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Preface

The workshop series ‘Lie Theory and Its Applications in Physics’ is designed to
serve the community of theoretical physicists, mathematical physicists and math-
ematicians working on mathematical models for physical systems based on geo-
metrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrisation of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrisation and symmetries are meant in their widest sense, i.e.,
representation theory, algebraic geometry, number theory infinite-dimensional Lie
algebras and groups, superalgebras and supergroups, groups and quantum groups,
noncommutative geometry, symmetries of linear and nonlinear PDE, special
functions, functional analysis. This is a big interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium ‘Quantum Theory and Symmetries’ in Cracow
(2001), the 5th, 7-10th were organized in Varna (2003, 2007, 2009, 2011, 2013),
the 6th was part of the 4th Symposium ‘Quantum Theory and Symmetries’ in Varna
(2005), but has its own volume of proceedings.

The 11th Workshop of the series (LT-11) was organized by the Institute of
Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences
(BAS) in June 2015 (15-21), at the Guest House of BAS near Varna on the
Bulgarian Black Sea Coast.

The overall number of participants was 76 and they came from 21 countries.

The scientific level was very high as can be judged by the speakers. The plenary
speakers were: Luigi Accardi (Rome), Loriano Bonora (Trieste), Branko Dragovich
(Belgrade), Malte Henkel (Nancy), Stefan Hollands (Leipzig), Evgeny Ivanov
(Dubna), Toshiyuki Kobayashi (Tokyo), Zohar Komargodski (Weizmann), Ivan
Penkov (Bremen), Birgit Speh (Cornell U.), Ivan Todorov (Sofia), Joris Van Der
Jeugt (Ghent), Joseph A. Wolf (Berkeley), Milen Yakimov (Louisiana SU), George
Zoupanos (Athens).

The topics covered the most modern trends in the field of the workshop:
Symmetries in String Theories and Gravity Theories, Conformal Field Theory,



vi Preface

Integrable Systems, Representation Theory, Supersymmetry, Quantum Groups,
Vertex Algebras, Application of Symmetry to Probability, Dynamical Symmetries.

There is some similarity with the topics of preceding workshops, however, the
comparison shows how certain topics evolve and that new structures were found
and used. For the present workshop we mention more emphasis on: representation
theory, on conformal field theories, integrable systems, vertex algebras, number
theory, higher-dimensional unified theories.

The International Organizing Committee was: Vladimir Dobrev (Sofia) and
H.-D. Doebner (Clausthal) in collaboration with G. Rudolph (Leipzig).

The Local Organizing Committee was: Vladimir Dobrev (Chairman), L.K.
Anguelova, V.I. Doseva, A.Ch. Ganchev, D.T. Nedanovski, T.V. Popov, D.R.
Staicova, M.N. Stoilov, N.I. Stoilova, S.T. Stoimenov.
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x—Lie Algebras Canonically Associated
to Probability Measures on R with All
Moments

Luigi Accardi, Abdessatar Barhoumi, Yun Gang Lu
and Mohamed Rhaima

Abstract In the paper Accardi et al.: Identification of the theory of orthogonal
polynomials in d—indeterminates with the theory of 3—diagonal symmetric interact-
ing Fock spaces on C?, submitted to: IDA—QP (Infinite Dimensional Anal. Quantum
Probab. Related Topics), [1], it has been shown that, with the natural definitions of
morphisms and isomorphisms (that will not be recalled here) the category of orthog-
onal polynomials in a finite number of variables is isomorphic to the category of
symmetric interacting fock spaces (IFS) with a 3—diagonal structure. Any IFS is
canonically associated to a x—Lie algebra (commutation relations) and a x—Jordan
algebra (anti—-commutation relations). In this paper we continue the study of these
algebras, initiated in Accardi et al. An Information Complexity index for Probability
Measures on R with all moments, submitted to: IDA—QP (Infinite Dimensional Anal.
Quantum Probab. Related Topics), [2], in the case of polynomials in one variable,
refine the definition of information complexity index of a probability measure on
the real line, introduced there, and prove that the x—Lie algebra canonically asso-
ciated to the probability measures of complexity index (0, K, 1), defining finite—
dimensional approximations, in the sense of Jacobi sequences, of the Heisenberg
algebra, coincides with the algebra of all K x K complex matrices.
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Keywords Interacting fock space + Quantum decomposition of a classical random
variable + Information complexity index

AMS Subject Classification Primary 60J65 - Secondary 60J45 - 60J51 - 60H40

1 Introduction

Let i1 € Probeo (R), the family of probability measures on R with all moments. The
quantum decomposition of the classical random variable with distribution p (see [3]),
implies that to every such a measure one can naturally associate different algebraic
structures, in particular a x—Lie algebra and a Jordan algebra structure.

It follows that any classification of these algebraic structures induces a classifica-
tion of the corresponding probability measures on R.

In the paper [2] we have started this classification program with the study of the
x—Lie algebra associated to a generic i € Probs (R). A necessary condition for the
finite dimensionality of this Lie algebra is that, starting from a certain index K, the
principal Jacobi sequence of 1 is the solution of a difference equation of finite order
(see Theorem 1 in Sect.4.1).

This condition is not sufficient. In fact, if the order of the difference equation
is >3, then the x—Lie algebra associated to y is infinite dimensional (see Theorem
7 in Sect.5.4). This produces a new class of infinite dimensional *—Lie algebras,
canonically associated to probability measures and not previously considered in the
literature.

Motivated by Theorem 1 and by Kolmogorov’s idea [4] to define the complexity of
a sequence as the minimal length of a program that generates it, we have introduced
a complexity index on Proby, (R) that defines a hierarchy among the probability
measures on R, based on their complexity.

In fact, if the principal Jacobi sequence of a measure satisfies a difference equation
ofthe form (0"w),, = 0, the entire information of the sequence (wy) can be condensed
in the n real parameters characterizing the solutions of this difference equation (see
[5D.

The simplest complexity index is given by a pair of natural integers (n, K) depend-
ing only on the principal Jacobi sequence (w,) of i, where n is the minimum natural
integer such that, for any m > K + 1, the finite difference equation mentioned above
begins to hold.

For example, the complexity class defined by the index (0, K) consists of those
measures whose principal Jacobi sequence is constant starting from the index K.
If this constant is equal to 0 one finds, when K varies, all the measures with finite
support. If it is >0, one finds the semi—circle—arcsine class, called in this way for
reasons explained below (see Sect.5.1.4).

It is interesting to notice that the semi-circle law (the Gaussian for free
independence) is in the class (0, 0), the arcsine law (the Gaussian for monotone



#—Lie Algebras Canonically Associated ... 5

independence) is in the class (0, 1), and the class (0, 2) naturally appears in the
study of central limits of quantum random walks in the sense of Konno (see [6, 7]).
The structure of the measures in the classes (0, K), with K > 3 is not known at the
moment.

The class (1, 0) includes the mean zero Gaussians (the unique symmetric measures
in this class) and the Poisson. The corresponding *—Lie algebra is the Heisenberg
algebra. The class (2, 0) includes the three non—standard Meixner classes and the
corresponding x—Lie algebra is s/(2, R). Starting with n > 3, the *—Lie algebra of
the class (n, 0) is infinite—dimensional, and these are the new classes we referred to
in the beginning of this section.

In the case of measures with finite support, the connection between Lie algebras
and orthogonal polynomials has been studied, from a point of view different from
the present one, by several authors (see the paper by Jafarov, Stoilova and Van der
Jeugt [8] for references).

2 x-Lie and *—Jordan Algebras Canonically Associated
to Interacting Fock Spaces (IFS)

The notion of Interacting Fock Spaces (IFS) was introduced in [2] in the more general
framework of Hilbert modules. Here we recall from [1] a variant of this notion for
pre—Hilbert spaces.

For any pair of pre—Hilbert spaces (H, (-, - )g), (K, (-, - )k), denote
Lo((H, (-, - Yu),(K,{-, - )k)), or simply, when no confusion is possible,
L,(H, K), the space of all adjointable pre-Hilbert space maps A : H — K, such
that there exists a linear map A* : K — H satisfying

(fLAg)k =(A"f.9)u s VYgeH,VfekK

It H=K L(K, (-, -)k) has a natural structure of x—algebra and we simply write
L,(K).

Definition 1 Let V be a vector space. An interacting Fock space on V is a pair:

{(Hns ( N )n)nEN)a Ll+} (1)
such that:
o (Hy (-, - ),,)n€N is a sequence of pre-Hilbert spaces with

Hy=:C-®y ; || =1

@ is called the vacuum or Fock vector;
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e denoting ( -, - ) the unique pre—Hilbert space scalar product on the vector space
direct sum of the family (H”)neN which makes this direct sum

H =P (H,, (-, ) )
neN
an orthogonal sum, the linear operator
at: v Ly (Hyy (-5 - )ndnen)
satisfies the following conditions:
H,.i = lin-span {{a*(V)H,}} : VneN 3)
For each v € V, one fixes a choice of adjoint a*(v), denoted a™ (v) (or simply a,)
so that
a(v)®y = 0 Fock prescription YveV 4)
The operators a™ (v) (f € V) are called creators and their adjoints @~ (v) — annihi-

lators. The spaces (H,), _ are called the n—particle spaces, if n = 0 one speaks
of the vacuum space.

N

Definition 1 implies that, forallu, v € V, au+ a, and ava; are homogeneous linear
operators on H of degree zero, i.e.

alfa,(H,), ayaf (H,) C€H, ; VneN

Then one can associate to the pairs (a;, a,):
(i) The smallest *—Lie algebra containing all the a, and the a;, with brackets given

by the usual commutator

+
u

lay, a:[] =aya; — a:'av
(ii) The smallest x—Jordan algebra containing (7', T*), with brackets given by the
usual anti-commutator

{ay,at} == aya] +ata,

Many x-Lie and x—Jordan algebras that play an important role in physics arise in
this way.
3 Notations on Orthogonal Polynomials

The assignment of a probability distribution ;1 € Prob.,(R) (the space of probabil-
ity measures on R with all moments), allows to identify the multiplication operator



#—Lie Algebras Canonically Associated ... 7
(Xf)(x) := xf(x) with areal valued classical random variable with all moments. In
this identification, the x—algebra P, of complex polynomials in a single indetermi-

nate, with the pointwise operations (the involution is complex conjugacy) is identified
with the x—algebra of complex valued polynomial functions of X. The identity

<RQ%=47@QwMW) 5)

defines a pre—scalar product ( -, - ) hence a pre-Hilbert algebra structure on P.
The normalized orthogonal polynomials @, are defined inductively, in terms of the
monic orthogonal polynomials @, as follows:
é() =1
P()] = éoég
where for any pre—Hilbert space K and any unit vector £ € C, we use the notation

Em:=&n  Vnek (6)

and, having defined the pairs (Qsm, Py (m € {1, ..., n}), the next pair is defined by

Dypp o= X" — Py(X"h (7)
P, .
én+1 — H H@ﬂi:”a lf ||®n+l|| 7& 0 (8)
Dyp1, if[|Ppgill =0
Poy= D, &,8] ©)
jell,n+1}
By construction one has,
@l =10or0 ; VneN
P=EpC- o, (10)
neN

Py :={P € P : degree(P) < n}

Define the creation, annihilation, preservation (CAP) operators respectively by

at = Z\/an-i—lén-i—lqs: (11)

neN



8 L. Accardi et al.

a=@h =2 Ju,b.d), (12)
neN
a’ = Zanén@: (13)
neN

where (o) and (w,) are the Jacobi sequences of y and the &, are defined by (8).
The basic property of the sequence (w;,) is:

wp, >0 ; Vn e N ; w,=0=w,=0, Vp=>n (14)
With the above notations, the quantum decomposition of the classical random
variable X (see [3]) is
X=a"+a"+a

Defining the number operator, associated to the orthogonal gradation (10), by

A= nd,dr = A" (15)
neN

the commutations relations [a~, a™] are
la™.a*] = wasr —wa =t D (@ar1 — wi) B, D) (16)
where, for any function F : n e N - F, € C,

Fy = Z F,®,P*
neN

The anti—-commutations relations [a~, a™] are

{a=,a"} = (wap1 +wa)

4 sx-Lie Algebras Canonically Associated to p

Definition 2 The *—Lie algebra generated by the adjointable operators on the pre—
Hilbert space P

a’ s a
i.e. the smallest *-Lie algebra containing these operators, will be denoted LY (or
simply L£).

Our goal is to describe the structure of £Y.
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Remark The natural x—Lie algebra Ly, canonically associated to x4 and generated
by all the CAP operators of p

Thus to restrict one’s attention to £%, as we will do in the present paper, is equivalent
to consider only symmetric measures.

Definition 3 The left—shift operator T and the difference operators 0% (k € N* :=
N\ {0}) are defined on the space of complex valued sequences respectively by:

(TF), :=F,_ ; VneN a7

with the convention
F,=0 ; Vh<O0 (18)
OWYF), :=F,—(T*F), =F, — F,_; : VneN (19)

Remark We will use the notation
OF, :=0WF,=F, — F,_, (20)

Remark Using the basis (10), one extends the operators 7, 0® 9 to linear operators
on the pre—Hilbert space P, still denoted with the same symbols, by the prescriptions:

Z(Z F@) =D (ZFn®, . Ze{T.0%.0)
n=0 n=0

Lemma 1 For any k € N and any function F :n € N — F, € C, one has:
[at*, Fyl = =0 Faa™ ;  [d, Fal = d"0"F, 2D

where F denotes the complex conjugate of F.

Proof See [2].

. . 0
4.1 The Dimension of L

From this section on, we use the identification: L())( = Lx. It is clear that, if
dim(L?(R, 1)) < +oo then also C())( will be finite—dimensional. Therefore the prob-
lem to distinguish between finite and infinite dimensional L% is non-trivial only if
dim(L?(R, p)) = 400, and this is the case if and only if

wy, >0 Vn € N* (22)
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or equivalently
@l #0 3  VneN (23)

On the other hand, independently of a°, £%, must contain the x-Lie algebra generated
by

a ,at, [a,a] = 0w,

Therefore, a sufficient condition for Ly to be infinite dimensional is that this algebra
is infinite dimensional. For a symmetric random variable, i.e. a® = 0, this condition
is also necessary.

Theorem 1 Under the assumption (23), for a random variable X with principal
Jacobi sequence (wy,), a necessary condition for LY to be finite dimensional is that
there exists n, K € N such that

@"Wm=0 ; Vm>K+1 (24)

Proof See [2].

5 Indices of Information Complexity

Theorem 1 suggests that, among all the probability measures 1 € Prob(R), the
simplest ones are those whose principal Jacobi sequence (w,) satisfies a difference
equation of the form (24).

In this section we give a quantitative formulation of this intuition.
We do not assume that w,, > 0 for each n € N.

Definition 4 The index of information complexity (or simply complexity index)
of a probability measure p € Prob., (R), with principal Jacobi sequence (w,), is the
pair C (1) € N? defined as follows:

(k,K), ifk =min{n e N : (@*'w), =0, Vm > K + 1}

Clw = +00, if no pair (n, K) € N? with the above property exists (25)
Remark Notice that the relation
uw~v < Cu)=Cw) ; 1, v € Proby (R) (26)

is an equivalence relation and that it involves only the principal Jacobi sequence
w = (wy).
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5.1 TheCase C(pn) =(0,K) (K € N)

According to Definition 4 a probability measure 1 € Proby, (R) with principal Jacobi
sequence (w,,) belongs to the information complexity class (0, K) (K € N) if

Ow)m =0 Vm > K +1 27

and K is smallest number with respect to the property (27).

Theorem 2 Let ;1 € Proby(R) be a probability measure with principal Jacobi
sequence (w,) and information complexity C(u) = (0, K), (K € N). Then, with the
convention that

x<0={l,...,x}:=0 28)

and for K as in (27), one of the following alternatives takes place:
(i) |supp(u)| = K — 2 and (w,) has the form

wn:[arbltrary >0ifnefl,..., K —1} (29)

0, ifn>K
Moreover all probability measures |1 € Proby, (R) with principal Jacobi sequence

satisfying (29) are in this class.
(ii) |supp(p)| = oo and (w,) has the form

Wrl:[arbltmry, >0,ifnef{l,...,K} (30)

w>0,, ifn>K+1

Proof See [2].

In the following we discuss some examples of measures in this class.

5.1.1 The Case C(u) = (0, 0), w = 0: The 6—Measures

If C(u) = (0,0) and w = 0, then dw,, = 0 for all n > 1. In particular
Owi = wi —wy = wi = p(X*) = p(X)? =0

and this condition characterizes the —measures, i.e. those x4 such that

=29, forsomeceR
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5.1.2 The Case C(u) = (0, 0), w > 0: The Semi—circle Laws

In this case, if ¢ has infinite support, w, =: a > 0 for all n > 1 and it is known
(see e.g. the table in [9]) that this class coincides with the class of Semi—circle
distributions.

The associated commutation relations are trivial and the algebra generated by a™
and a is abelian. Thus, from the point of view of the canonical quantum decomposi-
tion, the semi—circle laws are the most commutative among all probability measures.

5.1.3 The Case C(u) = (0, 1), w > 0: The Arcsine Laws
In this case, if ¢ has infinite support,

_|a>0, ifn=1
Wn = 0O<b+#a,ifn>2

and it is known (see e.g. the table in [9]) that this class coincides with the class of
Arcsine laws.

5.1.4 The Case C(u) = (0, K),w =b > 0, K > 2: The Extended
Semi—circle—arcsine Laws

It is clear that the structure of the measures in this class is a natural extension of the
semi—circle and arcsine laws.

5.2 The Case C(n) = (1, K)

According to Definition 4 the probability measures belonging to the information
complexity class (1, K) are those for which there exists K € N such that

Pwu, =0 ; Vn>K+1 (31)

and both the exponent 2 and the number K are the smallest ones with respect to
property (31).

Theorem 3 The class of probability measures | € Prob.,(R) with information
complexity C(u) = (1, K), (K € N) is characterized by the fact that their principal
Jacobi sequence (wy,) has the following structure:

there exists b € R} and ¢ € R such that, with the convention (28), (w,) has the form
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arbitrary > 0, ifn €{l,..., K}

Wn = bn+c>0, ifn>K+1

(32)

In particular, if c is positive, then it can be arbitrary while, if negative, it must satisfy
lc] < b(K + 1) (33)

Proof See [2].

5.2.1 The Case C,(u) = (1, 0): Gaussian and Poisson

For the measures in the complexity class C(u) = (1,0), w, = bn +cforalln > 1

withb e R}, c e R,.

In particular, for ¢ = 0, w, = bn > 0 for all n > 1 and it is known (see e.g. the
table in [9]) that this class includes both the Gaussian distribution with mean 0 and

variance b and the Poisson distribution with intensity b (see [9]).
5.2.2 The #-Lie Algebra of the Class C,,(it) = (1, 0) is The Heisenberg

Algebra
Theorem 4 Let ;1 € Proby(R) be a probability measure with principal Jacobi
sequence (wy,) and information complexity C(u) = (1, 0), then the 3—dimensional
linear space C?( generated by the operators

{a_, a’, dw A}

is a x—Lie algebra isomorphic to the Heisenberg Lie algebra.

Proof 1If C(u) = (1, 0) then, from Theorem 3, (w,,) has the form bn+c foralln > 1.
Therefore wy — ws—1; = b - 1 and the commutation relations become

[a,at]l=b-1 [a,b-11=[a",b-1]1=0

which are the defining relations of the Heisenberg x—Lie algebra.

5.3 The Classes C, () = (2, K)

According to Definition 4 the probability measures belonging to the information
complexity class (2, K) are those for which there exists K, n € N such that

Pw, =0 ; Vn>=K+1 (34)



14 L. Accardi et al.

and both the exponent 3 and the number K are minimal with respect to the property
(36).

Theorem 5 The class of probability measures on R with information complexity
C(p) = (2,K), (K € N) is characterized by the fact that their principal Jacobi
sequence (w,) has the following structure:
there exists b, c,d € R such that b > 0 and, with the convention (28) (w,) has the
form

arbitrary > 0, ifnefl,...,K}

Wn = bn>+cn+d>0,ifn>K+1 35)

In particular, if ¢, d are positive, then they can be arbitrary while, if one of them is
negative, then their choice is constrained by the fact that the right hand side of (35)
must be strictly positive.

Proof 1If C() = (2, K), (K € N), then we know that there exists K € N such that
Pw, =0 ; Vn=K+1 (36)

Therefore, there exists b, ¢, d € R such that
wp=bn*+cn+d>0 ; VYn>K+1 37

In particular, since w, > 0 for each n, one must have b > 0. Conversely, given a
triple b, ¢, d such that bn® +cn+d > 0foralln > K + 1, for any choice of
the strictly positive numbers wy, .. ., wg, by Favard Lemma, the sequence (w;),en
defines a unique symmetric state on . The remaining statements are clear.

5.3.1 The Case C(u) = (2,0)

In this case (w,), has the form bn> +cn +d foralln > 1, (b e R*, c e R_). In
particular, if d = 0 then w, = bn? + cn > 0 for all n > 1 and it is known that this
class coincides with the class of non—standard (i.e. neither Gaussian nor Poisson)
Meixner distributions (see [9]).

5.3.2 The #—Lie Algebra of the Class C,,(n) = (2, 0) is sI(2, R)
Theorem 6 Let ;1 € Proby(R) be a probability measure with principal Jacobi
sequence (wy,) and information complexity C(u) = (2, 0), then the 3—dimensional

linear space C?( generated by the operators

{a_,a+,8wA} (38)
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is a x—Lie algebra isomorphic to a (necessarily trivial) central extension of the
sl(2,R) Lie algebra.

Proof 1f C(u) = (2, 0) then from Theorem 5 (w,) has the form w, = bn +cn+d
for all n > 1, with b > 0. This implies that

Owy =2bA+c¢ Pwy =2b
Hence, from Lemma 1 we have the commutation relations
[a,aT]=0w, =2bA+c
[a”,0wsl =[a ,2bA +c] =2bla", A] =2ba  0A =2ba™

Consequently
[at, Owas] = —2ba™

where elements of R are identified to multiples of a central element of the Lie algebra.
The statement then follows from the definition of the s/(2, R) *—Lie algebra and from
the known fact that all its central extensions are trivial.

5.4 The Case C(u) = (3,0)

Theorem 7 Let 1 € Probs(R) be a probability measure with principal Jacobi
sequence (wy) and information complexity C(u) = (3, 0), then the Lie algebra Eg)(
generated by the operators

{a_, a’, dw A}

is an oo—dimensional *—Lie algebra.

Proof See [2].

6 Refinement of the Information Complexity Index

A refinement of the complexity index can be obtained by considering, in each class
(n, K), those measures such that the initial segment (w1, ..., wg) also satisfies a
difference equation (possibly of order different from n). This allows to introduce a
complexity hierarchy also in the class of finitely supported measures.

In particular the class (0, K, 1) is defined by the condition
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arbitrary 0, ifn < K
Wn = .
w>0,ifn>K

In the following we discuss the structure of the x—Lie algebra associated to this class.

6.1 Algebras Associated to the Class (0, K, 1), with w =0

This class is characterized by the condition

w, ifn<K
Wy = .
0,ifn>K

In this case
lat"@g||> = wi! =0, forn > K ;

[@k_11> = lat® Dy |> = wg_y! = X!
One has
P= P cCcooN~CoN

ne{0,1,....K—1}

where A denotes the sub—space of P consisting of zero—norm vectors.

a+K¢n: @n_;,_.] s ifn <K
0,ifn>K

In this case, the associated x—Lie algebra has dimensions at most K 2
For the associated Jordan x—algebra one finds

{a,at}P,=2w ; Yn>K
Thus the Jordan *—algebra, canonically associated to this class of probability mea-

sures, is a K—dimensional generalization of the Fermi algebra, which corresponds
to the case K = 1.

6.2 Algebras Associated to the Class (0, K, 1), with w =0
and K > 0

The class (0, K, 1) is the sub—class of the class (0, K) defined by the additional
condition that the non—zero w,, satisfy a first order difference equation. Equivalently:
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wy=cn+a ; ¢>0 (¢c>|alifa<0),Vne{l,...,K—1}

Theorem 8 The x—Lie algebra generated by the creator and annihilator of any
measure in the class (0, K, 1) with w = 0 (i.e. w, = 0 for n > K) coincides with
the x—Lie algebra Mk (C), of all K x K complex matrices.

Proof Let i be any measure in the class (0, K, 1). Denote by a~ and a™ its creation
and annihilation operators and H the x—Lie algebra generated by them. In the fol-
lowing, for any linear adjointable operator Z on P, we use the notation Z € H to
mean that Z = Z’ + N, where N is an operator whose range is contained in the
zero—norm vectors. Under our assumptions, up to zero—norm vectors, one has

c®,,ifn <K -1
la=,at]1®, =1 —ata Pg_1=—((K -1 +a)Pg_,, ifn=K—1
=0,ifn>K

or equivalently

[a™,a"]l=cPx o — (c(K —1)+a)®x_ 1D} |, =L EH (39)
where @, denotes the n—th normalized orthogonal polynomial of . (Thus the —Lie
algebra generated by a~ and a™ on the quotient space of non—zero—norm polynomials
of degree < K — 2, can be considered as a (K — 2)—th order approximation of the
Heisenberg *—Lie algebra).

In order to compute the commutator
lat, L] =[a", cPx o — wg1Px 1D} _|] =

= cla*, Px_o)] —wg_1la™, Px_1D}_,]

let us compute separately [a™, Px_» ] and [a™, 431(,1@5[*@1].
To this goal notice that the relations

a_én = Wnén—l 5 a+én = 4/ wn+ld3n+l (40)

= &/ Wn+1(§n+l(5: - (\/ wn(ﬁnfl(i:)* = w,,+1<1~5,,+1<1~5;‘ - \/wn(ﬁn(ﬁ:fl

ie.
[aJra ®n¢:] = A/ Wn+1(pn+l¢;lk RV Wn¢n¢:_1 (41)
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Taking the adjoint and changing sign, one has:

[aia (51143::] = \/"‘}nq;n—lcis;;< RV wn+léilé:+1 (42)
Recalling that
K-2
Px_ o = z D, D5
n=0
one has
K2

[ PK 2]] - Z[a @ @ ] = Z(an+l¢n+l® \/wnéné:—l)
Similarly, since @ x has zero norm, up to norm-zero operators, one has
l[a*, ®x 1D} |1 = Jox PPy | — Jox 1Pk 1 Pf_, =

= —«/wkfl‘il(flq;[*(,g

hence ~ ~
la*,Lil=[a", cPx_2 —wk_ 1P 1Pf_,] =
= cla", Pk o] —wk_1[a", Px_ 1L 1=
K—2
—CZ(«/Wn-H(pn-&-l@ — V0, P, P )+ wr iSOk Pr_1 Dy
n=0
K—
Z(C\/Wn—&-l(pn—&-l(p — 0, D, D))+ wr 1Ok Pr_1 Dy
n=0
= e\ Jug 1 Pg_ 1D 5 — cJoP1PF)) + w1 JIxk 1P 1Py,
= cywr—1 (1 +wg_1) Px_ 1Py, EH
because 05_1 := 0. Therefore also cﬁK_lqu‘(_z =: L,& H, hence

Ly = éK—zé}k@lé ‘H. Taking commutator, we find
(Lo, L3] = [Dk 1Pk, Pk 2Pf_ ]
=P Dy | — Py 2Py , = L3EH (43)

Therefore
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K-2
Ly+wg_ 1Lz = Z qSth; —wg 1P Pl Fwr 1 (P 1Dy — D2 Py )
n=0

= qSth; - WK—I(I;K—ZQS]*(_Q = L4eH
hence also
K—2
[La, Lo] = [Z P — wk 1Pk 2Py, . %@;‘;_2}
n=0

= _qSK—lél*(_z + WK—léK—Zé]*(_z =—L,+ WK—léK—Zé[*(_z EH (44)

that implies @x_,®% , € H. The combination of (43) and (44) implies that
qSK,quI*{_l € 'H. In conclusion, form = 0, 1, 2:

dSK_mQS;‘(_(m_U : dgK_(m_l)QB;‘(_m : (f)[(_m@,*(_m EH
Suppose by induction that, for every 0 < m < n < K, one has
BBl t Brwn By 1 BxnPy, EH
It follows that, for every 0 < m <n < K, one has also
la*, @k v Pk ] = SOk a10Pk--1Ph_, — VOK 1Pk aPs 1) EH
and since, by the induction assumption
VI Pk P, EH

this implies that
4/(4]1(,”@[(,”@1*(7("+1) é H

Since in our case wg_, # 0, this is equivalent to
¢K7n(p1*(7(n+1) ’ (pKf(nJrl)‘p[*(,n eH
which implies

(Pk-nPk_(ni1) » Pr—(+1)P_p]l = Pkn Pk, — Pk—+1)Pk_(ny1y) € H
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Since, by the induction assumption ék_nqs}k(_n is in H, it follows that
QSK_(H])@,*(_(”H) € 'H. Therefore, by induction, one has

&,8" |, &, D, D, P EH ; Vnel0,1,...,K -1} (45)

n

with the convention that @_; := 0. Denote £ the *—Lie sub—algebra of H generated
by the set (45). Since

[én—lé:a ém—lé;] = ¢n—l€5;(pm—](p:1 - ém—l(ﬁ;@n—lé: =

gk 2 Bk ok 5 B %
- 5n+1,m(pn*1¢n+1 4 ,nflanfijn

m

0,if, m¢{n—1,n+1}
=P, 1P}, . if, m=n+1

—®, P, if, m=n—1

n o

Suppose by induction that, for given 2 < h < K, one has
{¢m43;:|m—n|5h,05m,n51<}§£ (46)

and notice that, if [m — n| = h, the one can always suppose that n = m + h up to
exchange of m and n. Under this assumption:

[ém—lé;’ émé;r] = ¢m—l(§

- ®m(p ém—lé; = ém—lé: EL

*
n

Sincen—(m—1)=n -m+1= h + 1, it follows by induction that £ contains all
the matrix units e,, , := @, @, of Mg (C), hence L =H = Mg (C).
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Special Conformal Transformations
and Contact Terms

Loriano Bonora

Abstract In this contribution I construct the Ward identity of special conformal
transformations in momentum space and discuss some of its consequences on con-
formal field theory correlators. I show a few examples of covariant correlators in
dimension 2 and 3 dimensions and in particular of those made of pure contact terms.
I discuss in some detail the odd parity correlator in 3d and its connection with the
gravitational Chern—Simons theory in 3d.

1 Introduction

Correlators in conformal field theories can be formulated both in configuration space
and, via Fourier transform, in momentum space. In the first form they may happen to
be singular at coincident insertion points and in need of regularization. In coordinate
space they are therefore simply distributions. In the simplest cases such distributions
have been studied and can be found in textbooks. But in general the correlators of
CFT are very complicated expressions and their regularization has to be carried out
from scratch. It is often convenient to do it in momentum space, [1] via Fourier trans-
form, and regularize the Fourier transform of the relevant correlators. This procedure
produces various types of terms, which we refer to as non-local, partially local and
local terms. Local terms, a.k.a contact terms, are represented by polynomials of the
external momenta in momentum space, or by delta functions and derivatives of delta
functions in configuration space. The unregularized correlators will be referred to as
bare correlators; they are ordinary regular functions at non-coincident points and are
classified as non-local in the previous classification. While regularizing the latter one
usually produces not only local terms, but also intermediate ones, which are product
of bare functions and delta functions or derivatives thereof. These are referred to as
partially local.
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Many general results are known nowadays about bare correlators in CFT, [2, 3].
But a complete analysis of the contact terms permitted by conformal symmetry in
various dimensions is still lacking. In this contribution I would like to argue that such
an analysis is possible and can be conveniently carried out in momentum space. The
basic tool for this analysis is the special conformal transformation Ward identity in
momentum space. The paper is intended to be an introduction to the subject and is
mostly pedagogical. I start with some basic definitions about the conformal alge-
bra in momentum space. Then I formulate the Ward Identities of special conformal
transformations in momentum space and their consistency conditions, which lead to
the corresponding cohomology, or K-cohomology. Finally I show a few examples of
covariant correlators in 2 and 3 dimensions and in particular those made of pure con-
tact terms. I discuss in some detail the odd parity correlator in 3d and its connection
with the gravitational Chern—Simons theory in 3d.

2 The Conformal Algebra and SCT’s

In this section we briefly introduce the conformal transformations in d dimensions,
in particular the special conformal (SCT) ones, which are the main subject of this
presentation. The conformal group is made of the usual Poincaré transformation plus
dilatations x# — Ax*, with generator D, and special conformal transformations with
generator K. A special conformal transformation (SCT)

, Xt 4 ptx?

=
1+2b-x + b%x2

~ xM 4+ btx? — 2b-x x*,

for b small, can be seen as a diffeomorphism x* — x* 4 £ where & = btx? —
2b-x x*. Introducing a metric 7, this implies a transformation 1, — 1., + 6¢Mu,
where

O0enuw = 0y + 0,6 = —4b-x Ny, (1)
which is a Weyl rescaling. On the other hand the square line element
dx? — x> (1 — 4b-x)
which confirms that SFT’s are Weyl rescaling, because this can be viewed as a

transformation 7, — 7, (1 — 4b-x).
The conformal generators are

L, =i(x,0, —x,0,)
K, =—i(2x,x"0, — x20p)
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They form the Lie algebra

[L/u/a L)\p] =i (7]/1,)\Lup - 77/1,/)L1/)\ - 771/)\L/1,p + 771/le1,)\)
[P*, P"]=0

[L;w’ P\l=i (WAPV - 771//\P;1)

[PH,D]=iP"

[K", D] = —iK"

[PH, K"] =2in""D + 2i L™

[K,u,’ KI/] — O
[L", D] =0
(L, KM = i K" — i K" @)

which is isomorphic to the Lie algebra of SO(d,2).

2.1 Momentum Space Algebra

If we Fourier transform the generators of the conformal algebra we get (a tilde
represents the transformed generator and 0 = 8%)

D=i(d+k"d,)
Ly = i(k,0, — k,0,)
K, =2dd, + 2k,9"d, — k,]
Notice that 15# is a multiplication operator and K 1 18 a quadratic differential operator.

The Leibniz rule does not hold for K . and ﬁu with respect to the ordinary product.
However it does hold for the convolution product:

K.(fx8) =K, ) xg+ f*(K, )

where (f * @) (k) = [dp f(k — p)g(p).
Nevertheless these generators form a closed algebra under commutation

3

[D,P,]=iP,

[D,K,]1=iK,

[K,,K,]=0

[K.. P =i(nuwD — L)
[Kx. L] = i, Ky — K,
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[ﬁ)\v Zuu] = i(n)\upz/ - 77/\1/Pu)
[lN'uz/s lN‘/\p] = i(nl//\l:up + nupiln\ - n;L/\I:Vp - nupiﬂx\

One should however remember that they do not generate infinitesimal transformation
in momentum space.

Our purpose is to use this formulation in momentum space to study the coho-
mology of SCT’s, referred to as K-cohomology, and in particular the polynomial
K-cohomology. As explained in the introduction polynomials in momentum space
represent contact terms in field theory and the latter are important in two respects,
as action terms and as anomalies. To arrive at the cohomology corresponding to a
given symmetry one needs the Ward identities of that symmetry. So the next step is
to formulate the Ward identities of SCT’s (the WI’s of the scaling transformation is
rather trivial and is understood to be always satisfied).

2.2 Ward Identities for SCT’s

Since currents and energy-momentum tensor will play the main role in the sequel,
we start with their transformation properties under SCT’s

i[Ky, Ju] = (2(d — Dxy+2xyx-0 — xza)\) J,+2 (x“]an,\u — x#J,\) 3)
i[Ky, Tyl = (deA +2x\x-0 — xzﬁ,\) T,
+2 (-xaT(wn/\u + -xaTuozn)\l/ - xpT)\V - xl/Tu)\) (4)

In momentum representation they are given by

K, J\(k) = (=20, — 2k-0 8, + k, ) Jy + 20 Jumyr — I J,) (5)
K, Try(k) = (—2k-09), + k,,i)fx,,
+ 2(8 T(ypnu)\ - 8)\ 1p + 8 T)\anup - apT/\u) (6)

where T,L,, k), f# (k) denote the Fourier transforms of 7}, (x), J,,(x), respectively.

In order to formulate Ward Identities (WI) on correlators let us couple 7}, to
an external source £, (this will eventually be identified with the background met-
ric fluctuation: g, & 1,,, + h,,), [6]. The generating function of connected Green
functions is

n+1

Wiy ] = Zzn , / de B9 (3) O1T Ty (1) - Ty i) 0.

In order for W to be invariant under SCT’s the external source £, must transform
as 6hhp,1/ = [b/\K)\()C), h/u/(x)] = [bK()C), h/“/(X)], where



Special Conformal Transformations and Contact Terms 27

i[K/\(x)’ hul/(x)] (7)
= (2x,\ x-0— xzak) hy +2 (xahm,m# + XMy — Xl — x,,hu,\)

Invariance of W[h] leads to
0=0,W = /ddx%éh“” = /ddx [b-K, b ()T (x))
_ / dx W () [b-K . (T, ()] = 0 (®)

where

0
(T, (X)) = 251‘2[(}3) = % ;/dxl . ./dxnhmw (1)« ()
X(OIT ATy, (x1) - - - Ty, (xn) }0)e ©)
Differentiating twice (8) with respect &, and integrating by parts we get
(b+K (x) + b K (1)) (01T T, (¥) T, (1)) [0) = 0 (10)
Differentiating three times (8)

(b-K(x) +b-K(y) +b-K(@){OIT T (x) T2, (y) Tap(2))[0) = 0 (1)

In both equations it is understood that the Lorentz part of b- K (x) acts on the indices
v only, b- K (y) on the indices Ap and b- K (z) on o alone.

Due to translational invariance we can set y = 0 in (10) and z = O in (11). These
equations become

b-K(x)(0|TT,,(x)Ty,(0))|0) =0 (12)
and
(b-K(x) +b-K ()07 T, (x)T,(y)To3(0))[0) =0 (13)

In these equations K ,(-) is understood as the differential operator at the RHS’s of
(3), (4). So far the results are classical. But we know that a SCT produces a conformal
factor ~ b-x. Therefore the RHS of (10) and (11) may no vanish if we take the trace
of the e.m. tensor:

(b-K(x) +b-K(Y)OITT; ()T, (3))10) = A, (x, y) (14)
(b-K(x) +b-K(y) +b- K@) OITT) (x)Th, (1 Tap(2))0) = Arpap(x, v, 2)
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The RHS’s are linear in b. They are unintegrated anomalies. Using translational
invariance we can set

b-K(x)(OIT T (x)T),(0))[0) = Aj,(x) s)

(b-K(x) +b-K()OITT; ()T (N Tap(0))10) = Aypap(x, y)  (16)
As is well known the above anomalies have to satisfy consistency conditions, which
we are going to derive next.

