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Preface to the Second Edition

Since the first edition of this book was written there has been a great amount of
research on thermoelectric energy conversion, particularly on the development of
new materials for use in generators. The number of papers in the field seems to be
growing at an ever-increasing rate. A search of the literature shows that there are
perhaps a hundred new papers each month that relate to the topic of thermoelec-
tricity. I have attempted to incorporate some of this new material into this second
edition, while retaining the general structure of the first edition.

As new materials with higher thermoelectric figures of merit have appeared, the
possibility of large-scale thermoelectric generation, as part of the worldwide
strategy for making better use of energy resources, has become more obvious. The
most notable feature of recent work has been the production of bulk nanostructures,
often incorporating inexpensive and readily available elements. These materials
have remarkably small values of the lattice thermal conductivity. However, the
reduction in this quantity has not yet been matched by any substantial advance in
the electronic parameters. It is my hope that this new edition will stimulate research
that will yield an improvement in the thermoelectric power factor to complement
the reduction of heat conduction by the lattice.

Kingston Beach, Tasmania, Australia H. Julian Goldsmid
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Preface to the First Edition

This book has been written at a time when thermoelectric energy conversion is
showing great promise. It was in 1953 that I first carried out the experiments on
bismuth telluride that demonstrated the potential of thermoelectric refrigeration.
The present-day thermoelectric modules are based on the work that was carried out
during the late 1950s and the early 1960s on bismuth telluride and its alloys. Since
that time, there have been significant advances in materials for thermoelectric
generation but at all temperatures the efficiency of energy conversion using ther-
mocouples has fallen far short of that expected for an ideal thermodynamic
machine. At last, with the advent of nanostructured thermoelements, there is the
promise that substantial advances will be made.

The basic principles of thermoelectric devices have not changed over the years
and the theory presented in the first few chapters will always be applicable as new
materials are discovered. A review of existing thermoelectric materials is presented
with a chapter devoted to bismuth telluride showing how improvements in its
synthesis and composition have led to the present-day performance. It is not always
appreciated that the behaviour of a specific alloy is strongly dependent on the
manner in which it is prepared and a chapter is devoted to the production of
materials, the stress being on principles rather than experimental detail.

The assessment of the transport properties of thermoelectric materials presents
special problems. The chapter on measurement techniques includes a discussion
of the errors that can arise when the so-called figure of merit is determined for
non-uniform specimens. Indeed, I myself was led astray in the interpretation of
experimental observations on polycrystalline samples of anisotropic material before
I realised the extent of the problem.

It is usual to make use of modules rather than simple thermocouples. There is an
outline of the method of selecting commercial modules for any particular appli-
cation and a discussion of the problems that arise from attempts to miniaturise the
size of modules so as to economise on space and material. Throughout the book I
have tried to emphasise practical considerations.
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A full understanding of the behaviour of nanostructured thermoelectric materials
requires the mastery of difficult theoretical concepts, but it is hoped that the ele-
mentary treatment in this book will allow the reader to comprehend the basic
principles. It is expected that so-called bulk nanostructures will find their way into
commercial production in the very near future.

It is only during the past two or three years that I have appreciated the potential
of the synthetic transverse thermoelement and I have included a chapter that
reviews this unusual configuration. I have also included discussions of energy
conversion using the transverse thermomagnetic effects and the thermionic effects
in solids and in vacuum. The latter, in particular, will lead to greatly improved
efficiencies if they live up to their theoretical promise.

This book draws on my experience of thermoelectricity and its applications over
the past 55 years. During that time I have been supported by many people and I
acknowledge with gratitude the help that I have received from all of them.

In 1953, as a very junior scientist at the research laboratories of the General
Electric Company, I was encouraged by my group leader, R.W. Douglas, to look
into the possibility of using the Peltier effect in semiconductors as a practical means
of refrigeration. He continued to support the project, in spite of scepticism from
some of his senior colleagues, and the success of bismuth telluride as a thermo-
electric material stems from his foresight. I received support from many others
in the Solid Physics Group over the next few years and should mention particularly
D.A. Wright who supervised my Ph.D. studies and Ray Drabble who helped me to
understand transport theory.

In my academic life between 1964 and 1988, first as Reader in Solid State
Physics at the University of Bath and then as Professor of Physics at the University
of New South Wales, I was fortunate to be working in institutions that had been
founded to promote applied science. I was encouraged to continue my research on
thermoelectricity and was joined by some excellent students. I am sure that I
learned much more from them than they did from me.

I acknowledge the support that I have received over much of my career from
Marlow Industries. Raymond Marlow enabled me to work closely with his com-
pany and kept me in touch with practical developments. In recent years, I have been
stimulated by my contact with George Nolas and Ted Volckmann and I appreciate
the fact that I am still able to work with Jeff Sharp and Jim Bierschenk.

Perhaps my greatest inspiration has been the work of Abram Ioffe and I greatly
valued the opportunity in 2005 to join in the celebration of the 125th anniversary of
his birth in the town of Romny in Ukraine. This was made possible through an
invitation from Professor L.I. Anatychuk and I am most appreciative of his
encouragement for me to continue with my research.

Over the whole of my career I have received enthusiastic support from my wife
Joan and it is to her that I dedicate this book.

Kingston Beach, Tasmania, Australia H. Julian Goldsmid
June 2009
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Chapter 1
The Thermoelectric and Related Effects

Abstract This chapter defines the Peltier and Seebeck effects and introduces the
concept of the thermocouple. It gives the relationships between the Peltier, Seebeck
and Thomson coefficients. It also describes the related effects that appear in a
magnetic field and defines the Hall, Nernst, Ettingshausen and Righi–Leduc
coefficients.

1.1 Introduction

The first of the thermoelectric effects was discovered in 1821 by T.J. Seebeck. He
showed that an electromotive force could be produced by heating the junction
between two different electrical conductors. The Seebeck effect can be demon-
strated by making a connection between wires of different metals (for example,
copper and iron). The other ends of the wires should be applied to the terminals of a
galvanometer or sensitive voltmeter. If the junction between the wires is heated, it is
found that the meter records a small voltage. The arrangement is shown in Fig. 1.1.
The two wires are said to form a thermocouple. It is found that the magnitude of the
thermoelectric voltage is proportional to the difference between the temperature at
the thermocouple junction and that at the connections to the meter.

Thirteen years after Seebeck made his discovery, J. Peltier, a French watch-
maker, observed the second of the thermoelectric effects. He found that the passage
of an electric current through a thermocouple produces a small heating or cooling
effect depending on its direction. The Peltier effect is quite difficult to demonstrate
using metallic thermocouples since it is always accompanied by the Joule heating
effect. Sometimes one can do no better than show that there is less heating when the
current is passed in one direction rather than the other. If one uses the arrangement
shown in Fig. 1.1 the Peltier effect can be demonstrated, in principle, by replacing
the meter with a direct current source and by placing a small thermometer on the
thermocouple junction.

It seems that it was not immediately realised that the Seebeck and Peltier phe-
nomena are dependent on one another. However, this interdependency was
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recognised by W. Thomson (who later became Lord Kelvin) in 1855. By applying
the theory of thermodynamics to the problem, he was able to establish a relationship
between the coefficients that describe the Seebeck and Peltier effects. His theory
also showed that there must be a third thermoelectric effect, which exists in a
homogeneous conductor. This effect, now known as the Thomson effect, consists of
reversible heating or cooling when there is both a flow of electric current and a
temperature gradient.

The fact that the Seebeck and Peltier effects occur only at junctions between
dissimilar conductors might suggest that they are interfacial phenomena but they are
really dependent on the bulk properties of the materials involved. Nowadays, we
understand that electric current is carried through a conductor by means of electrons
that can possess different energies in different materials. When a current passes
from one material to another, the energy transported by the electrons is altered, the
difference appearing as heating or cooling at the junction, that is as the Peltier effect.
Likewise, when the junction is heated, electrons are enabled to pass from the
material in which the electrons have the lower energy into that in which their energy
is higher, giving rise to an electromotive force.

Thomson’s work showed that a thermocouple is a type of heat engine and that it
might, in principle, be used either as a device for generating electricity from heat or,
alternatively, as a heat pump or refrigerator. However, because the reversible
thermoelectric effects are always accompanied by the irreversible phenomena of
Joule heating and thermal conduction, thermocouples are generally rather
inefficient.

The problem of energy conversion using thermocouples was analysed by
Altenkirch [1] in 1911. He showed that the performance of a thermocouple could be
improved by increasing the magnitude of the differential Seebeck coefficient, by
increasing the electrical conductivities of the two branches and by reducing their
thermal conductivities. Unfortunately, at that time, there were no thermocouples
available in which the combination of properties was good enough for reasonably
efficient energy conversion, although the Seebeck effect has long been used for the
measurement of temperature and for the detection of thermal radiation. It was only
in the nineteen-fifties that the introduction of semiconductors as thermoelectric

Heat source or thermometer 

Galvanometer or 
electric current 
source

Conductor A Conductor B 

Fig. 1.1 Experiment to
demonstrate the Seebeck and
Peltier effects
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materials allowed practical Peltier refrigerators to be made. Work on semiconductor
thermocouples also led to the construction of thermoelectric generators with a high
enough efficiency for special applications. Nevertheless, the performance of ther-
moelectric energy convertors has always remained inferior to that of the best
conventional machines.

In fact, there was little improvement in thermoelectric materials from the time of
the introduction of semiconductor thermoelements until the end of the twentieth
century. However, in recent years, several new ideas for the improvement of
materials have been put forward and, at last, it seems that significant advances are
being made, at least on a laboratory scale. It is reasonable to expect that this work
will soon lead to much wider application of the thermoelectric effects.

1.2 Relations Between the Thermoelectric Coefficients

We now define the Seebeck and Peltier coefficients and show how they are related
to one another. For the time being we assume that the conductors are isotropic. We
refer to the simple thermocouple shown in Fig. 1.2. Conductor A is joined at both
ends to conductor B, the latter being divided into two parts so that, for example, a
voltmeter can be inserted in the gap.

Suppose that a temperature difference ΔT is established between the two junc-
tions and that the two free ends of conductor B are maintained at the same tem-
perature. It will then generally be found that a potential difference V will appear
between the free ends. The differential Seebeck coefficient, αAB, is defined as the
ratio of V to ΔT. Thus,

aAB ¼ V
DT

: ð1:1Þ

αAB is deemed to be positive if the electromotive force tends to drive an electric
current through conductor A from the hot junction to the cold junction. It is noted
that, particularly in older texts, the quantity that is now known as the Seebeck
coefficient has often been called the thermoelectric power or the thermal EMF
coefficient.

We define the differential Peltier coefficient, πAB, for the same thermocouple by
supposing that a source of EMF is connected across the gap in conductor B so as to
drive a current around the circuit in a clockwise direction. The Peltier coefficient is

A

BB

Fig. 1.2 Simple
thermocouple
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regarded as positive if the junction at which the current enters A is heated and the
junction at which it leaves A is cooled. πAB is equal to the ratio of the rate q of
heating or cooling at each junction to the electric current I,

pAB ¼ q
I
: ð1:2Þ

We note that it is much simpler to measure the Seebeck coefficient than the
Peltier coefficient. Thus, whereas both quantities enter into the theory of thermo-
electric energy conversion, it would be preferable if only one of them had to be
specified. In fact, one of the Kelvin relations allows us express the Peltier coefficient
in terms of the Seebeck coefficient. The relevant equation is

pAB ¼ aABT : ð1:3Þ

The other Kelvin relation connects the Seebeck coefficient and the Thomson
coefficient, τ, or, rather, the difference between the Thomson coefficients of the two
conductors. The Thomson coefficient is defined as the rate of heating per unit length
that results from the passage of unit current along a conductor in which there is unit
temperature gradient. The appropriate Kelvin relation is

sA � sB ¼ T
daAB
dT

: ð1:4Þ

The Seebeck and Peltier coefficients are defined above for a pair of conductors
whereas it would be much more convenient if their values could be given for a
single material. In fact, the absolute Seebeck or Peltier coefficient becomes equal to
the differential coefficient if the second material can be regarded as having zero
absolute coefficients. This concept can be realised in practice by using a super-
conductor as the second material. It is reasonable to assign zero Seebeck or Peltier
coefficients to a superconductor since the differential coefficients between all pairs
of superconductors are zero.

Of course, there is no material that remains in the superconducting state at
ordinary temperatures, so it might be thought that the absolute Seebeck coefficients
of other materials can be obtained only at low temperatures. However, this is not the
case. It is reasonable to write (1.4) in the form

s ¼ T
da
dT

ð1:5Þ

for a single conductor. Thus, if the absolute Seebeck coefficient of a material at low
temperatures is determined by connecting it to superconductor, one can then use
(1.5) to find the value at higher temperatures after measuring the Thomson coef-
ficient [2, 3]. This procedure has been carried out for the metal lead, which may be
used as a reference material when determining the absolute coefficients for other
substances.
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In actual fact, most metals, like lead, have very small absolute values of the
Seebeck coefficient compared with practical thermoelectric materials that are almost
invariably semiconductors.

1.3 Effects in a Magnetic Field

Electric charges are subject to transverse forces when they travel in a magnetic field.
Thus, the thermoelectric effects, like the other transport properties, become changed
when a magnetic field is applied and there also appear some new phenomena. We
need to discuss these so-called thermogalvanomagnetic effects since they can affect
the performance of thermoelectric devices and can even lead to new methods of
energy conversion.

As we shall demonstrate in the next chapter, the electric and thermal conduc-
tivities are properties that are of importance when we are calculating the perfor-
mance of devices based on the Seebeck and Peltier effects. Both quantities become
less on the application of a magnetic field, though the changes are very small unless
the field is very strong and the mobility of the charge carriers is high. The Seebeck
and Peltier coefficients, too, will change under the influence of a magnetic field, B.

Usually, the value of the Seebeck coefficient will be the same when the direction
of the magnetic field is reversed but this is not always the case. Any difference
between the values of the Seebeck coefficient upon reversal of the field is called the
umkehr effect. The umkehr effect has been shown [4] to be very large for certain
orientations of the semimetal bismuth.

Another consequence of the action of a magnetic field [5] is the need to modify
the Kelvin relation (1.3). The modified equation is

p Bð Þ ¼ Ta �Bð Þ: ð1:6Þ

When a transverse magnetic field is applied to a current carrying conductor, an
electric field appears in a direction perpendicular to both the current and B. This is
the well-known Hall effect. The Hall effect is not immediately relevant to energy
conversion but is a useful tool in explaining the behaviour of the charge carriers. Of
more direct significance for energy conversion are the transverse Nernst and
Ettinghausen effects.

The Nernst effect, like the Hall effect, manifests itself as a transverse voltage in a
magnetic field but it depends on the longitudinal temperature gradient or heat flow
rather than on a longitudinal electric current. The Nernst coefficient, N, is defined by
the relation

Nj j ¼ dV=dy
BzdT=dx

: ð1:7Þ
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Here dV/dy is the transverse electric field. The sign of the Nernst effect is given
in Fig. 1.3, which illustrates all the transverse thermogalvanomagnetic phenomena.
The sign of the Nernst effect does not depend on whether the charge carriers are
positive or negative and, in this respect, it differs from the Hall effect.

The Ettingshausen and Nernst effects are related to one another in the same way
as the Peltier and Seebeck effects. The Ettingshausen effect is a transverse tem-
perature gradient that is the result of a transverse magnetic field and a longitudinal
flow of electric current. The Ettingshausen coefficient, P, is defined by

Pj j ¼ dT=dy
ixBz

; ð1:8Þ

where ix is the longitudinal current density. As one might have expected, there is a
thermodynamic relationship between the Nernst and Ettingshausen coefficients,

Pk ¼ NT ; ð1:9Þ

where λ is the thermal conductivity, which has to be included since the
Ettingshausen coefficient is defined in terms of a temperature gradient rather than a
heat flow.

To complete the transverse phenomena, there exists the Righi–Leduc effect,
which is a transverse temperature gradient arising from a longitudinal heat flow.
The Righi–Leduc coefficient, S, is given by

Sj j ¼ dT=dy
BzdT=dx

: ð1:10Þ
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Fig. 1.3 The transverse thermogalvanomagnetic effects. When the effects are in the direction
shown in the diagram, the coefficients are positive
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Chapter 2
Theory of Thermoelectric Refrigeration
and Generation

Abstract The electrical and thermal conductivities are defined. It is then shown
how the cooling effect from a thermoelectric refrigerator can be related to the
electric current and the thermoelectric coefficients. The coefficient of performance is
defined and it is shown that it can be expressed in terms of a materials parameter
that is known as the figure of merit. The conditions for the optimisation of the figure
of merit for a given pair of positive and negative thermoelements are derived. It is
shown how the same figure of merit applies when thermocouples are used for
generation of electricity from heat. The performance of multi-stage Peltier coolers is
discussed. Energy conversion devices based on the transverse thermomagnetic
effects are also considered.

2.1 The Transport Effects

The thermoelectric phenomena are reversible in the sense that they do not of
themselves give rise to thermodynamic losses. However, they are always, in
practice, accompanied by the irreversible effects of electrical resistance and thermal
conduction. It turns out that the performance of any thermocouple as an energy
convertor can be expressed in terms of the differential Seebeck coefficient and the
thermal and electrical resistances of the two branches. These resistances depend on
the thermal and electrical resistivities and the ratios of length to cross-section area.
Again we shall, in the first instance, assume that all the properties are independent
of orientation.

The electrical resistivity, ρ, is the reciprocal of the electrical conductivity, σ,
which is defined by the relation

I ¼ rVA
L

ð2:1Þ

where I is the electric current through a specimen of constant cross-section area
A and length L when a voltage V is applied. Likewise, the thermal conductivity, λ, is
defined by the equation
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q ¼ � kADT
L

ð2:2Þ

where q is the rate of heat flow through a similar specimen that has a temperature
difference ΔT between its two ends.

We shall refer to the thermoelectric coefficients and the electrical and thermal
conductivities of a given material as its transport properties. All these properties
will generally be temperature-dependent and this should be taken into account in
any rigorous theory. The variation with temperature of the transport properties may
not be too serious a matter in some applications of the Peltier effect when the
temperature differences across the thermocouples are small but it can be very
important in thermoelectric generation. However, in order to determine the relative
importance of the different parameters we shall, for the time being, suppose that the
conductivities and the Seebeck coefficient are all independent of temperature. The
Kelvin relation, (1.3), implies that, even when α is constant, π will be proportional
to T. In fact, we shall invariably express the Peltier coefficient, π, in terms of the
more easily measured Seebeck coefficient, α.

2.2 Thermoelectric Refrigerators and Heat Pumps

We shall determine the performance of thermoelectric refrigerators and heat pumps
using as our model the single thermocouple shown in Fig. 2.1. Practical devices
usually make use of modules that contain a number of thermocouples connected
electrically in series and thermally in parallel. This enables the cooler or heat pump
to be operated from a power source that delivers a manageable current with a

 Heat source T1

           Heat sink T2

p n

Fig. 2.1 Simple refrigerator
or heat pump

10 2 Theory of Thermoelectric Refrigeration and Generation

http://dx.doi.org/10.1007/978-3-662-49256-7_1


reasonable voltage drop. It is a simple matter to extend the equations for a single
couple to a multi-couple arrangement.

In the elementary theory that is outlined in this chapter it will be supposed that
there is no thermal resistance between the thermocouple and the heat source and
sink. It will also be assumed that all the heat flow between the source and sink takes
place within the thermocouple. Thus, it will be supposed that thermal radiation and
losses by conduction and convection through the surrounding medium are negli-
gible. The two thermocouple branches in our model have constant cross-section
areas. There have been suggestions [1] that tapered thermoelements might improve
the performance but it is not difficult to show that they give no theoretical
advantage. The thermoelements need not be of the same length but the ratio of
length to cross-section area (the form factor) is of importance and, as we shall see,
there is a preferred relationship between the form factors of the two branches.

The quantity of greatest importance for a refrigerator is the coefficient of per-
formance (COP), which is defined as the ratio of the heat extracted from the source
to the expenditure of electrical energy. If the thermocouple were free of losses
associated with heat conduction and electrical resistance, the coefficient of per-
formance would reach the ideal value, that is the value for a Carnot cycle. The ideal
COP can be much greater than unity as it is given by T1/(T2 − T1), where T1 and T2
are the absolute temperatures of the source and sink respectively. We shall also be
interested in the cooling power, i.e. the rate at which heat is extracted from the
source.

A detailed derivation of the coefficient of performance and cooling power may
be found elsewhere [2]. Here we shall outline the theory.

When a current, I, is passed through the couple there is Peltier cooling at the
source equal to (αp − αn)IT1, where we have used the Kelvin relation (1.3) to
eliminate the Peltier coefficient. αp and αn are the Seebeck coefficients of the two
branches which, of course, should have opposite signs. This cooling effect is
opposed by heat conduction at the rate (T2 − T2)(Kp + Kn), where Kp and Kn are the
thermal conductances of the branches. The cooling is also opposed by Joule heating
within the thermoelements. It is easily shown that half of the Joule heating passes to
the sink and half to the source, each half being equal to I2(Rp + Rn)/2, where Rp and
Rn are the electrical resistances of the branches.

The expression for the cooling power is

q1 ¼ ap � an
� �

IT1 � T2 � T1ð Þ Kp þKn
� �� I2 Rp þRn

� �
=2: ð2:3Þ

Also, the rate of expenditure of electrical energy is

w ¼ ap � an
� �

I T2 � T1ð Þþ I2 Rp þRn
� � ð2:4Þ

where the first term is the rate of working to overcome the thermoelectric voltage
while the second term is the resistive loss. The coefficient of performance, ϕ, is then
given
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/ ¼ ap � an
� �

IT1 � T2 � T1ð Þ Kp þKn
� �� I2 Rp þRn

� �
=2

ap � an
� �

I T2 � T1ð Þþ I2 Rp þRn
� � : ð2:5Þ

Equation (2.5) shows us that the coefficient of performance depends on the
current, as does the cooling power. As the current is increased, the Peltier cooling
rises linearly but the Joule heating depends on I2. Thus, a plot of cooling power
against current has the parabolic form shown in Fig. 2.2. This plot represents
schematically the situation in which T1 is significantly smaller than T2. Provided
that the temperature difference is not too great, the cooling power will become
positive at a certain value of the current. However, as the current is increased further
there will come a point at which the difference between the Peltier cooling and the
Joule heating begins to diminish. In other words, there is a particular current at
which the cooling power reaches its maximum value. Equation (2.3) shows that the
maximum is reached when the Peltier cooling is twice that part of the Joule heating
that reaches the cold junction.

There are two values of the current that are of special interest. The current, Iq,
that yields the maximum cooling power is given by

Iq ¼ ap � an
� �

T1= Rp þRn
� �

: ð2:6Þ

At this current the coefficient of performance is given by

/q ¼
ZT2

1=2� T2 � T1ð Þ
ZT2T1

ð2:7Þ

where Z is equal to (αp − αn)
2/{(Kp + Kn)(Rp + Rn)}. Equation (2.7) shows that the

coefficient of performance under the condition of maximum cooling power depends
solely on Z and the temperatures of the source and sink. As we shall see, the
optimum coefficient of performance also depends only on these quantities and Z is
therefore known as the figure of merit of the thermocouple. Z has the dimensions of
inverse temperature and it is more usual nowadays to specify the dimensionless
figure of merit, which is equal to ZT at a given temperature.

Cooling
power 

positive

negative

current
0

Fig. 2.2 Schematic plot of
cooling power against current
for a thermoelectric cooler.
The cooling power is negative
until the Peltier effect is great
enough to counteract both
heat conduction and Joule
heating
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The other condition of particular interest is that of maximum coefficient of
performance. The current Ιϕ that satisfies this condition is specified by

I/ ¼ ap � an
� �

T2 � T1ð Þ
Rp þRn
� �

1þ ZTmð Þ1=2�1
n o ð2:8Þ

where Tm is the mean temperature. The optimum coefficient of performance is

/max ¼
T1 1þ ZTmð Þ1=2� T2=T1ð Þ
n o

T2 � T1ð Þ 1þ ZTmð Þ1=2 þ 1
n o : ð2:9Þ

It might be thought that one would wish to operate a thermoelectric refrigerator
as close to the condition of optimum COP as possible. However, this is sometimes
not practical. The cooling power under this condition can be much less than the
maximum value, particularly when the temperature difference between the source
and sink is small. Thus, while the optimum COP condition may be economical in
use of electrical energy, it may be uneconomical in the use of thermoelectric
material. Generally speaking, the preferred current will lie somewhere between that
for maximum cooling power and optimum COP.

The figure of merit Z itself may be optimised for a given pair of thermoelectric
materials. The aim should be to make the product (Kp + Kn)(Rp + Rn) as small as
possible. This result is obtained when the form factors for the two branches satisfy
the relation

LnAp

LpAn
¼ qpkn

qnkp

� �1=2

: ð2:10Þ

When (2.10) is satisfied the figure of merit is given by

Z ¼ ap � an
� �2

kpqp
� �1=2 þ knqnð Þ1=2

n o2 : ð2:11Þ

It is usually the figure of merit defined by (2.11) that is meant when one dis-
cusses Z for a pair of materials.

In the search for improved thermocouples, it is uncommon to investigate a pair
of substances at the same time. It would, therefore, be convenient if one could
define a figure of merit for a single material. In practice, one makes use of the figure
of merit z, which is given by α2σ/λ or α2/λρ. The parameters used in defining z refer
to the positive and negative thermoelements separately. It is important to realise that
z cannot be used to calculate the performance of a thermocouple even if its value is
known for both branches. For this purpose the figure of merit Z must be used.
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However, it often turns out that Z lies close to the average of zp and zn so it is
meaningful to select materials on the basis of the single-material figure of merit.

One of the most important characteristics of a thermocouple is the maximum
depression of temperature that can be reached through the Peltier effect using a
single stage. This quantity, ΔTmax, can be calculated from (2.7). The maximum
temperature depression is reached when the cooling power and, thus, the coefficient
of performance fall to zero. We see that this occurs when (T2 − T1) becomes equal
to ZT1

2/2 so that

DTmax ¼ 1
2
ZT2

1 : ð2:12Þ

Figure 2.3 shows how ΔTmax varies with ZTm when the heat sink is kept at
300 K. Practical thermoelectric refrigeration has stemmed from the development
since the nineteen-fifties of thermocouples with ZTm of the order of unity.
Temperature depressions of 100° or more require values of ZTm significantly
greater than unity.

In Fig. 2.4 we show the optimum coefficient of performance plotted against the
dimensionless figure of merit for various heat source temperatures when the heat
sink is at 300 K. It is noted that coefficients of performance that are considerably
greater than unity can be achieved when ZTm is equal to about 1 provided that the
heat source is not at too low a temperature. For example, a COP value of 2 is
reached when ZTm is equal to 1 if the temperature difference between the source and
sink is 20°. This is, of course, much smaller than the COP of an ideal refrigerator,
which would be no less than 14 under the same conditions. A high coefficient of
performance is desirable, not only because it reduces the expenditure of electrical
energy, but also because it allows a heat sink of smaller capacity to be used. Thus,
although many applications are possible with ZTm equal to about unity, it is
important that we should aim at much higher values.
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Fig. 2.3 Plot of maximum
temperature depression
against ZTm for the heat sink
at 300 K
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We now turn briefly to thermoelectric heat pumps. Here we are more interested
in the rate that heat is delivered to the sink rather than the cooling power at the
source. The difference between the two quantities will be equal to the electrical
power consumed by the thermocouple. The rate at which the sink is heated is thus
the sum of q1 and w from (2.3) and (2.4) and is given by

q2 ¼ q1 þw ¼ w /þ 1ð Þ: ð2:13Þ

The rate of heat delivery is normally greater than the electrical power w since ϕ is
usually positive.

2.3 Thermoelectric Generators

We now consider the application of the Seebeck effect in the generation of electrical
power. Again we obtain the performance using the model of a single thermocouple
and we assume that no heat arrives at the sink other than through the two branches.
The arrangement is shown in Fig. 2.5 in which the thermocouple is connected to a
load RL that can be varied. The efficiency of the generator will depend on the value
of RL as well as on the properties of the thermocouple. We shall outline the theory
of thermoelectric generation, a full treatment having been given elsewhere [3].

We are interested in the electrical power that is delivered to the load and in the
efficiency, η, that is the ratio of the output power to the rate at which heat is drawn
from the source.
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The thermal EMF is equal to (αp − αn)(T1 − T2) and this gives rise to a current
I that may be expressed as

I ¼ ap � an
� �

T1 � T2ð Þ
Rp þRn þRL

: ð2:14Þ

Thence, the power delivered to the load is

w ¼ I2RL ¼ ap � an
� �

T1 � T2ð Þ
Rp þRn þRL

� �2

RL: ð2:15Þ

Part of the heat drawn from the source is used to balance the Peltier cooling
associated with the flow of current. In addition there is the flow of heat due to
thermal conduction along the branches. Thus, the total rate of heat flow from the
source is

q1 ¼ ap � an
� �

T1 þ Kp þKn
� �

T1 � T2ð Þ: ð2:16Þ

The efficiency is equal to the ratio w/q1.
The useful power reaches its maximum value when the load resistance is equal

to the generator resistance. However, even if there were no loss of heat through
thermal conduction, the efficiency could then never exceed 50 %. An increase in the
load resistance reduces the power output but increases the efficiency. It may be
shown that the efficiency becomes a maximum when the ratio, M, of the resistance
of the load to that of the generator is given by

  Heat source T1

        Heat sink T2

  Load RL

p n

Fig. 2.5 Simple
thermocouple used as a
generator
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M ¼ RL

Rp þRn
¼ 1þ ZTmð Þ1=2: ð2:17Þ

As one might have expected, the same figure of merit, Z, applies for refrigeration
and generation as is apparent from the expression for the efficiency

g ¼ T1 � T2ð Þ M � 1ð Þ
T1 Mþ T2=T1ð Þ : ð2:18Þ

If ZTm were much greater than unity, M would also be very large and the
efficiency would approach (T1 − T2)/T1, which is the value for the Carnot cycle.

In Fig. 2.6 we show the variation of the efficiency with the dimensionless figure of
merit for a thermoelectric generator in which the source and sink are at 400 and 360 K
respectively. The Carnot cycle efficiency for these temperatures would be 10 %.

2.4 Multi-stage Devices

If a thermoelectric unit has to operate between a source and sink that are at widely
different temperatures, it is unlikely that a single pair of thermocouple materials will
suffice. Thus, the two legs are often made up of segmented thermoelements [4].
Here, however, we concern ourselves with multi-stage devices, which provide a
means for extending the maximum temperature difference for a thermoelectric
refrigerator beyond the limit set by (2.12).

We shall suppose that heat can be transferred from one stage to another without
losses associated with thermal resistance. In a cascade, as a multi-stage cooler is
often called, each stage, as one proceeds from the heat source to the sink, has to
have a greater cooling capacity than the one before. This is because every stage
rejects not only the heat that it extracts from the previous stage, but also the Joule
heat that is generated within it.
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Fig. 2.6 Plot of efficiency
against dimensionless figure
of merit for the heat source at
400 K and the heat sink at
360 K
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Suppose that there are N stages in the cascade and that the coefficient of per-
formance of the nth stage is equal to ϕn. Then, if qN is the rate of cooling of the Nth
stage, in contact with the heat source, the rate of cooling for the nth stage is given by

qn ¼ qN 1þ 1
/N

� �
1þ 1

/N�1

� �
. . . 1þ 1

/N�n

� �
: ð2:19Þ

The rate at which heat is delivered to the sink by the 1st stage is

qn ¼ qN 1þ 1
/N

� �
1þ 1

/N�1

� �
. . . 1þ 1

/1

� �
; ð2:20Þ

and the overall coefficient of performance is given by

/ ¼ 1þ 1
/N

� �
1þ 1

/N�1

� �
. . . 1þ 1

/1

� �
� 1

� 	�1

: ð2:21Þ

In order to simplify the calculations, we shall assume that each stage has the
same coefficient of performance, ϕs. Then the overall coefficient of performance is

/ ¼ 1þ 1
/s

� �N

�1

" #�1

: ð2:22Þ

It is also reasonable to assume that each stage operates with the maximum
coefficient of performance given by (2.9). We can then use (2.22) to determine the
COP of the cascade. It will necessarily be an approximation if the temperature
difference between the source and sink is large since it is then most unlikely that we
could arrange for the coefficients of performance for all the stages to be equal.

As we move from the Nth stage towards the first stage, the cooling power has to
increase. Thus, a thermoelectric cascade has a pyramidal form, as shown
schematically in Fig. 2.7. It is supposed that all the thermocouples are similar to one
another and that extra cooling is attained by increasing the number of couples.

We have calculated the overall COP for up to 4 stages assuming that ZT has the
same value of 0.7 throughout the device. The results are shown in Fig. 2.8 in which
the COP is plotted against the heat source temperature with the heat sink at 300 K.
The value of ZT is probably underestimated for commercially available

Fig. 2.7 Schematic
arrangement of a 2-stage
thermoelectric cascade. The
stages are electrically
insulated from one another
but in good thermal contact
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thermoelectric modules at the upper end of the temperature range but overestimated
at the lower end. When the coefficient becomes very small it may be assumed that
the cooling limit has been reached. Thus the single stage cooler has a minimum cold
junction temperature of about 230 K. The minimum temperatures for the 2, 3 and 4
stage cascades are of the order of 180, 160 and 140 K respectively. Commercial
multi-stage coolers do not behave quite as well as indicated by these theoretical
curves. Thus, although a single-stage module supplied by Marlow Industries Inc.
was found to give a minimum temperature of about 230 K, in agreement with
theory, a 2-stage cascade yielded only about 200 K. Even a 6-stage cascade could
not reach a temperature below about 170 K. This is primarily due to the fact that too
high a value for ZT has been assumed for the calculations at the lower temperatures.
Nevertheless, it is remarkable that temperatures substantially below 200 K can be
achieved in practice using multi-stage coolers with a heat sink at 300 K.

2.5 Application of the Thermomagnetic Effects

Although the transverse thermoelectric effects have not yet found many practical
applications, the Ettingshausen effect is potentially superior to the Peltier effect for
refrigeration at low temperatures. The Nernst effect also offers some advantages
over the Seebeck effect in the detection of thermal radiation.

There is a close correspondence between the equations that describe the cooling
power and coefficient of performance for Ettingshausen and Peltier coolers [5]. As
we shall see, there is a figure of merit that can be used for transverse thermo-
magnetic energy conversion that is similar to the figure of merit Z that is used for
thermocouples.

An Ettingshausen cooler might take the form of a rectangular bar as shown in
Fig. 2.9. A current is passed along the bar and a magnetic field is applied in a
perpendicular direction. There is then a transverse flow of heat normal to both the
current and the magnetic field. The heat source and sink are thermally, but not
electrically, attached to the thermomagnetic material.
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Fig. 2.8 Overall coefficient
of performance plotted
against heat source
temperature for 1, 2, 3 and 4
stage coolers. The heat sink is
at 300 K and ZT = 0.7
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The equipotential surfaces near the centre of the bar will be inclined to the yz
plane because of the Hall effect but near the ends of the specimen these surfaces
will normally lie in such a plane. We shall suppose that the specimen is much
longer in the x direction than in the y direction and shall neglect the end effects. We
realise, however, that the presence of end effects will always be a disadvantage of
any transverse cooling device. We shall assume the Nernst coefficient and the
electrical and thermal conductivity to be independent of temperature. This is likely
to be a reasonable assumption since the temperature differences in most thermo-
magnetic devices will probably be rather small.

We use the thermodynamic relation (1.9) to eliminate the Ettingshausen coef-
ficient, P, in favour of the Nernst coefficient, N. Then, the current Ix in the magnetic
field Bz gives rise to an Ettingshausen heat flow NBzIxTLx/Ly. This heat flow will be
opposed by thermal conduction at the rate λLxLzdT/dy. Thus, for any particular
value of y

q ¼ NBzIxTLx
Ly

� kLxLz
dT
dy

: ð2:23Þ

At the same time there will be Joule heating in the bar that will disturb the
linearity of the temperature gradient according to the relation

I2xqLx
LzL2y

¼ �kLxLz
d2T
dy2

; ð2:24Þ

since the heat generation per unit length is equal to Ix
2ρLx/(LzLy

2).
We now apply the boundary conditions that the temperature is equal to T1 when

y = 0 and T2 when y = Lx. From (2.23) and (2.24) we find that

k
dT
dy

¼ � I2xq y� 1
2 Ly

� �
L2z L

2
y

þ T2 � T1
Ly

; ð2:25Þ

Electric
current
Ix

Rate of cooling q1 

Source

SinkMagnetic 
field  Bz

Lx

x

y

z Lz

T1

Ly

T2

Fig. 2.9 Element of an
Ettingshausen refrigerator.
The heat source is at y = 0 and
the heat sink at y = Ly
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and the cooling power at the source is

q1 ¼ NBzIxT1Lx
Ly

� kLxLz T2 � T1ð Þ
Ly

� I2xqLx
2LzLy

; ð2:26Þ

which is of the same form as (2.3) for a thermoelectric refrigerator.
Comparing (2.3) and (2.26), we find that the latter has NBzLx/Ly in place of

(αp − αn), λLxLz/Ly in place of K, and ρLx/(LzLy) in place of R. This means that we
can make use of the equations for the coefficient of performance that we derived for
a thermoelectric refrigerator, if we make the appropriate substitutions, for an
Ettingshausen cooler. The thermoelectric figure of merit, Z, is replaced by a ther-
momagnetic, or Nernst-Ettingshausen, figure of merit given by

ZNE ¼ NBzð Þ2
qk

: ð2:27Þ

The differential Seebeck coefficient, (αp − αn), is replaced by NBz, which has
been called the thermomagnetic power [6], just as the Seebeck coefficient is
sometimes known as the thermoelectric power.

At this point we should draw attention to the importance of defining more
precisely the thermomagnetic figure of merit and the quantities on which it depends.
The question of definition has been discussed by Delves [7] and Horst [8]. Briefly,
the quantity ZNE, which is so closely related to the thermoelectric figure of merit, Z,
should more properly be defined as the adiabatic thermomagnetic figure of merit as
distinct from the isothermal thermomagnetic figure of merit, Zi

NE. Z
i
NE lies between

the theoretical limits 0 and 1 whereas ZNE has the limits 0 and ∞.
The isothermal coefficient is defined for zero electric current and zero transverse

temperature gradient. The isothermal electrical resistivity requires there to be no
transverse electric current and no temperature gradients. It is this resistivity that is
used in the definition of the isothermal Nernst–Ettingshausen figure of merit. The
adiabatic figure of merit ZNE, on the other hand, is defined in terms of the adiabatic
resistivity, which requires zero transverse temperature gradient and current and zero
longitudinal heat flow.

The similarities between the formal equations for refrigeration using the ther-
moelectric and thermomagnetic effects do not mean that there are no significant
differences between the two techniques. When one uses the thermomagnetic effects
there is only one material so the optimisation of the relative dimensions of two
elements is no longer a requirement. However, a major difference lies in the sepa-
ration of the directions of the electric current and the flow of heat. There are usually a
large number of couples in a thermoelectric cooling module, if its cooling power is to
be substantial, since it would be impractical to use a single couple with a large
cross-section area. Such a couple would have to draw a very large current at a very
small voltage. However, in a thermomagnetic cooler, a single bar of material might
suffice. It would be possible to have a small cross-section area in the direction of the
electric current flow and a large cross-section area in the direction of heat flow.
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The advantage of the separation of the electric and thermal flows would certainly
be apparent if the Nernst effect were used in a broadband thermal detector.
Thermocouples are often used as thermal detectors but it is difficult to achieve a
rapid response time for such devices. The response time is proportional to the
square of the thickness in the direction of the heat flow. However, if one is to
decrease the length of the legs of a thermocouple, the output voltage for a given
heat flow becomes smaller. In a thermomagnetic detector, the output voltage
depends on the temperature gradient rather than the temperature difference. It is,
therefore, possible to use a thin film of thermomagnetic material that combines both
a rapid response and a high sensitivity [9, 10].

It is particularly simple to make a cascade based on the transverse thermo-
magnetic effects. For a given current, I, the cooling power is inversely proportional
to the thickness in the y direction. Thus, instead of changing the number of elements
from one stage to another, as in a thermoelectric cascade, one can use a number of
bars of different thickness, as shown in Fig. 2.10. All the bars have the same length
in the x direction and the same width in the direction of the magnetic field.

However, there is a method of obtaining an infinite-staged cascade using a single
piece of thermomagnetic material. The sample is shaped so that it is much wider at
the heat sink than it is at the source, as shown in Fig. 2.11. The potential difference,
V, between the ends remains the same for all values of y.

Consider the section of thickness Δy that is bounded by the broken lines in
Fig. 2.11. If we regard this section as one of the stages in the cascade its optimum
coefficient of performance is

/y ¼
T
DT

1þ ZNETð Þ1=2�1

1þ ZNETð Þ1=2 þ 1
: ð2:28Þ

Cold face 

Electrical
insulation 

Magnetic
field 

I

I

I

Fig. 2.10 3-stage Ettinghausen cooler. The same current, I, passes through each stage but the
stages are of different thickness
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Then the ratio of the heat leaving the stage at y + Δy to that entering at y is

qyþDy

qy
¼ 1þ DT

T
1þ ZNETð Þ1=2 þ 1

1þ ZNETð Þ1=2�1
: ð2:29Þ

This is the ratio of the width in the z direction at y + Δy to that at y, that is
(Lz + ΔLz)/Lz.

If we denote (1 + ZNET)
1/2 by MNE, we may write

DLz
Lz

¼ MNE þ 1
MNE � 1

DT
T

: ð2:30Þ

This leads to an integral equation which we solve after making the assumption
that [(MNE + 1)/{T(MNE − 1)}(dT/dy) is approximately constant. The solution is

Lz ¼ Lzð Þ1exp
MNE þ 1

T MNE � 1ð Þ y
dT
dy

� �
: ð2:31Þ

Equation (2.31) shows us that we can make an infinite-staged cascade by using a
thermomagnetic element of exponential shape.

It may not be easy to cut a sample of material to the optimum shape but it has
been shown [11] that even a simple trapezoidal section yields a substantial
improvement in performance over that of a rectangular bar.

y

Δy

(Lz)1 

Lx 

Bz

Fig. 2.11 Exponentially-shaped Ettingshausen cascade. Heat is extracted from the source at the
upper face
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Chapter 3
Thermoelectric Properties of Metals
and Semiconductors

Abstract This chapter deals with the theory of the transport properties of solids.
Conduction by electrons is formulated using energy bands and the concepts of
effective mass and positive holes are introduced. The theory makes use of Fermi–
Dirac statistics and the degenerate and non-degenerate approximations.
A distinction is drawn between the properties of metals, insulators and semicon-
ductors. The important effects that appear when both electrons and holes are present
are discussed. Transport of heat by the lattice vibrations is considered and the idea
of phonons is introduced. The phenomenon of phonon drag, associated with the
interaction between the charge carriers and the lattice vibrations, is mentioned.

3.1 Transport by Electrons

Thermoelements are usually made from crystalline solids. They are not commonly
single crystals but their crystalline nature can be observed under a microscope.
Sometimes the transport properties vary with crystalline orientation but, until we
deal with specific examples, we shall suppose that the properties are uniform in all
directions.

The transport of electric charge is due to quasi-free electrons in the solid. The
solids of interest to us are metals and semiconductors. In such materials, the
electrons carry not only charge but also thermal energy. In other words, there is an
electronic component of the thermal conductivity. As we shall see later, heat can
also be carried by the thermal vibrations of the atoms in a crystal but, for the
moment, we confine ourselves to the electronic effects.

The idea of conduction by electrons was proposed by Drude and Lorentz using
the principles of classical physics. The classical free electron theory predicted that
the specific heat should be much larger for a metal than for an electrical insulator
but, in reality, there is very little difference. This discrepancy disappeared when
Sommerfeld [1] took account of the newly developed quantum theory but neither
the classical nor the quantum mechanical free electron theories were able to explain
why some solids are metallic conductors and others are insulators. It was only when
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notice was taken of the interaction of the electrons with the periodic potential that
exists in a crystal lattice that further progress could be made. It was shown that,
through this interaction, the energy of the electrons must lie in discrete bands that
are separated by forbidden regions or energy gaps. Interestingly, Sommerfeld’s
theory can still be applied to the current-carrying electrons if they are assigned an
effective mass rather than the mass of a free electron.

According to quantum theory, the probability that an electron state of energy, E,
will be occupied is given by the Fermi distribution function

f0 Eð Þ ¼ exp
E � EF

kT

� �
þ 1

� ��1

: ð3:1Þ

The quantity EF has a value that depends on the total number of electrons that have
to be accommodated, and k is Boltzmann’s constant. The Fermi distribution
function has the property that it is equal to zero when (E − ΕF) >> kT and equal to
unity when (E − ΕF) << kT. The transition from zero to unity takes place over a very
narrow range of energy as shown in Fig. 3.1. The energy, EF, at which the Fermi
distribution function is equal to ½ is known as the Fermi level. If the number of
permitted electron states in the energy range between E and E + dE is represented
by g(E)dE, the total number of electrons is

n ¼ Z1

0

f0 Eð Þg Eð ÞdE: ð3:2Þ

Each electron state is defined not only by its energy but also by its momentum
or, more strictly, by its wave vector. Thus, although there may be gaps between the
allowed bands of energy at a given position in wave-vector space, the bands might
still overlap in a simple energy band diagram. Such a diagram is shown schemat-
ically in Fig. 3.2 for the situation where this complication does not arise. It must be
understood that the energy bands shown in this diagram are only those in the
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Fig. 3.1 Plot of Fermi
distribution function against
(E − EF)/kT
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neighbourhood of the Fermi level. There are also completely filled lower bands that
do not contribute to the transport processes.

It must be appreciated that electrical conduction can take place only when the
electrons in a band can move from one energy state to another. This, of course,
cannot happen in an empty band for there are then no electrons at all. It also cannot
happen when a band is completely full, since there are then no free states into which
an electron can move. Conduction is, in fact, due entirely to those electrons whose
energy is such that the states are partially filled.

The density of electron states, g(E), is small near the conduction band edge but
rises rapidly within the band. Thus, if the Fermi level lies well within the con-
duction band, there will be a large number of electrons located near vacant states
and the solid will be highly conducting, that is it will be a metal. On the other hand,
if the Fermi level lies well within the energy gap, there will be virtually no electrons
in the conduction band and the material will be an electrical insulator. When the
Fermi level is close to the conduction band edge there will be only a few electrons
but they will all be able to contribute to the conduction process. Because of their
relatively small number, the conductivity will not be large and the material is called
a semiconductor. The density of electron states near the band edge is given by the
expression

g Eð ÞdE ¼ 4p 2m�ð Þ3=2E1=2dE
h3

: ð3:3Þ

This is the same density of states that is to be found in Sommerfeld’s theory with
the exception that the free electron mass m is replaced by an effective mass m*.

Interesting effects occur when the Fermi level is close to the edge of the valence
band. Then there will be some empty states in this band allowing conduction to take
place. It turns out that, although the process is still due to negatively charged
electrons, the effective mass is now negative. The behaviour can best be described
in terms of what are called positive holes, which have a positive effective mass.
Equation (3.3) can still be used for the positive holes.

A glance at Fig. 3.1 reveals that it is possible for the Fermi function to be
significantly greater than zero at the edge of the conduction band and, at the same
time, be significantly less than unity at the edge of the valence band. The Fermi

Energy

Conduction band 

Energy gap 

Valence band 

Fig. 3.2 Simple energy band
diagram
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level itself would be somewhere near the middle of the forbidden gap. In this case,
there would be simultaneous conduction by electrons and holes. If the energy gap is
small enough for this to occur, the material is what is known as an intrinsic
semiconductor. Conduction by either electrons in the conduction band or holes in
the valence band can be induced by adding donor or acceptor impurities to a
semiconductor. In such extrinsic conduction, the Fermi level is close to the edge of
either the conduction band or valence band. Figure 3.3 shows energy diagrams for
an insulator, an intrinsic semiconductor and for n-type and p-type extrinsic
semiconductors.

We shall discuss the transport effects in a semiconductor with specific reference
to electrons. The same equations will apply for hole conduction but, when dealing
with holes, we must measure the energy downwards from the Fermi level. The
subscripts n and p will be used for the electrons and holes respectively.

We shall make use of the concept of a relaxation time, τe, for the charge carriers.
Then, if the distribution function, f, is disturbed from its equilibrium value, f0, it will
relax towards f0 according to

df Eð Þ
dt

¼ � f Eð Þ � f0 Eð Þ
se

: ð3:4Þ
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Fig. 3.3 Energy band diagrams for a an insulator, b an intrinsic semiconductor, c an n-type
semiconductor and d a p-type semiconductor
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As an approximation we shall assume that the relaxation time can be expressed in
the form τ0E

r where τ0 and r are constants for a given scattering process.
In many potential thermoelectric materials it seems that the predominant scat-

tering of the charge carriers is due to the acoustic-mode lattice vibrations, in which
case the parameter r is equal to −1/2. Also, for scattering by ionised impurities r is
equal to 3/2. When more than one scattering process is operative, the properties can
sometimes be determined by interpolation. Generally speaking, reciprocal relax-
ation times are additive but, hopefully, one process may outweigh the others for any
particular electron energy.

Our theory is based on the Boltzmann equation that relates the effects of the
applied fields and the scattering of the carriers. If we suppose that the disturbance to
the distribution is relatively small we find that

f Eð Þ � f0 Eð Þ
sn

¼ u
df0 Eð Þ
dE

dEF

dx
þ ðE � EFÞ

T
dT
dx

� �
: ð3:5Þ

Here u is the velocity of the carriers in the x direction and ΕF is the Fermi energy.
The two terms in the brackets are associated with the electric field and the tem-
perature gradient respectively.

We may use (3.5) to obtain the electric current density, i, and the heat flux
density, j. The equation for the electric current density is

i ¼ �
Z1
0

eu f Eð Þg Eð Þ dE; ð3:6Þ

where e is the magnitude of the electronic charge. The upper and lower signs apply
for electrons and holes respectively. The heat flux density is

j ¼
Z1
0

u E � EFð Þ f Eð Þg Eð Þ dE; ð3:7Þ

where (E − ΕF) is the energy transported by each carrier. The upper limit of the
integrals in (3.4) and (3.5) has been arbitrarily set at infinity but, in fact, this is
unimportant since f(E) becomes zero before E becomes at all large.

In using these equations to determine the transport coefficients we can replace
f by (f − f0) since there is no flow of any kind when f = f0. Also, since the drift
velocity of the carriers is a small part of the total velocity, it is satisfactory to replace
u by 2E/3 m*. This enables us to write (3.6) and (3.7) in the forms

i ¼ � 2e
3m�

Z1
0

g Eð ÞseE df0 Eð Þ
dE

dEF

dx
þ E � EFð Þ

T
dT
dx

� �
dE; ð3:8Þ
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j ¼ �EF

e
iþ 2

3m�

Z1
0

g Eð ÞseE2 df0 Eð Þ
dE

dEF

dx
þ E � EFð Þ

T
dT
dx

� �
dE: ð3:9Þ

In order to determine the transport parameters we must insert the appropriate
boundary conditions. Thus, the electrical conductivity is given by the ratio of i to
the electric field when the temperature gradient dT/dx is zero. The electronic con-
tribution, λe, to the thermal conductivity is equal to the ratio of j to −dT/dx when the
electric current is zero. Also, the Seebeck coefficient is equal to the ratio of the
electric field to the temperature gradient under the same condition. Thence, the three
quantities that appear (with the lattice conductivity) in the thermoelectric figure of
merit are

r ¼ 1
q
¼ � 2e2

3m�

Z1
0

g Eð Þse df0 Eð Þ
dE

dE; ð3:10Þ

ke ¼ 2
3m�T

Z1
0

g Eð ÞseE2 df0 Eð Þ
dE

dE

2
4

3
5
2,Z1

0

g Eð Þse df0 Eð Þ
dE

dE

8<
:

9=
;

*

�
Z1
0

g Eð ÞseE3 df0 Eð Þ
dE

dE

+ ð3:11Þ

and

a ¼ � 1
eT

EF �
Z1
0

g Eð ÞseE2 df0 Eð Þ
dE

dE

,Z1
0

g Eð ÞseE df0 Eð Þ
dE

dE

2
4

3
5: ð3:12Þ

It is convenient to express the integrals that are included in (3.10)–(3.12) in the
form

Ks ¼ � 2T
3m�

Z1
0

g Eð ÞseEsþ 1 df0 Eð Þ
dE

dE: ð3:13Þ

One can then eliminate g and τe in favour of m*, r and τ0. Eventually one then finds
that

Ks ¼ 8p
3

2
h2

� �3=2

m�ð Þ1=2Ts0 sþ rþ 3=2ð Þ kTð Þsþ rþ 3=2Fsþ rþ 1=2; ð3:14Þ
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where

Fn nð Þ ¼ Z1

0

nnf0 nð Þdn: ð3:15Þ

Here the reduced energy, ξ, has been used as a variable in place of E/kT. The
derivation of (3.14) is given more fully elsewhere [2]. The functions Fn are known
as the Fermi–Dirac integrals and, for convenience, are shown in Tables 3.1 and 3.2
for different values of the reduced Fermi energy, η, which is equal to EF/kT.

Table 3.1 Fermi–Dirac integrals, Fn, as defined by (3.15), for n = −1/2, 0, 1/2, 1 and 3/2

η F−1/2 F0 F1/2 F1 F3/2

−2.0 0.21919 0.12693 0.11459 0.13101 0.1758

−1.8 0.26278 0.15298 0.13863 0.15893 0.21367

−1.6 0.31393 0.1839 0.1674 0.19253 0.25945

−1.4 0.37352 0.22042 0.2017 0.23286 0.31467

−1.2 0.44235 0.26328 0.24241 0.28112 0.38111

−1.0 0.52114 0.31326 0.2905 0.33865 0.46085

−0.8 0.61308 0.3711 0.34699 0.40695 0.55625

−0.6 0.71033 0.43749 0.41294 0.48766 0.66999

−0.4 0.82094 0.51302 0.48941 0.58255 0.80506

−0.2 0.94179 0.59814 0.57747 0.6935 0.96479

0.0 1.07213 0.69315 0.67809 0.82247 1.1528

0.2 1.21086 0.79814 0.79218 0.97143 1.373

0.4 1.35662 0.91302 0.92051 1.14238 1.62954

0.6 1.50787 1.03749 1.06309 1.33727 1.92679

0.8 1.66299 1.1711 1.22221 1.55798 2.26928

1.0 1.82037 1.31326 1.39637 1.80628 2.66167

1.2 1.97851 1.46328 1.58632 2.0838 3.10867

1.4 2.13609 1.62041 1.79206 2.39205 3.61502

1.6 2.29197 1.7839 2.01348 2.73236 4.18544

1.8 2.44526 1.95297 2.25036 3.10594 4.82462

2.0 2.59528 2.12692 2.50241 3.51383 5.53714

2.2 2.74154 2.30507 2.76928 3.95693 6.32752

2.4 2.88374 2.48681 3.05058 4.43604 7.20015

2.6 3.0217 2.67161 3.34589 4.95181 8.15931

2.8 3.15539 2.859 3.65479 5.50483 9.20915

3.0 3.28485 3.04855 3.97687 6.09556 10.3573

3.2 3.41017 3.23992 4.3117 6.72441 11.59684

3.4 3.5315 3.4328 4.65888 7.39172 12.9423

3.6 3.64903 3.62693 5.01803 8.09775 14.39367

3.8 3.76293 3.82211 5.38877 8.8427 15.95437

4.0 3.87341 4.01815 5.77074 9.62671 17.62761

η is the reduced Fermi energy and is equal to EF/kT
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The expressions for the transport coefficients in terms of the integrals Ks are

r ¼ e2

T
K1; ð3:16Þ

ke ¼ 1
T2 K2 � K2

1

K0

� �
; ð3:17Þ

Table 3.2 Fermi–Dirac integrals, Fn, as defined by (3.15), for n = 2, 5/2, 3, 7/2 and 4

η F2 F5/2 F3 F7/2 F4

−2.0 0.26627 0.44455 0.8053 1.565 3.2345

−1.8 0.32408 0.54162 0.9819 1.909 3.9471

−1.6 0.39416 0.65954 1.1967 2.3281 4.8157

−1.4 0.479 0.80264 1.4578 2.8383 5.8741

−1.2 0.58151 0.97608 1.775 3.4589 7.1631

−1.0 0.70513 1.18597 2.1598 4.2133 8.7321

−0.8 0.85386 1.43954 2.6262 5.1294 10.6406

−0.6 1.03234 1.74527 3.1904 6.2408 12.9601

−0.4 1.24588 2.11308 3.872 7.5873 15.7765

−0.2 1.50052 2.55444 4.6937 9.2162 19.1926

0.0 1.80309 3.08259 5.6822 11.1837 23.3309

0.2 2.16116 3.71261 6.8685 13.5556 28.3369

0.4 2.58316 4.46164 8.2884 16.4092 34.383

0.6 3.07826 5.34894 9.983 19.8344 41.6723

0.8 3.65642 6.396 11.9991 23.9356 50.4432

1.0 4.32833 7.62661 14.3898 28.8329 60.9745

1.2 5.10535 9.06691 17.2148 34.6643 73.5903

1.4 5.99949 10.74543 20.5409 41.5868 88.6657

1.6 7.02331 12.69308 24.4423 49.7786 106.6324

1.8 8.1899 14.94311 29.0009 59.4401 127.9849

2.0 9.5128 17.53113 34.3067 70.7962 153.2857

2.2 11.00594 20.49501 40.4578 84.097 183.1721

2.4 12.68359 23.87484 47.5608 99.6198 218.3621

2.6 14.56031 27.71286 55.7307 117.6701 259.6599

2.8 16.65089 32.05334 65.0912 138.5827 307.9621

3.0 18.97031 36.9425 75.7744 162.7227 364.2625

3.2 21.53368 42.42834 87.9208 190.486 429.6565

3.4 24.35616 48.56049 101.6791 222.2993 505.344

3.6 27.45291 55.38993 117.2055 258.6194 592.6296

3.8 30.83899 62.06875 134.6629 299.9315 692.9207

4.0 34.52922 71.34963 154.2198 346.7463 807.7205

η is the reduced Fermi energy and is equal to EF/kT
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and

a ¼ � 1
eT

EF � K1

K0

� �
: ð3:18Þ

Equations (3.16)–(3.18) allow us to relate the thermoelectric figure of merit to
the scattering parameters, the effective mass of the charge carriers and the Fermi
energy. It is also necessary to express the total thermal conductivity, λ, as the sum
of the electronic component, given by (3.17) and the lattice component, λL. Thus,

k ¼ ke þ kL: ð3:19Þ

3.2 Metals and Semiconductors

In the general case we have to evaluate the transport parameters using tabulated
values for the Fermi–Dirac integrals such as those in Tables 3.1 and 3.2. However,
these integrals can be obtained as simple approximations when the Fermi energy, as
measured from the band edge, is either very much greater than kT or very much less
than −kT.

When EF >> kT, the conductor is a metal and the degenerate approximation may
be employed. This approximation is usually regarded as acceptable when EF > 4kT.
It is found that the Fermi–Dirac integrals for a degenerate conductor may be
expressed as

Fn gð Þ ¼ gnþ 1

nþ 1
þ ngn�1 p

2

6
þ n n� 1ð Þ n� 2ð Þgn�3 7p

4

360
þ � � � ð3:20Þ

The series converges rapidly and one only needs to use as many terms as yield a
non-zero value for the parameter in question.

