of required influence line. If a load
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is located within portions 2-3 and 3-4, then ordinates of influence line are negative,
i.e., the extended fibers at the support 3 is located above the longitudinal axis of
the beam.

Influence line for bending moment My, in the span. In this case we need to include
the hinge at the section k, to apply two positive couples M}, and show the elastic
curve; for this curve a mutual angle of rotation at section k is equal to unity (see
Sect. 10.1.1). The positive ordinates of influence line show that extended fibers at
the section k are located under of neutral axis of the beam.

For each span we can determine two specific points is called the left and right
foci points. They are labeled as F' and F"ie", Figure 10.19 presents these points
for span 3-4 only. Formulas for computation of location FL and FR are presented
in Appendix, Section A. Foci Points.

Influence lines for bending moment at the span may be of three different shapes
depending on where section is located, i.e., between two foci points, between sup-
port and focus, and for section which coincides with focus.

If the section k is located between two foci F- and FR, then ordinates of influ-
ence line within corresponding span are positive. If a section 7 is located between
left support and focus F, then ordinates of influence line within the corresponding
span are positive and negative (influence line for M,,). The same conclusion will
be done if the section is located between FR and right support. If the section under
consideration coincides with F®R then bending moment does not arise in the section
FR, when load P is located in the first and second spans (influence line for MgR).
Therefore, for construction of the model of influence line for bending moment at the
any section within the span it is necessary first of all, to find location of foci points
for given span and then to define which case takes place.

Influence line for shear force Q. In this case we need to eliminate the constraint,
which corresponds to the shear force at the section k and apply two positive shears
Q. Elastic curve in the new system due to forces O = 1 is a model of influence
line for Q. Shape of influence line for shear forces at the sections, which are in-
finitely closed to the support, may be obtained as limiting cases, when the section is
located within the span.

It is obvious that the construction of influence lines for statically determi-
nate multispan beams (Ch. 3) using interaction scheme reflects the Miiller—Breslau
principle.

Summary

The purpose of influence lines and their application for statically determinate struc-
tures in case of the fixed and moving load have been discussed in Chaps. 2—4. Of
course, this remains also for statically indeterminate structures. However, in case of
the statically indeterminate structures, the importance of influence lines and their
convenience are sharply increased. Although the construction of influence lines for
statically indeterminate structures is not as simple as for statically determinate ones,
the consumption of a time is paid off by their advantages. Additional and very
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important advantage of influence lines is as follows: Influence lines for primary
unknown and any factor (reaction, bending moment, the angle of rotation, etc.) for
statically indeterminate structure allows calculating not only these unknown and
corresponding factor, but also finding a distribution of internal forces for any types
of fixed loads. It may be done combining the fixed and moving load approaches. It is
a principal feature of influence lines for statically indeterminate structures. Ability
of an engineer to apply both methods separately and together increases his opportu-
nity of analysis and allows performing in-depth qualities and quantities investigation
of structural behavior.

Problems

10.1. Continuous beam is shown in Fig. P10.1. Trace the models of the following
influence lines:

(a) Reaction of all supports

(b) Bending moments at all supports and at sections n, and k

(c) Bending moment for sections which coincide with the left and right foci points
(FL. F¥)

(d) Shear for sectionsn and k and for sections 1 and 4

(e) Shear for sections which are placed infinitely close left and right to support 2

Fig. P10.1

10.2. Design diagram of a structure is shown in Fig. P10.2. Trace the models of the
following influence lines:

(a) Reaction of all supports

(b) Bending moments at all supports and at section k

(¢) Shear for section k and Shear for sections 1 and 4

(d) Shear for sections which are placed infinitely close to left and right to support 2

For problems (a)—(d) take into account indirect load application.

(e) Will it be changed according to the shape of the influence line models in case of
nonuniform continuous beams?

(f) Isit possible to change the sign of influence line as the result of the changing of
the stiffness of the structure?
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Fig. P10.2

10.3. Uniform clamped-pinned beam is shown in Fig. P10.3.

(a) Construct the influence lines for reactions R4 and Rp, moment at clamped
support A, bending moment, and shear at section k(u = 0.4);

(b) Construct the bending moment diagram if force P = 10kN is placed at point
u = 0.6. Use the above constructed influence lines.

Fig. P10.3

Ans. (b) Rp = 4.32kN, M, = 1.68/ kNm

10.4. Design diagram of a frame is presented in Fig. P10.4. The relative flexural
stiffness are shown in the circle; a = b = 0.5].

1. Construct the influence line for horizontal reaction H at support A and bending
moment at section k

2. Construct the bending moment diagram if force P = 100kN is placed at point
x/1 = 0.75. Use the influence line for primary unknown.

> =
S C)
Sm

h=

Fig. P10.4

Ans. H = 11.718kN; R4 = 30.859kN, Mj =95.7kNm
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10.5. Analyze each design diagram in Fig.P10.5 and choose the most effec-
tive method for analytical construction of influence line for bending moment at
section k.

Fig. P10.5

10.6. Design diagram of a uniform semicircular two-hinged arch subjected to trav-
eling load P = 1 is presented in Fig. P10.6. Flexural stiffness of the arch is EI,
axial stiffness of the tie is E; A;. Derive expression for truss H in terms of the angle
¢. Take into account displacement of the arch due to bending deformation of the
arch itself and axial deformation of the tie. Analyze limiting case (E;4; = 0, and
E:A; = 00).

Fig. P10.6

10.7. Uniform two-span beams with equal spans are presented in Fig. P10.7; the
flexural stiffness ET is constant. Construct the influence line for angle of rotation at
the middle support. Construct the bending moment diagram, if force P = 100 kN
is located at point 8; use the influence line for primary unknown.
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b2 4 6 8 10

1234567891011

Fig. P10.7

Ans. (a) Ordinate of IL (Z) at point 8 is 0.0274 (I2/EI); M, = 5.48l,
Mg = —10.96!.

10.8. Pinned—pinned—pinned beam is subjected to concentrated load P;ul = 0.4]
(Fig. P10.8).

(a) Construct the the influence line for angle of rotation at the middle support; (b)
Calculate the bending moment at the support 1; (c) Calculate the vertical displace-
ment at section kand show the elastic curve.

Fig. P10.8

Ans. My = —0.096P1, fi = 0.006 (PI3/EI)

10.9. Design diagram of the frame is shown in Fig. P10.9. Bending stiffness for all
members is EI.

(a) Construct the influence lines for bending moment and shear at section k.
(b) Construct the bending moment diagram if the fixed load P = 10kN is located
on distance 0.6/ from the left support, i.e. in the section 3; (c) construct the bending
moment diagram if the fixed load P = 100kN is located on distance 0.6/ from
the rigid joint, i.e. in the section 8. Hint: Divide each span by five portions. Joints
numeration is shown in Fig. 10.4. For problems (b) and (c) use the influence line for
primary unknown.

Ans.
(a) My = 0.093121; M =0.192961 ..., Q1 = —0.2672; Q" = —0.5176...;
(b) M3 = 1.5936] (kN m); ME" = —1.3441; M;‘g‘“ = —0.7681; Mo = 0.3841;
(c) Ml = —2.881; MI*™ = —5.76]; Mg = 11.904; Mo = —16.32]
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Fig. P10.9

10.10. A frame is subjected to fixed load P (Fig. P10.10). The bending stiffness
for each member is EI = const. Construct the influence line for vertical reaction
at point A. Use this influence line for constructing the bending moment diagram.
Calculate the horizontal displacement at support A and angle of rotation of rigid
joint due to fixed load P.

Fig. P10.10

_ 3Pa’ _ 3Pa?
"~ 128EI T G64EI




Chapter 11
Matrix Stiffness Method

Matrix stiffness method (MSM) is a modern powerful method of analysis of
engineering structures. Its effective and widespread application is associated with
availability of modern computers and effective computer programs. The MSM
allows performing detail analysis of any sophisticated 2D and 3D engineering
structure and takes into account different features of a structure and loading.

The method demands a set of new concepts. They are finite element, global and
local coordinate systems, possible displacements of the ends, ancillary diagrams,
initial matrices, stiffness matrix of separate element and structure in whole, etc.

This method uses the idea of the displacement method and contains its further
development: arbitrary structure should be presented as a set of finite elements and
three aspects of any problem — a static, geometrical, and physical — should be pre-
sented in matrix form. The MSM does not demand of constructing bending moment
diagram caused by unit primary unknowns in the primary system. Instead it is nec-
essary to prepare few initial matrices according to strong algorithms and perform
matrix procedures by computer using the standard programs.

This chapter contains the detailed discussion of MSM, all ancillary diagrams and
initial matrices are constructed by hand. Mainly such presentation of material allows
reader to see the internal logic and the features of the method, to understand physical
meaning of each step, and to find the corresponding result in analysis of a structure
by displacement method in canonical form.

At the present time, MSM is developed with great detail. The reader can find out
in literature the different presentations of MSM. In our book, we will consider this
method in simplest form and apply it for analysis of the planar bar structures only.
Among them are the statically indeterminate beams, frames, trusses, and combined
structures subjected to different external exposures (loads, settlements of supports,
change of temperature, influence lines).

11.1 Basic Idea and Concepts

The fundamental concepts of MSM are the following: the finite elements, the pos-
sible displacements of the ends and degree of kinematical indeterminacy (degree of
freedom), the global and local coordinate systems.

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 369
DOI 10.1007/978-1-4419-1047-9_11, (© Springer Science+Business Media, LLC 2010
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11.1.1 Finite Elements

Each structure may be subdivided into separate elements of simple geometrical con-
figuration called the finite elements. This step has no theoretical justification. For
each finite element, the stress—strain analysis is preliminarily investigated in detail;
the result of such analysis is presented in existing handbooks. For presentation of the
given structure as a set of the finite elements, the features of the structure as well as
required accuracy of analysis should be taken into account. Engineering experience
is an important factor for choosing the type and number of the finite elements.

In case of a truss, the separate members of the truss may be adopted as finite
elements. Therefore, the discrete model of the truss in terms of finite elements co-
incides with design diagram of the truss.

In case of the frame with uniform members, separate members of the frame also
may be adopted as the finite elements (Fig. 11.1a). If the frame contains the member
with variable cross-section, then this member may be divided into several portions
with constant stiffness along each element (Fig. 11.1b).

Fig. 11.1 Frames and their
presentation by the set of 2
finite elements

The uniform beams in Tables A.3—A.8, subjected to displacements of supports
may be considered as the simplest finite elements. The finite elements can be one,
two, or three-dimensional. This chapter deals with planar bar structures only, so the
finite elements are straight thin bars with three types of constraints at the ends. They
are hinged-hinged (truss member), fixed-pinned, and fixed-fixed (frame member).

General idea of MSM. At the end points of each finite element, the some displace-
ments and interaction forces arise. For structure in whole these forces are internal,
while for each finite element these forces should be considered as the external loads.
For all finite elements, we can write three groups of equations. They are the (1) equi-
librium equations, (2) physical equations, and (3) geometrical ones. Equilibrium
equations take into account external forces for each finite element. Physical equa-
tions relate forces and displacements at end points of each element. Geometrical
equations describe continuity conditions between ends of the elements. Solving of
these equations allows determining displacements and forces at end points of each
element.

11.1.2 Global and Local Coordinate Systems

The local coordinate system is referred to as the specified element, while global sys-
tem is related to the whole structure. To understand these concepts, let us consider
a truss, subjected to force P (Fig. 11.2).
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Fig. 11.2 Local and global coordinate systems

The members 1, 2, 3, 4 met at the joint A. Internal forces N; of the elements
1-4 does not coincide with given external load P. Axial deformation A; of each
element does not coincide with vertical displacement A of joint A. Therefore, we
need to distinguish between the internal and external forces, deflection of separate
members and displacements of joints of the structure. For this purpose, we introduce
two coordinate systems. Each element of the structure, corresponding internal force
and deformation may be referred to the local coordinate system x-y. The origin
of this system coincides with initial point of this element and one of the axes is
directed along the element itself as shown for members 1-3; for member 4, the
local coordinates are not shown. The structure in whole, the external force, and
displacements of the joints are referenced to global coordinates X-Y .

The difference between the local displacements A; of each element and the
global vertical displacement A of joint 4 can be seen from the follows relationships:

x1 = —A, y1 =0;
x2 =0, Y2 = —A;
x3 = —Asina, y3 =-—Acosa,...

11.1.3 Displacements of Joints and Degrees of Freedom

Once a structure is presented as a set of finite elements, we need to identify the
possible displacements of the ends of each member. In fact these displacements
present unknowns of the displacement method (angular displacements of the rigid
joints and their independent linear displacements). These displacements are called
the possible angular and linear displacements of the joints. The term possible means
that in given structure such displacement is possible, but not necessarily utilized.
For example, in case of two span continuous beam, a section at the middle support
generally rotates; however, if the beam and its loading are symmetrical then this
angle of rotation is zero. In summary, we can see that any possible displacement of
the joint is a displacement in global coordinates.

Degree of kinematical indeterminacy 7 of a structure is determined by the for-
mula n = n, + ng, where n,; is a number of unknown angles of rotation of the
rigid joints of a structure and n4 is a number of independent linear displacements of
joints. Parameter n defines the degrees of freedom of a structure.
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The beam in Fig. 11.3a has one unknown of the displacement method, i.e., the
degree of kinematical indeterminacy equals one. So the degree of freedom n = 1.
The frame in Fig. 11.3b has three unknowns of the displacement method (two angu-
lar displacements Z; and Z, of the rigid joints and one linear displacement Z3 of
the cross bar). So the number of degrees of freedom n = 3.

Fig. 11.3 Elastic curves and concept of degrees of freedom

Thus the term “degrees of freedom” implies possibility of angular, and linear
displacements of the joints are caused by deformation of the structure. It can be seen
that for kinematical analysis of a structure (Chap. 1) the term “degrees of freedom”
had other meaning; in this case this concept implies independent displacements of
the system which contains the absolutely rigid discs.

11.2 Ancillary Diagrams

To present a structure in such form which can be accepted by a modern computer,
the entire design diagram should be expanded by three ancillary diagrams. They
are joint-load (J-L), displacement-load (Z-P), and internal forces-deformation (S-e)
diagrams.

11.2.1 Joint-Load (J-L) Diagram

This diagram presents the transformation of the arbitrary load into the equivalent
Jjoint loads. For construction of joint-load diagram, the followings are necessary:

1. Identify the possible angular and linear displacements of the joints

2. Construct the bending moment diagram MI‘Z in the primary system of the dis-
placement method (first state) due to external exposures (loads, settlements of
supports, temperature change)

3. Present the moments and forces as the joint load in direction of the possible
displacements (second state).

Continuous beam in Fig. 11.4 has one unknown angular displacement at support 1.
We need to convert the given load to the equivalent moment at the support 1. The
first state is the bending moment diagram Mg in primary system. The fixed-end
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q=2kN/m 1

RS (.
16kNm

S . o =

M, =16kNm
1-state

M(})J 2-state "\ 1 JoL
& W a—

M;;=16kNm

Fig. 11.4 Transformation of external load to the equivalent joint load

moment (FEM) equals to M; = g = 16 (kNm). We can show the joint 1 with
joint moment 16 kNm counterclockwise according a location of extended fibers.
This moment should be transported on the joint-load diagram counterclockwise
(second state).

Figure 11.5a presents design diagram of the frame; P; = 10kN, P, = 16kN,
g = 3kN/m. Degree of kinematical indeterminacy equals 4, where n, = 3 and
nq = 1. The primary system is shown in Fig. 11.5b; all introduced constraints are
labeled as 1-4 and the specified sections as 5-8. Also this figure contains the bend-
ing moment diagram in primary system M g (first state). Bending moments which
act on joints 1, 2, 3 are shown in Fig. 11.5c.

a
P .
4m
3m
3m
| 5m|4m|4m| M,
C

Joint 1 Joint 2 Joint 3

?MFS@ %3
1 M, ; My,

R, 5 Cross bar 1-2-3-4
s I M 4_12 SkN

MZ—IOkNm M 2=10kNm

li— *6kNm Jomt load
diagram

Fig. 11.5 (a—c) Design diagram of the frame and computation of the fixed-end moments; (d) Com-
putation of equivalent joint load P, 4; (e) Joint-load diagram (state 2)
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ql? s _ 3 x 42
==

M1_5 = = 6kNm

3
M7_2 = —P212_7 = 18 kNm
16
Pilys 10x8
My 5 = 18“= SX — 10kNm

M3_2 = M2_3 = 10kNm

Figure 11.5d shows the horizontal forces which arise in the vertical loaded members
1-5 and 2-7. Both of these forces are transmitted on the cross bar, so final horizontal
joint load equals Pj4 = Ri_s + Ry_7 = 7.5+ 2.5 = 12.5kN. This force may be
applied at any joint of the frame (1, 2, or 3).

5ql1-5 5x3x4

Ris = - — 75KN:
1-5 8 8
5P,  5x16
Ry n =22 =220_ 5N
16 16

Thus the entire load may be presented as equivalent moments M ;i M ;> M3 at
joints 1-3 and force P4 in horizontal direction; subscript j means that entire loads
are transformed to joint load. The final J-L diagram is shown in Fig. 11.5e

M; = 6kNm; M;, = 10kNm; M3 = 10kNm; P;4 = 7.5+ 5= 12.5kN

Note again that joint load presents the equivalent bending moments and forces,
which are merely transported on the joints and on the cross bar on the same
direction.

In case of truss, all loads are applied at the joints; therefore, the joint-load dia-
gram coincides with entire design diagram.

Example 11.1. The continuous beam is subjected to change of temperature as
shown in Fig. 11.6a. Construct the joint-load diagram.

Solution. The primary system of the displacement method and bending mo-
ment diagram caused by given temperature exposure is shown in Fig. 11.6b (first
state).

The bending moments for pinned-fixed beam and fixed-fixed beam are

3Elx - At _ 3Ela x 24

2h 2% 0.4
Ela x At
Mi_» = Ms_y = — = 60EL

Mi_o = M3_4 =

= 90«EI;
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a ElL o
i e
e
9 _________________________________________________________________
Jomnt Joint3 d _ Joint-load diagram -
C'f) C'f)M EE T Dz

30aE] 30aE]

Fig. 11.6 (a, b) Design diagram of the beam and computation of the fixed-end moments;
(¢, d) Joint-load diagram in case of temperature change

Figure 11.6¢ presents the bending moments vicinity the joints 1 and 3. The joint
moments equal

Mjy = Mi_o — M, = 90aEl — 60aEl = 30El (kNm) counterclockwise;
Mj> =0, M3 = 90aEl — 60aEl = 30aEl (kNm) clockwise.

The final joint-load diagram is shown in Fig. 11.6d.

Example 11.2. The continuous beam is subjected to the angular displacement ¢
of fixed support O and vertical displacement A of rolled support 2 (Fig. 11.7a).
Construct the joint-load diagram.

a

P’ 9=0.05rad 1 A=0.032m 2

L T g
| [,=5m ! l,=4m |

c Joint 1 d Joint-load
- --- [ diagram A\

MIOC 2 >M12 | &_g_ B

1
M= 0.014EI (kNm)

Fig. 11.7 (a, b) Design diagram of the beam and computation of the fixed-end moments;
(¢, d) Joint-load diagram in case of settlements of supports

Solution. The primary system of the displacement method and bending moment
diagram caused by given settlements of supports is shown in Fig. 11.7b (first state).
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According to Tables A.3 and A.4, the bending moments for pinned-fixed and
fixed-fixed beams are

2EI  2FI
Mo = = =¢ = =2-0.05 = 0.02EI (kNm)
1
3EI 3EI
M = =7 A = =7-0.032 = 0.006E! (kKNm)
2

Computation of equivalent moment at the joint 1 and corresponding J-L diagram
are shown in Fig. 11.7¢c, d.

11.2.2 Displacement-Load (Z-P) Diagram

This diagram shows a numeration of angular and independent linear displacements
Z at the joints and their positive direction. Also this diagram contains type load,
which corresponds to displacements Z and their positive directions.

Sign rule. Assume that the positive angular displacement Z occurs clockwise; the
positive horizontal linear displacement occurs from left to right, and vertical linear
displacement occurs upward. Direction of the positive load coincides with positive
direction of the displacement.

Design diagram frame and corresponding primary system of the displacement
method are shown in Fig. 11.8a, b. Introduced constraints 1-3 prevent angular
displacements Z;—Z3; corresponding loads are moments M;—M3. Constraint 4 pre-
vents linear displacement Z4, so corresponding load is P4 ; these loads and all
displacements are shown in positive directions. The Z-P diagram contains only
sceleton of the entire scheme of the structure, the type of end displacements, its
positive direction and corresponding loads (Fig. 11.8c). Geometrical parameters,
stiffnesses, and loading are are not shown on the Z-P diagram.

2 3
(247, P, V>

Z-P
diagram

Let us show the construction of Z-P diagram for truss in Fig. 11.9a. Support A
prevents two displacements; therefore, this joint has not possible displacement and
corresponding joint loads. Joint C prevents horizontal displacement, so possible dis-
placement of this joint and corresponding load is directed vertically (labeled 1). The
possible displacement of joint B and corresponding load are directed horizontally

Fig. 11.8 Displacement-load (Z-P) diagram for frame
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a
C

Fig. 11.9 Z-P diagram for truss

(4). All other joints of frame have two possible displacements (vertical and horizon-
tal) and two corresponding joint loads.

It is obvious that Z-P diagram (Fig. 11.9b) shows the positive possible displace-
ments and corresponding external loads in global coordinates.

11.2.3 Internal Forces-Deformation (S-e) Diagram

This diagram shows a numeration and positive directions of all unknown internal
forces S, which corresponds to deformation e. Figure 11.10a shows three bar ele-
ments from any truss. Since all connections are hinged, then for all members only
axial deformations e in local coordinates is possible; corresponding internal forces
are axial forces. The concept of S-e diagram for truss is shown in Fig. 11.10b.

a i-th bar b S;
Fig. 11.10 Concept of S-e / \\ Y \
j-th bar S,- Sie

diagram for truss

Figure 11.11a presents the design diagram of the truss (loading is not shown)
and numeration 1-8 of the members. The corresponding S-e diagram is shown in
Fig. 11.11b. Thus, we show the arrows related to the intermediate part of the truss
member. This diagram contains the positive axial deformation e; and force S; in
i-th member; the force S; is constant along the i -th element.

Fig. 11.11 S-e diagram for truss
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For beams we will denote the sections with unknown internal forces. Fig-
ure 11.12a shows a continuous beam. The S-e diagram is presented in Fig. 11.12b;
this diagram contains internal moments in vicinity of supports. The positive mo-
ment rotates the intermediate portion of span around opposite end clockwise. These
moments are shown by solid lines; they are transmitted on the adjacent portion with
opposite directions (shown by dotted arrows). Figure 11.12c contains a diagram S-e
of positive internal forces.

a b 1 \2 3 \4 \5
| \
————— gtz tz
S—e diagram s, s,
c g- g
5 S; Ss

Fig. 11.12 Concept of S-e diagram for continuous beam

For frames, as for beams, we will denote the sections with unknown internal
forces. The required internal forces are bending moments at the ends of each mem-
ber. Figure 11.13a shows the frame; the joints are labeled as i, j, k. The S-e diagram
is presented in Fig. 11.13b; this diagram contains internal moments infinitely close
to the fixed support and rigid joint. The positive moment rotate the intermediate por-
tion of member around opposite end clockwise. These moments are shown by solid
lines; they transmitted on the adjacent portion with opposite directions (shown by
dotted arrows). The diagram S-e of positive internal forces is shown in Fig. 11.13c.

b ‘S,@S,;,
Ehartu PN

a

Fig. 11.13 S-e diagram for frame

We can see that diagram (b) shows the type of internal loads, while the diagram
(c) shows positive directions of unknown internal forces. Later both diagram (b) and
diagram (c) are referred together simply as S-e diagram.

Summary The joint-load (J-L), displacement-load (Z-P), and internal forces-
deformation (S-e) diagrams deal with similar concepts. For this concept, the J-L
and Z-P diagrams uses the term load, while for S-e diagram term forces. For these
concepts, the different symbols are used; they are L, P, and S. The symbol L is
used for presentation of the given loading by equivalent joint loads. The symbol
P is used for presentation of the type of the load, which corresponds to possible
displacements Z. The symbol S is used for presentation of the type of the unknown
internal forces S.
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11.3 Initial Matrices

The first group of initial matrices describes the loading of structure and unknown
internal forces.

11.3.1 Vector of External Joint Loads

The arbitrary exposure on a structure (fixed or moving load, settlement of supports,
change of temperature) should be presented in mathematics form. For this purpose
it serves a vector P of the external joint loads. This vector may be constructed on
the basis of the joint-load (J-L) and the displacement-load (Z-P) diagrams.

The truss is loaded as shown in Fig. 11.14a; the Z-P diagram is shown in
Fig. 11.14b.

Fig. 11.14 Design diagram and Z-P diagram for truss

Since the truss has 6 possible displacements, then vector of external load will
contains 6 entries, i.€.,

Py
Pe
For convenience, this vector we will present in transposed form as

f’=|_P1 P2~~~P6JT;

the symbol T is reserved for the matrix transpose procedure. Considering Fig.
11.14a, b we can compile the vector P of joint loads:

P=[108 0 —20 0 —15]"

The first entry 10 means that in the first direction (Fig. 11.14b) there acts the force
P; = 10. The negative sign at the fourth entry indicates that external force P4 =
20 is directed opposite the positive fourth possible displacement. Zeros for third
and fifth entries show that in directions 3 and 5 of Z-P diagram the external forces
are absent.
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Now we compile the vector of external forces for frame shown in Fig. 11.15a.
For this frame, the joint-load diagram (Fig. 11.5e) is repeated in Fig. 11.15b. The
Z-P diagram is shown in Fig. 11.15c.

a J—
P b
3kN/m 41
11/[ —IOkNm /\/[ —IOkNm
413m
| g ‘) T ‘) \‘ PN
M 1=6kNm
Sm | 4m | 4m | dlagram
© el
1 2 3
(I‘b /“A /‘b=4
\ {
Z-P
diagram

Fig. 11.15 Joint-load and Z-P diagrams. Formulation of the external load vector

Comparing the J-L diagram with Z-P diagram we can form the following vector
of external loads

P=1]6 10 -10 125 |

11.3.2 Vector of Internal Unknown Forces

The required internal forces may be presented in the ordered mathematics form.
For this purpose serves the matrix-vector of unknown internal forces S. The entries
of this vector are the axial forces for end-hinged members and the bending moments
at the ends of the bending members. Generally, the vector S may be presented asa
sum of the vectors of internal forces at the first and second states, i.e. S=3S 1+ 52

Let us consider the frame in Fig. 11.5. This scheme without external load, nu-
meration of sections, and positive directions of the end moments for each element
of the frame are shown in Fig. 11.16a—c. Pay attention that the sections where the
moments are zeros have been eliminated from consideration. They are point at the
upper rolled support (5) and at hinge H that belongs to the second column.

The bending moment diagram in primary system Mg (Fig. 11.5b) and S-e di-
agram allow constructing the vector of the moment at the indicated sections in
primary system (state 1) due to given load. This vector becomes

-

Si=[00-600—-18 —10 10 0 0|
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Fig. 11.16 Formulation of the internal force vector

The signs of the moments are established on the basis of the M) and S-e
diagrams. For example, since a moment M;_s = 6kNm on the bending moment
diagram M g is plotted left (Fig. 11.5b), and the positive moment M3 at the same
section on the S-e diagram is plotted right (Fig. 11.16¢), then third entry of the S
vector have a negative sign.

The vector of required internal moments at the specified sections 1, ..., 10is

This vector will present a result of analysis of the frame by computer. If that
occurs, for example, the first entry (bending moment M;) will be positive, then
according to S-e diagram (Fig. 11.16c¢), the extended fibers at the section 1(bottom
of the left column) will be located at the right. Therefore, the internal moment M;
should acts as shown in Fig. 11.16b, i.e., clockwise. Computation of the vector of
internal forces in the second state will be discussed later.

Summary The following combination of two diagrams leads to the initial vectors:

1. Joint-load (J-L) diagram + (Z-P) diagram — Vector of external joint loads P.
2. M 1‘3 diagram + (S-e) diagram — Vector of internal forces S; in the first state.

11.4 Resolving Equations

MSM considers three sides of problem: they are static, geometrical, and physical.
On their basis the second group of initial matrices may be constructed. They are
static matrix, deformation matrix, and stiffness matrix in local coordinates. These
matrices describe the different features of structure: configuration of structure, its
geometry and supports, stiffness of each element, and the order of theirs connection.

11.4.1 Static Equations and Static Matrix

Assume that structure is m-times kinematically indeterminate. It means that struc-
ture has m external joint loads. These loads, according to Z-P diagram, may be
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presented as vector P. Let the structure has 7 unknown internal forces; these

unknowns according to S-e diagram may be presented as vector S. Both of vectors
are connected by static matrix A by formula

P = AS. (11.1)

This equation is called the static matrix equation. The number of columns 7 of
the matrix A equals to the number of the unknown internal forces; the number of
rows m of the static matrix A equals to the number of the possible displacements.
If m > n, then a structure is geometrically changeable; if m = n, then a structure is
statically determinate; if m < n, then a structure is statically indeterminate. In fact,
the matrix equation (11.1) describes the structure, its supports, type of joints, and
order of the elements connections.

The static matrix A, x,) may be constructed on the basis of a set of equilibrium
conditions for specific parts of a structure in ordered form. Equilibrium equations
for frames must be constructed for each joint which have the angular displacement
and for part of the frame which contains the joints with linear displacements. In
case of possible angular displacement, the equation > . M = 0 should be used; if a
displacement is a linear one, then uses equation > X = 0.

In case of trusses the equilibrium of each joint in form

ZXannd/orZYzO

should be considered.

Each possible load (each component of the vector P) must be presented in terms
of all unknowns (all components of the vector §). Left part of each equation of equi-
librium should contains only a possible load, while the right part unknown internal
forces. The type of possible load corresponds to the type of possible displacement
according to diagram Z-P. If a possible displacement is the angle of rotation then
corresponding load is a moment. If possible displacement is linear one, then a cor-
responding load is force.

Figure 11.17a presents the continuous beam. Unknown angular displacements Z
of intermediate supports A and B and corresponding moments P; and P, are
labeled on the Z-P diagram by 1 and 2 (Fig. 11.17b). Positive unknown internal
moments M; (i = 1-5) at the ends of each portions are labeled on the S-e diagram
by 1-5 (Fig. 11.17¢c).

Equilibrium equations for intermediate supports can be rewritten as follows

Pi=0-Mi+1-My+1-M3+0-Ms+0-Ms,
P,=0-M{+0-Mr, +0-M3z+1-M4y+1-Ms.
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d /\‘4 P, /" xp,

/ P S
Joint A My ——iM; P=M,+M, Joint B M,—s M; Py=M,+ M
by g EY g ;

Fig. 11.17 (a—c) Continuous beam and corresponding Z-P and S-e diagrams; (d) Construction of
static matrix A for beam

In matrix form, these equations can be rewritten as follows

M,
M.
P _ (01100 . M2 where static matrix A _|011o00
P, |oo0011 Sk @D = 100011
M,
Ms

Each row of matrix A presents the corresponding equilibrium equation; the entries
of the matrix are coefficients at M;. Note again that equilibrium equations are for-
mulated for possible loads P, which corresponds to possible displacements, but not
for given load F .

The truss in Fig. 11.18a contains four possible linear displacements and corre-
sponding external loads P, labeled as 1-4 (Fig. 11.18b). Support A has no linear
displacements; therefore, Z-P diagram does not contain the vectors of displacement
at support A. The possible displacements 1 and 4 describe the rolled supports B
and D as well as their orientation.

Equilibrium equations should be formulated for each joint with possible load

JointB ) ¥ =0: Py =35

Joint C ZX:O: P, =85 — S3cosa + S5cosa
P, =85, —-0.653 4+ 0.6S5
ZY =0: P3=S83sina+ Sssin«
P3 =0.853 +0.855
Joint D ZXzO: Py =S4+ S3cosa
Py =0.65;+ S,
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-
Z-P '&' S-e _g_

d P, P, S,
s, s,
Joint B S,  Joint C P,  Joint D Py
S5 S5

S

Fig. 11.18 (a-c¢) Design diagram of truss and corresponding Z-P and S-e diagrams;
(d) Construction of static matrix A for truss

These equations in the ordered form can be rewritten as follows

Pi=1-5+0-540-5+0-S44+0-855,
P,=0-85+1-5-06-5354+0-5S4+0.6-855,
P3=0-5+0-5,4+08-853+0-54+4+0.8-855,
P,=0-5+0-8406-53+1-S44+0-85s.

These equations allows presenting the vector of possible joint forces 13(4X1) =
|_P1 P, P; P4JT in terms of the vector of unknown internal forces §(5x1) =

I_Sl S> 83 .84 S5 JT using the static matrix A 4xs)

P 10 0 0 0 gl
P,| _|01-06006 32
P3 00 08 00.8 53
Py 00 06 1 0 4
Ss

A(4x5)

Each row of this matrix presents the corresponding equilibrium equation; the entries
of the matrix are coefficient at S;. We can see that static matrix describes the struc-
ture. First, this structure is statically indeterminate, since the number of rows m = 4
while the number of columns n = 5. Moreover, the matrix A describes the ways
of connections of different members. For example, second row shows that members
2, 3, and 5 are connected together, while the last row shows that members 3 and 4
are connected. At last, this matrix describes the inclination of different members.
Therefore, the static matrix A is very informative matrix.
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a b
1 /‘2 3

A B C -
B (-* { X
h z-p
Y diagram

Joint 4 |_ My p =M+, Joint B M, ‘—l_ M Py= M+ M+ M
MZ\‘-—" M5“~..—'
P
Cross bar 4-C :3 Z X=0: P :M_%
N o 3 h h

M+ Myh  Mh

Fig. 11.19 (a—c) Design diagram of the frame and ancillary diagrams; (d) Construction of static
matrix for frame

Example 11.3. The frame is shown in Fig. 11.19. Construct the static matrix.

Solution. This structure has two angular displacements of the rigid joints and one
linear displacement. The arrows 1 and 2 show possible angular displacements and
corresponding possible external loads (moments, kNm); the arrow 3 shows possible
linear displacements and corresponding possible external load (force, kN). The vec-

tor of possible joint loads is P = L P1 P, P3 JT. The vector of unknown internal
moments is S = | My My - MGJT.

Equilibrium equations for rigid joints are shown in Fig. 11.19d.

In matrix form the static equations can be presented as follows

S
M,

P o 1 10 0 0
M3

plo|l 0o o o1 1 1
P Uk ik 0 0 —im o | M
3 M
A3x6) Ms

Note again, that the static matrix defines the structure itself (supports, connection of
the members, etc.) and does not depend on the type of external exposures.
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11.4.2 Geometrical Equations and Deformation Matrix

These equations present the relationships between deformations e of the elements
and displacements Z of the joints. The required relationships is

¢ = BZ. (11.2)

Vector of deformation is €(;x1) = |_e1 er - ey JT. The entries of this vector are
deformation of the elements at the sections with unknown internal forces. There-
fore, a dimension of this vector equals to the number of unknown internal forces
S. Vector of joint displacement is Zgnx1) = | Z1 Z2+++ Zm JT; dimension of
this vector equals to the number of primary unknowns Z of displacement method.
Matrix B(y,x,) presents the matrix of deformation. The entry b;; (i-th row and j -
th column) means deformation in direction unknown internal force S; caused by
displacement Z; In fact, the matrix equation (11.2) describes the conditions of the
deformation continuity of the elements.

Let us show the construction of matrix deformation B for continuous beam
(Fig. 11.20a). The primary system, the positive angular displacements Z and pos-
itive direction of the unknown bending moments M; (i = 1,...,5) at the ends of
each member are shown in Fig. 11.20b.

F

T

Fig. 11.20 Construction of the deformation matrix

If introduced constraint 1 has angular displacement Z; then deformation (angle
of rotation) at the section 1 will be zero, i.e., e; = 0 - Z;. If introduced constraint
2 has angular displacement Z, then deformation at the section 1 will be zero, also.
The deformations in direction M; are

e1=0-Z1+0-2, eq 0 0
€2=1'Zl+0'22 () 1 0 7
e3=1-Z,+0-Zy orinmatrixform [ e3 | =| 1 0 -’721—‘
e4=0-Zy+1-2Z, es 0 1 2
es=0-Z1+1-2, és 0 1

N—— —
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The second equation shows that if introduced constraint 1 has angular displacement
Z then corresponding deformation (angle of rotation) at the section 2 will be same,
i.e., ep = 1 Z;.If introduced constraint 2 has angular displacement Z, then corre-
sponding deformation at the section 2 will be zero, because introduced constraint 1.

Note that deformation matrix B and static matrix A are connected as follows:
B = AT. This is a general rule, so for calculation of matrix B we can apply two
approaches.

11.4.3 Physical Equations and Stiffness Matrix
in Local Coordinates

These equations present the relationships between unknown internal forces S and
deformations e of the elements. The required relationships is

S = ke, (11.3)

2 T. . -
where S x1) = LSI S> - Sm J is a vector of unknown internal forces; €, x1) =
T, .. . .
|_e1 ey - enm J is a vector of deformation; k is a stiffness matrix of the system.
In general form Kk is diagonal matrix

ki 0 --- 0
k=| 0 k-0 (11.4)
0 0 -k

The diagonal entry k; is a stiffness matrix of i-th finite element of a structure. The
each diagonal entry k; is called the internal stiffness matrix or stiffness matrix in
local coordinates for specified member i ; matrix (11.4) in whole is internal stiffness
matrix or stiffness matrix in local coordinates for all structure.

For truss element (bar with hinged at the ends), a deformation is

Sl EA
e=—,508 = —e.
EA /

Thus internal stiffness matrix for truss element contains only one entry and pre-
sented as

k= (11.5)

EA
—[1].
=1
This expression allows to determine the axial force S if axial deformation of element

e = 1. The symbol [1] means a matrix with the sole entry equals 1.
Let us form the stiffness matrix for truss shown in Fig. 11.21; this figure con-
tains the numeration of the members. Assume that for all members EA is constant.
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Fig. 11.21 Construction of the internal stiffness matrix for truss

Stiffness matrices for each member are shown below.

EA EA EA EA
Ki=—[]=—1]; ko=—[1]; ks=—[l];
=7 0= S0 k=R k=]

ke ks = EA0 ke Ay BA
AT Y e RV )

The internal stiffness matrix of the truss becomes

/3.0 0 0 0 0
0 1/4 0 0 0 0
- 0 0 1/66 0 0 0
k=EA 0O 0 0 1/5 0 0
0o 0 0 0 155 0

. 0 0 0 0 0 1//52 |

For bending elements, we can use the Tables A.3—A.6. If a uniform fixed-pinned

beam is subjected to angular displacement e of the fixed support, then a bending
3E1

moment at this support equals M = =e, so the stiffness matrix of such element in
local coordinates is
EI
ki p,= 7[3]. (11.6)

If a fixed-fixed uniform beam is subjected to unit angular displacements e; and
e, of the fixed ends, then the following bending moments arise at the both supports:

EIl
M; = 7(461 + 2e3),
EI
M, = 7(261 + 462).
These formulas may be presented in matrix form (11.3), i.e.,
EI
M1 _= 4 2 . €1 (117)
MZ l 2 4 (%)
where the vector of internal forces is S = | My M, JT, vector of angular displace-

. T . .
ments at the end of element ¢ = |_el eZJ and the stiffness matrix in local
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coordinates for uniform beam with fixed ends becomes
ElI|4 2
ki_r=— 11.7
I=r =7 [2 4] (11.72)

Let us form the stiffness matrix in local coordinates for frame shown in
Fig. 11.22. Assume that bending stiffness equals EI for horizontal members 2

and 4, and for vertical members 3EI.
2
[T
|«4m | |

According to primary system of the displacement method, we have the fixed-
fixed members 1 and 2, and fixed-pinned members 3 and 4. Stiffness matrices for
each member in local coordinates are

EI 3EI

K B[4 2] _3EIT4 2] m2 1]
I |2 4 6 |2 4 12
El, [4 2] EI[4 2 1 05

ky = —> == = EI ,

> [2 4] 4[2 4} [0.5 1}

k=22 = 2 = mrps),
I3 6

4

Fig. 11.22 Design diagram

of the frame 1.5m

_Ely o EL
ke =+ [ = 5B = B [04].