Coupling the current J,,(x) with a background gauge field A*(x), it is easy to
derive similar WI’s also for current correlators.

2.3 Consistency Conditions

Let us start again from W[k] and perform two SCT’s on a row. We get

5b26b1 W= 5b2 / ddx (5blh‘“’(x)

0
OhH (x)

:/ﬁﬁ/ﬁ” W (8 )
Shv (x)6h M (y) " :
SW 86, hM (x)

Shiv(x)  Sh(y)

d d 177 A 62W
=/d y/d x 1 [b1-K(x), " (xX)][ba- K (), b7 (y)]
14

&m”wﬂ

ShH (x)0h™ (y)

+ Sy 01K 056 = b K ). hf“’(y)]]

2

_ d d . Y A v
—/dy/ﬁx[le@xm(@Wnkoxw<w§ﬁqaﬁwg

- |:bl K (x), ] §(x —y) [b2- K (y), h“”(y)]]

oW
ohH (x)

after integration by parts in x. Integrating over y and integrating again by parts one
finally gets

Op, 06, W Z/ddy/ddx [[bl-K(X),h””(X)][bz-K(y),h”"(y)] x

2w
X —_—
ShH (x)0hN (y)

+ [b1-K (), [b2- K (x), b (0)]] 7)

OhH (x)
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Making the transformations in reverse order and taking the difference one gets

ow
0= 6b26le _ (5b16b2W = /ddx th(x) [[bll((x), |:b2~K(X)7 6h#y(x)i|:|

ow
_ I:bz.K(x), I:bl.K(x), 5h/“’(x)j|i|] (18)

This is equivalent to promoting b to an anticommuting parameter and writing

d ng 5W _
/d x ' (x) [b-K(x), [b~K(x), (Wl#—”(x)iH =0 (19)

In fact differentiating (18) with respect to b and b4 and (19) first with respect to b*
and then wrt to b” one gets the same result. From now on we will use the second
formulation, i.e. b anticommuting.

Differentiating (19) wrt to & several times one gets the consistency conditions for
(10) and (11). For instance

b-K (x) b-K (x){(O1T T}, (x) T, ())10) +
+b-K(y) b-K(y)(01T T, (x)T5,())[0) = 0

The RHS is strictly 0 even in the quantum theory. Due to translational invariance we
can rewrite this equation as
b-K(x)b-K(x)(07T,,,(x)T»,(0))10) = 0 (20)
and (14) becomes the consistency condition
b-K(x) Ayy(x) =b-K(x) Ay, (x) =0 2n
We can Fourier transform this equation and obtain
b-K (k) Ay, (k) =0 (22)

where K (k) is given by Eq. (6).

3 Examples

We consider now a few simple examples of the approach outlined above. Here we
limit ourselves 0-cocycles (i.e. invariants) of the K-cohomology. The analysis of
1-cocycles, i.e. anomalies, requires additional tools and will not be considered here.
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In momentum representation the CFT correlators must be annihilaged by b-K.
For instance the 2-pt function of a scalar field of weight A is ~ (k*)4~7 and

R, (k)2 =QA—d)-0- (k> ' =0 (23)

in any dimension. A less trivial, but still simple, example is the 2-pt function of two
currents in 3d

5,k — kik;

(Ji (k) J; (—k)) = 7 24)

Working out the expression

(2(19-5) — (b-kC] — 2k.5b-5)) (Ui (k) J (=)

+200'0; — b0V 1) T (=) +2('0; — b;0) (T () Ti(—k))  (25)
one can check that it is 0.

The 2-pt function of the energy momentum tensor in 3d has three possible (con-
served) tensorial structures, which are given by the expression

(T () Ty (=) = —jk—j (kik — 1k®) (kpks — 1p0k?)

",
- % [(k#k/) - nuﬁkz) (ka(f - nuakz) + 1< l/] (26)
+ To5m Lok (koko = 10k?) + €4 k” (k= k) + > v] 27)

where 7, 7/, k are (model-dependent) constants, [4, 5].
Let us show that these structures satisfy the SCT Ward identities. We have

I% kp,kyk)\kp _ b/Lka/\kp + kpbuk)\kp + k/z,kub)\kp + k/l,kl/k)\bp

— -3
k| |k|
kK, kk
_(d_g)b.kﬁT;‘P (28)
-k k, k? b-k
b-K #|k| = (d = 3)(buky, + kub,) k| + (d — 3)mkﬂku (29)

and

b-K |k|* =3(d — 3)b-k |k| (30)



Special Conformal Transformations and Contact Terms 31

Therefore the even (nonlocal) tensorial structures (26) satisfy the SCT WI.
The third tensorial structure in 3d is parity-odd, traceless and local

< v
A<p

(T ()T (=k)) ~ €unok® (kik, — mypk?) + ( ) = Fuk) (3

Acting on it with b- K we find

b-K Fuuny = (~2k-0b-0 -+ b-k0) Funy + 20,0” = "8 Fro,
+2(b, 0" — b79,) Furrp
= —2(d — 2) b-k €7k, — 267 €0 (ki Ky — 1)k
+2(d — DK €gurbik, + 257k €xro (ks + Kutup)

T1.0 /’L <>V
DK €rroky Ty + ( ol p) (32)

This vanishes thanks to the identities

baﬁaukku - bue‘m/\kT + bTeT)\Uk”n}lV - bTe'r;wk(rnw\ =0 (33)
D7 ek + BB eonrk kT — b cpprkiks — b kK ey =0 (34)

which are consequences of

Nuv€xpe — Nur€vpo + Nup€vre — Nuo€vrp = 0

Therefore also the parity-odd structure satisfies the SCT Ward identity. Actually the
two terms in the RHS of (31) are separately invariant under a SCT. What determines
the relative — sign is the em tensor conservation.

4 Massive Fermions and Chern-Simons Theory in 3d

The examples of CFT correlators we have met before (31) were polynomials of the
coordinates divided by powers of the relative distances between the insertion points
(or their Fourier transforms). Equation (31) represents a new kind of correlator, which
corresponds in momentum space to a polynomial of the momenta. By Fourier anti-
transforming it we get,

-~ o _ By _ K<V
Ful/)\p(xs y) eu)\aa (81/ap 771/;)[') o (x y) + ()\ N p) (35)

This expression is completely localized in coordinate space, that is made solely of
delta functions and derivative of delta functions. Such expressions are called contact
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terms. The previous ones, like the even parity structures in 3d, are nonlocal terms.
It is interesting to dwell on (31) and (35) for several reasons. These formulas are
a 2-point correlator of the e.m. tensor, which has been derived only on the basis of
conformal symmetry properties. One question we may ask is whether, like in other
cases, this correlator can be obtained from the regularization of a bare one. Another
question is whether this may come from some free matter field theory, as it often
happens in other cases. The answer is negative for both questions. So it is legitimate
to ask: what is the conformal theory that supports such correlator? Well, in a sense
(31) can indeed be obtained from a free field theory, but not in the usual way, and in
another sense there is a theory that supports such correlators, but it is not free. Let
us see how.

Consider the theory of a massive fermion in 3d, minimally coupled to a metric
8uv ~ ym + h;w:

Stgl = [ dxe [i0EL9, 0~ miu]. (36)
=0 l be be __ 1 b ¢
V# = Uy + wubcz ) X7 = [’Y » Y ] .
2 4
The corresponding energy momentum tensor
I - <~ <~
T;w = Zq;b (’Yﬂ Vo + V,u,) 1;0 (37)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance
of the action.

VAT, (x) =0 (38)

The presence of a mass term breaks parity. From (7), the lowest term of the effective
action in an expansion in /,, comes from the two-point function of the e.m. tensor.
So let us compute the two-point function of the e.m. tensor in this theory with
the Feynman diagram technique. The corresponding contribution comes from the
bubble diagram (one graviton entering and one graviton exiting with momentum k,
one fermionic loop):

7~-‘uz/)\p(k) = (39)
- | d3p 1 1 n <> v
= a W [Tr (p_—m(ZP - k);/%/p_k—_m(zp B k))"yf’) + (/\ <~ p):|

Working out the calculations involved (which requires also subtracting a divergent
term) yields
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K (kz/mz) - W< v
(T (k) Trp(—k))p—odd = ng €ovp k7 (kyky — KP1p0) + Ao p (40)
with
3 k? — 4m? k
/fg(kz/mz) = 2m + - arctan u , k| = v —k2 41
k2 |k| 2m

It is worth recalling that (40) is conserved and traceless.
Now let us take the IR limit of kg, i.e. the limit in which the energy |k| = VA?
becomes much smaller than the mass |m|. We get

. m
Kig = lim kg =k = — (42)
‘:7‘—>O |m|

Therefore we recover the form of (31) with a precise coefficient in front, which is
the same as in (27) with x = *1. It is remarkable that also in the UV there exists a
similar limit, [8].
Now let us Fourier anti-transform (31)
K

(T/W(X)T)\p(y))P—odd = Ee/v\o’ag (allap - 771/[)[') 5(3) ()C - y) +

+ (‘; e Z) 43)

Saturating it with 2" (x) and 2" (y) and integrating over x and y (according to the
formula (2.2), one gets

K

— / 6 (87 18,0,0 — 07 OY) (44)
T

This represents, to lowest order of approximation, the 3d CS action. It can in fact be
obtained from

K

CS=——
967

2
d3x G/W/\ (auwzhw)\ba + gwuahwubcw)\ca) (45)

by expanding the spin connection w in terms of h,,,, [7].

5 Comments

In this paper I have defined K-cohomology, and discussed some of its 0-cocycles,
i.e. correlators that satisfy the WI of special conformal transformations. It is inter-
esting to find out that there are correlators made out only of contact terms, that is
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corresponding to local action terms. I have shown the well-known example of 3d,
where there exists a two-point function of the e.m. tensor, which is of this type, and
corresponds to the lowest order expansion of the gravitational CS action. What is not
so well-known, perhaps, is that the higher order terms of the CS action correspond
to three, four, ... -point functions of the e.m. tensor. However these correlators are
not included in the usual classification of the conformal correlators, because the lat-
ter are only required to be naively conserved, i.e. in momentum representation they
are required to be transverse to the total momentum, or in configuration space to
divergenceless. Such a requirement is totally adequate for the bare correlators, but
not for correlators containing contact terms, such as (31). For the latter the usual
requirement of transversality is only adequate for two-point functions, not for higher
order ones. For instance for a three-point e.m. tensor correlator, its divergence does
not vanish but satisfies an equation that involves also the two-point correlators, and
so on, [6]. To be more concrete we show the example of 2- and 3-point function for
a current Jij. Their conservation laws takes the form

kI k) =0 (46)

v
—ig" T (ki ko) + fUTE ) + FOlT () = 0 47)

where ¢ = ki + k and J. ;f,f’ (k) and fl‘jf; (ky, k») are Fourier transform of the 2- and

3-point functions, respectively. A similar relation holds for the e.m. tensor. This part
of the research program on conformal correlators is still largely unexplored, [8].
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On Nonlocal Modified Gravity
and Its Cosmological Solutions

Ivan Dimitrijevic, Branko Dragovich, Jelena Stankovic,
Alexey S. Koshelev and Zoran Rakic

Abstract During hundred years of General Relativity (GR), many significant grav-
itational phenomena have been predicted and discovered. General Relativity is still
the best theory of gravity. Nevertheless, some (quantum) theoretical and (astrophys-
ical and cosmological) phenomenological difficulties of modern gravity have been
motivation to search more general theory of gravity than GR. As a result, many
modifications of GR have been considered. One of promising recent investigations is
Nonlocal Modified Gravity. In this article we present a brief review of some nonlocal
gravity models with their cosmological solutions, in which nonlocality is expressed
by an analytic function of the d’ Alembert-Beltrami operator [J. Some new results
are also presented.
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1 Introduction

General relativity (GR) was formulated one hundred years ago and is also known as
Einstein theory of gravity. GR is regarded as one of the most profound and beautiful
physical theories with great phenomenological achievements and nice theoretical
properties. It has been tested and quite well confirmed in the Solar system, and it
has been also used as a theoretical laboratory for gravitational investigations at other
spacetime scales. GR has important astrophysical implications predicting existence
of black holes, gravitational lensing and gravitational waves.! In cosmology, it pre-
dicts existence of about 95 % of additional new kind of matter, which makes dark
side of the universe. Namely, if GR is the gravity theory for the universe as a whole
and if the universe is homogeneous and isotropic with the flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric at the cosmic scale, then it contains about 68 %
of dark energy, 27 % of dark matter, and only about 5 % of visible matter [2].
Despite of some significant phenomenological successes and many nice theo-
retical properties, GR is not complete theory of gravity. For example, attempts to
quantize GR lead to the problem of nonrenormalizability. GR also contains singu-
larities like the Big Bang and black holes. At the galactic and large cosmic scales
GR predicts new forms of matter, which are not verified in laboratory conditions and
have not so far seen in particle physics. Hence, there are many attempts to modify
General relativity. Motivations for its modification usually come from quantum grav-
ity, string theory, astrophysics and cosmology (for a review, see [22, 60, 63]). We
are mainly interested in cosmological reasons to modify Einstein theory of gravity,
i.e. to find such extension of GR which will not contain the Big Bang singularity and
offer another possible description of the universe acceleration and large velocities in
galaxies instead of mysterious dark energy and dark matter. It is obvious that physical
theory has to be modified when it contains a singularity. Even if it happened that
dark energy and dark matter really exist it is still interesting to know is there a mod-
ified gravity which can imitate the same or similar effects. Hence, adequate gravity
modification can reduce role and rate of the dark matter/energy in the universe.
Any well founded modification of the Einstein theory of gravity has to contain
general relativity and to be verified at least on the dynamics of the Solar system. In
other words, it has to be a generalization of the general theory of relativity. Mathemat-
ically, it should be formulated within the pseudo-Riemannian geometry in terms of
covariant quantities and take into account equivalence of the inertial and gravitational
mass. Consequently, the Ricci scalar R in gravity Lagrangian %, of the Einstein-
Hilbert action should be replaced by an adequate function which, in general, may
contain not only R but also some scalar covariant constructions which are possible in
the pseudo-Riemannian geometry. However, we do not know what is here adequate
function and there are infinitely many possibilities for its construction. Unfortunately,
so far there is no guiding theoretical principle which could make appropriate choice
between all possibilities. In this context the Einstein—Hilbert action is the simplest

"'While we prepared this contribution, the discovery of gravitational waves was announced [1].
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one, i.e. it can be viewed as realization of the principle of simplicity in construction
of Z,.

One of promising modern approaches towards more complete theory of gravity is
its nonlocal modification. Motivation for nonlocal modification of general relativity
can be found in string theory which is nonlocal theory and contains gravity. We
present here a brief review and some new results of nonlocal gravity with related
bounce cosmological solutions. In particular, we pay special attention to models in
which nonlocality is expressed by an analytic function of the d’ Alembert operator
0= ﬁauﬁgﬂvav like nonlocality in string theory. In these models, we are
mainly interested in nonsingular bounce solutions for the cosmic scale factor a(t).

In Sect.2 we mention a few different approaches to nonlocal modified gravity.
Section 3 contains rather general modified action with an analytic nonlocality and
with corresponding equations of motion. Cosmological equations for the FLRW
metric is presented in Sect.4. Cosmological solutions for constant scalar curvature
are considered separately in Sect.5. Some new examples of nonlocal models and
related Ansitze are introduced in Sect. 6. At the and a few remarks are also noticed.

2 Nonlocal Modified Gravity

We consider here nonlocal modified gravity. Usually a nonlocal modified gravity
model contains an infinite number of spacetime derivatives in the form of a power
series expansion with respect to the d’ Alembert operator [] = ﬁau J—gg"'a,.
In this article, we are mainly interested in nonlocality expressed in the form of
an analytic function .# ((J) = Z;O:o f»O", where coefficients f, should be deter-
mined from various theoretical and phenomenological conditions. Some conditions
are related to the absence of tachyons and ghosts.

Before to proceed with this analytic nonlocality it is worth to mention some other
interesting nonlocal approaches. For approaches containing [J~! one can see, e.g.,
[26, 27, 42, 43, 45-47, 61, 66, 67] and references therein. For nonlocal gravity with
[0-! see also [8, 58]. Many aspects of nonlocal gravity models have been considered,
see e.g. [16—18, 20, 36, 59] and references therein.

Our motivation to modify gravity in an analytic nonlocal way comes mainly from
string theory, in particular from string field theory (see the very original effort in
this direction in [3]) and p-adic string theory [15, 38-40, 65]. Since strings are
one-dimensional extended objects, their field theory description contains spacetime
nonlocality expressed by some exponential functions of d’ Alembert operator [J.

At classical level analytic non-local gravity has proven to alleviate the singularity
of the Black-hole type because the Newtonian potential appears regular (tending to
a constant) on a universal basis at the origin [9, 11, 41]. Also there was significant
success in constructing classically stable solution for the cosmological bounce [11,
13, 48, 51, 55].
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Analysis of perturbations revealed a natural ability of analytic non-local gravities
to accommodate inflationary models. In particular, the Starobinsky inflation was
studied in details and new predictions for the observable parameters were made [24,
53]. Moreover, in the quantum sector infinite derivative gravity theories improve
renormalization, see e.g. while the unitarity is still preserved [53, 56, 57] (note that
just a local quadratic curvature gravity was proven to be renormalizable while being
non-unitary [64]).

3 Modified GR with Analytical Nonlocality

To better understand nonlocal modified gravity itself, we investigate it here without
presence of matter. Models of nonlocal gravity which we mainly investigate are given
by the following action

2
/d4xJ_( “—PR_A+Z P(R)J(D)Q(R)) (1)

where R is the scalar curvature, A is the cosmological constant, % ((]) = Z f.a"

is an analytic function of the d’ Alembert—Beltrami operator [ = V¥V, where V.
is the covariant derivative. The Planck mass M p is related to the Newtoman constant
Gas M3 = 8:1 ¢ and P,Q are scalar functions of the scalar curvature. The spacetime
dimensionality D = 4 and our signature is (—, +, 4+, +). A is a constant and can be
absorbed in the rescaling of .% ((J). However, it is convenient to remain A and recover
GR in the limit A — 0.

Note that to have physically meaningful expressions one should introduce the

scale of nonlocality using a new mass parameter M. Then the function .% would
oo

be expanded in Taylor series as .% ((J) = Z f,0"/M*" with all barred constants
n=0
dimensionless. For simplicity we shall keep M? = 1. We shall also see later that
analytic function .7 (0) = >, f,[J", has to satisfy some conditions, in order to
escape unphysical degrees of freedom like ghosts and tachyons, and to have good
behavior in quantum sector (see [9, 10, 41]).
Varying the action (1) by substituting

8uv =™ uv + h/w (2)

to the linear order in %, removing the total derivatives and integrating from time
to time by parts one gets

/d4x«/_huv |: lwi|7 &)
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where

A A~
gnv = M%Guv +g;wA - _gp,ngz(D)Q +)\(R;w - K;w)v - 5 an
n=1

2
n—1
% Z (PlEI)QEnflfl) + Pu(l) Ql(tnflfl) _ g/w(g,oap!gl) Q((Tnflfl) + P(I)Q(nfl))) =0
1=0

4)
presents equations of motion for gravitational field g, in the vacuum. In (4) G, =
R, — % g, R is the Einstein tensor,

K/w = V/,LVU - g/u)EL V= PR&Q(D)Q + QRg(D)Ps

where the subscript R indicates the derivative w.r.t. R (as many times as it is repeated)
and
PO =tp, PKEI) = 8leP with the same for Q, Pg, ...

In the case of gravity with matter, the full equations of motion are ¢,,, = T},,, where
T,,, is the energy-momentum tensor. Thanks to the integration by parts there is always
the symmetry of an exchange P < Q.

When A = 0in (4) we recognize the Einstein’s GR equation with the cosmological
constant A. If f,, = 0 for n > 1 then (4) corresponds to equations of motion of an
f(R) theory.

4 Cosmological Equations for FLRW Metric

We use the FLRW metric

dr?

1 —kr?

ds* = —dt* + d*(t) ( +r%d6? + r? sin® 9d¢2)

and look for some cosmological solutions. In the FLRW metric the Ricci scalar

curvature is
i a? k
R=6-+—=+—
a a* a?

O=-8>—-3H3,

and

where H = % is the Hubble parameter. We use natural system of units in which speed
of lightc = 1.

Due to symmetries of the FLRW spacetime, in (4) there are only two linearly
independent equations. They are: trace and 00, i.e. when indices © = v = 0.
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The trace equation and 00-equation, respectively, are

M3R —4A +20P.Z(0)Q — A(R + 30V

0 n—1

5
=2 D (870,00 P 3, Q + 20/ PO Q) =0, ®
1

n= =0

)\l )\4 o0
2
MyGoo = A+ 5 PF (D)0 + (R — Yoo — )V — = > f

n=1

(6)

n—1
x > (2000'P 30" Q + 0,0 P 3,0 0+ O'P Q) = 0.
=1

5 Cosmological Solutions for Constant
Scalar Curvature R

When R is a constant then P and Q are also some constants and we have that (JR = 0,
Z(0) = fo. The corresponding equations of motion (5) and (6) contain solutions as
in the local case. However, metric perturbations at the background R = const. can
give nontrivial cosmic structure due to nonlocality.

Let R = Ry = constant # 0. Then

a 2k
6(>+ ()" +) =k @)
The change of variable b(t) = a?(t) transforms (7) into equation

3b — Ryb = —6k. (8)

Depending on the sign of Ry, the following solutions of Eq. (8) are

6k 7 7
b(t) = =t ae@’ + te_@’, Ry > 0,
0

9
b(t) 6k+ cos,/_R0t+ts'n,/_R0t R 0 v
=—+4o0 —_— 1 —t, < 0,
Ry 3 3 0

where o and 7 are some constant coefficients.
Substitution R = Ry into equations of motion (5) and (6) yields, respectively,
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M>Ry —4A 4+ 20PfQ — ARoVy = 0, (10)

A
M, Goo = A+ S PfoQ + 3 RooVo =0, (11)

where Vo = fo(PrQ + QrP)|r=r, and Goo = Roo + 2.
Combining Eqgs. (10) and (11) one obtains

M2Ry —4A +20PfQ — ARyVy =0, (12)
4Rpo + Ry = 0. (13)

Equation (12) connects some parameters of the nonlocal model (1) in the algebraic
form with respect to Ry, while (13) implies a condition on the parameters o, 7, k and
Ry in solutions (9). Namely, Ry is related to function b(¢) as

3i 3 (h)2—2bb
Ry=—-—=-—""F5—.

a 4 B (1

Replacing R in (13) by (14) and using different solutions for b(¢) in (9) we obtain

9k* = Rjot, Ry >0,

15
36k* = Rj(6*+ 1), Ry <0O. (13)

5.1 Case: Ry>0

e Let k = 0. From 9> = Réor follows that at least one of o and t has to be zero.
Thus there is possibility for an exponential solution for a(¢) and a(t) = 0. Taking
7 =0and 0 = aj one has

b(t) = a} e (16)

e If k = 41 one can find ¢ such that 0 + 7 = R%costh ando — 1 = R%sinhtp.

Moreover, we obtain
b(t) = l%cosh2 % (,/%t + (p) ,

a(t) = /%cosh% (,/%t%—q)).

a7
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e If k = —1 one can transform b(¢) and a(t) to

b(t) = & sinh” § (,/%wﬂp),
a(t) = /%‘sinh% (,/%t—i—(p) ‘

(18)

5.1.1 Case: R = 122

This is a special case of Ry, which simplifies the above expressions and yields de
Sitter-like cosmological solutions.

e k=0:
b(t) =ade*’', a(t) =ape’". (19)
o k=+I1: |
b(t) = — cosh? (yt + 2),
y 2
1 (20)
a(t) = — cosh (y t+ g).
1y 2
o k=—1: |
b(t) = — sinh? ()/ t+ g),
y 2
1 1)
a(t) = —‘ sinh (yt—l— 2)‘
71 2
5.2 Case: Ry <0
e When k = 0 then 0 = 7 = 0, and consequently b(t) = 0.
e If k = —1 one can define ¢ by 0 = =2 cos ¢ and T = =2 sin ¢, and rewrite b(r)

Ro Ro

and a(r) as

12 41 R
b() = g - cos S(Y=51-9) .
a([) — __lzlcosl( _&t_(p))
Ry 2 3 '
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e In the last case k = +1, by the same procedure as for k = —1, one can transform

b(t) to expression
12,1 Ry
— (== = 23
b(t) Re sin 2(,/ 3 t go), (23)

which is not positive and hence yields no solution.

5.3 Case: Ry=0

The case Ry = 0 can be considered as limit of Ry — 0 in both cases Ry > 0 and
Ry < 0. When R, > 0 there is condition 9k = R(Z)O’t in (15). From this condition,
Ro — 0 implies kK = 0 and arbitrary values of constants o and t. The same con-
clusion obtains when Ry < 0 with condition 36k*> = R3(0> + t2). In both these
cases there is Minkowski solution with b(t) = constant > 0 and consequently
a(t) = constant > 0, see (9).

6 Some Models and Related Ansiitze for Cosmological
Solutions

6.1 Nonlocal Gravity Model Quadratic in R

Nonlocal gravity model which is quadratic in R was given by the action [11, 12]

R—-2A
167G

S = /d4x\/—_g( n Ry(D)R). (24)
This model is important because it is ghost free and has some nonsingular bounce
solutions, which can be regarded as a solution of the Big Bang cosmological singu-
larity problem.

The corresponding equations of motion can be easily obtained from (5) and (6).
To evaluate related equations of motion, the following Ansitze were used:

e Linear Ansatz: (JR = rR + s, where r and s are constants.
e Quadratic Ansatz: [1R = qR2, where ¢ is a constant.

e Qubic Ansatz: [IR = C R3, where C is a constant.

e Ansatz ("R = ¢,R"', n > 1, where ¢, are constants.

These Ansitze make some constraints on possible solutions, but simplify formalism
to find a particular solution (see [29] and references therein).
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6.1.1 Linear Ansatz and Nonsingular Bounce Cosmological Solutions

Using Ansatz [JR = r R + s a few nonsingular bounce solutions for the scale factor
are found: a(t) = agcosh (,/%t) (see [11, 12]), a(t) = aoe%\/g’2 (see [48, 49))

and a(t) = ap(oe + re*) [30]. The first two consequences of this Ansatz are
O'R=r"(R+2). n=1,  FOR=FOR+FCO)~f). (25
r r

which considerably simplify nonlocal term.

Generalization of the above quadratic model in the form of nonlocal term
RP?.Z(0J)RY, where p and g are some natural numbers, was recently considered
in [28]. Here cosmological solution for the scale factor has the forma(z) = a, e™” 2

6.2 Gravity Model with Nonlocal Term R='.Z (O)R

This model was introduced in [31] and its action may be written in the form

R
S= [ d*xJ/=g(——= + R '"Z(O)R), 26
/ (o + RIFOR) (26)
where Z(0) = >07, f,0"and f, = —ﬁ plays role of the cosmological constant.

The nonlocal term R~'.% (C)R in (26) is invariant under transformation R —
CR. This nonlocal term does not depend on the magnitude of scalar curvature R, but
on its spacetime dependence, and in the FLRW case is relevant only dependence of R
on time ¢. Term fy = — ﬁ is completely determined by the cosmological constant
A, which according to AC DM model is small and positive energy density of the
vacuum. Coefficients f;, i € N can be estimated from other conditions, including
agreement with dynamics the Solar system. In comparison to the model quadratic
in R (24), complete Lagrangian of this model remains to be linear in R and in such
sense is simpler nonlocal modification than (24).

In this model are also used the above Ansitze. Especially quadratic Ansatz R =
q R?, where q is aconstant, is effective to consider power-law cosmological solutions,

see [31-33, 37].

6.3 Some New Models and Ansditze

It is worth to consider some particular examples of action (1) when P = Q = (R +
Ro)™, i.e.
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_ 1 A m g m 4
S_/(mR—A—I—E(R—i-RO) Z(O)(R + Ro) )«/—gdx, 7)

where Ry € R, m € Q, and which have scale factor solution as
a(t)y=At"e’”, yeR. (28)
To this end we consider the Ansatz
(R + Ro)" = p(R+ Rp)", (29)

where p is a constant and [J is the d’ Alembert operator in FLRW metric.
From Ansatz (29) and scalar curvature R for k = 0, we get the following system
of equations:

72m(1 +2m — 3n)n®(—1 4+ 2n)> =0,

36n(—1+2n)(—np + 2n2p +mRy — mnRy + 12my + 48mny — 72mn2y) =0,

12n(—1 4 2n)(pRo + 12py +48npy — 6mRoy + 312my> — 192m>y? — 288mny?) = 0,
PR3 +24pRoy +96npRoy + 144py? + 576npy? + 3456n> py? + 96m Roy>+
+288mnRoy? + 1152my> + 8064mny> + 13824mn’y> = 0,

96y (pRo + 12py + 48npy + 6mRoy + 24my? 4+ 96m>y?* + 432mny?) =0,

2304y*(p + 12my) = 0.
(30)

The system of Eq. (30) has 5 solutions:

p=-—12my,n=0, R0:—127/,m:%
p:—lZmy,n:#,Roz—%y,m:%
p=—-12my,n=0,Ry=—-4y,m=1
p=—12my,n=%,Ro=—16y,m=1

N

. p=—12my,n=13 Ry=-36y,m=—1

We shall now shortly consider each of the above cases.

631 Casel:a(t)=Ae’",m=1

Here Ansatz is Ov/R + Ry = p~/R + Ry, where Ry = —12y, p = —6y and y isa
parameter. The scale factor is a(t) = A e’ ’
The first consequences of this Ansatz are

0R+ Ry = p'VR+ Ry, €20,

Z(OVR+ Ry=Z(p)vR+ Ry,

R(1) = 12y (1 + 4y 12).
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Relevant action is

— 1 A ar _ — 4
S—/<@R—A+§\/R—1ZVJ(D)\/R 12;/)«/ gd'x. (31

Equations of motion follow from (5) and (6), where P = Q = /R — 12y.
Straightforward calculation gives cosmological solution a(¢) = A e?" with condi-
tions:

. 4rGA -3y

L Ty = I, ey
P)= o026 P Y

y —4nGA

i rovrer

632 Case2:a(t)=At"e’”,m=1

In this case the Ansatz is (/R + Ry = p~/R + Ry, where R( and p are real con-
stants.
The first consequences of this Ansatz are

OR+ Ry = p*/R+ Ry, £>0,
F(O)VR+ Ry = Z(p)VR + Ro.
For scale factor a(r) = A t*3¢? " the Ansatz /R + Ry = p+/R + Ry is satisfied

if and only if Ry = —28y and p = —6y.
Direct calculation shows that

4
R(1) = 44y + gt_z +48y2¢?,

O°R — 28y = (—6y)"/R — 28y, £ >0,
Z ()R — 28y = .F(—6y)/R — 28y,

. 8
R = 96y*t — gﬂ.

The related action is

_ 1 A . — — 4
S_/(mR—A—i-E\/R—ZSy,/(D)\/R B®y)ogd ()

The corresponding trace and 00 equations of motion are satisfied under conditions:

1

7P = 8TGA’

, 4
F'(p)=0, y= ?JTGA, p = —6y.
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633 Case3:a(t)=Ae T, m=1

In this case LJ(R — 4y) = —12y (R — 4y), what is an example of already above
considered linear Ansatz. The corresponding action is

_ 1 A _ ~ .
S_/(16nGR_A+§(R_4V)J‘(D)(R 47))«/ gd'x. (33

Equations of motion have cosmological solution a(t) = A e” * under conditions:

ﬁ(p):—;, F'(p)=0, p=—-12y, y=8rGA.
5127Gy

634 Cased:a(t)=Ate’”, m=1

This case is quite similar to the previous one. Now Ansatz is [J(R — 16y) =
—12y (R — 16y) and action

— 1 .
S = /(16 R - A+—(R—16y)J(D)(R 169))V=gd'x. (34

Scale factor a(t) = A «/?e”’2 is solution of equations of motion if the following
conditions are satisfied:

1
F = 7 =0, = —12y, =81GA.
(p) 320Gy (p) p Y, Yy =28m
635 Case5:a(t)=Ater",m=-1
According to the Ansatz, in this case p =3y, n = %, Ry = —36y. However the

action

. 1 4
S = /(ﬁk A+ = \/R—36V</(D)\/R—367/)\/ d’x (35)

has no solution a(t) = A ﬁeytz for the Ansatz J(R + Ry)" = p(R + Ry)", m =

7
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7 Concluding Remarks

In this paper we presented a brief review of nonlocal modified gravity, where nonlo-
cality is realized by an analytic function of the d’ Alembert operator [J. Considered
models are presented by actions, their equations of motion, related Ansétze and some
cosmological solutions for the scale factor a(¢). A few new models are introduced,
and they deserve to be further investigated, especially Case 1 and Case 2 in Sect. 6.

Many details on (1) and its extended versions can be found in [9, 10, 13, 49—
51]. Perturbations and physical excitations of the equations of motion of action (24)
around the de Sitter background are considered in [34, 35], respectively. As some
recent developments in nonlocal modified gravity, see [21, 25, 41, 44, 53, 68].

Notice that nonlocal cosmology is related also to cosmological models in which
matter sector contains nonlocality (see, e.g. [4, 6, 7, 19, 38, 39, 52]). String field
theory and p-adic string theory models have played significant role in motivation and
construction of such models. One particular aspect in which non-local models prove
important is the ability to resolve the Null Energy Condition obstacle [5] common to
many models of generalized gravity. In short, that is an ability to construct a healthy
model which has sum of energy and pressure of the matter positive and thereby avoids
ghosts in the spectrum alongside with a nonsingular space-time structure [23].

Nonsingular bounce cosmological solutions are very important (as reviews on
bouncing cosmology, see e.g. [14, 62]) and their progress in nonlocal gravity may
be a further step towards cosmology of the cyclic universe [54].
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Kinetics of Interface Growth: Physical
Ageing and Dynamical Symmetries

Malte Henkel

Abstract Dynamical symmetries and their Lie algebra representations, relevant for
the non-equilibrium kinetics of growing interfaces are discussed. Physical conse-
quences are illustrated in the ageing of the 1 D Glauber-Ising and Arcetri models.

1 Introduction

Theories of the effective long-time and long-distance behaviour of strongly interact-
ing many-body systems have raised a considerable amount of conceptual, computa-
tional and experimental challenges. Modern formulations are always almost cast in
the framework of a renormalisation group, which usually allows to identify a small
number of ‘relevant’ physical scaling operators. Much insight has been obtained
through the study of paradigmatic systems, where the specific formulation of models
often allow to formulate question in such a way that the predictions derived from
general theoretical schemes can be brought to explicit tests, either through numeri-
cal simulations and occasionally exact solution and, under favourable circumstances,
even through experiments [1, 10, 22, 39].

Here, we shall concentrate on the long-time and large-distance behaviour in the
kinetics of growing interfaces. Interfaces are grown on a substrate, onto which particle
are allowed to deposit, according to certain microscopic rules. The interface separates
those particles which are already absorbed, from empty space, and is described in
terms of a possibly time-dependent height variable A;(¢), attached to each site i of
the substrate. The set of all heights 4; (¢) at a given time ¢ is an interface configuration
{h}. In Fig. 1, one such adsorption event is illustrated.
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Fig. 1 Schematic evolution of an interface, described in terms of a time-dependent height config-
uration. Upon adsorption of a particle, the height configuration evolves locally. Below the heights,
the local slope is also indicated. The adsorption process corresponds to a biased exchange reaction
—+4 — +— of a TASEP between the slopes on two neighbouring links

In a coarse-grained description, most of the ‘details’ of the precise microscopic
rules which govern an adsorption event will not enter into the long-time and large-
distance behaviour, they are ‘irrelevant’ in the renormalisation-group sense. For
example, the interface shown in Fig. 1 has the property that the height differences
between nearest neighbours may only take the values /; () — h;(t) = %1. If such
an RSOS-condition is used to select admissible adsorption events, one can show that
a coarse-grained description, in the continuum limit describes the height function
h = h(t, r) as a solution of the Kardar-Parisi-Zhang (KPZ) equation [27]

&h = vV + g (Vh)? 47 (1)
where V is the spatial gradient, 7 is a centred gaussian white noise, with co-variance
(0@, o', ¥)) = 2T —1)o(r —r)) ©)

and where v, u, T are material-dependent parameters. On the other hand, if the
RSOS-constraint is not imposed, the continuum equation obtained is (1) with y = 0,
which is known as the Edwards-Wilkinson (EW) equation [13].

The exponents used to describe the interface are conventionally defined as follows.
One is mainly interested in the fluctuations around the spatially averaged height!
h(t):= L™ > rea h(t, 1), where the sum runs over the lattice sites. All analysis is
built around the Family-Viscek scaling [14] of the interface width, where (.) denotes
an average over many independent samples.

1 —
w2(t: L) := i > ((ht.r) - h(;)))2 =L¥f, (tL7F) ~ 3)
reA
120 ifrLt 1
L% ¢ ifrL3 > 1

I Throughout, we consider a hyper-cubic lattice A C Z¢ with L? sites.



Kinetics of Interface Growth: Physical Ageing ... 55

Here, a = [z is the roughness exponent, 3 the growth exponent and z > 0 the dynam-
ical exponent and (.) denotes an average over many independent samples black(under
the same thermodynamic conditions). Physically, one says that the interface is rough
when § > 0 and smooth if § < 0. Throughout, the L — oo limit will be taken and
the initial state is always a flat, uncorrelated substrate. Relaxational properties of the
interface are characterised by the two-time correlations and (linear) responses

C(t,s;1) := ((h(t,v) — (H(®))) (h(s,0) — (h(s)))) = s™"Fc (2 Sl%) @)

§(h(t,r) — h(1))
5j(s,0) i

_ o l-a t. r
_ FR(;,M) )

where j is an external field conjugate to # and spatial translation-invariance is
assumed. The long-time dynamical scaling is formulated by analogy with the ageing
as it occurs in simple magnets [5, 10, 22]. Generalised Family-Viscek forms are
expected in the long-time limit, for the waiting time s and the observation time f,
where not only 7, s 3> Thicro, DUt alsO # — 5 3> Tyicro 18 required (Tyicro 1S @ micro-
scopic reference time). Some entries of a dictionary between the ageing of simple
magnets and interface growth are listed in Table 1.

