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Preface

In Volume 2 of the monograph entitled Kinetic Theory of Nonequilibrium
Ensembles, Irreversible Thermodynamics, and Hydrodynamics, relativistic theories
are presented for dilute monatomic gases and photons by using covariant kinetic
equations. Kinetic equations employed are covariant versions of Boltzmann kinetic
equations and the Nordholm—-Uehling—Uhlenbeck quantum Kkinetic equations
applied to a mixture of material gases and photon gases. By using the aforemen-
tioned kinetic equations, we develop kinetic theories for relativistic irreversible
thermodynamics and hydrodynamics in a parallel manner to the nonrelativistic
theories we have presented in Volume 1 of the monograph. The materials were
based on the manuscripts written in collaboration with Dr. Kefei Mao many years
ago, which also made up a part of his Ph.D. dissertation, McGill University,
Montreal, 1993. I would like to thank Dr. K. Mao for collaboration.

Montreal Byung Chan Eu
March 2016
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Chapter 1
Relativistic Kinetic Theory for Matter

In this chapter we make an important departure from the approach taken in Chaps. 3,
5, 6 and 7 of Volume 1in which nonrelativistic kinetic equations have been dis-
cussed for gases and liquids. Now we consider relativistic kinetic equations for dilute
uncorrelated particle systems. Specifically, our objective is to consider matter or a
system of radiation and matter consisting of monatomic gas mixtures in the relativis-
tic range of speed. In a previous paper [1] on radiation and matter we formulated
a nonrelativistic kinetic theory of mixture of photon gas and matter in interaction
with photons. But nonrelativistically treating photons presented awkward features
theoretically. The principal motivation for the present relativistic kinetic theories is
in our desire to remove the awkward features of treating radiation and matter in a
nonrelativistic kinetic theory in our previous work [1]. There also are some impor-
tant problems, particularly, in astrophysics and nuclear physics in which particles
(e.g., electrons, neutrinos, protons, neutrons, and other elementary particles) move
at high speed for which a relativistic treatment would be preferable to understand
their transport properties in the early epoch of the universe [2]. Apart from this prac-
tical aspect of application of the theory we intend to formulate in the relativistic
domain, there is also the desire to cover as widely as possible the range of applicabil-
ity of the kinetic theory methodology we have pursued in the nonrelativistic domain
of speed, especially, in connection with thermodynamics of irreversible processes
and attendant hydrodynamics. Since it is simpler to first treat matter alone before
considering radiation interacting with matter, we will separate the material gas from
radiation and treat the subject relativistically by using the better known relativistic
Boltzmann kinetic equation [3, 4] for dilute gases in Sect. 1.1 of this Volume. For
readers less knowledgeable of the relativity theory and related mathematics Supple-
mentary Notes on four-tensors and four-vectors are provided at the end of Sect. 1.1.
Then in Chap.?2 a relativistic kinetic theory of radiation (photons) interacting with
matter is formulated by using the covariant version of the Boltzmann—Nordholm—
Uehling—Uhlenbeck (BNUU) kinetic equation [5, 6] for a mixture of quantum
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2 1 Relativistic Kinetic Theory for Matter

particles. In this chapter a generalized hydrodynamic theory is developed and a
theory of radiative transport processes in the mixture od quantum particles includ-
ing photons is formulated. Various radiative transport coefficients are derived for the
mixture. The kinetic theory formulas so developed in Chap. 2 are explicitly applied to
radiative transport processes in the mixture of material gases and photons. Especially,
the transport coefficients are computed to compare with some experimental results in
the third chapter. The author believes the last chapter may serve as an experimental
validation of the theory developed in the second chapter of this volume.

1.1 Relativistic Boltzmann Equation for a Monatomic Gas
Mixture

We consider an r-component mixture of relativistic monatomic gases in nonequi-
librium state. The gas mixture is assumed to be sufficiently dilute so that particles
are distributed uncorrelated to a good approximation in the phase space. The pri-
mary quantity of interest is then singlet distribution functions of particles assumed
to describe a system of relativistic gases obeying the relativistic Boltzmann equa-
tions. In contrast to the nonrelativistic kinetic theory formalism, vectors and tensors
in four-dimensional spacetime (simply, spacetime henceforth) must be used in rela-
tivistic kinetic theory. Before the kinetic equation is introduced, it is useful to fix the
notation and convention for vectors and tensors appearing in the theory. For read-
ers not well versed in algebras involving four-vectors and four-tensors a section on
Supplementary Notes is appended at the end of this chapter, which the author hopes
would help the readers to follow through the relativistic kinetic theory presented in
this and following chapters.

1.1.1 Preparation

A point x in spacetime is denoted by a covariant four-vector
x = x" = (ct,r), (1.1)

where c is the speed of light, 7 is time, r is the three-vector for spatial position, and
superscript index p ranges 0, 1, 2, 3. Here O is for the time component and the arabic
indices (1,2, 3) are for the space components. The conjugate four-momentum is

denoted by

1/2
Pa = pl = (p).pa). Py =(mic>+p)) (1.2)
with subscript a distinguishing the species. The covariant gradient operator 9, is

enumerated in spacetime by
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8}1 = (C_lalav)7 (13)
where the symbols 0; and V are, respectively, defined by time derivative and spatial
derivative operators
0, =0/0t, vV =20/0r. (1.4)
The following convention is adopted for the metric tensor g"*:
g" =diag(1,—-1,—-1,-1), (1.5)
which abbreviates a diagonal 4 x 4 matrix.

The hydrodynamic velocity is denoted by U* (x), which will be more precisely
defined later at an appropriate stage. Then associated with the metric tensor in (1.5)
and hydrodynamic velocity U* is the projector! A

A" (x) =g — cPUM (x) UY (x) . (1.6)
Here U* (x) is normalized by scaling it with speed of light ¢

UM, = 1. (1.7)

This projector tensor A*” has the following properties:

AP = AV (1.8)
A" A, = AL, (1.9)
Al =3, (1.10)

A" U, = 0. (1.11)

These properties® will be frequently used when relativistic macroscopic evolution
equations, such as hydrodynamic equations, are derived from the relativistic Boltz-
mann kinetic equation. Some identities derived from these properties and the hydro-
dynamic velocity four-vector are noted later in this chapter.

1.1.2 Relativistic Covariant Kinetic Equation

In relativistic kinetic theory, it is assumed that the covariant Boltzmann equation [3]
is obeyed by the singlet distribution function f,(x, p,) of species a for a relativistic
monatomic dilute gas mixture of » components. It may be written in the form

I'The sign of the projector defined here is opposite to the projector used in Ref. [4].
ZProperty (1.10) in Ref. [4] is in error with regard to the sign.
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PaOufa(x, pa) = ZCub(fav fa) (@a=1,2,....1), (1.12)

b=1

where the collision integral C,,( f,, f,) is given by the formula

Cas(fus f2) = Gup / / / BB B Was (Paps| P2 Y
x [ £ (x, pl) £ (x. py) = fa (X, pa) fo (x, pb)] (1.13)

with the definitions of abbreviations

_ d’p ., d’p
d3pb = — d’p; = O*b, etc.
b Py

and also with Wy, (p.pslp)p;) denoting the transition rate from the initial state
(pa, pp) to the final state ( Dr, pZ) as a result of a collision between particles a and
b. The factor G, defined by

G =1—0u/2 (1.14)

ensures that the final state is not counted twice. The asterisk denotes the post-collision
value on completion of collision. The subscripts a and b are assigned to play a dual
role of labeling a species and the particle state of that species. The transition rate
is a scalar under Lorentz transformation [7] and obeys the microscopic reversibility
(detailed balance)

War(Pa P P;Py) = Woa (P, Py PapPb) (1.15)

as a consequence of time-reversal invariance of the dynamical equations of motion
governing the collision dynamics. This symmetry property does not mean that the
collision integral C,;(f,, f») is symmetric with respect to the reversal of a collision
process.

The symmetry property (1.15) is important for proving the H theorem as will be
discussed later. It is important to note that the singlet distribution functions in the
kinetic equation (1.12) are coarse-grained in space over the intermolecular inter-
action range of particles, so that the singlet distribution functions remain spatially
unchanged over the collision volume in the course of a collision of particle pairs.
Therefore their x dependence must be understood in the sense of the aforementioned
coarse-graining. It is also important to recognize that the relativistic Boltzmann
equation breaks the time reversal invariance and thus is irreversible, and this is a
crucially important property of the relativistic Boltzmann kinetic equation postu-
lated. It is remarked here that we do not pretend the kinetic equation is derived from
the mechanical equations of motion of the particles comprising the gas. It is postu-
lated and the results of the postulate is a posteriori verified to be true in the light of
experiment.
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1.1.3 Mean Values and Macroscopic Variables

Equipped with the distribution function it is possible to calculate statistical mechan-
ical mean values for macroscopic observables including hydrodynamic variables.
First of all, the distribution function is normalized to the number density n,(x) of
species:

nax) = /d3pafa (x. pa). (1.16)

This number density should not be confused with the hydrodynamic number density
defined later. The particle flux of species a is given in the same manner as for n,(x)
by the statistical mechanical formula

Ja(®) = nu, = / d*PavVafa (X, Pa) s (1.17)
where v,, defined by
CPa
Vo = —5 (1.18)
p

is the velocity of particle a. With the two quantities n, and u, a covariant vector,
namely, particle four-flow, can be constructed and statistically calculated by using
the formula

NI (x) = ng (c,u,) := (p! fu (x, pa)). (1.19)

Here the angular brackets are the abbreviation of the integral

3
(~~')=C/dpl;a"'IZC/d3I_)a"~. (1.20)

This notation will be used throughout the present and following chapters. Similarly
to N/ (x), the covariant energy-momentum tensor T, of species a is defined by the
statistical mechanical formula

T/ = (plpl fu (5. o). (1.21)

The mean values of different species are evidently additive over the species variable
field in view of the absence of spatial correlation effects owing to the fact that the
gas components are ideal. Therefore, the total number four-flow and total energy-
momentum are, respectively, given by the sums

r

NH = Z N# (1.22)

a=1
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and

T = Z T, (1.23)
a=1

The mean value of an observable M, (x, p,) of species a will be expressed by the
statistical mechanical formula

(M, (x, pa)) =c/d3ﬁaMa (X, Pa) - (1.24)

Before proceeding further, it would be useful to show that f, (x, p,) is indeed a
scalar under the Lorentz transformation. To show it, we first note

5(p —me?) = 5 [3 (00— Vi 1)+ (5 4 Vire ) |

_m

Then, since

1
0 (p°) 0 (p* —m*c?) = 2—1305 (po —Vm2e + p2) (1.25)
for p® — /m2c? + p* > 0, where 6 (p°) is the Heaviside step function defined by

0for p° <0
0y _ p
a(p)_<1forp020’

the particle number four-flow in (1.19) can be written as
N/ (x) =2 / d*pab (p2) 0 (g — mac?) Pl fu (x, pa) - (1.26)

The number four-flow N/’ (x) transforms like a four-velocity, provided that £, (x, p,)
is a scalar under the Lorentz transformation. So, the distribution functions will be
treated as scalars.

1.1.4 Hydrodynamic Velocity

Unlike in the nonrelativistic kinetic theory in the chapters of Volume 1, the hydro-
dynamic velocity is not simply given by mean velocity u, in (1.17) or its sum u over
the species index in the case of a mixture.

There are two different definitions for hydrodynamic velocity in the literature.
One is due to Eckart [8] and the other to Landau and Lifshitz [9]. In this work the
Eckart definition will be adopted since it is simpler and more closely in line with the
nonrelativistic counterpart. It is defined by
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Nﬂ
Ut = (1.27)
NN,

This definition clearly satisfies the normalization condition (1.7). With the definition
of hydrodynamic velocity given by (1.27) we are naturally led to the hydrodynamic
density p, of species a. To see it, form the scalar product of U, with N* to obtain

¢2N"U, = c™'\/N"N,. (1.28)

The number four-flow may be enumerated in the notation of four-flow as a four-vector
N” =n(c,uw)”, (1.29)

where the superscript v denotes the spacetime component of the four-vector and n
is the total number density

n= Zr:na (1.30)
a=1

with n, denoting the number density of a defined by (1.16), and u denoting the total
particle velocity defined by

na = Znaua (1.31)
a=1

with u, given by (1.17). Accordingly, the total hydrodynamic number density p may
be related to the mean velocity u obtained as follows, if the scalar product of N

with itself is taken:
u-u
¢ 'WNYN, =n |1 — —-. (1.32)
C

This expression motivates to define hydrodynamic density p by the expression
p=n/l——. (1.33)

It clearly indicates that hydrodynamic density p is not the same as the number den-
sity n, to which the former tends as u/c — 0, namely, the nonrelativistic limit. A
clear distinction should be made between n and p to avoid possible confusion that
might arise in connection with relativistic hydrodynamic equations and their nonrel-
ativistic counterparts derived from the nonrelativistic Boltzmann equation in which
p simply means the mass density. According to (1.33), the hydrodynamic density
gets thinner than the number density 7 as the speed u increases toward ¢, vanishing?
asu — c.

3This aspect seems to indicate that the vacuum may be described by hydrodynamic equations in
the limit of u/c — 0 in relativity.
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From (1.27), (1.29), and (1.32) follows that the hydrodynamic four-velocity U*
can be expressed in a more insightful form

U" =~ (c,u)", (1.34)

where 7y is given by
e — (1.35)

This gives a lucid meaning to the hydrodynamic four-velocity in Eckart’s definition.
In contrast to the behavior of p, the hydrodynamic velocity increases in magnitude
as u increases toward c.

Inserting p into (1.28) yields the hydrodynamic density expressed as

p=c 2 N'U,. (1.36)
This formula motivates us to define species hydrodynamic density as
pa = ¢ *U,N", (1.37)

which on summing over all species yields the total hydrodynamic density p in (1.36)
because

p:Zpa =072UMN". (1.38)

a=1
Rearranging (1.27) and using (1.33) we obtain
Nt = pU*, (1.39)

which also implies
Nt = p,U". (1.40)

In fact, there should be generally another term, say, V** in (1.39) such that VU, = 0.
The term V* is equal to zero in the Eckart definition of hydrodynamic velocity. The
relations listed above will be found useful for deriving various evolution equations
for macroscopic variables from the covariant kinetic equation.

1.1.5 Energy-Momentum Tensor and Related Observables

Various relevant macroscopic variables such as energy density, heat flux, and so
forth can be defined in covariant form with the help of the hydrodynamic velocity
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and projectors by using the energy-momentum tensor 7,/". The scalar energy density
&, of species a is given by

E, = ps&q = c2U, T U, (1.41)
where &, is the energy density of species a, and the scalar (nonequilibrium) pressure
pa by

1 w
Pa = §A/WTa . (1.42)

That is, p, is the trace of the energy-momentum tensor divided by 3. The non-
equilibrium enthalpy density may then be defined by the formula reminiscent of its
equilibrium counterpart

Ba = Ea + Pa/Pa = Ea + Pava, (1.43)
where v, is the specific volume defined by
Vg = 1/pa. (1.44)

We emphasize that both £, and p, are of nonequilibrium and mechanical. As they
stand, both &, and p, are mechanical and hence so is h,. Their thermal aspect is not
apparent.

The heat flux (four-flow) QY is also expressed in terms of a projection of energy-
momentum tensor 7,77 as follows:

ol =U,T)° AL (1.45)
It is useful to define the number diffusion flux (four-flow) J/' by the expression

JI' = NI'— ¢, N", (1.46)
where ¢, is the number fraction defined by the hydrodynamic density ratio

Ca = Pa/P- (1.47)

It should be remarked that in the relativistic kinetic theory the diffusion fluxes are
defined in terms of the number fluxes instead of the mass fluxes generally used in
the nonrelativistic kinetic theory, but J! is not a projection of 7,/ unlike ol or
the pressure tensor P.° discussed later. The reason is to distinguish diffusion fluxes
from heat fluxes, or energy fluxes, because of the equivalence of mass and energy in
relativity. However, it will be found convenient to use a modified heat flux defined by

or =0k -3, (1.48)
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where J4 is a mechanical energy diffusion flux defined by
I =hJr (1.49)

Here # is the equilibrium enthalpy of the entire fluid; it is the equilibrium limit
of h = > _, h,. Therefore the nonequilibrium aspect of J is borne by J;' of
species a. The definitions in (1.48) and (1.49) are motivated by the notion that heat
in thermodynamics is not simply a form of mechanical energy flow, but an excess
of energy carried by the material particle diffusing in matter; the latter part being
represented by iJ}'. Therefore Q' is thought to inherently represent the “heat” as
what we intuitively mean in our everyday life, it being a quantity intimately tied up
with the second law of thermodynamics.

The nonequilibrium pressure p,, is generally different from the hydrostatic (equi-
librium) pressure of species a. It will be presently defined more precisely together
with the pressure tensor and the related quantities. In the molecular theory of heat,
what is just said is that which we mean by heat, if we want to identify it with the
heat in macroscopic (thermodynamic) theory of heat; see the nonrelativistic theories
part of this work in the previous volume. As will be seen later, it will be indeed also
the case in the relativistic description of heat when irreversible thermodynamics is
formulated later in this chapter.

Clearly, from the definitions of heat flux and diffusion flux it can be shown that
there hold the following frequently used identities:

v, 00=0, UJ}=0. (1.50)

These identities can be easily verified by using the properties of projector and U*.
Consequently, there also follows the identity*

U, 0¥ =0. (1.51)

The total heat flux (four-flow) Q* is a sum of Q} over species:

0"=> 0! (1.52)
a=1
and similarly
o = z o (1.53)
a=1

However, owing to the definition of J}' the diffusion fluxes are not all independent
of each other since there holds the relation

“Identities (1.50) and (1.51) imply that heat and diffusion fluxes are orthogonal to the hydrodynamic
velocity U*.
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Zr: Jh=0. (1.54)

a=1

This implies that if the fluid is of a single component, there is no diffusion flux
present.

The stress (pressure) tensor P;” is defined as a projection of the energy-
momentum tensor onto spatial components

P = AFTITAY. (1.55)

In order to more clearly reveal its physical meaning we decompose P,” into the
traceless symmetric part I1,”, the excess trace (i.e., excess normal stress) part A,
and the hydrostatic pressure p, of species a into the form

P = p, A" 4+ A APV 4 TIF (1.56)

where the hydrostatic pressure is defined in terms of the equilibrium energy-
momentum tensor denoted Te‘:‘ﬂ by the formula

1 )
Pa = gAng;ﬁ, (1.57)

then the excess normal stress A, is defined by a fluctuation of p, from the hydrostatic
pressure denoted by p,

~ 1 .
A, = gAaﬁTaW — Pu = Pa — Pa. (1.58)

The equilibrium (more precisely, local equilibrium) energy-momentum tensor Te[;“g
may be calculated with the equilibrium distribution function f; with the statistical
mechanical formula

TL = (phplfs). (1.59)

The equilibrium distribution function f? is the equilibrium solution of the covariant
kinetic equation. The precise form of f¢ will be obtained later at a more appropriate
stage in the development of the theory under discussion.

The traceless symmetric part 1" of 777 is related to the viscous phenomena
whereas the excess trace part A, is associated with dilatation/compression of the
fluid (gas) over and above the hydrostatic value, that is, a fluctuation of pressure
from the equilibrium value. The term A, 7/" in (1.42) is the normal stress (trace
part of the stress). Therefore Ag may be regarded as the normal stress in excess of
hydrostatic (equilibrium) pressure (force per unit area)—the equilibrium value of
normal stress. We emphasize that p, in (1.57) is an equilibrium property. Therefore
Ay isa purely nonequilibrium component of the normal stress.
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The component stress tensors add up to the total stress tensor made up of the
following three contributions, each composed of species components:

" = Z n, A= Z A, (1.60)
a=1 a=1

and p, the total pressure, given by the formula

= Pa (1.61)
a=1

The energy-momentum tensor 7" can then be decomposed into the four major
components

Taﬂl/ — C—ZEaUNUl/ + C—Z (QZUI/ + QZUV‘)
+c(JLUY + LU + P (1.62)
On summing this expression over species it follows
T = ¢ EUMU” 4+ ¢ (Q"U" + U" Q") + P, (1.63)

for which (1.54) is made use of for the third term on the right in (1.62). We note that,
energy E, being written in terms of energy density &,,

E, = pagm (164)

summing it over species gives the total energy E:
E:=pf = pila. (1.65)
a=1

Therefore, with the definition of density fraction

o, =2 (1.66)

p

the total energy density £ is given by the sum of partial energy densities times the
density fraction ¢,:

£=> b (1.67)
a=1
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The hydrodynamic variables presented above obey the relativistic hydrodynamic
equations obtained from the covariant Boltzmann equations that we have postulated
for the relativistic gaseous mixture under consideration.

1.1.6 Relativistic Generalized Hydrodynamic Equations

Balance Equations for Conserved Variables

The particle number and the energy-momentum tensor are collision invariants of the
relativistic Boltzmann collision integral, and their evolution equations turn out to be
conservation laws of number density and energy-momentum. They are easily derived
from the covariant Boltzmann equation. Upon operating contravariant derivative 0,,,
namely, differentiating (1.19) for N* and (1.21) for 7" and using the covariant
Boltzmann equation (1.12), the covariant balance equations for the particle number
and energy-momentum are, respectively, obtained.
The particle number balance equation is given by

0,N" =0, (1.68)
and the energy-momentum balance equation by
0, T = 0. (1.69)

Note that because N* and T are collision invariants of the covariant kinetic equa-
tion, there is no source term in the balance Eqgs. (1.68) and (1.69) arising from
the kinetic equation. Traditional fluid dynamic equations—conservation laws with
appropriate constitutive relations—can be obtained from these balance equations,
provided that the constitutive equations are supplied for the stress tensors, heat fluxes,
and diffusion fluxes. For the purpose of obtaining them the covariant derivative 0/
is decomposed into time-like and space-like parts with the hydrodynamic velocity.
Since
o = g"o,,

by eliminating the metric tensor with the help of the projector A*” and defining the
new symbols for derivatives

D =U"d,, (1.70)
Vh = AP, (1.71)

the covariant derivative operator can be decomposed into two components in the
form
oM = c2UMD + V. (1.72)
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Similarly, the contravariant derivative can be decomposed as
Oy =c?U,D+V,, (1.73)

where
Vy=A47,0" (1.74)

From the property of the projectors A" in (1.9) follow the identities related to U*
and V#*:
U'v,=0; U,v"=0 (1.75)

The operator D will be called convective time derivative, which is the relativistic
analogue of the nonrelativistic substantial time derivative, and V¥ covariant gradient
operator. In the local rest frame in which

Ul = (¢, 0,0,0), (1.76)

D and V* are given by the usual time derivative and spatial derivative operators,
respectively:

Digr =0/0t, Vig =0, Vig=—Vigy =—0/0x" k=1,2,3). (1.77)

By using the decomposition of 9" and various definitions, such as hydrodynamic
density, etc. presented earlier, it is possible to derive from the conservation laws
(1.68) and (1.69) the balance equations of density, density fractions, momentum,
and energy. To derive various balance and evolution equations it is convenient to
collect some useful identities involving hydrodynamic velocity and projectors as
well as D and V*. They are as follows:

U'v, =0, U,v" =0, U"o,p = —po,U",
U/LDU# =0, U}LVUUM =0, U/Jf‘]tél =0,
U,DJ" = —J]'DU,, U,DQ"=—-Q'DU, U,Q"=0, (1.78)
ALV,U" =V,U",  ALQy =0l
ALTY = TP, ALPY = P,

These identities are easy to prove, but handy to have collected to help derivations
of various evolution equations. Since derivations of balance equations for conserved
variables are fairly straightforward, we list only the results without the details of
derivations.

Equation of Continuity

Substitution of the decomposition of 9, in (1.73) into (1.68) yields the equation of
continuity
Dp = —pv,U". (1.79)

One of identities in (1.78) is used for this equation.
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Density Fraction Balance Equation

Upon applying convective derivative on (1.66) and using identities involving J' in
(1.78) we obtain the density fraction balance equation

pDc, = =V, J! + ¢ 2] DU, (1.80)

Equation (1.80) presumes that the material particles do not chemically react. The last
term on the right is not present in the nonrelativistic counterpart; it indeed vanishes
in the nonrelativistic limit as u /¢ — 0.

Momentum Balance Equation

Operating the projector A¥ on the energy-momentum balance equation yields the
equation
ALO,TY = 0. (1.81)

Upon inserting the decomposition formula (1.63) for 777 there then follows the
momentum balance equation

EpDUF = 7y — AL, P
+c7? (P#VDUV—AgDQw_ 0"V, U" — QVVVUN) i (1.82)

where the pressure tensor P may be further decomposed:

r
W

P = z (A A% + TI27) = AA®Y + 1%V (1.83)

a=1

To derive the momentum balance equation we have used the identity
AV UY =V, U

listed in (1.78). The momentum balance equation differs from its nonrelativistic
counterpart in that there appears ¢ ~2€ multiplied to pDU" on the left-hand side and
on the right-hand side, in addition to the relativistic effect term (i.e., the last term),
the divergence of the pressure tensor term is a little modified from the form reported
by de Groot et al. [3] Nevertheless, as u/c — 0 it reduces to the nonrelativistic
momentum balance equation known in the classical hydrodynamics [9].

Energy Balance Equation

The energy balance equation also follows from the energy-momentum tensor balance
equation (1.69) upon contracting it with ¢ ~2U ,, and using some of the identities listed
in (1.78). It is given by the equation

—uv

pDE = —v, 0" —pv,U"+ P v,U, +2¢*Q"DU,, (1.84)



16 1 Relativistic Kinetic Theory for Matter

which makes the energy balance equation look formally different from the nonrel-
ativistic version, but the last term vanishes in the nonrelativistic limit as u/c — 0,
yielding the energy balance equation in the classical hydrodynamics [9].

The conservation laws derived earlier are found to contain flow four-tensors such
as diffusion flux, heat flux, and diffusion flux. These flux tensors are nonconserved
variables, which are basically different from the conserved variables such as density,
energy, and momentum, because the latter are devoid of energy dissipation mech-
anisms, whereas the nonconserved variables dissipate energy in the course of their
evolution. Their mechanical cause for energy dissipation lies in the fact that, while
evolving, they do not conserve energy in the course of collision processes. Their
evolution equations contain an energy dissipation term in contrast to the balance
equations for the conserved variables as we have already noticed.

Evolution Equations for Nonconserved Variables

It is possible to derive the evolution equations of the aforementioned nonconserved
variables, first defining the supermoment tensor four-flow by the formula [4]

w((lq)a#...,, = (fa(xa pa)pghéq);t~~~v> (1.85)

as a generic representative of nonconserved variables spanning the thermodynamic
manifold, which we regard as the flux of moment 2", For want of terminology
for this quantity we will henceforth call it supermoment. And then contracting the
supermoment ¥\’ with hydrodynamic velocity—i.e., projecting it onto U,—we
obtain the desired macroscopic flux tensors, such as shear stress tensors, heat flux
four-vectors, etc., which are generically denoted by d7 "

cpflq);bmy = pa$gq)u...y — C_ng’l/J(gq)Uu'“V. (186)

Summing QW over species components, we obtain the flux tensors for the entire
mixture

r r
QI = p®WIT =" p WY = p " ¢ QW (1.87)
a a
a=1 a=1
In the present theory, the set of ® is ordered, for the leading elements, in the

following sequence:

o =1 P = A, OIr =0k OWH=J" etc., (1.88)
which implies that the set for the moments 2" should be correspondingly
ordered. Here, as defined earlier, I17” denotes the shear stress tensor; A, the excess
normal stress; Q' the heat flux in excess of the heat carried by particle diffusion;
and J the number diffusion flux.
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Leading Moments of the Hierarchy

The leading moments® corresponding to the nonconserved variables listed in (1.88)
are as follows [4]:

WO = 2 (Up)) ™ (AﬁA? - %AMA’“’) Papa: (1.89)

hc(z2) = C U/\pa |: l“/pa pa _2 (pa/Pa) (U)\p;\)] ’ (190)
W = (Unp)) {A4pSpLU

) [~ o - (191

hm = ¢ (UApa) [pt 2(p )\U/\) v, (1.92)

where 7, is the density of A,, namely, ha = hy /pa. The parameter o will turn
out to be the equilibrium enthalpy density, when evaluated with the equilibrium dis-
tribution function. The choice made for (1.89)—(1.92) needs explanations, and, in
particular, the appearance of the rest mass energy m,c? in h(3)" will be elaborated
on presently. The moments h&"" are chosen such that they emerge as the nonrela-
tivistic moments for the nonconserved variables, such as shear stress, excess normal
stress, etc. In this connection, subtracting the rest mass-energy flux represented by

c? [pfj —c? (U/\ P ) U “] is necessary to recover the nonrelativistic limit agree-
ing with the Boltzmann kinetic theory result.® In order to make this aspect of their
correspondence with the nonrelativistic kinetic theory as apparent as possible, we
would like to digress and introduce the notion of relativistic peculiar velocity, which
would help to comprehend the moments chosen in this work.

Relativistic Peculiar Velocity

The moments chosen A" (¢ =1,2,3,4---) in (1.89)—(1.92) may be put into
forms more readily recognizable in correspondence to the nonrelativistic kinetic
theory, if we introduce the notion of relativistic peculiar velocity defined by the
formula

31t should be noted and kept in mind that the projector A, etc. are to be applied after the statistical
mechanical averaging is performed on the molecular expression of the moment. Therefore, if one
wishes to understand, for example, h,(ll)“ ¥ at the molecular level the factor

1
(AﬁAZ - gA“”AaT) PaPa

should be taken as

oV

1
=" (pg pao) -

pa pa - 3
where ( )24 pag) is the trace of pJ p/, which is equal to m, ¢ 2, Here traceless symmetry generating
operator (A A — 3 A" A,) is meant to be applied after statistical mechanical averaging is taken.

6Accordmg to the Boltzmann kinetic theory, i.e., nonrelativistic kinetic theory, h((f)“

Zma (Cy-Co)Cuyp — h](, u» Where C, is the peculiar velocity C, = v, —u.
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- ) Pl —U". (1.93)

It is a weighted momentum (in fact, a weighted four-velocity) relative to the hydro-
dynamic velocity U*. Since

2 2)1/2 _

—1
= m;l [(1 +Pa - pa/mac Pa -u/macz:l s

(Uar2)
¢/, tends to the nonrelativistic peculiar velocity as u/c — 0:

lim € = Cyp = 4, — Uy, (1.94)

u/c—0

where v, and u,, are, respectively, the uth spatial components of particle velocity
of species a and the reference velocity—the fluid velocity. In connection with &/ its
definition is motivated if we examine the projection of particle momentum Af p?,
which can be written

Alpg = pl—c 2 (pyUy) U = ¢ 7% (p)U,)) €. (1.95)

Therefore, from the mathematical standpoint the relativistic peculiar velocity ¢ is
generated upon projecting pg onto the u direction of hydrodynamic velocity.
The relativistic peculiar velocity €/ has the properties:

¢ry, =0 (1.96)

and
AET =, ACT =C,,, etc. (1.97)

The relativistic peculiar velocities are useful in deducing the nonrelativistic limits of
the moments 27 listed in (1.89)—(1.92). For the purpose """ can be written in
forms more easily comparable to the nonrelativistic theory moments used in Chap. 3
of Volume 1 on the Boltzmann kinetic theory, if hPP is cast in the form

C2

= —— MO, (1.98)

p@
¢ (UAPZ,\) ¢

where the moments M. are expressed in terms of €, by the formulas
MO = = (U,p)) [€.C1P (1.99)

|
2 (UAp)) (€4C,,) — 2 (Uap)) (5—) : (1.100)

Mo —
a 3 a
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MO = (0up)) [(037) —mac®) — ] . a.1on
M{E4)/z — C72 (UAPQ) oK, (1.102)

a

Here we have used the abbreviations for second rank tensors

1
[€,C, 1@ = AFEIECTAY — S AL, (1.103)
Tr¢, ¢, := (Che¢,,) = A, EJC], (1.104)

thatis, [¢,€,]®"" is the traceless symmetric part and (Q:Z &, ﬂ) the trace of the second
rank tensor ¢4 ¢”. In the nonrelativistic limit of u/c — 0, where (1.94) holds, the
moments listed in (1.99)—(1.102) are easily seen to tend to the nonrelativistic limits

}imohf})w = m, [CoCa] P, (1.105)
1
Jim 1 = m, [gca Cy— 5—} , (1.106)
1 N
}imohf”‘ = 5Ma (Cy - Co) CF = hgmyCy s (1.107)
lim A" = m,C,,, (1.108)
u/c—0 ¢ K

with which we derived the evolution equations for shear stress, excess normal stress,
heat flux, and diffusion flux in the nonrelativistic kinetic theory. Especially, in the
case of hff)”, if the rest mass energy flux myc*€4 were not subtracted from the energy
flux (i.e. the first term on the right of (1.101), evidently the nonrelativistic limit of
" in (1.107) would not have been obtained. This point was one of the principal
motivations for inserting the m,c? factor in (1.107). Physically, it also removes the
contribution of the rest mass energy to heat flow.

As will be shown in a later section of this chapter, when averaged with the non-
equilibrium distribution function f, according to (1.85) and (1.86) they give rise to
physically relevant macroscopic variables such as 17", A,, Q/¥, and J, which also
tend, in the limit #/c — 0, to the nonrelativistic nonconserved variables appearing
in the nonrelativistic kinetic theory in Chap.3 of Volume 1 of this work. The rest
of the moment set can be suitably chosen in terms of higher-rank irreducible ten-
sors constructed according to the Schmidt orthogonalization technique, beginning
from the seed moments for density and internal energy; on this aspect see Chap.3
mentioned. The higher-order moments are not listed here because they give rise to
macroscopic variables rarely observed in experiments or in nature, and hence we are
not going to use them in the present work. The moments listed here are irreducible
Cartesian tensors and vectors and, in fact, those tending to the so-called first “13
moments” plus the moments for diffusion in the nonrelativistic kinetic theory in the
limit of u/c — 0 as will be shown later when we discuss the nonrelativistic limits
of evolution equations obtained in the present theory.
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In the following, we resume discussions with moments 2" given in (1.89)—
(1.92).

Generic Evolution Equation for Nonconserved Variables

To derive the evolution equation for 65,")”'"” we observe that the substantial time

derivative © in relativistic theory is defined by
D = N"0,. (1.109)
It can be decomposed into the time and space components
D =pD+N"V,. (1.110)
However, since N*V,, = pU"V,, = 0in Eckart’s definition of hydrodynamic veloc-
ity, the substantial derivative ® simply becomes the convective time derivative D
times p:
® =pD. (1.111)
Now, the substantial time derivative of 53]) can be recast into the form

ga((lq)u...u — Naaga\)l(lq)ﬂ---y =9, (Naa;((lq)“,.“y) _ 6‘(1q)u...,,80NU' (1.112)

Then, since 9,N* = 0 according to (1.68), in the Eckart’s definition of U* the
substantial time derivative of flux density 62‘” on the left of (1.112) can be written as

pDODHY = 9, (N7 D7) (1.113)

Rearrange the right hand side of this equation to the form

pDID = =0, (P07 = NTBDI) 4 Oy (1.114)

Let us then define the “projection of supermoment tensor” Q7" for the divergence
term

Q{(lq)(ru---u _ 7J}L(lq)(m---u _ NU&;L‘DM"'” = Azwﬁ(l‘/)“’“'"”, (1.115)

By using the covariant kinetic equation, 9,1 is easily shown to yield the evolution
equation

Do P = (fu(x, pa) PO )+ AP (x) (1.116)
with the dissipation term A" defined by the formula
A((lq)u»-.,/ — Z <hLlI)u---yCub (far fb)) . (1.117)

b=1
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Thus, on substituting (1.116) into (1.114) we obtain the generic evolution equation
for % in the form

pDODIY = 9 QUK=Y 7 @iy @iy (1.118)

where the kinematic term Z?"" is now given by the expression

r

Z@owr — Z(fa(x, Pa) PO D). (1.119)

a=1

It can be shown that the kinematic term fo’)“ " tends to the nonrelativistic limit

obtained from the nonrelativistic Boltzmann equation; for this purpose it will be

found convenient to make use of the relativistic peculiar velocity introduced earlier.

We also observe that in view of the nonrelativistic limit (1.94) the projection of

supermoment tensor 247" tends to the nonrelativistic moment one-order higher
(@p--v,

than moment M, :

im Q@onr
lim Q =

lim (f,€oMOm ),
u/c—0 u/c~>0(fa aa )

The presence of this term in the generic evolution equation is clearly the principal
reason that renders the set of evolution equations an open hierarchy.

On summing (1.118) over a, the evolution equation for D@r-l of the entire
mixture is obtained in the form

pDBDI = g QW | Z @iy A@p (1.120)

with the definitions

Q@opv _ Z Qny (1.121)
a=1
7 @Dpv Z Zt(lq)/r'-l/_ (1.122)

a=1

The kinematic terms Z”""" consist of rather complicated terms, which include
thermodynamic forces driving transport processes in the system as well as fluxes
coupled to thermodynamic forces.

The divergence term —0, Q7% also can be similarly evaluated. Some terms
from it, in fact, should be combined with Z“*""” to obtain a modified kinematic
term 39H7

36(14)#-“1/ - Zc(;qmmy + Kéq);wv’ (1.123)
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where
K" = —c2U, D (AZyp @) . (1.124)

With the kinematic term so modified, the generic evolution equation (1.120) now
reads
quAD(q)/h--v — _va@(q)(mwv + 3(61);1»% + A@Drv (1.125)
a ’ .

where the supermoment flux tensor O’ making up the divergence term is
defined by
WY = ATyl (1.126)

This form (1.125) of relativistic generic evolution equation formally better resembles
the nonrelativistic generic evolution equation for P@p-v appearing in Chap. 3, Vol-
ume 1 of this work. As a matter of fact, it can be easily shown that (1.125) tends to the
nonrelativistic generic evolution equation in Chap. 3, Volume 1. Note that 47"
is a tensor of rank one-order higher than the tensor 3@, which physically may
be regarded as the flux of macroscopic moment & (@,

The generic kinematic term Z* " givenin (1.119) and the term are eval-
uated for the cases of K" (g = 1, ..., 4) as defined by (1.89)—(1.92), and com-
bined to obtain the modified kinematic term 3" in (1.123). For the results pre-
sented below we make use of the decomposition formula (1.62) of energy-momentum
tensor 7, and various identities involving projectors listed in (1.78). The following
system of abbreviations is employed to simplify the presentation of the complicated
expressions involving tensor products:

Kéq)umv

1 1
[P vUIP" = 3 (PHv,U" + P Vv,U") — §A“’” (Ao PV,U%)  (1.127)
for the traceless symmetric part of tensor product P*?V,U", a tensor of rank 2;
Q) v 1 " Vi 1 v wa
[P = 3 (P* + Py — gA* Ao P9, (1.128)
for the traceless symmetric part of tensor P*” of rank 2;
[P- DU = P DU, (1.129)

for covariant vectors; and

1 1
[UU](Z)#V — UHUY — 5A;LV((JO'[]U) — UryY — §CZA;U/. (1130)
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Modified Kinematic Terms 3*

In the following the modified kinematic terms 37" given in (1.123) are listed for
qg=1,2,34:

For the Case of Shear Stress

The modified kinematic term for ¢ = 1 is given by the expression

3 = 2Py - VUIP = 2[Q, - DUIP™ —2[P,U - DUIP™
+ ¢ 2 (U"PY DU, + U" P DU,) + c > [UU]P" P*V.U,

1
- gc—2 (UM Q5v.UY + UY Q5v.U") + ¢ 2 [UU1®™ Q¥ DU,

3 Uxp))

g V W 1€ 1 W e
_Cz<faLpa§a>VgUw+—A’“’mgc4<fapa—p“2>V5Uw, (1.131)
(UAP&\) 3 (UAP&\)

1 E
—c*UMUT QY DU, + —mic <f,,( >(U“V U’ 4+ U"v.U"

where the second rank tensor P, may be decomposed into traceless and trace parts
as in (1.56).