The evaluation of the electrical conductivity requires only the first term in the
series. Thus,

r ¼ 8p
3

2
h2

� �3=2

e2 m�ð Þ1=2s0Erþ 3=2
F : ð3:21Þ

To determine the electronic thermal conductivity, the first two terms in the series
are needed. We make use of the quantity L, known as the Lorenz number, which is
defined as the ratio λe/σT, and is given by

L ¼ p2

3
k
e

� �2

: ð3:22Þ
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In a metal the electronic thermal conductivity is usually much larger than the lattice
component. Thus, (3.22) is consistent with the Wiedemann–Franz law, which states
that the ratio of the thermal to the electrical conductivity is the same for all metals at
any particular temperature.

The Seebeck coefficient also requires the first two terms of the series in (3.20). It
is found to be

a ¼ � p2

3
k
e

rþ 3=2ð Þ
g

: ð3:23Þ

As η becomes large, the Seebeck coefficient becomes very much less than k/e. This
is borne out in practice as most metals have Seebeck coefficients of the order of
only a few microvolts per degree.

We turn now to the classical or non-degenerate approximation that applies to
most semiconductors when they do not contain too many impurities. This
approximation is usually acceptable when η < −2kT. Under this condition the
Fermi–Dirac integrals may be written as

Fn gð Þ ¼ exp gð Þ
Z1
0

nnexp �nð Þdn ¼ exp gð ÞC nþ 1ð Þ; ð3:24Þ

where the gamma function is such that

C nþ 1ð Þ ¼ nC nð Þ: ð3:25Þ

When n is an integer, Γ(n + 1) is equal to n! Also, one can calculate the gamma
function for half-integral values of n using (3.25) and the relation Γ(1/2) = π1/2.

Under the non-degenerate condition, then, one can express the Fermi–Dirac
integrals as

Ks ¼ 8p
3

2
h3

� �3=2

m�ð Þ1=2Ts0 kTð Þsþ rþ 3=2C sþ rþ 5=2ð Þexp gð Þ: ð3:26Þ

The electrical conductivity of a non-degenerate conductor is

r ¼ 8p
3

2
h3

� �3=2

e2 m�ð Þ1=2Ts0 kTð Þrþ 3=2C rþ 5=2ð Þexp gð Þ: ð3:27Þ

It is convenient to express the electrical conductivity as

r ¼ nel; ð3:28Þ
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where n is the carrier concentration and μ is the carrier mobility, which does not
depend on the Fermi energy under classical conditions. n and μ are given by

n ¼ 2
2pm�kT

h2

� �3=2

exp gð Þ; ð3:29Þ

and

l ¼ 4
3p1=2

C rþ 5
2

� �
es0 kTð Þr

m� : ð3:30Þ

Equation (3.29) shows that the carrier concentration is that which would be
found if there were 2(2πm*kT/h2)3/2 energy levels located at the band edge so this
quantity is known as the effective density of states.

The Seebeck coefficient of a non-degenerate conductor is related to the reduced
Fermi energy η through the relation

a ¼ � k
e

g� rþ 5
2

� �� �
: ð3:31Þ

Remembering that the Peltier coefficient is equal to αT, we see that the energy
carried by each electron or hole is made up of a potential component −ηkT/e and a
kinetic component equal to (r + 5/2)kT/e. In a typical extrinsic semiconductor, �g
may be much greater than unity and the magnitude of the Seebeck coefficient may
be several hundred microvolts per degree.

Although the Seebeck coefficient is very much different in semiconductors and
metals, the Lorenz numbers usually differ by a factor of less than 2. For a
non-degenerate conductor, the Lorenz number is

L ¼ k
e

� �2

rþ 5
2

� �
: ð3:32Þ

It is independent of the Fermi energy throughout the non-degenerate range.
Although the Lorenz number is so close to that for a metal, semiconductors do not
usually satisfy the Wiedemann–Franz law. This is because the electronic compo-
nent of the thermal conductivity is so much smaller and the lattice component is,
therefore, dominant.

If the Wiedemann-Franz law applied for both semiconductors and metals, there
would be no doubt that the former class of material should be used in thermoelectric
energy conversion in view of the larger magnitude of the Seebeck coefficient.
However, as we shall see, the increase in the thermoelectric coefficients must be
balanced against a decrease in the ratio of the electrical to thermal conductivity. It
turns out that most of the materials of interest for practical applications are semi-
conductors in which the Fermi energy lies close to the edge of the conduction or
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valence band. That means that neither the degenerate nor the non-degenerate
approximations are applicable and we must use the tabulated Fermi–Dirac integrals
in Tables 3.1 and 3.2. In Figs. 3.4, 3.5 and 3.6 we show how the transport properties
of interest vary with the reduced Fermi energy for the extreme values of r that are
likely to be encountered, namely −1/2 and 3/2.

In Fig. 3.4, the electrical conductivity is given as a ratio of its value at a given
reduced Fermi energy, η, to its value when the Fermi level lies at the band edge.
Because of the rapid variation of the conductivity with Fermi energy, a logarithmic
scale is used. It is noted that the value of the scattering parameter, τ0, has been
supposed to be independent of η. While this is a reasonable assumption for lattice
scattering of the carriers (r = −1/2) it is unlikely to be appropriate for
ionised-impurity scattering (r = 3/2). The decrease in the relaxation time as the
impurity concentration rises should be taken into account if practical use is to be
made of Fig. 3.4.

When the Seebeck coefficient is plotted against η, as in Fig. 3.5, a linear scale
can be used since the variation is relatively small. The Seebeck coefficient will be
negative for an n-type semiconductor in which the Fermi energy is measured
upwards from the edge of the conduction band. It will be positive for a p-type

Fig. 3.4 Plot of electrical
conductivity against reduced
Fermi energy for r equal to
−1/2 and 3/2. The electrical
conductivity is given as a
fraction of its value at η = 0

Fig. 3.5 Plot of Seebeck
coefficient in units of
k/e against reduced Fermi
energy
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semiconductor, the Fermi energy then being measured downwards from the edge of
the valence band edge.

As shown in Fig. 3.6, the Lorenz number is only weakly dependent on the Fermi
energy. It becomes smaller than the metallic value when r = −1/2 and larger than
this value when r = 3/2.

3.3 Bipolar Effects

We now consider a conductor in which there are both electrons and positive holes.
Such a material would be a wide-gap semiconductor at elevated temperatures or a
narrow-gap semiconductor or semimetal at ordinary temperatures. When both types
of carrier are present, it is possible for them to move in the same direction,
transporting energy without an electric current. This leads to interesting effects that
have a bearing on thermoelectric performance.

Let us denote the separate current densities for the electrons and holes as in and
ip. The expression for in or ip when there is a temperature gradient as well as an
electric field is

in;p ¼ rn;p
dV
dx

� an;p
dT
dx

� �
: ð3:33Þ

The electrical conductivity is obtained by setting the temperature gradient equal
to zero. Thus,

r ¼ in þ ip
dV=dx

¼ rn þ rp: ð3:34Þ

It is, of course, not surprising that the electrical conductivity is the sum of the
conductivities of the separate carriers. Likewise, by setting the electric current equal

Fig. 3.6 Plot of Lorenz
number in units of (k/e)2

against reduced Fermi energy
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to zero we find that the Seebeck coefficient is a weighted average of the Seebeck
coefficients associated with the two types of carrier. Thus,

a ¼ dV=dx
dT=dx

¼ anrn þ aprp
rn þ rp

: ð3:35Þ

It must be remembered that the Seebeck coefficients for the two carriers are of
opposite sign, so the magnitude of α given by (3.35) can be quite small.

Let us now consider the flow of heat in the two-carrier system. The heat flux
densities for the two types of carrier are found from

jn;p ¼ an;pTin;p � kn;p
dT
dx

: ð3:36Þ

Also, the thermal conductivity is defined for the condition of zero electric current.
Thence,

in ¼ �ip ¼ rnrp
rn þ rp

an � ap
� 	 dT

dx
: ð3:37Þ

By combining (3.36) and (3.37) to find the total heat flux density and dividing the
result by the temperature gradient, we find that

ke ¼ kn þ kp þ rnrp
rn þ rp

an � ap
� 	2

T: ð3:38Þ

The remarkable feature of (3.38) is that the total electronic thermal conductivity
is not merely the sum of the thermal conductivities of the separate carriers. There is
an additional term associated with the bipolar flow [3]. This additional term can be
much larger than either λn or λp. Although the relative effect of the bipolar con-
tribution is greatest for an intrinsic wide-gap semiconductor, the phenomenon is
most easily observed for a narrow-gap material since there are then many more
carriers of both types. Thus, it was first observed for intrinsic bismuth telluride [4],
which has an energy gap at ordinary temperatures of about 6kT. The Lorenz number
was found to be about 25(k/e)2 whereas, when there is only a single type of carrier,
L is no more than about 2(k/e)2.

3.4 Phonon Conduction

We have already discussed the conduction of heat by the charge carriers. Now we
discuss the heat conducted by the lattice vibrations. In any solid each atom is
bonded to its neighbours and, thus, any displacement of one atom will give rise to a
disturbance that is passed on to the rest of the specimen. The atoms are in continual
vibration and the overall motion can be represented by waves, which may be either
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longitudinal or transverse in their nature. At low frequencies the vibrations are
familiar to us as sound waves but, in considering heat conduction, we are more
interested in much higher frequencies.

Before proceeding further, we need to discuss the nature of the vibrational
spectrum. This problem was first tackled by Debye [5] who supposed that a crystal
could be represented by an elastic continuum. He showed that the boundary con-
ditions allowed only certain wavelengths to occur. A lower limit to the permissible
wavelengths is set by the atomic nature of matter. The total number of vibrational
modes is equal to 3N, where N is the number of atoms. According to Debye’s
theory, the number of modes per unit volume that have frequencies between ν and
ν + dν is

nL ¼ 2pm3dm
v3

; ð3:39Þ

where v is the speed of sound. In order that the total number of modes be equal to
3N

4pm3D
v3

¼ 3N: ð3:40Þ

Debye used the newly developed quantum theory to determine the energy, W, in
a mode of frequency ν. Quantised vibrations satisfy Bose–Einstein statistics rather
than the Fermi–Dirac statistics that apply to the charge carriers. The expression for
W is then

W ¼ hm exp
hm
kT

� �
� 1

� ��1

: ð3:41Þ

The specific heat at constant volume, cV, is found by differentiating the integrated
internal energy with respect to temperature with the result that

cV ¼ 9Nk
T
HD

� �3

fD
HD

T

� �
; ð3:42Þ

where ΘD, which is known as the Debye temperature, is defined as

HD ¼ hmD
k

; ð3:43Þ

and

fD
HD

T

� �
¼

ZHD=T

0

x4exp xð Þ
exp xð Þ � 1ð Þ2 dx: ð3:44Þ
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The general behaviour of real solids is quite close to that predicted by Debye in
spite of the very elementary model that he used. It turns out that the specific heat is
not particularly sensitive to the details of the vibrational spectrum. The fact that
Debye’s specific heat theory was so successful has allowed the use of the concept of
a Debye temperature to remain to this day. Discrepancies between the experimental
observations and the theoretical curve are accounted for by allowing ΘD to be
temperature dependent.

A more advanced discussion of lattice vibrations requires us to differentiate
between transverse and longitudinal waves. It is also necessary to distinguish
between the group velocity, defined as 2πdν/dqL, where qL is the wave number, and
the phase velocity, which is equal to 2πν/qL. The two velocities have the same value
for the acoustic vibrations at low frequencies but become different at the other end
of the spectrum. This is apparent from the schematic dispersion curve shown in
Fig. 3.7. This diagram also shows acoustic and optic branches which both exist
when there is more than one atom per unit cell. If there are n atoms per unit cell,
there will be 3 acoustic branches (one longitudinal and two transverse) and 3(n − 1)
optic branches.

Debye attempted to use his elastic continuum model to explain the observation
[6] that the thermal conductivity of a pure insulating crystal varies inversely with
the absolute temperature. However, he was unsuccessful in accounting for the fact
that the thermal conductivity is not infinite. The thermal conductivity becomes finite
only if the thermal vibrations are anharmonic. Peierls [7] was able to take this
anharmonicity into account and, thus, explain the phenomenon of thermal resis-
tance in the absence of imperfections, such as impurities.

It was Peierls who first introduced the idea of phonons or quantised vibrational
wave packets. He showed that phonons could interact with one another in two
ways. In normal or N-processes the momentum of the phonons is conserved,
whereas in umklapp or U-processes momentum is not conserved. The law of
conservation of momentum is satisfied for U-processes if the translation of the
whole crystal is taken into account. N-processes are important in redistributing

Fig. 3.7 Schematic
dispersion curve for the
acoustic branches in a
diatomic lattice
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momentum but only the U-processes lead to thermal resistance. The two types of
process are illustrated in Fig. 3.8.

In Fig. 3.8 we more properly use wave vector, q, rather than momentum to
represent the motion of the phonons. The squares are unit cells in two-dimensional
wave-vector space. In the diagram, the phonons 1 and 2 interact to produce a third
phonon 3. In the N-process, the third phonon is obtained simply by vector addition
of 1 and 2 but in the U-process a reciprocal lattice vector G has to be added to bring
the third phonon within the cell. We may represent the two processes by the
equations

q3 ¼ q1 þ q2; N-processð Þ ð3:45Þ

and

q3 ¼ q1 þ q2 þG: U-processð Þ ð3:46Þ

Peierls showed that U-processes become more probable as the temperature rises
since they can occur only when there are reasonable numbers of phonons with wave
vectors that are sufficiently large to produce a resultant outside the unit cell in
wave-vector space. At low temperatures it is predicted that the mean free path of the
phonons should be proportional to [exp(−ΘD/aT)]

−1, where a is a constant equal to
about 2. This exponential term should dominate the temperature variation of the
thermal conductivity. It was, therefore, something of a mystery that the
1/T variation of the thermal conductivity should persist to quite low temperatures in
many materials. Eventually it was realised that scattering of phonons on various
types of point defects was masking the exponential behaviour. This behaviour was
observed only after pure and perfect single crystals could be studied.

We may express the lattice thermal conductivity in terms of the specific heat, the
speed of sound and the mean free path, lt, of the phonons using the relation

kL ¼ cVvlt=3: ð3:47Þ

We require this quantity to be small in a thermoelectric material and we shall
discuss the factors that control the magnitude of the phonon free path in later
chapters.

qx qx

qy qy

1
1

22

3 3

G

(a) (b)
Fig. 3.8 Representation in
two dimensions of
a N-processes and
b U-processes
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3.5 Phonon Drag

The theoretical approach that has been used in the previous sections is based on the
assumption that the flows of the charge carriers and the phonons can be treated
independently. However, under some circumstance this assumption becomes
invalid. When the two flows become linked, there appear what are known as the
phonon drag effects.

Generally the phonon drag effects become stronger as the temperature is
reduced. Thus, their influence on the Seebeck coefficient of germanium was
observed [8, 9] at temperatures below 100 K. Herring [10] showed that the higher
than expected thermoelectric effect could be explained if it were supposed that
electrons were scattered preferentially by the phonons in the direction of the flow of
heat. Gurevich [11, 12] had earlier proposed that such an effect might occur and
phonon drag is sometimes called the Gurevich effect.

We discuss the origin of phonon drag with reference to the Peltier effect. Even
when phonon drag occurs the Seebeck and Peltier coefficients still satisfy the
Kelvin relation.

Phonon drag is expected to be strongest when the carrier concentration, n, is low.
Under the influence of an electric field, E, these carriers accept momentum at the
rate �neE per unit volume. This momentum may be lost in various ways. It can be
passed on to impurities and other defects and thence lost in random thermal
vibrations. Alternatively, it can be given to the phonon system and retained until
non-momentum-conserving collisions occur. We suppose that the fraction of col-
lisions that involve phonons is x and the relaxation time for the loss of momentum
from the phonons is τd. Then the excess momentum carried by the phonons is

Dp ¼ �xnesdE. ð3:48Þ

The key to understanding phonon drag is the realisation that the time τd can be
much greater than the relaxation time that controls the heat conduction process. The
charge carriers in a semiconductor are scattered primarily by phonons of much
lower energy than the heat-conduction phonons.

The electric current density is

i ¼ nelE; ð3:49Þ

and the rate of flow of heat per unit cross-section area is

w ¼ v2Dp: ð3:50Þ

The phonon drag contribution to the Peltier coefficient is the ratio of the rate of
heat flow to the electric current and is thus
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pd ¼ � xv2sd
l

; ð3:51Þ

and the phonon drag Seebeck coefficient is

ad ¼ pd
T

¼ � xv2sd
lT

: ð3:52Þ

It is noted that the usual thermoelectric coefficients are reinforced by the
phonon-drag coefficients as they have the same sign.

The phonon drag effects are strongly dependent on temperature. Typically, τd is
proportional to T−5 and μ is proportional to T−3/2, so we expect αd to vary as T−9/2.
It is unusual to find a significant phonon drag effect at room temperature, though it
has been observed [13] for semiconducting diamond above 300 K. Phonon drag has
certainly been found in bismuth [14, 15] at low temperatures and is generally larger
in semimetals than metals [16].

It is noteworthy that (3.51) and (3.52) do not contain the carrier concentration. In
fact, the phonon drag effects become smaller as n increases. This is due in part to
the scattering of charge carriers on the donor or acceptor impurities but, more
significantly, to the so-called saturation effect. When the carrier concentration is
high, momentum is increasingly transferred back to the electrons from the phonons.
Herring [10] showed that (3.51) and (3.52) are modified due to the saturation effect.
Equation (3.52) becomes

ad ¼ � lT
xv2sd

þ 3nexv2sd
NdklT

� ��1

; ð3:53Þ

where Nd is the number of phonon modes that interact with the charge carriers. It is
the saturation effect that will probably prevent phonon drag being exploited as a
means of improving the figure of merit.

Keyes [17] showed that the value of z that can be reached using phonon drag is
rather low. We suppose that the ordinary contribution to the Seebeck coefficient is
small compared with the drag component. The optimum carrier concentration can
be found from the expression for the figure of merit with the Seebeck coefficient
given by (3.53) and the electrical conductivity equal to neμ. Since we are seeking an
upper limit for the phonon drag figure of merit we ignore the electronic component
of the thermal conductivity. Thence,

nopt ¼ NdkTl
3exsdv2

: ð3:54Þ
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We then find that the figure of merit is

zd ¼ Ndkxsdv2

12kLT
: ð3:55Þ

Keyes drew attention to the fact that Ndkv
2τd/3 is the contribution, λd, of the low

energy phonons to the thermal conductivity and is, therefore, less than the total
lattice conductivity. The phonon drag dimensionless figure of merit is

zdT ¼ xkd
4kL

: ð3:56Þ

Since x is no greater than 1 and λd < λL, we see that zdT must be less than ¼. We
conclude that phonon drag cannot assist us with our aim of finding values of zT in
excess of unity.

Our discussion has been restricted to bulk thermoelectric materials. Ivanov [18]
has considered phonon drag in low-dimensional structures and has come to the
conclusion that the effect cannot improve the performance in this case either.
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Chapter 4
Optimisation and Selection
of Semiconductor Thermoelements

Abstract This chapter deals with the principles for choosing materials and for
improving their thermoelectric properties. The quantity known as the power factor
is defined and it is shown how it can change with the Fermi energy. A materials
parameter that depends on the carrier mobility, the effective mass and the lattice
thermal conductivity is introduced. It is shown how the lattice conductivity can vary
from one material to another and how it varies with temperature. The effect of a
small energy gap is considered. Attention is drawn to the complications that arise
when the energy bands depart from their simplest form. These ideas are extended to
the treatment of the thermomagnetic effects.

4.1 Power Factor

In recent years it has been found convenient to introduce a quantity known as the
power factor that contains both the Seebeck coefficient and the electrical conduc-
tivity. The power factor is defined as α2σ and is useful because it is α and σ that are
the parameters that are most strongly dependent on the carrier concentration. The
other quantity that is involved in the definition of the figure of merit is the thermal
conductivity, λ. λ is less dependent on the concentration of the charge carriers since
it is often dominated by the lattice contribution. Thus, the carrier concentration that
yields the maximum power factor for a given material is usually close to that which
gives the highest figure of merit.

It is easy to see that the power factor will become small when the Fermi level
moves too far into the forbidden gap of a semiconductor. The Seebeck coefficient of
a non-degenerate material varies linearly with the Fermi energy whereas the elec-
trical conductivity varies in an exponential fashion. Thus, even though it is the
square of the Seebeck coefficient that enters into the expressions for the power
factor or figure of merit, the rapid variation of the electrical conductivity will
become the dominating factor when the reduced Fermi energy, η, is much less than
zero. On the other hand, when we enter the metallic region, with η much greater
than zero, the ratio of the thermal conductivity to the electrical conductivity
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eventually approaches the value given by the Wiedemann–Franz law. Further
increase of η leads to a decrease in the Seebeck coefficient without any compen-
sating increase in the ratio of electrical to thermal conductivity. Thus, there will
always be an optimum value for the Fermi energy, which implies an optimum value
of the carrier concentration. However, it is usual to optimise the Seebeck coefficient
rather than the carrier concentration since α and η are so closely related to one
another.

In Fig. 4.1 we show how the power factor varies with reduced Fermi energy
when the scattering parameter r = −1/2, that is its value for acoustic-mode lattice
scattering of the charge carriers. There is a maximum value when the Fermi level
lies just inside the conduction or valence band. We would expect the optimum
Fermi energy to become more negative when we consider the figure of merit rather
than the power factor but for present day materials η would not be much less than
zero. Reference to Fig. 3.5 indicates that the preferred value for the Seebeck
coefficient will be close to ±200 μV/K.

In principle it is possible for the power factor to increase continually with the
Fermi energy. If the plot in Fig. 4.1 is drawn for r = 3/2, that is for ionised-impurity
scattering, we find that the power factor continues to rise with η. However, that does
not take account of the fact that the relaxation time for such scattering will become
less as impurities are added to produce the charge carriers that are needed to
increase the Fermi energy. Thus, in practice, we would expect the optimum Fermi
energy to be close to zero whatever form of scattering is dominant.

4.2 The Materials Parameter, β

Although the magnitude of the optimum Seebeck coefficient does not vary very
much from one material to another, the values of the power factor and of the figure
of merit can change by orders of magnitude. Thus, we shall now determine the
properties on which the maximum value of z will depend.

Fig. 4.1 Plot of power factor
against reduced Fermi energy
for r = −1/2
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It is instructive to express the figure of merit in terms of the reduced Fermi
energy for the region in which non-degenerate statistics can be employed. We then
find that

zT ¼ g� rþ 5=2ð Þ½ �2
bexp gð Þð Þ�1 þ rþ 5=2ð Þ ; ð4:1Þ

where β is a materials parameter that was first introduced by Chasmar and Stratton
[1]. This parameter is defined by the relation

b ¼ k
e

� �2r0T
kL

: ð4:2Þ

and σ0 is a quantity that depends on the carrier mobility and the effective mass
according to

r0 ¼ 2el
2pm�kT

h2

� �3=2

: ð4:3Þ

Equation (4.1) shows us that, for a given scattering parameter r, the dimen-
sionless figure of merit for any particular Fermi energy is a function solely of the
parameter β. The greater the value of β, the greater is the value of zT.

Although (4.1) holds only for a non-degenerate semiconductor, the parameter β
remains useful when the material is partly or completely degenerate. zT is still a
function only of η, r and β for all values of the Fermi energy. If we ignore the
fundamental constants in (4.2) and (4.3) we find that β is proportional to (μ/λL)
(m*/m)3/2 where m is the mass of a free electron. We see, then, that we require
materials that possess high values of the mobility and effective mass for the charge
carriers and low values of the lattice thermal conductivity.

In Fig. 4.2 we show how the dimensionless figure of merit, zT, varies with the
reduced Fermi energy for different values of the parameter β. We have supposed
that the scattering parameter r has the value of −1/2, as for acoustic-mode lattice

Fig. 4.2 The dimensionless
figure of merit plotted against
the reduced Fermi energy for
different values of the
parameter β. The scattering
parameter r = −1/2
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scattering. We see that, as β becomes larger, the optimum value for η becomes more
negative. Thus, if β were large enough, we could use classical statistics in our
calculations. However, for the best materials that are used in today’s thermoelectric
modules, β is a little less than 0.4 and we hardly expect it ever to approach the
highest value in Fig. 4.2, i.e. 1.6.

Referring to Fig. 4.2, it can be seen that the optimum Fermi energy varies by
little more than kT for a wide range of values for the parameter β. In fact, even if the
optimum value of η were as small as −2, the Seebeck coefficient would be only
about ±350 μV/K. It is possible to find semiconducting materials with Seebeck
coefficients of the order of ±1 mV/K or more but we would not expect them to have
high figures of merit. We could improve such materials by doping them with donor
or acceptor impurities so as to increase the electrical conductivity and this would be
more than sufficient compensation for the fall in the Seebeck coefficient.

4.3 Mobility and Effective Mass

The parameter β is proportional to μm*3/2 but the selection of a material that satisfies
the requirement that this product should be high is not straightforward. In general,
when the effective mass of the carriers is high, the mobility is low. However, we
have not yet specified exactly what we mean by the effective mass in (4.3).

In a cubic semiconductor with a simple valence or conduction band, having a
maximum or minimum energy at the centre of the unit cell in wave-vector space
(i.e. at the centre of the Brillouin zone), there is only one value for the effective
mass. On the other hand, when the band edges are to be found at other points in the
Brillouin zone, symmetry requires that the bands be of the so-called multi-valley
type. The effective mass that appears in (3.3) and, thence, in the expression for β is
the density-of-states mass. In a band that has Nv valleys the density-of-states mass is
Nv
2/3 times the value that it would have for a single valley.
The effective mass for each valley, i.e. the inertial mass, is still important as it is

related to the carrier mobility. In fact, the inertial mass will generally be different in
different directions and this may have to be taken into account as well. Thus, the
density-of-states mass m* should really be written as

m� ¼ N2=3
v m1m2m3ð Þ1=3; ð4:4Þ

wherem1,m2 andm3 are the effective masses along the axes of symmetry within each
valley.Wemaywrite the density-of-statesmass,mN, for a single valley as (m1m2m3)

1/3

while an appropriate value for the inertial mass,mI, is 3/(1/m1 + 1/m2 + 1/m3). Exactly
how the mobility varies with the effectivemass depends on the nature of the scattering
process. If acoustic-mode lattice scattering is the predominant mechanism, the mo-
bility is proportional to mN

−3/2mI
−1 so μ(m*)3/2 is proportional to Nv/mI. This suggests

that we require a multi-valley semiconductor with a low inertial mass for the carriers
but a large number of valleys.
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Mahan and Sofo [2] have highlighted the conflicting requirements of a narrow
distribution of carrier energy and a high electron velocity. However, it has been
shown by Bilc et al. [3] that both requirements can be met in the one material. This
depends on a type of low-dimensional transport that is similar to the proposal by
Hicks and Dresselhaus [4] for nanostructures. Although the transport is anisotropic
on a microscopic scale, the bulk properties are isotropic. It is suggested that the
principle is exemplified in certain Heusler compounds.

Another approach to the improvement of the power factor is that of so-called
band engineering. This approach has been reviewed by Pei et al. [5] who sum-
marised the requirements for a good thermoelectric material as having band
degeneracy, low inertial effective mass along the transport direction and weak
electron–phonon scattering. They also discussed the influence of the energy gap and
particularly its effect on the contribution to the transport by minority carriers.

Zhou et al. [6] have shown that the transport distribution function does not
become infinite as the width of an energy band tends towards zero. This means that
the electrical conductivity and, consequently, the figure of merit fall to zero at zero
band width. There will always be an optimum band width that will depend on the
lattice conductivity as well as on the electronic parameters.

The possibility of increasing the Seebeck coefficient for a given carrier con-
centration was considered by Ioffe [7] in the context of ionised-impurity scattering.
More recently, Naducci et al. [8] have considered energy filtering more generally.
Briefly, the idea is to scatter preferentially the low-energy carriers. Potential barriers
such as exist at grain boundaries may scatter electrons and holes in the desired
manner.

It must be remembered that the carrier concentration in a thermoelectric material
is far higher than that in a semiconductor that is intended to be used in an opto-
electronic application. Thus, the impurities that are used to dope the materials may
have a significant influence on the band structure [9]. Substantial effects have been
observed by Heremans et al. [10] who doped PbTe with Tl. It is suggested that the
so-called resonance levels associated with the thallium distort the density of states
so that the effective mass can be increased without any effect on the mobility [11].

4.4 The Lattice Thermal Conductivity in Pure Crystals

The basis for one of the first guidelines in the selection of thermoelectric materials
was the observation by Ioffe and Ioffe [12] that the lattice conductivity in a group of
materials with similar structure and bonding falls as the atomic weight becomes
larger. The results that they obtained for a number of materials are included in
Fig. 4.3 in which the lattice conductivity at room temperature is plotted against the
mean atomic weight.

Figure 4.3 shows that, within any group of materials, the lattice conductivity
falls as the mean atomic weight rises. The thermal conductivity of the alkali halides
is an order of magnitude lower than that of the diamond-type elements and the
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III–V compounds. Since a low lattice conductivity is desirable for thermoelectric
materials, one might think that the ionic compounds would be a good choice.
However, these materials have very small carrier mobilities with very low values
for the power factor. The bonding in most of the useful thermoelectric materials is,
in fact, largely covalent, at least for operation at ordinary temperatures.

One feature of the behaviour of the ionic compounds is the fact that the lattice
conductivity is lower for those with a high ratio of the atomic weights of the
constituent elements than for those with a lower ratio. This suggests that, when
using compounds, one should select those with large differences between the
atomic weights of the elements of which they are composed.

A precise prediction of the lattice conductivity for a new material is not easy.
However, an approximate theory that relates λL to the melting temperature, Tm, has
been developed by Keyes [13]. Keyes based his predictions on earlier approximate
theories presented by other workers.

A good starting point is the formula given by Leibfried and Schlömann [14]. By
using the variational method they were able to show that the anharmonicity of the
lattice waves leads to the formula

Fig. 4.3 Plot of lattice
conductivity against mean
atomic weight for certain
covalent and ionic crystals.
The plot is based on the
observations of Ioffe and Ioffe
[12]. The ionic compounds
are divided into those (a) with
the atomic weight ratio less
than 1.5 and those (b) with the
atomic weight ratio greater
than 1.5
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kL ¼ 3:5
k
h

� �3MV1=3H3
D

c2T
; ð4:5Þ

where M is the mean atomic mass and V is the mean atomic volume. γ is the
Grüneisen parameter that, with the thermal expansion coefficient, is a measure of
the anharmonicity.

A formula that is close to (4.5) can be obtained by simple arguments. Firstly, one
makes use of a relationship given by Dugdale and MacDonald [15] who proposed
that there should be a link between the lattice conductivity of a pure crystal and its
thermal expansion coefficient, αT, since both depend on the anharmonicity. Dugdale
and MacDonald represented the anharmonicity by the dimensionless quantity αTγT
and suggested that the mean free path, lt, of the phonons is equal to a/αTγT, where
a is the lattice constant. Equation (3.47) then leads to the formula

kL ¼ cvav
3aTcT

: ð4:6Þ

We may then make use of the Debye equation of state

aT ¼ vccv
3

; ð4:7Þ

where v is the compressibility. The speed of sound, v, is related to the Debye
temperature by the equation

v ¼ qdvð Þ�1=2¼ 2kaHD

h
; ð4:8Þ

where ρd is the density. Thence, if the lattice constant is set equal to the cube root of
the atomic volume,

kL ¼ 8
k
h

� �3MV1=3H3
D

c2T
: ð4:9Þ

Equation (4.9) differs from Leibfried and Schlömann’s (4.5) only in the value of the
numerical constant. For convenience, we shall use (4.9) in our treatment.

Keyes had the intention of relating the lattice conductivity to properties of a
substance that would be known immediately after its synthesis. From this point of
view, (4.6) and (4.9) are not really adequate. Equation (4.6) requires the knowledge
of the expansion coefficient while to use (4.9) we need the speed of sound.

As an alternative starting point, Keyes made use of Lawson’s relation [16]

kL ¼ a

3c2Tv3=2q1=2d

; ð4:10Þ
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which can be obtained from (4.8) and (4.9). He also used the Lindemann melting
rule

Tm ¼ emV
Rv

; ð4:11Þ

where R is the gas constant and Tm is the melting temperature. The rule is based on
the principle that a solid will melt when the atomic vibrations reach a fraction εm of
the lattice constant, εm being approximately the same for all substances. Thence, the
Keyes relation is

kLT ¼ BK
T3=2
m q2=3d

A7=6
; ð4:12Þ

where

BK ¼ R3=2

3c2e3mN
1=3
A

: ð4:13Þ

In (4.13), NA is Avogadro’s number and A is the mean atomic weight. Thus, BK

involves only universal constants and the two parameters εm and γ that do not vary
much from one material to another. The three variables, Tm, ρd and A, that appear in
(4.12) will be known as soon as a material is prepared. Thus, this equation should
be a valuable guide to the prediction of the lattice conductivity.

Keyes was able to compare the thermal conductivity, as predicted by (4.12), with
the experimental data from a large range of dielectric crystals. He found that the
data invariably agreed with this equation, to within an order of magnitude, provided
that BK is given the value of 3 × 10−4 SI units. He was able to improve the
agreement if he selected values for BK = 1.3 × 10−3 SI units for covalently-bonded
materials and 1.5 × 10−4 SI units for ionic crystals. We are particularly interested
in semiconductors [17] and we find that there is reasonable agreement
with (4.12) for the lattice conductivity of these materials if BK is given the value
6 × 10−4 SI units, as is shown in Fig. 4.4 in which λLT is plotted against
Tm
3/2ρd

2/3A−7/6. The data were not all obtained at room temperature but were restricted
to the region in which λL satisfies Eucken’s law.

The Keyes formula is consistent with the observations of Ioffe and Ioffe but
shifts our attention towards the melting temperature as well as the mean atomic
weight. It must be emphasised that it is an approximation and, as shown by the
spread of values in Fig. 4.4, it merely serves as a useful guideline.

As we shall see later, there are ways in which the lattice conductivity can be
reduced below its value for a large pure and perfect crystal. Nevertheless, the
selection of a material that has a low value of λL when only phonon–phonon
scattering exists is a useful starting point in our search for good thermoelectric
materials.
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4.5 The Effect of Temperature

It must be realised that there is no single material that can be used in thermoelectric
energy conversion at all temperatures. As we shall see, the compound bismuth
telluride has been the basis of the materials for a thriving industry that has produced
modules for Peltier coolers over more than half a century. However, one cannot use
bismuth telluride in thermoelectric generation from a high-temperature heat source
since its properties deteriorate as T becomes greater. As the temperature reaches a
few hundred degrees Celsius, the compound becomes chemically unstable and,
eventually, melts. This, however, is not the only problem. As the temperature is
raised, electron-hole pairs are produced by excitation across the energy gap and this
reduces the Seebeck coefficient while, at the same time, increasing the thermal
conductivity through the bipolar effect. To some extent, the onset of mixed con-
duction can be minimised by adding donor or acceptor impurities but the size of the
energy gap sets a limit on what can be done by this means. At some higher
temperature, then, bismuth telluride must be replaced by a material that has a higher
melting point and larger energy gap. The replacement material, in turn, will be
overtaken by a semiconductor with an even larger melting point and wider band gap
as the temperature rises still further.

Fig. 4.4 Plot of λLT against
Tm
3/2ρd

2/3A−7/6 for a number of
semiconductors. The line
represents (4.12) with the
parameter BK = 6 × 10−4 SI
units
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Over the range of temperature for which minority carrier conduction is negli-
gible, the dimensionless figure of merit increases with T. This, of course, occurs
even if the figure of merit z remains constant but there are, in fact, reasons for
hoping that z itself will increase.

The optimum value of the reduced Fermi energy does not change very much
with temperature so the preferred Seebeck coefficient is more-or-less constant. The
optimum carrier concentration is then approximately proportional to T3/2 since this
quantity appears in expressions, such as (3.29), for the carrier concentration. On the
other hand, if lattice scattering with r = −1/2 is predominant, the mobility, μ, of the
carriers varies as T−3/2. This implies that the optimum electrical conductivity should
be almost independent of temperature. Any temperature dependence of the figure of
merit should, thus, be associated with the thermal conductivity.

For a given value of the Lorenz number and electrical conductivity, the elec-
tronic component of the thermal conductivity is proportional to the temperature.
However, in most thermoelectric materials the lattice component is significantly
larger than the electronic component and, as we have seen, it is inversely propor-
tional to the absolute temperature for a pure crystal. Even when the phonons are
partly scattered by impurities or lattice defects, we might still expect the lattice
conductivity to fall as the temperature rises. Thus, z will probably rise with tem-
perature and zT will certainly do so.

For many years, the best dimensionless figure of merit at 300 K remained at
about unity but substantially higher values are being found for generator materials
at elevated temperatures. This is not because of higher values of z but, rather,
because of the factor T in zT. For the same reason, although large values of z have
been found [18] for Bi–Sb alloys at around liquid nitrogen temperature, the cor-
responding values of zT at 80 K have remained less than that of alloys based on
bismuth telluride at room temperature.

4.6 The Importance of the Energy Gap

It so happens that the energy gap for some of the semiconductors that are used in
thermoelectric energy convertors is rather small. Thus, if we attempt to increase the
Seebeck coefficient by decreasing the concentration of the minority carriers and
moving the Fermi level away from the main band, we inevitably introduce a sig-
nificant concentration of minority carriers. The partial Seebeck coefficients of the
majority and minority carriers have the opposite sign and the Seebeck coefficient
has its highest value when the minority carrier concentration is small but not
negligible. The maximum Seebeck coefficient depends on the size of the energy
gap [19].

The usual method for finding the energy gap for a semiconductor is based on the
location of the position of the optical absorption edge, which commonly lies in the
infra-red region of the spectrum. There is enhanced absorption when the photons
have enough energy to excite carriers across the gap. However, another technique
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that is often adopted for thermoelectric materials involves the determination of the
Seebeck coefficient as a function of temperature. The energy gap, Eg, is approxi-
mately equal to 2eTαmax where αmax is the maximum value of the Seebeck coef-
ficient (ignoring its sign). This relationship, usually referred to nowadays as the
Goldsmid–Sharp rule [20], is based on the fact that the Seebeck coefficient will
reach its highest value when the Fermi level lies not too far from the centre of the
gap. If the Fermi level is closer to the middle of the gap, the Seebeck coefficient will
be small because of the opposing contributions of the two types of carrier. On the
other hand, the Seebeck coefficient also becomes smaller as the Fermi level
approaches the edge of the valence or conduction band.

The Seebeck coefficient of a mixed conductor is given by (3.34). In order to
calculate its value, we need to know the relative carrier concentrations and
mobilities for the two types of carrier. We relate the carrier concentrations to the
reduced Fermi energies through the expressions

n ¼ 2
2pm�

nkT
h2

� �3=2

exp gnð Þ: ð4:14Þ

and

p ¼ 2
2pm�

pkT

h2

� �3=2

exp gp
� �

: ð4:15Þ

where ηn and ηp are linked to one another and the energy gap, Eg, by

gn þ gp ¼ � Eg

kT
� �gg: ð4:16Þ

We shall make use of a parameter C that we define as

C ¼ ln
lp

 !
m�

n

m�
p

 !3=2

: ð4:17Þ

where mp
* and mp

* are the density-of-states masses for the electrons and holes. Then

rn
rp

¼ Cexp gn � gp
� �

: ð4:18Þ

It is likely that the maximum Seebeck coefficient will be found when the Fermi
level lies sufficiently far from both the valence and conduction bands for classical
statistics to be applicable. The exceptions will occur when the energy gap is very
small or when the parameter C is either very large or very small [20]. When C is
close to unity, the maximum Seebeck coefficient lies close to the value Eg/2kT and
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it remains reasonably close to this value even for C >> 1 or C << 1 provided that the
energy gap is reasonably large.

Figure 4.5 shows a plot of 2eTαmax/Eg against C in a typical case of ηg = 10,
where it has been assumed that r = −1/2 for both types of carrier. As C becomes
larger than 1, the maximum Seebeck coefficient becomes somewhat larger for an
n-type sample and somewhat smaller for a p-type sample. However, if the maxi-
mum Seebeck coefficient is found for both types of material, the average is almost
independent of C.

The easiest way to determine the energy gap from Seebeck measurements is to
increase the temperature until mixed and then intrinsic conduction is observed. The
maximum Seebeck coefficient for a plot against temperature at a fixed doping level
is close to the maximum for a plot against electrical conductivity at a fixed tem-
perature. When the Seebeck coefficient is measured over a range of temperature,
only one sample (or, perhaps, one of each conductivity type) is needed.

The Goldsmid–Sharp rule has been examined by Gibbs et al. [21] with a view to
specifying the conditions under which it is a good approximation. In the original
derivation, classical statistics were assumed, a reasonable assumption for most
semiconductors since the Fermi level is near the centre of the forbidden gap when
the Seebeck coefficient has close to its maximum value. Also, the maximum was
calculated for dα/dη = 0, whereas the experimental condition is usually dα/dT = 0.
These shortcomings were dealt with by Gibbs et al. whose calculations are clearly
an improvement on the original theory for semiconductors in which the energy gap
is small enough for the classical approximation to Fermi–Dirac statistics be invalid.
Gibbs and his colleagues presented a very useful set of curves showing the
dependence of 2eαmaxTmax/Eg on αmax for c having values between 0.02 and 125.
Goldsmid and Sharp [22] have shown how 2αmax/ηg varies with ηg for the more
modest range of c from 0.2 to 5. Their results are shown in Fig. 4.6.

We can now make a reasonable estimate of the minimum energy gap that is
needed for a thermoelectric material to be operated at a certain temperature. We

Fig. 4.5 2eTαmax/Eg plotted
against the parameter C for
n-type and p-type material
with ηg = 10. The central line
represents the average for the
maximum Seebeck
coefficients of both types
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know that the optimum Seebeck coefficient for an extrinsic semiconductor is
about ±200 μVK−1. The maximum Seebeck coefficient should be significantly
larger than this if mixed conduction is to be avoided. Let us suppose that the
maximum Seebeck coefficient must not be less than, say, ±260 μVK−1. This means
that the energy gap must not be smaller than about 6kT. If the energy gap is smaller
than this, for an otherwise suitable material, it may be necessary to operate with a
Seebeck coefficient that is smaller than the optimum value for a single carrier.

Empirically, it seems that the best material at any given temperature often barely
satisfies the condition Eg > 6kT. This is because in a given series of semiconductors,
the ones with the highest mobility or, rather, the highest product μ(m*/m)3/2, appear
to have the smallest energy gaps. Thus, many of the well-known high-mobility
semiconductors such as indium antimonide, indium arsenide and mercury telluride,
have small energy gaps. It is also noted that, for these materials, the relationship
between energy and wave vector is different near the band edge from that deep
within the band.

4.7 Non-parabolic Bands

Up to this point it has been supposed that the energy bands are parabolic, that is the
energy of the carriers is proportional to (k − k0)

2 where k is the wave vector and k0
its value at the band extremum. This supposition breaks down if the direct gap (i.e.
the gap at a given position in wave vector space) between the valence and con-
duction band is small. The parabolic approximation is generally satisfactory only
close to the band edge. The problem of dealing with non-parabolic bands is difficult

Fig. 4.6 Plot of 2eαmax/Eg

against Eg/kT for different
values of the weighted
mobility ratio c. Based on the
calculations of Goldsmid and
Sharp [22]
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though a somewhat simplified approach has been presented by Kolodziejczak and
Zhukotynski [23].

It was proposed by Kane [24] that the energy—wave vector relation for indium
antimonide should have the form

E ¼ �h2k2

2m
� 1
2
Eg þ 1

2
E2
g þ

8Q2k2

3

� �1=2

; ð4:19Þ

where the energy gap Eg is supposed to be of the direct type and Q is a parameter
that is characteristic of a particular band. If one neglects the first term on the
right-hand side of (4.19) the result is

E ¼ 1
2

E2
g þ

8Q2k2

3

� �1=2

�Eg

" #
: ð4:20Þ

we notice that, when the energy gap is large compared with Qk, the usual parabolic
relationship between energy and wave vector is the result. In terms of Q the relation
is

E ¼ 2Q2

3Eg
k2: ð4:21Þ

However, when the energy gap is much smaller than Qk, we find that

E ¼ 2
3

� �1=2

Qk; ð4:22Þ

and the relation between energy and wave vector is linear. The result is an increase
in the effective mass of the carriers and a decrease in the mobility.

One might expect all the semiconductors in a given series to have more-or-less
the same value of Q. If this is so, then (4.21) shows that effective mass should be
inversely proportional to the energy gap. This explains the high mobility of com-
pounds like InSb. It is still possible for the density-of-states mass to be reasonably
large if the bands are of the many-valley type.

In view of the fact that the semiconductors that are used in thermoelectric
conversion are very impure compared with those to be found in the microelec-
tronics industry, the charge carriers are not likely to be confined to the band edges.
Thus, non-parabolicity of the energy—wave vector relation is a real possibility.
Hopefully, the carriers near the band edge will be dominant so that non-parabolicity
may have only a minor influence on the transport properties. It may, however,
account for anomalies in the behaviour of thermoelectric materials that are some-
times observed.
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It is noted that Harman and Honig [25] have discussed non-parabolic bands in
the context of thermoelectric and thermomagnetic devices. Bhattataria and Mallik
[26] have also presented a simplified treatment of the thermoelectric properties for a
non-parabolic band.

4.8 Thermomagnetic Materials

It can be shown that an extrinsic conductor is best used in the Seebeck–Peltier mode
rather than as a Nernst–Ettingshausen device. The Nernst coefficient for one type of
charge carrier is given by the approximation [27]

N ¼ l

eT 1þ l2B2
z

� � s2ee
s2e

� see
se

� �
; ð4:23Þ

where the angular brackets denote averages for all values of the energy ε. The
quantity in the square brackets varies from zero for a completely degenerate con-
ductor to rkT for non-degeneracy. The thermomagnetic power, NBz, has a maxi-
mum value, when μB = 1, of no more than rk/2e. The highest value for NBz is
3 k/4e, that is about 65 μV/K, if we assume that r can be no greater than its value of
3/2 for ionised-impurity scattering. This is clearly much less than the optimum
Seebeck coefficient for thermoelectric energy conversion. It should be noted that the
Nernst coefficient takes the same sign as r and can be used in the determination of
the scattering law.

Although mixed and intrinsic conduction should be avoided in a thermoelectric
device, it turns out that the bipolar effects are an advantage when using the Nernst
and Ettingshausen effects. Whereas the electrons and holes act in opposition in the
Peltier and Seebeck effects, they assist one another in the Nernst and Ettingshausen
effects. The difference between the Ettingshausen effects in extrinsic and intrinsic
conductors is illustrated in Fig. 4.7. In the extrinsic case we have assumed that the
scattering parameter r is less than zero.

In the extrinsic conductor, (a), the magnetic field tries to drive the carriers
downwards but the boundaries prevent this flow from taking place. There has to be
zero transverse electric current. However, it is still possible for the carriers with the
longer relaxation time to move down if their partial current is balanced by an
upwards flow of the carriers with a shorter relaxation time. This means that the top
of the sample becomes hot and the bottom becomes cold.

There is again a downwards force on the charge carriers in the intrinsic con-
ductor, (b), and in this case they can move downwards without any overall charge
flow. Thus, the bottom of the sample becomes heated and the top is cooled. The
Ettingshausen effect is clearly stronger when both positive and negative carriers are
present.
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We shall now derive an expression for the Nernst coefficient of a mixed con-
ductor. We have to set the longitudinal electric current equal to zero, so, from (3.37),

in;x ¼ �ip;x ¼ rnrp
rn þ rp

ap � an
� � dT

dx
: ð4:24Þ

The magnetic field produces transverse currents in,y and ip,y that must be equal and
opposite. Then, if Ey is the electric field due to the Nernst effect and RH,n and RH,p

are the partial Hall coefficients

in;y ¼ Ey þRH;nin;xBz
� �

rn; ð4:25Þ

and

ip;y ¼ Ety þRH;pip;xBz
� �

rp: ð4:26Þ

Setting the transverse current equal to zero and eliminating the partial currents
using (4.24),

Ey ¼
RH;prp � RH;nrn
� �

rnrp

rn þ rp
� �2 ap � an

� �
Bz

dT
dx

: ð4:27Þ

(a)

(b)

Fig. 4.7 Origin of the
Ettingshausen effect in a an
extrinsic conductor and b an
intrinsic conductor
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The Nernst coefficient is

N ¼ RH;prp � RH;nrn
� �

rnrp

rn þ rp
� �2 ap � an

� �
: ð4:28Þ

|RH,nσn| and RH,pσp are the Hall mobilities, μH,n and μH,p, of the two types of
carrier, which become equal to the mobilities μn and μp, as defined by (3.30) in a
high magnetic field. In terms of the Hall mobilities

N ¼ lH;p þ lH;n
� �

rnrp

rn þ rp
� �2 ap � an

� �
: ð4:29Þ

We also need to use expressions for the electrical and thermal conductivities in a
magnetic field. The electrical conductivity is given by

r ¼ rn
1þ l2nB

2
z
þ rp

1þ l2pB
2
z
: ð4:30Þ

The conductivity is defined as the ratio of the current density in the x direction to
the electric field that has no transverse component. The isothermal electrical
resistivity, ρi, and the conductivity are related through the equation [28]

r ¼ qi

qið Þ2 þR2
HB

2
z

; ð4:31Þ

where RH is the overall Hall coefficient. At the high magnetic field limit, RH

becomes equal to (1/RH,p − 1/RH,n)
−1.

The behaviour of the thermal conductivity in a high magnetic field has been
discussed by Tsidil’kovskii [29]. The theory is complex and the exact expressions
are cumbersome but we are justified in using an approximation for the electronic
thermal conductivity since the lattice conductivity is likely to be predominant. In
this context, a good approximation for the electronic thermal conductivity is

ke ¼ ke;n
1þ l2H;nB

2
z
þ ke;p

1þ l2H;pB
2
z
þ rnrp ap � an

� �2
T

rn 1þ l2H;nB
2
z

� 	
þ rp 1þ l2H;pB

2
z

� 	 ; ð4:32Þ

where λe,n and λe,p are the partial electronic thermal conductivities in zero magnetic
field.

When the transverse electric field is zero, the electronic thermal conductivity
tends towards zero at very high magnetic fields. However, under the more usual
experimental conditions [30], it is the transverse electric current that is zero and the
total thermal conductivity then becomes
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k ¼ kL 1þ ZNETð Þ: ð4:33Þ

we shall discuss this effect later when we deal with the thermal conductivity of
bismuth.

We are now in a position to obtain an expression for the thermomagnetic figure
of merit of an intrinsic conductor. We shall assume that the magnetic field is high
enough for μn

2B2 >> 1 << μp
2B2 and that there are equal numbers of mobile electrons

and holes. Under these conditions (4.29) becomes

N ¼ lnlp
ln þ lp

ap � an
� �

: ð4:34Þ

In a high magnetic field the Hall coefficient of an intrinsic conductor becomes
equal to zero. Thus, the isothermal electrical resistivity is given by

qi ¼ 1
r
¼ rn 0ð Þ

1þ l2nB
2
z
þ rp 0ð Þ

1þ l2pB
2
z

 !�1

: ð4:35Þ

We are interested in the isothermal thermal conductivity, which, unlike the
adiabatic quantity in (4.33), does tend to λL for a very high magnetic field. Thus, the
thermomagnetic figure of merit is given by

ZNE ¼ nielnlp ap � an
� �

ln þ lp
� �

kL
; ð4:36Þ

where ni is the number of electrons or holes.
One cannot optimise a thermomagnetic material in the same way as a ther-

moelement. However, in a range of alloys, the energy gap may vary while the
carrier mobilities and the lattice conductivity may remain more or less constant.
Suppose that we consider first what happens in a non-degenerate conductor as the
energy gap changes. The concentration of each type of carrier is then given by

ni ¼ 2 m�
nm

�
p

� 	3=2 2pmkT
h2

� �3=2

exp � Eg

2kT

� �
: ð4:37Þ

and at the high magnetic field limit

ap � an
� � ¼ Eg þ 5kT

eT
: ð4:38Þ

Thus, in the classical region

ZNE / Eg þ 5kT
� �2

exp � Eg

2kT

� �
: ð4:39Þ
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In order for classical statistics to be reasonably accurate, it is necessary that the
energy gap should be greater than about 4kT. If this condition is satisfied, ZNE
continually increases as the energy gap decreases so we know that the optimum gap
must be less than 4kT. We therefore have to use Fermi–Dirac statistics.

Let us suppose that the effective masses of the electrons and holes are equal.
When this condition holds, we can obtain the following proportionality:

ZNE / FNE ¼ Frþ 1=2 gð Þ 5F3=2 gð Þ
3F1=2 gð Þ � g

� �2
; ð4:40Þ

where the reduced Fermi energy, η, is equal to −Eg/2kT. In Fig. 4.8 we show the
function on the right hand side of the proportionality (4.40) plotted against Eg/2kT.

Figure 4.8 shows us that the thermomagnetic figure of merit is highest when the
bands overlap by about 2kT. In other words, the ideal thermomagnetic material
would seem to be a semimetal with slightly overlapping bands. We note that, once
r becomes positive, it appears that the greater the band overlap the better. However,
such values of r imply a substantial amount of impurity scattering, with a reduced
carrier mobility. This would make it very difficult to achieve the condition
(μB)2 >> 1. Thus, it is reasonable to conclude that the best thermomagnetic
materials will have only a small overlap between the conduction and valence bands.

If the energy gap has a certain value, the high field thermomagnetic figure of
merit satisfies the proportionality

ZNE / m�
nm

�
p

m2

� �3=4 1
ln

þ 1
lp

 !
kL

" #�1

: ð4:41Þ

The quantity on the right hand side of this proportionality resembles the factor (μ/
λL)(m*/m)

3/2 that enters into the parameter β for thermoelectric materials. If one of
the carriers is much more mobile than the other, say μn >> μp, then ZNE is pro-
portional to μp and only the mobility of the less mobile carrier is important. Thus,
we really need a material in which both the carriers are highly mobile.

Fig. 4.8 Plot of the function
FNE against Eg/2kT for
different values of the
scattering parameter r. The
Nernst–Ettingshausen figure
of merit is proportional to
FNE. FNE is defined as the
function on the right hand
side of the relation (4.40)
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If the mobilities of both carriers are equal, μp = μn = μ, then (4.36) becomes

ZNE ¼ 2niela2

kL
; ð4:42Þ

where α = αp = −αn. This equation reveals some of the advantages that thermo-
magnetic energy convertors might have compared with thermoelectric devices. The
factor of 2 in the numerator arises from the fact that the electrons and holes share a
common lattice. Furthermore, the partial Seebeck coefficients usually become larger
when a magnetic field is applied. Also, only the lattice contribution to the thermal
conductivity remains as the magnetic field becomes very large. However, one must
not forget that the thermoelectric figure of merit might itself be improved in a
magnetic field.

4.9 Superconductors as Passive Thermoelements

The circumstances can arise in which there is a good thermoelectric material of one
conductivity type but no equally good material of the other type. For example,
bismuth is an excellent n-type material at low temperatures but not particularly
good when holes are the majority carriers. When only a single material is available,
the thermocouple can be completed using a normal metal as the second branch. The
metal will contribute little or nothing to the Seebeck coefficient but, hopefully, it
will have a much higher ratio of electrical to thermal conductivity than exists in the
active material. In practice, this approach does not really work since a good ther-
moelectric material will have a ratio of electrical to thermal conductivity that is not
much less than the value for a metal, that is the Wiedemann–Franz ratio. However,
if the metal is a superconductor, it can be a truly passive branch. It will not
contribute to the thermoelectric effects but will have an infinite ratio of electrical to
thermal conductivity provided that the critical current is not exceeded.

The use of superconductors as passive thermoelements was first discussed by
Goldsmid et al. [31] and has been investigated more thoroughly by Vedernikov and
Kuznetsov [32]. These authors discussed specifically a Bi–Sb alloy as the active
component in conjunction with a high temperature superconductor. At present, this
type of combination is restricted to temperatures that are not much greater than that
of liquid nitrogen, i.e. 77 K.

Although the superconducting leg need not add to the electrical resistance it will
have a finite thermal conductance. Goldsmid and his colleagues noted that a typical
Bi–Sb alloy has a thermal conductivity of 3 W/m K. They proposed the use of
YBa2Cu3O9−δ, which has a thermal conductivity of 0.6 W/m K at 80 K, as the
superconductor. They assumed that the active thermoelement would be 10 mm in
length with a current density of 6 × 105 A/m2. Thus, so that the heat loss through
the superconductor would not exceed 10 % of that through the active branch, it
should have a current density of 12 × 105 A/m2. The critical current density in the
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sample of YBa2Cu3O9−δ studied by Goldsmid et al. was only 1.9 × 104 A/m2 even
in zero magnetic field and, in fact, a magnetic field is really needed to enhance the
thermoelectric properties of the Bi–Sb.

Vedernikov and Kuznetsov discussed not only YBa2Cu3O9−δ but also super-
conductors from the Bi–Sr–Ca–Cu–O system. The requirement for the supercon-
ductor is that it should have a low thermal conductivity and a high critical current
density. It is also necessary that its electrical contacts should have negligible
resistance and, preferably, it should be capable of being used in a magnetic field if,
indeed, it is to be operated in conjunction with Bi–Sb. The material chosen for the
experimental work was BiSrCaCu2Ox, which has a critical temperature of 87 K and
a critical current density of 12 × 105 A/m2 at 77 K. It was provided with low
resistance electrical contacts by the electrodeposition of silver with subsequent
annealing. Although this superconductor is barely adequate for the purpose, it was
possible to obtain a significant temperature depression from a thermocouple in
which it was combined with Bi0.85Sb0.15. It was even possible to use this couple in a
magnetic field to obtain an enhanced cooling effect as shown in Fig. 4.9. It is
apparent that the use of a superconducting branch is a viable option under certain
conditions.
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Chapter 5
Minimising the Thermal Conductivity

Abstract It is shown that the lattice conductivity can be reduced by the formation
of a solid solution. The theory of scattering of phonons by point defects is pre-
sented. It is shown that boundary scattering of phonons may be significant even
when their free path length is small. The relative effects of phonon and electron
scattering are discussed and the importance of the size of the unit cell is considered.
The phonon-glass electron-crystal principle is outlined.

5.1 Semiconductor Solid Solutions

In the previous chapter we discussed the selection of materials with a low lattice
conductivity under the condition that the phonons are scattered only by other
phonons. However, we know that the lattice conductivity can be reduced by the
scattering of phonons on various types of defect, including the boundaries of any
finite crystal. Such defects may, of course, scatter the charge carriers as well as the
phonons. Indeed, since the mean free path is usually greater for electrons or holes
than it is for phonons, we might expect there to be a greater effect on the mobility
than on the lattice conductivity. In practice, it turns out that in many cases the ratio
of the mobility to the lattice conductivity can be raised through defect scattering.

A most useful proposal was made in 1956 by Ioffe et al. [1]. They suggested that
the formation of a solid solution between two semiconductors that have the same
crystal structure should lead to a reduction in the lattice conductivity. It was claimed
that the mobility of the charge carriers would not necessarily be reduced by the
alloying process. It was argued that the long-range order would be preserved and,
since the wavelength associated with the charge carriers is also rather large, they
would suffer no additional scattering. On the other hand, the phonons that pre-
dominate in the conduction of heat have short wavelengths and are scattered by the
disturbances in the short-range order in a solid solution.

In Fig. 5.1 we show the lattice resistivity plotted against the proportion of a second
component in certain semiconductors. The effect of alloying is particularly large in the
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Si–Ge system because the lattice conductivity of pure silicon and germanium is so
high that it is comparable with the total thermal conductivity of most metals.