In (5), we quote aresult from Janssen-de Dominicis theory expressing the response
function as a correlator of the height scaling operator &(¢, r) with the associated

R(t,s;1) := = (h(t, )h(s,0)) =
( )

Table 1 Analogies between the critical dynamics in magnets and growing interfaces. The average
(.)¢ denotes a connected correlator. Some models, with the equilibrium hamiltonian for magnets,
are defined through their kinetic equations

Magnets Interfaces
Order parameter/height o(t, 1) h(t,r)
Width/variance (6@, 1) — (D(t, D)) ~ w2(t) = ((h(t, 1) — h(1))?) ~

~ 1—28/2) o 12

Autocorrelator C(t,s) = (¢, r)P(s, 1)), C(t,s) = (h(t,v)h(s, 1)),
Autoresponse R(t,s) = R(t,s) =

6{e(t, 1)) /0h(s, T)|p—0 6(h(t,1))/0j(s,1)]j—0
Models

Gaussian field/EwW

Hlp] = —1 [dr (Ve)?

oo =DV¢+n

Oh = vV2h + 1

Ising model/KPZ

Hlg] =
—3 Jdr (Vo) + $6*]

0¢=D(V?¢+gd*) +1n

Oh =vV2h+ £(Vh)? +1)
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Table 2 Exponents of the ageing of growing interfaces

Model d z I} a b Ac AR Ref.
KPZ 1 3/2 1/3 —1/3 -2/3 1 1 [23, 27, 29]
2 1.61(2) 0.2415(15) | 0.30(1) —0.483(3) | 1.97(3) 2.04(3) [33]
2 1.61(2) 0.241(1) —0.483 1.91(6) [18]
2 1.627(4) 0.229(6) [28]
EW <2 2 2-dy/4 |d/2-1 dj2—1
2 2 0(log) 0 0 2 2 [13, 36]
>2 2 0 dj2—1 dj2—1
Arcetri 1
T=T; <2 2 2-dy/4 |d/2-1 dj2—1 3d/2 -1 3d/2 -1
2 2 0(log) 0 0 2 2 [24]
>2 2 0 d/2—1 d/2—1 d d
T <T. d 2 1/2 d/2—1 -1 dj2—1 d/2—-1

response scaling operator h(s, r'). This will be needed for an analysis of the dynam-
ical symmetries of R(z, s) below.

Turning to the exponents defined in (4), (5), one notes that b = —23 [11, 26],
but the relationship of a to other exponents seems to depend on the universality
class. For example, one finds a = b in the EW-universality class [36], and 1 +a =
b + 2/zinthe 1 D KPZ-class [23]. The exponents A¢, A of the autocorrelator and the
autoresponse, respectively, are defined from the asymptotics F¢ g (y, 0) ~ y~*ck/z
as y — 00. A rigorous bound states that A\¢c > (d + zb)/2 [24].

Concerning the values of the exponents A¢, Ag, an important difference arises
between simple magnets and growing interfaces, notably for those in the KPZ univer-
sality class. In simple magnets, with so-called with a non-conserved order parameter
and with disordered initial conditions, renormalisation-group studies strongly indi-
cate that A\¢, Ag are independent of those describing the stationary state [5, 39]. In
contrast, for the Kpz class, for dimensions d < 2 it was shown that A¢ = d, to all
orders in perturbation-theory [29], but this analysis breaks down for d > 2 [39]. This
is because of a strong-coupling fixed point, not reachable by a perturbative analysis,
and analysed through the non-perturbative renormalisation-group [28]. In Table 2,
we list values of these exponents, either exact results or simulational estimates.

Remarkably, in recent years several new experiments on interface growth have
been carried out, which furnish several non-trivial examples in the 1D KPZ univer-
sality class. For a list of the measured values of the exponents, see [24].

This work is organised as follows. In Sect.2, we shall define the recently intro-
duced exactly solvable ‘Arcetri models’. In Sect. 3, we recall some elements of the
theory of local scale-invariance (LST), which in particular permits to predict the shape
of the scaling functions defined above. It has turned out that the usual way of extend-
ing global scale-invariance to a more local scaling, as so successfully used in the
study of conformal invariance at equilibrium phase transitions, is not always flexible
enough to take into account what is going on far from a stationary state. Technically,
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this requires to consider more general representations. In Sect.4, we present such
extensions, first for the conformal algebra and then give the extensions also for LSI.
Applications to the first Arcetri model and the 1 D Glauber-Ising model will be given.
Section 5 gives our conclusions.

2 The Arcetri Models: Exact Solution

Important recent work on the exact solution of the 1 D KPz-equation relates the prob-
ability distribution P (k) of the fluctuation 4 — & with the extremal value statistics of
the largest eigenvalue of random matrices, see [6, 37]. Here, we rather look for dif-
ferent universality classes with exactly solvable members, not as straightforward to
treat as the EW-equation but still not confined to d = 1 dimensions. Inspiration comes
from the well-studied spherical model of a ferromagnet [3, 30]. Therein, the tradi-
tional Ising spin variables o; = =1, attached to the sites i of a lattice with A sites, are
replaced by ‘spherical spins’ S; € R and subject to the constraint Y, (S?) = N. A
conventional nearest-neighbour interaction leads to an exactly solvable model, which
undergoes a non-mean-field phase transition in 2 < d < 4 dimensions [3, 30]. The
relaxational properties can be likewise analysed exactly [35].

How can one find an useful analogy with growing interfaces? Considering Fig. 1,
we see that the slopes h; () — h;(t) = £1 might be viewed as analogues of Ising
spins. Then at least in d = 1 dimensions, from the KPZ-equation one has for the
local slope u = Vh the (noisy) Burgers equation. A ‘spherical model variant’ of the
KPZ-universality class might be found by relaxing the RSOS-constraints u#; = %1 to
a ‘spherical constraint’ >, u? = A/ [24]. More precisely, this leads to the variants:

1. Start from the Burgers equation and replace its non-linearity as follows

Ou = vViu + puNVu +Vn — Ou=vViu+3(0)u+ Vn (6)
with a Lagrange multiplier 3(¢). Its value is determined by the spherical constraint
> (u?) = N, where the sums runs over all sites of the lattice [24]. The variance (2)
of the gaussian white noise 7(¢, r) defines the ‘temperature’ 7.

2. Treat the non-linearity of the Burgers equation as follows

O = vVu + puVu +Vn — Ou =vViu+3(0)Vu + Vnp @)

and find the Lagrange multiplier 3(¢) from the constraint >_(u?) = A [12].
3. Finally, start directly from the KPZ equation, and replace

1
oh =vV?h + S (VR +n — Oh=vV?h+3(t)Vh+1 8)

where 3(¢) is to be found from > ((Vh)?) = N [12].
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Equations (6)—(8) would define the first, second and third Arcetri models,? respec-
tively. However, it turns out that Egs. (7) and (8) lead to undesirable properties of the
height and slope profiles in the stationary state, as well as to internal inconsistencies
[12]. Therefore, a more careful definition is required.

In one spatial dimension, the slope profile u (¢, r) = 1 — 2o(¢, r) has an interesting
relationship with the dynamics of interacting particles, of density o(t, r). In the KPZ
universality class, u (¢, r) = £1 from the RSOS-constraint. Then denote by e an occu-
pied site with o = 1 <> u = +1 and by o an empty site with o = 0 < u = —1. The
interface growth process leads to the only admissible reaction eo —> oe, between
neighbouring sites, see Fig. 1. This is a totally asymmetric exclusion process (TASEP),
see [11, 17, 31]. For the Arcetri model(s), the exact RSOS-constraint is relaxed to

the mean ‘spherical constraint’ (zr u(t, r)2) L N Hence, the noise-averaged,® and
spatially averaged, particle-density p(¢) becomes [12]

() = — Z o) = Z (oG, r)?) ©)
N N

where the equality follows from the constraint. Notably, the non-averaged density
variable o(¢, 7) € R has no physical meaning, but the constraint (9) ensures that the
measurable disorder-averaged observables take physically reasonable values.

2.1 First Arcetri Model

On a hypercublc lattice of V' = N¢ sites, in Fourier space the slopes 7, (¢, p) =
isin ( ) h(t p) are related to the heights, hence the disordered, uncorrelated initial

state is specified by (h(O, p)) = N¥Hybp and (h(O, PO, Q)) = NYH,6p4q,0, With
H, = HOz. From (6) and using the definition

t
g(t) == exp (—2/ dr’ 3(t’)) (10)
0
the spherical constraint can be cast into the form of a Volterra integral equation
t
Hlf(t)—l—ZVT/dTg(T)f(t—T) =dg(t) an
0

with the kernel f(¢) = 4m e ' I, (4vt) (Iy(4vt))*~" and the 1, are modified Bessel
functions. This is readily solved in terms of Laplace transformations, viz. g(p) =

2The name comes from the location of the Galileo Galilei Institute of Physics, near to the village
of Arcetri (Florence, Italy), where these models were invented in spring 2014.

3Here, the average is both over ‘thermal’ as well as over ‘initial’ noise.
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H f(p) [d — 2T f( p)]il. The location of the singularity defines the ‘critical tem-
perature’ [24]

2 ° exp(—dt) P  ifd =1
=70 = [ a2 @it = orjr—2) s ifd =2
I.(d) d 2t
¢ 0 9.53099... ; ifd =3
(12)

such that 7.(d) > O for all d > 0. Interesting long-time scaling behaviour is found
whenever T < T,.(d). In particular, one has the long-time asymptotic behaviour
g(t) ~ t', where

d/i2—1 ; if T =T.(d)and0 <d < 2
F=140 ; ifT =T.(d)and 2 < d (13)
—d/2+1) ;ifT <T.(d)

This implies that for t — o0, 3(¢) =~ —g. Height correlators and responses (4) and
(5) read, where F.(7) := HZ:I ez”TI,a (2v7) and the Heaviside function ® (1)

H, 20T /S
C(t,s; =—F({t+s)+ — d F.(t+s—2
50 = Fhem T e J, IRt =2

(14)

R(t,s;r) = O — ) /@ F.(t — ) (15)
g(®)

Straightforward calculation verify the non-equilibrium dynamical scaling of simple
ageing, as expressed in (4) and (5), with the exponents listed in Table?2 [24].

Considering the correlators and responses of the slope u(z, r), it can be shown that
in these variables the first Arcetri model is identical to (i) the p = 2 spherical spin
glass [9] with T = 2Tsg and (ii) the statistics of the gap of the largest eigenvalues
of gaussian unitary matrices [15].

2.2 Second and Third Arcetri Models

Since the equations of motion (7) and (8) do not conserve parity, it is preferable to
separate into an even part a(t,r) = a(¢, —r) and an odd part b(t,r) = —b(t, —r).
Formally, u(t, r) := a(t, r) + ib(t, r) obeys Eq. (7) of the second Arcetri model and
h(t,r) :=a(t,r) +1ib(t, r) obeys Eq.(8) of the third Arcetri model. In both cases,
the Lagrange multiplier 3(¢) € iR [12]. The spherical constraint is quite distinct from
(11). For instance, in the second model with initially uncorrelated slopes, we find
[12]

Jo(4vt, 2Z(t)) +2vT / dr e T (4v(t — 1),2Z@(t) = 2Z(1)) = ¥ (16)
0
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where Z(t)::fotdrg(T),jo(A, Z)=1h(VA2+Z2)and (A, Z) = 8%%@4, 7).
For temperature 7 = 0, we find the long-time asymptotics Z(¢) =~ 4/t In(4mvt) .
[Analogous results hold in the third model.] The logarithmic factor in Z(¢) leads to
a breaking of dynamical scaling. For example, the equal-time slope correlator

C(1)

{a(t,n)a(t,0) + b(t, n)b(t,0)) =~ 17)

12

2
n n
exp|— | —— coS | ———
p|: (\/321/t ) :| [«/2t/ln41/7rt ]
displays two marginally different length scales. The two-time slope autocorrelator
C(t,s) >~ e 32 . with y == V/Indrvs fixed (18)

shows logarithmic sub-ageing, distinct from simple ageing (4), but known from the
kinetic T = 0 spherical model with a conserved order-parameter (‘model B’) [4, 8].

3 Dynamical Scaling Far from Equilibrium
and Symmetries

In order to prepare the discussion of dynamical symmetries of the Arcetri mod-
els in Sect.4, we now recall several known results on the dynamical symmetries
of non-equilibrium systems. Much of this discussion is based on analogies with
conformal invariance at 2D equilibrium critical points. Working in complex coor-
dinates z = x + iy, the basic representation of the conformal algebra generators is
L, —7"71'0, — A(n + 1)z [7] with the conformal weight A € R, which obey the
commutator [€,, ] = (n — m)€,4,, for n,m € Z. Writing the Laplace operator
S :=40,0;, and provided A = 0, the commutator

[S, €16(z,2) = —(n + DT"Sh(z, D) — 440 + D" ' 0:6(z, D) (19)
expresses the conformal invariance of the space of solutions of S¢p = 0.

An analogue for dynamical scaling, with dynamical exponent z = 2, is the
Schridinger-Virasoro algebra sv(d) algebra [19, 20], with generators

1 M 1
X, = —1""9, — nt . V. ——m+ Dn"'r? — KL
4 2
A 1
YO = -2, — (m + 5) "2 Mr; (20)
M, = —t"M ; RYY = —1"(r;0 — r0;) = —RM

where 0; := 0/0r; and V, = (94, .. ., 04)". The non-vanishing commutators are
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o Xul = 00X [r] = (5 -m) v,
[Xo My ] = ="M,y . [X0, RUP] = —n'RYY,
v, Y(k)]:é (m—m") My
(RO, Y] = 5 7, 0" 11,
(R0, K] = R, — R0, 4 R R @

with integer indices n, n’ € Z, half-integer indices m, m’ € Z + % and i, j, k, ¢ €
{1,...,d}. Itwasalready known to Jacobi and Lie that the maximal finite-dimensional
sub-algebra of sv(d), namely the thoroughly-analysed Schrodinger algebra

sch(d) = <X0,i1, Yifl )/2’ Mo, Réjk)> | v leaves the solution space of free-particle

motion or of the free diffusion equation invariant. For our purposes, we want to
use symmetries as scf)(d) to derive Ward identities for co-variant n-point functions
(p1(t1, 1) ... Du(ty, 1y)). Since the generator M € sch(d) is central, the Bargman
superselection rule [2]

My 44 M) (101,11 . fu by, 1)) =0 (22)

follows, where the ¢; are scaling operators of the physical theory. This feature
distinguishes Schrodinger-invariance from conformal invariance [19, 22].

The importance of (22) appears if one recalls that models of non-equilibrium
statistical mechanics are often specified via a sfochastic Langevin equation, viz.

2MOp =V, Vi — (ﬂg—f +1 (23)

and a Ginzburg-Landau potential V[¢]. In the context of Janssen-de Dominicis the-
ory [39], this can be recast as the variational equation of motion of a dynamic func-
tional 7[¢, (;3 Jolo, (;5] + jb[¢] where the term Jy[o, d)] contains the determin-
istic terms coming from the Langevin equation and J,[¢] contains the stochastic
terms generated by averaging over the thermal noise and the initial condition. In this
context, the two-time linear response function (spatial arguments are suppressed)

R(t,s) = M

/ DEDG p(1)d(s)e 7199 = (p()d(s))  (24)

is expressed as a correlator with the associated response operator ¢.

Theorem ([34]) Consider the functional J[¢, d| = Jold, ¢l + Tpld). If To is
Galilei-invariant with non-vanishing masses such that (22) holds, then all responses
and correlators reduce to averages only involving Jo[¢, ¢].

Proof Define the average (X)o = [D¢De X[¢ple~ 1 91 with respect to the func-
tional Jy[o, d) ]. For illustration, consider merely R(¢, s). From (24)
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R(t,5) = (603w M) =3 = " 6O TP, = (6036,

k!
k=0

The superselection rule (22) in the last step implies that only the k = 0 term is kept.
Hence the response R(f, s) = Ry(t, s) does not depend explicitly on the noise.

q.e.d.
Hence a symmetry analysis of systems described by Langevin equations (23)
reduces to the symmetries of its ‘deterministic part’, with the noise 7 — 0. Physi-
cists’ conventions require that ‘physical masses’ M; > 0. One must define a formal
‘complex conjugate’ ¢* of the scaling operator ¢, such thatits mass M* := —M <0
becomes negative. This role is played by ¢.
Example 1 The ageing algebra age(d) := (Xo,1, Yijl), M,, R(()jk)) with j, k=
1,...,d does not include time-translations X _;. Startmg from the representation
(20), the generators X,, now read [21, 34]

1, 1 1
X, = —t"1o, — er V-2 o n(n + 1)ér" — @Mr”*lﬁ

(25)
The Bargman rule (22) still holds. The Schrodinger operator is S = 2M9, — 9? +
2Mt7! (x 4+ £ — £) and commutes with all generators of age(d), up to

[S, Xol=-S , [S, Xi]1=-2tS (26)

without any constraint, neither on x nor on ¢ [38]. Remarkably, each non-equilibrium
scaling operator ¢ must at least be characterised by two distinct, independent scaling
dimensions, here labelled x, €.

An explicit example for this is given by the 1D kinetic Ising model with Glauber
dynamics. The model’s configurations ¢ = {0y, ..., oar} of Ising spins o; = £1
evolve in discrete time, according to a Markov process with the Glauber rates [16]

P+ =x) =3 [1 + tanh (% (oi—1(t) + 0111 (1) + hi(t)))] 27)

where h;(¢) is a time-dependent external field and T is the temperature. The exact
solution gives at T = 0 in the scaling limit ¢, s — oo with /s kept fixed, the auto-
correlator and autoresponse (independently of the initial conditions) are

C(t,s) =2/marctan/2[t/s — 117" ; R(t,s) = @r>) V257 (t/s — 1)7V2,
(28)
We read off the scaling dimensions x = %, & = 0 for the magnetisation and X = 0,

&= % for the response operator [21, 25].
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4 Representations and Invariant Equations

We now give several extensions of the representations discussed so far. The basic
new fact, first observed in [32], is compactly best stated for the conformal algebra.

Proposition 1 ([25]) Let vy be a constant and g(z) a non-constant function. Then
b, = ="M, —ny" — g(2)7" (29)

obey the conformal algebra [£,,, £,,] = (n — m)&,, foralln,m € Z.

Proposition 2 ([25]) If ¢(z) is a quasi-primary scaling operator under the repre-
sentation (29) of the conformal algebra (€4 ), its co-variant two-point function is
given by, up to normalisation and with T'; (z) :=

= 27 exp (— Jid¢ #)
(011D P2(22)) = 64y 7 (21 — 22) 2T 1(21)T2(22)- (30)

Proof Re-write (¢1(z1)¢2(22)) = I'1(z21)I'2(22) W(z1, 22) and show that W(zy, z2)
obeys the Ward identities of standard conformal invariance, where ; play the roles
of conformal weights. q.e.d.

Proposition 3 ([25]) If one replaces in the representation (20) the generator X,, as
follows, withn € Z

1 1
X, = —1"g, — %t”r v, 31)

1
—nn+ D& — E@)r" — @Mr”*l
where x, € are constants and E (t) is an arbitrary (non-constant) function, then the
commutators (21) of the Lie algebra sv(d) are still satisfied.

This result was first obtained, for the Schrédinger algebra sch(d), by Minic, Vaman
and Wu [32]. They also take the dependence on the mass M in u(¢) into account and
write down terms up to order O(1/M) and O(1). The representation (25) of age(d)
is a special case, with arbitrary &, but with Z(¢#) = 0. Explicit two- and three-point
functions, co-variant under either sch(d) or age(d), are derived in [32].

Proposition 4 ([25]) Consider the representation (20), with the generators X,
replaced by (31), of either age(d), or sch(d). The invariant Schrodinger operator is
S =2M0, — V24 2Mu(r), u@t)=x+E—d/ Dt +5@)! (32)

such that a solution of S¢ = 0 is mapped onto another solution of the same equation.
For the algebra age(d), there is no restriction, neither on x, nor on &, nor on 2 (t).
For the algebra sch(d), one has the additional condition x = % —2¢
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Proof For brevity, restrict to d = 1 and reproduce (26). First look at age(1). Con-
sideration of X, gives ru(t) +u — EZ(t) =0 and considering X, gives x 4+ & —
% + E(1) +tE (1) — 2tu(r) — t2i(t) = 0, where the dot denotes the derivative with
respect to ¢. The second relation can be simplified to x 4+ £ — % + EZ(@)—tu(t) =0
which gives the assertion. Going over to sch(1), the condition [S, X_;] = 0 leads to
£/12 4+ E @)/t — E(t)/1* — u(r) = 0. This is only compatible with the result found
before for age(1),if { = —x — &+ %, as asserted. g.e.d.

Example 2 These results have an immediate application in the first Arcetri models,
discussed in Sect. 2. In the continuum limit, the slopes u, (¢, r) = Oh(t, r)/0r, satisfy
a Langevin equation O,u,(t,r) = Vfua (t,r) +3(Ouy(t, r) + %n(r, r), analogous
to (6). Because of the theorem in Sect.2, we can compare the deterministic part of
this with the invariant Schrodinger operator (32). Clearly, for the first Arcetri model
with T < T,(d), one has & (t) = 0 and % — F = x + &, using the definition (10) of
g(t) and recalling the values (13) of the universal exponent F .

The second and third Arcetri model do not obey simple ageing. It remains open
if their long-time behaviour can be cast into a simple local sub-ageing scaling form.

5 Conclusions

The kinetics of growing interfaces furnish paradigmatic examples for case studies of
extended dynamic scaling. Scaling operators in non-equilibrium dynamical scaling
are characterised by at least rwo distinct and independent scaling dimensions, x and
&. These arise from new representations of the Schrodinger and ageing algebras.
Explicit examples include the exactly solved Glauber-Ising and Arcetri models.
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News on SU(2|1) Supersymmetric Mechanics

Evgeny Ivanov and Stepan Sidorov

Abstract We report on a recent progress in exploring the SU(2|1) supersymmetric
quantum mechanics. Our focus is on the harmonic SU(2|1) superspace formalism
which provides a superfield description of the multiplet (4, 4, 0) and its “mirror”
version. We present the o-model and Wess—Zumino type actions for these multiplets,
in both the superfield and the component approaches. An interesting new feature
as compared to the flat ' =4, d =1 case is the absence of the explicit SU(2|1)
invariant Wess—Zumino term for the ordinary (4, 4, 0) multiplet and yet the existence
of such a term for the mirror multiplet. The superconformal subclass of the SU(2|1)
invariant (4, 4, 0) actions is also described. Its main distinguishing features are the
“trigonometric” realization of the d = 1 conformal group SO(2, 1) and the oscillator-
type potential terms in the component actions.

1 Introduction

In [1], we started a systematic study of anew type of N = 4 supersymmetric quantum
mechanics (SQM) based on the worldline realizations of the supergroup SU (2|1). It
can be treated as a deformation of the standard N' = 4 SQM by an intrinsic mass
parameter m. The idea to consider such a deformation was motivated by the growing
interest in theories with a curved rigid supersymmetry (see, e.g., [2]). In the subse-
quent papers [3-5], the study of the deformed SU (2|1) mechanics was continued.
We proceeded from the universal way of constructing supersymmetric theories,
viz the superfield approach. The real and complex SU (2|1) superspaces were defined
in [1] as appropriate cosets of the supergroup SU(2|1) (and its central extension).
It was shown that all off-shell multiplets of flat A" = 4, d = 1 supersymmetry have
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their SU(2|1) analogs. For instance, the SU(2|1) analog of the (1, 4, 3) multiplet is
described by a superfield which “lives” on the real SU(2|1) superspace, and it yields
the “weak supersymmetry” models of Ref. [6]. The supergroup SU(2|1) possesses
also invariant complex chiral supercosets which are carriers of the chiral multiplets
(2,4, 2). We also showed that the (2, 4, 2) multiplet can be generalized [3] in such
a way that the Lagrangian of the super Kihler oscillator [7, 8] can be constructed
on its basis. The superconformal D(2, 1; o) invariant SQM models in the SU(2|1)
superspace formulation were studied in [4]. Their characteristic feature is that they
naturally yield the trigonometric realization of the d = 1 conformal group SO(2, 1)
[9, 10].

In the contribution to the proceedings of the previous Workshop from this series
[11], we reviewed the superfield approach and SU(2|1) SQM models based on
deformed analogs of the standard N' = 4, d = 1 superspaces. Here, we describe the
deformed SQM models in the framework of the harmonic SU(2|1) superspace [5],
which is a deformation of the A" = 4, d = 1 harmonic superspace [12]. We consider
the (4, 4, 0) multiplet, as well as its “mirror” (4, 4, 0) counterpart, and construct the
general o-model and WZ (Wess—Zumino) type Lagrangians for both multiplets. It is
shown that an external SU(2|1) invariant WZ term can be defined only for the mir-
ror multiplet (4, 4, 0), in a crucial distinction from the flat N' = 4, d = 1 case. The
general expressions for the relevant supercharges, in both the classical and quantum
cases, as well as the explicit spectrum of the corresponding Hamiltonian for a few
simple models can be found in [5]. We also present here the superconformal subclass
of the (4,4, 0) SU(2|1) invariant actions. As in the case of superconformal actions
for the multiplets (1, 4, 3) and (2, 4, 2) [4], when constructing the superconformal
(4, 4, 0) actions, we capitalize on the notable property of the conformal superalgebra
D(2, 1; o) to be a closure of its two su(2|1) subalgebras related to each other via the
reflection of the corresponding intrinsic mass parameter.

2 Harmonic SU(2|1) Superspace

2.1 Superalgebra

The basic relations of the central-extended superalgebra su(2|1) are as follows:
(', O} =2m (I = OjF) +200H . [1}, [f] = o1} — 51},
[ 0] = 550 - 010, [1.0"] =0~ 5 510
[F.0] = —%Ql, [F.0]= %Q". ()

Here, the generators Ij’ and F form the internal symmetry group SU(2)in X U(1)in.
The central charge generator H is identified with the time-translation generator
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becoming the Hamiltonian in the relevant SQM models. The limit m = 0 yields
the standard flat A" = 4, d = 1 Poincaré superalgebra.
Using the notations

0'=0", 0’=0", 01=0", h=-0%,
I'=n, =, =1 -5 =2I, )
we can rewrite the (anti)commutation relations of the superalgebra su(2|1) as

(07, 0"y =mI’ —2H +2mF, {0,007} =mI’+2H — 2mF,

(0, 0%) = Fomr™,  [I°1FF] = 221, [, 1] =1,

[1°.0"]=+0". [I"".07]=0". [I~.0"]=0",

[1°.0%]=+0* [I'".07]=0". [I.0"]=0".

- 1. 1

[F.0*]=-50" [F.07]=50" 3)
We can also add, to the superalgebra su(2|1), the automorphism group SU(2)ex
with the generators {T°, T**, T~~} which rotate the supercharges in the precisely
same way as the internal SU(2);, generators {I°, 17 1=~} do. For consistency,

the SU(2)ex generators should rotate, in the same way, the indices of the SU(2);n
generators I', so these two SU(2) groups form a semi-direct product

[T,1] 1. “)

2.2 Harmonic SU(2|1) Superspace as a Coset Superspace

We introduce the following harmonic coset of the extended supergroup:

{H, 0%, Q% F, I**,1°, T+, 10}
(F, [T+, 10— —T-—, T

~ (tw), 0F, 0%, wi) =: ¢y 5)

It is a deformation of the standard “flat” N" = 4, d = 1 harmonic superspace [12].
We can consider the harmonic superspace (5) as an extension of the SU(2|1)
superspace SU(2|1) [1] by harmonic variables wijE satisfying

whw =1. (6)
Such an extension will be referred to as the central basis of the harmonic SU(2|1)

superspace, while the parametrization (5) as the analytic basis.
In the central basis of the harmonic SU(2|1) superspace,
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CCZ (t7 9i9éj7w;l:)y (7)
the world-line supergroup SU (2|1) is realized by the following transformations:

00; = & +2meO0;, 00 =& —2med'0’, ot =i(ab" +E0;),
swi =—m(1—m0'6) (0"¢ +0°F) wiwSw;,  dw; =0. (8)
The explicit relation with the analytic basis coordinates (5) is given by
Ow, =60, Ow=0"(1+m0 0" —mo 0",
ékwk_ =0, ékw,j' =gt (l +moto — mé’@*) ,
t=tu +i (é_9+ + 9_+9_) . ©)]
Then the coordinates {74), 0%, 0=, w,i} transform as
50T =t +mbtote, 60t =" —mbtote,
00" =€ +2me 070, 50 =& +2me 070",
5l(A) =2i (679_+ + 9+Ei) s
swt =—m (0 et + ore ) w;,  dw; =0, (10)
where
+_ i+ —+

e =duwt, & =duwt. (11)

The analytic subspace closed under the SU(2|1) transformation is defined as the set
Ca = (tw), 07, 0%, wi). (12)

One can define the analytic subspace integration measure
d(py = dwdi dido™, (13)

which is invariant under the supersymmetry transformations (10). The corresponding
full integration measure d(y in the analytic basis can be written as

dCy = dw dtxyd0~d0~doTdo (1 +m0* 0~ —mb 67), (14)
and it transforms as
5 (dGy) = dCul = m (0" +07E") (1=mB*o™ +mi~0%)

—m (0 +9+e—)]. (15)
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One can check that there is no way to achieve the SU(2|1) invariance of this measure:
no a scalar factor can be picked up to compensate the non-zero variation (15).

2.3 Covariant Derivatives and SU (2|1) Harmonic Analyticity

The SU(2|1) covariant derivatives in the analytic basis (5) were defined in [5]. The
(anti)commutation relations among them mimic those of the superalgebra (3):

(D", D"} = mD° — 2mF + 2iD),

(D™, D"} = mD° + 2mF — 2iDyy),
(D*, D*} = ¥2mD**, [D, D] =D" [D°, D*]=+2D*,

[Pt D" ]=D*, [D.D']=D"., [P’ D]=+D",
[p**,D"]=D*, [D~.D']=D", [D° DF]=+D", (16)
FD* = —% D=, FD*= %@i. (17)

Here, F is a matrix part of the U(1);,, generator F. The harmonic derivative D™~ ,
together with D*+ and D°, form an SU(2) algebra. To define the analyticity condi-
tions, it is enough to explicitly know the covariant derivatives D", Dt and Dt

DY = (14+m0 0" —mf6%) " 0 + 2046+ 0) — 2mO 0 F

o -0
9+_ 9+—_ N
T T o
Dt = % +m D,
Dt = — (;i_ —mo D, (18)

The explicit expressions for the rest of covariant derivatives are given in [5].
The spinor derivatives D*, D*, together with D** and D°, form the so-called
CR (“Cauchy—Riemann”) structure [13]

{D*, D"} = —2mD**, {D*,D*}={D",D}=0,

[ID++’ D+] — [D++, :]5+] =0,

[D°. D] =D*, [D°.Df]=D", [P’ D']=2D"". (19
By commuting this set with D™, one can restore the whole algebra (18). Worthy of

note is the first relation in (19). It implies that in the SU(2|1) case, with m? # 0, the
Grassmann harmonic analyticity is necessarily accompanied by the bosonic harmonic
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analyticity. No such a property is exhibited by the harmonic formalism in the flat
N =4,d =1 case[12].

2.4 Harmonic SU(2|1) Superfields

The passive odd transformation of the harmonic superfields in the analytic basis
@ ((y) can be written as

60 = —m[2 (It =0 E) F+ (Fte +07) D’
+ (e +07F) D**]qi (20)
The superfields @ are assumed to have definite U (1) charges, F® =r®, D'® =

qP.
We can write the general o-model-type action as

S=/dt£=/dCHK(¢>1,(D2,...(DN). 21

Here K is an arbitrary function of superfields @, @,, ... @y. It satisfies the following
restrictions:

FK (@1, P, ... ®y) = DK (@1, Ps, ... Py) =0, (22)

which are implied by the requirement of SU(2|1) invariance of the action (21) (mod-
ulo a total derivative in the variation of the integrand).

The analytic superfields with the harmonic U(1) charge +¢ are defined by the
constraints:

'DJFSOJ“] = 'DJrngrq =0 = D++¢+q =0. (23)
In contrast to the standard case [12], the Grassmann analyticity conditions in the

SU(2]1) case lead to the harmonic analyticity condition. This is a consequence of
the first relation in (19).

3 The Multiplet (4, 4, 0)

The SU(2|1) multiplet (4, 4, 0) is described by an analytic harmonic superfield g™
satisfying the analyticity constraints (23). Here a = 1, 2 is the doublet index of the
“Pauli-Giirsey” SU (2) symmetry. Equation (23) yield the following solution for ¢g™:
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g (Ca) = xw 4 0T 4+ 0T — 2070 K w; (24)
The superfield g™ and its components are transformed as

5q+a = —m (9_+6— + 9+€—) q+a =
5xia _ _eiwa _ gid_}a’

S1hy = 2iekic§ —m ekx’; , oYt = 2i€k)'c,f +m Ekx,f . (25)

3.1 The o-Model Actions
The most general o-model type invariant action is written as:
S (q:tu) — /dCH L (q-‘raqa—) , q—a — D——q+a , (26)
and, in components, yields:
cia: [ ia S a m a7 i -ia e c, 7
L= G| i+ 3 (6" = ") + 0 | = 550G (0t +471)
m 2

AxG 7 /AT,
- (w)z(w>2+3x2waa—’%sz, @7

where
a_aaia A_ikabaa 2 _a
ia — /X ) x — €€ iaOkb s, X =X X,

G(x¥*) = AL (%ﬁ) ) (28)

The free model corresponds to the choice L™ (g7q; ) = 1q*9g; andG=1.

3.2 The Absence of WZ Type Actions

The most general Wess—Zumino (WZ) action [12] is given by the integral over the
analytic subspace

Swz(q™) = —% / d¢y ™ LY (g%, wy). (29)

Since the analytic superfield (24) is not deformed by the parameter m, this action
coincides with the non-deformed WZ action for the multiplet (4, 4, 0) given in [12].
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The action (29) can be shown to respect no SU(2|1) invariance for any choice of
L. This just means the absence of the independent WZ action for the multiplet
(4,4, 0) in the case of SU(2|1) supersymmetry.'

4 Mirror (4,4, 0) Multiplet

In the flat case (m = 0), the full automorphism group of the N' = 4, d = 1 Poincaré
superalgebra is
SUQ2) x SU'(2). (30)

The multiplet (4,4, 0) has its “mirror” cousin for which two commuting SU(2)
automorphism groups of the N' =4, d = 1 superalgebra switch their roles. Since
these SU(2) groups enter the game in the entirely symmetric way, there is a full
equivalence between these two types of the (4,4, 0) supermultiplet - in the sense
that the actions including only one sort of such multiplets are indistinguishable from
each other.” In the SU(2|1) deformed case the symmetry between the two former
automorphism su(2) algebras of the flat superalgebra proves to be broken: one of
these su(2) becomes su(2)iy, C su(2]1), while only one U(1) generator F from the
group SU’(2) is inherited by the 5u(2|1) superalgebra. So one can expect an essential
difference between the (4, 4, 0) multiplets of two sorts in the SU(2|1) case.

Let us consider the mirror (4, 4, 0) multiplet [14, 15] in the framework of the har-
monic SU(2|1) superspace. The superfield describing the mirror SU(2|1) multiplet

(4,4,0)is (Y4)' = Y4,A = 1,2, constrained by

Dty =DtyA =0, D'y A=—_DtyA, DY =Dty =0 =

mI:"YA:—%YA, mE Y4 :%YA. 31)

Note that the SU(2) group acting on the index A is a sort of the Pauli-Giirsey group
commuting with SU(2|1). The solution of the constraints (31) is

YACE) =t =0t twr + 0 e — 20701 200707y
+m OOy +m OO — 20070 0w,
PACR) =3 = 0wy + 0w = 2007075 +2i076 3
—mf GV —m Gy~ 2006 G w; (32)

The superfields ¥#, ¥4 and their components transform as

'In the case of non-zero U(1) charge, F g7 = K(03)? hq”’ , there appears a bosonic WZ term for
X' in the o-model action, with the strength ~ & .
2 As opposed to the actions including both sorts simultaneously.
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Y4 = —m(9_+e_ —9+€_) Y4, % =m(9_+e_ —9+€_) ¥4 =
o = -, o =g,
st = & (25" — my*) — € (2iy* + my"). (33)
We observe that the field content of Y4 is just (4, 4, 0) , but the SU(2) assignment
of the involved fields is different from that of the previous (4, 4, 0) multiplet. The
harmonic superfield g** describing the multiplet (4, 4, 0) contains the bosonic field

x and the fermionic field 1)"“. Here we have the opposite realizations of SU(2)
groups on the fermionic and bosonic fields, respectively.

4.1 The o-Model Actions
One can write the general SU(2|1) invariant action in terms of the function Las
S(Y,Y):/dtﬁ:/d(HZ(Y,f/), (34)
with m (y29p — ¥%05) L (v, ) = 0.
Then the general component Lagrangian reads
L= [2}./\);% + %wiA¢iA - %WA%C (304 + < 0n) (35)
b g VAP 4,] G = im (450 -5 6
+ 2im (yAaAz: - ;AéAz) — m AP O,FsL

m . ia Cqag A _ =Ch F mzA—~
+Zl/) wic(y OAG —y 5AG)+—Y ya G

2
— m? (yAaAz + ;;AaAz) ,
where
~ = ABo 3 9 3
G:= AL, Ay, = —26""040p, 8A_W, ag—ﬁ 36)
y

4.2 Wess—Zumino Term

For the mirror (4, 4, 0) multiplet, the independent WZ term can be constructed as an
integral over the analytic superspace
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Swz (Y. Y) = —~ / d¢y, (07D +67DT)f (v, Y). (37)

For ensuring the SU(2|1) invariance, we need to impose the analyticity condition
(23) on the Lagrangian density in (37)

(0Dt +0tDY)f (v, Y). (38)
It amounts to the following condition on f:
Af =0. (39)

In addition, the requirement of SU(2|1) invariance implies a new constraint on f
atm #0:

mEf (YY) =0 =  m (9 —5)f (0.5 =0. (40)
In the limit m = 0, the matrix generator F becomes an external automorphism gen-
erator and the condition (40) is satisfied trivially, without imposing any constraints

onf (YA, Y B).
The component Lagrangian corresponding to the action (37) reads

5 . A A m “A A
Luz =27 {i ( 0uf =5 Ouf) = 5 (" 0uf +70uy)
| -
— SV 0,00 |- (1)
Employing the conditions (39), (40), one can directly check that this Lagrangian is

indeed invariant under the supersymmetry transformations (33).