For the Case of Excess Normal Stress
The modified kinematic term for g = 2 is given by the expression

2 2 , .
3,(12) - _,DaD (pa/pa) - gPéwv U - gcizQ:DUw - J;vs (pa/pa)

[
¢ (pa/pa) JEDU,, + = [P;’° —m? 4<fa PaPu ﬂ v.U,. (1.132)
3 (U)\pa)

The pressure tensor in the third term on the right also can be decomposed as in (1.56).
For the Case of Heat Flux

The modified kinematic term g = 3 is given by the expression
390 = P Dy, — QOV, U — PPV R, — ¢ 230V, U
FRLIZV UM + py (R, — E,) DUY — JIDR, 4 o777 ,U,
— 72U (QIDU, + ¢33 DU, — 1, J¢ DU,
— UM (PP*V,U. — J7V 1))

Moo How o
| P = { for P ) 9o, + PR ( fu 2P LS )V, U,
|: < (U)‘ a) (U)‘pa)z

M ow o
n met faptlpapa _SDS)NWU v,U,, (1.133)
(UAP3)2
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where "7 is defined by the rank 3 tensor
1T = (fuplipp7)-

The terms proportional to U* vanish in the local rest frame U" = (c, 0, 0, 0).
For the Case of Diffusion Flux

The modified kinematic term for ¢ = 4 is given by the relatively simple form

3 = —paDU" = J79,U" = c2UM I DU,

How o
—c2<faM“p“2>v(,Uw. (1.134)
(Usp2)

Projection of Supermoments

Lastly, we examine the projection of supermoment %."”*” making up the diver-

gence term in the generic evolution equation (1.118), which on substitution of the
moment 2" is given by the integral

(Uap) "

a

2w
@L(lq)(ru...y — <faAZ, C" Py M(q)“"'”>. (1.135)

The integral on the right of (1.135) cannot be generally completely reduced to a form
given in terms of nonconserved variables within the framework of the “13”” moments.
The reason is that w,ﬁ‘”‘”"”” for ¢ = 1,2, 3 belong to the set outside the so-called
first 13 moment subset. Nevertheless, it would be useful to examine their general
characters as tensors. On substitution of the explicit forms for M,ﬁ’““ " in the case
of ¢ = 1, 2, 3,4 we can ascertain their characters as tensors case by case as shown
below:

For the Case of Shear Stress
For ¢ = 1(shear stress) ©"7*" is given by the formula

@

@él)aull — [mU--] —U° [Ta](z)ﬂ” , (1.136)

where

2,0
1 .
[m}au](Z)/w = <fa ° pa)\ (Ag AT = §A57AW) P2P2>,

(Urp))

which is a rank 3 tensor, traceless symmetric with respect to the last two indices. If
the explicit expressions for projectors are made use of, the integrals may be partly
expressed in terms of stress tensors or heat fluxes etc., but there remains an integral
of a rank 3 tensor, which is traceless symmetric with respect to two indices out of
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three. Since it is rather bulky, but would not reveal its structure, we will leave it as it
stands.

For the Case of Excess Normal Stress

For g = 2 (excess normal stress) ®?7 is given by the formula

1 pg (Pipap)\ 1 1,
2o _ ~ 2 a _ o _ _ 2~0
O = 3¢ <f“ (Urp)) 3Q“ 3¢ Ve

= (Pa/pa) J7 — U7 (pa — Pa) , (1.137)

which clearly shows it is a vector, the first term being vector but an integral of rank
3 tensor contracted to a vector with respect to two indices, whereas the remainder
consists of a simple vectors.

For the Case of Heat Flux

For ¢ = 3 (heat flux) ®5"7" is given by the expression

o M
OV = PP 4 p W UTUN - <fﬁ> (1.138)
A

a
which shows ©57" is a rank 2 tensor. The integral in the third term would not easily
reduce to a well recognizable variable.

For the Case of Diffusion Flux

For g = 4 (diffusion flux) M is given by the expression

o M
W = (2 fap“—p‘/’\ —-UJr—-UrJ? — p,UU". (1.139)
(Uxp2)

a
Itis evidently a tensor of rank 2, but the integral is not well recognizable macroscopic
variable unless the nonrelativistic limit is taken, in which case it becomes an energy-
momentum tensor. Therefore it readily joins the rank of experimentally observable
macroscopic observables in the present scheme of theory.

By this, we conclude examination of kinematic and divergence terms as well
as the characters of ®’7""" making up the divergence term in the generic evolu-
tion equations for nonconserved variables """ Examination of the dissipation
terms will have to wait until the thermodynamic theory is formulated, so that the
thermodynamic consistency is properly imposed on them.

We emphasize that the evolution equations represented by the generic evolution
Eq. (1.120) are coupled to the momentum, energy. and concentration balance equa-
tions presented earlier. As in the nonrelativistic kinetic theory this set of evolution
equations is open and therefore must be suitably closed by means of a suitable
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closure relation. When the set is thus closed’ and made consistent with the laws of
thermodynamics, it provides relativistic generalized hydrodynamic equations con-
sisting of (1.79)—(1.82), (1.84) and (1.118), if the number of moments is limited to
a finite value by the closure. The generic evolution equation (1.118) can be easily
shown to tend to the nonrelativistic counterparts in the limit of #/c — 0. This will
be shown in a later section.

The macroscopic moments {<I>flq) :q =1,...,4,...} are defined in a signif-
icantly different manner from the conventional moment method [4]. As a conse-
quence, their evolution equations are accordingly different. Furthermore, since the
moment evolution equations will be subjected to the the laws of thermodynamics,
the macroscopic theory on which the hydrodynamic theory is based remains ther-
modynamically consistent.

The covariant Boltzmann equation, as any kinetic equation, is a mathematical
model for relativistic macroscopic fluids. The model is purported to provide us with
a molecular theoretic picture and our way of comprehending macroscopic processes
observed in nature and laboratory. The physical reality of such a model for molecular
systems as a theoretical representation of macroscopic fluids should be subjected to
the physical laws (e.g., the thermodynamic laws) governing macroscopic processes
in fluids. The currently accepted paradigm for macroscopic physical phenomena is
that all macroscopic phenomena are subject to the laws of thermodynamics. There-
fore, the evolution equations derived from the covariant kinetic equations, including
the balance equations for the conserved variables, must be subjected to the laws
of thermodynamics before being judged physically reasonable and acceptable as a
theory representing macroscopic processes in fluids [10—13]. In fact, this thermody-
namic validation process makes the distribution functions with parameters therein
acquire, as the candidates for approximate solutions of the covariant kinetic equation,
the desired thermodynamic and microcopied theory meanings founded on thermo-
dynamics of irreversible processes. Therefore various statistical mechanically cal-
culated macroscopic observables consequently get endowed with physical meanings
and anchored on the phenomenological thermodynamic and fluid dynamic observa-
tions and experiments. To achieve this aim we now introduce the Boltzmann entropy
and the H theorem.

1.1.7 Boltzmann Entropy and the H Theorem

In the preceding sections the relativistic hydrodynamic variables have been presented
as statistical mechanical averages computable with the help of the distribution func-
tion described by the covariant Boltzmann equation and their evolution equations
have been derived therefrom. We have also posited that the hydrodynamic descrip-

TThe set {hf,q)} must be closed such that the thermodynamic branch f (x, p,) of the distribution

function f;, (x, p,) is normalizable, that is, the set must be closed at the even order of h((;” so that
the integral involved is convergent. See (1.210) below for £ (x, pa).
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tion must remain consistent with the laws of thermodynamics, particularly, the second
law of thermodynamics, so that the mathematical model theory formulated thereby
can be firmly grounded in the physical reality as required of a physical theory. Since
the variables describing macroscopic processes are generally varying in space—time,
the thermodynamics must be necessarily in the realm of irreversible thermodynamics
governing processes evolving in spacetime.

Boltzmann Entropy and Its Balance Equation

In order to formulate irreversible thermodynamics for the relativistic system it is
necessary to introduce the Boltzmann entropy four-flow in a covariant form

r

' (x) = D St (x) = —kp D (pl falx. pa) In fu(x, pa)). (1.140)
a=1

a=1

To distinguish it from the Clausius entropy used in thermodynamics, which was intro-
duced for reversible cyclic processes [13—15], it should be more precisely called the
Boltzmann entropy four-flow, but for brevity of terminology we will sometimes sim-
ply call it entropy four-flow. However, the distinction from the Clausius entropy
of reversible thermodynamic processes should be kept in mind in order to prevent
possible confusion that might arise when we use the term later in connection with
irreversible thermodynamics of relativistic fluids. Incidentally, the statistical mechan-
ical formula given here for S* (x) is without the (—1) factor on the right, which is
inserted in the literature in kinetic theory since the entropy so defined appeared to
be more convenient. It thus reads

r

" (x) = —kg D (Pl fa(x, pa) [In fulx, pa) — 1)

a=1

See, for example, Ref. [3] for this definition. The factor was convenient to have
for discussing equilibrium thermodynamics in statistical mechanics, but we find it
superfluous and can be a source of confusion. It would be better if it were not inserted
in the definition of S* (x).

With the four-vector S# (x) and hydrodynamic velocity U* the scalar Boltzmann
entropy S (x) can be constructed as follows:

S(x) =c?U,S", (1.141)
with which we may then define scalar Boltzmann entropy per particle S:
pS (x) =S (x). (1.142)

This is the quantity that plays an important role in determining the stability of the
equilibrium solution because it may be regarded as a Lyapounov function [16] as it
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is done so for the nonrelativistic kinetic theory discussed in Chaps.3, 5, 6, and 7 of
Volume 1 of the present work.

With the definitions of the entropy four-flow and the scalar entropy density we
can derive the (Boltzmann) entropy balance equation from the covariant relativistic
Boltzmann equation. The covariant form of the Boltzmann entropy balance equation
is given by

OuS" = Tent (), (1.143)

where the Boltzmann entropy production oy (x)—the source term—is given in
terms of the collision integral C,,(f,, f») of the kinetic equation by the statistical
mechanical formula

Oent () = —kp D~ D" (In fu(x, pa)Ca(fus fu)) - (1.144)
a=1 b=1

To cast it into a more transparent form let us abbreviate the collision integral for
brevity of notation as below:

_Ga;,/d pa/d3pa/d3 /d3p,, ab (PapplPip)) -+ . (1.145)

By following the well-known procedure [3, 4] that makes use of the symmetry
properties of the transition probability (1.15), it is easy to show?® that the Boltzmann
entropy production ey (X) can be written as

Tent (X) = ——k322< (;;”) ff,,*—faf;,)>c. (1.146)

=1 b=1

Since In (y/z) (y — z) > 0 with the equality holding only if y = z, the right hand
side of (1.146) is positive semidefinite:

Oent (x) =0 (1.147)
with the equality holding only at equilibrium reached in long time. Hence at equi-
librium Py

b
[m( . ) (fify— fafb)] =0. (1.148)
fa 1y Ja=15:Jo=15

Equations (1.146)—(1.1438) is the content of the H theorem in local form. Here f;
and f;*° denote the equilibrium solution of the covariant kinetic equation and the
post-collision distribution function.

8The proof follows the same procedure as for the nonrelativistic Boltzmann collision integral. For
this reason it is not shown here to avoid repetition.
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From the viewpoint of the stability theory of differential equation systems, which
the covariant Boltzmann equations may be regarded as, the H theorem may be
thought of as a Lyapounov stability theorem [16] for stability of the solution of
the kinetic equation in question since the (Boltzmann) entropy can indeed serve as a
Lyapounov function, and the equilibrium state characterized by f7 is stable in accord
with the Lyapounov stability condition.

Although in the literature on kinetic theory and statistical mechanics the Boltz-
mann H theorem is generally regarded as a statistical mechanical representation of
the second law of thermodynamics, we refrain from taking this viewpoint because
there is a clear distinction that should be made between the Clausius entropy for a
reversible process and the Boltzmann entropy of nonequilibrium dynamic processes
as mentioned earlier in this chapter and in chapters on nonrelativistic kinetic theory
in this work. In fact, the H theorem is a broader theorem that governs the stability
of equilibrium state of the system in the phase space than the second law of ther-
modynamics that governs the stability of macroscopic processes at equilibrium, or
reversible processes, in the manifold of macroscopic variables. For the latter is a
projection of the phase space of a much higher dimension® onto a finite dimensional
macroscopic variable manifold in which macroscopic irreversible thermodynamics
is described. What we mean by projection will be elaborated on later when the theory
is further developed.

The covariant Boltzmann entropy balance equation can be written in a more useful
form in terms of the scalar entropy density

pDS = =0, J! + 0eni (x) , (1.149)
where the Boltzmann entropy flux is given by
JI= 8" — SN = 8§ — pSU" = AIIS”. (1.150)

On inserting the statistical mechanical expression for the Boltzmann entropy four-
flow S, the statistical mechanical formula for J now reads

JI=—kp D APl fu(x, pa) In fu(x, pa))- (1.151)
a=1

The derivation of (1.149) is made as follows: By using the same procedure as used for
(1.112) and (1.113) it is easy to see that in Eckart’s definition of U# the substantial
derivative of the scalar Boltzmann entropy S can be written

pDS =8, (pSN") , (1.152)

9This point can be better comprehended if we recall that the distribution function f, (x, p,) is a
singlet distribution function of the many-particle distribution function representing the ensemble of
representative systems.
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which then can be rearranged to the form leading to (1.149):

pDS = =0, (8" — pSN") 4 0,8" = =0, AS” + Oent (x)
= _8u-lsu+0'ent (x). (1.153)

As it stands, however, the H theorem is not equivalent to the second law of
thermodynamics nor does it provide a clue as to whether and how the requirement of
the second law of thermodynamics is fulfilled. To achieve the latter aim it is necessary
to introduce another concept called calortropy as was done for nonrelativistic theories
in the previous chapters of Volume 1, but it would first need the discussion of how
we might determine the solution of the kinetic equation and the equilibrium solution
before defining the calortropy.

Equilibrium Distribution Function

The Boltzmann H theorem makes it possible to obtain a unique equilibrium solution
of the covariant kinetic equation since at equilibrium

Oent = 0, (1.154)

and it implies that, if the equilibrium solution of the covariant kinetic equation is
denoted by f; (p,), then (1.154) necessarily means

P30 f5 (pa) = 0. (1.155)

Equation (1.154), moreover, means that In f; (p,) is a summation invariant of the
covariant kinetic equation. Therefore there holds the condition

In £ +1In f; =1n f7* +1In £, (1.156)
which implies that the equilibrium distribution function must be a linear combination
of basic collision invariants. Therefore In f; and In f* (k = a, b) may be generally
written in the form

In f§ = ar(x) + by, (x) py; (1.157)
and similarly forIn f¢*. Here qy is a scalar and b, is a vector independent of p;. More

precisely put, these parameters satisfy the Killing equation [3, 17] derived from the
covariant kinetic equation

t 0 ’
PO fic (6, pi) £ mFY (e, pi) 5 i (5, o) = D Culfis fy,  (1.158)
=1

where F*" (x, px) is the Lorentz force.

FI(x, po) = —mq—]':cF“”(x)pk,, (1.159)
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with g, denoting the charge of the particle k and F* the electromagnetic field tensor.
Here for generality we have inserted the Lorentz force [7, 18] in the kinetic equation.
Insertion of (1.157) into (1.158) yields the equation
P Ouax(x) + pi py0,biy (x) + myby, (x)F" (x, py) = 0. (1.160)
The electromagnetic field tensor may be given in terms of the four-potential A
FH = 0" A" — OMA”. (1.161)
On using this relation in (1.160) there follows the equation
Pi [0"ar — ¢ 'qubi, F™] + py p}0ubr, = 0. (1.162)
It is concluded from this equation that

May — ¢ Lqpb, F* =0, (1.163)
by + 0"b) = 0. (1.164)

Equation (1.164) is called the Killing equation [19]. Its general solution can be
written as

by (x) = by + wi¥x, (1.165)
with b and w;” = —w," being independent of x. As shown later,
b, = —U"(x) /kgT (x) (1.166)

with U* (x) denoting the hydrodynamic velocity field, and 7' (x) turns out to be the
temperature field.!® Therefore the most general equilibrium solution for the system
obeying the covariant kinetic equation is a linear combination of translation and rigid
rotation. If the rigid rotation is excluded, the hydrodynamic velocity field and hence
the temperature field are independent of x. If we set

) (1.167)

10A5 a matter of fact, at this point 7' (x) here is not known to be the temperature field. We are
anticipating it to be the temperature of the equilibrium system when thermodynamic correspondence
is made according to the thermodynamic theory of processes as will be shown later. Thus we may
set Te = T (x).
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Equation (1.163) becomes
O'uE (x) + ¢ 'qU, F™" (x) =0 (1.168)

and we obtain
OO 1 (x) + ¢ 'qrU, 0" F” (x) = 0. (1.169)

Take the antisymmetric part of this equation
U, [0"F7 (x) — 8"F7" (x)] = 0. (1.170)
Making use of the homogeneous Maxwell equations
O'F" (x) + O*FH (x) + 0° F* (x) =0, (1.171)
and taking the convective time derivative D = U"0, it is concluded that
DF" (x) =0. (1.172)
This implies that equilibrium is possible only if F"* (x) does not change in time,
provided it remains constant in the rest frame with respect to U*. The condition
suggests that

DA"(x) =0 (1.173)

according to (1.161), that is, F"* (x) = A*(x) within an arbitrary function of
spacetime. And (1.168) now reads

" [1e (x) + ¢ q U, A (x)] = 0. (1.174)

Therefore
pg () = pg — ¢ g U, A" (x) (1.175)

with pf denoting a constant. Combining these results into (1.157), we now conclude
that the equilibrium distribution function is uniquely given by the form

[ (pa) =T exp{— kgT) ™" [Pl + ¢ 'quA" )| U, + 1S (kpTo) ™'}
(1.176)

where T'f, is the normalization factor defined by
e =h'(exp {— (kgTo) ™" [Pl + ¢ 'quA" (O U, + p kpT)'}). (1.177)

Here we have inserted 23 (h = Planck constant) to make the normalization of the
distribution function dimensionless. If there is no external force field, then
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15 (pa) = exp{— (kgT) ™" [phU, — pg] —InTE} . (1.178)

The uniqueness of f; (p,) owes it to the H theorem. In fact, as in the case of the
nonrelativistic Boltzmann equation the H theorem may be regarded as the Lyapounov
stability theorem [16] of equilibrium and, in particular, the equilibrium state defining
[ (pa) living in the phase space.

Given the equilibrium distribution function with the parameters a, (x) and bl (x)
asin (1.167) and (1.166) the equilibrium entropy

$¢=—kp D (fsc?Uupliin £5) (1.179)
a=1

is easily evaluated. It is convenient to introduce entropy density S per particle by
the relation

S¢ = pS°. (1.180)
Then we find ]
p .
pS® = F(E—Zyica)+k3 ] (re)™. (1.181)
a=1 a=1
Setting
Pva =kpTIn [ [T := kpT.InT*. (1.182)
a=1
where we have set
p¢ := p (hydrostatic pressure) (1.183)

to uniformize the notation on the equilibrium intensive variables, we obtain the
equilibrium (Boltzmann) entropy density

e __ P . e e
pS —F(c‘)—;uaca—i—p v). (1.184)

For (1.181) we have made use of the definitions of internal energy and density at
equilibrium given in terms of the equilibrium energy-momentum tensor 7, and
the equilibrium particle four-flow N;", respectively. Identification of kT, In '*—
equilibrium grand partition function of the uncorrelated gas—is, as a matter of fact,
the necessary and sufficient conditions for S to exist in a bilinear form in the equi-
librium thermodynamic manifold 3 U . We will shortly find S€ to be an integral of
the differential form for S® in P U <.

Now to endow the physical meanings to the quantities in (1.181) the statistically
calculated S¢ is corresponded to the thermodynamic entropy for reversible processes.
It should be recalled that similar correspondences are made to the statistical mechan-
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ically calculated average values p€&, p, and p, as well as p° to the corresponding
thermodynamic quantities in accordance with the spirit of the Gibbs ensemble theory
[20].

According to thermodynamics [10-13, 21] the Clausius entropy S° obeys the
differential form

DS = T¢! (1)5 + pDv — ZuZDca). (1.185)

a=1

There also holds the Gibbs—Duhem relation,

3 e ) _ 1 re
> D (F) =E&D (F) + D (F) (1.186)

a=1

This equation may be regarded as necessary and sufficient conditions for the inte-
grability of the differential form (1.185) in the manifold B U ¥, because if (1.186)
is added to (1.185), then there follows an integral of (1.185) in a bilinear form of
variables in 8 U T for S within a constant:

S¢ =T (5+pev—2u2ca). (1.187)
a=1

In(1.185) and (1.186) T and p° stand for the equilibrium temperature and the hydro-
static pressure, which was introduced earlier. The Gibbs—Duhem relation (1.186)
can be obtained if the normalization condition for f; given in (1.178) is varied with
respectto 77!, ug, p°. The parameter p® defined by (1.182) is more explicitly found
since I'{ can be easily calculated from the expression

ma i m,C? -
F;: = <6Xp(ﬁ) CXP(—W)> . (1188)

Therefore the parameter p® thermodynamically identified with pressure is com-
putable from the statistical formula (1.188). In this manner, (1.185) and (1.186)
mean that the equilibrium thermodynamic entropy S° is given, within a constant, by
Formula (1.187). In equilibrium thermodynamics the thermodynamic temperature
can be given by the derivative of Clausius’s thermodynamic entropy S°: in the local
rest frame
T = —. 1.189
3E ( )
Making correspondence between the statistical mechanical equilibrium Boltzmann
entropy and the thermodynamic Clausius entropy

Slse © Sl (1.190)
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and also between other quantities in (1.181) and (1.187) we are now able to identify
the parameter b with the inverse temperature

1
b, =— = — 1.191
e =P (1.191)

with kp denoting the Boltzmann constant, and the parameters a, with equilibrium
chemical potentials

Ha
aA,; = .
@ kgTe

(1.192)

Finally, a, and b, having been so found, the equilibrium distribution functions f; is
fully determined with the help of the H theorem and the phenomenological equilib-
rium thermodynamics:

[ =exp[—fe (Uupl — p§) —InT], (1.193)

which in the local rest frame may be written as

3 = exp[=Pe (Pl — 4G + Pova) ] (1.194)

since U, = (c, 0, 0, 0) in the local rest frame. Incidentally, the equilibrium distribu-
tion function determined here!! without exp (— BepS va) is called the Jiittner function.
It is a unique solution of the covariant Boltzmann equation, thanks to the H theorem.
It will guide us to develop the nonequilibrium theory we have in mind. In the manner
described above, for reversible processes the Boltzmann entropy at equilibrium is
equal to the Clausius entropy according to the second law of thermodynamics.

Before proceeding to the next stage of development of the theory, we would like
to add a supplemental discussion on the question of temperature in relativistic theory,
which we consider a rather important subject worth a further consideration in this
chapter.

On the Question of Temperature in the Relativistic Theory

Before we deal with the question of temperature let us recap how f is determined.
Based on the H theorem, the equilibrium solution f; to the covariant Boltzmann
equation is uniquely determined. The result is the well known Jiittner function [3]
in which £ is the chemical potential, which also nominally serves the role of nor-
malization factor for f;, and (3. a parameter proportional to the inverse temperature:
(Be := 1/kpT¢. The physical meanings of the parameters are determined by com-
paring the thermodynamic entropy, pressure, and internal energy with the statistical

"n this form the normalization factor for £¢ is given by

ng exp (—Gepg) / (exp(—LeUnpy) -
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mechanical entropy, pressure, and internal energy calculated with the equilibrium
solution of the kinetic equation by following the basic strategy of the Gibbs ensem-
ble theory. If f in (1.178) is used in (1.179), the equilibrium entropy four-flow is
found given by

I

§ = kafle D (T4 Uy + Niu/Be = HgNL,) (1.195)

a=1

We thus find that the equilibrium scalar entropy is given by (1.187) and the ther-
modynamic temperature by (1.189). By making S° in (1.195) correspond to the
thermodynamic entropy, and other terms in it, to the energy, pressure and density,
respectively, we are able to find the meaning of parameter 7°: it is thus identified with
the thermodynamic absolute temperature: Ty = T°. Therefore we have concluded

Be = 1/kpT® = 1/kgT,. (1.196)

Because of this relation, 7; and T¢ are henceforth interchangeably used. In fact, 7°
means 7; unless stated otherwise. Since the chemical potential is defined in thermo-

dynamics by o5
NZ/TE=_(8 e), (1.197)
Pa

the normalization factor 1 is indeed the chemical potential. The ideal gas equation
of state is identified by
pS = pkpT*® (v:p_l). (1.198)

It must be remembered that this 7°¢ is the temperature of the equilibrium system.
The hydrodynamic pressure has been given by (1.57) in terms of the equilibrium
energy-momentum tensor which we will work out more explicitly:

r 1 r 1 r
PE=2 pe =g 2 ATl =3 2 Awlplnifd). (1.199)
a=1 a=1 a=1

Substituting the equilibrium distribution function (1.193) into it, we find

Pt = Z4wmac2ﬂ;21<2(mac2ﬂe)e@cﬂﬁ, (1.200)

a=1

where K,(z) is a modified Bessel function [22] of the second kind. The density p
may be similarly calculated:

p=c2U,N" = Z47rmac2ﬂg1K2(mac2ﬂe)e’3°“z. (1.201)

a=1
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This, together with (1.200), implies the equation of state (1.198). Therefore, the ther-
modynamically defined pressure through the equation of state (1.198) is consistent
with the statistical mechanical definition of p® in (1.200). The situation thus is seen
to be the same as in the nonrelativistic kinetic theory in that the kinetically and ther-
modynamically defined pressure are identical. However, this is not the case for the
internal energy.

In the nonrelativistic kinetic theory the temperature is defined such that the fol-
lowing relation holds true between the internal energy and the temperature [4, 23]

3
€ = TksT*. (1.202)

The temperature defined in this manner is called the kinetic temperature and coincides
with the thermodynamic temperature defined through the thermodynamic relation

0.
===

e—1

(1.203)

However, in the relativistic theory the situation is altered significantly since if the
kinetic temperature were defined by (1.202), then it would not agree with the thermo-
dynamic temperature defined by means of (1.203). Nevertheless, (1.203) is consistent
with (1.198). One recovers the coincidence between (1.202) and (1.203) in the limit
of u/c — 0, if the rest mass energy mc? is neglected; see Ref. [23] for expres-
sion for £ in the nonrelativistic theory. However, it would be preferable to have the
thermodynamic temperature coincide with the kinetic temperature in the relativistic
kinetic theory as well, since the kinetic theory should be a molecular representation of
thermodynamics underlying macroscopic processes. Here we define the kinetic tem-
perature for a system of particles with finite masses such that it precisely coincides
with the thermodynamic temperature as follows:

3 d _
EpkBTe = Z (2c2) ! ((ptipru,U, — mic“) f20x, pa))- (1.204)

a=1

This definition yields a correct nonrelativistic limit. It is rooted basically in the idea
that the temperature is a measure of kinetic energy. Recall that a similar subtraction
of rest mass energy was made when the moment hf) " for heat flux was defined in
the previous section.

Since the integrand in (1.204) is scalar and its value is independent of the frame
of reference, it is convenient to choose the local rest frame, where U,, = (c, 0, 0, 0),
to evaluate the integral. Then,

f5 =exp[=f (cpg — 15)] (1.205)

where (3. = 1/kpT, with the subscript ¢ restored to mean the thermodynamic tem-
perature. Thus we find
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3 e C 1 Bepts 3 2 4 —fee,
SPksT® = Zze o [ dPp, (eq — m2ct/eg) e, (1.206)
i=1

where s
o = cpl = (Pp2 +m>c*)"”. (1.207)

With the transformations
_ 2 _
g = MyC ﬁe’ Ta = ﬂeeav

Equation (1.206) may be put in the form

r

3 1, . 41
SPks T® = Z Eem 2wc*3ﬂ;4ﬁz§1@(za). (1.208)

a=1

In view of the fact that the chemical potential is given by
™M = dmmic(pafie)”" Ka(za),

it follows from (1.208) that
T =T,

since the right-hand side of (1.208) is equal to %pkg T;. This proves the coincidence
of the kinetic temperature with the thermodynamic temperature, if the kinetic tem-
perature is defined as stated in (1.204). It must be noted that (1.204) is another way
of expressing Tolman’s equipartition theorem [24]. Therefore, the definition of tem-
perature by (1.204) is seen to be based on the equipartition law. In other words, the
relativistic kinetic temperature may be defined by means'? of the equipartition theo-
rem of Tolman, which equally holds for both nonrelativistic and relativistic theories.
This interpretation of the definition of kinetic temperature provides us with a uni-
versal way of defining temperature for both nonrelativistic and relativistic theories:
the equipartition law of Tolman.

The local rest frame version of the definition (1.204) of kinetic temperature in
relativity was suggested by ter Haar and Wegeland [25], and it was later taken by
Menon and Agrawal [26], but, as pointed out by Landsberg [27], their definition is
preceded by Tolman [24]. On the other hand, in the Chapman-Enskog theory [23]
the kinetic temperature is defined such that the equation of state in thermodynamics
and in kinetic theory coincide with each other. Therefore, there appear to be two
different modes of defining the temperature, but they are, in fact, identical at least in
the case of dilute gases. Since

4 v

v 2 2
p(l;pa Ueler’/ -—m,c =¢ PZ paAV/“

121n the approach taken in the present work the thermodynamic correspondence is taken alternatively
to Tolman’s equipartition law.
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substitution of this relation in (1.204) yields

3 1 3
2 okpTe = ~ Ay, TH = > p.
pPiBle =5 80ule =3P

which implies the equation of state for ideal gas at equilibrium. Henceforth p® will
be typeset p, as we have done in Chaps. 5-7 of Volume 1, without the superscript e
for brevity of notation.

In summary of the discussion on temperature and related quantities in this section,
we would like to point out the following: In order to maintain the continuity of
nonrelativistic and relativistic kinetic theory and thermodynamics with regard to
temperature and related quantities the rest mass energy contribution m,c> must be
subtracted from pl, U,, appearing in the molecular expression in the kinetic energy or
energy-momentum tensor. For example, see Sect. 1.1.6 where molecular moments
h" are constructed for nonconserved macroscopic variables, especially, h5 " for
heat flux.

1.1.8 Functional Hypothesis

The covariant kinetic equations are first-order partial differential equations in the
phase space. However, in relativistic kinetic theories as in nonrelativistic kinetic the-
ories, they are not solved in the usual manner as we solve partial differential equations
subject to initial and boundary conditions in the phase space. The reason is the same
as for nonrelativistic kinetic equations, as discussed in Chaps. 3, 5, 6, and 7 of Volume
1, that the information needed for the purpose is overwhelming owing to the fact that
there are too many particles to contend with. In the nonrelativistic kinetic theories
discussed in the previous chapters of this work, we have seen approximate methods
are used in a quite different approach under the aegis of a functional hypothesis. The
details of the solution methods may vary depending on the approaches taken such as
the Chapman—Enskog method [23, 28] or the moment methods [29], but the under-
lying feature is invariably a functional hypothesis, albeit not explicitly mentioned
as such, because in this approach the distribution functions evolve as functionals of
either the conserved variables or the variables of thermodynamic manifold P U X.
Under a functional hypothesis, the solution of a kinetic equation, or more pre-
cisely put, the thermodynamic branch of the distribution function obeying the kinetic
equation is looked for as a functional of macroscopic variables that the kinetic equa-
tion is purported to describe at the macroscopic level of description of the fluid.
For example, in Enskog’s method [28] and Chapman’s method [23] of solving the
Boltzmann equation we are looking for the distribution function as a functional of
conserved macroscopic variables obeying the conservation laws, whereas in Grad’s
moment method [29] or in the modified moment method [4] the distribution function
is assumed to be a functional of a complete set of macroscopic variables (moments)
obeying their evolution equations. In practice, in the moment methods the set is
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truncated to a finite set as an approximation. To implement this idea we introduce
the thermodynamic manifold, which is a union of manifold 3 spanned by density,
concentrations, velocity, internal energy, and fluxes and variables belonging to the
manifold ¥ tangential to I3; see Chap.2 of Volume 1 for the precise meanings of
manifolds ‘B and T. The union of these two manifolds will be also called the ther-
modynamic manifold as in the case of nonrelativistic theory.

In the case of relativistic kinetic theory we will naturally follow a similar approach
and make the following functional hypothesis for the distribution function obeying
the covariant Boltzmann equation:

Functional Hypothesis. The nonequilibrium distribution function f; evolves as a
Sfunctional of macroscopic variables belonging to the manifold 3 U T and obeying
macroscopic evolution equations derived from the relativistic kinetic equation—
namely, covariant (relativistic) Boltzmann equation:

f;(xs pa)zfa(-xs paﬂguz) (1.209)

The specific form of the thermodynamic branch may depend on whether the fluid
mixture has a fixed composition or a variable composition, as the system exchanges
particles with its surroundings. The form of thermodynamic branch of the distrib-
ution function in the case of a fixed composition, under the postulate of functional
hypothesis, is assumed given by the nonequilibrium canonical form

[0, pa) ==exp[—B (piU, + H" — pig) —InT,], (1.210)
where
HO =3 X9 507 =" X9 0 nW (1211)
g=1 g>1

and In T, is the normalization factor. If f;(x, p,) is normalized to a dimensionless
number,'3 the normalization factor is given by the integral

Ty =n;"(exp | =B | piUs + D X 7" — g | | ). (1212)
q=1

3This means that the distribution function is given in the units of action cubed, e.g., 3, where
h is the Planck constant. This requires that the other averages defined earlier are in the units of
h3, the dependence of which can be appropriately made explicit later. Provided we remember this
adjustment in dimension for them there is no harm done even if the formulation is carried out
without the factor 43 in the normalization factor.
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where, with the factor =3 inserted, the angular brackets (A) stand for

d*p,
(4) = %/ 1A ). (1.213)

Here the Planck constant & cubed is inserted to make the integral dimensionless.
Therefore the thermodynamic branch of distribution function f; (x, p,) may now be
written as

1
fax pa) = exp [=B (iU, + HY = pa) ] (1.214)

The generalized potentials X f,?,)g do not depend on momentum p,, but can be depen-
dent on spacetime variable x = (ct, X) on account of the fact that they are function-
als of macroscopic variables, which are mean values of moments hflq) and, as such,
depend on spacetime variable x. The canonical form f; (x, p,) given in (1.214) is
a particular form admissible under the functional hypothesis that can, as will be
shown later, produce a thermodynamic theory of irreversible macroscopic processes
and hydrodynamics, both consistent with the laws of thermodynamics. For this rea-
son f;(x, p,) given in (1.214) is called a thermodynamic branch of the distribution
function obeying the relativistic Boltzmann equation postulated.

For the nonequilibrium contribution H{" in f we have taken a linear combi-

hgq)uml,

nation of the tensorial moment set { } (g = 1), because f; is sought as a

functional of macroscopic nonconserved variables {belq)u V} (g = 1) among other
macroscopic variables and, if the set {hfﬂ)“ V} (g > 1) is averaged over the distri-

bution, it gives rise to the set {<I>flq)”'"”} (g = 1). Henceforth, for notational brevity

the superscripts 4 - - - v on the tensors will be omitted. In (1.211) X 9@ are expansion
coefficients which are conjugate tensors to the moment tensors h and depend only
on macroscopic variables belonging to the thermodynamic manifold ‘B U ¥. These
expansion coefficients, which we call the generalized potentials of irreversible trans-
port processes, will have to be determined in terms of variables in the thermodynamic
manifold in a thermodynamically consistent manner subjected to the laws of thermo-
dynamics. The evolution of f; (x, p,) in spacetime is then determined as a functional
of macroscopic variables through X é‘*), 0, and p, on which the local normalization
factor I, also depends. In the following we will often use the symbol © for the nota-
tion of tensorial contraction for the sake of brevity of notation, whenever confusion
or ambiguity would not arise thereby.

Since we are dealing with a mixture of non-interacting, uncorrelated molecules,
the total distribution function of an N-molecule mixture is of interest. We may write
it in the form

r c\ Na
fc(N)(xv P) = N'H (f]‘:l])‘
a=1 a:



42 1 Relativistic Kinetic Theory for Matter

Na

1 In (AT,
=N! ¥ 'exp{—ﬂz |:p;':aUu +HY — g, + %:” .

ka=1

(1.215)

Here a composite subscript ka is introduced to distinguish different particles belong-
ing to different species. The subscript ka means particle k € a (a = species). This
form for £ (x, p) may be regarded as the thermodynamic branch of the grand
canonical distribution function for the mixture of » non-interacting components of

ideal gas. Note that
NYT N
a=1

is the number of ways randomly distributing N = >/ _, N, particles into boxes of

volume V, and f} is the statistical weight of each assignment. Here we may set

r N,
HH exp(InT,) =exp(InT), (1.216)

a=lka=1

where I will now turn out to be the local form of nonequilibrium grand canonical
partition function of the gas:

'nE = / drpf~'InT. (1.217)
|

1.1.9 Calortropy

If we closely examine the original formulation of the concept of entropy by R. Clau-
sius [14], we are unmistakably led to the conclusion that the Clausius entropy is for an
equilibrium system that undergoes a reversible thermodynamic process. Neverthe-
less, in the kinetic theory literature the concept of entropy is indiscriminately applied
whether the process in question is reversible or irreversible, especially, in most of
works related to thermodynamics and irreversible thermodynamics. Although Clau-
sius did not define the entropy for relativistic reversible processes, his reasoning
can be applied to relativistic reversible processes and the concept of entropy can be
seen to remain still valid, but for reversible processes only. Therefore, the Boltz-
mann entropy defined by (1.140) for arbitrary nonequilibrium processes cannot be
simply identified with the equilibrium entropy, or Clausius entropy, if the process
under consideration is away from equilibrium or irreversible. We have shown that the
nonrelativistic kinetic theories could be made physically realistic by corresponding
their thermodynamic formalism to the thermodynamically consistent phenomeno-
logical irreversible thermodynamics and the thermodynamic formalism requires the
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so-called calortropy that is definitely different from the Clausius entropy. Therefore,
in the relativistic theory it would be also necessary to define the statistical mechanical
calortropy (more precisely, calortropy four-flow in the relativistic theory) that can-
not be necessarily the same as the Boltzmann entropy four-flow, if the macroscopic
processes involved are of nonequilibrium or irreversible.

Here we define calortropy four-flow W# (x) in terms of the nonequilibrium canon-
ical form as follows:

r

WH (x) = —kg D (Pl falx, pa) In £5(x, pa)).- (1218)

a=1

It is emphasized that f;(x, p,) is not the same as f,(x, p,) thatis the exact solution
of the covariant kinetic equation in the phase space. Therefore, ¥* (x) is not equal
to S* (x). The scalar density W of calortropy can then be obtained by projecting W#
onto U*:

U =pU =20, W" (x). (1.219)

Since the substantial time derivative of W can be cast into the form
DV = pDV = 9, (UN") (1.220)

as is for the case of the Boltzmann entropy density, the evolution equation for the
scalar calortropy density W is rearranged to the form

pDV = 0, (V" — UN¥) + 0, w". (1.221)

Upon use of the definition for W* in (1.218) and the covariant kinetic equation we
then obtain the calortropy balance equation

r

O,V = —kp Z(fapgau In f7 (x, pa))

a=1

— kg >3 (I £k p)Canfs fi))- (1.222)

a=1 b=l

With the definitions of calortropy flux four-flow J{' and calortropy production o (x)
by the formulas

Jcp, — ph @Nlt’ (1.223)

ge (¥) = —kp > D" {In £50x, pa)Can(fas 1)) (1.224)

a=1 b=1
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the calortropy balance equation is obtained:

r

pDV = —8,J! — kg Z(fapg’au In fE(x, pa)) + oc (x) . (1.225)

a=l1

Here the calortropy production o (x) is definitely not the same as the Boltzmann
entropy production ey (x), nor is the calortropy four-flow J¢ the same as the Boltz-
mann entropy four-flow. If the projector A% is made use of, the calortropy four-flow
J¢ in (1.223) can be cast into a concise form as a projection of calortropy four-flow
" onto hydrodynamic flow direction

JH = AP (1.226)

Insertion of (1.218) into this expression yields the statistical mechanical expression
for J¢:

Il = —kpg Z AL (Pl fu(x, pa) In ££(x, pa)). (1.227)
a=1

Therefore, J{' is interpretable as a projection of the flux of calortropy W” in the
direction of hydrodynamic velocity U*.

The integrability of the calortropy balance equation in the thermodynamic man-
ifold B U T will be studied in detail and a thermodynamic theory of irreversible
processes will be formulated later in this chapter. It should be pointed out that the
presence of the second term on the right of (1.225)

r

—kg D (faphOuln £5(x, pa)

a=1

is a crucial feature that makes the balance equation for the calortropy density inte-
grable in PUT, different from the Boltzmann entropy balance equation (1.149), since
the latter would not be integrable in ‘3 U ¥ owing to the absence of the aforemen-
tioned term as will be shown later. Consequently, it denies the relativistic Boltzmann
entropy to acquire an exact differential form in the thermodynamic manifold ‘B U T
and a theory of irreversible thermodynamics formulated in the thermodynamic man-
ifold B U T. We have already seen that the same is true in the case of nonrelativistic
theories, compelling us to introduce the notion of calortropy in lieu of entropy.