Each of these stiffness matrices is presented in the form that contains general mul-
tiplier EI. The internal stiffness matrix of the frame becomes

2 1:0 0 0 0
1 2:0 0 0 0
k—pgr| 0 021 05 0 0
0 0:05 1 0 0
0 0 0:15: 0
0 0 0 0 : 04 |

Internal stiffness matrix for combined structure (e.g., the frame with tie) can be
constructed by the similar way.
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11.5 Set of Formulas and Procedure for Analysis

The behavior of any structure can be described by following three groups of
equations:

Equilibrium equations This matrix equation establish relationships between exter-
nal possible joint loads P and unknown internal forces S

-

P = AS, (11.8)
where A is a static matrix.
Geometrical equations This matrix equation establish relationships between
deformation of elements € and possible global displacements Z of the joints

¢ =BZ =A"Z, (11.9)

where B is a matrix of deformation.

Physical equations This matrix equation establish relationships between required
internal forces S and deformation of elements €

S = ke, (11.10)

where Kk is a stiffness matrix of a structure in local coordinates (internal stiffness
matrix).

These three groups of equations describe completely any structure (geometry,
distribution of stiffness of separate members, types of connections of the members),
types of supports, and external exposure.

11.5.1 Stiffness Matrix in Global Coordinates

Rearrangement of (11.8)—(11.10) allows to obtain the equation for vector of un-
known internal forces S. For this purpose, let us apply the following procedure.

The vector e may be eliminated from (11.9) and (11.10). For this (11.9) should
be substituted into (11.10). This procedure allows us to express the vector unknown
internal forces in term of vector of unknown displacements Z

S—ké=kA'Z (11.11)
Now vector S can be eliminated from (12.8) and (12.11). For this (12.11) should
be substituted into (11.8); this procedure allows us to express the vector of possible

joint external loads in term of unknown displacements

P—=AS = AKA'Z. (11.12)
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This equation may be rewritten in the form
P = KZ. (11.13)

The matrix K presents the stiffness matrix of a structure in global coordinates (ex-
ternal stiffness matrix)
K = AKA”. (11.14)

This matrix is a symmetrical one and it has the strictly positive entries on the main
diagonal. Dimension of this matrix is (# x n), where n is a number of unknown end
displacements. Thus, for calculation of stiffness matrix K in global coordinates, we
need to know a static matrix A and stiffness matrix k (11.4) of a structure in local
coordinates.

11.5.2 Unknown Displacements and Internal Forces

Equation (11.13) allows to calculate the vector of ends displacements
Z=K'P, (11.15)

where K~ is inverse stiffness matrix in global coordinates.

For truss the vector of possible joint external loads P is formed on the basis of
the entire design diagram and Z-P diagram. For beams and frames, the vector P is
formed on the basis of the joint-load and Z-P diagrams. If a structure is subjected
to m different groups of loading, then matrix P contains m columns. Each column
corresponds to specified group loading.

Knowing vector Z we can calculate, according to (11.11), the unknown internal
forces of the second state . s ore

S =kA Z. (11.16)
The formula (11.8) may be used for verification of obtained internal forces, i.e.,
AS, = P.
Final internal forces may be calculated by the formula

Sin = S1 4+ Sa, (11.17)

where the vector §1 presents the internal forces at specified sections in the first state.
It is obvious that for trusses §1 is a zero-vector. For bending elements, the entries of
§1 are bending moments at the end sections. This vector forms on the basis of the
M g diagram (1 state) and S-e diagram. If final ordinate M at any section is positive,
then this ordinate should be plotted at the same side of the member as on the S-e
diagram.



392 11 Matrix Stiffness Method

11.5.3 Matrix Procedures

The following procedure for analysis of any structure by MSM may be proposed:

1. Define the degree of kinematical indeterminacy and type of displacement for
each joint.

2. Calculate the fixed end moments to construct the J-L diagram.

3. Numerate the possible displacements of the joints, then construct the Z-P dia-
gram and form the vector P of external joint loads.

4. Numerate the unknowns internal forces S (for truss it is a number of the
elements; for frame it is a nonzero bending moments M at the ends of each ele-
ments) to construct the S-e diagram and to form the vector §1 of internal forces.
For this use the first state and S-e diagram; for truss §1 =0.

5. Consider the equilibrium conditions for each possible displacement of the joint
and construct the static matrix A; the number of the rows of this matrix equals
to degree of kinematical indeterminacy and the number of the columns equals to
the number of the unknown internal forces.

6. Construct the stiffness matrix for each member and for all structure in local
coordinates.

7. Perform the following matrix procedures:

Compute the intermediate matrix complex kA" (this complex will be used in
the next steps)

Compute the stiffness matrix in global coordinates K = AKA" and its inverse
matrix K1 . .

Calculate the vector of joint displacements Z = K~'P

Calculate the vector of unknown internal forces of the second state S, =
kA" .z S

Calculate the vector of final internal forces S, = S1 + S»

All matrix procedures (11.14)—(11.17) may be performed by standard programs us-
ing computer.

For trusses the procedure (11.17) leads to the axial forces at the each member. For
frames this formula leads to nonzero bending moments at the ends of each element.
To plot the final bending moment diagram, the signs of obtained final moments
should be consistent with S-e diagram.

The shear force can be calculated on the basis of the bending moment diagram
considering each member subjected to given loads and the end bending moments;
the axial forces can be calculated on the basis of the shear diagram consideration
of equilibrium of joints of the frame. Finally, having all internal force diagrams, we
can show the reactions of supports and check them using equilibrium conditions for
an entire structure as a whole or for any separated part.
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Notes:

1. In different textbooks the algorithm above (or slightly modified algorithm) is
referred differently. They are the matrix displacement method (do not confuse
with the displacement method in matrix form), finite element method, stiffness
method. All of them realize the one general idea: presentation of the structure as a
set of separate elements with necessary demands about consistent of deformation.

2. The entries of the stiffness matrix K = AKA" present the unit reactions of the
displacement method in canonical form.

3. Generally speaking, a vector of internal unknown forces S may be constructed by
different forms. In this textbook, the vector S is presented in the simplest form.
This vector contains only nonzero bending moments (for beams and frames)
for each separate member at the ends. This choice of the vector S leads to the
very compact stiffness matrix. Indeed, for fixed-pinned beam, this matrix con-
tains only one entry, for fixed-fixed standard member, this matrix has dimension
(2 x 2). Certainly, we can expand the vector state S including, for example, the
shear and axial force. However, this leads to the stiffness matrix with expanded
dimensions. Even if the final result would contain more complete information,
observing over all matrices is difficult. Therefore, we limited our consideration
of the MSM only for simplest presentation of vector S. This leads to the sim-
ple and vivid of intermediate and final results, and significant simplification of
numerical procedures.

11.6 Analysis of Continuous Beams

This section presents a detailed analysis of statically indeterminate continuous
beams subjected to different types of exposures.

Design diagram of the uniform two-span beam subjected to fixed load is shown
in Fig. 11.23a. This structure may be presented as a set of two finite elements: they
are A-1 and 1-B. To transmit the given load to the joint load, we need to calculate
the fixed end moments at support 1 (Fig. 11.23b). They are equal to

I3 x 82 Pl
MO, = %‘ =1 —— = 16 (kNm) and M = —2v (1 - v?)
12% 10

== x 0.4 (1 —0.4%) =20.16 (kNm),

so the equivalent moment 20.16 — 16 = 4.16 acts clockwise (Fig. 11.23c) and cor-
responding joint-load diagram (first state) is shown in Fig. 11.23d.

The beam has one unknown angular displacement at support 1 and corresponding
one possible external joint load. The displacement-load (Z-P) diagram is presented
in Fig. 11.23e. Having the joint-load and Z-P diagrams, we can construct the vector
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a

q=2kN/m P=12 kN
NEEEEEEE2 l B
L E L 2
ul,=6m | vl,=4m
‘ /=8 m L=10m
¢ 1.7 d 4'16\ Joint load diagram

16 ;ji— 20.16 &K ;%/ 3

e f S, S .
/ 7 S-e diagram
1/\ Z-P diagram _&_ ) \_g_) \ _3_
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S

P
1 .. .
' Positive bending moments
S S
I 192
N
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Fig. 11.23 (a—d) Fixed load. Continuous beam and corresponding joint-load diagram; (e, f) Con-
tinuous beam and corresponding Z-P and S-e diagrams; (g) Design diagram and final bending
moment diagram

of external joint moments; in this simplest case, the vector P= [4.16], so this vector
have only one entry. Positive sign means that moment at joint load and Z-P diagrams
act at one direction.

Unknown internal forces (moments S; and S») and their positive directions are
shown on S-e diagram (Fig. 11.23f). To construct the vector S of internal forces in
the state 1, we need to take into account bending moment diagram M p (Fig. 11.23b).

This vector is
= 16
Sl_'[—2016W'

The signs of the entries correspond to S-e diagram.

A static matrix A can be constructed on the basis of the Z-P and S-e diagrams.
Figure 11.23e shows free body diagram for joint 1 subjected to unknown internal
“forces” S; and S, in vicinity of joint 1 and load P;, which corresponds to possible
displacement of the joint 1. Since this displacement is angle of rotation then this
load is a moment. Equilibrium condition leads to the equation P; = S; + S>. So
the static matrix becomes A = L 11 J
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Stiffness matrices for left and right spans are

3ElL 3ElL 3EI

ki = 1] = 11 = 5],

1 I (1] A (1] 20 (5]
3El, 3ElL 3ElL

ky = 1] = 1] = 4].

2 5 (1] 10 (1] 20 (4]

Internal stiffness matrix for all beam in local coordinates is
- ki 0] ﬁ 50
10 ky| 400 4

Stiffness matrix for all structure in global coordinates and its inverse are

K= AkA _LllJ 3EIT50 . 1 :i%[{—l:@
40 |0 4 1 40EI 27

Displacement of the joint 1

- - 40EI .1
Z=K_1P=0—x4.16= 6.163
27 EI

Vector of internal forces of the second state
- -~ To 3EI[50 1]6.163 2.3111
S, = kA Z . — =
40 |:0 4] ’71—‘ EI ’71.8489—‘
Final internal forces

< e 16 23111 18.31
S =51 +82 = ’7—20.16—‘ * ’71.8489—‘ - ’7—18.31—‘

395

The negative sign means that moment S, according to S-e diagram, is directed in
opposite direction, so external fibers right at the joint 1 are located above the neutral

line. Final bending moment diagram is shown in Fig. 11.23g.

Equilibrium condition Y ' M; = 0 for joint 1 is satisfied. The bending moment
at point k may be calculated considering second span as simply supported beam

subjected to force P and moment 18.31 kNm counterclockwise.

Notes:

1. Analysis of this beam has been performed early by the displacement method
(Chap. 8) so the reader has an opportunity to compare analysis of the same beam

by different methods.
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2. Computation of shear may be performed on the basis of the Mp diagram. Reac-
tions of supports can be calculated on the basis of the shear diagram. Reaction of
intermediate support is Ry = Tght — Qlfft.

Example 11.4. Design diagram of a nonuniform continuous beam is presented in

Fig. 11.24a. The angle of rotation of the clamped support is g9 = ¢ = 0.01 rad

and the vertical displacement of the support 2 is A, = A = 0.04 m. Construct the

bending moment diagram.

Solution. Degree of kinematical indeterminacy equals two. Both joints at supports
B and C have angular possible displacements. Now we need to present the effect of
the settlements of supports in form of moments at the joints B and C. The fixed end
moments are

4EI  4El,

Mg = ¢ = —— x 0.01 = 0.00667EI,
IAB 6

6EI . 6-2Ely

MBC = MCB =7 ) x 0.04 = OO3EI()
IBC 4
2Bl 2El,
IAB 6
3EI ,  3-2EI
Mep = A = =2 x 0.04 = 0.015EI.
12, 4

Corresponding bending moment diagram M 2 in the primary system of the dis-
placement method and the joint-load diagram are shown in Fig. 11.24b, c.

The positive possible angular displacements of the joints and corresponding
possible external forces are presented on the Z-P diagram (Fig. 11.24d). The S-e
diagram and positive bending moments diagram are shown in Fig. 11.24e. The vec-
tor of external joint loads is

P = Ely[ 002667 0.015]" .
Vector of fixed end moments in the first state is
S1 = Elo | 0.00667 0.00333 —0.03 —0.03 0.015]"
Static matrix Considering the Z-P and S-e diagrams we get

Pr=8+S5;
P, =54+ Ss

so the static matrix becomes

01100
A(ZXS)Z[OOOII}
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a
7% EL=1El, B 2El, C 2El, D
— I X P&
| [,=6m | l,=4m l;=4m |
b M c
M, e Joint-load diagram Mep-Mep=
| A 0.015E],
' L =
Mpe—My,=
0.02667EI,
d
| Z-p diagram/PI /bz ,_ Sy
' < (& =&

S-e dtagram

S =
: SS S S
f 96
M, kNm
MW}{ZWW 1074E1,)
98

Fig. 11.24 (a) Settlements of supports. Design diagram of continuous beam; (b, ¢) Conversion of
effect due to settlement of support to the joint-load moments; (d, e) Continuous beam; (f) Final
bending moment diagram and corresponding Z-P and S-e diagrams

Stiffness matrix Stiffness matrices for finite elements AB, BC, and CD in local
coordinates are

w _EL[42)_Elo[42]_,, [0.667 0333
YT l24] 7 6 [24] 70333 0667 |
El,[4 27 2EIG[42 21
k2 = — = — = 0 3
L |24 4 |24 12
El 2EI
ks = —[3] = —2[3] = EIy [1.5].
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Stiffness matrix for structure in whole in local coordinates is

0.667 0333 0 0 O
0.333 0667 0 0 O
K(sxs) = 0 0 21 0 |EI
0 0 12 0
0 0 00 15
Matrix procedures Intermediate matrix complex

0.667 0.333 0 0 O 00 0.333 0
. 0.333 0.667 0 0 0 10 0.667 0
kA =El 0 0 21 0 |x]|10]|=El 2 1
0 0 12 0 01 1 2
0 0 00 15 01 0 15

Stiffness matrix for structure in whole in global coordinates and inverse stiffness
matrix are

0.333 0
0.667 0
i|><EIo 2 1 =E10|:
)
0 1.5

K=A kA" = 0 00 2.667 1 ,
0 11

11
00 1 35

Ko ! [0.42 —0.12}

T El, | —0.12 032

Vector of joint displacements

> 12 1 0.42 —0.12 0.02667 0.0094
Z=K'P=— EI =
Ely [—0.12 0.32 } x 0{ 0.015 W {o.ooww

Vector of unknown bending moments of the second state is

0333 0 0.00313
0.667 0 0.00627

S, =kA"-Z=El,| 2 1 |x [8'88?2} = Ely | 0.0204
1 2 ' 0.0126

0 1.5 0.0024
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The final vector of required bending moments (kNm) is

0.00667 0.00313 0.0098
0.00333 0.00627 0.0096

S=S, +KA'Z=El,| —003 | +Ely| 00204 | = Els | —0.009
—0.03 0.0126 —0.0174

0.015 0.0024 0.0174

Corresponding final bending moment diagram is presented in Fig. 11.24f.

Example 11.5. Design diagram of the uniform three-span continuous beam is pre-
sented in Fig. 11.25a. Construct the influence lines for bending moments at the
supports B and C (sections 6 and 12, respectively).

Solution. Each span of the beam is divided in equal portions and specified sections
are numerated (0—18). Next we need to show the displacement-load (Z-P) and S-e
diagrams (Fig. 11.25a). Unknown moments Sy, S5 arise at support B and S3, S4 at
support C.

Static matrix The Z-P and S-e diagrams allow us to constructing the following
equilibrium equations:

Pi=S1+5
P, =534+ 8,

so the static matrix of the structure is
00
1 1

Stiffness matrix  Stiffness matrices for each finite element are

1 1
Aexs) = |:0 0

k=2l k= H ks = — 3]
I_T s 2__24’ 3_7 .

4 2 EI
)

Stiffness matrix of all structure in local coordinates and intermediate complex
~ T
kA are

_r EI
, kATzT

~
S O O W
SN B~ O
S B~ N O
w o O O
S O O W
SN B~ O
S B~ DN O
w o O O
S O = =
—_—— O O
-z
SN B~ W
w B~ N O
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1, 2 4
- \ ;l, “,f \ :// ‘\ /
L2 4 8 10_3_14 16_8_ VAN ANVAS AN &
e 0B 4 ¢ g

S-e diagram S
1

}" 2/’ Z-P diagram
& L & 2

Joint-load (J-L) diagram
& K__i_ £ £
—u(l uz)

Cc
B C
0.07893/ CT} 0.078931 (.01973/ <T>0.01973]

d uv?l

— Joint-load (J-L) diagram

Wl

£ m‘) (& 2

LMy
factor 0.01/

3 o= LMy
factor0.01/

Fig. 11.25 (a) Moving load. Design diagram of continuous beam, Z-P and S-e diagrams; (b) Load
P =1 in the first span and corresponding joint-load diagram; (c¢) Ordinates of influence lines at
sections 6 and 12; the load P = 1 is placed at point 2; (d) Load P = 1 in the second span;
(e) Influence lines for bending moments at supports B and C and corresponding joint-load diagram

426
7.897
9.872
7.893
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The stiffness matrix of all structure in global coordinates and inverse stiffness
matrix are

30
K=A-RAT= | LOOEL a2y ETV729
00117 |24 I |27

03

il L[7-2
T 45EI| =2 7

To construct the matrices P and S; we need to consider the unit moving load in all
spans separately. Next for each loading we need to construct the bending moment
diagram in primary system of displacement method and show the corresponding
Joint-load diagram.

Load P = 1in the first span The bending moment diagram in the primary system
and equivalent joint-load diagram are shown in Fig. 11.25b.

On the basis of the joint-load and Z-P diagrams, the vector P of the external joint
loads for any position « of unit load P in the first span is

ﬁzl(—O.Su(l—uz)"‘

0

On the basis of the M 10, and S-e diagrams the vector S; of unknown internal forces
S1 — S4 in the first state for any position P becomes

0.5u (1 — u?)
0
0
0

Now we can determine the entries of both of these matrices when moving load P is
placed at the sections 2 and 4 and perform corresponding matrix procedures.

P =1 at the section 2
(u = 0.333, v = 0.667)

P =1 at the section 4
(u = 0.667,v = 0.333)

M, 0.1480 M, 0.1851
- —0.1480 | = M 0 - —0.1851 | = M 0
P=1 Si=| | =1 P=1 Si=| 7 =1
0 M; 0 0 M; 0
M, 0 M, 0

(continued)
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P =1 at the section 2 P =1 at the section 4
(u=0.333, v = 0.667) (u = 0.667,v = 0.333)
Matrix procedures
I R T ! 7 =2 P Al T ! 7 =2
Z, 45E1 | =2 7 Z> 45E1 | =2 7
—0.1480 1? -7 —0.1851 ? -7
x [ = x 1 =
0 304.05E1 | 2 0 243.11EI | 2
M, 30 M, 30
" M: - T = EI " M: - T = EI
S,= | M| —jaT.z =42 S= | M| —aTz B 42
M, 1|24 M, 1|24
My |, 03 My |, 03
—0.06907 —0.08638
y I? =7 | _, | —0.07893 » I? =7 | _, | —0.09872
304.05E1 | 2 —0.01973 243.11EI | 2 —0.02468
0.01973 0.02468
Bending moment at the sections 6 and 12 S= §1 + §2
[0.1480 —0.06907 [ 0.1851 —0.08638
" —0.0789 - —0.09872
So. 0 i 0.07893 § o 0 41 0.0987
0 —0.01973 0 —0.02468
0 0.01973 0 0.02468
[ 0.07893 [ 0.09872
;| —0.07893 _ | ~009872
7| —0.01973 7| —0.02468
0.01973 0.02468

The signs of the bending moments should be treated according to S-e diagram and
general rules of the bending moments. If the load P = 1 is placed at point 2, then
ordinates of influence lines for bending moments at sections 6(B) and 2(C) are
given in Fig. 11.25c.

If the load P =
bending moments at the same sections are following: M, f = —0.09872/;
0.02468!.

Load P = 1 in the second span The bending moment diagram in the primary
system of displacement method and equivalent joint-load diagram are shown in
Fig. 11.25d.

Now for any position u of unit load P in the second span, we can compile the
vector P of the external joint loads (using the J-L and Z-P diagrams) and vector
S1 of unknown internal forces in the first state (using the Mg and S-e diagrams).

1 is placed at point 4, then ordinates of influence lines for
ME =
4
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They are
0
= uv? a —uv?
P=] .S =1
lr—uzv ! u?v
0

After that we will determine the entries of these both matrices when moving load P
is placed at the sections 8 and 10 and perform corresponding matrix procedures.

Load P = 1 in the third span This case can be considered elementary by tak-
ing into account the symmetry of the beam and loading in the first span. The final
influence lines for moments at the supports B and C are shown in Fig. 11.25e.

If load P = 1 is placed at sections with odd numbers 1, 3, ... then ordinates of
influence lines M p and M¢ may be computed by similar way.

Discussion

Dimension of each submatrix depends on the type of element. For truss member and
bending fixed-pinned member, each submatrix is a scalar. For fixed-fixed member,
a stiffness matrix is (2 x 2); for this element the relationships between the bending
moments at the ends and angular displacements at the ends according Table A.4 is

described by (11.7), so
L _EIT42
I~ =T |24]

It is obvious that it is possible to expand the number of unknown forces at the
ends of the element and consider the displacements at the ends. For example, we
can consider four components for unknown forces (not only the bending moments,
but the reactions also) and four components for end displacements (not only the
angular displacements, but the linear displacements too). According Table A.4, the
force—displacement relationships can be presented in the following form

R, 6/1> 3/ —6/1> 3/ Ay

M, | _ 2EL| 3/ 2 =31 | | e

Ry | 1 | =612 =3/1 6/1> =3/ A

M, 3/ 1 =3/ 2 ¢2
kp—r

In this case we need to use for analysis the (4 x 4) — stiffness matrix. Similarly for
pinned-fixed member the stiffness matrix becomes

2 2
g [ V2 -y
Kp—y =7 | =112 112 -1l
/Y
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Itis possible to expand more the number of internal forces at the ends considering
also the axial forces (and corresponding axial displacements). It is obvious that di-
mension of all initial and intermediate matrices become very large. So in this chapter
the adopted stiffness matrix should be considered as a truncated matrix. Such form
leads to the short and readily available for visual analysis of matrix procedures.

11.7 Analysis of Redundant Frames

Now we consider application of the matrix procedures for analysis of the simple
frame (Fig. 11.26a); [ = h, EI is constant. The frame has two unknowns of the
displacement method. They are the angular displacement at joint 1 and linear dis-
placement of cross bar. The primary system is shown in Fig. 11.26b.

The ancillary J-L, Z-P, and S-e diagrams are presented in Fig.11.26c—e,
respectively.

The vector of external equivalent joint loads on the basis of the J-L and Z-P dia-

grams becomes P= LO P JT Since the load P is applied at joint then the fixed-end

a
P _ C
I
=
14
L
c d e
J-L diagram 1 Z-P diagram S-e diagram
( P —>2 2
M=0 3
1
f <
p1/_> - —>P
(S,+S,)/h Nl
1 |—>~93 b Sy S, /h+S,
AN 4
S, S
5 (S,+Sy)/h
h
P 3
'3 M

P
factor Ph/8

Fig. 11.26 (a, b) Design diagram of the frame, primary system and finite elements; (c—e) Ancillary
diagrams; (f) Construction of static matrix; (h) Final bending moment diagram
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moments are zero. Therefore, the vector of fixed-end moments (vector of internal
forces of the first state) at sections 1-3 on the basis of the MIQ and S-e diagrams
becomes §1 = |_O 0 OJT.

The static matrix is constructed on the basis of the Z-P and S-e diagrams.
Figure 11.26f shows the free body diagram for joint 1 subjected to possible mo-
ment P; and two unknown internal forces in vicinity of joint 1 (bending moments
S> and S3). Equilibrium condition is P; = S> 4+ S3.

It is obvious that

Thus, the static matrix becomes

o 1 1
A=[—1/h —1/h o}

Stiffness matrix for each finite element and stiffness matrix k for all structure in
local coordinates are

EL [4 2] EI[4 2 EI, EI
k:— = — 7k 2—32—3
T [2 4} h[z 4} 2= 7 Bl=70

Thus, the stiffness matrices of the structure in the local coordinates

5 k0 El 4 2 0
k = 0 k =7 2 40
> 00 3
Matrix procedures: Intermediate matrix complex
e E 4 2 0 0 —1/h El 2 —6/h
kA =7 2 4 0f-|1 —=1/h =7 4 —6/h
0 0 3 1 0 3 0
Stiffness matrix for whole structure in global coordinates
2 —6/h
~ T 0 1 1]EI EI 7 —6/h
K=A-kKA = = — ==
[—1/h —1/h O} h i 60/h h |:—6/h2 12/h2}
N —— —
ka”

For 2 x 2 matrix, we can use the following useful relationship: if
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a c¢ _ d —c
R:[b d},theanzﬁ[_b a}.

In our case the inverse matrix becomes

K-l = h 1 [12/m* 6k h* [12/h> 6/h
_548/112[ 6/h 7 } _[ 6/h 7 }

T 48FI

Resolving equations: Vector of required displacements (angular of rigid joint and
linear of cross bar) are

5 _ [zl (rad) W kB 3 [12/;;2 6/h} [OW _ P’ th
Z> (m) 48EI | 6/h 7 P 48EI | 7

We can see that in order to calculate the vector of end displacements Z, in fact, we
need to have three matrices: they are static matrix A, internal stiffness matrix l~(, and
vector of external loads P. . . .

Vector of internal unknowns bending moments is Sg, = S1 +S2, where moments
of the first state §1 = LO 0 OJT because external load is applied at joint only.
Therefore, the final vector of bending moments at sections 1-3 is

2 —6/h -5
S Y Ph* [ 6/h Ph
Sin=S,=kA'Z =— - = |-
fin =22 w4 o 48EI’7 7 W g | 2
3 o0 J2220 1! 3
kA" z

Corresponding bending moment diagram is shown in Fig. 11.26h. For calculation of
reactions, the following algorithm can be applied: bending moments — shear forces —
axial forces — reactions.

Now we show the application of the matrix displacement method for analysis
of the frame in Fig. 11.27a; the relative bending stiffnesses are presented in circle.
Analysis of this frame has been performed early by the both classical method, so
this frame may be treated as the etalon one. Comparing with displacement method
in canonical form will allow us to understand a physical meaning of an each matrix
procedure.

The frame has two unknowns of the displacement method. They are the angu-
lar displacement at joint 1 and linear displacement of cross bar 1-C. The primary
system and Mg diagram are shown in Fig. 11.27b.

Ancillary Z-P diagram (Fig. 11.27¢) shows that the structure has one possible
angular displacement of joint 1 and corresponding possible external joint moment,
as well as one horizontal displacement 2 of cross bar and corresponding force. Un-
known internal forces (moments S1—S3) and their positive directions are shown on
S-e diagram (Fig. 11.27d).

The finite elements are A-1, 1-B, and 1-C. The fixed end moments at joint 1 are
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a b
B P=8kN O'+ p
E 15.36
1 C 4.1667 M
@ -
o q
¢=2kN/m|__4m 6m
c d e
Z-P diagram S-e diagram 1 |_> 15.36kNm
! 2—> 2 N—>¥
4.1667kNm
1
P

f "‘% g Joint-load (J-L) diagram h /'\A
L 11.1993 5.0 g "\55
T —> 4 1 3
=730 3 NG

sgr=s T ’ S,

q

L<«— 5.0

L

S e T 2EI
(ST T AN El
2 S,/ S,k

S, =T (S +8,)/hy

Fig. 11.27 (a, b) Etalon frame. Design diagram and calculation of fixed end moments; (c, d) Z-P

and S-e diagrams; (e—g) Calculation of equivalent joint moment and force and joint-load diagram;
(h, i) Construction of a static matrix; (j) Finite elements

ql7_
Mg =My = 14

=4.1667kNm; M;_p =0;

M ¢ = %lu (1-v2) = @ % 0.6 (1—0.62) = 15.36kNm.
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The equivalent moment at joint 1 (Fig.11.27e) is M = 1536 — 4.1667 =
11.1993kNm (clockwise); the equivalent force for cross bar (Fig.11.27f) is
P =5kN. Corresponding J-L diagram is shown in Fig. 11.27g.
The joint-load and Z-P diagrams allows us to construct the vector of external
equivalent joint loads
P=[11.1993 50/

The entries of this vector present the free terms, which are written on the right side
of canonical equations of the Displacement method (compare with Example 8.2).

The vector of fixed-end moments (vector of internal forces of the first state) at
sections 1—4 on the basis of the Ml?, and S-e diagrams becomes

S; = |—4.1667 4.1667 —15.36 0.

This vector corresponds to the last term in expression M = MiZi 4+ Mg for
final bending moment.

Static matrix This matrix is constructed on the basis of the Z-P and S-e diagrams.
Figure 11.27h shows free body diagram for joint 1 subjected to three unknown in-
ternal forces in vicinity of joint 1 (bending moments) and moment P;. Equilibrium
condition for joint 1 is P = S2 + S3 + S4.

It is not difficult to show that

Indeed, the positive moments S; and S» at the ends of the member A-1 may be
equilibrated by two forces S1/h1 + S2/h1 (Fig. 11.271). Then this force should be
transmitted on the cross bar; similar procedure should be done for member 1-B.
Equilibrium equation Y X = 0 for cross bar leads to the above expression for P,
so the static matrix becomes

0 1 1 1
A=
[—1/;11 ~1/hy 0 —1h2}

For given parameters /; and h, we get

A — 0 1 1 1
-02 —-02 0 0.333

Stiffness matrices of the elements in the local coordinates The finite elements
are shown in Fig. refch11:fig11.27j; stiffness matrix for each member in local coor-

dinates is
k—& 4 2 _E 4 2
YU l24] T 524
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El, 2E1 EIl
ko= —[38] = =—[3] = — [3].
2= Bl= 5Bl =51

sy By H
ks = 7201 = 5 B = 5],

For whole structure the stiffness matrix in local coordinates is

4200

- ki 00 EI| 2400
k= 0k20 = —

00 Kk 510030

3 0005

Matrix procedures. For whole structure the stiffness matrix in global coordinates

4200 0 —0.2
T 0 1 1 1 JEI|2400 1 —02
K_AkA_[—o.z—o.zoo.333]? 0030 1 0
0005 1 0.333

— 2.4 0.093
0.093 0.207

The entries of this matrix are unit reactions of the displacement method in canonical
form (Example 8.2).
The determinant of this matrix is detK = 0.48815, so the inverse matrix

K—l—i 0.4241 —0.1905
" EI|l —0.1905 4.9165

The matrix resolving equation KZ = P allows us to find the vector of unknown
displacements

_ Z (rad) “ K = 1 [ 04241 —0.1905 | 11,193
Z5 (m) EI'| —0.1905 4.9165 5

_ 137944
~ EI| 22452
These values present the angle of rotation of the rigid joint and linear displacement

of the cross-bar; they have been obtained previously by the displacement method
(Example 8.2).

N
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Vector of internal unknowns bending moments is Sg, = S + S, where

4200 0 —0.2 —3.8707
- -.15 EI| 2400 1 —02 | 1 [3.7944 —2.3529
S2=kAZ="21 0030 1 0 5(22.452—‘_ 2.2766
0005 1 0.333 11.2709
Control: AS = P. In our case
—3.8707
0 1 1 1 7| -23529|_[11.196
—0.2 —0.2 0 0.333 22766 | | 4.9979
11.2709

Final bending moments at specified sections 1—4 are

—4.1667 —3.8707 ~8.0374

. 4.1667 ~2.3529 1.8138

Sin=8; +8, = =

f 1+52 “1536 | 7| 22766 ~13.0834
0 11.2709 11.2709

This vector allows us to construct the bending moment diagram. All ordi-
nates should be plotted according S-e diagram (Fig.11.27d). For example,
M; = —8.037kNm should be plotted at the support A left at neutral line. Final
bending moment diagram is presented in Fig. 8.2g. Note that stiffness matrix method
is precise and some disagreement with data obtained previously is a result of the
rounding off.

11.8 Analysis of Statically Indeterminate Trusses

Figure 11.28a presents the statically indeterminate truss; the stiffness EA for all
members is equal. We need to compute the displacements of the all joints, and cal-
culate the internal forces.

First let us construct the Z-P diagram (Fig. 11.28b). This diagram shows possible
joint displacements and corresponding possible loads. After that we can construct
the vector of external forces

P=10 -4 =2 0 o,
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Vector has five entries because the given structure allows five possible joint dis-
placements. The first entry of this matrix (0) means that in the possible direction 1
the active force is absent.

a lFl =4kN b S-e diagram
D BY F,=2kN 1 °
3
d 4 5

d Joint A Joint B
S, Y
S, P, T D
e A - S
—)56 Sl(— - l_> 1
T S P S
P, 4 S 4 S, 3

Fig. 11.28 (a-c) Truss and corresponding Z-P and S-e diagrams; (d) Free-body diagram for each
joint; (e) Computation of reactions atO support D

To construct the static matrix let us show the S-e diagram (Fig. 11.28c). Then we
need to consider free body diagram for joints which have possible displacements
(all joints except the pinned support D) and express the possible forces P;—Ps in
terms of unknown internal forces S1—S¢. This step is presented in Fig. 11.28d.

Joint A : Z Y=0— P =—S,—0.707S,
Joint B : Z Y =0— P, =0.707S4 + Ss

> X =0- Py="5,+0.707S,

Joint C : Z Y =0— Py = —0.707S; — Ss

ZX=0—>P5 =0.707S5 + Se
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Thus, the static matrix becomes

0 —1 0 -0.707 0 O
0 o0 0 0.707 1 0
Asxep=| 1 0 0 0.707 0 O
0o 0 -0.707 0 -1 0
L0 O 0.707 0 0 1 |
The stiffnesses of each member in local coordinates are
EA EA EA
ki =—=—|1];: ky=ks=ke=k = —1[1];
1 I p (1] 2 5 6 1 ) (1]
EA EA
ks =ks = ——=[1] = —[0.707].
s = ke = =1 =~ 0707
So stiffness matrix of all structure in local coordinates is
1 0 o0 0 0 0]
0 1 0 0 0 0
= E_A 0 0 0.707 0 0 0
d |0 0 0 0707 0 0
0 0 0 0 1 0
L0 0 0 0 0 1]
Stiffness matrix of all structure in global coordinates is
1.3534 —0.3534 —0.3534 0 0
- —0.3534 1.3534 0.3534 —1 0
K=AKA = | —03534 03534 1.3534 0 0
0 -1 0 1.3534 —0.3534
0 0 0 —0.3534 1.3534

Inverse matrix may be calculated by computer using a standard program. This
matrix is

0.8965 0.5 0.1035 0.3965 0.1035
0.5 2.4149 —0.5 1.9149 0.5
K'=—] 01035 —05 0.8955 —0.3965 —0.1035
0.3965 1.9149 —-0.3965  2.313 0.6035
0.1035 0.5 —0.1035  0.6035 0.8965
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Vector displacements
Z —2.2071
R Zy . d —8.6594
Z=| 27 |=K'P= i 0.2071
Z4 —6.8665
Zs —1.7929

The negative sign for Z; indicates that the joint A according Z-P diagram has a
negative displacement, i.e., downwards.
Vector of internal forces

S, ] [ 0.2071 ]
S, 2.2071
- S5 _oTo 2.5360
S = —kA'Z =
S, —3.1217
Ss —1.7929
Se —~1.7929

The negative sign for S4 according S-e diagram means that the diagonal member 4
is compressed. The units for all internal forces are kN.

Control: AS = P. In our case

0 —1 0 —0.707 0 O g;g;i 0
0 0 0 0707 1 0 2.5360 —4
AS=1]1 0 0 0.707 0 O _:;’ 1217 | = -2
0 0 -—-0.707 0 -10 _1'7929 0
0 0 0.707 0 0 1 —1.7929 0

For calculation of reaction of supports, we need to consider equilibrium condi-
tions for rolled and pinned supports. For example, the free-body diagram for pinned
support D and corresponding equilibrium equations are shown in Fig. 11.28e.

> X =0— Xp =S8 +0.70785 = 2.0kN,
D> Y =0-Yp = 8,+0.707S5 = 4.0kN.
Of course, for this externally statically determinate structure all reactions may be

determined considering the structure in whole. However, for calculation of reactions
we used typical approach as for any statically indeterminate structure.



414 11 Matrix Stiffness Method

11.9 Summary

1. The MSM is modern effective method for analysis of any deformable structures
subjected to arbitrary actions. Among them are external loads, change of tem-
perature, settlements of supports. For trusses and frames with straight members,
the MSM leads to the exact results. Curvilinear member should be replaced by
the set of inscribed straight members. In this case, MSM leads to the approxi-
mate results.

2. Design diagram of the MSM presents the set of uniform straight members con-
nected by hinged or fixed joints. Any action should be replaced by the equivalent
loads (moments and forces), which should be applied at the joints. The primary
unknowns of the MSM and their number are same as at displacement method in
canonical form, i.e., the angular displacements of the fixed joints and indepen-
dent linear displacement of joints. The unknown forces (in the simplest version
of the MSM) are axial forces for truss members and bending moment at the
fixed ends for the bending members.

3. Arbitrary external exposure (loads, change of temperature, and settlement of
supports) should be transformed into equivalent joint loads and presented in the
form of the J-L diagram.

4. The Z-P diagram contains information about possible displacements of the
joints and type of corresponding external load. In case of truss the Z-P dia-
gram shows linear displacement of joints and concentrated forces along these
displacements. For rigid joint of a frame, the Z-Pdiagram shows angular dis-
placement of the joint and couple; in case of linear displacement of the joints,
the Z-Pdiagram shows independent linear displacement and force.

5. The S-e diagram contains information about location and signs of the required
internal forces S. For truss the unknown forces are axial forces at the each mem-
ber; for bending member the unknown forces are bending moment at the fixed
joint of the primary system.

6. The static matrix A connects the possible external loads P and required internal
forces S. For computation of members of this matrix, it is necessary to express
each possible external load P in terms of unknown internal forces .S. The mem-
ber a; is coefficient at unknown force Sy in an equation for P;. The number
m of rows of matrix A equals to the number of possible external forces P; the
number n of columns equals to the number of the unknown internal forces. If
m > n then structure is geometrically changeable, if m = n then structure is
statically determinate; if m < n then structure is statically indeterminate. The
entries a;; may be positive, negative, or zero.

7. Deformation matrix B connects the end deformation of each finite element in
the primary system of the displacement method and unit displacement of in-
troduced constraints. The member b; is displacement in direction of unknown
force S; due to unit displacement of introduced constraint k. The number of
rows of matrix B equals to the number of required internal forces S; the number
of columns equals to the number of the introduced constraints of displacement
method. The deformation and static matrices obey to equation B = AT,
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8.

10.

11.

12.

13.

The stiffness matrix k of finite members in local coordinate connects unknown
internal force S and displacement of the end of the element. These matrices
may be presented in truncated or in expanded form. In truncated form, the stiff-
ness matrices for truss member and bending fixed-pinned member presents a
scalar, while for fixed-fixed member (2 x 2) matrix. The stiffness matrix in local
coordinate for whole structure k presents matrix which contains on the princi-
pal diagonal the stiffness matrices of separate members. This matrix is square,
symmetrical, and all entries are positive.