5 Superconformal Models

5.1 The Superalgebra D(2, 1; o) as a Closure of Its Two
su(2|1) Subalgebras

The most general N = 4, d = 1 superconformal group is D(2, 1; a) [16, 17]:

{Qaiir, Opjjr} = 2 (eijei’j/ wg + oeqperi i — (1400 EnﬂéijLi'j/) , (42)
[Tnﬂ’ Qwii/] =—i 67(0,Q/¥)ii’ ’ [Taﬁa T’yr)"] =i (ea'yTﬂf)' + eﬂéTryv) ,
[Ji Qakir| = —i ki Qajyi - [Ji, Ju] = i (eadii + €idic) »

[Lijis Qi) = —i€w@Quipy»  [Liyi» Lir] = i (eine Ly + L) -
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Here, Q. are eight supercharges and the bosonic subalgebra is
su(2) @ su2) @ so(2, 1) = {Ju} @ {Liw'} ® {Tap)- (43)

Switching avas o <> —(a + 1) amounts to switching SU(2) generators as J;z <> Liy .
At a = —1, 0, the superalgebra D(2, 1; «) is reduced to

D2,1;a) = PSU(, 112) X SU(2)ext - (44)

How to implement D(2, 1; «) in the SU(2|1) superspaces? The crucial property
allowing to do this is the existence of rwo different subalgebras su(2|1) C D(2, 1; o),
so that the latter is a closure of these two. These subalgebras are defined by the
following relations

M. {Q'. 0} =2m(uw) I} + 26/[H (1) — m(p) F1, (45)

2
m(p) := —ap, H(p):=H+ uF, H=H+%K,

(H.K) €s02,1), Fesu@®, I esu@),
(0. (", 5} = 2m(—p) I} + 261 H (—p2) — m(—ps) F]. (46)

Here, Q;:= _(Qlil’ + é#inl’), Si = —(Qm' - %Hinl/)~ The remaining
D (2, 1; o) generators appear in the anticommutators of S and Q.

The subgroup SU(2|1) corresponding to the su(2|1) subalgebra (I) is identified
with the manifest superisometry of the SU (2|1) superspace; then the second SU (2|1)
subgroup is realized on the superspace coordinates and superfields as a hidden sym-
metry. The most salient feature of the relevant realizations of D(2, 1; «) is the trigono-
metric form of the realization of the d = 1 bosonic conformal generators:

N i A 2i n i .
H:E[l—i—cosm]&, K:—z[l—cosut]at, D= —sinutd,. (47)
It I

The basic constraints for both types of the multiplet (4, 4, 0) considered in the pre-
vious sections are D (2, 1; ) covariant for any «.

The superconformal subclasses of the general SU(2|1) actions are singled out
by requiring them to be even functions of y, in accord with the above structure of
D (2, 1; o) as a closure of two su(2]1) subalgebras with £ .

5.2 Superconformal Actions for the Multiplet (4, 4, 0)

After redefining the fermionic fields as

P PlerM s e m=—ap, (48)
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the transformations (25) are modified as

6xia - _ eiwaeé/At _ Ei’LLaé‘_%W,

6 = (et + ap et e, Syt = (25 — apexy) e M (49)
These transformations correspond to the subalgebra (45) of D (2, 1; o). The second
type of transformations, corresponding to the subalgebra (46), can be found via

replacing pt — —p in (49).
The superconformal superfield actions for the multiplet (4, 4, 0) are written as

$M6=/<LW(L (50)

where the superfield function L& (¢?) is given by

Lg?) (qz) = 4(1a+2a) (?2)Z fora # —1,0
| 711 (qz)— In (qz) foraw = —1,
= G(x) = (x"x;) o 50

The relevant trigonometric superconformal component Lagrangian is given, for any
o # 0, by

‘ng) = |:)'Cia).Cia + % (&awa - ;pawa) - % (%1;“ + ,(/}c,(/_)a) )'Ciaaic
2,2 —a

1 - . .
—gwfwﬁm—“ff%J@%m“- (52)

It is a deformation of the parabolic (m = 0) superconformal Lagrangian by the oscil-
lator term [10].

5.3 Superconformal Actions for the Mirror Multiplet (4, 4, 0)

Passing to the new basis (45) of su(2|1) implies the following field redefinitions
(cf. (48)):

Yo e A S e m=—ap. (53)

They bring the transformations (33) to the form:
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' = —ephesrt, 7 = —gyie i, 54
St =& 20" + (1 + o) py'] e ¢ [2i§)A — (1 +a)py'] et
These transformations, together with those in which the replacement p — —p is

made, once again generate superconformal D(2, 1; «) transformations.
The superconformal superfield actions are written as

S(r,v)= / dCuL(Y,Y), (55)
where L is chosen to be
Lo (v.7) = —%_(YAI;/AYﬁ ) fora # —1,0,
—1 (YY) In(Y4Y,) fora =0,

2+a
{e3

=G= (yA&A)_T . (56)

The component superconformal Lagrangian for the mirror multiplet (4, 4, 0) reads

~ CAS l iA S l i . o=
LY = [ZYA)’A +3 Ay — 3 i (Y04 + ¥“0a)

1 . 1+a)?u? L _2ma
+ YTy VAP Ay — %)’A)’A] (*54) . (57)

The trigonometric superconformal models of both (4, 4, 0) multiplets are equiv-
alent to each other, up to the substitutions

Xy syt o —(14a). (58)

The interchange o <> — (1 + «) amounts to permuting the SU (2) and SU’(2) gener-
atorsin D (2, 1; o). So such an interchange is an automorphism of the superconformal
superalgebra.

In the special case o = —1 for Y4, Y2 (o = 0 for ¢*), superconformal action
can be obtained via a standard trick described in [10].

6 Summary and Outlook

In this contribution, we reviewed the construction of the d = 1 harmonic super-
space approach to the supergroup SU(2|1) as a deformation of the flat V' = 4,d = 1
supersymmetry and presented the general superfield and component actions for the
SU(2|1) multiplet (4, 4, 0) and its “mirror” version. We also explained how to select
the superconformal subclass of general SU(2|1) invariant actions of these multiplets.
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In contrast to the flat harmonic superspace, there is no direct equivalence between
the two types of the (4, 4, 0) supermultiplet. One of the manifestations of this non-
equivalence is the non-existence of the SU(2|1) invariant WZ action for g** and
the existence of such an action for the mirror multiplet. On the other hand, the
superconformal models of both (4, 4, 0) multiplets are equivalent to each other.

As some particular research prospects, it is worth to mention the construction of
SQM models for the SU (2|1) multiplet (3, 4, 1) which should have a natural descrip-
tion in the analytic harmonic superspace, the construction of the multi-particle SQM
models involving various types of the SU(2|1) multiplets, and generalizations of
the harmonic superspace approach to higher-rank deformed d = 1 supersymme-
tries, e.g., SU(2|2) , which can be viewed as a deformation of the flat V' = 8, d = 1
supersymmetry [1]. It would be also interesting to generalize, to the SU(2|1) case,
some important notions of the flat N' = 4, d = 1 supersymmetry, such as the semi-
dynamical spin multiplets [18], the gauging procedure in the AV =4 SQM mod-
els [19], etc. There also remains the problem of recovering SU(2|1) SQM models
through the direct dimensional reduction from the higher-dimensional theories with
the curved analogs of the Poincaré supersymmetry. Recently, a few SU(2|1) SQM
models were reobtained in this way [20-22] and used for clarifying some properties
of the “parent” theories.
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Intrinsic Sound of Anti-de Sitter Manifolds

Toshiyuki Kobayashi

Abstract As is well-known for compact Riemann surfaces, eigenvalues of the
Laplacian are distributed discretely and most of eigenvalues vary viewed as func-
tions on the Teichmiiller space. We discuss a new feature in the Lorentzian geometry,
or more generally, in pseudo-Riemannian geometry. One of the distinguished fea-
tures is that L2-eigenvalues of the Laplacian may be distributed densely in R in
pseudo-Riemannian geometry. For three-dimensional anti-de Sitter manifolds, we
also explain another feature proved in joint with F. Kassel [Adv. Math. 2016] that
there exist countably many L>-eigenvalues of the Laplacian that are stable under any
small deformation of anti-de Sitter structure. Partially supported by Grant-in-Aid for
Scientific Research (A) (25247006), Japan Society for the Promotion of Science.

Keywords Laplacian - Locally symmetric space + Lorentzian manifold - Spectral
analysis * Clifford—Klein form - Reductive group + Discontinuous group
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1 Introduction

Our “common sense” for music instruments says:
“shorter strings produce a higher pitch than longer strings”,
“thinner strings produce a higher pitch than thicker strings”.

Let us try to “hear the sound of pseudo-Riemannian locally symmetric spaces”.
Contrary to our “common sense” in the Riemannian world, we find a phenomenon
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that compact three-dimensional anti-de Sitter manifolds have “intrinsic sound” which
is stable under any small deformation. This is formulated in the framework of spectral
analysis of anti-de Sitter manifolds, or more generally, of pseudo-Riemannian locally
symmetric spaces X . In this article, we give a flavor of this new topic by comparing
it with the flat case and the Riemannian case.

To explain briefly the subject, let X be a pseudo-Riemannian manifold, and I" a
discrete isometry group acting properly discontinuously and freely on X. Then the
quotient space X := I'\ X carries a pseudo-Riemannian manifold structure such
that the covering map X — X is isometric. We are particularly interested in the
case where X is a pseudo-Riemannian locally symmetric space, see Sect. 3.2.

Problems we have in mind are symbolized in the following diagram:

existence problem deformation versus rigidity
Geometry Does cocompact I” exist? Higher Teichmiiller theory
versus rigidity theorem
(Sect.4.1) (Sect.4.2)
Analysis Does L?-spectrum exist? Whether L?-eigenvalues vary
or not
(Problem 1) (Problem 2)

2 A Program

In [5, 6, 12] we initiated the study of “spectral analysis on pseudo-Riemannian
locally symmetric spaces” with focus on the following two problems:

Problem 1 Construct eigenfunctions of the Laplacian Ax,. on X . Does there exist
a nonzero L’-eigenfunction?

Problem 2 Understand the behaviour of L?-eigenvalues of the Laplacian Ay, on
X r under small deformation of I" inside G.

Even when X is compact, the existence of countably many L>-eigenvalues is
already nontrivial because the Laplacian Ay, is not elliptic in our setting. We shall
discuss in Sect. 2.2 for further difficulties concerning Problems 1 and 2 when X - is
non-Riemannian.

We may extend these problems by considering joint eigenfunctions for “invariant
differential operators” on X - rather than the single operator Ax,.. Here by “invariant
differential operators on X" we mean differential operators that are induced from
G-invariantoneson X = G/H.InSect.7, we discuss Problems 1 and 2 in this general
formulation based on the recent joint work [6, 7] with F. Kassel.
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2.1 Known Results

Spectral analysis on a pseudo-Riemannian locally symmetric space Xy = I'\X =
I'\G/H is already deep and difficult in the following special cases:

(1) (noncommutative harmonic analysis on G/H) I" = {e}.

In this case, the group G acts unitarily on the Hilbert space L?(X ) = L*(X)
by translation f(-) — f(¢~'-), and the irreducible decomposition of L*(X)
(Plancherel-type formula) is essentially equivalent to the spectral analysis of
G-invariant differential operators when X is a semisimple symmetric space.
Noncommutative harmonic analysis on semisimple symmetric spaces X has
been developed extensively by the work of Helgason, Flensted-Jensen, Matsuki—
Oshima-Sekiguchi, Delorme, van den Ban—Schlichtkrull among others as a
generalization of Harish Chandra’s earlier work on the regular representation
L*(G) for group manifolds.

(2) (automorphic forms) H is compact and I is arithmetic.
If H is a maximal compact subgroup of G, then X = I"'\G/H is aRiemannian
locally symmetric space and the Laplacian Ay, is an elliptic differential opera-
tor. Then there exist infinitely many L2-eigenvalues of Ay,. if X is compact by
the general theory for compact Riemannian manifolds (see Fact 1). If further-
more [ is irreducible, then Weil’s local rigidity theorem [ 18] states that nontriv-
ial deformations exist only when X is the hyperbolic plane SL(2, R)/SO(2), in
which case compact quotients X i have a classically-known deformation space
modulo conjugation, i.e., their Teichmiiller space. Viewed as a function on the
Teichmiiller space, L2-eigenvalues vary analytically [1, 20], see Fact 11.
Spectral analysis on X is closely related to the theory of automorphic forms
in the Archimedean place if I" is an arithmetic subgroup.

(3) (abelian case) G = RP*4 with H = {0} and I" = Z""4,
We equip X = G/H with the standard flat pseudo-Riemannian structure of
signature (p, q) (see Example 1). In this case, G is abelian, but X = G/H
is non-Riemannian. This is seemingly easy, however, spectral analysis on the
(p + g)-torus RP19 /ZP+4 is much involved, as we shall observe a connection
with Oppenheim’s conjecture (see Sect.5.2).

2.2 Difficulties in the New Settings

If we try to attack a problem of spectral analysis on I"'\G/H in the more general
case where H is noncompact and I” is infinite, then new difficulties may arise from
several points of view:

(1) Geometry. The G-invariant pseudo-Riemannian structure on X = G/H is not
Riemannian anymore, and discrete groups of isometries of X do not always act
properly discontinuously on such X.
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(2) Analysis. The Laplacian Ay on X is not an elliptic differential operator. Fur-
thermore, it is not clear if Ay has a self-adjoint extension on L*(X[).

(3) Representation theory. If I” acts properly discontinuously on X = G/H with H
noncompact, then the volume of "\ G is infinite, and the regular representation
L?(I'\G) may have infinite multiplicities. In turn, the group G may not have
a good control of functions on I'\G. Moreover L?(X) is not a subspace of
L*(I"'\G) because H is noncompact. All these observations suggest that an
application of the representation theory of L?(I"\G) to spectral analysis on X
is rather limited when H is noncompact.

Point (1) creates some underlying difficulty to Problem 2: we need to consider
locally symmetric spaces X for which proper discontinuity of the action of I" on
X is preserved under small deformations of I" in G. This is nontrivial. This question
was first studied by the author [9, 11]. See [4] for further study. An interesting
aspect of the case of noncompact H is that there are more examples where nontrivial
deformations of compact quotients exist than for compact H (cf. Weil’s local rigidity
theorem [18]). Perspectives from Point (1) will be discussed in Sect. 4.

Point (2) makes Problem 1 nontrivial. It is not clear if the following well-known
properties in the Riemannian case holds in our setting in the pseudo-Riemannian
case.

Fact 1 Suppose M is a compact Riemannian manifold.

(1) The Laplacian Ay extends to a self-adjoint operator on L*(M).
(2) There exist infinitely many L*-eigenvalues of Ay.

(3) An eigenfunction of Ay, is infinitely differentiable.

(4) Each eigenspace of Ay, is finite-dimensional.

(5) The set of L*-eigenvalues is discrete in R.

Remark 1 We shall see that the third to fifth properties of Fact 1 may fail in the
pseudo-Riemannian case, e.g., Example 6 for (3) and (4), and M = R?*!/Z3 (Theo-
rem 7).

In spite of these difficulties, we wish to reveal a mystery of spectral analysis of
pseudo-Riemannian locally homogeneous spaces X = I'\G/H. We shall discuss
self-adjoint extension of the Laplacian in the pseudo-Riemannian setting in Theorem
13, and the existence of countable many L?-eigenvalues in Theorems 8, 12 and 13.

3 Pseudo-Riemannian Manifolds

3.1 Laplacian on Pseudo-Riemannian Manifolds

A pseudo-Riemannian manifold M is a smooth manifold endowed with a smooth,
nondegenerate, symmetric bilinear tensor g of signature (p, g) for some p, g € N.
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(M, g) is a Riemannian manifold if ¢ = 0, and is a Lorentzian manifold if g = 1.
The metric tensor g induces a Radon measure d . on X, and the divergence div. Then
the Laplacian

Ay = div grad,

is a differential operator of second order which is a symmetric operator on the Hilbert
space L*(X, d ).

Example 1 Let (M, g) be the standard flat pseudo-Riemannian manifold:

R7 = RV, dxi + -+ +dx, —dxy, — - —dx;, ).

Then the Laplacian takes the form

o? 0? 0? ?
ARp,q=_+...+__—_..._ 3
ox? oxZ  Oxry, ox2.,

In general, Ay, is an elliptic differential operator if (M, g) is Riemannian, and is a
hyperbolic operator if (M, g) is Lorentzian.

3.2 Homogeneous Pseudo-Riemannian Manifolds

A typical example of pseudo-Riemannian manifolds X with “large” isometry groups
is semisimple symmetric spaces, for which the infinitesimal classification was accom-
plished by M. Berger in 1950s. In this case, X is given as a homogeneous space G/ H
where G is a semisimple Lie group and H is an open subgroup of the fixed point
group G7 = {g € G : og = g} for some involutive automorphism o of G. In partic-
ular, G D H are a pair of reductive Lie groups.

More generally, we say G/H is a reductive homogeneous space if G D H are a
pair of real reductive algebraic groups. Then we have the following:

Proposition 1 Any reductive homogeneous space X = G/H carries a pseudo-
Riemannian structure such that G acts on X by isometries.

Proof By a theorem of Mostow, we can take a Cartan involution 6 of G such that
OH = H.Then K := G’ is a maximal compact subgroup of G, and H N K is that
of H. Let g = £ + p be the corresponding Cartan decomposition of the Lie algebra
g of G. Take an Ad(G)-invariant nondegenerate symmetric bilinear form (, ) on g
such that (, )|exe is negative definite, (, )|, xp is positive definite, and € and p are
orthogonal to each other. (If G is semisimple, then we may take (, ) to be the Killing
form of g.)

Since #H = H, the Lie algebra h of H is decomposed into a direct sum h = (h N
€) + (h N p), and therefore the bilinear form (, ) is nondegenerate when restricted
to h. Then (, ) induces an Ad(H )-invariant nondegenerate symmetric bilinear form
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{, )g/p onthe quotient space g/b, with which we identify the tangent space 7,(G/H)
atthe origino = eH € G/H. Since the bilinear form (, )4/ is Ad(H )-invariant, the
left translation of this form is well-defined and gives a pseudo-Riemannian structure
g on G/H of signature (dim p/h N p, dim £/H N €). By the construction, the group
G acts on the pseudo-Riemannian manifold (G/H, g) by isometries. [

3.3 Pseudo-Riemannian Manifolds with Constant Curvature,
Anti-de Sitter Manifolds

Let Q) (x) :i=xi 4+ xf, — )CIZ,+1 —ee = xf,Jrq be a quadratic form on R *7 of
signature (p, q), and we denote by O(p, ¢q) the indefinite orthogonal group preserv-
ing the form Q, ,. We define two hypersurfaces M{? in R”*4 by

MY ={x e RP™: Q,,(x) = £1}.
By switching p and g, we have an obvious diffeomorphism
Myt~ MTP.

The flat pseudo-Riemannian structure R”? (Example 1) induces a pseudo-
Riemannian structure on the hypersurface M7 of signature (p — 1, ¢) with constant
curvature 1, and that on M”? of signature (p, ¢ — 1) with constant curvature —1.

The natural action of the group O (p, g) on R”*¢ induces an isometric and transitive
action on the hypersurfaces M{?, and thus they are expressed as homogeneous
spaces:

MY~ 0(p,)/0(p—1,9), MP" = 0(p,q)/0(p,q —1),

giving examples of pseudo-Riemannian homogeneous spaces as in Proposition 1.
The anti-de Sitter space AdS" = M"™"? is a model space for n-dimensional
Lorentzian manifolds of constant negative sectional curvature, or anti-de Sitter n-
manifolds. This is a Lorentzian analogue of the real hyperbolic space H". For the
convenience of the reader, we list model spaces of Riemannian and Lorentzian man-
ifolds with constant positive, zero, and negative curvatures.
Riemannian manifolds with constant curvature:

"= MY~ 0m+1)/00) : standard sphere,
R” : Euclidean space,
H"= M"™' ~0(1,n)/0(n) : hyperbolic space,
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Lorentzian manifolds with constant curvature:

ds" = Mff_’l ~0Mmn,1)/0(n—-1,1) : de Sitter space,
Rr-11 : Minkowski space,
AdS" = M2~ O0R2,n—1)/0(1,n — 1) : anti-de Sitter space,

4 Discontinuous Groups for Pseudo-Riemannian Manifolds

4.1 Existence Problem of Compact Clifford—Klein Forms

Let H be a closed subgroup of a Lie group G, and X = G/H, and I" a discrete
subgroup of G. If H is compact, then the double coset space I'\G/H becomes a
C*°-manifold for any torsion-free discrete subgroup I" of G. However, we have to
be careful for noncompact H, because not all discrete subgroups acts properly dis-
continuously on G/H, and I"\G/H may not be Hausdorff in the quotient topology.
We illustrate this feature by two general results:

Fact2 (1) (Moore’s ergodicity theorem [15]) Let G be a simple Lie group, and I
a lattice. Then I' acts ergodically on G/ H for any noncompact closed subgroup
H. In particular, I'\G/H is non-Hausdorff.

(2) (Calabi—Markus phenomenon [2, 8]) Let G be a reductive Lie group, and I"
an infinite discrete subgroup. Then I'\G/H is non-Hausdorff for any reductive
subgroup H with rankg G = rankg H.

In fact, determining which groups act properly discontinuously on reductive
homogeneous spaces G/ H is a delicate problem, which was first considered in full
generality by the author; we refer to [13, Sect. 3.2] for a survey.

Suppose now a discrete subgroup I acts properly discontinuously and freely on
X = G/H. Then the quotient space

Xr:=I\X~TI\G/H

carries a C*°-manifold structure such that the quotient map p : X — X is a cover-
ing, through which X i inherits any G-invariant local geometric structure on X. We
say I is a discontinuous group for X and X is a Clifford—Klein formof X = G/H.

Example 2 (1) If X = G/H is areductive homogeneous space, then any Clifford—
Klein form X carries a pseudo-Riemannian structure by Proposition 1.

(2) If X = G/H is a semisimple symmetric space, then any Clifford—Klein form
Xr =TI'\G/H is a pseudo-Riemannian locally symmetric space, namely, the
(local) geodesic symmetry at every p € X with respect to the Levi-Civita con-
nection is locally isometric.
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By space forms, we mean pseudo-Riemannian manifolds of constant sectional
curvature. They are examples of pseudo-Riemannian locally symmetric spaces. For
simplicity, we shall assume that they are geodesically complete.

Example 3 Clifford—Klein forms of M ﬁ“’q =0(p+1,q9)/0(p, q) (respectively,
Mt = O(p,q +1)/O0(p, q)) are pseudo-Riemannian space forms of signature
(p, q) with positive (respectively, negative) curvature. Conversely, any (geodesically
complete) pseudo-Riemannian space form of signature (p, g) is of this form as far
as p # 1 for positive curvature or ¢ # 1 for negative curvature.

A general question for reductive homogeneous spaces G/ H is:
Question 1 Does compact Clifford—Klein forms of G/H exist?
or equivalently,

Question 2 Does there exist a discrete subgroup I" of G acting cocompactly and
properly discontinuously on G/H?

This question has an affirmative answer if H is compact by a theorem of Borel.
In the general setting where H is noncompact, the question relates with a “global
theory” of pseudo-Riemannian geometry: how local pseudo-Riemannian homoge-
neous structure affects the global nature of manifolds? A classic example is space
form problem which asks the global properties (e.g. compactness, volume, funda-
mental groups, etc.) of a pseudo-Riemannian manifold of constant curvature (local
property). The study of discontinuous groups for M?*"? and M”*" shows the
following results in pseudo-Riemannian space forms of signature (p, q):

Fact 3 Space forms of positive curvature are

(1) always closed if g = 0, i.e., sphere geometry in the Riemannian case;
(2) never closed if p > q > 0, in particular, if ¢ = 1 (de Sitter geometry in the
Lorentzian case [2]).

The phenomenon in the second statement is called the Calabi—Markus phenomenon
(see Fact 2 (2) in the general setting).

Fact 4 Compact space forms of negative curvature exist

(1) for all dimensions if g = 0, i.e., hyperbolic geometry in the Riemannian case;
(2) for odd dimensions if ¢ = 1, i.e., anti-de Sitter geometry in the Lorentzian case;
3) for(p,q) = (4m,3) (m € N) or (8, 7).

See [13, Sect.4] for the survey of the space form problem in pseudo-Riemannian
geometry and also of Question 1 for more general G/H.

A large and important class of Clifford—Klein forms X of a reductive homoge-
neous space X = G/H is constructed as follows (see [8]).

Definition 1 A quotient X = I'\ X of X by a discrete subgroup I" of G is called
standard if I" is contained in some reductive subgroup L of G acting properly on X.
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If a subgroup L acts properly on G/H, then any discrete subgroup of I acts
properly discontinuously on G/H. A handy criterion for the triple (G, H, L) of
reductive groups such that L acts properly on G/H is proved in [8], as we shall
recall below. Let G = K exp a; K be a Cartan decomposition, where a is a maximal
abelian subspace of p and a7 is the dominant Weyl chamber with respect to a fixed
positive system X (g, a). This defines amap p : G — a5 (Cartan projection) by

p(kieXky) = X forky, ky € K and X € a.

It is continuous, proper and surjective. If H is a reductive subgroup, then there exists
g € G such that u(gHg™") is given by the intersection of a; with a subspace of
dimension rankg H. By an abuse of notation, we use the same H instead of gHg ™.

With this convention, we have:

Properness Criterion 5 (/8]) L acts properly on G/H if and only if u(L) N
p(H) = {0}.

By taking a lattice I" of such L, we found a family of pseudo-Riemannian locally
symmetric spaces X in [8, 13]. The list of symmetric spaces admitting stan-
dard Clifford—Klein forms of finite volume (or compact forms) include M” ath
O(p,q+1)/0(p, q) with (p, q) satisfying the conditions in Fact 4. Further, by
applying Properness Criterion 5, Okuda [16] gave examples of pseudo-Riemannian
locally symmetric spaces I'\G/H of infinite volume where I” is isomorphic to the
fundamental group 7(%,) of a compact Riemann surface X, with g > 2.

For the construction of stable spectrum on X (see Theorems 10 and 12 (2)
below), we introduced in [6, Sect. 1.6] the following concept:

Definition 2 A discrete subgroup I" of G acts strongly properly discontinuously (or
sharply) on X = G/ H if there exists C, C’ > 0 such that forall v € I,

d(u(y), p(H)) = Cllp(pll — C'.

Here d (-, -) is adistance in a given by a Euclidean norm || - || which is invariant under
the Weyl group of the restricted root system X (g, a). We say the positive number C
is the first sharpness constant for I.

If a reductive subgroup L acts properly on a reductive homogeneous space G/ H,
then the action of a discrete subgroup I" of L is strongly properly discontinuous
([6, Example 4.10]).

4.2 Deformation of Clifford—Klein Forms

Let G be a Lie group and I” a finitely generated group. We denote by Hom(I", G)
the set of all homomorphisms of I" to G topologized by pointwise convergence. By
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taking a finite set {71, - - - , ¥} of generators of I", we can identify Hom(I", G) as a
subset of the direct product G x --- x G by the inclusion:

Hom(I', G) = G x --- x G, @ (e), -, (%) (D

If I" is finitely presentable, then Hom(/", G) is realized as a real analytic variety
via (1).

Suppose G acts continuously on a manifold X. We shall take X = G/H with
noncompact closed subgroup H later. Then not all discrete subgroups act properly
discontinuously on X in this general setting. The main difference of the following
definition of the author [9] in the general case from that of Weil [18] is a requirement
of proper discontinuity.

R(I', G; X) := {¢p € Hom({I", G) :  is injective, )
and ¢(I") acts properly discontinuously and freely on G/H}.

Suppose now X = G/H for a closed subgroup H. Then the double coset space
@(I"\G/H forms a family of manifolds that are locally modelled on G/H with
parameter ¢ € R(I", G; X). To be more precise on “parameter”’, we note that the
conjugation by an element of G induces an automorphism of Hom(/", G) which
leaves R(I', G; X) invariant. Taking these unessential deformations into account,
we define the deformation space (generalized Teichmiiller space) as the quotient set

T(I',G; X) := R(I", G; X)/G.

Example 4 (1) Let I be the surface group m; (¥,) of genusg > 2,G = PSL(2, R),
X = H? (two-dimensional hyperbolic space). Then 7 (I, G; X) is the classical
Teichmiiller space, which is of dimension 6g — 6.

2) G=R", X=R", " =7".Then 7 (I', G; X) >~ GL(n, R) (see (4) below).

3) G=S50(2,2),X =AdS?,and I" = m1(Zy). Then 7 (I, G; X) is of dimension
12g — 12 (see [6, Sect.9.2] and references therein).

Remark 2 There is a natural isometry between X,y and X, rg-1). Hence, the
set Spec,(X,r)) of L’-eigenvalues is independent of the conjugation of ¢ €
R(I', G; X) by an element of G. By an abuse of notation we shall write Spec; (X ;1))
for ¢ € 7 (I, G; X) when we deal with Problem 2 of Sect. 2.

5 Spectrum on R?:7/7ZP%9 and Oppenheim Conjecture

This section gives an elementary but inspiring observation of spectrum on flat pseudo-
Riemannian manifolds.
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5.1 Spectrum of RP>9[p(ZP*1)

Let G =R" and I" = Z". Then the group homomorphism ¢ : I’ — G is uniquely
determined by the image ¢(e;) (1 < j < n) whereey, ..., e, € Z" are the standard
basis, and thus we have a bijection

Hom(I'", G) < M(n,R), ¢,<ig ®)

by ¢,(m) := gm form € Z", or equivalently, by g = (pg4(e1), ..., p4(e,)).

Let 0 € Aut(G) be defined by o(x) := —x. Then H := G? = {0} and X :=
G/H ~ R" is a symmetric space. The discrete group I" acts properly discontin-
uously on X via ¢, if and only if g € GL(n, R). Moreover, since G is abelian, G
acts trivially on Hom(I", G) by conjugation, and therefore the deformation space
T (I', G; X) identifies with R(I", G; X). Hence we have a natural bijection between
the two subsets of (3):

T(I',G; X) < GL(n,R). (4)

Fix p, ¢ € N such that p + g = n, and we endow X ~ R" with the standard
flat indefinite metric R”? (see Example 1). Let us determine Spec,(X,, ) =
Spec, (RP? [, (ZM)) for g € GL(n,R) ~ T (T, G; X). '

For this, we define a function on X = R” by

fm(X) = explrv/—1"mg 'x) (x e R")

for each m € Z" where x and m are regarded as column vectors. Clearly, fy is
g (I")-periodic and defines a real analytic function on X, (). Furthermore, fy is
an eigenfunction of the Laplacian Agp.:

Appa fm = =477 Q11 11 () fn,

where, for a symmetric matrix S € M (n, R), Qg denotes the quadratic form on R”
given by
Os(y) :="ySy foryeR".

Since { fin : m € Z"} spans a dense subspace of LZ(X%( r)), we have shown:
Proposition 2 Forany g € GL(n,R) ~ 7 (I, G; X),
Spec,(Xy,(r) = {—47°Qy-17, g1 (m) :m € Z"}.

Here are some observation in the n = 1, 2 cases.

Example 5 Let n =1 and (p, q) = (1,0). Then Spec, (X, (r)) = {—47r2m2/g2 :
m € Z} for g € R* >~ GL(1, R) by Proposition 2. Thus the smaller the period |g] is,
the larger the absolute value of the eigenvalue | — 47%m?/g?| becomes for each fixed
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m € Z \ {0}. This is thought of as a mathematical model of a music instrument for
which shorter strings produce a higher pitch than longer strings (see Introduction).

Example 6 Letn =2 and (p,q) = (1, 1). Take g = I, so that ¢, (I") = 72 is the
standard lattice. Then the L?-eigenspace of the Laplacian A sz for zero eigen-
value contains W := {¢)(x — y) : ¢ € L>(R/Z)}. Since W is infinite-dimensional
and W ¢ C*(R?/Z?), the third and fourth statements of Fact 1 fail in this pseudo-
Riemannian setting.

By the explicit description of Spec, (X ,(ry) forall ¢ € 7 (I', G; X) in Proposition
2, we can also tell the behaviour of Spec,(X,ry) under deformation of I" by ¢.
Obviously, any constant function on X,y is an eigenfunction of the Laplacian
Ax, = Arra/ ©(ZP*) with eigenvalue zero. We see that this is the unique stable
L?-eigenvalue in the flat compact manifold:

Corollary 1 (non-existence of stable eigenvalues) Let n = p 4+ g with p,q € N.
For any open subset V of T (I', G; X),

() Spec, (X)) = {0}.
eV

5.2 Oppenheim’s Conjecture and Stability of Spectrum

In 1929, Oppenheim [17] raised a question about the distribution of an indefinite
quadratic forms at integral points. The following theorem, referred to as Oppenheim’s
conjecture, was proved by Margulis (see [14] and references therein).

Fact 6 (Oppenheim’s conjecture) Suppose n > 3 and Q is a real nondegenerate
indefinite quadratic form in n variables. Then either Q is proportional to a form
with integer coefficients (and thus Q(Z") is discrete in R), or Q(Z") is dense in R.

Combining this with Proposition 2, we get the following.

Theorem 7 Let p+qg=n, p>2,q>1, G=R", X=RP?" gnd I’ =7". We
define an open dense subset U of T (I', G; X) ~ GL(n, R) by
U:={geGL0n,R): gflll,,q’g*1 is not proportional
to an element of M (n, Z) }
Then the set Spec, (X ,ry) of L?-eigenvalues of the Laplacian is dense in R if and

onlyifo e U.

Thus the fifth statement of Fact 1 for compact Riemannian manifolds do fail in the
pseudo-Riemannian case.
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6 Main Results—Sound of Anti-de Sitter Manifolds

6.1 Intrinsic Sound of Anti-de Sitter Manifolds

In general, it is not clear whether the Laplacian Ay, admits infinitely many L>-
eigenvalues for compact pseudo-Riemannian manifolds. For anti-de Sitter 3-
manifolds, we proved in [6, Theorem 1.1]:

Theorem 8 For any compact anti-de Sitter 3-manifold M, there exist infinitely many
L?-eigenvalues of the Laplacian Ay.

In the abelian case, it is easy to see that compactness of X is necessary for the
existence of L?-eigenvalues:

Proposition 3 Let G =R, X =R, I' =7F, and ¢ € R(I", G; X). Then
Spec, (X)) # 9 if and only if X ) is compact, or equivalently, k = p 4 q.

However, anti-de Sitter 3-manifolds M admit infinitely many L>-eigenvalues even
when M is of infinite-volume (see [6, Theorem 9.9]):

Theorem 9 For any finitely generated discrete subgroup I' of G = SO (2, 2) acting
properly discontinuously and freely on X = AdS?,

Spec,(Xr) D {{(l —2):1 N, >10C}

where C = C(I") is the first sharpness constant of I.

The above L>-eigenvalues are stable in the following sense:

Theorem 10 (stable Lz—eigenvalues) Suppose that I' C G = SO(2,2) and M =
'\ AdS® is a compact standard anti-de Sitter 3-manifold. Then there exists a
neighbourhood U C Hom(I', G) of the natural inclusion with the following two
properties:

U C R(I", G; AdS?), &)
# ﬂ Spec,(Xr) | = oo. (6)
el

The first geometric property (5) asserts that a small deformation of I" keeps proper
discontinuity, which was conjectured by Goldman [3] in the AdS? setting, and proved
affirmatively in [11]. Theorem 10 was proved in [6, Corollary 9.10] in a stronger form
(e.g., without assuming “standard” condition).
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Figuratively speaking, Theorem 10 says that compact anti-de Sitter manifolds
have “intrinsic sound” which is stable under any small deformation of the anti-de
Sitter structure. This is a new phenomenon which should be in sharp contrast to the
abelian case (Corollary 1) and the Riemannian case below:

Fact 11 (see [20, Theorem 5.14]) For a compact hyperbolic surface, no eigenvalue

of the Laplacian above i is constant on the Teichmiiller space.

We end this section by raising the following question in connection with the flat
case (Theorem 7):

Question 3 Suppose M is a compact anti-de Sitter 3-manifold. Find a geometric
condition on M such that Spec, (M) is discrete.

7 Perspectives and Sketch of Proof

The results in the previous section for anti-de Sitter 3-manifolds can be extended to
more general pseudo-Riemannian locally symmetric spaces of higher dimension:

Theorem 12 ([6, Theorem 1.5]) Let X be a standard Clifford—Klein form of a
semisimple symmetric space X = G/ H satisfying the rank condition

rank G/H =rank K/H N K. @)

Then the following holds.

(1) There exists an explicit infinite subset I of joint L*-eigenvalues for all the differ-
ential operators on X i that are induced from G-invariant differential operators
on X.

(2) (stable spectrum)If I is contained in a simple Lie group L of real rank one acting
properly on X = G/H, then there is a neighbourhood V.C Hom(I', G) of the
natural inclusion such that for any ¢ € V, the action ¢(I") on X is properly
discontinuous and the set of joint L*-eigenvalues on X o(ry contains the infinite
set 1.

Remark 3 'We do not require X to be of finite volume in Theorem 12.