Ioffe and his colleagues showed that the lattice conductivity of a solid solution
varies approximately according to the rule

1
kL

¼ 1
kLð Þ0

þ 4x 1� xð Þ 1
kLð Þm

� 1
kLð Þ0

� �
; ð5:1Þ

where (λL)0 is the lattice conductivity when the proportion, x, of the second com-
ponent is zero and (λL)m is the lattice conductivity when x = 0.5.

Airapetyants et al. [2] considered the carrier mobility in solid solutions of
compounds. They noticed that the mobility of the electrons is more strongly
affected when substitution is made on the electropositive sub-lattice whereas the
mobility of holes is more affected by substitution on the electronegative sub-lattice.
Figure 5.2 shows the manner in which the ratio of electron to hole mobility varies in
solid solutions of PbTe with PbSe and SnSe.

The ideas of Airapetyants et al. can be criticised since there are no strong reasons
to associate the motion of electrons or holes with a particular sub-lattice. Moreover,
the principle, that the carrier mobility is less strongly affected than the lattice
conductivity by the formation of a solid solution, seems to work satisfactorily in
solid solutions between elemental semiconductors like silicon and germanium for
which electropositive and electronegative sub-lattices cannot be identified.
Nevertheless, there is evidence to support the ideas of Airapetants for other systems.
For example, it seems preferable to use alloys between Bi2Te3 and Sb2Te3 for
positive thermoelements and alloys between Bi2Te3 and Bi2Se3 for negative
thermoelements.
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Fig. 5.1 Lattice thermal
resistivity plotted against
proportion, x, of second
component in semiconductor
solid solutions
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5.2 Phonon Scattering by Point Defects

The basis of the scattering of phonons in solid solutions is the local changes in
density associated with the different atoms. Scattering can also result from local
changes in the elastic constants. According to the Rayleigh theory, the scattering
cross-section, σ, for point defects is given by

r ¼ 4pc6q4L
9

Dv
v

þ Dqd
qd

� �2

; ð5:2Þ

where c is the diameter of the defect, qL is the magnitude of the phonon wave
vector, Δv is the local change of compressibility and Δρd is the local change of
density. Rayleigh scattering is a classical concept that is applicable only when the
defects are much smaller than the wavelength of the phonons. This is not true for
the higher frequency phonons but we are justified in using (5.2) because such
phonons are so strongly scattered that they make little contribution to the thermal
conductivity [3]. For the same reason, we may use the Debye model for the lattice
vibrational spectrum since it is a good approximation for the low-frequency
phonons.

There is a general problem in dealing with the lattice conductivity. As was
shown by Peierls, it is the umklapp processes that account for the thermal resistance
of pure crystals but we should not neglect the redistribution of phonons due to the
normal processes. A powerful technique for handling this problem was developed
by Callaway [4]. The normal processes are at first supposed to be just as effective as
umklapp processes in the scattering of phonons. Then, a correction is applied on the
basis that any disturbance in the phonon distribution relaxes through the normal
processes to a distribution that still carries momentum. Although Callaway’s
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Fig. 5.2 Plot of ratio of
electron to hole mobility
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second component in solid
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treatment has encountered some criticism, it has the virtue that it can be applied
with relative ease. We shall, therefore, give an outline of the Callaway approach.

Suppose that there are processes with a relaxation time τR that change the
momentum or wave vector and other processes with a relaxation time τN that
conserve wave vector. Then the distribution function, N, will relax according to the
equation

dN
dt

� �
scatter

¼ N0 � N
sR

þ NN � N
sN

; ð5:3Þ

where N0 is the equilibrium distribution function and NN is the distribution function
to which the normal processes on their own would lead. The temperature gradient
rT will change the distribution function according to the equation

dN
dt

� �
diffusion

¼ �v � rT
@N
@T

; ð5:4Þ

where v is the sound velocity in the direction of the *phonon wave vector, qL. Since
the diffusion and scattering processes must balance

N0 � N
sR

þ NN � N
sN

� v � rT
@N
@T

¼ 0; ð5:5Þ

The distribution function to which the normal processes lead has to carry
momentum against the temperature gradient. The Bose–Einstein function that
applies to phonons in the absence of a temperature gradient is

N0 ¼ exp
�hx
kT

� �
� 1

� ��1

; ð5:6Þ

so we suppose that we can use the distribution

NN ¼ exp
�hx� qL � l

kT

� �
� 1

� ��1

: ð5:7Þ

In these equations we have used �h to represent h/2π and, ω, which is equal to 2πf, to
denote the angular frequency. l is a constant vector in the direction of the tem-
perature gradient and is such that q·l << �h ω. Equation (5.7) differs from (5.6) in
that the frequency ω is changed by −q·l/�h: Thus, the normal processes lead to a
change in the distribution function

NN � N0 ¼ qL � l
kT

exp xð Þ
exp xð Þ � 1ð Þ2 ; ð5:8Þ
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where x = �h ω/kT. Also, from (5.6)

@N
@T

¼ �hx
kT2

exp xð Þ
exp xð Þ � 1ð Þ2 : ð5:9Þ

By combining (5.8) and (5.9) we find that

N0 � Nð Þ 1
sR

þ 1
sN

� �
� v � rT � qL � lT

�hxsN

� �
@N
@T

¼ 0: ð5:10Þ

Since l must be proportional to the temperature gradient, we may express this
vector in the form

l ¼ � �h
T
bv2rT; ð5:11Þ

where β is a constant that has the dimensions of time. Then, using the Debye model
to replace qL by ω/v, (5.10) may be written as

N0 � Nð Þ 1
sR

þ 1
sN

� �
1þ b

sN

� ��1

�v � rT
@N
@T

¼ 0: ð5:12Þ

This means that there is an effective relaxation time, τeff, that is given by

1
seff

¼ 1
sR

þ 1
sN

� �
1þ b

sN

� ��1

¼ 1
sc

1þ b
sN

� ��1

: ð5:13Þ

In this equation, τc is the relaxation time that would be expected if the normal
process did not conserve momentum or wave vector. Equation (5.13) shows that the
effective relaxation time is obtained by multiplying τc by (1 + β/τN).

Thus, to allow for the normal processes, we have to evaluate the quantity β. In
principle, we can do this by taking account of the fact that the normal processes
conserve wave vector. This means that

Z NN � N
sN

qLd
3qL ¼ Z 4px2

v3
NN � N

sN
qLdx ¼ 0: ð5:14Þ

Now (NN − N) may be written as (N − N0) + (N0 − N) and is proportional to (β −
τeff) @N=@T : Thus, (5.14) becomes

ZhD=T

0

b
sN

� sc
sN

� bsc
s2N

� �
x4 exp xð Þ

exp xð Þ � 1ð Þ2 dx ¼ 0: ð5:15Þ
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The expression for β is then

b ¼ ZhD=T

0

sc
sN

x4
exp xð Þ

exp xð Þ � 1ð Þ2 dx=
ZhD=T

0

1
sN

1� sc
sN

� �
x4

exp xð Þ
exp xð Þ � 1ð Þ2 dx: ð5:16Þ

It is possible to estimate β without difficulty only in certain cases. Thus, when
scattering on imperfections is very strong, so that the corresponding relaxation time
τI is very much less than τN, one may use the approximation 1/τeff ≃ 1/τI + 1/τN.
Another approximation can be used at low temperatures when umklapp scattering
becomes very weak. However, of most interest to us is an approximation that has
been given by Parrott [5] for relatively high temperatures, that is T > θD. He
supposed that the relaxation times for both umklapp and normal processes are then
proportional to ω−2 while the relaxation time for scattering on point defects is
proportional to ω−4. We can, therefore, write

1=sI ¼ Ax4; 1=sU ¼ Bx2; 1=sN ¼ Cx2;

where A, B and C are constants for a given specimen. Also, in the high temperature
region, x << 1 for the whole phonon spectrum, whence x2exp(x)/[exp(x) − 1]2 ≃ 1.
It is then found that the lattice conductivity, λL, for the material that contains defects
is related to the value λ0 for a pure and perfect sample by the equation

kL
k0

¼ 1þ 5k0
9

� ��1 tan�1y
y

þ 1� tan�1y
y

� �2
y4 1þ k0ð Þ

5k0
� y2

3
� tan�1y

y

� ��1
" #

;

ð5:17Þ

where k0 equal to C/B represents the relative strengths of the normal and umklapp
processes. Also, y is defined by

y2 ¼ xD

x0

� �2

1þ 5k0
9

� ��1

: ð5:18Þ

and

xD

x0

� �2

¼ k
2p2vk0xDA

: ð5:19Þ

The value of k0 in (5.18) is found experimentally by measuring the lattice con-
ductivity of a pure sample and one that contains imperfections. The same value of
k0 can then be used for samples with other defect concentrations.

We can get a reasonable idea of the effect of scattering in solid solutions at high
temperatures if we assume that umklapp processes predominate over normal pro-
cesses. Then (5.17) reduces to
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kL
k0

¼ x0

xD
tan�1 xD

x0

� �
: ð5:20Þ

Here λ0 represents the lattice conductivity of a virtual crystal, which is the value that
it would have if the solid solution were perfectly ordered with no point-defect
scattering. For want of a better procedure, one might determine λ0 for a binary alloy
by linear interpolation between the values for the lattice conductivity of the two
components.

In accordance with (5.2), phonons can be scattered by local variations in both the
elasticity and the density. Mass-fluctuation scattering is the easier to deal with and,
in fact, might be the major contribution in many semiconductor solid solutions.

If the imperfection scattering is associated with density fluctuations the appro-
priate value for the parameter A that appears in (5.19) is AM, which is given by

AM ¼ p
2v3N

X
i

xi Mi � �Mð Þ2
�M2 ; ð5:21Þ

where xi is the concentration of unit cells of mass Mi, �M is the average mass of a
unit cell and N is the number of cells per unit volume.

It can be difficult to predict the scattering due to fluctuations in elasticity. Briefly,
a foreign atom changes the local value for the compressibility, partly because it has
bonds that differ from those of a host atom and partly because it does not fit well
into a lattice site, thus straining the crystal. Both these effects will, like mass
fluctuations, give rise to local changes in the speed of sound. If we use the Debye
model of an elastic continuum, an impurity atom of diameter δi′ in its own lattice
distorts the space that it occupies from the diameter δ of a host atom to a new
diameter δi. These diameters are related to one another by

di � d
d

¼ Ddi
d

¼ l
1þ l

d
0
i � d
d

; ð5:22Þ

where

l ¼ 1þPð ÞGi

2 1þ 2Pð ÞG : ð5:23Þ

In this equation G and Gi are the values for the bulk modulus in the host and
impurity crystals respectively and P is Poisson’s ratio for the host crystal. The
equation given by Klemens [3] for the parameter A for strain scattering is

AS ¼ p
v3N

X
i

xi
DGi

G
� 6:4c

Ddi
d

� �2

; ð5:24Þ

where ΔGi = Gi − G and γ is the Grüneisen parameter.
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In Fig. 5.3 we show the ratio of the lattice conductivity of a solid solution to that
of a perfect virtual crystal plotted against ωD/ω0 on the basis of (5.20). The curve
has been calculated for mass-defect scattering as given by (5.21). The data points
show typical observed values for a number of solid solutions [6]. For some of the
solid solutions there is reasonable agreement with the theoretical curve but in other
cases the observed lattice conductivity falls well below the predicted value. We
presume that the difference is accounted for by strain scattering. It is noticeable that
none of the data points lie above the theoretical curve.

5.3 Boundary Scattering

It has long been known that phonons can be scattered on the boundaries of crystals
[7] at low temperatures. However, one might only expect the effect to be observed
at ordinary temperatures when the grain size is exceedingly small since the mean
free path of phonons is usually less than 10−9 m. Nevertheless, it was predicted [8]
in 1968 that the lattice conductivity might be reduced by boundary scattering of the
phonons for grain sizes of the order of 10−6 m. The effect was observed [9] for thin
sheets of silicon in 1973 and has since been found in other semiconductors. As we
shall see, boundary scattering should have a more marked effect for solid solutions
than for elements or simple compounds in spite of the reduction in the phonon free
path length by alloy scattering.

The key to the understanding of the enhanced boundary scattering effect lies in
the fact that the free path length for the phonons varies strongly with their vibra-
tional frequency. The low-frequency phonons, though relatively small in number,
have a large free path length and, therefore, make a sizeable contribution to the
lattice conductivity. In fact, if we assume that the relaxation time for umklapp
scattering is proportional to ω−2, we expect that all frequencies will make com-
parable contributions to the lattice conductivity, as shown by the upper curve in
Fig. 5.4. In this diagram, the relative lattice conductivity λL(ω) due to the phonons
having an angular frequency ω is plotted against ω. According to the Debye theory,

λ L
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Fig. 5.3 Plot of lattice
conductivity against ωD/ω0

according to (5.20) assuming
mass-defect scattering from
(5.21). The data points
represent thermal
conductivity data for
semiconductor solid solutions
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the number of phonons of frequency ω is proportional to ω2 and we expect the
Debye distribution to be valid at low frequencies. Now, point-defect scattering in a
solid solution will remove the contribution to the lattice conductivity of most of the
high-frequency phonons. The remaining lattice conductivity is due to
low-frequency phonons and, because of their long free path, they are particularly
sensitive to boundary scattering.

In Fig. 5.4, the lattice conductivity of a large pure crystal is represented by the
area under the upper curve. The single-hatched area then represents the loss of
lattice conductivity due to point-defect scattering and the double-hatched area is the
loss due to boundary scattering. It should be possible to estimate the lattice con-
ductivity in an alloy of small grain size from the ratio of the unshaded area to the
total. Of course, in reality there are regions in which at least two of the scattering
effects are of comparable magnitude and the sharp cut-offs should, therefore, be
more gradual. Nevertheless, because the variation of the relaxation time with fre-
quency is quite different for umklapp, point-defect and boundary scattering, the
error introduced by dividing the plot into three distinct regions is not great. Then, if
there is a dominant region for each of these processes, we find that

kL
kS

¼ 1� 2
3
k0
kS

ffiffiffiffiffiffi
lt
3L

r
; ð5:25Þ

where λS is the lattice conductivity of a large crystal of the solid solution, λ0 is that
in the absence of alloy scattering, when the mean free path of the phonons is equal
to lt, and L is the effective grain size. L should be close to the actual grain size
unless the scattering at the boundaries is substantially specular. It is noted that lt can
be estimated from the thermal conductivity λ0 using (3.47).

λL(ω) 

ω0 ωD

τ = 1/Bω 2

τ = L/v τ = 1/Aω4

Fig. 5.4 Contribution to the
lattice conductivity of
phonons of angular frequency
ω plotted against ω. The
upper curve is applicable
when only phonon–phonon
scattering occurs. The
single-hatched region on the
right indicates the
contribution removed by
point-defect scattering. The
double-hatched region on the
left shows the contribution
removed by boundary
scattering
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Obviously, (5.25) cannot be applicable when the grain size is very small since it
would lead to negative values of λL. The reason for this is that there is then no
region in which phonon-phonon scattering is dominant. There are then two special
cases of interest.

If alloy scattering is very weak, λS becomes equal to λ0 and only two regions
have to be considered. Equation (5.25) is still applicable up to the point at which λL
is equal to λS/3; for smaller grain sizes only boundary scattering is important. On
the other hand, if alloy scattering is very strong, (5.25) will apply only until λL is
equal to 2λS/3. In other words, (5.25) can be used until the grain size becomes so
small that the lattice conductivity has fallen to between one-third and two-thirds of
its value in a large crystal.

Consider, then, what happens when boundary scattering is very strong [10]. For
the case of weak alloy scattering, there is no problem. As we enter the region for
which (5.25) no longer holds, the lattice conductivity simply becomes proportional
to the grain size and is equal to λ0L/lt. However, the situation is more complicated
for strong alloy scattering. In this case, there is an angular frequency ωB at which
alloy scattering takes over from boundary scattering. This frequency is given by
L = v/AωB

4 and the equation for the lattice conductivity becomes

kL ¼ cv
x3

D

� �
4 v=Að Þ3=4L1=4

3
� v
AxD

 !
: ð5:26Þ

When ωB is much less than ωD, the second term on the right hand side of (5.26) can
be neglected and we then expect λL to vary as L1/4. Thus, in this region, where both
alloy scattering and boundary scattering are very strong,

kL ¼ 2kS
3

� �
3L
lt

� �
kS
2k0

� �2
" #1=4

: ð5:27Þ

This equation fails as ωB approaches ωD and, when L becomes very small, we
obtain the same expression as for weak alloy scattering.

5.4 Scattering of Electrons and Phonons

The considerations of the previous section show that boundary scattering can
appear when the mean free path of the phonons is much smaller than the grain size.
For this reason alone, it is possible that boundary scattering can improve the ratio of
mobility to lattice conductivity even when the mean free path is greater for the
charge carriers than for the phonons. It is also possible that boundary scattering of
the charge carriers might be more nearly specular than it is for the phonons.
However, let us for the moment assume that the boundaries are equally effective in
scattering phonons and electrons or holes.
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If the charge carriers are scattered by the acoustic-mode lattice vibrations in a
large crystal, the mobility is given by

l0 ¼
4

3p1=2
es0 kTð Þ�1=2

m� ; ð5:28Þ

where we have set r = −1/2 in (3.30). Thence, the mean free path, l0, of the charge
carriers is given by

l0 ¼ 3l0 2pm�kTð Þ1=2
4e

: ð5:29Þ

When boundary scattering is also present, the free path length for the charge
carriers is given by

le ¼ 1
l0
� 1
L

� ��1

; ð5:30Þ

where L again represents the effective grain size. Thus, the mobility is expressed as

l
l0

¼ L=l0
1þ L=l0

: ð5:31Þ

Let us then consider the effect of boundary scattering in a Si–Ge alloy, a material
that has found application in thermoelectric generators. Calculations of both the
lattice conductivity and the electron mobility have been carried out [10] using
(5.25) and (5.31) for a wide range of effective grain sizes. Figure 5.5 shows how
μ/μ0 and λL/λs vary with L/lt for Si–Ge with equal proportions of the two elements.

λ/λS μ/μ0 

L/ lt
100001000100101

1.0

0.8

0.6

0.4

0.2

0

Fig. 5.5 Calculated ratio of
lattice conductivity to its
value for a large crystal
plotted against ratio of
effective grain size to phonon
mean free path for Si–Ge at
300 K, Also shown is the ratio
of electron mobility to its
value for a large crystal
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In Fig. 5.6 we show how the ratio of lattice conductivity to electron mobility
varies with grain size for the same Si–Ge alloy. The ratio λL/μ is generally reduced
when the grain size becomes smaller, though there is a minimum value for the ratio
when the effective grain size is about ten times the mean path length of the phonons.

Silicon–germanium alloys are not useful thermoelectric materials at room tem-
perature so the predicted improvement in the ratio of electron mobility to lattice
conductivity, shown in Fig. 5.6, is not immediately applicable to practical appli-
cations. It is worth noting, however, that there is experimental confirmation that the
lattice conductivity can be significantly reduced by boundary scattering. Savvides
and Goldsmid [11] found that the lattice conductivity of undoped Si70Ge30 at 300 K
falls from 8.2 to 4.3 W/m K when the grain size is reduced to 2 μm in polycrys-
talline sintered material. At this grain size one expects very little deterioration of the
carrier mobility. Polycrystalline Si–Ge alloys have, in fact, been used in thermo-
electric generation.

5.5 Fine Grained Material with Large Unit Cells

In the above discussion it has been implicit that the model of a simple continuum is
adequate for the phonons that contribute to the heat conduction process. However,
most of the materials that are used in thermoelectric devices have several atoms in
each unit cell so that there are more optical modes than acoustic modes in the
vibrational spectrum. We shall now consider the situation that exists for more
complicated crystal structures. We shall still use the Debye theory for the
low-frequency acoustic modes, which we understand will make a major contribu-
tion to the thermal conductivity. Our object in this section is to estimate the
boundary scattering effect when there are optical modes as well as acoustic modes.

We think that most of the heat may still be carried by the acoustic modes of
lower frequency. The value of v in the equation (3.47) for the lattice conductivity

L/lt
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Fig. 5.6 Calculated values of
(λL/λS)/(μ/μ0) plotted against
ratio of effective grain size to
phonon mean free path in a
Si–Ge alloy at 300 K
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should be that for the group velocity rather than the phase velocity. The group
velocity is determined from the slope of the dispersion curve and, as in Fig. 3.7, this
will be relatively low for the high frequency acoustic modes and all the optical
modes. Nevertheless, because of their large number, it may well be that there is a
significant contribution from the optical phonons but its magnitude may be difficult
to assess. Consequently we find it best to describe the effect of boundary scattering,
in materials that have large unit cells, in terms of the difference between the lattice
conductivities in large and small grained material rather than as a ratio, as in (5.25).

The frequency at which umklapp scattering takes over from boundary scattering is

x0 ¼
ffiffiffiffiffiffi
v
BL

r
: ð5:32Þ

Thus, we shall determine the contribution to the lattice conductivity from the
phonons with frequencies up to this limit with and without boundary scattering.
Using the Debye model to determine the specific heat of these low-frequency
modes, we find that their contribution to the thermal conductivity is

kx\x0 ¼
1
9
vLcx3

0; ð5:33Þ

whereas the contribution from the same modes in the absence of boundary scat-
tering is

kx\x0 ¼
1
3
v2

cx0

B
¼ 1

3
vLcx3

0: ð5:34Þ

Thence the reduction in the thermal conductivity due to boundary scattering is

DkL ¼ 2
9
Lvcx3

0: ð5:35Þ

Our problem, then, is to find ω0.
The value of the umklapp scattering parameter B can be estimated from

Lawson’s relation, (4.10) and this, in turn, leads to the determination of ω0. It is
found that

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2

DC
9La2Tqdv2T

s
; ð5:36Þ

where, as before, αT is the thermal expansion coefficient and ρd is the density. C is
the total specific heat per unit volume and a is the lattice constant that we can set
equal to the cube root of the volume per unit cell.

This approach [10] was originally used to estimate the boundary scattering effect
in the half-Heusler alloy Zr0.5Hf0.5NiSn. It was calculated that a reduction in the
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lattice conductivity should be noticeable if the grain size were to fall below about
10 μm. Subsequently, thermal conductivity measurements were performed on
polycrystalline samples of a similar half-Heusler alloy, TiNiSn1−xSbx, by
Bhattacharya et al. [12]. It was found that there was good correlation with the
theory that is presented in this section, there being a substantial reduction of the
lattice conductivity as the grain size fell from 10 to 1 μm.

5.6 Phonon-Glass Electron-Crystal

The idea of a crystal with a glass-like thermal conductivity was first put forward by
Slack [13]. It is well known that a glass or an amorphous substance has the lowest
range of thermal conductivity of any type of material. It is, perhaps, strange to refer
to a lattice conductivity in a material that does not have a crystal structure but it is
convenient to use this term for the non-electronic contribution. If we attempt to use
(3.47) to describe this lattice conductivity, inserting measured values for the specific
heat and speed of sound, we find that the free path length for the phonons is equal to
the diameter of each atom. There will be variations in the thermal conductivity from
one glass to another due to variation in v and cV but the range is very small around
an average value of about 0.25 W/m K. This contrasts with the lattice conductivity
in crystals, which can vary over several orders of magnitude.

Amorphous semiconductors are unlikely to be good thermoelectric materials
because they invariably have very small values for the electrical conductivity,
stemming from low carrier mobilities. It is just possible that an amorphous material
might prove useful if the low mobility is compensated for by a high
density-of-states effective mass. For the thermoelectric materials that are in use
today, Chasmar and Stratton’s parameter β, as defined in (4.2), has a value of about
0.3. It is unlikely that an amorphous material will have a high figure of merit unless
β is already of this order in the crystalline state. The material will probably not be
improved as we change from a crystalline to a glassy structure unless the mean free
path for the phonons in the crystal is greater than the mean free path of the charge
carriers.

Nolas and Goldsmid [14] have discussed the criteria that must be met. They
supposed that the value of β would actually be equal to 0.3 in the crystalline state
and they found that the condition for the charge carriers to have a shorter free path
than the phonons is

9
80p

h2

mk

� �
hD

a2T2N1=3
v m�=mð Þ

 !
\1; ð5:37Þ

where key quantities are the density-of-states effective mass, m*, and the number of
valleys, Nv, in the appropriate energy band.
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In a thermoelectric material for use at room temperature, the Debye temperature
might be of the order of 300 K and for all substances a is about 0.5 nm. Under these
conditions the inequality (5.37) leads to the requirement that Nv

1/3m*/m > 17, an
unlikely state of affairs. On the other hand, the requirement becomes less rigorous at
high temperatures. If we suppose that θD and T are again similar to one another, the
necessary value for Nv

1/3m*/m becomes smaller as T becomes larger. The minimum
value of Nv

1/3m*/m is plotted against temperature in Fig. 5.7. At a temperature of,
say, 1200 K, Nv

1/3m*/m would need to be no more than 4 for the amorphous form of
the material to be interesting.

Slack’s approach was rather different. He directed attention towards materials
that are essentially crystalline rather than amorphous but which have lattice con-
ductivities that are very similar to those in true glasses. Thus, the thermal con-
ductivity of a glass is more-or-less independent of T at high temperatures but varies
as T3at low temperatures because this is the way that the specific heat behaves. This
behaviour is reproduced in the crystalline materials to which Slack directed his
attention. Because the electronic properties of these materials are essentially no
different from those of other crystals they have been called phonon-glass
electron-crystals or PGECs.

The characteristics of crystals that have glass-like thermal conductivities were
detailed by Cahill et al. [15]. They contain atoms that are loose in the sense that
they do not have unique positions in the lattice. These loose atoms do not have fixed
positions relative to each other. They are not like the impurity atoms that one uses
to dope semiconductors since their concentrations may be relatively high, at least
3 %. The structures that can accommodate these loose atoms exhibit rather large
open cages formed by more stable atoms. The so-called rattling motion of the loose
atoms is responsible for intense phonon scattering.

The materials that embody the PGEC principle will be discussed in later
chapters. Suffice it to say, for the moment, that there do exist certain materials that
display glass-like lattice conductivities combined with electronic properties that are
not unlike those of other semiconductors.

N
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1/
3 m

*/
m

TK

Fig. 5.7 The requirement for
improvement in the figure of
merit on the transition from
the crystalline to the
amorphous state. An
improvement is likely if the
parameter NV

1/3m*/m lies
above the curve
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5.7 Thermoelectric Refrigeration at Very Low
Temperatures

The behaviour of the lattice conductivity at low temperatures has some interesting
consequences. It is clear that the extension of thermoelectric refrigeration to tem-
peratures that are much less than that of liquid nitrogen is difficult. There is no
evidence that the figure of merit, z, will become any larger than its value in bismuth,
so zT is likely to become very much less than unity as the temperature approaches
the liquid helium region. However, at very low temperatures there is the possibility
that the thermal conductivity might become exceedingly small. This is because the
lattice component falls rapidly when T becomes much less than the Debye tem-
perature. Thus, it is worth considering the possible use of the Peltier effect at
cryogenic temperatures.

The use of thermoelectric cooling in the liquid helium region was considered by
McDonald et al. [16] and by Blatt [17] who directed their attention towards metallic
thermoelements. They pointed out that only one active thermocouple branch is
needed since a thermocouple can be completed using a superconductor. McDonald
and his colleagues drew attention to the relatively large Seebeck coefficients of
dilute gold-based alloys while Blatt noted the enhancement of the Seebeck coef-
ficient of Bi in a magnetic field. However, the materials suggested by these authors
do not overcome the problem of the effect of a low temperature on zT. The real hope
for Peltier refrigeration in the cryogenic region again lies with semiconductor
thermoelements.

At ordinary temperatures the ratio λ/σ for metals is given by the Wiedemann–
Franz law. The Lorenz number, L, can become smaller as the temperature falls and
inelastic scattering takes over but at the lowest temperatures elastic scattering is
again predominant. Thus, it is easily shown that for zT to exceed unity, the Seebeck
coefficient must be greater than 156 μV/K even if the lattice conductivity is ignored.
In fact, the condition a Peltier cooler to lower the temperature by an order of
magnitude is that zT has to be about 20. Clearly this means that the Seebeck
coefficient must be far greater than 200 μV/K, implying a non-degenerate semi-
conductor. It also implies a material with a much larger value of β than that of any
high temperature material [18].

Let us examine the situation in which the temperature is low enough for the
lattice specific heat to vary as T3. The phonon free path is likely to be controlled by
boundary scattering so the lattice conductivity should also be proportional to T3.
We expect that the mobility of the charge carriers will become less temperature
dependent as static defects take over from thermal scattering and, for an
energy-independent carrier free path length, we expect μ ∝ T−1/2. This means that β
should eventually become proportional to T−1.

The lattice specific heat per unit volume when T << θD is given by
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Cv ¼ 12p4Nk
5

T
hD

� �3

; ð5:38Þ

where N is the number of atoms per unit volume. Thus the lattice conductivity is

kL ¼ 4p4Nkvlt
5

T
hD

� �3

; ð5:39Þ

where v is the speed of sound and lt is the mean free path of the phonons. Also, the
mobility of the charge carriers is

l ¼ 4ele
3 2pm�kTð Þ1=2

; ð5:40Þ

where le is the carrier mean free path. Thence we find that

b ¼ 20
3p2

k2

h3
m�h3D
NvT

le
lt

ð5:41Þ

and, using the Debye approximation for the speed of sound,

b ’ 0:13
km�#2

D

h2N2=3T
le
lt
: ð5:42Þ

We note that for the present purpose the material should have a high Debye tem-
perature whereas this parameter is usually low for high temperature materials.

To proceed further we suppose that the effective mass of the carriers is close to
the free electron mass. We also assume that the mean free paths of the phonons and
electrons are equal, which would be the case if boundary scattering is predominant
for both. This allows us to set the approximate value for β as 4� 10�7h2D=T . Since
the Debye temperature is unlikely to exceed 1000 K, we cannot expect β to be
greater than 0.4 at a temperature of 1 K. Although, at 1 mK one might find β to be
as large as 400, it does not seem likely that thermoelectric cooling will be a useful
technique below liquid helium temperature.

The biggest problem in making a very low temperature thermoelectric refrig-
erator would probably be in optimising the carrier concentration. If m* is close to
the free electron mass, the carrier concentration is equal to
4.8 × 10−21 T3/2expη m−3. To operate at about 1 mK with the optimum value of η
equal to about 5 the carrier concentration would have to be about 1015 m−3. It is not
likely that this would be achieved using conventional doping techniques. It should
be noted that, even if this problem is overcome the cooling power of a cryogenic
thermoelectric refrigerator would be very small because of the high electrical
resistance of the device with such a small carrier concentration.
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Chapter 6
The Improvement of a Specific
Material—Bismuth Telluride

Abstract This chapter outlines the way in which the properties of the most
important group of thermoelectric materials, those based on bismuth telluride, have
improved with time. The properties of pure bismuth telluride are presented with
attention being drawn to the anisotropy of the transport parameters. Diffusion in
bismuth telluride associated with its layered structure is discussed. The improved
properties of solid solutions are described. It is shown how the production of
bismuth telluride alloys has developed from the laboratory to the production line.
The modifications to the composition, which must be made for the material to be
used in generators as well as refrigerators, are described.

6.1 Pure Bismuth Telluride

The first report that bismuth telluride, Bi2Te3, is an effective thermoelectric material
appeared in 1954 [1]. A thermocouple made from a p-type sample of the compound
connected to a negative thermoelement made from bismuth was found to yield a
cooling of 26 K below ambient temperature by means of the Peltier effect.

Bismuth telluride forms single crystals that are markedly anisotropic in their
mechanical properties. The crystal structure is such that the bismuth and tellurium
atoms are arranged in parallel layers following the sequence:

�Te½1� � Bi� Te½2� � Bi� Te½1��;

which is continually repeated. Strong covalent–ionic bonds exist between the Bi
atoms and the Te atoms on both types of site but the layers of Te[1] atoms are bound
to neighbouring Te[1] layers only by weak van der Waals forces [2]. It is found that
crystals of bismuth telluride are easily cleaved along the direction of the layers,
normal to the trigonal or c-direction. Perpendicular to the c-axis there are two a-
axes inclined at 60° to each other.

It is not only the mechanical properties that are different in the plane of the a-
axes and the c-direction. For example, the electrical and thermal conductivities are
higher parallel to the cleavage planes than perpendicular to them.
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Bismuth telluride was selected as a material to be studied on account of its high
mean atomic weight. It also has the relatively low melting temperature of 585 °C and
satisfies the criteria set by both Ioffe and Ioffe [3] and by Keyes [4] for a low lattice
conductivity. The material in the first experiments was produced by the zone melting
of a mixture of the elements in the correct proportions. No attempt was made to
optimise the doping level but it so happens that melt-grown bismuth telluride does
not have the stoichiometric formula Bi2Te3. Instead, there is an excess of Bi atoms,
with corresponding vacancies on some of the Te sites. The excess Bi atoms appear to
act as acceptor impurities leading to p-type conduction. The number of acceptors is
such that the Fermi energy lies close to the optimum value, with the Seebeck
coefficient equal to 220 μV/K. The original sample was aligned with current flow
perpendicular to the c-direction and the electrical and thermal conductivities were
found to be 4.0 × 104 Ω−1m−1 and 2.1 W/m K respectively. The figure of merit zp
was no more than about 0.9 × 10−3 K−1 and, at that time, there was no n-type
bismuth telluride to complete the couple. In fact, a properly aligned crystal of
bismuth would have provided a negative branch with at least the figure of merit of
the positive bismuth telluride branch but only a polycrystalline sample was available.
Poor as was the performance of the Bi2Te3—Bi couple, it established the fact that
semiconductor thermoelements are superior to metals.

There is no reason why the negative and positive branches of a thermocouple
should consist of the same element or compound. Nevertheless, it so happens that
the figure of merit of optimised n-type bismuth telluride is almost the same as that
of optimised p-type material. Thus, by 1955, after n-type bismuth telluride had been
obtained through the addition of the donor impurity, iodine, it was found that a
couple made from both types of the compound gave a Peltier cooling effect of 40 K
below room temperature [5]. The figure of merit Z for the couple could have been
no more than about 1.2 × 10−3 K−1 with ZT equal to about 0.35. During the next
couple of years, the techniques for producing uniformly doped bismuth telluride of
both conductivity types were improved so that the properties could be truly opti-
mised. It was found [6] that the optimum electrical conductivity is close to
1.0 × 105 Ω−1 m−1 and the dimensionless figure of merit, ZT, for the best couple
made from Bi2Te3 is about 0.6.

These early results for bismuth telluride validated the theoretical work on the
selection and optimisation of materials. It also brought into prominence the dele-
terious effect of minority carriers. Thus, the plot of Seebeck coefficient against
electrical conductivity in Fig. 6.1 shows not only the increase of Seebeck coefficient
as the electrical conductivity is reduced in the extrinsic region but also the decrease
of |α| in the mixed and intrinsic regions. Undoped melt-grown Bi2Te3 is p-type with
the electrical conductivity slightly higher than that for which the Seebeck coefficient
has its maximum value. Higher electrical conductivities are obtained by doping
with an acceptor impurity such as lead. If, instead, a donor impurity, such as iodine,
is added the material becomes intrinsic and then n-type.

In Fig. 6.2 we show how the thermal conductivity varies with electrical con-
ductivity for the same samples of bismuth telluride as those used to obtain Fig. 6.1.
As one might have expected, the thermal conductivity generally rises with

86 6 The Improvement of a Specific Material—Bismuth Telluride



α
μV/K 

300 

200 

100 

0 

-100 

-200 

        σ 
 x 105 Ω−1m-1

4 1 2 3 

-300 

Fig. 6.1 Seebeck coefficient
plotted against electrical
conductivity for p-type and
n-type bismuth telluride at
300 K

λ
W/m K 

3.0 

2.5 

2.0 

1.5 
1 320

σ
x 105 Ω-1 m-1 

Fig. 6.2 Plot of thermal
conductivity against electrical
conductivity for bismuth
telluride at 300

6.1 Pure Bismuth Telluride 87



increasing electrical conductivity due to the increase in the electronic component.
However, at low values of the electrical conductivity, the thermal conductivity
again becomes larger. Clearly the Lorenz number is becoming much greater than
expected for a single type of charge carrier. This is a convincing demonstration of
the importance of the bipolar heat conduction effect. For intrinsic bismuth telluride
the Lorenz number is about 25(k/e)2 compared with about 2(k/e)2 for extrinsic
material. One can extrapolate the almost linear plot in the extrinsic region towards
the vertical axis to obtain the lattice conductivity which has the value of about
1.6 W/m K.

6.2 Band Structure of Bismuth Telluride

One of the consequences of the detailed study of the thermoelectric properties of
bismuth telluride was the availability of high quality single crystals of the com-
pound. This allowed a large number of physical measurements to be made thereby
enhancing our knowledge of electronic transport in the material.

As is only to be expected for a substance with such marked anisotropic
mechanical properties, the electrical and thermal conductivities parallel to the
cleavage planes are different from those in the perpendicular direction. The lattice
conductivity in the c-direction is less than that in the plane of the a-axes by a factor
of 2.1. This would make the c-direction preferable for thermoelectric applications
were it not for the fact that the electrical conductivity is even more strongly ani-
sotropic. The anisotropy of the electrical conductivity is different for n-type and
p-type material and, at least for the former, it varies with the doping level as shown
in Fig. 6.3. The anisotropy of about 2.7 for hole conduction is not much greater than
the anisotropy of the lattice conductivity so, although the p-type figure of merit is
somewhat the smaller for current flow in the c-direction, the difference is not great.
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On the other hand, the anisotropy factor for electron conduction is equal to at least
4, so it is most unfavourable for the current flow to be in the c-direction for n-type
thermoelements made from bismuth telluride. This is an important factor if one
wishes to make use of randomly oriented polycrystalline specimens. Although such
material is preferable to single crystals from the mechanical viewpoint, it leads to a
substantial degradation of the figure of merit for the negative branches. In actual
fact, single crystals are usually too fragile for practical applications but one can
make use of melt-grown material in which the cleavage planes all lie parallel to the
growth direction but not parallel to one another.

One of the quantities that one wishes to know in any new semiconductor is the
mobility of the electrons and holes. This should be independent of the position of
the Fermi level, if the conductor is non-degenerate and extrinsic, provided that the
scattering is entirely due to the lattice vibrations. In isotropic semiconductors, the
mobility is easily found by measuring the Hall coefficient, RH, and the electrical
conductivity. In an extrinsic conductor with only one type of carrier the Hall
coefficient is given by [7]

RH ¼ � aH
ne

; ð6:1Þ

where aH is a parameter close to unity that depends on the scattering law. For
acoustic mode lattice scattering aH is equal to 3π/8 while for a fully degenerate
conductor it is equal to 1. Since the electrical conductivity is equal to neμ, the
mobility is given by |RHσ/aH|. It is often convenient to make use of the so-called
Hall mobility given by |RHσ|.

For a single crystal with the structure of bismuth telluride, there will be two
different Hall coefficients depending on the orientation of the current and the
magnetic field. One might hope to obtain the carrier concentration, n, by taking
some average of the Hall coefficients but it turns out that this leads to an error by a
factor of more than 2. The true carrier concentration can be determined from the
Hall coefficient only if the ratios between the inertial effective masses in each
energy band are known.

It is possible to find the ratios between the effective masses as well as the number
of valleys and the tilt of the constant energy surfaces in wave vector space by
making comprehensive galvanomagnetic measurements. Such measurements were
first carried out for single crystals of p-type and n-type Bi2Te3 by Drabble and his
colleagues [8, 9]. There are two components of the electrical resistivity, two Hall
coefficients and eight magnetoresistance coefficients. Less than half these coeffi-
cients are needed once the number of valleys in the band is given but, if all are
measured, the additional information can be used to confirm the validity of any
hypothetical model. Reference is made to the basic cell in wave vector space known
as the first Brillouin zone, its shape for bismuth telluride being shown in Fig. 6.4.

The surfaces of constant energy in wave vector space should be ellipsoidal
provided that the electrons or holes have energies that are close to those at the band
edges. The surfaces may be tilted with respect to the axes provided that crystal
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symmetry is maintained. Various possibilities exist for the number of valleys but
restrictions are placed so as to satisfy symmetry conditions. Drabble and his
colleagues were able to show that only a six-valley model could be made to fit the
experimental data. They described the bands in terms of reciprocal effective mass
tensors of the form αij/m which are such that the energy of a charge carrier is
given by

E ¼ E0 � h2

2m
a11k

2
1 þ a22k

2
2 þ a33k

2
3 þ 2a23k2k3

� �
; ð6:2Þ

where k is the wave vector for the carriers. It should be noted that the galvano-
magnetic measurements establish the shape of the energy surfaces but not the
absolute values of the effective masses. The latter require the additional knowledge
of the position of the Fermi level. The extra data were provided by Bowley et al.
[10] who observed the Seebeck coefficient and its change in a magnetic field. The
Seebeck coefficient on its own gives a reasonable indication of the Fermi energy but
a more accurate value requires knowledge of the scattering law.

The scattering law can be determined by measurement of either the
magneto-Seebeck coefficient or the Nernst coefficient. If a sufficiently large trans-
verse magnetic field could be applied so that the condition (μB)2 >> 1 is satisfied,
the Seebeck coefficient would eventually reach the value that it would have in zero
field if r were equal to zero. One could, therefore, find the value of r by subtracting
the Seebeck coefficient, α0, in zero field from that, α∞, in a very large field. Thus,
from (3.32)

jða1 � a0Þj ¼ � kr
e
: ð6:3Þ

However, even at liquid nitrogen temperature, the mobility of the carriers is too
small for the high field condition to be met with any available magnet. Instead, one
has to be satisfied with measurements under the low field condition (μB)2 << 1. It
can then be shown [10] that
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rDa
Dr

¼ k
e

2� 1
b�

� �
r; ð6:4Þ

where β* is equal to (1 − ρΔρ/RH
2B2). Δσ and Δρ are the changes in electrical

conductivity and resistivity respectively in the magnetic field B. Δα has the same
sign as α if r is negative and the opposite sign if r is positive. Bowley et al. found
that their measurements were consistent with r being equal to −1/2. It would also
have been possible to determine r from the measurement of the Nernst coefficient as
was done by Mansfield and Williams [11].

Table 6.1 shows the band parameters that were determined for p-type material by
Drabble and his colleagues after the Fermi energy of their samples had been
established. For n-type material the improved data of Caywood and Miller [12] are
used. The band extrema lie on the reflection planes that contain the trigonal and
bisectrix directions. The reciprocal effective mass tensor α11/m is referred to axes
x and z in the reflection plane and y in the perpendicular direction.

In actual fact, although the band model has been described in terms of six
valleys, the galvanomagnetic data would fit equally well for three valleys with the
extrema at the boundaries of the Brillouin zone. This uncertainty was removed by
work on the de Haas–van Alphen effect [13] and by studies of the reflectance
minima associated with the plasma edges [14]. Both experiments showed that there
are six valleys with the extrema inside the zone. Thus, the good thermoelectric
properties of bismuth telluride lend credibility to the idea that the parameter β
should be large for semiconductors with both a high mean atomic weight and a
multi-valley band structure.

There is empirical support for the principle that a good material will have as
small an energy gap as is consistent with the requirement that there should be only
one type of carrier. This means that the energy gap will probably be a few times kT
in width. That, in turn, suggests that materials with different energy gaps will be
needed in each region of temperature. This suggestion is borne out by the exper-
imental data.

The energy gap of a semiconductor can be found either from the variation of the
carrier concentration with temperature in the intrinsic region [15] or from optical
transmission studies. It is usually satisfactory to determine the rate of change of the
electrical conductivity with temperature, since the intrinsic carrier concentration has

Table 6.1 Band parameters for p-type and n-type Bi2Te3

Parameter Valence band Conduction band

Number of valleys 6 6

Location in k-space On reflection planes On reflection planes

α11 19.8 26.8

α22 3.26 4.12

α33 4.12 3.72

α23 1.0 2.4
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an exponential temperature dependence. It is easy enough to take account of the
much slower temperature variation of the mobility.

The observation of the wavelength of the optical absorption edge is regarded as
the most reliable method of finding the energy gap if due account is taken of the fact
that the Fermi level may lie inside the valence or conduction band. Austin’s value
[16] of 0.13 eV for the gap was later confirmed by Greenaway and Harbeke [17].
The optical studies reveal what cannot be determined from conductivity measure-
ments, namely the dependence of the gap width on temperature. It is found that the
gap becomes larger as the temperature falls, the temperature coefficient being
−9.5 × 10−5 eV/K down to −155 °C.

It is noted that the energy gap has a value of no more than about 5.2kT at room
temperature so it does not quite satisfy our requirement of at least 6kT to avoid
minority carrier conduction. This should not matter too much for refrigeration
below room temperature but should be significant in applications involving higher
temperatures. To some extent the problem can be overcome by doping the com-
pound more heavily.

Recently, consideration has been given to the possibility of using
ionised-impurity scattering to improve the figure of merit of a narrow-gap material.
It was pointed out by Ioffe [18] that the increase of the Seebeck coefficient brought
about by the change in the scattering law due to impurity scattering might more
than compensate for the fall in the carrier mobility. The effect has never been
exploited in materials with a single type of carrier and the improvement would only
be marginal in that case. However, when there are both electrons and holes in a
narrow-gap semiconductor or semimetal the situation is different [19]. In a bismuth
telluride-like model with zero energy gap, the figure of merit becomes almost twice
as great if lattice scattering is augmented by ionised-impurity scattering. The
improvement would be less for an energy gap as wide as it actually is in bismuth
telluride but there could still be a significant advantage in having some
ionised-impurity scattering particularly for applications above room temperature. It
would, of course, be necessary to optimise the carrier concentration, so
counter-doping with donors and acceptors would have to be carried out.

6.3 Diffusion in Bismuth Telluride

Early attempts to manufacture thermoelectric coolers based on bismuth telluride
received a setback when it was discovered that the observed performance fell far
short of that expected from laboratory measurements of the parameters involved in
the figure of merit. It is not easy to solder directly to bismuth telluride though some
success has been achieved using bismuth for this purpose. More reliable contacts of
low electrical resistance are obtained after first electroplating the ends of the
thermoelements with metallic layers. The poor performance of the thermocouples
was observed when copper was employed as the plating material. It seemed that
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copper was diffusing rapidly though the thermoelements, acting as a donor impurity
and changing the Seebeck coefficient and the electrical conductivity. The problem
appeared to be solved when nickel was used to replace copper as the contact
material.

However, even when nickel-plated thermoelements were used, further problems
were experienced. In one particular assembly procedure, the solder in contact with
the nickel-plated ends remained molten for several minutes. Thermoelectric mod-
ules that had been made using this procedure were found to have an extremely low
cooling power. It was subsequently established that copper, which had been dis-
solved in the solder, was able to diffuse through the plating and thence travel into
the bismuth telluride. It was clear that the diffusion coefficient of copper in bismuth
telluride must be very high indeed.

The phenomenon of fast copper diffusion can be explained qualitatively by
assuming that a Cu+ ion is very small and is able to fit easily between the adjacent
layers of Te[1] atoms that are so weakly bound together. This idea was confirmed by
Carlson [20] who measured the diffusion coefficient for copper in bismuth telluride,
as a function of temperature, in both the a- and c-directions. His results are shown
in Fig. 6.5. The diffusion coefficient in the plane of the a-axes is higher at 300 K
than it is in the c-direction at 800 K.

It is noteworthy that copper will diffuse out from bismuth telluride just as readily
as it diffuses in. The copper that contaminates a sample can be removed by
immersing it in an aqueous solution; dilute hydrochloric acid has been found
suitable for this purpose.

These remarks about copper diffusion apply not only to single crystals but also to
the material that is produced by zone melting in which there is a clear path for the
copper ions through the cleavage planes from one end of a sample to the other.
However, copper does not seem to be able to diffuse readily through sintered
bismuth telluride with its randomly orientated grains. Thus, copper cannot be ruled
out as a useful doping agent in this type of material.
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In view of the reasons for the rapid diffusion of copper in bismuth telluride, it is
not surprising that other elements from the same group of the periodic table, namely
silver and gold, behave in more-or-less the same way.

6.4 Solid Solutions Based on Bismuth Telluride

It was not long after the establishment of bismuth telluride as a thermoelectric
material that the ideas of Ioffe et al. [21] on semiconductor solid solutions became
known. There seemed to be no reason why the beneficial effect on the thermal
conductivity of PbTe, on alloying it with PbSe or SnTe, should not be duplicated on
alloying Bi2Te3 with isomorphous compounds such as Sb2Te3 and Bi2Se3.

If the further conclusions of Airapetyants et al. [22], on the importance of sub-
stituting on the appropriate sub-lattice, are valid, then one would expect solid solutions
between Bi2Te3 and Sb2Te3 to be the best p-type materials. Similarly, alloys of Bi2Te3
with Bi2Se3 would make better n-type thermoelements. In fact, the solid solutions
based on bismuth telluride do conform to this pattern, though not necessarily for the
reasons that Airapetyants and his colleagues put forward. As has already been men-
tioned, bismuth telluride itself, when grown from the melt, is non-stoichiometric and at
ordinary temperatures is a p-type extrinsic semiconductor. As the compound is alloyed
with Sb2Te3 the non-stoichiometry becomes even more pronounced and it would be
rather difficult to add sufficient donor impurities, in a controlled manner, to make these
solid solutions n-type. On the other hand, when Bi2Se3 is added to Bi2Te3 the material
becomes less strongly p-type and is more easily doped so as to have the optimum
electron concentration for a negative thermoelement.

There is no doubt that the solid solutions have lattice conductivities that are
lower than that of pure bismuth telluride. This is borne out by the measurements of
several groups of workers [23–25]. The actual values for λL differ from one set of
results to another but this is possibly due to the different methods for estimating the
electronic thermal conductivity. In Figs. 6.6 and 6.7 we show the lattice conduc-
tivity in the (Bi–Sb)2Te3 and Bi2(Te–Se)3 systems respectively based on the results
of Rosi et al. [23]. The peculiar maximum in the Bi2(Te–Se)3 system when the
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concentration of Bi2Se3 is about 60 % was not noticed by Birkholz [24] although a
similar peak was observed at about 25 % Bi2Se3 by Champness et al. [26]. It so
happens that the best n-type materials have relatively low amounts of Bi2Se3 and
the observations for higher concentrations may not have any practical significance.

Of course, the important question that must be answered is whether or not the
mobility of the charge carriers is affected by the formation of the solid solutions. In
the (Bi–Sb)2Te3 system there actually seems to be an increase in the value of μ(m*/
m)3/2 as the proportion of Sb2Te3 rises, as is apparent from the slight increase in the
electrical conductivity at a given value of the Seebeck coefficient. There is, thus, no
doubt that (Bi–Sb)2Te3 is superior to Bi2Te3 for p-type thermoelements. All
observers seem to agree that the minimum lattice conductivity is to be found when
the concentration of Sb2Te3 is about 75 %. There is some speculation that even
more Sb2Te3 might be advantageous but it is difficult to achieve the optimum
Seebeck coefficient when there is more than 75 % of this compound in the alloy.
Sb2Te3 itself usually displays near-metallic properties with a Seebeck coefficient of
less than 100 μV/K and it was at first uncertain whether this is due to overlapping
valence and conduction bands or to the inability to add enough donor impurities to
compensate for gross non-stoichiometry. As we shall see later, it is now possible to
produce samples of Sb2Te3 with Seebeck coefficients that are greater than
200 μV/K and it is probable that the energy gap in this compound is greater than in
Bi2Te3. It is interesting that materials with the composition Bi0.5Sb1.5Te3 are still
referred to as bismuth telluride alloys or even, loosely, as bismuth telluride, in spite
of the fact that they are composed mostly of Sb2Te3.

The optimum n-type composition has not been determined with the same con-
fidence. All that seems to be established is that the proportion of Bi2Se3 in the
Bi2(Te–Se)3 alloy should be quite small. The quantity μ(m*/m)3/2 for the electrons
certainly becomes less as Bi2Se3 is added but the fall in the lattice conductivity
more than compensates for this up to a certain concentration. Beyond that con-
centration, the deterioration in μ(m*/m)3/2 is such that the small benefit from a
further fall in λL is not worthwhile. In any case, although other workers do not agree
with Rosi et al. [23] on the magnitude of λL, they all set the minimum lattice
conductivity at a Bi2Se3 concentration of no more than 20 %. The composition
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Bi2Se0.3Te2.7 is often selected for the n-type material that is used in modules and
this is probably not far from the optimum composition.

Goldsmid and Delves [27] made a direct comparison between the thermoelectric
properties of selected bismuth telluride alloys and the best Bi2Te3 that was avail-
able. This comparison has the advantage that the materials were prepared using the
same zone-melting apparatus and the measurements were all carried out using the
same equipment. The reliability of the results was confirmed by assessing the
performance of thermocouples made from the compound and alloys. The figure of
merit, of course, varies with the carrier concentration, but the optimum electrical
conductivity, not unexpectedly, has more-or-less the same value for both p-type and
n-type material and for both the solid solutions and the pure compound. The figure
of merit at 20 °C is plotted against electrical conductivity in Fig. 6.8.

The compositions that were developed in the late nineteen fifties and the early
nineteen sixties have been used in the manufacture of modules since that time. It is
possible that marginal improvements might result from the simultaneous addition of
Sb2Te3 and Bi2Se3 to Bi2Te3. Yim and Rosi [28] claimed that Bi0.5Sb1.5Te2.91Se0.09
with excess Te is the best p-type material and that Bi1.8Sb0.2Te2.85Se0.15 doped with
SbI3 gives the highest n-type figure of merit. They observed values for z equal to
3.3 × 10−3 K−1 at 300 K for both materials and it was widely accepted until recently
that a dimensionless figure of merit, zT, equal to unity is the best that can be
achieved using bismuth telluride alloys.

6.5 Practical Developments

One of the problems that was encountered by the manufacturers of thermoelectric
modules was the fact that the thermoelements rarely displayed the best properties
that had been observed in the laboratory. We shall discuss the zone melting
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technique in a later chapter but we shall mention here that material that is grown too
rapidly has a non-uniform composition. There can be variations in the proportions
of the major components in an alloy and, what is probably more important, vari-
ations in the concentration of the dopants that are used to control the carrier con-
centration. Non-uniform material obviously cannot have the optimum composition
throughout its volume but one might hope that small variations would not have too
much effect. However, the tolerable departures in a material like bismuth telluride
with a rather small energy gap are not very large since the figure of merit falls off
rapidly as soon as mixed conduction appears. Furthermore, non-uniformity in a
thermoelectric material can give rise to internal circulating currents associated with
the Seebeck effect, producing unwanted heat flow. There is also evidence for
additional phases, such as the deposition of tellurium in the grain boundaries,
appearing under some circumstances, and this may adversely affect the transport
properties. One of the major achievements since the introduction of the bismuth
telluride alloys has been the understanding of the growth factors leading to better
control of materials production.

Bismuth telluride and its alloys are brittle materials. Single crystals are partic-
ularly fragile and in preparing the samples that were used by Drabble et al. [8, 9] in
their galvanomagnetic measurements it was necessary to etch away several mil-
limetres on all sides before it could be certain that there were no cracks. It has been
stated that zone melting and similar processes produce materials in which the
cleavage planes all lie parallel to the direction of motion of the liquid–solid
interface. This is not quite true. There is often some tilt of the cleavage planes
particularly if the interface is not planar. This means that the cleavage planes in a
thermoelement that is cut from the grown material may be inclined to the length
direction. Subsequent fracture can have a catastrophic effect on a module in which
such a thermoelement is incorporated. One of the achievements has been better
alignment of the cleavage planes so that any cracks have a minimal effect on the
flow of current.

Although bismuth telluride has such weak bonding between the Te[1] layers, it is
otherwise strongly bonded. Thus, randomly oriented polycrystalline material has
superior mechanical properties to single crystals or aligned polycrystals. Randomly
oriented material can be produced by various sintering processes but the resulting
thermoelements usually have inferior properties to those of aligned material.

The mechanical strength of polycrystals combined with the high figure of merit
of single crystals can be achieved in aligned polycrystalline material of small grain
size. We shall discuss the processes for obtaining such alignment later but it is
convenient to consider the properties of partially aligned thermoelements at this
point. In a sintered sample the grains are symmetrically arranged around the
direction of pressing. Following a suggestion by Penn [29], we suppose that, in
such a situation, the amount of material having its c-axis inclined at a polar angle θ
to the direction of symmetry is proportional to cosnθ dθ. The quantity n is then a
measure of the degree of alignment. It is found that the thermoelectric properties
perpendicular to the axis of symmetry are
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a? ¼ 2þ nð Þaara þ aarc
2þ nð Þra þ rc

; ð6:5Þ

r? ¼ 2þ nð Þra þ rc
nþ 3

; ð6:6Þ

k? ¼ 2þ nð Þka þ kc
nþ 3

: ð6:7Þ

while in the direction of symmetry

ak ¼ 1þ nð Þacrc þ 2aara
1þ nð Þrc þ 2ra

; ð6:8Þ

rk ¼ 1þ nð Þrc þ 2ra
nþ 3

; ð6:9Þ

kk ¼ 1þ nð Þkc þ 2ka
nþ 3

: ð6:10Þ

The above equations allow for anisotropy of the Seebeck coefficient but are
probably in error if such anisotropy exists. This is because non-uniformity of the
Seebeck coefficient will give rise to the circulating currents that have already been
mentioned and which may significantly increase the thermal conductivity.
Fortunately, there is no anisotropy of the Seebeck coefficient in the extrinsic bis-
muth telluride alloys that are used for making devices.

Equations (6.6)–(6.10) can be used to assess the degree of alignment in samples
of bismuth telluride but must be employed with caution for sintered material since
pressing faults can distort the behaviour. For this reason, an X-ray diffraction
technique for assessing the alignment was thought to be more reliable [30].

Cold or hot pressing followed by sintering and annealing does not produce
substantial alignment but Kim et al. [31] found that an extrusion process produces
material in which there is significant orientation of the grains. The extruded (Bi–
Sb)2Te3 produced by these authors appeared to be just as good as monocrystalline
material but that is not too surprising since the figure of merit is not strongly
anisotropic in p-type crystals. However, the strong alignment achieved by extrusion
should be particularly valuable for n-type material where the anisotropy is much
stronger.

Experts in sintering technology usually regard the density of the final product as
a measure of their success. Density is probably not a good yardstick for sintered
thermoelements since sometimes highly dense samples have a poor figure of merit.
In fact, there could be some advantage in using less dense thermoelements as long
as the figure of merit remains high. Provided that the ratio of electrical to thermal
conductivity stays unchanged, it does not matter if the material is porous. This is
demonstrated by the low density samples with a good figure of merit that were
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produced by Durst et al. [32]. It has recently been shown [33] that porous bismuth
telluride should be useful in the production of synthetic transverse thermoelements.

Another area in which advances are being made is in the production of thick or
thin films of thermoelectric material. There is a trend towards the reduction of the
amount of material in a thermoelectric module. In theory, by reducing both the
length and the cross-section area one should be able to economise on the amount of
material that is needed for a given cooling power. In practice, as we shall see later,
there are problems associated with electrical contact resistance and thermal losses as
the size of the thermoelements is reduced but that does not seem to deter the
manufacturers from their attempts to miniaturise their devices. Experiments using
the flash evaporation technique [34] show that thin films of Bi0.4 Sb1.6Te3 have a
power factor of 3.49 W/m K2 which means that they are comparable in quality with
bulk material for which the power factor is typically about 4 mW m−1 K−2.

6.6 Bismuth Telluride Alloys as Generator Materials

Although bismuth telluride and its alloys have largely been used in the past for
refrigeration, there is now increasing interest in their incorporation in thermoelectric
generators. Many of the proposed generator applications make use of low-grade
heat, with source temperatures of the order of 200 °C or less. In these applications,
it is likely that bismuth telluride-based alloys will be used. Even when higher heat
source temperatures are available there is still the possible use of a multi-stage
device with bismuth telluride alloys employed for the low-temperature stage. Thus,
we need to know the thermoelectric properties above room temperature and how to
optimise these properties.