Juxtapose Z-P and J-L diagrams leads to the vector of external forces P. The
number of entries of this vector equals to the number of primary unknown of
the displacement method. For truss, the number of entries of this vector equals
to the number of the possible displacements of the joints. If external joint load
at the direction of the possible displacement is absent then corresponding entry
of the vector P is zero. If a structure is subjected to different groups of external
loads, then P will present a matrix. The number of the columns equals to the
number of the set loading.

The stiffness matrix K of whole structure in global coordinate is symmetrical
square (n xn) matrix where n is a number of primary unknowns of displacement
method. The members of this matrix are the unit reactions r;; of the displace-
ment method in canonical form; equation KZ =P is exactly canonical equations
of displacement method.

Juxtapose S-e and M 12 diagrams leads to the vector of internal forces S; of the
first state. The number of entries of this vector equals to the number of unknown
bending moments at the rigid joints. For truss S; = 0.

The final results may be presented using two matrices as follows:

The vector of joint displacement is Z = K~'P and the internal forces is S =
S1 + S;, where the vector of unknown internal forces of the second state is
S, = kA" - Z. Thus, the joint displacements and the distribution of internal
forces of any structure are defined only by three matrices. They are the static
matrix A of a structure, stiffness matrix k of a structure in local coordinates,
and the vector of external forces P.

To plot the final bending moment diagram, the signs of obtained final moments
should be juxtaposed with S-e diagram. The shear force can be calculated on
the basis of the bending moment diagram; the axial forces can be calculated on
the basis of the shear diagram. Reactions of supports can be calculated on the
basis of the axial and shear forces and bending moment diagrams.

Problems

11.1a-c. The uniform two-span beam is subjected to fixed load as shown in
Fig. P11.1. The flexural rigidity of the beam is EIl. Determine the angle of rota-
tion at support land the bending moments at specified points.
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' El ¢ D
| |
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Fig. P11.1

3 12 ([ — JE 12
Ans. (a) Z; = —q—, M; = L () Z, = _q_’ M, = _q_;
56EI 14 \ + 84FEI 28

3P

7y = .
© 2y =125

11.2. The uniform three-span beam with different spans is subjected to uniformly
distributed load ¢ (Fig. P11.2). The flexural rigidity of the beam is EI. Determine the
angle of rotation at support 1 and the bending moments at specified points. Compare
the result with data in Table A.12.

q
pus [
| 11:1.212 | ]2 | ,=0.6, |

Fig. P11.2

Ans. My = —0.0734q1}

11.3. The uniform three-span beam with equal spans / is subjected to the settlement
of support 1 as shown in Fig. P.11.3. The flexural rigidity of the beam is EI. Deter-
mine the angle of rotation at support 1 and the bending moments at specified points.
Compare with data at the Table A18.

El
S ) VI O
L
Fig. P11.3
EI EI
Ans. M| = 3.61—2A, M, = —2.4l—2A

11.4. Design diagram of the uniform two-span continuous beam is presented in
Fig. P11.4. Construct the influence line for angle of rotation and bending moment
at the support B (section 6). Compare with data at the Table A.9
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Fig. P11.4

11.5a,b. The frames in Fig. P11.5 are subjected to uniformly distributed load g.
Construct the bending moment diagrams. Present your answer in terms of EI, [,
and ¢g. Compare distribution of bending moment within the columns and explain

their difference.

a ¢ b ‘
w I3V Y
a4 2Er P
el & EI
-~
=a 44
L L
Fig. P11.5
ql? ql? ql?
Ans. (a) M, = _7_2, Mb = E, (b) Ma = Mb = %

11.6a,b. The combined structures are subjected to load as shown in Fig. P11.6a, b.
Construct the internal force diagrams. Calculate the reactions of support and pro-
vide check of results. For vertical members are used the steel wide-flange shape
W150 x 22(1 = 12.1 x 10® mm?, for tie rod #4.3 cm; (% =125m™?).

a b q=10kN/m
F=100kN_B 2FI C
— B C
2EI
=) =)
EIl EA EIl % EIl EA/ EIl %
= =
A D A D
Z6m | I=6m |

Fig. P11.6

Ans. (a) Ni_c = 165.8 (kN): (b) Na_c = 4.663 (kN)

11.7a,b. The portal frames with absolutely rigid cross bar are subjected to load
as shown in Fig. P11.7a, b. Calculate the horizontal displacement of the cross-bar.
Construct the internal force diagrams. Calculate the reactions of support and axial
force S in the cross bar. Provide your answer in terms of EI, h, and given load.
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a b

F B Ed=oco C B Ed=co C
EI EIl = q|Z|ET EIl =
A D A D

Fig. P11.7
Ans. (a) My = Mp = Fh/2, S = F/2;

5 3 3
b) Mg = —qh*, Mp=_—qh* S=-—qh
(b) Mg = 14 D= 1cd 14" (compr)
11.8. The portal frame with absolutely rigid cross bar BC is subjected to load F
as shown in Fig. P11.8. Both diagonal ties AC and BD are not connected at point
K. Calculate the horizontal displacement Z of the cross-bar. Construct the internal

force diagrams. Calculate the reactions of support and axial force S in the cross bar.
Assume A/1 = 60m™2.

F=10kN B EA=oco C
—_—

&
El| . i
A D
[=6m |
Fig. P11.8
Ans. Zpc =2.308/EI, Mg4=Mp =0.108kNm, S4c = — Spp =8.31kN,
Spc = F/2.

11.9. The portal frame with absolutely rigid cross bar BC is subjected to load F
(Fig.P11.9). Both diagonal ties AC and BD are connected by hinge at point K.
Calculate the horizontal displacements of the cross-bar and joint K. Construct the
internal force diagrams. Calculate the reactions of support and axial force S in the
cross bar. Assume A/] = 60m~2.

F=10kN_ B EA=o C

—
EI E D‘Ef
-~
A 1D
[=6m |

Fig. P11.9

Ans. Zgc =2.308/El, Z%"=1.154/EI, M4=Mp=0.108kNm, Sxc =
Sax =8.31kN
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11.10. Calculate the displacement of the joints and internal forces in all member of
the truss; EA= constant for all elements, d = 1 m (Fig. P11.10).

lFl =4kN
0> F2:2kN

Fig. P11.10

Ans. §1 = 0.6212; S, = S5 = S¢ = —1.3788; S3 = 1.9503; S4 = —3.7074

11.11. The externally and internally statically indeterminate truss is subjected to
two groups of external loads. The first group is F; = 12kN and F, = 5kN; the
second group is Ny = 16 kN and N, = 4kN as shown in Fig. P11.11. For each set
of load calculate internal forces in each element. Knowing internal forces compute
the reactions of supports. EA = constant for all elements.

Fig. P11.11

Ans. SetF:S8; = —6.2910; S, = 10.0328;..., S15 = —0.4672. Rp =
8.57606 kN

11.12. Construct the influence lines for internal force in each member of the in-
ternally statically indeterminate truss shown in Fig. P11.12. EA = constant for all
elements.

Fig. P11.12
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Ans. Ordinates of influence lines

Sy [ =1.250 —0.8333 —0.4167 |
S, 1.000 0.6667 0.3333

S7 0.7608 0.9412  0.4941

S15 [ 03333 0.6667 1.000

The columns 1-3 corresponds to location P =1 at joint B, D and F, respectively.
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Chapter 12
Plastic Behavior of Structures

This chapter is devoted to the analysis of a structure, taking into account the plastic
properties of material. Such analysis allows the use of the reserves of strength of
material, which remains unused considering the material of structure as elastic.
Therefore, plastic analysis allows us to define the limit load on the structure and
to design a more economical structure. Fundamental idea of the plastic analysis is
discussed using the direct method. Kinematical and statical methods of calculation
of the limit loads are considered. Detailed plastic analysis of the beams and frames
are presented.

12.1 Idealized Stress—Strain Diagrams

In the previous chapters, we considered structures taking into account only elastic
properties of materials for all members of a structure. Analysis of a structure based
on elastic properties of material is called the elastic (or linear) analysis. Elastic anal-
ysis does not allow us to find out the reserve of strength of the structure beyond its
elastic limit. Also this analysis cannot answer the question: what would happen
with the structure, if the stresses in its members will be larger than the proportional
limit? Therefore, a problem concerning to the actual strength of a structure cannot
be solved using elastic analysis.

The typical stress—strain diagram for the specimen of structural steel is pre-
sented in Fig. 12.1a. Elastic analysis corresponds to the initial straight portion of
the o0—e diagram. If a specimen is loaded into the proportional limit (or below)
and then released, then material will unload along the loading path back to the
origin (Fig. 12.1a). So, there are no residual strains. This property of unloaded spec-
imen to return to its original dimensions is called elasticity, and material in this
region is called the linearly elastic. Within the elastic region, a relationship between
stress and strain obey to Hooke’s law 0 = Ee.

Let a specimen is loaded into the elastic limit. The stress at this point slightly
exceeds the proportional limit. From this point, the material unloads along the line
that is parallel to straight portion of the diagram and thus, the material has the very
small residual strain (Fig. 12.1a).

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 423
DOI 10.1007/978-1-4419-1047-9_12, © Springer Science+Business Media, LLC 2010
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Fig. 12.1 (a) Typical stress—strain diagram for structural steel. (b) Loading-unloading diagram

Plastic behavior starts at the elastic limit. The region CD is referred as the perfect
plastic zone. In this region, the specimen continues to elongate without any increase
in stress. Above the yield plateau, starting from point D, the behavior of the speci-
men is described by nonlinear relationships o — ¢. If the specimen will be unloaded
at point A (Fig. 12.1b), then unloading line will be parallel to the load straight line,
so the specimen returns only partially to its original length. Total strain of the spec-
imen is ON, while the strain MN has been recovered elastically and the strain OM
remains as residual one.

If the material remains within the elastic region, it can be loaded, unloaded, and
loaded again without significantly changing the behavior. However, when the load is
reapplied in a plastic region, the internal structure of material is altered, its properties
change, and the material obeys to Hook’s law within the straight line MA; it means
that the proportional limit of the material has been increased. This process is referred
to as the strain-hardening.

For plastic analysis, we change the typical diagram by its idealized diagram. Dif-
ferent idealized diagrams are considered in engineering practice. Some of idealized
models are presented in Table 12.1.
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Table 12.1 Idealized o —e diagrams for axially loaded members

Material
Elasto-plastic with Rigid-plastic with
Elasto-plastic Rigid-plastic linear hardening linear hardening
c o
K
o, — o0,
[}
[}
[}
! |
Y v
€ € €

For further analysis, we will consider idealized elasto-plastic material and rigid-
plastic material. We start from elasto-plastic material; corresponding diagram is
called Prandtl diagram. This diagram has two portions — linear “stress—strain” part
and the yield plateau. Elastic properties of material hold up to yield point stress
oy. The yield plateau shows that displacement of material can become indetermi-
nately large under the same stress. Idealized elasto-plastic material does not have
the effect of hardening. This diagram may be applicable for a structural steel and
for reinforced concrete. Structural analysis on the basis of idealized diagram is re-
ferred as the plastic analysis. The quantitative results of plastic analysis are much
closer to the actual behavior of a structure than the results obtained on the basis of
elastic properties of material.

In case of statically determinate structure, yielding of any member leads to the
failure of the structure as a whole. Other situation occurs in case of statically indeter-
minate structure. Assume that for all members of the structure, the Prandtl diagram
is applicable. In the first stage, when loads are small, behavior of all members fol-
lows the first portion of the Prandtl diagram. Proportional increase of all loads leads
to the yielding in the most loaded member. It means that the degree of statical in-
determinacy is decreased by one. The following proportional increase of all loads
leads to the following effect: the internal force in the yielding member remains the
same, while the forces in the other members will be increased. This effect will be
continued until the next member starts to yield. Finally, the structure becomes stati-
cally determinate and yielding of any member of this structure immediately leads to
the failure of the structure, since the structure is transformed into a mechanism. In
general, if the structure has n redundant constrains, then its failure occurs when the
number of yielding member becomes n + 1. Its means that capability of a structure
to carry out the increasing load has been exhausted. This condition is called /imit
equilibrium condition. In this condition, the limit loads and internal forces satisfy to
equilibrium condition. The following increase of a load is impossible. In this condi-
tion, the displacement of the structure becomes undefined. While the linear portion
of typical stress—strain diagram leads to linear problems of structural analysis (elas-
tic problems), the Prandtl diagram leads to nonlinear problems of plastic behavior
of structures. Indeed, the design diagram of a structure is changed upon different
levels of loads. Transition from one design diagram to another happens abruptly.
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Let us consider plane bending of a beam of a rectangular (b x k) cross section.
In the elastic region of the stress—strain diagram, the normal stresses are distributed
within the height of a cross-section of the beam linearly. The maximum tensile and
compressed stresses are located at the extreme fibers of the beam. The stress oy,
corresponds to yield plateau (Fig. 12.2a). Increasing of the load leads to appearance
and developing of the yield zone and decreasing of the “elastic core” of the section
of the beam. Diagrams in Fig. 12.2b, ¢ correspond to partially plastic bending of a
beam, which means that the middle part of the cross-section is in elastic condition,
while the bottom and top parts of the beam are in plastic condition. Further increas-
ing of load leads to complete plastic state (Fig. 12.2d), which corresponds to the
limit equilibrium, i.e., we are talking about appearance of so-called plastic hinge
(Fig. 12.2d, e). It is obvious that all sections of the beam are in different states.
Defining of the location of the plastic hinge is an additional problem of plastic anal-
ysis. This problem will be considered below.

Plastic zone

L

Elastic
core

AN

Plastic zone

d o, e

F T \ Plastic hinge

—_—

1F

|

Fig. 12.2 Distribution of normal stresses within the height of a beam

What is the difference between plastic and ideal hinge? First, the plastic hinge
disappears if the structure is unloaded, so the plastic hinge may be considered
as fully recoverable or one-sided hinge. Second, in the ideal hinge, the bending
moment equals to zero, while plastic hinge is characterized by the appearance of
bending moment, which is equal to the limit (or plastic) moment of internal forces
F=o0 % (Fig. 12.2d). A bearing capability of a structure is characterized by the
plastic moment

M F h bh?
p=E5 =07

Plastic analysis involves determination of plastic load or limit load, which struc-
ture can resist before full failure due to yielding of some elements. The limiting
load does not depend on settlements of supports, errors of fabrication, prestressed
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tension, and temperature changes; this is a fundamental difference between plastic
and elastic analysis. In the following sections, we will consider different methods of
determining plastic loads.

12.2 Direct Method of Plastic Analysis

The fundamental concept of plastic analysis of a structure may be clearly presented
using the direct method. Let us consider the structure shown in Fig. 12.3a subjected
to load P at point K. The horizontal rod is absolutely rigid. All hangers have con-
stant stiffness EA. The plastic analysis must be preceded by elastic analysis.

Elastic analysis This analysis should be performed on the basis of any appropri-
ate method of analysis of statically indeterminate structures. Omitting this analysis,
which is familiar for reader and presents no difficulties, the distribution of internal
forces in members 1-4 of the structure is as follows (Fig. 12.3b):

Ny =04P; N, =03P; N3=02P; N4=0.1P

Plastic analysis

Step 1: Increasing of load leads to the appearance of the yield stresses. They are
reached in the most highly stressed member. In our case, this member is element 1.
Let N; become equal to limit load, i.e. Ny = N,. Since N1 = 0.4 P, then it occurs

if external load would be equal to P = % = 2.5N,,. For this load P, the limit
tension will be reached in the first hanger. Internal forces in another members are
(Fig. 12.3¢)

N =03P =03-25N, =0.75N,; N3 =0.5N,; Ng=025N,

Step 2: If load P will be increased by value AP,, then Ny = N, remains without
changes. It means that additional load will be distributed between three members
2, 3, and 4, i.e., the design diagram had been changed (Fig. 12.3d). This structure
is once statically indeterminate. Elastic analysis of this structure due to load A P,
leads to the following internal forces

N, =0.833AP,; N3 =0333AP;; N4u=—0.167AP,.

As always, the most highly stressed member will reach the yield stress first. Since
first hanger is already in yield condition (and cannot resist any additional load), the
most highly stressed member due to load A P, is the second hanger. The total limit
load in this element equals

Ny = 0.75N, + 0.833AP;.

In this formula, the first term corresponds to initially applied load P = 2.5N,
(Fig. 12.3c), while the second term corresponds to additional load AP;,.
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Fig. 12.3 (a, b) Design diagram and distribution of internal forces according to elastic analysis;
(c) Step 1 — Plastic state in the member 1 and internal forces in the rest members; (d) Step 2 —
Internal forces in the members 2—4 due to load A P,; (e) Step 2 — Plastic state in the members 1
and 2; (f) Step 3 — Internal forces in the members 3—4 due to load A Ps; (g) Step 4 — Plastic state
in the members 1, 2, and 3; (h) P — Ak diagram in plastic analysis

The limit load for the second hanger is N = N,. Thus equation N, =

0.75Ny, + 0.833AP, = N, leads to the following value for increment of load
APy = 25N — 03N,
Thus, the value AP, = 0.3N, represents additional load, which is required so

that the second hanger reaches its yielding state. Therefore, if load

P =25N, + 03N, = 2.8N,,
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then both members 1 and 2 reach their limit state. As this takes place, the internal
forces in hangers 3 and 4 are (Fig. 12.3e) are following

N3 = 0.5N, +0.333-0.3N, = 0.6N,; N4 =0.25N, —0.167-0.3N, = 0.20N,

Step 3: Since internal forces in hangers 1 and 2 reached the limit values, then the
following increase of the load by value A P5 (Fig. 12.3f) affects the members 3 and
4 only. Elastic analysis of this statically determinate structure leads to the following
internal forces in members 3 and 4: N3 = 2AP3 and N4 = —AP;.

Step 4: Similarly as above, the limit state for this case occurs if internal force in
hanger 3 reaches its limit value

N3 =0.6N, +2AP3 = N,.

This equation leads to the following value for increment of the load

0.4N,
AP; =

= 0.2N,

The total value of external force (Fig. 12.3g)
P =25N,+ AP, + AP3 =2.5N;, + 03Ny, + 02N, = 3.0N,

The first term in this formula corresponds to limit load in the first member; in-
crement of the force by 0.3N, leads to the limit state in the second member. The
following increment of the force by 0.2N,, leads to the limit state in the third mem-
ber. After that the load carrying capacity of the structure is exhausted. From the
equilibrium equation for the entire structure, we can see that on this stage Ny = 0
(Fig. 12.3g).

All forces satisfy to equilibrium condition. Plastic behavior analysis leads to the

increment of the limit load by 3;.25'5 100% = 20%.

Plastic displacements If some of the elements reached its limiting value and the
load continues to increase, then we cannot determine displacements of the system
using only elastic analysis. However, plastic analysis allows calculating displace-
ments of a structure on the each stage of loading. Let us show the graph of
displacement of the point application of force P (point K).

If load P = 2.5N,, then internal force in second element equals 0.75N,,
(see Fig. 12.3c) and vertical displacement of point K is Agx = 0.75%—{1.

If load P = 2.8N,, then internal force in second element equals N,
(see Fig. 12.3e) and vertical displacement of point K is Ag = %—y[;.

Ifload P = 3.0N,, then internal force in third element equals N, (see Fig. 12.3g)

and deflection of this element equals Ig—yj. Since internal force in fourth element

equals zero, its deflection is zero and required displacement Ax = 21};—%. Corre-
sponding P — Ak diagram is shown in Fig. 12.3h; the factors //EA and N, for
horizontal and vertical axis, respectively. This diagram shows that plastic analysis
is nonlinear analysis.
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12.3 Fundamental Methods of Plastic Analysis

Analysis of the plastic behavior of a structure may be performed also by kinematical
and static methods. Both these methods are exact and much easier than the direct
method. The first of these methods deals with various forms of failure, while the sec-
ond method deals with various distributions of internal force satisfying equilibrium
conditions. The idea of these methods is explained below.

Absolutely rigid rod is suspended by four hangers 1-4 as shown in Fig. 12.3a.
The axial stiffness of all members EA is constant. Find the limit load considering
both methods.

12.3.1 Kinematical Method

This method requires consideration of different forms of failure of a structure. For
each form of failure, there is a corresponding well-defined value of the failure load.
The actual limit load is a minimum load among all possible failure loads.

Let us consider all possible forms of the failure of the structure; they are shown
in Fig. 12.4a. Each form 1-4 presents position of the rigid rod MK for different
scheme of failures. Assume that elastic displacements of hangers are much less then
plastic ones and may be ignored. Therefore, each position is obtained by rotation
of the rod around the point of connection of a hanger and the rod. Internal forces,
which arise in each hanger, are N,.

Now for each scheme of failure, we need to find the load P using equilibrium
condition.

Scheme 1: P = w = 6N,
Scheme 2: P = oo, since the moment arm of the force P with respect to point
of rotation is zero

Scheme 3: P = w = 4N,
Scheme 4: p = MBIE244D) _ 3y,

Corresponding values of P is shown on the schemes 1-4. The minimum value
of P = 3N,,. This case corresponds to rotation of the rod around the point D. This
result coincides with result, which was already obtained by direct method.

12.3.2 Static Method

According to this method, it is necessary to find all possible distributions of internal
forces in statically indeterminate structure; we assume that for each distribution, the
internal forces do not exceed the limit load. For each distribution of internal force,
there is a corresponding well-defined value of the external load P. Actual limit load
is a maximum load among all possible limit loads.
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Fig. 12.4 (a) Kinematical method. Different forms of failure of the structure; (b) Static method.
Different stress conditions of the structure

Let us consider various distributions of internal forces in the structure. For all
these schemes, the following two conditions should be met:

1. Since the structure contains four hangers, then forces in any three members have
to be equal to the limit load Ny, which means that these three members corre-
spond to horizontal part of Prandtl diagram

2. The force in the remaining forth member should be less than Ny,.

There is possible the following cases.

1. Ny=N,=Ns =N,
2. Ny =N, =Ny =N,
3. Ny =N3=N,=N,
4 Ny=Ns=Ny,=N,

The force in the remaining forth member should be defined from equilibrium con-
dition. The sum of the moments with respect to point of application of the force P
leads to the following results:

1.Ng=0, 2.Ns=-N,, 3.Ny=o0, 4. Ny=3N,

These internal forces are shown in Fig. 12.4b.
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The cases 3 and 4 should be omitted, because internal forces are greater than Ny,.
Now we need to consider cases 1 and 2 in more detail.

Case 1: Since N4 = 0, then equilibrium equation ) Y = 0 leads to P = 3N,,.
Case 2: Since N3 = — Ny, then the same equilibrium equation leads to result:
P =3Ny,— Ny =2N,.

The maximum load which the system can resist is 3Ny; thus, the actual limit
plastic load corresponds to case 1. This result have been obtained earlier by direct
and kinematical methods.

Summary For any statically indeterminate structure, there are a number of various
forms of failure, which are possible. The kinematical theorem states that the true
form of collapse is that one that corresponds to the minimum value of the limit load.

For any statically indeterminate structure, there are a number of internal force
distributions satisfying equilibrium conditions. The static theorem states that the
distribution of internal forces, which occurs at the maximum value of the limit load,
corresponds to exhausted bearing capacity of a structure.

Both the methods express two extreme properties of plastic load for statically
indeterminate structure, all members of which obey Prandtl diagram.

12.4 Limit Plastic Analysis of Continuous Beams

So far we have discussed plastic analysis of a structure in case of ideal elasto-
plastic material. Now we will consider the ideal rigid-plastic material (column 2,
Table 12.1). When this stress—strain diagram may be adopted? Since elastic dis-
placements of a structure are significantly less than plastic displacements, then these
elastic displacements may be ignored. In this case, the material of the structure is
called as idealized rigid-plastic material, and the structure is called as rigid-plastic
one. This material is not real, but using this material, the procedure for plastic anal-
ysis of elasto-plastic structures may be simplified. This simplification is based on
the following fact: if two structures, which are made from elasto-plastic and rigid-
plastic materials, have the same limit plastic load, then the limit condition of the
elasto-plastic structure asymptotically approaches the limit condition of the rigid-
plastic structure.

Let a structure is subjected to different loads simultaneously. Assume that each
load may increase independently of each other. In this case, the limit conditions
may be approached under different values of loads. What will be the limit load in
this case? Concept of “limit load” becomes unclear. Therefore, let us assume that
the loading is simple. It means that if the structure is subjected to different loads P;
and P, = AP; acting simultaneously, then these loads are increasing together and
parameter A of the load (coefficient between loads) remains constant during entire
loading process.
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A plastic analysis of idealized rigid-plastic structures may be performed using
two principal methods, namely static and kinematical methods. Fundamental con-
dition for both the methods is that in the limit plastic state, the bending moments
at all plastic hinges are equal to yielding moment M, which is a characteristic of
material and cross-section of the beam. For plastic analysis by both methods, it is
necessary to show a collapse mechanism first.

Let us consider application of static and kinematical methods for plastic analysis
of continuous beams. Two-span beam of constant cross-section subjected to two
equal forces P is shown in Fig. 12.5a. It is required to determine the limit load.

12.4.1 Static Method

First, let us consider the behavior of structure subjected to given load and the failure
mechanism.

First stage In the elastic condition, the bending moment diagram is presented in
Fig. 12.5b. Increasing of the loads leads to the increasing of bending moment ordi-
nates. Since maximum bending moment occurs at the support 1 (M; = 3P1/16),
then a material of the beam begins to yield at this support. Spreading of the plastic
zone at the support 1 during the increasing loading is shown in Fig. 12.2. Thus, the
first plastic hinge appears at this support, and the entire two-span continuous beam
is transformed into two simply supported beams. The maximum possible bending
moment at the support 1 will be equal to the limit bending moment M,,. So the
moment at plastic hinge will be M,. Corresponding design diagram is presented in
Fig. 12.5c¢.

Second stage Each of these simply supported beams is subjected to force P
and plastic moment M, at support 1. Corresponding design diagram is shown in
Fig. 12.5d (in fact, Fig. 12.5¢ and 12.5d are equivalent). Bending moment at the
point of application of force equals to

Ml_Pl M,
2] 4 2

Again, we will increase the loads P. It is clear that the maximum moment occurs at
the point of application of load P. The spreading of elastic zone of material at this
point is as shown in Fig. 12.2. Finally, a new plastic hinge occurs within the span (in
this simplest case, this plastic hinge will be located at the point of application of the
load). As the result, three hinges will be located on the on the each span of the beam;
they are — hinge at support A4, hinge under the point of application of the load P,
and hinge at support 1. The nature of these hinges is different. Hinge at the point 4
is ideal one, which represents support, while two other hinges are plastic ones, and
they are the result of exhausted bearing capability of the beam. The same situation
is with the second beam 1-B. Even though the hinges are of different nature, but
since they are located on one line, this leads to the failure of the structure.
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Fig. 12.5 (a, b) Continuous beam. Loading and bending moment diagram in elastic state; (c, d)
Plastic hinge at the support 1 and presenting the continuous beam as two separate beams; (eh)
Finding of limit load by graphical method; (i) Calculation of limit plastic load by kinematical
method
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In the limit state, the bending moment at the point of application of force P
should be equal to the limit moment, i.e.,

Pr_My _ M (12.1)
4 2 T '
This equation leads to the limit load
6M
Piim = Ty

Limit load can be also found using graphical procedure, based on (12.1) using
the superposition of two bending moment diagrams; this procedure is presented in

Fig. 12.5e-h.
These diagrams are caused by limit plastic moment at the plastic hinge 1 and
load P. Plastic hinge at support 1 with plastic moment M; = M, is shown in

Fig. 12.5¢; corresponding bending moment diagram is shown in Fig. 12.5f. Bending

moment diagram for two simply supported statically determinate beams with forces
P is shown in Fig. 12.5g; the final bending moment at the force point is PTI — %

If this ordinate is less than plastic moment M,,, then the limit state at the point of
application of force does not occur.

Let us find such value of P so that PTI — % = M,,. This could be found by the
procedure of equalizing of the final bending moment at the point of application of
force and the limit moment at support 1 as shown in Fig. 12.5h by bold lines. This

procedure leads to the value of limit load Py, = 6Al/1y .

12.4.2 Kinematical Method

This method is based on the following idea: in the limit state, the total work done
by unknown plastic loads and all plastic bending moments M, is zero. This method
consists of the following steps:

1. Identify the location of the potential plastic hinges. These hinges may be located
at supports and at points of concentrated loads. In case of distributed load, plastic
hinge may appear at point of zero shear. Also, plastic hinges may occur at the
joints of the frame. Thus, we identify possible failure mechanisms.

2. Equilibrium equations should be written for each failure mechanism. In our
case, the failure mechanism is shown in Fig. 12.5i. This failure mechanism is
as follows: plastic hinge first appears at the middle support and thus, turning the
original statically indeterminate beam into two statically determinate simply sup-
ported beams. With further increase of load P, plastic hinges appear at the points
of application of forces P. As the result, three hinges are located on one line
and thus, the system becomes instantaneously changeable, which corresponds to
limit state.
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Assume that in the limit state, the vertical displacement at the each force P equals
unity. Then the angle of inclination of the left and right parts of each mechanism is
1 _ 4 2
v=Ern ==
The work done by limit loads equals W(P) = 2 Py, - 1. The work W produced by
limit moments M, at the intermediate support equals W; = —2M,,¢. The work W,
produced by limit moments at the points of load P equals W, = —4M ¢ (these
plastic moments are shown according to location of extended fibers in elastic stage).
Since W (P) + Wy 4+ W, = 0, then this condition can be rewritten as follows:

12M,

2Piim - 1 = 2Myp + 4Myp =

The limit load becomes
P = My
lim — i .
As it was expected, results obtained by both static and kinematical methods are
identical.
Some typical examples of plastic analysis of statically indeterminate beams are

shown below.

Example 12.1. Design diagram of pinned-clamped beam, which is subjected to
concentrated load P, is presented in Fig. 12.6a. Calculate the limit load P.

A
_%_ 12 ‘ 12

ga -ID

d .
Fig. 12.6 Plastic analysis PIT i
and graphical calculation of 4 : M,
lelt load for pinned-clamped M
eam bl

Solution. From the elastic analysis of the beam we know that the maximum mo-
ment occurs at the support B. Therefore, just here will be located the first plastic
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hinge. It is shown by solid circle; corresponding plastic moment is M, (Fig. 12.6b).
Now we have simply supported beam, i.e., the appearance of the plastic hinge do
not destroy the beam but led to the changing of design diagram. Therefore, we can
increase the load P until the second plastic hinge appears at the point of application
of the load. Thus, we have three hinges (Fig. 12.6¢), which are located on the one
line, so this structure becomes instantaneously changeable.

Using superposition principle, the moment at the point of application of force is

_ Pl M,

4 2

M (Pim) + M (M)

In the limit condition, the moment at the point of application of force equals to
plastic moment:

Pinl M,
4 T M ®
This equation leads to the limit load P
oM,

Pim = -

The procedure (a) may be presented graphically as shown in Fig. 12.6d.

Example 12.2. Design diagram of a pinned-clamped beam is presented in Fig. 12.7.
Calculate the limit load ¢ and find the location of a plastic hinges.

q
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Fig. 12.7 Plastic analysis R / T R
of pinned-clamped beam 4 178

Solution. It is obvious that the first plastic hinge appears at the clamped support
B; corresponding plastic moment is M. Now we have simply supported beam A B
(this design diagram is not shown), so we can increase the load ¢ until the second
plastic hinge appears. Location of this plastic hinge will coincide with position of
maximum bending moment of simply supported beam subjected to plastic moment
at the support B and given load g.
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For this beam, the general expressions for shear and bending moment at any
section x are

In these expressions, the moment M g at the support B equals to plastic moment M.
The maximum moment occurs at the point where Q (x) = 0. This condition

leads to xg = %— @

ql
Corresponding bending moment equals

My, (o) = (4L - M8\ (L _Ms q(l_Mz\®
ma ST T 2 gl ) 2\27 q

The limit condition becomes when this moment and the moment at the support B
will be equal to My, i.e. Minox = M,,. This condition leads to the following equation

214
M} —3M,q 12+T=0. (a)

If we consider this equation as quadratic with respect to M, then solution of this
equation is M, = % (3 + \/g) Minimum root is M, = g (3 — 2ﬁ) =
0.08578¢!2. The limit load becomes

oM, M,
fim = —— 2 = 11.657=2. (b)
(3 _ 2ﬁ) 12 !

The plastic hinge occurs at xo = / (\/5 - 1) = 0.4142].

If we consider (a) as quadratic with respect to g, then solution of this equation is

2M
Gmax = _lzy (3 + 2\/§> .

This result coincides with (b).

Example 12.3. Two-span beam with overhang is subjected to force P and uni-
formly distributed load ¢ as shown in Fig. 12.8a. The loading of the beam is simple;
assume that relationship between loads is always P = 2¢l,. Determine the limit
load, ifa = 3m, b = 4m, [, = 6m, /3 = 2m, and bearing capacity of all cross
sections within the beam is M, = 60kNm.
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Fig. 12.8 (a) Design diagram; (b) Beam with plastic hinges at supports; (¢) Bending moment
diagram inscribed between two limit plastic moments (LPM)

Solution. The given structure has two redundant constraints. There exist different
failure mechanisms. Let us consider one of them. The progressive increase of the
loads leads to the appearance of the plastic hinge at one of the supports, so the
structure becomes statically indeterminate of the first degree. Further increase of
the loads leads to the appearance of the plastic hinge at another support. Finally,
plastic hinge happens at the last support. It means that the entire continuous beam
is being transformed into two simply supported beams subjected to given loads and
plastic moments M, at the supports A, B and C as shown in Fig. 12.8b. Direction of
moments M, is shown according to location of extended fibers in elastic analysis.
The order of appearance of the plastic hinges on supports depends on the relation-
ships between force P and load ¢ as well as geometrical parameters of the beam.

This failure mechanism allows developing the theory of plastic analysis of con-
tinuous beams subjected to several loads. However, it does not mean that exactly
the above sequence of formation of plastic hinges will be realized. For example, if
load ¢ is small then plastic hinges can appear first of all at the supports A, B, and at
point K, and after that at support C and in the second span. Real sequence of plastic
hinges may be defined only after determination of limit load as shown below.

Bending moment at the point K of the first span caused by force P as well as
plastic moments at supports A and B equals

Pab M,b M,a Pab
Mg = A it A - M,. (a)
I I I I
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Bending moment at the middle point of the second span caused by distributed load
g and plastic moments at supports B and C equals

M=22_ 22 _ Y _2T2_ po (b)

The following increase of the load leads to the appearance of the plastic moments
within the first and second spans. In the limit state, the bending moments of the first
and second spans must be equal to plastic moments; therefore expressions (a) and
(b) should be rewritten for both spans as follows:

Pab Pab
For first span 7 M, =M, or =2M,. (c)
1 1
12 12
For second span % —-My, =M, or % =2M,. (d)

Equations (c) and (d) show that in limit state, the maximum bending moment caused
by external load equals twice plastic moment. This can be presented geometrically
as shown in Fig. 12.8c. Limit plastic moments (LPM) are shown by two horizontal
dotted lines. These lines show that limit moments for supports and for any section
of the beam are equal, may be negative or positive; however, they cannot be more
than M,. Now we can fit a space between two LPM lines by bending moment
diagrams caused by external load for each simply supported beam. This procedure
is called equalizing of bending moments and can be effectively applied for any con-
tinuous beam.
For the first span, (c) allows calculating the limit force P

Pimab 2M,l 2 x 60 (kN: 7
D o0y s Py = 2220 2X 60 NM) X Tm) _ 0y
I ab 3 (m) x 4 (m)
For the second span, (d) allows calculating the limit distributed load ¢
Giml3 16M, 16 x 60 (kNm)
=M e = = 26.67 kN/m.
8 y 7 im = 36 (m?) /m

Now we need to take into account the condition of simple loading as well as limiting
force P = 70kN and load ¢ = 26.67 kN/m.

Knowing the distributed load we can calculate, according condition P = 2gl5,
corresponding limit force P

Pim = 2.0 x 26.67 (kN/m) x 6 (m) = 320 kN > 70 kN. ()
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For part CD
Qim!3 2M,  2x60(kNm)
=M, = ¢iim = = = 30 kN N
) y 74 2 22 (m2) /m
which leads to
Py =2.0x30x 6 =360kN > 70 kN. (2)

Thus, limit distributed load g in both cases leads to the limit force P which can not
be accepted.

The final limit load is governed by minimum value given by formulae (e), (f),
and (g), so the limit load Py, = 70kN, and corresponding gjim = g‘l‘;“ = 27><6 =
5.83kN/m.

Discussion:

On the basis of obtained numerical results, we can explain the order of appearance
of the plastic hinges. The limit load P = 70 kN and corresponding load ¢ are de-
termined from the conditions of appearance of plastic hinges at the supports A, B
and at point K of application force P. Thus, the failure of the structure in whole
is defined by a failure of the span AB because this simply supported beam is be-
ing transformed in mechanism. In this case, with further increase of the load ¢, the
relationship P = 2ql, is not held anymore, since load P cannot reach the greater
value than Py, . It is obvious that span BC still can resist to increased load ¢, how-
ever, the structure in whole is differ from the original one.

The problem of determination of limit load for continuous beam with given bear-
ing capacity has unique solution.

12.5 Limit Plastic Analysis of Frames

A frame can be failed by different ways. The different schemes of failure are pre-
sented in Fig. 12.9. They are following: beam mechanism of failure (B;, B>, B3),
mechanism of sidesway failure (S), joint failure (J), framed (') and different com-
bined mechanisms.

The type of mechanism of failure, which will occur, is not known in advance.
This is the principal difficulty for plastic analysis of frames. Therefore, for each
mechanism of failure and their different combinations, the equilibrium conditions
should be considered and then that mechanism of failure should be adopted, which
occurs at the minimum load.

Let us consider the limit load determination for different types of failure. Design
diagram of the portal frame is presented in Fig. 12.10a. The loading of the frame
is simple. Assume that Q = 2P and the limit moments for vertical and horizontal
members satisfy to condition MJ'}‘“ =2M ;e“.

Now let us consider the different mechanisms of failure.
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Fig. 12.9 Design diagram of the frame and possible mechanisms of failure

12.5.1 Beam Failure

This scheme is characterized by failure of its horizontal element only; the horizontal
displacement of the frame is absent (Fig. 12.10b). In this case, the plastic hinges
appear at the joints C (and D) as well as at the point K. Corresponding plastic
moments are denoted as M ;’er‘ and M }“’r. Their directions are shown according to
the location of extended fibers; location of such fibers are easy to find if bending
moment diagram is plotted in elastic state. The inclination of the parts CK and KD
is denoted by «.

Equation of limit equilibrium for beam scheme of failure can be found using
kinematical method (in the limit condition the total work done by unknown plastic
loads and all plastic bending moments M, equals to zero):

/
Qlim% - 2M)'}°rot —2M " = 0.

We can see that beam mechanism is realized only by load Q. Since M ;“’r =2M ;e“,

. . . o 12M et
then the solution of this equation leads to the following limit load Qi = ly .

Since Q = 2P, then corresponding limit load P is following:

6MJ\//C]1
Py = T (12.2)
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Fig. 12.10 (a) Design diagram of a portal frame; (b) Beam mechanisms of failure (B);
(c) Sidesway mechanisms of failure (S); (d) Combined mechanisms of failure (B + S); (e) Graph
of limit combination of loads
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12.5.2 Sidesway Failure

This scheme of failure of the structure is characterized by the appearance of plastic
hinges at supports A and B as well at joints C and D; a failure of its horizontal el-
ement is absent (Fig. 12.10c). In this case, the structure is ongoing the horizontal
displacement only. The inclination of the vertical members AC and BD are denoted
by B.

Equation of limit equilibrium using kinematical method is following:

Piim - Bh— 4M}*" - B = 0.