1.1.10 Relative Boltzmann Entropy

The calortropy is not the same as the Boltzmann entropy except at equilibrium or
for reversible processes, and if there are irreversible processes present in the system
they are, clearly, different. We, therefore, define the difference between them as the
relative Boltzmann entropy (RBE):
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SELFIFC] () = W (x) — $* (x), (1.228)

which, expressed in statistical mechanical form, is given by the formula

SELALF] @ =k32<p51n (%) fa>. (1.229)
a=1 a

The relative Boltzmann entropy can be shown positive semidefinite owing to the
Klein inequality x Inx — x + 1 > 0:

SE[F1F] () = 0, (1.230)

the equality holding at equilibrium where Xfff,)...,, — 0 for all ¢ > 1. Therefore,

away from equilibrium the calortropy four-flow W# (x) evidently is not the same as
the Boltzmann entropy four-flow S* (x). We may also define the relative Boltzmann
entropy density by the formula

pS:[F1£] = e 2ULSE[ 1] (1.231)

The balance equation for the relative Boltzmann entropy density can then be formally
given in the form

r

pDS[f1£°] = =0, (ALSY[F1£)) —ks D _(fapl0uIn f)+or [£1£€]. (1.232)

a=1
where the relative Boltzmann entropy production o, [ f| f€] is given by the formula
o [F1) =kp D_ D (In (ful £5) Can(far f1))- (1.233)
a=1 b=1

With the definition of the relative Boltzmann entropy flux four-flow

S5 = Aalsy [ F1] (1.234)
Equation (1.232) can be put in a more cogent form
pDS [ f1£°] = =0, dc [£1£] = ks D _(fark0uIn f5) + o: [£1£]. (1.235)
a=1

This relative Boltzmann entropy balance equation will be examined further, after the
calortropy balance equation is integrated in the thermodynamic manifold.



46 1 Relativistic Kinetic Theory for Matter

1.2 Pfaffian Differential Form for Calortropy

Having defined the calortropy and obtained its balance equation, there arises the ques-
tion of its dependence on the variables spanning the thermodynamic manifold U T
and its precise mathematical form. This question can be restated as the integrability
of the calortropy balance equation in the thermodynamic manifold. It is an important
question because, when integrated in the thermodynamic manifold, the calortropy
and its differential form would provide us with the theory of thermodynamics of
irreversible processes framed in the thermodynamic manifold. As a matter of fact,
such a theory would be one of our important goals, as has been for the nonrelativistic
theories studied in the kinetic theory chapters of Volume 1in this work.

There are two routes of approach to this question. One is to take the statistical
mechanical definition of calortropy and the nonequilibrium canonical form £ (x, p,)
to calculate W directly in terms of variables in manifold 3 U . The other approach
is to investigate the integrability of the calortropy balance equation by calculating
the statistical mechanical formulas for quantities appearing on its right hand side that
include calortropy four-flow, the calortropy production, and so on. Together with the
result by the first approach, this second approach would provide the integrability proof
for the calortropy differential form (i.e., extended Gibbs relation for calortropy), or
equivalently the calortropy balance equation, and thereby a mathematical founda-
tion of a thermodynamic theory of irreversible processes in dilute relativistic fluids.
The extended Gibbs relation provides a working mathematical tool—a fundamental
equation—for the thermodynamics of irreversible processes, as does the equilibrium
Gibbs relation in the theory of equilibrium thermodynamics [10-13, 21].

1.2.1 Statistical Mechanical Method

The first method mentioned earlier uses the nonequilibrium canonical form f; (x, p,)
in the statistical mechanical formula for the calortropy four-flow and calculate the
calortropy density therewith. The calculation required is simple, and we obtain the
expression for the scalar calortropy W. Since

= -2
V=p¥ =c U,V

upon insertion of f;’(x, p,) into the statistical mechanical formula for W* it is easy
to obtain the expression for calortropy density:

T=1'e+> > X 397 = ¢, + kgp”'InT, (1.236)

a=1 g>1 a=1
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where o
<@ _ Xallllm(r - &

= . H, 1.237
av---o T H T ( )

and In I" is defined in terms of I, for the nonequilibrium partition function of com-
ponent a:

InT =In [ [ree. (1.238)
a=1

In anticipation of the later result obtained through thermodynamic correspondence
of W with the phenomenological form'* in Chap. 2 of Volume 1, we will further set

pv=kzTInT. (1.239)

Here, as it stands, p is an as-yet undetermined parameter. But its global form is given
by
kgTIn E = / drpkgT InT =/ drp = (p)y V, (1.240)
v 14

where (p) is the volume average of parameter p:

(p)y = V—'/drp (r). (1.241)
\%4

In summary of the chain of equalities in (1.240), we obtain the global expression for
kgT In 2:

kgTInE = (p)y V. (1.242)

Finally, provided (1.239) holds, (1.236) may be written as

D=T'6470 =D gt DD Xyp y@L7, (1.243)
a=1 a=1 g>1
where »
D= T v = p_1 (v = specific volume). (1.244)

It should be noted that the parameters T, Xf,?}..m lq, and p are not as yet clarified
of their meanings, experimental or thermodynamical. Nevertheless, the expression
for U in (1.237) evidently indicates that it is a bilinear form of variables in ¥ and
their conjugate (in fact, tangent field) variables belonging to %, if we accept p as the

14Since the phenomenological theory of irreversible relativistic processes is not established, the
theory formulated here is the reverse of that of the nonrelativistic theory taken in the nonrelativistic
chapter. Here by extending the nonrelativistic theory into the relativistic domain it may be said that
a relativistic theory of thermodynamics of irreversible processes is formulated.
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tangent field to volume v. Note that we have made use of the statistical mechanical
definitions of p&, 7", and N to obtain (1.236). We remark that since X o
55") # 0 and p, # (4 if the system is removed from equilibrium, the calortropy
density W in (1.237) evidently is not the same as the Clausius entropy for a reversible
process in a system in equilibrium. The form for U in (1.237) extends S¢ in (1.187)
into the domain of nonequilibrium, as will be evident upon the thermodynamic
correspondence discussed below.
On applying the operator D to U in (1.243), we obtain

DY =T7'DE+pDv - erﬁaDca + Z > X, ,DBW

a=1 a=1 g>1

+EDT +vDp — > (D, + D > VT VDX, . (1.245)

a=1 a=1 g>1

1.2.2 Method Using the Calortropy Balance Equation

The second method makes use of the calortropy balance equation and the statisti-
cal mechanical formulas for the terms on the right hand side of the equation. This
approach, however, takes much more involved calculations making use of a number
of identities, evolution equations for W7, energy balance equation, number frac-
tion balance equation, decomposition of the energy-momentum tensor. We list such
identities and equations below: First we note

AN =0 (1.246)
and using this identity we obtain
argr = 20 Z ZY@ O YDVAL, (1.247)
v T a a v
a=1 g>1
The following are also useful:
Q/J(q)u + A”?/J(q)y — U#(D(q)’ (1.248)
T™u, - ot =pEU" (-Q"U,=0, P"U,=0), (1.249)
1 ng -2 1 19214 1 7
?T/ oU, =c ?U’ 0"0,U, + ?P’ 0,U,. (1.250)

The dissipation terms A’

for 55{1) , (1.118), which is again presented below for convenience

are eliminated by using the generic evolution equation
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pD DIV = _y QWY @ A @pey (1.251)

After some labor with the help of the identities involving projectors, equations
(1.248)—(1.250), and the relations (1.238) and (1.239) between p and InI", we can
cast the calortropy balance equation in (1.225) into the following differential form

DY =T"'DE + pDv — Zr:ﬁaDca + iZYE‘” © DY

a=1 a=1 g>1

+EDT' +vDp— > (D, + . > Y o DX,. (1252

a=1 a=1 g>1

This differential form is identical with (1.245) derived directly from the statistical
mechanical expression for 7 by operating operator D in (1.237). It should be empha-
sized that the relation between p and In I, therefore, is the necessary and sufficient
condition for the bilinear form (1.252) in the thermodynamic manifold to be obtained
from (1.225). The significant point of the second method, however, is that, especially
in the light of the first method, the calortropy balance equation is exactly integrable
in the thermodynamic manifold, thanks to the presence of the term

r

_kB Z (fapsau 111 fac(xv pa))

a=1

in the calortropy balance Eq. (1.225). It, unfortunately, would not be the case for
the Boltzmann entropy because the aforementioned term is absent. In the case of the
relative Boltzmann entropy balance equation, because the right hand side of (1.235),
despite its formal similarity to the calortropy balance equation, defies integration
in a bilinear form in the thermodynamic manifold ‘B U ¥ owing to the ratio f,/f;
present in J; [ fal f;]. The mathematical reason for this aspect will be elaborated on
later at a more appropriate point; see Sect. 1.12 on the relative Boltzmann entropy
balance equation.

If the normalization condition for the nonequilibrium canonical form (1.215) is
varied with respect to the parameters 3, p,, X éq) and ', there arises the equation

EDT™' +vDF— > D, + > > &% o DX, =0. (1.253)

a=1 a=1 g>1

This is called the nonequilibrium Gibbs-Duhem (NGD) equation. If this is applied
to both (1.245) and (1.252) then there follows the differential form for W in the
thermodynamic manifold B U -

DU =T"'DE+PDv— > D+ > > X 0D, (1.254)

a=1 a=1 g>1
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which is called the extended Gibbs relation (EGR) for U. In view of the fact that
(1.245) follows from the bilinear form (1.243) for \3, the EGR (1.254) is an exact
differential, which evidently yields an integral (1.243) in ‘3 U T apart from a constant
that may be set equal to zero. The EGR will serve as the fundamental equation
for the thermodynamics of irreversible processes described in this work. The NGD
equation is, in fact, the necessary and sufficient condition for integrability of the
Pfaffian differential form (1.254) in the thermodynamic manifold. For adding the
NGD equation to the EGR side by side and integrating the resulting equation we
obtain an integral of the latter in 3 U T, namely, (1.243) apart from a constant that
may be set equal to zero.

This crucial feature of integrability is absent in the relativistic Boltzmann entropy
balance equation because the distribution function f, is not describable in the ther-
modynamic manifold, but it is a function living in the phase space of a gas consisting
of an astronomical number of particles that would require an equally astronomical
number of initial and boundary conditions to integrate. But that is not possible to
achieve. A similar conclusion would be possible to draw for the relative Boltzmann
entropy. It is interesting to note that the calortropy differential, the related differ-
ential forms, and the integrability of the calortropy differential were present in the
nonrelativistic kinetic theory described in Volume 1 and they all survive intact in the
relativistic kinetic theory based on irreversible covariant Boltzmann equation.

1.3 Thermodynamic Correspondence

In the section where the equilibrium distribution function is derived in this chapter,
we have shown that parameters T, p, and u, are identified with the equilibrium ther-
modynamic intensive variables T, pe, and 1, as the system reaches equilibrium. The
identifications are made by resorting to the device of thermodynamic correspondence
of the statistical mechanical Boltzmann entropy S° with the equilibrium thermody-
namic entropy (i.e., Clausius entropy). In the viewpoint of the functional hypothesis
the equilibrium distribution function is attained as the generalized potentials vanish.
Therefore it is reasonable to conjecture that there exists a phenomenological Pfaffian
form for the calortropy density at a nonequilibrium state of the system, although such
a form has not as yet been established phenomenologically in relativistic irreversible
thermodynamics. Assuming that such a conjecture would be experimentally realiz-
able, we postulate a phenomenological Pfaffian form [30] and make thermodynamic
correspondences as was done for the case of the nonrelativistic theories. Thus if
the correspondence is made between the thermodynamic and statistical mechanical
(theoretical) variables spanning the manifold 3 as below

Vg < Wln: Els < Elns Vg © vlns
Calst © aln; @Dy & W)y, (1.255)
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then the conjugate intensive parameters spanning the tangent manifold T must be
identified with the corresponding thermodynamic parameters

Tla & Tln; Pls & Pl falst € faln: XVl & XDy, (1.256)

and the parameters T, p, (t,, X @ as yet undetermined are now endowed thermody-
namic meanings of their correspondents. Here it must be empahsized that p is now
identifiable with the nonequilibrium pressure p, which is defined by the trace part of
energy-momentum tensor when the generalized hydrodynamic equations are derived
in Sect. 1.1.6 of this Volume.

Equipped with these thermodynamic correspondences we are now able to carry
out nonequilibrium statistical mechanical calculations for various thermodynamic
quantities for the relativistic gas on the basis of the Pfaffian form (1.254) and a
formulation of nonequilibrium statistical thermodynamics of relativistic irreversible
processes is evidently possible. In other words, the Pfaffian form (1.254) for the
calortropy density, so endowed with thermodynamic significance as in (1.256) on
the one hand and the nonequilibrium partition function I" given by

Na

r=[le 1<exp =02\ PhaUv+ 2 X5 )" = e > (1257)
a=1 j=1

q>1

on the other hand, lay mathematical foundations on which to erect nonequilibrium
statistical thermodynamics of irreversible processes in dilute relativistic monatomic
gases. The so-formulated nonequilibrium statistical thermodynamics is consistent
with the laws of thermodynamics. This statement is delineated in the following.

1.4 Statistical Thermodynamics of Relativistic Gases

On the basis of the exact differential form (1.254) for U derived earlier we are now
able to develop a relativistic theory of thermodynamics for irreversible processes in
a form parallel to the nonrelativistic thermodynamics described in the chapters of
Volume 1. Therefore we are not going to repeat the formalism here except pointing
out that temperature is given by

7' = DV (1.258)
\pE), .5 '

Other parameters of manifold ¥ can be similarly obtained.

The following nonequilibrium statistical mechanical expressions can be also
derived on the basis of (1.243) and (1.239), which, when combined with (1.254),
gives rise to the differential form for thermodynamic potential pv
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r r
D (pv) = WDT + pDv+ D c,Dpg — »_, > ®L7 DX
a=1

a=1 g>1

= D(kgT InT). (1.259)

From this differential form we obtain the (local rest frame) relations between various
macroscopic variables and the statistical mechanical formula for the thermodynamic
potential given in terms of nonequilibrium partition function I'":

- dlnT
\IJ:kBInF+kB( 1 ) , (1.260)
or ), ,.x
OInT
pszT( n ) , (1.261)
v T,pn.X
InT
- (‘9“ ) , (1.262)
aua T, X
. OlnT
d@rw — gt L2 . (1.263)
a (@)
X a%w T.p.X'

With the help of the extended Gibbs relation and the nonequilibrium Gibbs—Duhem
equation, the formal relations (1.260)—(1.263) can be made use of to calculate the
whole gamut of macroscopic thermodynamic variables and their relations as well
as numerous other thermodynamic quantities from the knowledge of the nonequi-
librium partition function—namely, nonequilibrium statistical thermodynamics may
be formulated for relativistic irreversible processes of dilute gases. To achieve this
aim it would be necessary to explicitly compute I" in the manifold 38 U . This latter
task will be in principle possible if the nonequilibrium partition function is calcu-
lated by some means either analytical or numerical and the hydrodynamic equations
are also appropriately solved for transport processes. The content of this subsection
provides the necessary theoretical framework and mathematical tools for such inves-
tigations. Such investigations are left to future work on nonequilibrium statistical
thermodynamics of relativistic fluids.

1.5 Cumulant Expansion

1.5.1 Cumulant Expansion for Calortropy Production

To implement the present line of relativistic kinetic theory to investigate practical
experimental problems the generalized hydrodynamic equations formally derived
earlier in this chapter must be solved. To achieve this aim it is first necessary to
calculate more explicitly a class of the most important components in the generalized
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hydrodynamic equations, that is, the dissipation terms, which describe the energy
dissipation mechanisms involved in the irreversible processes in the gas.

Although we have no complete and exact solution of the covariant kinetic equa-
tion that we can make use of for such a purpose at this point of development in
solution of the covariant kinetic equation, we are, nevertheless, able to formulate
a thermodynamic theory of irreversible processes in a manner consistent with the
laws of thermodynamics. For the purpose in mind it is reasonable to approximate
the distribution function in the collision term Cy;(f,, fp) by taking its thermody-
namic branch fY (x, p,). Thus we consider the approximation in which deviation
from f; (x, p,) is neglected:

Ja (x, pa) = fac (x, pa) + Afa (x, pa)
>~ fi (X, pa) (1.264)

where Af, (x, p,) is a deviation’ of f, (x, p,) from the thermodynamic branch
f; (-x’ pa):
Afa (-xa pa) =fa ()C, pa)_fac ()C, pa)~ (1265)

The deviation Af,, (x, p,) depends on fluctuations in temperature 5/, chemical poten-

tials o7,, generalized potentials 5?24), etc. of the solution of the kinetic equation
from their thermodynamic branch. Recall that such fluctuations determine the relative
Boltzmann entropy, which in a way determines and describes measures of deviation
by the thermodynamic branch of distribution function f; (x, p,) from f,(x, p,).

The dissipation terms Ag]) and other terms in the evolution equations for the
nonconserved variables of the generalized hydrodynamic equations will be evalu-
ated with f; (x, p,). This would be an approximation for A defined by the exact
solution for the kinetic equation. However, it is a requisite approximation that gives
rise to evolution equations for nonconserved variables satisfying the laws of thermo-
dynamics and hence the thermodynamical consistency, because the exact solution
fa(x, pa) does not have an underlying nonequilibrium thermodynamics; in this con-
nection recall that the Boltzmann entropy balance equation is not integrable in the
thermodynamic manifold 3 U .

To achieve the desired aim we find it most expedient to employ a cumulant expan-
sion method, which would be much facilitated if the nonequilibrium canonical form
[y (x, pa) is written in a concise form. Thus we write

fE(x, pa) = fLexp (—wa) (1.266)

where

1) =exp[-B(plU, — pl) —InT,], (1.267)

131t may be called the complement to the projection onto the manifold U T of £, (x, pa).
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we =B XD B~ Ay | (1268)
q=1
Aptg = fta — fig (1.269)

with g5 denoting the equilibrium thermodynamic chemical potential of species a.
Therefore the terms associated with w, will be attributable to nonequilibrium within
the thermodynamic formalism based on the exact calortropy differential DV and
related nonequilibrium statistical mechanics. To proceed further we need to define
abbreviations and symbols for brevity of notation. Let

Xap = Wq + Wp, Yab = w: + WZa (1270)

where the asterisk denotes the post-collision values. We also define dimensionless
quantities for various quantities involved in the calculation:

T = cpl (B=1/ksT),
U" =U"/c. (1.271)

With these dimensionless variables we find 3pl; U,, appearing in the Jiittner function
can be made dimensionless as follows:

BpiU, = U, (1.272)

It is also convenient to reduce the distribution function with the factor p/ (mkzT)>?
where m is the mean mass of the mixture. Therefore the distribution function is given
by a dimensionless form

—e

£, =p " (mkpT)** f£. (1.273)

To express the calortropy production o, (x) also in a dimensionless form the transition
rate W, is scaled by the factor A2 /mkgT where X is a parameter of dimension
length, which we may take for the mean free path or the interaction range or the
mean molecular size parameter. Thus the reduced (dimensionless) transition rate

W is defined by
— mkgT
Wy = A"; . (1.274)

With various reducing parameters introduced earlier, we find it useful to define an
important scaling parameter g

1 mc?
=—\\—) . 1.275
g C)\zp (kBT) ( )
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It has a dimension of volume x time. This parameter is used to reduce the calortropy
production to a dimensionless form & as follows:

Ge(x) = (g/kp) oc (x).. (1.276)

Thus reduced to a dimensionless form, the calortropy production is given by the
reduced collision integral

_ I~ v x
Te0) =7 2 > (Gap = yar) (7 — 7)), (1.277)

a=1 b=1

where the double angular brackets ({A)),,;, stand for the reduced (i.e., dimensionless)
collision integral

((A)) = Gap / T, / T, / &7 / AT WA (1.278)

with the abbreviations d°7,, etc. defined by

&,
&7, = 2L ete. (1.279)
Tr(l

Now, the dimensionless calortropy production o.(x) in (1.277) is expressible in the
form
Ec(x) =

[RP©-RO©]._, (1.280)

=

where, with the book-keeping parameter ¢ introduced for the purpose of ordering
various expansion terms when the exponential function is expanded in power series
of X5 OF Yap, the functions R™® () are defined by the formulas:

R (@) = 30 3 (G = van) (€7 = D)) (1.281)
a=1 b=1
R =D D {(Cap = yan) (75 = 1)), - (1.282)

a=1 b=1

Now we are ready to apply a cumulant expansion method [31, 32] to R® (c).
When the cumulant expansion is completed after expanding the exponential factors
in R () in power series of ¢, the book-keeping parameter ¢ will be set equal to 1.

Since we have already described the cumulant expansion method in detail, partic-
ularly, in Chap.3 and also in other kinetic theory Chaps. 5, 6, and 7 for dense fluids
of Volume 1, it is sufficient to list only the important results in the following. The
first, second, and third-order cumulant are defined by expressions
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r r 12
1
K=K = 3 <<ZZ (Xap — yub)2>> s (1.283)

a=1 a=1 ab
1 r r
1= <<ZZ(M — Yan)” (Xap + yab>>> : (1.284)
a=1 b=1 ab
1 r r
w3 =g <<22(xab — Van)? (x2, + XapYap + yj,,)>> ,ete.  (1.285)
a=1 b=1 ab

Therefore, for example, to the first-order cumulant approximation the reduced
calortropy production is given by the formula in terms of x

o.(x) = ksinhk > 0. (1.286)

In this approximation, because of the first-order cumulant « being positive semidefi-
nite, the calortropy production o (x) always remains positive semidefinite regardless
of approximations made to x,; which depends on the generalized potentials X [(,q,,).“g.
In other words, since o.(x) > 0 according to the second law of thermodynamics, in
the first-order cumulant approximation the thermodynamic second law is guaranteed
to be satisfied by the approximations made to X f,q,,)u.g whether the approximations are
with respect to the number of moments included (that is, ¢) or to their dependence
on nonconserved variables.

‘We have found in the case of the nonrelativistic theory in the previous chapters that
there is a wide range of phenomena to which the first-order cumulant approximation
and thus o.(x) in (1.286) can be applied in order to account for many nonlinear
irreversible processes in nature [33-39]. In the case of relativistic theory the first-
order cumulant approximation for o.(x) is hopefully expected to yield similarly
interesting comparisons with experiments. Higher-order cumulant approximations
describe a non-monotonic dependence with respect to the generalized potentials or
fluxes, and possess potentially intriguing features (e.g., self-organizing ability of the
system beyond equilibrium), but they require rather laborious computations for the
expansion coefficients. For this reason they have not as yet been much studied even
in the nonrelativistic theories. See Ref. [40] for a third order cumulant approximation
in the nonrelativistic Boltzmann kinetic theory.

The first-order cumulant ~ is quadratic with respect to the generalized potentials
X i("). It can be shown that & is given by the formula

1/2

r

K = Z Z X;(I/Z--.UREJ%S)MMUV“NXl(,sgu.w 7 (1287)

a,b=1q,s>1

where RYV# 7" is a collision bracket integral consisting of the collision integral

of the covariant kinetic equation. They are given by
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Veerd

oo 1 - Y
= G A () A (e n) ]

aa’

1
+50 > [an@r T ARSI, (1.288)
b#a
R‘(ZZS)H...JV...W _ 62 Z [Ahé(g,)“wgAhg”'"w]ab ’ (1.289)
b#a

where the abbreviations on the right hand side are defined by the formulas

@\ @ «_ p@x)"7
AR + L) = (h0 4 1 = n@ = n)
ARE" T = (B — h*)" (1.290)

-
ARG = (n0 = ) et

and [A"7 B¥"*],,, is an abbreviation for the reduced collision bracket integral:

[A*7B"“] . =G / ET ATy T TL [ f[EWap AV OBV Y. (1.291)

The collision bracket integral Rfl‘fj)” 7Y is an integral of tensor products, which can

be expressed as a scalar collision bracket integral @[(quf) times an isotropic tensor for a
spherically symmetric particle system. Thus for the case of ¢ = s = 1 corresponding
to the shear stress, that is, Rglbl,)” 7" involving a rank 4 tensor, it is expressible in the

form given in terms of isotropic irreducible tensors [4] of rank 4

—~ 1 , 1 o
Rélbl)ual/w sz;s) |:§ (A NG AH A VO') 5 AMY A Uw:| , (1292)
~ 1 , 1 w
Rélﬂl)u..uy..»w Rg{zs) I:E ( AV AW AHY A VO') g AHY A aw:| , (1293)

where A", etc. are projectors. Here the scalar collision bracket integrals @éq;) are
given by integrals involving a contraction to a scalar of two second-rank tensors:

o T 1 |
jo) — gRélbl)lW’W I:E (AP A%Y 4 AP AVTY — gAlonw:|

_ % I%ﬁz [A (hf,‘” +hgg>) A (hff’ +h§f))]

ab

%52 > [an: anP) L (1.294)
b#a
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1
R = 20> [anl : anf)] . (1.295)
b#a

For the case of ¢ = s = 2, there is no question of contraction because the integrand
is already scalar. Therefore
RS =R (1.296)

In the case of ¢ = s = 3 or 4, that is, the collision bracket integrals for heat flux or
diffusion flux—a vector

Réqbq)uu _ @;‘Ibq)A‘”’ (G=34), (1297)
where
@((quq) _ %R((g)q);w
= éﬂz Z#; [ (ne+nL) 8 (ne +0)] - (1.298)

The collision bracket integrals @gﬁ) and @iq;) satisfy the Onsager reciprocal relations
with respect to the interchange of subscripts a and b or superscripts g and s. Of course,
they are symmetric tensors.

Finally, we note that x? is a generalized form of the Rayleigh dissipation function
[43] which is a quadratic function of velocities originally introduced by Rayleigh to
account for energy dissipation in his theory of sound. With the linear approximation
for X\ the first-order cumulant x is now expressible in terms of scalar @fl’f) and
Y as in the expression

K= D> RETWEIeW (1.299)

a,b=1q,s>1

where we have defined the expansion coefficients i)%flqbs) by the formula

Ry =9 RYg, (1.300)
Interestingly, the calortropy production is related to a generalized form of the
Rayleigh dissipation function. It is indeed the seat of energy dissipation arising
from the irreversible processes progressing within the system.
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1.5.2 Dissipation Terms in First-Order Cumulant
Approximation

Since the calortropy production is related to the dissipation terms A" in (1.117)
through the relation

P
o (x) =T~ D D XW AP, (1.301)
a=1 g>1
AL" can be also approximated by the first-order cumulant approximation. It is
easily deduced that the first-order cumulant approximation for AS" is given by
the expression

A ) = (ks T/g) 3 D REX) " () gn() (1.302)

b=1 s>1

with g, (k) denoting the first-order cumulant approximation for the nonlinear factor

defined by
sinh (k)
QH(H) = - . (1.303)

The generalized potentials X; ™ (x) will be approximated to first-order in fluxes as

will be shown in (1.313) below. Then with %" defined by (1.300) AS*" (x) can
be written

r

AP @) == (1/899) 202 Ry @ (). (1304)

b=1 s>1

Before proceeding further, there is an important item to consider in connection
with the dissipation terms of heat and diffusion four-flows, ®" and ®{"" of a
mixture. In the case of a mixture, there holds the relation for diffusion fluxes of r
species

Z Jh=0 (1.305)
b=1

owing to the definition of diffusion four-flow; see (1.46). This means that one of the
diffusion four-flows is dependent on the remaining (r — 1) diffusion four-flows. We
will treat J/ of the rth component as the dependent diffusion four-flow. Then the
dependent diffusion four-flow must be removed by means of the condition (1.305).
This task is easily achieved in the Rayleigh dissipation function . Upon elimination
of J/" of the rth species component the Rayleigh dissipation function now reads
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r

2 an gd )] (22) 52 5@ (33) 53 (3)
K= (g‘{ab CD; )ﬂyq)byu-i_%ab (D[(l)(bb +%ab q)c(l )qubu)

)
>
Il

,q
|
_

+
M‘

(34) 34 3 4
(mab - mtgr )) qDEl )/chb,u

a=1 b=1
r—1 r
(43) (43) D g3
+ Zz (mab - ERrb ) q)é #cbbu
a=1 b=1
r—1 r—1
44 44 4
£33 (R - ) orall 1306)
a=1 b=l1

for which we have used the linear approximation for the generalized potentials [see
(1.299) and (1.300) as well as (1.313) below]. Upon use of this form (1.306) for the
Rayleigh dissipation function «, the dissipation terms A" and A" for the heat
flux four-flow and diffusion flux four-flow are given by the formulas:

r r—1
AY =—(1/g9) [Z T ® + Zmbcbfj”} : (1307)
b=1 b=1
r r—1
AP =~ (1/g%) [Z Rap®y + Zsabcb;‘”} (1.308)
b=1 b=1
where various coefficients are defined below:
(33)
Tap = Zab_ (a,b=1,...,r,);
Beg
%(34) _ %(34)
Op=—2_ "0 (g=1,....r,b=1,....r —1);
Beg
9{(43) _ m(43)
Ry = —2L h a=1,...,r—=1,b=1,...,r); (1.309)
Beg
RED L r@h) _ gr@dd) _ oz
Dy = 2 TR =R T gy

Beg

In addition to these coefficients, it is convenient to define the following coefficients
related to shear stress and excess normal stress:

9%(11) (22)
Bop = —L: V=" (@a,b=1,...r). (1.310)
B9
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It should be kept in mind that the nonlinear factor ¢, (x) in (1.303) is calculated with
% given by (1.306), because the dissipation terms A®) and A® are the consequences
of k% given by (1.306).

1.6 Generalized Potentials

In the evolution equations for nonconserved variables, especially, their dissipation
terms there still remain the generalized potentials X, flq,,)...g to be determined in terms
of variables spanning manifold 8 U ¥. In Chap. 3 of Volume 1, we have discussed a
number of ways to calculate generalized potentials. Therefore anyone of the methods
described in the chapter can be applied in covariant form to obtain approximate forms
for the generalized potentials in the relativistic theory. To avoid repetition, we will
present a summary of a simplest method of calculating them; namely, (1.263) is
used to calculate 7" by expanding InT to first order of X‘(fw)mw in the power

series expansion of f¢in X . We thus obtain to the leading order in Xfﬁ;...w the

avy-w*
expression

QW = — (kgT)™' D 2 U pIh PV RPPT f)X 5+ 0 (X?) . (1311)

s>1

where the higher power terms of X,(fl)/...# are omitted. Since moment tensors are
constructed orthogonal to each other with respect to the indices ¢ and s we obtain

SO — _ (kBT)_l (C—2ngah(q)uwvh(q)ﬁw/---wfe) x@

afy-w*

(1.312)

(ng)uml,

Therefore we see that X (flq/;’}/w is linearly proportional to in the lowest order

approximation. Since the tensorial rank remains invariant to the order of approxima-
tion in the expansion, we may generally write

(@ _ (@) @ (@p
X = —g @R, (1.313)
where the coefficient is, to first order, given by the statistical mechanical formula

1/g\" = Cy (fse?Uapgh@h) ) (1.314)

a

with the values of C, given by

% forg =1
C,=11 forg =2 . (1.315)
% forqg =3,4
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In the case of the nonrelativistic theory of dilute monatomic gases it is found sufficient
for many applications to take linear approximations similar to (1.313) for general-
ized potentials. It is believed also sufficient for the relativistic theory applications,
especially, for the cases of not-too-far removed from equilibrium.

1.7 Linear Generalized Hydrodynamic Equations

We have now assembled all the necessary theoretical ingredients to calculate lin-
ear transport coefficients for irreversible processes—namely, transport processes—
occurring in the vicinity of equilibrium. For this purpose we consider the linearized
evolution equations—constitutive equations—for shear stress tensors, excess normal
stress, heat fluxes, and diffusion fluxes for a dilute relativistic gas, since they appear
in the hydrodynamic equations in the present kinetic theory. They will be simply
listed here since more general constitutive equations will be examined in the next
section where the quasilinear generalized hydrodynamic equations will be presented
and examined together with their near-equilibrium limits. The linearized constitutive
equations are as follows:

Y 1 : 04
PO = —2p, [VUIP" — —= > B0, (1.316)
a  p=1
- 5 1<
@ _ > b )
pDcDa - 3paqu'M (2) Z}mabq) ’ (1317)
a  j=

r—1

~ 1 | <
pDO = —p,CpeTV' InT — —5 [Z Ty @ + Zmbcpgﬂ . (1318)
a b=1 b=1

= 1 a 3 - 5]
pDOWH = —p T Inc, — @ [Z Rap®" + > Dap @y | (1.319)
a b=1 b=1

for which we have taken the local equilibrium form for the temperature and pres-
sure. Here recall p, = p;. The symbol C,, represents the heat capacity at constant

pressure. More explicitly written out, the collision bracket integral 9‘{;‘5") defining
the coefficients B, Vb, Tav> Nav> Rap, and Dy, are as follows:

= ol [ 45 [o (e +0) 7 8 G2 )

aa’

1 e s
LM R (1.320)
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R = qgf{’)g}f)ﬁzz«Ah(‘”“ N H>> . (1.321)
b#a

In (1.320) and (1.321) the subscript a’ on the collision bracket integrals means that
the integrals are performed for another particle of species a.

It should be noted that the collision bracket integrals are symmetric with respect
to the interchange of species indices as well as indices for the coupled processes
such as g and s, namely, in 9%5%5). In other words, they satisfy the Onsager reciprocal
relations [41, 42]:

R = rID. (1.322)

Together with the conserved variable equations, namely, conservation laws, (1.79),
(1.80), (1.82), and (1.84), the linearized constitutive equations (1.316)—(1.319) con-
stitute linearized generalized hydrodynamic equations, which generalize the classical
hydrodynamic equations—namely, Navier—Stokes, Fourier, and Fick equations—
into the relativistic regime, but linear and near equilibrium.

1.8 Linear Transport Coefficients

The linear transport coefficients are identified in terms of inverse matrices of collision
bracket integrals R and D‘igf), if the linear steady-state equations of (1.316)—
(1.319) are algebraically solved for d"*", etc. in terms of thermodynamic gradients:

1 < ,
—2p, [VUIP" = = > By ®, " =0, (1.323)
a —
5 1< @
—3PaVuU" = — > W,@) =0, (1.324)
a ]71

r—1
1
—puCpaTV'InT — — [Z T @D+ D 9, c1><4>#} =0, (1.325)

a b=1 b=1
r r—1
1
—paVF'Ine, — —5 [Z R @y + Z@ababfj‘)} =0,  (1.326)
a b=1 b=1

Since the first two equations (1.323) and (1.324) are not coupled to each other nor
are they coupled to the rest of the equations in the set, they are separately solved.
On the other hand, since the last two equations are coupled, they must be solved
together. As a matter of fact, when solved algebraically for the fluxes, the set gives
rise to linear constitutive relations—i.e., thermodynamic force—flux relations—in
which linear transport coefficients [23], namely, the shear viscosity, bulk viscos-
ity, heat conductivity, and diffusion coefficients, can be identified and expressed in
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terms of collision bracket integrals. To relate the linear constitutive equations to the
conventional linear constitutive equations, recall that o — v, D2 = A,
q)((;)/t — Zz; CI)S‘)# — Ji

The first two equations of the set (1.323)—(1.326) are solved in terms of ther-
modynamic forces (gradients) by simply inverting » x r matrices 8 = (*B,;) and
U= (mab):

Héw _ Z VU Qv — _2?72 [vU](Z)#V , (1.327)
~ 5 <

Ba = 2 Z (m_l)ab v U" = _ngaquu’ (1.328)
b=1

where 7)) and 3, turn out to be the relativistic first-order Chapman-Enskog shear vis-
cosity and bulk viscosity of species component a. We have thus derived the relativistic
transport coefficients in terms of collision bracket integrals: The shear viscosity and
the bulk viscosity are, respectively, identified with the statistical mechanical formulas
in terms of collision bracket integrals making up the constitutive relations

r

M == (B7),, (VU1 = =20 (701, (1.329)
b=1
_ _z VU = VU, (1.330)

where the linear transport coefficients, namely, the shear viscosity and the bulk vis-
cosity, are given by the statistical mechanical formulas

r r 2R(1D -1
sgen-glE) ] e

b=1 b=1

"5 s | (Rme2\
M= S (@), = > . ( ﬁ:; ) . (1.332)

b=l b=1 ab

To solve the last two coupled set for Q' and J/' we constructa (2r — 1) x (2r — 1)
square matrix
(%9
6_(ﬁ©)’ (1.333)

where submatrices are defined by square matrices T and ® and rectangular matrices
K and 9:
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T Ty D - Do
T = Do D= : : ; (1.334)
‘Zrl e zrr @r,1 1" Z)r 1,r—1
J J J J
/YO gl f)(Q )L Y)<1,Qr_>1
R= oo D= : ; (1.335)
R0 819) S0 o2l

and a (2r — 1)-dimensional column vector composed of r-dimensional vector Q;”
and (r — 1)-dimensional vector Jb“ :

= (o), 1) (1.336)

and similarly a (2r — 1)-dimensional column vector composed of the thermodynamic
forces TV#InT and V¥#In¢,:

F=(Tv"InT, v"Inc,)" . (1.337)
Thus the coupled subset is written as a single matrix equation
2r—1
> &gl = —F. (1.338)
j=1
The solution of this coupled set is given by

2r—1

Pl =— Z (6’1)” 13 (1.339)

Jj=1

Explicitly expressed in terms of thermodynamic forces 7V#In T and p,V* In¢,, we
have the thermodynamic force—flux relations for the solutions:

|6, U [C
b=y —— Y Tyl InT — — 2 gl g, 1.340
P jZ_l:detIGI n ]Z:; det|s| = Y (1.349)
(a=1,...,r),
S|, S|
R J_Tv"1n lartigup e, 1.341
P Zdet|6| Z det|S| (1.341)

(a=r+1,...,2r—1).

Here the first equation is the thermodynamic force—flux relation for heat fluxes
4 = ¢ (a=1,...,r) and the second equation is the thermodynamic
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force—flux relations for diffusion fluxes J;' = ¢, for which the index a runs
from r + 1 to 2r — 1. In these equations |&|; ; denotes the (ij) cofactor of the
(2r — 1) x (2r — 1) determinant det |S].

With the definitions of linear transport coefficients

2b=d|::“é| @b=1,....r; (1.342)
D;;’.h)‘):% @=1,....r; j=1,....,r —1); (1.343)
fojd)o:%:g'(a:l,...,r—l;j:l,...,r); (1.344)

Df,’j=|i|t"—|*glj(a:l,...,r—l;j:l,...,r), (1.345)

the constitutive equations—the linear thermodynamic force—flux equations—are
obtained. They are given by the equations

r r—1
QU == MTV'InT = 3" D"V ine, (@=1....r).  (1346)
b=1 j=1
r r—1
J==>"DE TV InT =" DO, v'Ine, (a=r+1,....2r —1).
b=1 b=1
(1.347)

The transport coefficients listed in (1.342)—(1.345) are: )\gb = thermal conductivity;
D?, = diffusion coefficients; Dfl‘;h)o = diffusive thermal conductivity; D;’].d)o =
thermal diffusivity.

In experiments, the partial transport coefficients such as 772, etc. are usually not
separately measured for different species. Therefore the observed coefficients are
generally for the whole fluid except for diffusion coefficients. Therefore, to obtain
them it would be necessary to sum the partial transport coefficients over species
to obtain the transport coefficients measured for the fluid as a whole; that is, shear
viscosity 1°, bulk viscosity 73, and heat conductivity A\° of the entire fluid mixture:

0 = Zr: oy TR = i Mapr A’ = Zr: N, ete. (1.348)

a,b=1 a,b=1 a,b=1
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1.9 Generalized Hydrodynamic Equations

We have shown that the balance equations for the conserved variables, namely, the
conservation laws, and evolution equations for the nonconserved variables derived
from the covariant kinetic equation are constrained to satisfy the local positivity con-
dition on the calortropy production, namely, the local second law of thermodynamics.
The combined set of balance and evolution equations are called the relativistic gen-
eralized hydrodynamic equations. Their linearized version is already presented in
the previous section. They reduce to the relativistic classical hydrodynamics as the
system approaches equilibrium and also to the classical hydrodynamic equations
of Navier, Stokes, Fourier, and Fick as u/c — 0. Before ascertaining the limits
mentioned, we first collect the generalized hydrodynamic equations in the linear

X[(lq)#l/mo

approximation for the generalized potentials and in the first-order cumu-

lant approximation for the dissipation terms A

1.9.1 Nonlinear Generalized Hydrodynamic Equations

The set of evolution equations thus obtained constitutes a thermodynamically consis-
tent relativistic hydrodynamics for nonlinear transport processes. They are collected
below:

Equation of Continuity

The equation of continuity for the entire mixture is
Dp = —pv,U" or pDv = Vv, U", (1.349)

where v denotes the specific volume defined by v = 1/p.
Number Fraction Balance Equation

The number fraction (or concentration) balance equation is given by

pDc, = =V, J! + ¢ 2] DU, (1.350)
Unlike its nonrelativistic counter part it has a source term arising from the relativistic
effect—the second term on the right.