Remark 4 1t is plausible that for a general locally symmetric space I'\G/H with
G reductive, no nonzero Lz-eigenvalue is stable under nontrivial small deformation
unless the rank condition (7) is satisfied. For instance, suppose I" = m(%,) with
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g > 2and R(I", G; X) # 0. (Such semisimple symmetric space X = G/H was
recently classified in [16].) Then we expect the rank condition (7) is equivalent to
the existence of an open subset U in R(I", G; X) such that

#[ (1) Specy (X)) | = oo
pelU

It should be noted that not all L2-eigenvalues of compact anti-de Sitter manifolds
are stable under small deformation of anti-de Sitter structure. In fact, we proved
in [7] that there exist also countably many negative L’-eigenvalues that are NOT
stable under deformation, whereas the countably many stable L>-eigenvalues that
we constructed in Theorem 9 are all positive. More generally, we prove in [7] the
following theorem that include both stable and unstable L>-eigenvalues:

Theorem 13 Let G be a reductive homogeneous space and L a reductive subgroup of
G such that H N L is compact. Assume that the complexification X ¢ is Lc-spherical.
Then for any torsion-free discrete subgroup I" of L, we have:

(1) the Laplacian Ay, extends to a self-adjoint operator on L*(Xr);
(2) #Spec,(Xr) = oo if Xr is compact.

By “Lc-spherical” we mean that a Borel subgroup L¢ has an open orbit in X¢. In
this case, a reductive subgroup L acts transitively on X by [10, Lemma 5.1].

Here are some examples of the setting of Theorem 13, taken from
[13, Corollary 3.3.7].

Examples for Theorem 13 include Table 1 (ii) for all n € N, whereas we need
n € 2N in Theorem 12 for the rank condition (7).

Table 1 Triple (G, H, L) satisfying the condition of Theorem 13

G H L
(i) 50(2n,2) s0(2n, 1) Un, 1)
(ii) 50(2n,2) Un, 1) S0@2n, 1)
(iii) SU@2n,2) UQ@n, 1) Sp@n, 1)
(iv) SU2n, 2) Spn, 1) U@n, 1)
V) SO (4n, 4) SO(4n, 3) Sp(1) x Sp(n, 1)
i) 508, 8) 50,7 Spin(8, 1)
(vii) 508, C) 50(7,C) Spin(7, 1)
(viii) S04, 4) Spin(4,3) S04, 1) x SO(3)
(ix) S04, 3) G2(R) S04, 1) x S0(2)
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The idea of the proof for Theorem 12 is to take an average of a (nonperi-
odic) eigenfunction on X with rapid decay at infinity over I -orbits as a general-
ization of Poincaré series. Geometric ingredients of the convergence (respectively,
nonzeroness) of the generalized Poincaré series include “counting I"-orbits” stated
in Lemma 1 below (respectively, the Kazhdan—Margulis theorem, cf. [6, Proposi-
tion 8.14]). Let B(o, R) be a “pseudo-ball” of radius R > 0 centered at the origin
o=eH € X = G/H, and we set

Nx,R):=#{yeTI :v-x € B(o, R)}.

Lemma 1 ([6, Corollary 4.7])

(1) If I' acts properly discontinuously on X, then N(x, R) < oo forall x € X and
R > 0.

(2) If I acts strongly properly discontinuously on X, then there exists Ay > 0 such
that

R
N(x, R) < A, exp(E) forall R > 0,

where C is the first sharpness constant of I

The key idea of Theorem 13 is to bring branching laws to spectral analysis
[10, 12], namely, we consider the restriction of irreducible representations of G
that are realized in the space of functions on the homogeneous space X = G/H and
analyze the G-representations when restricted to the subgroup L. Details will be
given in [7].
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Sphere Partition Functions and the Kahler
Metric on the Conformal Manifold

Efrat Gerchkovitz and Zohar Komargodski

Abstract We discuss marginal operators in A/ = 2 Superconformal Field Theories
in four dimensions. These operators are necessarily exactly marginal and they lead
to a manifold, M, of Superconformal Field Theories. The space M is argued to be a
Kihler manifold. We further argue that upon a stereographic projection of R* to §*,
the partition function Zg« measures the Kéhler potential. These results are established
by a careful study of the interplay between conformal anomalies and the space M.

1 The Superconformal Algebra

A special class of Quantum Field Theories (QFTs) are those that have no intrinsic
length scale. This happens when the correlation length of the corresponding theory on
the lattice diverges. In addition, such theories often arise when we take generic QFT's
and scale the distances to be much larger or much smaller than the typical inverse mass
scales. Of course, one may sometimes encounter gapped theories at long distances,
but there are also many examples in which one finds nontrivial theories in this way.

In general, we are interested here in QFTs which are invariant under the Poincaré
group of R*. The Poincaré group consists of rotations in SO(4) (generated by M s
with (u, v =1,...,4)) and translations (generated by P,). If the theory has no
intrinsic length scale then the Poincaré group is enhanced by adding the generator
of dilations, A. Oftentimes, the symmetry is further enhanced to SO(S, 1), which
includes the original Poincaré generators, the dilation A, and the so-called special
conformal transformations K.
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The commutation relations are

[M;uu Mpa =i (6HpMI/0' + 61/<7Mup - 51//1M;u7 - 6;wM1/p) .
They can be realized by the differential operators acting on R*:

M, =—i (xu&, —xyaﬂ) ,

P'u, - _lap 5
K/’/ = i(2x/lx.8 —xzap,) ’
A=x.0.

A primary operator, @ (x), is, by definition, an operator that is annihilated by K,
when placed at the origin:
Ky, 2(0)] =0. (D

The origin of R* is fixed by rotations and dilations. Therefore we can characterise
@(0) by its quantum numbers under rotations and dilations. In d = 4 the group
of rotations, SO(4), is locally just SU(2) x SU(2) and hence a primary operator is
labeled by (ji, j2; A).! We will be only interested in unitary theories, where the
allowed representations of the conformal algebra do not have negative-norm states.

It is sometimes the case that the conformal field theory has primary operators of
dimension 4,

[4, 0;(x)] = i(x.0 +4)O;(x) .

If we add such operators to the action with couplings A/ then we get
S—> S+ > N / d*x0;(x) . )
1

A simple example is the free conformal field theory in d = 4 to which we can add a
quartic interaction. The coupling )’ is dimensionless but in general there may be a
nontrivial beta function

d\N

= = (B NN+ 3
dlogp ~ U mAAT 3)

61

UIf there is a global symmetry G, then the primary operators would furnish some representations

of G.
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Therefore, conformal symmetry is broken at second order in A. (If we add to the
action an operator of A # 4 then conformal symmetry is already broken at first
order in the coupling constant.)

Under some special circumstances it may happen that 5/ = 0 as a function of
M. Then we say that the deformation (2) is exactly marginal. We therefore have a
manifold of conformal field theories, M, with coordinates {\'}. This manifold has
a natural Riemannian structure given by the Zamolodchikov metric

(01(00) 05 (0) yy = grs(N) . 4

One situation in which exactly marginal operators are common is in Super-
conformal Field Theories (SCFTs). The conformal algebra is enlarged by adding
N Poincaré supercharges Q' Qis and N superconformal supercharges A i
(i =1, .., N). In addition, we must add the R-symmetry group, U (N), whose gen-
erators are Rl] This furnishes the superalgebra SU (2, 2|N).

We do not list all the commutation relations. They can be found in [5]. All we
need to know for our purposes is summarised below.

Our main interest in this note lies in /' = 2 theories. The maximally supersym-
metric theory with N' = 4 would be a special case. The R-symmetry group in N' = 2
theories is SU(2)g x U(1)g. We denote the U(1)g charge by r.

e [t is consistent to impose at the origin, in addition to (1),
S, @(0)] =[S, ®(0)] =0.

(The quantum numbers of @(0) are omitted.) Such operators are called super-
conformal primaries. In every unitary representation the operators with the lowest
eigenvalues of A are superconformal primaries.

e If one further imposes

[Qia, ®(0)] =0, ®)

one obtains a short representation (such representations may or may not exist in a
given model). The operator ® (0) satisfying (5) is called a chiral primary.? Chiral
primary operators are necessarily SU(2)g singlets and they obey a relationship
between their U (1)g charge and their scaling dimension

A=r.
e Marginal operators that preserve N' = 2 supersymmetry are necessarily the descen-

dants of chiral primary operators with A = r = 2. We can upgrade the formula (2)
to a superspace formula

S— S+ M / d*x d*0b;(x, 0) + N / d*x d*0;(x, 0) . (6)

2We henceforth assume chiral primary operators carry no spin, see [4] for a discussion.
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which shows that N = 2 supersymmetry is indeed preserved. We denote the
dimension 4 descendant of @; by O;. Therefore, (6) is just

S - S—}—A'/d“x 01(x)+5\7/d4x 05 (x) . 7)

The Zamolodchikov metric is defined by the two-point function
(01(00)0;(0)). (This is proportional to (@;(0c0)®;(0)).)

It remains to argue that for the deformations (6) the beta function 3’ = 0 iden-
tically. The argument is along the lines of [11]. There is a scheme in which the
superpotential is not renormalized. Then if the beta function is nonzero it has to be
reflected by a D-term in the action [ d*x d®0O with O some real primary operator.
But since the \! are classically dimensionless, A(Q) = 0 in the original fixed point.
Therefore, O has to be the unit operator and the deformation f d*x d®0O is therefore
trivial. This proves that 8/ = 0.

The {\, M} are therefore coordinates on the manifold M of A/ = 2 SCFTs. In
the next section we will argue that M is a Kdhler manifold, i.e. the Zamolodchikov
metric (4) satisfies i

grj = 818;1(()\’, N 3

Then we will argue that the Kihler potential can be extracted from the S* partition
function and we will use supersymmetric localization to compute it in some simple
N = 2 SCFTs. Large parts of the discussion in the next two sections follows [10].

2 Conformal Anomalies and the Zamolodchikov Metric

Let us for a moment consider the definition (4) more carefully, and in arbitrary
dimension. The Zamolodchikov metric on the conformal manifold is given by

A
(0/x)0, (0) = g’;z(d ) ©)

where 0 # x € R?. In momentum space the two-point function (9) takes the form

e d=2n+1
OO PN~ V| iy (£)  d=2m (10)

with n € N. Thus, if we rescale p the even-dimensional result will change by a
polynomial in p? (delta function in position space). It follows that the separated
points correlation function is covariant under such rescaling while the coincident
points correlation function is not covariant. The appearance of such a logarithm in
conformal field theories signifies a conformal anomaly, which manifests itself as a
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non-vanishing contribution to the trace of the stress-energy tensor. By promoting the
exactly marginal couplings A to spacetime dependent background fields A’ (x), such
that they act as sources of the exactly marginal operators Oy(x), one can detect a
contribution to the trace anomaly of the schematic form

T! > gy NOA (11)

The precise action of the derivatives in the formula above will be determined below.
The trace anomaly (T[j ) can be derived from the variation of the free energy,
0, log Z, under an infinitesimal Weyl rescaling,

Oo Y = 200 Yy (12)

where vy, is the spacetime metric. J, log Z must be local in v,,,, do and A, and its
form is constrained by the Wess—Zumino consistency condition, which is simply
the statement that Weyl transformations commute; , 9, log Z = 6,9, log Z. It also
needs to be invariant under coordinate transformations in spacetime, and under coor-
dinate transformations in the conformal manifold. If we have some symmetry that is
respected by the class of regulators we consider (supersymmetry for example), we
will require 6, log Z to preserve this symmetry as well.

In addition, d, log Z is defined only up to terms that can be written as 6, W for some
local functional W (which also needs to respect the symmetry constraints described
above), as such terms can be removed by adding local counterterms to the free energy
(in other words these terms can be removed by choosing an appropriate regulator
and therefore they do not contribute to the anomaly, which cannot be removed with
any choice of regulator). Thus, in order to find the allowed form of the anomaly one
needs to solve a cohomology problem.

In four dimensional CFTs, the local functional that produces the Weyl variation
of (10) is®

1 4 RV iRV
5,10eZ o W/d PNGLL (g”D)\ A
1
— 2910\ (RW — 5WR) ayxf) , (14)

where coordinate invariance in M requires introducing a connection

ON = OXN 4 Il 0"\ 90K (15)

3The normalization conventions from now on will be such that the exactly marginal deformation is
1y 4
§S—> 8+ XN [ dx0rkx). (13)
K

The convention we use for R0 18 [Vy, Vi1V, = Ry pe V7.
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and the Wess—Zumino consistency condition forces this connection to be the
Christoffel connection on M:

Il = g™ (Okgrs + 019rx — OrGIK) - (16)

The anomaly (14) needs to be added to the well-known conformal anomalies*:

0,1l0gZ D

1672 /d4x V780 (¢ CM77 Cuyps — aEy) (17)

which do not depend on the coordinates \’.

Let us now discuss the N' = 2 superconformal manifold. We will assume that the
superconformal theory is regulated in a way that preserves diffeomorphism invariance
and N = 2 supersymmetry, i.e. we assume that the physics at coincident points is
supersymmetric and diffeomorphism invariant.> The assumption above constrains
the way the anomaly and the allowed counterterms can depend on the parameters
of the theory and on the spacetime geometry. A convenient way to implement these
constraints is to derive the anomaly and the counterterms as supergravity invariants
that are constructed from supergravity multiplets. For this sake the parameters of the
theory and of the geometry need to be embedded into supergravity multiplets.

According to Eq. (6) the exactly marginal operators are integrals over half super-
space of chiral and antichiral superfields with A = r = 2. Thus, the corresponding
couplings need to be realized as bottom components of chiral and antichiral super-
fields, A’ and A’, with A = r = 0. In addition, the Weyl variation o is embedded
in the bottom component of the chiral Weyl superfield 0% (see, e.g. [13] for details)
and the integration measure ,/7 is promoted to the density measure superfield £. In
terms of these superfields, the supersymmetrization of the anomaly (14) is given by
the superspace integral

oxlogZ D

1 _ _ .

/d%dmd%sz+ﬂzmxAhA5. (18)
19272

When this integral is expanded in components, one finds (among many other terms)

the anomaly (14) with
9j = 010jK . (19)

4E, denotes the Euler density and C,,,, is the Weyl tensor.

SNote that we cannot assume that the coincident points physics is conformal invariant since this
would contradict (10).

SNote that A’(x, #) = X (with constant \/) is consistent with the supersymmetry variations of a
chiral multiplet, and that substituting this in f d*x d*0 Al (x, 0)P;(x, 0) + c.c. one gets Eq. (6) back.
After constructing the anomaly and counterterms in terms of the superfields Al (x, 0), Al(x, é) we
substitute the constant background values. We do a similar thing with the geometry background
parameters.
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We therefore conclude that for A/ =2 SCFTs, the Zamolodchikov metric is
Kihler. This statement, which is true also for A" = 1 SCFTs, was proven in [1]
using superconformal Ward identities.

_Expanding (18) in components while keeping only the bottom component of A’,
A” and the metric background (setting the auxiliary fields in the gravity multiplet to
zero) one ends up with the following anomaly:

oxlogZ D

1 .
o6 / d4xﬁI60R,,-( JiVEN VN VR v, NE (20)
T

= Vi 1 .
+d0g,; (D)\l Ox — 2<R“” — §R 7‘“’) V/,)\I VV)\J)

1 1 1
+5K D50 + K VIRV, 00 + K (RW - gWR) V.V, é0

—2g,; V"N VN V,V, 60 +ig,; (%H@W AP v v Vy)\’) V,8a
- é (%,@,K VEXV, N — VK VY, 4 VKON

s 1 _
— VKON ) Oda + i (R”” - 3R 7/“’) (V,K VM — VKV, N ) V,,(Sa]

where, as before, the hats denote covariant derivatives with respect to coordi-
nate transformations in the conformal manifold, R, jx; = 9;079x; — g"" O1gx; 0
9gun> and 6o + ida is the bottom component of X. Note that the anomaly (14)
appears in the second line.

Setting A, A to constants, we remain with a non-vanishing contribution:

1 B\ 4 1 2 1 1
Os lOgZ D WK()\, )\)/d Xﬁ (ED oo + EV/RVN(SO

1
+ (RW — 5WR) vuvyaa) 1)
— (- K\ X)/d“f 1E 1DR+f(>\ N C?
BT W T 12 ’ ’

where f (), 5\) is an arbitrary function on M, E4 is the Euler density and C,,, is the
Weyl tensor.

Note that this expression is not cohomologically trivial. The second line in (21)
is written as a Weyl variation of a local term, but this is not a supersymmetric local
term. Thus, this contribution cannot be removed with a supersymmetric regulator.
In the next section we will show that, as a result of this term, the sphere partition
function has a universal (i.e. regularization independent) content - it computes the
Kihler potential on the superconformal manifold.
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3 Sphere Partition Functions

Any conformal field theory on R can be placed on S¢ using the stereographic projec-
tion. Since this map is a conformal transformation we can obtain correlation functions
in R? from the corresponding correlation functions in S¢ by applying the inverse map.
The sphere is compact and therefore the theory on the sphere is free from infrared
divergences. Since the sphere is locally equivalent to R?, the ultraviolet divergences
on the sphere are the same as in flat space.

In the recent years the exact computation of some supersymmetric observables
in A/ = 2 theories on S* became possible due to the technique of supersymmetric
localization in which the path integral is reduced to a finite dimensional integral.
In particular, sphere partition functions for Lagrangian A/ = 2 theories (not neces-
sarily conformal) can be computed exactly, including all perturbative and instanton
contributions [15]. In this section we will show that the sphere partition function for
N = 2 SCFTs computes the Kihler potential on the superconformal manifold. This
was proved in [7, 8, 10]. Here, we will follow [10], in which this statement was
derived from the anomaly (21).

According to Eq.(21), the sphere partition function, when regulated in a super-
symmetry preserving fashion, contains the contribution’:

1 - 1 1 1 _
log Z — KO\ N [ at —E,— —0OR) = —K(\, ). 22
0gZst D 53 (A )/54 Xﬁ(g “T 1 ) v (A A) (22)

An additional contribution comes from the usual a-anomaly. Together, the two con-
tributions give
—4a _
Zgi = (1) KON (23)

ro

where r is the radius of the sphere and ry a scheme dependent scale. Thus, the
sphere partition function computes the Kihler potential on the superconformal man-
ifold. This is reminiscent of a known result in two-dimensional theories. For d = 2,
N = (2,2) SCFTs the Zamolodchikov metric is Kihler and the sphere partition
function, which has been computed using localization in [3, 6], computes the Kihler
potential on the superconformal manifold [9, 12].

Note that the Kihler potential is defined up to a holomorphic ambiguity,

KA = KA XN +FQ) +FQ) . 24)
This ambiguity in log Zg+ is due to the existence of a supersymmetric counterterm

that depends on an arbitrary holomorphic function of A. This counterterm can be
constructed from the supergravity invariant

7We dropped the Weyl tensor since it vanishes on the conformally flat sphere.
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/ d*xd*0EF(A) (B — W W,p5) + c.c. (25)

Here £ is a chiral density superfield. The chiral superfields = and W, 3 can be found
in [13]. In the sphere geometry background, and with the substitution A’ (x, §) = X,
this evaluates to F(\) + F (5\) (up to a numerical coefficient). This counterterm was
first constructed from N = 2 supergravity in [8].

As mentioned above, (22) cannot be removed by an A/ = 2 supersymmetric coun-
terterm and therefore the sphere partition function has a universal meaning in A/ = 2
SCFTs. If we only assume that the regularization scheme preserves N' = 1 super-
symmetry we would have a counterterm that depends on a general function of A
and \.% Thus, N = 1 supersymmetry of the regulator is not enough to give a uni-
versal meaning to Zg. For the same reason the A-dependence of the sphere partition
function of A" = 1 SCFTs or of non-supersymmetric CFTs is regularization scheme
dependent. The only universal contribution to the sphere partition function of a non-
supersymmetric CFT is the contribution due to the conformal anomaly a, which is
independent of the exactly marginal couplings.

As an example for the computation of the Zamolodchikov metric using Eq. (23),
consider an SU(2) gauge theory with 4 hypermultiplets in the fundamental rep-
resentation. This theory is superconformal, with one exactly marginal parameter
T= % + %, where ¢ is the Yang—Mills coupling and 6 is the theta angle. The
sphere partition function can be computed using localization, and one finds:

T im0 HQia)H(=2ia) s
Zg(T,T) —/ﬁfiae (2a) HioH T | Zinse(a, T)I7,  (26)

where H (x) is given in terms of the Barnes G-function by H (x) = G(1 + x)G(1 — x),
and Zj,y is Nekrasov’s instanton partition function on the Omega background [14].
By expanding the integrand in powers of g> we can compute Zg to any order in
perturbation theory. We can also include instanton corrections, up to any instan-
ton number. It is then straightforward to compute the Zamolodchikov metric via
gr= = 0.0; log Zg+.° The perturbative result for the metric is:

31 BXE) 1 1575¢(5) 1 ( 1 ) o
I = 8 dmr? 3272 (m7)t | 64n®  (Imr) (Imr) )

The first two terms in this result were checked against an explicit, two-loop, Feynman
diagrams computation in [2]. The one-instanton correction for the perturbative result
is given by

8See Sect.4 of [7].
“Here we dropped the factor of 12.
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Real Group Orbits on Flag Ind-Varieties
of SL (o0, C)

Mikhail V. Ignatyev, Ivan Penkov and Joseph A. Wolf

Abstract We consider the complex ind-group G = SL(o0o, C) and its real forms
G = SU(o0, 00), SU(p, 00), SL(oco, R), SL(co, H). Our main object of study are
the G-orbits on an ind-variety G/ P for an arbitrary splitting parabolic ind-subgroup
P C G, under the assumption that the subgroups G C G and P C G are aligned
in a natural way. We prove that the intersection of any G°-orbit on G/P with a
finite-dimensional flag variety G,/ P, from a given exhaustion of G/P via G, /P,
for n — oo, is a single (G° N G,)-orbit. We also characterize all ind-varieties G/ P
on which there are finitely many G°-orbits, and provide criteria for the existence of
open and closed G°-orbits on G/ P in the case of infinitely many G°-orbits.
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1 Introduction

This study has its roots in linear algebra. Witt’s Theorem claims that, given any two
subspaces Vi, V; of a finite-dimensional vector space V endowed with a nondegener-
ate bilinear or Hermitian form, the spaces V; and V, are isometric within V (i.e., one
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is obtained from the other via an isometry of V) if and only if V| and V, are isomet-
ric. When V is a Hermitian space, this is a statement about the orbits of the unitary
group U (V) on the complex grassmannian Gr(k, V'), where k = dim V| = dim V5.
More precisely, the orbits of U (V) on Gr(k, V) are parameterized by the possible
signatures of a, possibly degenerate, Hermitian form on a k-dimensional space of V.

A general theory of orbits of a real form G of a semisimple complex Lie group G
on a flag variety G/ P was developed by the third author in [22, 24]. This theory has
become a standard tool in semisimple representation theory and complex algebraic
geometry. For automorphic forms and automorphic cohomology we mention [9,
21, 26]. For double fibration transforms and similar applications to representation
theory see [14, 28]. For the structure of real group orbits and cycle spaces with other
applications to complex algebraic geometry see, for example, [2, 3, 8, 9, 15-17,
24-28]. Finally, applications to geometric quantization are indicated by [19, 20].

The purpose of the present paper is to initiate a systematic study of real group
orbits on flag ind-varieties or, more precisely, on ind-varieties of generalized flags.
The study of the classical simple ind-groups like SL(co, C) arose from studying
stabilization phenomena for classical algebraic groups. By now, the classical ind-
groups, their Lie algebras, and their representations have grown to a separate subfield
in the vast field of infinite-dimensional Lie groups and Lie algebras. In particular,
it was seen in [5] that the ind-varieties G/ P for classical ind-groups G consist of
generalized flags (rather than simply of flags) which are, in general, infinite chains
of subspaces subject to two delicate conditions, see Sect.2.3 below.

Here we restrict ourselves to the ind-group G = SL(o0, C) and its real forms
G°. We study G°-orbits on an arbitrary ind-variety of generalized flags G/ P, and
establish several foundational results in this direction. Our setting assumes a certain
alignment between the subgroups G C G and P C G.

Our first result is the fact that any G-orbit in G/P, when intersected with a
finite-dimensional flag variety G,/ P, from a given exhaustion of G/P via G, /P,
forn — oo, yields asingle G-orbit for G° = G° N G,,. This means that the mapping

{Gg-orbits on G,/P,} - {GSH-orbits on G,.1/P,11}

is injective. Using this feature, we are able to answer the following questions.

1. When are there finitely many G°-orbits on G/P?
2. When is a given G%-orbit on G/P closed?
3. When is a given G°-orbit on G/P open?

The answers depend on the type of real form and not only on the parabolic sub-
group P C G. For instance, if P = B is an upper-triangular Borel ind-subgroup
of SL(co, C) (B depends on a choice of an ordered basis in the natural represen-
tation of SL(oo, C)), then G/B has no closed SU(co, 0o)-orbit and has no open
SL(o0, R)-orbit.

We see the results of this paper only as a first step in the direction of understanding
the structure of G/ P as a G%-ind-variety for all real forms of all classical ind-groups
G (and all splitting parabolic subgroups P C G). Substantial work lies ahead.
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2 Background

In this section we review some basic facts about finite-dimensional real group orbits.
We then discuss the relevant class of infinite-dimensional Lie groups and the corre-
sponding real forms and flag ind-varieties.

2.1 Finite-Dimensional Case

Let V be a finite-dimensional complex vector space. Recall that a real structure on
V is an antilinear involution 7 on V. The set V? = {v € V | 7(v) = v} is a real form
of V,i.e., VO is a real vector subspace of V such that dimg V9 = dim¢ V and the
C-linear span (V°)¢ coincides with V. A real form V° of V defines a unique real
structure 7 on V such that V? is the set of fixed point of 7. A real form of a complex
finite-dimensional Lie algebra g is a real Lie subalgebra g° of g such that g is a real
form of g as a complex vector space.

Let G be a complex semisimple connected algebraic group, and G° be a real form
of G, i.e., G’ is areal closed algebraic subgroup of G such that its Lie algebra g°
is a real form of the Lie algebra g of G. Let P be a parabolic subgroup of G, and
X = G/P be the corresponding flag variety. The group G° naturally acts on X. In
[22] the third author proved the following facts about the GO-orbit structure of X,
see [22, Theorems 2.6, 3.3, 3.6, Corollary 3.4] (here we use the usual differentiable
manifold topology on X).

Theorem 2.1

(i) Each G°-orbit is a real submanifold of X.

(ii) The number of G°-orbits on X is finite.
(iii) The union of the open G°-orbits is dense in X.
(iv) There is a unique closed orbit §2 on X.

(v) The inequality dimy 2 > dimc X holds.

Here is how this theorem relates to Witt’s Theorem in the case of a Hermitian
form. Let V be an n-dimensional complex vector space and G = SL(V). Fix a
nondegenerate Hermitian form w of signature (p, n — p) on the vector space V and
denote by G° = SU(V, w) the group of all linear operators on V of determinant 1
which preserve w. Then GV is a real form of G. Given k < n, the group G naturally
acts on the grassmannian X = Gr(k, V) of all k-dimensional complex subspaces of
V.Toeach U € X onecan assign its signature (a, b, ¢), where the restricted form w/|,;
has rank a 4 b with a positive squares and b negative ones, ¢ equals the dimension of
the intersection of U and its orthogonal complement, and a + b + ¢ = k. By Witt’s
Theorem, two subspaces U;, U, € X belong to the same GO-orbit if and only if
their signatures coincide. Set/ = min{p, n — p}. Then one can verify the following
formula for the number |X/G°| of G%-orbits on X:
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(—k*> =212 —n? +2kn+2n+k+n+2)/2, ifn—1<k,
1IX/Gl =1+ 1)k —1+2)/2, ifl<k<n-—I,
(k+D(k+2)/2, ifk <I.

Furthermore, a G%-orbit of a subspace U € X is open if and only if the restriction of
w to U is nondegenerate, i.e., if ¢ = 0. Therefore, the number of open orbits equals
min{k + 1, [ + 1}. There is a unique closed GC-orbit £2 on X, and it consists of all
k-dimensional subspaces of V such that ¢ = min{k, [} (the condition ¢ = min{k, [}
maximizes the nullity of the form w|; for k-dimensional subspaces U C V). In
particular, if k = p < n — p, then §2 consists of all totally isotropic1 k-dimensional
complex subspaces of V. See [22] for more details in this latter case.

2.2 The Ind-Group SL (oo, C) and Its Real Forms

In the rest of the paper, V denotes a fixed countable-dimensional complex vec-
tor space with fixed basis £. We fix an order on £ via the ordered set Z., i.e.,
&€ ={ei1, e, ...}. Let V, denote the span of the dual system £* = {€}, €5, ...}. By
definition, the group GL(V, £) is the group of invertible C-linear transformations
on V that keep fixed all but finitely many elements of £. It is not difficult to verify
that GL(V, &) depends only on the pair (V, V,) but not on £. Clearly, any operator
from GL(V, £) has a well-defined determinant. By SL(V, £) we denote the subgroup
of GL(V, &) of all operators with determinant 1. In the sequel G = SL(V, &) and
we also write SL (oo, C) instead of G.

Express the basis £ as a union £ = |J &, of nested finite subsets. Then V is
exhausted by the finite-dimensional subspaces V, = (&,)c, i.e., V = li)n V.. To
each linear operator ¢ on V, one can assign the operator ¢ on V., such that
p(x) = p(x) forx € V,, pley) =€, for e, € £\ E,. This gives embeddings
SL(V,) < SL(V,41),sothat G = SL(V, &) = 11_11)1 SL(V,,).In what follows we con-
sider this exhaustion of G fixed, and set G, = SL(V,,).

Recall that an ind-variety over R or C (resp., an ind-manifold) is an inductive limit
of algebraic varieties (resp., of manifolds): ¥ = h_r)n Y,. Below we always assume
that Y,, form an ascending chain

Y>> YV,—>.. =Y, >Y—>...,
where Y, — Y,;; are closed embeddings. Any ind-variety or ind-manifold is
endowed with a topology by declaring a subset U C Y open if U N Y, is open for
all n in the corresponding topologies. A morphism f: Y =1limY, — Y' = lg)n Y, is
a map induced by a collection of morphisms {f,,: ¥, — Yi/”}nzl foriy <i, <---,
such that the restriction of f,, to Y, coincides with f, for all n > 1. A morphism

'In what follows we use the terms isotropic and totally isotropic as synonyms.
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f:Y — Y is an isomorphism if there exists a morphism g: Y’ — Y for which
fog=1idy and g o f = idy, where id is a morphism induced by the collection of
the identity maps.

A locally linear algebraic ind-group is an ind-variety G = | G, such that all
G, are linear algebraic groups and the inclusions are group homomorphisms. In
what follows we write ind-group for brevity. Clearly, G is an ind-group. By an ind-
subgroup of G we understand a subgroup of G closed in the direct limit Zariski
topology. By definition, a real ind-subgroup G° of G is called a real form of G, if G
can be represented as an increasing union G = | J G, of its finite-dimensional Zariski
closed subgroups such that G, is a semi-simple algebraic group and G° N G,, is a real
form of G, for each n. Below we recall the classification of real forms of G due to
A. Baranov [1].

Fix a real structure 7 on V such that 7(e) = e for all e € £. Then each V,, is
T-invariant. Denote by GL(V,,, R) (resp., by SL(V,,, R)) the group of invertible (resp.,
of determinant 1) operators on V,, defined over R. Recall that a linear operator on
a complex vector space with a real structure is defined over R if it commutes with
the real structure, or, equivalently, if it maps the real form to itself. For each n,
the map ¢ +— @ gives an embedding SL(V,,, R) < SL(V,+1, R), so the direct limit
G’ = h_r)n SL(V,, R) is well defined. We denote this real form of G by SL(co, R).

Fix anondegenerate Hermitian formw on V. Suppose thatits restriction w, = w/y,
is nondegenerate for all n, and that w(e,,, V,,) = O fore, € £\ &,. Denote by p, the
dimension of a maximal w,-positive definite subspace of V,,, and put ¢,, = dim V,, —
pn- Let SU(p,, g,) be the subgroup of G, consisting of all operators preserving
the form w,. For each n, the map ¢ > ¢ induces an embedding SU(p,, ¢,) —
SU(Ppt1s Gny1), 50 we have a direct limit G° = h_r)n SU(py,, gn)- If there exists p such
that p, = p for all sufficiently large n (resp., if lim,,— oo pp = lim,— g, = 00), then
we denote this real form of G by SU(p, oo) (resp., by SU (oo, 00)).

Finally, fix a quaternionic structure J on V,i.e., an antilinear automorphism of V
such that J> = —idy . Assume that the complex dimension of V,, is even forn > 1,
and that the restriction J, of J to V,, is a quaternionic structure on V,,. Furthermore,
suppose that

J(€2i-1) = —€2;, J(€2) = €21

fori > 1. Let SL(V,,, H) be the subgroup of G, consisting of all linear operators
commuting with J,, then, for each n, the map ¢ +— @ induces an embedding of
the groups SL(V,, H) <> SL(V,,, H), and we denote the direct limit by G° =
SL(oco, H) = h_n)1 SL(V,, H). This group is also a real form of G.

The next result is a corollary of [1, Theorem 1.4] and [6, Corollary 3.2].

Theorem 2.2 If G = SL(o0, C), then SL(oco,R), SU(p,00), 0<p < o0,
SU (o0, 00), SL(00, H) are all real forms of G up to isomorphism. These real forms
are pairwise non-isomorphic as ind-groups.
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2.3 Flag Ind-Varieties of the Ind-Group G

Recall some basic definitions from [5]. A chain of subspaces in V is a linearly
ordered (by inclusion) set C of distinct subspaces of V. We write C’ (resp., C”) for
the subchain of C of all F € C with an immediate successor (resp., an immediate
predecessor). Also, we write C' for the set of all pairs (F’, F”) such that F” € C”
is the immediate successor of F’ € C'.

A generalized flag is a chain F of subspaces in V such that 7 = F' U F” and
VA\A{0} = U g pryert F”\ F'. Note that each nonzero vector v € V determines a
unique pair (F), F!) € F'suchthatv € F\ F,.If F is a generalized flag, then each
of 7' and F” determines F, becauseif (F’, F"") € F', then F’ = UG,/EP, grepr G,
F"=( cer. gor G (see S, Proposition 3.2]). We fix a linearly ordered set (A, <)
and an isomorphqsm of ordered sets A — F': a — (F), F!), so that F can be
written as F = {F), F/, a € A}. We will write a < # if « < 3 and a # (3 for
a, B € A.

A generalized flag F is called maximal if it is not properly contained in another
generalized flag. This is equivalent to the condition that dim F,'/F, =1 for all
nonzero vectors v € V. A generalized flag is called a flag if the set of all proper
subspaces of F is isomorphic as a linearly ordered set to a subset of Z.

We say that a generalized flag F is compatible with a basis E = {e, e, ...} of
V if there exists a surjective map o: E — A such that every pair (F/, F) € F' has
theform F) = (e € E | o(e) < a)¢, F = (e € E | o(e) < a)c. By [5, Proposition
4.1], every generalized flag admits a compatible basis. A generalized flag F is weakly
compatible with E if F is compatible with abasis L of V suchthattheset E \ (E N L)
is finite. Two generalized flags F, G are E-commensurable if both of them are weakly
compatible with E and there exist an isomorphism of ordered sets ¢: F — G and a
finite-dimensional subspace U C V such that

(i) ¢(F)+U=F+U forall F € F;
(i) dim¢(F)NU =dim FN U forall F € F.

Given a generalized flag F compatible with E, denote by X = X7 g = FUF, E)
the set of all generalized flags in V, which are E-commensurable with F'.

To endow X with an ind-variety structure, fix an exhaustion E = |J E, of E by
its finite subsets and denote F,, = {F N (E,)c, F € F}. Given a € A, denote

d,,=dimF, N(E,)c =|{e € E, | o(e) < a}|,

a,n

dy, =dim F;N(E,)c = {e € E, | o(e) < a}l,

where | - | stands for cardinality. We define X, to be the projective varieties of flags
in (E,)c of the form {U/, U}, o € A}, where U,, U, are subspaces of (E,)c of

’ «’ a’
dimensions d,, ,, d, , respectively, U/, C U/, for all a € A, and U] C U} for all

a,n’ “a,n

a < f3. (If A is infinite, there exist infinitely many o, 3 € A such that U = Ujs.)
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Define an embedding ¢, : X,, — X,41: {U/, U/

’ a’

a€ A= (W

«’

W/, a € A} by

W, =U, @€ Epi\ E, | 0(e) < a)c.

" " (1)
W, =UL® (e € Eni\ Ex | 0(e) < a)c.

Then ¢, is a closed embedding of algebraic varieties, and there exists a bijection from
X to the inductive limit of this chain of morphisms, see [5, Proposition 5.2] or [10,
Sect. 3.3]. This bijection endows X with an ind-variety structure which is independent
on the chosen filtration | J E,, of the basis E. We will explain this bijection in more
detail in Sect. 3.

From now on we suppose that the linear span of E, coincides with V, and V,
coincides with the span of the dual system E* = {e], €5, . ..}. We assume also that the
inclusion G, < G, induced by this exhaustion of E coincides with the inclusion
© > @ defined above, i.e., that (E, 1 \ E,)c = (€441 \ Ex)c. Denote by H the ind-
subgroup of G = SL(o0, C) of all operators from G which are diagonal in E; H is
called a splitting Cartan subgroup of G (in fact, H is a Cartan subgroup of G in
terminology of [7]). We define a splitting Borel (resp., parabolic) subgroup of G to
be and ind-subgroup of G containing H such that its intersection with G, is a Borel
(resp., parabolic) subgroup of G,. Note that if P is a splitting parabolic subgroup of
G and P, = PN G,, then G/P = |J G,/ P, is alocally projective ind-variety, i.e.,
an ind-variety exhausted by projective varieties. One can easily check that the group
G naturally acts on X. Given a generalized flag 7 in V which is compatible with E,
denote by P the stabilizer of F in G. For the proof of the following theorem, see
[5, Proposition 6.1, Theorem 6.2].

Theorem 2.3 Let F be a generalized flag compatible with E, X = F¢(F, E) and
G = SL(o0, C).

(i) The group Pr is a parabolic subgroup of G containing H, and the map F > Pr
is a bijection between generalized flags compatible with E and splitting parabolic
subgroups of G.

(ii) The ind-variety X is in fact G-homogeneous, and the map g — g - F induces an
isomorphism of ind-varieties G/ Pr = X.

(iii) F is maximal if and only if Pr is a splitting Borel subgroup of G.