We can see that sidesway mechanism of the failure is realized only by load P. Since
| = 2h, then solution of this equation

4M)\)lert _ SM;er[

Piim = = 12.3
1 h ] (12.3)

12.5.3 Combined Failure

This scheme of failure of a structure is characterized by the appearance of plastic
hinges at supports A and B, at joint D as well at point K (Fig. 12.10a). In order to
the system becomes a mechanism the total number of plastic hinges mustbe n + 1,
where 7 is a degree of redundancy. In our case, the system becomes a mechanism
when the number of plastic hinges is 4 (Fig. 12.10d). The inclination of the vertical
members AC and BD is denoted by 6. Since a joint C remains a rigid ones, then
inclination of the horizontal members is also 6.

As before, the equation of limit equilibrium using kinematical method is
following:

01 ve hor
Qlim7 + Piim -0 h —4M; "9 —2M,"0 = 0.

We can see that combined mechanism is realized by both loads Q and P. For
M J},“” = 2M " and | = 2/; last equation may be rewritten as

Oiim!  Piim!
M)\;er[ M}ert

= 16. (12.4)

12.5.4 Limit Combination Diagram

The result of the plastic analysis may be presented by diagram shown in Fig. 12.10e.

The designations of the axis are ﬂ‘v";n and 1%“\“;,{
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For beam failure Qjim = IZA;I;CH . This case is shown on the Fig. 12.10e by line
B, which is parallel to horizontal axis because the beam mechanism is realized only
by load Q.

For sidesway failure P, = 81‘? . This case is shown in the Fig. 12.10e by
line S, which is parallel to vertical axis because the sidesway mechanism is realized
only by load P.

For combined failure relationships between limit loads is given formula (12.4).
Corresponding line is shown in Fig. 12.10e by line B + S. Since Q = 2P, then

16Myet  5.33M
Pim = = .
3/ l
Formulae (12.2), (12.3), and (12.5) present limit load P, which corresponds to dif-
ferent mechanisms of failure. Failure is governed by minimum load

(12.5)

5.33M

lim = T’

which corresponds to combined mechanism of failure; therefore, this type of failure
will happens.

Note that increasing of all geometrical dimensions of the frame (/, &) by n-times
leads to decreasing of the limiting loads by n-times.

Problems

12.1. A straight rod with cross sectional area A is located between two rigid sup-
ports M and N and subjected to axial load P (Fig. P12.1). The yield stress of
material is oy. Define the limit load P. Solve this problem by direct and static
methods.

Fig. P12.1

Ans. Py = 20, A.

12.2. A straight uniform rod with cross sectional area A is attached to a rigid sup-
port at end M, while there is a gap of A between the right end of rod and the rigid
support at N; the rod is subjected to axial load P (Fig. P12.2). The yield stress of
material is o). Calculate the limit load P. Compare result with problem 12.1 and
explain your answer.
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P
M FE— 1|V
e b [].A

Fig. P12.2

Ans. P]im = ZO'yA.

12.3. Symmetrical structure is subjected to load P as shown in Fig. P12.3. The
cross sectional area of the vertical member is 4, and for rest members are kA, where
k is any number. Yielding stress for all members is 0. Perform the elastic analysis
and calculate Pyjqy. Calculate the limit load and determine ratio P/ Pajow. Use
the static method.

1] 4
kA ol o
P

Fig. P12.3

Ans. Pim = 0y A (1 + 2k cos ).

12.4. Absolutely rigid rod is suspended by vertical hangers as shown in Fig. P12.4.
The axial stiffness of all members EA is constant. The limit internal force for each
element is Ny,. Find the limit load P for each design diagram.

LT
I\ 11 21 31 4l.
b

Fig. P12.4

Ans. P = 133N,

12.5. A concentrated force P acts on the uniform pinned-clamped beam as shown
in Fig. P12.5. The limit moment is My,. Determine the limit load Piip,.
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Fig. P12.5

(1+8 u,

E-(1-9 1

12.6. Determine the limit concentrated load P for beam with clamped supports
(Fig. P12.6). The limit moment is M.

S

e

Ans. P]im =

Fig. P12.6

2 oM
E-(1-§) !

12.7. Determine the limit distributed load g for beam with clamped supports.

Ans. Plim =

q
I\lﬂlﬂl/\l/\l/\l/\l/\l/\lf\l/!

| / |

Fig. P12.7

16M,,

12
12.8. Two-span uniform beam ABC is subjected to uniformly distributed load as
shown in Fig. P12.8. Find a location of the plastic hinge. Calculate the limit load.

AnS. gjim =

Fig. P12.8

M M
Ans. xo = | (ﬁ— 1) i = 7 (6+4ﬁ) = 11657
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12.9. Two-span uniform beam ABC is subjected to uniformly distributed load and
concentrated load P as shown on design diagram. Both loads are satisfy to condition
P = kql. Find the parameter k, which leads to plastic conditions at the both spans
at once.

P
AiIIIqIIIlB ‘l' c
£ 2 ==
|

| ! n | n

Fig. P12.9

Ans. k = 0.5147.



Chapter 13
Stability of Elastic Systems

Theory of structural stability is a special branch of structural analysis. This theory
explores the very important phenomenon that is observed in the behavior of the
structures subjected to compressed loads. This phenomenon lies in the abrupt
change of initial form of equilibrium. Such phenomenon is called loss of stabil-
ity. As a rule, the loss of stability of a structure leads to it collapse. Engineering
practice knows a lot of examples when ignoring this feature of a structure led to its
failure.

This chapter is an introduction to stability analysis of engineering structures sub-
jected to compressed loads. Among them are structures that contain nondeformable
members as well as beams, frames, and arches. Classical methods of analysis will
be discussed.

13.1 Fundamental Concepts

We will differentiate two types of structures, mainly, the structures consisting of
absolutely rigid bodies connected by elastic constrains and structures consisting of
deformable members; it is possible to combine in one structure both types of mem-
bers, i.e., absolutely rigid discs with deformable members.

Some examples of these structures under compressed loads are shown in
Fig. 13.1. Structures that contain absolutely rigid members (EI = oco) are shown
in Fig. 13.1a, b; these design diagrams present structures with elastic joints. Elastic
joint means that the angle between two adjacent members is changed upon load
application. Figure 13.1c, d presents structures, which contain deformable ele-
ments; structure in Fig. 13.1e contains the absolutely rigid part AC and deformable
part CB.

Structures, which are subjected to compressed loads, may be either in stable or in
unstable equilibrium. Stability is a property of a structure to keep its initial position
or initial deformable shape. Stable structure will regain to its original state if any
disturbed factor changes the initial state and after it is removed.

A structure subjected to compressed loads may be disturbed from initial equilib-
rium state by, for example, a small lateral load. After removing this disturbance, a

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 449
DOI 10.1007/978-1-4419-1047-9_13, (© Springer Science+Business Media, LLC 2010
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Fig. 13.1 Type of structures and form of buckling: (a, b) structures with absolutely rigid members;
(¢, d) structures with deformable members only; (e) structure with absolutely rigid and deformable
members

structure can return into the initial state, or tends to return to the initial state, or re-
mains in the new state, or even tends to switch into new state. Behavior of a structure
after removing a disturbance depends on the value of compressed loads. For small
compressed load, a structure will return to the initial state, i.e., this equilibrium state
is a stable one, while for larger compressed load, a structure will not return to the
initial state, i.e., this equilibrium state is unstable. However, what does “small and
large” load mean? It is obvious, that the behavior of a structure after removing a
disturbance load depends not only on the value of the compressed load, but also on
the types of supports, the length of compressed members, and their cross sections.
Any compressed load for tall column with small cross section may be treated as a
large load, while for short column with large cross section the same load may be
treated as a small one. The theory of elastic stability gives the precise quantitative
characteristics of compressed loads for different types of structures, which leads to
well-defined state of a structure, and allows us to understand the influence of param-
eters of a structure (boundary conditions, cross-section, and properties of material)
on the value of this load and corresponding behavior of a structure.

Let us introduce the following definitions:

Stable equilibrium state means that if the structure under compressed load is dis-
turbed from an initial equilibrium state and after all disturbing factors are removed,
then the structure returns to the initial equilibrium state. This is concerning to the
elastic structures. If a structure consists of plastic or elasto-plastic elements, then a
complete returning to the initial state is impossible. However, equilibrium state is as-
sumed to be stable, if a structure even tends to return to the initial equilibrium state.
In case of absolutely rigid bodies, we are talking about stable position of a structure,
while in case of deformable elements, we are talking about stable equilibrium form
of a deformable state. In all these cases, we say that the acting compressed load is
less than the critical one. Definition of the critical load will be given later.
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Unstable equilibrium state means that if a structure under compressed load is dis-
turbed from an initial equilibrium state and after all disturbing factors are removed,
then the structure does not return to the initial equilibrium state. In this case, we say
that the acting compressed load is larger than the critical one.

Change of configuration of a structure under the action of compressed load is
called a loss of stability of the initial form of equilibrium or a buckling. If the com-
pressed load is a static one, then this case is referred as the static loss of stability.
In this chapter, we will consider absolutely rigid and absolutely elastic structures
subjected to static compressed loads only. If a structure switches to other state (as
a result of loss of stability) and remains in this state in equilibrium, then this new
equilibrium state is called the adjacent form of equilibrium.

The static load may be of two types: conservative and nonconservative. The work
done by conservative forces is determined only by the initial and final position of
points of application of a force. Example of a conservative force is a force that keeps
its direction (Fig. 13.2a).

a b

Pl lP>PL., Pl / »

Fig. 13.2 The column under conservative and tracking force

The work done by nonconservative forces is determined by trajectory between
the initial and final position of points of application of the force. Example of non-
conservative force is a tracking force whose orientation depends on the slope of the
elastic curve at the point of application of the force (Fig. 13.2b).

The corresponding systems are called conservative and nonconservative. In this
chapter, only conservative systems are considered.

The critical force P is the maximum force at which the structure holds its ini-
tial equilibrium form (the structure is still stable), or minimum force, at which the
structure no longer returns to the initial state (the structure is already unstable) if all
disturbing factors are removed.

The state of a structure that corresponds to critical load is called the critical state.
The switching of a structure into new state occurs suddenly and as a rule leads to
the collapse of a structure. The theory of static stability of the structures is devoted
to methods of calculation of critical loads.

Degree of freedom is a fundamental concept of stability analysis. Degrees of
freedom present independent parameters, which define the structure’s configuration.
The structures, which contain only rigid elements, have the finite number degrees
of freedom. Each deformable element should be considered as a member with dis-
tributed parameters, so the structures that contain only deformable elements have
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infinite number degrees of freedom. Structures presented in Fig. 13.1a, b have one
degree of freedom, while the structures presented in Fig. 13.1c, d have infinitely
many degrees of freedom.

The difference of this concept used in different parts of the structural theory,
such as the kinematical analysis, matrix stiffness method, and stability of structures,
is obvious.

Generalized coordinates are independent parameters, which uniquely defines
configuration of a system in new arbitrary state. A structure with n degrees of free-
dom has n generalized coordinates. A structure with n degrees of freedom has n
critical loads. Each critical load corresponds to one specified form of equilibrium.
For structure with one degree of freedom, there exists only the unique form of the
loss of stability (Fig. 13.1a, b) and its corresponding unique critical load. For struc-
ture with infinitely many degrees of freedom, there exist infinitely many critical
loads and its corresponding forms of loss of stability. Figure 13.1d shows only the
first buckling form of a frame. In Fig. 13.1c, the numbers 1 and 2 indicate the first
and second forms of the loss of stability of a beam. It is very important to define the
smallest critical load, because it leads to the loss of stability accordingly first form,
i.e., to the failure of the structure. The second and following forms may be realized
upon the special additional conditions.

There exist precise and approximate methods for calculating critical loads. Pre-
cise methods are static, energy method and dynamical ones. These methods reflect
the fact that the concepts “stable or unstable state of equilibrium” may be considered
from different points of view.

Static method (or equilibrium method) is based on the consideration of equilib-
rium of a structure in a new configuration. The critical force is such a minimum
force, which can hold the structure in equilibrium in the adjacent condition or max-
imum force, for which initial straight form of equilibrium is yet possible.

Energy method requires consideration of total energy of a structure in a new
configuration. This energy U equals to stress energy Uy and potential W of external
forces

U=Uy+ W 13.1)

The potential W of external forces equals to work, which is produced by external
forces on the displacement from final state into initial one. The stable equilibrium
of the structure corresponds to a minimum of the total energy.

For system with n degrees of freedom, the critical load may be calculated from
the set of equations

U — o oU — o oU _0 (13.2)
g1 g2 agn )

where ¢; are the generalized coordinates of the structure. This method is equivalent
to the virtual displacement method, according to which the sum of the work done
by all forces on any virtual displacements is zero. The static and energy methods are
considered later.
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13.2 Stability of Structures with Finite Number
Degrees of Freedom

This section is devoted to the calculation of critical load for structures containing
only absolutely rigid bars, with elastic constraints. Three types of elastic constraints
will be considered. They are the following:

1. Elastic support, which allows an angular displacement. Rigidity of support is
krot- The reactive moment of such support and its angular displacement 6 are
related as M = k0.

2. Elastic support, which allows a linear displacement. Rigidity of support is k.
Reaction of support and its linear displacement f are related as R = kf'.

3. Elastic connections between absolutely rigid members (elastic hinged joint) of
a structure. Rigidity of connection is k.. The moment of this joint and mutual
angular displacement 6 of two adjacent absolutely rigid bars are related as M =
kot

From methodical point of view, it is reasonable that all structures with finite number
degrees of freedom divide into two large groups. They are structures with one degree
of freedom and structures with two or more degrees of freedom.

13.2.1 Structures with One Degree of Freedom

A simplest structure with one degree of freedom is shown in Fig. 13.3a. Absolutely
rigid vertical weightless column is placed on rigid supporting plate. Since the foun-
dation is flexible, the column in whole may rotate around the fixed point O. The
column is subjected to axial compressed static force P. Assume that an angular
rigidity of elastic support is ko; such type of elastic support is presented as two
springs of equal stiffness. Within their deformation, the forces that arise in both
springs create the elastic couple.

o

y_ ¥4
/ ! W=-PA
0 -~
02
k Uo = krar B

rot
\__NMm=k,,6

Fig. 13.3 Absolutely rigid vertical cantilever bar on the elastic support: (a) Design diagram;
(b) Static method; (¢) Energy method
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To determine the critical load by static or energy method, first of all, we need
to accept a generalized coordinate. Let an angular displacement 6 of the supporting
plate being the generalized coordinate. This parameter describes completely a per-
turbed configuration of the structure. The structure in the strained state is shown by
dotted line.

Static method (Fig. 13.3b). The moment that is produced in the supportis M =
Ok:or. The moment due to external load N with respect to support point O is Pf.
We assume that angular displacement 0 is small, and therefore f = [sinf ~ [6.
Equilibrium equation ) Mo = 0 leads to the stability equation

Pf — 0kt = PlO — Ok = 0. (13.3)

This equation is obtained on the basis of linearization procedure sin § & 0; there-
fore, the equilibrium equation (13.3) is called linearized stability equation.
Equation (13.3) is satisfied at two special cases:

1. The angle 8 = 0. It means that initial vertical form of the column remains vertical
for any force P. This is a trivial solution, which corresponds to the initial form
of equilibrium.

2. The angle 6 # 0. It means that the strained form of equilibrium is possible for

load P., = T[ This load is critical.

If the given structure is subjected to load P < P, then initial vertical position of
the column is the only equilibrium position; therefore, if the structure would be
disturbed, then it returns to its initial position. If the structure is subjected to load
P > P, then additional equilibrium state is possible. Pay attention that the value
of the angle 6 cannot be determined on the basis of linearized stability equation.

Energy method (Fig. 13.3c). Since the vertical displacement of the point of ap-
plication of the force P is

2
A=1I(l-cosf) = %,

then the potential of external load N is

02

This expression has negative sign since the work of the force P should be calculated
on the displacement A from final to initial state. Since the rigidity of support is ko,
then the strain energy of elastic support is

92
UO = krot?-
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The total energy of the system is

02 02
U = U W = kiy— — Pl —.
o+ ‘S 5

Condition (13.2)

U
50 =k — P10 =0

leads to the same critical load P, = kyot/ .

Example 13.1. The structure contains two absolutely rigid bars (EI = 00), which
are connected by hinge C, and supported by elastic support at this point; the rigidity
of elastic supports is k. The structure is subjected to axial compressed force P
(Fig. 13.4a). Calculate the critical force by the static and energy methods.

b

P P

—_— . ___d T —
Tka/Z R=ka Tka/Z

Fig. 13.4 Absolutely rigid 2-elements structure with elastic support: (a) Design diagram;
(b) Static method; (¢) Energy method

Solution. Static method (Fig. 13.4b). The structure has one degree of freedom. Let
a vertical displacement a of the hinge C be a generalized coordinate, so the reaction
of elastic support is R = ka and reactions of pinned and rolled supports are ka/2.
Bending moment at hinge C equals zero, therefore stability equation becomes

k
ME" = Pa — 7“1 =0.

This equation immediately leads to the critical force becomes

Energy method (Fig. 13.4c). Let an angular displacement 6 at the support points be a
generalized coordinate. The vertical displacement of hinge C equals f = [ sin 6 =
16, while the horizontal displacement at the same point C is A¢c = /(1 —cos 8), so
horizontal displacement at the point of application P becomes
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92
A =2Ac¢ =2[(1—cos¢9)2217.

Strain energy accumulated in elastic support

-

where reaction of elastic supportis R = k', and vertical displacement of hinge C
in terms of generalized coordinate is f = [ sinf =~ [0, so

2 1292
Up =k = k—.
2 2

The potential of external force is W = —PA = —P[6?2, so the total energy is

1262

U=Uy+W =k — PlOZ

Derivative of this expression with respect to generalized coordinate equals to zero,
i.e.,
U

— =ki*0—2PIh =
50 ki*6 10 =0,

which leads to the above determined critical load.

Discussion

1. The static method requires calculation of reactions of all supports, while energy
method requires calculation of reactions only for elastic supports.

2. Why potential of external force equals W = —PA, while the energy accumu-
lated in elastic support contains coefficient 0.5? If a structure switches into the
new position, a compressed force P remains the same; that is why potential of
this force equals W = — P A. The internal forces in the elastic constrain increase
from zero to maximum values; that is why the expression for accumulated energy
contains coefficient 0.5.

So far we have considered only two types of joints, mainly hinged and rigid joints.
Let us introduce a concept of elastic joint. If a structure is subjected to any loading
then for such joint the initial angle between members forming the joint changes.
Each elastic joint is characterized by the rigidity of the elastic hinge k. The mo-
ment which arise at elastic connection C is M = ko, where 6 is a mutual angular
displacement of the members at the elastic joint.

Let us show an application of static and energy methods for determination of crit-
ical load for following structure: two absolutely rigid rods are connected by elastic
hinge C, as presented in Fig. 13.5a. The rigidity of the hinge is k.q; the structure is
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subjected to axial static force P. The structure has one degree of freedom. Take an-
gle o as a generalized coordinate. A new form of equilibrium is shown by solid line.

Fig. 13.5 Absolutely rigid elements with elastic joint C: (a) Design diagram; (b) Static method;
(c) Energy method

Static method (Fig. 13.5b). The vertical displacement of the joint C is f =
[ sina = lo. The mutual angle of rotation of the bars is § = 2«, so the moment,
which arises in elastic connection at point C, equals M = k0 = 2k;ot. The
vertical reactions of supports are zero. The bending moment at the hinge C equals
zero, so the stability equation becomes

S OMEN=0: Pf — ke =0 Pla— ke = 0

Nontrivial solution of this equation is

2krot
Py =—-.
l

Energy method (Fig. 13.5c). Horizontal displacement of the point of application of
the force P equals

o?
A =2A¢c =2] (1 —cosw) =~ 217,

so potential of the external force is W = —PA = — P[a?. Mutual angle of rotation
at joint C is 6 = 2, the strain energy accumulated in elastic connection is

Kot 20)?
- (2 2 = 2k,
. 2 2 .. aU
so the total energy is U = —Pla* + 2k;q”. Condition e 0 leads to the
o

following stability equation

—2Pla + 4kix = 0,
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and for critical force we get the same expression

2 kl’Ot
/

P, =

13.2.2 Structures with Two or More Degrees of Freedom

For stability analysis of such structures, first, it is necessary to define the number
of degrees of freedom, sketch the structure in any arbitrary position, and to chose
the generalized coordinates. As for structures with one degree of freedom, the static
method requires consideration of equilibrium conditions. Energy method requires
the calculation of potential of external forces and energy accumulated in elastic
constraints. The static method requires calculation of reactions of all supports, while
energy method requires calculation of reactions only for elastic supports.

Static equations (for static method) and conditions (13.2) for energy method lead
to n algebraic homogeneous equations with respect to unknown generalized coor-
dinates. Trivial solution corresponds to initial (or unperturbed) state of equilibrium.
To obtain nontrivial solution, it is necessary to equate the determinant of coefficients
before generalized coordinates to zero. This equation serves for calculation of criti-
cal loads. Their number equals to the number degrees of freedom. Each critical load
corresponds to specified shape of loss of stability.

Example 13.2. The structure contains three absolutely rigid bars (EI = oc0), which
are connected by hinges C; and C;, and supported by elastic supports at these
points; the rigidity of elastic supports is k. The structure is subjected to axial com-
pressed force N as shown in Fig. 13.6a. Calculate the critical load.

Solution. Let us consider this problem by the static and energy methods.

Static method The structure has two degrees of freedom. Displacements of the
hinges C; and C, are a; and ay; they are considered as generalized coordinates.
The reactions of elastic supports are R; = ka; and R, = ka,; reactions of the left
and right supports are shown in Fig. 13.6b.

Bending moments at hinges C; and C; are equal to zero, therefore

k 2a; +
MEt = Na, - K@@+ a2) ‘“3 @) _,
- k(ay +2
M = Ng, -~ F@t202) . @)y,

This system may be rewritten as homogeneous algebraic equations with respect to
unknown generalized coordinates a and a,

a1 3N — 2kl) — azkl = 0,

—arkl +a> 3N —2kI) = 0. @
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The trivial solution a; = 0, a, = 0 corresponds to initial unstrained configuration
of the structure.

Nontrivial solution of this system occurs if determinant of the system equals zero:

3N — 2kl —kl
—kl 3N —2kl

] — (BN —2kl)* — (kI)* = 0.

The roots of this equation present the critical loads; they are

kl
Nlcr: ?7 NZCr:kl- (b)

k
E(zal +a3) Ri=ka, R,=ka,

d

al:1 N=Nlcr

Fig. 13.6 (a—c) Structure with two degrees of freedom: (a) Design diagram; (b) Static method;
(c) Energy method. (d, e) First and second form of the loss of stability

Energy method Let the generalized coordinates be angles 1 and S, (Fig. 13.6¢).
The angle between portion C;C; and horizontal line is 81 — B2, so horizontal dis-
placement of the point of application force N is

A= ll(l —cosf1) + 1 (1 —cosfz) + 1 (1 —cos(B1 — p2))
=S [B+ B+ B -2 =1 (B + B3~ B1£2).
The potential of the force N is W = —NA.

The vertical displacements of points C; and C; equal to f; = [tan 8 = [,
and f, = [tan 8, =~ [f,, respectively. Therefore, reactions of elastic supports are
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= kfi = klB, and R, = kf, = klB,. The energy accumulated in elastic
supports is

S S ap 1k apar.
The total energy

k k
= —NA+ Z = —NL(BY + B3 = B1B2) + S 1287 + 1B,

Derivative of the total energy with respect to generalize coordinate leads to the fol-
lowing equations

U
22— = —2NIfy + NIz + k> = 0
0B, Pt NP + KB oy (kI =2N)Bi+ N> =0

(%U ~2NIBa + NIy + ki?B2 = 0 NP1+ (kI =2N) 2 =0
2

Nontrivial solution of homogeneous system (c) occurs if

©

kl —2N N —0
N  kl-— B
Stability equation becomes (kI —2N)? — N2 = 0. This equation leads to the same
critical loads (b).
Each critical load corresponds to a specified shape of equilibrium. Both critical
loads should be considered.

kl
1. Let N = Ny = 3 Substituting it in the first equation of system (a), we obtain

kl
(3? — 2kl) —axkl =0,
and relationship between generalized coordinates is a; + a, = —1, which de-

termines the first form of a loss of stability; considering the second equation of
system (a) we will get the same result. Corresponding equilibrium form is pre-
sented in Fig. 13.6d.

2. Let N = N, = kl. Substituting it in the first equation of system (a), we obtain

ar 3kl —2kl) — arkl = 0,

and the second form of the loss of stability is defined by relationship between
generalized coordinates as a; <+ a; = +1. Corresponding equilibrium form is
presented in Fig. 13.6e. Note that for the each critical load, we cannot define the
displacements a; and a, separately. However, the shape of the loss of stability
is defined by their relationships.
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13.3 Stability of Columns with Rigid and Elastic Supports

Elastic bar presents a structure with infinite number of degrees of freedom. Such
structures are called the structures with distributed parameters. Their stability anal-
ysis may be effectively performed on the basis of differential equation of the elastic
curve and initial parameter method. Both methods are presented below.

13.3.1 The Double Integration Method

Stability analysis of the uniform compressed columns is based on the moment-
curvature equation
d?y
El— = M(x), (13.4)
dx?

where x and y are the coordinate and lateral displacement of any point of the beam;
EI is the flexural rigidity of the beam; M (x) is the bending moment at the section x
of the beam caused by given loads.

This equation allows us to find exact value of the critical load for columns with
rigid and/or elastic supports. To apply this equation, we need to show a column in
deflected state, then it is necessary to construct the expression for bending moment
in terms of lateral displacement y of any point of the column, and to write the
differential equation (13.4). As a result we get the ordinary differential equation,
which could be homogeneous or nonhomogeneous. Then for each specific problem,
we need to integrate this equation and find the constant of integration, using the
boundary conditions. For typical supports they are the following:

Pinned support: y = 0and y” =0
Clamped support: y = 0and y’ =0
Sliding support: ' = 0and y” =0
Freeend: y” =0and y” =0

For computation of unknown parameters, we get a system of the homogeneous
linear algebraic equations.

Nontrivial solution of this system leads to the equation of stability. Solution of
this equation leads to the expression for critical load.

13.3.1.1 Uniform Clamped-Free Column

Let the column is subjected to axial compressed force P (Fig. 13.7). Elastic curve
of the column is shown by dotted line.

If the lateral displacement of the free end is f, then the bending moment is
M(x) = P(f — y). Corresponding differential equation of the compressed column

becomes
d2y d2y
ElI— = P(f —y) or EI— + Py = Pf. (13.5)
dx2 dx2
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y

Fig. 13.7 Buckling of clamped-free column

This equation may be transformed to the form

2y » P 1
&y — P fon= ] , 13.6
dx? Fy=nif.n EI [lengthj| (13.6)

Equation (13.6) is nonhomogeneous linear differential equation of order two in one
variable x with constant coefficient n2. Therefore, the solution of this equation
should be presented in the form

y = Acosnx + Bsinnx + y*,

where A and B are constants of integration. The partial solution y* we will find
in the form of the right part of (13.6). Since the right part is constant (does not
depend on y), then suppose y* = C. Substitution of this expression into (13.6)
leads to n2C = n?f — C = f. Therefore, the general solution of (13.6) and
corresponding slope are

y = Acosnx + Bsinnx + f,

y' = —Ansinnx + Bncosnx.

To determine unknown parameters, let us consider the following boundary condi-
tions:

1. Atx = 0 (fixed end) the slope ¥’ = 0. Expression for slope leads to the B = 0
2. At x = 0 the displacement y = 0. Expression for y leads to the A = — f

Thus the displacement of the column becomes

y = f(1—cosnx).

At x = [ (free end) the displacement y = f. Therefore, f = f(1 —cosnl), which
holds if
cosnl = 0.

This equation is called the stability equation for given column; the smallest root
equals n/ = /2. The value n = m/2l is called the critical parameter. Thus the
smallest critical load for uniform clamped-free column becomes

w2El
42 -

P = n’El =
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13.3.1.2 Uniform Columns with Elastic Supports

Now let us consider the compressed column with elastic supports at the both ends
(Fig. 13.8a). The flexural stiffness of the column is E/ = constant; the stiffness co-
efficients of elastic supports are k1 (kN/m) and k, (kN m/rad) for linear and angular
displacements, respectively.

1

By

N

Fig. 13.8 Column with elastic supports

The cross section at support A can rotate through angle ¢ while the support B
has a linear displacement f. Thus reactions of elastic supports are moment at the
supports A and force at support B. They are equal M4 = ko and Rp = k; f.
Deformable state, elastic curve, and all reactions are shown in Fig. 13.8b.

The bending moment at any section x equals

Mx)=—=P(f+y)+kif(—-x).

Substituting this expression into (13.4) leads to the buckling differential equation of
the column &2
EISY 4 Py = flki(l—x)—P]. (13.7)
dx?
This is the second-order nonhomogeneous differential equation. In case of k1 = oo,
we get homogeneous differential equation.
The partial solution of (13.7) is y*. Substituting this constant into (13.7) leads to

the following expression:
ki
* = —(—x)—1].
yvi=1r [ =) }

The general solution of differential equation (13.7) and corresponding slope are

P
y = Cicosnx + Cysinnx + y*, n? = I

k1

d
2 y' = —Cinsinnx + Cancosnx — fT

dx
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Unknown parameters Cq, C5, and f may be determined using the following bound-
ary conditions:

MyO=0 @y O0=¢ Gy)=-f

1. The first boundary condition leads to equation

kil
cwf(%—l)zo.

2. Atpoint A(x = y = 0) the reactive moment equals M4 = f(kil — P), thus the
angle of rotation at 4 is

_Ma_ S
=%k (kil — P),

so the second boundary condition leads to the following equation

k kil — P
Czn—f(Fl—i—lT):O.

3. The third boundary condition leads to the following equation

Cicosnl+ Cysinnl = 0.

Conditions 1-3 may be rewritten in the form of the homogeneous algebraic equa-
tions with respect to unknowns Cy, C,, and f. Equation for critical load is presented
as determinant from coefficients at these unknowns, i.e.,

kil
1 0 — —1
kPkl P 0
D = 1 1L = — or
0 ==
" (P+ ks )
cosnl sinnl/ 0
kql
1 0 — =1
kPkl—P
D=1 n (= ! =0
P ko
1 tann! 0

This equation may be rewritten as the transcendental equation with respect to pa-
rameter n

kql
tannl = nl n2El > .
kll (kll —n E]) /
anI k2

For given parameters [, EI, k1 and k, of the structure, solution of this equation
leads to parameter n of critical load. The critical load is P, = n2EI. Table 13.1
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presents the columns with specified supports and corresponding stability equations.
The stability equations for cases 4—6 contain dimensionless parameter (o or 8); the
roots for these cases can be calculated numerically for specified « (or ).

Table 13.1 Limiting cases for columns with elastic supports (the length of column / and flexural
stiffness ET)

Case 1 2 3 —
kl:O O—% k]:OO kl—OO
2:OO kZ:oo kZZO
Stability equation cosnl =0 tannl = nl tann/ =0
Root (n1)min /2 4.493 s
Case 4 k=0 | o9 k= | 6 gk
s A
1 nl
tannl = — tannl = a1 tannl = nl(1 —n*I>p)
Stability equation g MY _ = EI
o= k_zl o= E NE
Limiting case. For case 4, the stability equation
¢ / 1 EI
annl = —, o =-—
nloa kol
may be presented as
tann/ . ko
nl Pl

For absolutely rigid body EI = oo, and

n=,—=—0.
EI

Since

tannl
lim 227y

nl—o n

then a critical force becomes

This result has been obtained in Sect. 13.2.1.
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13.3.2 Initial Parameters Method

This method may be effectively applied for stability analysis of the columns with
rigid and elastic supports and columns with step-variable cross section. Moreover,
this method allows us to derive the useful expressions, which will be applied for
stability analysis of the frames.

Let us consider a beam of constant cross section. The beam is subjected to axial
compressed force P. Differential equation of the beam is

dzy
El— + Py =0,
dx2 t Yy

where y is a lateral displacement. Twice differentiation of this equation leads to
fourth-order differential equation

d4y dZy d4y dZy
El— 4+ P— =0, — +n’—= =0, 13.8
dx4 + dx2 or dx4 tn dx2 ( )
where
P
n=.—=
EI
Solution of (13.8) may be presented as
y(x) = Cicosnx + Cysinnx + C3x + Cy, (13.8a)

where C; are unknown coefficients. It is easy to check that this solution satisfies
(13.8).
The slope, bending moment and shear are

p(x) = y'(x) = =Cynsinnx + Can cosnx + Cs,
M (x) = —Ely"(x) = EI(C1n? cosnx + Cyn? sinnx),
Q(x) = —EIy" (x) = —EI(C1n3 sinnx — Con3 cosnx).

At x = 0 the initial kinematical and static parameters become

(0) = yo = C1 + Cq,
¢(0) = g9 = Con + C3,
M(O) = M() = ClanI,
00)=Qp = CanEI,
where yo, o, Mo, Qg are lateral displacement, angle of rotation, bending moment,

and shear at the origin (Fig. 13.9, y-axis is directed downward). They arise because
the rod lost the stability.
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Y
M, / ____________ X
P b’o
%o

o’ g,

Fig. 13.9 Initial parameters of a beam

Constants C; may be expressed in terms of kinematical initial parameter

(displacement yq and slope g9 = y’ = %) and static initial parameters (bending
"

moment Mo = —EIy; and shear Qg = —EIy’) as follows

Mo _ Mo _ Qo _ D Cs = _ D Cy — _ Mo
W2El . P 2T Rl ap T 0T Tp AT VTR

C, =

Substitution of these constants C; in (13.8a) leads to the following expressions in
terms of initial parameters

1 —cosnx nx —sinnx
y(x) = yo + @ox — My — Qo .
. P nP
nsinnx 1 —cosnx
2 (13.9)
sinnx

Y'(x) = ¢o— Mp

M(x) = Mycosnx + Qg ,
n

Q(x) = —Mynsinnx + Qg cosnx.

These equations present the first form of the initial parameter method for com-
pressed columns. It can be seen that, in spite of the external lateral load being absent,
the shear Q(x) is variable along the column. It happens because (13.9) is presented
in terms of Qy, which is directed as perpendicular to the tangent of an elastic line
of the beam.

Let us calculate the critical load for uniform clamped-free column (Fig. 13.7);
EI = constant. The origin is placed at the clamped support. The geometrical initial
parameters are yo = 0 and ¢p = 0. The third equation of system (13.9) becomes

M(x) = Mycosnx + Qosmnx_
n

Since the bending moment for free end of the column (x = /) is zero, then

sinnl

M; = Mycosnl + Qy =0.

n

It is obvious that Qg = 0 and My # 0, therefore the stability equation becomes
cosnl = 0. This result had been obtained using integration of the differential equa-
tion (13.4).
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The initial parameters equations (13.9) may be presented in equivalent form (sec-
ond form), i.e., in terms of @0, which is directed as perpendicular to the initial
straight line of the rod (Fig. 13.9).

According to equilibrium equation Y | Y = 0 (axis Y is directed along Q)
we have

Qo = @0 cos @y + P singg = EO + Pgy.

Then, substitution of this expression in (13.9) gives the initial parameters equations
in terms of Q,

sinnx 1 —cosnx — nx—sinnx
y(xX) =yo+ o — My -0, ’
n . P nP
/(x) _ cosnx — M, nsmnx__ 1 —cosnx
Y = %o 0" p 0T p ) (13.10)
: — sinnx
M (x) = @onEl sinnx + Mycosnx + Q, ’
n

0 (x) = Qo.

In second form (13.1), the shear along the beam is constant, since an external lateral
load is absent. Both forms (13.9) and (13.10) are equivalent.

Now we illustrate the application of (13.10) for stability analysis of the stepped
fixed-free column shown in Fig. 13.10; the upper and lower portions of the column
be /1 and [, respectively. The bending stiffness for both portions are EI; and El,.
The column is loaded by two compressed axial forces Py = P and P, = BP, where
B is any positive number. It means that growth of all loads up to critical condition of
a structure occurs in such way that relationships between all loads remain constant
(simple loading).

P

,,,,,,,,,,, Initial parameters for first portion
®o#0, My=0, 0y=0

Initial parameters for second portion
¢ #0, M;#0, 0, =0

Fig. 13.10 Stepped clamped-free column

Let the origin 0, is located at the free end (Fig. 111 0). Initial parameters (at free
end) for upper portion are ¢o = y; # 0, Mo = 0; Q4 = 0. The slope and bending
moment at the end of the first portion (at the x = [;) according to (13.10) are

01 (x =11) = @ocosnyly,

M1 (x211)=§00n1E11 sinnlll, (a)
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For the second portion of the column, the origin 0, is placed at the point where
force P, is applied. Initial parameters for this portion coincide with corresponding
parameters at the end of the first portion (at x = I;); they are ¢ = y; # 0,
M; # 0; Q, = 0. The slope at the end of the second portion (at the x = I,)
according second equation (13.10) can be presented as

na sinnaly P+ P
=bh) = I — My 222, LT b
@2 (x = 1a) = g1 cosnaly ", 2 A (b)

In this equations ¢ and M; are initial parameters for portion 2. Substitution of (a)
in (b) yields

. npsinnsls
02 (x =1) =¢o (cosnlll -cosnyly, —n1El s1nnlllm) .
For a clamped support the slope go(x = ) = 0. Since ¢ # 0, then stability
equation becomes

. Ny sinnsls
cosnyly -cosnyly, —niEly sinnlj——— =0
P+ P

After a simple rearrengement, this equation may be presented as
ni
tannily - tannzly — — (1 + B) = 0.
na

This equation may be presented in other form. Let the total length of column
l1 + 1, =l and [, = al, where « is any positive number. In this case [ = (1 —«a)!
and stability equations becomes

tan [ (1 — @) l]-tannzocl—Z—l(1+ﬁ)=0. @)
2

Limiting cases

1. Let @ = 0. This case corresponds to uniform column of length /, stiffness EI;
and loaded by P. Stability equation becomes tann;/ = oo. The root of equation
7T2E11
412 -
2. Leta = 1. This case corresponds to the uniform column of length /, stiffness EI,
and loaded by force P. Stability equation becomes tann,l/ = oo, so the critical

is (n1{)min = 7/2, so the critical load P,y =

load P _ 7'[2E12
0a cr2 — 4[2
In general case, the equation (c) should be solved numerically. Let « = 0.5,

El, = 2EI, and B = 3. For these parameters, the stability equation becomes
tan ¢ - tan V29 = /2, where ¢ = 0.5n,1. The root of this equation is 0.719, thus
the critical load
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_ 2.0678ELL
ler — 1—2

Summary. Initial parameters method may be applied for stability analysis of the
stepped columns subjected to several forces. In this case, the origin should be shifted
for each following portion. Initial parameters for each following portion coincide
with parameters at the end of the previous portion.

Example 13.3. Design diagram of the beam with elastic support is presented in
Fig. 13.11. The flexural stiffness of the beam is EI. Stiffness coefficient of elastic
support is k [kN m/rad]. Derive the stability equation.

k
P f C (x) P—»x
ﬂu XE(/JO

M,

R YR

Fig. 13.11 Beam with elastic support
Solution. Suppose that the section at the left end of the beam is rotated clockwise.
Corresponding reactions M (which arise in elastic support) and R of the beam are

shown in Fig. 13.11. The lateral displacement of the beam according to the first
equation of the system (13.10)

sinnx 1 —cosnx — nx—sinnx

= - M — .
y(x) = 9o " 0 P Qy WP (2)
Initial parameters are My = —k ¢y, and shear
- ko
Qp=R= -
Their signs are accepted according to Fig. 13.9. Thus, (a) may be rewritten as
sinnx 1 —cosnx kgonx —sinnx
y (x) = ¢o + ko - : (b)
n P l nP
Boundary condition: at x =/ y = 0. Therefore
sinnl 1 —cosnl knl—sinnl
l = k _ - 0.
) = o | S i T
Since ¢ # 0, then
sinnl/ Il —cosnl knl—sinnl
n P l nP N
This expression leads to the following stability equation
nl
tannl = ———— (©)

n2l2aq 4+ 1’
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where dimensionless parameter

__EI

okl

Equation (c) had been derived earlier (Table 13.1, case 5).

o

Discussion:

1. It may appear that we used only one boundary condition. However, it is not

true. There are two boundary conditions used: the second boundary condition
k
is M(I) = 0 and this condition allows write expression for R = ﬂ.