Momentum Balance Equation

The momentum balance equation is also in a more complicated form than the non-
relativistic version because of the relativistic effects.

—uv

¢ 2pDUY = —v¥“p — AV, P
+ ¢ (P¥'DU, — AYDQ" — Q“V,U" — 0"V, U¥). (1.351)
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The last group of terms on the right represents the relativistic effect.
Energy Balance Equation

The energy balance equation is given by
pDE = —v, 0" + P"'v,U, +2c*Q"DU,,. (1.352)

It also has a source term related to heat four-flow, which is a relativistic effect.

The nonconserved variables such as shear stress, etc. have terms reminiscent of
the kinematic terms of the nonrelativistic evolution equations, but although their evo-
lution equations are more complex than the nonrelativistic versions, the dissipation
terms are found to be in the formally same forms as for the nonrelativistic versions.
They are presented in the first cumulant approximation. Therefore they are highly
nonlinear.

Shear Stress Evolution Equation

The shear stress evolution equation for [14” = IT4"/p is given by
pDﬁ;au/ — _a Q(l)a;w ) [Pa . VU](Z)NV _ 2C_2 [Sa DU](Z)/M/
- Z (pﬁegg(” ) ROV (sinh k)

— 2c*2 [Q,DUIP" — ¢—2[UP, - DU

T 3T qW 1
Jfa T~ PaPal (AgA: - _A#VAUT) DU,
(UP2) 3

W 12T 32 E T 1
-t <fa—p“ Pa p“’;“ > (A’E‘AZ - 3A/“’AW) V.U,
(Usp)

fa PaPaPa (U” A"+ UPAY) 9,U,
(Uxp2)
!
SAL, faM v, (UFUYY, (1.353)
E (UAp2)

where the terms except for the first line and the dissipation term in the second line
are relativistic effects. The second term containing the pressure tensor P, in the first
line may be further decomposed into traceless and trace parts according to (1.56).

Excess Normal Stress Evolution Equation

With the definition A, = A, /p, the excess normal stress evolution equation is
given by

~ 2 1 m2c?p®
DA, = —9,Q%° —Zp2y U, — - |23+ (| f,———2)| DU,
P a 3 a 2 3 da f (U)\p)‘)

a
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1 1 ’ 1 2 .4 w0
~3¢70iDU. + 5 [P:“ -3 @%ﬂ Vol
3 3 3 (Uxp2)

r

(pﬁegg(z)) R @ (sinh /k) | (1.354)
b=1

where the third term in the square brackets gives rise to (2/3) J{'d;u, in the limit
u/c — 0, whereas the term in the square brackets in the second line vanishes in the
nonrelativistic limit. The pressure tensor can be also decomposed into traceless and
trace parts.

Heat Flux Evolution Equation
The heat four-flow evolution equation is given by

pDQ" = —0,QP7" — Q7V,U" — J'Dh, — P' Y hy + o314y ,U,
r 4

->>° (pﬂegg(S)) RO OO (sinh k) k)

b=1 s=3

oo
pro _ 2 PaP, Vail\
+ [ a Cc <fa (U)\pé) >} a
fa Pal’apa (p(3)/¢aw VUJUJ
(U)\pu) ’

—U"PIV,U, + U" IV hy — ¢ 2U" Q7 DU,

- C_zUHSZDUU - anﬂDﬁa +myc <fa pu pa > DUW

(UAP))

papa 27 papapa
faratl >DUw +c*h, <fa >ngw. (1.355)
< (Urp2) ()’

The second line represents the dissipation term in the first-order cumulant approxi-
mation and

9023)#0“) _ <fapgl7;7p2]) . (1356)

Diffusion Flux Evolution Equation
The mass four-flow evolution equation is given by

pDJl = —0,Q7" — p, DU — JIV,U"
4

- Z > (ﬁegg“)) RV D (sinh k/k)

b=1 s=3
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B w o
<fa Pas >D <fup“”“”“>v U, (1.357)
(Up)) (U\p2)

where the last line represents the relativistic effects and the second line is the dissi-
pation term in the first-order cumulant approximation.

Recall that " = 14, PP = A,; P = o, " = J*, and the nonlin-
ear evolution equations presented are coupled to each other and to the conservation
laws presented earlier. The evolution equations for the conserved and nonconserved
variables presented above constitute the relativistic generalized hydrodynamic equa-
tions for the relativistic dilute gas derived from the covariant Boltzmann equation.

When the dependent diffusion flux is chosen—we choose J/' as the dependent
one—the dissipation terms for s = 3, 4 are modified as well as the Rayleigh dissipa-
tion function &; see (1.307) and (1.308) for A’ and AW, respectively, and (1.306)
for k. Therefore, the dissipation terms in (1.355) and (1.357) must be replaced by
the modified expressions as follows:

r 4
~ 3> (Bge?) R @ (sinh /) =

b=1 s=3
r r—1
1
-5 [ Tap®" + Zﬁahcb;‘””} (sinh k/k) , (1.358)
9y Lp=1 =1
r 4
> (@gg“’) RS (sinh i /k) =
h:1 Y:
[Zﬁ I 4 Z o <1><4”‘} (sinh k/k) , (1.359)
b=1

where x must be replaced by the quadratic form « in (1.306) in the nonlinear factor
(sinh x/k) on the right of (1.358) and (1.359).

1.9.2 Quasilinear Generalized Hydrodynamic Equations

If we keep the dissipation terms in the first-order cuamulant approximation in (1.353)—
(1.357) while linearizing the kinematic terms and the divergence terms as in the
linearized evolution equations for nonconserved variables (1.316)—(1.319) then the
quasilinear evolution equations are obtained as below:

A I S
pDOY = ~2p, [VUID™ — —55 > By @, g, (). (1.360)
a  p=l
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~ 5 1 r
PP = =29V, U" = —5 > D@ g (), (1.361)
ga j—l
pDOP = —p,C,, TV"InT
[ r—1
1
— | 2 T + Zﬁabq’f”} Gn (R) | (1.362)
¢ Lb=l1 b=1
pD@iﬁ‘)" = —p,VF'In¢c,
[ r r—1
1
@ D fa®y) + Z@ub@‘”} Gn (K) . (1.363)
a  Lb=1 b=1

These are the simplest model of nonlinear evolution equations for nonconserved vari-
ables we can devise within the framework of relativistic generalized hydrodynamics
consistent with the laws of thermodynamics. Together with the balance equations
(1.349)—(1.352)—i.e., the conservation laws—they are called the relativistic quasi-
linear generalized hydrodynamic equations. This set would be completely parallel
to the nonrelativistic version we have examined and applied in Chap.3 of Volume 1
where the nonrelativistic hydrodynamic theory is formulated. The quasilinear gen-
eralized hydrodynamic equations are also in complete conformation to the laws of
thermodynamics as is the full version of the evolution equations considered earlier.
The theory of transport processes based on them, therefore, would be thermodynami-
cally consistent, yet highly linear with respect to the nonconserved variables plrr
because of the nonlinear factor g, (k).

1.9.3 Quasilinear Transport Processes

The time scale of evolution is much shorter for the nonconserved variables 55{““'"”

than the conserved variables. Therefore (1.360)—(1.363) generally reach a steady
state much faster than the conservations laws (1.349)—(1.352) do the steady state.
Therefore at the steady state of the transport processes reached in a much shorter
time regime than conserved variables we have

DOWHY = () (1.364)

and obtain the steady-state nonlinear constitutive equations

1 : ns
—2p, [VUIP" — —= > B, @, (k) =0, (1.365)
a  p=1

5 1 <
—3PaTuU" = —5 > Bap® g, () =0, (1366)
Ga ' -
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r—1

1 r
~puCpa TV InT — — [Z T @O + Zﬁahd>24)“:| gn (k) =0, (1.367)

a b=1 b=1
r r—1
1
—paV'Incs — —; [Z @} + Zi?abcbé‘”} 4 () =0 (1368)
a b=1 b=1

It can be easily shown that the solutions of these steady-state equations are given by
the nonlinear thermodynamic force—flux relations much similar to the linear coun-
terparts given earlier in (1.329), (1.330), (1.346), and (1.347) except for the presence
of the nonlinear factor ¢, , which can be expressed by the formula

1 sinh™! ;.
qrL :=q, (k) = e (1.369)
L

Here the new dissipation function «, is given by a quadratic form of the thermody-
namic gradients [VU]®*, v, UF, TV"InT, and V*Inc,:

KL = [ > [l o [vu]l) + e (v,07)’
a,b=1
1/2

+ Z Q:ifzs)g(q)ugl(f) , (1.370)

q,s=3,4

where the coefficients Q(qus) are scalars consisting of the coefficients B,;, U,
Sabs - - - » Dap, which in turn are given in terms of the collision bracket integrals. The
coefficients Cfllbl), etc. are calculated by solving the quasilinear constitutive equations
(1.365)—(1.368) and inverting the nonlinear factor ¢, (). It takes a lengthy algebraic
process to show it, but the procedure is straightforward and completely parallel to
the one discussed for nonrelativistic theory in Sect. 9.1.5, Chap.9 of Volume 1 to
which the reader is referred for details. Therefore we will not prove (1.369) here,
leaving it as an exercise for the reader.

1.9.4 Quasilinear Transport Coefficients

The quasilinear constitutive equations (1.365)—(1.368) enable us to obtain the sta-
tistical mechanical formulas for quasilinear transport coefficients for the associated
nonlinear transport processes. They are given below:

-1
r 2%((111)
= (T; qr = 1gqr; (1.371)

b=1 ab
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s R -1
MBa :qLZE ab qr = ngaqL; (1.372)
pa Beg
ab
161, 0
ab = ———— ::>\ ,b:l,..., 5 1373
= e[S qL awqr  (a r) ( )
@i _ Sl pano (@=1,....,r; j=1,....r=1); (1.374)
aj _det|6| L = aj qL =1,...,r; J=1,..., N .
w _ 1Ol puao @=1,....r—Lj=1,....r;: (1375
o T ety T e AL 14T Do =) '
=Sl o (a=1 r—1j=1 r) (1.376)
aj—det|6|qL.— aqu =1,..., ] =1 ... . .

Since g is dependent on a quadratic form of the thermodynamic gradients, the shear
viscosity 7, is non-Newtonian and vanishes as | | increases; to be mathematically
more precise, as |k, | — 0o the non-Newtonian shear viscosity shows the asymptotic
behavior as below:

Ne = k|7 (e > 0). (1.377)

That is, there is a shear thinning. Other nonlinear transport coefficients behave simi-
larly. Notice also that the nonlinear transport coefficients presented above break the
Curies principle. In other words, for example, the presence of a temperature gradient
causes the non-Newtonian shear viscosity 71, diminishes in magnitude—a phenom-
enon not seen in linear transport processes occurring near equilibrium, because two
processes are linearly independent of each other in the linear regime of thermody-
namic forces.

1.10 Model Quasilinear Generalized Hydrodynamic
Equations

If the nonlinear factor g, replaces the nonlinear factor g, (x) in (1.360)—(1.363) a
model quasilinear generalized hydrodynamic equations are obtained when they are
combined with the conservation laws (1.349)—(1.352):

Y 1 ¢ na
pDcDSll)ul/ — _Zpa [vU](Z)uV -5 Z;Bahq)él)/ qL (Fh) ’ (1378)
a  p=1
~ 5 1 <
PDEY = —2paVU" =~ > Dy ® 1 (), (1.379)
a  j=1

pDO® = —p,C,, TV InT



74 1 Relativistic Kinetic Theory for Matter

o r—1
1 (L
— 5 | 2T @D+ D 9@ gL (), (1.380)
@ | & -

pD@L‘W = —p,V'Ing,

[ r r—1
1
—5 | 2 R @) + D D@y | qu (). (1.381)
@ Lb=1 b=1

This model produces a mathematically less steep differential equations, but still may
be applicable to flow phenomena far removed from equilibrium where the thermo-
dynamic gradients can be steep. From the numerical computational standpoint this
feature would be a great advantage. We note that this model naturally arises when
the quasilinear evolution equation (1.360)—(1.363) are analyzed in the neighborhood
of their steady state. For details, see Chap.9 of Volume 1, where nonrelativistic
quasilinear evolution equations are examined at their steady state.

It should be also noted that the coefficients in this set of equations are all deter-
mined in terms of the collision bracket integrals or linear transport coefficients.
Instead of calculating the linear transport coefficients from the collision bracket inte-
grals, one may take a semiempirical approach in which empirical linear transport
coefficients or model transport coefficients may be made use of.

In Chap.9 of Volume 1, we have discussed applications of nonrelativistic qua-
silinear generalized hydrodynamic equations to a number of rarefied gas dynamic
flow problems in which the thermodynamic gradients are generally steep, but the
accuracy of their predictions is excellent. In view of such successful applications
the quasilinear relativistic generalized hydrodynamic equations presented here may
provide equally accurate results for flow problems in the relativistic domain, partic-
ularly because the relativistic quasilinear generalized hydrodynamic equations tend
to the nonrelativistic version as u/c — 0. It would be interesting to see if the quasi-
linear relativistic generalized hydrodynamic equations can be equally successful for
relativistic flow phenomena.

1.11 Nonrelativistic Limits of Evolution Equations

The important motivation of studying nonrelativistic limits lies in ascertaining the
continuity of the relativistic irreversible thermodynamic formalism and generalized
hydrodynamics with their nonrelativistic counterparts we have formulated in var-
ious chapters in Volume 1 of this work. This way, we would be assured that the
relativistic formulations have not been strayed, but provide appropriate relativistic
extensions of the theories mentioned. To investigate nonrelativistic limits of gener-
alized hydrodynamic equations, we first examine limits of operators, moments, and
energy-momentum tensors before we consider various evolution equations derived
earlier.
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1.11.1 Nonrelativistic Limits of Operators and Related
Quantities

Since the hydrodynamic velocity may be enumerated and written in the form

1
Ut =cy(l,u/c), +=—F—08xs=, (1.382)
K V1 —u?/c?
its nonrelativistic limit is enumerated as given below
lim U" = (c, u#), (1.383)

u/c—0

where u,, denotes the pth component of three-dimensional velocity vector u. The
covariant derivative is enumerated as below:

0, = (c™'9,, 0/0x"). (1.384)
Since the convective derivative operator D is then enumerated
D =U"0, =~ (c,w" (6718,, 8/3)6”) =~(0, +u-V),
it tends to the nonrelativistic limit
D =d, + 0 (u*/c?), (1.385)
where d, is the nonrelativistic substantial time derivative
d=0,+u-V. (1.386)
For the space component V# of 9" we may first decompose it in the form
VE = A9, = A9y + AR, (1.387)
and recalling 0,, = (c“ O, 8/(’9)5“’) and making use of the limits of projectors
A = =5, — 7L, (1.388)

(1.389)

it can be shown that

M2 I/t2
v = 0/x,+0 (—2) =V, +0 (—2) (k=1,2,3), (1.390)
c c
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where V,, = 0/x,, is the three-dimensional gradient operator. Similarly, for v, we

find
2

v#=vﬂ+0(2‘—2) k=1,2,3). (1.391)

Therefore the relativistic operators D and V# or V,, can be replaced, respectively,
with the nonrelativistic substantial time derivative d, and the gradient operator V; =
0/0xy in the limit of #/c — 0. This means that, for example,

v, U" = 0u,/0x,; v'U, = —0u,/0x,. (1.392)
The limiting behaviors of the operators listed above would make it easy to deduce

the nonrelativistic limits of macroscopic evolution equations. We note the following
limiting behaviors:

¢2EpDU* =ne '€ (4 + 0 (2)) (Low/oy”

== I’l—zd,llk
C
=pld, +0(c?)]. (1.393)

where p is now the mass density. We also note the nonrelativistic limits of the
following quantities:

0_ (2,2 2 P-p 2,2
D; —(mac +p p) —mac—i—zmac—i—O(u /c),

5=(p3,p)=mac(l+%+0(c3),l),

mgcC
1

phu, = 'y(cpg —Pps-u) = myc? |:1 + EmaCa -C, + O(c4)i|

Alph =7 (pyUn) € = myCq + 0(c7), (1.394)

where C, is the (nonrelativistic) peculiar velocity C, = v, —u. With the nonrelativis-
tic limits presented above, it is now possible to examine various quantities appearing
in relativistic equations and formulas to obtain their nonrelativistic limits.

1.11.2 Nonrelativistic Limits of Energy-Momentum Tensor

The statistical mechanical expressions of energy-momentum tensor components have
the following nonrelativistic limit expressions:
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r
Ly /
a=1
r d3p r
T% =7 = cZ/ o Pabuta = Z/cﬁpap’;fa (k=1,2,3), (1.395)
a=1 a a=1

o~ [ Epa g c : .
™ = CZ/FP’;péfa = Z/d3pap’;péfa (k. j=1,2,3).
a=1 a a=1

Taking projections of 7/, we obtain statistical mechanical expressions of various
projected components and their statistical formulas as well as the limits:

0 p[tpaf[l - nmcz + Ek + 0(C71)7

a

&pa o o
p

E=c?U,T"U,

4 U,.pi
=2 / d*‘pafa@ (PiU) . (1.396)
a=1 CPa
which, as u/c — 0, tends to the limit :
r r 1
2 3 1 ) -2
E — ;namuc + ;/d pafazma (Ci-C)+0(c?). (1.397)

Here the integral on the right is the statistical mean value of nonrelativistic internal
energy; see Chap. 3 of Volume 1. There is a rest mass energy additionally contributing
to E, which should be subtracted from E. Similarly, since we may write the partial
heat four-flow

Lo 2 A pwT
O =c"AT U,

wa wa
= /dSPafa (pzpo ) (p;—UT - macz) Q:g + /dSPafa (pzpo )muCZQ:Z
’ ’ (1.398)

and since lim, /.o ¢ =, u» We obtain in the limit of /¢ — 0 the nonrelativistic
limit

1
}im() Qg = /d3pafa Ema (Ca-Co) Ca,u + / d3pafamaczca,u + O(C_z)’
u/c—
(1.399)
to which, as for the internal energy, the rest mass energy contributes an energy flux,
but it should be subtracted from Q*. Thus we may define Q'*

0" = Q! —muc* N, (1.400)
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so that the limit

Jim 0 = / d3pafa%ma (Ca+C)Cap+0(c™?) (1401
represents an internal energy (heat) flux as in the nonrelativistic kinetic theory. Recall
that a similar subtraction was found necessary when the molecular moment for heat
flux hf)“ was defined. In any case, Q’“’ defined in (1.400) now coincides with the
heat flux obtained from hf)“ in the nonrelativistic limit.

As for the pressure (stress) tensor P, since it is given by the projection of 7"

MY A WT AV
P = AFT“TAY,

its statistical mechanical formula is

d’p, o
Pa’“’zc/ D AL DS pTAY S (1.402)
P

a

which may be expressed in terms of relativistic peculiar velocities by the formula

v 3 (p;)UW)z v
P =/d Pafur G (1.403)

a

This statistical mechanical representation for P! tends to the nonrelativistic limit
as below:

lim PM = / d®po famaCCY + O u?/c?). (1.404)

u/c—0
We have already discussed the nonrelativistic limits of 42", expressed in
terms of relativistic peculiar moments €} in an earlier section of this chapter; see
(1.105)—(1.108). Since they are in complete agreement with the nonrelativistic Boltz-
mann kinetic theory results, we are now assured that various nonconserved variables
pLH obeying the generic evolution equations have correct values in the limit of
u/c — 0. To find the nonrelativistic limit of the relativistic generic evolution equa-

tion we now examine the nonrelativistic limits (1.405) of kinematic terms Z.9""”
and its modified form Z'”*" and K V",

1.11.3 Nonrelativistic Limit of the Kinematic Terms

We find it convenient to make use of the relativistic peculiar velocity €7 in order
to investigate the nonrelativistic limit of the kinematic term Z\”*” and the related.
The kinematic term Z*"” can be expressed in terms of €7
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28 = (fupg 0,
= (£.0, [(€5 + U7) MV (&,)]). (1.405)

For the relation of A" to M"""" we refer to (1.98) and for the definitions of
MD" in terms of €7 see (1.99)—(1.102). The right-hand side of (1.405) then can
be expressed as follows:

200 = (£, (D + €9,) M)
+ U (fu M"Y DET) + (£ MPF (V,€0 4+ V,U?)).  (1.406)

To arrive at this expression we have made use of the identities:
«<U, =0, U°V,=0, U,DU° =0, U,V,U’ =0. (1.407)

See identities given below (1.97) in Sect. 1.1.6. The first term on the right hand side
of (1.406) tends to the nonrelativistic limit

lim (fo (D +€V,) M) = (£ D)

u/c—0 anr

where
D,=d, +C,-V (1.408)
-y — }i.mo M Dy (1.409)

with 221" denoting the nonrelativistic limits of the relativistic moments 4"

given in (1.105)—(1.108). The remaining terms on the right of (1.406) contribute
terms of O (u? / ), namely, relativistic effects.

1.11.4 Nonrelativistic Limits of szf,q)"ﬂ""/ and Kéq)u---v

Using the various limits of €7 and moments R" Y and observing QW7 is
expressible in the form
QU = (f,ETM D), (1.410)

we obtain the nonrelativistic limit

lim QWY = (f,Corh@F ). (1.411)

u/c—0 anr
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@y

This is the nonrelativistic limit of supermoment )y , which is one order higher
(q)p-v
than the moment A,y
As for K" since it is expressible
KOr" =c2(f, (€7 + U%) M (¢,)) DU, (1.412)

it is seen to be O(u?/c*) as u/c — 0 and hence represents a relativistic effect.

Therefore the modified kinematic term 3" simply tends to the nonrelativistic
limit of the kinematic term Z.V"":
u}icIEOSgI)M..-V — (faDlh;qu{Lmy> + O(MZ/CZ). (1413)

Therefore, we conclude that the relativistic generic evolution equation tends to
the nonrelativistic limit, namely, nonrelativistic generic evolution equation derived
from the nonrelativistic Boltzmann equation. Therefore, this nonrelativistic limit of
Z " \would be recovered from the relativistic kinematic terms presented earlier.
The limiting form used for the phase space integrals in (1.395) and various pro-
jections of them also apply to the collision integral and collision bracket integrals.
Therefore it is expected that together with the nonrelativistic limits of various observ-
ables, operators, and integrals appearing in Z(ﬁq)“ " we have presented earlier, the
generalized hydrodynamic equations can be verified to tend to those in the nonrela-
tivistic kinetic theory presented in Chap. 3 of Volume 1. To avoid repetition we leave
the verification to the reader. In this regard, we note that

h
¢ 3 DUIP = Z [JDUIP — — [Judu] ",

since U, — —u, in the limit of u/c — 0.

Having verified that the relativistic generalized hydrodynamic equations tend
to the nonrelativistic generalized hydrodynamic equations we are now assured of
an appropriate extension of the nonrelativistic hydrodynamics to the relativistic
domain of flow phenomena for a gaseous mixture described by the covariant kinetic
equation postulated. As we have already discussed earlier, if the dissipation terms
AD"7 (g = 1,2, 3, 4) are calculated with the nonequilibrium canonical form under
the functional hypothesis and in the first-order cumulant approximation, which
assures the thermodynamic consistency; and if the generalized potentials xro
(g =1,2,3,4) are calculated to the first order in O and lastly if a suitable
closure is taken for the macroscopic observables so that the set of generalized hydro-
dynamic equations is closed, we may then investigate flow processes in the system
subject to suitable initial and boundary conditions in a manner completely consistent
with the laws of thermodynamics. Especially, the quasilinear model for generalized
hydrodynamic equations enable us to investigate nonlinear phenomena such as non-
Newstonian flow processes consistent with laws of thermodynamics. In view of the
fact that nonrelativistic quasilinear model for generalized hydrodynamic equations
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have shown their capability for highly nonlinear flow phenomena we might speculate
the relativistic quasilinear generalized hydrodynamic equations may yield equally
interesting results. Lastly, we emphasize that the generalized hydrodynamic equa-
tions are thermodynamically consistent and support the thermodynamics of irre-
versible processes described by the thermodynamic theory based on the calortropy
and calortropy differential form presented earlier, because the generalized hydrody-
namic equations are field equations for macroscopic variables spanning the manifold

PUST.

1.12 Relative Boltzmann Entropy Balance Equation

Since the calortropy W is not equal to the Boltzmann entropy S, we have earlier
defined their difference as the relative Boltzmann entropy and have shown its balance
equation; see (1.228) and subsequent equations. Its balance equation can be a little
more explicitly worked out to help us a little better comprehend the nature of the
relative Boltzmann entropy. We discuss about it in the following.

1.12.1 A Form for In (f./ff)

To make progress in the calculation of the relative Boltzmann entropy we now look
for In ( fal fac), as for the Boltzmann gas discussed in Chap. 3 of Volume 1, in a form
whose leading terms are isomorphic to f::

ksln (fu/fS) = —pLUST — > 6K o Jh @7 + 671, — kg In (Ta/To).
q=1

(1.414)

Here Y, not only includes the normalization factor for f, but also the correction factor

to the leading term displayed. The symbols 67, 67, and 5?513”,0 are defined by
_ 1 1 u t - X{(;]) X{(;])f
0T = — — —; o7, = oo Ha, 5x@ - 20 (1.415)
T T T T! T T?

with the parameters superscripted with ¢ denoting the irreversible thermodynamic
parameters of manifold ¥, which are determined through the extended Gibbs rela-
tion for calortropy, (1.254). In other words, T, e, and Xéq)t are deterministic
thermodynamic parameters belonging to manifold ¥, whereas the parameters 7',
La, and X are not. The latter are phase space functions that should be deter-
mined as parts of the solution for the covariant Boltzmann equation in the phase
space, subject to the initial and boundary conditions, although from the irreversible
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thermodynamic standpoint they may be expressed as tangents to the manifold .
Therefore,
by looking for the solution of the covariant Boltzmann equation in the form as in

(1.414) the entire phase space information on f, beyond that of f; is vested in the

parameters 7', ji,, and X, ) and thus in the fluctuations 67, Ofty, and 6X, X9

If we express f, in the form

fo=exp[— kD)™ (Ha + O)] (1 + Af) (1.416)
where
= PU + D X DT — g (1.417)
q=1

and Af, is a correction to the nonequilibrium canonical form, then Y, is identified
as follows:

(exp[— (kpT) ™" Ha]) (1 +exp[— (ks T) ™' Ho] Af)

(1.418)
ng (1 +Afa)

Yo (x, pa) =

The factor Y, (x, p,) may be regarded as the normalization factor for f,,. We empha-
size that, when they appear in the solution of the Boltzmann equation and the Boltz-
mann entropy is under consideration, the parameters 7 and p, are not necessarily
the same as the absolute temperature and chemical potentials in the absence of the
thermodynamic structure associated with the calortropy. They are just functions of
phases (x, p,) satisfying the covariant Boltzmann kinetic equation.

With so prepared In ( fal fac) and the nature of Y, clarified, we can now calculate
the relative Boltzmann entropy balance equation, but it is not going to be integrable
in the thermodynamic manifold because of Y, as will be shown.

The relative Boltzmann entropy four-flow may then be written in the form

r

L1700 = = 37| 7007 + 3 6% e

a=1 g>1

—N"87i, + kg (fuplsinT,) |, (1.419)

where we have defined the symbol I', by the formula

6InT, =In(T',/Y,) =InT, —InY,. (1.420)

Recall that T/ is the energy-momentum tensor, supermoment four-flow 1.7 "*,

and particle four-flow N/ defined by

Ta;w _ (pa pa fa) w((lq)g-uz/u — (Pghflq)g'"yfa) , Nlé; — (nga) .
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Let us define the scalar relative Boltzmann entropy density S f1€] by the formula

pS[f1£] = U, [ £1£°] (1.421)

as we have for other scalar densities such as the Boltzmann entropy, calortropy etc.,
and calculate the balance equation for S; [ f| f¢]. Formally, it is given by

r

pDS [ f1£] = 0, (ALSY[£1£]) + ks D {fapbhduln (fu/£5))

a=1

+kg DD (0 (fa £5) Cab (fafs))- (1.422)

a=1 b=1

The three components on the right can be more explicitly calculated by using (1.414).

1.12.2 The Final Form of the Relative Boltzmann Entropy
Balance Equation

Putting the terms calculated earlier into the relative Boltzmann entropy balance equa-
tion, we obtain pDS; [ f|f€] in the form

pDS, [ 1] = 0"9,01 + 618,0" — T, (U,61) + > NI9,0E,

a=1
p
= (7)o ~ (@)
5 39 I L

a=1 g>1

> 6K pD®DT — p> kD (0T}, (1.423)

a=1 g>1 a=1
where we may use the evolution equation for <6ln I‘a) expressed as follows:
pD (6InT,) = 9, (AL (fupldInTy,)) + (fuph0,6InTy)

+ D (6InTyCap (fufs)) - (1.424)

b=1

This evolution equation is obtained by making use of the generic form for evolution
1 tiaqe : . =(@a-o
equations for scalar quantities; see, for example, evolution equation for &, s
(1.118). Therefore (6111 Fa) is looked upon as a macroscopic quantity. This viewpoint
is sufficient for our purpose here. If the decomposition of energy-momentum tensor,
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various identities involving covariant derivatives, the hydrodynamic velocity U*, and
the products of the latter with Q# and P*”, the following can be shown:

Terml := Q"9,61 +619,0" — T"9,U, 01
= —0IpDE — pEDII. (1.425)

For this we have used the energy balance equation (1.84). With this result we finally
obtain the relative Boltzmann entropy balance equation in a relatively simple form

DS: [flfc] — —57D5 —+ i 6zaDca — i z 5?6(?(1."0D$éq)0‘--.a11

a=1 a=1 g>1
— DT+ ¢, Dofi, — . > BWT DX,
a=1 a=1 g=>1
— ks »_ D(0InT,). (1.426)

a=1

‘We note that we can obtain this form directly from the statistical mechanical expres-
sion (1.419) and (1.421), if the relative Boltzmann entropy density is differentiated
with the convective derivative D. As a matter of fact, this procedure serves as a check
for the final result.

The differential form (1.426), however, is not integrable in the thermodynamic
manifold because the last term D (InT',) cannot be expressed in a bilinear form of
variables belonging to manifold 3 U ¥. For it is given in terms of the solution of the
covariant Boltzmann equation, subject to the initial and boundary conditions, in the
phase space. Therefore DS‘; [f1f€]is not an exact differential in the thermodynamic
manifold P U <.

Following the procedure described in Chap. 3, it is possible to develop a system of

evolution equations o1, T 5?:2,“0, etc. on use of the covariant kinetic equation.

We do not wish to repeat it here, especially since studying such a set of equations is
beyond the scope of this work, which is to investigate the kinetic theory foundations of
thermodynamic theories of irreversible processes and accompanying hydrodynamics.
We will leave it to the future development on the subject of fluctuation theory.

1.13 Concluding Remarks

In this chapter, we have applied the modified moment method to the covariant Boltz-
mann equation for a relativistic gas mixture to study the thermodynamics of irre-
versible processes and hydrodynamics associated therewith. As in the nonrelativistic
theories, the method modifies the conventional moment method of H. Grad [29] in
such a way as to make the hydrodynamic theory of irreversible processes strictly
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conform to the demand of the laws of thermodynamics. It thus affords us a rigor-
ous conclusion concerning the calortropy differential and foundations of irreversible
thermodynamics for the system away from equilibrium. It is found that the statis-
tical mechanically defined calortropy admits a mathematical structure for a theory
of irreversible thermodynamics consistent with the H theorem and the laws of ther-
modynamics and, in particular, the second law of thermodynamics. Therefore it has
been possible to show that there exists a theory of thermodynamics of irreversible
processes satisfactorily describable on the basis of a mathematical theory of macro-
scopic irreversible processes derived from the covariant kinetic equation in a manner
consistent with the thermodynamic principles.

In the literature on the molecular theory approach to irreversible thermodynamics
the important notion and properties of the Clausius entropy have been uncritically
extended to nonequilibrium transport processes. The present work shows that such an
uncritical extension is not warranted for both nonrelativistic and relativistic kinetic
theory. In this chapter, by using the covariant Boltzmann equation for gas mixture
we have shown how one may develop a thermodynamically consistent theory of irre-
versible processes, irreversible thermodynamics, and attendant hydrodynamics on
the basis of calortropy. We have also pointed out that the Boltzmann H theorem is a
stability theorem for the equilibrium solution for the covariant Boltzmann equation,
but it is not a statistical mechanical representation of the second law of thermody-
namics. The H theorem is a broader stability theorem for the distribution function in
the phase space than it is a statistical mechanical representation of the second law of
thermodynamics that governs the macroscopic processes, reversible or irreversible,
in the thermodynamic manifold, which is much smaller in dimension than the phase
space of a gas consisting of molecular particles. In fact, for nonequilibrium systems
the Boltzmann entropy is a quantity depending on the path of evolution taken by
the system in the nonequilibrium thermodynamic manifold, when the system makes
transition from a state to another in the manifold. The notion of equilibrium entropy,
which is a state function giving rise to an exact differential in the thermodynamic
manifold, does not apply to the nonequilibrium Boltzmann entropy, if it is defined
by the statistical formula associated with the H theorem for the covariant kinetic
equation.

The present study also demonstrates for the case of relativistic kinetic theory
that the calortropy differential produces a thermodynamic theory of nonequilibrium
systems in a way rather parallel to equilibrium thermodynamics. Nevertheless, such
a formalism still requires integration of the relativistic generalized hydrodynamic
equations in the thermodynamic manifold 8 U ¥ as an integral part of the theory.
Since the latter are not trivial to solve exactly in analytic form except for a few spe-
cial cases, there remains a great deal of work to be done on the subject matter of
hydrodynamic flows in the future, unquestionably and necessarily, in the numerical
computational approach. Here we now have acquired a thermodynamically con-
sistent coherent mathematical theory of nonequilibrium statistical thermodynamics,
irreversible processes, and hydrodynamics far removed from equilibrium at arbitrary
degree.
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The relativistic kinetic theory presented in essence puts the statistical mechanics
of nonequilibrium thermodynamics on par with the Gibbs ensemble theory of equi-
librium statistical thermodynamics in the sense that all thermodynamic functions and
evolution equations and relations are expressed in terms of nonequilibrium partition
function which must be computed for each and every irreversible process in the ther-
modynamic manifold 3 U ¥ to achieve the desired goal of a molecular theory of
matter.

All the macroscopic evolution equations are presented in such forms that they
consist of terms easily identifiable with the corresponding terms in their nonrela-
tivistic versions and purely relativistic terms which vanish in the nonrelativistic limit.
Thus, the relativistic corrections to the classical generalized hydrodynamic equations
are clearly exposed and made easy to identify and examine their effects. Since the
full relativistic generalized hydrodynamic equations are much more complicated to
solve than their already difficult nonrelativistic counterparts, the first-order relativis-
tic corrections to the latter are probably all we can hope for in practice at present. The
quasilinear relativistic generalized hydrodynamic equations presented here should
be useful for studies in macroscopic flow processes and transport processes in a ther-
modynamically consistent manner. The fact that their nonrelativistic counterparts
have been found useful raises a hope that the relativistic versions should be useful
for studying relativistic irreversible processes in gases.

1.14 Supplementary Notes on Four-Tensors and Vectors

1.14.1 Four-Vectors, Four-Tensors and Related Algebra

In the present Supplementary Notes, we briefly review some topics on four vectors
and tensors [44] associated with the relativity theory for the reader not familiar with
the subject matter.
A point x in spacetime denotes a four-vector
x = x" = (ct,r) = (ct, x1, X2, X3) (1.427)

and the conjugate four-momentum is

p'=%p), (1.428)

where cp® is energy with abbreviation

p’ = /m2c? + p2. (1.429)
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The length of time-like vectors is positive. Let the length squared of four-momentum
p" be denoted
p* = pt'p,. (1.430)

Then since we employ the metric tensor

10 0 O
. 0-10 O
) L 1 -1 — —
g =diag(l,—1,—-1,-1) = 00 -10 | (1.431)
00 0 —1
we find 5
p*=p"py= (") —p-p=(me). (1.432)

Note that p* therefore is time-like since (mc)? > 0.
Let the distribution function be f(x, p). The particle number density n; (X, t)
may be defined as

n(x,t) = /d3pf(x, ») (1.433)
and particle flow as
j(x, 1) :/d3pvf(x,p), (1.434)
where
cp
v=—"p (1.435)
p

is the velocity of a relativistic particle of momentum p. The particle number four-flow
N"(x) = (en(x,1), j (X, t)) can be written as

3
NF = c/ dp—fp”f(x, ). (1.436)

As is demonstrated by de Groot et al. [3] f(x, p) is a scalar under Lorentz transfor-
mation.

1.14.2 The Scalar Product of Four-Vectors

The scalar product of four-vectors is given by

A'B; = A°By + A'B, + A’B, + A®Bs. (1.437)
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This four-scalar is invariant under rotations of the four dimensional coordinate sys-
tem. The component A is called the time component, and A', A%, A3 the space
component of the four-vector. Depending on the sign of the scalar product, A’ and
B; are classified as follows:

if A’B; > 0; A’ and B; are time-like,
if A'B; < 0; A’ and B; are space-like,
if A'B; = 0; A" and B; are null-vectors.

Under purely spatial rotations (transformations not affecting the time axis) the three
space components of the four vector A’ form a three-dimensional vector A. The
time-component of A’ is a three-dimensional scalar with respect to rotations.
The components of the four-vector may be enumerated as
AT = (A% A). (1.438)
The covariant component of the same four-vector is given by
A; = (A%, —A). (1.439)
Therefore the scalar product A’ A; is given by
ATA; = (A% — A2, (1.440)
For example, for four-vector x'

x'=(ct,r), x;=(ct,-1), x'xj=c"—r (1.441)

Thus .
dx'dx; = ¢ (d1)?* — (dr)*. (1.442)

1.14.3 Four-Tensor of Rank Two

For a four-tensor of rank 2, there is a set of 16 components A’ which under coordinate
transformations transform like the products of components of two four-vectors. The
components of a second-rank tensor can be written in three forms: contravariant Atk
covariant A;;, and mixed A’; and A;*. For symmetric tensors A, = A;*, which then
may be written as A}. Raising or lowering the a space index changes the sign of the
component, whereas raising or lowering the time index (0) does not. Thus
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Ag = A%, A = AP A,' = A%,
A =—A%, A% =A% Al=—AY et (1.443)

Under purely spatial transformations, the 9 components A'!, A2 etc. (e.g., direct
products of three-dimensional vectors) form a three-tensor whereas A%, A%, etc.
constitute three-dimensional vectors, while A% is a three-dimensional scalar (e. g.,a
scalar product of two three-dimensional vectors).

Contraction of a tensor Ai: is the trace of the tensor:

Al = A5+ Al + A+ A3
:=TrA (1.444)

Unit four-tensor 5{‘ is defined by

SF=1, ifi=k
=0, ifi#k. (1.445)

Thus A
SkAT = AK, (1.446)

Raising or lowering index is achieved by a metric tensor g'* or g :

g A= A
gin A" = A;. (1.447)
In matrix form, they therefore must have the form
0 0
0

1

(9") = (gi) = (1.448)

S OO

-1
0 —

SO o=

0
0

—_

Then the scalar product of two four-vectors can be written as

ATA; = g% A Ay = gir AT AR (1.449)
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1.14.4 Completely Antisymmetric Unit Tensors of Rank Four
eiklm

As 0}, gix, and g'* are, four-tensors e’*™ are the same in all coordinates. This is the

tensor whose components change sign under interchange of any pair of indices, and
whose nonzero components are 1. Therefore, if, for example, two indices are the
same, then ¢/ = () owing to the antisymmetry. This means that only

B =1, (1.450)
and, if so, then
eor3 = —1. (1.451)
To see this, we observe
€013 = goog1192g3e’ > = 1(=1)°1 = —1. (1.452)

With respect to rotations of the coordinate system, ¢/*/" behaves like a tensor. But even
if the sign of one or three of the coordinates is changed, the sign of /¥ do not change
because e’ is the same in all coordinate systems. Therefore ¢’*"" is not a tensor,
but a pseudotensor. Pseudotensors of any rank, in particular pseudoscalar, behave
like tensors under all transformations except to reflection, which is not reducible to
a rotation.

1.14.5 Terminology Definition

It is convenient to list the well known definitions of terms used in connection with
tensor algebra.

Polar vector: under a reflection of the coordinate system, i.e., under a change in
sign of all coordinates, the components of ordinary vector also change the sign. Such
vectors are said to be polar.

Axial vector: On the other hand, the components of a vector that can be written
as a cross product of two polar vectors do not change sign under inversion. Such
vectors are said to be axial.

Pseudoscalar: The scalar product of a polar vector with an axial vector changes
its sign under reflection. Such a scalar is called the pseudoscalar. Note that scalar
products of two polar vectors or two axial vectors do not change the sign under
reflection.