Example 2.4 (i) A first example of generalized flags is provided by the flag F =
{{0} € F C V}, where F is a proper nonzero subspace of V. If F is compatible
with E, then we can assume that F = (o)¢ for some subset ¢ of E. In this case
the ind-variety X is called an ind-grassmannian, and is denoted by Gr(F, E). If
k = dim F is finite, then a flag {{0} C F’ C V} is E-commensurable with F if
and only if dim F = k, hence Gr(F, E) depends only on k, and we denote it by
Gr(k, V). Similarly, if £ = codim y F is finite, then Gr(F, E) depends only on E and
k (but not on F) and is isomorphic to Gr(k, V,): an isomorphism Gr(F, E) — {F C
V, | dim F = k} = Gr(k, V) is induced by the map Gr(F, E) > U +— U* = {¢ €
Vi | ¢(x) = 0for all x € U}. Finally, if F is both infinite dimensional and infinite
codimensional, then Gr(F, E) depends on F and E, but all such ind-varieties are
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isomorphic and denoted by Gr(c0), see [18] or [10, Sect. 4.5] for the details. Clearly,
in each case one has 7/ = {{0} C F}, 7' ={F C V}.

(i) Our second example is the generalized flag F = {{0} = Fy C F1 C ...},
where F; = (e1,...,¢;)c for all i > 1. This clearly is a flag. A flag 7 = {{0} =
Fy C Fy C ...} is E-commensurable with  if and only if dim F; = dim F; for all i,
and F; = F; for large enough i. The flag F is maximal, and ' = F, 7" = F \ {0}.

i) Put F={0})=FhCcF CFC...CF,CF_CV} where
F; = (e, e3,...,es_1)c, F_i = {{ej, jodd}U{ey;, j > i})cfori > 1.This gen-
eralized flag is clearly not a flag, and is maximal. Here 7/ = 7\ V, 7" = F \ {0}.
Note also that ' € X = F{(F, E) does not imply that F; = F; fori large enough.
For example, let F; = Ce,

F; = (e2, e3, e5, e7,..., ezi_1)C

fori > 1,and F_; = ({e;, jodd, j =3}U{es}U{esj, j > i})c, i = 1, then F €
X,but F; # F; for all i.

Remark 2.5 1In all above examples X = G/ Pr, where Py is the stabilizer of F in
G. The ind-grassmannians in (i) are precisely the ind-varieties G/ Px for maximal
splitting parabolic ind-subgroups Pr C G. The ind-variety F¢(F, E), where F is
the flag in (ii), equals G/ P where Pr is the upper-triangular Borel ind-subgroup
in the realization of G as Z.y x Z--matrices.

3  GY-Orbits as Ind-Manifolds

In this section, we establish a basic property of the orbits on G/ P of a real form G° of
G = SL(o0, C). Precisely, we prove that the intersection of a GO-orbit with X,
is a single orbit. Consequently, each G°-orbit is an infinite-dimensional real ind-
manifold.

We start by describing explicitly the bijection X — lim X, mentioned in Sect. 2.3.
Let F be a generalized flag in V compatible with the basis E, and X = F{(F, E)
be the corresponding ind-variety of generalized flags. Recall that we consider X as
the inductive limit of flag varieties X,,, where the embeddings ¢,: X,, — X,y are
defined in the previous subsection. Put E), = {e;, es,..., ey} and V,, = (E),)c.
The construction of ¢,, can be reformulated as follows.

The dimensions of the spaces of the flag 7 NV, form a sequence of integers

O0=dno <dni <...<dpns,—1 <dps, =dimV,, =m.

Let F4(dy, V) be the flag variety of type d, = (dm.1, ..., dn.s,—1) in V,,. Since
either 5,41 = s, O Sp,1 = Sy, + 1, there is a unique j, such thatd,,,; =d,; + 1
for 0 <i < j, and dy41,j, > dp,j,.- Then, for j, <i < Sy, dut1i =dpu,; +11in

case Syt+1 = S, and dy11; = dpi—1 + 1 in case 5,41 = s, + 1. In other words,
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Jm < S 1s the minimal nonnegative integer for which there is & € A with
dim F NV =dim F) NV, + 1.

Now, for each m we define an embedding &, : F€(d,,, Vi) = Fl(dn+1, Vint1):
given a flag G, ={{0} =G{ C G} C...C G} = Vy,} € Flldn, Vn), we
set &u(Gn) = Guat = ({0} = G C G €. C GYH = Vi) € Flldaa,
Vin+1), Where

G, if0<i < ju,
G = G @ Cepyr,  if ju < i < sppr and sppy = s, @)

G?i] 57 (Cem-Ha if jm <i=< Sm+1 and Sm+1 = Sm + 1.

For any G € X we choose a positive integer mg such that F and G are com-
patible with bases containing {e; | i > mg}, and V,,, contains a subspace which
makes these generalized flags E-commensurable. In addition, we can assume that
mz < mg forall G € X (in fact, we can set m z = 1 because F is compatible with
E). Let myr <m; <my < ... be an arbitrary sequence of integer numbers. For
n > 1,denote E,, = E;””, Vi =V, . Then X,, = FL(d,,,, Vim,) and, according to (1),
tn = &mpoy—1 9&m,—2 0 ... 0 &y, . The bijection X — lim X, from Sect. 2.3 now has
the form G +— lim G,,, where G, = {F NV,, F € G} for n such that m,, > mg. By
a slight abuse of notation, in the sequel we will denote the canonical embedding
X, — X by the same letter ¢,,.

Let G° be a real form of G = SL(co0, C) (see Theorem 2.2). The group
G, = SL(V,) naturally acts on X,, and the map ¢, is equivariant: g - ¢,(x) =
th(g-x),9€ G, C Guyp, x € X,,. Putalso Gg =GN G,. Then GS is a real form
of G,. For the rest of the paper we fix some specific assumptions on V,, for different
real forms. We now describe these assumptions case by case.

Let G° = SU(p, oo) or SU(o0, 00). Recall that the restriction w, of the fixed
nondegenerate Hermitian form w to V,, is nondegenerate. From now on, we assume
that if e € E, 1 \ E,, then e is orthogonal to V, with respect to w,+;. Next, let
G° = SL(00, R). Here we assume that m,, is odd for each n > 1, and that (E, ) is a
real form of V,,. Finally, for G° = SL (o0, H), we assume that m,, is even foralln > 1
andthat J (ep;—1) = —e;, J (e2;) = ep;— foralli. These additional assumptions align
the real form G° with the flag variety X.

Our main result in this section is as follows.

Theorem 3.1 If ,(X,) has nonempty intersection with a G2 41-orbit, then that
intersection is a single G-orbit.

Proof The proof goes case by case.
CASE G = SU(00, 00). (The proof for G° = SU(p, 00), 0 < p < 00, is com-
pletely similar.) Pick two flags
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A={{0} = Ay C A C...C A
B={{0()=BycB C...CB

in X,, such that A = 1,(A) and B = 1,(B) belong to a given G? n1-Orbit.
Put

A={{0) =4 C A C...CA, =V}
g {0} = E() C El cC...C Esmnﬂ = V,H_]}.

There exists € SU(wy, 41, Vya1) satisfying @(.Z) = g, ie., &(Zi) — B; for all i
from O to s,,,,,. To prove the result, we must construct an isometry ¢: V, — V,
satisfying ¢ (A) = B. Of course, one can scale ¢ to obtain an isometry of determinant
1. By Huang’s extension of Witt’s Theorem [11, Theorem 6.2], such an isometry
exists if and only if A; and B; are isometric for all i from 1 to s,,,, and

dim(A; N A;") = dim(B; N B;""") 3)
for all i < j from 1 to s,,. (Here U L+ denotes the wy-orthogonal complement
within V,, of a subspace U C V,,.) Pick i from L to sy, Since e, is orthogonal to
V,, and ¢ establishes an isometry between A and B;, the first condition is satisfied.
So it remains to prove (3).

To do this, denote C, = (E,+1 \ E,)c. Since C, is orthogonal to V,,, for given
subspaces U C V,,, W C C, one has (U @ W)~V = ULV @ W Hence, if
Zk = A, & W, Ek = B, ® W fork € {i, j} and some subspaces of W;, W; C C,,
then

ANAT" =A@ W) N (AT @ W) = A n Ay @ (W n Wi,

and the similar equality holds for B; N B Vr#1 The result follows.

CASE G” = SL(o0, R). Here we ﬁrst prove that if A and B are flags in V,,
A and B are their images in V,;; under the map §,, and there exists
p € GL(V,+1, R) satisfying gp(.,zf) = B, then there exists an operator v € GL(V,, R)
such that v(A) = B

Consider first the case when ¢(e,+1) ¢ V. Denote p(ep+1) = v +1e€p11,V € Vs
teR,t#0.Thent ' € GL(V,41, R) maps A to B, so we can assume that t = 1,
i.e., p(en+1) = v+ e,q1. Since

p(Aj, ®Ceyyy) = (Aj,,) = Bj, = B;, ® Cepyy,
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the vector v belongs to B; for alli > j,. Let ¢ € GL(V,+1, R) be defined by
V(x4 sepr1) = x +s(epp1 —v), x €V, s € C.

Clearly’ 1/1(90(6714»1)) = €pt1-

Ifi < j, and x € A;, then p(x) € B; CV,, so Y(p(x)) = p(x) € B;. If i > j,
andx € A,, wherer =i fors, ; =s,andr =i — 1fors,+; = s, + 1, then we put
px) =y +seyr1,y € B;, s € C. One has

Y(p(x)) = Y(y + seps1) = ¥ + 5(enr1 — v) € B, ® Ceyyy = B;.

In both cases the operator ¢ o ¢ maps A; to B; for all i from 0 to sp+1. Hence
we may assume without loss of generality that ¢(e,+1) = e,+1. Then the operator
v =moly,,wherer: V11 — V), is the projection onto V), along Ceyy1, is invert-
ible, is defined over R, and maps each A; to B;, 0 <i < s, as required.

Suppose now that p(e,+1) = b € V,.In this case s, = s, because the condition

(A1 ®Ce,p1) = p(A;) = B;, = Bj,_1 ® Ce,y,

contradicts the equality s, = s, + 1. Arguing as above, we see that b € B, for all
i > ju.If ¢~ '(e,s1) = a ¢ V,, then one can construct v as in the case when b ¢ V),
with ¢! instead of . Therefore, we may assume that a € A; for all i > j,. Let
U° be an R-subspace of V¥ such that V¥ = U° @ Rb, then V, = U & Ch, where
U=CQrU" If a, b are linearly independent, we choose U 0 g0 that a € U°.
Define v as follows: if p(x) =y +sb+re, 11, x € V,, y € U, s,r € C, then put
v(x) = y + (s + r)b. One can easily check that v satisfies all required conditions.

Now we are ready to prove the result for G = SL(oo, R). Namely, let 4, B € X,,,
and ¢ € SL(V,, R) satisfy ¢(¢,(A)) = 1,(B), then ¢ belongs to GL(V,,.,, R).
Hence there exists v/ € GL(V,,,,—1, R) which maps &, ., 20...0&,,(A) to
Enpi—20...0&,, (B) because t, = &p,, —1 ©&myyy—20 ... 0 &y, Continuing this
process, we see that there exists an operator v” € GL(V,,R) such that
V'(A) = B. Since V, is odd-dimensional, one can scale v’ to obtain a required
operator v € SL(V,, R). _ _

CASE G = SL(o0, H).Let A, Bbe two flagsin V5, and A = &5,11 0 &, (A), B =
&y 0 Eon(B). Let p € SL(Va,42, H) satisfy <p(¢21') = B. Our goal is to construct
v € SL(V,,, H) such that v(A) = B. Then, repeated application of this procedure
will imply the result.

For simplicity, denote e = e5,11, ¢ = ez,42. Recall that J(e) = —¢', J(¢/) =
e, and note that b = p(e) € V,, if and only if o' = p(e’) € Vs,, because V,, is
J-invariant and ¢ commutes with J.
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First, suppose that both b and b" do not belong to V,,. The vector b admits a
unique representation in the form b = v + te + t'¢’ forv € V,,, t, ' € C. Then

b =) = p(=J () = —J(pl) = —J(b) =v — e+,

where v = —J (v) € V,,. Set

T = (t’ _t’) L d=detT = |1]> + | € Rey.

Let ©v € GL(V,,,42) be the operator defined by ¢¥(x) = x, x € Vy,,

Ye)=—d "(fv+e) —1' (W +¢€)),
Pe) = —d (T (w+e) +t +e)).

It is easy to see that ¢ commutes with J, detv) =det T~ € R., and 9(b) = e,
1 (b") = €’. Furthermore, one can check that v = 7w o9 o ¢y, : V2, — Vp, com-
mutes with J and maps A to I3, where 7: V5,12 — Vs, is the projection onto V;,
along Ce @ Ce'. Since detv € R.(, one can scale v to obtain an operator from
SL(V,,, H), as required.

Second, suppose that b, b’ € V5,. If a = ¢~ (e) and @’ = ¢~ (¢’) do not belong
to V5, one can argue as in the first case with ¢! instead of ¢, so we may assume
without loss of generality that a,a’ € V,,. (Note that if a, a’, b, b’ are linearly
dependent, then Ca & Ca’ = Cb & Cb'.) In this case, denote by U a J-invariant
subspace of V,,, spanned by some basic vectors e; suchthatV,, = U @& Cb & Cb'. (If
a, a’, b, b are linearly independent, we choose U such thata, a’ € U.) Define v by
the followingrule:if p(x) = y +sb +sb' +re+r'e',x € Vo,,y € U,s, s', r, r' €
C,thenv(x) =y + (s +r)b + (s’ + r')b’. One can check thatdet v = detp = 1, v
commutes with J (so v € SL(V,,, H)) and maps each A;, 0 <i < s,, to B;. Thus,
v satisfies all required conditions. (I

The following result is an immediate corollary of this theorem.

Corollary 3.2 Let 2 be a G°-orbit on X, and 2, = L;l(.Q) C X,. Then
(1) £2, is a single Gg-orbit;
(i) £2 is an infinite-dimensional real ind-manifold.

Proof (i) Suppose A, B € £2,. Then there exists m > n such that images of .A and
B under the morphism ¢,,_1 0 4,2 o ... 0 ,, belong to the same G -orbit. Applying
Theorem 3.1 subsequently to ¢,,_1, t;—2, . . ., Ly, We see that A and B belong to the
same GY-orbit.

(ii) By definition, £2 = lim §2,,. Next, (i) implies that £2 is a real ind-manifold.
By Theorem 2.1 (v), we have dimg £2,, > dim¢ X,,. Since lim,,_, o, dim¢ X, = o0,
we conclude that 2 is infinite dimensional. ([l
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4 Case of Finitely Many G°-Orbits

We give now a criterion for X = F£(F, E) to have a finite number of G°-orbits, and
observe that, if this is the case, the degeneracy order on the G°-orbits in X coincides
with that on the G-orbits in X, for large enough . Recall that the degeneracy order
on the orbits is the partial order 2 < 2’ < £ C Q.

A generalized flag F is finite if it consists of finitely many (possibly infinite-
dimensional) subspaces. We say that a generalized flag F has finite type if it consists
of finitely many subspaces of V each of which has either finite dimension or finite
codimension in V. A finite type generalized flag is clearly a flag. An ind-variety
X = FUF, E) is of finite type if F is of finite type (equivalently, if any F € X is
of finite type).

Proposition 4.1 For G° = SU(c0, 00), SL(co, R) and SL(co, H), the number of
G-orbits on X is finite if and only if X is of finite type. For G° = SU(p, 00),
0 < p < oo, the number of G-orbits on X is finite if and only if F is finite. For
G° = SU(0, 00), the number of G-orbits on X equals 1.

Proof

CASE GY = SU(00, 00). First consider the case X = Gr(F, E), where F is a sub-
space of V. Clearly, X is of finite type if and only if dim F' < oo or codim y F < o0.
Note that for ind-grassmannians, the construction of ¢, from (1) is simply the fol-
lowing. Given n, let W, be the span of E, ;| \ E,, and U,4; be a fixed (k,+; —
k,)-dimensional subspace of W, |, where k; = dim F' N V;. Then the embedding
tn: X, = Gr(k,, V) = X1 = Gr(kua1, Vaar) has the form ¢,(A) = A @ U4
for A € X,,.

Recall that if codim y F' = k, then the map

U U ={peV,|dx)=0forallx € U}

induces an isomorphism Gr(F, E) — {F' C V, | dim F' = k} = Gr(k, V,); we
denote this isomorphism by D. To each operator ) € GL(V, E) one can assign
the linear operator 1, on V, acting by (10, (A\))(x) = A(¥(x)), A € Vi, x € V. This
defines an isomorphism SL(V, E) — SL(V,, E*), and D becomes a G-equivariant
isomorphism of ind-varieties. Hence, for X of finite type, we can consider only the
case when dim F' = k.

Ifdim F = k, then X consists of all k-dimensional subspaces of V.Pick A, B € X.
There exists n such that X,, = Gr(k, V,) and A, B € (,(X,). Witt’s Theorem shows
that, foreachm > n, A and B belong to the same G -orbitif and only if the signatures
of the forms w, | 4 and wy,| 5 coincide. Since w, |4 p = w|4 g, we conclude A and B
belong to the same G-orbit if and only if their signatures coincide. Thus, the number
of G%-orbits on X is finite.

On the other hand, if dim F = codim y F = 00, then

lim &k, = lim (dim V,, — k,) = oo.
n—oo n—o0
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In this case, the number of possible signatures of the restriction of w, to a k,-
dimensional subspace tends to infinity, hence the number of G-orbits tends to infin-
ity. By Theorem 3.1, the number of G°-orbits on X is infinite.

Now, consider the general case X = FU(F, E). Let F be of finite type. Then
F =AUB where A and B are finite type subflags of F consisting of finite-
dimensional and finite-codimensional subspaces from F respectively. Note that A
and B are compatible with the basis E, hence there exists N such thatif n > N, then
A C V, forall A € Aand codimy,(BNV,) = codimyB forall B € B. Set

A={A1 C Ay C...C A},
B={B,CB,C...CB},

anda; =dimA;,1 <i <k,b; =codimyB;,1 <i <lI.

Denote by s(U) the signature of w|, for a finite-dimensional subspace U C V.
According to [11, Theorem 6.2], to check that the number of GO-orbits on X is finite,
it is enough to prove that all of the following sets are finite:

Sa={s(A)|ACV,, n>N, dimA = qg; for some i},
Sg={s(B)| BCV,, n>N.codimy, B = b; for some i},
Py={dimANA;" | A, AgC V,, n> N,
dim A = ¢g;, dim Ay = a; forsome i < j},
Py ={dimBNBy;"" | B, ByC V,, n> N,
codim y, B = b;, codim y, By = b; for some i < j},
Pig ={dimANB-"" | A, BCV,, n>N,

dim A = a;, codim y, B = b; for some i, j}.

The finiteness of S4 and P4 is obvious. In particular, this implies that the number of
G -orbits on FL(A, E) is finite. Applying the map U > U* described above, we
see that the number of G°-orbits on F¢(B, E) is finite. Consequently, the sets Sp
and Py are finite. Finally, since w, = wly, is nondegenerate for each n, we see that if
B C V, and codim y, B = b; for some i, then dim B+ = codim y, B = b;. Hence
P, is finite. Thus, if F is of finite type then the number of G°-orbits on FL(F, E)
is finite.

On the other hand, suppose that F is not of finite type. If there is a space F' € F
with dim F = codim y F' = 0o, then we are done, because the map

X — Gr(F, E): G > the subspace in G corresponding to F

is a G-equivariant epimorphism of ind-varieties, and the number of G’-orbits on the
ind-grassmannian Gr(F, E) is infinite by the above.

If all F € F are of finite dimension or finite codimension, there exist subspaces
F, € F of arbitrarily large dimension or arbitrarily large codimension. In the former
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case the statement follows from the fact that the number of possible signatures of
such spaces tends to infinity, and in the latter case the statement gets reduced to the
former one via the map U > U*.

CASE G” = SU(p, 00),0 < p < co. First suppose that F is finite, i.e., |F| =
N < oo. Given n > 1, denote S, = {s(A) | A C V,} and P, = {dim AN B-" |
A C B C V,}.Lets(A) = (a, b, c) for some subspace A of V,,. Then, clearly,a < p
and ¢ < p, hence |S,| < pz. On the other hand, if A C B are subspaces of V,
then A-Y 5 BLVe soANBYY" ¢ AN AV Butdim A N A+Y" = ¢ < p. Thus
|P| < p.Now [11, Theorem 6.2] shows that the number of Gg-orbits on X, is less
or equal to N|S,|N?|P,| < N3p>. Hence, by Theorem 3.1, the number of G-orbits
on X is finite.

Now suppose that F is infinite. In this case, given m > 1, there exists n such
that the length of each flag from X, is not less than m, the positive index of wly,
(i.e., the dimension of a maximal positive definite subspace of V,) equals p, and
codim y, F,, > p,where F, = {F), C ... C F,, C ... C V,}.Itis easy to check that
the number of GY-orbits on X, is not less than m. Consequently, by Theorem 3.1,
the number of G%-orbits on X is not less than m. The proof for SU(p, 00), p > 0, is
complete.

CASE G° = SU(0, 00). Evident.

CASE G” = SL(o0, R). First, let X = Gr(F, V) for a subspace F C V compati-
ble with E. If dim F = k < oo, then X consists of all k-dimensional subspaces of
V. We claim that the number of G°-orbits on X equals k + 1. Indeed, pick A, B € X
andn > k + 1 such that A, B € 1,(X,,) (recall that dim V,, = 2n — 1). Clearly, if A
and B belong to the same G°-orbit, then

dim AN 7(A) =dim BN 7(B). “)

Sincen > k + 1 and V,, is 7-stable, dim A N 7(A) can be an arbitrary integer number
from O to k, hence the number of G°-orbits on X is at least k + 1.

On the other hand, suppose that (4) is satisfied. Let A’, B’ be complex subspaces
of A, B respectively such that A= A"® (AN7(A)) and B = B" @& (BN T(B)).
Clearly, A’ N 7(A") = B’ N 7(B") = 0. Furthermore, it is easy to see that

A+7(A) = (ANT(A) & (A ®T(A)),
B+7(B)=(BN7(B) & (B &7(B").

For simplicity, set A, = A+ 7(A), AL =A"®1(A"), A” = AN T(A), and define
B., B., B” similarly. Then A, = A" @ A/, B, = B” & B_. Note that all these sub-
spaces are defined over R. By [12, Lemma 2.1], the SL(A’, R)-orbit of A’ is open in
the corresponding grassmannian. Furthermore, there are two open SL(A’., R)-orbits
on this grassmannian, and their union is a single GL(A’, R)-orbit. Hence there exists
an operator ¢): A; — B, which is defined over R and maps A”, A’, A" to B, B’, B”
respectively. Since A; and B, are defined over R (i.e., are T-invariant), there exist
T-invariant complements A, By of A, B; in V,,. Thus one can extend ¢ to an oper-
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ator v € GL(V,, R) such that v(A) = B. Finally, since dim V,, is odd, we can scale
v to obtain an operator from SL(V,,, R) which maps A to B, as required.

At the contrary, assume that dim F' = oco. As it was shown above, given m > n,
two finite-dimensional spaces A, B € V,, belong to the same G -orbit if and only
ifdim A N 7(A) = dim B N 7(B), so the number of GSI—orbits on the grassmannian
of k,-subspaces of V,, equals k,, + 1. But we have lim,,_, o, k, = 00, so the number
of G-orbits on X is infinite by Theorem 3.1.

Now, consider the general case X = F{(F, E). We claim that, given a type
d = (dy, ...,d,), there exists a number u(d) such that the number of Gg-orbits on
the flag variety F£(d, V,) is less or equal than u(d), i.e., this upper bound depends
only on d, but not on the dimension of V,. To prove this, denote by K,, = SO(V,,)
the subgroup of G, preserving the bilinear form

dim V, dim V, dim V,

B, y) = D xivi. x= D xiei, y= >y € Vo
i=1 i=1 i=1

By Matsuki duality [4], there exists a one-to-one correspondence between the set of
K, -orbits and the set of Gg—orbits on F{(d, V,). Hence our claim follows imme-
diately from (3), because [11, Theorem 6.2] holds for nondegenerate symmetric
bilinear forms.

Finally, suppose that F is of finite type. Let A, B, N be as for SU (o0, 00). Note that
the form 3, is nondegenerate, hence the (3,-orthogonal complement to a subspace
B C V, is of dimension codim y, B. Arguing as for SU(oo, 0o) and applying our
remark about Matsuki duality, we conclude that there exists a number u(F) such
that the number of G%-orbits on X, is less or equal to u(F) for every n > N. It
follows from Theorem 3.1 that the total number of G%-orbits on X is also less or
equal to u(F). Finally, if F is not of finite type, then, as in the case of SU (oo, 00), one
can use G-equivariant projections from X onto ind-grassmannians to show that the
number of G’-orbits on the ind-variety X is infinite. The proof for G° = SL(00, R)
is complete.

CASE G° = SL(00, H). Denote by k, an antisymmetric bilinear form on V),
defined by

Kn(ezi—1, €2) = 1, Kp(eai, ezi—1) = —1, Ku(ej, ej) =0for|i — j| > I.

Let K, be the subgroup of G, preserving this form. Then K, N GY is a maximal
compact subgroup of GY (see, e.g., [9]), so, by duality, given d, there exists a bijection
between the set of K,,-orbits and the set of Gg-orbits on the flag variety 7¢(d, V,,).
Since K, is isomorphic to Spg, v, (C), we can argue as for SL(co, R) to complete
the proof. ([
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Example 4.2 Let X = Gr(k, V) for k < co. Then

(p+1DQ2k—p+2)/2 forG*=SU(p,0), p <k,

(k+1D(k+2)/2 for G = SU(p, o0), k < p,
1X/G% = (k+D(k+2))2 for G° = SU(o0, 00),

k+1 for G = SL(00, R),

(k/2]1+1 for G = SL(o0, H).

For SU(p, oo) and SU(o0, 00), this follows from the formula for the number
of SU(p,n — p)-orbits on a finite-dimensional grassmannian, see Sect.2.1. For
SL (o0, R), this was proved in Proposition 4.1; the proof for SL(oo, H) is similar
to the case of SL(o0, R).

As a corollary of Theorem 3.1, we describe the degeneracy order on the set X/ G°
of G-orbits on an arbitrary ind-variety X = F£(F, E) of finite type. By definition,
Q<@ < 2. Wedefine the partial order on the set X,/ G° of G-orbits
on X, in a similar way.

Corollary 4.3 Suppose the number of G°-orbits on X = FU(F, E) is finite. Then
there exists N such that X /G is isomorphic as partially ordered set to X,/ Gg for
eachn > N.

Proof Given a GO-orbit 2 on X, there exists n such that £ N ¢, (X,) is nonempty.
Since there are finitely many G°-orbits on X, there exists N such that 2 N vy (Xy)
is nonempty for each orbit £2. By Theorem 3.1, givenn > N and a GO-orbit 2 on X,
there exists a unique GY-orbit £2, on X,, such that ¢, ' (£2 N ¢,(X,)) = £2,. Hence,
the map

a: X/G' = X,/GY, 21— 2,

is well defined for each n > N. It is clear that this map is bijective. It remains to note
that, by the definition of the topology on X, a G°-orbit £2 is contained in the closure
of a GY-orbit £ if and only if £2, is contained in the closure of §2; for alln > N.
Thus, o, is in fact an isomorphism of the partially ordered sets X/G° and X,/ G°
foreachn > N. O

5 Open and Closed Orbits

In this section we provide necessary and sufficient conditions for a given G-orbit
on X = FU(F, E) to be open or closed. We also prove that X has both an open and
a closed orbit if and only if the number of orbits is finite.

First, consider the case of open orbits. Pick any n. Recall [13, 23] that the Gg—obit
ofaflag A ={A; C Ay C ... C A} € X,, is open if and only if
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for G* = SU(p, oo) or SU(c0o, 00): all A;’s are nondegenerate with respect to w;
for G = SL(co, R): foralli, j,dim A; N 7(A;) is minimal,

i.e., equals max{dim A; +dim A; — dim V,,, O};
for G* = SL(oo, H): for all 7, j, dim A; N J(A;) is minimal in the above sense.

Note that, for any two generalized flags F; and F; in X, there is a canonical
identification of | and J; as linearly ordered sets. For a space F' € F|, we call the
image of F under this identification the space in F, corresponding to F.

Fix an antilinear operator ¢ on V. A point G in X = FU(F, E) is in general
position with respect to 1 if F N p(H) does not properly contain F N u(H) for
all F, H € G and all 5 € X, where F s H are the spaces in 'g" corresponding to
F, H respectively. A similar definition can be given for flags in X,. Note that, for
G = SL(00, R) or SL(o0, H), the G%-orbit of A € X, is open if and only if A is
in general position with respect to 7 or J respectively.

With the finite-dimensional case in mind, we give the following

Definition 5.1 A generalized flag G is nondegenerate it

for G = SU(p, o0) or SU(o0, 00):
each F' € G is nondegenerate with respect to w;
for G = SL(o0, R) or SL(o0, H):

G is in general position with respect to 7 or J respectively.

Remark 5.2 A generalized flag being nondegenerate with respect to w can be thought
of as being “in general position with respect to w”. Therefore, all conditions in
Definition 5.1 are clearly analogous.

Proposition 5.3 The G°-orbit 2 of G € X is open if and only if G is nondegenerate.

Proof By the definition of the topology on X, §2 is open if and only if
2, = 1, 1(£2 N, (X,)) is open for each n.

First, suppose G% = SU( p, o0) or SU(oo, 00). To prove the claim in this case, it
suffices to show that A € G is nondegenerate with respect to w if and only if w|,ny,
is nondegenerate for all n for which m, > mg. This is straightforward. Indeed, if
A is degenerate, then there exists v € A such that w(v, w) = 0 for all w € A. Let
v € V,, for some ny with m,, > mg. Then w| ANV, is degenerate. On the other hand,
if v € ANV, is orthogonal to all w € A NV, for some n such that m, > mg, then
v is orthogonal to all w € A because e, is orthogonal to V,, for m > n. The result
follows.

Second, consider the case G° = SL(oco, R). Suppose 2 is open, so §2, is open for
each n satisfying m, > mg. Assume G € X is not nondegenerate. Then there exist
G e XandA, B € Gsuchthat A N T(B) C ANT(B),where A, B are the subspaces
in Q corresponding to A, B respectively. Letv € (AN T(B)) \ (A N T(B)) andn be
such that v € V,,. Since V,, is 7-invariant, we have v € (A, N 7(B,)) \ (A N T(B )
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where A, =ANYV,, B,=BNYV, A _AﬂVn, B _BﬂV This means that
A, N7(B,)is properly contained in A,, N 7(B,). Hence, G, is not in general position
with respect to 7y, , which contradicts the condition that £2, is open.

Now, assume that £2, is not open fgr some n with m, > mg. This means that
thereexist A,, B, € G, = ¢, L(Q) and G, € X, sothat A, N 7(B,) properly contains
A, N7(B,), where A, and B, are the respective subspaces in G, corresponding
to A, and B,. Since 7(€,+1) = €41, the space A,y N 7(By41) properly contains
An+1 N T(Bn+1) where A,,+1, By+1, A,,+1, B, 4+ are the respective images of A, B,
A,, B, under the embedding X, < X,1;. Repeating this procedure, we see that G
is not nondegenerate. The result follows.

The case G° = SL(co, H) can be considered similarly. U

We say that two generalized flags have the same type if there is an automorphism
of V transforming one into the other. Clearly, two E-commensurable generalized
flags always have the same type. On the other hand, it is clearly not true that two
generalized flags having the same type are E-commensurable for some basis E.

It turns out that, for G° = SU( p, 00) and SU(o0, 00), the requirement for the
existence of an open orbit on an ind-variety of the form F{¢(F, E) imposes no
restriction on the type of the flag F. More precisely, we have

Corollary 5.4 If G = SU(p, 00), 0 < p < oo, then X always has an G°-open
orbit. If G° = SU(00, 00), then there exist a basis E of V_and a generalized flag F
such that F and F are of the same type and X = FUF, E) has an open G°-orbit.

Proof For SU(p, 00), let n be a positive integer such that the positive index of wly,
equals p. Let G, € X, be a flag in V, consisting of nondegenerate subspaces (i.e.,
the GY-orbit of G, is open in X,,). Denote by g a linear operator from G, such that
g(F,) = G,, where F, = L;l(}—) € X,,. Then, clearly, g(F) belongs to X and is
nondegenerate. Therefore the G°-orbit of g(F) on X is open.

Now consider the case G° = SU(o0, 00). Let E be an w-orthogonal basis of V.
Fix a bijection £ — E. This bijection defines an automorphism V' — V. Denote
by F the generalized flag consisting of the images of subspaces from J under
this isomorphism. Then F and F are of the same type, and each space in .7-" is
nondegenerate as it is spanned by a subset of E. Thus the G%-orbit of F on X is
open. ]

Remark 5.5 Of course, in general an ind-variety X = FU(F,E) having an open
SU(oo, 0o0)-orbit does not equal a given X = FU(F, E).

The situation is different for G° = SL(oco, R). While an ind-grassmannian
Gr(F, E) has an open orblt if and only if either d1m F < o0 or codimy F < o0,
an ind-variety of the form X = FU(F, E), where F has the same type as the flag
F from Example 2.4 (ii), cannot have an open orbit as long as the basis E satisfies
T(e) =e¢ forall e € E. Indeed, suppose F = {{0} = F() ja F1 ..} € X. As we
pointed out in Example 2.4 (ii), there exists N such that Fn = F ={e,..., e,,)g
forn > N.Pick n so that m,, > max{2N, m z}, where m 2 is an integer such that F
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and F are compatible with respect to bases containing {ei, i > mz}. Then the > flag
]-" = L’I(]-") € X, contains the subspace FN which is deﬁned over ]R Thus, }" is
not in general position with respect to 7|y, » so the GY-orbit of .7-",1 in X, is not open.
Consequently, the G°- -orbit of Fin X is not open.

Let now X = F(F, E) where F is a generalized flag having the same type as
the generalized flag F from Example 2.4 (iii). Recall that

F={{0=Fh,cF CFC...CF,CF_ CV}

where F; = (el, e3,...,e_1)c. Foi ={({ej, j Odd}U{@zj,l > z}) fori > 1. We
claim that X also cannot have an open orbit. Indeed, assume F is E-commensurable
to F. Then F is compatlble with a basis E of V such that E \E is finite. This
means that there exists ¢ € E and a finite-dimensional subspace F € Fwithe e F.
Now pick n so that F C V, and m,, > max{2dim F, mz}. Then F N 7(F) # 0, so
]-" =1 (.7-" ) € X, is not in general position with respect to 7|y, .

Finally, let G° = SL(o0, H). In this case, clearly, an ind-grassmannian Gr(F, E)
may or may not have an open orbit. A similar argument as for SL(oco, R) shows that
if F is as in Example 2.4 (ii), then X cannot have an open orbit. Surprisingly, for
G° = SL(o0, H) and X as in Example 2.4 (iii), X may have an open orbit. Consider
first the case of X = FU(F, E) itself. It it easy to check that if dim V,, = n then F,,
is in general position with respect to J|y, for each n, so the orbit of F is open. On
the other hand, if F and F have the same type and each 2n-dimensional subspace
in Fis spanned by the vectors e1, e, es, €, ..., €4,-3, €4n_2, then X does not
have an open orbit because each generalized flag E-commensurable to F contains a
finite-dimensional subspace F' such that F N J(F) # {0}.

‘We now turn our attention to closed orbits. The conditions for an orbit to be closed
are based on the same idea for each of the real forms, but (as was the case for open
orbits) the details differ.

Suppose G° = SU(c0, 00) or SU(p, 00). We call a generalized flag G in X
pseudo-isotropicif F N H LV is not properly contained in F N H HLV forall F, H €
Gandall G € X, where F, H are the subspaces in G corresponding to F', H respec-
tively. A similar definition can be given for flags in X,,. An isotropic generalized
flag, as defined in [5], is always pseudo-isotropic, but the converse does not hold.
In the particular case when the generalized flag G is of the form {{0} C F C V},
G is pseudo-isotropic if and only if the kernel of the form w| is maximal over all
E-commensurable flags of the form {{0} C FCV}.

Next, suppose G° = SL(o00, R). A generalized flag G in X is real if 7(F) =
for all F € G. This condition turns out to be equivalent to the following condition:
F N 7(H) is not properly contained in FnN T(ﬁ) forall F, H € G and all 5 € X,
where F, H are the subspaces in G corresponding to F, H respectively.

Finally, suppose G° = SL(co, H). We call a generalized flag G in X pseudo-
quaternionic if F' N J(H) is not properly contained in ¥ N J(H) forall F, H € G
and all G € X, where F, H are the subspaces in G corresponding to F, H
respectively. If G is quaternionic, i.e., if J(F) = F for each F € G, then G is
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clearly pseudo-quaternionic, but the converse does not hold. If the generalized
flag G is of the form {{0} C F C V}, then G is pseudo-quaternionic if and only
if codim (F N J(F)) < 1.

Proposition 5.6 The G-orbit 2 of G € X is closed if and only if

G is pseudo-isotropic for G = SU (o0, 00) and SU(p, 00);
G is real for G° = SL(c0, R);
G is pseudo-quaternionic for G° = SL(oco, H).

Proof First consider the finite-dimensional case, where there is a unique closed GS-
orbit on X, (see Theorem 2.1). For all real forms the conditions of the proposition
applied to finite-dimensional flags in V,, are easily checked to be closed conditions
on points of X,,. Therefore, the Gg—orbit of a flag in V,, is closed if and only if this
flag satisfies the conditions of the proposition at the finite level.

Let G° = SU(00, 00) or SU(p, 00). Suppose 2 is closed, so £2,, is closed for each
n satisfying m, > mg. Assume G is not pseudo-isotropic. Then there exist GeX
and A, B € G such that AN B+Y D AnBLY , where A, B are the subspaces in
G corresponding to A, B respectively. Let v € (A N B V) \ (AN B+Y), and n be
suchthatv € V, andm, > mg.Thenv € (A, n BLVi)\ (A, N BLYr), where A, =
ANV, B,=BNV, A,=ANV, B,=BnYV, because B NV, _BLVH
This means that A, N B:-"" is properly contained in A, N Bj- V»_ Hence G, is not
pseudo-isotropic, which contradicts the condition that £2,, is closed.