The selection of materials for use outside the usual temperature range has been
discussed by Kutasov et al. [35]. The properties below 200 K were considered by
Vedernikov et al. [36]. In general it is necessary to reduce the concentration of the
doping agents at low temperatures and to increase it at high temperatures. This will
allow the Fermi energy to be kept at its optimum value. Figure 6.9 shows how the
Seebeck coefficient and electrical conductivity vary with temperature for two dif-
ferent n-type bismuth telluride alloys. Sample 1 would be suitable for use at room
temperature whereas Sample 2 would be superior at low temperatures. It may be
noted that Sample 2 displays a significant contribution from the minority carriers at
300 K. The difference between the figures of merit of alloys with different dopant
concentrations can be considerable. Thus, Fig. 6.10 shows z plotted against tem-
perature for two different compositions similar to those of the specimens in Fig. 6.9.

A detailed consideration of the low-temperature properties of bismuth telluride
reveals that there are substantial departures from the simple theory outlined in
Chap. 3. Thus, the effective mass is not really a constant quantity. In the region for
which classical statistics are appropriate the Seebeck coefficient should satisfy the
relation
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which may be derived from (3.28) to (3.30). Even the earliest measurements on
bismuth telluride [37] showed that, although the plots of Seebeck coefficient against
ln(T) were linear, the slope was not equal to 3 k/2e. The temperature dependence of
the effective mass, as derived from Seebeck coefficient and resistivity measure-
ments, has been highlighted by Kutasov et al. [35]. Their observations are not easily
understood, with differences between the temperature variation of the effective mass
and its magnitude from one sample to another. Nevertheless, it seems plain that the
energy band structure of bismuth telluride is more complicated than was at first
supposed. There is strong evidence for the presence of a second conduction band
with its edge 0.03 eV above that of the main band [12, 38].

In principle, one should be able to predict the high-temperature behaviour from
the low-temperature properties but this is not quite as straightforward as one might
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Fig. 6.10 Figure of merit
plotted against temperature
for two bismuth telluride
alloys. Samples 1 and 2 are
similar to those in Fig. 6.9.
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data of Vedernikov et al. [38]
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hope. This is because the energy gap is rather small and it is necessary to take into
account the possibility of bipolar transport. Even at room temperature minority
carriers can be a problem and they are certainly an important factor above 300 K.
However, let us first discuss in general terms the effect of increasing temperature on
the thermoelectric properties when only one type of carrier is present.

The optimum value for the dimensionless Fermi energy, η, is more or less
independent of the temperature though, of course, an increased carrier concentration
is needed as the temperature rises. If the effective mass were constant the effective
density of states 2(2πm*kT/h2)3/2 would be proportional to T3/2 and the carrier
concentration for a fixed value of η should also be proportional to T3/2. Also, if the
charge carriers are scattered by acoustic-mode phonons, their mobility should vary
as T −3/2 and the power factor, α2σ, would then be virtually independent of tem-
perature. The quantity α2σ/λe would decrease with rise of temperature but zT is
equal to α2σ/(λe + λL) and λL is usually appreciably greater than λe. Moreover, λL
generally falls with increasing temperature, varying as T −1 for a pure element or
compound or as T0 when alloy scattering is completely dominant [39]. The total
thermal conductivity may well be almost independent of temperature if the varia-
tions due to the two components just about balance out.

We illustrate this for a hypothetical optimised material that happens to have zT
equal to unity. We may write an approximate expression for zT in terms of the ratio
of the lattice conductivity to the electronic thermal conductivity. Also, the elec-
tronic thermal conductivity will be close to 2(k/e)2σT for a conductor that is not
strongly degenerate and for which acoustic-mode lattice scattering dominates. The
variation of the relative total thermal conductivity with temperature is shown in
Fig. 6.11 for the two extreme temperature variations of the lattice conductivity [40].
It appears that the assumption that λ is independent of temperature is not a bad
approximation.

Turning now to the use of bismuth telluride alloys above room temperature, the
most important action is to increase the concentration of dopant to maintain, as far
as possible, extrinsic conduction over the full operating region. It would, of course,
be helpful if the energy gap could be increased and it appears that this does occur if
the alloys contain substantial concentrations of bismuth selenide. This is indicated

Fig. 6.11 Plot of relative
total thermal conductivity
against temperature for a
typical thermoelectric
material with λL independent
of temperature (upper plot)
and inversely proportional to
temperature (lower plot)
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by the plot of energy gap against composition due to Greenaway and Harbeke [17]
and shown in Fig. 6.12.

The discontinuity in Fig. 6.12 at a composition containing about 35 % Bi2Se3 is
probably due to a shift in the positions of the band extrema. However, Caywood
and Miller [12] reported that a six-valley model for the conduction band in Bi2Se3 is
similar to that in Bi2Te3, though the surfaces of constant energy are more nearly
spherical.
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Fig. 6.12 Variation of energy
gap with concentration of
Bi2Se3 in Bi2(Te–Se)3 alloys
based on the observations of
Greenaway and Harbeke [17]
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Although there is now a considerable effort being devoted to the improvement of
the bismuth telluride alloys above room temperature, very little data were available
in this region until a few years ago. The thermoelectric properties of certain p-type
and n-type alloys up to about 150 °C were included in a review by Matsuura and
Rowe [41] on low-temperature heat-to-electricity conversion and their data are
shown in Fig. 6.13. It does not seem that these materials have been optimised, but it
is noteworthy that their best n-type material contained 25 % of Bi2Se3.

6.7 Recent Advances

During the past few years there have been many reports of values of zT significantly
greater than unity for the bismuth telluride alloys. Usually these improvements have
been attributed to the adoption of some form of nanostructure, though Yamashita
and Tomiyoshi [42] claimed values of 1.41 and 1.19 for p-type Bi0.5Sb1.5Te3 and
n-type Bi2Te2.82Se0.18 respectively without any suggestion that their materials
might contain nanostructures. These authors suggested that the improved properties
were due to a large excess of tellurium in their p-type samples and the use of CuBr
as a donor impurity in their n-type material.

There is plenty of evidence that the choice of doping agent is much more
important than had at first been realised. It had seemed that one had only to select a
particular alloy, such as Bi0.5Sb1.5Te3, and then adjust the carrier concentration
using any donor or acceptor. Now it appears that not all donors or acceptors are
equivalent to one another. Perhaps the strongest evidence for this is the observation
by Heremans et al. [43] that the figure of merit of PbTe can be substantially
improved by doping with thallium. It was suggested that so-called resonance levels
[44] associated with the thallium distort the density-of-states so that the effective
mass can be changed without any effect on the carrier mobility. It seems that tin
may have a similar effect in bismuth telluride. Jaworski et al. [45] have found that
the Seebeck coefficient at a given carrier concentration is higher when bismuth
telluride is doped with tin rather than any other impurity.

The possibility of improving the figure of merit through the introduction of
ionised-impurity scattering was discussed in Sect. 6.3. The upward shift of the
transported energy due to ionised impurity scattering would be helpful in delaying
the onset of bipolar effects as the temperature is raised. One way of making
ionised-impurity scattering more likely is by counter doping with both donor and
acceptor impurities. Lee et al. [46] prepared p-type bismuth-antimony telluride
containing both Ga and Ag and noted a value of over 1.1 for zT at 360 K for the
counter-doped material. However, the slight improvement over material containing
only one dopant can be attributed to a fall in the lattice conductivity. It has yet to be
demonstrated that ionised-impurity scattering is beneficial in the bismuth telluride
system.

For many years it was thought that copper should never be used as a dopant for
bismuth telluride alloys on account of its rapid diffusion at relatively low
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temperatures. However, it now seems that copper can sometimes be a useful
additive. Thus, Kim et al. [47] added copper to Bi2Te2.7Se0.3 nanocomposites and
found the power factor to be increased. There did not appear to be any change of
carrier concentration, so the copper was not acting as a dopant in the conventional
sense and the lattice conductivity did not seem to have changed. The improvement
could have been due to either a modification of the density-of-states function or an
increase in the carrier mobility. The rather high value for zT of 0.98 at 417 K was
previously reported by Cui et al. [48] for n-type Bi2Te2.7Se0.3 in which up to 2 % of
the bismuth atoms were replaced by copper. The material was prepared by spark
plasma sintering and there was some evidence of alignment of the grains but Cui
and his colleagues suggested that the high figure of merit (for n-type material) was
due to both a reduction of the lattice conductivity and an increase in the power
factor.

We shall discuss nanostructures in detail in a later chapter. Briefly, they can lead
to improvements in the figure of merit due to both an enhancement of the electronic
properties and a decrease in the lattice conductivity. One of the first demonstrations
of the usefulness of nanostructures was the high figure of merit for a superlattice
based on Bi2Te3 and Sb2Te3 [49]. Successive layers of the two compounds were of
the order of 100 nm in thickness. It was found that zT for p-type material reached a
value of 2.4 at 300 K, while n-type material in a superlattice consisting of Bi2Te3
and Bi2Te1.83Se0.17 displayed a value of 1.4. The current flow was in the
cross-plane direction or the direction of the c-axis. It became evident that the high
values of the figure of merit were due entirely to a reduction in the lattice con-
ductivity rather than to an improvement of the power factor. The lattice conduc-
tivity had the very low value of 0.22 W/m K. It is perhaps not surprising that there
is little effect on the electronic properties since the layer spacing was still quite large
on an atomic scale.

It is worth mentioning that zT values significantly greater than unity were
reported by Ghoshal et al. [50] who created an arrangement with nanostructure-like
properties using multiple-point metallic contacts between flat surfaces of p-type and
n-type bismuth telluride alloys. This arrangement seemed to display a value of 1.4
for zT whereas the same thermoelements yielded a value of only 0.84 as a con-
ventional couple. Again the improvement was attributed to a reduction in the
thermal conductivity.

It has always been paradoxical that, whereas Bi2Te3 is regarded as being
superior to Sb2Te3 as a thermoelectric material, the preferred p-type solid solution
contains at least 75 % of the latter compound. At one time it was difficult to find
samples of Sb2Te3 with a Seebeck coefficient as high as 200 μV/K. This would be
consistent with the compound having a very small energy gap but there is now
strong evidence that the gap is at least as large as that of Bi2Te3. For example,
Zhang et al. [51] reported a Seebeck coefficient of no less than 536 μV/K for an
antimony-rich film of Sb2Te3 prepared by the molecular beam epitaxy method.
Such a large Seebeck coefficient implies an energy gap of about twice that of
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Bi2Te3, though measurements on thin films are not easy and, for this reason,
observations on bulk material may be more reliable. In this context, the work by Hu
et al. [52] on sintered Sb2Te3 is significant; it is consistent with a band gap of
0.2 eV. One of the most comprehensive studies of Sb2Te3 was carried out by Tan
et al. [53] on thin films. These workers observed a Seebeck coefficient of about
240 μV/K over a wide range of temperature and, in fact, a higher value of zT than
that of Bi2Te3 was claimed. It does indeed seem that the only reason for the poor
properties of most bulk Sb2Te3 is the difficulty of compensating for the lack of
stoichiometry that usually exists.

There are several references to the improvement of bismuth telluride alloys
through the incorporation of some form of nanostructure. Some of these materials
have been produced by techniques that do not lend themselves to commercial
production. The ideal material is probably a bulk nanostructure in which the
thermoelements contain some kind of dispersion that reduces the lattice conduc-
tivity. This may be evident, for example, in sintered material that contains
nanoparticles that are effective phonon scatterers. It is important that these
nanoparticles do not grow during the sintering and annealing processes and the
short treatment time and relatively low temperature associated with spark plasma
sintering help restrict grain growth.

The zone melting method can still produce nanostructured material. This is
shown by the work of Zhang et al. [54] who zone melted a p-type (Bi–Sb)2Te3 alloy
containing ZnAlO in the form of nanopowder. zT was higher than for the homo-
geneous zone-melted alloy over the wide temperature range of 300–550 K with a
value of 1.33 at 370 K. Such material can clearly be used as a replacement for the
usual zone-melted material. It shows that there is not only one way to improve the
figure of merit using the nanostructure principle.

Another type of approach was made by Lee et al. [55]. They sintered a mixture
of Bi0.5Sb1.5Te3 and copper acetate to yield a material with metal nanoparticles as
inclusions. zT rose to 1.35 at 400 K. The thermoelectric properties of this material
are particularly favourable above room temperature and, if it can be shown that the
presence of copper does not lead to instability, it will surely be useful in thermo-
electric generation.

A good appraisal of the merits of bismuth telluride alloys with nanostructures
has been provided by Bulat et al. [56]. These authors dealt specifically with bulk
nanostructures, giving as examples specimens that have been produced by spark
plasma sintering from powders derived from melt spun strips using spark plasma
sintering. Such material has been reported to display zT equal to 1.5 at 390 K. Bulat
and his colleagues consider that the presence of an amorphous phase, with an
exceptionally low lattice conductivity, contributes to the high figure of merit. Their
work indicates that even higher values of zT might be reached in the future. Thus, it
can now be regarded as well documented that zT values substantially greater than
unity can be reached by bulk bismuth telluride alloys at and above 300 K. It also
seems likely that still further advances will be made in the near future.
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Chapter 7
Methods for the Production of Materials

Abstract The requirements for structure and composition of thermoelectric
materials are enumerated. It is shown that there are problems associated with
segregation of components in materials that are grown from the melt. The condi-
tions for the avoidance of constitutional supercooling are discussed. Various
techniques for the production of thermoelectric materials by sintering are described.
A brief outline of methods for making thick and thin films is included.

7.1 General Principles

The development of thermoelectric refrigerators and generators after the
nineteen-fifties stemmed from the work on semiconductors for use in transistors and
other electronic devices. These applications of semiconductors were made possible
through the availability of highly pure and perfect single crystals that could be
doped with minute quantities of donor and acceptor impurities. The effects that
were exploited were for the most part of an interfacial nature, generally associated
with internal barriers in silicon and germanium and, later, the III–V compounds.
The problems in producing good thermoelectric materials were different but often
equally demanding. Thus, the carrier concentrations in thermoelectric materials are
usually orders of magnitude greater than those in conventional semiconductor
devices but the proportional variation has to be more strictly controlled. Most of the
conventional semiconductors have cubic structures whereas thermoelectric mate-
rials are often composed of anisotropic crystals. Although single crystals are not
often required, orientation of grains is sometimes of great significance.

The range of elements and compounds that can be classed as thermoelectric
materials is very wide. At the low temperature end we have semiconductors and
semimetals with relatively low melting points, like bismuth and bismuth telluride.
At the high temperature end we encounter refractory oxides and silicides. In
between there are materials with simple crystal structures, such as the Si–Ge alloys,
and complex materials, like some of the clathrates and skutterudites. Thus, although
thermoelectric materials may all have similar transport properties within their
particular range of operation, they may need quite different methods of production.
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We have to discuss growth from the melt and sintering of bulk materials as well
as thin and thick film deposition by physical and chemical techniques. In this
chapter we shall attempt to cover the various production techniques as generally as
possible but reference will be made to specific materials to illustrate the different
methods.

7.2 Growth from the Melt

It is often possible to produce a thermoelectric compound by melting together the
constituent elements. Such a melt and freeze technique can be useful in producing
the starting materials for, say, a powder metallurgy process but will not generally
lead to a controlled distribution of impurities nor will it lead to any preferred
orientation, if that is needed. Usually, then, some kind of directional freezing
technique is adopted.

A simple example of direction freezing is that in which a sealed quartz capsule
containing the thermoelectric material is slowly lowered out of a furnace that is
maintained above the melting temperature of the charge. Solidification starts at the
bottom of the charge and proceeds upwards. This type of procedure is used in the
growth of single crystals by the Bridgman method. The end of the capsule is conical
in shape and both the temperature gradient and the rate of growth are accurately
controlled.

Bismuth telluride and its alloys are sometimes produced by such a vertical
technique but horizontal methods are also encountered. The charge is placed in a
quartz boat and, very often, no more than a short length is molten at any time. The
molten zone is gradually moved along the boat. Zone melting was introduced by
Pfann [1] as a method of purifying silicon and germanium but is useful in con-
trolling the distribution of impurities in thermoelectric materials.

We must consider the composition of a solid that is deposited at the freezing
interface with a molten material. In Fig. 7.1, we show the equilibrium phase
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(a) (b)Fig. 7.1 Equilibrium phase
diagrams showing the
liquidus and solidus lines for
different values of the
segregation coefficient
k. a k > 1 and b k < 1
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diagram for two cases, (a) in which the impurities raise the melting point and (b) in
which they lower it. The distribution coefficient, k, is the ratio of the concentration
in the solid to that in the liquid at equilibrium.

We suppose that the melt is lowered in temperature until the point A is reached.
Then, in case (a), the material that solidifies will have an impurity concentration that
is higher than that in the liquid, as indicated by the point B. This will deplete the
impurities in the liquid as the freezing process continues so that the points A and B
will gradually move to the left. In case (b), the liquid that freezes at point A will be
in equilibrium with a solid at point B that has a lower concentration of impurity. As
the interface moves on, the impurities in the liquid will become more concentrated.
This is the basis of the zone refining technique, in which repeated passes of molten
zones sweep the impurities from one end of an ingot to the other. Even before the
advent of zone refining, directional freezing was used to purify metals, but the
repeated traverse of narrow molten zones is much more effective.

When zone melting is used in the production of thermoelectric materials like
bismuth telluride, it serves a dual purpose. It aligns the grains so that, if there is a
preferred direction for the current flow, thermoelements can be cut appropriately
from the resulting ingot. Furthermore, the impurities can be distributed uniformly if
their distribution in the starting material is suitably arranged.

Suppose that we wish to have an impurity concentration c in the solid. Then the
liquid that deposits solid with this composition at the interface must have a com-
position c/k. We may use as our starting material an ingot with the impurity con-
centration c that has been melted and rapidly frozen so that it is uniform on a
macroscopic scale. We remove a section of the cast ingot equal to the zone length
and replace it with the same length of casting that has the impurity concentration
c/k. Then, as shown in Fig. 7.2, an ingot that is uniform, except at the last end to
freeze, results from the passage of a single zone. This is the loaded zone technique.

Another technique, known as reverse-pass zone melting, also produces reason-
ably uniform material, at least over the central part of an ingot. A molten zone is
formed at one end of a casting and passed to the opposite end, where, if k < 1, it will
have acquired an excess concentration of impurities. The zone is then made to
traverse the ingot in the opposite direction.

molten
zone traverse 

cc/k

Fig. 7.2 The loaded zone technique. The molten zone with an impurity concentration c/k traverses
the casting that has an impurity concentration c
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We have assumed that the liquid and solid are in equilibrium at all times. Of
course, this is not so unless the zone moves at an infinitesimal speed. Let us,
therefore, consider what happens when the zone moves forward at some arbitrary
speed. The composition of the liquid is no longer uniform and there is a transition
region between the liquid and the solid that, because of segregation, has a reduced
melting temperature. Referring to Fig. 7.1, it will be seen that, irrespective of
whether k is greater than or less than unity, the effect of segregation is to reduce the
liquidus temperature. Figure 7.3 shows how the liquidus temperature is affected
close to the interface.

The width of the transition region is controlled by the speed with which the
molten zone moves away from the frozen solid and on the rate of diffusion of the
impurities in the liquid. If the temperature gradient is high enough, as indicated by
line 1, no particular problems arise. However, if the temperature gradient is low, as
for line 2, a phenomenon known as constitutional supercooling occurs. Freezing
tends to occur in advance of the interface. In practice, solid cells form in advance of
the main front and liquid with a greater impurity concentration and a lower melting
temperature is trapped between these cells. This causes the ingot produced by the
zone melting process to be inhomogeneous on a microscopic scale. This usually
means that the thermoelectric properties will be non-uniform and the figure of merit
will be reduced.

The problem was recognised by Tiller et al. [2] who specified the conditions
under which constitutional supercooling can be avoided. These authors assumed
that the melt is unstirred and it seems clear that stirring would reduce the width of
the transient region. However, it was shown by Hurle [3] that the condition for
constitutional supercooling is independent of whether or not the liquid is stirred
since a boundary layer with a gradient of composition will always remain. Hurle’s
condition for the avoidance of constitutional supercooling depends on the ratio of
the thermal conductivities in the solid and the liquid, which is likely to be close to
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Fig. 7.3 Temperature in the
molten zone near the
solid–liquid interface. The
solid curve represents the
equilibrium liquidus
temperature and the broken
lines give the temperature
gradient in the melt for two
different situations as
discussed in the text
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unity at the melting temperature. If this is so, a good approximation to the condition
for the avoidance of constitutional supercooling is

dT
dx

[
vDT
D

; ð7:1Þ

where D is the diffusion coefficient in the liquid, v is the speed of the zone and ΔT is
the difference between the liquidus and solidus temperatures at the composition in
which we are interested.

We may illustrate the problem by referring to the Bi–Sb alloy system. Within a
certain range at the bismuth-rich end, the alloys are narrow-gap semiconductors
with promising thermoelectric properties at low temperatures. The phase diagram
for the Bi–Sb system [4] is shown in Fig. 7.4. It is apparent that there is a very great
difference between the liquidus and solidus temperatures so the quantity ΔT in (7.1)
is very large as soon as the Sb concentration reaches more than 1 or 2 %. The
concentration of antimony in the liquid is only about one-tenth of that in the
crystallising solid. Also, because of the low melting temperature it is difficult to
establish a very large temperature gradient near the growth front. Thus, the growth
of single crystals of Bi–Sb from the melt requires the use of an extremely low rate
of movement of the liquid-solid interface if the material is to be uniform in its
properties [5]. This has been realised by all recent workers on Bi–Sb. Thus, Uher
[6], who produced single crystals containing 10 % Sb by a horizontal zone melting
process, allowed the interface to move at no more than 1 mm/h. Uher attempted to
increase the temperature gradient by using a water-cooled jacket near the end of the
molten zone but he found that too steep a gradient led to lineage in his crystals.

The use of a slow growth rate requires the ambient temperature to be kept
constant, the heater power to be very precisely controlled and the drive for the
movement of the zone to be very steady. As a result of his studies, Uher was able to
present a diagram that specifies the conditions for preventing constitutional
supercooling in Bi–Sb alloys over a wide range of compositions. His diagram is
shown in Fig. 7.5.
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Fig. 7.4 Schematic phase
diagram for the Bi–Sb
system [4]

7.2 Growth from the Melt 113



Brown and Heumann [7] grew single crystals of Bi–Sb containing 13 % Sb.
They used a steeper gradient than Uher but their results agreed with the conditions
that he specified. Thus, they found that when (dT/dx)/v was 5.2 × 1010 K s/m their
crystal was homogeneous but when this ratio was equal to 1.3 × 1010 K s/m it was
not. The observations by Yim and Amith [8] of the conditions for the appearance of
cellular growth in Bi0.95Sb0.5 are also consistent with Fig. 7.5. There can, therefore,
be no doubt that the principles for the avoidance of supercooling given in this
section are soundly based on experimental evidence.

Inhomogeneity in Bi–Sb is important because the transport properties depend
very strongly on the relative concentrations of the two constituents. However, the
problem in the bismuth telluride alloys is different. The liquidus and solidus curves
lie very close together in the (Bi–Sb)2Te3 alloys system [9] as shown in Fig. 7.6
and, in any case, the band parameters change only slowly as the ratio of Sb2Te3 to
Bi2Te3 varies. What is much more important is any inhomogeneity in the impurity
concentration.
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Fig. 7.5 The conditions for
the avoidance of
constitutional supercooling in
Bi–Sb [6]. The ratio of the
temperature gradient to the
speed of the molten zone
should lie to the left of the
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The separation of the liquidus and solidus curves [10] is larger for the
Bi2(Se–Te)3 system than for (Bi–Sb)2Te3, as shown in Fig. 7.7, but is still not very
great for the rather small proportions of Bi2Se3 in which we are usually interested.
Once again it is variations of the impurity concentration rather than of the alloy
composition that are the more significant.

It is probable that the improvement over the years in the figure of merit of the
bismuth telluride alloys that are used in the production of modules stems largely
from better understanding of the necessary growth conditions. This is suggested by
the experiments carried out by Cosgrove et al. [11] on BiSbTe3. Cosgrove and his
colleagues varied the conditions for the growth of their material in a Bridgman
furnace. The temperature gradient was 2.5, 5.0 or 25 K/mm and the growth rate
varied between 2.2 × 10−4 and 4.2 × 10−2 mm/s. One of the parameters that is most
sensitive to non-uniformity of the impurity concentration is the thermal conduc-
tivity as it becomes larger when circulating thermoelectric currents are present. In
Fig. 7.8 we show the variation of the thermal conductivity with the ratio v/(dT/dx).
It will be seen that there is a substantial rise in λ when this ratio rises above
2 × 10−4 mm2/K s. These results emphasise the need for a slow growth speed and a
steep temperature gradient when bismuth telluride alloys are grown by Bridgman or
zone melting techniques.
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7.3 Sintering

There is no doubt that thermoelectric materials that are produced by a sintering
process have better mechanical properties than those that are usually prepared by
growth from the melt. For those materials that have a cubic structure, there seems to
be no reason why sintered samples should not be as good as large crystals provided
that the grain size is not so small that the mobility of the charge carriers is reduced.
There may, in fact, be an improvement in the figure of merit if the lattice con-
ductivity is lowered by boundary scattering of the phonons.

The advantages of the sintering process have long been recognised for the
production of bismuth telluride alloys. For these materials, that do not possess a
cubic structure, it has also been realised that randomly orientated polycrystals may
display some deterioration in the figure of merit if, as is usual, the properties differ
substantially in the different crystallographic directions. In such materials, it is an
advantage if some degree of alignment can be achieved during the sintering
process.

Thermoelements have been successfully produced by sintering for many sys-
tems. For example, Si–Ge alloys have been prepared by a hot-pressing technique
[12]. Sintering is one of the most common methods for producing PbTe and its
alloys [13]. However, we shall discuss sintering with specific reference to the
bismuth telluride alloys since we then have to deal with not only the quality of the
thermoelectric properties in each grain but also the problem of grain alignment.

The basic steps in the sintering process are common for all materials. The
starting components are prepared in the form of a powder which is then pressed in
some type of mould. The material in this so-called green state is then heated so that
the powder particles become bonded together. Further heating, or annealing, may
then be employed to homogenise the product through solid-state diffusion and to
remove imperfections in the structure.

There are, of course, differences in detail between the processes that are used for
one material as compared with another. The temperature at which sintering occurs
depends on the melting temperature. The temperature at which one might sinter
bismuth telluride would be enough to melt bismuth or Bi–Sb. There are wide
variations in the pressure that is used in the compaction of the powders. The
powders themselves may consist of elements that combine chemically during sin-
tering or they may consist of already reacted compounds. Heat may be applied
while the pressing is carried out or cold-pressing may be used. Let us, then, look at
some of the ways in which bismuth telluride and its alloys have been produced by
sintering.

A typical procedure has been described by Cope and Penn [14]. The powder was
prepared by milling material that had already been reacted in a furnace. They used a
wide range of powder sizes, with particle diameters between 150 μm and 1 mm.
A disadvantage of using fine powders is that there is then greater risk of atmospheric
contamination, oxidation being known to affect the thermoelectric properties [15].
Normally one selects particles within a certain range of sizes by using a pair of
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sieves with appropriate meshes. It seems important that the particles should be
significantly smaller than the smallest dimension of a thermoelement since it is
undesirable that the whole width should be spanned by a single grain. A wide range
of sintering temperatures is possible. However, if the temperature lies below 300 °C
the process is very slow, while above 450 °C distortion occurs. The sintered material
produced by Cope and Penn was an n-type bismuth seleno-telluride alloy and was
clearly inferior to zone-melted material. This is not surprising since the n-type figure
of merit is so much less in the c-direction than it is along the cleavage planes.

The problem of aligning the grains in cold-pressed and sintered n-type bismuth
telluride has been studied by Situmorang et al. [16]. In the first place, the powder
was prepared in the form of plate-like particles, which were the shavings from
ingots that were turned on a lathe. These powders were then suspended in a
dielectric liquid under a high electric field and allowed to settle in a steel die as the
field was reduced. The samples were pressed at between 0.4 and 1 MPa and sintered
under argon for 60 h at 420 °C. X-ray diffraction was used to determine whether or
not alignment had taken place. The possibility of alignment was also investigated
by observation of the Seebeck effect parallel and perpendicular to the pressing
direction. The Seebeck coefficient is isotropic in an extrinsic single crystal but
becomes anisotropic as the intrinsic region is approached. Thus, α was measured up
to a temperature of 260 °C and it did indeed differ by over 20 μV/K in the two
directions, at this temperature. This alone indicated substantial alignment though
the difference between the Seebeck coefficients in a single crystal in the principal
directions would be about 50 μV/K.

In Sect. 6.5 we introduced a quantity n as a measure of the degree of alignment
in polycrystalline bismuth telluride alloys. X-ray studies yielded a value for n of 4.0
and this was consistent with the Seebeck measurements. It was calculated that such
alignment would allow sintered n-type material to attain a figure of merit within
10 % of the single crystal value in the preferred direction.

The technique described by Situmorang and his colleagues is encouraging in that
it leads to an acceptable degree of alignment in a sintering process that involves
cold pressing. However, it is unlikely to be practical for large scale production so
we should look at the approaches made by other workers.

The electrical conductivity often appears to be greatest in a direction perpen-
dicular to that of pressing but this is commonly due to the existence of pressing
faults rather than alignment. That is why the X-ray technique for determining
preferred orientation is so valuable.

One obvious way to improve the process of sintering is by using hot pressing as
was done in the early years of research on bismuth telluride by Airapetyants and
Efimova [17]. Their samples were pressed at a temperature of 400 °C at a pressure
of 7 × 105 kPa. However, much of the recent work on the sintering of bismuth
telluride and other materials has used rather different procedures.

Many of the new thermoelectric materials are being prepared by the technique
known as spark plasma sintering (SPS). In a typical spark plasma sintering appa-
ratus, the powder is loaded into a graphite die and compressed as in other sintering
methods. However, in spark plasma sintering the charge is subjected to a pulsed
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direct current. It is thought that this current produces Joule heating, which allows
the sintering temperature to be substantially reduced. Spark plasma sintering differs
from hot pressing in that the heating takes place within the compact rather than in
the die. The name “spark plasma sintering” is derived from the idea that a plasma
discharge might be involved but this is now not thought to be responsible for the
reduction in the sintering temperature. Thus, the names “field assisted sintering”
and “pulsed electric current sintering” seem more appropriate, although most
researchers still use the name “spark plasma sintering”. An advantage of the
technique over traditional sintering methods is the short treatment time, this min-
imising grain growth. This enables nanoparticles within the charge to retain their
small size in bulk nanostructures. Spark plasma sintered thermoelements are pro-
duced at lower temperatures than those made by older sintering processes and are
said to be more homogeneous.

Jiang et al. [18] reported a high mechanical strength and exceptionally good
thermoelectric properties for samples of (Bi–Sb)2Te3 prepared by the SPS method.
A bending test showed a strength of 80 MPa compared with 10 MPa for the same
alloy when prepared by zone melting. Zone-melted material yielded a value of 1.0
for zT at 350 K, whereas the material produced by SPS gave a value of 1.15.
Although zT may have been over-estimated, the relative values for the two types of
material should be reliable since the same test procedures were used in both cases.
In particular, the thermal conductivity was measured indirectly using a laser flash
method to find the thermal diffusivity. This method has some advantages over the
direct measurement of the thermal conductivity but can lead to greater errors. In
spite of this reservation, it is obvious that the SPS alloy has excellent properties and
is probably a better material for use in devices than melt-grown (Bi–Sb)2Te3.
Whether or not the same can be said for n-type material is another matter, but X-ray
data on the samples produced by Jiang and his co-workers indicated significant
alignment of the grains.

Spark plasma sintering was used earlier by Lin and Park [19] in the preparation
of bismuth telluride alloys. These authors described their technique as pulse dis-
charge sintering. It was also used, for example by Wang et al. [20] in the successful
production of Ag0.8Pb18+xSbTe20. and has subsequently become the most widely
adopted preparation method for new materials.

Spark plasma sintered material was produced in the form of ingots that could
then be sliced and diced to yield thermoelements for use in modules. If a simple
sintering process is used, it is probably more convenient to press the individual
thermoelements. A possible danger associated with the cutting process is the
introduction of surface damage. It is known that surface damage can be minimised
by using spark-erosion cutting [21] or an acid saw but it is much more practical to
use rotating diamond-impregnated cutting wheels that are well lubricated. The care
that must be taken to avoid extensive damage to the surfaces of thermoelements was
highlighted by Alieva et al. [22].

In recent years it has been realised that fine-grained material can be superior to
single crystals because of the reduction of the thermal conductivity through inter-
face scattering of phonons. The best materials seem to be bulk nanostructures,

118 7 Methods for the Production of Materials



i.e. material that can be used in module construction in the same way as bulk
material but possessing nano-sized grains that reduce the lattice conductivity
without affecting the electronic properties.

One of the advantages of sintering is that the size of the grains in the final
product can be controlled. Jaklovsky et al. [23] have investigated the effect on the
thermal conductivity of reducing the grain size in sintered bismuth telluride. They
found a substantial reduction in the lattice conductivity for grain diameters of less
than about 200 μm and reported a peak in the figure of merit with a grain size of the
order of 80 μm. However, in neither n-type nor p-type material was the figure of
merit greater than can be obtained with zone-melted material so this work did not
establish that z can be improved by reducing the grain size in bismuth telluride
based thermoelectric alloys. However, there is now overwhelming evidence that the
presence of fine grains can improve the figure of merit. A number of workers have,
therefore, developed methods for the production of bulk nanostructures.

One of the problems that one faces when attempting to make bulk nanostructures
by some kind of sintering method is that the usual annealing process tends to induce
grain growth. Humphry-Baker and Schuh [24] have found that one can suppress
grain growth in sintered bismuth telluride by incorporating yttria nanoparticles in
the mixture. Grain growth can actually occur during the actual operation of a
thermoelectric energy convertor. It has been found that the introduced particles can
stimulate grain growth at low temperatures if the yttria is formed by oxidation of
yttrium within the alloy. This effect can be prevented if the yttria nanoparticles are
added as a dispersion.

The production of fine powders for use in sintering can be performed by
hydrothermal synthesis. Hydrothermal synthesis of bismuth telluride alloys has
been described by Chen et al. [25]. Their starting reagents were BiCl3, SbCl3, TeO2,
NaBH4 and NaOH. Appropriate amounts were put into an autoclave with water
and, after sealing, the temperature was maintained at 200 °C for 20 h. After cooling
to room temperature the precipitate was collected by centrifuging, washed and dried
in vacuum. This precipitate was then used as the charge in a hot-pressing apparatus.
The powder was held in a graphite die and pressed at 50 MPa for 20 min in a
vacuum. The resultant (Bi–Sb)2Te3 alloy was p-type with a close to optimum
Seebeck coefficient of about 200 μV/K at room temperature. The thermal con-
ductivity was substantially smaller than that of an ingot prepared by growth from
the melt and the peak value of zT equal to 1.26 at 398 K was considerably larger
than that of just over unity for the ingot.

Novaconi et al. [26] have made use of an ultrasonically assisted hydrothermal
process to make their sintering charge. They produced a nanostructured dispersion
of bismuth telluride. Ultrasonic radiation at 40 kHz enabled the hydrothermal
reaction to be completed in only 3 h at no more than 200 °C.

Another method of preparing fine-grained powders is melt spinning (MS).
Typically melt spinning is followed by spark plasma sintering (SPS). Xie et al. [27]
followed this procedure for both p-type and n-type bismuth telluride alloys. They
showed that melt spinning of the single elements (SE) was a much quicker pro-
cedure than melt spinning of the zone melted alloy. The p-type alloy produced by
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the SE–MS–SPS process had zT equal to 1.5 at about 400 K though the n-type
material only reached a zT of about 1.0. Nevertheless the SE–MS–SPS route seems
a good pathway for both p- and n-types.

Mehta et al. [28] have developed a so-called bottom-up strategy for the pro-
duction of nanostructured bismuth telluride alloys with zT in excess of unity. Their
method started with a microwave-stimulated wet chemical treatment that produced
nanoplates. These were then pressed and sintered in vacuum at 300–400 °C.

The production of very fine grained powders is pointless if there is substantial
grain growth during sintering. A reduction of the sintering time and temperature can
be advantageous. Yang and his colleagues [29] have found that the structure of a
bismuth telluride alloy can be improved by hot pressing with the assistance of
microwaves. Their microwave-assisted hot pressing (MAHP) technique enables
compact samples to be produced at a relatively low temperature. Yang et al. pro-
duced p-type Bi0.4Sb1.6Te3 using MAHP at a temperature of only 325 °C. This
material had a value of 1.04 for zT at 100 °C, with the remarkably low value of
0.41 W/m K for the thermal conductivity. This surely indicates that grain growth
during the hot pressing process was inhibited by the low temperature that was made
possible by MAHP. It was suggested that the microwaves led to melting at the
interfaces between particles and that a nanostructure is formed when the melted
material resolidifies. The result is a fall in the lattice conductivity but only if the
pressing temperature is not too high. The lattice conductivity is much lower for a
pressing temperature of about 300 °C rather than 405 °C presumably because there
is excessive regrowth at the higher temperature.

A simple alternative to SPS is resistance pressing sintering (RPS) a technique
that has been described by Fan et al. [30]. The difference is that the pulsed electric
current in SPS is replaced in RPS by a low-voltage alternating current from a simple
transformer. Its use has been illustrated for (Bi–Sb)2Te3. The starting powders were
obtained by melt spinning but, no doubt, powders could be produced satisfactorily
by other methods. Although the power factor of the RPS material was less than for a
zone melted alloy, the thermal conductivity was less and, overall, the RPS material
had a higher value of zT.

Delaizir et al. [31] have compared three techniques for the consolidation of
p-type bismuth telluride alloys. These are SPS, hot isostatic pressing and micro-
wave sintering. They found that SPS and microwave-assisted sintering were
superior to hot isostatic pressing, possibly because a classical hot pressing tech-
nique prevents the formation of the type of nanostructure that leads to a reduction of
the lattice conductivity.

In recent years the starting point for the sintering process has often been a
mechanical alloying technique [32]. Elemental powders can be mechanically
alloyed during a milling process and this procedure seems to be widely used in the
metallurgical industry. One development of the method has been the bulk
mechanical alloying of bismuth telluride alloys [33]. In this process, powder
mixtures of the starting materials are compacted using cyclical loading, avoiding
the possibility of contamination in a conventional milling method. Bulk mechanical
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alloying followed by hot pressing has led to n-type Bi2Te2.85Se0.15 with the rela-
tively high value for z of 2.3 × 10−3 K−1.

Another development based on mechanical alloying has been the PIES (pul-
verised and intermixed elements sintering) technique [34]. The powdered elements
are pulverised and intermixed before cold pressing and sintering. Good thermo-
electric properties can be achieved by the PIES method provided that oxidation can
be prevented.

A most important development in the production of polycrystalline bismuth
telluride alloys has been the use of extrusion to assist in the alignment of the grains.
The process has been described by Seo et al. [35]. Billets of Bi2Te2.85Se0.15 were
first produced by a hot pressing and sintering method. These billets were then
hot-extruded at temperatures between 300 and 510 °C with an extrusion ratio of
20:1. The extruded material was strong, free from defects and had a density equal to
99.5 % of the single crystal value. The best value for the figure of merit at room
temperature was 2.62 × 10−3 K−1, this being achieved at an extrusion temperature
of 440 °C. Although this value of z is smaller than for the best n-type zone melted
material, it is sufficiently close to indicate substantial grain alignment.

The evolution of mechanical stress during the extrusion process has been
investigated by Pelletier et al. [36]. Their extruded n-type and p-type bismuth
telluride alloys gave figures of merit equal to 2.8 × 10−3 and 3.3 × 10−3 K−1

respectively so it is clear that the process yields material that is virtually the equal of
zone melted samples in its thermoelectric properties with much better mechanical
strength.

Equal-channel angular pressing is a technique allied to extrusion that has been
used by Bogomolov et al. [37]. These authors pointed out that intense plastic
deformation is effective in producing nanograined material. In the equal-channel
angled (ECA) pressing process, the charge is forced through a die that has an
aperture, the sections of which are angled with respect to one another. Thus, the
charge undergoes changes of direction during the pressing procedure. Bogomolov
and his colleagues found that material produced by the ECA method had a
homogeneous microstructure with significant alignment of the grains. A wide range
of pressing temperatures was studied, that is 360–450 °C for (Bi–Sb)2Te3 and and
420–515 °C for Bi2(Se–Te)3, with the optimum being close to 400 °C for both types
of alloy. The values of zT were 0.96 and 0.84 for the p-type and n-type materials
respectively. The relatively small difference between these values indicates that
substantial alignment must have been achieved.

A more extensive study of extruded p-type materials has been carried out by
Ivanova et al. [38]. They were able to optimise the composition of (Bi–Sb)2Te3 over
the temperature range 100–300 K, showing that the addition of Se improved the
figure of merit at 200 K. Once again, the properties were found to be as good as
those of single crystals.

The alignment that can be produced by extrusion is much more important for
n-type Bi2(Te–Se)3 than for p-type (Bi–Sb)2Te3. Fan et al. [39] have shown that one
can use a hot extrusion technique in which the cross-section area remains constant.
In applying this method to Bi2Te2.85Se0.15 they produced material with zT equal to
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0.66. This is not particularly impressive in itself but the Seebeck coefficient had not
been optimised. zT would probably have been rather closer to unity if the Seebeck
coefficient had been increased from about −150 to −200 μV/K.

It is obvious that not all samples of a given thermoelectric material will have
identical properties even if the chemical composition is the same. Lu and Liao [40]
have studied the effect of mechanical and thermal processing on the thermoelectric
properties of bismuth seleno-telluride. After bismuth telluride alloys began to be
used in thermoelectric refrigeration it was soon found that there was a considerable
difference between samples that had been zone-melted and those produced by
sintering. Bi2(Se–Te)3 with a nominally stoichiometric composition turned out to be
p-type when solidified from the melt and n-type when produced by powder met-
allurgy. Lu and Liao found that mechanical milling of the powders leads to a high
electron concentration in cold pressed compacts. A two-stage annealing process
was advocated, with annealing being carried out both before and after pressing. It is
said that this annealing procedure optimises the power factor while reducing the
lattice conductivity through the scattering of phonons on grain boundaries.

7.4 Thick and Thin Films

There are an increasing number of applications for which the thermoelectric
material takes the form of thick or thin films. There would be a great saving of
material if the elements in a module could be made very short, retaining the same
length to cross-section as in conventional products. There are severe heat transfer
problems when the length falls below about 100 μm and there are also difficulties
associated with electrical contact resistance but this has not dissuaded people from
the aim of using micro-modules.

For most purposes it would be expected that the thermal and electrical flows
would be perpendicular to the surface of the film but there are devices in which the
flows are parallel to the surface. In that case, heat losses through the substrates have
to be taken into account.

Films of compound semiconductors can be produced simply by thermal evap-
oration of the elements from multiple sources in a vacuum. Unless the substrate is
heated, chemical reaction may not have occurred and annealing has to be carried
out. Annealing is also necessary to achieve uniformity and relative freedom from
structural defects. It is sometimes difficult to control the rates at which the different
components are deposited, particularly if they have widely different melting points.
Thus, it is more usual to evaporate from a single source that has a composition close
to that required for the final product. Flash evaporation is a technique which ensures
that the deposited film and the source have almost the same chemical composition.
It has been shown [41] that p-type Bi0.4Sb1.6Te3 films produced by flash evapo-
ration can display a power factor of 3.5 mW/m K, which compares quite favourably
with a value of about 4 mW/m K for bulk material in the preferred direction.
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Electrodeposition is generally used to produce rather thicker films. Thus, films of
about 30 μm thickness of Bi2(Te–Se)3 have been prepared [42] by deposition on
gold and stainless steel substrates from solutions of the constituents in dilute nitric
acid. The properties of such films were found to depend on the type of substrate but,
whatever the substrate, the observed Seebeck coefficient was much too low for
practical applications. Thicker films of bismuth telluride have also been produced.
One report describes electrodeposition of 200 μm films on gold-sputtered alu-
minium substrates [43]. Such thick films lie just below the range that can be
covered by bulk materials. The rather small magnitude of the Seebeck coefficient of
less than 80 μV/K, even after annealing, and a power factor of only 0.23 mW/m K
shows that there is a long way to go before such material is useful. However, if
thick films improve with time, as thin films have done, they will eventually have
properties that are comparable with those of bulk materials. They will then
undoubtedly find their place in the manufacture of modules.
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Chapter 8
Measurement Techniques

Abstract The special problems of measurements on thermoelectric materials are
mentioned. It is shown how errors associated with the thermoelectric effects can be
avoided when measuring the electrical conductivity. The principles for reliable
assessment of the Seebeck coefficient are emphasised. Accurate thermal conduc-
tivity measurements have always been difficult and the methods of minimising the
errors are outlined. It is shown that the measurement of thermal diffusivity can help
in the avoidance of errors due to heat transfer by radiation. Particular attention is
paid to the direct measurement of the figure of merit. A description is given of
apparatus for determining the thermomagnetic coefficients.

8.1 General Considerations

The measurement of the thermoelectric properties of a material presents some
special problems. In the early stages of the development of a new material, a high
accuracy may not be needed, but, once it is to be used in practical applications,
these quantities must be known precisely. The performance is strongly dependent
on the figure of merit, z, which itself involves three other parameters, the square of
the Seebeck coefficient, the electrical conductivity and the thermal conductivity. It
is important that these three properties be measured independently but, as we shall
see, it is possible to determine zT directly. In fact, it can be claimed that, when the
Seebeck coefficient and the electrical conductivity are known, the direct measure-
ment of zT provides the most accurate way of establishing the thermal conductivity,
at least at ordinary temperatures for good thermoelectric materials.

It is generally preferable for all the measurements to be made on a single sample.
There are examples in the literature where falsely optimistic predictions have been
made about potential new thermoelectric materials on the basis of data obtained
from different specimens. It is understandable how such a problem arises. The
electrical conductivity is best found for a sample that is long and of small
cross-section area since this minimises possible errors due to non-linear current
flow near the contacts. On the other hand, a short sample with a large cross-section
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area is preferred for thermal conductivity measurements since the relative effect of
heat losses, due, for example, to radiation, is then smaller. When the use of different
samples from a given ingot is unavoidable, it is recommended that several pieces be
cut and that the determination of, say, the thermal conductivity of one piece be
accompanied by electrical conductivity measurements for neighbouring pieces on
either side.

Even a simple one-stage Peltier cooler operates over a range of temperature and
some devices, such as thermoelectric generators and multi-stage coolers, may
involve wide ranges. Thus, the thermoelectric properties need to be determined as a
function of temperature. Measurements at different temperatures also assist us in the
understanding of the transport processes. However, it must not be forgotten that one
often needs rapid but nevertheless accurate measurement of the Seebeck coefficient
or the electrical resistance for the control of quality in the production of ther-
moelements and it is usually satisfactory for this purpose to make observations at a
single temperature.

It is helpful in the basic study of a material to extend the measurements to cover
the Hall effect and useful information can be gained from the changes with mag-
netic field of the thermoelectric properties. Similarly, it is worthwhile determining
such quantities as the Nernst coefficient, in particular, for the information that it
gives about the scattering law. Of course, the transverse thermomagnetic effects can
themselves be used in energy conversion and this may be an extra incentive to
determine the Nernst and Ettingshausen coefficients.

In this chapter we shall deal mainly with principles rather than experimental
details.

8.2 Electrical Conductivity

Electrical resistance is a property that has been measured for such a long time that it
might be thought unnecessary to devote much attention to it here. However, it turns
out that there are special problems associated with electrical resistance measure-
ments on thermoelectric materials.

The electrical resistance, R, of a piece of metal wire is found by passing a known
current through it and observing the potential difference between the ends. The
electrical conductivity, σ, is equal to A/Rl. It is a little more difficult to find the
electrical conductivity of a semiconductor because there is often a resistance
associated with the contacts. The conventional way to overcome this problem
involves the use of inset probes as shown in Fig. 8.1. The two inset probes should
be far enough from the end contacts for any departures from planar equipotential
surfaces to be eliminated.

The current is introduced by large area contacts at the ends of the sample which
must have a uniform cross-section area. The determination of the electrical
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conductivity requires an accurate knowledge of the spacing between the potential
probes. These probes may be held in contact by pressure or by welding. Sometimes
they may be inserted in small holes that are drilled in the specimen, though this
distorts the current flow.

Most techniques involve some uncertainty in determining the precise spacing.
For this reason the use of inset probes is often avoided when it is known that the
electrical resistance at the current contacts is small. In principle, this resistance can
be found by making measurements on samples of different length. In practice, for
semiconductors like bismuth telluride and lead telluride, the electrical resistance at
plated contacts is so small as to be negligible provided that the sample is at least a
few millimetres in length.

The main problem, in measuring the electrical resistance for the materials in
which we are interested, is associated with the thermoelectric effects that are always
present unless isothermal conditions are maintained. If there is a temperature dif-
ference between the two ends this will give rise to a Seebeck voltage that augments
or opposes the resistive voltage. When that temperature difference arises from some
asymmetry in the experimental arrangement, the problem may be overcome simply
by reversing the current flow. However, there is a more subtle effect that can be
very large for good thermoelectric materials [1]. The flow of current causes a
temperature difference to be established by means of the Peltier effect. When the
current is reversed, the Peltier heating and cooling are also reversed and there is an
increase in the potential difference above the resistive value whichever way the
current flows. This effect may actually be used in determining the thermoelectric
figure of merit but, when only the electrical conductivity is of interest, it is a source
of error that has to be eliminated.

One of the ways of avoiding thermoelectric effects in the measurement of
electrical resistance is to use alternating current instead of direct current [2]. An
alternating current bridge that was developed for this purpose is shown in Fig. 8.2.
The frequency must be high enough for there to be no appreciable build up of
thermoelectric voltage during each cycle. The thermal mass of soldered contacts is
sufficient to allow frequencies of the order of 50 Hz to be satisfactory.

Specimen

Potential
difference

Current Current

Fig. 8.1 Arrangement of sample with inset probes for measurement of the electrical conductivity
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In the apparatus shown in Fig. 8.2 the sample is shown with inset probes. The
resistance between the two probes is determined by obtaining balance on the
vibration galvanometer at two positions of the moving contact on the calibrated
slide wire. The balancing resistors are adjusted so that both balance points are
within the length of the slide wire. Balance is first obtained with the selectors in the
positions S; measurements are then made with the selectors in the positions M. The
resistance of the length of the sample between the probes is given by PRS/Q, where
P and Q are the resistances of the standard resistors P and Q, and RS is the
resistance of the slide wire between the balance points with the probe selector in the
positions P1 and P2.

There is no doubt that the direct-current potentiometer is a powerful tool for the
precise measurement of small voltages. In spite of the problems that we have
described, this instrument can still be used for thermoelectric materials if the
mechanical chopping device that was designed by Dauphinee and Woods [3] is
incorporated in the apparatus. The potential differences that are encountered in
measuring the galvanomagnetic coefficients are sometimes very small and masked
by noise if an alternating current is used. Thus, the Dauphinee and Woods chopper,
although useful in the measurement of electrical conductivity, is particularly
valuable when other parameters are also being determined. The principle of the
device is illustrated in Fig. 8.3, which refers specifically to the measurement of
electrical resistance. Figure 8.4 shows the variation with time of the current input
and the voltage output.

The principle of the measurement is simple enough but there are some pre-
cautions that have to be taken. The periodic reversal of the current through the
specimens prevents the build up of temperature gradients from the Peltier effect.

Resistor P Sample

Resistor Q

B2

B1

S M P2P1

S M

Slide wire

Probe
selector

Vibration
galavanometer

AC source

Fig. 8.2 Alternating current
bridge for measurement of
electrical conductivity of
thermoelectric materials. B1
and B2 are the balancing
resistors
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The reversal of the voltage output ensures that the polarity of the signal to the
potentiometer is always the same. However, during the brief period when the
switching of the current is taking place, there is the danger of a large induced
spurious signal. Thus, as shown in Fig. 8.4, the voltage pick up does not occur until
after the current switching is complete. Likewise, the potential contacts are broken
before the reversal of the current takes place. It is probably not a good idea for the
chopper to be operated at the mains supply frequency and, in the experiments of
Drabble et al. [4] on the galvanomagnetic effects in bismuth telluride, the chopping
frequency was 40 Hz (the mains frequency was 50 Hz). It was found that potential
measurements that were accurate to within less than 1 μV could be achieved.

DC Potentiometer

Chopper
Current
contacts

Potential
contacts

2-pole,
2-way

selector
switchStandard

resistor

Sample

Fig. 8.3 Measurement of electrical conductivity of a sample of thermoelectric material using a DC
potentiometer and a mechanical chopper

Current
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Voltage
out

0

0

+

+

_

_

Time

Time

Fig. 8.4 Input current and
output voltage during
operation of a synchronous
chopper
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Some comments may be made about the 4-point probe methods that are often
used in measuring the electrical conductivity or resistivity of semiconductors like
silicon and germanium. Typical arrangements for the probes are shown in Fig. 8.5.

When the linear arrangement (a) is used, an electric current is passed between the
outer probes and the potential difference is measured between the inner probes. If
the probe spacing is equal to a and the sample is much larger than the distance
between the outer probes, the electrical conductivity is given by [5]

r ¼ I
2paV

; ð8:1Þ

where I is the current and V is the observed potential difference. The square
arrangement (b) has the advantage that it occupies less space and it can, therefore,
be used for smaller samples. In this configuration the current is passed between
adjacent probes and the potential difference between the other pair of probes is
measured. Another advantage of the square configuration is that it allows the Hall
coefficient to be found. In the measurement of this quantity, the current is passed
between an opposite pair of probes and the potential difference observed between
the other pair, the magnetic field being applied perpendicular to the surface of the
semiconductor.

Neither of the 4-point probe measurements is considered as accurate as a
measurement in which the current is passed along a rectilinear specimen with the
potential gradient determined using probes that are spaced as widely as possible.
There is a further disadvantage if the electrical conductivity is anisotropic. In this
case, 4-probe measurements are almost meaningless for polycrystalline samples.
Even when the probes are applied to a surface that is perpendicular to one of the
axes of a single crystal, the observations cannot be interpreted unless one knows the
ratios between the conductivities in the different directions.

(b)(a)Fig. 8.5 4-point probe
configurations; a probes
regularly spaced in line and
b probes at the corners of a
square. The probes are usually
spring-loaded and pressed
against the plane surface of a
semiconductor

130 8 Measurement Techniques



8.3 Seebeck Coefficient

In many ways the Seebeck coefficient is one of the easiest quantities to measure and
for this reason it is often used in preference to, say, the electrical conductivity in
checking whether or not production material falls within its specification. One
merely has to apply a known temperature difference between the ends of a sample
and observe the potential difference that results.

Suppose that the temperature difference is measured using, say, copper-constantan
thermocouples. The copper wires can also be used to determine the potential differ-
ence but due account must be taken of the small but not negligible absolute Seebeck
coefficient of the metal. The question arises as to whether it is better to attach the
thermocouples to the sample as in Fig. 8.6a or to the metal blocks that constitute the
heat source and the sink as in Fig. 8.6b.

In the arrangement (a) the heat conducted along the thermocouple wires may
influence the temperature at the point of contact. Also, there may be a temperature
gradient within the thermocouple junction so that the observed temperature is
different from that on the sample at the point of contact. Both these problems may
be minimised if the wires are of very small diameter, perhaps less than 60 μm.
Alternatively, the wires may be inserted in small holes that are drilled in the sample,
as in some measurements of the electrical conductivity. However, the holes may not
be isothermal enclosures and this can lead to errors if the electric potential and the
temperature are not observed at the same point.

It is not immediately obvious that arrangement (b) is any better unless the source
and sink are soldered to the sample. However, the arrangement seems to work

(b)(a)
Heat

source
Heat

source

copper-
constantan
couples

copper-
constantan
couples

Sample Sample

Heat
sink

Heat
sink

Fig. 8.6 Two different arrangements for the thermocouples in the measurement of the Seebeck
coefficient; a thermocouple attached to the sample and b thermocouples attached to the source and
sink

8.3 Seebeck Coefficient 131



satisfactorily even if the source and sink are just pressed against the sample. To be
sure, there may then be thermal resistance between the metal blocks and the
semiconductor but the temperatures on either side of the actual points of contact
must be the same. Virtually all the drop in temperature between the source and the
sink will exist in the semiconductor if it is, in fact, a thermoelectric material with a
low thermal conductivity. The metal blocks should preferably be made from a
highly conducting metal like copper. If the material is non-uniform, there may be a
difference between the observed Seebeck coefficients for the blocks soldered to the
specimen or merely pressed against it. For pressed contacts, most of the temperature
drop will occur near the interfaces and these regions will have a predominant
influence on the measurement. However, there are other problems in all the
transport measurements if the samples are non-uniform. It is not good enough to
take average values since any non-uniformity may affect the different parameters in
different ways.

A small probe for determining the Seebeck coefficient at a localised region of a
semiconductor may actually be the easiest way of detecting non-uniformity. The
apparatus for this purpose uses the arrangement in Fig. 8.6b with the large heat
source block being replaced by a much smaller one that is tapered so that the region
of contact is small. The precise thermal distribution does not have to be known as
long as one can be sure that virtually all the temperature difference between the
source and sink is experienced over a small region of the sample.

One does not actually have to measure the temperature difference and the
thermoelectric voltage. A single observation can determine the ratio of the Seebeck
coefficient to that of the thermocouple. A simple and elegant technique that uses this
principle was devised by Cowles and Dauncey [6]. The principle of their method is
clear from Fig. 8.7.

Cowles and Dauncey used chromel–alumel thermocouples in their apparatus and
they determined the Seebeck coefficient of the test sample with respect to chromel.
When the heated probe is placed in contact with the test specimen a thermal EMF is
generated between the chromel wires a and b. There is also the EMF across the
chromel–alumel couple that appears between the chromel wires a and c. The aim,
then, is to determine the ratio between these EMFs at the same time. In practice the
temperature difference soon reaches a steady state so that a short time interval
between the observations of the two EMFs is permissible.

The ratio between the EMFs is determined as the ratio between a fixed standard
resistor R1 and a calibrated variable resistor R2. With the switches in the “set”
position S, the uncalibrated variable resistor R3 is adjusted until the galvanometer
indicates that balance has been achieved. The switches are then moved to the
“measure” position M and balance is again obtained, this time by adjustment of R2.

This, of course, upsets the balance in the position S so R3 has to be adjusted again.
However, if R3 is very much greater than R1 and R2, simultaneous balance in both
the S and M positions can be reached very quickly.
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The condition for balance in position S is

IR1 ¼ a0DT; ð8:2Þ

where α0 is the differential Seebeck coefficient of the chromel–alumel couple. The
balance condition for position M is

IR2 ¼ aDT; ð8:3Þ

where α is the differential Seebeck coefficient between the test specimen and
chromel.

Electrical
insulator

R3

R1 R2

Galvanometer

S M MS MS
Reversing

switch

Chromel

Chromel

Chromel
Alumel

Heat sink

Sample

Heated
probe

Fig. 8.7 Measurement of the Seebeck coefficient using the technique devised by Cowles and
Dauncey [6]. The chromel wires are connected to copper wires in an enclosure at a constant
temperature
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When simultaneous balance is achieved

a ¼ a0
R2

R1
: ð8:4Þ

The reversing switch shown in Fig. 8.7 allows measurements to be made on both
p-type and n-type materials.