Pseudovector: Axial vectors (e.g., C = A x B) are pseudovectors dual to some
antisymmetric tensor. Thus it can be written as



1.14 Supplementary Notes on Four-Tensors and Vectors 91

Cy, = AyB, — A, Bj. (1.453)

Then the pseudovector C,, can be defined

1 .
Ca = 5eat c. (1.454)

This vector is dual to the antisymmetric tensor C”7.

Antisymmetric four-tensor: The space components (i, k = 1, 2, 3) of antisym-
metric tensor A’* form a three-dimensional antisymmetric tensor with respect to
purely spatial transformations; its components can be expressed in terms of the com-
ponents of a three-dimensional axial vector. With respect to the same transformations
the components A°', A9 A9 form a three-dimensional polar vector. Thus the com-
ponents of an antisymmetric four-tensors can be written as a matrix

0 pr py P

iky _ | —Px 0 —ay ay
(A )_ o oar 0 —a |’ (1.455)
—p: —ay, a; 0

where, with respect to spatial transformations, p and a are polar and axial vectors,
respectively. This four-tensor will be enumerated as

A% = (p,a). (1.456)
Then the covariant components of the same tensor are enumerated as
Ajx = (—p,a). (1.457)

This should be understood by the fact that p is a polar vector that changes sign on
reflection while the sign of the axial vector a remains unchanged.

Four-gradient of scalar ¢: The covariant component of the four-vector (0;) is
enumerated as

oo 10¢
Y =-==,V 1.458
Ox' (c ot ¢) ( )
In fact, the differential of scalar
0 .
do = idx’ (1.459)
Ox!

is also a scalar. In general, the operators of differential with respect to the coordinates
x', 0/0x', should be regarded as a covariant component of the operator four-vector.
Therefore, for example, the divergence of a four-vector A’
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Al )
a—, = A’ (1.460)
Ox!

18 a scalar.

1.14.6 Four Types of Integrations

1. Integral over a curve in four-space. The element of integration is the line element
dx’

/dxif, (1.461)

2. Integral over a (two-dimensional) surface in four-space. In three space the pro-
jections of the area of the parallelogram formed from dr and dr’ on the coordinate
plane x,xg are

A =dx,dx}; — dxpdx),. (1.462)

Similarly, in four-space the infinitesimal element df'* is given by
df* =dx'dx™ — dx*dx". (1.463)

These are projections of the element of area on the coordinate planes. In three-
dimensional space one uses as surface element in place of the tensor df,s the
vector dual to the tensor d f,,s:

1
dfo = Feandf”. (1.464)

This is what we understand as the normal vector to the surface in three-
dimensional vector analysis, the magnitude of which is equal to the area of the
element. In four-space we construct the tensor df** dual to the tensor d f¥,

. 1 .
df*ik = Eelk""df,m. (1.465)

Geometrically, it describes an element of surface equal to and “normal” to the
element of surface df’*. All elements lying in it are orthogonal to all segments
in the element df*. Obviously, it follows that

dfi*df; = 0. (1.466)

3. Integral over a hypersurface, i.e., over a three-dimensional manifold. In three-
dimensional space the volume of the parallelepiped spanned by three vectors is
equal to the determinant of the third rank formed from the components of the
vectors:
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dxi dx/i dx//i
dS™ = | dx* dx™* dx"* |, (1.467)
dxl dx/l dx//l

which form a tensor of rank 3, antisymmetric in all three indices. As element
of integration over the hypersurface, it is more convenient to use the four-vector
dS', dual to dS™

. 1 .
ds' = —gel“mdsk,m, (1.468)
dSiim = enkimdS". (1.469)
Here
ds® =ds', ds'=ds",. ... (1.470)

Geometrically, dS' is a four-vector equal in magnitude to the “areas” of the
hypersurface element, and normal to this element (i.e., perpendicular to all lines
drawn in the hypersurface element). In particular, d SO = dxd yvdz, i.e., the three-
dimensional volume element, the projection of the hypersurface element on the
hyperplane x° = constant.

4. Integral over a four-dimensional volume: The element of integration is scalar

dQ = dx’dx'dx*dx® = cdtdV (1.471)

Analogs of Gauss and Stokes theorems:

](A ds; = / —dQ (Gauss theorem), (1.472)

j{A dxt = / a—dfk’ (Stokes theorem)

(OAF QA
_ ki f =z~ =
= 2/df (6x" axk)' (1.473)

1.14.7 Four-Dimensional Velocity

Four-velocity of a particle is defined by

s (1.474)
u = . .
ds
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2
ds = cdty|1 — —, (1.475)
c

where v is the ordinary three-dimensional velocity of the particle,

To find its components, since

W= — 2 ete, (1.476)
cy/1— f—;
the four-velocity is given by
A 1 N
= R . (1.477)
UZ UZ
\/ G C\/ —a
Since ‘
dx;dx’ = ds®
we obtain '
wu; =1 (1.478)

Similarly, the second derivative is given by

P X (1.479)
W= =—. )
ds? ds
Therefore .
w'u; = 0. (1.480)

The algebra surveyed in this appendix is made use for various evolution equations
in the relativistic kinetic theory.
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Chapter 2
Relativistic Kinetic Theory of Matter
and Radiation

The relativistic kinetic theory of irreversible processes in a system of matter
presented in Chap. 1 of this volume is generalized to include radiation in this chapter.
The generalization enables us to remove the awkwardness inherent to the nonrela-
tivistic theory of radiation and matter reported in the paper [1] by Eu and Mao
and provides kinetic theory foundations for the relativistic irreversible thermody-
namics and radiation hydrodynamics for a system of radiation and matter. In this
chapter, the relativistic Boltzmann equations—more precisely, a relativistic the-
ory (covariant) form of the Boltzmann—-Nordholm—Uehling—Uhlenbeck equations
[2-4]—is employed to formulate a theory of transport processes in a system of radi-
ation interacting with matter in a manner consistent with the laws of thermodynamics.

The motivations to have a covariant kinetic theory are following: Since photons
are inherently relativistic, the relativity principle requires that governing equations
of the system must be Lorentz covariant. In Ref. [1] the nonrelativistic kinetic theory
was used to study irreversible processes in a system of radiation interacting with
matter and, in particular, to study Doppler shift corrections for photon frequencies,
but the nonrelativistic kinetic theory treatment of the subject matter was found often
cumbersome and awkward. It was also difficult to make sure that the definitions of
statistical mechanical formulas for macroscopic variables and the evolution equa-
tions indeed had correct nonrelativistic limits. These weaknesses can be assuredly
removed if a covariant theory is formulated. Secondly, there are some problems,
especially, in the study of the early epoch of the universe and also in the nuclear
physics of high energy heavy ion collisions, for which a relativistic formalism is
required since post-collision particles move at high speed. It will be shown that the
present covariant kinetic theory recovers all the nonrelativistic evolution equations

IThis chapter is a substantially revised version of the unpublished paper by the author with K.
Mao, which was also part of the PhD thesis of K. Mao, McGill University, Montreal, 1993, under
supervision of B.C. Eu. The revision is concerned with the theory of irreversible thermodynamics
making use of the calortropy and the evolution equations for nonconserved variables. There are
other aspects which are significantly revised.
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in correct forms with proper relativistic connections and thus verifies the previous
nonrelativistic formulation [1]. In any case, in the present chapter we formulate a rel-
ativistic kinetic theory for a monatomic gas mixture interacting with photons treated
relativistically and quantum mechanically. In the kinetic equations for molecular par-
ticles and photons, the collision terms are so modified as to make them more suitable
for quantum particles. Since the collision terms in the kinetic equations used in the
present chapter are quantum mechanical, they naturally affect the dissipation terms
of nonconserved variables in the evolution equations, but we are, nevertheless, able
to make use of the approach taken in Chap. 1 of this Volume except for some details
related to the quantum collision terms. As a matter of fact, the affected parts of the
theory turn out to be all related to transport coefficients originating from the collision
terms in the kinetic equations. Therefore, most of evolution equations involved in
the theory remain the same as those in Chap. 1 of this Volume except for the dissi-
pation terms and quantities related to them. For this reason we will dispense with
the details of derivations of evolution equations, wherever possible without sacrific-
ing the comprehension, but will present the results only. The distribution functions
used in the present chapter should be regarded as the Wigner representations of the
density matrices. For this part of discussion on the kinetic equation and distribution
functions employed for quantum particles, see Chap.9, Sects.9.1-9.3, of Ref. [5],
where a nonrelativistic theory is used to discuss about Wigner distribution functions.

First, covariant Boltzmann equations are briefly presented for a system consisting
of photons and material particles with internal degrees of freedom. The material gas
molecules can make transitions between various internal states in interaction with
photons by absorbing, emitting, or scattering the latter. These dynamical processes at
the particulate level are described by the Boltzmann collision terms in the covariant
Boltzmann equations. Consequently, the generalized hydrodynamic equations are
derived from the covariant kinetic equations for radiation and matter and made fully
consistent with the thermodynamic laws at any degree of removal from equilibrium.

The consistency between the relativistic Boltzmann distribution function and the
Planck distribution function has been a point of controversy in the past [6—8], and the
present covariant kinetic theory makes it possible to examine the question. As a matter
of fact, we show that both distribution functions are consistent with each other within
the framework of relativity and that their mutual consistency is intimately related to
the H theorem and therefore deeply rooted in the second law of thermodynamics
framed in terms of calortropy. In this connection, it is interesting to recall that the
original derivation by Planck of the radiation distribution function itself was based
on thermodynamics [9].
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2.1 Covariant Boltzmann Equations for Matter
and Radiation

We assume that the system consists of a gas with internal degrees of freedom (e.g.,
atoms or diatomic molecules, etc.) which interact with a radiation field (photons) not
necessarily in equilibrium. The system is assumed to be free from external fields.

The internal quantum states of material particles will be denoted by i and the
particles in different internal quantum states a will be regarded as different species
of particles. Therefore, the material gas is considered a mixture of particles with
different “colors” distinguished by the value of i. For example, if the particle species
is the hydrogen atom, then the index i represents the 1s, 2p, - - -, states of hydrogen
suitably arranged. The mass of the particle species a will be denoted by m,, and its
momentum by p,,, the kinetic energy by cp? with ¢ denoting the speed of light.

It then is convenient, as in Chap. 1 of the present Volume, to enumerate the four-
momentum of species a by the formula

Ph = (P pa) 2.1)

where the time component p? is given by the expression

Py =1/Pa - Pa + mic>. (2.2)

This formula looks like the one holding for structureless particles considered in
Chap. 1 of the present Volume, but different masses m,, are assigned to the particles in
different internal states. This point can be illustrated in the following way: According
to relativistic quantum mechanics, the Dirac equation for the hydrogen atom, for
example, gives the energy eigenvalues [10] depending on the two quantum numbers,
the principal quantum number n and the angular momentum quantum number J,

Eny =m, 1+ 2202/ (n—e,?] 2, (2.3)

where ¢ is defined by the formula

1 1 > 1/2
5,=J+§—|:(J+§) —Z?a2:| ; (2.4)

«v 1s the fine structure constant

&2 1

no137

Z, is the electron number in atom; and m, is the rest mass of the electron. If we
set E:jj = m,c? where a stands for the set (n, J), (2.3) suggests that the mass of
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the excited particles is not the same as the rest mass of the ground-state particles.
Therefore, m, contains the information on the internal state of the particle. It is easy
to show by expansion that approximately

my =m,+c 2E,, (2.5)
where E, is the energy eigenvalue:

2.2
_Zea
2a?

E, = (a=n—egy). (2.6)

The time component pg in the four-momentum in (2.1) is understood in the sense
of (2.5) or its precursor (2.3) and will be used accordingly in the calculations made
in connection with the two-body collision dynamics in this chapter. The singlet
distribution function of species a will be denoted by f,(x, p,), the italic subscript r
being reserved for radiation.

We consider the following microscopic collision processes:

a+b=a"+b" (M1)
a+b=k+I, M2)
a+hw = a* + hw*, (M3)
a+hw = b+ hw*, (M4)

where a, b, k and [ stand for the matter species and the asterisk denotes the post-
collision quantity. Therefore, for example, fuw™ means a photon of radiation frequency
w* after collision. Let subscript a stand for the species of particles including photons,
which will be designated the rth species.

In contrast to the four-momentum of matter species a given in (2.1), the photon
four-momentum is defined as follows: Since photon momentum p, is related to the
wave vector K, of photon propagation, it can be written

pr = Ik, = fik,K,, 2.7)
where k, is the dimensionless unit vector of the photon wave vector K, :
K =k, / k| =k /k. (2.8)

If we set

ky = —, (2.9)

w
Cc
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where w is the photon frequency, then the photon momentum p, may be written

Fiw ~
P = —K,. (2.10)
C

We now observe that the photon is massless.”> Consistent with this fact, the photon
four-momentum p}' is enumerated by

ne hw o~y
pl= Rl k) =0 (2 k) == (1K)". @.11)
c c
Therefore we find its scalar product is equal to zero:
fiw\ 2 ~ o~
Pipry = (—) (1-k k) =0. (2.12)
C

This is in contrast to p p, b= mic2 for the case of matter species a.
It is postulated that the singlet distribution function f,(x, p,) for species a obeys
the covariant Boltzmann equation?

PLOy fa(x, pa) = Ra [ ful. (2.13)

where collision term R, [ f,], which is decomposable into component collision terms

Ra [ful = D Rap [fa S (2.14)

b=1

2Later, this statement is shown to be true from the thermodynamic consideration.

3This is a covariant kinetic equation for particles free from an external force field F#*. This restriction,
however, can be relaxed for the case of the Lorentz force, provided that the external force leaves
the rest mass of the particle unaltered at the end of the particle collision

pl'F,=0.

Furthermore, it is assumed that the particles having momenta in the range A3 p at the beginning
of the proper time interval A7 occupy an equal momentum range at the end of the interval. This
would true if the force has the property

0
Iz _
api Ft(x,p)=0.

These properties are met by the Lorentz force. For such an external force the covariant kinetic
equation may be modified to the form

PZaufa(x, Pa) + mF;_fu(xs Pa) = Ry [ fal,

where F/' is external force on particle a.
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is given by the Wang Chang—Uhlenbeck collision term [2] with the quantum effects
put in as in the Boltzmann—Nordholm—Uehling—Uhlenbeck (BNUU) equation [3, 4]

Rap [fa fo] = [C(fafb> +>.>°¢ (fafblfk*ﬁ*)] : (2.15)

k=i I=i

Here the subscript b, k, [ runs over all species including matter particles and photons;
thatis, b = 1,2,...,m, r, where m is the number of material species. The index
r is reserved for photons. We refer the reader to Ref. [5] where a nonrelativistic
theory of irreversible processes is discussed, using the BNUU equation for a dilute
quantum gas mixture, since the present covariant kinetic equation is a relativistic
generalization of the BNUU equation. The Boltzmann collision integrals—more
precisely, relativistic BNUU collision integrals—C( f, f) and C, ( Jafol i f,*) are
given by the expressions for the matter part

C(fufp) = /d3 /d3pb/d3phW( ) (papspPip})
[f fQ+efd)A+ef) = fafs T+efl) (L+ef))]

WA [ @i [ @i [ Enw paipini)

k=a l=a

x[fEfFA+eafd) A+enfy) — fufs +eafd) (1 +eaf)]
(2.16)

and for the radiation part

Cr (fafol £ 1) / d’p / d’p; / &>, W (papslpip}) x
[fk fl I+ €afu) (I+ ebfb) - fafb (1 + €kfk*) (1 + €lf]*)]

+ZZG /d3 /d3ﬁl"/d3ﬁbW(i") (Paps| P P))

k=i =i

x[fEfFQ+eafd) A+enfy) — fufs M+ efd) (1 +eaf)].
2.17)

Here d°p = d°p,/ p?, etc. and
+1 for fermions
€4, € = { —1 for bosons

0 Boltzmann particles

The symbols G, and G, stand for the statistical weights for the material particles
and photons. The W, W™ and W) denote the transition probabilities for elastic,
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inelastic and “reactive” collisions, respectively. Since the photons do not interact with
each other the transition probabilities for photon-photon interactions are equal to
zero: W (p.p,|pipr) = 0, Wi (p.p,|pipy) = 0, and W (p, p,|pip}) = 0.
These transition probabilities can be calculated from quantum mechanics for a given
dynamic mechanism. We assume that they are known through few-body mechanics.
In kinetic theory, such few-body dynamical information is assumed known. Writing
the kinetic equations for material particles and photons as in (2.13), we have assumed
both the material gas and photon gas act as a dilute gas mixture.

We close this section by adding that the transition probabilities have the following
symmetry properties

W (papol P py) = WO (pi pf | paps) - ete. (s = e,in,r). (2.18)

These relations originate from the microscopic reversibility of microscopic dynamic
events and are crucially important for proving the H theorem.

2.2 Boltzmann Entropy and the H Theorem

The covariant kinetic equation postulated here satisfies the H theorem, which enables
us to determine uniquely the equilibrium solution of the kinetic equation as in the
case of the covariant kinetic equation discussed in Chap. | of this volume. The H
theorem also guides us to construct a thermodynamic theory of irreversible processes
occurring in the system as will be shown. To state the H theorem explicitly we first
must introduce the Boltzmann entropy four-flow S* (x) for the system of radiation
and matter by the formula

r

S"(x) = —kg D (Pl faln fo—€a (1 + eafu) In (1 + €0 f)]). (2.19)

a=1
where f, = f,(x, p,). The angular brackets (- --) abbreviate the integration over

momentum space:

(Aa(x, pa)) = GaC/d3ﬁaAa(x, pa) (@=1,---.r1) (2.20)

with the abbreviation
d’p, =d’pa/py.

Recall that the subscript a is for either matter or photons, but the subscript r stands for
radiation (photon). By differentiating S* (x) and using the covariant kinetic equation,
we obtain the balance equation for the Boltzmann entropy four-flow
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08" = Tem (1) . (2.21)

where the Boltzmann entropy production oy (x) is given by the statistical mechan-
ical formula

Oent (X) = —kp Z ({In fa(x, pa) —In[1 + € fa(x, p)}Ra [ful) . (2.22)

a=1

It is easy to show that oy (x) is positive semidefinite and equal to zero, only if the
system is at equilibrium:

1 r
Oen (1) = 2k D (In{f7f; (1 +€afo) (1 + o)
a,b=1
[ falb (1 + 6af;) (1 + 6bfb*)}g‘iab [fafb])
> 0. (2.23)

This is the local form of the H theorem for the covariant kinetic equation postulated,
(2.13). The equality holds at equilibrium reached in long time. As in the case of a
nonrelativistic gas and a relativistic single-component gas discussed in the previous
chapter of this volume, the H theorem may be regarded as a stability theorem of
Lyapounov [11], which concerns the stability of the equilibrium solution and the
state of equilibrium.

The scalar density S of Boltzmann entropy four-flow S* is defined by contracting
S* with the hydrodynamic velocity U*:

S (x) == pS = c2U, 8" (x). (2.24)
Here again we take Eckart’s definition of hydrodynamic velocity; see (1.27), Chap. 1
of this Volume. The balance equation of S is then obtained by operating the convective
time derivative operator D on this expression and using the same procedure as used
for the balance equation for S in (1.149)—(1.153), Chap. 1, Vol. 2:
pDS = =0, ! + Oen (1) , (2.25)
where Boltzmann entropy flux J{' is given by

JH = AlSY (2.26)

with A# denoting a projector.*

“4Here we would like to emphasize that the hydrodynamic velocity is defined according to Eckart,
but for the mixture of matter and photons:
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Owing to the H theorem, the equilibrium distribution functions satisfying the
covariant kinetic equation can be uniquely determined with the help of the Clausius
entropy (i.e., the entropy of reversible processes) and the second law of thermody-
namics. To implement this step we need to develop the theory a little further. We will
presently return to this task to construct the equilibrium solutions more explicitly
later.

2.2.1 Equilibrium Solution of the Covariant Kinetic Equation

One of the most important results provided by the H theorem is that the equilibrium
solution of the covariant kinetic equation is uniquely determined by the vanishing
Boltzmann entropy production:

ke < ) (o + f
Oent (x) |eqi] = TB Z <1n |:((6 fe*71) (Eb fl;*?):| mab[ :, f;]>

a,b=1 €a + Ja ) (€b+fb
=0, 2.27)

which implies the logarithmic factor in it is a collision invariant. The superscript e
denotes equilibrium. That is, In (€a + fa""l) must be a summation invariant:

In(e,+ ) +In(ep+ ) =In(e,+ £57) +In (e + ££57') . (2.28)

This in turn means that the logarithmic functions In (e, + f~') must be also a linear
combination of basic collision invariants. Therefore, the equilibrium distribution
function may be written in the form®

In (o + f;7') = B (PyUs — 115) - (229)
Rearranging this expression we find the equilibrium distribution function in the form

s -~ (@a=1,2,...,m,r). (2.30)

@ P(PiU—H) ¢

(Footnote 4 continued)

where N* is the sum of Ni/ * with the index i running for entire species including photons according
to our model.

SThis form is without a constant factor that has to do with the normalization of £¢. See Chap. 1 where
the case for classical particles is described in connection with equilibrium distribution functions.
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The equilibrium distribution function f; contains as-yet undetermined parameters
Be and p which must be determined upon corresponding the statistical mechanical
formula for the equilibrium Boltzmann entropy to their phenomenological counter-
part, namely, the Clausius entropy. This can be achieved if the equilibrium Boltz-
mann entropy density 8¢, which is identical with the Clausius entropy for reversible
processes in the equilibrium system, is evaluated with the equilibrium solution f:.
Since 8¢ = ¢2U 1S (x) is given by the statistical mechanical formula

_kBZc Udpt [ (ea + £ +ealn (14 € £5)]). (2.31)

inserting f; we obtain

= kg Zc pg 3B ( U, — MZ) + €, In (1 + eaf;)]). (2.32)

This expression upon use of the statistical mechanical formulas for the internal
energy—energy-momentum tensor—and density yields

S = BekppEe—Pekpp D pica +kp D ealcULphIn (14 €. f5)).  (2.33)

a=1 a=1

Here the internal energy density p€ is calculated from the projection of the energy-
momentum tensor

£ =D UL U, =Y U fphp) Uy (2.34)

a=1

and the density p, of species a with the statistical mechanical formula

p=> pa=c 2D UNE=c2D UL(fEpL). (2.35)
a=1 a=1 a=1

The ratio of densities p, and p provides the statistical mechanical formula for the
density fraction ¢, = p,/p—concentration of a. The last term on the right of (2.33)
is identified® with the statistical mechanical expression for relativistic hydrostatic
pressure

P = B kpea (¢ PULpEIn (1 + €4 f5)). (2.36)

61t should be noted that p€v, on the left of (2.36) defines macroscopic parameter p€ by the statistical
mechanical formula on the right, which will turn out to be hydrostatic (i.e., equilibrium) pressure,
when S€ calculated therewith is identified with the equilibrium entropy on correspondence with the
phenomenological Clausius entropy deduced from the second law of thermodynamics.
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where v, = 1/p, is the specific volume. This formula is the equivalent of the non-
relativistic formula for hydrostatic pressure in the grand canonical theory to which
it reduces since c’zU/,,pff — m, in the limit of u/c — 0. Formula (2.36) is the
necessary and sufficient condition for S¢ to become a bilinear form in the thermo-
dynamic manifold 3 U ¥. In this connection it should be noted that if equilibrium
grand partition function E° were constructed for the mixture of matter and photons
such that the equation of state is given by the formula

p°V =p53"ng", (2.37)

then there would be the correspondence

= & kae, / dr (U, p I (14 ea f2)). (2.38)
|4

In summary, the equilibrium Boltzmann entropy density is given by the formula

S = BekppES—Peknp D pica + Seknpp®v. (2.39)

a=1

On the other hand, if we calculate the equilibrium calortropy density differential
from the balance equation (2.25), the following equation is obtained at equilibrium

nge =k ZQ,ﬂGA‘; (faepﬁj (pZU,, — uZ))

a=1
r

—ka > ((1+€uf) ™ ALPLO,S)

a=1
r

= Bekp D (=0, 0% — pusDey) (2.40)
a=1
for the following reasons: Firstly, at equilibrium

PLouf; =0; (2.41)

secondly, Q% is the heat four-flow defined by projection of the energy-momentum
tensor 7¢"

QF = —ALTI"U, = —AL(fSplipl) U, (2.42)
and thirdly, the following identification is possible:

AGN; = A (faph).
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which may be rearranged to the form

AENY = (gt — ¢ *U"U,) N} = N — ¢ *U"U, N/
= N" — p,U". (2.43)

The symbol ¢, is the number fraction defined earlier: ¢, = p,/p. Therefore, ALNY
may be regarded as the flux J;' of N/ relative to p,U* in the number fraction balance
equation

pDc, = =0, J} = =0, AN} . (2.44)

Using the energy balance equation for an equilibrium process, we then obtain

pDE® = —0,0! — p*V,U" = —0,0! + p°p~' Dp
= —0,0" — pp°Dv, (2.45)

where v = 1/p. Therefore, we finally obtain from (2.40) the equilibrium Boltzmann
entropy differential

D& = Beky [ DE+ p*Dv— > ptDe, | . (2.46)
a#r

Here the photon is excluded from the sum over species because for photons pf = 0
as will be shown shortly when we discuss the Boltzmann entropy of photons. This
differential form in comparison with (2.39) implies that the integrability condition
of (2.46) is

ED (Bekg) = D caD (Bekppil) + vD (Bekpp®) = 0, (2.47)
a=1

which is the equilibrium Gibbs—Duhem equation, provided

1

fe= 1o

(2.48)

That is, making correspondence between the statistical mechanical expression (2.39)
with the corresponding thermodynamic (Clausius) entropy for a reversible process
within a constant, what is the same thing, comparing (2.47) with the thermodynamic
(phenomenological) equilibrium Gibbs—Duhem equation

C 0 p°
EDTS ' — Z c.D (F) +vD (F) =0, (2.49)
a=1

we find the parameter 3. as in (2.48) in terms of the absolute temperature 7° of the
equilibrium system and the parameter yi, as the equilibrium chemical potential of



2.2 Boltzmann Entropy and the H Theorem 109

species a. This way, the parameters 3. (or T¢), p®, and p, are fully identified with
their thermodynamic counterparts in (statistical mechanical) Boltzmann entropy Se
and the equilibrium distribution function f;;. This of course means that the Boltzmann
entropy at equilibrium is identical with the Clausius entropy of reversible processes.

Now we would like to show the equilibrium distribution function of radiation is
given by the expression

fe= (e -y (2.50)
if the photon number is variable [1]. Since f° is a Lorentz scalar, which can be
demonstrated by the same method as shown in Chap. 1 of volume 2, it is permissible
to use the local rest frame formula for U, :

U, = (c,0,0,0). 2.51)

Then, if the wave vector of radiation is denoted k, = k,E where k, = |k,| = w/c
(w =frequency) and k, is the unit vector in the direction of propagation, the covariant
form of the equilibrium photon distribution function is given by a familiar looking

expression

o= (Pt — 1)—1 , (2.52)

We now show that ¢ = 0 if the photon number is variable. The equilibrium
number density is given by the formula

pr= NV =(fF W)

=723 /OO dww? {exp [Be (hw — pf)] — 1}7l . (2.53)
0

Since the local grand canonical partition function for photons I'; is given by

re=—(v/mc6e) / " dweIn {1 —exp[B (15 — Tw)]}. (2.54)
0
we find P
p,Z_( ; ) , (2.55)
K Jrey

where 1 is the chemical potential. If we set i =y and differentiate (2.54) with pf,
there follows (2.53) exactly. Thus we have identified ;¢ with the photon chemical
potential. Now since

pe=—T° (ai) =(3AT) , (2.56)
pr ) re.v Opr Jrey
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where S¢ and A¢? are, respectively, the equilibrium Boltzmann entropy density and
work function for photon. If A¢ is required to be at a minimum at equilibrium as it
is varied with respect to p,, it follows that

(5‘Ar) _0
Opr Jrey

and hence the equilibrium radiation has a vanishing chemical potential:

us = 0. (2.57)

r

Therefore the equilibrium radiation distribution function is given by
£ = (e —1)7" (2.58)

The meaning of [, is the same as (2.48) because according to the Stefan—Boltzmann
law [12] the radiation energy density is given by

Te4
ge =488 (2.59)
c
where agp is the Stefan—-Boltzmann constant. If &, is calculated by using £ in (2.58)
and equated with the phenomenological &, in (2.59) we conclude

_ 60hc3
(BT ™ = ——asp.

The left hand side, (ﬁeT"’)_4, must be a universal constant since the Stefan—
Boltzmann constant is universal as verified by experiments, i.e., the Kirchhoff law
[9, 13]. The universal constant turns out to be the Boltzmann constant raised to the
fourth power. Hence we find that the parameter 3. in f;° is given by the same formula
as (2.48). We therefore conclude that both radiation and matter distribution functions
share a single temperature parameter characterized by the black body radiation in
thermal equilibrium with matter. Furthermore, they are mutually consistent, and their
mutual consistency is demanded by the H theorem.

It is interesting to note that Einstein derived (2.52) from the equilibrium condition
between radiation and material particles in his famous paper of 1917 [14]. The
present approach elucidates the kinetic theory and dynamic bases which are absent
in his theory. In the recent past, Boyer [6] claimed that the Boltzmann distribution
functions for relativistic material particles and the Planck distribution function are
not consistent within the framework of quantum theory, and this has been a point
of controversy [7, 8]. The derivation of (2.30) and (2.52) presented earlier shows
that they are completely consistent with each other, provided that the irreversible
covariant kinetic equation (2.13) satisfying the H theorem is postulated. Moreover,
it shows that the Planck distribution law is deeply rooted in the H theorem and thus
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the second law of thermodynamics for radiation in equilibrium with matter. It also
points out that it is not possible to think of a radiation distribution function without
taking into account the corresponding material particle distribution function and the
interaction between radiation and matter. It therefore may be said that this is the first
practical and useful result of the present covariant kinetic theory formulation of the
theory of radiation and matter.

2.2.2 Equilibrium Energy-Momentum Tensors
of Radiation and Matter

We define the energy-momentum tensor of matter or radiation in equilibrium by the
statistical mechanical formula

T =(pl'pl f£(p)). (i=a,r). (2.60)
With the help of the projector defined by
A =gt — U 2.61)

the equilibrium energy-momentum tensor can be decomposed into component as
follows:
\ 1 -2 L
T = ps A" + ¢ p ESUMUY, (2.62)

where the energy density £ is defined by

P&l = ¢ U Uy = e ((pU,) (P10 £ (P0) (2.63)

2
and the hydrostatic pressure p¢ is given by

e 1 1224 1 Hov e
Pi = gA/“’Tei = §A/w (Pi Pi f, (pt)> (264)
Therefore, the total material internal energy and total material pressure are given,
respectively, by the formulas

P =D Palir Vo= D Pi = peksT®. (2.65)
a#r a#r

Note that the summation sign here excludes photons. The last equality is easy to show
in the local rest frame [15]. The second equation of (2.65) is a well known result for
gases consisting of structureless particles. It also holds for dilute gases consisting of
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particles with an internal structure. By using the definition of the projector A, and
the identity

pﬁpru =0
for photons, we can show from (2.63) and (2.64)

1
pe = gpré’f’. (2.66)
In fact, this relation is indeed verifiable by using the local rest frame. By using the
energy-momentum tensor for radiation, we can also derive the Stefan—Boltzmann
law [12],
prE = aspT, (2.67)

where agg is the Stefan—-Boltzmann constant:

274
Tk

= —2 2.68
15h3¢3 ( )

ass

In connection with this result, we recall that the parameter /3, in the radiation dis-
tribution function is determined such that the equilibrium radiation energy is given
by (2.67). The (. so determined exactly coincides with the one given in (2.48). This
coincidence is a result of the demand made by the H theorem that the material gas
and radiation be in equilibrium. Other thermodynamic quantities for radiation and
matter can be calculated with the equilibrium distribution functions determined here.

2.3 Number and Energy-Momentum Tensor
Balance Equations

The covariant kinetic equation postulated for matter and radiation gives rise to the
particle number and energy-momentum tensor balance equations as does the rela-
tivistic kinetic equation considered in the previous chapter of this volume. They will
be derived for matter and radiation in the following, but if derived separately for
matter and radiation treating them as different species, they give rise to additional
source terms because of interactions between molecules and photons, which may be
regarded as “chemical reactions” in the present model.
Let us define the number four-flow of species i by the statistical representation

Nl.“' = <p;1'fi(x, pi)) (2.69)
and the energy-momentum tensor of species i by

Tilw — (P,HP,’/fi(x’ pi)), (2.70)
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where index i runs over matter species (1, ..., m) and similar expressions for radia-
tion specifically designated by index r. Therefore the total energy-momentum tensor
of matter as a whole is given by

m m

TR =T =" (pl'pl fix. p)). (2.71)

i=1 i=1
and the energy-momentum tensor for radiation by
T/ = (plpl fr(x. pr). 2.72)

The number four-flow for the entire matter species is then given by

m

Ny =D NI'=2 (pl filx. po) (2.73)
i=1

i=1

and for radiation by the statistical mechanical formula

NI'=(p! fr(x. py)). (2.74)

By using the kinetic equation, the balance equation for N’ for matter species a can
be shown given by the equation

NI = AW, (2.75)
where
AP = (R, [f]). (2.76)

This source term A is not equal to zero because of the interactions of matter
particles with photons and making transition to other matter species as assumed in
the present model. However, when summed over all matter species, that is, for Ni

O,NfL =0, (2.77)

because the overall matter is conserved and hence
> AP =0. (2.78)
i=1

Similarly to the balance equation for N)'. Hence the energy-momentum balance
equation acquires a source term:

9, T" = Al (2.79)
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where the source term is given by

m

Al =" (pIRi 1£i]). (2.80)

i=1

Therefore, the energy-momentum tensor for matter alone is not a conserved quantity,
because it is not a collision invariant. For radiation we obtain the number balance
equation

NI = A", (2.81)

and the energy momentum balance equation

0, T = Al (2.82)
with the source terms
A" = R, [f]) (2.83)
and

respectively. For the system of matter and radiation as a whole the number four-flow
is then given by the sum
N" = N/ + NI (2.85)

With the total number four-flow N# we define hydrodynamic four-velocity U*

by the Eckart convention
cN#

Ut = N (2.86)
Hydrodynamic number density p; of species i is then given by
pi=c *UN!' (i=1,2,....mr). (2.87)
The total number density therefore is given by the sum
{m.r}
p=pmtp =D pi=c UN" (2.88)

i=1

where the upper limit {m, r} of the sum means that the sum is over all matter particle
species (1, ..., m) and radiation r.

The scalar energy density &; of species i (either matter or radiation) is defined by
a projection of energy-momentum tensor of the species:

E; = p& = U, TM"U,. (2.89)
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Other projections of the energy-momentum tensor are the heat flux (four-flow) Q'
and the stress tensor P/"”, respectively, defined by

Ql%’ =U,T" A", (2.90)
P = AETSTAY, (2.91)

where A% is a projection operator as defined in the previous chapter. Therefore the
energy-momentum tensor of a species is decomposed into four components according
to the projections given above:

T = CpEUIU + R QU + UMQY)
e QEUY UM + B 252

where Q;”' is the net heat flux above and beyond energy carried by matter
o) = Q! —hJ! (2.93)
and J!' is the diffusion of energy attributable to particle diffusion:
3 =hrt (2.94)

with ﬁdenoting the enthalpy density and J/' the number diffusion four-flow defined
by
JI'"= NI'"—¢,N". (2.95)

The index i runs for all matter species and radiation since the decomposition holds
both for matter and radiation. From the number and energy-momentum balance
equations derived earlier follow various balance equations for conserved variables—
number, momentum, energy—when various projections of the energy-momentum
tensor balance equations and the number balance equations are taken. The procedure
is described in the previous chapter of this volume. Since it basically remains the
same, we will simply present the results only, but separately for matter and radiation
because we are interested in hydrodynamics and transport processes of radiation and
matter separately.

For the purpose in mind we recall that because N*V,, = 0 in Eckart’s definition
of hydrodynamic velocity the substantial time derivative ® = pD + NV, is simply
given by

D =pD. (2.96)

Therefore the substantial time derivative of macroscopic quantity (density) ¢ may
be written as
pDY = 0, (YN"). (2.97)
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Using this identity various evolution equations for macroscopic properties follow
straightforwardly with the help of their statistical mechanical definitions.

2.3.1 Equation of Continuity

From the total number density balance equation follows the equation of continuity
for the system
Dp = —pv,U". (2.98)

It should be noted that this is for the totality of material particles and photons in
the system. With the definition of specific volume v = 1/p, (2.98) is equivalently
written

pDv =v,U". (2.99)

2.3.2 Balance Equations for Conserved Variables of Matter

Various balance equations for conserved variables follow for matter species similarly
to (2.98).

Density Fraction Balance Equation

The density fraction (concentration) balance equation follows from (2.75)
pDc, = =0, J" + ¢ 2J'DU, + A", (2.100)

where diffusion four-flow J}' is defined by (2.95). The term A" appears because the
number of particle species a is not conserved owing to its transition to another mate-
rial species upon interaction with photons; see the collision processes (M1)-(M4)
assumed for the model for collisions.

Momentum Balance Equation

Operating the projector A on the energy-momentum balance equation for matter
we obtain the momentum balance equation

¢ 2EnpDUY = =V pp, — A,’JVVF;V
+ ¢ (PL"DU, — A D Q%
—QLV,U” — Q4L Vv, U") + ALADY, (2.101)

for which we have made use of the decomposition of energy-momentum tensor T,":

TH = 2 pmEnU"U” + 72 (QULUY + UM QL) + PL”. (2.102)
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This decomposition of 7" follows from summing components (2.92) over matter
species. Consequently, the total energy of matter (the total internal energy of material
gas) is given by

pnm = D paa (2.103)
a#r
with
pm =D Pa: (2.104)
a=1
the heat flux four-flow Qh, by
on = U, T7AlL (2.105)
and the pressure tensor Py by
P =" Pl = A'TTTAY. (2.106)
a#r
In (2.101)
1
P =P = 3 AW T (2.107)

The pressure tensor ?;V is further decomposable into excess trace (Ap) and traceless
symmetric (I17) parts:

<oV 1 ~
P, = (—T“ﬂ — pm) A%+ T177 := pn A7 + A A7 + 1177, (2.108)

m 3 m,
where
A 1 1% e e
Ay = gA;me —pti=p—pL, (2.109)
1
M = P = AT Ay (2.110)

Therefore, Ay, is the excess normal stress above and beyond the hydrostatic pressure
Pm. It consequently vanishes at equilibrium. It should be noted that we have used
the identity A#V,U" = V,U*" for the derivation of (2.101).

Energy Balance Equation

The energy balance equation also follows upon contracting the energy-momentum
balance equation (2.79) with ¢ ~2U . and using some of the identities listed in (1.78).
We thereby obtain the energy balance equation
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pDEy = =0, 0" + PLv,U, + ¢ *QL DU, + ¢ 72U, A%, 2.111)

The last term in this equation appears because of the interaction of particle species
with photons making transition to different particle species—or acquiring a spectrum
of “colors”, figuratively speaking. The term 2¢~>Qf DU, vanishes as u/c — 0 in
the nonrelativistic limit.

2.3.3 Balance Equations for Conserved Variables
of Radiation

The balance equations for conserved variables of radiation can be derived from (2.81)
and (2.82) in the same manner as for material balance equations.

Radiation Density Fraction Balance Equation

With the definition of radiation (photon number) fraction as ratio of p, to p

¢ =2, 2.112)

p

we obtain, by making use of identities (1.78), the radiation fraction balance equation
pDc, = —0,J" + ¢ 2J'DU, + A", (2.113)

The term ¢~2J DU, vanishes in the nonrelativistic limit as u/c — 0.
Radiation Energy Balance Equation

Contracting the energy-momentum balance equation for radiation (2.82) with ¢ =2U '
the radiation energy balance equation is obtained:

pDE, = —0,0" + PV, U, + ¢ *Q'DU, + ¢ *U, A" (2.114)

Here &, is the radiation energy density and the equation obtained above describes the
evolution of the radiation energy density. We have not listed the radiation momentum
balance equation here, since it is related to the radiation heat flux evolution equation,
which will be included in the flux evolution equations for nonconserved variables
given below.