2. If k = oo(a = 0) then the stability equation becomes tann/ = n/. This case
corresponds to clamped-pinned beam (Table 13.1, case 2). If k = 0 (simply-
supported beam) then the stability equation becomes tann/ = 0 (Table 13.1,
case 3).

3. The initial parameter method may be effectively applied for beams with over-
hang, intermediate hinges, sliding, and elastic supports.

13.4 Stability of Continuous Beams and Frames

This section is devoted to the stability analysis of compressed continuous beams
and frames. We assume that beams are subjected to axial forces only. Frames are
subjected to external compressed loads, which are applied in the joints of a frame. If
several different compressed loads P; acts on a structure, we assume that all loads
can be presented in terms of one load P. It means that growth of all loads up to
critical condition of a structure occurs in such way, so that relationships between all
loads remain constant, i.e., the loading is simple.

The both classical methods can be applied for stability analysis of continuous
beams and frames. However, for such structures, the displacement method often oc-
curs more effective than the force method. The primary system of the displacement
method must be constructed as usual, i.e., by introducing additional constraints,
which prevent angular and linear displacements of the joints. The primary unknowns
are linear and angular displacements of the joints. However, calculation of the unit
reactions has specific features.

13.4.1 Unit Reactions of the Beam-Columns

A primary system of the displacement method contains the one-span standard
(pinned-clamped, clamped-clamped, etc.) members. These members are subjected
not only to the settlements (angular or linear) of the introduced constraints, but also
to the axial compressed load P. For stability analysis, this is a fundamental feature.
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As earlier, we need to have the reactions of standard elements, which are subjected
to unit settlements of constraints and axial compressed load. Calculation of reactions
for typical member is shown below.

poat V\M P
X J

_ /

Fig. 13.12 Reaction of compressed beam subjected to unit angular displacement at support B

SN

y %EC
B

The pinned-clamped beam is subjected to unit angular displacement of support B
and axial compressed force P. The length of the beam s/, EI = const. Figure 13.12
presents the elastic curve (EC) and positive unknown reactions R and M . For their
determination we can use the initial parameters method.

The origin is placed at support A. Since yo = 0 and My = 0, then (13.10)
becomes
sinnx — nx —sinnx

n 0 nP
— 1l —cosnx
y'(x) = @o cosnx — Qo——p —

Y (x) = ¢o

)

For calculation of two unknown initial parameters ¢o and Q, = R we have two
boundary conditions: y(/) = 0 and y’(!) = 1, therefore

sinnl — nl—sinnl
= - =0
y () =@ -9, S g,
— 1=
y' () = @ocosnl — Qo%nl =1.

Solution of these equations is

3i  v2tanv
! 3(tanv —v)’

@02

where i = EI/[; the dimensionless parameter of critical force is

Uznlzlﬂz.
EI

Since Q, is negative, then reaction R4 is directed downward. Reactive moment at
support B is

2
t
M =Ryl = —3i—— Y
3 (tanv — v)

The negative sign means that the reactive moment acts clockwise; indeed direction
of moment coincides with direction of angular displacement of clamped support.
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The expressions for unit reactions for standard members subjected to compressed
force P and special types of displacements can be derived similarly; for typical
uniform beams they are presented in Table A.22. In all cases, the length of the
beam is /, the flexural stiffness is EI, bending stiffness per unit length isi = EI/[.
Corresponding elastic curve is shown by dotted line; the graphs present the real
direction of reactions; the bending moment diagrams are plotted on the tensile fibers.

The row 3 of the Table A.22 presents the bending moment diagrams when a
clamped support rotates and switches in transversal direction simultaneously. While
the angle of rotation is fixed as Z = 1, the displacement A does not require indi-
cation of its value. These cases may be used for analysis of compressed beams with
elastic supports. Thus, in case of frames with sidesway, the primary system is ob-
tained by introducing constraints, which prevents only angular displacements, and
bending moment diagrams should be traced as for member with elastic supports.
It is recommended to show elastic curves and remember that bending moment has
one-sign ordinates.

Expressions of special functions in two forms are presented in Table A.24; the
more preferable is form 2. Also this table contains approximate presentation of these
special functions in the form of Maclaurin series. Numerical values of these func-
tions in terms of dimensionless parameter v are presented in Table A.25.

13.4.2 Displacement Method

Canonical equations of the displacement method for structure with n unknowns
Z;, (j=12,...,n)are

riZi+ri2Za+---+rinZy =0,
roZy+rnZy+---+ 132, =0, (13.11)
il +rmaZy+ -+ 1nZy =0.

Features of (13.11):

1. Since the forces P; are applied only at the joints, then the canonical equations
are homogeneous ones.

2. Bending moment diagram caused by unit displacements of introduced constrains
within the compressed members are curvilinear. Reactions of constraints depend
on axial forces in the members of the frame, i.e., contain parameter v of critical
load. If a frame is subjected to different forces P;, then critical parameters should
be formulated for each compressed member vi2 = % and after that all of

these parameters should be expressed in terms of parameter v for specified basic

member. Thus, the unit reactions are functions of parameter, i.e., ry(v).

The trivial solution (Z; = 0) of (13.11) corresponds to the initial nondeformable
design diagram. Nontrivial solution (Z; # 0) corresponds to the new form of
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equilibrium. This occurs if the determinant, which is consisting of coefficients of
unknowns, equals zero, i.e.,

rm ) ra2@) o 1 (V)
det 21 (U) 22 (U) cer I2p (U) =0 (13.12)
a1 (V) T2 (V) oo Tap (V)

Condition (13.12) is called the stability equation of a structure in the form of
displacement method. For practical engineering, it is necessary to calculate the min-
imum root of the above equation. This root defines the smallest parameter v of
critical force or smallest critical force.

It is obvious that condition (13.12) leads to transcendental equation with respect
to parameter v. Since the functions ¢(v) and 7(v) are tabulated (Tables A.24 and
A.25), then a solution of stability equation may be obtained by graphical method.
Since the determinant is very sensitive with respect to parameter v, it is recom-
mended to solve the equation (13.12) using a graphing calculator or computer.

The displacement method is effective for stability analysis of stepped continuous
beams on rigid supports with several axial compressed forces along the beam and
for frames with/without sidesway.

Let us derive the stability equation and determine the critical load for frame
shown in Fig. 13.13a. This frame has one unknown of the displacement method.
The primary unknown is the angle of rotation of rigid joint. Figure 13.13b shows
the primary system, elastic curve, and bending moment diagram caused by unit
rotation of introduced constrain. The bending moments diagram for compressed
vertical member of the frame is curvilinear. The ordinate for this member is taken
from Table A.22, row 1.

Fig. 13.13 (a) Design diagram; (b) Primary system of the displacement method and unit bending
moment diagram

The bending moment diagram yields r;; = 4i;¢2(v1) + 4i,, where parameter
of critical load
P

U1 211 E
1
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Note that subscript 2 at function ¢ is related to the clamped—clamped member
subjected to angular displacement of the one support (Table A.22), while the sub-
script 1 at the parameter v is related to the compressed-bent member 1. Canonical
equation of the displacement method is r11(v1)Z = 0. Nontrivial solution of this
equation leads to equation of stability 71; = 0 or in expanded form

4E] 4E]
i = —— @ (U1) + —= =0,
I8 I

Special cases:

AEI
1. Assume that [, — 0. In this case, the second term RN oo, rigid joint

2

is transformed to clamped support and the initial frame in whole is transformed
into the vertical clamped—clamped column. Stability equation becomes ¢, (v;) =
—o0. Root of this equation (Table A.25) is vy = 2m and critical force becomes

ViEI _ 4n’El  m’El
S N

Pcr=

where 1 = 0.5 is effective-length factor for clamped—clamped column.

2. Assume EI, — 0. In this case, the rigid joint is transformed to hinge and the
initial frame is transformed into the vertical clamped-pinned column. Stability
equation becomes ¢, (v1) = 0. Root of this equation is v; = 4.488 (Table A.25)

VIElI  4.4882El  #’El
5 = 5 = 3 n = 0.7

5 I3 (0.71y)
3. If [y = [, EI; = E I, then stability equation becomes ¢, (v;) + 1 = 0.

and critical force P, =

The root of this equation is v; = 5.3269 and critical load equals

viEl _ 28.397EI
R

Pcr:

Now let us consider a nonuniform two-span continuous beam shown in Fig. 13.14a.
We need to derive a stability equation and determine the critical load.

a b
3ET "
1‘1’1(1’1)/-\4

11 Z=1Elastic curve

I B e

3EI
—201(vy)
h

Fig. 13.14 Continuous compressed beam: (a) Design diagram; (b) Primary system and unit
bending moment diagram
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The axial compressed forces in both spans are equal, so the dimensionless pa-
rameters v; and v, for both spans are

l P l P
v = — U= R
1 1 El, =3 L

Let the left span is considered as the basic member, so v; = v. In this case, the
parameter v, can be presented in term of the basic parameter v as follows

l, [|EIL l, |EL
Uy =VUl— | — =va, o=—,—.
2T YV EL I, \ ELL

The primary unknown of the displacement method is the angle of rotation at the
intermediate support. The primary system and bending moment diagram due to unit
rotation of the introduced constrain are presented in Fig. 13.14b. Since both spans
are compressed, then the bending moment diagrams are curvilinear. According to
Table A.22, the moment for clamped-pinned beam in case of angular displacement
has the multiple ¢; (v). Unit reaction, which arises in introduced constraint, is

3EI 3EI 3EI 3EI
e W)+ = () = e )+
1 2 1 2

@1 (au).

rii (U) =

As before, the subscript 1 at the function ¢; (v) reflects the type of the beam and type
of displacement (Table A.22), while subscripts 1 and 2 at the parameter v denote
the number of the span.

Canonical equation of the displacement method is r1;(v)Z = 0. Nontrivial so-
lution of this equation leads to equation of a critical force

3EL
I

3EI
1 (U) = ®1 (U) + l—z(pl (OIU) = 0.
2

Special cases:

1. Assume I, — 0. In this case, intermediate pinned support is transformed
into clamped support and initial beam becomes one-span pinned-clamped beam
length /;. Stability equation becomes ¢;(v;) = —oo. Root of this equation is
v; = 4.488 and critical force

_ UJEl _ 4.488°El  nm’El
Coon (R

n=20.7

2. Assume [y = I, = [ and EI; = EI, = EI. In this case, parameter ¢ = 1, the
stability equation becomes ¢;(v) = 0, and parameter of critical load v = 7.

w2El

So the critical load P, = 2

pinned-rolled supports.

. This critical load corresponds to column with
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. I, [EL
3. Assume [, = 2I; and EI1 = EI, = EI. In this case parameter o« = TVEL =
1 2
2 and critical load equation becomes ¢;(v) + 0.5¢;(2v) = 0; parameter of
3.869E1

critical load v = 1.967. So the critical load P., = 7 It can be seen that

1
increasing of the one span by two times has profound effect on the critical load
(coefficient 3.869 instead of 72 for two-span beam with equal spans).

Let us illustrate the displacement method in canonical form for stability analysis of
the multistory frame.

Example 13.4. The two-story frame in Fig. 13.15ais subjected to compressed axial
forces P and oP. Geometrical parameters of the frame are 7 and /| = fh, the
bending stiffness of the members are EI for members of the second level and kET for
column of the first level. Derive the stability equation in terms of arbitrary positive
numbers «, B, and k.

1L| -

apl EI h

#,,

kEI

= =B
27

Fig. 13.15 Two-story frame

Solution. The primary system is presented in Fig. 13.15b. Let us assign member
1-2 as basic one; its flexural stiffness per unit length equals i = EI/ h. The flexural
stiffness per unit length for each member are shown in Fig. 13.15b. Parameters of
critical force for member 1-2 and 2-A are determined as follows:

L P h\/P+ozP \/l—i-oz
v = — =V Uy = = v .
! VEr — 77 KEI k

Bending moment diagrams caused by Z1=1 and Z,=1 are shown in Fig. 13.15c, d,
respectively.
Unit reactions are

. 4i .
rin = 4iga (v) + F; ri2 =121 = 2ig3(v);

. . 4i
rap = 4igy (V) + 4kigs (Up) + F
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Stability equation in general and expanded forms are

rir iz -0
21 122
4[902 (U)+%:|'[<P2 (v) + kg (U2)+H_¢§ (v) =0.

Leta =3, B =1, k = 4. In this case, v, = v and stability equation becomes
41p2 () + 1] [5¢2 (V) + 1] — 95 (v) = 0.

The root of this equation is v = 4.5307. The critical load is

v2EI  4.53072EI
Pcr: I’l2 - I’l2 .

Example 13.5. The frame in Fig. 13.16a is loaded by two forces at the joints. De-
rive the stability equation and find the critical load P.

a b
P 1.4pP Primary system
v o 1 2
2ET
g
EI EI n i=0.1ET
L
/[=5m
c d
2
R1 4_(\
M3 :

M3, My,

M3 = 6ipy(v) = 0.6ETg4(v)
12
e
_30

Ry = 12’ 1,(1.1832v) = 0.003E1n,(1.18320)

M3 = 4igy(v) = 0.4EIp(v)
R = 6ig4(v) = 0.6 Elpy(v) R

My(v) = 0.12ETm,(v)

Fig. 13.16 (a, b) Design diagram of the frame and primary system. (¢, d) Unit bending moment
diagrams
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Solution. The frame has two unknowns of the displacement method. They are the
angle of rotation Z; of rigid joint and horizontal displacement Z, of the cross bar.
The primary system is presented in Fig. 13.16b.

Bending moment diagrams caused by unit displacement of the introduced con-
straints are presented in Fig. 13.16c, d; elastic curves are shown by dotted line. The
diagrams within members 1-3 and 2—4 are curvilinear. Direction of R for M di-
agram is explained for the left column (Fig. 13.16c). Similarly may be explained
directions for Ry and R, (M 5 diagram).

[P [1.4P
Parameters of a critical load are viz = v = hy/—; Uy = h{/—— =
EI EI

1.1832v.
Canonical equations and unit reactions are

ri1Zy +ri2Z2 =0,

a
12121 + 1222, =0, @

where
ri1 = [0.4¢2(v) + 1.2]El; 121 = r12 = —0.6Elp4(v);
ra2 = [0.012n2(v) + 0.0037;(1.1832v)]EI

Stability equation becomes:

0.402 (V) + 1.2 —0.6¢4 (V) —0
—0.6¢4 (V) 0.012712 (v) + 0.0037; (1.1832v)

Solution of this equation leads to parameter of critical load v = 2.12. The critical

load is
v2EI _ 4.49E1

Po= =72
Thus the frame becomes unstable if it will be loaded by two forces P and 1.4 P
simultaneously.

Example 13.6. Design diagram of the multispan frame is presented in Fig. 13.17a.
Derive the stability equation and calculate the critical force.

Solution. The primary system is shown in Fig. 13.17b. The introduced constraint 1
prevents linear displacement. Canonical equationis r1; Z; = 0, so stability equation
is r;; = 0. Bending moment diagram caused by unit displacement of the introduced
support is presented in Fig. 13.17b. Within the second and third columns, the bend-
ing moment diagrams are curvilinear.

Free body diagram of a cross-bar is shown in Fig. 13.17c. Shear forces for
compressed-bent members are presented in Table A.22. Parameter of critical load

P . .
v = h,/ —. Unit reaction equals
EIl
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a b
L e
P P I/ I/ I/ /, , _IL
IHI l l l :"// éﬁ éi 1 I”/'/ ”lll
3i 3 3 T
Q1=04=05= % Lo Taw 3
c v
3i .
QZ:Q,%:?’%(U) i <L 9 o O:%_>
0 [0} 03 04 0;

e
h

d
P P P P lP l P lP lP P lP
I » !
PN .
Fig. 13.17 (a—c) Multispan frame. Design diagram, primary system and free-body diagram. (d, e)

Multispan regular frames; a number of columns is k

3i 3i
7‘1123'h—2+2'h—2771(1)). (a)

The stability equation becomes 3 + 2771 (v) = 0. The minimum positive root of this
equation, i.e., the parameter of lowest critical load is v = 2.4521. Critical load

V2El  6.0128El
- nz

Pcr=

Discussion. Analysis of this frame allows easy considering of two important typ-
ical cases. Both cases are related to the regular multispan frame with k columns
loaded by equal forces P at the each joint. Figure 13.17d presents regular frame
with hinged joints, while the Fig. 13.17e shows the frame with absolutely rigid
cross-bar and fixed joints. In both cases, the frame has one unknown of the displace-
ment method. Introduced constraint prevents linear displacement; this constraint is
not shown.

For both cases, the loss of stability is possible according two different forms. The
first form occurs with horizontal displacement of the cross bar (dotted line 1) and
the second form without of such displacement (dotted line 2). For both cases, the
lowest critical load corresponds to the first form.

For case of hinged joints (Fig. 13.17d), the horizontal reaction of introduced

constraint is 30
i
ri = k'h—th (v).
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Stability equation becomes 7n;(v) = 0 and the lowest root is v = /2. The
critical load is equal to
w2El ]

4h? "’

This case corresponds to single fixed-free column. For second form of buckling
we get P, = 2EI/(0.7h)? as for simple fixed-pinned column.

For case of absolutely rigid cross bar, the lowest critical load also corresponds
to the first form. This form is characterized by horizontal displacement of cross bar,
while the fixed joint have not angular displacements because for cross-bar EI = oo.
In this case the unit horizontal reaction equals

P, =

12i
r =k'h—2772(U)~

Stability equation becomes 1, (v) = 0 and the lowest root is v = . The critical
load is equal to
n?El
cr — h2 ’
This case corresponds to single column with fixed ends while the one fixed sup-
port permit the horizontal displacement. For second form of buckling, we get
P.. = 4m2EI/ h? as for fixed-fixed column.
We can see that for these regular frames, a critical load P does not depend of the
number of columns k and length / of each span.

13.4.3 Modified Approach of the Displacement Method

In general case, the displacement method requires introducing constraints, which
prevent to angular displacement of rigid joints and independent linear displacements
of joints. However, in stability problems of a frame with sidesway, it is possible
some modification of the classical displacement method. Using modified approach,
we can introduce a new type of constraint, mainly the constraint, which prevents
to angular displacement, but simultaneously has a linear displacement. This type
of constraint is presented for pinned-clamped and clamped-clamped members in
Table A.22, line 3.

Example below presents analysis of the frame with sidesway (Fig. 13.18a) us-
ing two approaches. The first approach corresponds to classical primary system of
the displacement method; the primary system contains two introduced constraints,
one of which prevents angular and another prevents linear displacements. The sec-
ond approach corresponds to modified primary system of the displacement method;
the primary system contains one introduced constraint, which prevents angular dis-
placement and allows linear displacement A. We will derive the stability equation
using both approaches and calculate the critical load.

First approach. The primary unknowns are angle of rotation of rigid joint and linear
displacement of a cross-bar. Figure 13.18b shows the primary system, elastic curve,
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a b

P .
l Primary system
kEI 1 2

EI h

1

Fig. 13.18 (a) Design diagram of the frame. (b—d) First approach — primary system and cor-
responding bending moment diagrams in the unit conditions. (e-g) Second approach — primary
system and corresponding bending moment diagrams in the unit conditions

and bending moment diagrams caused by the unit rotation and linear displacement
of induced constrains 1 and 2.

Bending moments diagram is curvilinear for compressed vertical member of the
frame. The ordinates are found in accordance with the Table A.22. The bending
moment diagrams yield

Ly KEL SR
Vll—h(ﬂlv T T2 = hzfﬂlv
3EI 3EI
a1 =-5e1 (V) r=—oem )

where parameter of stability v = h %. Again, the subscript 1 at functions ¢ and
n is concerning to the pinned-clamped member subjected to angular and linear dis-
placements of the clamped support.
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Nontrivial solution of canonical equations of the displacements method leads to
the following stability equation

ri I
21 T2

=0

If we assume that /[ = h, and take into account the expressions for functions @1 (v)
and 11 (v), then stability equation after rearrangements becomes

v3 3k —vtanv) = 0.

The root of this equation is v = 0 and corresponds to initial condition of the frame.
Condition
3k —vtanv =0

allows to calculate the critical parameter v for any value of k. Some results are

presented in Table 13.2.

Table 13.2 Critical load in terms of parameter k
Parameter k| Root of equation v| Critical load P, (factor EI/ h?)

1 1.193 1.423
10 1.521 2313
00 1.57 2.465

Second approach. 1In this case only constraint 1 is introduced (Fig. 13.18e). How-
ever, this constrain allows the linear displacement A. This case is presented in
Table A.22, row 3. Elastic curve caused by unit angular displacements (if linear
displacement A occurs) and corresponding bending moment diagram are shown in
Fig. 13.18f, g.

Unit reaction
EI 3kEI
ra = —thanv 4+ —

[

so the stability equation becomes

h
—vtanv + 3k7 =0.

If [ = h, then this stability equation is the same as was obtained above. The second
approach is more effective than the first one.

13.5 Stability of Arches

Stability analysis of the different types of arches is based on a solution of a dif-
ferential equation. Precise analytical solution may be obtained only for specific
arches and their loading. In this section, we will consider a plane uniform arch with
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constant radius R of curvature (circular arch), which is subjected to uniformly dis-
tributed pressure normal to the axis of the arch. In this case, only axial compressed
forces arise before the buckling arch. Thus this problem, as all previous problems in
this chapter, has a general feature — a structure before buckling is subjected to only
compressed load.

Figure 13.19a, b presents statically indeterminate arches with pinned and fixed
supports as well as three-hinged arch. The loss of stability of an arch may occur
in two simplest forms. They are symmetrical form (a), when elastic curve is sym-
metrical with respect to vertical axis of symmetry and, otherwise, antisymmetrical
form (b).

Arch with pinned ends Arch with fixed ends Three-hinged arch

Fig. 13.19 Arches with different boundary conditions. (a) symmetrical and (b) antisymmetrical
buckling forms

The symmetrical and antisymmetrical forms mean that both supports rotate in the
opposite directions and the same directions, respectively. As it shown by analytical
analysis and experiments, the smallest critical load for hingeless and two-hinged
arches corresponds to antisymmetrical buckling form.

13.5.1 Circular Arches Under Hydrostatic Load

Assume that symmetrical circular arch of radius R has the elastic-fixed supports;
their rotational stiffness coefficient is k [kN m/rad]. The central angle of the arch is
20; the flexural rigidity is EI, and the intensity of the radial uniformly distributed
load is ¢ (Fig. 13.20a).

For stability analysis of the arch, we will use the following differential equation

dw w M 13.13
& TR (13.13)
where w is a displacement point of the arch in radial direction (Fig. 13.20b), and M
is bending moment which is produced in the cross sections of the arch when it loss
a stability.
Let ds presents the arc, which corresponds to central angle df. Since

dw dw dé@ _ 1 dw d d?w 1 d2w
ds dfds Rdf

T4 T R a0
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then (13.13) may be presented in polar coordinates in the following form

— 4w= —MRZ, (13.13a)
do? El

which is called the Boussinesq’s equation (1883).

AN

w(6)

Fig. 13.20 (a) Design diagram of the circular arch with elastic supports; (b) Reactions and anti-
symmetrical buckling forms; (¢) Distribution of bending moments caused by two reactive moments
M; (d) Free-body diagram for portion of the arch (load g is not shown)

Itis easy to show that the axial compressive force of the arch caused by uniformly
distributed hydrostatic load g is N = gR. Indeed, the total load within the portion
ds (Fig. 13.20b) equals gds = gRd6, and all load which acts on the left half-arch is
perceived by the left support, so the horizontal and vertical components of reaction
N are

o o
H =—/quin«9d«9 =qRcosa and V =/chos€d0 = gRsinc,
0 0

N = VH2+ V2 =4R.

The slope ¢ at the elastic support and corresponding reactive moment M, are related
as My = kg. Distribution of the bending moments caused by two antisymmetrical
angular displacements ¢ of elastic supports (or reactive moments M) is presented
in Fig. 13.20c. Bending moment at section with central angle 6 caused by only
reactive moments My equals m. The total bending moment at any section, which
is characterized by displacement w (free-body diagram is shown in Fig. 13.20d),
equals

SO

sin 6

M =gRw— ko. (13.14)

sin o
For two-hinged arch, the second term, which takes into account moment due to
elastic supports, should be omitted.
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Thus, differential equation (13.13a) becomes

d?w qR? ko R?
— 1+ =)= in 6. 13.15
d92+( * EI)W Elsina (13.1)
Denote
3
2 qR
=14+ —. 13.15
n + I ( a)
ko R?
c=_92 (13.15b)
Elsina

Pay attention that C is unknown, since the angles of rotation ¢ of the supports are
unknown. Differential equation (13.15) may be rewritten as follows

d2
%Jrnzw:cm@. (13.16)

Solution of this equation is
w = Acosnf + Bsinnf + w*. (13.17)

The partial solution w* should be presented in the form of the right part of (13.16),
mainly w* = Cy sin 6, where Cy is a new unknown coefficient. Substituting of this
expression into (13.16) leads to equation

—Cysinf + n*Cysind = C sin 8,

SO
C

n2-—1

Thus the solution of equation (13.15) becomes

Co =

c .
7 sin 6. (13.17a)

w = Acosnf + Bsinnf + >
n J—

Unknown coefficients A, B, and C may be obtained from the following boundary
conditions:

1. For point of the arch on the axis of symmetry (6 = 0), the radial displacement
w = 0 (because the antisymmetrical form of the loss of stability); this condition
leadsto A = 0;

2. For point of the arch at the support ( = «) the radial displacement is w = 0, so

Bsinno +

C
N sina = 0. (13.18)

n2
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3. Using expression (13.17a), the slope is

d C cosf
% — Bncosn + nzcisl . (13.19)
The slope at the support is
dw
s

the negative sign means the reactive moment My and angle ¢ have the opposite
directions. On the other hand

dw _ dw
ds  Rd6’
SO
dw __R
a9 -
According to (13.15b) we get
_ Elsino © dw _ Elsino
=" w9 T kR

If & = « then the expression (13.19) becomes

B n C cosa Elsina
1 cosna = —
nz—1 kR

After rearrangements this expression may be presented in form

(13.20)

coso Elsino
B C =
ncosno + (nz—l + R )

Equations (13.18) and (13.20) are homogeneous linear algebraic equations with re-
spect to unknown parameters B and C. The trivial solution B = C = 0 corresponds
to state of the arch before the loss of stability. Nontrivial solution occurs if the fol-
lowing determinant is zero:
. sin o
sinno ]

D = =0 (13.21)
cosa Elsino
n?—1 kR

ncosna;

The stability equation (13.21) may be presented as follows:

nko kR

, ko= —. 13.22
ko cota + (n%2 — 1) O EI ( )

tanna =
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Solution of this transcendental equation for given o and dimensionless parameter
ko is the critical parameter n. According to (13.15a) the critical load

EIl

g = (n* = 1) Vil (13.23)
If the central angle 2o = 60°, then the roots of equation (13.22) for different k¢ are

presented the Table 13.3:

Table 13.3 Critical parameter n for circular arch with elastic clamped
supports, 2o = 60°
ko 0.0 1.0 10 100 1000 10°

n 6.0000 6.2955 7.5294 8.4628 8.6051 8.621

Limiting cases. The general stability equation (13.22) allows us to consider some
specific arches.

1. Two-hinged arch. In this case the stiffness k = 0 and stability equation (13.22)
b4

is tanne = 0. The minimum root of this equation is n¢ = 7, son = — and
o

corresponding critical load equals
n? EI
qer min = 06_2 -1 ﬁ (13.24)

Critical load for ¢ = /2 (half-circular arch with pinned supports) equals

_ E
qcrmin = 3ﬁ

2. Arch with fixed supports. In this case the stiffness k = oo and stability equa-
tion (13.22) becomes
tanno = n - tana (13.25)

In case o = 7/2 (half-circular arch) this equation can be presented in the form

3
R

nmw nw
cot— =0, so— = —,
2 2 2
Solution n = 1 is trivial because this solution, according to expression (13.15a),
corresponds to ¢ = 0. Thus, minimum root is n = 3. Thus for a half-circular arch
with clamped supports the critical load equals

EI
dcr min = SF

Roots n of stability equation (13.25) for different angle « are presented in the
Table 13.4.
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Table 13.4 Critical parameter n for circular arch with fixed

supports
o 30° 45° 60° 90°
N 8.621 5.782 4.375 3.000

489

It is worth to present the critical load for three-hinged symmetrical arch under
hydrostatic load. The critical load for antisymmetric buckling form coincides with
critical load for two-hinged arch. In case of symmetrical buckling form, the critical

load should be calculated by using the formula

4y? El
Qor = | —5 — 1 o3
o R

where parameter u is a root of transcendental equation

tanu —u 4(tanOt —)

u3 a3
Roots of this equation are presented in the Table 13.5.

Table 13.5 Circular three-hinged arch. Critical parameter u for
symmetrical buckling form

o 30° 45° 60° 90°
U 1.3872 1.4172 1.4584 /2 = 1.5708

For all above cases, the critical load may be calculated by the formula

EI
ger = Kﬁ,

where parameter K is presented in the Table 13.6.

Table 13.6 Parameter K for critical hydrostatic load of circular
arches with different boundary conditions

Types of arch a=15° 30° 45° 60° 75° 90°
Hingeless 294 733 324 18.1 115 8
Two-hinged 143 35 15 8 476 3
Three-hinged 108 27.6 12 6.75 432 3
(symmetrical form)

(13.26)

(13.27)

Table 13.6 indicates that for three-hinged arch the lowest critical hydrostatic load
corresponds to loss of stability in symmetrical form. For arches with elastic sup-

ports, factor K satisfies condition
Ky <K < K,

where K; and K> are related to hingeless and two-hinged arches.
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13.5.2 Complex Arched Structure: Arch with Elastic Supports

In practical engineering, the stiffness coefficient k of the elastic supports is not
given; however, in special cases it can be determined from an analysis of adjacent
parts of the arch. Let us consider a structure shown in Fig. 13.21a. The central part
of the structure presents the circular arch; supports of the arch are rigid joints of the
frames. The arch is subjected to uniformly distributed hydrostatic load g. Assume
that R = 20 m and the central angle 2o = 60°. The stiffness of all members of the
structure is EI.

M . L=Elf6 1 ,f,/DM:":?
& T 30, <
L=EI8 4 ‘
2,

Fig. 13.21 (a) Design diagram of the structure. (b—e) Calculation of the stiffness k of the elastic
supports of the arch

Since the left and right frames are deformable structures, then the each joint 4
and B has some angle of rotation, so the arch AB should be considered as arch with
elastic supports with rotational stiffness k. For this case of circular arch with given
type of load, the stability equation according (13.22) becomes:

n

tanno = (n2 - 1) i (13.28)

kR

cota +

Rotational stiffness coefficient k is a couple M, which arises at elastic support of
the arch if this support rotates through the angle ¢ = 1. Since the joints A and B are
rigid, so the angle of rotation for frame and arch are same. Therefore, for calculation
of the stiffness k we have to calculate the couple M, which should be applied at the
rigid joint A of the frame in order to rotate this joint by angle ¢ = 1.

The frame subjected to unknown moment M = k is shown in Fig. 13.21b. For
solving of this problem, we can use the displacement method.

Primary system of the displacement method is shown in Fig. 13.21c. Canonical

equation is
rZi + Rip =0.
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Displacement Z; = 1 and corresponding bending moment diagram is shown in
Fig. 13.21d. The unit reaction

ri1 = 3i; + 4i, = 0.5E1 4+ 0.5E1 = 1.0E1.

The primary system subjected to external unknown couple M is presented in
Fig. 13.21e, so Rip = —M. The canonical equation becomes 1El - Z; — M = 0.
If the angle of rotation Z; = 1, then M = k = 1.0EI. For given parameters R and
« the stability equation (13.28) of the structure becomes

b4 n 20n
tann— = or tan(0.5236n) = ———.
6 33.64 + n?

The root of this equation n = 7.955. The critical load is

EI EI
ger = (7.955% — 1) 23 = 022845 (13.29)

According to Table 13.6, the critical load for arch with fixed supports and for two-
hinged arch (the central angle in both cases is 2o = 60°) are g, = 73.3% and

ger = 35 %, respectively. Above calculated critical load (13.29) is located between

two limiting cases.

13.6 Compressed Rods with Lateral Loading

In the previous chapters, the bending structure had been analyzed on the basis of a
nondeformable scheme. However, the axial compressed force P creates additional
moment on the displacements § due to lateral load. Even if a small lateral load leads
to small lateral displacements, the compressed load on these small displacements
leads to additional moments and displacements. Influence of the compressed axial
force becomes especially significant for tall structures.

A straight member that is simultaneously subjected to axial compression and
lateral bending is called a beam-column. Often analysis for such structures is refers
as P-delta analysis. Other title of such analysis is analysis of a structure on the basis
of deformable scheme. This analysis is nonlinear one and it allows finding a more
real distribution of internal forces and deflections, while the analysis on the basis of
the nondeformable design diagram leads to theirs underestimating.

Two different methods for beam-columns analysis are presented below. They are
the double integration and initial parameters methods.
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13.6.1 Double Integration Method

Figure 13.22 shows a simply supported beam subjected to lateral force F' and com-
pressed force P. We need to derive the expressions for deflection and internal forces.

F C
P 4 cy B P
B — 44—
A A

Fig. 13.22 Simply supported X
beam subjected to R, / Ry
compressive axial load P and
lateral load F y

Differential equation of elastic curve of the beam for left and right parts (portions
1 and 2, respectively) may be written as

d? F
Id;; =—Py; — Ryx = —Py—Tcx, x<l[l-—c,
d? F (-
E]i =—Py,—Rp(l —x) :—Py—M(l—x), x>[—c.
dx2 /
(13.30)
General solution of these equations is
. Fc
y1 = Cycosnx + Dy s1nnx—ﬁx. (13.31)
F
y2 = Cycosnx + Dy sinnx — Pl (I—-¢)(—x), (13.32)
where
P
n=,/—
EI

is parameter of compressed load P.

At the points A(x = 0) and B(x = [) the displacement y is zero. Equations
(13.31) and (13.32) lead to C; = 0 and C, = —D; tannl. Therefore, expressions
for displacements within the left and right portions are

— D si F
V1 = 1 SInx Plx,
F
y2 = —Djytannl cosnx + Dy sinnx — Pl (I—c¢c)(—x). (13.33)

For calculation of unknown coefficients D; and D, we can use the following
conditions at the point C':

e and @ fd %
Y1 =2 o dx
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In expanded form these conditions are

Dysinn (Il —c¢) = Dy [sinn (Il —c) —tannlcosn (I —c)],

F
Dincosn(l —c¢) = Danjcosn (I —c) +tannlsinn (I —c)] + i (13.34)

Solution of these equations is

F sinnc _ Fsinn(l—c¢)

D, 2 =

~ Pnsinnl’ Pntannl

Displacements at any point of the left part of the beam

Fsinnc . Fc
————sinnx — —X. (13.35)

Nn= Pnsinnl St Pl

Knowing (13.35) we may construct the equations for slope and internal forces.
In particularly, the bending moment for left part of the beam

a2 Fnsi
M(x) = —EI—2 = EI-- 2 Ginpa. (13.352)
dx2 P sinnl

Limiting case

If a force F is placed at the middle span (¢ = 0.5/), then for section x = 0.5/
from (13.35) and (13.35a), we get the maximum deflection and bending moment

l FI3 3 (tan®d — ¥) | |P nl
y — = s 19 = — —_— = —,
2 48EI 93 2V EI 2
M £ _ F_ltanﬂ.
2 4 0
If a compressive force P — 0, then

— 3
—3(tanz9 19)—>1 tanﬁ—)l,soy(i)e il andM(A)—>F—l.

93 ' s 2 48E1 2 4

Let us evaluate numerically effect of the compressive force P. Since a critical
force for simply supported column is

w2El
2’

P =
then the dimensionless parameter ¢ may be rewritten as

P
P crit .

9 =2
2
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For P = 0.36 P we get

3(tan? — )
93

i.e., a small compressive load increases the deflection at force I by 55%. In this case

¥ = 0.94248 and = 1.555,

tan ¢

= 1.4604,

so the maximum bending moment increases by 46%. Thus, compressive force has
unfavorable effect on the state of the beam-column and therefore, P-delta analysis
should not be ignored.

Notes:
1. The displacement and lateral force F according to (13.35) are related by linear
law. Since the axial force P appear in parameter n = ./ 5, then the displace-

ment and axial compressed force P in the same equation are related according
to nonlinear law. It means that superposition principle is applicable only for lat-
eral loads.

2. Equation (13.35a) may be treated as the expression for influence line for bending
moment of a simple-supported compressed beam. For this purpose, we need to
consider the section x as a fixed one, while a location of the unit force F is
defined by a variable parameter c.

13.6.2 Initial Parameters Method

This method is effective for P-delta analysis in case of general case of beam-column
loading. A straight element is subjected to axial compressed force P as well as
lateral loads F; and uniformly distributed load ¢ (Fig. 13.23a); dotted line shows
the initial nondeformable position (INDP) of the element; the initial parameters are
vo, 6o, My, and EO. The shear 50 is directed to perpendicular to nondeformed
axis of the beam.

F,

i

q
A EREEEE R TR E RS

R A L
NIG) 9 y
2 4

I —
y

Fig. 13.23 Loading of the beam-column and positive initial parameters
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Differential equation of elastic curve is

d?y
EIW =-M (X),

where the bending moment at any section x is

2
M(x):P(y—yo)+M0+§0x—ZFi(x—ai)—%.

Differential equation becomes

d’y

d 1 qx? P
oz T y___|:MO+QOX_PYO—ZFi(x_ai)_T]’n: VEr

(13.36)
Solution of this equation is

y = Cycosnx 4+ Cysinnx +
1
—7 (Mo+00x) +—— 3" Filn (x — @) = sinn (x — ay)]

q n?x?
__4EI 1— 2 —cosnx|.
n

+Yyo —

(13.36a)
The first and second terms of this expression are solution of homogeneous equa-
tion (13.36), while other terms are partial solution of nonhomogeneous equation.
For calculation of unknowns C; and C,, we can use the following boundary con-
ditions: at x = 0 initial displacement and slope are y = y¢ and y’ = 6. These

conditions lead to
0,
and C, = — <90 + 2E]

M,
Ci = 2g

Substitution of these constants into expression for y and differentiation with
respect to x leads to the following formulas for displacement, angle of rotation,

bending moment and shear:

sinnx My 1—cosnx Q, nx—sinnx

— g —m8M — — —, = ;
y (@) = yotbo-— El n2 El PER
M,y sinnx Q, 1-—cosnx
0 = —9 - = ——— 40"
(x) = b - cosnx — 7 . Zl 2 +
d?y —  sinnx

+M*;

M (x) = —EI@:%EI-nsinnx + Moy cosnx+Q, -

dM _
0(x) = d—:GQEI-n2 cosnx — Mon sinnx+Q - cosnx+Q*. (13.37)
x
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Each formula of system (13.37) contains of two parts. The first part takes into ac-
count the initial parameters of the structure. The second part depends on the lateral
load; these terms are denoted by symbol (*) and they are presented in Table 13.7.

Table 13.7 Additional terms of (13.36); n = %
F
ITIIY M
a a a »
X RN X

y* A I:(x—za)z + cosn(x;a)—l:l

£ — q) — snnb—a) _M
n EI [(X a) n ] n2El

[1—cosn(x —a)]

f* ﬁ[(x_a)_“"”(n;”)] IﬂFE‘I[l_Cosn(x_a)] nA;I smn(x—a)
M*| —&[1 —cosn(x —a)] —fsinn(x—a) M cosn(x —a)
0* | —Lsinn(x —a) —F cosn(x —a) Mnsinn(x —a)

Superposition principle for different lateral 1oads is applicable for the same com-
pressed load. For example, in case of several concentrated forces F;, which are
applied at x = q;, and uniformly distributed load ¢ within the whole span, the
additional terms are

q (n%x?
y* ZF, [n(x —a;)—sinn(x —a;)] + —— +cosnx —1]).