When the Seebeck coefficient is to be measured over a wide range of temperature
another approach may be used. One end of the sample is held at a fixed temperature,
say, 300 K, while the other end is slowly heated. The thermoelectric EMF between
the ends is continuously monitored at the same time as the temperature of the hot
end. The Seebeck coefficient at any temperature is then given by the slope of the
plot of thermoelectric voltage against temperature. The method is not as accurate as
one in which the whole sample is heated and the voltage is measured for a small
temperature difference between the ends. However, it allows data to be collected
rapidly and this may be important if the properties of the sample are likely to
change with time at the higher temperatures.

8.4 Thermal Conductivity

It has always been recognised that it is much more difficult to measure the thermal
conductivity than the electrical conductivity. There are a number of reasons for this.
Thus, whereas extremely good electrical insulators can be found, it is virtually
impossible to separate a body from its surroundings from the viewpoint of heat
transfer. Admittedly, high vacuum prevents heat transfer by conduction and con-
vection but radiation is always possible. In principle, either of the arrangements
shown in Fig. 8.6 for the determination of the Seebeck coefficient can be adapted
for measuring the thermal conductivity. If one assumes that all the heat lost by the
source is conducted through the specimen one can determine the thermal conduc-
tivity as the ratio of the input power per unit area to the temperature gradient.
However, if the configuration of Fig. 8.6b is used care must be taken to ensure that
the opposite faces of the sample are in intimate contact with the heat source and the
heat sink.

Even when the sample is soldered to the source and sink there will always be
some thermal contact resistance that has to be taken into account, especially since
alloys used in soldering have a lower thermal conductivity than most pure metals.
The relative effect of this resistance can be reduced by making the sample very long
but then transfer of heat from the source to the sink via the surrounding medium
becomes more significant. Remembering that good thermoelectric materials are
invariably poor heat conductors, the sample should probably be short rather than
long. Traditionally, thermal conductivity has been measured on samples of large
volume as this helps us to reduce the relative corrections due to contact resistance
and heat losses. However, most thermoelectric materials are only available in the

134 8 Measurement Techniques



form of small bars having a volume considerably less than a cubic centimetre. Some
attempt may be made to calculate the correction factors from first principles but
generally it is necessary for them to be determined by measurements on samples of
different length and cross-section.

In selecting a technique for the measurement of thermal conductivity, one
usually has a choice between an absolute method and a comparative method.
A comparative method has the advantage that heat lost from the source, other than
through the test specimen, can be ignored. On the other hand, successful com-
parative techniques require the availability of a standard material with a thermal
conductivity similar to that of the material being tested. Surprisingly few reliable
standard materials are at hand. In fact, we are usually aiming for greater accuracy in
the measurement of the thermal conductivity of thermoelectric materials than has
been achieved in possible standards of comparison. At ordinary temperatures it is
more usual to adopt an absolute method but, at high temperatures, when the losses
from the heater are unavoidably greater, a comparative method is often used.

One can also choose between static and dynamic methods. It usually takes a long
time for thermal equilibrium to be established after power is introduced to the heat
source so a great deal of time can be saved by using a dynamic technique but there is
no doubt that a static method is more precise. In establishing a relation between
lattice conductivity and mean atomic weight Ioffe and Ioffe [7] made use of a
dynamic method [8, 9] so that they could obtain many measurements in a short time.

Ioffe and Ioffe’s apparatus is illustrated in Fig. 8.8. No doubt different materials
would be used in its construction if the measurements were to be repeated now but
the principles remain sound after more than 50 years. The test sample is sandwiched
between two copper blocks and held in place by pressure applied using a screw.

Screw

Acrylic
glass

Mica

Sample

Copper 
block

Copper 
block

Copper-
constantan

thermocouples

block

Fig. 8.8 Ioffe and Ioffe’s
apparatus for the dynamic
measurement of thermal
conductivity
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In the original measurements, grease or glycerine was used to improve the thermal
contact between the surfaces. A thin sheet of mica in one of the contacts ensured
electrical insulation between the thermocouples. The acrylic glass enclosure fitted
fairly closely to the specimen so as to minimise convection losses through the air,
the space around the sample not being evacuated as is usual with more precise
measurements. Corrections were made for thermal contact resistance and for heat
losses.

At the start of a measurement the whole apparatus was in equilibrium with the
surrounding air. The lower block was then inserted into a bath of refrigerant.
Observations were made of the temperature of one block and of the temperature
difference as a function of time.

Suppose that the temperatures of the lower and upper block are respectively T1
and T2 and that C2 is the known thermal capacity of the upper block. Then, as a first
approximation, the rate at which the upper block loses heat is equal to the rate at
which heat passes through the sample. Thence

�C2
dT2
dt

¼ k T2 � T1ð ÞA
L
; ð8:5Þ

where A/L is the ratio of cross-section area to length of the sample. However,
allowance must be made for the fact that part of the heat reaching the lower block
comes from the sample. It was found appropriate to add one-third of the heat
capacity, C, of the sample to C2 giving the equation

k ¼ C2 þC=3
T2 � T1

dT2
dt

: ð8:6Þ

Since it is usual for C2 to be very much greater than C the latter does not have to
be known very accurately.

The correction for heat loss from the upper block to the surrounding walls was
found from the equilibrium temperature difference between the blocks. By placing a
sample of known thermal conductivity between the blocks it was possible to
determine the heat loss to the lower block through the air. Finally, the correction for
contact resistance across the mica and greased layers was found from the use of
samples of different length. The whole measurement has been put on a firmer
foundation by the theoretical treatments of Kaganov [10] and Swann [11]. An
important conclusion from the more refined theory is that the measurements should
neither be attempted immediately after the lower block is placed in the refrigerating
bath nor when the temperatures are approaching their equilibrium values.

The thermal comparator is another device for the rapid evaluation of the thermal
conductivity. It is based on a principle first developed by Powell [12].
A miniaturised version of the comparator [13] is shown in Fig. 8.9.

The comparator is made up of a copper-constantan thermocouple in which one
of the junctions is close to a small resistive heater. The other junction lies close to
the copper tip, which protrudes from the glass tube. In the rest position a small
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temperature difference will exist between the two thermocouple junctions. When
the tip is pressed against the sample under test, a much larger temperature difference
appears and this will give rise to a large increase in the output voltage. Clearly the
voltage will be larger if more heat is conducted away from the tip by a good thermal
conductor. The output voltage will be much smaller if the tip is pressed against a
poor conductor of heat. The temperature difference reaches a steady state in a few
seconds so the measurement is very rapid. The validity of the test depends on the
contact area remaining the same from one sample to another. One might have
expected this area to be more or less the same only for samples that are harder than
copper since the force is generated by the coiled constantan wires and should have a
constant value when the tip is retracted to the base of the holder. In practice, the
effective area of the contact seems to remain the same even for quite soft materials.
Thus, if the heater power is kept steady, the steady-state output voltage should be a
measure of the thermal conductivity of the test sample. Although, a theoretical
estimate of the output voltage can be made it is much better to calibrate the
instrument using materials of known thermal conductivity. A thermal comparator of
this design is frequently used in tests of gemstones, diamond, in particular, having a
much higher thermal conductivity than any of its simulants. However, the com-
parator has also found use in preliminary tests on potential thermoelectric materials.

Epoxy

Epoxy

Glass
tube

Copper
tip

5 3

4

1 2

Resistive
heater

Fig. 8.9 Miniature thermal
comparator. 1 and 2 are the
leads to the resistive heater. 3
and 4 are the constantan
thermocouple wires and 5 is
the copper branch
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Precise comparison methods have been used for measuring the thermal con-
ductivity of generator materials at elevated temperatures. The apparatus shown in
Fig. 8.10 has been used up to a temperature of 800 °C in measurements on III–V
compounds [14]. The two standard samples are selected so as to have a similar
conductance to that of the test specimen that is sandwiched between them. Heat
transfer from the sides of the three blocks is prevented by a heat shield with
multiple heaters. In any case, lateral heat flow is minimised by the filling material,
fused zirconia powder, which has a very low thermal conductivity. The length of
the stack means that it takes a long time to reach equilibrium but the method is an
accurate one.

We shall discuss the determination of the thermal conductivity by measuring the
figure of merit later and we shall also devote a section to thermal diffusivity
measurements. However, we shall now discuss a method that has come into
prominence in recent years and that is useful in work on thin specimens of poor heat
conductors. This is the 3ω technique [15], so called because the heat input varies
with time at an angular frequency ω and the analysis is based on the observation of
an electrical signal at the frequency 3ω. Radial flow methods are useful in reducing
losses by thermal radiation but they often need large samples to be available. The
3ω system is suitable for use on small specimens. The essential features of the
experimental arrangement sample are shown in Fig. 8.11.

A metal strip is laid down on the specimen so that it is in good thermal contact
with but electrically isolated from it. The outer side arms are used for the intro-
duction of an electric current and the inner side arms are for picking up the voltage
across the central section of length l. It is noted that the resistance of the metal strip
depends on the temperature so it can be used as a thermometer. The strip is heated
by the passage of an alternating current of angular frequency ω and a temperature
wave of frequency 2ω enters the sample since, of course, heat is generated in each
half-cycle. The temperature wave travels radially outwards from the metal strip,
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Fig. 8.10 A comparative
method for the measurement
of the thermal conductivity of
thermoelectric materials at
elevated temperatures.
Electric heaters are
represented by the letters
A–G and thermocouples by
the numerals 1–10
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suffering exponential damping as it proceeds. The sample must be thick enough to
prevent any significant interference from the reflected wave at the time that it
reaches the strip; it is satisfactory for the thickness to be not less than 5a, where a is
the width of the strip. Voltage measurements at a specific frequency are observed
using a lock-in amplifier. The voltage oscillations in the strip will have a component
at a frequency ω associated with the current flow and a component at a frequency
2ω associated with the change of resistance due to the temperature wave. When
these two contributions are multiplied together the resultant will include a term that
oscillates at the frequency 3ω. The thermal conductivity of the sample is obtained
after voltage measurements, V3,1 and V3,2, at two frequencies 3ω1 and 3ω2

respectively, where ω1 and ω2 are the frequencies of the applied current. It may be
shown [16] that the thermal conductivity can be calculated from the relation

k ¼ V3ln x1=x2ð Þ
4plR2 V3;1 � V3;2

� � dR
dT

: ð8:7Þ

Here V is the voltage at some frequency ω and R is the resistance of the metal
strip between the inner side arms. It is noted that, although the technique is based on
thermal diffusion, it is essentially the thermal conductivity that is determined.

8.5 Thermal Diffusivity

Steady state thermal conductivity measurements become increasingly difficult as
the temperature becomes higher because of the rapidly rising radiation factor. For
this reason, the thermal diffusivity is often determined instead of the thermal
conductivity.

The thermal diffusivity, κ, is defined by the relation

j ¼ k
cV

: ð8:8Þ

Variations on the original thermal diffusivity measurements of Ångström [17] are
still encountered. A brief discussion of his technique shows that, in common with
other thermal diffusivity measurements, it allows the thermal losses to be eliminated.

a

l

Fig. 8.11 Arrangement of the
metal strip and side arms on
the sample in the 3ω method
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In Ångström’s method, a sinusoidal temperature variation is applied to one end
of a long sample. The amplitude of the temperature wave, as it travels along the
sample, is monitored at two points that are separated by a distance l. Then, in the
absence of lateral heat loss, the thermal diffusivity is given by

j ¼ xl2

2ln2 að Þ ¼
xl2

2b2
; ð8:9Þ

where α is the ratio between the amplitudes of the temperature wave and the two
points and β is the phase difference. If there are losses, (8.9) has to be replaced by

j ¼ xl2

2bln að Þ : ð8:10Þ

It will be seen that the use of this equation allows the losses to be ignored.
Adaptations of Ångström’s method have been used for thermoelectric materials

by Nii [18] and Abeles et al. [19] but one of the more interesting developments was
the method of Green and Cowles [20] in which a Peltier heat source was employed.
This allowed the temperature wave to be initiated without any overall heating of the
sample. These authors were also able to use the sample as its own thermometer,
thus exploiting its high Seebeck coefficient. It may be noted that, even when the
input is not strictly sinusoidal, the higher harmonics are rapidly attenuated as the
wave moves along the sample but, in any case, Fourier analysis of the temperature
fluctuations at any point is not difficult.

A disadvantage of the Ångström principle is that it requires a longer sample than
is commonly available. However, thermal diffusivity measurements are easily made
on short samples. Thus, Goldsmid et al. [21], adopted a thermal diffusivity mea-
surement for thin crystals of Cd3As2, comparing the transverse electric fields,
generated by the Nernst effect, for steady and intermittent thermal radiation.

Most thermal diffusivity measurements nowadays make use of thin samples and
laser heat sources [22]. The essential components for a typical laser flash mea-
surement are shown in Fig. 8.12. The sample is selected so that its cross-section is
large compared with its thickness. One of its faces is irradiated by a pulsed laser and
the fluctuations in temperature at the opposite face are observed using, say, an
infrared sensor. In a typical measurement the temperature rise at the back surface is
compared with that which is reached in the steady state when the sample is con-
tinuously heated. The time, t1/2, taken to reach one-half of the steady state tem-
perature rise allows the thermal diffusivity to be found from the relation

j ¼ 1:37d2

p2t1=2
: ð8:11Þ
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It must, of course, be remembered that a thermal diffusivity measurement needs
to be accompanied by knowledge of the specific heat if one is to determine the
thermal conductivity, the quantity that is actually needed for the figure of merit.
Nevertheless, the advantages in the avoidance of heat loss corrections are sufficient
to make the laser-flash technique the preferred approach by many workers.

8.6 The Figure of Merit

The thermoelectric figure of merit can be found from independent measurements of
the Seebeck coefficient and the electrical and thermal conductivity. It is, however,
possible to determine the figure of merit directly and, havingmade this determination,
one of the three quantities, α, σ, or λ, can then be found if the other two are known. The
usual procedure is to measure the Seebeck coefficient and the electrical conductivity,
and to deduce the thermal conductivity. In fact, this is often the most accurate method
for determining λ but, as we shall see, there are some dangers in this approach.

The direct measurement of zT was first proposed by Harman [23] and the pro-
cedure is usually named after him. In principle, all that needs to be done is to
observe the ratio of the electrical conductivities, σa and σi, under adiabatic and
isothermal conditions respectively. Then,

zT ¼ ri
ra

� 1: ð8:12Þ

Two possible experimental arrangements are shown in Fig. 8.13. In (a) the sample
is suspended by its current and thermocouple leads in a vacuum enclosure while in
(b) one end of the sample is attached to a heat sink. The advantage of arrangement
(a) is that the heat loss corrections are smaller but arrangement (b) is more practical as
it enables equilibrium at different temperatures to be established more quickly. In both
arrangements, the electric current is introduced by copper wires and the temperatures
at the ends of the sample are measured using copper-constantan thermocouples. The
copper branches of the thermocouples are also used to measure the potential differ-
ence. The electrical resistance between the sample and the copper end plates is small
and often neglected but it can be included if necessary.

Suppose that a current I is passed along the sample. Then, if we ignore Joule
heating for the time being, the temperature difference, ΔT between the ends is
given by

Laser Infrared
sensor

Specimen

Fig. 8.12 Essential features of the laser flash method for determining the thermal diffusivity
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kADT
L

¼ aj jIT ; ð8:13Þ

where α is the Seebeck coefficient of the sample with respect to copper, A is the
cross-section area and L is the length. The temperature difference leads to the
development of a thermoelectric voltage given by

aj jDT ¼ a2ILT
kA

: ð8:14Þ

Under isothermal conditions, the potential difference between the contacts is

Vi ¼ ILq
A

: ð8:15Þ

However, under adiabatic conditions, the total potential difference becomes

Va ¼ Vi þ a2ILT
kA

¼ Vi 1þ a2T
qk

� �
: ð8:16Þ

Rearranging (8.16), we find that

zT ¼ Va

Vi
� 1: ð8:17Þ

One of the advantages of the Harman procedure is that the heat losses are smaller
than in a conventional static thermal conductivity measurement. In particular, there

Thermocouples

(a) (b)

Thermocouples

Current 
lead Current 

lead

Current 
lead

Heat sink

Fig. 8.13 Experimental arrangements for the direct measurement of the figure of merit. In a the
sample is suspended in vacuum and in b one end of the sample is attached to a heat sink
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is no separate heater that might lose heat to the surroundings. Also, in arrangement
(a) of Fig. 8.13 the losses from the faces of the sample are substantially reduced.
We shall use arrangement (a) as the basis for the following calculations.

In calculating the heat losses we assume that the isothermal surfaces are nearly
planar so the problem becomes one-dimensional. We must determine the heat loss
by radiation from the end contacts and from the exposed faces of the sample
(assuming that the vacuum in the enclosure is good enough to eliminate both
gaseous conduction and convection). We also have to find the losses along the
electrical wires, which we suppose to be anchored at the temperature of the
enclosure.

The radiation from each of the end contacts is equal to βcAc DT/2 when the
current is small enough for ΔT << T. One end of the sample is supposed to rise to
T0 + ΔT/2 and the other end to fall to T0 − ΔT/2, where T0 is the ambient tem-
perature. βc is the rate of radiation per unit area per unit temperature difference and
Ac is the area of each contact. βc is proportional to T 0

3 so radiation becomes a severe
problem at higher temperatures.

The radiation loss per unit length from the part of the sample at temperature T is
equal to βP(T − T0) where β is the rate of radiation per unit area per unit tem-
perature difference (which may be significantly different from βc) and P is the
perimeter of the sample.

The heat transferred by conduction along the wires at each end is equal to Kl ΔT/2,
being a loss at one end and a gain at the other. Kl is the conductance in parallel of
each set of leads.

At any part of the sample the rate of heat flow is

q ¼ �kA
dT
dx

; ð8:18Þ

and

dq
dx

¼ �bP T � T0ð Þ ¼ �kA
d2T
dx2

: ð8:19Þ

At the ends of the sample, when x = ± L/2, q is equal to ± q0 which is given by

�q0 ¼ aIT � bcAcDT
2

� KlDT
2

: ð8:20Þ

The solution of the differential equation is then

T � T0 ¼ � q0

kAbPð Þ1=2
exp bP=kAð Þ1=2x

h i
� exp � bP=kAð Þ1=2x

h i
exp 1

2 bP=kAð Þ1=2L
h i

þ exp � 1
2 bP=kAð Þ1=2L

h i : ð8:21Þ
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When the temperature gradient is close to being uniform we find

�q0 ¼ kA
L
DT þ bPL

12
DT : ð8:22Þ

On combining (8.20) and (8.22) we obtain

aIT
DT

¼ k
A
L
þ bPL

12
þ bcAc

2
þ Kl

2
: ð8:23Þ

The first term on the right hand side represents the heat conducted through the
sample while the remaining terms represent the losses. The second term has only
one-quarter of the value that it would have in a conventional steady-state thermal
conductivity apparatus and the third and fourth terms have been reduced by a factor
of 2. Also, of course, there is a reduction in Ac since the end contacts are so much
smaller than a heating block.

Up to this point it has been assumed that the current is so small that Joule heating
can be ignored. It can be shown [24] that the effect of Joule heating is to shift the
position on the sample for which T = T0 to x = a, where

aDT ¼ I2qL=A
bPþ 2 bcAc þKlð Þ=L : ð8:24Þ

Asymmetry is introduced into the temperature distribution and (8.23) becomes

aIT
DT

¼ k
A
L
þ bP L� 2að Þ

4
þ bcAc þKlð Þ

2
1� 2a

L

� �
� I2qL
ADT

: ð8:25Þ

After combining (8.24) and (8.25) to eliminate a, we again obtain (8.23). Thus,
whether or not there is any significant Joule heating, the form of (8.17) that takes
account of the heat losses is

zT ¼ Va

Vi
� 1

� �
1þ bPL2

12kA
þ bcAcL

2kA
þ KlL

2kA

� �
: ð8:26Þ

If the apparatus has the form shown in Fig. 8.13b the heat loss terms become
larger and the modified form of (8.23) is

aIT
DT

¼ k
A
L
þ bPL

3
þ bcAc þKl: ð8:27Þ

The losses are then virtually the same as they would be in a conventional thermal
conductivity apparatus, apart from the reduction due to the absence of a heater.
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The magnitudes of the parameters involved in the loss terms are best obtained
experimentally. Measurements are made using samples of different length and
shape. It is also advisable to check that the electrical contact resistance is negligible
by conducting experiments on very short samples. In fact, the Harman technique
offers what is probably the best way to determine the contact resistance for ther-
moelectric materials. The usual method for semiconductors involves the use of a
probe that is scanned across the contact region. However, the contact resistances
experienced using present-day methods for the attachment of electrodes are too
small to be detected by such a method. Any deterioration in the observed figure of
merit using the Harman procedure, when the sample becomes very short, may be
attributed to the contacts.

Various authors have used different methods to collect their data from
Harman-type measurements. It is usual to determine not only the figure of merit but
the electrical conductivity and the Seebeck coefficient as well. The Seebeck coef-
ficient is found by observing the temperature difference and the thermoelectric
voltage after the current is interrupted but before ΔΤ has had time to change. If the
value of α is to be accurate the material must have a reasonably high value of zT,
otherwise the temperature difference will be rather small.

One way of obtaining the adiabatic and isothermal electrical conductivities is to
use direct and alternating currents. However, it is more usual to make use of a rapid
data collection system to observe the potential difference and temperature difference
as a function of time. Typical profiles are shown schematically in Fig. 8.14. It is
assumed that the current has a steady value during the times that it is switched on. It
is possible to measure the thermoelectric and resistive voltages and the temperature
difference after the current is switched on or switched off.

Thermoelectric
voltage Potential

difference

Temperature
difference

Resistive
voltage 

Time

Current off Current on Current off

Fig. 8.14 Schematic variation of potential and temperature differences with time when the current
is switched on and off in a Harman-type measurement
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The Harman method was used by Sharp et al. [25] to measure the thermal
conductivity of polycrystalline Bi–Sb. However, there were anomalous features in
the experimental results. Since the transport parameters in a transverse magnetic
field were also observed, it was possible to determine the Lorenz number both
theoretically and experimentally. The experimental Lorenz number was found to be
much smaller than the theoretical value and no real explanation could be found.
What was particularly puzzling was the fact that Jandl and Birkholz [26] had made
similar measurements on single crystal Bi–Sb and had found no anomalies. It was
only later that a reason for the unexpected observations of Sharp and his colleagues
was uncovered.

It was realised that the Seebeck coefficient might vary within a polycrystalline
sample since this quantity may be quite strongly anisotropic in single crystals.
However, it had been hoped that the experimental parameters for polycrystalline
material would be some kind of average of the single crystal properties in the
different directions. That such averaging is invalid is clear from the following
considerations [27].

We suppose that a certain sample is made up of two components connected in
series as shown in Fig. 8.15. The two components are supposed to have electrical
resistances R1 and R2 and thermal resistances W1 and W2 respectively. Then a
conventional thermal conductivity measurement will yield a value W equal to
W1 + W2. Let us suppose that the Harman procedure leads to a different thermal
resistance W*.

In the Harman measurement the isothermal voltage is given by

V
I
¼ R1 þR2: ð8:28Þ

Under adiabatic conditions the usual Harman theory can be applied to each
component in turn to give

V1 ¼ IR1 1þ z1Tð Þ; ð8:29Þ

and

V2 ¼ IR2 1þ z2Tð Þ: ð8:30Þ

21

Fig. 8.15 Simple heterogeneous model consisting of two elements in series
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The overall adiabatic voltage is then related to the current by

V
I
¼ R1 1þ z1Tð ÞþR2 1þ z2Tð Þ: ð8:31Þ

The apparent figure of merit, z*, is found from the equation

R1 þR2ð Þ 1þ z�Tð Þ ¼ R1 1þ z1Tð ÞþR2 1þ z2Tð Þ: ð8:32Þ

In order to determine the thermal conductivity we need to know the Seebeck
coefficient for the system. Let us assume that it is found by applying a temperature
difference ΔT between the end contacts. This temperature difference will distribute
itself according to the relative thermal resistances of the components. Then the
overall Seebeck coefficient is given by

a ¼ a1W1 þ a2W2

W
; ð8:33Þ

and the total electrical resistance is

R ¼ R1 þR2: ð8:34Þ

The apparent thermal resistance W* can then be calculated from z*, α and R.
By way of example, let us assume that both components have the same figure of

merit but different Seebeck coefficients. We shall then let the ratio W1/W2 be equal
to n, which will also be equal to R1/R2. In this example, α1/α2 also has the value
n. In this case, the true value for the thermal resistance is

W ¼ 1þ nð ÞW1; ð8:35Þ

and the apparent thermal resistance is

W� ¼ 1þ nð Þ2
4n

W1: ð8:36Þ

In generalW* andW will be different. For example, if n = 3, (1 + n)2/4n becomes
equal to 4/3 and W* differs from the true thermal resistance by over 30 %.
A striking case is that for which α1 and α2 are equal and opposite, withW1 =W2 and
R1 = R2. The apparent figure of merit z* is then equal to the figure of merit of each
component but the overall Seebeck coefficient is zero. The apparent thermal
resistance W* is then infinite. It is clear that under some circumstances, the Harman
technique can lead to substantial errors in the thermal conductivity if the material is
non uniform.

Calculations for R1 ≠ R2 and for W1 ≠ W2 have shown that there is no difference
between W* and W provided that α1 = α2. It seems clear, then, that the Harman
method must be used with caution for heterogeneous materials. However, it should
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be perfectly satisfactory for polycrystalline extrinsic samples of bismuth telluride or
any other anisotropic thermoelectric material in which the Seebeck coefficient is
independent of crystal orientation.

There is a closely related technique that has sometimes been used for deter-
mining the figure of merit of modules [28, 29] and couples [30]. The thermal
resistance is determined under the open-circuit and short-circuit conditions. The
open-circuit thermal conductance, K, has the value that is calculated from the
thermal conductivity and the dimensions of the thermoelements. When the open
ends are short-circuited, the thermal conductance rises to a value K* because of the
extra heat transport associated with the thermoelectric current. This current is equal
to (αp − αn)ΔΤ/R and it generates a Peltier heat flow equal to (αp − αn)

2TΔΤ/R. Thus,
we see that

K� ¼ K 1þ ZTð Þ: ð8:37Þ

8.7 Thermomagnetic Measurements

We shall discuss some of the principles that are involved in the measurement of the
thermogalvanomagnetic coefficients, partly because of their immediate relevance to
energy conversion, and partly because they are often needed for the understanding
of thermoelectric materials.

Figure 8.16 shows a typical arrangement of sample, heater, heat sink and the
various potential probes and thermocouples for the measurements. The sample will
normally be located inside a cryostat so that measurements can be made under
vacuum down to low temperatures. The thermomagnetic coefficients are often too

Heat sink 
and
current
contact

Current 
lead

432

Heater
leads

1
Heater and
current
contact

Fig. 8.16 Arrangement of contacts for thermogalvanomagnetic measurements. 1, 2, 3 and 4 are
thermococouples, one lead of each also serving as a potential probe. The magnetic field is directed
perpendicular to the diagram
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small to be measured accurately at room temperature but they become larger at low
temperatures because of an increase in the carrier mobility. The external dimensions
of the cryostat should be kept as small as possible if an electromagnet is used to
provide the field though nowadays it is common practice to make use of a super-
conducting magnet. A complete set of data requires the application of both trans-
verse and longitudinal magnetic fields but very often a transverse field will suffice.
This is the case, for example, in the measurement of the Hall and Nernst
coefficients.

One must usually take care to avoid distortion of the equipotentials and
isothermals from the end contacts unless, of course, it is the end effects that are
being studied. A rule of thumb states that probes used in the determination of
transverse coefficients should be inset from the ends by at least twice the sample
width, while probes for observing longitudinal coefficients should be inset by one
sample width. This implies that the sample should be at least four times as long as it
is wide.

One of the branches of each thermocouple can act as a potential probe. The wires
generally should be of as fine a gauge as possible so that the disturbance of the flow
of heat or electricity in the sample is minimal. They are often spark-welded in place
to ensure good thermal contact. The heater block should be small since its thermal
mass controls the rate at which equilibrium is reached. The measurements on a
sample, mounted as in Fig. 8.16, normally yield the adiabatic coefficients. However,
it is the isothermal Nernst coefficient that is implicit in the theory of thermomag-
netic energy conversion presented in Sect. 2.5. Account must, therefore, be taken of
the transverse temperature gradient and its influence on the transverse potential
difference through the Seebeck effect. One must also include contributions from the
Hall and Nernst effects in transforming the observed adiabatic electrical resistivity
into the isothermal value.

Guthrie and Palmer [31] have shown that the thermomagnetic figure of merit
ZNE can be determined directly rather than through the measurement of individual
transport parameters. Their method is based on the fact that the transverse tem-
perature gradient has a much shorter time constant than the longitudinal temperature
gradient. This is because samples are generally much longer than they are wide.

The measurement requires that the sample be provided with inset potential
probes. The voltage between these probes is observed as a function of time.
Immediately after the current is switched on a resistive voltage is observed.
Thereafter the voltage changes as the longitudinal and transverse temperature
gradients become established.

The longitudinal temperature gradient, arising from the Peltier effect, produces a
voltage contribution from the Seebeck effect as in the Harman experiment. The
transverse temperature gradient due to the Ettingshausen effect produces a longi-
tudinal temperature gradient through the Righi-Leduc effect and this also gives rise
to a Seebeck voltage. The transverse temperature gradient also leads to a longitu-
dinal potential gradient directly through the Nernst effect. It is this last contribution
that is related to the thermomagnetic figure of merit. It is also the only one of the
three contributions to the changing longitudinal potential difference that does not
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involve a longitudinal temperature gradient. Since the transverse temperature gra-
dient is established much more rapidly than the longitudinal temperature gradient, it
is easily separated out as the effect that is established soon after the current is
switched on.

If the sample is, say, 10 times as long as it is wide, the longitudinal thermal time
constant is 100 times the transverse value. This means that in a period of four
transverse time constants the transverse temperature gradient will be almost fully
established but the longitudinal temperature gradient will still be negligible. In any
case, the Seebeck coefficient is likely to be small in a good thermomagnetic material
since it will probably be an intrinsic conductor. Figure 8.17 shows schematically a
typical plot of the longitudinal voltage against time. The time over which the
current is switched on, t1 − t0, is supposed to be considerably less than the longi-
tudinal thermal time constant. The depth, VN, of the plateau below the resistive
voltage, V0, is due to the Nernst effect acting on the transverse temperature gradient.
It is also equal in magnitude to the voltage that is present immediately after the
current is switched off.

It is readily shown that the thermomagnetic figure of merit can be obtained from
the values of V0 and VN. The transverse temperature gradient due to the
Ettingshausen effect is

dT
dy

¼ PixBz ¼ NTixBz

k
: ð8:38Þ

The longitudinal field due to the Nernst effect is

EN ¼ N2TixB2
z

k
: ð8:39Þ
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Fig. 8.17 Schematic plot of longitudinal voltage against time in the measurement of the
thermomagnetic figure of merit using the technique of Guthrie and Palmer [31]
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This is superimposed on the electric field, E0, associated with the resistivity, ρ,
which is given by

E0 ¼ ixq: ð8:40Þ

Combining (8.38) and (8.39) we find that

VN

V0
¼ EN

E0
¼ Zi

NE: ð8:41Þ

In this equation Zi
NE is the isothermal thermomagnetic figure of merit, whereas it

is the adiabatic thermomagnetic figure of merit, ZNE, that is appropriate in trans-
ferring the thermoelectric energy conversion relations to the Nernst and
Ettingshausen effects. Then,

ZNET ¼ VN

V0 � VN
: ð8:42Þ

The same adiabatic thermomagnetic figure of merit can also be found by mea-
suring the maximum temperature depression, (T2 − T1)max that can be achieved
using an Ettingshausen cooler. Thus,

T2 � T1ð Þmax¼
1
2
ZNET

2
1 : ð8:43Þ
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Chapter 9
Review of Thermoelectric Materials

Abstract This chapter describes the properties of most of the potential thermo-
electric materials. Bismuth and its alloys with antimony are useful at low temper-
atures in both thermoelectric and thermomagnetic energy convertors. Lead telluride
and its alloys with other IV–VI compounds are used in generators at intermediate
temperatures. So also are silicon–germanium alloys. Newer materials include the
skutterudites, the clathrates and the half-Heusler alloys. There are also a number of
oxides and silicides that have promising properties. Some organic conductors are
becoming tantalisingly close to being worthwhile contenders. All these and some
other compounds are discussed.

9.1 Bismuth and Bismuth–Antimony

Bismuth was one of the first thermoelectric materials to be studied and for many
years it was used in radiation thermopiles. It has a negative Seebeck coefficient
when pure and it was common practice to complete the thermocouple with another
Group V element, antimony, which has a positive Seebeck coefficient.

Bismuth and antimony have the same crystal symmetry as bismuth telluride and
cleave easily along the basal planes. The Brillouin zone of bismuth is similar to that
of bismuth telluride shown in Fig. 6.4, but it is more extensive in the c-direction and
shows only a slight distortion from cubic symmetry.

Both bismuth and antimony are semimetals, i.e. they have overlapping valence
and conduction bands. The overlap is more pronounced in antimony than in bis-
muth for which the overlap is only about 0.02 eV [1].

Galvanomagnetic measurements have been performed on both bismuth and
antimony. For bismuth, the results can be interpreted in terms of a three-valley
conduction band with the extrema at the L-points in the Brillouin zone [2]. The
ellipsoids are only slightly tilted away from the principal axes and it is a reasonable
approximation to ignore the tilt [3]. There is a high effective mass in each valley
along the bisectrix direction with rather small effective masses in the binary and
trigonal directions. The valence band consists of a single valley with the surfaces of
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constant energy centred at the T-points in the zone. As required by the crystal
symmetry, the surfaces are spheroidal about the trigonal axis.

The conduction band of antimony is also of the three-valley type [4] but the tilt
angle is far larger than for bismuth. Antimony also has a three-valley valence band
with almost spheroidal surfaces of constant energy tilted by about 60° from the
trigonal direction.

It is of particular interest that, although both bismuth and antimony have
overlapping bands, there is a range of Bi–Sb alloys that is semiconducting. This
behaviour was first noticed by Jain [1] who suggested that the compositions
between 4 and 40 mol% of Sb have a positive energy gap. The maximum gap of
about 0.014 eV was thought to occur for the composition Bi0.88Sb0.12.

Since the observations by Jain were performed it has been realised that homo-
geneous alloys of bismuth and antimony are exceedingly difficult to produce
because of the problems of constitutional supercooling. Not surprisingly, Jain’s
description of the bands has had to be modified. A more precise band scheme has
been presented by Lenoir et al. [5] and is shown schematically in Fig. 9.1.

There is a positive direct gap of 10 meV for pure bismuth but the heavy electron
band at the T-point overlaps the conduction band by 40 meV. As antimony is
added, the hole band and the heavy electron band move down and the light electron
band moves up. The light bands cross at a concentration of 4 % antimony and the
heavy electron band moves below the light hole band at 7 % antimony. At this
point, the alloy becomes a semiconductor and remains so until the hole band crosses
a heavy electron band at 22 % antimony. Thus, the semiconductor region extends
from 7 to 22 % antimony with a maximum positive gap of about 30 meV at an
antimony concentration between 15 and 17 %.

Bismuth itself is close to being a good thermoelectric material at room tem-
perature. It certainly has a very high value for the product μ(m*/m)3/2 in the trigonal
direction, probably higher than any other known material, but the presence of
minority carriers causes the Seebeck coefficient to remain rather low, however the
element is doped. Comprehensive measurements of the thermoelectric properties
were carried out by Gallo et al. [6] and their results are summarised in the plots of

Energy
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T

Ls 
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Ls 

Fig. 9.1 Schematic band
diagram for Bi–Sb alloys
based on the data of Lenoir
et al. [5]
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Figs. 9.2 and 9.3 for the directions normal to and parallel to the trigonal axis
respectively.

It is immediately apparent from Figs. 9.2 and 9.3 that the thermoelectric figure of
merit is highest for bismuth with the current in the trigonal direction, that is the
direction for which z is lowest in bismuth telluride. This means that thermoelements
made from single crystal bismuth, aligned in the preferred direction, tend to cleave
across the line of current flow. Although the figure of merit, z, is no more than
1.3 × 10−3 K−1 at 300 K, it rises to 1.7 × 10−3 K−1 at 100 K.

The high mobility of electrons in bismuth means that the thermogalvanomag-
netic effects are large and easily observed. Thus, it has been possible to use the
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properties of bismuth normal
to the trigonal axis
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magneto-thermal resistance effect to separate the lattice and electronic components
of the thermal conductivity. For most conductors, this separation can be performed
by extrapolating the observed thermal conductivity to the value for infinite mag-
netic field. However, there is a problem that arises for bismuth because it happens to
have a high thermomagnetic figure of merit. The electronic thermal conductivity in
a very large magnetic field does not then tend towards zero [7]. Uher and Goldsmid
[8] were able to overcome this difficulty by measuring the thermal conductivity
with the magnetic field aligned successively in the bisectrix and trigonal directions.
It is easy to predict the ratio of the electronic thermal conductivities for infinite
magnetic fields in the two directions.

Figure 9.4 shows the percentage change in the thermal conductivity, at about
115 K, of bismuth in a binary direction as a function of the magnetic field in the
bisectrix and trigonal directions. That there is a substantial difference between the
two sets of readings confirms that the electronic thermal conductivity does not
become zero whatever the magnetic field strength. Figure 9.5 shows the total
thermal conductivity and lattice conductivity of bismuth plotted against 1/T. Over

1 − λ 11(B)/λ11(0)
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0.1

0
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B T

Trigonal direction

Bisectrix direction

Fig. 9.4 Plots of the relative
change in the total thermal
conductivity of bismuth in the
binary direction against the
strength of the magnetic field
in the bisectrix and trigonal
directions. The temperature is
about 115 K

T K

1/T K-1

     λ 
W/m K

200 100 50

75

50

25

0 0.01 0.02 0.03 0.04 0.05

λ
λL

Fig. 9.5 Total and lattice
thermal conductivity of
bismuth plotted against the
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the range covered by the observations, λL is inversely proportional to the absolute
temperature, in accordance with Eucken’s law.

One of the interesting phenomena that can be observed in bismuth is the Umkehr
effect. As mentioned in Chap. 1, the value of the Seebeck coefficient in a magnetic
field may not remain the same when the direction of the field is reversed. Smith
et al. [9] found that the Seebeck coefficient, of a particular crystal of bismuth in the
bisectrix direction at 80 K, was equal to −150 μV/K in a magnetic field of 1T at an
angle of 60° to the binary direction. Upon reversal of the field the Seebeck coef-
ficient changed sign to a value of 170 μV/K. It is a general rule [10] that the
Umkehr effect will be present for any semiconductor with non-spherical surfaces of
constant energy, when the magnetic field does not lie along a reflection plane. The
effect is particularly large in bismuth as it contains electrons and holes, both carriers
being highly mobile.

The basic parameters at 80 and 300 K that are relevant to the thermoelectric,
galvanomagnetic and thermomagnetic effects in bismuth are given in Table 9.1.
These parameters were obtained from the data of Abeles and Meiboom [3], ignoring
the tilt of the ellipsoids for the conduction band. The thermoelectric parameters
obtained by Gallo et al. [6] were also used. The high field Seebeck coefficients were
calculated from the expressions given by Tsidil’kovskii [11].

Bismuth is no longer used as a thermoelectric material at room temperature. In
the absence of a magnetic field it is inferior to bismuth telluride and the mobility
near 300 K is not high enough to allow the thermomagnetic effects to be exploited.

Table 9.1 Basic parameters
for bismuth at 80 and 300 K

Parameter 80 K 300 K

Ne (C/m3) 7.37 × 104 3.52 × 103

Electron mobility

μn(1) (m
2/V s) 55.7 3.18

μn(2) (m
2/V s) 1.40 0.08

μn(3) (m
2/V s) 33.3 1.90

Hole mobility

μp(1) = μp(2) (m
2/V s) 12.4 0.77

μp(3) (m
2/V s) 3.33 0.21

Partial Seebeck coefficient (μB)2 >>1)

αn (μV/K) −100 −125

αp (μV/K) 105 107

Lattice conductivity

λL(normal to trigonal axis)
(W/m K)

11.0 2.9

λL(parallel to trigonal axis)
(W/m K)

7.5 2.0

The 1, 2 and 3 directions lie along the binary, bisectrix and
trigonal axes respectively. The lattice conductivities at 300 K
have been derived from those at 80 K assuming λL proportional to
1/T
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However, it is possible that it will find application at ordinary temperatures as a
component in synthetic transverse thermoelements [12].

At low temperatures, it is a different matter. The negative energy gap is still a
major disadvantage for thermoelectric applications in zero magnetic field but, near
liquid nitrogen temperature, the mobility is large enough for μB to become of the
order of unity or greater, as is needed for thermomagnetic applications. For this
purpose, the semiconducting Bi–Sb alloys may be superior as they have lower
values of the lattice conductivity but the mobility for a given carrier concentration is
also less. The parameters given in Table 9.1 have been used to predict the ther-
momagnetic figure of merit for various orientations in Table 9.2. The high values
for 300 K are probably of no practical interest in view of the very high magnetic
field that would be needed to approach the condition (μB)2 ≫1.

As shown in Table 9.2, the thermomagnetic figure of merit might reach a value
in excess of 2 × 10−3 K−1 at 80 K and the required magnetic field could probably be
attained with a permanent magnet [13]. However, ZNET would still be no more than
about 0.17 so the cooling that would be achieved with an Ettingshausen refrigerator
based on bismuth would be rather small.

The thermomagnetic figure of merit has been measured by Yim and Amith [14]
over the temperature range 70–300 K in a magnetic field of 0.75 T. They confirmed
that the highest value is obtained for the predicted orientation. Because the high
magnetic field condition is far from being reached at 300 K, ZNE at this temperature
was found to be no more than about 0.025 but at 80 K a value of 0.24 was observed,
which may be compared with the calculated value of 0.17. The agreement is
remarkably good in view of the approximations that have been made.

Bi–Sb alloys have attracted interest for both thermoelectric and thermomagnetic
applications at low temperatures because of the possibility of obtaining both a
positive energy gap and a reduced lattice conductivity. It is important, therefore, to
determine the effect of alloying on the effective mass and the mobility.

Observations by Smith [15] of cyclotron resonance in Bi0.95Sb0.05 have shown
that, although the shape of the ellipsoids does not change appreciably on adding
antimony to bismuth, the values of the effective masses are reduced. This is not
unexpected if the bands are non-parabolic since the effective mass should then
become smaller as the Fermi level moves closer to the band edge. This idea is

Table 9.2 Calculated thermomagnetic figure of merit for single crystal bismuth in different
orientations

Direction of temperature
gradient

Direction of electric
current

ZNE at 80 K
(μB)2 ≫1)

ZNE at 300 K
(μB)2 ≫1)

Bisectrix Binary 0.63 × 10−3 K−1 0.82 × 10−3 K−1

Binary Bisectrix 0.63 × 10−3 K−1 0.82 × 10−3 K−1

Binary Trigonal 2.1 × 10−3 K−1 2.9 × 10−3 K−1

Bisectrix Trigonal 0.84 × 10−3 K−1 1.1 × 10−3 K−1

Trigonal Binary 1.2 × 10−3 K−1 1.8 × 10−3 K−1

Trigonal Bisectrix 1.2 × 10−3 K−1 1.8 × 10−3 K−1
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supported by the work of Brandt et al. [16] on alloys containing 1.7–4 mol%
antimony. Unfortunately the decreased effective mass is not accompanied by an
increase of the mobility. Thus, Jain [1] found no significant differences between the
electron and hole mobilities in Bi0.95Sb0.05 and bismuth and he noted a decrease by
a factor of 2 for the average mobility in Bi0.93Sb0.07. However, the decrease in the
lattice conductivity may be sufficient compensation for the reduction in μ(m*/m)3/2.
Figure 9.6 shows the observations of Cuff et al. [17] of the total thermal conduc-
tivity of different Bi–Sb alloys at 80 K, as a function of the transverse magnetic
field. For the reasons that we have already discussed, the thermal conductivity may
not be approaching the lattice value at the higher fields, particularly since the results
were obtained for the orientation that yields the highest value of ZNE. However, it is
clear enough that the lattice conductivity of all three alloys is considerably less than
the value of 11 W/m K for bismuth in the same direction. The results obtained by
Horst and Williams were obtained for other orientations and probably give a more
reliable indication of the lattice conductivity. Their values for λL are 3.7 W/m K for
Bi0.95Sb0.05 and 3.1 W/m K for Bi0.88Sb0.12.

Bismuth and Bi–Sb alloys can be doped with donor impurities such as tellurium
and acceptor impurities such as tin. However, it was thought for many years that the
undoped material has close to the optimum properties for the negative branch of a
couple. Positive Seebeck coefficients are the result of doping with acceptors but the
figure of merit is less than for the negative material.

The thermoelectric properties of both undoped and doped Bi–Sb have been
given by Wolfe and Smith [18]. The value of z for undoped Bi0.88Sb0.12 is
5.2 × 10−3 K−1 at 80 K but this falls to 2.0 × 10−3 K−1 at 200 K and to
1.0 × 10−3 K−1 at 300 K. A more dilute alloy, Bi0.95Sb0.05 yields a z value of only
4.8 × 10−3 K−1 at 80 K but at 300 K the value of 1.8 × 10−3 K−1 is superior to that
of Bi0.88Sb0.12.

Rather better values were obtained by Jandl and Birkholz [19] for tin-doped
Bi0.95Sb0.05. A sample with a tin content of 145 ppm gave a figure of merit in the
trigonal direction of about 3 × 10−3 K−1 over a wide range of temperature from
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about 120–280 K. This material yielded a superior value for the figure of merit to
that of n-type bismuth telluride alloys over most of this range. However, there are
practical reasons for preferring the use of bismuth telluride. Aligned polycrystals
suffice for bismuth telluride alloys whereas Bi–Sb needs to be in the form of a
single crystal. Moreover, Bi–Sb crystals aligned in the preferred direction are liable
to cleavage fracture across the flow lines. An important feature of the results
obtained by Jandl and Birkholz is that they dispel the idea that undoped material has
the best thermoelectric properties.

The thermoelectric figure of merit can be improved significantly, particularly at
low temperatures, by the application of a magnetic field. For example, Wolfe and
Smith [18] found that z for Bi0.88Sb0.12 at 160 K is more than doubled in a magnetic
field of 0.6T, as shown in Fig. 9.7. Jandl and Birkholz [19] obtained a figure of merit
as high as 5 × 10−3 K−1 at 293 K but only after applying a magnetic field of 0.9 T.

Bi–Sb alloys doped with tin have been seriously considered as p-type ther-
moelements. Yim and Amith [14] reported a figure of merit of 0.3 × 10−3 K−1 at
90 K for p-type Bi0.88Sb0.12 containing 300 ppm tin but, at 85 K, z became equal to
2.3 × 10−3 K−1 in a magnetic field of 0.75 T. This value was not exceeded in any
sample studied by Jandl and Birkholz [19] and must be regarded as close to the best
that can be achieved in such a magnetic field.

The magneto-Seebeck effect in bismuth and Bi–Sb is clearly influenced by the
transverse thermomagnetic phenomena. This was demonstrated Ertl et al. [20] in
their measurement of the Seebeck coefficient at 80 K on a crystal of Bi0.93Sb0.07.
The temperature gradient lay in the trigonal direction and a magnetic field was
applied in a bisectrix direction. The length of the sample was varied so that the ratio
of length to width changed from 0.71 to 2.55. The Seebeck coefficient is plotted
against magnetic field in Fig. 9.8.

Although the shape dependence of the magneto-Seebeck coefficient is evidence
for the influence of the transverse effects, this may not be the whole explanation of
the observations. Thomas and Goldsmid [21] found that the Seebeck coefficient of
Bi0.95Sb0.05 certainly showed a greater change in a magnetic field when there were
two types of carrier, as one would expect if the transverse effects were contributing.
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However, the change from −60 to −123 μV/K resulting from the application of a
field of 1.6 T was thought to be evidence of a non-parabolic dispersion law.

Bi–Sb alloys may, in theory, be superior to pure bismuth as thermomagnetic
materials but, in practice, the reduction in the mobility may be too great a disad-
vantage since it means that a higher magnetic field is needed to satisfy the condition
(μB)2 >> 1. Figure 9.9 shows the dimensionless thermomagnetic figure of merit of
bismuth and Bi0.99Sb0.01 plotted against temperature for a magnetic field of 0.75 T.
The alloy is superior below 130 K but the pure bismuth has the higher figure of
merit above this temperature. No doubt the Bi–Sb alloy would be the better material
at higher temperatures if a larger magnetic field were available.

The thermomagnetic figures of merit shown in Fig. 9.9 fall short of the values
achieved by later workers. Horst and Williams [22] showed that the purity of the
material is of the utmost importance in attaining high values of ZNE. They were able
to reach a value for ZNET of about unity for Bi0.97Sb0.03 at 150 K in a magnetic field
of 1T. Their material had no more than 1020 excess carriers per m3. The curve in
Fig. 9.10 shows the values of ZNET observed by Horst and Williams plotted against

  α 
μV/K

B T

-150

-130

-110

-90
0.0 0.1 0.2 0.3 0.4 0.5

L/d =2.55

L/d =1.39

L/d =0.71

Fig. 9.8 Seebeck coefficient
plotted against magnetic field
for Bi0.93Sb0.07 at 80 K. The
length L is in the trigonal
direction and the magnetic
field is along a bisectrix
direction. The width d is
perpendicular to the magnetic
field

0.0

0.2

0.4

0.6

Z NET

T K

80 100 120 140 160 180 200

Bi0.99Sb0.01
Bi

Fig. 9.9 Dimensionless
thermomagnetic figure of
merit plotted against
temperature for Bi and
Bi0.99Sb0.01. The magnetic
field is 0.75 T. Observations
of Yim and Amith [14]

9.1 Bismuth and Bismuth–Antimony 161



temperature and the straight line on the same diagram shows the magnetic field
strength that was required to reach these values. The broken curve is a tentative
representation of the value of ZNE to be expected if the number of excess carriers
could be reduced to 1016 per m3. It is possible that the previous results, which
indicated a preference for pure bismuth, are an indication of the difficulty of
achieving purity and homogeneity in Bi–Sb.

It has been found that the thermoelectric properties of polycrystalline Bi–Sb
alloys are improved if the material is produced by the spark plasma sintering
process [23]. For p-type Bi85Sb15 doped with lead, zT has the value 0.04 at 80 K.
Although this is rather small it is still superior to other p-type samples and the value
rises as the temperature is increased, reaching 0.2 at 200 K.

As one might expect, sintered polycrystalline Bi–Sb is improved by extrusion.
Thus, Landschreiber et al. [24] in their work on nanostructured Bi–Sb have
emphasised the importance of the processing regime on the thermoelectric properties.
The production of nanoparticles by mechanical alloying followed by pressing and
sintering yielded material with zT equal to about 0.12 at 210 K, whereas extruded
samples have been found to have a value of 0.35 at the same temperature [25].

Much of the recent work on Bi–Sb alloys has been devoted to material with
some kind of nanostructure. Nanowires of about 100 nm diameter have been
produced in glass tubes and it appears that this is small enough for effects on the
band structure to be noticeable. It seems that Bi–Sb alloys are good examples of the
so-called topological insulator [26]. This has been defined as a material that behaves
as an insulator in its interior but which has a surface that contains conducting states.

It has been predicted that nanotubes or nanowires of Bi–Sb may eventually yield
a value of 6 for zT [27]. However, this will require the retention of the high carrier
mobility that is observed in large crystals. It will probably be necessary that
specular reflection of the electrons occurs at the boundaries [28].

Experimental studies of the thermal conductivity of bismuth nanowires have
shown that at a diameter of 232 nm the lattice conductivity falls to between
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one-third and one-sixth of its bulk value [29]. However, since the electronic thermal
conductivity falls by a factor of 3 it seems that the mobility must also have been
reduced in this case.

9.2 Lead Telluride and Related Compounds

When Ioffe and his colleagues realised in the early 1950s that semiconductors of
high mean atomic weight were likely to be good thermoelectric materials, he
became interested in lead telluride and isomorphous compounds. For example, they
were used to exemplify the principle [30] that solid solutions have a reduced lattice
conductivity without there necessarily being a change in the carrier mobility.

When we compare lead telluride with bismuth telluride we note that it has a
higher melting temperature, 923 °C compared with 585 °C, and an energy gap of
0.32 eV compared with 0.13 eV. This means that, although the value of the figure
of merit of PbTe is lower than for Bi2Te3, it can be used up to considerably higher
temperatures without chemical stability problems or unwanted contributions from
the minority charge carriers. PbTe, then, has been considered more as a material for
thermoelectric generation at moderately high temperatures rather than for refrig-
eration at room temperature and below.

Both p-type and n-type materials can be produced either by departures from
stoichiometry or by doping with donor or acceptor impurities [31]. There is a wide
choice of dopants; Na, Au, Ti and O behave as acceptors and Zn, Cd, In, Bi and Cl
are donors. PbTe has the cubic rock salt structure so the thermoelectric properties
are isotropic. Hall effect measurements show that the mobilities of both types of
carrier are rather high [32]. Thus, at a temperature of 295 K, μn is equal to 0.16 m2/
V s and μp is 0.075 m2/V s. However, the density-of-states effective masses of both
electrons and holes are only about 0.03 m. Taking these factors into account
together with a lattice conductivity of 2.0 W/m K at room temperature it is found
[33] that the maximum value of z is little more than 1 × 10−3 K−1.

In any practical application, one would expect to use a solid solution of the form
PbxSn1−xTeySe1−y or a similar alloy rather than PbTe or one of the other pure
compounds. Early work [34] on these alloys suggested that x = 1 is the appropriate
choice for p-type thermoelements and y = 1 is preferable for n-type material. This
seems to be true if we take account only of the mobilities of the electrons and holes
but the lattice conductivity is lower when y = 1 than when x = 1 and this outweighs
the relative effects on the mobilities [33]. Thus, PbxSn1−xTe is preferred for both
types of thermoelement, if one is restricted to this range of alloys.

There are, however, problems with the use of PbxSn1−xTe. The energy gap falls
rapidly as x becomes smaller and becomes zero when x ≃ 0.6. On either side of the
zero point the energy gap is positive though, beyond this point, the positions of the
band extrema in wave-vector space are interchanged as shown in Fig. 9.11. The
energy gap becomes larger on the PbTe-rich side and the cross-over point changes
as the temperature rises. Rosi et al. [35] suggested the use of the composition
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Pb0.75Sn0.25Te for practical applications but one really needs to consider carefully
the temperatures at which the thermoelectric material will be used.

The dimensionless figure of merit is higher for n-type PbxSn1−xTe than for
p-type material and reaches a value of about unity at temperatures of the order of
500 K. However, over the temperature range for which PbTe and its alloys are
suitable, the positive material is commonly one of the so-called TAGS formula-
tions. TAGS is an acronym for alloys that contain the elements Te, Ag, Ge and Sb.
These alloys are solid solutions between AgSbTe2 and GeTe, the latter being
closely related to PbTe, since Pb and Ge are in the same group of the periodic table.
GeTe has the rock salt structure but AgSbTe2 is rhombohedral and there is a phase
transition at a composition that contains about 80 % GeTe. Although it might be
thought that one should avoid compositions close to that of the phase transition, it
turns out that the alloys with 80 and 85 % GeTe have exceptional thermoelectric
properties [33]. It seems that the lattice conductivity is particularly small in this
region, presumably due to strain scattering. One might expect some mechanical
problems for alloys that lie close to the phase transition and, indeed, the alloy
containing 85 % GeTe is the less prone to cracking. Figure 9.12 shows the
dimensionless figure of merit plotted against temperature for the TAGS materials
together with data for p-type PbTe and Si–Ge.

Observations by Heremans et al. [36] suggest an interesting route to the
improvement of PbTe and, indeed, other thermoelectric materials. They studied the
properties of PbTe doped with thallium, pointing out that this element creates
resonant energy levels, as do gallium and indium. They showed that this can lead to
an enhanced density of states in the valence band and hence an improvement in the
figure of merit. The improvement can be quite substantial as shown in Fig. 9.13. In
this figure, zT is plotted against temperature for PbTe doped with a normal acceptor
impurity, Na, and two different levels of Tl. The Na-doped sample has a zT value of
about 0.7 at 700 K whereas the value for PbTe doped with 2 % Tl is about 1.5.
There is some support for the suggestion that the density of states has been modified
from the observation that the electrical resistivity has an anomalously high value
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Fig. 9.11 Schematic plot
against x of energy at the band
edges in PbxSn1−xTe. Based
on the data of Fano [31] for a
temperature of 12 K
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below 200 K. It is possible that enhanced densities of states may be obtained in
other materials if suitable doping agents can be found. Perhaps the key to finding
these dopants will be the observation of similar resistivity anomalies.

Although it does not have the same structure as PbTe, AgSbTe2 (i.e. TAGS
without GeTe) is a promising material in its own right. AgSbTe2 and the closely
related AgBiTe2 have recently been studied by Morelli et al. [37]. They found that,
whereas AgInTe2 has a lattice conductivity that is not much smaller than that of
PbTe at ordinary temperatures, AgSbTe2 and AgBiTe2 both have lattice conduc-
tivities that are close to the calculated minimum value, the value that would be
expected in the amorphous state. This small lattice conductivity is independent of
impurity or defect concentration and is regarded as an intrinsic property of the
material. Morelli and his colleagues did not determine the electronic properties of
their material but they referred to earlier work on AgSbTe2 in which a value of zT
equal to 1.3 at 720 K was reported [35, 38].
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Fig. 9.13 Dimensionless
figure of merit plotted against
temperature for PbTe doped
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Closely related to AgSbTe2 is AgPbmSbTe2+m, which has a rock salt-like
structure. This material is remarkable in that zT rises continuously from room
temperature upwards, reaching a value of 2.1 at 800 K [39]. The material is n-type
and the authors speculate on the possibility that the high figure of merit may be due
to a quantum dot effect. Electron microscopy studies revealed the presence of
quantum-dot sized regions that are rich in Ag and Sb.

One of the most interesting studies on IV–VI compounds has been the work on
SnSe by Zhao et al. [40]. SnSe has one feature that distinguishes it from PbTe,
namely, that it contains no rare or expensive element. Its thermoelectric properties
are remarkable, with zT reaching the value of 2.62 at 923 K. SnSe has a distorted
rock salt structure with strongly anisotropic properties. It has a second order phase
change at 750 K from a higher symmetry phase above this temperature to a lower
symmetry phase at lower temperatures. For p-type crystals, the highest figure of
merit occurs for current flow in the b-direction, with a marginally smaller value in
the c-direction and a much lower value in the a-direction, as shown in Fig. 9.14.
The lattice conductivity is actually lower along the a-axis than along the b-direc-
tion, as shown in Fig. 9.15, but the anisotropy of the power factor is much greater,
being about 5 times higher in the b-direction compared with the a-direction. This
clearly accounts for the preferred orientation for thermoelectric material.
Theoretical work [41, 42] suggests that current flow in the a-direction gives the
highest figure of merit for n-type samples with the expectation of a secondary
conduction band increasing the density of states. The optimisation of the Seebeck
coefficient is discussed by Guo et al. [43] though it is not clear that there can be
much improvement on the results of Zhao et al. even if the carrier concentration is
changed.