2.4 Evolution Equations for Nonconserved Variables

We have already seen that there appear macroscopic variables such as J/, Q¥ and
P! in the balance equations presented for conserved variables, which do not as yet
have their own evolution equations. They are, as a matter of fact, examples for what we
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call nonconserved variables. The variables J/, Q! and P/"” are the leading elements
of a hierarchy of macroscopic nonconserved moments, which can be generated from
the kinetic equation. We have seen such examples in nonrelativistic kinetic theories
and also in the relativistic kinetic theory of pure gases discussed in the previous
chapter. We derive them from the covariant kinetic equation by using the moments

denoted by 2”7 for the generic molecular symbol for nonconserved macroscopic

variables. The subscript i of moment h;q)”'"“ denotes the speciesi € (1,...,m,r)
and the superscript ¢ denotes the gth element of the moment set: ¢ = 1,2,3,4, .. ..
The set of moments is constructed by using the conserved moments as seed moments,
which have appeared in the balance equations of conserved variables. The higher-
order moments following the seed moments are hierarchically constructed by using
the Schmidt orthogonalization method employed for constructing an orthogonal set
of moments. This method was used in the nonrelativistic kinetic theory of the present
work and also in the previous chapter on the relativistic kinetic theory of matter of this
volume. The same procedure is employed for the present covariant kinetic equation.
The reader is referred to the sections for the Schmidt orthogonalization method of
constructing an orthogonal moment set in the previous chapters of this work. We
present the matter and radiation parts separately.

2.4.1 Moment Set for Matter

The leading elements of the moment set for matter species are represented by the ten-
sor polynomials R which may be chosen to be orthogonal tensor polynomials
of momentum p{ and ordered as follows:

= ) (8887 = §80,87) pi .115)

hy = %"2 (Uap2) ™ Dbl = Ps/pa+ (07 = 1) (E—Es).  2.116)
WO = (Uyp)) APl pSUL

— (R +mac?®) [P — 7 (Uap)) U]} (2.117)

= (U)ol — e () UM ere, (2.118)

where p, and T, are the density and the enthalpy density of “color” species a,
respectively; E, is the energy of the internal degrees of freedom of particle a;

F:ZEQ, (2.119)
a#r
7971 = Cint/Cv (Cv = Ctr + Cint) (2120)
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with Cy and Cj denoting the translational and the internal specific heat per molecule
at constant volume, respectively; and p, := pf{ for notational brevity. The set of

h;q)a...w

moments } is constructed in the same spirit as taken for it in Chap. 1 such

that its elements reduce to the same nonrelativistic limits as for the nonrelativistic
theory counterparts in the limit of u /c — 0. In the case of gases without an internal
structure the last term in (2.116) for 2(? vanishes and the expression for h® of
a monatomic gas used in the previous chapter is recovered. Note that the quantum
aspect does not appear explicitly in the kinematic terms even though particles behave
quantum mechanically, at least in their collision processes, in the present theory. The
set is ordered as presented, because the present ordering is most suitable for the
theory presented below in this work. We also note that the moment set also can be
expressible in terms of relativistic peculiar velocity €7 as was done in Chap. 1 of this
Volume. Such a representation would be most convenient when their nonrelativistic
limits are discussed. The physical meanings of the tensor moments 47"
become evident as the theory is formulated in the following.

To begin the derivation of evolution equations, the macroscopic four-flow tensor
(i.e., supermoment) /"7 is defined by the statistical mechanical average of flow

will

pghf,q)’”"y of molecular tensor moment /7"
w7 = (pgh fu(x, pa)). (2.121)
We then define macroscopic flux tensor <I>£,q)“ ¥ for nonconserved fluxes by taking

(@)op--v
a

contraction of supermoment ) with hydrodynamic velocity U,

QI = UL = U, (pIhEPF fu(x, 1)) (2.122)

Therefore summing it over all matter species we obtain the macroscopic moment for
matter as a whole

m
QI 1= pWDIY = N RWI (g =1,2,- 4. (2.123)
a=I(a#r)
The macroscopic moment tensor @éq)”"'” will be sometimes referred to as the macro-
scopic flux of order g. Here the subscript m stands for matter in order to distinguish
the material part from the radiation part of the flux. The leading examples for macro-
scopic tensor moments CI>((lq) K are stress tensors, heat fluxes, diffusion fluxes.
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2.4.2 Evolution Equations for Nonconserved
Moments for Matter

By using (2.121), (2.123), and the substantial time derivative’ ® = pD, where
D := U"9,, we easily obtain the evolution equation for D" of matter. The
procedure is illustrated below as a generic example.

Operating pD on "™ := &" /p, we obtain

pDOD Y = 9, (WY N (2.124)
which can be rearranged to the form
pDODIY = 9, (PL7Hy — K=Y NTY 4§ qpl@oiy, (2.125)
The flux of """ may be defined by the formula
A’Wféq)mmy = (1/1((1‘1)0“"'” - 6,(lq)“""’N") . (2.126)

Upon use of the covariant kinetic equation, we obtain the evolution equation for
supermoment 107"

071 = (fu(x, o) pIOID" V) + AP (x) (2.127)

T

where the dissipation term AY (x) is defined by the kinetic theory formula

A[(;])u---l/ (x) = (hé‘])ﬂ"'l’ma [ falx, pa]) . (2.128)

Therefore,we are finally able to write the generic evolution equation for """ in
the form

pD® DIV = g, (ABPLDTT) 4 ZDI AP (x) (2.129)
In this equation the term Z""" is defined by the formula
Zc(‘q)/w-u — <p;fagh((lq)/1~wfu (x, Pa)>, (2.130)

which is called the kinematic term of the evolution equation for . Equation
(2.129) is the generic form of evolution equation for all species and orders (g =
1,2, ---). Asin the case of generic evolution equation for matter alone, the kinematic
term is modified by adding to it the contribution from the divergence term, and the

7If we choose the Eckart convention [16] for hydrodynamic velocity, the convective time derivative
D is identical with the substantial time derivative. For this, see Chap. 1 of this volume.
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generic evolution equation reads
pDOWI " = —v,@ Wk F Dy DY () (2.131)

where 3" and ©@7"" similarly to (1.123) and (1.126), are given respectively
by the formulas

3@y = z@wv _ 2y p (Awflqw#‘”) , (2.132)
@IV — ATy @ty (2.133)

This equation has formally a similar mathematical structure to the evolution equation
for nonrelativistic nonconserved flux ¢’ appearing in nonrelativistic kinetic theories
and also to those in the relativistic theory of matter alone. We have repeated about it
to set it apart from the relativistic evolution equations for radiation, which are found
different from those for matter.

Upon summing (2.129) over all matter species we obtain the generic evolution

equation for @
pDODI = — 0, (ALY ) 4 ZDY 4 AR (x) (2.134)
where
ADEY (x) = Z(hl(lq)umvgga [fa(x, pal), (2.135)
a#r
Zlgf‘])/l,...y — Z <pgagh[(lq)n--~ufa (.X, pa)) . (2136)
as#r

Let us recall the decomposition of 73" into the traceless symmetric part ITf " of

the stress tensor, the excess trace part Zm of the stress tensor, and the heat flux Q%
as well as diffusion flux J4, and also the definition of diffusion four-flow

Jtﬁl, — NL/JJ _ caerrlﬁ (2137)

where the statistical mechanical formula for number four-flow is defined by

Ny =D NE =D (Pl falx, pa))- (2.138)
a#r a#r

Then, the leading members of the macroscopic moment set just defined can be iden-
tified with shear stress tensor, excess normal stress, heat flux, and diffusion flux as
follows:
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< 2
VM =T P = Ay + [5 (' - 1)] AE;
O = Ol — aphyJl = Ql; ®DH = Jk, et (2.139)

Here
m

AE =Y (E-E). (2.140)

a#r

It is important to note that the second member ®2) of the macroscopic moment set
in (2.139) has an additional term, which is absent in the moment h((lz) for monatomic
gases [1] since the latter does not have the term arising from the internal energy
fluctuation, namely, [% (W' —1)]AE.

Since the generalized hydrodynamic theory arising from the covariant kinetic
equation for the matter part is already presented in Chap. 1 of Volume 2, here attention
will be more closely paid to the radiation part.

2.4.3 Evolution Equations for Nonconserved Moments
Jfor Radiation

We have formulated the radiation part of the kinetic equation with the radiation
momenta on equal footing with the particle momenta. However, whereas the material
particles obey the relativistic equations of motion, the radiation (photon) obeys a wave
equation. According to (2.10) the photon momentum p, is related to the wave vector
k, of radiation by the formula

p, =1k = —Kk,. (2.141)

The photon momentum is rendered dimensionless if it is multiplied by ¢(3:
q, = Bhwk,. (2.142)

With this dimensionless unit vector for the space component, we form the dimen-
sionless four-vector ¢, for photon

gl = Bhw (1,k,) = cfp!. (2.143)

The trace of this four-vector is then seen to be null, reflecting the fact that the photon
has a zero rest mass:

(qqu) =0. (2.144)
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In addition to this, we find

prU, = hory (1- nT“) , (2.145)

where n is the unit vector in the direction of photon propagation. With this considera-
tion indicating the distinctive nature of photons and photon momentum p;’ = ¢ /c/3,
which we have already alluded to in the early part of this chapter, we construct a

set of moments for radiation, which is comparable to the moment set of matter
(2.115)—(2.118). The following is the leading elements of the set for radiation:

WO = (Uyp))” (A@,‘Ai - %AUTA"”) pip; (2.146)
h£2) - %62 (U)\p)%\)71 A/wpﬁpij - p’/p” (2147)
WO = (Up)) (AL pIUL = by [pf =<2 (Usp)) UM]}. (2.148)
= () ol = e (MU U] (2.149)

Here it must be noted that (p,” pw) = 0 which makes it unnecessary to use #,
unmodified in contrast to the case of matter; (2.117). The moment set presented
here consists of orthogonal tensor polynomials hi‘s) (gr), which are constructed
by means of the Schmidt orthogonalization method similarly to 4‘? presented in
(2.115)—(2.118). They can be expressible in terms of isotropic tensors of unit dimen-
sionless four-vectors g/ .

With the hydrodynamic four-velocity defined for matter and radiation together,
we define the relativistic peculiar velocity € in the same manner as for case of matter
alone. Therefore the index now covers both matter and radiation. With so defined €7,
the moment set for both matter and radiation can be expressed in terms of relativistic
peculiar velocities. Such moment sets can be used to examine the nonrelativistic
limits of the relativistic generic evolution equations for both matter and radiation
in the same line of approach as taken for the case of matter alone in the previous
chapter.

As is the case for the matter parts of the macroscopic fluxes, if the radiation part
of the macroscopic supermoment /""" is defined by the statistical mechanical
expression

YOTY = ([, (x, p)pT RO (2.150)

JIR87

Then the macroscopic fluxes " are obtained by contracting """ with
U*—projecting \”"" onto hydrodynamic velocity U°:

DI = (2 @, (2.151)
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As is for material particles, the leading macroscopic moments (i.e. fluxes) ®'%" "
for radiation (photon) are identified with the radiation shear stress tensor IT,"; the
excess trace part of the radiation stress tensor Z,; the heat flux Q*; the number flux
J/'. Then their statistical definitions can be obtained if the energy-momentum tensor
of radiation is made use of

T = (pfp;’f,(x, p,)). (2.152)

Recall that since 7} is decomposable into &, O}, 3 := hJ/', and P}" with the help
of the projection operators. It is then straightforward to find the desired statistical
mechanical formulas for the decomposed components. Note also that as is for matter

the radiation stress tensor is decomposable as
P = pEAM 4 A AP 4 TTH, (2.153)

where pf is the equilibrium radiation pressure and

~ 1
Arng/”’Prw/_pf:p"_p?’ (2.154)
1
l—[f.l/ — Pr/,Ll/ _ gAaTTrU'TAIW (2155)

with p, denoting the nonequilibrium radiation pressure—the trace part of the radia-
tion pressure tensor P/ The excess normal stress of radiation A, defined by (2.154)
presumes the possibility of radiation pressure p, fluctuating from p¢ if the radiation
is in nonequilibrium.

Therefore, as for the case of matter, we can easily find the physical meanings of
o DHY (g=1,2,...,4) as follows:

©§l)lﬂl — Hﬁ»“/; q>£2) — Zr;

oI = QI —hJl = Ol O = I et (2.156)

The evolution equations for ® ﬁq) can also be derived from the covariant Boltzmann
equation (2.13) by using the same method as for the matter parts. They may be written
in the form

pDaﬁqm'"” =0, (A$¢£q)av~~~v) + Zr(q”‘”"’ + Aﬁq)#mv’ (2.157)
where

Zﬁq)/"'"” _ (pfaghiq)“‘"'”fr(X, Pr)>, (2.158)
qu)uwv — (hiq)u“"’f)%r [fr(x, Pr]> g=1,2,---). (2.159)
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Equation (2.157) can be also put into a modified form
pDa(q)um,, _ _VU®(q)a;1--~V + 3(11)#“1/ + A(q)u“‘l/ (2 160)
r r r r *

(@)pv
{

together with the modified kinematic term 3 and the higher order term

OW7" in the divergence term similar to (2.132) and (2.133):
35‘1)#'“1/ — Z}Eq)#'“l/ _ C*ZUUD (Agwiq)wﬂ“"/) , (2.161)
®£q)gu.-<1/ — Aiwiq)wu...zl' (2162)

The evolution equations for conserved variables and nonconserved variables for
both matter and radiation are what we immediately need to formulate a theory of
irreversible macroscopic processes in the thermodynamic manifold ‘B U T for the
system of matter and radiation under consideration. The procedure used for evaluation
of modified kinematic terms 3" (@ =1,2,...,m,r;q = 1,2, ---) is the same
as for the generic evolution equation studied in Chap. 1 of this volume. We collect
and summarize them in the following before proceeding to investigate them with
regard to irreversible thermodynamics undergoing in the system.

2.5 Summary of Macroscopic Evolution Equations

Summarized in subsections below are the balance equation for conserved and non-
conserved variables derived from the covariant kinetic equations for both matter and
radiation.

2.5.1 Equation of Continuity

The equation of continuity holds for the combined system of matter and radiation
Dp =—pV,U". (2.163)

This equation in essence is the evolution equation for density.

2.5.2 Conservation Laws for Matter

The evolution equations for the concentration fraction of matter, the hydrodynamic
velocity, and the energy of matter are listed in the order as below:
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pDey = =0,J! + DU, + A, (2.164)
¢ 2EnpDU" = —VF'py — ALD, (g + Zon—u)
+ ¢ (PUYDU, — ALDQ;, = LV, U = 04V, U")
+ALARY, (2.165)
pDER = =0, 0l + PV, U, + ¢ 2 QhDU, + ¢ U AL (2.166)

2.5.3 Conservation Laws for Radiation

The evolution equations are listed for the concentration fraction for radiation and
the radiation energy in the following order:

pD¢, = —=9,J" + ¢ 2J'DU, + A™", (2.167)
pDE, = —0,0" + P! 7, +c2Q/DU, + ¢ 2U, A" (2.168)

2.5.4 Evolution Equations for Nonconserved
Variables for Matter

The generic evolution equations for nonconserved variables for matter species a can
be given in generic form

pDﬁ\DL")“'"” — —Vg@)if)”“”"’ + 32")“'"" + ALfI)N'"V (x), (2.169)
@[(lq)cmml/ — Afytwg(lq)ﬁ’ﬂ"'l” (2.170)

where ©77"" is the flux of supermoment defined earlier, which may be regarded
as the flux of macroscopic moment ®'*"”. It is a moment one-order higher than
OPP i the language of moment methods. Because of OWH the evolution
equation (2.169) represents an open hierarchy of evolution equations for macroscopic
moments. The index a runs for all matter species in the system, and ¢ = 1, 2, 3, 4,
etc. For the entire matter as a whole the generic evolution equation reads

pDODIY = g, @DV 3 Dhy N DV (1 (2.171)
@EZ)(,/L...V — Agwr(g)ﬁ/(r---l/. (2172)

The kinematic terms and ©.7"*"” can be evaluated in terms of variables belonging
to the manifold ‘3 by using exactly the same procedure and method and the same
expressions as described in the previous chapter. The dissipation terms are calculated
with the collision integral R [ f,] of the covariant kinetic equation (2.13). Although
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the details of SR[f,] is different from the kinetic equation used in the previous
chapter, the formal structure of the dissipation terms remains the same as those in
the previous chapter with regard to the dependence of generalized potentials and
ultimately macroscopic moments ®.7""”_ Therefore, the results of evaluation of the
kinematic terms of the material part are not presented here to avoid repetition.

2.5.5 Evolution Equations for Nonconserved
Variables for Radiation

The generic evolution equation for nonconserved variables for radiation is given by
formally the same equation as the material part (2.171):

pDa(”)“"'” — _vg@(q)ffu---l/ + 3(q)u---l/ 4+ A@wv (x) (2.173)
r r r r s .

OUWIY = Alapl 17, (2.174)

but the kinematic terms 37" will be worked out since the details of the moments

A" in (2.146)~(2.149) are slightly different from their matter counter parts h """
given in (2.115)—(2.118). They constitute counterparts to the kinematic terms for
relativistic evolution equations of matter given in Chap. 1 of this volume. They will
be explicitly presented in Sect.2.12.2 of this chapter. For more explicit formulas
for dissipation terms A" and A" some suitable approximations will be
required, so that they remain consistent with the laws of thermodynamics. Since a
thermodynamic theory of irreversible processes is required to discuss the thermo-
dynamic consistency of the evolution equations formulated here we would like turn
our attention to the formulation of theory of irreversible thermodynamics.

2.6 Calortropy and Its Balance Equation

To make use of the laws of thermodynamics in developing a kinetic theory of irre-
versible transport processes it is necessary to link up the kinetic theory with the laws
of thermodynamics by some means. For this purpose the conventional trail of thought
followed in kinetic theory is to regard the Boltzmann entropy and, particularly, the
H theorem as the statistical mechanical representations for the Clausius entropy and
the second law of thermodynamics, respectively. We have avoided this line of think-
ing for the reason clarified in the previous chapter. We will follow the same line of
approach as for the previous chapters of this work.

Since the second law of thermodynamics is entirely phrased in terms of macro-
scopic observables for the system of interest, which are described by a system of
Pfaffian differential forms, the Boltzmann entropy must seamlessly fit in such math-
ematical structures in the appropriate macroscopic variable manifold, if we are to
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reach the desired goal. To be more specific, the differential of Boltzmann entropy,
in particular, must be an exact Pfaffian differential in the manifold of macroscopic
variables appropriate for thermodynamic description of irreversible processes in the
system. We have seen in the previous chapters of this work that this, unfortunately,
is not the case for the Boltzmann entropy and the H function. This particular feature
would not change for the system of matter and radiation, if the system is away from
equilibrium. We, therefore, must look for an alternative to the Boltzmann entropy
that will provide us a desired theory of irreversible thermodynamics also for matter
and radiation. The mathematical framework for the desired theory is again provided
by a quantity called calortropy, if the system is away from equilibrium, as we have
seen in the previous chapters on the nonrelativistic and relativistic kinetic equations
for dilute gases.

We introduce the calortropy four-flow W# (x) by the statistical mechanical formula

r

U (x) = —kp Z(p;; [faln fi —€ea (1 + ea f) In (1 + €ea f5)]) (2.175)

a=1

where f;(x, p,) is called the nonequilibrium canonical form, which is not necessarily
equal to f,(x, p,) at all states of the system except at equilibrium. A more concrete
form of nonequilibrium canonical form is given under the functional hypothesis for
the distribution function as will be discussed presently. For the moment it will be
sufficient to know there exists a nonequilibrium canonical form f;(x, p,), which is
generally not equal to f,(x, p,) except at equilibrium. The scalar calortropy density
is then obtained if the calortropy four-flow W* (x) is contracted with U*:

v (x) := p@ x) = C_ZU#‘I/H (x). (2.176)

Geometrically, this is a projection of W# onto the direction of U*. The balance
equation for the calortropy density is obtained from the formal expression (2.175)
by following the procedure used to obtain the balance equation (2.25) for S.

According to the aforementioned procedure, we begin with the substantial deriv-
ative of U expressed in the form

pDV = —, (W' — UN") 4 9, ¥, (2.177)

which follows upon operating on U the substantial time derivative operator ® =
N"9, = pD + N'vy, = pD. We then define the calortropy flux four-flow J¢ by
the formula

JI =Wk — YN, (2.178)

If the definitions of number four-flow N* and the projector A*” are made use of,
the calortropy flux four-flow J¢' can be written as a projection of W" in the direction
perpendicular to U":

JI = ADWY. (2.179)
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Substituting (2.175) into this expression, we obtain the statistical mechanical formula
for the calortropy flux four-flow

J' = —kpg Z APy [ faln ff — e (L + eaf) In (1 4+ €0 f3)]) - (2.180)
a=1

For the balance equation for W*, upon operating d,, on (2.175) we obtain the
calortropy balance equation for calortropy four-flow W*

9" (x) = X + o, (2.181)

where o is the calortropy production defined by the statistical mechanical formula

r

oc (x) =kg D _(In (e + £7") R [fal). (2.182)

a=1
and X a kinematic term defined by the formula

r

Se=kp D (ph[fabuin (1+ € fS") + €0y In (f5 + €a)]). (2.183)

a=1

Substituting (2.179), (2.182), and (2.183) into (2.177) we obtain the calortropy den-
sity balance equation
pDV = —0,J!' + X + oc (x) . (2.184)

Although reminiscent of the Boltzmann entropy balance equation (2.25), this
balance equation is clearly different from it in its mathematical structure, as we have
seen in the previous chapter for the case of matter alone. We, in fact, notice that the
calortropy balance equation is in the ranks of nonconserved variables such as oW
or d>,(-q) —see (2.129) or (2.157) for the evolution equation for macroscopic moment
'Y because the term 3. may be regarded as the kinematic term in the evolution
equation for U, and o, (x) its dissipation term. Furthermore, f; (x, p,) is, evidently,
not an exact solution of the covariant kinetic equation in the sense that it will be found
to be a projection of f,(x, p,) onto the thermodynamic manifold characterizing the
system at the level of thermodynamic description of the irreversible processes. In
fact, f; may be qualified for an approximate solution of the kinetic equation, which
may be sought as closely to the exact solution f, as possible. Equation (2.184),
together with (2.182) and (2.183), forms the basis of formulating a thermodynamic
theory of irreversible processes as will be shown presently.
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2.7 Relative Boltzmann Entropy and Its Balance Equation

Since the calortropy four-flow is obviously not the same as the Boltzmann entropy
four-flow we may examine their difference

SLLIF) () = WH (x) — 8" (x) (2.185)

which we call the relative Boltzmann entropy. It contains the portion of molecular
theoretic information lost by the nonequilibrium canonical form f;’ and will tell us
of the extent of information shedding incurred by replacing f, with f7 inIn f, and
In (1 + €, f,) in the expression for S* (x).

On inserting the statistical mechanical formulas for S* and W* into (2.185) the
statistical mechanical formula for the relative Boltzmann entropy is obtained:

r a 1 alJa
SE[f175] () = kgaz_;<p5 [fa ln(;_,f) —ea(1 + €4 fa) ln(%)ib (2.186)

The scalar relative Boltzmann entropy density is obtained by contracting four-flow
SELfIfC] with U,

S[f1F]) = pS[F1£] = c2ust [ £1£°]. (2.187)
Its balance equation can be easily found to have the form

pDSf1£1 = =0, JLLf1f] + Be (1) + [0c (x) — Oem ()] . (2.188)

with the relative Boltzmann entropy flux J/'[ f| f°] given by the expression

JELFI T = AUSTLFIf T = AL (WY = 87)
- kZA<p o (4) — w0+ amm () ).

(2.189)
We will return to examine and further elucidate the formal balance equations for v

and §r[ f1f€] after the nonequilibrium canonical form f and its attendant theory of
macroscopic transport processes are more explicitly developed.
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2.8 Functional Hypothesis and Nonequilibrium
Canonical Form

‘We have formally derived a complete set of macroscopic evolution equations from the
covariant kinetic equation. The formal evolution equations include the conservation
laws as well as the evolution equations for nonconserved variables. By making the
macroscopic evolution equations to conform to the principles of thermodynamics,
it would be possible to formulate a thermodynamically consistent theory of trans-
port processes and hydrodynamics out of the aforementioned evolution equations,
if we adopt the procedure taken in the cases of kinetic equations considered in the
previous chapters in this work. Thus, we now would like accordingly to formulate
the thermodynamics of irreversible processes and generalized hydrodynamics for a
system of radiation and matter. This section is devoted to the preparation to achieve
the stated aim.

Since we are interested in thermodynamic description of macroscopic transport
processes in the system, any solution of the covariant kinetic equation (2.13), regard-
less of whether exact or approximate, should be formulated to yield a thermodynamic
theory of irreversible processes that is consistent with the laws of thermodynamics.
In the absence of, and the unlikelihood of acquiring, an exact solution known to
produce such a theory, we must be content to explore an approximate solution.® We
would like to look for such an approximate solution under the functional hypothesis
as in the case of nonrelativistic kinetic equations and the covariant kinetic equation
for a single-component gas discussed in the previous chapters. At the risk of being
repetitive, we state the functional hypothesis for the distribution function below:

Functional Hypothesis: The distribution function obeying the covariant kinetic
equation (2.13) evolves as a functional of macroscopic observables spanning the
thermodynamic manifold for the system, which obey their own evolution equations
descending from the kinetic equation.

In the functional hypothesis, the aforementioned evolution equations of macro-
scopic variables serve as field equations through which the evolution of the distri-
bution function is described, since they provide the spacetime dependence of the
distribution function. This distribution function denoted by f; (x, p,), which has
already symbolically appeared in calortropy and relative Boltzmann entropy, is called
nonequilibrium canonical form. It may be, in fact, regarded as a thermodynamic
branch of the distribution f,(x, p,) obeying the covariant kinetic equation, since it
affords us with thermodynamics of irreversible processes. It should be emphasized
that it is not the same as f,(x, p,) in general: f; (x, p,) # fu.(x, pa), €xcept at
equilibrium to which the system approaches over a sufficiently long period of time.
However, we will require both f, (x, p,) and f; (x, p,) to have the same normaliza-
tion to the number density. The consequence of this requirement is that

8The solution is approximate in the sense that it is given by a projection of the phase space distribution
function onto the thermodynamic manifold of macroscopic variables whose dimension is much
smaller than the full phase space of the system.
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pi = U pl fi) = U (P} )

for both matter species and radiation as was done in the case of matter alone in the
previous chapter. This requirement is physically sensible and reasonable.

In the modified moment method [5, 17, 18] used in the present work, f; (x, p,)
is constructed with the nonconserved moments, denoted by tensors 2", such
that the evolution equations of the moments are consistent with the second law of
thermodynamics. The relativistic extension of this method for a material particle
mixture is presented in Chap. 1 of this Volume. In the present case of radiation and
matter the nonequilibrium canonical form assumes distinctive forms for radiation (r)
and matter (a = 1,...,m): fF(x,p;)) G=1,...,m,r).

2.8.1 Nonequilibrium Canonical Form for Material Particles

The nonequilibrium canonical form of distribution may be taken for the material
particles in the form

£ pa) = (70 — )T @=1,2,...,m), (2.190)

where H,(p,) is given by the formula

Ha(pa) = PLUL+ D XD A7 — iy, (2.191)
q=1
In this expression 0 := 1/kpT, pg, Xﬂ(,qa),..w, are as-yet-undetermined parame-

ters depending on macroscopic variables and spacetime position x. Their precise
meanings and x dependence will be determined as the nonequilibrium (irreversible
thermodynamic) theory of macroscopic variables is developed under the functional
hypothesis. The parameters (3, 1,, X %...w must be determined such that the second
law of thermodynamics is satisfied, and h;‘”""'“ are the molecular moments already
introduced, which yield macroscopic moments (fluxes), when averaged over the
ensemble with the statistical weight f,(x, p,). The set of the macroscopic moments
so obtained spans the manifold of macroscopic variables necessary to describe
macroscopic transport processes in the system. Such macroscopic variables obey the
evolution equations of nonconserved variables presented earlier. Henceforth, when-
ever convenient, the symbol O will be used to abbreviate the scalar product of tensors
for the sake of notational brevity. Thus with this symbol we write, for example,
X@ hl(lq)omw — X;q) 0 h((lq)

aoe-w

for the contraction of tensors.
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2.8.2 Nonequilibrium Canonical Form for Radiation

The nonequilibrium canonical form of radiation distribution function is sought after
in a form similar to the Planck distribution function—an equilibrium distribution
function of radiation. Thus, we take it in the form

5, pr) = (eﬂW"(”') - 1)_1 . (2.192)

The function W, (p,) in the exponent, as yet unspecified, will be also sought after in
such a way that it is thermodynamically consistent as is the distribution function for
matter f7(x, p,). This function is sought in a dimensionless form.

We now look for W, in terms of ¢, the dimensionless momentum four-vector
defined earlier; see (2.143). It is convenient to define

W, =BW,(q) . (2.193)

In view of the well known equilibrium radiation (Planck) distribution function, which
has been obtained as an equilibrium solution of the covariant kinetic equation, and
the exponential form for f, (x, p,) in (2.190), it is sensible to take W, (gr) in the
form

W, (a5) = plUu+ HD (q) — i, (2.194)

where i, is found to be the chemical potential and H" (g, ) is the nonequilibrium part
that can be determined in a way analogous to the one taken for the matter distribution
function fY in (2.190). That is, it is made up of nonequilibrium contributions in the
form

HY (g)=> X2 0h? (q). (2.195)

=1

where h'? are orthogonal tensor polynomials of p! = g,/ (cf3), which are also
orthogonal to each other and to the conserved moments for radiation. The generalized
potentials X {9 are the functions of macroscopic variables such as the radiation shear
stress, the excess trace part of the radiation stress tensor, radiation heat flux, etc. as
well as 3 and g,. The nonequilibrium contribution SH " thus can be expressed as a
dimensionless function of the reduced four-vector g, and dimensionless variables.
In the case of radiation and matter, since the photons are put on equal footing
with matter as far as the kinetic processes are concerned and the whole system is
considered a mixture of photons and material particles, it is reasonable to define a
single temperature for the mixture as has been found to be the case for the equilibrium
system considered earlier. The fundamental reason for this point of view is that the
photons do not interact with each other and hence cannot come to equilibrium on
their own without a help from matter—e.g., material gas. This is the basic reason why
the same parameter 3, which will turn out to be related to the temperature, is used for
both material gases and radiation in the nonequilibrium canonical forms. Consistent
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with this viewpoint, we may define the temperature by the statistical mechanical
formula for the system’

Jpkat = 3 [0, = 2] £ 5., (2.196)

a=i
where m, = 0 in the case of photon species and

2asgc?T?
pr=p+ e (asp = Stefan—-Boltzmann constant) . (2.197)
B

This definition of temperature is reasonable, especially, for the present dilute gaseous
system. Itis basically rooted in equipartition law of energy by Tolman [19], which was
later discussed by Landsberg [20] and by ter Haar and Wergeland [21]. The second
term on the right-hand side (2.196) arises from the recognition that the photon number
depends on temperature, but also is not conserved. Writing the nonequilibrium photon
number density in such a form means that the temperature is determined such that
(2.197) holds for nonequilibrium. Equation (2.196) can be recast into the form

3

SPksT = 3 A Pyl falw, pa)) = D AT (2.198)
a=1 a=1

The nonequilibrium canonical forms (2.190) and (2.192) involve parameters
0, p, pr, and p, which have been defined statistically, but their operational meanings
as thermodynamic variables are not as yet fixed. Their phenomenological meanings
can be gained only through corresponding the statistically derived macroscopic vari-
ables and their relations to the phenomenological thermodynamic counterparts. This
procedure is facilitated by deriving the statistical mechanical relations of macroscopic
variables, which are consistent with the laws of thermodynamics. Therefore it is now
necessary to formulate a theory of thermodynamics of irreversible processes in the
system of radiation and matter. To this end we now closely examine the mathematical
aspects of calortropy and the related in the light of the laws of thermodynamics for
irreversible processes in the system. The approach to this goal is along the same line
as for Chap. 1 of Volume 2 and also for the nonrelativistic kinetic theory discussed
in Volume 1 of this work.

2.8.3 Calortropy of Matter and Radiation

The calortropy density W (x) of radiation and matter defined by (2.176) can be
rearranged to the formula

9This is also for the case of matter consisting of a gas.
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W (x) = pW¥(x)

—kBZ Udpl[faln(ea+ ) +ealn (1 + € fS)]). (2199

a=1

From this formula we obtain the statistical mechanical expressions for calortropy
density of matter and radiation separately

v, (x)_szc Udpt[faln(ea + ) +ealn (1 + e f5)]). (2200

v, (x)—ch Udpt [faln (e 4+ £7) + e In(1+6 £5)]). (2.201)

Upon inserting f; and f,° in (2.190) and (2.192), respectively, and making use of
definitions of energy densities of matter and radiation, we obtain W, and WV, :

T (x) = Em + Pl — Z HaCa + Z SX@, W (2.202)

a=1 g>1

TU, (x) =& + vy — e + > x@ p@rn (2.203)

rpy--o
q=1

where pressures are defined for matter and radiation, respectively, by the statistical
mechanical formulas

m

Bpm = D €alc 7 Uuphin (14 eu f5)) (2.204)
a=1
Bpr = e (UL In (1 + € £)). (2.205)

and vy, = 1/pm, v, = 1/p,, and we have set
6 =1/kpT. (2.206)

It should be noted that (2.204) and (2.205) are necessary and sufficient conditions for
W, and U, to be bilinear forms of macroscopic variables in manifold B U €. Thus
combining (2.202) and (2.203) we obtain the bilinear form for calortropy density of
the system:

TT (x) =E+pv— Z fata + Z > X9 W (2.207)

a=1 g>1
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with . .
PE = pmém + pr& = Zpafi’a or £= Z ¢4 (2.208)

a=1

The physical meanings of parameters 7', p, (i, and X é‘” will be presently elucidate/(\l
by making thermodynamic correspondence of statistical mechanical result for W
with the phenomenological (i.e., thermodynamic) calortropy density.

2.9 Calortropy Differential

The conserved variable balance equations and the flux (moment) evolution equations
for radiation and matter derived in the previous sections must be subjected to the
demands of the second law of thermodynamics, so that the theory of irreversible
processes based them becomes consistent with the second law of thermodynamics.
To achieve this aim the calortropy balance equation must be shown integrable in the
thermodynamic manifold 3 U ¥.

2.9.1 Pfaffian Form for Calortropy

To prove the integrability of the calortropy density balance equation it is necessary to
show the right hand side of (2.184) must be expressible in an integrable differential
form in the thermodynamic manifold. If f; is substituted into the In f; term in
(2.180), the divergence term in question is given by the expression

8 ( A’u = —kB Zﬁa kB Z anuﬁ

a=1

+ kg Zﬁxé(lq(l . Ap,(/}(q)a m/)

r

+kp D ALYDT, (BXD).)

a=1

+hkg D 0N eaplIn (14 € f5)). (2.209)

a=1

On the other hand, the kinematic term X, of the calortropy balance equation is
expressible by the form
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X(q)
. =T"U,0,T" T“”aU @Wr o9,
#3700+ 3 T w00, (%)

a=1 g>1

uPah(q) Zau (,Ua )

a=1 g>1
+k326a (PO, In (14 e f5)) (2.210)

and the calortropy production o, by a linear combination of dissipation terms AY
of the nonconserved variable evolution equations:

oo = T—IZZX;W@A?. (2.211)

a=1 g>1

Upon substituting the three components (2.209)—(2.211) into the calortropy density
balance equation, we obtain the calortropy density differential

DY =T DE+pDv - Zr:uaDca + Zr:Zng’ O DY

a=1 a=1 g>1
m (q)
+EDT '+vD (pT~! an ( ")+ZZ¢@>@D( )
a=1 g>1
(2.212)
if
P=pm+pr (2.213)

and p, and p, are defined by (2.204) and (2.205), respectively. Therefore, the defin-
itions of macroscopic parameters py, and p, by the formulas (2.204) and (2.205) are
necessary and sufficient conditions for (2.212) to exist. The physical meanings of
parameters p,, and p, remain as yet not elucidated except that they are macroscopic
parameters. Similarly, the meanings of parameter 7', y,, and X also remain unde-
termined as macroscopic variables. In any case, to obtain this Pfaffian differential
form [22] (2.212) we have made use of the energy balance equations for matter and
radiation, and the identities listed below:

o, () =0, ()

= pU"d, (%c) + %caaﬂ (pU")

= pD (Bpiata) » (2.214)
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0y (pU") = Dp+ pv,U" =0, (2.215)
and
9, (pva“) - p?”aﬂ (pU") + pU"d), (%)

v

=072, ()
v
= (%)

2pv+pup (£). (2.216)

The second line of the Pfaffian differential form (2.212) vanishes because if the
normalization conditions for the nonequilibrium canonical forms are varied with
respect to the parameters 3, 4, X C(f’), there follows the vanishing differential form

L r . X(q)
EDT™' +vD (pT~" an (?“)JFZZ@?)@D(%):O. 2.217)

a=1 g>1

This differential form will turn out to be the nonequilibrium Gibbs—Duhem (NGD)
equation, when the parameters T P, lg, and X,Sq) are identified with their ther-
modynamic correspondents. Thus, by virtue of (2.217) the Pfaffian differential form
(2.212) reduces to the differential form for 7

DY =T""[DE+pDv—> pDes+ D D XV 0 DIY |, (2218)

a=1 a=1 g>1

which is known as the extended Gibbs relation for W. This differential form is an
exact differential in the thermodynamic manifold, because, when the nonequilib-
rium Gibbs—Duhem equation is added side by side to it, (2.218) integrates exactly
to a bilinear form in the nonequilibrium Gibbs manifold & = PUT U ¥ for
the calortropy density given in (2.207). For this reason the NGD equation (2.217)
becomes the necessary and sufficient condition for the integrability of the extended
Gibbs relation (2.218). The differential form (2.218) for U is in the same form as
for relativistic gas mixture in the absence of radiation obtained in Chap. 1 of this
Volume. This is in contrast to the Boltzmann entropy differential DS, which, unless
the system is in equilibrium, cannot be put into an exact Pfaffian differential in the
Gibbs manifold, and it gives rise to the conclusion that the extended Gibbs relation
does not hold for S and neither is there the nonequilibrium Gibbs—Duhem equation
for S.

When the parameters T, p, u,, and X are elucidated of their physical (i.e.,
thermodynamic) meanings on correspondence with the phenomenological thermo-
dynamics, the pair of differential forms, namely, the extended Gibbs relation and the
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nonequilibrium Gibbs—Duhem equation, provides the foundation of thermodynam-
ics of irreversible processes for the system of matter and radiation. The following
pair of vanishing circular integrals reinforces the aforementioned statement.

The Pfaffian differential form (2.218) for W gives rise to a vanishing circular
(i.e., cyclic) integral when integrated over a path of an irreversible process in the
thermodynamic manifold 8 U . In a local rest frame it may be written as [5]

]{d\i =0. (2.219)

Itis arepresentation of the second law of thermodynamics in an integral form in man-
ifold 8 U ¥. And in this sense the thermodynamic theory of irreversible processes
described in terms of generalized hydrodynamic equations in the Gibbs manifold &
is consistent with the laws of thermodynamics. In addition to this vanishing integral
for the second law, there also holds a vanishing integral of internal energy differential
in manifold B U T, representing the first law of thermodynamics

f{ d€ = 0. (2.220)

We have shown that this is the case in the nonrelativistic formalism in the nonrela-
tivistic theory chapters of Volume 1. The same conclusion robustly holds up even if
the system is relativistic and away from equilibrium: The thermodynamic laws thus
may be represented by a pair of vanishing circular integrals over an irreversible path
in the thermodynamic manifold.

Further progress in the theory of transport processes in the system can be made
if the unknowns X flq) are suitably approximated in a thermodynamically consistent
manner, such that DU remains an exact Pfaffian differential in the Gibbs manifold
® =P U TUW and the theory of macroscopic irreversible processes remains thereby
thermodynamically consistent.

2.9.2 Thermodynamic Correspondence

The extended Gibbs relation (2.218)—a Pfaffian differential form—contains as-yet-
undetermined parameters 7', p, ft,, X L(f[) , which must be elucidated of their operational
(physical) meanings, so that it becomes a physically and practically useful equation.
This objective is accomplished if we invoke the phenomenological irreversible ther-
modynamic extended Gibbs relation derived from the laws of thermodynamics and
make correspondence of the statistical mechanical extended Gibbs relation (2.218)
with the phenomenological one, so that the undetermined parameters therein are
determined in correspondence to those in the phenomenological relations. That is,
if we make the following correspondence between theoretical and thermodynamic
observables
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Vg & Wln, Elg € Eln, Vs € v,
ca|st < ca|tha qbflq)|st < q),(lq)|th
(a=1,...,m,r), (2.221)

then there would hold the correspondence between the theoretical parameters
(T, P, g, X ;‘”) and the thermodynamic parameters appearing in the phenomeno-
logical extended Gibbs relation:

Tl < Tln, Plst © Pl Halst € Halins X,ﬁq)lst < X,gq)|th~ (2.222)

In (2.221) and (2.222) the subscripts st and th mean statistical mechanical and ther-
modynamic, respectively. These correspondences between theoretical (statistical
mechanical) and thermodynamic (phenomenological) parameters fully endow the
thermodynamic meanings on the corresponded parameters, and the nonequilibrium
distribution functions are grounded on the thermodynamic principles and experi-
ments. In the relativistic theory the correspondence presented relies on a conjec-
ture that the phenomenological extended Gibbs relation is experimentally realizable,
because the extended Gibbs relation is not as yet established experimentally. How-
ever, we may reason that the relativistic extended Gibbs relation has the nonrelativis-
tic limit as u/c — 0. And the validity of the nonrelativistic limit is sufficiently
well demonstrated by numerous applications in hydrodynamics as discussed in
Volume 1 of this work. Therefore the relativistic extension of extension of irreversible
thermodynamics is plausible and reasonable.