3EI n*EIl 2

Note, that for given section x, only loads located to the left of section x, should be
considered.

Let us illustrate the initial parameters method for free-clamped beam subjected to
axial compressed force P and lateral force F' (Fig. 13.24). Itis necessary to compute
the vertical and angular displacements at the free end and bending moment at the
fixed support and to provide the numerical P-delta analysis.

F
v B |

Pﬁl—b// 1{‘/ e

X

Fig. 13.24 Free-clamped | Rp
compressed-bending beam y

According to Table 13.7 the terms, which take into account a lateral load are

. x —a) sinn(x —a)] _F sinnx
Y anI ~ n = w2El " n
= 3 (nx —sinnx),
0* = [1—cosn(x—a)] = (1 —cosnx),a=0, (13.38)

n2El n2El

F
M* = ——sinn (x —a).
n
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Since Q9 =0, My = 0, then (13.37) become

sinnx F
+

(nx —sinnx);
nEl (13.39)
6 (x) = b - cosnx + 2] (1 —cosnx).

y(x)=yo+bo-

These equations contain two unknown parameters. They are 6y and y¢. Boundary
conditions are:

1. At x = [ (support B) the slope of elastic curve 8 = 0, so
F
0 (1) =0 -cosnl + 3E] (1 —cosnl) =0,

which leads immediately to the slope at the free end

_ 2 _
6o = L Lzcosnl  FIP2(—cosv) -, [P (1340
n?El  cosnl 2EI  vZcosv EI

2. At x = the vertical displacement y = 0, so

sinn/ n F
n3EI

y () =yo+bo- (nl —sinnl) = 0.

Taking into account (13.40), the vertical displacement at the free end becomes

Fl? 1 —cosv sinv F ( )
= . - v —sinv
Yo v2El  cosv n n3EI
FI3 [1—cosv . . FI33(tanv—v) FI3
=—— | — sinv—-(v—sinv) | = — —F—=—0,.
v3EI | cosv 3EI v3 3EI
(13.41)

If a beam is subjected to lateral force F only, then a transversal displacement at
the free end equals F/3/3EI. However, if additional axial force P acts then the

factor
_ 3(tanv —v)
y = 03
must be included.
3. The moment at clamped support equals

Fi2 1—cosv .
——— -El-nsinv—
v2El cosv (13.42)
tan v

F .
—sinv = —FI =—Floy.
n v

M (I) = 6oEl -nsinnl + M* = —
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Let’s the compressive force P and critical force P, are related as follows:

72El

P = kP = k"

where k is any positive number, k < 1. In this case the dimensionless parameter is

v=1I EZZ\/E
EI 2

Coefficients ¢, and ¢y for different parameters k are presented in Table 13.8.

Table 13.8 Coefficients ¢, and ¢, for different parameters k = P/ P,

Parameter k

0.0 0.2 0.4 0.6 0.8 1.0
®y 1.0 1.2467 1.6576 2.4792 4.9434 o)
oM 1.0 1.2051 1.5453 2.2234 4.2562 [ele]

Bolded data corresponds to case P = 0. Evenif k = P/ P, = 0.2, the transver-
sal displacement at free end and bending moment at the fixed support are 24.6% and
20.5% higher than for same beam without compressive load.

Some important cases in the expanded form are presented in Table A.23; note
that this table contains formulas in terms of parameter

U:nl:l,/i.
EI

This table allows performing the analysis for limiting cases (P = 0). For example,
for pinned-clamped beam subjected to lateral concentrated load P only we get

v v
sin — (1 — cos —) 3
lim M () = —FI - lim —2 2/ — _“Fl.
v—0 v—>0 sinv — v Ccosv 16

This result is presented in Table A.3, pos. 3 for u = 0.5.

Summary. Beam-column analysis allows determining the real deflections and in-
ternal forces, which are much higher than those, which would be determined without
taking into account compressive load. This is an essence of the P-delta analysis. Ne-
glecting of the compressive forces may lead to failure of a structure; therefore, for
high and multileveled structures, analysis on the basis of deformable design diagram
(P-delta analysis) is necessary.

For P-delta analysis we can use two different approaches. In the first approach,
we need to complete and solve the second-order differential equation of the beam for
each specified loading. In the second approach (initial parameters method), we use
the once derived formulas for displacements, slope, bending moments, and shear.
These formulas can be used for any loads and procedure integration do not required.
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13.6.3 P-Delta Analysis of the Frames

Analysis of a structure on the basis of deformable design diagram (P -delta analysis)
contains two steps. The first step presents the classical analysis of structure on the
basis of nondeformable scheme. If a frame is subjected to arbitrary set of external
forces, including compressive forces at the joints, then on the first stage of analysis
these compressive forces should be omitted. This classical analysis is performed by
any appropriate methods, which were discussed previously. For each member of the
frame, the axial forces must be calculated. The second step begins from calculation
of axial forces with taking into account external axial compressive forces. For each
member, dimensionless parameter of compressive load

Uzl‘li
El

should be calculated. After that, the internal force diagrams of the first step should
be reconstructed taking into account compressive load. The displacement method
on this stage is more preferable. Unit reactions depend on parameter v; the unit
reactions are presented in Table A.22. The free terms of canonical equations depends
on lateral loads. The following example demonstrates application of a beam-column
theory for detailed analysis of two-span sidesway frame.

Example 13.7. The frame in Fig. 13.25a is subjected to horizontal force F at the
level of the cross bar and compressed forces P. The cross bar of the frame is con-
nected with vertical members by means of the hinges. The stiffnesses of the columns
and cross bar are EI and 2EI. Construct the internal force diagrams. Cross section
for vertical members is W150 x 37(1 = 22.2 x 10® mm*), the modulus of elasticity
E =2 x 105(N/mm?).

Solution. The primary system of the displacement method is shown in Fig. 13.25b.
The introduced constraints are 1 and 2. The primary unknowns are angular dis-
placement Z; of constraint 1 and linear displacement Z, of constraint 2. The
bending stiffness per unit length for members are iy = EI/5 = 0.2EI and
ihor = 2E1/6 = 0.333EL

Stage 1. Analysis of the frame on the basis of nondeformable design diagram. In
this step, we need to provide analysis without the axial compressive forces N. This
analysis is presented in Chap. 8, Example 8.1. The internal forces are the following:
the bending moments at the fixed supports are

Mg= Mp = Mc = 50 kNm,

the axial forces at the columns are Ny = Np = N¢ = 0 and axial forces at the left
and right cross bar are

Nleft = _20 kNa Nright == _10 kN

Stage 2. Analysis of the frame on the basis of deformable design diagram. This step
should be performed taking into account axial forces N. Axial forces that arise in
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each member are Py = No + P, where Ny is axial force in specified member as
a result of the stage 1 and P is external compressive load. Since for all columns
No = 0 then for left and right columns, the axial force equals to given load P.

a

b 7 Z,
lP:ISOkN P:ISOkNl P A P
F=30kN 1 F mﬁ

2E1 i=0.333E >
EI
i=0.2ET
4 B c

=5m

h

63.64(50.0)  68.31(50.0)  63.64(50.0)

Fig. 13.25 (a, b) Design diagram of the frame and primary system. (c¢) Unit bending moment
diagram due to Z; = 1 and calculation of unit reactions. (d) Unit bending moment diagram due to
Z, = 1 and unit reactions. (e) Free body diagram and computation of the unit reactions. (f) Final
bending moment diagram

Parameters of compressive load
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for columns are

18 x 104 (N)

v4 = vc = 5,000 (mm)- v =1.007; vg =0.
2x10° (—2) x 22.2 x 106(mm*)
mm
Parameters of compressive load for cross bar are
2 x 103 (N)
Vet = 6,000 (mmy) - = 0.0028;

N
2 x 105 (—2) x 2 x 22.2 x 10° (mm?*)
mm

Uright = 0.0020.

According Table A.25, we can assume v4 = vc = 1.0 and Vjey = Ugigne = 0.0.
Canonical equations of the displacement method are:

riZy+ri2Zz + Rip =0, @
r1Z1+ 12722 + Rop = 0.
The bending moment diagram M in the primary system due to the rotation of
induced constraint 1 is shown in Fig. 13.25¢. Since parameters v for cross bars are
zero, then this member may be considered without effect of compressive load, so
the bending moment diagram is bounded by straight lines. It is obvious that

kN m
711=2EI H andr21=0.

Figure 13.25d presents the bending moment diagram M, in the primary system
due to the linear displacement of induced constraint 2. For columns A and C, we
need to take into account parameter v because these members are subjected to axial
forces. Therefore, bending moment diagrams along these members are curvilinear.

The corrected functions according Table A.25 are ¢;(v) = ¢1(1.0) =
0.9313, n1(v) = n1(1.0) = 0.5980.

Specified ordinates of the bending moment diagram are

3 3-0.2E1
My=Mc = Tlgol (v) = == -0.9313 = 0.1118EL.
3 3-02E

Mp ="t =222 0126

7=

Shear forces at specified sections are

— = 3 3.0.2E1
04=0c=p3m@W = ——05980=0.01435EL,
— 3 3-02El

Op =73 = =5 — = 0.024EL
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It is obvious that r15 = 0. The free-body diagram for the cross bar is presented in
Fig. 13.25¢.
The equilibrium equation Y~ X = 0 for the cross bar becomes

rap = 2-0.01435E] + 0.024EI = 0.0527EI (kN/m)
It is obvious that the free terms of canonical equations are
Rip =0, and Ryp = —F = —30kN.

The canonical equations become

2E1-Z1+4+0-Z, =0,

b
0-Z,4+0.0527El-Z, — F = 0. ®)

The roots of these equations are

F 56925

Z, =0, Z, = =
0.0527E1 EI

The bending moment diagram can be constructed using the principle of superposi-
tion: o o
Mp=M-Z1+My-Zr+ M} (©)

Since Z; = 0 and acting load P does not cause bending of the members, then
formula (c) becomes Mp = M, - Z,. The bending moments at the clamped sup-

ports are

569.25
My = Mc =0.1118EI -

569.25

= 63.64 (kNm),

Mg = 0.12EI -

= 68.31 (kNm).

The resulting bending moment diagram is presented in Fig. 13.25f. The number in
parenthesis is bending moments calculated on the basis of the nondeformable design
diagram (Example 8.1, F = 30kN).

We can see that P-delta effect is significant. Increasing of the horizontal dis-
placement Z is 36.6%.

13.6.4 Graph Multiplication Method for Beam-Columns

Vereshchagin rule for computation of displacements may be modified for case of the
uniform members subjected to any transversal load and compressive force P. The
unit state should be created as usual. The bending moment diagrams in the actual
and unit states are plotted without compressive load. However, axial load is taking
into account by factors depending of axial compressive force. Two important cases
are presented below.
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13.6.4.1 Simply Supported Beam-Column

The bending moment diagrams in unit and actual states are shown in Fig. 13.26a.
The bending moment diagram M p due to transversal load (this load is not shown)
is curvilinear.

Mtr
L[ |m

T
1

Fig. 13.26 (a) Graph multiplication method for simply supported beam-column; (b) Calculation
of the slope ¢4

Graph multiplication method leads to the following result

A= e lCab + 2cd) a(w) + (ad +be) p). v =ni =1\ T

6E] 1
«0)=2(3-m5) po=2(75-3)
v \v tan v v \ sinv v

In case of P = 0 this formula and trapezoid rule (6.22) coincide.

Let a simply supported beam AB is loaded by couple My at support B and com-
pressed force P (Fig. 13.26b). For computation of the slope at the support 4 we
need to construct the bending moment diagram (M) for transversal load withour
compressive load and bending moment diagram for unit state M . Graph multiplica-
tion method leads to the following result

_M"XH

pa=——0—
— 20142 M00 0-0+My-1 _ Mo
—@[(' “1+2-My-0) a(v)+(0-0+ My - ),B(U)]—E,B(U)-

13.6.4.2 Fixed-Free Beam-Column

The beam of length / is loaded by any transversal load and compressed by force P
(Fig. 13.27a). Notation of the bending moment ordinates at the free end and clamped
support caused by transversal loads and unit load are shown in Fig. 13.27a.
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a b F
P » v
d AL
il
! M
F=1
b Mw/ﬂ/lrrrr I/

Fig. 13.27 (a) Graph multiplication method for clamped-free beam-column; (b) Calculation of
the deflection A at the free end

According to graph multiplication method, the general formula for displace-
ment is

| P
A = é[20b91(U)+2Cd92(U)+(ad—|—bc) QB(U)],U=I11=1 r

EI
6, (v) = ta%a ()3 6 () = & () + T2 ()5 0 (1) = t*“;”ﬂ(u)

For beam in Fig. 13.27b for vertical displacement at the free end we get:

A:%[ZFZ-]-l-91(v)+2-0-0-92(v)+(0-1-I+O-F-l) 05 (v)]

FI3
=—90
3E] 1(v)

This result had been obtained previously by the initial parameter method.
Problems

13.1. Absolutely rigid column is loaded by two forces Py = P and P, = «P as
shown in Fig. P13.1; « is any positive number. Determine a critical force.

P=P
.

k2 P2:OCP l]

Fig. P13.1



Problems 505

ki (i + 1)* + kyl2

Ans. P, =
L+bL0+a)

13.2. Two absolutely rigid bodies (EI = o0) connected by hinge at point C
(Fig. P13.2). Stiffness coefficient of each elastic support is k. Derive the stability
equation, find critical forces and corresponding shapes.

El=c0 C P
& o &
—
Fig. P13.2
Ans. Py = 3 _Zﬁkl = 0.3819kl; Ppy = 3 +2ﬁkl = 2.6180k!.

13.3. Design diagram of two-story frame with elastic constraints between adjacent
absolutely rigid members is shown in Fig. P13.3. Calculate the critical load using
energy method.

|

Fig. P13.3

ki + ko + k3
2h ’

13.4. Pinned-pinned beam with elastic support A is subjected to axial compressive
force P (Fig. P13.4). The restoring moment in rotational spring is M = k¢O0.
Derive the stability equation. Apply the double integration and initial parameter
methods.

Ans. P, =
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Fig. P13.4

Al P EI
Ans. tan Al = Pa 1 A= EI’OC =7
13.5. Design diagram of the column is presented in Fig. P13.5. The total length
of the column is /, while the length of the bottom part is «/. The column is sub-
jected to forces Nj and N,. Relationship between these forces remains constant,
i.e., Ny = BN;. Parameters « and f are the given fixed numbers. Stiffness rigid-
ity of the portions are EI; and EI,. Derive the stability equation. Consider three
possible buckling forms. Apply double integration method.

Fig. P13.5

Ans. (1) cos (1 —a)nil = 0; (2) cosnpal = 0; (3) For smallest critical force

tan(l—a)nll-tannzal—z—;(l_|_/3):O, ny = /E_]ll’ nZ:@

13.6. Derive the stability equation for uniform columns subjected to axial compres-
sive force. Consider the following supports: (a) clamped-free; (b) clamped-pinned;
(c) pinned-pinned. Apply the initial parameter method. Compare the results with
those are presented in Table 13.1.

13.7. The clamped beam with elastic support is subjected to axial force N
(Fig. P13.7). Derive the stability equation. (Hint: Reaction at the right support
is ky1, where y; is vertical displacement at the right support. The moment at the
left support should be calculated taking into account the lateral displacement y; of
axial force N, i.e., My = kyil — Ny1).
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C l £l < N—»x
I 4
M, %k
%
QO* |kyl
Fig. P13.7
2I2E1 N
Ans. tannl = nl (1 _nkT)’ =\

13.8. The uniform beam with overhang is subjected to axial compressive force P
(Fig. P13.8). Derive the stability equation. Use the initial parameter method.

Fig. P13.8

P
Ans. nl (tannl + tanna) = tannl - tanna, n = 7

13.9. The uniform pinned-clamped beam with intermediate hinge C is subjected
to axial compressive force P (Fig. P13.9). Derive the stability equation by initial
parameter method. Calculate the critical load and trace elastic curve; (a) Consider
the special cases (@ = 0,a = 1).

Fig. P13.9

Ans. sinna [nlcosn(l —a) —sinn(l —a)] =0

13.10. The uniform pinned-pinned beam with elastic support is subjected to axial
compressed force P (Fig. P13.10); stiffness coefficient of elastic support is k. The
total length of the beam is [ = [ + I5. Derive the stability equation. Use the initial
parameter method. Consider two special cases; (a) k = 0; (b) /; = [, and k = oo.
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EI P

& & L
|

Fig. P13.10

. . . L1 P [ P
Ans. sinnlq sinnl, = nlsinnl - (% — k_l)’ n= =

For problems 13.11 through 13.15, it is recommended to apply the Displacement
method. All stability functions ¢1, ¢, ... are presented in Table A25.

13.11. Design diagram of the continuous beam is presented in Fig. P13.11. Derive
the equation for critical load in term of parameter . Consider a special case for
a=0.5.

| EI <_P

! B L
h=al | L=(1-)L |

| 'L

Fig. P13.11

4 3 | P | P
Ans.&goz(auo)—l—l_aq)l((l—a)uo):0, vy =1 E:aL EZ(XU(),

Uy = (I—Q)L\/gz Uo(l—Ol)

13.12. Two-span beam of spans /; and /, = B/, is subjected to axial forces P and
aP (Fig. P13.12). The flexural rigidity for the left and right spans are EI and kEI.
Derive the equation for critical load in term of parameters «, 8 and k. Consider the
special cases: a) ¢ = 3,8 = 1,k = 4;and b))« = 0,k = 1,8 = 1. Explain
obtained results.

oP

P —
T m L w Ry
| [ | L=pI |
Fig. P13.12
Ans. o1 (01) + Sy () = 0 0L | EeP
ns. v — v = 0, vy = —, Uy = - =
1 (U1 ﬁ(Pl 2 1 1 El 2 2 KEl
14+«
U1,3

k
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13.13. Design diagram of the frames with deformable cross bar are presented in
Fig. P13.13. Derive the equation for critical load.

P
kET
1 ‘ h
!
f———1

h v [P h
Ans.(a)3k7+ =0, v=h E,(b)vtanv—3k7

tan v

a b

P
kEI

EI ‘ h E

L

Fig. P13.13

13.14. The frame with absolutely rigid cross bar is presented in Fig. P13.14. Derive
the stability equation and calculate the critical load.

El=x

EI h kEI kEI

4

Fig. P13.14

7.13E1
h2

13.15. Design diagram of the frame is presented in Fig. P13.15. Relationship be-

tween two forces is constant. Derive the stability equation and find critical load.

P 4p
l 3EI l 3EI
2
EI
B
6m i

[ P
Ans.n; (vV)+2k=0, v=h 7 Ifk =1,thenv = 2.67.P, =

g
<
NIIQ

1
El‘
A

L= =6m
| | |

Fig. P13.15
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02 (V) +2 1.0 P
s 1.0 0.75¢1 2) + 3.5 via = U= Ay g 2B

[4P
hy — = 2v, Upin = 2.097.
EI

In problems 13.16—13.19 it is necessary to analyze the structure on the basis of
deformable design diagram. In all cases parameter

U=I’ll=l‘/£=lﬂchr.
EI EI

13.16. The uniform free-clamped beam is subjected to axial compressive force P
and lateral distributed load ¢ (Fig. P13.16). Calculate the vertical and angular dis-
placement at free end, and the bending moment at fixed support. Estimate effect of
axial load for different parameter K,

w2El
4]2 -

P:chr» P, =

q
VIV I IV IV ¥
DD

PﬁI—»( T
I | %,

Fig. P13.16

Ans. 0y =

ql® 6(v—sinv) gl* 8 (vsinv+4cosv—1 v? )
6EI vdcosv 0 '

8EI v* cos v 2
ql?> 2(cosv + vsinv — 1)

Mg =—

2 v2cosv

13.17. The uniform beam AB is subjected to axial compressive force P and lateral
uniform distributed load ¢ (Fig. P13.17). Calculate slope at the support, the deflec-
tion and bending moment at the middle of the beam. Estimate effect of axial load
for different parameters k,

—k _ m?El
P = Pcr» Pcr— lz .

Fig. P13.17
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ql® 12 v l 5q1* 384 v v?
Ans.90=—-—(2tan——v);y -] = —|sec=—1——;
24EI v3 2 2 384EI 5v* 2 8
[ 2 8
M| = =q—-—(secg—l)
2 8 w2 2
13.18. The uniform beam AB is subjected to axial compressive force P and exter-
nal moment My at the support A (Fig. P13.18). Calculate the slope at the support

A and reactions of supports A and B. Estimate effect of axial load for different
parameters k,

72El

P=kPy, Py=-—s.
(0.71)

Fig. P13.18

Ans.QO:%- v(cosv —1) Mp = M, sinv — v

[ sinv—vcosv’ sinv—vcosv’

13.19. The uniform beam AB is subjected to axial compressive force P and
transversal force F at the middle point of the beam. Calculate slope at he sup-
port A, and linear displacement and bending moment at the point of force F.

Fig. P13.19

FI* 8 v l FI3 24 VY
Ans. 8y = S (ees 1), v (5) = s S (e -2
0T TeEl T b2 (see 2 ). » (2) 48E1 V2T )

/ Fl 2 v P
M|=)]=— -—tan—, v=1I[,/—
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Chapter 14
Dynamics of Elastic Systems

Structural dynamics is a special branch of structural analysis, which studies the
behavior of structures subjected to dynamical loads. Such loads develop the dynami-
cal reactions, dynamical internal forces, and dynamical displacements of a structure.
They all change with time, and maximum values often exceed static ones. Dynami-
cal analysis of structure is based on the free vibration analysis.

This chapter is devoted to linear free vibration analysis of elastic structures with
lumped and distributed parameters. The fundamental methods of structural analysis
(force and displacement methods) are applied for calculation of frequencies of the
free vibration and corresponding mode shape of vibration. They are inherent to the
structure itself and are called as the eigenvalues and eigenfunctions.

14.1 Fundamental Concepts

14.1.1 Kinematics of Vibrating Processes

The simplest periodic motion can be written as
y(t) = Asin(@1 + ¢o) .

where A is the amplitude of vibration, ¢y is the initial phase of vibration, ¢ is time.
This case is presented in Fig. 14.1a. The initial displacement yo = Asingg is
measured from the static equilibrium position. The number of cycles of oscilla-
tion during 27 seconds is referred to as circular (angular or natural) frequency of
vibration @ = 27 /T (radians per second or s™1), T(s) is the period of vibration.
Figure 14.1b, c presents the damped and increased vibration with constant period.

14.1.2 Forces Which Arise at Vibrations

During vibration a structure is subjected to different forces. These forces have a
different nature and exert a different influence on the vibrating process. All forces

I.A. Karnovsky and O. Lebed, Advanced Methods of Structural Analysis, 513
DOI 10.1007/978-1-4419-1047-9_14, (© Springer Science+Business Media, LLC 2010
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a b c
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Fig. 14.1 Types of oscillatory motions

T T
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may be divided into the following groups: disturbing forces, positional (restoring)
forces, resisting forces, and forces of the mixed character.

1. Disturbing forces may be of the following types:

(a) Immovable periodical loads are produced by stationary units and mechanisms
with moving parts. These loads have a periodical, but not necessary a har-
monic character and generally do not depend on the elastic properties of the
structure.

(b) Impact (impulsive) loads are produced by falling weights or collision of bod-
ies. Impulsive loads are characterized by very short duration of their action
and depend on the elastic properties of the structure, which is subjected to
such loads.

(c) Moving loads act on the structures through wheels of a moving train or truck.
The availability of the rail joins on the railway bridge or irregularities of the
deck on the car bridge lead to appearance of inertial forces. These type of
loads should be distinguished from moving one, which has been studied in
the sections “Influence lines” because unit moving load P = 1 had been
considered without dynamical effects.

(d) Seismic loads arise due to earthquakes. The reason of the seismic load on
the structure is the acceleration of the supports caused by acceleration of the
ground. This type of disturbance is called kinematical. The acceleration of
supports leads to the acceleration of the separate parts of the structure, and
as a result inertial forces act on these parts. Seismic forces, which arise in
the members of the structure, depend on the type and the amount of ground
acceleration, distribution of the mass within the members of the structure and
their elastic properties.

2. Restoring forces depend on the displacement of the structure, arise due to devi-
ation of system from a static equilibrium position, and tend to return the system
to its initial position. Restoring properties of a system are described by its elas-
tic characteristic P = P (y), where P is a static force, which is applied to the
structure. Characteristic P — y may be linear or nonlinear. Some types of char-
acteristics P — y are presented in Table 14.1; in all cases y is the displacement
at the point of P.

3. Resisting forces. The forces of inelastic resistance (friction or damping forces)
depends on the velocity v of motion, R = R (v), and always act in the opposite
direction of velocity. These forces are a result of internal friction in the material
of a structure and/or in the connections of a system.
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Table 14.1 Types of elastic members and their characteristics

Design diagram Characteristic P-y Design diagram Characteristic P-y
P P

—"“~+}’ 74 7 I_iy‘o 7%7
I_A\¢P 7P44> ¥ I,,TwD 7PA y

Yo

y

Different types of forces acting on a structure lead to different types of vibration.
Among them are two general classes — they are free and forced vibration.

Vibrations of a system in which disturbing forces are absent are called free vi-
brations. At free vibration, the system is subjected to forces inherent to the system
itself, i.e., the restoring and resisting forces.

To impose free vibrations, nonzero initial conditions should be created, which
means some initial displacement and initial velocity. Free vibration may be linear or
nonlinear depending on the characteristics of restoring and resisting forces. Absence
of resisting forces leads to the free undamped vibrations; in this case, the system is
subjected only to a restoring force.

Vibration of a system caused by any disturbing forces is called a forced vibration.
Absence of resisting forces leads to the forced undamped vibration. Just as the free
vibration, the forced vibration may be linear and nonlinear.

14.1.3 Degrees of Freedom

The fundamental difference of the concept of “degrees of freedom” in static and
structural dynamics in spite of the same definition (a number of independent param-
eters, which uniquely defines the positions of all points of a structure) is as follows:
In statics, the number of degrees of freedom is related to a structure consisting of
absolutely rigid discs. If the degree of freedom is greater than or equal to one, then
the system is geometrically changeable and cannot be assumed as an engineering
structure; when the degree of freedom equals to zero, it means that a system is
geometrically unchangeable and statically determined. In structural dynamics, the
number of degrees of freedom is determined by just taking into account the de-
formation of the members. If the degree of freedom equals to zero, then a system
presents an absolutely rigid body and all displacements in space are absent.

All structures may be divided into two principal classes according to their degrees
of freedom. They are the structure with concentrated and distributed parameters.

Members with concentrated parameters assume that the distributed mass of the
member itself may be neglected in comparison with the lumped mass, which is
located on the member. The structure with distributed parameters is characterized
by uniform or nonuniform distribution of mass within its parts.
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From mathematical point of view, the difference between the two types of sys-
tems is the following: the systems of the first class are described by ordinary
differential equations, while the systems of the second class are described by partial
differential equations.

Figure 14.2a, b shows a massless statically determinate and statically indetermi-
nate beam with one lumped mass. These structures have one degree of freedom,
since transversal displacement of the lumped mass defines position of all points of
the beam. Note that these structures, from point of view of their static analysis,
have the number degrees of freedom W = 0 for statically determinate beam (a) and
W =3D—-2H —Sp =3-1—-2-0—5 = -2 for statically indeterminate beam (b)
with two redundant constraints. It is obvious that a massless beam in Fig. 14.2c has
three degrees of freedom. It can be seen that introducing of additional constraints
on the structure increases the stiffness of the structure, i.e., increase the degrees of
static indeterminacy, while introducing additional masses increase the degrees of
freedom.

[]V —\ : IPontooJI
:,:" I 1

I
Iy

Fig. 14.2 (a-f) Design diagrams of structures

Figure 14.2d presents a cantilevered massless beam carrying one lumped mass.
However, this case is not a plane bending, but bending combined with torsion, be-
cause mass is not applied at the shear center. That is why this structure has two
degrees of freedom, such as the vertical displacement and angle of rotation in y-z
plane with respect to the x-axis. A structure in Fig. 14.2e presents a massless beam
with an absolutely rigid body. The structure has two degrees of freedom, such as the
lateral displacement y of the body and angle of rotation of the body in y-x plane.
Figure 14.2f presents a bridge, which contains two absolutely rigid bodies. These
bodies are supported by a pontoon. Corresponding design diagram shows two abso-
lutely rigid bodies connected by hinge C with elastic support. So this structure has
one degree of freedom.

The plane and spatial bars structures and plane truss are presented in Fig. 14.3.
In all cases, we assume that all members of a structure do not have distributed
masses. The lumped mass (Fig. 14.3a) can move in vertical and horizontal direc-
tions; therefore, this structure has two degrees of freedom. Similarly, the statically
indeterminate structure shown in Fig. 14.3b has two degrees of freedom. However,
if we assume that horizontal member is absolutely rigid in axial direction (axial
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stiffness EA = 00), then the mass can move only in vertical direction and the struc-
ture has one degree of freedom. Structure 14.3c has three degrees of freedom; they
are displacement of the lumped mass in x-y-z directions. Introducing additional de-
formable but massless members does not change the number of degrees of freedom.

a C

Fig. 14.3 (a—d) Design diagrams of bar structures and truss

The truss (Fig. 14.3d) contains five concentrated masses. The mass at the joint
A is fixed, the mass at the joint B can move only in horizontal direction, and the
rest masses can move in horizontal and vertical directions. So, this structure has
seven degrees of freedom. If we assume that horizontal displacements of the joints
may be negligible in comparison with vertical displacements, then this truss may
be considered as a statically determinate structure with three degrees of freedom. If
additional members will be introduced in the truss (shown by dotted lines), then this
truss should be considered as two times statically indeterminate structure with three
degrees of freedom.

Figure 14.4 presents plane frames and arches. In all cases, we assume that all
members of a structure do not have distributed masses. The lumped mass M in
Fig. 14.4a, b can move in vertical and horizontal directions, so these structures have
two degrees of freedom. Figure 14.4c shows the two-story frame containing abso-
lutely rigid cross bars (the total mass of each cross bar is M). This frame may be
presented as shown in Fig. 14.4d.

a —OM c d e
M M
El=s

b M M

2 El=oo o

Fig. 14.4 (a-f) Design diagrams of frames and arches

Arches with one and three lumped masses are shown in Fig. 14.4e, f. Taking into
account their vertical and horizontal displacements, the number of their degrees
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of freedom will be 2 and 6, respectively. For gently sloping arches, the horizontal
displacements of the masses may be neglected; in this case, the arches should be
considered as structures having one and three degrees of freedom in the vertical
direction.

All cases shown in Figs. 14.2—14.4 present the design diagrams for systems with
lumped (concentrated) parameters. Since masses are concentrated, the configura-
tion of a structure is defined by displacement of each mass as a function of time,
i.e., y = y(t) and behavior of such structures is described by ordinary differen-
tial equations. It is worth discussing the term “concentrated parameters” for cases
14.2f (pontoon bridge) and 14.4c (two-story frame). In both cases, the mass, in fact,
is distributed along the correspondence members. However, the stiffness of these
members is infinite, and the position of these members is defined by only one co-
ordinate. For the structure given in Fig. 14.2f, such coordinate may be the vertical
displacement of the pontoon or the angle of inclination of the span structure, and for
the two-story frame (Fig. 14.4c¢), it may be the horizontal displacements of the each
cross bar.

The structures with distributed parameters are more difficult for analysis. The
simplest structure is a beam with a distributed mass m. In this case, the configuration
of a system is determined by displacement of each elementary mass as a function of
time. However, since masses are distributed, then the displacement of any point is a
function of a time ¢ and location x of the point, i.e., y = y(x, 1), so behavior of the
structures is described by partial differential equations.

Figure 14.5 presents the four possible design diagrams for dynamical analysis of
the beam subjected to a moving concentrated load. Parameters that are taken into
account (mass of moving load M and distributed mass of a beam m) are shown
by bold and thick solid lines. The scheme (a) does not take into account the mass
of the beam and mass of the load; therefore, the inertial forces are absent. This
case corresponds to static loading, and parameter v only means that force P may
be located at any point. Just this case of loading is assumed for construction of
influence lines. Case (b) takes into account only the mass of the moving load. Case
(c) corresponds to the motion of the massless load along the beam with distributed
mass m. Case (d) takes into account the mass of the load and mass of the beam. The
difficulty in solving these dynamical problems increases from case (b) to case (d).

ap%- b u
£ g5 =

c P d
Fig. 14.5 (a-d) Design v Mo v
diagrams for beam subjected h
. m m
to moving load

It is possible to obtain a combination of the members with concentrated and
distributed parameters. Figure 14.6 shows a frame with a massless strut BF (m = 0),
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members AB and BC with distributed masses m and absolutely rigid member CD
(EI = 00). The simplest form of vibration is shown by the dotted line.

e . B ELm C El=e p

Fig. 14.6 Frame with -&- | 22 m=v-
F

distributed and concentrated
parameters

14.1.4 Purpose of Structural Dynamics

The two fundamental problems of dynamical analysis are the following:

1. Determine the internal forces and deflections of a structure caused by dynamical
loads

2. Determine the dynamical displacements, velocities, and accelerations. These
quantities are transferred onto the equipment operators and other types of special
equipment, which are located on the structure, and must not exceed allowable
quantities

The solution of these problems is based on determining the very important char-
acteristic of a structure — its frequencies and shapes of free vibration.

Free vibration of a structure occurs with some frequencies. These frequencies
depend on only the parameters of the structure (boundary conditions, distribution of
masses and stiffnesses within the members, etc.) and does not depend on the rea-
son of vibration. Therefore, these frequencies are often called as eigenfrequencies,
because these frequencies are inherent to the given structure. The number of fre-
quency vibrations coincides with the number of degrees of freedom. The structure
with distributed parameters has infinity number of degrees of freedom. The set of
frequency vibration presents the frequencies spectrum of a structure. Each mode
shape of vibration shows the form of elastic curve, which corresponds to specific
frequency.

This chapter contains only free vibration analysis.

14.1.5 Assumptions

Free vibration analysis presented in this textbook is based on the following
assumptions:

1. Only linear vibrations are considered
2. Damping effects are ignored
3. Stiffness and inertial effects of the structure are time independent
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14.2 Free Vibrations of Systems with Finite Number Degrees
of Freedom: Force Method

Behavior of such structures may be described by two types of differential equations.
They are equations in displacement (i.e., in the form of the force method) and equa-
tions in reactions (i.e., in the form of the displacement method). In both cases, we
will consider only the undamped vibration.

14.2.1 Differential Equations of Free Vibration in Displacements

In essence, the first approach consists of expressing the forces of inertia as function
of unit displacements. For the derivation of differential equations, let us consider a
structure with concentrated masses (Fig. 14.7).

Fig. 14.7 Design diagram and unit states

In case of free vibration, each mass is subjected to forces of inertia only. Dis-
placement of each mass may be presented as

V1 = 811F1in + 812F2in + ...+ (SlnF,';n,
Y2 =81 Fi' + 8 F" + ...+ 82, F, (14.1)
Yn = 8n1F1in + 8n2F2in +... .+ SnnF,iny

where §; is displacement in i-th direction caused by unit force acting in the k-th
direction.

. (1]
Since the force of inertia of mass m; is F;" = —m; Y ;, then the equations (14.1)
become

Suumi1Y1+812maYa+ ...+ 81umpYa +y1 =0,
(14.2)

S8niim1 Y1+ 8pamaYa2 + ...+ pnmn Y + yun = 0.
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Each equation of (14.2) presents the compatibility condition. The differential
equations of motion are coupled dynamically because the second derivative of all
coordinates appears in each equation.

We can see that the idea of force method has not been used above. Alternatively,
these same equations may be obtained by force method. In this case, unknown
inertial forces should be considered as primary unknowns of the force method.
Therefore, hereafter (14.2) will be called the differential equations of free undamped
vibration in displacements or canonical equations in form of the force method.

In matrix form this system may be presented as

FMY +Y =0, (14.2a)

where F is the flexibility matrix (or matrix of unit displacements), M is the diagonal
mass matrix and Y represents the vector displacements

811 812 Sln nmi 0 ... 0 V1

F = 821 822 82,, ’ M = 0 myp ... 0 ,Y= Y2

8,,1 8n2 . 8nn 0 0o ... my Yn
(14.2b)

14.2.2 Frequency Equation

Solution of system of differential equations (14.2) is

y1 = Arsin(wt 4+ @), y2 = Azsin(wt + @o), y3 = Azsin(wt + o),
(14.3)
where A; are the amplitudes of the corresponding masses m; and ¢ is the initial
phase of vibration
The second derivatives of these displacements over time are

V1= —Aiw?sin(wt +@o), V2= —Arw?sin (ot + @),

V= —Ayw?sin (ot + @) . (14.3a)

By substituting (14.3) and (14.3a) into (14.2) and reducing by w? sin(wt + @)
we get

(m1811a)2 — 1) Al + m2512w2A2 + ...+ mn81na)2An =0,

m1821a)2A1 + (m2822a)2 — 1) Ay + ...+ mn82nw2An =0, (14.4)

m18310% A1 + ma8nw? Az + ...+ (Mabunw® — 1) Ay = 0.
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The equations (14.4) are homogeneous algebraic equations with respect to un-
known amplitudes A. Trivial solution A; = 0 corresponds to the system at rest.
Nontrivial solution (nonzero amplitudes A;) is possible, if the determinant of the
coefficients of amplitude is zero.

M1811(l)2 —1 m2812w2 N mn81na)2
2 2 _ 2
D = m1821w le8220) 1 ... mn82nw —0. (145)
18102 Ma8paw? e MpSypw? —1

This equation is called the frequency equation in terms of displacements. So-
lution of this equation w1, wy, ..., ®, presents the eigenfrequencies of a structure.
The number of the frequencies of free vibration equals to the number of degrees of
freedom.

14.2.3 Mode Shapes Vibration and Modal Matrix

The set of equations (14.4) are homogeneous algebraic equations with respect to
unknown amplitudes A. This system does not allow us to find these amplitudes.
However, we can find the ratios between different amplitudes. If a structure has two
degrees of freedom, then the system (14.4) becomes

(m1811a)2 - 1) Al + m2812a)2A2 =0,

(14.4a)
m1521a)2A1 + (MQ822w2 — 1) A, = 0.
From these equations, we can find the following ratios
A Sjiw?—1 A $210%
A2 __moner — 1 A2 Moo (14.6)
A1 m2812a)2 A1 m2822a)2 —1

If we substitute the first frequency of vibration w; into any of the two equations
(14.6), then we can find (A2/A1)w, - Then we can assume that A; = 1 and calculate
the corresponding A, (or vice versa). The numbers A; = 1 and A, defines the
distribution of amplitudes at the first frequency of vibration w;; such distribution
is referred as the first mode shape of vibration. This distribution is presented in the
form of vector-column ¢;, whose elements are A; = 1 and the calculated A5; this
column vector is called a first eigenvector ¢;. Thus the set of equations (14.4a) for
w1 define the first eigenvector to within an arbitrary constant.