One of the notable features of SnSe is the fact that the high figure of merit is not
associated with any form of nanostructure, nor is the formation of a solid solution
involved. The lattice conductivity is already so small, at least at the higher end of
the temperature range, that additional phonon scattering would have little effect.
However, this may not be true near room temperature, where, as will be apparent
from Fig. 9.15, the lattice conductivity reaches 0.7 W/m K.
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The thermoelectric properties of the solid solutions having the formula
(PbTe)1−2x(PbSe)x(PbS)x have been studied by Korkosz et al. [44]. This group of
materials has some of the most favourable properties in the temperature range
500–900 K. Figure 9.16 shows how zT varies with temperature between 300 and
750 K for the p-type alloy with x = 0.07 and with 2 % Na as the dopant. It will be
seen that zT exceeds unity for temperatures in excess of about 550 K. It does not
appear that the alloys in this study have any form of nanostructure, so the low lattice
conductivity is probably associated with alloy scattering or scattering on the grain
boundaries.

Much of the recent work on the IV–VI compounds and alloys has been devoted
to the observation of the effects of different dopants. A secondary goal has been the
elimination of tellurium in favour of cheaper alternatives. Work by Lee et al. [45]
on PbSe has shown that antimony and bismuth have different effects as dopants. zT
is as high as 1.5 at 800 K when Sb is the dopant whereas it is less than unity when
Bi is added. It seems that Sb produces precipitates that scatter phonons and reduce
the lattice conductivity but no such precipitates are found after doping with Bi. Both
additives are equally suitable for controlling the position of the Fermi level and lead
to equally high power factors. In this case, it is only the lattice conductivity that
changes for the different doping agents.
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Dopants in PbSe have also been investigated by Wang et al. [46]. Because of the
very high doping levels that are needed in thermoelectric materials compared with
other semiconductor devices, the dopants themselves can affect the mobility of the
charge carriers. The electron mobility in n-type PbSe is greater when an anion
dopant is employed but in p-type material the hole mobility is greater for cation
dopants. Wang and his colleagues regard thermoelectric materials as highly dis-
ordered systems. They looked at doping of PbSe with halogens and with various
Group III and Group V elements. They found, for example, that the electron
mobility in n-type PbSe was higher for halogen dopants, such as Br and Cl, than
when In, Ga or Al were added. The lower mobility for the Group III dopants is not
associated with any band structure effects since the effective mass remains
unchanged. It is therefore evident that it is the carrier scattering process that is
important in controlling the power factor.

Although nanostructuring has little effect on some of the Group IV–VI alloys
that already have a very low lattice conductivity, there are many instances where
nanostructures are helpful. For example, It has been found [47] that a nanodis-
persion of up to 1 % of SiC in the so-called LAST alloy, AgPb20SbTe20, is ben-
eficial in reducing the lattice conductivity, though higher concentrations adversely
affect the power factor. A more comprehensive study of nanostructures in PbTe
alloys has been carried out by Ji et al. [48]. These authors made use of the
hydrothermal process to produce powdered material that was then hot pressed. The
hydrothermal process led to the formation of nanorods that were retained after
sintering.

9.3 Silicon–Germanium Alloys

Both silicon and germanium have rather high lattice conductivities, though they can
yield reasonably large values for the power factor since both elements have high
carrier mobilities. Thus, if the lattice conductivity can be reduced, the figure of
merit will rise to a worthwhile value. We shall see in Chap. 12 that a large value of
zT can be obtained at room temperature using silicon nanowires. Here we shall
discuss the use of silicon, or rather Si–Ge alloys, in bulk thermoelements.

The lattice conductivities of silicon and germanium at 300 K are 145 and
64 W/m K respectively [49]. The value of λL falls rapidly on adding germanium to
silicon, as is apparent from Fig. 9.17 in which the thermal resistivity is plotted
against the concentration of silicon in germanium for the whole range of Si–Ge
alloys [50]. In fact, even larger increases in thermal resistivity have been observed
by later workers. For example, Vining [51] gives a value for the thermal resistivity
in the range 0.16–0.20 m K/W for Si0.7Ge0.3 at room temperature. It is possible that
the relatively low thermal resistivity observed by Steele and Rosi for the Si–Ge
alloys could have been due to inhomogeneity. The liquidus and solidus curves are
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widely separated and constitutional supercooling is a significant problem for melt
grown material.

In spite of the dramatic decrease in the lattice conductivity when germanium is
alloyed with silicon, the Si–Ge alloys cannot compete with other thermoelectric
materials at ordinary temperatures. However, they come into their own at, say,
600 K. Above this temperature zT for both n-type and p-type Si–Ge reaches a value
of about 0.5 and remains at or above this level up to temperatures in excess of
1000 K [33]. Si0.7Ge0.3 has a solidus temperature of about 1500 K and remains
stable over long periods at 1300 K [38]. The energy gaps for silicon and germanium
are 1.15 and 0.65 eV respectively so the silicon rich alloys, when heavily doped,
remain effectively free of minority carriers up to high temperatures.

A powder metallurgical technique is the preferred method for producing Si–Ge
thermoelements [52]. Since these materials have the cubic diamond structure there
is no question of anisotropy of the thermoelectric properties. The parameters that
are chosen for a hot-pressing and sintering process do not seem to be critical but
there remains the choice of the size of the starting powders.

Because of the major contribution of alloy scattering to the thermal resistance,
most of the heat is carried by low frequency phonons. As we showed in Sect. 5.3,
this means that boundary scattering can have a large effect on the lattice conduc-
tivity. However, because of the high carrier mobility, we might expect this quantity
also to be sensitive to boundary scattering. Although Slack and Hussain [53] have
doubted the possibility of improving the figure of merit by reducing the grain size in
sintered Si–Ge, an improvement for fine-grained material has been claimed by
Rowe and Bhandari [54].

Slack and Hussain [53] have carried out a complete review of the properties of
Si–Ge alloys with the aim of specifying the maximum efficiency that might be
achieved for a generator operating between 300 and 1300 K. Their calculations
focussed on the Si0.7Ge0.3 alloy since this seems to have the most favourable
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combination of properties. Due account was taken of the complexities of the band
structure. For example, the valence band maximum at the centre of the Brillouin
zone actually has three components. There is a heavy mass band, a light mass band
and a split-off light mass band. Turning to the conduction band, there are minima at
the X and L points that have to be considered. Such complications have an effect on
the variation of Seebeck coefficient with carrier concentration and electrical con-
ductivity. The carrier mobility, too, varies in an irregular manner with the carrier
concentration. When it came to optimising the carrier concentration it was found by
Slack and Hussain that there were two maxima for the power factor in n-type
material. The carrier concentrations for the two peaks did not depend strongly on
temperature. One was at just over 1026 electrons/m3 and the other at around 1027

electrons/m3. This means, of course, that there are two maxima when the figure of
merit is plotted against carrier concentration.

Slack and Hussain supposed that some means is found to reduce the lattice
conductivity below its value when only umklapp and alloy scattering exist. As has
already been mentioned, they doubted that boundary scattering would be useful but
micro-inclusions might have a beneficial effect. Whatever mechanism is introduced
to lower the lattice conductivity it will never fall below a value λmin that represents
the value for amorphous material. A quantity f signifies the reduction of the lattice
conductivity due to these unspecified processes. f is equal to zero without this
additional scattering and to unity when the lattice conductivity is equal to λmin.
Slack and Hussain presented data for the maximum figure of merit as a function of
temperature for different values of f but Fig. 9.18 is restricted to the results for
f equal to zero. It shows the figure of merit zT plotted against the absolute tem-
perature for both n-type and p-type Si0.7Ge0.3. Practical figures of merit have fallen
some way short of the projected values. Nevertheless, there seems to be the
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possibility of exceeding these projections if forms of phonon scattering can be
introduced that increase f above zero.

It is noteworthy that the product μ(m*/m)3/2 is greater for pure n-type silicon than
for any other semiconductor [55]. Thus, a specimen with a lattice conductivity
equal to, say, that of a bismuth telluride alloy and with no ionised-impurity scat-
tering would be the best thermoelectric material at ordinary temperatures. This is
one of the reasons for a continuing interest in silicon-based thermoeleemnts. There
is also the fact that Si is a material that has been widely studied for other purposes
and can be obtained in many different forms, whether pure and perfect or heavily
doped and rich in defects. It is a suitable medium for testing ideas on nanostructure
effects and we shall discuss the properties of nanostructured Si in Chap. 12. Here
we consider recent developments that do not depend on nanostructures.

It has been found that porous silicon has a much smaller thermal conductivity
than the bulk material. Thermal conductivity measurements between 100 and 500 K
have been made on porous silicon with a variety of pore sizes by de Boor et al. [56].
The very high thermal conductivity of large Si crystals falls to about 24 W/m K
when the structure size is reduced to 114 nm and becomes about 3 W/m K for a
structure size of a few nm. There is a continuous reduction of the thermal con-
ductivity of porous Si as the structure size falls from the mm- through the μm- to the
nm-region. It is likely that the electron mobility will become smaller as the structure
size approaches the nm level but it is possible that the electrical properties will
retain their bulk values down to low structure sizes [57].

It must be remembered that the carrier concentration in thermoelectric materials
is much higher than in other semiconductor applications. This means that an
impurity band is formed and this can influence the position of the Fermi energy and,
thus, the Seebeck coefficient [58]. It has been shown that the attainment of the
optimum carrier concentration may be facilitated by using multi-dopants rather than
a single additive. Xu et al. [59] used a combination of P and GaP to dope n-type
Si95Ge5. It is suggested that the presence of GaP increases the solubility of P in the
alloy. The highest power factor is achieved when the Seebeck coefficient has the
rather low value of −170 μV/K. This may well yield the highest figure of merit
unless the lattice conductivity can be sufficiently reduced. Once the electronic
thermal conductivity becomes comparable with the lattice component, the magni-
tude of the optimum Seebeck coefficient shifts to a higher value.

Peltier refrigerators using Si–Ge based materials are particularly suitable for
cooling hot spots in Si optoelectronic devices. Such a system has been studied by
Ezzhari et al. [60] who compared a Si/Si–Ge superlattice cooler with one made
from a bulk Si–Ge alloy. Somewhat surprisingly, the cooler made from the bulk
material was superior. This was because the superlattice had a substantially higher
thermal conductivity than the bulk Si–Ge.
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9.4 Skutterudites and Clathrates

9.4.1 Skutterudites

We now turn to the materials that have been studied as the likely embodiments of
the phonon-glass electron-crystal (PGEC) concept that was discussed in Sect. 5.6.
The types of material that might have a low lattice conductivity and at the same
time have a large power factor have been considered by Nolas et al. [61]. They
drew attention to the criteria that were enumerated by Cahill et al. [62] for a
glass-like lattice conductivity.

One of the classes of material that have been studied is that of the skutterudites.
Skutterudite is the name first given to the mineral CoAs3 and since extended to
other compounds in the same family, such as CoSb3. Such materials satisfy the
requirements of Cahill and his colleagues for a small lattice conductivity and
possess reasonably mobile charge carriers.

A key feature of the unit cell of a skutterudite is that it contains empty spaces. In
CoSb3 the cobalt atoms form an almost cubic framework with square arrangements
of each set of 4 antimony atoms, there being 6 such squares for every 8 pseudo
cubes. The voids that exist in such an arrangement can be occupied by loosely
bound atoms that are known as “rattlers”. It is these rattlers that reduce the lattice
conductivity to an extremely low level.

The general formula for the basic skutterudites can be written as MX3 where M
is Co, Rh or Ir and X is P, As or Sb. An alternative representation is [ ]2M8X24,
which takes account of the two voids for every 8 M atoms and 24 X atoms. We may
then introduce guest atoms into the voids to form what can be called filled skut-
terudites. An indication of the ability of the guest atoms to rattle, and thereby reduce
the lattice conductivity, is the atomic displacement parameter. One partly filled
mixed skutterudite that has been studied is La0.75Fe3CoSb12. Here the atomic
displacement parameter [63] at 300 K of La is about 0.02 Å2 compared with about
0.007 Å2 for Sb and 0.005 Å2 for Fe and Co. It is expected, then, that the lattice
conductivity of La0.75Fe3CoSb12 should be small. This is indeed the case as is
illustrated in Fig. 9.19 in which the lattice conductivity of the closely related
compound La0.75Th0.2Fe3CoSb12 is plotted against temperature. Also shown are the
values for the unfilled skutterudite CoSb3 and the amorphous material, vitreous
silica. The minimum thermal conductivity of the filled skutterudites could in
principle reach even lower values.

Sales and his colleagues measured all the thermoelectric parameters on their
material and were, thus, able to assess the figure of merit. Two of the compositions
that gave particularly favourable results were Ce0.9Fe3CoSb12 and La0.9Fe3CoSb12.
It was observed that zT became equal to about unity for both these compounds at
700 K as shown in Fig. 9.20 and it was predicted that a value of about 1.4 might be
reached at 1000 K. It is noted that both materials displayed a Seebeck coefficient
equal to about 200 μV/K at 700 K, this probably being close to the optimum level.

172 9 Review of Thermoelectric Materials

http://dx.doi.org/10.1007/978-3-662-49256-7_5


At lower temperatures the Seebeck coefficient became smaller and it was expected
that the figure of merit in this region could be improved.

The skutterudites are unlike many semiconductors in that the density-of-states
effective mass is rather large so that the optimum Seebeck coefficient is reached at
carrier concentrations that would lead to metallic conduction in other materials. The
effective mass for p-type skutterudites is of the same order as the free electron mass
and for n-type compositions is an order of magnitude greater [61]. The guest atoms
that are introduced into the voids act as dopants and the high effective masses allow
their concentration to be high without the Seebeck coefficient becoming too small.

There are a large number of both host compositions and guest atoms from which
to choose. Many seem to have promising thermoelectric properties [64] and provide
dimensionless figures of merit of the order of unity or greater in the temperature
range 500–700 K.

A curious effect has been reported by He et al. [65]. He and his co-workers
prepared the skutterudite Co1−xNixSb3 by adding Co1−xNixSb3.05 and found that,
after annealing, the material was porous. The presence of the pores, of more than
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1 μm in diameter, was found to change the thermoelectric properties. The electrical
conductivity became greater at the expense of the Seebeck coefficient and the
thermal conductivity was substantially reduced. It was found that the porous
material had a value of zT equal to 0.6 at 400 K, about twice the value for the
original material.

A substantial improvement in thermoelectric properties of a (Ba, In)
double-filled skutterudite with the nominal composition Ba0.3In0.3Co4Sb12 has also
been brought about by introducing porosity [66]. The pores of a few μm in size
arose from the decomposition of ZnSb inclusions. The surfaces of the pores
appeared to have an energy filtering effect, raising the Seebeck coefficient. There
did not seem to be any change in the electrical conductivity perhaps because of a
percolation effect. The lattice conductivity was reduced by scattering of low fre-
quency phonons on the pores. The rather high value of 1.36 for zT at 800 K was
observed, though the room temperature value was low, partly because the Seebeck
coefficient had not been optimised for low temperature operation. The best zT at
300 K is about 0.3, but the Seebeck coefficient for this sample is about −130 μV/K.

The skutterudites already have low values for the lattice conductivity and it
might be thought that there would not be much advantage in the introduction of a
nanostructure to this class of material. Some of the best thermoelectric properties
have been obtained without any deliberate attempt to incorporate nanostructure
effects, though that does not mean that nanostructuring was absent. Rogl et al. [67]
have reported the exceptionally high values for zT of 1.6 and 1.3 for n-type and
p-type skutterudites respectively. Values of zT exceeding unity between 650 and
800 K were observed and, even at a temperature as low as 400 K, zT had the
moderately high value of 0.5. It was pointed out that a thermoelectric generator
made from these skutterudites and operating between a source at 800 K and a sink
at room temperature would have an efficiency of between 13 and 16 %. The n- and
p-type alloys that were used by Rogl and her colleagues were (Mm, Sm)yCo4Sb12
(Mm: mischmetal) and DDy(Fe2−xCox)4Sb12 (DD: didymium) respectively. The low
thermal conductivity of these skutterudites was associated with a small grain size of
the order of 200 nm. The authors stated that the lattice conductivity would continue
to fall if the grain size were further reduced.

One of the advantages that the skutterudites possess is the large number of
members of the family. Thus, it is possible to compare the effects of changes of the
band structure on the thermoelectric properties without much change in the other
parameters. This feature has been utilised in the improvement of p-type skutteru-
dites [68]. LaIrOs3Sb12 is a p-type skutterudite with a light-hole band and a power
factor of more than 50 μW/cm K2 at about 800 K. A heavy hole band has a higher
density of states but this is more than offset by a lower carrier mobility.

Another skutterudite, zinc-substituted Ce Fe4−xZnxSb12, displays excellent
electronic properties [69]. The power factor is about 15 % higher than that of
CeFe4Sb12. In this case there is no change in the lattice conductivity due to the
addition of Zn. The importance of increasing the power factor in thermoelectric
materials is more and more evident as it is realised that the lattice conductivity is
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approaching its value in amorphous substances. In such materials, it is only by
improving the power factor that one is going to be able to reach higher values of zT.

It must be remembered that the lattice conductivity of skutterudites can be
reduced both by reducing the grain size and by introducing rattler atoms in the
structural cages. He et al. [70] have shown that one can isolate the effect of
nanostructuring in Cu1−xNixSb3 alloys, with x having values between 0 and 0.09.
Although zT had the reasonably high value of 0.7 at a temperature in excess of
400 °C, the lattice conductivity was close to 3 W/m K so there is plenty of scope for
further improvement. Presumably such improvement can be brought about by
rattlers.

9.4.2 Clathrates

The clathrates are another group of compounds that have open structures into which
loosely bound guest atoms can be incorporated. The original clathrates were
crystalline complexes of H2O with trapped atoms or molecules. Ice clathrates were
known to have very small thermal conductivities. They typically have a very large
number of host atoms in the unit cell. For example, Type I ice clathrates have 46
H2O molecules in the unit cell and Type II ice clathrates have 136 such molecules.
These clathrates are, of course, electrical insulators but there also clathrates with
semiconducting properties and it is these in which we are interested.

Type I conducting clathrates have the general formula X2Y6E46 where X and Y
are guest atoms on two different sites and E is Si, Ge or Sn. The corresponding
formula for the Type II clathrates is X8Y16E136. The elements in Group IV of the
periodic table are usually found to have the diamond structure, each atom being
covalently bonded to four other atoms. These bonds are retained in the clathrates
but there are no longer groups of four atoms forming tetrahedra. Instead, the
Group IV atoms form dodecahedra and either tetrakaidecahedra or hexakaideca-
hedra [71]. In Type I clathrates the unit cell is made up of 6 tetrakaidecahedra and 2
dodecahedra while in Type II clathrates the cell comprises 16 dodecahedra and 8
hexakaidecahedra. It is therefore possible for each unit cell in a Type I clathrate to
accommodate 8 guest atoms and in a Type II clathrate it can accommodate 24 guest
atoms.

Most of the experimental work has been performed on Type I clathrates.
Figure 9.21 shows how the lattice conductivity of a number of these materials
varies with temperature. Also shown is the lattice conductivity of amorphous
germanium. It is clear that the lattice conductivity of the clathrates approaches the
value for amorphous germanium at the higher temperatures and in some cases
reaches it.

The lattice conductivity of all the clathrates at room temperature is much lower
than for silicon or germanium in the usual crystalline state. At lower temperatures it
becomes even lower for most samples suggesting that the guest atoms are partic-
ularly effective in scattering the low frequency phonons. The exception is the Sn

9.4 Skutterudites and Clathrates 175



clathrate and it is thought by Cohn et al. [72] that this is because the Cs ion has a
large radius and only just fits into the Sn cage. Nevertheless, at higher temperatures
this clathrate, too, has a low thermal conductivity. Even when the phonon free path
length is not reduced, the very large size of the unit cell is instrumental in reducing
the heat conduction by the lattice.

We have already discussed atomic displacement parameters for the skutterudites.
The concept has the same significance for the clathrates. Thus, in Sr8Ga16Ge30, the
Sr ions in one type of cage site have a very large atomic displacement parameter
[73] and this can be associated with the small lattice conductivity at low
temperatures.

Of course, the lattice conductivity is only one factor when a potential thermo-
electric material is being selected. The electronic properties are equally important.

The thermoelectric properties of various clathrates have been studied by several
workers. Kuznetsov et al. [74] have made observations in the temperature range
100–870 K on Ba8Ga16Si30, Ba8Ga16Ge30, Ba8Ga16Sn30 and Sr8Ga16Ge30. These
compounds were all found to have negative Seebeck coefficients as shown in
Fig. 9.22. The electrical resistivity of the same samples is shown in Fig. 9.23.

Kuznetsov and his colleagues did not measure the thermal conductivity but they
estimated its value from the data for Ba8Ga16Ge30 and Sr8Ga16Ge30 that were
available for the temperature range 10–300 K [72, 75]. They assumed that the
lattice conductivity would remain constant above 300 K, which seems to be rea-
sonable from the data shown in Fig. 9.21. Using calculated values for the electronic
component of the thermal conductivity, they estimated that zT would be equal to 0.7
for Ba8Ga16Ge30 at 700 K and 0.87 for Ba8Ga16Si30 at 870 K. Inspection of
Fig. 9.22 suggests that neither of these compositions has the optimum carrier
concentration. It appears that the sample of Ba8Ga16Ge30 is entering the mixed
conduction region at 700 K and would be improved at this temperature by the
addition of donor impurities. On the other hand, the Seebeck coefficient of the
specimen of Ba8Ga16Si30 seems to lie below its optimum value at 870 K and a
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reduction in the donor concentration should improve its properties. A figure of
merit zT as high as 1.35 at 900 K has been reported [76] for single crystal
Ba8Ga16Ge30. Martin et al. [77] have found that the substitution of a proportion of
20 % Si for Ge in Ba8Ga16Ge30 can enhance the performance. There is no doubt
then that the clathrates can provide worthwhile n-type thermoelements.

It is possible to produce p-type material using Al as a doping agent. Thus, Deng
et al. [78] have prepare p-type samples with the formula Ba8Ga16AlxGe30−x, where
x = 1, 2, 3, 4 or 5. The atomic displacement parameter is not affected by the
aluminium substitution so the thermal conductivity should remain low at all tem-
peratures. In fact, mass fluctuation scattering lowers the lattice conductivity still
further. The reasonably large value of 0.61 for zT at 760 K has been observed for
Ba8Ga16Al3Ge27.
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The clathrate Ba8Ga16Sn30 has been studied by several groups. In particular, it
was used to demonstrate convincingly that the rattler principle operates for this
class of material [79]. However, Christensen et al. [80] have studied the phonon
spectrum using neutron spectroscopy and have suggested that the low thermal
conductivity of clathrates may be due, at least in part, to a low group velocity for
the optical phonons.

After Ba8Ga16Sn30 had been shown to be a useful n-type thermoelectric material
it was found that matching p-type samples could be produced by the addition of
zinc [81]. If Ba8Ga15.9ZnYSn30 represents the zinc-doped p-type material, its value
of zT reaches 1.07 at 500 K when y = 0.007. In fact, this result was obtained for a
Seebeck coefficient of almost 400 μV/K, which is surely substantially higher than
its optimum value. The fact that the plot of Seebeck coefficient against temperature
exhibited a maximum at about 500 K suggested that minority carriers might be of
significance. This being so, one can expect zT to become higher when the carrier
concentration is increased.

Copper also acts as an acceptor impurity and samples of Ba8Ga16Sn30 doped
with this element can be either n-type or p-type according to the concentration.
Saiga et al. [82] observed values for zT of about 1.5 for copper-doped Ba8Ga16Sn30
at 550 K with the Seebeck coefficient of −260 μV/K probably close to its optimum
level. zT was lower for p-type material but this was probably associated with a
smaller than optimum hole concentration. There seems little doubt that clathrate
samples with zT in excess of unity over a wide range of temperature can be
produced.

9.5 Oxides

Oxides are attractive for high temperature applications as they are potentially stable
and chemically inert. However, they must still have high values of the figure of
merit if they are to be of any use. Scientists were unaware of the possibility of using
them as thermoelements until the observation of a reasonably large figure of merit
for NaCo2O4. Yakabe et al. [83] prepared material by sintering, using both hot and
cold pressing techniques. The figure of merit of the hot pressed material remained
above 0.5 × 10−3 K−1 over the temperature range 100–400 °C. The Seebeck
coefficient varied between 100 and 140 μV/K and was clearly less than the optimum
value. It was shown that higher Seebeck coefficients could be reached using doping
agents including Ba, Cu and Mn. The largest Seebeck coefficient reported in this
early work was 180 μV/K at 400 °C for Na(Co0.95Mn0.05)2O4 though the highest
figure of merit of more than 0.8 × 10−3 K−1 was observed for Na(Co0.95Cu0.05)2O4

because this formulation had the exceedingly small thermal conductivity of about
1.0 W/m K over the same temperature range. In these measurements the highest
value of zT was about 0.54 at 673 K, certainly a most promising starting point for
further investigation of oxide systems.
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NaCo2O4 with improved thermoelectric properties was reported by Ohtaki et al.
[84]. An essential feature of the preparation of this improved material seems to be a
double-sintering procedure. This led to an increase in both the Seebeck coefficient
and the electrical conductivity with a doubling of the power factor, admittedly from
a rather low starting level. The value of zT for this p-type conductor reached 0.78 at
1053 K. Similar values are found for another p-type oxide [85], Ca3Co4O9 so it is
clear that NaCo2O4 is not unique among the oxides in possessing good thermo-
electric properties.

One of the best of the n-type oxides [86] is SrTiO3. Although the mobility is
low, the effective mass is high and the power factor at room temperature compares
well with that of material like Bi2Te3. However, the thermal conductivity is rather
high, at about 8 W/m K, and this means that zT at room temperature is only about
0.08. Because of the high effective mass and the low mobility, there are good
prospects for reducing the lattice conductivity without affecting the electronic
properties. Muta et al. [87] reduced the thermal conductivity to 3.4 W/m K at 300 K
by partially substituting Dy for Sr. A value for zT of 0.37 at 1000 K has been
achieved for SrTiO3 with a high concentration of Nb [88]. One can certainly do
better than this with other thermoelectric materials so further progress needs to be
made before it can be claimed that there is a satisfactory n-type oxide at 1000 K.
However, one should remember that SrTiO2 has the high melting temperature of
2080 °C so it may be possible to use this material under conditions that are
unsuitable for other thermoelements.

Pure strontium titanate has a very high Seebeck coefficient but a very low
electrical conductivity, so the power factor is small. The power factor is improved
by doping with Nb but it is not possible to add sufficient of this dopant to bring the
Seebeck coefficient to its optimum value. Reduction or oxygen-deficiency doping
brings the Seebeck coefficient closer to its preferred value [89]. The effect of doping
is shown in Figs. 9.24 and 9.25. The electrical conductivity of the pure compound is
too low to be portrayed in Fig. 9.24. Nb doping increases the electrical conductivity
while reducing the Seebeck coefficient, as shown in Fig. 9.25.

For this particular composition of Nb-doped and reduced material, zT reached
0.25 at 1000 K. There are a number of other oxides that have zT of this order and
higher. For example, co-doped n-type SrTiO3, with La and Y on one site and Nb on
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another, has zT of more than 0.3 at about 1000 K. Similar results have been
obtained with the second-phase addition of TiB2. Comparable, though slightly
inferior, properties have been found for n-type materials based on Ti2O3.

The power factor of transition metal oxides has been studied by Terasaki [90].
He predicted a power factor of 9 μW/cm K2 over a wide temperature range. The
magnitude of the Seebeck coefficient would be about 300 μV/K and, combining the
power factor with a realistic thermal conductivity of 10 W/m K, zT becomes equal
to 0.9 at 1000 K.

The development of oxide thermoelectrics has recently been reviewed by Ren
et al. [91]. One of the best of the oxides is ZnO with zT reaching over 0.6 at 1200 K
[92]. One of the newer materials is BiCuSeO with zT becoming greater than 1 at
temperatures above 800 K.

9.6 Other Thermoelectric Materials

9.6.1 Zinc Antimonide

Zinc antimonide, Zn4Sb3, exists in three crystalline forms. One of these, the β-
phase, which is stable between 263 and 765 K, has very good thermoelectric
properties in a particular temperature range. The key to its high figure of merit is a
small lattice conductivity associated with a disordered crystal structure [93]. It was
said to be a p-type conductor with a figure of merit zT that rises from about 0.6 at
200 °C to about 1.3 at 400 °C. Over this range it is probably as good as any other
material that is available. Caillat et al. [94], who reported the thermoelectric
properties in 1997, mentioned that it is difficult to grow large crack-free crystals
because of the phase transitions. However, they were able to produce good material
using a sintering process. Their typical samples displayed a Seebeck coefficient of
nearly 200 μV/K at the upper end of the temperature range but at 200 °C it was no
more than about 150 μV/K, which is almost certainly below its optimum value.
Pedersen et al. [93] studied the effect of Mg as a dopant but were unable to report
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any improvement in the figure of merit. However, other attempts to improve the
doping material have been more successful. Pedersen and his co-authors mentioned
that later work by Caillat and his colleagues showed some benefit from the sub-
stantial Cd content in the composition Cd0.8Zn3.2Sb3.

Wang et al. [95] have reported that Cd doping improves power factor in Zn4Sb3 by
increasing the density of states and the same group have found that doping with lead
improves both the thermoelectric properties and the stability [96]. Interstitial In doping
may be used to compensate for the lack of stoichiometry in Zn4Sb3 [97]. It has been
found that In-doped samples have zT of 1.4 at 700 K. It appears that the addition of
small concentrations (about 1 %) of a bismuth telluride alloy to Zn4Sb3 can be
beneficial, leading not only to a reduction of the thermal conductivity but an increase
in the power factor [98]. This may come about through an energy filtering effect.

It should not be forgotten that ZnSb was used as a p-type material in conjunction
with constantan in the early days of thermoelectric generation. It is more stable than
Zn4Sb3 though it usually has inferior thermoelectric properties. However, if suitably
processed, it can have a figure of merit that is comparable with that of Zn4Sb3 [99].
Thus, a value of zT equal to 0.8 at 700 K has been observed for material with a 3 %
deficiency of Zn. Samples having multiple doping with Cd, Ag and Sn have yielded
zT values exceeding unity at 600 K. [100]. It has been proposed that this improved
ZnSb should be used as a positive branch to go with n-type Mg2(Sn–Si).

It has been found that composites made from Zn4Sb3 and Cu3SbSe4, another
promising compound, can have a higher figure of merit than either of the con-
stituents [101]. One might expect composite materials to have properties interme-
diate between those of its components. However, in this case the two compounds
were introduced in the form of fine powders before hot pressing and it is likely that
the good properties were due to enhanced phonon scattering at the grain boundaries.

Another composite form of Zn4Sb3 consists of this compound with the addition
of In, as a doping agent occupying Sb sites, and ZnO particles of about 1 micron
size [102]. This material is marginally superior to pure Zn4Sb3 in its thermoelectric
properties and, perhaps more importantly, it is more stable because the inclusions
block the diffusion of Zn. It is hardly surprising that the scattering of phonons by
the ZnO inclusions does not give a greater improvement in zT since the lattice
conductivity is already very small in the pure compound. However, it is mentioned
that the zT value of 1.18 at 700 K for Zn4Sb2.94In0.06/1 wt% ZnO is an 86 %
improvement on material of a similar composition without the ZnO. It has also been
observed that nanowires of Zn4Sb3 have a smaller lattice conductivity and a higher
figure of merit than bulk material [103].

9.6.2 Half-Heusler Compounds

The basic Heusler alloy Cu2MnAl is a ferromagnetic material with a structure in
which the copper atoms form a primitive cubic lattice with alternative cells con-
taining Mn and Al atoms. The half-Heusler structure is the same except that half the
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atoms on the copper sites are missing. In the prototype half-Heusler compound
AgAsMg, the Mg and Ag atoms form a rock salt structure and the As and either the
Mg or Ag atoms form a zinc blende structure. A group of half-Heusler compounds
with the formula MNiSn, where M = H, Zr or Ti, is known to have good n-type
thermoelectric properties even though the lattice conductivity is rather high.

A typical half-Heusler compound, ZrNiSn, has a lattice conductivity that is equal
to about 10 W/m K, but this can be reduced by forming a solid solution such as
Zr0.5Hf0.5NiSn [104]. The prospects for improvement are good since the effective
mass is of the order of 5m and the mobility is correspondingly small and not likely
to be reduced much when attempts are made to reduce the lattice conductivity still
further.

If it is assumed that most of the heat conduction is due to the acoustic-mode
phonons because of their large group velocity, it turns out that the mean free path of
the phonons exceeds that of the electrons. Thus, it is likely that ZrNiSn in the
amorphous state would be superior to crystalline material [105].

Many of the half-Heusler compounds, such as ZrNiSn, HfNiSn and TiNiSn,
normally display n-type conduction but others including HfPtSn and ZrPtSn are
p-type conductors [106]. However, the latter have rather high values for the elec-
trical resistivity with zT less than 0.03 at all temperatures. The effective mass is
smaller for holes than for electrons and the hole mobility is not particularly high.

Muta et al. [107] have found that the thermal conductivity at high temperatures
can be reduced by the addition of impurities but they showed that the effect was due
to the elimination of the bipolar electronic conduction rather than a decrease in the
lattice conductivity.

Ono et al. [108] were able to improve the power factor of spark-plasma sintered
and arc-melted half-Heusler compounds by substitution on both the Nb and Sn sites
in NbCoSn. The highest power factor of 2.2 mW/m K2 was observed for
Nb0.99Ti0.01CoSn0.9Sb0.1 at 700 K. However, the lattice conductivity was not sig-
nificantly reduced and zT did not rise above 0.3 at 850 K. This would certainly be a
useful material if the lattice conductivity could be made smaller. A similar result
was obtained by Sekimoto et al. [109] for TiCoSn0.1Sb0.9 at 959 K while zT rose to
0.45 at 958 K for ZrCoSn0.1Sb0.9. It does not seem that the formation of such solid
solutions is going to reduce the lattice conductivity sufficiently for zT to approach
unity. The exceptionally high power factor of 4.1 mW/m K2 at 673 K observed by
Matsubara et al. [110] for (Ti0.5Zr0.25Hf0.25)0.99Y0.01NiSn0.99Sb0.01 suggests that
this composition may have a high figure of merit but its thermal conductivity is not
known. Matsubara and his colleagues observed a chain-like nanostructural feature
in their material and it could be that this type of structure is responsible for the
promising properties. The half-Heusler compounds, particularly those with n-type
conduction, remain as contenders for supremacy in thermoelectric applications at
certain temperatures.

Carette et al. [111] have drawn attention to the enormous number of
half-Heuslers and have attempted to make a selection of the most promising
members of the family. They have chosen 75 thermodynamically stable
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half-Heuslers and have predicted that when in the form of nanostructures several
will have zT greater than 0.5 at 300 K and in excess of 2 at high temperatures.

Krez et al. [112] showed that semiconductor theory as applied to such materials
as bismuth telluride and silicon-germanium can also be applied to the half-Heuslers.
In particular it can be used to analyse the behaviour of Ti0.3−xNbxZr0.35Hf 0.35NiSn
with x between 0 and 0.05. The energy gap in the range 0.15–0.23 eV is rather
small for a generator material but zT reaches almost 0.8 at 900 K.

Much of the recent work has been addressed to the reduction of the lattice
conductivity since this quantity is somewhat larger than in most good thermo-
electric materials. Thus, Zhu et al. [113] have tackled the problem of the relatively
high lattice conductivity. Point defect and boundary scattering are effective in
reducing the free path lengths of the high and low frequency phonons leaving most
of the heat to be carried by the phonons of intermediate frequency. At the Debye
temperature these have mean free paths in the range 1–80 nm. It should be the aim
of future work to focus on these phonons.

Rausch et al. [114] have attempted to reduce the lattice conductivity by the
introduction of a microstructure through phase separation, a process that has been
applied successfully to the PbTe system. They improved the n-type compound
TiNiSn by the partial substitution of Ti by the heavy elements Zr and Hf.
A reasonably high zT equal to 0.9 at 700 °C was obtained.

The high lattice conductivity of one of the half-Heusler alloys has been reduced
appreciably by the formation of a nanolamellar composite [115]. The lattice con-
ductivity of TiCoSb was lowered by almost an order of magnitude to about
2 W/m K at room temperature and just over 1 W/m K at 800 K. Fu et al. [116] also
devoted their attention to the thermal conductivity. They substituted Nb for V in
FeVSb and showed that there was a reduction in the lattice conductivity due to both
mass-defect and strain scattering of the phonons. However, the lattice conductivity
still remained above 4 W/m K over the whole temperature range 300–700 K. It was
also noted that the addition of Nb reduces the band gap, an undesirable feature in a
material intended for use at elevated temperatures.

9.6.3 Metal Silicides

Iron disilicide, FeSi2, has long been considered as a suitable thermoelectric gen-
erator material even though it does not have the highest figure of merit at any
temperature. Its great virtues are its stability and strength, while it is made from two
elements that are cheap and plentiful. The compound exists in two phases, the α-
phase being produced on solidification of the melt and the β-phase being the more
stable form below 955 °C. FeSi2 can be produced by a powder metallurgy tech-
nique [117] with an optimum annealing temperature for the production of the β-
phase of about 800 °C. The compound can be obtained in either n-type or p-type
form by doping with cobalt or aluminium, respectively. Rather high dopant con-
centrations are needed as the effective masses of the carriers are large. The
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dimensionless figure of merit for a thermocouple in which both legs are made from
FeSi2 rises from about 0.03 at 100 °C to 0.2 at 700 °C. Stable contacts at the hot
junction can be made by direct sintering. There is no doubt that FeSi2 has practical
advantages over other materials and, in some circumstances, these may outweigh
the poor figure of merit.

There are a number of transition metal silicides that share many of the advan-
tages of FeSi2. Their properties have been reviewed by Fedorov and Zaitsev [118].
The highest value of zT seems to be around 0.4, this being exhibited by Rh-doped
Ru2Si3 at about 900 K and by Fe0.95Co0.05Si2 at 800 K.

Rather better thermoelectric properties are found for alloys based on magnesium
silicide, Mg2Si. The properties of Mg2Si and the isomorphous compounds Mg2Ge
and Mg2Sn, together with their solid solutions, have been reviewed by Zaitsev et al.
[119]. The solid solutions are particularly interesting because of the substantial
increase in thermal resistivity compared with that of any of the pure compounds
[118]. The variation of lattice conductivity with composition for the three solid
solution systems is shown in Fig. 9.26.

All the solid solutions display favourable n-type thermoelectric properties at
temperatures above, say, 500 K. The best results were reported for Mg2Si0.6Sn0.4
with zT rising from just over 0.4 at 500 K to about 0.9 at 800 K. Zaitsev and his
colleagues believe that further work should be done on this group of compounds
and alloys.

Two silicide-based systems have been used to illustrate the extrapolation of the
thermoelectric properties to high temperatures [120]. One of these is Mg2Si0.7Sn0.3,
one of the alloys that featured in the review article by Zaitsev et al. [119]. The
thermoelectric properties were measured in the temperature range up to 850 K. The
energy gap of 0.65 eV is not small enough for bipolar effects to be observed at these
temperatures but one must take into account the fact that the lattice thermal resis-
tivity has comparable contributions from alloy scattering and phonon-phonon
scattering. The particular solid solution in which we are interested has a zT value of
0.85 at 800 K. The Seebeck coefficient of a sample for which comprehensive data
were presented is −195 μV/K, that is −2.76k/e. At 400 K the same sample displayed
a Seebeck coefficient of −110 μV/K, that is −1.29k/e, and zT is equal to 0.25. These
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data allow us to obtain the Chasmar and Stratton parameter, β, for electrons. It turns
out that it is equal to 0.11 at 400 K.

Zaitsev and his colleagues gave values for the lattice thermal resistivity for a
whole range of solid solutions at 300 K. As one would expect, the thermal resis-
tivity is lowest for the pure compounds Mg2Si and Mg2Sn and is highest for solid
solutions with comparable concentrations of the two components. If it is assumed
that the thermal resistivity due to phonon-phonon scattering is that for the pure
compound, the remaining resistivity is due to alloy scattering. The phonon-phonon
component should be proportional to temperature while the alloy scattering com-
ponent should be independent of temperature. The observations on Mg2Si0.7Sn0.3
are fitted by a lattice thermal resistivity equal to (0.14T/300 + 0.36) m K/W.

The behaviour of zT at elevated temperatures can be extrapolated from the value
at 400 K using 3 different assumptions:

(1) β proportional to T (which is what one would expect if the lattice conductivity
were independent of T).

(2) β proportional to T2 (to be expected if the lattice conductivity varied as 1/T).
(3) β proportional to T(0.14T/300 + 0.36), which is what should hold for the

existence of both phonon-scattering mechanisms and if σ0, the mobility- and
effective mass-dependent parameter, is independent of temperature.

Figure 9.27 shows zT plotted against T for the 3 different assumptions together
with the observed behaviour as given by Zaitsev et al. The variation of zT with
T calculated using assumption (3) lies close to the experimental results and this
agreement allows us to predict zT for optimised samples up to the melting tem-
perature with some confidence. This has been done in Fig. 9.28 up to 1050 K. It is
supposed that the solidus temperature for Mg2Si0.7Sn0.3 is higher than the melting
point of Mg2Sn, 1051 K. It is noted that zT in Fig. 9.28 increases more-or-less
linearly with temperature above 600 K, since, over the whole range, bipolar effects
can be avoided.

There seem to be few thermoelectric materials, other than bismuth-antimony and
bismuth telluride alloys, for which the energy gap is small enough to make minority
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carrier conduction a real problem, even at temperatures close to the melting point.
However, one material that does seem to have a rather small gap is higher man-
ganese silicide (HMS) [118]. The composition can range from MnSi1.70 to
MnSi1.77. In the study of the extrapolation of the thermoelectric properties to high
temperatures attention was drawn to a complex-doped HMS which has an observed
maximum zT of 0.7 for a Seebeck coefficient of about 210 μV/K at 800 K. In fact,
the decay of both zT and α above this temperature suggests that a higher figure of
merit might be achieved by changing the doping level.

Figures 9.29, 9.30, 9.31 and 9.32 show the parameters α, σ, λ and zT plotted
against T for complex-doped HMS over the range 300–1000 K. It is noted that the
Seebeck coefficient reaches a maximum value of 210 μV/K at 800 K. This allows
the energy gap to be estimated as 0.32 eV. One can then calculate β for the majority
carriers (holes) and the variation of this quantity with temperature.

It is found that the variation of zT and Seebeck coefficient in the temperature
range 300–700 K can be fitted by allowing β to vary as T1.75. Inspection of Fig. 9.31
suggests that the lattice conductivity does not fall with rise of temperature for this
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Fig. 9.28 Plot of zT against
temperature for optimised
Mg2Si0.7Sn0.3. This is a
theoretical plot based
on assumption (3) (see text).
Optimisation of the Seebeck
coefficient is most evident at
the highest temperatures
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Fig. 9.29 The Seebeck
coefficient of complex-doped
HMS plotted against
temperature (based on the
data of Fedorov and Zaitsev
[118])
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complex-doped HMS as a
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material, and the observed variation of β is associated primarily with the mobility of
the carriers. According to Fig. 9.30, σ falls from 750 to 560 Ω−1 cm−1 as the
temperature changes from 300 to 700 K. This implies a mobility variation as T−0.34.
Such a mobility variation is very different from the T −1.5 dependence that is
expected for acoustic-mode lattice scattering. It seems that in many materials the
reliable prediction of zT at high temperatures requires a determination of the
variation with temperature of the Chasmar and Stratton parameter, β.

For HMS, the observed T1.75 dependence of β together with the energy gap of
0.32 eV have been used to predict the maximum value of zT up to 1000 K. The
results of this calculation are shown in Fig. 9.33.

Below 800 K there is little difference between the predictions and the observed
behaviour (the small difference is due to the fact that the Seebeck coefficient has
been optimised for the upper curve). The substantial difference above 800 K is due
to the influence of minority carriers in reducing zT for the experimental sample. It is
noted that a continuous rise of zT up to a temperature of 1000 K should be
achievable if the effect of the minority carriers can be reduced by the addition of
more acceptors.

Zhang et al. [121] have pointed out that a nanostructure can be produced by
second-phase precipitation for compositions that lie within the immiscibility gap in
the phase diagram. In Mg2Si1−xSnx this is the region with 0.4 < x < 0.7. Melt
spinning, followed by plasma-activated sintering, was used to obtain homogeneous
material, which displayed a higher electron mobility than that of samples prepared
by other methods. There was no evidence that the higher mobility was accompanied
by any increase in the lattice conductivity. The total thermal conductivity was cer-
tainly higher for this material but only because the increased electrical conductivity
meant a larger electronic thermal conductivity. Material with the reasonably large
Seebeck coefficient of −200 μV/K and zT of about 1.3 at 700 K had a Seebeck
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Fig. 9.33 Optimised zT plotted against temperature for complex-doped HMS. The upper curve is
the maximum value predicted from the variation of β with temperature together with the energy
gap as estimated from the maximum Seebeck coefficient. The lower curve represents the
observations of Fedorov and Zaitsev [118] as displayed in Fig. 9.32

188 9 Review of Thermoelectric Materials



coefficient of only −114 μV/K at room temperature. Thus, the zT value of only about
0.3 at 300 K could surely be bettered by reducing the electron concentration.

Khan et al. [122] showed that Mg2Si0.55Sn0.4Ge0.05 has an increased power
factor when doped with Bi or Sb. Ge was included with the aim of increasing the
complexity of the system, presumably with a view to reducing the lattice con-
ductivity. Both Bi and Sb are donor impurities and were necessary for the
improvement of the power factor because the undoped alloy has a Seebeck coef-
ficient that is well above its optimum value. It actually exceeds −400 μV/K over
much of the temperature range. Gao et al. [123] also used Bi-doping with beneficial
effects on the thermoelectric properties, claiming that the addition of Bi led to an
increase in the power factor and a decrease in the lattice conductivity. They were
able to report the high zT value of 1.55 at 773 K.

Another metal silicide, CrSi2, has recently generated some interest. Parker and
Singh [124] have made a theoretical study of its band structure and have suggested
that this compound is likely to have a zT value exceeding unity at 1250 K, though
the exact value will depend on an experimental determination of the carrier
mobility.

9.6.4 Organic Thermoelectrics

The advantages of organic thermoelectric materials include ease of processing and
flexibility. They are suitable for applications for which inorganic materials are too
brittle. Zhang et al. [125] have listed a large number of organic conductors that have
power factors exceeding 0.1 mW/m K2. The comprehensive list includes some
materials with power factors of the order of 1 mW/m K2, which is starting to
approach the values observed for the best inorganic materials. One must also bear in
mind that the lattice conductivity is likely to be small for most organic materials.

An indication of what is possible is provided by the observations of Kim et al.
[126] on DMSO-mixed PEDOT-PSS for which zT was found to be 0.42 at room
temperature. This figure of merit is all the more remarkable since the positive
Seebeck coefficient is less than 80 μV/K. The power factor of about 0.5 mW/m K2

is an order of magnitude less than that of bismuth telluride but this is compensated
by the very small thermal conductivity of little more than 0.2 W/m K. The des-
ignation PEDOT: PSS refers to material that is doped with poly(styrenesulphonate)
and DMSO indicates the inclusion of dimethylsulphoxide. The acronym PEDOT
denotes the polymer poly(3,4-ethylenedioxythiophene) [127]. Its thermoelectric
properties can be optimised by controlling the level of oxidation and by treatment
with high boiling point solvents.

A convenient feature of some polymer materials, including PEDOT, is that they
can be deposited on simple substrates such as paper [128].
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An n-type polymer that could be used with the p-type material to form a ther-
mocouple was mentioned by Wan et al. [129]. This material was described as a
hybrid superlattice of TiS2/[(hexylammonium)x(H2O)y(DMSO)z] and has an elec-
trical conductivity of 790 Ω−1 cm−1. Its thermal conductivity has the low value of
0.12 W/m K so, even though the power factor is only 0.45 mW/m K2, zT reaches
0.28 at 373 K.

Cho et al. [130] have produced completely organic multilayer thin films having a
power factor comparable with that of inorganic tellurides. The highest power factor
in their films was 1.825 mW/m K2, which may be compared with about
4000 mW/m K2 for typical bismuth telluride. The films consisted of multilayers of
PANi, graphene and DWNT, the power factor varying according to the number of
layers. Here PANi indicates polyaniline and DWNT stands for double-walled
carbon nanotubes. The thermal conductivity could not be measured so zT could not
be evaluated. It was stated that zT could be anywhere between 0.05 and 1.8 at room
temperature if the thermal conductivity lies between 0.3 and 10 W/m K. Since the
films were essentially nanostructures the thermal conductivity was likely to be
nearer the low end of the stated range. However, the Seebeck coefficient is rather
low, about 120 μV/K, which makes it likely that the electronic contribution to the
thermal conductivity may be important.

Although studies on organic thermoelectrics are in their infancy it does appear
that these materials will have an important role to play in the future.

Carbon, itself is a most interesting material. One of its allotropes, graphene, is a
two-dimensional material with an extremely high electrical conductivity but its
metallic properties prevent it from being a useful in thermoelectric energy con-
version. However, another two-dimensional allotrope, graphyne, seems likely to
have exceptionally good thermoelectric properties. In graphene the carbon atoms lie
in thin sheets with sp2 bonds. Graphyne has both sp2 and sp bonds and is not
restricted to a single form. Whereas graphene has a phonon free path length of
about 890 nm, the value for graphyne falls to only 60 nm. Unlike graphene,
graphyne is a semiconductor with a reasonably wide energy gap of about 0.5 eV.
The thermoelectric properties of graphyne have been calculated by Tan et al. [131]
and it was found that zT, for the form known as graphdiyne, should be 5.3 at the
optimum doping level. The optimum Seebeck coefficient is about −430 μv/K. Such
a high value is not surprising since, as shown in Fig. 4.2, the optimum Fermi level
has to lie well outside the conduction band when β and zT, become large.

9.6.5 Boron Carbide

In this chapter an attempt has been made to portray the properties of a wide variety
of thermoelectric materials. It is remarkable how many different systems yield
values of zT that are equal to about unity or greater over some temperature range. It
is almost certain that no mention has been made of other systems that will even-
tually give good thermoelectric properties, However, it is hoped that the readers of
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this book will be able to evaluate new materials as they appear, basing their
judgement on the principles that have been outlined.

We shall finally mention the thermoelectric properties of boron carbide, a
refractory material of exceptional hardness [132]. The thermoelectric properties of
this material have been measured by Bouchacourt and Thevenot [133]. The value of
zT observed by these authors was 1.06 at 1250 K so boron carbide is clearly a
potential thermoelectric material for use at high temperatures.

Boron carbide is normally a p-type conductor and in this context Mori and
Nishimura [134] have drawn attention to rare earth boron cluster compounds that
have similar refractory characteristics but are n-type. At present these materials do
not have high figures of merit but this is not surprising in view of the fact that the
Seebeck coefficient lies far below its optimum value. Mori and Nishimura consider
that these boron cluster compounds are worth further study.
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Chapter 10
Thermoelectric Modules
and Their Application

Abstract An important factor that has led to the widespread commercial use of
thermoelectric refrigeration is the development of the module. Here it is shown how
a module is selected for a particular application. It is also shown how modules are
designed so as to minimise losses associated with electrical contact resistance and
heat transfer other than through the thermoelements. Some typical cooling and
heat-pumping applications are mentioned. The behaviour of thermoelectric coolers
under transient conditions is discussed. Mention is made of the types of application
for which thermoelectric generators are suitable.

10.1 The Modular Concept

In principle, a single thermocouple can be adapted to provide any required cooling
capacity as a refrigerator by altering the ratio of length to cross-section area.
However, such a couple would operate from a very small voltage and the current
would be very large except for minimal cooling power. For most practical purposes
a number of thermocouples are connected in series electrically while operating
thermally in parallel. Such an arrangement of thermocouples is known as a ther-
moelectric module. The essential features of a typical module are shown in
Fig. 10.1.

The thermoelements in a module are linked together by strips of a good electrical
conductor, such as copper. The connecting links are usually held in good thermal
contact with electrically insulating plates that should be made from material that
conducts heat well. Very often alumina plates are used but these are not particularly
good thermal conductors and beryllia, for example, is a better material for this
purpose. Sometimes the ceramic plates are metallised to assist in the connection to a
heat source and a sink.

The number, N, of thermocouples in a module is determined primarily by the
required cooling capacity and the maximum electric current. Suppose, for example,
that 10 W of cooling is required for a particular application. Such a level of cooling
power might be adequate for a small portable refrigerator. One could design the
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module for operation at maximum cooling power or optimum coefficient of per-
formance or, probably, some intermediate condition. It might seem attractive to
attempt to obtain the maximum possible cooling from a module but, the lower the
coefficient of performance, the greater the amount of heat that has to be removed by
the sink. One could very well economise on the cost of the module only to spend
more on increasing the capacity of the heat sink. On the other hand, it would be
absurd to attempt to operate at maximum coefficient of performance if the tem-
perature difference across the module were very small. This is because the cooling
power has then to be very small if (2.8) is to be satisfied.

The coefficient of performance depends on the temperature difference between
the thermocouple junctions. This temperature difference will be larger than that
between the source and sink since there will always be some thermal resistance
other than that of the module. This should be borne in mind when the coefficient of
performance is calculated using (2.7) or (2.9).

To proceed further we must be more specific about the operating temperatures
and the properties of the materials in the module. Suppose that the hot side of the
module is maintained at 300 K and that a temperature difference between the
junctions of 40° must be maintained. We shall also assume that the value of ZT is
equal to 0.8 and that the differential Seebeck coefficient is 400 μV/K. The value of
ZT is not the best that can be achieved but it is typical of a good production
module. The optimum COP is then found from (2.9) to be equal to 0.40. From (2.8
) we find that the current through each thermoelement is 46.8 × 10−3/(Rp + Rn) A,
where the resistance is expressed in ohms. If we assume that the current is not to
exceed, say, 5 A, the resistance (Rp + Rn) must not be less than about 9.4 mΩ. The
electrical power per couple is found using (2.4) and is not greater than about 0.
31 W. The coefficient of performance of 0.4 then indicates that the cooling power
per couple is 0.125 W. Thus, to obtain 10 W of cooling we need about 80 couples.
This would be a convenient number as we could arrange the 160 thermoelements
in a 16 × 10 matrix.

Key: Positive 
thermoelement 

Negative 
thermoelement 

Electrical 
connector 

Electrical insulator – 
thermal conductor 

Fig. 10.1 Schematic diagram of a thermoelectric module
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We have not as yet determined the dimensions of each thermoelement though we
know that its resistance must be about 4.7 mΩ. The electrical resistivity of a typical
thermoelectric material is some 10−5 Ω m so we require L/A to be 0.47 mm−1. For
reasons that we discuss later in this chapter, it would be difficult to reduce the length
of a thermoelement below 1 mm. Then each would have a cross-section area of
about 2.1 mm2. In actual fact, the thermoelements in most commercial modules
have rather larger values of L/A than 0.47 mm−1 suggesting that a lower current
than 5 A is preferable in typical applications.

The user of thermoelectric refrigeration is faced with a somewhat different
problem. It is usually a matter of selecting one or more modules from the range
offered by a manufacturer to meet a specific requirement. The procedure in this case
has been outlined by Buist [1]. It is supposed that the user is supplied with a set of
design curves and a range of module sizes. The range of modules that are available
is now much greater than it was when Buist described his selection process but to
illustrate the steps that must be taken we shall restrict ourselves to the standard
modules listed by Marlow Industries in the nineteen-seventies. The data for these
modules are listed in Table 10.1.

One needs a set of performance curves that relate to the series of modules under
consideration. Such curves are based on the assumption that all modules make use
of the same thermoelectric materials. Figure 10.2 shows how 4 parameters that are
independent of the size or number of thermoelements vary with the hot junction
temperature. These curves can be updated as new thermoelectric materials are
introduced. The independent parameters are IqL/A, qmaxL/NA, Vq/N and ΔTmax and
relate to the maximum temperature difference and cooling power and the corre-
sponding current and voltage.

Figure 10.3 perhaps needs some explanation. It shows plots of ΔT/ΔTmax against
the ratio q1/qmax of the ratio of the cooling power to its maximum value for various
ratios of the current to the current for maximum cooling power. The intersection of

Table 10.1 Range of
thermoelectric modules used
to illustrate Buist’s selection
process [1]

Model number N L/A mm−1 NA/L mm

MI 1020 7 2.52 2.78

MI 1021 17 2.52 6.75

MI 1022 31 2.52 12.30

MI 1023 71 2.52 28.17

MI 1050 35 0.921 38.00

MI 1060 7 0.727 9.63

MI 1061 17 0.727 23.38

MI 1062 31 0.727 42.64

MI 1063 71 0.727 97.66

MI 1092 31 0.523 59.27

MI 1120 31 0.414 74.88

MI 1142 31 0.327 94.80

Data on current thermoelectric modules are available from www.
marlow.com
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each of the lines with the broken curve corresponds to operation at the optimum
coefficient of performance. It is obvious that the cooling power will be zero when
ΔT = ΔTmax and, as mentioned previously, the optimum COP also requires a very
small cooling power when ΔT << ΔTmax..

Figures 10.2 and 10.3 are used in the following way. The hot junction tem-
perature T2 is first selected and this determines the four parameters in Fig. 10.2. One
then turns to Fig. 10.3 to select a suitable value for I/Iq so that the module operates
in the region to the right of the broken curve, that is between the condition for
optimum COP and that for maximum cooling power. From the specified cooling
power one can then determine an acceptable value for NA/L.

0 0

10.1

20.2

0.3 3

40.4

0.5 5

400.04

0.08

0.12

0.16

0.20 200

160

120

80

Vq/N
V   

ΔΤmax

K

qmaxL/NA
W/mm   

IqL/A
A/mm   

T2 K   
200   250   300   350   

Vq/N

ΔΤmax

qmaxL/NA

IqL/A

Fig. 10.2 Maximum design
parameters plotted against
temperature of hot junctions
for modules [1] in Table 10.1
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Fig. 10.3 Plots of ΔΤ/ΔTmax
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to maximum cooling power
for modules in Table 10.1.
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different ratio of the current to
the current for maximum
cooling power. The broken
curve corresponds to the
conditions for optimum
coefficient of performance
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Buist used a realistic example to illustrate the procedure. He supposed that heat
has to be removed at the rate of 10 W from a heat source at 290 K and transferred
into a heat sink at 350 K. Strictly speaking these are the temperatures of the cold
and hot junctions respectively.

Figure 10.2 shows that ΔT/ΔTmax is equal to 0.63 and that qmaxL/NA is
0.45 W/mm2. Then, from Fig. 10.3, one finds that q1/qmax should lie between 0.18
for optimum COP and 0.36 for maximum cooling power. Since q1 is to be equal to
10 W, qmax should be between 55.6 and 27.8 W. This means that NA/L must be in
the range 123 and 61.7 mm. By referring to Table 10.1, we see that a number of
modules might meet this requirement. Thus, MI 1063 and MI 1142 both have
values of NA/L that are reasonably close to the value of 123 mm for optimum COP
and MI 1120 has a value that is closer to that for maximum cooling power. Buist’s
conclusion was that MI 1063 would be the best choice since it is advantageous to
operate closer to the optimum COP condition than that for maximum cooling power
and it is usually preferable to use the smallest possible current. Having selected the
appropriate module, one then finds from Fig. 10.2 that the operating current and
voltage are 4.18 A and 6.53 V respectively.

Marlow et al. [2] have pointed out that it is often necessary to work as close as
possible to the condition of optimum COP. This is the case, for example, if the
supply source is a storage battery rather than the electrical mains. Thus, in the
example that we have considered, the use of two modules of the type MI 1092 might
have been a better option. This would have brought the overall value of NA/L
to 118.5 mm, which is very close to the value of 123 mm that we obtained when the
COP was optimised.