Now, assume that £2,, is not closed for some n with m, > mg. This means that
there exist A,, B, € G, =,'(G) and G, € X, such that A, N B;~"" is properly
contained in A, N BJ- Vi where A,, B, are the subspaces in Gy correspondlng to

A,, B, respectively. Since each e € En+1 \ E, is orthogonal to V,,, A, 41 N Bni‘l/”“
n+l

is properly contained in An+1 N B,H_1 , where A, 11, Byi1, An+1, B,H] are the
respective images of A,, B, A,,, B, under the embedding X,, — X,;|. Repeating
this procedure, we see that G is not pseudo-isotropic. The result follows.

Let G° = SL(oc0, R). As above, given n, denote G, = ¢, '(G). Note that, given
F € G, 7(F) = F if and only if F, is defined over R, i.e., 7(F,) = F, where
F, = FNYV,, because V, is 7-invariant. The Gg-orbit £2, of G, is closed if and
only if each subspace in G, is defined over R. Hence if 7(F) = F forall F € G, then
£2, is closed for each n (so £2 is closed), and vice versa.

The proof for G° = SL(oo, H) is similar to the case of SU(co, 00) and is based
on the following facts: if A is a subspace of V, then J(A) NV, = J(ANV,) for all
n; the subspace (E,+; \ E,)c is J-invariant for all n. [l

Corollary 5.7 If G = SU(p,o0) for 0 < p < oo, or SL(co,R), then X =
FLU(F, E) always has a closed orbit.

Proof For G = SU(p, o) one can argue as in the proof of Corollary 5.4. For
G" = SL(00, R), the G’-orbit of the generalized flag F is closed because 7(¢) = e
for all basic vectors e € E. O
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Let G° = SU(o0, 00). Obv10usly, the 1nd -grassmannian Gr(F, E)) may have or
may not have a closed orbit. If X = F¢ (F,E), where Fisa generalized flag having
the same type as the generalized flag F from Example 2.4 (ii) and E satisfies all
required conditions, then X does not have a closed orbit. Indeed, assume F € )~(
then F, contains Vj, for certain n and k. The form wly, is nondegenerate, hence F
is not isotropic. There exists an isotropic subspace I of V of dimension n = dim F
containing F nF; FLV anditis easy to see that there exists ]—"0 € X such that I is the
subspace of .7-'0 correspondmg to F,. Thus, F is not pseudo-isotropic.

Now, suppose F is as in Example 2.4 (iii). Here X may or may have not a
closed orbit. For example, assume that E is an w-orthogonal basis of V. Then each
F € X contains a nonisotropic finite-dimensional subspace, and, arguing as in the
previous paragraph, we see that F is not pseudo-isotropic. On the other hand, suppose
that es;_| = €}, | + ¢}, and ey; = e}, | — €, for all i, where {e], e}, ...} is an w-
orthogonal basis with w(e/ZF 1 €5_1) = —w(ey, ez;) = 1.Inthis case, one can easily
check that JF is pseudo-isotropic, so its G°-orbit in X is closed.

Fmally, let G0 = SL(o0, H). Here, in al] three cases (i), (ii), (iii) of Example 2.4,
if X = F¢(F,E)fora generalized flag F having the same type as F, then X may
or may not have a closed orbit. Consider, for instance, case (ii). The flag F itself
is pseudo-quaternionic, so its GO-OLbit in X is closed. On the other hand, if each
(4n + 2)-dimensional subspace in F is spanned by {e;, i < 4n}U {e4,+1, €ant3},
then X does not have a closed orbit.

If G° = SU(p, 00), then, by Corollaries 5.4 and 5.7, X always has an open and
a closed orbit. Combining our results on the existence of open and closed orbits, we
now obtain the following corollary for all other real forms.

Corollary 5.8 For a given real form G° of G = SL(c0, C), G° # SU(p, 00),
0 < p < 0o, an ind-variety of generalized flags X = FL(F, E) has both an open
and a closed G-orbits if, and only if, there are only finitely many G°-orbits on X.

Proof If X has finitely many G-orbits, then the existence of an open orbit is obvious,
and the existence of a closed orbit follows immediately from Corollary 4.3.

Assume that X has both an open and a closed G°-orbit. Let
G° = SU(o0, 00). Fix anondegenerate generalized flag H e X (lying on an open G°-
orbit). Suppose that there exists a subspace F' € H satisfying dim F = codim y F =
00. Since X has a closed G -orbit, there exists a pseudo-isotropic generalized flag
H € X. Let F be the subspace in H corresponding to F. Since H and ‘H are E-
conlmensurable to F, there exists n such that F = A @ B and F=A®B , where
A, A are subspaces of V,, and B is the span of a certain infinite subset of E \ E,; in
particular, B is a subspace of V,, = (E \ E,)c.

The restriction of w to B is nondegenerate, because V,, and V,, are orthogonal. This
implies that B-Y"NB=1{0}. But FLV=ALY"@B-Y"  hence
FNFLY = An ALY, Clearly, if B # V,,, then B- Vi =£{0}. In this case, there
exists v € V,\ B contained in F and one can easily construct a generalized
flag H € X such that FNFLYCFNFYY, where F is the subspace in H corre-
sponding to F, a contradiction. Thus, B = V,,, but this contradicts the condition
codim y F = o0.
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We conclude that H = A U BB, where each subspace in A (resp., in B) is of finite
dimension (resp., of finite codimension). Assume that F is not finite, then at least
one of the generalized flags A and B is infinite. Suppose A is infinite. (The case
when B is infinite can be considered using the map U +— U #) Let n be such that H
and H are compatible with bases containing E \ E,. Let F be a subspace in .A such
that F' does not belong to V,,. Then, arguing as in the previous paragraph, one can
show that 7{ cannot be pseudo-isotropic, a contradiction.

Now, let G° = SL(o0, R). Suppose that H € X isin general position with respect
to7,and H € X isreal. As above, pick n so that H and H are compatible with bases
of V containing E \ E,. Suppose for a moment that there exists a subspace F € ‘H
such that F ¢ V.,then F = A @ B, where A is a subspace of V,,, and B is a nonzero
subspace of V, spanned by asubsetof E \ E,. Similarly, the corresponding subspace
F € Hhastheform F = A & B, where T(A) = Aand 7(B) = B. Suppose also that
B # V,, thenthereexiste € EN Bande' € (E\ E,) \ B.Let B C V,, be spanned
by ((E N B)\ {e}) U{e +ie'}. Itis easy to check that there exists H € X such that
the subspace FeH corresponding to F has the form A @ B’. Thus, F N 7(F)
properly contains Fn T(f ), a contradiction. It remains to note that if F is not of
finite type, then such a subspace F always exists (if necessary, after applying the
map U — U*).

Finally, let G0~: SL(oo, H). Suppose that H € X is in general position with
respect to J, and H € X is pseudo-quaternionic. As above, pick n so that H and H
are compatible with bases of V containing E \ E,. Suppose for a moment that there
exists a subspace ' € H such that F ¢ V,,, then F = A & B, where A is a subspace
of V,, and B is a nonzero subspace of V” =(E\ E,)c spanned by a subset of
E\ E,. The corresponding subspace F € H has the form F = A @ B, where A
is a subspace of V,,. Suppose also that dim B > 2 and codimy B > 2. There exist

a subspace B’ C V,, and H € X such that the subspace FeH corresponding to
F has the form A @ B’, and B’ N J(B') is either properly contains or is properly
contained in B N J(B). Thus, either H is not in general position with respect to J,
or ‘H is not pseudo-quaternionic, a contradiction. It remains to note that if F is not
of finite type, then such a subspace F always exists (possibly, after applying the map
U U"). (]
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Derived Functors and Intertwining
Operators for Principal Series
Representations of SL;(R)

Raul Gomez and Birgit Speh

Abstract We consider the principal series representations 7, induced from a char-
acter v of the upper triangular matrices B and its realization on the Frechet space
of C*°-sections of a line bundle over G/B. Its continuous dual is denoted by I;. Let
N C B be the nilpotent subgroup whose diagonal entries are 1 and denote by n its
Lie algebra. We determine H(n, I¥) and H (n, I*') and conclude that space of the
intertwining operators T : I, — I_, is 2 dimensional for some integral parameter,
otherwise it is one dimensional. The intertwining operators are identified with dis-
tributions. We show that for certain parameters the support of this distribution is a
point, i.e. that the intertwining operator is a differential intertwining operator.

1 Introduction

In this note we revisit the well known theory of intertwining operators for principal
series representations for G = SL(2, R). We consider intertwining operators as a
special case of symmetry breaking operators for principal series representations
I, — I_, and analyze them using mostly geometry and homological algebra instead
of analysis. This leads to a different perspective of a theory developed almost 50
years ago and to some new insights. These ideas is also essential in determining the
invariant trilinear functionals on tensor products of principal series representations
[5].

We do not consider the usual realization of the principal series representations
on a Banach or Hilbert space, but instead we take the representation space of the
induced representation to be the space of C*°-sections of the G-equivariant vector
bundle G xp (x,, C) = G/B, so that I° >~ [, is the Fréchet globalization having
moderate growth in the sense of Casselman—Wallach [10]. Here B = MAN is the
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Borel subgroup of upper triangular matrices, x, = € ® € is a character of B and €
is a character of the center of G. The representation is denoted by I, .. It is called
spherical if € is trivial on the center of G and is denoted by /,,. The parametrization is
chosen so that the spherical representation /,, is reducible if and only if |v| is an odd
integer. For an odd positive integer i the principal series representations /_; contains
a finite-dimensional representation F' (i) as the unique subrepresentation.

The dual space, the space of tempered distributions, is also a U(g)-module, and
a realization I, of the contragredient representation of /. ,,.

The results of W. Casselman and N. Wallach [10] imply that to compute the dimen-
sion of the space intertwining operators it suffices to determine the MA-modules
Ho(n, I.,), respectively HO(n, I* ).

To determine the n cohomology of I, respectively the n-homology of I ,,, we
proceed as follows:

There is a stratification of G/B by orbits of N; one orbit NwB =~ R is open and
dense and one orbit is a closed point eB >~ @ and we get an exact sequence to
n-modules.

0—->SR) > I, —> SogR)—0

On the dual side we have an exact sequence
0—- SR -1, - S R) -0
and so obtain a long exact sequence in n-cohomology
0« SHR)" « (IF )" <« S*R)" <« H'(n, S(R)) < H'(n, I7) < -+

We show that S§(R) is isomorphic to the restriction of a Verma module to b. The

dimension of H%(n, S*(R))= (S*(IR))" is one and thus to determine the cohomology
it suffices to compute the n—cohomology of a Verma module as well as the connection

homomorphism
H'(n, S*(R)) < H'(n, SH(R)).

Lastly, we analyze the action of the diagonal matrices A on the cohomology. Thus
we obtain

Theorem 1 Let 1., be a principal series representation.

1. If v is not a negative integer then
dimHy(n,1.,) =2 and dimH (n,1.,) =0
2. If v =+4emod?2 is a negative integer, then

dim Hy(n,1.,) =2 and dim Hi(n,1.,) =0
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3. Ifv=e+ 1mod?2 is a negative integer, then
dim Hy(n,1.,) =3 and dimH (n,I.,) =1

Corollary 2

1. Under the assumptions (2) the support of both distributions in (IX I is the
identity.

2. Under the assumptions (3) the support of 2 distributions in (I:,V)N is at the identity
and one distribution has support on G/B.

After analyzing the action of A on the cohomology we conclude

Theorem 3 Let 1., be a principal series representation. Then

1. If v is not a non positive integer then
dim Homg(I; ., 1. _,) = 1

and the intertwining operator is an integral operator.
2. Ifv=c¢c+4 kmod?2 then

dim Homg(I. ,, 1. —,) = 1.

If v is a non positive integer then the intertwining operator is a differential
operator.
3. Ifv=c¢c+k— 1 mod?2 is a nonpositive integer then

dim Homg(I..,, I, _,) =2

One intertwining operator is an integral operator and the other intertwining
operator is a differential operator.

The article is organized as follows:

Notation and generalities

I, and I}} as a U(n)-modules

The n-cohomology and n-homology
The main theorem

Application to intertwining operators
. Closing Remarks

SUnsE B =

2 Notation and Generalities

In this section we establish the notations and recall some well known results about
the Casselman-Wallach-model of principal series representations of SL(2, R).
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2.1 Let G be the special linear group SL(2, R). The Lie algebra of any subgroup of G

is denoted by the corresponding lower case Gothic letter and the enveloping algebras
of a Lie subalgebra f) C g by U(h). We choose the usual basis

e=(50)- m=(0) r=(49)

We fix a Borel group B of upper triangular matrices. Let N =

of g.

1n\. .
01 its nilpotent
subgroup with diagonal entries 1. The connected component of the group of diago-

nal matrices is denoted by A, M = (—1)’ ((1) (1)) and K = SO(2). Then B = MAN,

G = KAN. We denote by N the transpose of N. Then NB is dense in the group G.
2.2 The space G/B is isomorphic to the projective space

P! = {[x : y]l(x,y) € R* — (0, 0)}.

The group N acts on P! by [x : y] = [x 4+ ny : y]. So we have 2 orbits: the closed
orbit: [x : 0] and the open orbit [x : y], y # 0.

2.3 We denote by « the positive root. A character of B is determined by a character
of B/N = MA
EXv - MA — C

where

w)
€Xy I ma — e(m)e'z “log(@)

Here v € C and the character € can be identified with an element in Z,. If € is trivial
we simplify the notation and write only X, for the character of MA.
We consider the principal series representation

I, = indgx,,_H.

in its Casselman-Wallach realization as continuous representation [10] acting on the
Frechet space

I, =1{f € C*(G) | f(nag) = x,+1(a)f (g) for g € G, b € B}

We also consider the dual representation [ acting on the space I} of tempered
distributions on /,,.

2.4 The character y, defines a linear functional on b and hence on U(b) which we
denote by the same letter. We define the Verma module

M) =U(9) Qup) Xv—1-
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Recall that for positive integral parameter v the Verma module has a composition
series of length 2 with the finite dimensional representation as the irreducible quotient
and subrepresentation M (—v — 2). Otherwise the modules are irreducible [6].

3 A Filtration of the Representations /,, and I},

In this section we use the N-orbits G/B by N to define a filtration of /, and I} by
n-modules and to analyze it.

3.1 We consider the restriction of the representation /,, to n and define a filtration of
I as follows:
For v € a* we have the U(n)-module

U, = {f € I, |f and all its derivatives vanish on the closed orbit [x : 0]},

It is isomorphic as a U(n)-module to U under f +— f|xk.
We define W, by the exact sequence

0—-0,—-1—->W, —>0.
and obtain an exact sequence of U(n)-modules. On the dual side we have the exact

sequence
0->W, - I — U — 0.

32Letw = ((1) _01) and define maps

T°:1, - C*(R)
and

T : 1, - C*([R)
by

1
T() () = (w ([ ﬂ)f) (w),

and

e = (= ([}, ])7) .

respectively.
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Lemma 1

1. T°(U,)) = S(R), where S(R) is the Schwartz space for R.
2. Ifx #0, then
T (1)) = "' T () (). (1)

Proof The first part follows immediately from the definition of 7°.
For the second part, observe that

1 L -y
-0 el
- Y
o1 VL o Vi ]| s 7

1

[0_1}[1 }_[lxz__jfl}[m ][ /1)6)C ; }
= ) .
10 x 1 1 0 /T+ 2 = -

14x

and

+
kﬂ
><I\)

Now observe that if we set y = 1/x, then

L] _[1 ]| 7
1 - 1 0 1422

It follows immediately that

=
L 1
1
= D)l
By
W o
= =
) o
L 1

TN (1/x) = [x["FPT2, () (x). u

Corollary 4 U} is isomorphic to the tempered distributions on R.
3.3 We analyze next the module W,,.

Lemma 2 The map

I (f(e), Ff(e), F*f(e),...)

induces an isomorphism between W, and
[]C=t@.a...)la eCforallk = 0},
k=0

where the last space is endowed with the projective limit topology.

Proof Any linear functional on W/, corresponds to a linear functional on 7., that
vanishes on U,. Under the map f +— T °(f), this corresponds to distributions on R
supported at the origin. From well-known results from functional analysis, we know
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that this space of distributions is the inductive limit generated by derivatives of the

delta-functional 0. For F' = (_O1 8)

d
TP (F)(y) = d—yTg“L(f)(y),

we see that this space correspond to the inductive limit generated by the linear
functionals F*6,, where §, is the delta-function at the identity. The lemma now
follows immediately. [J

Lemma3 Forallf €1,

(FYEf)(e) = —k(v + k)f*"'f (e)

and

(F*Hf)(e) = (v + 2k + D)F*f (e).

Proof We will prove this formulas by induction on k. For k = 0 the formulas are
trivially true. Assume that the formulas are valid for all j < k. Then

(F*"'Ef)(e) = (F*EF)f (e) — (F*Hf)(e)
= —k(v + k) (F*F)f (e) — (v + 2k + 1)(F*f)(e)
= [—k*> —kv — v — 2k — 11F*f(e)

—[vk + 1) + (k + D*IF*f (e)

= —[(k+ D) + (k+ DIF*f(e).

Similarly,

(FY'Hf )(e) = (FHF)f (e) + 2(F**")(e)
= (U + 2k + DF*F(e) + 2(FF ) (e)
=W +2k+ 1)+ DE"Nf(e).

Corollary 5 As a U(n)-module

Wi = M(_V)\U(n)'

4 The n-Cohomology and n-Homology

In this section we give a definition of H*(n, I) and H,.(n, I,)). For details see [2],
Sect. L.
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4.1 Let H be a (connected) real Lie group and let V be a h-module. For n € N let
C"=C"(h, V) = Hom(nh", V)
andd : C" — C"*! defined by
df Xo, X1, .., Xa) = = D (=D)'Xf Ko, ..., Xiv -, X)
+ O F X X Xow o Ko K X,
i<j
Similarly we define the homology with coefficients in an h—module by the complex
B"=B'H, W) =A"h QW

and § by

S AKX ®w) = D VG XIAK AR K A @ w
I1<j<k<n

+ O =D AX A X AKX @ X,
1<i<n
4.2
Example 1 The Schwarz space S(U) = U, is a smooth N-module. Given f € U,

Jl,(f):/Rf (w[lﬂ) dxz/RT,?(f)(x)dx.

Then J,, induces an isomorphism between (U,),, and C. On the other hand we may
consider [J,] € (U*)N = H(n, U?). Furthermore,

HmU)=H®TU)»=0 forall vea*

Example 2 W, and W7 are a n-modules. If v is not an strictly negative integer, then
the Verma module W} = M (—v) is irreducible and the map f — f(e) induces an
isomorphism between (W), and C and thus Hy(n, W,)) = C. Furthermore the class
of the §,—distribution is nontrivial in H(n, W#). In this case,

H(n,W,) =0=H"'(n, W)

On the other hand, if v is an strictly negative integer then the Verma module
W?* = M(—v) is reducible. For a nontrivial generator F of n, the map f —
(f(e), (F7"f)(e)) induces an isomorphism between (W), and C?. In this case the
classes of the d,—distribution and of F~"d, are spanning H 2(n, W?). Furthermore
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dimH;(n, W,) = 1 and this space is generated by an element f € I, such that
F7"71f(e) # 0and F/f(e) =0 forallj # —v — 1.

4.3 The n—-modules I} and I, are smooth and nuclear. Furthermore, I, is also a
Frechet space. We define
TOIJX/(Im (C) = Hn(na II/)

and
Exty (C,I}) =H"(n, I).

Note that
Hi’l(n1 Iu)* = Hn(n’ I:)

The short exact sequences
0->W ->I'—>TU, -0

and
0—-0U,—-1,—-W,—0

of U(n)-modules induce the long exact sequences

0« H'(n,U¥) < H'(n, I}) < H'(n, W) < (UH)" « (IH" < (W)™ <0
and
0— Hl (nv Uu) — Hl (nv 11/) — Hl (n, WV) - (Mu)n - (Iu)n - (Wy)n — 0.

The sequences are dual to each other.

5 The Main Theorem

In this section we state and prove the main theorem.

5.1 First we determine the n-cohomology of I7}.

Proposition 1 Let I, be a spherical principal series representation. Then

1. If v is not a negative integer then

dimHy(n,I,) =2 and dimH (n,I,) =0
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2. If v is a non zero even negative integer, then

dim Hy(n,1,) =2 and dimH; (n,1,) =0
3. If v is a non odd negative integer, then

dim Hy(n,1,) =3 and dimH (n, 1) =1

Remark For the equivalent statement for the p-adic general linear group GL(2, Q,)
see [3].

Proof of Proposition 1: Suppose first that v is not a negative integer. Then by the
previous section dim (W,), = dim (U, ), = 1 and the sequence

0— U = T)n = (Wy)n =0

is exact. In particular,
dim (1,), = 2.

and
H] (na II/) =0

Now suppose that v is a negative integer. Then we have the exact sequence
0—-H ML) —>H0W,)—> U)y—> L)a = (W,)y > 0.

and so we have to understand the connection homomorphism C = Hy(n, W,) —
(U,)n = C. Letf €1, be such that

Tf () =y
in a neighborhood of 0. Then 0 # [f] € H;(n, W,)). To compute the action of the

connecting homomorphism, we use Eq. (1) to get the following identity in a neigh-
borhood of oo for x:

A/ =T (/%) = x| T (x).
In other words, if |x| > 0, then

Tf (x) = sgn(x) *t1.
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Now, it’s straightforward to check that
* (d
0
J1(0f) = / (aTyf(x))(x) dx
—00

= lim sgn(x) ! — sgn(—x)7**!
X—>0Q

1— (_1)—k+1 )

Since J,, defines an isomorphism between U,, and C we conclude that The connecting
homomorphism 0 is trivial if an only if

O0=k—1 mod 2.
Thus if v = —k is a negative integer then

3if0=k—1 mod 2

dim/le=1540=k mod2

5.2 Similarly we determine the n-cohomology for the principal representations /.,
for nontrivial € and prove

Theorem 6 Let 1., be a principal series representation. Then

1. Ifv is not a negative integer then

dimHy(n,I.,) =2 and dimH (n,(I.,)=0
2. Ifv=¢e+ kmod?2, then

dim Hy(n,I.,) =2 and dimH{(n,(Il;,) =0
3. Ifv=¢e+k — 1mod 2 is a non odd negative integer, then

dimHo(n,I.,) =3 and dimH (n,(I.,) =1

Since the n—cohomology is finite dimensional we can conclude

Corollary 7 Let I, be a principal series representation.

1. Under the assumptions of Theorem 6 (2) the support of both distributions in
(IE*’,,)N is the identity.

2. Under the assumptions of Theorem 6 (3) the support of 2 distributions in (IE*’V)N
is at the identity and one distribution has support on G/B.
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6 Application to Intertwining Operators

‘We first determine the MA-module Hy(n, 1,)). Then we review the connection between
the Jacquet module Hy(n, I,) and intertwining operators between principal series
representations in their Casselman-Wallach realization, to complete the proof of
Corollary I. 3. For another approach see Chap. VII. of [7].

6.1 The diagonal matrices A act on n and hence on H°(n,1,). An eigenvector V,
transforming according to the character ,, defines an intertwining operator

Vyil,— 1,

There is always a linear functional in H(n, I,,)* with Eigenvalue v corresponding
to the delta distribution at the identity, It corresponds to the identity intertwining
operator.

6.2 Since A normalizes n we consider (/,),, and hence (I)" as an A—-module. If v is
nonsingular then [4] implies that the action of A on Hy(n, I,)) is semi simple. If v is
not a negative integer, zero or if v = € + k mod 2, then A acts by the characters x,,
and x_, on Hy(n, I, ).

6.3 Suppose now that /,, is a spherical principal series representation and v = 0. Let

Uo, = {f € o, |f(e) =0}

and observe, that, if we assume that Rerv > —1, then the integral

Jo,u(f)=/Rf(w[1)1CD dx

is absolutely convergent. On the other hand, if 1, € Iy, is the element such that
1,]xk = 1, then for Rerv > 0

Jou(1,) = / (1 4+ % dv = Bw/2, 1)2).
R

where

CTWr)
B =161y

is the Beta function. Let

KO,V = JO,V - JO,V(lu)(Se
=Jo., — B(v/2,1/2)6..

Thenitis straightforward to check that Ky, is well defined forRer > 0. Furthermore,
since Iy, = Uy, @ (1,), the map Ky, has holomorphic continuation to Rerv > —1
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and

(I(/),u)rl = Span({j{(se’ K(),l/}~

Now, observe that
H-6.=—w+ 1),

and

H-Ko,=w—1DJo,+ @+ 1)B/2,1/2)6,
= (- 1)K0,1/ + 2VB(V/Q" 1/2)5ea

that is, the action of H on (1(/),”)“ corresponds to the matrix

v—1

[—u —12vB®/2, 1/2)}

Taking the limit as v — 0, we get

H < |:_1 _41 ] .
In particular, this implies that although dim(/) ;)" = 2, we have

dim Homg (Zo.0, Io.0) = 1.

and thus we have another proof of the well known fact that Iy ¢ is irreducible.

7 Closing Remarks

Remark on analytic continuation: A. Knapp and E. Stein [8] introduced in 1967
intertwining operators for principal series of Lie groups realized on the Hilbert Space
of L?>—sections of a vector bundle V,. These operators were initially defined only for
parameters in a region in the positive Weyl chamber then a normalized operator was
defined and analytically continued to all continuous parameters. The main tool was
L*-harmonic analysis. The normalized linear functional

A f(e)—;/ v (po)d
£, - F(Engil) G/B XV g g

defines an intertwining operator. This operator coincides on the C*°-vectors with the
operator defined by A. Knapp and E. Stein, since we have multiplicity one for the
operators and the actions coincide on the minimal K-types.
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Remark on differential intertwining operators: Differential intertwining opera-
tors were discovered around 1974 by B. Kostant [9]. Differential intertwining oper-
ators for rank one principal series representations were considered by B. Boe and
D. Collingwood [1]. It is known which of these differential intertwining operators
are residues of integral intertwining operators and which ones define truly new
additional operators.

Remark on N-cohomology for p-adic representations: For the p-adic principal
series representations we can proceed as in the real case. In this case the functions in
the Schwartz space on , have compact support and S(Q) is the trivial representation.
Its N-homology is concentrated in degree 0. The cohomology is also concentrated
in degree 0. and we always have a unique nontrivial integral intertwining operator.
See also the argument in Bump’s book.

Acknowledgements Research by B. Speh partially supported by NSF grant DMS-1500644.
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Hyperlogarithms and Periods in Feynman
Amplitudes

Ivan Todorov

Abstract The role of hyperlogarithms and multiple zeta values (and their general-
izations) in Feynman amplitudes is being gradually recognized since the mid 1990s.
The present lecture provides a concise introduction to a fast developing subject that
attracts the interests of a wide range of specialists — from number theorists to particle
physicists.

1 Introduction

Observable quantities in particle physics: scattering amplitudes, anomalous magnetic
moments, are typically expressed in perturbation theory as (infinite) sums of Feynman
amplitudes —integrals over internal position or momentum variables corresponding to
Feynman graphs (ordered by the number of internal vertices or by the number of loops
— the first Betti number of a graph). Whenever these integrals are divergent (which
is often the case) one writes them as Laurent expansions in a (small) regularization
parameter €. (In the commonly used dimensional regularization ¢ is half of the
deviation of spacetime dimension from four: 2¢ =4 — D. We shall encounter in
Sect.2 a more general regularization with similar properties.) It was observed —
first as an unexpected curiosity in more advanced calculations (beyond one loop),
then in a more systematic study — that the resulting integrals involved interesting
numbers like values of the zeta function at odd integers. Such numbers, first studied
by Euler, but then forgotten for over two centuries, attracted independently, at about
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the same time the interest of mathematicians who defined the Q-algebra P of periods.
According to the elementary definition of Kontsevich and Zagier [29] periods are
complex numbers whose real and imaginary parts are given by absolutely convergent
integrals of rational differential forms:

I:/Egdxl...dx,, (e P), (D

where P and Q are polynomials with rational coefficients and the integration domain
X is given by polynomial inequalities again with rational coefficients.

Remarkably, the set of periods is denumerable — they form a tiny (measure zero)
part of the complex numbers but they suffice to answer all questions in particle
physics. More precisely, it has been proven [6] that for rational ratios of invariants
and masses all Laurent coefficients of dimensionally regularized Euclidean Feynman
amplitudes are periods. Brown [17] announces a similar result for convergent “gen-
eralized Feynman amplitudes” (that include the residues of primitively divergent
graphs) without specifying the regularization procedure.

Amplitudes are, in general, functions of the external variables — coordinates or
momenta — and of the masses of “virtual particles” associated with internal lines.
Just like the numbers — periods (that appear as special values of these functions) the
resulting family of functions, the iterated integrals [21], has attracted independently
the interest of mathematicians. Here belong the hyperlogarithms which possess arich
algebraic structure and appear in a large class of Feynman amplitudes, in particular,
in conformally invariant massless theories.

The topic has become the subject of specialized conferences and research
semesters.' The present lecture is addressed, by contrast, to a mixed audience of
mathematicians and theoretical physicists working in a variety of different domains.
Its aim is to introduce the basic notions and to highlight some recent trends in the
subject. We begin in Sect. 2 with a shortcut from the early Euler’s work on zeta to the
amazing appearance of his alternating (“¢-function”) series in the calculation of the
electron (anomalous) magnetic moment. Section 3 reviews the appearance of periods
as residues of primitively divergent Feynman amplitudes. Section4 introduces the
double shuffle algebra of hyperlogarithms appearing inter alia in the calculation of
position space conformal 4-point amplitudes. In Sect.5 we introduce implicitly the
formal multiple zeta values (MZV) defined by the double shuffle relations including
“divergent words” and setting ((1) = 0. The generating series L(z) and Z “= L(1)”
are used to write down the monodromy around the possible singularities at z = 0
and z = 1 of the multipolylogarithms. We also display the periods of the “zig-zag
diagrams” of Broadhurst and Kreimer and of the six-loop graph where a double
zeta value (((3, 5)) first appears. In Sect. 6 we define the “multiple Deligne values”

1To cite a few: “Loops and Legs in Quantum Field Theory” Bi-annual Workshop taking place (since
2008) in various towns in Germany; Durham Workshop: “Polylogarithms as a Bridge between
Number Theory and Particle Physics” [43]; Research Trimester “Multiple Zeta Values, Multiple
Polylogarithms, and Quantum Field Theory”, ICMAT, Madrid, 2014, [39, 40].
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(involving N™ roots of one) and provide a superficial glance at motivic zeta values
[4, 13, 14, 17] using them (following [13]) to derive the Zagier formula for the dimen-
sions of the weight spaces of (motivic) MZVs. Finally, in Sect. 7 we give an outlook
(and references to) items not treated in the text: single valued and elliptic hyperlog-
arithms and give, in particular, a glimpse on the recent work of Francis Brown [17]
that views the “motivic Feynman periods” as a representation of a “cosmic Galois
group” revealing hidden structures of Feynman amplitudes.

2 From Euler’s Alternating Series to the Electron Magnetic
Moment

Euler’s interest in the zeta function and its alternating companion ¢(s),

s
n=1 n=1

0 1 e -1 n—1 ‘
<(s)=zn—, ¢(s)=2( n) (=@ =2"%¢@) fors > 1) (2

was triggered by the Basel problem [42] (posed by Pietro Mengoli in mid 17 century):
to find a closed form expression for ((2). Euler discovered the non-trivial answer,
((2) = %,in 1734 and ten years later found an expression forall ((2n),n = 1, 2, .

asa ratlonal multiple of 7. An elementary (Euler’s style) derivation of the first few
relations uses the expansion of cot(z) in simple poles (see [7]):

2 n
Zcot(z)zl—ZZZZ n27r2 —1—224(2@( )

n=1
1—i+4—... 2 4
:#:ﬂ(z)zg, (D=5 O
_ﬁ 5...

Euler tried to extend the result to odd zeta values but it did not work [22]. (We still
have no proof that C( ) is irrational.) Trying to find polynomial relations among zeta
values Euler was led by the stuffle product

C(m) C(n) = C(m, n) + ((n,m) + ((n +m) “4)

to the concept of multiple zeta values (MZVs):

1
Cny,...,ng) = Z T &)
Tk

O<k)<...<ky
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The alternating series ¢(s) (2) (alias the Dirichlet eta function®) provide faster con-
vergence in a larger domain. While {(s) has a pole for s = 1, we have

#(1) = In2. (6)

Applying the stuffle relation for ¢?(1):

#*(D(= (In2)%) =2¢(1, 1) + ¢(2) (7)

where
B (= 1)+t 0 g
¢<m,n>—0£ o < (®)

Euler expressed ((2) in terms of a much faster converging series (eventually guessing
and then deriving ((2) = Z- — see Sect. 3 of [3]):

(@) = ¢(1)* —26(1, 1) = (In2)? +Z zzn

and computed it up to six digits (((2) &~ 1.644934).

Remarkably, it is the same ¢- function which enters the g-factor of the magnetic
moment of the electron p = g 5> s — probably the most precisely measured and
Tz 1s the

fine structure constant, the anomalous magnetic moment a, = % is given by [30,
35]:

calculated quantity in physics [28]. Up to third order in =, where a =

1 il ’
a=3 2+ 6000001+ + 37 (a)

2w
2 50 )
+ [§ (839(2) p(3) — 43 9(5)) — 3 o(1,3) + ? »(2) )
278 ($(3) 34202 282591 ya\3
(- airin) 5 22

Schwinger’s 1947 calculation of the first term (2 ) contributing a 10~ correction
to Dirac’s magnetic moment, won him (together with Tomonaga and Feynman) the
1965 Nobel Prize in physics. The second term (of order ( ) ) was finally correctly
calculated only 10 years later (by Peterman and Sommerfield). If Schwinger’s work
amounted to computing a single 1-loop (triangular) graph with 3 internal lines each,
the 2-loop calculation involved 7 graphs, each new loop adding three additional lines

car X
2Nowadays the term is usually associated with the Dedekind n-function n(t) = ¢/ 12 [[ (1 — ¢™),
n=1

g = e*™7 defined on the upper half plane 7.
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(and as many new integrations in the Schwinger parameters — see [27, 28, 37]). The
three-loop calculation involving 72 graphs was completed first numerically (compar-
ing with partial analytic results) by Kinoshita in 1995 and then fully analytically by
Laporte and Remiddi a year later. The accuracy of both experimental measurement
and theoretical computation (going nowadays beyond 4 loops!) is improving and the
results match in a record of 12 significant digits (with uncertainty a part in a trillion):

a, = 1.159652 18091 (£ 26) x 1073 (experiment)
a, = 1.159652 181 13 (4 86) x 1073 (theoretical).

In the words of ““a spectator” in the “tennis match between theory and experiment”
[27] “20-year-long experiments are matched by 30-year-long calculations”.

Itis hard to overestimate the beauty and the significance of a formula like (9) given
the precision with which it is confirmed experimentally. The perturbative expansion is
likely to be divergent but is believed to be asymptotic. Individual terms have a mean-
ing of their own, both as special exactly known numbers and as measured quantity
(the higher powers of = provide at least a hundred times smaller contribution).

The ¢-function appearing in (9) had a more than passing interest for Euler. In
a 1740 paper (5 years after publishing his discovery of the formulas for ((2n),
n=1,2,...,6)hewrote ((n) = Nn" indicating that for n-even, N is rational while
for n odd he conjectures that N is a function of In2 (Sect.6 of [3]) — a natural
conjecture in view of (6). In another paper of 1749 (of his Berlin period) after playing
with some divergent series Euler proposes the functional equation for ¢(s) writing:
“I shall hazard the following conjecture:

p(l—s)  T(s)2° —1)cos T
o) @' -Dm

(10)

is true for all s.” From here and from (2) the functional equation for {(s), proven by
Riemann 110 years later (in 1859), follows immediately. Euler then admits that his
earlier conjecture about odd zeta values went astray: “I have already observed that
¢(n) can only be computed for even n. When n is odd all my efforts have been useless
up to now.” (Sect. 7 of [3].) Euler last returned to the topic in 1772. (He continued
doing mathematics — and dictating papers — already completely blind until his death
in 1783.)

3 Residues of Primitively Divergent Amplitudes

Let I" be a connected graph with finite sets £ of edges (internal lines) and vertices V,
such that each edge e € £ is incident with a pair of different vertices (v;, vj, v; # v;
— we do not allow for tadpoles). To each such graph we make correspond a position
space Feynman integrand
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Gr(x) = H Ge(xij), xij=xi—x; (xi =@, a=1,...,D))
ee&

l<i,j<V, x=@&x'....xY), N=DWV -1 (11)

where i, j label the vertices v;, v;, incident with the edge e, V = [V is the number of
vertices, D is the spacetime dimension (D = 4, 6, ...). We are in fact just interested
in the case D = 4. Each propagator G.(x) is assumed to be locally integrable away
from the origin. In the Euclidean picture, to be used below (in which square intervals
are given by x* = Z(x“)z) the integrands (11) are actually smooth bounded (usually

going to zero) at in?inity functions away from the large diagonal (x; = x; for some
i # j). In Minkowski space G, is, generally, singular on the light cone x> = 0. The
integrand (11) is said to be ultraviolet (UV) convergent if it is locally integrable
(at the diagonal) and hence gives rise to a (unique, tempered) distribution in RV,
Otherwise, it is called (UV) divergent.

A (proper) subgraph « of I' is defined to contain a proper subset of vertices of
I together with the adjacent half edges and to contain every edge in I" incident
with a pair of vertices vy, v, of . A divergent integrand G r is said to be primitively
divergent if for any (connected) subgraph v C I" the corresponding integrand G,
is convergent. In a massless quantum field theory (QFT) in which every propagator
G.(x) is a rational homogeneous function of x,

Pe(X)
(xz)ﬂe

G(x) = o e €N, pe(Ax) = Ape(x) for A > 0 12)

(v <2 u.), there are simple convergence criteria in terms of homogeneity degrees
[31].

Proposition-Definition 1 A homogeneous density G(x) dx is convergent if its
homogeneity degree is (strictly) positive. Otherwise, for

COX)d"Ax = 2"G)dVx @x =dx'...dx"), k>0 (13)

it is called superficially divergent with degree of superficial divergence k.

In a (massless) scalar QFT, in which all polynomials p.(x) are constants, one
proves that superficially divergent amplitudes are divergent. For more general spin
tensor fields whose propagators have polynomial numerators a superficially divergent
amplitude may, in fact, turn out to be convergent (see Sec. 5.2 of [31]).

The following proposition (cf. [31]) serves as a definition of both the residue
Res G and of renormalized primitively divergent amplitude G”(x).