2.9.3 Nonequilibrium Statistical Thermodynamics
Jor Relativistic Quantum Gases

The formal theory based on the covariant kinetic equation and the nonequilibrium
canonical form taken for the distribution function under the functional hypothesis
have enabled us to formulate a formal theory of hydrodynamics and a formal theory
of thermodynamics of irreversible processes in support of hydrodynamics for the
system removed from equilibrium at arbitrary degree. These macroscopic theories
must be provided with a molecular theory for various macroscopic observables on
which the theories are built. We have seen in the case of nonrelativistic theories
discussed in Volume 1 of this work that the stated goal is achieved if nonequilibrium
statistical thermodynamics is formulated on the basis of nonequilibrium canonical
form and the extended Gibbs relation descending therefrom, since the equilibrium
theory is then seamlessly recovered from the nonequilibrium theory as the system
tends to equilibrium. In this section we show that the stated goal can be achieved
for relativistic quantum dilute gases with the help of the extended Gibbs relation
(2.218) if nonequilibrium statistical thermodynamics is formulated for the gases. If
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we review the theory of a nonrelativistic noninteracting gas mixture presented in
kinetic theory chapters of Volume 1 and the relativistic theory of relativistic gases
in Chap. 1 of this Volume and compare them, it is clear how we may proceed in
formulating the theory in the case of the system of matter and radiation, bearing in
mind that we are dealing with quantum gas particles.

First, let us have a quick review of how equilibrium statistical thermodynamics
is formulated for a system consisting of a mixture of quantum ideal gases. If the
system consists of a mixture of noninteracting (uncorrelated) gases of N particles
(N = Ny + Ny +---+ N,), the total equilibrium density matrix—an equilibrium
grand canonical form—is given by the formula

FN — exp (—GH™ — InT*). (2.223)

where I"° is the local grand partition function

re = Trﬁn exp (—ﬂHj.“) (2.224)

a=1 j

with the Trace operation denoting integration over the entire N particle momentum
space, and Hg-]) are the single particle energy operators

HY = e4; — pa (2.225)

with €,; and p1, denoting the jth energy eigenvalue and chemical potential of species
a, respectively. If the tracing operation is performed according to the Pauli exclusion
principle with regard to fermions and bosons, I'® can be written in the following
products of Fermi—Dirac (FD) and Bose-Einstein contributions:

re =Tr H I1 (1 + e*ﬁ(efr#a)) x H I1 (1 - e**ff(ffr#ﬂ))_1 . (2.226)

acFD j aeBE j

Since the distribution functions normalize to density, in relativistic theory it is neces-
sary to insert the factor c—2U P and trace with the integrals over momentum spaces
of particles as follows:
-2
TrA = <c U/,,pgA),

the angular brackets denoting integration over the momentum space of particle
species a, weighted with equilibrium distribution function. For ideal (noninteracting)
gases, ['° can then be written as
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InT® = z <C_2U;Lps In (1 + e_“{ij’”)>

acFD

p -1
+ <c—ZU# piin (1= e > (2.227)

aeBE

in the limit of treating the discrete sum as an integral. Here H!" now stands for
HY = pLU, — 11, in the case of relativistic gases.

If the nonequilibrium canonical form f is used, the exponential factors in (2.227)
can be written as

M 1 .
14+ e Pt = Tfe (e, = —1 for fermions; €, = +1 for bosons) .
€a [’

Hence, it is now possible to write In I'® in a simple unified form

r

InT¢ =" (c2Uupliealn (1 +ea fS)). (2.228)

a=1

where the index a stands for fermion or boson species. Therefore if we define the
global form of In I'® by the relation

In B = / drpz InT¢, (2.229)
v a=1
we find
kgTIn Ee = p°V
= / er(c_zUﬂpgea In (1 + eafae)),
14 a=1
and hence
pv=kpT D T =ksT D (c2Uuplealn (1 + ea f7)) (2.230)
a=1 a=1

for the statistical mechanical expression for relativistic equilibrium pressure. This
confirms (2.204) and (2.205), which have turned out to be statistical mechanical
formulas for pressures of matter and radiation, respectively, from the standpoint
of the ensemble theory of statistical mechanics. The distribution function (2.223)
also gives rise to the equilibrium Gibbs relation and the accompanying theory of
equilibrium statistical thermodynamics.

In the case of nonequilibrium relativistic ideal gases, in view of the fact that the
nonequilibrium canonical form f,’ taken under the functional hypothesis gives rise
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to the nonequilibrium Gibbs relation, which also tends to the equilibrium Gibbs
relation, the nonequilibrium grand canonical form for the N noninteracting quantum
particles may be sought for in the form

FV) =exp (—fH™) —InT), (2.231)

where H®) now contains nonequilibrium contributions

HY = > S HD

a=FDor BE |

> 2+ X8 gy (2.232)

a=FDor BE | g>1

in the notation already defined earlier. Here F D and BE stand for Fermi—Dirac
and Bose—FEinstein particles. In (2.231) I is the local nonequilibrium grand partition

function .
P =T [ [[]exp (571;})) (2.233)

a=1 j

with the trace operation denoting integration over all N particle momentum space. If
tracing operation is performed according to the Pauli exclusion principle applied to
Fermi-Dirac (FD) and Bose—Einstein particles, '™ can be written in the following
products of fermion and boson contributions:

r=Tr H I1 (1 + e*@H‘a'f’) x H I1 (1 - e*@H‘ul?)fl . (2.234)

acFD j aeBE |

Since the distribution functions normalize to density, in the relativistic theory for-
mulation it is necessary to insert the factor ¢2U,,p and to replace trace with the
integrals over momentum spaces of particles as follows:

TrA = (U, p!A)

the angular brackets denoting integration over momentum space of particle species
a. Thus we have

InT = Z <c72pfo},, In (1 + e_ﬂHi'-]f))>

acFD

1
+ > <6‘2p5Uﬂ In (1 _e Wfé‘) > (2.235)

aeBE

in the limit of treating the discrete sum as an integral.
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If the nonequilibrium canonical form f; is represented by the form

. 1
fo= T (2.236)

g — €,

where
—1 for fermions

€q = s
+1 for bosons

then In I in (2.235) can be written in a simple unified form

r

T = e (e 2ptUudn (1 + e f)). (2.237)

a=1

where the index a stands for both fermion species or boson species. Therefore if the
global form of In I" defined by relation

r

InE = / drp> InT, (2.238)
drp 2,

a=1

we find the equation of state for nonequilibrium relativistic pressure p is given by
the formula

kyTIn € = pV

= / dr > e (e phUIn (1+ ea fy)). (2.239)
v a=1

It should be noted that the thermodynamic correspondence has been already made
between the statistical thermodynamic parameters and thermodynamic parameters
and, consequently, the thermodynamic meanings of various parameters have been
established. On the basis of the thermodynamic correspondence we are identifying
p with the nonequilibrium thermodynamic pressure.

If the Legendre transformation

PY =D fata + TV — D X9 DePT — & (2.240)
a=1

a=1 g>1

is made, then pv may be regarded as a thermodynamic potential, so that the extended
Gibbs relation (2.218)—the differential form—for W is transformed to the exact
differential form for the thermodynamic potential pv:
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D (pv) = UDT +pDv+ D ¢ Dptg — »_ > 0¥ © DX. (2.241)

a=1 a=1 g>1

Making use of this differential form for thermodynamic potential pv or its statistical
mechanical expression (grand partition function), which is an extended Gibbs relation
(2.241), we obtain the thermodynamic variables in the thermodynamic manifold in
the local rest frame in terms of derivatives of In I'—namely, nonequilibrium partition
function—as below:

~ OkgT InT dlnT
g (Lt — kpInT + kyT , (2.242)
oT o X oT X
OlnT
p=ksT , (2.243)
81) T, X
OlnT
¢ = kpT : (2.244)
Otta T, X
N dInT
9 = —kyT (ax—n@) @=1.....mr). (2.245)
a Tv,1, X'

Together with the differential form (2.241), the relations (2.242)—(2.245) enable
us to compute the variables @ P, ¢4, 6((,4) and any other macroscopic variables of the
Gibbs manifold & from the knowledge of the nonequilibrium grand partition function
I". The aforementioned derivative set, together with the extended Gibbs relation for
D (pv), therefore forms the foundation of the nonequilibrium statistical thermody-
namics of arelativistic gas mixture of matter and radiation, since by utilizing relations
(2.230)—(2.244) and Legendre transformations of variables in the thermodynamic
manifold as well as accompanying Maxwell’s relations between derivatives [23], it
is possible to calculate any variables belonging to the Gibbs manifold in terms of
the grand partition function. Thus the irreversible thermodynamic formalism of ideal
relativistic gas mixtures of matter and radiation is now in place for nonequilibrium
processes. And we can apply it to study irreversible thermodynamic phenomena in
the system considered in the regime far removed from equilibrium at arbitrary degree.

2.10 Cumulant Expansion for the Dissipation Terms

2.10.1 Cumulant Expansion for the Calortropy Production

The description of generalized hydrodynamic equations is not as yet complete since
the dissipation terms A(® of the nonconserved variable evolution equations still
remain formally defined, but not explicitly evaluated in terms of variables in ‘F U %.
Therefore, the formal development in the theory of irreversible thermodynamics



2.10 Cumulant Expansion for the Dissipation Terms 147

presented up to this point has not acquired desired explicit forms for them in terms
of variables of 3 U T. However, if the transport processes are to be studied in the
thermodynamic manifold their dependence on the variables in manifold 3 U T must
be explicitly given.

Since the dissipation terms are directly related to the calortropy production in
the system, they must be evaluated such that the second law of thermodynamics
is rigorously satisfied by suitable forms to be taken for them. Such a procedure is
possible to attain if a cumulant expansion method is used [5, 18] for the calortropy
production. Since the present covariant kinetic equations of radiation and matter are
similar in their structure to the covariant kinetic equations for the case of matter alone
discussed in Chap. 1 of this Volume, the cumulant expansion method is expected to
be also similar. For this reason we will be brief and present only the final results with
necessary definitions in Chap. 1 mentioned.

Let us define the symbol ¢ by the formula

(mc/kpT)*

= oz (2.246)

where ) is a parameter of dimension length—it may be taken for the mean free path

or the interaction range or the mean size parameter of particles. This parameter g has

a dimension of volume x time. If the calortropy production is scaled by kp /g it can
be rendered dimensionless:

Oc = —0¢ (2.247)

and similarly for the Boltzmann entropy production gep,:
6—\em = icTent~ (2248)
kp

Then analysis can be carried on for 7. and 7, in the same manner as in the previous
chapter. For example, a cumulant expansion method may be applied and a formally
identical result is obtained.
To the first-order cumulant approximation, the reduced calortropy production is
given by
0. = ksinhk > 0, (2.249)

where k7 is the Rayleigh dissipation function given by a quadratic form of generalized
potentials X flq) . Since k is a positive quadratic form of the generalized potentials X,
the first-order cumulant approximation for o, in (2.249) remains positive semidefinite
for all approximations made for the generalized potentials, which may be determined
from (2.245), for example. If the right hand side of (2.245) is calculated from the
knowledge of I' and then the relation is inverted, Xf,”) is obtained as a function of
CDEIQ). In general, their relation may be expressed as


http://dx.doi.org/10.1007/978-3-319-41153-8_1
http://dx.doi.org/10.1007/978-3-319-41153-8_1

148 2 Relativistic Kinetic Theory of Matter and Radiation

X@ = _g@eW, (2.250)

1 a

where gf,q) is a scalar function of variables spanning the manifold B U ¥. In the
lowest order of approximation gé‘” is a scalar function of the variables of manifold
%< but independent of the variables of manifold 3. See (2.274) below for g,g"). In the
first-order cumulant approximation (2.249) for ., the cumulant « is given by the

formula

1/2

K = i i Z Z X((;L)WUR((Jfby"r’)a..-;tw...x/Xg;/)mw ‘ (2251)

a=1 b=1 a>1 v>1

Here Rfl(b”) are given by the collision bracket integrals of the collision integrals
R, [ fo] and R, [ f,] of the covariant kinetic equation for matter and radiation. They
can be explicitly determined in terms of particulate dynamical information (e.g.,
interactions and collision cross sections of particles) if we make use of the linear
steady-state evolution equations for nonconserved variables, namely, the linearized
steady-state generalized hydrodynamic equations. In fact, so determined R((;f) are
found to be exactly the same as the collision bracket integrals appearing, for example,
in the first-order Chapman—Enskog method [24] for the covariant kinetic equation.

Their statistical formulas are as follows. With the notations for reduced momenta
Ta = cﬁpu (2.252)

and the abbreviation [A ® B],,, for the integral

40 Bly =G, Y [ &7, [ &7 [ &7 [ &7 £ W wema© 5.

(2.253)
where Wffb); « 1s areduced transition rate
—(s) mkgT s
Wb = ( \2 ) Wa(b);kl (2.254)
and ]
S = [(1+eafs) (T +efs) (T+eafs) (T+af)] . (2.255)

the collision bracket integrals are given by expressions

" 1 ol
R = 28 (n + g = h )

™) ™ ()% M=\
x (hj + 1 — hO — hG )
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+%62%[(h§”)—h§?)*)w (r? =0 "] . @2s6)

R = 2 3 [ ey () )], @2
a#b

(a #b),

R}(_;V'V)U"'/lw---l/ — 52 z [ (0/) ((Y)* g (h('V) hf})*)“””] , (2258)
a#r “

o Z [(hﬁ”) _ hlga)*)"“"‘ (h§v> _ hl(v)*)“"“”]m . (2.259)
a#r

These tensor integrals can be simplified to products of scalar integrals and isotropic
tensors as will be shown in the following.

2.10.2 Dissipation Terms in the First-Order
Cumulant Approximation

Comparing (2.249) with (2.211) and with the help of the expression for the first-
order cumulant «, we now find approximate dissipation terms consistent with the
inequality (2.249) for the calortropy production

A;q)(f...u _ (ﬁg)71 ZZ R(‘i”)(f - VX}(”/) (sinh H/I'i) (2.260)
b=1 y>1

This is the first-cumulant approximation for AY, which is also consistent with the
H theorem in the limit of vanishing fluctuations of distribution function f, from f:
Afy = fa — fi = 0, because, in that case, oen = 0. > 0 according to (2.249).

Higher order cumulant approximations for the dissipation terms may be obtained
if the corresponding cumulant approximations are used for the reduced entropy pro-
duction. It is straightforward to obtain them by following the procedure described
in the literature [5, 18, 25, 26]. There now remains the task of determining the
unknowns X in order to complete the formulation of thermodynamically consis-
tent generalized hydrodynamic equations.

To proceed further it is useful to recast the collision bracket integrals Rffa”), etc.,
which are given above in unwieldy tensor product forms, to more computationally
practical scalar forms. If we exploit the properties of isotropic tensors [18] this
aim can be easily achieved for collision bracket integrals considered here, which
involve tensors of rank 4 at most. We observe that R;‘,’f) are expandable into isotropic
tensors with scalar collision bracket integrals appearing as their coefficients; see,
for example, Chap.5, Ref. [18]. Thus we obtain
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Hvow 1 O A VW w A VO 1 VA oW
R =R, [E(M AT+ AN = SAMA ] (2.261)

The coefficient R{}" is then a scalar obtained by contracting R'}""** with the
isotropic tensor [% (AWAW + AWA,,(,) — %AWAW]:

5 ¢ 2
= ! a a)*) . o) (y)*
“i0" 2 [0 =0 s () = 1) | @#n) @262)

1 1 , 1
’R’((zlbl) — —R(LDIWJW |:_ (AuaAl/w + A}LWAVO') _ gA;wAJwiI

and similarly

1 1 1
R((llal) — gR{SLI)/u/(ruJ |:§ (A/MAWJ + A/LMAV{I) _ gA/uzAmu:I

= 57 (3 [6 (082 s (10 +0)]

aa’

+> [(hé” - hip*) : (hz(f) - hi‘/)*)]ah : (2.263)

b#a

where
1 (1) 1 1) 1 (€]
I R e e

Here the prime on the subscript a of [A],,, means another particle of species a and the
colon: between the tensors means contraction of rank 2 tensors. Since the collision
bracket integral Rﬁz) is scalar for the case of ¢ = s = 2, we simply obtain scalar
collision bracket integrals:

REY = R
= 3 Z [(hff) _ hff)*) (hf) _ h;’Z)*)]ab (@ £b). (2.264)
a#b
R = RE

11
=55 [5 (& (h2 +12) & (12 + 1)

aa’

+ 2 [(n =) (= n)] 1 (2.265)

ab
b#a

where
AP+ 1) =@ + 0D —nP* = nP"
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For g, s = 3 or 4, namely, for vector processes such as heat flow and diffusion the

collision bracket integral R'97" is expressible as

anmr _ 15(q7)
R, =R,AMY (2.266)
and hence upon contracting with A*” we obtain
(gs) _ plgs)pr A pv
Rab - Rab AF

- %ﬁ 2 Zﬂ; [0 =0 - (h = 1) | @ # 0. (2267)
w2l 15) )

’

aa

+ ; [(hgq) - hfﬁ)*) ' (hf) - hff?)*)]ab (g.s =3,4), (2.268)

where the symbol - means the scalar product of vectors, namely, contraction of rank
1 tensors. These procedures of tensor contractions in the collision bracket integrals
can be extended to the cases of higher rank tensors with progressively complicated
results.'? In the present chapter we are limiting the calculations up to rank 4 tensors, in
other words, shear stresses CIDéq)W, since higher rank tensors than 4 are not required
in practice. It is, in principle, possible to cast the first-order cumulant « into the
quadratic form of generalized potentials X, @.

172

= Z Z > RY (xwox)| (2.269)

a=1 b=1 g>1 s>1
where X © X\” is a scalar:

X9 o x© = x@mowx® (2.270)

bwo--vp*

The generalized potentials X% in k and f; now must be determined, so that the
whole structure of the theory we are pursuing becomes free from undetermined
parameters. It is discussed in the next section.

10For higher rank tensors isotropic tensors of higher rank, more complicated basis sets would be
required. For the basis sets for higher order isotropic Cartesian tensors, see pages 97-98, Chap. 5,
Ref. [18].
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2.11 Generalized Potentials

We have managed the formulation of the theory, deferring the determination of the
generalized potentials X, @ making up the nonequilibrium canonical forms (2.190)
and (2.192). We have now reached the point to determine X f{’) in terms of variables
of manifold ‘.

The formal relations of nonequilibrium quantities are indicated by various rela-
tions of the macroscopic irreversible thermodynamics developed with the nonequi-
librium canonical forms. One of them can be made use of to obtain the desired relation
of X,Sq) to belq); see, especially, (2.245), which may be regarded as one of the most
important among them in the present nonequilibrium statistical mechanical theory.
Another mathematically satisfactory method of determining X9 was discussed in
Chap. 3 of Volume 1 and we may apply it to calculate it in terms of . Here we
make use of (2.245) for the purpose in mind.

Expanding In T, in power series in X, we obtain

olnT,
T (o) U 4 RO OXD ) 2T
a T,v,pu, X

which, to the lowest nonvanishing order in X ff’), yields the formula

X(q)

a

dolnT,
kpT ( an ) = B U P EERPRD O X+ 0 (X)) . (2.272)
T,v,1,X’'

Thus finally, to the lowest nonvanishing order the generalized potentials are given
by the linear relation

Xff” - _ (l/giq))qyl(fﬁ, (2.273)
where
1
g = zm(f;c—zU,“pghg” Oh?Y) @=1,....m,r) (2.274)

with /; denoting symmetry-related factor for integrals of tensors

for second-rank tensors
for first-rank tensors . (2.275)

Pl
I
— L= =

for scalar

It should be noted that the rank of tensor Xéq) is the same as that of CD,(,"). The
approximation for X (2.273) leaves the first-order cumulant approximation for
the calortropy entropy production positive semidefinite. In this manner, the moment
method employed here for relativistic Boltzmann—Nordholm—Uehling—Uhlenbeck
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equation is made complete to an approximation consistent with . > 0. When the
approximate relation for X 9 is used in the dissipation terms, the evolution equations
formally obtained earlier are closed with respect to {CD,(,")} and ready for solution

because all the undetermined parameters are given formal relations to {CDE,")}, by

means of which we can determined them in terms of variables spanning the thermo-
dynamic manifold ‘B U T. The transport properties then can be calculated from the
solutions of the evolution equations—i.e., the generalized hydrodynamic equations
for fluxes and conserved variables. The generalized hydrodynamic equations thus
obtained, therefore, provide a mathematical framework—in the form of closed field
equations—to describe transport processes attendant on irreversible processes in a
system of radiation and matter in a manner consistent with the thermodynamic laws.

2.12 Generalized Hydrodynamics

The combined set of conservation laws, (2.163)—(2.168), and nonconserved variable
evolution equations [(2.169) and (2.173)] constitutes the generalized hydrodynamics
of radiation and matter. Having been appropriately subjected to the laws of thermody-
namics, they are thermodynamically consistent. They are the fruits of labor expended
so far to make generalized potentials and dissipation terms explicit with regard to
variables spanning manifold 3 U T, so that the generalized hydrodynamic equations
properly describe irreversible processes in the system consistently with the thermo-
dynamic laws, given the initial and boundary conditions for variables belonging to
B U Z. They are now ready for hydrodynamic applications. It would be useful to
summarize them in the following.

2.12.1 Conservation Laws

The equation of continuity for the total density is
Dp = —pv,U". (2.276)

The conserved variables balance equations are:

pDey = —0,JE + 2 JEDU, + AP, (2.277)
pDEy = —0,0" + PV, U, +c20"DU, + U, AL, (2.278)

c2EnpDU" = VF o + AL, ITTY
+ ¢ (PL"DU, — ALD QL — 04V, U" — Q4 v, U")  (2.279)



154 2 Relativistic Kinetic Theory of Matter and Radiation
for matter and

pDc¢, = —0,J" + ¢ 2J'DU, + A", (2.280)
pDE, = —0,0" + P V,U, + ¢ *Q"DU, + U, A" (2.281)
for the radiation. Here &, is the radiation energy per material particle. We emphasize
that the radiation momentum equation is not listed here, since it is related to the

radiation heat flux evolution equation which appears as one of the evolution equations
for @1
a .

2.12.2 Evolution Equations for Nonconserved Variables

Coupled to the balance equations of the conserved variables, there are the evolution
equations for nonconserved variables

pD@é")“""’ — _VJ(.D((;I)UH"'V + 3((;1)#%--1 + Ac(lq)w’"'l x), (2.282)
WY = AP (@ =1, ,m,riq > 1) (2.283)

which holds for either matter or radiation. This is the generic form of nonconserved
variable evolution equations. The kinematic terms and dissipation terms are presented
separately for matter and radiation below.

Kinematic Terms for Matter

With the definitions for symbols
1
[VUIP" = — (V'U" 4+ V'U") — 3V U,

[A - B](2)/W —

| =N =

1
(A" BY + A" BY) — gA/“’A‘”BM, (2.284)

the kinematic terms for matter species are collected below:

Modified Kinematic Term for Shear Stress

3((11)/1,u = 2[P,- VU](Z)/W _ 26‘_2 [Q/r . DU](Q) _ 2C—2 [3rDU](2),uV
—2[P,U - DU]? + 2 [UUIP"™ PT*V.U,
+ ¢ (U"PX DU, + U"PDU,) + ¢ > [UUIP"™ Q¥ DU,

1
- 5(:4 (UFQEV.UY + UY QEV.UY) + ¢ 2 [UUTP™ Q¥ DU,

a <

1
- 3c—2 (UF3 V.U + UV V.UY) +2¢7 2 [UUTP™ 39 DU,
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Pa (ngaa)

—Adyruyrv n/w 1 L v v L
—c*uru QaDUw+§ fa (U"V.UY + UYV.U")

(Usp)
v 2)we
—c <faw> V.U, (2.285)
(Usp2)
where . |
[Papal®* = pipe = S A" (Pl Pas) = Pip; = 3mac’ A

3

Modified Kinematic Term for Excess Normal Stress

2 _ _ _%}Lf _%—2;0 _ g€
3.7 = —=paD (pa/pa) — 5 Py VU, 3¢ QDU Iy Ve (Pa/pa)

3 a
- w 1 P p; (Pa Pa
—c? (Pa/pa) J; DU, + 3 |:Pél€ - <fa(—2#)>i| V.U,
(Usp2)
(2.286)
where
22

(pgpau) =m,c".
Modified Kinematic Term for Heat Flux
39 = P Dy, — QOV,U" — PPV, R, — ¢330V, U"
+ R, IV U + p, (R, — E,) DU" — JI' DI,
— 72U (QIDU, + ¢ 7*3DU, — h,J2DU,)
— U" (PV,U. — JIV, 1))

+c2@<fap“p“p“>v U, +[P;”— <fa idi >] Vol (2.287)
0p?)’ (Usp2)

Modified Kinematic Term for Diffusion Flux

B ow o
39 = _p, DU — J7V,U" —c 2U"J* DU, — > <fa ‘(”“p“p)“ >van. (2.288)
U\p)

In this case the divergence term is added to the kinematic term because ®§4)“ gives
rise to a variable in the manifold 3 U .

Modified Kinematic Terms for Radiation

The modified kinematic terms for radiation are collected below.
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Modified Kinematic Term for Shear Stress

351);11/ — 2P, - vU](Z),uJ/ _ 26'_2 [Q/r . DU](Z) B 2C—2 [SrDU](Z)/W
—2[PU - DU]? + 2 [UUIP"™ PT*V_ U,
+c¢2 (U"P DU, + U"P/DU,) + ¢ 2 [UUIP" Q¥ DU,
— c*UrUY QP DU, + ¢ ([UUIP™ — ¢2U"U") 3¢ DU,

1
— 5c*z (U'Qrv.U" + U Qrv.U")
i ! pr s p;
— 2 (U U+ U v Ut — A f I DN g g
3 (U)\p;\)
(2.289)

Modified Kinematic Term for Excess Normal Stress

1 € — w
3% =—pD(pe/pr) — PV = IV (prpr) — ¢ > (pr/pr) I¥ DU,
2 —2~w 2 -2 Hw
—3° 3 DU, — 3¢ 0.°DU,. (2.290)
Modified Kinematic Term for Heat Flux

3 = =PIV h, — QP V,U" — ¢y, U"
+ P“"DU,, + p, p, DU" — J*Dh, + h,J°V,U"
— U"P°“V,U, — U"Q" DU, — ¢ *U"37 DU,

p#pwpa
+ UM I Vohy + ¢ U h, J2 DU, + hy ( f, 5 )V, U,
(Urp})
W 0 Hno o
+2h, £ 2PN U, U, 4 | P = 3 PN Vo, 2291
(Urp}) (Urp})

The third and fourth lines proportional to U* on the right vanish in the local rest
frame. They are relativistic effects as are the integrals.

Modified Kinematic Term for Diffusion Flux

H_ow o
3@ = _p, DUP — J7V,U" — c2UPJ* DU, — ¢ <fa—p“p“ Pa > v,U..
(Usp2)
(2.292)
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The integrals represent relativistic effects. In this case of 354”‘ , the divergence term

— 9,QW = JV, U — c2UM I DU, + ( fi
(P)UA

w LM
Pr p’) > DU,  (2.293)

has been added to 254)“ to obtain 324)” since the term consists of variables in the
manifold .

The kinematic terms for matter and radiation are different despite the formally
rather similar moments 2\ (a = 1,2,...m,r) because (p{ p;,) = m2c for
matter whereas (p? p; ;) = 0 for radiation.

Dissipation Terms A"

The dissipation terms accompanying the kinematic terms in the generic evolution
equation are calculated in the first-order cumulant approximation. The first-order
cumulant approximation combined with the first-order approximation for the gen-
eralized potentials given in (2.273) is found sufficient for many applications in the
case of nonrelativistic generalized hydrodynamic equations applied so far. For this
reason it is logical to consider a similar level of approximations in the case of the
relativistic theory. With the generalized potentials approximated to the linear order
in fluxes as given in (2.273) the dissipation terms are given by the formula

{r,

3

4
> (@qg(”) R0 0" (sinh r/ )
1

1, ), (2.294)

Aéq)u...,, _

||n%

(a

where the coefficients 1'% are defined by
R = g ORE g (2.295)

in terms of the collision bracket integrals Rgf) given in (2.262)—(2.265), (2.267),
and (2.268). Recalling the definition of the first-order cumulant x, we now find that
k is given, in the first order approximation (2.273) for generalized potentials, by the
quadratic form of ®”

{r.m}

Z Z m(q?)q)(vm Vq;l(jy) - (2.296)
a,b=1q,5s>1

Note that this is a generalized Rayleigh dissipation function. With the dissipation
terms given in (2.294) we are now ready to explore some useful approximate forms
for the nonconserved variable evolution equations presented above.
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2.12.3 Linear Constitutive Equations
and Transport Coefficients

In order to derive the statistical mechanical formulas for transport coefficients of rela-
tivistic gases in terms of dynamical quantities such as collision cross sections we must
first obtain appropriate constitutive equations for linear transport processes. This aim
is achieved if we linearize the nonconserved variable evolution equations presented
earlier with respect to the thermodynamic forces and if the open hierarchy of evo-
lution equations is closed by setting @51)0;111’ ®f2)g, and 953)0# i=1,2,...,m,r)
equal to zero or quantities belonging to the thermodynamic manifold 3 U ¥. By
means of such closures, the hierarchy of evolution equations is closed at the tensorial
moment of rank 2. The linear transport coefficients can then be identified from the
steady-state nonconserved variable evolution equations.

Linear Constitutive Equations

Upon imposing the closure and linearizing the kinematic terms with respect to ther-
modynamic driving forces—spatial gradients of velocity, temperature, pressure, or
concentrations—and fluxes and setting ¢,,(x) = 1 in the dissipation terms of evolu-
tion equations, we obtain linearized constitutive equations for fluxes. They take the
following forms

{m r}
pDa;l)#V — Xgl)#l/ _ (ﬁgg(l)) Z SR(”)QD(I)'MV (2.297)
b=1
pDOP = —x — (Bgg)” Z Rap @ (2.298)
pDO" = XV — (Bgg’)” Z >R oW, (2.299)
b=1 s=34
H’L r
pDOP = —x P — (Bggl) T D D R e, (2.300)
b=1 s=34
where the subscript a runs over all species, i.e.,a = 1, ..., m, r and the thermody-

(v

namic forces x, ', etc. are defined by linear thermodynamic gradients

X = 2pa VU1, (2.301)
Xf) _ —puqu”’ (2.302)
x® = paa VAInT, (2.303)

(4) —

XD = p, V¥ nc,. (2.304)
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These thermodynamic forces are the linear approximations of the kinematic terms
D1V With respect to the thermodynamic gradients. It should be noted that in the
case of diffusion flux evolution equations the divergence term Vgapg‘) "7 is combined
with the kinematic term 2,24)” to obtain the modified kinematic term.
At the steady state of this set of differential equations we obtain the linear steady-

state constitutive equations

{m,r}

—X = (Bgg") Y ;G ey =, (2.305)
b=1

@ - 59!](2) Z g)c{abq:,(z) 0, (2.306)

—x — (Bggl) Z 2 Ry o =0, (2.307)
b=1 s=3,4

{m,r} "

W — (Bgg®)” z z m< f>q>(3>ﬂ 0. (2.308)

b=1 s=3,4

This set is algebraic with respect to fluxes @9 Since the first two of the set are not
coupled to the rest of the equations, they are easily solved for the fluxes. We thus
obtain

q)((ll)/w — Z [% [VU (2)/“’ (2.309)
{m,r}

(2) - _ Z (0] wv,.ur, (2.310)
b=1

where B and U are r x r square matrices consisting of elements E)%LIbI) and i)‘iﬁ)z),
respectively:

g)r{(ll)

Bap = ———, (2.311)
7 2p.ig
3R

b= ) (2.312)
" Spaby

Since the third and fourth equations of the set are coupled, we construct a 2r x 2r
square matrix & consisting of 7 x r square submatrices [9{23;)/ (59)], [9‘{5;4)/ ﬁg],

(2259 /69], and [R5 /540 ]
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TH
S =(ﬁ©), (2.313)

where the submatrices are defined by r x r square matrices'' made up of collision
bracket integrals:

(2.314)
=2 |, (2.315)
(2.316)

D= (2.317)

We also construct a 2r dimensional column vector spanned by 2 r -dimensional
thermodynamic force vectors of TV#InT and V#Inc;:

§ =@V*InT,...,TV*InT,V'Inc,,...,V'Inc,) . (2.318)
Then in the notation defined, the solution of the third and fourth equations of the set
may be written in matrix form
o =63, (2.319)
where ® denotes the (2r — 1) dimensional column vector

d= (0%, ..., 0% ). (2.320)

Explicitly written out in components, the solutions of (2.307) and (2.308) are
given by

- IS 1Slq,+

oG — N Ml pgng Tlartigny e, 2.321
“ ; det |G| Z det|| I

W — _ i |6|"—+”1Tvl1 T — Z Slasrrsj — T i g (2.322)
a — det |G| det |S| 2

where the subscript a runs over all species including photons and |&|,; is the
(aj) cofactor of matrix &. The solutions for the linear constitutive equations

11Tt should be noted here that we have not eliminated the dependent diffusion flux in view of the
fact that the number and range of photon spectrum is indeterminate in the present model.
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(2.309)—(2.322) enable us to identify the linear transport coefficients of matter and
radiation species under consideration.

Linear Transport Coefficients of Matter And Radiation

The linear transport coefficients are now easily identified with matrix elements of
the solutions of the constitutive equations obtained above. The shear viscosity n° is
found to have the statistical mechanical formula

r r 1 B
== 2 5 (B (2323)
a=1 a,b=1
the bulk viscosity ¢ the formula
M= M=, (W (2324)
a a,b=1
the thermal conductivity A the formula
Aoziv.:iﬁ- (2.325)
a = aj * = dethla .

the diffusion coefficients D, the formula

r r |6| "
pl=>"pl =) 24/, 2.326
. ; o ,Z:,: e (2326)
and the thermal diffusivity the formulas
1Sla.r 16
pY — —arth. 2.327
@ det |5 ( )
t0 |6|a+r,b
= —, 2.328
@ det |G| ( )

Here the species index a runs over the material species and photons.

In the nonrelativistic theory, the linear transport processes calculated by the
method of generalized hydrodynamic equations are found to agree completely with
their equivalents calculated in the first-order Chapman—Enskog theory. Therefore the
present relativistic theory results for the linear transport coefficients are also expected
to give the first-order Chapman—Enskog theory results for the relativistic gases of
matter and radiation (photons). It can be shown that the first-order Chapman—Enskog
method of solution for the covariant kinetic equation for the system of interest indeed
gives the same linear transport coefficients.
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2.12.4 Quasilinear Constitutive Equations
and Transport Coefficients

If the kinematic terms are linearized with respect to the thermodynamic gradients on
the one hand and, on the other hand, the dissipation terms A((lq) are approximated in
the first-order cumulant form together with the first-order generalized potentials as
in (2.294), we obtain a model for nonconserved variable evolution equations. When
the model is combined with the conserved variable evolution equations, we obtain
a model for generalized hydrodynamic equations, which we call quasilinear gener-
alized hydrodynamic equations. The model for the nonconserved variable evolution
equations may be written as below:

{m,r}
POV = —x (D — " B, &) g (), (2.329)
a  p=1
R |l
pDOY = —x7 = —5 D" Vur®, 4 (), (2.330)
Ga~ p=i
R 1 {m,r}
DB = XV = 75 > (T @ + 90 a0, (233D
Ja = p=1
. 1 {m,r}
pDOI = —xiP — o (ﬁabd>§f)“ + @a,,cbgj‘)”) an(K), (2.332)
a  p=1

where the index a runs over all species—i.e., matter and radiation. This set of equa-
tions differs from the linear evolution equations (2.297)—(2.300) by the presence of
the nonlinear factor ¢, (). Therefore, they are still highly nonlinear and expected
to describe flow processes far removed from equilibrium in fluids subjected to high
thermodynamic gradients as in the case of nonrelativistic flow processes studied [5,
18, 27, 28] and discussed in Chap. 9 of Volume 1.

The quasilinear generalized hydrodynamic equations therefore include the lin-
earized generalized hydrodynamic equations in the limit of ¢, (k) — 1 as Kk — 0,
namely, in the vicinity of equilibrium. Furthermore, they also include the classi-
cal hydrodynamic equations—the Navier—Stokes, Fourier, and Fick equations, if the
linear transport processes are at steady state.

Quasilinear Transport Coefficients

The steady-state solutions of the quasilinear evolution equations (2.329)—(2.332)
provide the constitutive relations for quasilinear transport processes and the asso-
ciated nonlinear transport coefficients. The steady state solutions in question are as
follows:

(D;l)/u/ = 1, [VU](Z)/W , (2.333)
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®P = —np,V,U", (2.334)
O = —\TV'InT — ZDg]v“ Inc; (a=1,...,m,r), (2.335)
j=1

QW = —DLTV*InT — > D,;V"Ing;
j=1
(a=r+1,..m—1,r). (2.336)

The nonlinear transport coefficients 7,, g4, A4» Da o D!, D, ;j—the coefficients to

the thermodynamic gradients—are defined by the formulas given below:

Ne =D (B, qu (kL) = 10qs (K1), (2.337)
b=1
e = D (V) qr (51) = 05,4z (kL) . (2.338)
b=1
|G|a J+] 0
)\a = Z det |6| L (K/L) = AaqL (K‘L) ’ (2339)
Dd |6|a,r+j L Ddo 5340
aj = TIGI(]L (kL) :== Dyjqr (kL) , (2.340)
Dt _ Z |G|a+r r+j (H ) — D[() (KJ ) (2 341)
a d t|G| L L) - a QL Lk) > .
|6|a r,r+j
aj = W% (kL) == Dgqu (kL) , (2.342)

where g7, (k) = sinh~! K, /kp with Kk, denoting12 the quadratic form of thermody-
namic gradients of the matter-radiation system under consideration.

The nonlinear transport coefficients 7, . . ., D,; depends on thermodynamic gra-
dients present in the fluid undergoing nonlinear transport processes described by the
evolution equations (2.329)—(2.332). They in fact diminish to zero as k;, ~'*0 (§ > 0)
as k; — oo. For example, in the case of viscosity there appears a shear thinning
effect as the shear rate increases—namely, the fluid is non-Newtonian. Notice that, as
their nonrelativistic counterparts do, they also break the Curie principle because the
flow process in question can be affected by a thermodynamic gradient of a different
spatial symmetry of the flow. In the case of nonrelativistic flow phenomena, they
can adequately account for numerous flow behavior in rheology, nonlinear charge
carrier transport phenomena, rarefied gas flow, etc. Therefore in the light of the non-
linear transport coefficients for nonrelativistic flows just mentioned the relativistic

12For the detail of getting gy (1) from the nonlinear factor ¢, (x) and xr, see Chap.1 of this
Volume.
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quasilinear transport coefficients listed above and the quasilinear generalized hydro-
dynamic equations could be also of interest to relativistic flow phenomena in rela-
tivistic gases far removed from equilibrium.