Second mode shape of vibration or second eigenvector, which corresponds to the
second frequency vibration w,, can be found in a similar manner. After that we can
construct a modal matrix ® = | g1 ¢ |.
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If a structure has n degrees of freedom, then the modal matrix ® =
|_<P1 @2 ... <.0nJ-

Example 14.1. Design diagram of the frame is shown in Fig. 14.8a. Find eigenfre-
quincies and mode shape vibration.

a P=1
261 A m L
. r——

92
q1

—
~

=
=
[T
I
I

T [1.0
1.1328

,-first mode

|: |—>|0.8828

, -second mode

Fig. 14.8 (a) Design diagram of the frame and unit states; (b) Mode shapes of vibration

Solution. The system has two degrees of freedom. Generalized coordinate are ¢
and g». We need to apply unit forces in direction of g; and ¢», and construct the
bending momens deagram. Unit displacements are

M, x M, 1 1 2 1 13 1%h
= ——— = — =1l ]2+ — 1l he = — 4+ —:
1 El 2EI 2 3 o 6l T EI

Myx M. 1 1 2 h3
8 = — 2= — . 1-h-h-Z1h=——;

EI EI 2 3 3EI
M, x M 1 1 h2l
Slp=8p=—"2=— . l-h-h-1]=—
El EI 2 2EI

Let h=2] and 68o=I3/6EI. In this case &;; = 138¢;822 = 1680;
812 2521 = 1280
Equation for calculation of amplitudes (14.4)

(1350]’”0)2 — 1) Al + 1280ma)2A2 =0,

(@)
12801’71602141 + (]6501’}’1(,02 — 1) A2 =0.
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Let
1 6EI

Somw?  mw?l3’

In this case equation (a) may be rewritten

(13— 1) Ay + 124, = 0,

1241 + (16 — 1) 4, = 0. ®)

Frequency equation becomes

13-4 12
D = =(13-1)(16—1)—144 = 0.

|: 12 16—/\] (13-2){6-4) 0
Roots in descending order are A1 = 26.593; A, = 2.4066
Eigenfrequencies in increasing order are

”/X l3 _04750,1 ”A l3 —15789,1
1m m

Mode shape vibration may be determined on the basis of equations (b).
For first mode (A1 = 26.593) ratio of amplitudes are

Az 13-4 13 —26.593
== =— = 1.1328,
Ay 12 12

As 12 12
= — _ =— = 1.1328.
Ay 16 — A 16 —26.593

Assume that A; = 1, so the first eigenvector ¢ becomes

T T
¢=lonen] =1 1.1328]
For second mode (A, = 2.4066) ratio of amplitudes are

A 13— 13-24
A 13-4 1324066 ) conc
1 12 12

As 12 12
= — = —0.8828
Ay 16—A 16— 2.4066

The modal matrix ® is then defined as

1 1
®= [1.1328 —0.8828]'

Corresponding mode shapes of vibration are shown in Fig. 14.8b.
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Example 14.2. Design diagram of structure containing two hinged-end members is
shown in Fig. 14.9a. Modulus of elasticity E and area of cross section A are constant
for both members; / and [+/3 are length of the members, & = 60°, 8 = 30°. Find
eigenfrequencies, modal matrix and present the mode shapes.

Second state
S, =1/2 S=-3/2

P,=1

A3 ]

Fig. 14.9 (a) Design diagram of the structure and unit states; (b) Mode shapes vibrations

Solution. The structure has two degrees of freedom. The first and second unit states
and corresponding internal forces for each member are shown in Fig. 14.9a.

Equations (14.4) for unknown amplitudes

(m511a)2 — 1) Al + m812w2A2 =0,

(a)
m821a)2A1 + (MS22(1)2 — 1) A2 =0.

Unit displacements

811=Zf%ds=%(‘/7§ ‘? I+41-1. lﬁ):ﬁ<3+¢_)
b =3 szSstzEL(é bor 2B 1V3) = g (1433),

b = 1 = 2 5 = gty (413 £ 143) = o (v3-3)

Let us denote 8o = [/4EA, A = 1/mow?, then 811 = 80(3 + v/3), 620 =
§o(1 4 3+/3), 812 = 821 = 80(~/3 — 3) and equation (a) becomes

(3+v3-2) a1+ (v3-3) 42 =0 @7320-3) 4~ 1267942 =0

(f_g)Al+<1 +3\/§_x> Ay =0 —1.26794; + 6.1961 4, = 0.
(b)
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Frequency equation

D 47320— 1 —1.2679 _0
T —1.2679 6.1961 — A |

Roots of frequency equation and corresponding eigenfrequencies are

) 1 4EA EA
A1 =6.9280 — w7 = = =0.5774——,
A1mdy 6.9280m [ ml
Ar = 4.0002 > w? = ! —09999EA~EA
S 27 omée ml T ml’

Mode shape vibration may be determined on the base equation (b).
For first mode (A1 = 6.9280) ratio of amplitudes are

Ay 34+3—A1 47320 —6.9280
A 343 =173 = -3,
A J3-3 1.2679

Az V3-3 12679
A1 14+3J3-1, 6.1961—-6.9280

Assume that A; = 1, so the first eigenvector ¢ becomes

¢ =|on <,021JT =[1 —«/§JT

For second mode (A, = 4.0002) ratio of amplitudes are

A, 4.7320 — 4.0002 1
22 R 0577 = —,
Aq 1.2679 3
A 1.2
izizo,sﬂzi,
Aq 6.1961 — 4.0002 3

The modal matrix ® is then defined as

& — 1 1
L-v3 W3]
Corresponding mode shapes of vibration are shown in Fig. 14.9b.

Example 14.3. The beam in Fig. 14.10a carries three equal concentrated masses
m;. The length of the beam is [ = 4a, and flexural stiffness beam EI. The mass of
the beam is neglected. It is necessary to find eigenvalues and mode shape vibrations.

Solution. The beam has three degrees of freedom. The bending moment diagrams
caused by unit inertial forces are shown in Fig. 14.10b.
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2016 Se
c
Ay =31.5563 T my m, iy
W, =4.9333 L[IS
m y11=1.0 Vay=1.4142 y3,=1.0
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=20
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Fig. 14.10 (a) Design diagram of the beam; (b) Unit bending moment diagrams; (¢) Mode shape
vibration which corresponds to fundamental (lowest) frequency; (d) Second mode of vibration;

(e) Third mode of vibration

Multiplication of corresponding bending moment diagrams leads to the following

results for unit displacements

X=—=\zo—c—+-7+-—=
EI EI

MM, 1 (1131231 1313123l 9 I3
du=| ——d

~ 768 EI'
WM, 16 1 MMy, 9D
bpp= | ——dx=_———, 3= —dx = ——,
El 768 EI El 768 EI
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MM 113
812=521=/ L2y =

EI 768 EI’
MM, 7 13 1 3
13 = 831 = dx = ——, 63 =030 =612 =821 = ——.
13 31 / £l X 768 EI 23 32 12 21 768 EI

Let 8o = [3/768EI. Matrix of unit displacements F (Flexibility matrix) is

811 612 13 9 11 7
F=1[8ix]=1| 61 622 823 | =80 | 11 16 11 | = §oFo.
831 532 833 7 11 9

Equations (14.4) with unknown amplitudes A; of mass m; are

(m1811w2 — 1) Al + m2812a)2A2 + m3813a)2A3 =0,
mi810> Ay + (ma8pw® — 1) Ay + m3szw’ Az = 0, (a)
m1831a)2A1 + m2832a)2A2 + (m3833a)2 — 1) Az = 0.

In our case all masses m; = m. Divide by m8yw? and denote A = 1/m8yw?.
Equations for amplitudes A;

9—A)A; + 114, + 745 =0,
11A; + (16— 1) Ay + 11453 =0, (b)
TA1 + 1142+ (9— A1) A3 = 0.

Frequency equation becomes

9-x1 11 7
det[Fo—AIl=det| 11 16—1 11 |=0,
7 11 9-2

where I is unit matrix. Eigenvalues are in descending order

A1 = 31.5563,
Ay = 2.0, ()
Az = 0.44365.

Verification:

1. The sum of the eigenvaluesis A; + A, + A3 = 31.5563 + 2.0 + 0.44365 = 34,
On the other hand, the trace of the matrix 7r(F¢) = 9+ 16 + 9 = 34.

2. The multiplication of the eigenvaluesis A;-A;-A3 = 31.5563-2.0-0.44365 = 28;
On the other hand, detFy = 28. (Note, that determinant of unit displacement
matrix is strictly positive, i.e. detF > 0).



14.2 Free Vibrations of Systems with Finite Number Degrees of Freedom: Force Method 529

Frequencies of the free vibration in increasing order

w? = L _ 768 E _ 24.337ﬂ —>w = 4.9333,/ﬂ
V™ Aiméy ~ 31.5563ml3 ml3 mil3’
w% = L — @ﬂ - 384£ — wy = 19.5959 /ﬂ (d)
Aom8y 2.0 ml3 ml3 mil3’

2 ! 768 EI 1731 09—EI 41.6064 EL
37 Jamby  0.44365mi3 mi3 3 \ mi3

For each i-th eigenvalue, the set of equation (b) for calculation of amplitudes is

(9—A) A1 + 114, + 743 =0,
11A1+(16—Ai)A2+11A3=O, (e)
7A1 + 1142+ (9—A4;) A3 = 0.
Equations (e) divide by A;. Let p, = A2/ A1, p3 = A3z/A;.
Equations for modes become
(9—A;) + 11pz + 7p3: =0,
114 (16 — A;) p2i + 11p3; =0, ()
74+ 11p2;i +(9—A;) p3i = 0.

Assuming A; = 1 we can calculate p, and p3 for each calculated eigenvalue.
For their calculation we can consider set of any two equations.

1. Eigenvalue A; = 31.5563

(9—31.5563) + 11p + 7p3 = 0,
11+ (16 —31.5563) p2 + 11p3 = 0.
Solution of these equations is p, = 1.4142, p3 = 1.0. Therefore, the first

(principal) mode is defined as y;1, y21 = ﬁy“, ¥31 = Y11 - If we assume that
y11 = 1, then the eigenvector ¢, which corresponds to the frequency w; is

o =|10v21]"

Corresponding mode shape vibration is shown in Fig. 14.10c.

A1 = 31.5563

EI
w1 = 4.93334/ —
ml3

Note, that substitution of p, and p3 into third equation (f) leads to the identity.
2. Eigenvalue A, = 2.0. In this case

11+ (16 —2.0) p2 + 11p3 = 0.
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Solution is p, = 0.0, p3 = —1.0, and second eigenvector becomes ¢, =
|_ 1.0 0.0 —1 JT; this mode shape vibration is shown in Fig. 14.10d.

Ar = 2.0,

EI
wy = 19.5959/ —.
ml3

3. Eigenvalue A3 = 0.44365. In this case
(9—0.44365) + 11pp + 7p3 = 0,
11+ (16 —0.44365) po + 11p3 = 0.

Solution pp = —1.4142, p3 = 1.0, and Eigenvector ¢ = Ll.O -2 IJT.
Third mode shape vibration is shown in Fig. 14.10e.

Az = 0.44365,

| EI
w3 = 41.6064 PER
m

We can see that a number of the nodal points of the mode of shape vibration one
less than the number of the mode.
The modal matrix is defined as

®11 P12 P13 1 1 1
P=|9; ¢, 03 |=| @21 022 @23 | =] ¥V2 00 V2 |, (9
®31 @32 ¢33 1 -1 1

where the i-th and k-th indexes at ¢ mean the number of mass and number of
frequency, respectively.

14.3 Free Vibrations of Systems with Finite Number Degrees
of Freedom: Displacement Method

Now we will consider a dynamical analysis of the structures with finite number de-
grees of freedom using the concept of unit reactions. For several types of structures,
displacement method is more preferable than the force method.

14.3.1 Differential Equations of Free Vibration in Reactions

In essence, this method consists in expressing the forces of inertia as function of unit
reactions. According to the displacement method, we need to introduce additional
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constraints which prevent each displacement of the mass. Thus, the total number of
constraints equal to the number of degrees of freedom. Let us consider a structure
with concentrated masses m;, i = 1,...,n (Fig. 14.11a). This structure has n
degrees of freedom. They are lateral displacements of the frame points at the each
mass. Primary system of the displacement method is shown in Fig. 14.11b.

a my  my b my - ny

m

C First unit state Second unit state n-th unit state
mp  my oy omy my

"nl

Fig. 14.11 (a) Design diagram; (b) Primary system; (c) Unit states

Displacement of each lumped mass (or displacement of each introduced con-
straints) are y;. Inertial forces of each mass may be presented in terms of unit
reactions r;; as follows

(L]
—miYi1=ruyr+riey2+...+rmyn,
14.7)

—MpYn =tn1y1 +T2y2+ ...+ Fnnkn.

The coefficient r;; presents the reaction in i-th introduced constraint caused by
unit displacement of k-th introduced constraint. The term r; y; means reaction in
i-th introduced constraint caused by real displacement of k-th introduced constraint.
Each equation of (14.7) describes the equilibrium condition.

Equations (14.7) lead to the following differential equations of undamped free
vibration of the multi-degree of freedom system

miY1+ruyr+riey2+ ...+ rinyn =0,
(14.7a)
MmuyYn+TImiy1 +r2y2+ ...+ Tpyn = 0.

These equations are coupled statically, because the generalized coordinates ap-
pears in each equation.
In matrix form, the system (14.7a) may be written as

MY+ SY = 0, (14.7b)
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where the mass and stiffness matrices as well as displacement vector are

m 0 ... O ria rz2 ... rin J1

0 my ... 0 rp1 ra2 ... ra 2
M— N S= " 3 Y= y s

0 0 ... my nl Tn2 ... Tun Yn

Solution of system (14.7)
y1 = Arsin(@t + o), y2 = Azsin(@t + o), ... y3 = Azsin(w? + ¢o) ,
(14.8)

where A; are amplitudes of the displacement of mass m; and ¢y is the initial phase
of vibration.

Substituting (14.8) into (14.7a) leads to algebraic homogeneous equations with
respect to unknown amplitudes of lumped masses

(ri1 —miw?) Ay + ri2ds + ... 4 ripdn =0,
1A + (7'22—17126()2) As + ...+ 1A, =0, (14.9)

rniAr +rn2ds + .o+ (rnn _mnwz) A, =0.

14.3.2 Frequency Equation

Nontrivial solution (nonzero amplitudes A;) is possible, if the determinant of the
coefficients to amplitude is zero.

2

ryp —mpw ri2 Fin
2
r Fop — My~ ... r
D= 21 222 2 =0. (14.10)
. 2
nil Fn2 oo Tpn myuyw

This equation is called the frequency equation in form of the displacement
method. Solution of this equation presents the eigenfrequencies of a structure. The
number of the frequencies of free vibration is equal to the number of degrees of
freedom.

14.3.3 Mode Shape Vibrations and Modal Matrix

Equations (14.9) are homogeneous algebraic equations with respect to unknown
amplitudes A. This system does not allow us to find these amplitudes. However, we
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can find the ratios between different amplitudes. If a structure has two degrees of
freedom, then system (14.9) becomes

(ri1 —miw?) Ay + ri24> = 0,

r21A1 + (r22 - mzwz) Ay = 0.
From these equations, we can find following ratios

A —miw? A
A__Mu-mer 42 _ 1 (14.11)
Aq r12 Ay raa — mow?

If we assume A; = 1, then entries L 1 A, JT defines for each eigenfrequency, the
corresponding column ¢ of the modal matrix ®. The formulas (14.11) and (14.6)
lead to the same result.

Let us show application of the displacement method for free vibration analysis of
a beam with three equal lumped masses (Fig. 14.12a); previously this structure had
been analyzed by force method (Example 14.3). It is necessary to find eigenvalues
and modal matrix.

3
|

gXE
- Q5 =0
» b0
s ERe
=

3.6429 6.2143

.
_—
=9

L]

2.5714
: /m\W M,
W ? 06429 1
E G649 | 3 ? l r1,=9.8572 Elld®
& L 8 =
AL ,2_" 3
rlzl l"sz 3
' | 25714 6.8571
2.5714 25714 l
LTI AT
| N [ T M,
1
= 3
4.2857 l”]z—*9.4285 Ella

Fig. 14.12 (a) Design diagram of the beam and primary system; (b) Unit displacements and cor-
responding bending moment diagrams (factor EI/a?); calculation of r|; and r,
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The introduced constraints 1, 2, 3 which prevent to displacement y; are shown in
Fig. 14.12a.

For calculation of unit reactions, we need to construct bending moment diagram
due to unit displacements of each introduced constraint. These diagrams are pre-
sented in Fig. 14.12b; they are constructed using Table A.18. Since a structure is
symmetrical, then bending moment diagram caused by unit displacement constraint
3 is not shown.

Calculation of unit reactions has no difficulties. All shear and unit reactions have
multiplier EI/a3.

Since a = /4, then the stiffness matrix

64E] 9.8572 —9.4285 3.8572
S = NER —9.4285 13.7142 —-9.4285 |. (a)
3.8572 —9.4285 9.8572

Since all masses are equal, then (14.10) may be rewritten as

9.8572— A  —9.4285 3.8572
—9.4285 13.7142—A —9.4285 =0, (b)
3.8572 —9.4285 9.8572— A

where parameter A = mw?. Note that expressions for eigenvalue A for displacement
and force methods ()L =1/ m80w2) are different.
The eigenvalues present the roots of equation (b); in increasing order they are

EI EI
A =0. 3804 . A2 =6.0—, A3 =27.0482—. (c)
a a

Now we can calculate the frequencies of vibration which corresponds to eigen-
values.

A1 = 038045 = mw? - o} =0.3804-E = 0.3804 - 64-L 13 = 243455

Ay =605 =mw} - 0F = 6.0t =6.0-64-L =384-L5,

A3 =27.04825 =mw} - 0] =27.0482-E1; =27.0482 - 64-E = 1731.08-55.
(d)

Same frequencies have been obtained by force method.
For each i-th eigenvalue the set of equation for calculation of amplitudes is

(9.8572 — A;) Ay — 9.42854, + 3.857245 = 0,
—9.4285A4; + (13.7142 — A;) A» — 9.4285A45 = 0, ()
3.85724; — 9.42854, + (9.8572 — A;) A3 = 0.
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Equations (e) divide by A;. Let po = A/A1, ps = Asz/A;. Equations for
modes become
(9.8572 — A;) — 9.4285p,; + 3.8572p3; = 0,
—9.4285 + (13.7142 — ;) p2; — 9.4285p3; = 0, ®
3.8572 — 9.4285p2; + (9.8572 — A;) p3i = 0.

1. Eigenvalue 1; = 0.3804

(9.8572 — 0.3804) — 9.4285p,; + 3.8572p3; = 0,
—9.4285 + (13.7142 — 0.3804) pp; — 9.4285p3; = 0.

Solution of this equation pp = 1.4142, p3 = 1.0.
The same procedure should be repeated for A, = 6.0 and A3 = 27.0482.
The modal matrix ® is defined as

1 1 1
® = 14142 0.0 —1.4142 (8
1 —1 1

Same mode shape coefficients have been obtained by force method.

Example 14.4. Design diagram of multistore frame is presented in Fig. 14.13a. The
cross bars are absolutely rigid bodies; theirs masses are shown in design diagram.
Flexural sriffness of the vertical members are EI and masses of the struts are ignored.
Calculate the frequencies of vibrations and find the corresponding mode shapes.

Solution. The primary system is shown in Fig. 14.13b. For computation of unit
reactions, we need to construct the bending moment diagrams due to unit diplace-
ments of the introduced constraints and then to consider the equilibrium condition
for each cross-bar.

Bending moment diagram caused by unit displacement of the constraint 1 is
shown in Fig. 14.13c. Elastic curve is shown by dotted line. Since cross bars are
absolutely rigid members, then joints cannot be rotated and each vertical member
should be considered as fixed-fixed member. In this case, specified ordinates are
6i/h. Bending moment diagram is shown on the extended fibers. Now we need to
show free-body diagram for each vertical member. The sections are passes infinitely
close to the bottom and lower joints. Bending moments are 6i/h. Both moments
may be equilibrate by two forces 12i/h2. These forces should be transmitted on both
cross-bars. Positive unit reactions 711, 721, and 731 are shown by dotted arrows.

Equilibrium condition for each cross-bar leads to the follofing unit reactions

12i i i . EI
I —2h—2 —24h—2, r21 ——24h—2, 31 —0, 1 = 7
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a my=m, b :
o El=co
h EI
my=2m,
p— 2 ;n% 2
El=
h EI
my=2m,
N El=o 3
h EI
Cc Z,=1

Z 61-//1@‘%--'3‘ P

6i/h' 12[/112 )
g «d «dr

J:(% l‘ZL — > 1‘21>

6ifh | 2 I 2

r_{% 31 31
-—-p> |—|D=<}--->

3 3

6ifh

M,
Fig. 14.13 (a) Design diagram of the frame; (b) Primary system; (c) Bending moment diagram

caused by unit displacement of the constraint 1 and calculation of unit reactions ry, 7,1, and r3;

Similarly, considering the second and third unit displacements, we get

rip = —24hl—2, Iy = 48hl—2, ryp = —24hl—2,

riz3 =0, ra3=-24;5, r33=48;5

Letrg = 24h’;2. Equations (14.9) becomes
(ro - ma)z) Ay —r9gAz +0.43 =0,

roAiq +2(r0—ma)2) Ay —roAs =0, (a)
0.4 —rgds +2 (r() —ma)z) Az = 0.

The frequency equation is
ro — mw? —r0 0

D= —ro 27’0 — 2ma)2 —ro =0
0 —ro 2r¢ — 2mw>
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If eigenvalue is denoted as

ro  24i
then the system (a) may be rewritten as
(1-4)A4;,— A, =0,

—A;+2(1-21)A,— A3 =0, (b)
Ay +2(1—A) A3 =0.

Eigenvalue equation is

1-1 -1 0
D=| -1 201-2) -1 =0
0 -1 2(1-21)

41-=1)3=3(1=A) =0or (1—1)[4(1—»2—1]:0

The eigenvalues in increasing order are

3
Al=l—§, =1, A3=1+

SES

Corresponding frequencies of free vibration (eigenfrequencies)

3\ E EI 3\ E
a)12=24(1—£) w2 =24 w§=24<1+£)

2 | mh3’ mh3’ 2 | mh3°

Mode shapes vibration. Now we need to consider the system (b) for each calcu-
lated eigenvalue. If denote p, = A5/A; and p3 = A3/ Aj, then system (b) may be
rewritten as

(1-2)—p2=0,
—142(1=A1)p2—p3 =0, (©
—p2+2(1—2)p3 =0.

This system should be solved with respect to p, and p3 for each eigenvalue.

First mode
3
w1 (Al =1- %_) .
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Equations (c) becomes

(1—=241)—p2 =0,
—1+2(0—=241)p2—p3 =0,
—p2 +2(1 = A1) p3 =0.

Solution of these equation are p, = +/3/2, p3 = 1/2.
The same procedure should be repeated for A, = 1.0and A3 = 1 + ‘/75
The modal matrix ® is defined as

11 1
= 3/2 0 —/3/2
1/2 -1 1/2

14.3.4 Comparison of the Force and Displacement Methods

Some fundamental data about application of two fundamental methods for free vi-
bration analysis of the structures with finite number degrees of freedom is presented
in Table 14.2.

Generally, for nonsymmetrical beams, the force method is more effective than the
displacement method. However, for frames especially with absolutely rigid cross-
bar, the displacement method is beyond the competition.

14.4 Free Vibrations of One-Span Beams with Uniformly
Distributed Mass

The more precise dynamical analysis of engineering structure is based on the as-
sumption that a structure has distributed masses. In this case, the structure has
infinite number degrees of freedom and mathematical model presents a partial
differential equation. Additional assumptions allow construction of the different
mathematical models of transversal vibration of the beam. The simplest mathemat-
ical models consider a plane vibration of uniform beam with, taking into account
only, bending moments; shear and inertia of rotation of the cross sections are ne-
glected. The beam upon these assumptions is called as Bernoulli-Euler beam.
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14.4.1 Differential Equation of Transversal Vibration of the Beam

Differential equation of the uniform beam is

d4y
E1dx—4 =gq, (14.12)

where y is the transverse displacement of a beam, E the modulus of elasticity, / the
moment of inertia of the cross section about the neutral axis, and ¢ the transverse
load per unit length of the beam.

In case of free vibration, the load per unit length is

_ 4%y (14.13)
q - p dlza .

where p is the mass density and A is the cross-sectional area.
Equations (14.12) and (14.13) lead to following differential equation of the trans-
verse vibration of the uniform Bernoulli-Euler beam

84y 32y
El— A— =0. 14.14
axt P9 (14.14)

If a beam is subjected to forced load f(x, t), then the mathematical model is

4 2
Elgx—z + 'OA?)T)Z] = f(x,1). (14.14a)

Thus the transverse displacement of a beam depends on the axial coordinate x
and time z,1i.e., y = y(x, f).

Boundary and initial conditions: The classical boundary condition takes into
account only the shape of the beam deflection curve at the boundaries. The nonclas-
sical boundary conditions take into account the additional mass, the damper, as well
as the translational and rotational springs at the boundaries. The classical boundary
conditions for the transversal vibration of a beam are presented in Table 14.3.

Notation: y and 6 are transversal deflection and slope; M and Q are bending mo-
ment and shear force.

Initial conditions present the initial distribution of the displacement and the initial
distribution of the velocities of each point of a beam atz = 0

d .
Y (x,0) = u(x): d—);(x,O) — Y (x,0) = v (x).
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Table 14.3 Classical boundary conditions
Clamped end (y =0, 6 = 0) Freeend (Q =0, M =0)

 — t X E T | X
dy 0 02 y) 02y
=0; —=0 —\|\EI— )| =0; EI— =0
Y ox ox ( 0x2 0x2

Pinnedend (y =0, M =0) Sliding end (Q =0, 8 = 0)

— : X
g B: X
9

2 3 (@ 9
y=0; EI=2 =0 —(El—y)=0; 8—y=0
X

0x? 0x 0x?

14.4.2 Fourier Method

A solution of differential equation (14.14) may be presented in the form
y(x,1) = X(x) T (1), (14.15)

where X (x) is the space-dependent function (shape function, mode shape function,
eigenfunction); 7'(¢) is the time-dependent function.

The shape function X(x) and time-dependent function 7'(¢) depends on the
boundary conditions and initial conditions, respectively. Plugging the form (14.15)
into the (14.14), we get

EIX'Y + ;: =0 (14.16)
pAX T '
It means that both terms are equals but have opposite signs. Let 7/T = —w?;

then for functions 7'(¢) and X (x) may be written the following differential equations

T 40T = 0. (14.17)
XV (x) —k*X (x) =0, (14.18)

where k = \4/ mE—“fz and m = pA is mass per unit length of the beam. Thus, in-
stead of (14.14) containing two independent parameters (time ¢ and coordinate x),
we obtained two uncoupled ordinary differential equations with respect to un-
known functions X (x) and 7 (¢). This procedure is called the separation of variables
method.

The solution of (14.17)is T(t) = A; sinwt + B; cos wt, where w is frequency
of vibration. This equation shows that displacement of vibrating beam obey to har-

monic law; coefficients A; and B; should be determined from initial conditions.
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The general solution of (14.18) is
X(x) = Acoshkx + Bsinhkx + C coskx + D sinkx, (14.19)

where A, B, C, and D may be calculated using the boundary conditions.
The natural frequency w of a beam is defined by equation

EI  A\* [EI
w=Fk== 1—2,/—, where A = k. (14.20)
m m

To obtain frequency equation using general solution (14.19), the following algo-
rithm is recommended:

Step 1. Represent the mode shape in the general form (14.19), which contains four
unknown constants.

Step 2. Determine constants using the boundary condition at x = 0 and x = [.
Thus, the system of four homogeneous algebraic equations is obtained.

Step 3. The nontrivial solution of this system represents a frequency equation.

Example 14.5. Calculate the frequencies of free vibration and find the correspond-
ing mode shapes for pinned-pinned beam. The beam has length /, mass per unit
length m, modulus of elasticity E, and moment of inertia of cross-sectional area [ .

Solution. The shape of vibration may be presented in form (14.19). For pinned-
pinned beam displacement and bending moment at x = 0 and at x = / equal zero.
Expression for bending moment is

X" (x) = k? (Acoshkx + Bsinhkx — C coskx — D sinkx) .
Conditions X (0) = 0 and X” (0) = 0 leads to the equations

A+C =0
A-C =0

Thus A = C = 0.
Conditions X (/) = 0 and X” (/) = 0 leads to the equations

Bsinhk! + Dsinkl =0
Bsinhk! — Dsinkl =0

Thus B = 0 and D sink/ = 0. Non-trivial solution occurs, if sink/ = 0. This
is frequency equation. Solution of this equation is k/ = m, 2n,... Thus, the
frequencies of vibration are

, [EI 3.1416* |[EI 6.2832% [EI
@ = k ) wl = 5 ) a)2 = —5 -
m 12 m 2 m
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The mode shape of vibration is

X; (x) = Dsink;x = Dsin%x, i=1,2.3...

14.4.3 Krylov—Duncan Method

A general solution of differential equation (14.18) may be presented in the form
X (kx) = CS (kx) + CoT (kx) + C3U (kx) + C4V (kx), (14.21)

where X(kx) is the general expression for mode shape; S(kx), T (kx),
U(kx), V(kx) are the Krylov—Duncan functions (Krylov, 1936; Duncan, 1943).
They are present the combination of trigonometric and hyperbolic functions.

1
S (kx) = E(cosh kx 4+ coskx)

1
T (kx) = = (sinhkx + sinkx)
21 (14.22)
U (kx) = z(cosh kx — coskx)

1
Vkx) = E(sinh kx —sinkx)
The constants C; may be expressed in terms of initial parameters as follows
Ci = X(0), C; = lX'(O) C; = iX"(O) Cs; = LX’”(O) (14.23)
1 = ’ 2 = k ’ 3 = k2 ’ 3 = k3 .

Each combination (14.22) satisfies to equations of the free vibration of a uni-
form Bernoulli-Euler beam. The functions (14.22) have the following important
properties:

1. Krylov-Duncan functions and their derivatives result in the unit matrix at x = 0.

SO)=1 S0)=0 S"0)=0  S”0)=0
TO)=0 T'0)=1 T'0)=0 T"0)=0
Uuoy=0 U0)=0 U"0)=1 U"0)=0
VO)=0 V' (0)=0 V'0)=0 V"0)=1

(14.24)

2. Krylov—Duncan functions and their derivatives satisfy to circular permutations
(Fig. 14.14, Table 14.4).

These properties of the functions (14.22) may be effectively used for deriving of
the frequency equation and mode shape of free vibration.
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S()
M(x) T(x)
Ux)
Fig. 14.14 Krylov-Duncan functions circular permutations

Table 14.4 Krylov-Duncan functions and their derivatives

Function First derivative Second derivative Third derivative Fourth derivative
S(x) kV(x) k2 U(x) kT (x) k* S(x)
T(x) kS(x) k2 V(x) K U(x) k* T(x)
U(x) kT (x) k% S(x) k3 V(x) k* U(x)
V(x) kU(x) k% T(x) k* S(x) k* V(x)

To obtain frequency equation using Krylov—Duncan functions, the following al-
gorithm is recommended:

Step 1. Represent the mode shape in the form that satisfies boundary conditions at
x = 0. This expression will have only two Krylov—Duncan functions and,
respectively, two constants. The decision of what Krylov—Duncan functions
to use is based on (14.24) and the boundary condition at x = 0.

Step 2. Determine constants using the boundary condition at x = [ and Table 14.4.
Thus, the system of two homogeneous algebraic equations is obtained.

Step 3. The nontrivial solution of this system represents a frequency equation.

Example 14.6. The beam has length /, mass per unit length m, modulus of elastic-
ity £, and moment of inertia of cross-sectional area I (Fig. 14.15). Calculate the
frequency of vibration and find the mode of vibration.

Fig. 14.15 Design diagram for simply supported beam and mode shapes vibration for i = 1 and
i=2
Solution. At the left end (x = 0) deflection and the bending moment are zero:

1. X (0) =0,
2. X" (0) = 0.
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At x = 0 the Krylov—Duncan functions and their second derivatives equal zero.
According to properties (14.24), only T (kx) and V (kx) functions satisfy these con-
ditions. So, the expression for the mode shape is

X (x) = CoT (kox) + C4V (kx).

Constants C, and C, are calculated from boundary conditions at x =1
X(H)=0;, X"(I)=0
X (1) =CoT (kl) + C4V (kl) =0,

X" (1) = k2 [CoV (kl) + C4T (kI)] = 0. ®

A nontrivial solution of the above system is the frequency equation

‘ T (kD) V(KD _ g 72 (kl) = V?(kl) = 0.

v (kl) T (kl)|

According (14.22), the last formula may be presented as sin kI = 0. The roots of

the equation are
A=kl =m 27, ...

So the frequencies of the free vibration are

A2 [EI n% [EI 4n* [EI
W= —1—, OW1=-4/—, Wy = —1/—,...
T2V m T2V 2 12 Vm
The mode shape of vibration is

X(x) = CoT(kx) + C4V(kx) = Cx [T(kix) + %V(kix)]
2

Since the ratio C4/C, from first and second equations (a) are

Cyo  T(kl)  V(ki)
C V) Tkl

then 7-th mode shape (eigenfunction) corresponding to i-th frequency of vibration
(eigenvalue) is

X(x) = CoT (kx) + CaV (kx) = C |:T (kix) — IT/EZ; y (kix)}
_ VKD,
=C |:T (kzX) T (kll) Vv (kl x)] s (b)

Since the Krylov—Duncan functions 7'(x) = V(xr), T(2w) = V(2n), ... so the
mode shapes are

X; (x) = C [T (kix) — V (kix)] = C sinkjx = C sin %x, i=1,2, ... (¢

The first and second modes are shown in Fig. 14.15.
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Fundamental data for one-span uniform beams with classical boundary condi-
tions are presented in Table A.26. This table contains the frequency equation, and
the first, second and third eigenvalues. For the nodal points of the mode shapes of a
free vibration, the origin is placed on the left end of the beam.

Problems

14.1. Statically determinate beam carried one lumped mass. Determine the fre-
quency of free vibration.

a b c
Mg g | 2B B M
e S N r /
a b / a L St
Fig. P14.1
3IEI 2EI
Ans. (a)a) = m,(c)w = 3[3—M

14.2. Statically indeterminate beam carried one lumped mass (Fig. P14.2). Deter-
mine the frequency of free vibration.

a b
| El g . B M
[ _Z];_ | A
|

| b a | L2 | IR

%

Fig. P14.2

Ans. (@0 = B [T68ET
W=V 2 rdam TN IBM

14.3. Symmetrical frame with absolutely rigid cross bar of total mass M is shown
in Fig. P14.3. Find the frequency of free horizontal vibration.

El=co, M

h<[ EI

Fig. P14.3

24E1
h3M

Ans. w =
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14.4. Symmetrical statically indeterminate frame carried one lumped mass. Deter-
mine the frequency of free horizontal and vertical vibrations.

Fig. P14.4

R B 6L Lo L  [48E1, 12k +8p
WO =N s+ k) P T T\ B 3k 1 88

14.5. Calculate the frequency of free vertical vibration of symmetrical truss pre-
sented in Fig. P14.5. Axial rigidity for diagonals and vertical elements EA, for lower
and top chords is 2FA. A lumped mass M is placed at joint 6.

Fig. P14.5

Ans ! EA (s_l)
LW = =,/ )
méi1 24 .555M

14.6. A massless beam carried two lumped mass (Fig. P14.6). Calculate the fre-
quency of free vibration, find the modal matrix and show the shapes of vibrations.

M 2M

595

a a a

Fig. P14.6

ET El 1 1
L1 = 0.8909\/ . @, = 3.6887,| ——, ® =
Ans. o1 FE) A M [1.0483 —0.4769}
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14.7. A massless beam carried body of mass M and moment of inertia J, with
respect to x-axis (Fig. P14.7); radius of gyration is p = Jx/M[?. Calculate the
frequencies of the free vibration and find the modal matrix.

Fig. P14.7

Ans. o

»_ 3B, 3B . 14+3p%1+3p+9
2

=M S e

14.8. A massless beam carried two lumped mass (Fig. P14.8). Calculate the fre-
quencies of free vibrations and find the modal matrix. (Hint: For construction of
bending moment diagram in unit states use the influence lines).

M=M My=2M
0O 0O
S T B Y . e
13| 13

/ / |

Fig. P14.8

A = 6.379,/ £l = 11.047,/ - 1 1
ns. w; = 6. By 2T I3M’~ | —1.4142 0.3462

14.9. A uniform circular rod is clamped at point Band carrying the lumped mass
M at free end as shown in Fig. P14.9. Calculate the frequencies of free vibrations,
and find the modal matrix and show the shapes of vibrations.

M

R

Fig. P14.9
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EI
A -0.7854MR3’

1 1
Ay =14195, 1, =0.03395 &= [0,659 _1.517}

Ans. a)

14.10. Symmetrical frame with absolutely rigid cross bars of total mass M and
2M and massless columns is shown in Fig. P14.10. Calculate the frequencies of
free vibrations, and find the modal matrix and show the shapes of vibrations.

El=o0, M N
h El
—

El=c0, 2M 2
h
2E1
Fig. P14.10

A —34641,/ = 6.92824/ =
ns. wq , Wy h3 |:05_1j|

14.11. Symmetrical frame with absolutely rigid cross bars of total mass M and
2M and massless columns is shown in Fig. P14.11. Find the frequencies of free

vibrations.
El=o0, M e
h EI
El=c0, 2M

2
hjl: ‘ EI EI

1 1
417366 =
h3M h M’ [0.6765 —0.7390]

Fig. P14.11

Ans. 0 = 7.7628 ——

14.12. Derive the frequency equation, calculate the frequencies of vibration and
find the mode shape of vibrations for beam (length /, flexural stiffness EI, mass per
unit length m) with following classical boundary conditions: (a) Fixed-fixed beam;
(b) Clamped-pinned beam; (c) Guided-clamped beam
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Ans.

(@) U2 (k) =T (k) V (kl) = 0 — coshkl coskl =1 — A =kl = 4.7300;.. ..

A7 [EI 4.732 [EI
Wi = —\[—, 01 = —5—/ —,...,
PR B 12 m

U (kil
Xix)=C [U (kix) — VEk-l;

(b) tank/ = tanh k! — kI = 3.92266; 7.0768; 10.2102,...

3.92662% [EI 7.07682 [EI
W= —5—1/—, Wr=—7—1/—,
! 2 \'m 2 2 \Vm

(c) tankl + tanhkl = 0 — kI = 2.3650; 5.4987, ..

14 (k,-x)} =C. [U (kix) — %V (kix)}
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Table A.1 Typical graphs, their area and centroid position

Position of the centroid

No | Shape of the graph Area Q | 2 2
Z1 22
1 ’“I o | L L
2 2
l
Z1 2
2 hji: D]:D:Db; & ! 2
2 3 3
[
Z1 22
I:[ drati bol
X hl: Quadratic parabola ﬂ L 3_]
3 4
l
21 2
Cubic parabola
.+ | ] wo ||
4 5 5
l
Z1 22
Parabola of the
s | ] [Tyt desee Ly L
n+1 n+2 n+2
/
21 22
Quadratic
) ; 3 8
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Appendix

Table A.2 Multiplication of two bending moment diagrams (EI = const)

~

1
S MMdx
0

~

/ — — —
3 (MAMB +MpMy+2M 4My +2MBMB)

~

I 1— a — a
N | [0 (2= 7) + 75 (14 7) ] e
DI |
1
M Mc
/((f l—a — —
6 — [M4+ Mg Mc
<l , [PECEN
Mc Quadratic
7 1= —
% 3[MA+MB]MC
|
Quadratic
v parabola . .
8 ”M 11—2[3MA+MB]MA

~

Mc Quadratic

mﬁ% o
9 m / My

/ —_
3 [M4 (M4 +2Mc) + Mp (Mp +2Mc)]
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Tabulated data for standard uniform beams:

Table A.3 and A.4 contain the reactions at supports for uniform fixed—pinned
(rolled) and fixed—fixed beams subjected to different exposures. Table A.5 and A.6
present the reactions at supports for beams with sliding and elastic supports, respec-
tively. These tables show the actual direction for reactive forces and moments. The
bending moment diagrams are traced on the side of the extended fibers. Parameter
i = EIl/I is the bending stiffness per unit length. Parameter u is related to the fixed
support, i denotes the depth of the cross section and « is the coefficient of thermal
expansion.

The tables for the reactions of single-span beams with stepped flexural stiffness
are presented Table A.7 and A.8

Table A.3 Reactions of fixed-pinned beams

) El,a*hB

—
Reactions and bending Expressions for bending
No| Loading conditions moment diagrams moments and reactions

2
M Pl

Y
, Pl

4 Me = —u*v(3—u)
ul vl qu

‘ Ri=—(3—1?)