10.2 Heat Transfer Problems

One of the aims of the manufacturers of thermoelectric modules is the reduction in
size of the thermoelements. The cost of the raw materials is a significant factor and
there are other advantages that would accrue if modules could be made smaller and
lighter. However, when we reduce the size of a module we encounter problems
associated with the transfer of heat. The smaller the cross-section area of the end
plates, the more difficult it is to transfer heat from the source and to the sink without
excessive temperature differences. It is certainly possible to alleviate this problem
by increasing the space between the thermoelements but this makes greater the heat
losses by convection, conduction and radiation. Thus, there is an optimum spacing
giving the best balance between excessive thermal resistance at the end plates and
unwanted heat losses around the thermoelements. We analyse this problem [3]
using the model shown in Fig. 10.4.

It is supposed that there is thermal insulation between the thermoelements that
occupies a fraction g of the area occupied by the thermoelements. This insulation
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has a thermal conductivity λI and it is assumed that there are no radiation or
convection losses. The conduction of heat through the insulating material increases
the thermal conductance by a factor (1 + λIg/λ) where λ is the average thermal
conductivity of the thermoelectric material. The effective figure of merit then
becomes Z/(1 + λIg/λ).

By inserting the insulation between the thermocouples the total cross-section
area is increased from A to A(1 + g). Thus, if Kc is the thermal conductance per unit
area of the end plates, the thermal conductance of each plate is KcA(1 + g). When
heat is being extracted from the source at a rate q1, it is delivered to the sink at the
rate q1(1 + 1/ϕ) where ϕ is the coefficient of performance. The unwanted temper-
ature differences across the end plates at the source and sink are equal to q1/[KcA
(1 + g)] and q1(1 + 1/ϕ)/[KcA(1 + g)] respectively. Thus if ΔT* is the required
temperature difference between the sink and the source, the temperature difference
across the thermocouples has to be

DT ¼ DT� þ q1 2þ 1=/ð Þ
KcA 1þ gð Þ ð10:1Þ

The coefficient of performance is reduced since ΔT > ΔΤ*.
In order to make further progress, we need to specify the condition of operation.

For our present purposes it will be supposed that we want to obtain the maximum
temperature difference when the heat drawn from the source is zero. We know that
this temperature difference is equal to ZT1

2/2 when there are no heat losses and no
thermal resistance at the end plates. According to (2.6) the current that gives the
maximum temperature difference is equal to (αp − αn)T1/R and we find that the
power input is (αp − αn)

2T1T2/R. If we set (αp − αn)
2/R equal to ZλA/L, we obtain

Heat source

np Thermal      
insulation

Fig. 10.4 Model for the
calculation of heat losses and
thermal resistance
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DTmax ¼ DT�
max þ

kZT1T2
KcL 1þ gð Þ ; ð10:2Þ

which shows that the maximum temperature difference ΔT*max between the sink
and the source is less than that across the thermocouples.

If we combine (10.1) and (10.2) to include both the heat losses through the
insulation and the thermal resistance across the end plates, we obtain

DT�
max ¼

1
2
ZT2

1
1

1þ kIg=k
� 2kT2
KcL 1þ gð ÞT1

� �
: ð10:3Þ

The aim is to make the quantity in the square brackets as close to unity as
possible.

Let us apply (10.3) to a specific example. We shall suppose that the module is
made of excellent thermoelectric materials with ZT close to unity and T2/T1 having
a maximum value of about 1.4. For good thermoelectric materials the thermal
conductivity λ would be equal to about 1.5 W/m K and the spaces between the
thermoelements might be filled with expanded polyurethane that has a thermal
conductivity of 0.02 W/m K. The thermal conductivity [4] of alumina is about
30 W/m K and for the purpose of this calculation we shall assume a thickness of
1 mm and a thermal conductance of 3 × 104 W/m2 K.

Figure 10.5 shows a plot of the term in the square brackets of (10.3) against the
spacing factor g. It will be seen that the maximum temperature difference has its
highest value when g is about 2. This value is equal to about 93 % of ZT1

2/2. It is
noted that the thermal resistance of the end plates can be reduced by making them
from aluminium nitride [5] instead of alumina while an even better thermal con-
ductor is diamond, though the cost of the latter would usually rule it out.

g

2ΔT*max/ZT1
2

Fig. 10.5 Ratio of maximum temperature difference between sink and source to ZT1
2/2 plotted

against the spacing factor g
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In fact, in many practical applications a major factor in the degradation of the
performance of a thermoelectric refrigerator lies in the thermal resistance between
the surfaces of the end plates and the real source and sink. Even if solid copper
conductors are used to spread the heat flux there can be a substantial temperature
difference over their length.

One solution of this problem lies in the use of fluid heat exchangers. Attey [6]
has shown that in a typical application using solid-state heat exchangers the
coefficient of performance of a thermoelectric cooling system was found to be 0.4.
In this application the temperature difference between the source and sink was only
20° and, for the particular thermoelectric materials that were used in the module, the
theoretical COP was as high as 1.3. The value of ZT for the thermocouples was 0.65
but, because of the ineffectiveness of the solid-state heat transfer system, the
module was behaving as if ZT were no more than 0.28. Using Attey’s liquid heat
transfer system the COP rose to 0.8 corresponding to an effective value of 0.43 for
ZT. Obviously there is some way to go before the full potential of the thermoelectric
cooling modules is realised but Attey’s work highlights the need to improve heat
transfer as well as the figure of merit.

10.3 Electrical Contact Resistance

Heat transfer is not the only problem that arises when we attempt to reduce the size
of a thermoelectric module. If there is any significant electrical resistance at the
contacts, this will become more apparent as the length of the thermoelements is
made smaller.

It is actually extremely difficult to measure the electrical contact resistance when
present day methods for attaching metal connectors to thermoelements are used.
The only real test is the performance of the thermocouples as coolers or generators
when the length is made as small as possible. Semenyuk [5] estimates the electrical
resistance of his contacts to be 0.84 × 10−10 Ω m2.

The effect of electrical contact resistance on the performance of thermoelectric
refrigerators was analysed by Parrott and Penn [7] and we shall give an outline of
their treatment here. Although the methods for making electrical contact to ther-
moelectric materials have improved since this analysis was performed, the ther-
moelements themselves have become shorter so the problem is still a real one.

The aim of Parrott and Penn was not to eliminate the effect of contact resistance
but rather to take account of it in minimising the amount of thermoelectric material
needed for a module. It is supposed that the contact resistance is equal to rc for unit
cross-section area. Then, (2.3) becomes

q1 ¼ ap � an
� �

IT1 � T2 � T1ð Þ Kp þKn
� �� I2 Rp þRn þ rc

A

� �
=2: ð10:4Þ
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Equation (2.4) for the rate of consumption of electrical energy becomes

w ¼ ap � an
� �

I T2 � T1ð Þþ I2 Rp þRn þ rc
A

� �
: ð10:5Þ

The effect is the same as that of increasing the resistance of the two branches
from (Rp + Rn) to (Rp + Rn + rc/A). Alternatively, the average electrical resistivity
can be regarded as increasing from ρ to (ρ + rc/L).

Parrott and Penn stated that one can proceed further by assuming either maxi-
mum cooling power or optimum coefficient of performance. It is easier to adopt the
first of these assumptions using (10.4) with the current given by (2.6) modified by
the inclusion of the contact resistance. Then the maximum cooling power per unit
volume is given by

qmax

AL
¼ 2kT

r2cq
2 Cq; ð10:6Þ

where Γq is a function that was defined by Parrott and Penn and is given by

Cq ¼ r2c
q2L2

ZT
4

1þ rc
qL

� 	�1

�DT
2T

" #
: ð10:7Þ

Parrott and Penn defined a similar but more complex function Γϕ to be used
when the coefficient of performance rather than the cooling power is maximised.

Figure 10.6 shows the function Γq plotted against the length of the thermoele-
ments for contact resistance values of 0.84 × 10−10 and 8.4 × 10−10 Ω m2, the latter
figure being close to the lowest value observed by Plekhotkin et al. [8]. Typical
values of ZT and ΔT/T have been selected. In both cases there is a maximum at a
particular length. Below this maximum there are two values of L that give a specific
ratio of cooling power to volume of thermoelectric material and it is always
preferable to choose the greater length since this corresponds to the higher coeffi-
cient of performance. It will be seen that Γq becomes negative below a certain value
of L indicating that the specified temperature difference can no longer be met. In
other words, it would not be possible to obtain the rather modest value for ΔT of
about 20° if the contact resistance were as high as 8.4 × 10−10 Ω m2. On the other
hand, using Semenyuk’s value for rc a temperature difference of 20° could still be
reached with a thermoelement length of about 20 μm.

The expression for the coefficient of performance at maximum cooling power is

/q ¼
ZT � 2 1þ rc

qL

� �
DT
T

2ZT 1þ DT
T

� � : ð10:8Þ
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The coefficient of performance will become appreciably reduced by the effect of
contact resistance when rc/ρL becomes a significant fraction of unity. For a typical
thermoelectric material with ρ of the order of 10−5 Ω m and, assuming rc equal to
Semenyuk’s value, rc/ρL is of the order of 10−2/L mm−1. Contact resistance will
start to make itself felt as the length of the thermoelements falls below about
0.1 mm.

The miniaturisation of thermoelectric modules has been discussed in detail by
Semenyuk [9]. He pointed out that there is a need for coolers with a high power
density for use with semiconductor lasers and other electronic devices.
Thermoelements of up to 50 μm in length can be produced by thin film techniques
but the figure of merit is usually less than can be achieved with bulk materials. Very
short samples with excellent thermoelectric properties have been cut from extruded
bismuth telluride alloys. Such materials have a figure of merit of over 3 × 10−3 K−1

with no difference between thermoelements of 200 and 130 μm length. However,
because of contact resistance, the maximum temperature difference that can be
reached becomes less for modules made from the shorter samples. Thus, with the
heat sink at 30 °C, the maximum temperature depression was observed to be 70.6°
for thermoelements of 200 μm length and 64.2° when the length was reduced to
130 μm. The variation of ΔTmax with thermoelement length is shown in Fig. 10.7. It
was noted that the ceramic end plates were made from AlN rather than alumina so
that the fall in ΔTmax as the length is reduced is associated with electrical contact
resistance. Semenyuk’s work confirms that effective thermoelectric coolers can be
made with thermoelements of the order of 100 μm in length but some degradation
in performance due to contact resistance must be accepted.

Γq

L mm

rc =
0.84 x 10-10 Ω m2

rc =
8.4 x 10-10 Ω m2

Fig. 10.6 Plot of Parrott and
Penn’s function Γq against
length of thermoelements for
a contact resistance rc equal to
0.84 × 10−10 and
8.4 × 10−10 Ω m2. ZT = 1 and
ΔT/T = 1/15

206 10 Thermoelectric Modules and Their Application



10.4 Applications of the Peltier Effect

At the present time the performance of thermoelectric refrigerators is inferior to that
of conventional compressor-type machines. It is likely that the difference between
the two types of cooler will become narrower with the passage of time but, until this
takes place, Peltier cooling will be restricted to those areas in which it has obvious
advantages.

One of the characteristics of a Peltier device is that its performance is almost
independent of its capacity. It, therefore, has a definite advantage for the cooling of
small enclosures. Manufacturers have considered it to be advantageous to use
thermoelectric refrigeration for small portable cold boxes, particularly when the
available power source is a 12 V automobile battery. In this field there is compe-
tition from absorption refrigerators that have the advantage that they can be gas
operated but, when they make use of an electric power source they are no more
efficient than thermoelectric coolers. The thermoelectric devices are also insensitive
to movement or inclination and, because of this characteristic, they are attractive for
use on board ship.

A feature of the Peltier effect is that it can be used for heating as well as cooling.
Thus, in principle it is possible to maintain foodstuffs in an enclosure that is
refrigerated until their time of use whereupon they can be heated to the required
temperature for consumption.

Domestic applications of thermoelectric cooling have been reviewed by Banney
et al. [10]. These authors state that thermoelectric refrigerators outperform absorp-
tion units in mobile applications. They are already effective in dispensers of chilled
water dispensers. They claim that even now household refrigerators using the Peltier
effect can perform almost as well as compressor units if an efficient heat transfer
system, probably based on liquid flow, is incorporated.

One of the largest potential fields of application is in air conditioning and heat
pumping. Very often, the required temperature difference between the source and sink
is small compared with the maximum that can be reached. Compressor units deal with
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this situation by being switched on for short periods of time but Peltier devices can be
operated continuously at the optimum current. This allows them to adapt readily to
changes of the sink temperature whether cooling or heating is needed.

As long ago as 1958, Lindenblad [11] demonstrated the air conditioning of a
room by incorporating a thermoelectric cooling unit in one of its walls. Basu [12]
claimed that his thermoelectric air conditioner, which was powered by a solar
battery, compared well with a compressor unit from the viewpoints of maintenance,
life, cost and power consumption. Kulagin and Makov [13] used a solar thermo-
electric generator to power their Peltier air conditioner claiming the system to be
self-regulating, since the cooling power rises with increase of the incoming thermal
radiation. It may be noted that Vella et al. [14] used a thermoelectric generator to
power a thermoelectric refrigerator claiming that this combination enabled the
number of thermocouples to be minimised.

One of the most successful projects involving the use of thermoelectric air
conditioning was reported by Stockholm et al. [15]. The objective was the control
of the temperature in a train carriage on the French national railways. At different
times of the year both heating and cooling are required though the temperature
difference from that of the surrounding air is usually not large. The flexibility of the
Peltier effect would seem to make this application particularly suitable.

Stockholm [16] claimed that it is advantageous in large scale applications to
integrate the heat exchangers with the thermoelements. Such integrated heat
exchangers minimise the thermal resistance at the source and sink and were used in
the railway application. However, they can present structural problems and the
modular approach is preferred for small to medium scale applications [17].

The structural problems were certainly overcome by Stockholm and his col-
leagues. The 20 kW air conditioning unit was operated successfully on a particular
route for over ten years without a single failure of the thermoelectric components.
However, in spite of this success, thermoelectric air conditioners have not been
installed elsewhere in the French railways since there is always some reluctance to
replace an existing system with a new one unless the latter has an overwhelming
advantage.

Perhaps the greatest advantage of thermoelectric cooling over other systems lies
in the ease with which it can be controlled. This was recognised in the early days
with applications such as dew point hygrometers [18] and thermocouple reference
enclosures. The maintenance of an enclosure at a constant temperature can present
problems if conventional systems are used. For example, suppose that the required
temperature is only a few degrees above that of the ambient air. A simple heater can
then raise the temperature of the enclosure to the specified level but once it passes
this level the loss of heat can be a slow process. However, if the Peltier effect is
employed the ability to heat or cool by small or large amounts by adjusting the
current is a considerable asset.

It is in the cooling of small electronic and electro-optic devices that thermo-
electric cooling has undoubtedly come into its own [19]. Multi-stage units are used
in this type of application when the need is a large temperature depression with a
small cooling power. On the other hand, in other situations, high thermal flux
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densities with more modest temperature differences are often needed with expense
being a secondary consideration. Thus, if necessary, the device to be cooled might
be mounted on a diamond substrate, which would provide electrical insulation with
the minimum of thermal resistance. Semenyuk has presented data that show what
can be achieved with different substrate materials. His results are presented in
graphical form in Fig. 10.8.

In Fig. 10.8, the maximum temperature difference and maximum cooling power
are plotted against the length of the thermoelements. The region for L < 10 μm is
covered by thin film thermoelements and requires diamond substrates. For
10 μm < L < 60 μm, one uses thick film thermoelements and either diamond or
aluminium nitride substrates. Techniques for making thermoelements with
L between 60 and 200 μm are in the course of development and, again, diamond or
aluminium nitride substrates are needed. The region 200 μm < L < 300 μm is
covered by existing modules with aluminium nitride end plates while for
L > 300 μm alumina end plates can be employed, though aluminium nitride will
give a superior performance.

10.5 Transient Cooling

We are interested in the transient behaviour of thermoelectric coolers from two
points of view. In some applications it is useful to know how rapidly the system
responds to changes in the load conditions. Also, there always exists the possibility
of increasing the temperature difference above its usual maximum value for a short
time by applying a large current pulse.
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The theory of transient cooling used by Babin and Iordanishvili [20] is based on
the assumption that the thermocouple consists of two infinitely long thermoele-
ments that are joined at the position x = 0. The thermal load is assumed to be
negligible. The distribution of temperature in either branch has to satisfy the
equation

@2T
@x2

þ i2q
k

¼ 1
j
@T
@t

; ð10:9Þ

where, as before, ρ, λ, and κ are the electrical resistivity, the thermal conductivity
and the thermal diffusivity respectively. When the time, t, is zero, the temperature is
T2 at all points. When x = ∞, ∂T/∂x = 0, while for x = 0, λ∂T/∂x = αIT, where it has
been assumed that ± α is the Seebeck coefficient of each branch of the couple.
Applying these conditions, (10.9) becomes

T2 � T1 ¼ T2 1� exp A2� �
erfc Að Þ� � zT2 þ 1

zT2

� 	
� 2
p1=2

A
zT2

� �
: ð10:10Þ

In this equation, erfc represents the complementary error function and
A = ακ1/2it1/2/λ. The depression of temperature at the junction rises, reaches a
maximum and then falls. The maximum is reached when A satisfies the equation

zT2 ¼ p1=2Aexp A2ð Þerfc Að Þ
1� p1=2Aexp A2ð Þerfc Að Þ : ð10:11Þ

In Fig. 10.9 we show a plot of (T2 − T1)/T2 against time in arbitrary units,
according to (10.10), for zT2 = 1. If the couple were to be operated under steady
state conditions the maximum value of (T2 − T1)/T2 would be equal to 0.265.

t (arbitrary units)

ΔT/T2

Fig. 10.9 Temperature depression in the transient mode. ΔT/T2 is plotted against time in arbitrary
units. zT2 is equal to unity
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The reason that the maximum temperature difference in the transient mode is
smaller is that there is no heat sink. It should be noted that the maximum tem-
perature difference does not depend on the current; a change of current merely alters
the time scale so that it1/2 remains constant for a particular point on the curve.

Of course, the assumption of infinite length is unrealistic but the theory holds for
samples of finite length up to a certain time. As an empirical rule, the infinite-length
approximation is valid up to the maximum temperature difference if the current
density is at least twice that which produces maximum cooling in the steady state.

Babin and Iordanishvili showed that one can obtain transient temperature
depressions that are significantly greater than the steady-state maximum value.
They used a technique in which a steady current giving maximum cooling power is
first applied to a thermocouple and then, after equilibrium has been established, the
current is increased to some higher value. One can still use (10.9) but the tem-
perature at zero time now has the value

T xð Þ ¼ T2 � DTmax 1� x
L

� �2
; ð10:12Þ

where ΔΤmax is the maximum temperature depression in the steady state. The
current density is then increased by the superposition of i* on iq, whereupon

DT ¼ T2 � DTmaxð Þ 1� exp A2� �
erfc Að Þ� �

cþ 1
z T2 � DTmaxð Þ

� �
� 2
p1=2

A
z T2 � DTmaxð Þ


 �
;

ð10:13Þ

where

c ¼ 1� 2DTmax

T2 � DTmaxð Þ 1þ 2zT2ð Þ1=2
h i

1þ i�=iq
� � : ð10:14Þ

When i* ≫ iq, γ 1 and (10.13) becomes identical with (10.10) with the exception
that T2 is replaced by (T2 − ΔTmax). This means that the temperature depression
portrayed in Fig. 10.9 is superimposed on the maximum temperature difference in
the steady state. Babin and Iordanishvili stated that one can increase the maximum
temperature difference for a thermocouple with Z = 2.5 × 10−3 K−1 from 70 to
105 K by this method.

A more refined calculation has been carried out by Hoyos et al. [21] and the
same group [22] performed experiments in which short current pulses of large
magnitude were superimposed on a steady current using a thermocouple made from
bismuth telluride alloys. The transient behaviour was improved by tapering the
branches of the thermocouple so that the cross-section area was much smaller near
the junction. With the heat sink maintained at 290 K the minimum temperature of
the cold junction in the steady state was found to be 220 K. On the application of
current pulses with i* ≃ 8iq, a cold junction temperature as low as 175 K was
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obtained. The duration of each pulse was 50 ms and recovery took place in less than
2 s because of the tapering of the thermoelements. Similar experiments on pulsed
currents have been performed by Field and Blum [23].

Most of the work on enhanced cooling using pulsed currents has been of an
exploratory nature but Yamamoto [24] applied the effect to improve the perfor-
mance of GaAs electroluminescent diodes and lasers. The same current passed
through the thermocouple and the GaAs diode, which was interposed between the
positive and negative thermoelements. The doubling of the emitted radiation from
the diode indicated a reduction of the temperature by an additional 50°.

Woodbridge and Ertl [25] have shown that the transient cooling can be enhanced
by using shaped pulses. The optimisation of the pulse shape has been discussed by
Landecker and Findlay [26]. In principle, one can reduce the temperature to any
desired level by continuously increasing the current within a pulse. It is necessary to
keep on increasing the Peltier effect to compensate for the Joule heat arriving at the
cold junction.

In the experiments performed by Landecker and Findlay, the temperature at the
junction was measured after the application of the current pulse. Let us suppose that
the pulse is supplied up to time t1 and the temperature is measured at time t2. Also,
the current within the pulse is proportional to (t2 − t)−1/2. Then the temperature at
the time of observation is given by

T ¼ ZT2
2

p
ln

t2 � t1
t2

� 	
: ð10:15Þ

This equation shows that the temperature can become vanishingly small as the
time of observation approaches the time that the pulse is terminated but this also
requires that the current approaches infinity. Nevertheless, it does appear that very
low temperatures can be reached using shaped pulses for the current. The experi-
mental results that were obtained by Landecker and Findlay for one particular
bismuth telluride couple are shown in Fig. 10.10.

The results obtained by Landecker and Finlay are supported by the observations
on ramp-shaped pulses by Woodbridge and Ertl [25] and by the studies of Idnurm
and Landecker [27] who were able to generate shaped pulses in which the current
was proportional to (t2 − t)−1/2.

Woodbridge and Ertl [28] also carried out experiments on transient cooling
using the transverse thermomagnetic effects. They pointed out that the advantage of
this mode of operation is the virtual elimination of any thermal mass at the cold
surface, an advantage that should also be found for synthetic transverse ther-
moelements. They observed a temperature depression of 4 K below 80 K for
bismuth in a magnetic field of 0.8 T when they used a pulsed current whereas the
maximum temperature difference was only 1.2 K for a steady current.

From the practical viewpoint one really needs to discuss transient cooling with
substantial thermal loads. The behaviour of a two-stage module during the
cooling-down period has been investigated by Hendricks and Buist [29]. A problem
arises when one wishes to obtain a rapid response from a conventional module.
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From this point of view one would like to reduce the thermal capacity of the copper
links but any decrease in thickness can lead to a significant electrical resistance.
One means of decreasing the time taken to reach a given temperature is to increase
the current above the steady-state optimum value during the cool-down period.
Also, in a cascade cooler it is an advantage to make the different stages closer in
cooling capacity than is the case if only the equilibrium condition is being con-
sidered. These features were accurately modelled by the calculations of Hendricks
and Buist and the work was later extended to 3-stage refrigerators [30]. The
determination of the transient response of single-stage modules is, of course, a
much simpler proposition.

10.6 Seebeck Devices

Although most of the activity in the field of thermoelectric energy conversion over
the past fifty years has been concentrated on refrigeration, it is likely that ther-
moelectric generation will become the more important aspect if the figure of merit
can be substantially improved. Unconventional methods for the generation of
electricity will be sought as new sources of heat become available. For example, it
may be necessary to make use of low-grade heat, with unusually small differences
of temperature between the source and sink. Of course, there will always remain
those fields of application of the Seebeck effect that are already attractive in which
reliability is of more importance than efficiency.

Radio-isotope powered thermoelectric generators have been used for many years
in space vehicles and, more recently, fission power has been utilised. The advan-
tages of thermoelectric generators over other systems include not only reliability but
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also robustness, long life, capacity for uninterrupted operation and insensitivity to
radiation and degradation due to the environment [31]. Unlike many other types of
generator, thermoelectric devices are almost independent of scale and, having no
moving parts, are free from noise and vibration. Their linear current-voltage
characteristic makes them easy to control.

The first radio-isotope powered generators used lead telluride thermoelements.
This compound and its alloys were deemed to be the best materials for operation
with heat sources at temperatures that were moderate but still too high for bismuth
telluride and its alloys. An efficiency of just over 5 % could be achieved [32]. To
improve the efficiency, one can either increase the figure of merit of the thermo-
couple materials or raise the temperature difference. Over the course of time, both
these approaches have been used. Thus, p-type lead telluride has been replaced by
TAGS (Te–Ag–Ge–Sb) alloys [33] and, for higher temperatures, Si–Ge alloys have
been used. These measures have led to efficiencies in the range 6–7 %.

Efficiency is an important factor in space vehicles since, as it rises, the weight of
both the generator and the power source can be reduced. The power and mass of
space generators covers a wide range [31]. A generator for a U.S. earth orbit
satellite launched in 1961 gave an electrical output of 2.7 W while a Russian
generator powered from a nuclear reactor had an output of 5.5 kW and a mass of
1000 kg.

Turning to terrestrial applications, there is an interest in generating electricity
from waste heat. An analysis of the sources of waste heat, with special reference to
Japan, has been carried out by Kajikawa [34]. It is evident from his observations
that there is a great variation in the temperatures of the different sources, ranging
from about 100 to 1000 °C. Since it is best to make use of the highest available
temperature, it is clear that a range of generators is needed. In a specific design [35],
a Si–Ge alloy thermocouple is used with hot and cold junction temperatures equal
to 1123 and 323 K respectively. The heat flux is 80.4 kW/m2 and the thermoelectric
efficiency is 10.1 %. However, only a fraction of the available heat can be used by
the generator so the system efficiency is less than this value. It is clearly important
to ensure that as much as possible of the heat of combustion passes to the heat sink
via the generator.

There are a number of possible low-temperature heat sources that could be
exploited using thermocouples [36]. Geothermal energy is available at temperatures
of up to about 200 °C. This energy may be found in the form of hot water or steam.
At the higher temperatures it can be used to drive steam turbines but when the
temperature is no more than 100 °C some other means of generation is preferred.
Thermoelectricity seems to be an obvious possibility. It must be remembered that
even the Carnot cycle efficiency is rather low when the temperature difference
between the source and sink is less than 100°. A low efficiency is not necessarily
too bad a factor in itself since the heat source is free but the smaller the efficiency
the larger and more costly is the generator and heat transfer system. With such a
low temperature source, bismuth telluride alloys are the preferred thermoelectric
materials but they should have higher carrier concentrations than they would have
in refrigeration applications. The connections between the thermoelements should,
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of course, be capable of withstanding the operating temperatures but otherwise it is
probably most economical to make use of modules of the same kind as are used in
cooling.

In some parts of the world there is a substantial difference between the tem-
perature at the surface of the ocean and that at a depth of, say, 500 m. This
temperature difference is of the order of 20° so the efficiency is bound to be low and
the size of the plant large, if this source of energy is converted to electricity.
Nevertheless, the resource is large and already there are pilot plants for ocean
thermal energy conversion (OTEC) schemes. Nihous [37] has pointed out that large
scale use of OTEC systems could eventually deplete the resource and this is
something that might have to be borne in mind for the future. Nevertheless, there is
the potential for large scale use of thermal gradients in the ocean [38] and ther-
moelectric generation with an improved efficiency may form part of an integrated
system.

Closely related to the use of ocean thermal gradients is the exploitation of solar
ponds. Under normal circumstances water in the sea that is heated by the sun rises
to the surface because of its lower density. It is, however, possible to invert the
usual temperature gradient using a saline gradient to stabilise the system. Straatman
and van Sark [39] have discussed the use of the Rankine cycle to capture the energy
of this resource and propose that solar ponds should be employed to augment
OTEC systems. A thermoelectric generator could be used as an alternative to the
Rankine engine.

The efficiency of a thermoelectric generator is always going to be greater if the
whole temperature range between that of the source and a sink at ambient tem-
perature can be utilised. Thus, although the motivation may be different, thermo-
electric cascades may be used in generation as well as refrigeration. Two- and
three-stage cascades for generation have been described by Zhang et al. [40]. These
authors used bismuth telluride alloys for the low temperature stage and oxides for
the higher temperatures. In their two-stage cascade, titanium oxide and strontium
titanate were used as the p- and n-type high temperature materials. The three-stage
cascade yielded an efficiency of 13.5 % with the hot junctions at 1223 K. The usual
practice when a wide temperature range is to be covered is to use segmented legs
rather than a cascade. The question then arises as to whether or not different
thermoelectric materials are compatible with one another. This problem has been
discussed by Ursell and Snyder [41].

At first sight, it might appear that it is best to make a segmented thermoelement
from different materials, each having the highest figure of merit for its range of
operation. For example, one might propose a segmented element consisting of
bismuth telluride for the low temperature end and Si–Ge for the high temperature
end. However, this would not be a good choice as the so-called compatibility factor
is substantially different for these two materials. If the compatibility factor differs
greatly between the materials one cannot match the electrical and thermal flux
densities without a considerable reduction in efficiency.
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Ursell and Snyder considered the reduced efficiency, ηr, of a given segment at
the limit of very small ΔT/T, ηr being defined as the ratio of the efficiency to that of
a Carnot cycle. Their expression for the reduced efficiency is

gr ¼
uqk
a 1� uqk

a

� �
uqk
a þ 1

zT

; ð10:16Þ

where u is the ratio of electric current density to heat flux density. The value of
u that yields the maximum efficiency is called the compatibility factor s. If the
values of s are similar for different materials in a segmented leg, a compromise
value for u can be found for which the efficiency of each component is not far from
its optimum value. Figure 10.11 shows the variation of reduced efficiency with u for
p-type generator materials. It is clear that a compromise value of u can be found for
bismuth telluride, zinc antimonide and CeFe4Sb12 but none of these materials are
compatible with Si–Ge.

A basic requirement for two components is that the compatibility factor of one
should correspond to a positive value of u for the other. A multi-staged cascade
operating between room temperature and 1000 °C might make use of (Bi–Sb)2Te3,
Zn4Sb3, TAGS, CeFe4Sb12 and Si–Ge as the positive branches of the thermocou-
ples. The negative branches for the different stages could be made from
Bi2(Te–Se)3, PbTe alloys, CoSb2 and La2Te3. However, segmented legs in simple
thermocouples could not utilise all these materials because of differences in com-
patibility factor.

Snyder [42] has given values for zT and s for a number of p-type and n-type
generator materials for use at temperatures of up to 1000 °C. His data for p-type
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materials are given in Figs. 10.12 and 10.13, while those for n-type materials are
shown in Figs. 10.14 and 10.15.

Snyder has proposed as a rule of thumb that segmented materials should have
values of s that do not differ by more than a factor of 2. He has been able to explain
why the addition of a TAGS segment to a PbTe or SnTe segment produced little
extra power since there was a mismatch of compatibility factors. Si–Ge is a material
that is particularly difficult to match in segmented generators. Snyder has concluded
that, important though the figure of merit is, it is essential to take account of the
compatibility factor in selecting generator materials.
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The radiation thermopile existed long before it was realised that the use of
semiconductors would improve the efficiency of thermoelectric generators. There
are other factors besides the figure of merit Z that are important when we consider
thermoelectric radiation detectors. In fact, there are two other figures of merit that
one might use to characterise such devices. The responsivity, R, is the ratio of
output voltage to the incident radiation power. This quantity gives no indication of
the rate of response of the device and is not as relevant to high-sensitivity detection
as the specific detectivity, D*. The detectivity is the reciprocal of the noise
equivalent power (NEP). By dividing the square root of the product of surface area
and frequency band width by the NEP one obtains a quantity that allows direct
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comparison between different sensors. The NEP is equal to the smallest detectable
radiation input, so D* allows us to compare different sensing technologies.

Graf et al. [43] have carried out an extensive review of radiation thermopiles and
compared the different types of device that are available. The highest responsivity
of 500 μV/W was reported [44] for a detector based on a couple between
(Bi–Sb)2Te3 and Bi–Sb but a Bi/Sb couple, although having only about half the
responsivity, had a slightly higher specific detectivity equal to 88 × 105 m/Hz1/2 W.
There is no doubt that the thermoelectric figure of merit is most useful in selecting
materials for radiation thermopiles but R and D* also depend on the techniques that
are used in the construction of the devices. One of the most important considera-
tions is the rate of response to the incoming signal. The thermal capacity of the
receiver is therefore of great significance and, in this respect, transverse devices are
most attractive. The transverse thermomagnetic effects have already been men-
tioned and transverse thermoelectric devices are discussed in the next chapter.
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Chapter 11
Transverse Devices

Abstract The special features of transverse thermoelectric devices are described. It
is shown that they can be made from both homogeneous materials and synthetic
layered structures. Some alternative configurations for exhibition of the transverse
thermoelectric effects are mentioned briefly.

11.1 Features of Transverse Coolers and Generators

There are two methods by which one can obtain a transverse temperature gradient
from a longitudinal electric current or a transverse electromotive force from a
longitudinal heat flow. We have already discussed the transverse thermomagnetic
effects and have shown that they can be exploited in low-temperature energy
conversion. Transverse thermoelectric effects will also occur for arbitrary orienta-
tions in conductors that possess anisotropic Seebeck coefficients.

We first consider the inherent characteristics of transverse devices. Apart from
the fact that there are disturbances in the thermal and electrical flow lines near the
end contacts, the principal difference lies in the fact that the electrical and thermal
resistances can be adjusted independently. As was shown in Chap. 2, the electrical
resistance in the direction of current flow is equal to ρxLx/(LzLy) and the thermal
conductance in the direction of heat flow is equal to λyLxLz/Ly. Thus, whereas in an
ordinary thermoelement the product of the electrical resistance and the thermal
conductance cannot be altered by changing the dimensions, this is not the case
when a transverse effect is being used. The product of these two quantities in the
transverse device is equal to ρxλyLx

2/Ly
2. In a transverse refrigerator we can make the

sample long in the direction of current flow and short in the direction of heat flow,
so that the applied voltage matches the output of any available supply, while at the
same time providing the required cooling power. A transverse generator will have a
short response time if the length in the direction of heat flow is small but the output
voltage can be large if the length in the perpendicular direction is increased.
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Another feature of a transverse device that was discussed in Chap. 2 in the
context of thermomagnetic refrigeration is the capability of making an
infinite-staged cascade by suitable shaping of the sample. This feature is shared by
all transverse devices. However, the transverse thermoelements to be discussed in
the next section possess an advantage over thermomagnetic devices in that the
length can be increased indefinitely by adopting a serpentine configuration as
shown in Fig. 11.1. The need for the magnetic field to be applied in a certain
direction prevents that configuration being used in a Nernst-Ettingshausen device,
though, in principle, a spiral arrangement could be devised with the magnetic field
directed along the axis and the heat flow in a radial direction.

11.2 Synthetic Transverse Thermoelements

An essential requirement in a material that is to be used for a transverse ther-
moelement is a substantial anisotropy of the Seebeck coefficient. It also needs a
high electrical conductivity and a low thermal conductivity just like any other
thermoelectric device. In most extrinsic semiconductors the Seebeck coefficient
displays little if any anisotropy even if the crystal structure allows it and the
electrical and thermal conductivities are orientation dependent. It is certainly pos-
sible to find a large anisotropy of the Seebeck coefficient in an intrinsic conductor
but the other properties are then unfavourable. The problem has been solved by
using a synthetic transverse thermoelement made from two conductors that have
different Seebeck coefficients. A requirement is that one of the conductors should
have much higher electrical and thermal conductivities than the other. The principle

Heat
flow 

Electric
current

Electric
current

Fig. 11.1 Labyrinth form of
transverse thermoelement
giving increase in length in a
compact arrangement
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of the system may be understood with reference to Fig. 11.2, which shows a layered
structure composed of two materials, A and B. This model was used by Babin et al.
[1, 2] as the basis for their theory of synthetic transverse thermoelements. It is
supposed that σAλA >> σBλB. We can, therefore, select the relative thicknesses of the
layers so that the electrical resistances satisfy the inequality RB >> RA and the
thermal conductances obey the inequality KA >> KB.

Let the Seebeck coefficients of the two conductors be αA and αB. In the x0
direction each component will contribute to the overall Seebeck coefficient in
proportion to the temperature difference between its surfaces. The temperature
difference across each layer will be inversely proportional to its thermal conduc-
tance. Thus,

ax0 ¼
aA=KA þ aB=KB

1=KA þ 1=KB
: ð11:1Þ

Applying the condition KA >> KB, αx0 ≃ αB.
The Seebeck coefficient of the composite in the y0 direction is given by

ay0 ¼
aA=RA þ aB=RB

1=RA þ 1=RB
: ð11:2Þ

Since RB >> RA, it follows that αy0 ≃ αA.
A layered composite of the form that we have described does not display a

transverse Seebeck or Peltier effect if the current passes parallel to or normal to the
layers. To obtain such an effect, a sample must be cut at some angle. Let us suppose
that this sample is oriented at some angle ϕ to the perpendicular to the layers. We
also assume that the thicknesses of the layers, dA and dB, are such that dB/dA is equal
to n. When the angle ϕ is equal to zero, (11.1) and (11.2) become

ax0 ¼
aA=kA þ naB=kB
1=kA þ n=kB

: ð11:3Þ

x0

B
A

y0B

A
B

A

A
B

Fig. 11.2 Diagram showing
the principle of a synthetic
transverse thermoelement
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and

ay0 ¼
aAqB þ naBqA
nqA þ qB

ð11:4Þ

We may also obtain expressions for the electrical resistance and the thermal
conductance of the layered structure in the x0 and y0 directions. In the x0 direction
the effective electrical resistivity of the layers in series is

qx0 ¼
qA þ nqB
nþ 1

: ð11:5Þ

and the effective thermal conductivity is

kx0 ¼
nþ 1

1=kA þ n=kB
: ð11:6Þ

In the y0 direction the electrical resistivity of the layers in parallel becomes

qy0 ¼
nþ 1

1=qA þ n=qB
: ð11:7Þ

and the thermal conductivity is

ky0 ¼
kA þ nkB
nþ 1

1þ ZABTmð Þ: ð11:8Þ

It is noted that the thermal conductivity in the y0 direction is augmented by a factor
that includes the figure of merit ZAB of a longitudinal thermocouple made up of the
materials A and B. This is necessary because there will be circulating thermoelectric
currents in the layers that will produce a Peltier effect. The value of ZAB is given by

ZAB ¼ aA � aBð Þ2
kA þ nkBð Þ qA þ qB=nð Þ : ð11:9Þ

We now consider the situation when ϕ ≠ 0. Then the transverse Seebeck voltage
in the y direction due to a temperature gradient in the x direction is given by

ay/x/ ¼ ax0 � ay0
� �

sin/cos/: ð11:10Þ

It is apparent that the transverse Seebeck coefficient can be quite large if there is a
large difference between the Seebeck coefficients of the two components. The
effective thermal conductivity and electrical resistivity of the composite, in the yϕ
and xϕ directions respectively, are
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ky/y/ ¼ kx0 sin
2/þ ky0cos

2/; ð11:11Þ

and

qx/x/ ¼ qx0cos
2/þ qy0 sin

2/: ð11:12Þ

The transverse figure of merit is

Z/ ¼
a2y/x/

ky/y/qx/x/
: ð11:13Þ

Babin et al. showed that there is a simple expression for the optimum transverse
figure of merit when σAλA >> σBλB. It is then found that

Zmax
/ ¼ zA

1� aB=aAð Þ2

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBqB=kAqAð Þ 1þ ZABTmð Þp� �2 ; ð11:14Þ

where zA is the longitudinal figure of merit for component A. This expression is
identical to that of a longitudinal couple made from A and B apart from the term
(1 + ZABTm). The figure of merit is always less than that of a longitudinal couple but
the loss of performance may be quite small.

The optimum angle ϕ is may be found from the equation

tan/opt ¼
ffiffiffi
n

p
nþ 1

qAkB
qBkA

1þ ZABTmð Þ
� �1=4

: ð11:15Þ

Babin and his colleagues pointed out that (11.14) does not contain the quantity
n that defines the relative thicknesses of the two layers. They stated that Zϕ

max is not
critically sensitive to the value of n.

If the inequality σAλA >> σBλB is not satisfied the equations for the maximum
figure of merit and the optimum angle become more complicated. This situation
was also considered by Babin et al. who obtained analytical expressions in the more
general case. However, it does not take long to find Zϕ

max from (11.10) to (11.13) by
computation and the optimum values of ϕ and n can then be determined by
inspection. An approximate value for the optimum ratio of the layer thicknesses is

nopt ’
2 kB
kA

qB
qA

1þ kB
kA

qB
qA

 !1=2

: ð11:16Þ

If both components satisfied the Wiedemann-Franz law λBρB would be equal to λAρA
and nopt would be equal to 1. Babin and his colleagues discussed the case where
material A is a semiconductor and B is a metal. Then material B would satisfy the
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Wiedemann-Franz law but the thermal conductivity would be larger than this law
would indicate for material A. However, if A is a good thermoelectric material, the
lattice conductivity would be small and the total thermal conductivity would be
greater than the Wiedemann-Franz value by a relatively small factor. For example,
in a typical bismuth telluride alloy, this factor might be no more than 4. In this case,
nopt would be about 0.6. Generally speaking, it seems that it is likely to be satis-
factory to use layers of approximately equal thickness.

11.3 Materials for Transverse Thermoelements

The first demonstration of transverse thermoelectric energy conversion was
reported by Korolyuk et al. [3] who made use of the anisotropy of the Seebeck
coefficient in a single crystal of cadmium antimonide. However, the performance
was poor, as it would be for any other known single-phase material. Much better
results were obtained by Gudkin et al. [4] who made a multi-layer composite from
bismuth-antimony telluride and bismuth. These authors achieved a figure of merit
Zϕ of 0.85 × 10−3 K−1 and actually observed cooling of 23° below room temper-
ature using the transverse Peltier effect in a rectangular bar in which the angle ϕ was
equal to 60°. A trapezoidal sample with a ratio of 10:1 between the widths of the
hot and cold faces, acting as a cascade, yielded a maximum temperature difference
of 35°. More recently, Kyarad and Lengfellner [5] have obtained cooling through
22° using a multi-layer structure consisting of bismuth telluride and lead.

Kyarad and Lengfellner produced their composites by stacking plates of lead and
n-type Bi2Te3 of 10 × 20 mm2 cross section. The stacks were heated in argon at
320 °C under pressure. The bismuth telluride layers were 1 mm thick while
experiments were made with different thicknesses of the lead component. The
observed anisotropy of the Seebeck coefficient is shown in Fig. 11.3 where the
curve represents the variation with the ratio n expected from (11.3) to (11.4).

Kyarad and Lengfellner opted for a thickness ratio n equal to 1 and adopted a tilt
angle of 25° in cutting samples from their stack. Typically the length of a sample
was 20 mm, its thickness 10 mm and its width 2 mm. Figure 11.4 shows a plot of
temperature difference against current for such a sample.

Ideally the two materials that are used in a synthetic transverse thermoelement
should have a high figure of merit when used together in a conventional thermo-
couple. They should also have very different values for the electrical and thermal
conductivity so that the condition σAλA >> σBλB can at least be approached.
Unfortunately, in most thermocouples with high figures of merit, the positive and
negative branches have similar electrical and thermal conductivities. That is the
reason, of course, why Gudkin et al. [4] and Kyarad and Lengfellner [5] chose a
semimetal or metal rather than a semiconductor as the second component of their
composites.
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There are some general steps that can be taken to make the best of the situation.
Thus, if one opts for a semiconductor-metal combination one can at least select a
metal that has a reasonably large Seebeck coefficient of opposite sign to that of the
semiconductor. As we shall see later, narrow-gap semiconductors that have Seebeck
coefficients of about ±100 μV/K with a high power factor might be used in com-
bination with a conventional thermoelectric material to form a composites with a
reasonably high transverse figure of merit. One could probably improve on the
results of Gudkin and his co-workers by using single crystal bismuth oriented with
the trigonal axis in the plane of the layers. In this direction the Seebeck coefficient
of bismuth at 300 K is −105 μV/K and the figure of merit of a longitudinal couple

n

αx0 − α yo

   μV/K

Fig. 11.3 Anisotropy of Seebeck coefficient in a Bi2Te3–Pb composite plotted against ratio of
layer thicknesses. The curve is the theoretical variation from (11.3) and (11.4) and the points are
the experimental data of Kyarad and Lengfellner [5]

ΔT
K

20

10

I A60300

Fig. 11.4 Temperature
difference produced by the
transverse Peltier effect in a
Bi2Te3–Pb composite. The
heat sink was kept at 295 K.
Observations of Kyarad and
Lengfellner [5]
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with a p-type bismuth telluride alloy could be almost as great as that of a couple
made entirely from bismuth telluride alloys. The condition σAλA >> σBλB would not
really be satisfied but the ratio (σAλA)/(σBλB) could be improved by using a sintered
bismuth telluride alloy rather than aligned crystalline material.

It has been suggested that one might be able to obtain σAλA >> σBλB for a pair of
good thermoelectric semiconductors by making one of the materials porous or,
perhaps, discontinuous in some other fashion [6]. In principle, the electrical and
thermal conductivities should become less in a porous material but their ratio
should remain the same.

The n-type semiconductor Bi2(Te–Se)3 has its highest figure of merit when
oriented with current flow perpendicular to the trigonal axis but orientation is not a
major factor for p-type (Bi–Sb)2Te3. Thus, a thermocouple made from sintered
p-type material and aligned n-type material has a value of ZT equal to about 0.85.
A synthetic transverse thermoelement made from fully dense samples of these
materials would have a very small figure of merit Zϕ but a value in excess of 0.7
would be obtained if the porosity of the sintered component were such as to reduce
its conductivities by a factor of 20. Figure 11.5 shows how the transverse figure of
merit of a composite of aligned Bi2(Te–Se)3 and sintered (Bi–Sb)2Te3 varies with
the porosity factor p of the latter component. The porosity factor is defined as the
ratio of the conductivity of fully dense material to that of the porous material. At
moderate porosities one should be able to relate p to the density using the formula
given by Kingery [7]. As an alternative to making use of porosity to lower the
effective conductivities, one might make use of one of the components in the form
of widely spaced thin strips.

In the calculations on which the plot in Fig. 11.5 is based, the p-type material has
been selected with a higher Seebeck coefficient than its optimum in a conventional

ZφT 

n-Bi

n-Bi2(Te-Se)3 

p

YbAl2.96Mn0.04

Fig. 11.5 Plot of optimum dimensionless transverse figure of merit against the porosity factor of
the positive component (Bi–Sb)2Te3. For the solid curves, the negative component is either
Bi2(Te–Se)3 or Bi. For the broken curve, the negative component is YbAl2.96Mn0.04
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couple while the n-type material has a lower than optimum Seebeck coefficient. The
values for the thermoelectric parameters of possible materials are given in Table 11.1.

Figure 11.5 shows that a transverse dimensionless figure of merit of over 0.7
might be achieved with a porosity factor for the p-type component in excess of 15.
Such a high porosity might be difficult to achieve in practice so a similar calculation
[8] has been carried out for a composite in which the negative component is single
crystal bismuth, aligned with the c axis parallel to the layers. The properties of
bismuth in the two directions are also included in Table 11.1.

Bismuth has an advantage over Bi2(Te–Se)3 as the n-type component in a
transverse thermoelement since its ratio of thermal conductivity to electrical
resistivity is somewhat greater. Thus, as shown in Fig. 11.5, the value of Zϕ is
higher for the (Bi–Sb)2Te3–Bi composite than for (Bi–Sb)2Te3–Bi2(Te–Se)3 with
porosity factors of less than about 12 for the p-type component.

Some indication of the effect of changing the angle ϕ and the ratio n of the layer
thicknesses for the (Bi–Sb)2Te3–Bi2(Te–Se)3 composite may be assessed from
Figs. 11.6 and 11.7. Figure 11.6 shows how ZϕT varies with ϕ when n = 1.1 and
p = 20, while in Fig. 11.7 ZϕT is plotted against n when ϕ = 18.4°. For the
(Bi–Sb)2Te3–Bi composite, the preferred value of n remains at about 1.3 for all

Table 11.1 Properties of materials for use in synthetic transverse thermoelements

Material Seebeck
coefficient
μV/K

Electrical
resistivity
μΩ m

Thermal
conductivity
W/m K

Oriented n-type Bi2(Te–Se)3 −180 7.2 1.51

Sintered p-type (B–Sb)2Te3
a 245 17.5 1.51

n-type bismuth parallel to layers −105 1.3 6.0

n-type bismuth perpendicular to
layers

−50 1.1 11.0

YbAl2.96Mn0,04 −90 1.3 3.1
aThe values in this row are for fully dense material i.e. p = 1

0.2
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ZφT

φ º

Fig. 11.6 Plot of
dimensionless transverse
figure of merit against angle
of orientation of layers in a
(Bi–Sb)2Te3–Bi2(Te–Se)3
composite. The thickness
ratio n is equal to 1.1 and the
porosity factor for the p-type
component is 20
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porosities but the optimum value for ϕ varies from 40° when p = 1, through 30°
when p = 5, to less than 20° when p = 20.

It has been reported [9] that YbAl2.96Mn0.04 has a Seebeck coefficient of
−90 μV/K, a resistivity of 1.3 μΩ m, and a thermal conductivity of 3.1 W/m K. This
gives it the reasonably high value for zT of 0.6 at 300 K. The alloy would also be
useful as one component of a synthetic transverse thermoelement. The value of Zϕ
for a composite consisting of fully dense sintered p-type bismuth telluride and
YbAl2.96Mn0.04 is not as good as for one in which single-crystal bismuth is used,
probably because advantage can be taken of the anisotropy of the latter. However,
as shown by the broken curve in Fig. 11.5, there is a range of the porosity factor for
which bismuth telluride and YbAl2.96Mn0.04 is the best combination. Even for
lower porosities of the positive component, it may be preferable to use
YbAl2.96Mn0.04 as the negative component since it does not need to be
monocrystalline. The alloy has a cubic structure and can be prepared by sintering.

It will be seen that the concept of a porous or open-structured material of one
conductivity type in conjunction with a dense material of the other conductivity
type should lead to a great improvement in the performance of synthetic transverse
thermoelements. It is expected that these improved composites will find application
in cascade coolers, that will outperform conventional multistage thermoelectric
refrigerators, and in fast-response radiation detectors.

11.4 Alternative Configurations

Although synthetic transverse thermoelements are easy to handle once they are
made, their construction presents problems that are not encountered in ordinary
thermoelectric modules. Thought has therefore been given to alternative arrange-
ments for producing the transverse devices.

Investigators in the past always seem to have made use of the multi-layer
principle to obtain a large anisotropy of the Seebeck coefficient. However, the same
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Fig. 11.7 Dimensionless
transverse figure of merit
plotted against ratio of layer
thicknesses for a (Bi–
Sb)2Te3–Bi2(Te–Se)3
composite. The porosity
factor for the p-type
component is 20 and the angle
of orientation of the layers is
18.4°
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results should be obtained if one of the components is in the form of parallel wires
that are embedded in the second component. The principle can be understood with
reference to Fig. 11.8, which shows a single rod embedded in a bar of material.
Suppose that the rod and the bar have Seebeck coefficients αR and αB that differ
greatly from one another. Also, let the electrical and thermal conductivities of the
rod be much greater than those of the bar. Then, in the x0 direction the Seebeck
coefficient will be equal to αB since the rod will merely form an internal isothermal
and equipotential surface. In the y0 direction the electrical and thermal flows will be
controlled by the rod and the Seebeck coefficient will be equal to αR.

It is may not be necessary for the rods to extend from one end of the composite
to the other. A substantial anisotropy of the Seebeck coefficient could result from
the inclusion of shorter aligned rods within the matrix. If these rods were to take the
form of nanowires then one could, perhaps, combine the improvement in the figure
of merit resulting from a nanostructure with the practical advantages of the trans-
verse thermoelectric effects.

Even though the arrangement of rods or wires in a matrix might be simpler to
manufacture than a layered structure there still exists the need to cut a section from
it at the preferred angle. A synthetic transverse device with the appropriate orien-
tation might be made in a single process using thin film technology. The principle is
illustrated in Fig. 11.9.

x0 

y0 

Fig. 11.8 Cylindrical conducting rod imbedded in another conductor

Substrate 

x0 y0

Fig. 11.9 Schematic representation of a synthetic anisotropic thermoelement produced by thin
film technology. The mask is shifted in regular steps as each half-layer is deposited
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11.5 Further Developments

A comprehensive review of the transverse thermoelectric effects and their appli-
cation has been presented by Reitmaier et al. [10]. This work includes a discussion
of the case in which the sample is not very much longer than it is wide, a situation
that is likely to exist in a transverse Peltier cooler. It is more likely that the long
sample approximation will be valid for transverse Seebeck applications, including
radiation detection. There was found to be good agreement between theory and
experiment for a transverse cooler made from a composite consisting of bismuth
telluride and lead. Similar observations have been described by other authors [11].
Ali and Mazunder [12] have reported very large transverse Seebeck voltages using
nanosecond laser pulses applied to CaxCoO2 thin films. Tang et al. [13] have
pointed out the advantages of single-phase transverse thermoelements as opposed to
two-phase composites though the latter have the larger figures of merit. Their work
is interesting in its description of a transverse device, made from a InAs-GaSb
superlattice, which offers the opportunity to scale down in size in a way that is not
possible using synthetic composite materials.
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Chapter 12
Properties of Nanostructured Materials

Abstract A simple theory of the thermoelectric effects in quantum well structures
is outlined. It is shown that practical demonstrations of the improvement in the
power factor due to nanostructuring are rare, probably because of experimental
difficulties. It is shown, however, that there is ample evidence of nanostructured
material with a reduced lattice thermal conductivity. Observations on nanoelements
and on bulk nanostructures are described.

12.1 Theory of Nanostructures

Since the development of thermoelectric materials in the 1950s, most of the attempts
to improve the figure of merit have centred on the reduction of the lattice conductivity.
It is only since the advent of studies of nanostructures that there has been a real
possibility of improving the electronic properties, i.e. an increase of the power factor.

The present interest in low-dimensional thermoelectric materials was prompted
by the theoretical work of Hicks and Dresselhaus [1]. Their calculations were based
on a conductor with a single parabolic band. The carriers were assumed to be
electrons and the conduction band was used in the theory, but the valence band
would have suited the purpose equally well. They first obtained an expression for
the dimensionless figure of merit in the three-dimensional case in terms of the Fermi
energy and a parameter that is virtually the same as Chasmar and Stratton’s β,
modified to allow for anisotropy of the effective mass.

The theory was then adapted to the situation in which the electrons are confined
within a two-dimensional quantum well. This would be the case for a thin
narrow-gap semiconductor sandwiched between two plates of a wide gap material.
The wide-gap semiconductor does not contribute to the transport processes. The
dispersion relation for the electrons in three dimensions is

e ¼ �h2k2x
2mx

þ �h2k2y
2my

þ �h2k2z
2mz

: ð12:1Þ
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For the two-dimensional quantum well, this relation is changed to

e ¼ �h2k2x
2mx

þ �h2k2y
2my

þ �h2p2

2mza2
; ð12:2Þ

where a is the width of the well in the z direction. The expressions for the Seebeck
coefficient, the electrical conductivity and the electronic thermal conductivity, for a
constant relaxation time, become

a ¼ � k
e

2F1

F0
� g�

� �
; ð12:3Þ

r ¼ 1
2pa

2kT

�h2

� �
mxmy
� �1=2

F0elx; ð12:4Þ

and

ke ¼ s�h2

4pa
2kT

�h2

� �2 my

mx

� �1=2

k 3F2 � 4F2
1

F0

� �
: ð12:5Þ

In (12.3) the quantity η* is defined in terms of the reduced Fermi energy η by

g� ¼ g� �h2p2

2mxa2kT
: ð12:6Þ

The dimensionless figure of merit is

z2DT ¼ 2F1=F0 � g�ð Þ2F0

1=b
0 þ 3F2 � 4F2

1=F0
; ð12:7Þ

where

b
0 ¼ 1

2pa
2kT

�h2

� �
mxmy
� �1=2k2Tlx

ekL
: ð12:8Þ

Equation (12.7) allows us to optimise η*, just as η can be optimised for a
three-dimensional material. Hicks and Dresselhaus found that η*opt remains fairly
close to zero, as ηopt does in three dimensions, until β′ becomes appreciably greater
than unity. Figure 12.1 shows a schematic plot of η*opt against β′.

Figure 12.2 shows the variation of the two-dimensional figure of merit with β′
for the optimum value of η*. It will be seen that if β′ is of the order of unity or
greater then z2DT can be significantly larger than unity. Comparing β′ with β we find
that
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b0

b
/ mxmy
� �1=2
am�3=2 : ð12:9Þ

Since the respective figures of merit depend on β and β′ in a similar fashion it
follows that z2DT should eventually become larger than zT as a is made smaller.

Hicks and Dresselhaus applied their theory to predict the behaviour of
two-dimensional bismuth telluride. They selected parameters for this material that
corresponded to z3DT = 0.52. They assumed that the mobility along the confined
layer would remain the same for two-dimensional material since there should be no
interface scattering of the electrons. Phonons are not confined in the same way so
the lattice conductivity will probably become smaller for two-dimensional material
but in their calculations Hicks and Dresselhaus did not take this into account.
Nevertheless, they were able to predict a substantial increase for the figure of merit,
over the value for three dimensional samples, when the layer thickness a falls below
about 5 nm, as illustrated in Fig. 12.3.
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z2DT against β′ for a 2D
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Having established the principle for two-dimensional conductors, Hicks and
Dresselhaus [2] went on to extend their ideas to one-dimensional conductors or
quantum wires. The simplest one-dimensional model has a square cross-section of
side a. The two-dimensional dispersion relation (12.2) then changes to

e ¼ �h2k2x
2mx

þ �h2p2

2mya2
þ �h2p2

2mza2
: ð12:10Þ

Once again one can obtain expressions for the transport properties. Thus,

a ¼ � k
e

3F1=2

F�1=2
� g

� �
; ð12:11Þ

r ¼ 1
pa2

2kT

�h2

� �1=2

mxð Þ1=2F�1=2elx; ð12:12Þ

and

ke ¼ 2s
pa2

2kT

�h2

� �1=2

mxð Þ�1=2k2T
5
2
F3=2 �

9F2
1=2

2F�1=2

 !
: ð12:13Þ

η is the reduced chemical potential referred to the lowest bound state. The
resultant expression for the one-dimensional figure of merit is

z1DT ¼
1
2 3F1=2=F�1=2 � g
� �2

F�1=2

1=b00 þ 5
2F3=2 � 9F2

1=2=2F�1=2
; ð12:14Þ
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where

b00 ¼ 2
pa2

2kT

�h2

� �1=2k2Tm1=2
x lx

ekL
: ð12:15Þ

Comparing β′′ with β, we find that

b00

b
/ mxð Þ1=2

a2m�3=2 : ð12:16Þ

Since z1D is dependent on β′′ just as z2D depends on β′, we realise that the
one-dimensional figure of merit should rise very rapidly as a decreases.

Hicks and Dresselhaus again applied their calculations to the specific case of
bismuth telluride for quantum wires aligned parallel to the binary, bisectrix and
trigonal directions. Improvements in z1DT were found for all orientations once the
width of the specimen became less than about 10 nm. Comparing one- and
two-dimensional quantum wells made from bismuth telluride, z1DT was found to be
6 for a 1 nm wire while z2DT was 2.5 for a thickness of 1 nm. There definitely seems
to be an advantage in going from two dimensions to one dimension.