2.13 Nonrelativistic Limits of Relativistic Generalized
Hydrodynamic Equations

The nonrelativistic limits of the relativistic generalized hydrodynamic equations
of matter and radiation and the related quantities presented earlier in the present
chapter can be obtained by making use of the methods employed for a similar subject
in the absence of radiation in the previous chapter of this Volume. Thus obtained
would be the classical radiation hydrodynamic equations for flow processes in matter
interacting with radiation. Of particular interest to us here is the radiation part of
hydrodynamic equations, because it will provide us classical radiation hydrodynamic
equations which have not been discussed in the previous chapters in this work. Since
the material part of the classical hydrodynamic equations would be expected to be
similar to the classical (nonrelativistic) limits studied in the previous chapter, we will
focus our attention to the radiation part of the generalized hydrodynamic equations.
Since the nonrelativistic limits of various operators and quantities considered
in the evolution equations in the previous chapter should also apply to the present
generalized hydrodynamic equations of matter and radiation, they will be used to
obtain the desired results for our goal here. It is convenient to list a few of relevant
nonrelativistic limits of quantities below:
0 __ 2, 2 n1/2 _
pa—mac(l—i—pa/muc) (a=1,2,...,m)
— myc, asu/c — 0 (2.343)

in the case of matter particles. Since the hydrodynamic velocity U# may be written
for the whole system as

22\ 72
Ut = (1 — —2) (c,u) =y (c,u) — (c,u) (2.344)
c

in the limit of u/c — 0, it is clear that the space-components of U* is reduced
to the nonrelativistic hydrodynamic velocity in the limit. With this preparation it
is straightforward to obtain the nonrelativistic limits of the relativistic generalized
hydrodynamic equations. Using the aforementioned limit we find in the case of matter

phU. =7 (cp) — Pa - 1)
= myc? + %mcj +0(c7?), (2.345)
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where
C.=v,—u

is the nonrelativistic peculiar velocity of species a, and the m,c? term can be neglected
in the nonrelativistic theory. This means that the Jiittner function for matter has the
following limit

fe=exp [_5 (pf;Uu — Ma)] = }imoexp [—ﬁ (%mcg — ua)i| . (2.346)

Therefore the Maxwell-Boltzmann distribution function is the nonrelativistic limit
of the Jiittner distribution function.

The number density tends to the nonrelativistic number density for both matter
species and photons:

- L[4
Pa ¢ ZU#NZ;L =c 1/ p()a Uﬂpgfa

a

/d3pafa +0(™h
=n" 4+ 0™ (@=1,2,...,m,r). (2.347)

Here n™ denotes the number density in the nonrelativistic kinetic theory.
The covariant operators D and V# have the nonrelativistic limit as follows :

D =U"d, = Uy + U o,
=0 +u-V+0(@™)

_d i
=+ 0@, (2.348)

Namely, the relativistic substantial time derivative ©® = pD tends to the nonrela-
tivistic substantial time derivative p% used in classical fluid mechanics. The space-
component of the operator V* is given by spatial gradient V; = 9/0x; in the limit
ofu/c — 0:

Vi = —A*Ro — A0,

_ 9 +0@™ (k,j=1,2,3) (2.349)
6va

Therefore there hold the limits

V,U" — Ou, /0x,; ViU, - —0u, /0x,,. (2.350)
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Let us then analyze the nonrelativistic limit of the Boltzmann entropy four-flow.
We have defined the Boltzmann entropy in the relativistic kinetic theory'3

{m,r} d3p
St (x) = —kpc Z/ Oa

a=1 p

pofaln fo (2.351)

and
S:=pS = cfouS‘L (x)

m.r)
= ks Y [ dputitn g+ 06
a=1
_ s 4 o, (2.352)

where ST is the Boltzmann entropy of a nonrelativistic gas mixture and f{™ is the
nonrelativistic distribution function. The space-component of Boltzmann entropy
flux J{' = S# — SU* is given by

JE =8 - su*

S

{m,r}

=—kp > / &EpiCE M £ 4 oY

i=1

=J0" + 0, (2.353)

where JS(,:") is the nonrelativistic Boltzmann entropy flux. The Boltzmann entropy
production has the limit

{m,r} {m,r} 3
d’pa
Oent = —kpe Z Z/ b In foRap [fas fS]

0
i=1 i=l Pa

{m,r} {m,r}

=—ks > > / & paln fuBRas [ 100, f57] + 0

i=1 i=1

3For example, de Groot et al. [29] define the Boltzmann entropy four-flow by the formula

{m.r}

St (x) = —kpc Z
a=1

d3
Pa gt fun fu = 1).
Pa

We define S* (x) by
{m,r} d

S"(x) = —kpe Y /
a=1

without the (—1) factor, which we find superfluous.

*Pa
0 plhfaln fa
Pa
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—1
= o + 0@, (2.354)
where aéﬁ? is the entropy production of nonrelativistic gas expressed in terms of
nonrelativistic distribution functions.
The dissipation terms are given by the nonrelativistic limit

{m,r}

S o £ e

B=1

ITL r

_ Z/d3p3h(q)“ TR, [f(nr)]+0(c—1)

=AD" 10 (7). (2.355)

(nr)a

In order to show the nonrelativistic limit of the relativistic generalized hydrody-
namic equations, it is necessary to analyze the energy-momentum tensor and other
macroscopic variables. Since

{m.r}

d*pa
™ =c> / pp PpL S, (2.356)
a=1 @

then its (00) component is given by the limit
{m,r}
_CZ/ *Pa 0 p0 £

=nmc* +E+E + 0. (2.357)

On ignoring the rest energy part, it becomes the energy density of a sum of energies
of matter and radiation.
Let us consider the components 7% (k = 1, 2, 3):

{m,r} d3p
Ok __ k0 __ @ 0k
T =T _cZ/ o P2k fa
=c Z / d> popt fa, (2.358)

a=I

thatis, T% /c becomes the momentum density of a nonrelativistic gas whenu /¢ — 0.
Moreover,
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CZ/ papﬁpa

_ Tn(lnr)kj + Tr(nr)k] Lo &i=123). (2.359)

where T."% and T, % denote the nonrelativistic energy-momentum tensors of

matter and radiation.
With the help of the aforementioned properties it is easy to show that the diver-

T (@op-v
o a

gence term O, (A ) and the kinematic term Z" " have the nonrelativistic

limits as follows:
O (AL fo D) = =V - / d*poCo fIMORDEY 4 O(c™h
==V + 0

where C,, is the peculiar velocity and
¢W”=/fmqﬁmwwf

The nonrelativistic limit of Z{**"” for matter species is given by

Zéq)#“.y — (pgagh((lq)'uyfa>
= (fa(“r)(dz +C,- V)hz(zq)““‘”) + O(C—l), (2.360)

for which we have used the limits given below:

Appa - (gg - C72U0U/L) Pf; = Cilu -p, + O(Cil), (2.361)
ALpl = (g, — UMV, pli = —=moCy + O(c7Y), (2.362)
A pliply =meCa4+ 0(c™h). (2.363)

Therefore, the nonconserved variable evolution equation (2.169), namely, generic
evolution equation, tends to the nonrelativistic limit

(nr)DqD(q)/t v - _V. ,l/J((lq)u---l/ + (fa(nr)(dt + Ca . V)hc(lq)/p--u> + A(q)# v

(nr)a (nr)a

(a=1,2,...,m). (2.364)

Here d;, = 0, +u-V is the nonrelativistic substantial time derivative. Upon explicitly
working out the second term on the right of (2.364) we obtain the nonrelativistic
evolution equations for nonconserved variables of matter and radiation. For notational
brevity we will omit the superscript or subscript nr as well as x - - - v from the so-
obtained equations with understanding all quantities involved are nonrelativistic.
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They are summarized below :

d ~
nEQZI) =-V-yp" —2[J,du]® —2[1, - Vu]?

2 ~
— S, (V- u) —2A, [Vu]® —2p, [Vu]® +AD, (2.365)

3
d ~ 2 2 2~
—0P = -v.9p? - ZJ, - du— =0, : [Vu]® — ZA, (V-
ndl a d"a 3J U 3 [ll] 3 ( ll)
— padiIn (pv°) =V - Jupa/pa) + AP, (2.366)

d ~ -
nECD‘(f) =-V. ¥ —du (P, — p,d)+Q,-Vu—P,-Vh,

+ ¢ Vu — Judh, + A, (2.367)

d -
n—&® = —v.P, - p,du—J, - Vu+A® (2.368)

dl a >’

where the subscript a stands for matter species and the superscript (nr) on 2™ is
dropped for brevity of notation. The number density » multiplying the substantial
derivative on the left-hand side of (2.365)—(2.368) would be replaced by mass density
p, if the density 52") of @E,q) were redefined with respect to mass density instead of
the number density n, which was compelled in the relativistic theory. In the equations
presented above, the following definitions of symbols are used for brevity of notation:

P = (f,m,C,C,C,) . (2.369)

In the case of radiation, we obtain the nonrelativistic limits of the evolution equa-
tions for nonconserved variables as follows:

nEcb;“ =V —2(J,du]?® —2[11, - Vu]?
2 ~
— 5H, (V-u) =2A, [Vu]® = 2p, [Vu]® +AD, (2.370)
d ~ 2 2 2
—0@ = -v.p?P — 1], du— =TI, : [Vu]® — ZA, (V-
no-® P, 3J - [Vu] 3 (V-u)
— pdiIn (pv™?) =V - drpe/pr) + AP, (2:371)
d ~
nEd>£3) =-V-9® —du (P, — p,d) +Q.-Vu
—P,-Vh, — J.dih, + AP, (2.372)
d ~
nE<D£4) =-V.P,—pdu—J,  -Vu+A®, (2.373)

In this sense, the relativistic generalized hydrodynamic equations we have derived
are reduced to their nonrelativistic counterparts—namely, the nonrelativistic radia-
tion hydrodynamic equations—under the condition #/c — 0, which we compactly
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summarize as below:

dp

L=V, (2.374)
M_ _y.p (2.375)
p— = — . N .
ot
paa—f =—-V:-Q—P:Vu, (2.376)

pﬁq)(q) - _V. ¢(11) 4+ Z@ L A@
at « « o o
g=1,2,...,4, etc.; a=1,2,...,m,r). (2.377)

The matter part of the nonrelativistic generalized hydrodynamic equations are well
known results in the scheme of the modified moment method for nonrelativistic gases
[5, 18]. The radiation part of the generalized hydrodynamic equations is new and
one of important objectives of the present chapter on radiation and matter.

2.14 Relative Boltzmann Entropy Density and Fluctuations

The relative Boltzmann entropy density and its balance equation can be calculated
similarly to the calortropy density and its balance equation obtained in the previ-
ous section. However, the relative Boltzmann entropy density balance equation is
expected to be not integrable in the thermodynamic manifold.

For the task we face here for the relative Boltzmann entropy it is necessary to have
the distribution function f, explicitly as a function of momentum four flow, which of
course would be forthcoming if the covariant kinetic equation were solved explicitly,
but it is not available at this point in the development of theory. Nevertheless, we may
propose a way to determine f, and therewith deduce possible nature and properties
of the relative Boltzmann entropy. Therefore we look for f, in a form isomorphic
mathematically to the nonequilibrium canonical form f, but the parameters therein
are not the same as 3, y,, and X appearing in f;. Therefore we postulate f, in
the form

-1

fa=3exp| ngH + inq)lt»»-gh((lqy)mw — lta | — €a
q=1

(a=1,...,m,r), (2.378)

which should be contrasted to the nonequilibrium canonical form
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-1
fe=Aexp | 8 [ v, + > xE0m 0D | — e
q=1

(a=1,....,m,r), (2.379)

in which the superscript 7 is affixed on the parameters 3', 1!, and X, "7 to dis-
tinguish them from 3, u,, and X, “ The superscript ¢ stands for thermodynamics
and the meanings of ', !, and X, (@0 are fixed according to the thermodynamic
correspondence discussed in connection with the calortropy. Therefore the burden
of difference between the exact solution f, of the covariant kinetic equation and

the nonequilibrium canonical form f; falls on the parameters (ﬁ, Lhas Xéq)), and
Af, = fa — f; may be regarded as a functional of fluctuations of the parame-
ters from the thermodynamic parameters (6’ ph, Xa @ ) This viewpoint therefore

motivates us to define the fluctuations of parameters:

§B=B-0" 6Bu.) =PBu.— By, 6(BXY)=pXP —p X1
(2.380)

to which we add the fluctuation in 3p:

d (Bp) = Bp—F'p", (2.381)

which will be found necessary.
Then inserting (2.378) and (2.379) into the relative Boltzmann entropy density
balance equation (2.188) we obtain the equation for S;[ f| f]:

DS[f1f1=—kp [(woe + 8 (Bp) Dv — > 6 (Bua) Dy

a=1

+D° 3 (BX) 50 DOY |+ AE,.  (2382)

a=1 g>1
where A E; is given by

AE, = —kBﬁ(c‘zQ“’DU,, + P"V,U, — pV,U" + ZuuVI,Ja”)

a=1

— kg Z > BXD O (fa0,pin)

a=1 g>1

—kp Za (A {eaplIn (1 + €0 1)) - (2.383)
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This balance equation for S f1/€] is similar to the Pfaffian differential form for
calortropy but for p’lAEAr, which does not vanish. Because of the term p~'AE,
the balance equation for S;[ f| f] is not integrable in the thermodynamic manifold,

but the fluctuations in parameters {55, 0 (Bua), o (ﬁXflq)) ,0 (ﬁp)} are determining

factors of the relative Boltzmann entropy density and ultimately the distribution
function f,. In the limits of

88,8 (Bua) . 8 (BXS7) . 8 (Bp) — 0
Equation (2.382) reduces to the form
DS[fIf1=p ' AE:, (2.384)

which may be integrated along the path of the irreversible process of under consid-
eration, but its value would be path-dependent. A stochastic theory may be pursued
along the line suggested in the previous chapter of this volume. However, we will
not pursue such a study here, leaving to future study on the subject.

2.15 Concluding Remarks

We have formulated a covariant kinetic theory for a mixture consisting of matter
and radiation by putting the material particles and photons on an equal footing. This
kinetic theory has an attendant theory of irreversible processes in a system of radiation
and material gases, which is consistent with the laws of thermodynamics. The present
formulation is achieved by treating the system as a dilute gas mixture of photons and
material particles which interact with each other according to the dynamical laws
of mechanics and, especially, at the collisional level, by quantum mechanics. The
covariant kinetic equations used are the Boltzmann equations suitably generalized to
accommodate the quantum nature of radiation, at least, with regard to their collisions.
By applying the modified moment method, thermodynamically consistent solutions
for the kinetic equations are obtained and a theory of irreversible thermodynamics is
formulated therewith for the system. As it was the case for nonradiative systems, the
Boltzmann entropy differential is found to be nonexact—namely, not integrable—in
the thermodynamic manifold 3 U ¥ if the system is away from equilibrium, but the
Pfaffian differential form for calortropy is exact in manifold 8 U ¥ and therefore
serves for formulation of irreversible thermodynamics and hydrodynamics consistent
with a local form of the thermodynamic laws. Therefore we now have fundamental
equations for thermodynamics of irreversible processes in a system of radiation
and matter undergoing nonequilibrium processes under the aegis of thermodynamic
principles.

A theory of radiative transport processes can be developed by the means of the
flux evolution equations presented and study of hydrodynamics can be made. The
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present covariant formulation removes the weakness inherent to the nonrelativistic
kinetic theory reported in Ref. [ 1] in which photons are treated nonrelativistically. The
covariant generalized hydrodynamic equations derived from the relativistic Boltz-
mann equation have better balanced structures, although more difficult to solve in
practice. The generalized hydrodynamic equations, namely, the conservation equa-
tions and the flux evolution equations, for the system of radiation and matter can be
used to describe irreversible thermodynamic and hydrodynamic processes occurring
far removed from equilibrium. The quasilinear generalized hydrodynamic equations
presented appear to be applicable to and practicable for nonlinear systems. The the-
ory of transport processes obtained is applied to study radiation transport phenomena
in the next chapter.
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Chapter 3
Radiative Transport Coefficients and Their
Mutual Relations

In this chapter' we apply the covariant kinetic theory of quantum dilute relativistic
gases developed in Chap. 2 of this Volume and, in particular, the theory of transport
processes to explicitly calculate transport coefficients of photons interacting with
matter. A model will be taken for collision processes so as to facilitate explicit
computations to compare with empirical results observed in the laboratory. The
results of the present application therefore will serve as a validation of the covariant
kinetic theory employed, at least, in one aspect of the theory of transport processes
in matter and radiation we have formulated in the previous chapter.

In the phenomenological theory of radiative energy transfer [1] the radiative trans-
port coefficients are expressed in terms of the Rossland coefficient, which phenom-
enologically accounts for radiative absorption by matter interacting with radiation.
The radiative transport coefficients so expressed stand in constant ratios independent
of material parameters. For example, the ratio of the radiative shear viscosity 1° to
the radiative bulk viscosity 73 is

n _3
5

5 =
By

E}

whereas the ratio of the radiative shear viscosity to the radiative thermal conductivity
Mg
0
Mer _ 1

A0 527

where c is the speed of light. If the thermal conductivity is defined with respect to the
temperature gradient VT instead of V In T', the latter ratio must be multiplied by 7'. In
the case of material gas, there exist similar relations and they are called Eucken ratios

IThis chapter is based on an unpublished paper by K. Mao and B.C. Eu, which was also a part
of the Ph.D. thesis of Kefei Mao, 1993, McGill University, Montreal, Quebec, Canada, under the
supervision of B.C. Eu.
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[2]. Such ratios of radiative transport coefficients not only enable us to compute one
radiative transport coefficient from another, but also serve as an internal consistency
check for the kinetic theory formulated to study radiative transport processes of
interest.

According to the theory formulated in Chap.2 of this Volume, a covariant rela-
tivistic kinetic theory for a nonequilibrium system of radiation and matter provides a
molecular theory foundation for the relativistic irreversible processes arising from the
interaction of radiation and matter. It also furnishes a method of calculating various
radiative and material transport coefficients in terms of the transition probabilities
of elementary dynamical processes involving the material particles and photons.
The formulas obtained allow explicit calculations of the transport coefficients once
dynamical quantities, such as differential cross sections, are known in sufficient
detail.

In this chapter, we first present various radiative transport coefficients in terms of
the collision bracket integrals reminiscent of the collision bracket integrals appearing
in the Chapman—Enskog method of solution for the nonrelativistic Boltzmann equa-
tion [3] for a material gas. Using the statistical mechanical formulas for the radiative
transport coefficients and applying them to a photon-electron system, we calculate
the radiative transport coefficients and their respective ratios. By assuming that the
elementary collision dynamical process is the Compton scattering, we explicitly cal-
culate various radiative transport coefficients. The ratios thus calculated are found to
be in agreement with the phenomenological values mentioned earlier.

3.1 Linear Constitutive Equations and Transport

Coefficients

To begin the discussion on transport coefficients, we summarize the evolution equa-
tions for material and radiation fluxes ®® and ®) in one place:

pDafg)uu.“l = -, S01(‘[(11)#1/...10 + SI(;{)MV...] + AI(':][)#VMI (q — 1’ . 4) , (31)
pDOOI T = — g gl 3Ol Ol (5= 4y (32)

These equations are coupled to material conservation laws (2.163)—(2.166) and radi-
ation concentration fraction and energy balance equations(2.167) and (2.168) of
Chap. 2 of the present Volume. The combined set of conservation equations and flux
evolution equations constitute generalized hydrodynamic equations for the system
of matter and radiation. The solutions of these equations subject to suitable initial
and boundary conditions describe flow processes of the relativistic fluid (gas) in
interaction with radiation. On the basis of the evolution equations presented we have
derived kinetic theory formulas for various transport coefficients for the system of
matter and radiation in the previous chapter. We list the relevant transport coefficients
in the following.
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3.1.1 Relevant Linear Transport Coefficients

In this work we are interested in three kinds of transport coefficients, for which we
list the kinetic theory results below:

Shear viscosity:

-1
% = (Bgps/pg) [mﬁ,}’]ab , (3.3)
Bulk viscosity:
-1
Mo = (50589/3p9P) [%fﬁf’]ab , (3.4)

Thermal conductivity:

-1
33
No = (*poBa/pg)) [9%2,, ’Lb (3.5)
In practice, since the component transport coefficients are generally not measured,
perhaps, except for photons, the transport coefficients defined in (3.3)—(3.5) must be
summed over species to obtain the corresponding coefficients measured for matter
as a whole in the laboratory. The transport coefficients for matter are given by the

formulas

M= > 1o (3.6)
a,b#r

o= 3.7)
a,b#r

A= DA, (3.8)
a,b#r

Here the summation is limited to the matter species only. In the case of radiation, if the
1

coupling terms [i)ifllbl)] , etc. are neglected, then the radiative transport coefficients

are given by the formulas

Shear viscosity:
—1
= (Bgpr/pa") [ RG] (3.9)

Bulk viscosity:

¢ = g (5p, 309 [25] (3.10)

rr
Thermal conductivity:

N = g (*p /pg) [RO] (3.11)
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Especially, in connection with (3.9)—(3.11) we note that

gV = 5c 2(( upﬁ)3f,e>:2.96p,, (3.12)
g® = —5c—2<( upf)3ff> — 1.23p,, (3.13)
o9 = 506 (W) ) = 20 (Ul 1)+ (@) (U2 17)
- 18.81c P (3.14)
where

ay = NN P £S) g [BALAL 0] P (PU) 1) 9] (B115)

h, = 4n*kgT /90¢ (3), (3.16)
n 2 d’p, n
(art)" 151 = 3% [ S Wt 17 = 1.2.3). (3.17)

Here ¢ (3) is a zeta function [4]. The rest of notations is the same as that in Chap.?2
of this Volume.

In the phenomenological theory the radiative transport coefficients are given in
terms of the phenomenological Rossland coefficient xgc as follows [1]:

4aT*
—0
= , 3.18
ISCERC ( )
4aT*
o= (3.19)
9CI€RC
4aT*
o= (3.20)
3KRrc
where the parameter a is given by
8mk%,
=—35 3.21
15h3¢3 3-21)

the so-called radiation constant. Therefore these radiative transport coefficients are
related to each other by a proportionality constant. For example, we have

3
= 3.22
5 (3.22)

— (3.23)

SLFL OLFEL


http://dx.doi.org/10.1007/978-3-319-41153-8_2

3.1 Linear Constitutive Equations and Transport Coefficients 179

Comparison of i and n? yields the Rossland coefficient Frc in terms of the collision
bracket integral i)‘i,(_il) in the present theory:

4kpT g
Fre = ‘;ng’mgb. (3.24)

S . . -0 =0 . .
Similar identifications can be made by means of ¢, and A, but they give the equivalent
forms since different collision bracket integrals appearing in the transport coefficients
are related to each other.

3.1.2 Relevant Collision Bracket Integrals

Since the collision bracket integrals appearing in the transport coefficients in general
form are written out explicitly once again here:

%%’7) (q)g() Z ZG /d'i /d'%pu/d'% /d'i—zfefe
T a,b#r s=1

X Erarvr Wyahvope (PrPal P} P}) 5 62 (' = n@*) © (RS — D7),
(3.25)

n = S S [ap, [aon [an [omss

Ya b#r s=1
X é—rar*b* Wr(a rEb* (Pz Pa|Pr pb) /82 (h;(«q) - hﬁq)*) © (h;(«ﬁ() - hp)*) 5 (326)
Here f7 is taken for the Planck distribution function

= [exp(BpLU,) — 1], (3.27)

but because the electron is treated classically so that the result can be compared
with the literature value using the Compton scattering, we have approximated f for
electrons with the classical distribution function

fe = oxp [ (P U, = k5)]. (3.28)

where the chemical potential £, is given by

€ 4
e =3 T “Kz(mac B)kpT (3.29)
a#r
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The collision bracket integral ,‘Ri?ﬁ’) given in (3.25) requires a comment. In (3.25),
the first collision bracket integral involving r and r’ (namely, i = r’) in (3.25) is
absent because photons do not directly interact with each other and therefore there
is no collision event corresponding to the collision bracket integral [- - - ],,», which
appears in the case of matter particle collision bracket integrals.

The collision bracket integrals can be reduced if a more specific form is assumed
for the transition probability Wr(z?r* jo-In this chapter we will take into account only
the Compton scattering. Therefore, the sum over the collision processes denoted by
the index s will be reduced to a term and the corresponding transition probability
will be denoted by the elastic scattering component Wr(s), ;« related to the Compton
scattering cross section of the electron. Evaluation of the collision bracket integrals
for such a scattering process is described in the next section.

3.2 Evaluation of the Collision Bracket Integrals

In order to be specific, we shall consider a photon-electron system where the electron
is treated as a relativistic classical particle whereas the photon is treated quantum
mechanically. Only the electron-photon elastic scattering is taken into consideration.
Therefore the question of divergence associated with the long-range Coulomb scat-
tering does not arise and hence the Coulomb logarithm is not present in the collision
integrals. Although the present treatment is specific to the photon-electron system,
the method used is basically the same as for plasmas in general and relativistic par-
ticles. Therefore the system considered is a physically realistic example covered by
the present kinetic theory. The procedure used for computing the collision bracket
integrals is similar to the work of de Groot et al. [5].

There are only two sets of four-momenta for the present system, namely, those
of the photon and electron. They will be distinguished by the subscripts r and e,
respectively. As a preparation to discuss the collision process of an electron and
photon

hw (r) + e — hw* (r*) + e, (3.30)

we first introduce the transformation of four-momenta

Pl =p)+p=p"+pr, (3.31)
0" =A" (pry — pu), QF =AD" (pi, —p), (3.32)

where A" is a projector defined by

P1PY

AHY v
A" =g B

(3.33)
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with P2 = P"P,. We will also denote by Q? the length of the four-relative
momentum Q% = Q"Q - From (3.31)—(3.33) we can show the following relations:

pPrQ,=0, AP, =0, A0, = 0" (3.34)
Therefore the total four-momentum P# is perpendicular to the relative four-

momentum Q*. The four-momenta p!, etc. can be decomposed into the orthogonal
components P# and Q" as follows:

P = % (14 dye) P" + %Q“, (3.35)

PY =3 (1= du) '~ 20, (336)

P = 2 (1) Y4 0, (3.37)

P = (L= dp) P* — 20, (338)
where (mz B mz) 2 e

do= RN Ml (3.39)

because the photon mass is equal to zero. Since the collision process under consid-
eration is elastic, the electron masses are the same before and after the collision.
Hence

2 m‘g‘c“ 2 22 2
0 = — 1+7 P+ 2mjc” = Q™. (3.40)

In order to facilitate the integration of the collision bracket integrals, we will change
the variables from p/, p! to P*, Q*, etc. The Jacobian of this transformation is

0(P,O) _ (PO _
d(prspe)  O(pr. pr) '

The transition probability W) can be written in terms of the cross section o (P, ©)
as follows:
W(e) — PZO_ (P, @) 5(4) (PN _ P*N) , (341)

where o (P, ©) is the differential cross section. For the Compton scattering it is given
by the formula [5]:
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a(P,@):%rg(l—f)x

2(1 — x)? 1+(1-1)a—x
I i Gk, S ( : =01
4[1—§§(l—x)] 1 —38( —x)
where
(P = mec”) ¢ ® 343
5_ P2 > ro_mecza X = COs > ( )
O being the scattering angle defined by
Q-Q
cos ® = 0 (3.44)

The cross section is expanded in ¢ and only up to the quadratic term in £ will be
retained in the subsequent calculations:

o(P,0) = %rg [1+x*+ Ci()E+ C)E + 0], (3.45)
where

Ci(x) =x(1 —x») — (1 +x?),

Cy(x) = %(1 - ) {0 =-x)[14+0A+x)1+3x)] —4x(1 +x)}, etc.
The volume element of the space may be written as
&*p,d°p,d°prd’pr = dM(P)dM(P*)dM(Q)dM(Q™), (3.46)
where

dM(P) =d*Po (P°) 0 (P> —m.c?), (3.47)

c

4.4
dM(Q) =d*Q5(P- Q)6 [Q2 + (1 + m,T;) P — 2m2€2:| (3.48)

with 6(y) denoting the Heaviside step function of y. The volume elements d M (P*)
and d M (Q*) have similar forms only with P* and Q* replacing P and Q, respec-
tively.

With the help of the preceding preparation, we are able to write the collision
bracket integrals in more useful forms. We begin with R{!D. It may be written in the
form
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2
RUD — weﬁ’/dM(P)dM(P*)dM(Q)dM(Q*)

rr T 30h69r(l)2
x e PPUE(P, W [U, (0" — 0", (3.49)
where
=0 (1 + pf) = B, (3.50)
1
F(P, Q)= (3.51)

(1 _ e—ﬂpﬁ‘Uu)z '
Recall that the radiation chemical potential is equal to zero at equilibrium. Substitu-

tion of the expression for W into (2.123), the collision bracket integral R(!" can
be written in the form

an _ gc3*G,

I 1 2 3
el T 30hﬁg(l)2 e (Eﬁi '+ 9‘{£ )+ 29{5 )) ’ (3.52)

where

RO = / dM(P)dM(P*)dM(Q)dM(Q*)e *F" U

x F(P, Q)P (P, ®) (U,0")* 6¥ (P" — P*), (3.53)
R = / dM(P)dM(P*)dM(Q)dM(Q*)e "F"ls

x F(P, Q)P*5 (P, ©) (U,0")* 6® (P* — P*), (3.54)
RO = — / dM(P)dM(P*)dM(Q)dM(Q*)e "F"Ur

x F(P, Q)P*c (P, ®)U,U,Q" Q"W (P" — P*). (3.55)

In the subsequent calculation we will put F (P, Q) equal to unity to an approximation.
This approximation is tantamount to the condition that (3 is such that

BPIU, > 1.
The correction terms can be calculated in the same manner as for the case of

F(P,Q)=1.
It is convenient to define the integral I (a, b, c| P) by

Ia, b, c|P) = (BPc) / dM(Q)dM(Q")o (P, ©) (3U,0")"
x (8U, 0% (3> 0" 0%)° . (3.56)
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In the center-of-momentum frame the four-momentum P* is time-like whereas the
relative momentum Q" is space-like:

Pt =(P°0) (3.57)

and

0"=(0,Q, 0"=(0.Q). (3.58)

We assume that the center-of-momentum is oriented in such a way that the space

. . . 2
component of U* = (U°, U) is parallel to the z axis. Then, since ¢2 = (U°)"— (U%)?
and U° and U? may be written as

Uv=uU-P/P (3.59)

and
Ui =[wW- Py /P =", (3.60)

Furthermore, if the spherical coordinate angles are denoted by (6, ¢) for 6 =Q/1Q|
and (0*, ¢*) for Q* = Q*/ |Q*|, respectively, then

Q U="Ulcosf, Q" U'=Ucosh* (3.61)
and
x = Q- Q" = cos® = cos  cos 0* + sin 0 sin O* cos (0 —0"). (3.62)

In such a frame, the collision cross section may be expanded in Legendre polynomials
Pi(cos ®) :

Q-Q) 0 (P.Q-Q) =D @+ 1) (c,1I3Pc) P(cos ©), (3.63)
=0

where 1

dxx‘P(x)o (P, x). (3.64)
1

1
o(c,l|BPc) = E/

With solid angles dQ and dQ* defined by
dQ =sinfdfd¢y, dQ* =sin0*d6*do*, (3.65)

and the abbreviation

K(a,b,l) = (4m)~2 / dQdQ* (—cos 0)* (— cos 9*)b Pi(x) (3.66)
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the integral I (a, b, c| P) may be written as

I(a, b, ¢|P) = 47 (ic Q)™ (i) "V [(P - U)? j2P? — 1]
x > Q@+ 1)0 (., [|BPO) K (a,b,1). (3.67)
=0

It is now straightforward to obtain i)‘ifl) in terms of I (a, b, c| P):

RO = g4 _z/dM(P)I(2,0,0|P) exp (—Bpl'U,)
8
977202r§/dM (P)exp (—BplU,) Q° 0 (1 —¢)
x [(P- Q) /c*P* —1]. (3.68)
To evaluate this integral, we define the reduced variables
T =pBplU,, v = (Pc. (3.69)

Then, when the hydrodynamic four-velocity U* is taken purely time-like, the dimen-
sionless four-vector may be written as

Bplc = (T, 1 (72 - 1)2)]/2) (3.70)

and the volume integral element d M (P) is expressible in the spherical coordinates
as

(Bey*d*P = (Bo)*v (7 — %) * drdvaQ. (3.71)

Furthermore,
020" = (o) o (1 - 2)°, (3.72)
1-¢=1—(P —mgcz)/P2 =z, (3.73)

here z being defined by

mec?

kT

(3.74)

In terms of these variables the integral may be written in the form

2.2.2.2
R = 9(05?2/ / dT/on =2 (=0} e (3T5)
c
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By using the integral representation of the modified Bessel function K, (z) [4, 6], we
may write (3.75) in the form

M _ 327T3c2r312
' 3 (Be)®

With the help of the asymptotic expansion of K, (v) in the limit of large z, we obtain

/OO doo™? (1)2 — 12)4 K;(v). (3.76)

2048
9%9) A m (4m)? Vrzctoret (Be) 8 e, (3.77)

where o7 is the Thomson cross section of the electron [7] :
8 o
= — 3.78
ar 37Tr0 ( )
with rp = (’/Tez/sze) = 0.6552--- x 1072° m”. Owing to the symmetry of the
integral, it is easy to show

R = R0, (3.79)

Taking the same procedure as for R(), we obtain R as below:

6344 T
RO = —— @) [ —=c® (Be) b e 3.80
y Wi (4) - (Be) (3.80)
From (3.77) and (3.80) we obtain the following ratio
REG) 1.03
# = —. (3.81)
Rz

With these relations we finally obtain the collision bracket integral in the form

2
gD _ 9eG, Prer® (1 4+ E ) (3.82)
rr (1)2 r

15h%g, 2

The shear viscosity of the photon gas is then given by

kpT
70 = 0.0305—2—, (3.83)
cor

for which the term of order z~! [see (3.74) for z.] is neglected as will be for other
transport coefficients.

The collision bracket integral 23>? can be evaluated in a manner similar to the
procedure used for R(!. Here we omit the details. The final expression for R?? is
given by
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15 gcp?

rey 2 9P

rr 36 15/’16952)2

% e_ﬂPMU“F(P, Q)W(e) [Uu (Q” _ Q*M)]

15 (g(l))2
=— (%) ®’UD. (3.84)
36 \g?

o / AM(P)dM(P*)dM(Q)dM(Q")

2

Therefore, if the approximate value for 9‘{31) given by (3.82) is used, the bulk viscosity
of nonequilibrium photon gas is given by the formula

kpT
€% =0.0508=2~ (3.85)
cor

The collision bracket integral R can be also calculated similarly. In fact, it is
related to RV as follows:

@ _ 5 9B * ,
T 4 [5p0g@2¢ dM(P)dM(P*)dM(Q)dM(Q")
9r

x e (P, QW [U, (0" - 0)]

5 M\ 2
=2¢ (9—3) R, (3.86)
47 \g?

Thus the thermal conductivity of the photon gas to the same approximation as for
the viscosity is given by the formula

kpT
A =0.1542= (3.87)
cor

Itis useful to remark that the radiative transport coefficients given in (3.83), (3.85) and
(3.87) are independent of the photon and electron densities as are the gas transport
coefficients in the Chapman—Enskog approximation, namely, the linear transport
coefficients of dilute gases.

We obtain the ratios of the transport coefficients as follows:

0 _3gone
¢ S
W1 goRe
3T IR

(3.88)

(3.89)

In view of the relations (3.84) and (3.86), we easily find the following universal ratios
of transport coefficients:



188 3 Radiative Transport Coefficients and Their Mutual Relations

0
n 3
n_ 3 3.90
5=3 (3.90)
0
1
% = = (1-00165). (3.91)

The ratio in (3.90) is the same as the phenomenological theory value whereas the
ratio (3.91) is less than 2 % off the phenomenological theory value. This difference is
attributed to the approximate values obtained for the various integrals in the expres-
sion for g'¥ presented earlier. For all practical purposes the ratio may be said to be
in agreement with the phenomenological value.

In conclusion, we have computed the radiative transport coefficients for the
photon-electron system by treating the electron as a relativistic classical particle
in the limit of large z. We have also computed the ratios of radiative transport coeffi-
cients which are in agreement with the phenomenological theory values. The kinetic
theory values of the ratios support the kinetic theory model presented for the system
of photons and material gases which are displaced from equilibrium and interact with
each other. The present theory provides a well defined molecular theory methods of
computing the parameters in the phenomenological theory and, especially, macro-
scopic observables for nonequilibrium radiation and the phenomenological coeffi-
cients such as the Rossland coefficient. Furthermore, although only for an aspect
of transport properties of matter and radiation, the agreement between theoretical
and experimental results offers implications of broader significance to the radiation
hydrodynamics of matter in interaction with radiation, because radiation hydrody-
namic equations are anchored on the transport coefficients relevant to flow processes
and correctly behaved transport coefficients are essential for theoretical prediction
of correctly behaved flow by the hydrodynamic equations employed.

3.3 Concluding Remarks

The principal objective of Chap.?2 of this volume was to develop a kinetic theory for
irreversible processes, thermodynamics of irreversible processes, and hydrodynamics
for a system of radiation and matter removed from equilibrium. Instead of using
the usual radiation energy transfer equation we have postulated covariant kinetic
equations for (Wigner) distribution functions for photons and matter interacting with
each other. More specifically, the kinetic equations are the covariant adaptation of the
Boltzmann—Nordholm-Uehling—Uhlenbeck kinetic equation for quantum particles,
which takes into account the exchange symmetries of quantum particles in their
dynamical description of distribution functions. This way, the system of radiation
and matter is regarded as a mixture of photons and material particles which interact
with each other according to the law of mechanics for the system including the
quantum nature of particles involved.
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In the present chapter we have looked for a way to validate the theory in a rather
specific aspect by applying the theory of transport processes in radiation and matter
deduced from the kinetic equation employed. Accordingly, we have calculated the
ratios of radiation transport coefficients and compared the theoretical results with
experimentally observed values. We have shown the comparisons are successful
within the limits of approximations made use of for calculations. With the assurance
of the present validation made, we may proceed to apply the theories developed
in the previous chapter to study theory of transport processes, hydrodynamics, and
irreversible thermodynamics for systems of radiation and matter removed far from
equilibrium, all of which descend from the covariant kinetic equation postulated.

On the whole, the Chaps. 2 and 3 of this Volume demonstrate the importance of the
kinetic theory of radiation and matter as a basis for explaining irreversible processes
for systems consisting of photons and material particles. In essence, the present
formalism puts the statistical mechanics of nonequilibrium thermodynamics on the
par with the Gibbs ensemble theory of equilibrium statistical thermodynamics in
the sense that all thermodynamic functions and evolution equations are expressed in
terms of X i(a) and X, which must be ultimately obtained by solving the generalized
hydrodynamic equations of radiation and matter, just as all equilibrium thermody-
namic functions and relations are expressed in the Gibbs ensemble theory in terms
of a partition function which must be computed for each and every system in the
end. The generalized hydrodynamic equations, namely, the conservation equations
and the flux evolution equations, presented for the system of radiation and matter
can be used to describe irreversible and hydrodynamic processes occurring far from
equilibrium.

Finally, we provide some discussions on the validity of kinetic theory for describ-
ing irreversible processes of radiation and matter. In particular, we may ask, what
approximations, in the underlying physics, are contained in the kinetic equations for
photons?

The most important approximation as far as the photon kinetic equation is
concerned is that we consider photons basically as point particles which satisfy
Bose-Einstein statistics. However, according to quantum mechanics photon has dual
character (particle-like and wave-like), therefore, photons also exhibit wave behavior.
In other words, a photon in reality is a wave packet. For the point particle picture of
a photon to be valid, it is necessary that the spread of the wave packet in phase space
(momentum and coordinate) be small [8]. This means that the spread must be small
compared to the resolution of interest in the coordinate space (x) and momentum
space (p,) or (v, n). Since the photon distribution function is written as a function of
variables x, v and n, it is sufficient to specify the phase space coordinates of the center
of wave packet and any information concerning the distribution about this center is
irrelevant. Owing to the Heisenberg uncertainty principle the wave packet spreads
in spatial and momentum space cannot both be made arbitrarily small at the same
time. These considerations impose a maximum possible resolution on the spatial
and momentum coordinates. In fact, a kinetic equation for photons cannot describe
the strong wave behavior manifested in a diffraction and reflection since it does
not take into account the wave behavior of photons. These phenomena depend on
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interference among the waves arising from different scattering centers which scatter
the same photon.

The kinetic equation of photons also neglects the effects of refraction and disper-
sion. It is known that a photon will move at less than the vacuum speed of light in
matter with a refraction index other than unity. In particular, if the refractive index is
a function of position, the photon will not stream in straight lines between collisions
but will undergo (continuous) refraction. In addition, if the refractive index is time
dependent, a photon will continuously change its frequency as it streams between
collisions. The origin of these effect is due to an interference phenomenon of the
scattering of photons which is discussed by Feynman et al. [9] A discussion on the
validity of Boltzmann equation for material particles can be found in the book of
Smith and Jensen [10].

Nevertheless, the present kinetic theory of radiation and matter is essential to
understand some macroscopic phenomena of nonequilibrium systems consisting of
photons and material particles. Note that the Maxwell equations are dynamical theory
for radiation like Newton’s law for classical particles whereas kinetic theory for
photons provides a statistical description for photons in which irreversible processes
are involved. The role of kinetic theory for photons is similar to that of Boltzmann
equations for classical particles. Maxwell’s theory and kinetic theory present different
levels of description of physical systems.
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The mathematical symbols appearing infrequently or only in one section or a few
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