: i NN ;

PZ
RB=7”(3—u)

u=v=20.5

11 5
Ri=—P; Rg=—P
47 16 E™ 16

3 5
My= —Pl; Mc =—PI
47 16 D)

(continued)
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Table A.3 (continued)

Appendix

Reactions and bending

Expressions for bending

No| Loading conditions moment diagrams moments and reactions
M M50
M, . My > (1—3v2)
3M
R, B Mcp = TU(I —v?)
‘ ul \% RA=RB=%(1*U2)
V¥ <1/3 M u:u:OS'MA:M
(u+v=1) - c EaE— 8
7“:‘]]]]:;7 9 M
MA Ri= Ry = gT
Mcp 7
MCA=RM§ Mca 16M
4 V¥ <1/3 Mcy
—_— v=0: My = M/)2
M, Ri—Rp = M
v A= KB = 2l
CB
V=0 M
MA D
()=t
M, Mai="g M{3)=T5
q Ry 5 3
RA Ry = gql, Rp = gql
R EEEEEX
— —"'-_i M,
_a
MA My = 5"
Ry 2 1
R R4 = —ql, Rp = —ql
6| m\ . ’ "
I Tl ___,-——’8 M,
_ e
M,y F ¢ Ma= o0
R
g R " ri= g re =y
7 A A= 404 B 40‘1
] 3Ela (1 — )
Temperature gradient M,y l—T My =——7—"
R
R B 3Ela (1 —
8 | al 4 Ry = Rp = 701;}’11 2)
t
! S S R
2
M, MA=%LIZ(2—M)2=q12k1,
9 q Ry qa
JW R, RB=7u_qlkl.RA=q“_RB
IR i MAm u ki u ki
<“_l>l U 02| 0.0162| 06| 00882
04| 00512] 08| 0.1152
0.5| 0.0703| 10| 0.1250
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Unit reactions of nonuniform standard members:
Table A.7 and A.8 present the reactive moments for fixed—pinned and fixed—fixed

elements with stepped bending stiffness. For both cases u = (El;/El;) — 1, a =
l4+euw, b=1+&%u, c=1+&u, f=1+e*n

Table A.7 Fixed—pinned beam with stepped bending stiffness

) ELEL A{@" Fi——:!;_ =1

/ el
3EI
R R,=""1R
RB‘} B B [36 l

Table A.8 Fixed—fixed beam with stepped bending stiffness

EEEEEX
) EI, 5123 },A__B| - )
ILLZ> Mp MB”|
Ry Ry
g 2
= _2be=3a_ Roo 124 EL Ma____ 6 EL
2(4ac - 3b%) BT 4ac-3p> B B dac 30> P
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Example. For beam shown below to find the bending moments at supports B
and C.

P, P, P
|<£> BB
q v [
1222222212321 221222211 \ 4 v

D
Agfb. BE_ Ba x Mp=-01 17g1* = 0.075P/ + 0.044 P,/
I

| / | / ) / M =-0.033g12 = 0.075P,/ +0.178 P,

Two span beams with different spans:

The bending moment at support B and

maximum bending moment at the first ik kb

and second spans may be calculated by I AAARAAARERRR’
formula M = kql?. Parameters k is -c&- _E_ —3—
presented in Table A.12. 4, h BI b IC

Table A.12 Bending moments due to uniformly distributed load

Load g is applied in Load g is applied in Load q; = g, = q is applied
the first span only the second span only both in the first and second
span
11212 MB Ml max MB MZmi\x MB Mlmax MZmax
1.0 —0.063 0.095 —0.063 0.095 —0.125 0.070 0.070
1.1 —0.079 0.114 —0.060 0.096 —0.139 0.090 0.065
1.2 —0.098 0.134 —0.057 0.097 —0.153 0.111 0.059
1.3 —0.119 0.155 —0.054 0.098 —0.174 0.133 0.053
1.4 —0.143 0.178 —0.052 0.099 —0.195 0.157 0.047
1.5 —0.169 0.203 —0.050 0.100 —0.219 0.183 0.040
1.6 —0.197 0.228 —0.048 0.101 —0.245 0.209 0.033
1.7 —0.227 0.256 —0.046 0.102 —0.274 0.237 0.026
1.8 —0.260 0.285 —0.045 0.103 —0.305 0.267 0.019
1.9 —0.296 0.315 —0.043 0.103 —0.339 0.298 0.013
2.0 —0.333 0.347 —0.042 0.104 —0.375 0.330 0.008
22 —0.416 0.415 —0.039 0.106 —0.455 0.398 0.001
24 —0.508 0.488 —0.037 0.107 —0.545 0.473 2
2.6 —0.610 0.570 —0.035 0.108 —0.645 0.553 a
2.8 —0.722 0.655 —0.033 0.109 —0.755 0.639 2
3.0 —0.844 0.743 —0.031 0.110 —0.875 0.730 a
Factor q1l3 ql3 913 913 ql3 ql; ql3

# Within the second span the bending moments are negative
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Two span beam with equal spans:

(Odd sections are not shown) 0 % élt 6 1|0 12
4 I B, I | C

| | |

Table A.13 Influence lines for bending moments and shear forces

Position Ordinates of influence lines of bending moments at sections Ordinates of

of the load | (factor /) influence

P =1 1 2 3 4 5 6 line Qg

0 0.0 0.0 0.0 0.0 0.0 0.0 1.0000

1 0.1323 0.0976 0.0632 0.0285 —0.0060 —0.0405 0.7928

2 0.0988 0.1976 0.1298 0.0619 —0.0061 —0.0740 0.5927

3 0.0677 0.1354 0.2031 0.1041 +0.0051 —0.0938 0.4062

4 0.0402 0.0803 0.1205 0.1606 +0.0340 —0.0926 0.2407

5 0.0172 0.0343 0.0516 0.0687 +0.0860 —0.0636 0.1031

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 —0.0106 —0.0212 —0.0318 —0.0424 —0.0530 —0.0636 | —0.0636

8 —0.0154 —0.0309 —0.0463 —0.0617 —0.0772 —0.0926 | —0.0926

9 —0.0156 —0.0313 —0.0469 —0.0626 —0.0782 —0.0938 | —0.0938

10 —0.0123 —0.0247 —0.0370 —0.0494 —0.0617 —0.0740 | —0.0740

11 —0.0068 —0.0135 —0.0203 —0.0270 —0.0338 —0.0405 | —0.0405

12 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Example. Force P is located at section 8. Calculate the bending moment at speci-
fied points and construct the bending moment diagram.

0.0926P! lP

B\

BT 0.1605P!

£

R,=0.0926P Rp=0.8519P R=0.2407P

Solution. 1. Bending moment at the section 6 (support B) is Mg = —0.0926P!.

2. Reaction of support 4 is R4 = 0.0926 P kN and directed downward.

3. Reaction at support C

I
Re —>ZMB =0: RCZ—P§+0.0926P1=0

P
— Rc = 3~ 0.0926 P = 0.2407P kN
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4. Reaction at support B:

Rp— Y Y =0:—-P—0.0926P +0.2407P + Rg = 0 —Rp =0.8519P kN
5. Bending moments at section 8 is

2 2
Ms = Rc 31 = 0.2407P§l = 0.1605P1.

Since the structure is symmetrical and points 4 and 8 are symmetrically located,
then bending moments Mg (if load P is located at point 8) and M4 (if load P is
located at point 4) are equal. Last bending moment may be taken immediately from

Table A.13. The same result (Mg = 0.1605P[) may be obtained for point 4, if load
P is located at the same point 4 (the points 4 and 8 are symmetrically located).
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Beams with three different spans.

The load ¢ is applied at the first span:

The bending moments at supports

B and C are

91
Mg = —kiql?, Mc =kyql?. AY Y VYV V¥V VB c D
& DS S

Parameters k; and k, are presented | h | b | L |

in Table A.14.

Table A.14 Bending moments at supports B and C (factor ¢/?)

[_1 i1,

1 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.3| k| 0.034 0.033 0.033 0.032 0.032 0.032 0.031 0.031 0.031 0.031
k| 0.013 0.012 0.010 0.009 0.008 0.007 0.007 0.006 0.006 0.005

04| k;| 0.041 0.041 0.040 0.040 0.039 0.039 0.038 0.038 0.038 0.038
k| 0.016 0.015 0.012 0.011 0.010 0.008 0.008 0.007 0.007 0.006

0.6| k;| 0.053 0.053 0.052 0.051 0.051 0.050 0.050 0.050 0.050 0.049
k| 0.021 0.019 0.016 0.014 0.013 0.011 0.010 0.010 0.009 0.008

0.8 k| 0.062 0.062 0.061 0.060 0.060 0.059 0.059 0.059 0.058 0.058
k| 0.024 0.022 0.019 0.017 0.015 0.013 0.012 0.011 0.010 0.010

1.0| ki 0.069 0.069 0.068 0.067 0.067 0.066 0.066 0.066 0.065 0.065
k| 0.027 0.024 0.021 0.019 0.017 0.015 0.014 0.013 0.012 0.011

1.2| k| 0.075 0.074 0.074 0.073 0.072 0.072 0.072 0.071 0.071 0.071
k| 0.029 0.027 0.023 0.020 0.018 0.016 0.015 0.014 0.013 0.012

1.4( k| 0.079 0.079 0.078 0.078 0.077 0.077 0.076 0.076 0.076 0.076
k| 0.031 0.028 0.024 0.021 0.019 0.017 0.016 0.015 0.013 0.013

1.6| k;| 0.083 0.083 0.082 0.081 0.081 0.080 0.080 0.080 0.080 0.079
ky| 0.032 0.029 0.026 0.023 0.020 0.018 0.017 0.015 0.014 0.013

1.8| k;| 0.086 0.086 0.085 0.085 0.084 0.084 0.084 0.083 0.083 0.083
k| 0.033 0.031 0.027 0.023 0.021 0.019 0.017 0.016 0.015 0.014

2.0 k;| 0.089 0.089 0.088 0.087 0.087 0.087 0.086 0.086 0.086 0.086
k| 0.034 0.032 0.028 0.024 0.022 0.020 0.018 0.017 0.015 0.014

Example. Calculate the bending moment at the supports B and C if/; = 8m, [, =
10m, /3 = 6m and uniformly distributed load ¢ = 2kN/m is applied at the first

span.

Solution. Relationships /1/l, = 0.8, I3/l = 0.6. For this case k

k2 =0.019.

Bending moments at supports B and C are:

0.061,

Mp = —0.061 x 64 x 2 = —7.808 kNm, Mc = 0.019x 64 x2 =2.432kNm.
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Beam with three different spans.

The load ¢ is applied at the second span:

The bending moments at supports

B and C are

92

Parameters k; and k, are presented g | h | 55 |

in Table A.15. | | |

Table A.15 Bending moments at supports B and C (factor g/3)

I Lyl

E 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

03| k;| 0.070 0.072 0.075 0.078 0.080 0.081 0.083 0.083 0.085 0.086
ky| 0.070 0.064 0.055 0.048 0.043 0.038 0.035 0.031 0.030 0.027

04| ky| 0.064 0.066 0.069 0.072 0.073 0.075 0.076 0.077 0.079 0.079
k| 0.072 0.066 0.056 0.050 0.044 0.040 0.036 0.033 0.031 0.028

0.6] ky| 0.055 0.057 0.060 0.062 0.063 0.064 0.066 0.067 0.068 0.069
ky| 0.077 0.069 0.060 0.052 0.047 0.042 0.038 0.035 0.033 0.030

0.8] ky| 0.048 0.050 0.052 0.054 0.056 0.057 0.058 0.059 0.060 0.061
ky| 0.078 0.071 0.062 0.054 0.049 0.044 0.040 0.037 0.034 0.032

1.0| k;| 0.043 0.044 0.047 0.048 0.050 0.051 0.052 0.053 0.054 0.054
k| 0.080 0.074 0.064 0.056 0.050 0.045 0.041 0.038 0.035 0.033

1.2| ky| 0.038 0.040 0.042 0.044 0.045 0.046 0.047 0.048 0.049 0.049
k| 0.082 0.075 0.065 0.057 0.051 0.046 0.042 0.039 0.036 0.033

1.4 k| 0.035 0.036 0.038 0.040 0.041 0.042 0.043 0.044 0.044 0.045
ky| 0.082 0.077 0.066 0.058 0.052 0.047 0.043 0.040 0.037 0.034

1.6 k;| 0.032 0.033 0.035 0.037 0.038 0.038 0.039 0.040 0.041 0.041
k| 0.084 0.078 0.068 0.059 0.053 0.048 0.044 0.040 0.037 0.035

1.8] k;| 0.030 0.031 0.033 0.034 0.035 0.036 0.036 0.037 0.038 0.038
k| 0.085 0.078 0.067 0.060 0.054 0.049 0.044 0.041 0.038 0.035

20| k;| 0.027 0.029 0.030 0.032 0.033 0.034 0.034 0.035 0.035 0.036
k| 0.086 0.079 0.069 0.061 0.055 0.049 0.045 0.041 0.038 0.036
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Beam with three different spans.

The load ¢ is applied at the third span:

The bending moments at supports

B and C are

q3
MB =k1q12, MC Z—kqug 4 _§_ (ig_I I I I_g_lD

Parameters k; and k, are presented I | b | 5 |

in Table A.16. ' ' '

Table A.16 Bending moments at supports B and C (factor ¢/3)

1 Iyl

b 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.3 k| 0.013 0.016 0.021 0.024 0.027 0.029 0.031 0.032 0.033 0.034
kr| 0.034 0.041 0.053 0.062 0.069 0.075 0.079 0.083 0.086 0.089

04| ky| 0.012 0.015 0.019 0.022 0.024 0.027 0.028 0.029 0.031 0.032
k,| 0.033 0.041 0.053 0.062 0.069 0.074 0.079 0.083 0.086 0.089

0.6 k;| 0.010 0.012 0.016 0.019 0.021 0.023 0.024 0.026 0.027 0.028
ky| 0.033 0.040 0.052 0.061 0.068 0.074 0.078 0.082 0.085 0.088

0.8 ky| 0.009 0.011 0.014 0.017 0.019 0.020 0.021 0.023 0.023 0.024
ky| 0.032 0.040 0.051 0.060 0.067 0.073 0.078 0.081 0.085 0.087

1.0 k;| 0.008 0.010 0.013 0.015 0.017 0.018 0.019 0.020 0.021 0.022
ko] 0.032 0.039 0.051 0.060 0.067 0.072 0.077 0.081 0.084 0.087

1.2 ky| 0.008 0.008 0.011 0.013 0.015 0.016 0.017 0.018 0.019 0.020
ky| 0.032 0.039 0.050 0.059 0.066 0.072 0.077 0.080 0.084 0.087

1.4 ky| 0.007 0.008 0.010 0.012 0.014 0.015 0.016 0.017 0.017 0.018
ky[ 0.031 0.038 0.050 0.059 0.066 0.072 0.076 0.080 0.084 0.086

1.6 k| 0.006 0.007 0.010 0.011 0.013 0.014 0.015 0.015 0.016 0.017
k>| 0.031 0.038 0.050 0.059 0.066 0.071 0.076 0.080 0.083 0.086

1.8 ky| 0.006 0.007 0.009 0.010 0.012 0.013 0.013 0.014 0.015 0.015
ky| 0.031 0.038 0.050 0.058 0.065 0.071 0.076 0.080 0.083 0.086

2.0 ky| 0.005 0.006 0.008 0.010 0.011 0.012 0.013 0.013 0.014 0.014
ky| 0.031 0.038 0.049 0.058 0.065 0.071 0.076 0.079 0.083 0.086
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Influence lines for shear force at section 6 are shown below.

H
H
H .
| right
1(o; )
o~ <t o9 o o~
0 n S — ©
=N A SO =1
= - o3 © A
= S o— © =

Example. Force P is applied at point 8. Construct the bending moment diagram.

Solution.

1.
2.

Bending moment at point 6 (support B) is Mg = —0.0789P/.

Ordinate of influence line Q¢ = —0.0789, so reaction of support A is R4 =
0.0789P and directed downward.

Since Qgght = —R4 + Rp = 0.6913 P, then reaction of support B is

Rp = R4+ 0.6913P = 0.0789P + 0.6913P = 0.7702P.

2
Reaction of support D: Rp — Y Mc = —Rpl + R42] — Rpl + Pgl =0—
Rp =0.0543P
Bending moment at point 12 (support C) is M1, = —0.0543 P[. The same result
may be taken immediately from Table A.15 for section 6, if load P is located at
section 10.

Final bending moment diagram is presented below.

0.0789P1 lP 0.0543P1

Am MDM
IS 0\ ()

s

R,=0.0789P  R,=0.7702P R=0.363P R,=0.0543P
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Beams with equal spans. Settlements of supports

Appendix

Bending moments at supports are M = k(EI/I?) A, where A is a vertical settlement
of support directed downward. Coefficient k is presented in Table A.18.

Table A.18 Bending moments due to the settlements of supports (factor EIA/I?)

Settlement of support

Supports

Design diagram of the beam moments | A B C D E

A B C
m My —1.500 3.000 —1.500 - -

A B C D

My —1.600 3.600  —2.400 0400 -

0}30- —E— —E— —E— Mc 0.400  —2.400 3.600 —1.600 -

4 B C D E Mp —1.6072 3.6429 —2.5714 0.6429 —0.1072
Lo x| M. 04286 —2.5714 42857 —2.5714 04286

[0 0 |1 1] Mp —0.1072  0.6429 —2.5714  3.6429 —1.6072

Example. Three-span uniform beam ABCD with equal spans has settlement Ag ()
of support B. Calculate the bending moment at all supports.

Solution.

1. Bending moment at support B is Mp = 3.6(EI/I?) A (extended fibers below of

the neutral line).

2. Bending moment at support C is Mc = —2.4(EI/I?) A (extended fibers above

of the neutral line).
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A. Foci points:

575

Each span of a beam contains two foci points. They are left and right points. If
loaded spans are located to the right of the span [,, then the bending moment dia-
gram in all left spans is passing through /eft foci points only. These foci points are

indicated F,, F,” ;.

If loaded spans are located to the left of the span [,,, then the bending moment
diagram in all right spans is passing through right foci points only, which indicated

R FR
as F°, B

The left and right foci quotients connect consecutive support moments as follows:

KL= M, KL — M,
n=1 = T e T Ty
n—2 n—1
kR Mn R Mn—l
n+1 - o
My 1 My
Mn
L Sy F,{“ FR —z—;f‘ -------- —g—
2 Iy, " n  Elastic curve
| /nfl J1_l l" |

Fig. A.1 (a) Explanation of the left foci points. (b) Explanation of the right foci points. (¢) Fo-
cus relationships for pinned and fixed supports. (d) Continuous beam. Notation, bending moment
diagram in the given structure due to applied load, left and right foci points
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The left recursive relationship for next (n 4+ 1) span in terms of the previous left foci
quotient kL is as follows

l 1
) " (2-—=).
ntl + ln+1 ( kr%)

The right recursive relationship for previous (n — 1)-th span in terms of the next
right foci quotient kX is

l 1
kR =242 (2—-—]).
o +ln—1 ( krlf)

Case a. If the very left support 0 is pinned then the left focus for the first span coin-
cides with support 0 and the left focus quotient becomes le = —(M{/My) = o0.
Similarly, if the very right support is pinned then for the last span, the right focus

entis kR —
quotient is k.~ = oo.

Case b. If the very left support O is clamped, then the left focus quotient is for
first span equals two. It means that if a very left support is clamped and first span
is unloaded then a moment at the clamped support is twice less than in the next
pinned support. Similarly, if a last support is clamped and last span is unloaded then
a moment at the clamped support is twice less than in the previous pinned support.

If load is applied only within one span /, then distribution of bending moments
is shown below. The left foci points on right spans and right foci points on left spans
are not shown. The nil points ¢; and c¢,, which are located within a loaded span, are
not foci.
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!
Table A.21 Load characteristic D = [ Q?(x)dx for analysis of gentile cables
0

Loading Load characteristic D
P
a, a
I P —§), &=
| v l
|<+)I le

i
T, fora; = 5
) 6]213
| l 12
ilrj:ljﬂq q213

3 -

| / 45

q213

| 12 12 80

213 ap P
S| S | - Ca=T n=g
q B M+ 125y A-&) A +y], & T
| / 273
a” 2 _!
B [1+3m +3y] fora; = 5
b q%13 b w
TV 7[1+(4—3ﬂ)ﬂ37/2+(6—4/3)/321/], ﬂ=7, r=y
Sl IV VI IV
/ 273 273
U SN q’! 5 2 R e
2 [1+y+16y] forb—z, 2 4 forb=I1,w=q

a b2 g3

E———— 7 [+ (126 — 1267 —2) B2y2 + (126 — 12867 — B7) By |
M _ ap _ b _ w
e ey | 8- Ao oy

l ﬂ4 forb=1,w=g¢q
12

2]3
“_ e ; (q +1;) [1+ (126 — 1262 — 28) B2
w
T i iq — (12& — 128 + ) By2].
3 | 5 | o b w
l " Tqizaﬂ_7 SRR
T4 forb=0,w=gq




Appendix 581

Table A.22 Reactions of beams subjected to compressed load and unit settlement of support,

P
v=1,/—
El

Pinned-clamped beam Clamped-clamped beam
1
M
1 4 My
M EC )
EC P e
Vid > P < \ P AG | A / s
_g_ / A / / i
i RI€ ™ R =6-p(v
1 R R:37(p1(1)) 1(04( )
. . M =4ip5(v
o TTLLL = 3igy0) 2z<os<v>ﬂi‘7"ﬂjj:D 7
M My Mp
L> |:v\ P P | - |:‘\ P
G A | R N
/ i /
) RF—' R=3li2m(v) RF— R=12—7m (v)
. i .
<CI:I:I:I:J:|:|M:3§rp1(0) 6?‘/’4(0)%M=6%¢4(v)
M
M P P
P _p > — _
——b—— Sy
yl A Y p
N <__P l
3 L —t
v T M=y
Clamped-free beam
Pinned-pinned beam 1
P_6 ’L «—P
M \\\ <_P
4 e
/ LI




582

Appendix

[P
Table A.23 Reactions of compressed-bent beams; v = / 51

Beam under concentrated load F
and axial compressive force P

Beam under uniformly distributed
load ¢ and axial compressive force P

Pinned—pinned
beam

F
N S

(l) Fl v
M| - )= —tan—
2 2v 2

FI3

Pinned-clamped
beam

l (tanv U) l ql* v, v?
— | = _— = — | = seCc——1— —
"\2) 7 2803 "2 T2 "\2) T Ervt 2 8
lF R $q¢ vy
P, [P - P

T,

M()=—Fl—
sSiIn v — UV COS v

.U
I SIHE

M (_) —Fl—— 2
2 sin v — VCos U

sin ke (1 - cosg)
2 2

ql? 2 — vsinv — 2cos v

Mh==7;

sin v — vcos v

Y
sin—
1
cosE -2 _ -
2 v 2
F q
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beam n 1”2 /

F
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Table A.24 Special functions for stability analysis

583

Functions Form 1 Form 2 Maclaurin series
W v’tan v 1 v’sinv v vt N
v oy 77 Z = 4.,
¢ 3(tanv — v) 3 sinv — vcos v 15 525
v(tanv — v) 1 wvsinv — v?cosv v? 11v*
»(v) v_v 422 i T30 25200
8tan v (tanE - 5) — 2cos v — vusin v
v(v — sinv) 1 v(v—sinv) v? 13v4
(V) v_v 22-2 i 50 1 25200
4 sin v(tanE— E) — 2cos v — vusin v
W) (v ) 1 vlsinv v? vt
v b v r Z _
4 13 6 2sinv — v — vCos U 60 84000
v3 1 vicosv 202 vt
m) — —— -5 -2
3(tanv — v) 3 sinv — vcos v 5 525
@) (v) I v3(1 + cosv) v? vt n
v Z LTy -~
2 LT 12 25in v — v — vCos v 10~ 8400
v v v . v? i vt i
sin v sin v sin v 6 360
v v vcos | v vt
tan v tan v sin v 3 45
vsin v N vt
vtan v vtan v 04+ vi4 — 4+

Ccosv

Numerical values of these functions in terms of dimensionless parameter v are presented in

Table A.25

Table A.25 Special functions for stability analysis by Displacement method

v ©1 (V) 02 (V) ¢3(V) @4(v) mv) n2(v)
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 0.9973 0.9980 1.0009 0.9992 0.9840 0.9959
0.4 0.9895 0.9945 1.0026 0.9973 0.9362 0.9840
0.6 0.9756 0.9881 1.0061 0.9941 0.8557 0.9641
0.8 0.9566 0.9787 1.0111 0.9895 0.7432 0.9362
1.0 0.9313 0.9662 1.0172 0.9832 0.5980 0.8999
1.1 0.9164 0.9590 1.0209 0.9798 0.5131 0.8789
1.2 0.8998 0.9511 1.0251 0.9757 0.4198 0.8557
1.3 0.8814 0.9424 1.0298 0.9715 0.3181 0.8307
1.4 0.8613 0.9329 1.0348 0.9669 0.2080 0.8035
15 0.8393 0.9226 1.0403 0.9619 0.0893 0.7743
/2 0.8225 0.9149 1.0445 0.9620 0.0000 0.7525
1.6 0.8153 0.9116 1.0463 0.9566 —0.0380 0.7432
1.7 0.7891 0.8998 1.0529 0.9509 —0.1742 0.7100
1.8 0.7609 0.8871 1.0600 0.9448 —0.3191 0.6747
1.9 0.7297 0.8735 1.0676 0.9382 —0.4736 0.6374
2.0 0.6961 0.8590 1.0760 0.9313 —0.6372 0.5980
2.1 0.6597 0.8437 1.0850 0.9240 —0.8103 0.5565
22 0.6202 0.8273 1.0946 0.9164 —0.9931 0.5131

(continued)
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Table A.25 (continued)
v ¢1 (V) (V) ©3(V) P4(V) 1 (v) 2 (v)
2.3 0.5772 0.8099 1.1050 0.9083 —1.1861 0.4675
2.4 0.5304 0.7915 1.1164 0.8998 —1.3895 0.4198
2.5 0.4793 0.7720 1.1286 0.8909 —1.6040 0.3701
2.6 0.4234 0.7513 1.1417 0.8814 —1.8299 0.3181
2.7 0.3621 0.7294 1.1559 0.8716 —2.0679 0.2641
2.8 0.2944 0.7064 1.1712 0.8613 —2.3189 0.2080
2.9 0.2195 0.6819 1.1878 0.8506 —2.5838 0.1498
3.0 0.1361 0.6560 1.2057 0.8393 —2.8639 0.0893
3.1 0.0424 0.6287 1.2252 0.8275 —3.1609 0.0207
0.0000 0.6168 1.2336 0.8225 —3.2898 0.0000
3.2 —0.0635 0.5997 1.2463 0.8153 —3.4768 —0.0380
3.3 —0.1847 0.5691 1.2691 0.8024 —3.8147 —0.1051
34 —0.3248 0.5366 1.2940 0.7891 —4.1781 —0.1742
3.5 —0.4894 0.5021 1.3212 0.7751 —4.5727 —0.2457
3.6 —0.6862 0.4656 1.3508 0.7609 —5.0062 —0.3191
3.7 —0.9270 0.4265 1.3834 0.7457 —5.4903 —0.3951
3.8 —1.2303 0.3850 1.4191 0.7297 —6.0436 —0.4736
39 —1.6268 0.3407 1.4584 0.7133 —6.6968 —0.5542
4.0 —2.1726 0.2933 1.5018 0.6961 —7.5058 —0.6372
4.1 —2.9806 0.2424 1.5501 0.6783 —8.5836 —0.7225
4.2 —4.3155 0.1877 1.6036 0.6597 —10.196 —0.8103
4.3 —6.9949 0.1288 1.6637 0.6404 —13.158 —0.9004
4.4 —15.330 0.0648 1.7310 0.6202 —21.780 —0.9931
4.5 227.80 —0.0048 1.8070 0.5991 +221.05 —1.0884
4.6 14.669 —0.0808 1.8933 0.5772 7.6160 —1.1861
4.7 7.8185 —0.1646 1.9919 0.5543 0.4553 —1.2865
4.8 5.4020 —0.2572 2.1056 0.5304 —2.2777 —1.3895
4.9 4.1463 —0.3612 2.2377 0.5054 —3.8570 —1.4954
5.0 3.3615 —0.4772 2.3924 0.4793 —4.9718 —1.6040
5.2 2.3986 —0.7630 2.7961 0.4234 —6.6147 —1.8299
5.4 1.7884 —1.1563 3.3989 0.3621 —7.9316 —2.0679
5.6 1.3265 —1.7481 4.3794 0.2944 —9.1268 —2.3189
5.8 0.9302 =2.7777 6.2140 0.2195 —10.283 —2.5939
6.0 0.5551 —5.1589 10.727 0.1361 —11.445 —2.8639
6.2 0.1700 —18.591 37.308 0.0424 —12.643 —3.1609
2 0.0000 —00 400 0.0000 —13.033 —3.2898
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Table A.26 One span beams with classical boundary conditions. Frequency equation and eigen-

values
Eigen Nodal points £ = x/I

# |Type of beam Frequency equation n |value A, of mode shape X
1 |Pinned—pinned sink,/ =0 1 [3.14159265 |0; 1.0

2 |6.28318531 |0;0.5;1.0

3 19.42477796 |0; 0.333; 0.667; 1.0
2 [Clamped-clamped |cosk,/coshk,] = 1 1 4.73004074 10; 1.0

2 |7.85320462 |0;0.5;1.0

3 110.9956079 |0; 0.359; 0.641; 1.0
3 |Pinned—clamped [tank,/ —tanhk,/ =0 1 3.92660231 [0; 1.0

2 |7.06858275 |0;0.440; 1.0

3 ]10.21017612 |0; 0.308; 0.616; 1.0
4 |Clamped—free cosk,lcoshk,l = —1 1 1.87510407 |0

2 |4.69409113 |0;0.774

3 |7.85475744 |0;0.5001; 0.868
5 |Free—free coskylcoshk,l =1 1 |0 Rigid-body mode

2 |4.73004074 [0.224;0.776

3 |7.85320462 [0.132;0.500; 0.868
6 [Pinned—free tank,/ —tanhk,/ = 0 1 |0 Rigid-body mode

2 |3.92660231 |0;0.736

3 |7.06858275 |0; 0.446; 0.853
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Index

A
Ancillary diagram
displacement-load (Z-P), 372, 376-379
internal forces-deformation (S-¢), 372,
377-378
joint-load (J-L), 372-376
Arches
askew, 97-100, 106
Boussinesq equation, 485
differential equation, 484, 486
geometry parameters, 79-80
hingeless, 237, 325, 331-339, 484, 489,
577
influence lines, 86-93
nil points, 94, 102
three-hinge, 77-107
two-hinged, 77, 237-239, 243, 267, 366,
484, 485, 488, 489

B
Beam-columns
deflection, 504
differential equation, 540-541
Beams
continuous, 432-441, 471-483, 508, 564,
574
with elastic supports, 560
free vibration equation, 520-521, 530-532
Gerber—Semikolenov, 39-42, 45, 46, 212
universal equation, 148, 150-152, 155, 194
Bendixen, 271
Bendixen Bernoulli-Euler beam, 538, 540, 543
Betti theorem, 189-191
Boundary condition, 117, 150, 152, 154,
160, 194, 309, 360, 450, 461, 464,
470-472, 484, 489, 519, 540-542,
544, 545, 549, 585
Boussinesq equation, 485
Buckling, xxii, 450-452, 462, 463, 481, 484,
485, 488, 489, 506

C
Cable
arbitrary load, 122-125
catenary, 110, 125-128, 131, 133-137
differential equation, 119
direct problem, 114-117, 131
inverse problem, 110-111, 115-121, 123,
125
Castigliano theorem, 147, 181, 195
Cauchy—Clebsch condition, 149
Change of temperature, 40, 73, 145, 159,
165-170, 195, 228, 251-253, 257,
258, 293, 303, 369, 374, 379, 414
Chebushev formula, 11-13, 78
Clebsch, 271
Combined method, 302, 303, 305, 312
Comparison of methods, 291-294, 355-358,
538
Compressed force
conservative, 451
critical, 450-456
nonconservative, 451
Conjugate beam method, 181, 185, 189, 194,
195
Connecting line, 34, 46, 53, 54, 61, 67, 94, 96
Constraints
required, 6, 8
redundant, 6, 12, 211, 212, 214, 216,
218-220, 234, 244, 271, 439, 516
replacing, 6, 212, 218
Continuous beams
change of temperature, 228, 238, 251-269
foci method, 575-576
influence lines, 326-331
plastic analysis, 432441
settlement of supports, 246-251
stability equation, 471483
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Coordinates
global, 369-371, 377, 390-392, 395, 398,
401, 405, 409, 412, 415
local, 369-371, 377, 381, 387-392, 395,
397-399, 405, 408-409, 412, 415
Critical load (Load unfavorable position), xxii,
4, 31, 33, 450-456, 458-462, 464,
467, 469, 474481, 483, 484, 488,
489, 491, 505, 507-509
Critical load (stability)
critical load parameter, 476, 479

D
Deflection computation
beam-columns, 185
Castigliano theorem, 145
conjugate beam method, 181
double integration method, 148, 181, 194
elastic load method, 185-189, 195, 206
graph multiplication method, 176185,
195, 202
initial parameters method, 147-158, 181,
189, 194
Maxwell-Morh integral, 147, 159-170,
176, 177, 181, 188, 195, 198, 201,
206
statically indeterminate structures, 158,
165, 189, 193
work—energy method, 195
Deflection types
angular, 146, 147, 149, 150, 159, 161, 162,
167, 170, 171, 176, 191, 192, 194,
204
linear, 145-147, 157, 161, 162, 167, 170,
171, 175, 191, 192, 194, 204
mutual angular, 162, 165, 167, 204, 205
mutual linear, 162, 167, 204
Degree of indeterminacy
kinematical, 272-274
mixed, 313-314
static, 222-244
Degrees of freedom
Chebushev formula, 11-13
for dynamical analysis, 518
for stability analysis, 458
for static analysis, 516
Design diagrams of structures
deformable, 498, 499, 510
non-deformable, 491, 499, 502
Dimensions of
ordinates of influence lines, 31
unit displacements, 280
unit reactions, 279-280

Index

Displacement method
canonical equation, 269, 276-290
conception, 275-276
influence lines, 271, 290
kinematical indeterminacy, 272-274
matrix form, 292
primary system, 274-275
primary unknown, 274-275
settlements of support, 296299
stability analysis, 271

Dummy load method
actual state, 162
unit state, 162

E

Elastic curve, 146-148, 150-159, 181, 183,
185, 193, 194, 196-198, 207, 216,
226, 227, 229, 231, 261-263, 265,
272, 275, 271, 278, 281, 282, 288,
298, 301, 303, 307, 309, 310, 312,
358, 359, 361-363, 367, 372, 451,
461, 463, 472-474, 479, 481, 483,
484, 492, 495, 497, 507, 519, 535,
563

Elastic load method, 147, 164, 185-189, 195,
206, 341, 343, 361

Elastic supports, 154, 159, 198, 260, 262,
268, 275, 309, 453-456, 458,
459, 461-471, 473, 485, 490-491,
504-507, 516, 553, 560

Errors of fabrication, 145, 170-176, 211, 238,
271, 292, 296, 300-302, 426

F
Failure, 40, 425, 426, 430-433, 435, 439,
441-445, 449, 452, 498
Fictitious beam, 186, 188, 189, 194, 341, 342
Finite element method, 370, 407
Flexibility matrix, 521, 528
Foci points, 363, 364, 575-576
Focus, 363, 575, 576
Force method
canonical equation, 217-222
change of temperature, 251-259, 372
concept, 371
conception, 217-219
degree of redundancy, 211-214
errors of fabrication, 238
fixed loads, 393
influence lines, 399
matrix form, 217
primary system, 211-214
primary unknowns, 211-214
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resolving equations, 387 K
settlement of supports, 246-251, 379 Kinematical analysis
static indeterminacy, 222-244 degrees of freedom, 11-13
symmetrical unknowns, 333 geometrically changeable structures, 3
Fourier method, 541-543 geometrically unchangeable structures, 3,
Frames 5-6
plastic analysis, 441-445 infinitesimally changeable structure, 5
with sidesway, 226, 473, 481 infinitesimally rigid structure, 5
stability, 471-483 redundant constrains, 6
statically determinate, 147, 161, 165, 167, Kinematical method for influence lines,
168, 170, 171, 176, 183, 189, 195, 358-363
201, 203 Krylov—Duncan functions, 543-550

statically indeterminate, 157, 158,
212-214, 224-233, 273, 294, 296,

313, 353, 547 L
symmetrical, 302, 303, 320, 546, 549 Leites, 271
three-hinged, 205, 213 Leites Load
Frequency of free vibration conservative (nonconservative), 451
displacement method, 530-538 critical, xxii, 4, 31, 33, 450-456, 458462,

force method, 520-530
Krylov—Duncan method, 543-546
separation variable method, 541

G
Generalized coordinates, 452, 458460, 531
Generalized forces, 166, 167, 170, 171, 175,
195
Graph multiplication method,
for beam-columns, 502-504
Gvozdev theorem, 193

H
Helmbholtz, 189

464, 467, 469, 471, 474-481, 483,
484, 488, 489, 491, 505, 507-508

dynamical, xxii, 519

fixed (static), xxiii, xxiv, 15, 16, 27-30,
35-38, 49, 67, 70, 83,92, 97, 111,
159-165, 176, 242, 246, 306, 324,
330, 331, 338, 342, 344, 345, 353,
364, 367, 368, 393, 394, 415, 451,
518

moving, xxii, xxiv, 15, 16, 27-38, 42, 50,
53, 58, 66-68, 70, 72, 76, 87, 100,
323, 324, 326, 339, 344, 345, 358,
361, 363, 364, 379, 400, 401, 403,
514,518

seismic, xxii, 514

tracking, 451

unfavorable, xxiii, 15, 30-33, 358

Henneberg method, 69 Load path (interaction diagram), 41-42

Hinge Load unfavorable position, 15, 30-33, 358
simple, 3, 11-13, 41 Loss of stability (buckling), 451, 452,
multiple, 3, 12 458-460, 480, 484, 486, 487, 489

I M

Indirect load application, 33-36, 46, 52, 88, Manderla, 271

94, 96, 103, 364 Manderla Matrices

Influence lines method ancillary, 372-378
analytical construction, 15-26 deformation, 386387
application, 27-33 flexibility, 521, 528
connecting line, 34 modal, 522-530, 532-538, 547-549
indirect load application, 33-35 static, 381-385
models, 30, 31, 33 stiffness, 387-390

Initial parameters method, 147158, 466472, Matrix stiffness method, 369419

491, 494-498, 504 change of temperature, 372

Interaction scheme, 40-42 concept, 371
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fixed loads, 393
influence lines, 399
resolving equations, 387
settlement of supports, 379
Maxwell theorem, 190-191
Maxwell-Mohr integral, 159-170
Method
displacement, 271-312
dummy load (Maxwell-Mohr integral),
147, 160-162, 195
elastic load, 147, 185-189, 195, 206,
341-343, 358, 361
force, 211-269
graph multiplication, 176-185, 195, 202,
219, 228, 238, 326, 502-504
influence line, 323-368
initial parameters, 147-158, 466471,
494-498
mixed, 313-321
strain energy, 195
Mixed method, 313-321
Modal matrix, 522-530, 532-538

Mode shape vibration, 523, 524, 526, 529, 530,

532-538
Miiller—Breslau’s principle, 358, 361, 363
Multispan redundant beams (continuous
beams), 40, 42, 155, 222-224, 248,
262, 280, 301, 325-331, 346-353,
355, 358, 359, 361, 362, 364, 371,
372, 374, 375, 378, 382, 383, 386,
393-404, 416, 432-441, 471-483,
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