The obvious conclusion to be drawn from these findings is that a zero dimension
sample would be still better. The difficulty, of course, is to make use of a specimen
of zero dimensions if it does indeed have a high figure of merit. As we shall see, the
problem can be solved and so-called quantum dots have led to the demonstration of
zT values substantially greater than unity.

There are other low-dimensional configurations that have been studied. For
example, there are quantum tubes in which both the wall thickness and the tube
diameter can be on a nanoscale. Then again quantum dots have been incorporated in
nanowires to form superlattice nanowires [3]. Perhaps the most important devel-
opment has been the inclusion of nanodots in bulk material since this configuration
seems to offer scope for exploitation in commercial thermoelectric devices. These
and other directions for research on thermoelectric nanostructures have been
reviewed by Dresselhaus and Heremans [4].

In ordinary thermoelectric materials, the power factor for a given Fermi energy
depends on the carrier mobility and the density of electronic states. Since we
assume that the mobility is the same for the nanostructure and the bulk material, it
seems reasonable to assign the improvement in the low-dimensional configuration
to an increase in the density of states. It is, in fact, correct to describe the quantum
well effects as changes in the band structure. Beneficial changes can include both a
greater density of states and an increase in the band gap. The latter could allow a
semimetal, with favourable electronic properties other than a large enough band
gap, to become a semiconductor. A schematic representation of the changes in the
dependence on energy of the density of states is shown in Fig. 12.4.

In selecting materials that are likely to yield high figures of merit when fabri-
cated as nanostructures, it is thought that they should already have reasonably good
thermoelectric properties as bulk samples. Bismuth is particularly promising since it
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has one of the highest known power factors. Nanostructured bismuth might display
not only an increase in the density of states and a reduction in the lattice con-
ductivity but also a transition from semimetal to semiconductor.

The thermoelectric properties of bismuth nanowires at 77 K have been calculated
by Lin et al. [5]. It was found that zT in the trigonal direction should reach a value
of 6 for an electron concentration of 1024 per m3 in a wire of 5 nm diameter. The
Seebeck coefficient [6] would be −400 μV/K, a value that is much greater than that
observed in single crystals in any direction, whatever the doping. In spite of the
high Seebeck coefficient, the electrical conductivity would be as large as
3.4 × 106 Ω−1 m−1 because of an increase in the density of states. The power factor
would then, of course, be higher than for any known material. Lin and his col-
leagues did not assume that the lattice conductivity would be reduced below its
value for bulk material though the considerations in the following section suggest
that further improvement should be possible. Rabin et al. [7] have extended the
calculation of the electronic properties to Bi–Sb nanowires and these should, in any
case, have a reduced thermal conductivity.

12.2 Thermal Conduction in Low-Dimensional Materials

There have been a number of experimental demonstrations of improved figures of
merit in nanostructures and in some cases these have been due to modifications of
the electronic properties. However, even when the electronic properties do not
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Fig. 12.4 Schematic diagrams for the density of states as a function of energy in bulk (3D), 2D,
nanowires (1D) and quantum dot (0D) configurations. Based on the review by Dresselhaus and
Heremans [4]

238 12 Properties of Nanostructured Materials



change, zT can still be larger than for bulk material. This benefit is associated with a
reduction in the lattice conductivity. It is not surprising that the scattering of
phonons should be stronger when the size of the sample in at least one direction is
reduced. We have already discussed the effect of grain size on the lattice con-
ductivity in bulk materials but there are some more subtle effects that become
apparent in nanostructures.

Perhaps we should discuss the first practical realisation of a figure of merit, zT, that
is substantially greater than unity at ordinary temperatures using a low-dimensional
structure. In 2001 Venkatasubramanian et al. [8] observed a value of zT equal to 2.4
for a p-type Bi2Te3/Sb2Te3 superlattice. There were certainly changes in the electronic
properties when the superlattice period fell below 25 nm but these were not the major
reason for the improved figure of merit. More significant was the reduction in the
lattice conductivity. Measurements were made in the cross-plane direction which
happened to be parallel to the c axis. The observed thermal conductivity was smaller
by a factor of 2.2 than the value in the same direction for bulk crystals.

The thermal conductivity of Bi2Te3/Sb2Te3 superlattices has been analysed by
Touzelbaev et al. [9]. The thermal conductivity measurements were carried out
using a thermoreflectance technique on superlattices with periods ranging from 4 to
12 nm. The results are shown schematically in Fig. 12.5.

The thermal conductivity of all the superlattices was much less than the value for
bulk bismuth telluride but did not become as low as one would expect for

0.8 Bulk Bi2Te3 
Interface
roughness     λ

W/m K 0.05 nm

0.1 nm0.6
0.2 nm
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0.2

Minimum thermal conductivity

1512963
0

Fig. 12.5 Thermal conductivity of a Bi2Te3/Sb2Te3 superlattice plotted against the superlattice
period. Schematic diagram based on the data of Touzelbaev et al. [9]. The three curves represent
calculated values using the Boltzmann equation for different degrees of roughness at the interfaces.
The broken lines show the thermal conductivities of bulk bismuth telluride and the minimum value
predicted by Cahill’s theory [10]. The dots are the experimental data
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amorphous material, that is the minimum value calculated using the theory of Cahill
et al. [10]. The effect of interface scattering was calculated using the Boltzmann
theory for various degrees of surface roughness. Although these calculations for a
roughness of 0.2 nm agreed with some of the experimental data they did not
account for the fact that the thermal conductivity failed to increase with increasing
superlattice period l. Touzelbaev and his colleagues speculated that disorder rather
than interface scattering may have been the main reason for the reduction in thermal
conductivity. They pointed out that previous work [11] on the thermal conductivity
of Si–Ge superlattices had shown that, although there was an increase of λ with l as
was expected for l < 5 nm, λ became appreciably smaller for l > 13 nm. It was
supposed that the superlattices with the longer period were strongly disordered. If
there were similar disorder in the Bi2Te3/Sb2Te3 superlattices, this could account
for the observations.

Although the studies by Venkatasubramanian et al. [8] were made with current
flowing in the cross-plane direction, superlattices can also be used with in-plane
conduction. One would expect quite different phonon scattering mechanisms to
apply in this situation. For one-dimensional nanostructures the current always flows
parallel to the interfaces and it is clear that one needs a treatment for the thermal
conductivity behaviour in both directions.

The thermal conductivity of nanostructures has been reviewed by Dames and
Chen [12]. They pointed out that one can change the lattice conductivity not only
by altering the free path length of the phonons but also by modifying the specific
heat or the speed of sound. It is certainly possible in principle to alter the dispersion
relation for the phonons. However, there are practical problems if we wish to make
use of such changes. If the specific heat is to be changed, the size of the nanos-
tructure must be smaller than the phonon wavelength. It is also necessary that the
phonons remain coherent. It should be somewhat easier to obtain changes in the
group velocity of the phonons over part of the spectrum, particularly when the flow
is perpendicular to the interfaces. It seems, though, that the reduction of the phonon
free path length by additional scattering processes is a more profitable approach.

It would be simplest if one could use Matthiessen’s rule in adding the reciprocal
mean free paths for the different scattering processes but one may question its
validity because of the different phonon wavelengths that are involved.
Nevertheless, Matthiessen’s rule is still often used although one must be aware of
its limitations.

The lattice conductivity of superlattices in the cross-plane direction has been
considered by Chen [13]. He showed that the thermal resistance is the sum of a
contribution from each layer and a thermal boundary resistance. This boundary
resistance is not characteristic only of the interface but also depends on the layer
thickness. When the superlattice period is small, the thermal boundary resistance is
the dominant factor. Under this condition, the effective thermal conductivity may be
quite different from that of a bulk sample. It is not necessarily true that those
materials with the lowest lattice conductivity as bulk materials will also have the
lowest value as nanostructures. A critical factor seems to be the acoustic mismatch
at the interfaces. When there is a large acoustic contrast between the two materials
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on either side of the boundary the reflection of phonons is strong. In this case,
roughness of the interface may not be beneficial. Furthermore, if the confined
region is very small one can obtain interference effects and tunneling. It is not
surprising that the variation with period of the thermal conductivity of the Bi2Te3/
Sb2Te3 superlattices in the cross-plane direction failed to satisfy the expectations of
classical theory.

When the flow is parallel to the interfaces there are significant differences.
Specular reflection at the boundaries should not affect the thermal resistance, so
interface roughness must be an important factor. As a general rule, the thermal
conductivity in superlattices will be greater for in-plane flow than in the cross-plane
direction. In superlattice nanowires, the flow is parallel to the outer surface but
perpendicular to the internal boundaries.

The range of phonon wavelengths that makes a significant contribution to the
thermal conductivity extends over two decades. It may well be that a different
scattering mechanism is dominant for each part of that range. Thus, we know that
Umklapp scattering is effective over a wide range of wavelengths but alloy scat-
tering predominates at the short wavelength end. In nanostructures we expect a
major contribution to the scattering from the boundaries.

There are two simple models for the lattice vibrational spectrum that might be
used. We have discussed the Debye model in Chap. 3. An alternative is the
Born-von Karman model in which the frequency becomes more or less independent
of wave vector near its limiting value. If this model is used, the short wavelength
phonons have a low group velocity and do not contribute greatly to the thermal
conductivity. At all longer wavelengths the two models become equivalent. When
the temperature is well below θD, only the long wavelength modes are excited and it
does not matter which model is used but we are probably more interested in
temperatures of the order of θD or higher. Dames and Chen [12] have calculated
that, even though the Born-von Karman model tends to favour heat conduction by
the phonons of longer wavelength, 90 % of the thermal conductivity at high tem-
peratures is due to phonons with wavelength less than 2.94Λ0, where Λ0 is the
smallest possible phonon wavelength set by the size of the unit cell. It turns out that
90 % of the heat is carried by phonons of wavelength Λ less than about 2 nm. This
is small compared with the scale of all but the smallest nanostructures.

A consequence of the small wavelength of the phonons is that they will be
diffusively scattered at the interfaces rather than specularly reflected. If we define
the proportion of specular reflection as p, where p = 0 for completely diffuse
scattering and p = 1 for perfect specular reflection,

p ¼ exp
�16p3e2

K2

� �
; ð12:17Þ

where ε is the surface roughness. It appears that the roughness of nanowires and
superlattices is not less than 1 or 2 nm so that most interfaces are diffuse scatterers
of phonons. This is favourable from the viewpoint of improving the figure of merit.
It might be thought that there would also be a reduction of the carrier mobility but
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the electron wavelength is much larger. An interface that seems to be rough for the
phonons can be specular for the electrons and holes.

Boundary scattering will be the more effective when most of the heat is carried
by phonons that have a long mean free path. We have discussed this for bulk
materials in Sect. 5.3. There we showed that boundary scattering can affect the
thermal conductivity even when the sample size is somewhat greater than the mean
free path.

Dames and Chen expressed the lattice conductivity in terms of the free path
length, lt which itself is dependent on frequency ω. Thence,

k ¼ Z1

0

klt dlt; ð12:18Þ

where

klt ¼ � 1
3
�hx

q2L
2p2

@N0

@T
lt
dx
dlt

: ð12:19Þ

In this equation N0 is the Bose-Einstein distribution function. One can make use
of (12.19) when the dispersion relation and the dependence of the mean free path on
frequency are known. Dames and Chen were able to substitute appropriate values
for two different types of material, namely silicon, which has a large lattice con-
ductivity and lead telluride for which the lattice conductivity is low. Thermal
conductivity measurements have been made on both materials over a wide tem-
perature range and, for silicon, these measurements have been extended to nano-
wires [14]. The experimental observations on silicon nanowires are compared with
the theoretical predictions in Fig. 12.6.

Dames and Chen mentioned a surprising feature of their calculations, namely the
significant contribution to the thermal conductivity of phonons with long wave-
lengths. To account for 90 % of the heat conduction, wavelengths of up to 12.8 μm
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have to be considered. They pointed out, however, that this is consistent with the
observation of boundary scattering in bulk silicon at high temperatures by Savvides
and Goldsmid [15].

Dames and Chen predicted the lattice conductivity of nanowires of PbTe after
showing that the theory was consistent with observations on large crystals of the
compound. The experimental data of Greig [16] are shown in Fig. 12.7 together
with theoretical curves for bulk material and nanowires down to 10 nm in diameter.
From the point of view of thermoelectric applications, the substantial fall in the
lattice conductivity at high temperatures is particularly interesting.

The reduction of the lattice conductivity that results from the use of nanos-
tructures is noticeable when the dimensions are too large for any changes in the
electronic parameters to be apparent. This effect will be particularly valuable pro-
vided that the carrier mobility does not become significantly smaller than it is in
bulk material.

12.3 Observations on Nanostructures

One of the predictions of Lin et al. [5] was that nanowires of bismuth should display
large Seebeck coefficients. This is supported by the experimental work of Heremans
et al. [17] who claim to have observed Seebeck coefficients of a magnitude of the
order of 1 mV/K for bismuth nanowire composites. The composites consisted of
wires of down to 7 nm diameter deposited by a vapour-phase technique in porous
silica and alumina templates. The variation of electrical resistance with temperature
was found to be consistent with semiconducting rather than semimetallic behaviour.
A wire of 15 nm diameter appeared to have an energy gap of 0.18 eV and a 9 nm
wire displayed a gap of 0.29 or 0.39 eV. However, the fact that the 9 nm wires
seemed to have a Seebeck coefficient of −105 μV/K casts some doubt on the
observations since it is difficult to explain such a high value. Heremans and his
colleagues mentioned that the measurements were difficult to perform since the
sample resistances were in the range 1 MΩ–1 GΩ, though they were able to use an
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Chen [12]
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electrometer with an impedance of 1014 Ω. Even if the measurements have to be
accepted with some reservation, they do provide evidence for a substantial energy
gap in bismuth nanowires. It seems that Seebeck coefficients in excess of
−200 μV/K can be reached for Bi0.95Sb0.05 with an electron concentration of about
4 × 1022 per m3 when the wire diameter is less than 30 nm. There is evidence for
neutral impurity scattering of the electrons but not boundary scattering so it seems
that high mobilities can still be maintained in the nanostructures.

The results of Heremans and his co-workers may be compared with those of Lin
et al. [18]. In both cases a semiconductor-like variation of the electrical resistivity
with temperature was found though Lin and his colleagues did not observe the same
large Seebeck coefficients, admittedly for nanowires of a larger diameter. The
overall impression seems to be that nanostructure dimensions of the order of 10 nm
or less are needed if the promise of bismuth or Bi–Sb is to be fully realised.

Semiconducting behaviour has also been found for bismuth nanotubes with wall
thicknesses of 15 nm though an increase of the wall thickness to 100 nm leads to
metallic behaviour [19].

One of the first demonstrations that low dimensional thermoelements can have
improved electronic properties as well as a reduced thermal conductivity was
reported by Harman et al. [20]. These authors worked on a PbTe/Te superlattice and
measured the Seebeck coefficient, Hall coefficient and electrical resistivity. The
specimens were prepared using molecular beam epitaxy with superlattice periods
between 15 and 30 nm. The tellurium layers were estimated to be between 0.8 and
1.5 nm in thickness. Measurements were made for the in-plane direction. The
Seebeck coefficient at any particular carrier concentration was distinctly greater for
the superlattices than for bulk PbTe, as shown in Fig. 12.8. The thermal conduc-
tivity was not measured but, using calculated values for this quantity, zT was found
to have increased from 0.37 to 0.52 on changing from bulk material to superlattice.

Rather surprisingly there does not seem to be any correlation between super-
lattice period and the enhancement of the Seebeck coefficient within the range
covered by the measurements. Harman and his colleagues thought that a change in
the scattering parameter might be affecting the Seebeck coefficient but it is difficult
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to see how this could improve the power factor. Thus, the results are a good
indication that the figure of merit can be increased in nanostructures by a modifi-
cation of the density of states.

Outstanding results have been obtained by Harman et al. [21] for quantum dot
superlattices made from Pb(Te–Se) and PbTe. Samples were produced on BaF2
substrates using the molecular beam epitaxy technique. A wide range of carrier
concentration was investigated and values of zT in excess of 1.6 at 300 K were
found for PbSe0.98Te0.02/PbTe samples with Seebeck coefficients between −220
and −240 μV/K. The dimensionless figure of merit rose with temperature, reaching
a value in excess of 3 at about 550 K, as shown in Fig. 12.9.

Thermal conductivity measurements were performed on Pb(Te−Se) superlattices
using the 3ω method at 300 K. The electronic component was calculated from the
electrical conductivity so that the lattice conductivity could be found. The value at
300 K for the quantum dot superlattice was 0.33 W/m K compared with 0.84 W/m K
for a simple superlattice. The results show that the high figure of merit is due to a
reduction in the lattice conductivity as well as an increase in the power factor.

Most electronic devices that are in use at the present time make use of silicon
and it would be an advantage if this element could be used as a thermoelectric
material at ordinary temperatures. This is not feasible with bulk silicon mainly
because of its high thermal conductivity. It is, therefore, remarkable that recent
work on silicon nanowires has led to high values of zT. Hochbaum et al. [22] made
arrays of these nanowires by an aqueous electroless etching technique. The wires
had a range of diameters between 20 and 300 nm and had a roughness of typically
1–5 nm. The improvement in the figure of merit is primarily due to a reduction in
the thermal conductivity. Thus, a 52 nm silicon nanowire was found to have a
thermal conductivity of 1.6 W/m K of which 1.2 W/m K is the lattice contribution.
The nanowires have reasonable power factors that are comparable with the values
found for bismuth telluride and zT reached 0.6 at 300 K.

The possibility of using nanostructures based on silicon is certainly a promising
development but perhaps even more promising is the report of a high value of zT for
a nanostructured bulk material. Poudel et al. [23] have been able to make such
material by hot-pressing (Bi–Sb)2Te3 alloys. They observed values of zT equal to
1.2 at room temperature, 0.8 at 250 °C and a maximum of 1.4 at 100 °C. These high
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Fig. 12.9 Dimensionless
figure of merit plotted against
temperature for an n-type
PbSe0.98Te0.02/PbTe quantum
dot superlattice. Based on the
data of Harman et al. [21]
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values of the figure of merit were confirmed by the large temperature differences
that were produced using the new material in Peltier coolers. Temperature differ-
ences of 86º, 106º and 119º were observed with hot junction temperatures of 50,
100 and 250 °C respectively.

The material made by Poudel and his colleagues differs from other sintered
products in that nanosized powders were used and care was taken that a fine
structure was maintained during sintering. They prevented oxidation of the pow-
ders, a problem that has been encountered by previous workers who attempted to
use finely powdered bismuth telluride alloys. Microstructure studies revealed that
most of the grains are nanosized and larger grains contain nanodot regions. It is not
sufficient to have nanoinclusions in a matrix through which the current flows. The
high figure of merit is the result of flow within the nanoparticles. In other words,
one cannot achieve the best performance merely by using nanoparticles as scat-
tering centres.

12.4 Preparation of Nanostructures

The first practical demonstration of the outstanding properties of superlattices was
presented by Venkatasubramanian and his colleagues as mentioned in the Sect. 12.2.
The superlattices were grown by a metallorganic chemical vapour deposition
(MOCVD) method [24, 25]. Films of Bi2Te3 and Sb2Te3 were grown on sapphire and
fcc GaAs substrates in a vertical reactor at a pressure of 46.7 kPa and a temperature of
350 °C. The growth of both the tellurides made use of pyrolytic reactions involving
metallorganic compounds of bismuth, antimony and tellurium. The crystal perfection
of the films was ascertained using X-ray diffraction and low energy electron diffrac-
tion. The other feature of significance was the stoichiometry and this was confirmed
using X-ray photoemission spectrometry and Rutherford back-scattering. A key to the
success of the deposition technique was the monitoring of the growth using spec-
troscopic ellipsometry [26]. Ellipsometry measures the change of polarisation of a
beam of light on reflection from a surface and, in this work, allowed the accurate
measurement and control of the growth rate and the thickness.

Nanowires are usually made by the deposition of the thermoelectric material
within the pores of a template. One of the earliest techniques made use of the
pressure injection of liquid bismuth into the nanochannels of a porous alumina sheet
[27]. Arrays of nanowires of 65 nm diameter and 109 μm length were made by this
method. Keyani et al. [28] were able to electrodeposit Bi–Sb from a non-aqueous
solution into alumina that contained pores of 100 nm diameter. The template had
been coated with a thin layer of nickel which acted as an electrode during the
deposition process. The nanowires had the composition Bi0.3Sb0.7 which is prob-
ably not very favourable from the figure of merit viewpoint but the authors were
able to incorporate their nanowire array in a thermocouple with Bi0.4Sb1.6Te3 to
yield a Peltier cooling effect of 7 K.
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Wang et al. [29] also used a porous alumina template for the precipitation of a
Bi2Te3–Te heterostructure from supersaturated Bi0.26Te0.74. Nanowires of 60 nm
diameter were produced. A pulsed electrodeposition technique was used by Trahey
et al. [30] to produce nanowires of bismuth telluride with a diameter of 35 nm.
These nanowires were crystalline with their length direction perpendicular to the c-
axis, as is favourable for thermoelectric applications. Pulsed electrodeposition was
also used by Dou et al. [31] to produce nanowires and nanotubes of Bi–Sb.

Nanotubes, rather than nanowires, of bismuth telluride were produced by a
galvanic displacement technique that was described by Xiao et al. [32]. Ni nan-
otubes were displaced by bismuth telluride using the difference between the redox
potentials to drive out bismuth and tellurium from a nitric acid solution. Nanotubes
of bismuth telluride were also synthesised by Cao et al. [33] using a low temper-
ature aqueous chemical method. Their tubes were of about 100 nm diameter with a
wall thickness of 30–40 nm and a length of 500 nm to 1 μm. Li et al. [34] extended
the production of nanotubes by an electrodeposition technique to (Bi–Sb)2Te3 and
Bi2(Te–Se)3 and investigated the importance of the diameter of the channels in the
alumina template, the reaction rate and the thickness of the gold electrode that
completed the electrolytic circuit.

An unusual method for creating the template for the electrodeposition of Bi2Te3
nanowires has been devised by Koukharenko et al. [35]. They introduced pores in
polyimide by ion beam irradiation followed by etching. The pores were 30–80 nm
in diameter and the thickness of the polyimide was 24 μm so the aspect ratio of the
pores was 300:1 upwards.

Any enhancement of the electronic properties in nanostructures is likely to be
greater as the dimensionality is reduced [4]. Thus, zero dimension should be
superior to one dimension. It is this factor that encourages work on quantum dots.
However, quantum dots present a problem in that it is not immediately apparent
how electric current is to be made to flow through them. The quantum dots must,
therefore, be embedded in another conducting medium. If the quantum dots are
close together one might hope for tunneling directly between them. Alternatively, if
tunneling cannot occur, it is important that the surrounding medium should not
detract significantly from the overall performance.

A successful quantum dot device was made by Harman et al. [36]. These authors
used the molecular beam epitaxy (MBE) technique to grow PbSe0.98Te0.2 quantum
dots in a PbTe matrix. A sample on which measurements were made was described
as a thick film; its thickness was given as 104 μm with its other dimensions being 5
and 11 mm. Metallisation was applied so that current could be passed parallel to the
5 mm edges.

Quantum dot configurations, such as that of Harman and his colleagues, have the
advantage over some other nanostructures in that they can be handled in the same
way as bulk materials. They are, in this sense, not dissimilar to bulk materials that
have built in nanostructures.

Hogan et al. [37] have discussed compounds in which there exist spontaneously
formed endotaxially embedded nanostructures. They made samples of PbTe with
4 % concentrations of Sb, Bi and InSb. A reduction in the thermal conductivity of

12.4 Preparation of Nanostructures 247



the samples containing Sb and InSb was attributed to the formation of nanostruc-
tured regions. Similar regions were observed in AgPbmSbTe2+m and Ag(Pb1
−xSnx)mSbTe2+m.

Nanocomposites based on bismuth telluride have been prepared by Hu et al. [38].
These authors prepared powders of both nano-size and micro-size. The powders
were mixed together and hot-pressed. The ratio of nano-powder to micro-powder lay
in the range 0–15 % with the optimum estimated at about 10 %. Cao et al. [39]
produced powders of bismuth–antimony telluride by a hydrothermal process and
when the powders were hot-pressed it was found that the resultant samples pos-
sessed a nanostructure. Grain growth during the hot-pressing process seemed to have
been avoided. Since the value of zT, equal to 1.28 at 303 K, is higher than is usual
for bulk bismuth–antimony telluride, it seems reasonable to suppose that the
structure has been changed and that nanostructured composites can be obtained by
established sintering methods, if sufficiently small-sized powders are used. It is
noted, however, that the improvement in figure of merit seems to come about
through enhanced scattering of the phonons and it is much more difficult to develop
nanostructures that are small enough to change the electron density of states.

An improvement in the figure of merit for the compound Ag0.8Pb22.5SbTe20
when prepared by mechanical alloying and spark plasma sintering has been
attributed to the formation of nanoscopic Ag/Sb-rich regions [40]. Once again this
supports the idea that nanostructured regions can be retained in bulk thermoelectric
materials after sintering if the composition and size of the starting powders are
properly chosen.

We may now mention another technique for the production of a nanocomposite.
It has been reported [41] that bismuth telluride with a nanostructure has been
prepared by melt spinning. Melt spinning is a process that enables a molten material
to be cooled at a very rapid rate. When applied to bismuth telluride, the flakes of the
compound that were produced had rather low values of the Seebeck coefficient.
This could possibly be improved by annealing but one cannot be sure that a
nanostructure would then be retained.

12.5 Recent Developments

It is somewhat disappointing that there is not more evidence of the improvement of
the thermoelectric properties through the formation of nanostructures. The problem
is that the effects associated with quantum confinement require structure on the
scale of one nanometre. On the other hand, changes of the lattice conductivity
become evident on the scale of tens or hundreds of nanometres or more.

The hoped for changes in the electronic properties as a result of nanostructuring
should lead to an increase in the power factor, This possibility has been discussed
by Yang et al. [42] who point out that there are a number of different ways in which
this improvement might take place. For example, there might be an increase in the
density of states, hopefully without any decrease in the carrier mobility.
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Alternatively, preferential scattering of low energy carriers can enhance the
Seebeck coefficient. A particularly useful effect would be the preferential scattering
of minority carriers since this would reduce the unwelcome phenomena associated
with bipolar conduction and allow the use of materials with small energy gaps. It
seems that Yang and his colleagues have succeeded in scattering the minority
carriers in PbTe–Ag2Te nanowires. Interfacial energy barriers have been created in
heterogeneous nanostructures. These nanowire heterostructures have been produced
by a scalable solution-phase method.

The electronic properties of the heterostructures may be compared with those
of bulk Ag2Te. The electrical conductivity is lower as both electrons and holes are
blocked to some extent. Thus the mobilities of 837 and 169 cm2/V s for electrons
and holes respectively in Ag2Te fall to 289 and 103 cm

2/V s for the heterostructures.
However, the Seebeck coefficient is much higher for the heterostructures than for the
basic compound and the overall effect is an increase in the power factor.
Coincidentally, there is a reduction in the thermal conductivity, which further
enhances the figure of merit. At 380 K, zT rises from less than 0.4 without the barrier
scattering to nearly 0.6 for the heterostructure. The heterostructures exist in
hot-pressed composites that would be suitable for use in energy conversion devices.
The material in this study was p-type and would obviously be improved if the barrier
scattering of holes could be reduced while retaining the electron scattering effect.

Even though it is difficult to produce samples that meet the dimensional
requirements set by the Hicks and Dresselhaus theory, it is perplexing that so few
experiments have led to observable changes in the electronic properties. Cornett and
Rabin [43] have made a contribution that, they suggest, may go some way towards
explaining the scarcity of beneficial changes in the power factor. They have found
that there is a significant difference between the case of a single band and that of
multiple sub-bands. Quantum confinement is certainly beneficial for a single
sub-band but it appears to have an adverse effect for multiple bands.

Vineis et al. [44] have also drawn attention to the fact that there are few
examples of improved power factors in nanostructured materials and they give
examples of mistaken claims of such improvements. The measurement of the
thermoelectric parameters on nanowires and the like is very difficult. The expected
confinement effects will be diminished if the carriers are not fully contained in
quantum wells, Vineis et al. suggest that the lasting value of the Hicks and
Dresselhaus theory may be its stimulation of work on nanostructures and the
reduction of the lattice conductivity,

Zebarjada et al. [45] have shown that the power factor can be increased in
samples with a relatively high concentration of nanoparticles. Their concept of a
high volume fraction meant concentrations greater than 1 % and their nanoparticles
had a size of about 1 nm. Zebardaji et al. recalled the fact that that Poudel et al. [23]
were able to improve both the power factor and thermal conductivity simultane-
ously. They drew attention to the various ways in which nanoparticles can affect the
thermoelectric parameters. They can act as dopants becoming ionised in the pro-
cess, they can affect the band edge and they can scatter the charge carriers, possibly
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in a favourable way. At high concentrations we must consider transport within the
nanoparticles and not just their influence on transport in the matrix. In GaAs the
mean free path is more than 30 nm and even becomes as large as several μm at low
temperatures. This may be compared with the distance between the nanoparticles. If
the volume fraction is 5 % and the nanoparticle radius is 1 nm this inter particle
distance becomes 5.4 nm. The effective band structure and relaxation time relate to
both the matrix and the nanoparticles. Nanoparticles might create peaks in the
density of states similar to the Tl levels in PbTe [46]. Zebarjadi et al. found that
samples of about 1 nm in radius with a high volume fraction and with a small
variation in size could have an improved power factor. It seems that doping with
nanoparticles can be superior to conventional impurity doping when both band
modification and scattering are taken into account. It should be noted that these
effects all involve particles of the order of one nm in size.

Pichanusakorn and Bandaru [47] have tackled the problem of increasing the
power factor rather than reducing the thermal conductivity. There seems little doubt
that the electronic properties will be affected one way or another when the crystal
size falls below a certain value. These authors tried to determine this value for three,
two and one dimension in Si–Ge, Bi2Te3, PbTe and SrTiO3. They averred that it is
the integrated density of states rather than the band shape that is significant. They
also considered different scattering mechanisms. Their optimum Seebeck coefficient
varied with the dimensionality and the scattering mechanism but was generally
somewhat less than 200 μV/K. That presumably is the result for optimisation of the
power factor and optimisation of the figure of merit requires a higher value. This
work highlights the need for measurement of all the thermoelectric parameters (not
just the electrical conductivity) for sample sizes significantly less than 10 nm.

It remains true that the improvement in thermoelectric properties of nanostruc-
tures that has been achieved so far is mainly due to a reduction in the lattice
conductivity. Bulat et al. [48] have calculated the effect of nonlinearity of the
phonon spectrum on the thermal conductivity for the bismuth–antimony telluride
system. The reduction of the thermal conductivity in nanostructured material was
assumed to be due to boundary scattering. Using the Debye approximation for the
phonon spectrum it was found that the lattice conductivity should fall by 55 % with
a grain size of about 20 nm. There should be a 20 % greater decrease if the
nonlinearity of the phonon spectrum is taken into account. The reason for the larger
reduction in the lattice conductivity is the greater weight that must be given to the
low-frequency acoustic modes, these being most strongly affected by nanograin
boundaries and nanoinclusions.

The lattice conductivity in superlattices has been determined by Yuan and Gang.
[49] with special reference to Si/Ge. Superlattices may be defined as long or short
according whether the mean free path is less than or more than the superlattice
period. Long-period superlattices behave like bulk materials with the thermal
resistance found from a series combination of layers and interfaces. Lattice con-
duction in short-period superlattices is more complicated with a size effect and
wave-particle effects. Experimental results on various thermoelectric materials
show that the lattice conductivity of short-period superlattices is much less than that
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of bulk material. Various authors have developed different models to explain the
observed small thermal conductivities. In the model used by Yuan and Gang the
phonon transport process is supposed to be incoherent. Also, phonon emission is
assumed to obey Lambert’s law that describes the directional distribution of the
emissive power of thermal radiation. The theory uses the concept of an effective
mean free path for the phonons. The model was applied by Yuan and Gang to the
cross-plane thermal conductivity in Si–Ge superlattices and was compared with the
experimental results of Lee et al. [11]. Satisfactory agreement was found for short
lattice periods.

It is to be hoped that there will eventually be little need for thermal conductivity
measurements on nanowires and the like, since future material is likely to be in the
form of bulk nanostructures. However, for a good understanding of the effects of
nanostructuring on the thermoelectric properties, measurements on the basic
nanoelements are useful. The most difficult of such measurements, but also the most
important, is that of the thermal conductivity. Holtzmann et al. [50] have suc-
cessfully used the 3ω method on bismuth nanowires of 40 nm diameter. The
observed thermal conductivity of 0.13 W/m K at 77 K had the relatively small
estimated error of ±0.05 W/m K. This thermal conductivity is about 2 orders of
magnitude less than that of bulk bismuth.

A comprehensive review, which contains a table of nanocomposites and their
figures of merit, has been written by Lan et al. [51]. It emphasises the need to
reduce the lattice conductivity without reducing the carrier mobility. The Seebeck
coefficient can be improved by preferential scattering of low energy carriers and by
the creation of sharp features in the density of states. High energy ball milling leads
to nanosized particles which can then be pressed and sintered, usually by the spark
plasma technique. It is important to realise that grain growth can occur during the
sintering process. Lau et al. mentioned the so-called alloy limit, which is the
minimum lattice conductivity in a solid solution. However, nanocomposites can
have lattice conductivities below the alloy limit. This is because phonons have a
wide spectrum of wavelengths and mean free paths, each part of the spectrum
contributing in its own way. Thus, alloy scattering is effective for short-wavelength
high-frequency phonons.

Three ways of making bulk nanostructured Na-doped PbTe were described by
Wang et al. [52]. These are (1) quenching followed by hot pressing (QH), (2) an-
nealing followed by hot pressing (AH) and (3) quenching and annealing followed
by hot pressing (QAH). In general, zT is enhanced when the grain size is in the nm
range. In particular, a 2–6 nm nanostructure is effective in scattering a wide range of
phonon frequencies leading to a lattice thermal conductivity of about 0.5 W/m K.
Also, the QH material is much stronger than ordinary bulk PbTe. The different
preparation techniques lead to different nanograin sizes. Thus AH gives particle
sizes of about 10 nm, QAH gives a peak at about 7 nm while QH peaks at less than
4 nm. For the QH material zT reaches 2.0 at just below 800 K. At the same
temperature zT is about 1.6 for QAH material and less than 1.5 for AH samples. The
latter are similar values to those obtained from observations on material produced
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by other techniques. The values of zT for material made by the three methods is
shown in Fig. 12.10.

The spacing between nanoparticles in the different samples is 22.7, 15.8 and 5.4
for AH, QAH and QH respectively. Nanoparticles are most effective in reducing the
lattice conductivity when the spacing between them is smaller than the phonon
mean free paths for other scattering processes.

The relative hardness values are 1.9, 1.7 and 1.0 for samples made by QH, AH,
and QAH respectively so the presence of very small particles with small spacing is
beneficial for mechanical strength,

The work of Wang et al. highlights one of the problems in making bulk
nanostructures. It is necessary not only to start with nanosize particles but these
have to be retained through the preparation process. Techniques that require only a
short treatment time are preferred. QH yields a lower lattice conductivity than QAH
because the annealing increases the particle size.

It is unlikely that nanostructured thermoelectrics will find practical application
unless they can be handled in the same way as bulk materials. Nevertheless, the
starting point may be either nanograined powders or assemblies of basic elements
such as nanowires or nanotubes. Thus, there may well be the need to produce these
basic elements. Li et al. [53] have reviewed the methods of making nanowires.
They dealt with Group IV elements, IV–VI compounds, Group V elements, V–VI
compounds and other systems.

Zhu et al. [54] have reviewed the preparation, structure and properties of bulk
nanostructures. They distinguished between two strategies. One is the so-called
bottom-up process in which nanopowders are fabricated by various methods and
then hot-pressed and sintered, perhaps using spark plasma sintering. The other
process, top-down, forms nanophases within the bulk material. It is claimed by Zhu
et al. that nanostructures formed by the latter method are more homogeneous and
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Fig. 12.10 Plots of zT against temperature for nanostructured Na-doped PbTe. The labels refer to
the preparation techniques. QH is quenched and hot-pressed AH is annealed and hot-pressed and
QAH is quenched, annealed and hot-pressed. The QH material has a mean particle size of less than
4 nm and a mean particle spacing of 5.4 nm. These are schematic plots based on the data of Wang
et al. [52]
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stable than those made by a bottom-up process. A disadvantage of the bottom-up
process is that there can be grain growth during the consolidation procedure and this
may weaken the effect of the nanostructuring. It is noted that bismuth-antimony
telluride alloys prepared by a hydrothermal technique have nanostructural charac-
teristics. Nanostructured PbTe has been produced by a bottom-up process and has
displayed a grain-size dependent thermal conductivity. Mg2(Si, Sn) solid solutions
have been prepared by an in situ top-down method. It appears that the presence of a
region of immiscibility in the phase diagram allows Mg2Si precipitates to form
below 1100 K. Sb-doped samples have zT values in excess of unity at temperatures
in the range 600–800 K.

Pressureless sintering may be useful in limiting grain growth but as pointed out
by Maglia et al. [55] it is rarely satisfactory when a high density is required which is
unfortunate when the aim is to obtain a nanostructure. Some heat treatment after
pressing is needed and this promotes grain growth. The presence of a second phase
can be helpful in inhibiting grain growth.

The properties of materials with embedded nanoparticles has been rviewed by
Ma et al. [56]. These authors have described the different effects that can be pro-
duced by the processing techniques. Structural discontinuities can be useful in
scattering phonons but they can also reduce the mobility of the charge carriers.
Electronic barriers may have a filtering effect. It should be noted that sintering can
produce chemical changes and that nanoparticles can act as doping agents, altering
the carrier concentration.

The various methods of making nanoscale materials have been described by Bux
et al. [57]. Nanowires, nanotubes and other nanostructures have been made by such
methods as electrochemical synthesis and chemical vapour deposition. However, of
more practical use are methods for making large scale bulk materials. The
solvothermal and hydrothermal methods have been used successfully to make
nanostructured CoSb3, PbTe and Bi2Te3. Solution-based techniques can also be
used. There are also non-chemical methods, such as high energy ball milling, that
yields powders that are easy to sinter to a high density. Thermal stability is a
possible problem. It is no use making a nanograined material if there is substantial
grain growth at the operating temperatures. However, long term stability can be
achieved. Thus, Bux and her colleagues mentioned that Si–Ge alloys showed no
change of thermal conductivity (the most sensitive parameter) over a year at
1275 K.

Vasilevskiy et al. [58] have shown that nanoparticles of the solid solutions in the
bismuth telluride system can be produced by mechanical alloying. These
nanoparticles can, in turn, be incorporated in bulk samples. Remembering that the
transport parameters in the bismuth telluride system are anisotropic, it is helpful if
the material undergoes extrusion at some stage so as to produce some alignment.
However, the process must not produce significant grain growth if the advantages
of nanostructuring are to be maintained. The effectiveness of the overall method of
preparation can be judged by the fact that zT for n-type material is close to unity at
100 °C. The p-type alloy, as expected, has the even higher value of 1.1 for zT at the
same temperature.
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Lastly it is noted that the thermoelectric figure of merit is not always capable of
being measured to a high accuracy. This is not too much of a problem for bulk
nanostructures but becomes difficult for nanowires and the like. Thus, successful
measurements such as those of Mavrokefalos et al. [59] on electrodeposited bis-
muth telluride nanowires are worth mentioning even though the value of zT in this
work was no more than about 0.1 over a wide temperature range. The reason for the
poor figure of merit was the low Seebeck coefficient of the order of −50 μV/K at
300 K, the high electrical conductivity of about 2000 Ω−1 cm−1 being insufficient to
raise the power factor to a useful level. The value of this work lies in the mea-
surement technique rather than the nanostructured material.
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Chapter 13
Thermionic Energy Conversion

Abstract The concept of a vacuum thermoelement is attractive as it removes one
of the problems in thermoelectric energy conversion, namely heat conduction
through a solid. It is shown that efficient thermionic generation in a vacuum device
might be possible if improved thermionic emitters become available. It is shown
that an emitter with an even smaller work function is needed for a practical ther-
mionic refrigerator. Consideration is also given to solid-state thermionic convertors
in which the current flow is ballistic rather than diffusive.

13.1 Vacuum Thermoelements

Ioffe [1] drew attention to the fact that a major contributor to the losses in ther-
moelectric energy convertors, namely the heat conduction by the lattice, could be
eliminated if the conduction of electricity took place in a vacuum. He gave the
name vacuum thermoelements, to vacuum diodes that are used in energy conver-
sion. In such diodes there would still, of course, be heat losses associated with
radiation and these would not be negligible at high temperatures. In the 1950s it was
inconceivable that vacuum thermoelements could be operated at ordinary temper-
atures, since the thermionic emission of electrons from then known materials was
too small for practical purposes below about 1000 K. Although this seems to
preclude the possibility of using vacuum diodes for refrigeration, they might still be
employed as high temperature generators. Hatsopoulos and Kaye [2] did, in fact,
carry out experiments on thermionic diodes with this aim.

The anode and cathode of a vacuum diode may be connected externally via a
resistive load. The potential distribution is shown in Fig. 13.1. It is supposed that
the work functions at the cathode and anode are Φ2 and Φ1 respectively. The
electrons in the space between the electrodes will oppose the flow of current
between the electrodes, so a space charge potential δ is also included in the
diagram.
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If the temperature of the cathode is higher than that of the anode, there will be a
tendency for electrons to pass from the former to the latter. The saturation current
density from either electrode is given by Richardson’s equation

i1;2 ¼ A0T
2
1;2exp � U1;2

kT1;2

� �
; ð13:1Þ

where the subscripts 1 and 2 refer to the anode and cathode respectively. A0 is a
constant that has the ideal value 1.2 × 106 A/m2 K2.

The net current density, taking account of the emission from both electrodes and
the space charge potential is

i ¼ A0 T2
2 exp � U1

kT2

� �
exp � d

kT2

� �
exp � V

kT2

� �
� T2

1 exp � U1

kT1

� �
exp � d

kT1

� �� �
:

ð13:2Þ

The current per unit area depends on the temperatures of the two electrodes, the
height of the space charge barrier and the work function of the cold anode. It does
not depend on the work function of the hot cathode.

The space charge effect can be eliminated by making the space between the
electrodes very small. In this case, the current density is approximately given by

i ¼ A0T2
2 exp � U1

kT2

� �
exp � V

kT2

� �
: ð13:3Þ

The power output per unit area is

w ¼ iV � wL; ð13:4Þ

Potential
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δ 

Φ 2 

Φ1 

V

Cathode Anode

Fig. 13.1 Schematic plot
showing potential as a
function of displacement in a
thermionic diode
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where wL is the ohmic loss in the leads. The efficiency is

g ¼ iV � wL

j
; ð13:5Þ

where j is the heat flux per unit area of the cathode. Part of this heat flux will be lost
in radiation and there may be other losses in the supporting structure.

Hatsopoulos and Kaye’s experiments were performed with both electrodes made
from (Ba–Sr)CO3. The cathode and the anode temperatures were 1260 and 538 ºC
respectively. The efficiency was measured as a function of the output voltage and
reached a maximum of about 13 %.

Mahan [3] showed that it might be possible to operate a thermionic diode as a
refrigerator at a temperature of the order of 500 K without a major breakthrough in
the development of emitters with low work functions. He considered that a work
function of 0.7 eV would be sufficiently small. Even lower work functions have
been reported for materials known as electrides and alkalides [4]. Measurable
thermionic emission was observed [5] at a temperature as low as 193 K and a work
function of 0.2 eV has been mentioned. Whether or not stable emitters with low
work functions that can yield large electron current densities will be available is still
an unanswered question. However, it does seem that one can do much better than
using traditional emitter materials that have work functions of the order of 1 eV.

We follow Mahan’s derivation of the coefficient of performance of a thermionic
diode in the refrigeration mode. Figure 13.2 plots the potential energy of the
electrons within the diode where the cathode is at a temperature T1 and the anode is
at a temperature T2. The space between the anode and cathode represents the
vacuum through which the electrons travel. We suppose that the work function has
the same value, Φ, at both the anode and cathode though Mahan did not actually
restrict his theory in this way.

We make use of Richardson’s equation (13.1) to obtain the current densities
from the electrodes. Part of the applied voltage, V, equal to V0, is used to balance
the different emissions from the anode and cathode due to the higher temperature of
the former. The remaining part, V − V0, drives the electron current. Since V0 is the

Potential
energy of
electrons

Displacement
Anode Cathode

Ve

Φ 

Φ 

T2 

T1 

Fig. 13.2 Schematic plot of
the potential energy of the
electrons against
displacement in a thermionic
diode with Φ1 = Φ2
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voltage that must be applied for the current to be equal to zero, it resembles the
Seebeck voltage in a conventional thermoelement.

If we suppose that conventional current is positive when it flows towards the
cathode (that is when the electrons flow towards the anode), the total current density
in the vacuum space is

i ¼ i1 � i2 ¼ A0 T2
1 exp � U

kT1

� �
� T2

2 � U
kT2

� �� �
: ð13:6Þ

The value of V0 is found by setting i equal to zero. Thence,

eV0 ¼ U
T2
T1

� 1
� �

þ 2ln
T2
T1

� �
: ð13:7Þ

Just as the energy of the carriers in a thermoelectric material consists of a kinetic
part and a potential contribution associated with the position of the Fermi level, so
also does the energy of the electrons in a thermionic diode. The kinetic term has the
value 2kT and the potential energy is Φ. Thus, as the electrons leave the cathode
they carry away heat at the rate j per unit area, where j is given by

j ¼ i
Uþ 2kT1

e
: ð13:8Þ

Also, the rate of expenditure of electrical energy per unit area associated with the
current flow is

wi ¼ iV : ð13:9Þ

We have to take account of the transfer of heat between the electrodes by
radiation at the rate

wr ¼ �er T4
2 � T4

1

� �
; ð13:10Þ

where ε is the emissivity of the surfaces of the electrodes and σ is the
Stefan-Boltzmann constant. The negative sign is consistent with the fact that
thermal radiation opposes the cooling effect of the current flow.

It is necessary to provide a return path for the electrons just as one has to use two
branches in a thermocouple [6]. The electrical resistance encountered by this return
flow represents some loss of performance. We shall suppose that the return path
makes use of a metallic conductor but Xuan [7] has shown that it is more effective
under some circumstances to use a p-type thermoelectric material for this purpose.
It will be assumed that the electrical resistance R and the thermal conductance K in
the metal are linked by the Wiedemann-Franz law. R and K have values that are
appropriate for unit area of the electrodes.
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Taking into account the losses due to the thermal radiation and to the resistance
and thermal conductance in the metal, the overall cooling effect per unit area is

j ¼ ji þwr � i2R=2� K T2 � T1ð Þ; ð13:11Þ

The electrical power input per unit area is

w ¼ wi þ i2R: ð13:12Þ

Mahan [3] has discussed the problem of space charge in the space between the
electrodes. We are dealing with high current densities and the electrons already in
the vacuum space will undoubtedly set up a barrier to further flow. The space
charge effect becomes less as the distance between the electrodes is reduced. Mahan
showed that an inter-electrode distance of 1 mm is the upper limit for operation at
700 K. The space charge problem becomes greater as the operating temperature is
reduced and may present severe practical difficulties if low temperature thermionic
refrigerators are ever constructed.

Mahan showed that the limiting space charge voltage is equal to 2kTln(pd/π)
where p is defined as (4πe2/kTΛ3)1/2 and Λ2 = h2/2πmkT. He assumed that the lowest
possible work function is 0.71 eV but, as we shall see, a value of about 0.3 eV is
necessary for a thermionic refrigerator working at ordinary temperatures. This
means that ln(pd/π) would differ by a factor of 4.2 compared with the value derived
by Mahan. This leads to a maximum value for d of no more than 0.4 μm and to
attain this would certainly be a formidable problem. However, it is assumed that it
can be solved.

Nolas and Goldsmid [6] considered the requirements for a thermionic refriger-
ator to be competitive with ordinary Peltier devices at 300 K. They assumed that a
metallic connector would be used for the return path though, as already mentioned,
Xuan [7] has pointed out the advantage of using a thermoelement for this purpose.
It was thought that the cooling power would have to be at least 104 W/m2.
Figure 13.3 shows the variation of the thermionic cooling power qi with work
function assuming the heat sink to be at 300 K and the source at 260 K. Also
shown, as a broken curve, is the cooling power minus the radiation loss. It will be
seen that it is virtually impossible to obtain a cooling effect at these temperatures if
the work function is greater than 0.5 eV. In order to achieve a cooling of 104 W/m2

the work function should not be greater than about 0.3 eV and this value will be
assumed in the following calculations.

The cooling power has its maximum value when the Joule heating and thermal
conduction losses equal to one another. Thus,

R ¼ L T2 � T1ð Þ T2 þ T1ð Þ½ �1=2=I; ð13:13Þ

where L is the Lorenz number. However, this does not optimise the coefficient of
performance. The losses in the passive conductor do not have much effect on the
cooling power but they have more influence on the COP. This would be more

13.1 Vacuum Thermoelements 261



noticeable for a thermionic refrigerator than for present-day thermoelectric refrig-
erators because of the improvement in efficiency. The modification to (13.13) that
would be needed for optimum COP is somewhat complicated by the exponential
terms in the relation between current and voltage.

A thermionic refrigerator is probably more suitable for improving the coefficient
of performance with small temperature differences between source and sink rather
than for obtaining large vales of ΔTmax. Nevertheless, if the work function were as
high as 0.3 eV it should still be possible to reach a value of 100º for ΔTmax, as
shown in Fig. 13.4. In this diagram ΔTmax is plotted against Φ for a heat sink
temperature of 300 K.

The coefficient of performance for a thermionic refrigerator with Φ equal to
0.3 eV is plotted against the applied voltage in Fig. 13.5. The source and sink
temperatures have again been set at 260 and 300 K respectively. The cooling power
for the same set of conditions is shown in Fig. 13.6.

The maximum in the plots of COP against voltage is due to the fact that there are
radiation losses, small though they are. The radiation losses become significant only
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Fig. 13.3 Maximum cooling
power of a thermionic diode
against work function. The
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there are no losses and the
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radiation. The source and sink
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Fig. 13.4 Maximum
temperature difference for a
thermionic refrigerator plotted
against the work function.
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when the cooling power is extremely low. It is noteworthy that the cooling power
remains above 104 W/m2 for a wide voltage range. The cut off in both the cooling
power and the coefficient of performance between 0.05 and 0.06 V occurs when the
applied voltage is insufficient to compensate for the temperature difference between
the source and sink.

The main objective in the study by Nolas and Goldsmid was to compare the
performance of the projected thermionic refrigerator with that of an improved
thermoelectric refrigerator that should be available in the future. It was supposed [8]
that the projected thermoelectric cooler might be made from materials with ZT as
high as 4. Figure 13.7 shows plots of coefficient of performance for the thermionic
and thermoelectric refrigerators against the temperature of the heat source. It is clear
that the thermionic refrigerator is superior to the thermoelectric device but recent
developments suggest that the latter is much closer to becoming available.
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13.2 Thermionic Emission in Solids

The great attraction of vacuum thermionic energy convertors is the absence of heat
conduction other than by the free electrons. However, there remains the question as
to whether or not suitable electrode materials will become available. There is the
alternative of making use of thermionic emission in solids. The difficulty of
obtaining adequate emission currents can then be overcome but one no longer
eliminates the conduction of heat through the medium in which the charge carriers
move. Solid state diodes have an advantage over vacuum devices in that both
positive and negative carriers can be used, so the problems associated with the
return path no longer exist.

The possibility of using the thermionic effects in solids instead of the thermo-
electric effects has been discussed by Mahan et al. [9]. They first pointed out the
basic difference between the two effects. In thermionic transport the current flow is
ballistic so that a carrier leaving one electrode arrives at the other with the same
kinetic energy. On the other hand, in thermoelectric devices the carriers undergo
many collisions as they travel from one junction to the other, the motion then being
described as diffusive. In some nanostructured configurations the motion may be
intermediate between ballistic and diffusive.

In a thermionic device the applied voltage drives the more energetic electrons
from the cold surface across a barrier to the hot surface. These electrons are
replaced by others of lower energy through the external circuit. For the flow to be
ballistic rather than diffusive the mean free path, le, has to be greater than the barrier
width, d. It is also necessary that the barrier width be greater than dt, the maximum
width for tunneling to be possible. This width is given by the expression
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Fig. 13.7 Coefficient of
performance plotted against
source temperature for
thermionic and thermoelectric
refrigerators. The heat sink is
at 300 K
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dt ¼ �h
2kT

ffiffiffiffiffiffi
eU
m�

r
; ð13:14Þ

where Φ is the barrier height. For most semiconductors dt is less than 10 nm and le is
often greater than 100 nm so it is not difficult to satisfy the condition for ballistic flow.

In the absence of losses the rate of cooling per unit area is still given by (13.8)
and, allowing for heat conduction across the barrier,

j ¼ i
Uþ 2kT1

e
� KDT; ð13:15Þ

where K is the thermal conductance. It is obvious that the heat conduction loss is
going to be very large, because of the small barrier width, unless ΔT is very small
and, for this reason, Mahan and his colleagues proposed the use of a multi-layer
arrangement.

For a single layer, the theory is simplified by the fact that T1 and T2 are nearly
equal. Thus, Richardson’s equation is the same for both sides of the barrier,

i1;2 ¼ A0T
2exp � U

kT

� �
; ð13:16Þ

and

i ¼ eA0T
k

V � V0ð Þexp � U
kT

� �
; ð13:17Þ

where V is the applied voltage. V0 is given by

V0 ¼ kDT
e

U
kT

þ 2
� �

: ð13:18Þ

In a semiconductor or metal, Φ can be small enough for Fermi-Dirac statistics to
be necessary but, for the optimum coefficient of performance in a device that is
better than existing thermocouples, classical statistics are satisfactory.

The cooling power per unit area is

j ¼ i1
U
kT

þ 2
� �

V � Vj
� �

; ð13:19Þ

where

Vj ¼ kDT
e

U
kT

þ 2þ c
� �

: ð13:20Þ
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The quantity c is defined as

c ¼ 2þ eK=ki1
2þU=kT

: ð13:21Þ

Thence the coefficient of performance is

/ ¼ j
w
¼ kT

e
U
kT

þ 2
� �

V � Vj
� �
V V � V0ð Þ : ð13:22Þ

The coefficient of performance has its maximum value when

V ¼ Vj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vj Vj � V0
� �q

; ð13:23Þ

and then

/max ¼
T
DT

U
kT þ 2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þU=kT þ c

p þ ffiffiffi
c

p	 
2 : ð13:24Þ

It is convenient to introduce a parameter TR, with the dimensions of temperature,
that is defined by

kTRð Þ2¼ 2p2�h3K
m�kT

: ð13:25Þ

This parameter is proportional to the square root of the thermal conductance of
the barrier and should be as small as possible. In Fig. 13.8 the coefficient of
performance, divided by its value for a Carnot cycle, is plotted against the barrier
height for selected values of TR between 100 and 500 K. The optimum barrier
height should be somewhat greater than kT.

Although the coefficient of performance might be reasonably high for a single
barrier device, cooling across a reasonably large temperature difference requires a
multi-layer arrangement. In other words, a practical device would operate as a
multi-stage cascade. Mahan and his colleagues have optimised the conditions for a
multi-layer thermionic refrigerator and their results are shown in Fig. 13.9. In this
diagram, the coefficient of performance is plotted against the barrier height, for
source and sink temperatures of 260 and 300 K, respectively. A thermoelectric
refrigerator with ZT equal to unity would have a coefficient of performance of 0.7
under these conditions. The multi-layer thermionic device would give a similar
performance if TR were equal to about 500 K. For the thermionic refrigerator to be
superior it would be necessary for TR to be less than 500 K.
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Mahan et al. [9] also considered solid state thermionic devices as generators of
electricity. The factor (Φ/kT + 2)[(Φ/kT + 2 + c)1/2 + c1/2]−2 that appears in (13.24)
for the coefficient of performance of a thermionic refrigerator is found in the
expression for the efficiency of a single-barrier thermionic generator, in this case
multiplied by ΔT/T. A single barrier would generate a very small voltage and would
undoubtedly be replaced by a multi-barrier system. The variation of the efficiency
of a multi-layer generator with barrier height bears some resemblance to that of the
coefficient of performance for a multi-layer refrigerator as shown in Fig. 13.10
except, of course, that the efficiency never falls to zero.
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Mahan and his colleagues pointed out that the equations for thermionic gener-
ators and refrigerators have the same form as those for thermoelectric energy
convertors if the Seebeck coefficient, electrical conductivity and thermal conduc-
tivity are replaced by three quantities, αI, σI and λI that are defined by

aI ¼ k
e

U=kT þ 2ð Þ; ð13:26Þ

rI ¼ ei1d
kT

; ð13:27Þ

and

kI ¼ 2
k
e
i1 þK

� �
d: ð13:28Þ

It is also possible to define a figure of merit for thermionic devices as

ZIT ¼ U=kT þ 2
c

: ð13:29Þ

Vining and Mahan [10] have drawn attention to an analogy between thermionic
and thermoelectric devices. They showed that for thermionic materials one can use
a parameter βI that plays more or less the same role as the parameter β that was
discussed for thermoelectric materials in Chap. 4. The quantity βI is defined as

bI ¼
m�k kTð Þ2d
2p2�h3kL

: ð13:30Þ
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Fig. 13.10 Efficiency of a
multi-layer thermionic
generator plotted against the
barrier height. A schematic
plot based on the data of
Mahan et al. [9]. The source is
at 400 K and the sink at 300 K
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Then

ZIT ¼ U=kT þ 2ð Þ2
2þ exp U=kTð Þ½ �=bI

: ð13:31Þ

Equation (13.31) is similar to the equation for zT in a thermoelectric material.
A thermionic device will be the superior if βI > β.

The ratio of βI to β is equal to d/(leπ
1/2) but it has already been assumed that

d < le if the device is to operate in the thermionic mode. Thus, as shown by Vining
and Mahan, we might expect the thermoelectric mode to be the better. However, it
is possible that λL will be much less for the thermionic structure and this may be
sufficient compensation for any loss in the power factor.

There have, in fact, been experimental demonstrations of thermionic refrigera-
tion in solids. For example, Shakouri et al. [11] made use of a (In–Ga–As)P barrier
of 1 μm thickness between layers of n+ (In–Ga)As. Although a cooling effect of
only 0.5° was observed in the preliminary experiment it was expected that this
would rise to about 10° after improvements in the design.

More recently, it has been suggested that tunneling effects might also be used in
solid-state refrigeration. A device proposed by Chao et al. [12] takes advantage of
both tunneling and ballistic effects. Its operation is described with reference to
Fig. 13.11.

The contribution from thermionic emission has already been described. The
additional feature in the new device is a barrier that is thin enough to allow tun-
neling. The predominant cooling is associated with resonant tunneling. Chao and
his colleagues based their treatment on (Al–Ga)As heterostructures. They admitted
that they are not good thermoelectric materials but are well characterised and allow
accurate predictions to be made. In the embodiment of the device, the material at
either end is n-type GaAs. Tunneling takes place through AlyGa1−yAs into GaAs
and the carriers are emitted into AlxGa1−xAs. The calculations indicate that a
temperature depression of between 5º and 7º might be achieved using this structure.
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voltage

EF

Displacement

Fig. 13.11 Schematic
potential diagram for a
heterojunction refrigerator
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Although this is much less than the value for conventional devices made from
bismuth telluride, it compares favourably with what could be obtained using GaAs
as the thermoelectric material. Moreover, the structure could readily be produced
using existing technology. Solid state refrigerators based on ballistic rather than
diffusive transport may well offer a viable alternative to existing cooling techniques,
particular when integrated with semiconductor junction devices.
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