Proposition 2 If G(x) is primitively divergent then for any non-zero smooth semi-
norm p(x) on RN there exists a distribution Res G with support at the origin such
that
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1

(P(X)*G(x) = ~Res G(x) = G"(x) + 0 (e) (14)
9

where G?(X) is a distribution valued extension of G (x) to RN . The calculation of the
distribution Res G can be reduced to the case k = 0 of a logarithmically divergent
amplitude by using the identity

(Res G)(x) = % Di, ...0;, Res(x" ... x"G(x)) (15)

where summation is assumed (from 1 to N) over the repeated indices iy, ..., i,. For
a (reduced) G that is homogeneous of degree —N we have

Res G(x) =r1es G d(x) (whenever 8;(x'G) = 0 for x #0). (16)

Here the numerical residue res G is given by an integral over the (compact) projective
space PN~!:

N

1 o _

resG:m G(X)E(—1)’71x’dx1/\.../\dx’/\.../\de (17)
i=1

(the hat over dx' means that it should be omitted).

We note that for D (and hence N) even N — 1 is odd so that the space PN~! is
orientable.

Schnetz (Definition-Theorem 2.7 of [35]) gives six equivalent expressions for
the “period of a graph” (i.e. for the residue of the corresponding amplitude). The
statement, formulated for the massless * theory in D = 4 is actually valid for any
homogeneous of degree —N (= D(1 — V) —1i.e. logarithmic) primitively divergent
amplitude. In particular, the residue of a position space integrand G (x, ..., xy) in
a scalar QFT can be written as an (N — D) dimensional integral

V-1

dD.X,'
resG = /(H W)G(e,xz, e Xxy—1,0) (18)

i=2

where e is any (D-dimensional) unit vector > = 1. For D > 2 the Schwinger para-
meter representation gives a still lower, (L — 1)-dimensional, projective integral
representation for the residue. (For a 4-point graph in the * theory the number
of internal lines L is related to the number of vertices V by L = 2(V — 1) so that
L—1<D(V —-2)forD >2)

In the important special case of a (massless) * theory in D = 4 Schnetz [35,
36] associates with each 4-point graph I" (i.e. a graph with 4 external half edges
incident to four different vertices) a completed 4-regular vacuum graph T". He proves
(Proposition 2.6 and Theorem 2.7 of [35]) that all primitive 4-point graphs with the



158 1. Todorov

same primitive vacuum completion have the same residues. Moreover, there is a
simple criterion allowing to tell when a 4-regular vacuum graph is primitive: namely,
if the only way to split it by a four edge cut is by splitting off one vertex. (See examples
in Sect.5.)

4 Conformal 4-Point Functions and Hyperlogarithms

Each primitively divergent 4-point Feynman amplitude in a (classically) conformally
invariant QFT defines (upon integration over the internal vertices) a conformally
covariant, locally integrable function away from the small diagonal x| = - - - = x4.
On the other hand, every four points, x, ..., x4 can be confined by a conformal
transformation to a 2-plane (by sending, say, a point to infinity and another to the
origin). Then one can represent each Euclidean point x; by a complex number z; so
that

xp= gl = @o— )G — 7). (19)

In order to make the map x — z explicit we fix a unit vector ¢ € R* and let n be a
variable unit vector orthogonal to e parametrizing a 2-sphere S2. Then any Euclidean
4-vector x can be written (in spherical coordinates) in the form

x =r(cospe+sinpn), e =1=n

We make correspond to the vector (20) a complex number z such that

r=reé? > (=) =2z, x—e’=1-zPP=10-2(1-2); 2D

4 2
/ Ix_ etz ( / 500 d'x = 3(2) ) 22)
nes? T

The 4-point amplitude with four distinct external vertices in the ¢ theory has scale
dimension 12 (in mass or inverse length units) and can be written in the form

fu,v)  F(2)
G(xy, ..., = 23
(x1 X4) | xlzj “ Tl (23)
i<j i<j

Here the (positive real) variables u, v; and the (complex) z are conformally invariant
Cross ratios

2,2 2 .2
X1 X _ Xy X 212 234
=2 =7z, v="2B =1, =" (24)

2
13424 X13 424 213224
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The cross ratios z, 7 are the simplest realizations of the argument of a hyperloga-
rithmic function whose graded Hopf algebra we proceed to define [10, 12].

Letoy =0, 0y, . . ., oy be distinct complex numbers corresponding to an alphabet
X ={ep, ..., en}. Let X* be the set of (finite) words w in this alphabet, including
the empty word . The hyperlogarithm L,,(z) is an iterated integral [12, 21] defined
recursively in any simply connected open subset U of the punctured complex plane
D =C\X, X = {0y, ..., oy} by the unipotent differential equations?

d L,
4y =@ s =1 (25)
dz 7—0

and the initial condition

1 n
L) =0forw £0" = (0.....0). Ly = m" (26)

n

There is a correspondence between iterated integrals and multiple power series;
setting n; = n; — 1, k; = k; — 1 (and assuming o; # 0 for I <i < d) we find

_1)d / () —
(=D Ly oty () = 27)
d /
k k. . %)) 04 Z
> =] (n) Lo (2) Lix, ., (—, ey, =
ko=0.k; >n; fori=1....d i=1 i g1 Oda-1 04
kot Akg=ng+...4+ng
where ”
1 m
. -2
Lig, i (z1,.nz) = Y S (28)
.my”

O<mi<..<m, "'"1 *

The number of letters |w| = ng + - - - + ny of a word w defines its weight, while the
number d of non-zero letters is its depth. The product L., L,, of two hyperlogarithms
of weights |w|, |w’| and depths d, d’ can be expanded in hyperlogarithms of weight
|lw| + |w’| and depth d + d’, since the product of simplices can be expanded into a
sum of higher dimensional simplices. In fact, the set X* of words can be equipped
with a commutative shuffle product w 1w’ defined recursively by

Aww=w=wwl), auwbv=a(uwbv)+ blauwv) 29)

where u, v, w are (arbitrary) words while a, b are letters (note that the empty word
is not a letter). Denote by Oy the ring of regular functions on D:

3We use, following [13, 36], concatenation to the right. Other authors [8, 24] use the opposite
convention.
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1
Ox=C|z, ( ) ’ 30)
Z— O0q a=0,1,...,.N

Extending by O y-linearity the correspondence w — L,, one proves that it defines
a homomorphism of shuffle algebras Oy ® C(X) — L5 where Ly is the Oy span
of L, w € X*. The commutativity of the shuffle product is reflected in the identity

Lyw=1L,L, (= L, Lu) (31)

If the shuffle relations are suggested by the expansion of products of iterated integrals,
the product of series expansions of type (28) suggests another commutative stuffle
product. We illustrate the corresponding rule on the example of the product of a depth
one and a depth two factors:

Lin],nz (Zla 22) Lln3 (Z3) = Lin],ng,ng (Zlv Z27 Z3) + Liill,n3,112 (Zla Z3a Zz)
+ Lin;,nl,ng(z37 21, ZZ) + Linl,n2+n3 (Zl, Z213)
+ Lin1+n3,nz(ZIZ3a ZZ)~ (32)

(The corresponding product of words u = z; 0" 50”2, v = z3 0" is denoted by
u * v.) Clearly, the stuffle product also respects the weight but only filters the depth
(there are terms of depth two and three in the right hand side of (32) always not
exceeding the total depth — three — of the left hand side). The shuffle and stuffle
products give a number of relations among hyperlogarithms of the same weight. The
monodromies of the multivalued hyperlogarithms around the possible singularities
forz = o, € X provide more (noteasy to find) such relations. The bialgebra structure
of hyperlogarithms introduced by Goncharov [26] (see also Theorem 3.8 of [13] and
Sect. 5.3 of [24]) allow to reduce the calculation of monodromies and discontinuities
of higher weight hyperlogarithms to those of simple logarithms (see e.g. [1]). Here we
shall just reproduce the coproduct for the special case of the classical polylogarithm:

(Inz)*
k!

n—1
ALiy(z) =Li,() @1+ Y ® Liy—(2), (33)

k=0
the natural logarithm appearing as primitive element,
AL/@) =L@ ®1+18 L) L) =In(1- =) =~Lii () (4
foroc 20, Lo(z) =Inz.
In order to apply (33) to the specialization to z = 1, Li, (1) = ((n) for n even we

need to quotient the algebra of hyperlogarithms by ((2) or, better, by In(—1) = i7 (=
+/—6((2)) introducing the Hopf algebra H:
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H:=Ly/im Ly sothat Ly = H[i~]. 35)

(Otherwise the relation ((4) = % (?(2) would not be respected by the coproduct A
satisfying, according to (33), AC(n) = ((n) @ 1 + 1 ® ((n).)
The coaction A is extended to Lz by

A: Ly >HRLx, A(lm)=1Qir. (36)

The asymmetry of the coproduct is reflected on its relation to differentiation and to
discontinuity dsic, = M, — 1 (where M,, stands for the monodromy around z = o):

A 2F = 2(X)id AF, A(disc, F) = (id ® disc,)AF. 37
0z 0z

(One easily verifies, for instance, that both sides of (37) give the same result for
F = Liy(z).) This allows us to consider Ly as a differential graded Hopf algebra.

The resulting structure allows to read off the symmetry properties of hyperloga-
rithms from the simpler properties of ordinary logarithms, as illustrated in Example
25 of [24] which begins with a derivation of the inversion formula for the dilog:

1 1
Li> (—) =imlnx — Lir(x) — 3 In? x +2¢(2).
X

5 Multiple Zeta Values and Feynman Periods

The multiple zeta values (MZV's) are the values of the hyperlogarithms (28) at argu-
ments equal to one:

COrseyng) = Lin, (L., ) = (=D g j=n; =1) (38

(cf. (27)). The corresponding series is convergent for n; > 1. In order to recover the
known relations among MZVs of the same weight one needs along with the shuffle
and stuffle products of convergent words also a relation involving multiplication with
the “divergent word” e; (in the case of a 2-letter alphabet, ¥ = {0, 1}, X = {eo, e1}):

Cuww = Cu Go = Qusw» Clerww —ep xw) =0 (39)
for all convergent words u, v and w. We note that the divergent words (withny = 1)
in the last Eq. (39) cancel out. For instance, setting (n) = —e; egfl, we find

n—1

(D) wi (n) — (1) * (n)) =ZC(i,n+1—i)—C(n+1)=0, n=2 (40)

i=1
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a relation known to Euler. (Already for n = 2 the resulting formula, {(1, 2) = ((3),
is nontrivial.) Setting (—(; =) (1) = 0 and using the relations (39) one can write the
generating series Z of MZVs (also called Drinfeld’s associator) in terms of multiple
commutators of e, e;:

Z=L(1)=14+C2)leo, e1]1+¢3)[leo, e1l,e0 +erl+ ...,

for L(z) =1+Inzey+1In(l —z)e; + Z Ly(xw (weX" X=/{eer}).
[w|=2

(41)

(The limit of L(z) for z — 1 in the expression for Z involves a regularization so that
o0

the divergent series for —(; = lim > % is substituted by 0.) The generating series
=1 p=1

(41) allow to express in a compact form the monodromy of the multipolylogarithms

L, (z) around the (possible) singularities at z = 0 and z = 1:

MoL(z) = ™ L(z),
M\L(z) = Z&¥™9 27 L(2). (42)

(In writing Z~! we observe that any formal power series starting with 1 is invertible.)

There are infinitely many primitive vacuum graphs in the (massless) ¢* theory.
They are completions of 4-point graphs with increasing number of loops ¢ = 3, 4, ...
Their periods, up to £ = 6, are MZVs of weight not exceeding 2¢ — 3. Broadhurst
and Kreimer [9] discovered a remarkable sequence of zig-zag graphs whose periods
are rational multiples of ((2¢ — 3). Their completions are n-vertex vacuum graphs
Ff) (n = € + 2) which admit a hamiltonian cycle that passes through all vertices
in consecutive order in such a way that each vertex i is also connected with i 2

mod n (see Fig. 1a for the n = 8§ graph).

5

1a I
Fig. 1 Eight point vacuum completions of six-loop 4-point graphs in ¢* : Per (7(82)) =24¢(9),

Per (T')) = 32P5 5
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Their periods depend on the parity of ¢£:

—@2) _4—43’5 20 -2 B
Per(FHz)_T L, )o@e=3) for £=35....
42 C@¢—3) for £=4,6 43)
= - — or £ =4,6,...
e\ e—1

(a result conjectured in [9] and proven in [18]). The 8-vertex graph on Fig. 1b also
admits a hamiltonian cycle but with vertices i connected with i =3 mod 8. Its
period, computed numerically in [9], is the first that involves a double zeta value:

Per (Fﬁf)) =32 P35 =288 [% [29¢(8) — 12¢(3,5)] —9¢(3) C(S)] .44

(The notation P35 conforms with that of Brown [17].) The first Feynman period,
not expressible as a rational linear combination of MZVs was identified at 7 loops
by E. Panzer [32] (following suggestions by Broadhurst and Schnetz) in 2014, as
rational linear combination of hyperlogarithms at sixth roots of 1 (called multiple
Deligne values in [8]). The 9-vertex vacuum completion of the graph in question is of
type F9(3): it again admits a hamiltonian cycle with hords joining vertices congruent

mod 3 (as in the graph F?) displayed on Fig. 1b).

6 Generalized and Motivic MZ Vs

Remarkably, MZVs (, labeled by words in the (N + 1)-point alphabet
X ={eg, e1,...,ey) corresponding to X = {0, 1, \, ..., AV =} where )\ is a primi-
tive N root of unity again close a double shuffle (i.e. a shuffle and a stuffle) algebra
and hence represent a natural generalization of the classical MZVs. In particular, the
Euler ¢-function corresponds to X = {0, 1, —1}:

o) =L_jpw(1) = —Li,(-1) @' =n-1).

Given the many relations these generalized MZVs (,, satisfy, the question arises
to find a basis of such periods independent over the rationals. This question is wide
open even for the classical MZVs (for which w is a word in the two letter alphabet
corresponding to X = {0, 1}). We know the relations coming from (39) but have
no proof that there are no more relations for weights |w| > 4. If we denote by d,
the dimension of the space of MZVs of weight |w| = n we only know that d; = 0,
dr, = d3 = dy = 1. (The reader is invited to verify — using the relations (39) and (40)
— that all MZVs of weight 4 are integer multiples of (1, 3) = % —see Eq. (B.8) of
[38].) We do not even have a proof that ((5) is irrational. A way to get around the
resulting (difficult!) problem amounts to substitute the real MZV's by some abstract
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objects as formal MZVs (defined by the relations (39) — see [34, 39]) and motivic zeta
values [8, 13] whose application for calculating the dimensions d, of the motivic
MZVs of weight n we proceed to sketch.

Consider the concatenation algebra C defined as the free algebra over the rational
numbers Q on the countable alphabet { f3, fs, ...}. The algebra of motivic MZVs
is identified (non-canonically) with the algebra C[ f>] of polynomials in a single
variable f, with coefficients in C:

ClRl=C®qQlLl, C=Q(fs fs ... (45)

The algebra C[ f>] is graded by the weight (the sum of indices of f;) and it is straight-
forward to compute the dimensions d,, of the weight spaces C| f>],. Indeed, the gen-
erating (Hilbert-Poincaré) series for the dimensions df of the weight n subspaces of
C is given by
1 1—12
dSt" = = : 46
Z" - - —... 1—-t2-1¢3 (46)

n>0

while the generating series of Q[ f2] is (1 — #*)~!. Multiplying the two series we
obtain the dimensions d, of the weight spaces of (motivic) MZVs conjectured by

Don Zagier:

1
Zdt— c=dy=1.d=0.dy=l.dy o =dy+du_y. (47)

The concatenation algebra C can be equipped with a Hopf algebra structure (with
fi as primitive elements) with the deconcatenation coproduct A : C — C ® C given
by

r—1

A(fi]n-fi,.):1®fi|~-~fi,.+fi1...i,®1+2fil~--ﬁk®fik+,~--fi,~ (48)

k=1

The coproduct can be extended to the trivial comodule C[ f>] (45) by setting
AC[ 2l > CRCLLI, A(f)=1® f (49)

(and assuming that f, commutes with f,q4). There exists a surjective period map of
Cl f2] onto the space Z of real MZVs. The main conjecture in the theory of MZVs
says that the period map is also injective, — i.e., it defines an isomorphism of graded
algebras. If true it would imply that the infinite sequence of numbers 7, ((3), ((5), ...
are transcendentals algebraically independent over the rationals [41]. It would also
give dim Z,, = d,. Presently, we only know that

dimZ, <d, (dimZ, =d, forn <4). (50)
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For weights n < 7 one can express all MZVs in terms of (products of) simple
(depth 1) zeta values. For n > 8 this is no longer possible (as illustrated by the
presence of (3, 5) in (44)). Brown [14] has established that the Hoffinan elements
C(ny,...,ng) with n; € {2, 3} form a basis of motivic zeta values for all weights
(see also [22, 41]).

7 Outlook

We shall sketch in this concluding section three complementary lines of development
in the topic of our review.

The first goes in the direction of further specializing the class of functions and asso-
ciated numbers (periods) appearing in the Feynman amplitudes of interest. Euclidean
picture conformal amplitudes are singlevalued (as argued in [23, 25]). Knowing the
monodromy (42) one can construct a shuffle algebra of single valued hyperloga-
rithms [10, 11] which belong to the tensor product £y ® Ly of hyperlogarithms
and their complex conjugates (see also [38, 39] for lightened reviews). The resulting
functions and numbers, [15, 36], are also encountered in superstring calculations
(for a review see [20]).

A second trend proceeds to considering massive Feynman amplitudes as well as
higher order massless amplitudes which requires extending the family of functions
(and periods) of interest. The new functions appearing in the sunrise (or sunset)
graph in two and four dimensions are elliptic hyperlogarithms (for recent reviews
and further references — see [2, 5, 33]). Modular forms and associated L-functions
are also expected to play a role [7, 16, 19].

We do not touch another lively development championed by Goncharov and a
group of physicists who also proceed to extending the mathematical tools — using,
in particular, cluster algebras — in order to describe multileg amplitudes in N = 4
supersymmetric Yang-Mills theory (for a review and references — see [40]).

A third approach attempts to reveal structures common to all Feynman amplitudes.
Brown [17] gives a new meaning of the notion of cosmic Galois group (a term
introduced by Cartier in 1998) of motivic periods: it is associated with the family of
graphs with a fixed number of external lines and a fixed maximal number of different
masses. Thus Cy  is the cosmic Galois group associated with the 4-point amplitudes
in a massless (say ¢*-) theory). Every Feynman amplitude of this class defines
canonically a motivic period that gives rise to a finite dimensional representation of
C4.0. One can associate a weight to motivic periods that generalizes the weight of
MZVs. Brown proves that the space of motivic Feynman periods of a given type
(say, the type (4, 0) above) of weight not exceeding k is finite dimensional (Theorem
5.2 of [17]). This theorem allows to predict the type of periods of a given weight
in amplitudes of any order. An illustration of what this means is the observation by
Schnetz [35] that the combination % [29¢(8) — 12( (3, 5)] of the period of the six loop

graph corresponding to Fg) (see (44)) also appears in a 7 loop period (multiplied
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by 252((3) — see Eq. (6.2) of [17]). Brown remarks that the motivic version of the

anomalous magnetic moment of the electron a = 5774 (Sect. I) also displays some

compatibility with the action of the cosmic Galois group on periods.
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The Parastatistics Fock Space and Explicit
Infinite-Dimensional Representations
of the Lie Superalgebra osp(2m + 1|2n)

N.L Stoilova and J. Van der Jeugt

Abstract The defining triple relations of m pairs of parafermion operators fijE and
n pairs of paraboson operators bji with relative parafermion relations can be con-
sidered as defining relations for the Lie superalgebra osp(2m + 1|2n) in terms of
2m + 2n generators. As a consequence of this the parastatistics Fock space of order
p corresponds to an infinite-dimensional unitary irreducible representation 2U(p) of
0sp(2m 4 1|2n), with lowest weight (=2, ..., =5|5, ..., ). Anexplicit construc-
tion of the representations U (p) is given for any m and n, as well as the computation
of matrix elements of the osp(2m + 1|2n) generators.

1 Introduction

Standard quantum mechanics considers two types of particles, bosons Bj.E ([a, b] =
ab — ba)
and fermions Fii ({a, b} = ab + ba)

{Fii’F]j}:(Sik’ {F‘iivF]:}z{Fi#»sF]j}:Os (2)

and the corresponding quantum statistics, Bose-Einstein and Fermi-Dirac statistics.
The n-boson Fock space with vacuum vector |0) satisfies
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(0[0) =1,  B;l0)=0, (B})" =BT 3)
and the other orthogonal normalized basis vectors are defined by

(Bf)"l o (B;)kn

NEERTS

Similarly, the m-fermion Fock space is defined by

ki, ... ky) = |0), ki,....ky, €Z,. 4)

00y=1, F710)=0, (FH'=F" (=1,....,m). (5)
and the basis vectors are as follows
101, ... O) = (F)" - (F,)10),  61.....6, € {0, 1}. (6)

Bose-Einstein and Fermi-Dirac statistics were generalized by Green [3] in 1953. He
has shown that tensor fields can be quantized with creation and annihilation operators
bf (parabosons), which satisfy the triple relations

[{BS. b}, b1 = (€ = )3;ub] + (¢ — b, 7)

whereas for spinor fields he has introduced parafermions f ji postulating the com-
mutation relations

1 1
(LFF R0 T = 5 e =6 f = 5 e = &5 f )

where j, k,l €{1,2,...} and n,¢, & € {+, —} (or, in the algebraic expressions,
1, €, & € {+1, —1}). The paraboson Fock space V (p) is the Hilbert space with vac-
uum vector |0), defined by means of

00y =1, b;l0) =0, (b)) =b7,
(b7.5110) = p 3¢ |0), ©)
and by irreducibility under the action of the algebra spanned by the elements b;’,

by, subject to (7). In the same way, the parafermion Fock space W (p) is the Hilbert
space with unique vacuum vector |0), defined by

00y =1, f7loy=0, (fH" =77,
£, £F110) = p 6 [0), (10)

and by irreducibility under the action of the algebra spanned by the elements f j+, fis
subject to (8). In both cases the parameter p is known as the order of the correspond-
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ing para system. For p = 1 the paraboson (parafermion) Fock space coincides with
the boson (fermion) Fock space. The paraboson and parafermion Fock spaces can in
principle be constructed by the so-called Green ansatz [3]. However the explicit con-
struction of these para Fock spaces has been an open problem for many years because
of the difficulties of finding a proper basis of an irreducible constituent of a p-fold
tensor product [4]. In recent papers [8, 12, 13], these problems of giving complete
constructions of the paraboson and parafermion Fock spaces were solved. The solu-
tions rely on the facts that paraboson and parafermion statistics are incorporated into
algebraic structures. More precisely, a finite set of parafermions f ji, i=1,2,....,m
subject to the parafermion relations (8) defines the Lie algebra so(2m + 1) by means
of generators and relations [7, 11]. The Fock space W (p) is the unitary irreducible
representation of so(2m + 1) with lowest weight (=5, =%, ..., —%). In a similar
way, n paraboson operators bjt subject to (7) are generating elements of the orthosym-
plectic Lie superalgebra osp(1]|2n) [2]. The Fock space V (p) is the unitary irreducible
representation of osp(1|2n) with lowest weight (£, £, ..., £). If one considers an
infinite number of parafermions (parabosons) the creation and annihilation operators
generate the infinite-dimensional algebra so(co) (superalgebra osp(1]o0)) [13].

In the case of a mixed system consisting of parafermions f ji and parabosons

bf the relative commutation relations among paraoperators were studied by Green-
berg and Messiah [4]. They have shown that there can exist at most four types of
relative commutation relations: straight commutation, straight anticommutation, rel-
ative paraboson, and relative parafermion relations and the most interesting case
is the latter one. Palev [10] proved that m parafermions f ji (8) and n parabosons
bf (7) with relative parafermion relations generate the orthosymplectic Lie super-
algebra osp(2m + 1|2n). Therefore the parastatistics Fock space corresponds to an
infinite-dimensional unitary representation of osp(2m + 1|2n). For its explicit con-
struction, the techniques developed in [8, 12] can be applied, namely the branching
osp(2m + 1|2n) D gl(m|n), an induced module construction, a basis description for
the covariant tensor representations of gl(m|n) [14], Clebsch-Gordan coefficients of
gl(m|n) [14], and the method of reduced matrix elements.

In Sect.2, we define m parafermions f ji (8) and n parabosons b;: (7) with rel-
ative parafermion relations and the parastatistics Fock space U(p). In Sect.3, we
consider the important relation between parastatistics operators and the Lie super-
algebra osp(2m + 1|2n), and give a description of 2U(p) in terms of representations
of 0sp(2m + 1|2n). The rest of this section is devoted to the analysis of the repre-
sentations U (p) for osp(2m + 1|2n) and to the matrix elements for any m and n.
These matrix elements were recently computed [15]. We conclude the paper with
some final remarks.
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2 The Parastatistics Algebra and Its Fock Space G (p)

Consider a system of m pairs of parafermions fiﬁE = cii, i=1,...,m and n pairs
4+ 4+ . . . . .
of parabosons b = Cyjp J = 1, ..., n with relative parafermion relations among

them. The defining triple relations for such a system are given by

e, e D¢/ T =2duc, llcj. ¢ 1 ¢ D=0,

e, e e I =28e;, lllej, e le,T=0 (an
or
LS. ] cf 1 = =280 e (=)W e + 26066, _, 5. (12)
&me=Zdor £1; jklI=1,....,n4+m,
where
[a, bl = ab — (—1)%e@e®pq (13)
and

0if j=1,....m

1if j=m+1,...,n+m. (14)

deg(ch) = (i) = [

In the case j,k,l=1,...,m (12) reduces to (8) and in the case j, k,l =m +
1,...,m+n (12) reduces to (7).

The parastatistics Fock space 2U(p) is the Hilbert space with vacuum vector |0),
defined by means of (j,k=1,2,...,m+n)

00)y=1, ¢;10)=0, ()" =c],
[c;, ¢ 10) = pdjx 10), (15)

and by irreducibility under the action of the algebra spanned by the elements c;r, Cis
j=1,...,m+n,subject to (12). The parameter p is referred to as the order of the
parastatistics system.

In 1982 Palev [10] proved the following theorem.

Theorem 1 (Palev) The Lie superalgebra generated by 2m even elements fii =
cii (i=1,...,m)and 2n odd elements bf = ciﬂ (j =1,...,n) subject to the
relations (12) is the orthosymplectic Lie superalgebra osp(2m + 1|2n). The Fock
space U(p) is the unitary irreducible representation of 0sp(2m + 1|2n) with lowest
p\p P
_ , ).

weight (=5, ..., =515, ...

Constructing a basis for the parastatistics Fock space U(p) for general (integer)
p-values turns out to be a difficult problem, for which we describe the solution in
the rest of the paper.
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3 The Lie Superalgebras osp(2m + 1|2n) and a Class
of osp(2m + 1|2n) Explicit Representations

The orthosymplectic Lie superalgebra B(m|n) = osp(2m + 1|2n) [5] consists of
2m 4+ 2n+1 x 2m + 2n + 1) matrices of the form

a b u x x
c —a vy y
—v'—=u" 0 z z1 |, (16)

yioxi Z d e
—y' —x! —7 f —d

with a any (m x m)-matrix, b and ¢ antisymmetric (m x m)-matrices, ¥ and v
(m x 1)-matrices, x, y, x1, y1 (m x n)-matrices, z and z; (1 x n)-matrices, d any
(n x n)-matrix, and e and f symmetric (n x n)-matrices. The even elements have
x =y =x; =y =0,z=2z = 0andthe odd elements are those witha = b = ¢ =
0,u=v=0,d =e = f =0. Denote the row and column indices running from 1
to 2m + 2n + 1 and by ¢;; the matrix with zeros everywhere except a 1 on posi-
tion (i, j). The Cartan subalgebra b of osp(2m + 1|2n) is the subspace of diagonal
matrices with basis h; = e€;; — ejpmitm @ =1,...,m), hypyi = €omyi4j2mt14j —
eomtitntjomtitnt; (J =1,...,n).Denotebye; (i =1,...,m),0;(j=1,...,n)
the dual basis of h*.

Introducing the following multiples of the even vectors with roots +e¢; (j =
1,...,m)

et = f = V2(ejme1 — Cmir jim)-
J_ - f \/E(eZerl,j - ej+m,2m+1)v (17)
and of the odd vectors with roots +6; (j = 1,...,n)

+
m+j - b \/_(62m+l 2m+1+n+j + 62m+l+] 2m+l)

Cuyj =b; = \/—(€2m+1,2m+1+j — €t ldntj,2m+1) (18)

it is easy to verify that these operators satisfy the triple relations (12).
The operators c+ are positive root vectors, and the ¢ j are negative root vectors.
We are 1nterested in the construction of the parastatistics Fock space U (p) defined
by (15). It is straightforward to see that

[c;, l]=—2h (i=1,...,m), and {mﬂ, m+,} 2hmej (j=1,...,n0).
(19)
Therefore indeed Theorem 1 holds.
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In general the representations 2U(p) can be constructed using an induced module
procedure (see [15] for more details). The relevant subalgebras of osp(2m + 1|2n)
are as follows.

Proposition 1 A basis for the even subalgebra so(2m + 1) @ sp(2n) of osp(2m +
112n) is given by

[f. ) of Gk I=1,....m); {cS, by} Gos=1,....n, &n=%).
(20)
The elements
[cf.e; 1 Gok=1,....m+n) (2D

constitute a basis for the subalgebra u(m|n).

Note that with the notation %llc}', ¢; | = E j, the triple relations (12) imply the
relations
[Eij. Eull = 6 Eq — (=18 EndesEog, (22)

Therefore, the elements [[c;r, ¢; [l form, up to a factor 2, the standard basis elements
of u(m|n) or gl(m|n).
The subalgebra u(m|n) can be extended to a parabolic subalgebra P of osp(2m +
1|2n)
P = spanfc;, IIC;F, el lley e Ml j,k=1,....m+n). (23)

Because of the fact that I[c;,c,j]]|0) =pdj|0), with [c;, cl.+] = —2h;
(i=1, ...,m,)and{cmﬂ,c,tﬂ} =2h,4j(j =1,...,n),the space spanned by |0)
is a trivial one-dimensional u(m|n) module C|0) of weight (=%, ..., =£[5, ..., £).
Asc; |0) = 0, the u(m|n) module C|0) can be extended to a one-dimensional P mod-

ule. The induced osp(2m + 1|2n) module V(p) is defined by

B(p) = Indy "1 Cl0). (24)
This is an osp(2m + 1|2n) representation with lowest weight (=£,..., =£| £,

... £). By the Poincaré-Birkhoff-Witt theorem [6], a basis for B (p) is given by

k Kim-go k k
€Hf b ) et D et e -
Kimtn—1.m+n
(e pnmts G D10 10),
ki oo kg, ki, ks ookt ms kgt m2s kg tms3 -« -+

km+n71,m+n € Z+a
kl,erla kl,m+2 e kl,ernv k2,m+l7 e km,m+n € {07 1} (25)

In general U (p) is not an irreducible representation of osp(2m + 1|2n). Let M (p)
be the maximal nontrivial submodule of U(p). Then the irreducible module, corre-
sponding to the parastatistics Fock space, is
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B(p) = BV(p)/M(p). (26)

Now the aim is to determine the vectors belonging to M (p), and thus find the structure
of U(p), and to compute the matrix elements of the algebra generators.

For this purpose, let us first consider the character of U (p): this is a formal infinite
series of terms vx]' x3” . .. x;' y{’”i' y9"2 .. ya"t", where the exponents carry a weight
1o s Jmljm+1s -« s Jm+n) of V(p) and v is the dimension of this weight space.

The vacuum vector |0) of U(p), of weight (=4, ..., =5[£, ..., §), yields a term
P _P P

A L )4 —
X’ ...Xn Y[ ... ys in the character char(p) and from the basis vectors (25) it
follows that

)P ) PR )PP T (4 X))

harl(p) = )
P = =) Tl e =0 TL A — ) T (L — 00

27)

Such expressions can be expanded in terms of supersymmetric Schur functions, valid
for general m and n.

Proposition 2 (Cummins and King) Consider two sets of variables

(X):(xthv-"sxm)a (Y)Z()’la)’L'-an)-

Then [1]
[T, +xy))
H,‘(l - xi)Hi<k(l - xixk) H,(l - yj) l_[j<l(1 - yjy1)
=D Xy ) = D sa(xly). (28)
AeH AeH

In the right hand side, the sum is over all partitions \ satisfying the so called hook
condition \y+1 < n (XA € H), and s)(X|y) is the supersymmetric Schur function [9]
defined by

SAXY) = D" 5, ®)s(¥) = D cr 5o ()5 (y),

T a,T

where £(0) < m, £(7") < nand |\| = |o| + |T|. Herein, some standard notation [9]
is used: for a partition )\, £()\) is the length of A and || its weight; T’ is the partition
conjugate to T, céT are the Littlewood-Richardson coefficients;, and s,(X) is the
ordinary Schur function.

Now it is well known that the characters of the irreducible covariant u(m|n) tensor
representations V([AM]) are given by such supersymmetric Schur functions sy (x|y)
(A € H). The relation between the partitions A = (Aj, A2, ...), Au+1 < n and the
highest weights A= (1] = [pars - o bl oms1r -« - e ] (r = m + n) of the irre-
ducible covariant u(m|n) tensor representations is known [16]:
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:U/irz)\is 1§l§m7
sy = max{0, X, —m}, 1<i<n, (29)

where )\ is the partition conjugate [9] to A. Therefore the formula (28) gives the
branching to u(m|n) of the osp(2m + 1|2n) representation ﬁ( p). This also gives a
possibility to label the basis vectors of B (p). For each irreducible covariant u(m|n)
tensor representations one can use the Gelfand-Zetlin basis (GZ) [14] and the union
of all these GZ basis is then the basis for U(p). In such a way the new basis of U (p)
consists of vectors of the form

Hir o -1, Hmr Hm+1,r s =1, Hrr
/«LI,rfl e ,Ufmfl,rfl ,U/m,rfl Merl,rfl te ﬂrfl,rfl

r Hi,m+1 *° Bm—1,m+1 Km,m+1 HBm+1,m+1
=" = | : f : . (30
|’u) |‘u) Him ot Bm—1m Hmm ( )
Hi,m—1 " Bm—1,m—1

Kt
which satisfy the conditions

1. pir € Zy arefixed and pj — pjp1, € Zy, j#m, 1 < j<r—1,
/erZ#{iiMir>0,m+1Si§r}§

cip — Mip—1 =0 p—1€{0,1}, 1<i<m;m+1=<p<=<r;
oy = H#i i, >0, m+1<i<p}, m+1=<p=<r;

Af 1 = 0, then 6, = 0;

Mip — Pit1,p €2y, 1<i<m-1;m+1<p=<r-1;

< Wiyj+1 = pij € Ly and pi j — frig1,j41 € Loy,
I<i<j<m—-—lom4+1<i<j<r-—1.

€29

oY N NI

Note that the last m lines of the triangular GZ-array correspond to a GZ-pattern
of gl(m), whereas the last n columns correspond to a GZ-pattern for gl(n). The con-
ditions above follow from the correspondence between a highest weight in partition
notation and its coordinates, see (29), and from the fact that for covariant represen-
tations, the decomposition from u(m|n) to u(m|n — 1) is governed by

XY =D seXlyr, .y yu) y (32)

In this last expression, the sum is over all partitions o such that A — o is a vertical
strip [9]. That actually explains why the 6; ,’s in (31) take values in {0, 1}.

Now the task is to give the explicit action of the generating elements cii (12) of
osp(2m + 1|2n). For this purpose, we introduce the following notations:
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— o |l
) =W = W)r_l),

([p]") = (1rs pors oo ) and ([pel’y) = (prs oo e £ 1,0, p1y). Then

Proposition 3 The explicit actions of the Lie superalgebra generators cf on a basis
of B(p) are as follows:

10---00
+ _ (nl” 10---0 [M]C,k :—k )
cj |;U/) - ; (“I,)rl LA ‘ |/JJ/)r1) |‘u/)r71 ’ (33)
M 0
10---00
_ d 10---0 "
¢ 1w =Z(|[Z,]),k1 10 %1) X Gullulo) |k 1) (34)
ko 0

The first factor in the right hand sides of (33) and (34) is a u(m|n) Clebsch-Gordan
coefficient (CGC) given by formulae (4.9)—(4.17) in [14], and the second factor is a
reduced matrix element. The reduced matrix elements Gy (k =1,...,m+n=r)
are given by:

Gk(er, H2ry oo vy /f’/rr) =
En(rr +m —n— k) + D [T ey ar — prjr — k4 )

Hﬁ?il(#m — H2jr =k +2))(phr — p2jr —k+2j+1)

XH( :ukr"‘,ufm+jr+m_j_k+2 )1/2 (35)
tir + fimjr +m = J —k+2—=Enpp,,,,

172

fork < m and k even;

Gk(,ulr, H2ry o v ,[er) = (P — Ly +k— 1)1/2 x
12
(Om(/ufkr +m—-—n— k) + 1)1/2 (Hj;ék I(Nkr [y — k+ ]))

1/2
(H’—f;/k{‘l_l(ﬂkr —paj—1, —k+2j — Dy — poj—1,r _k+2j))

XH( /Lkr+ulm+jr+m_j_k+2 )1/2 (36)
fkr & fntjr +m = j =k +2 = Onyp,,,

fork < m and k odd. The remaining expressions fork = 1,2,...,n are
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_ Ly o et ey
Gm+k(/-l/lr7 H2ry - vy /f['rr) - (_1)'[ okl ke !

X (O nttr — k1) + D (Epp, (P + fomkr +m — k) + 1))
HLm/zJ Entpmi, W2jr + Hmsker —2j —k+m+1) + 1) v
(Hfm/ﬂ (5m+ﬂm+ky(/~1“21 Lr + bty —2j —k+m+1) + 1))
Hf"lm Omtpis, B2j—1,r + pomsker —2] —k+m +2)+ 1) 1/2
X( HLm/ZJ(Om+Hm+kr(M2]r+Mkr —2j—k+m)y+1) )

n . 1/2

- 4k

<[] ( ot — ks — J ) . 37
j#k=1 Hm+j,r — Hm+k,r —J + k — Oﬂm+j~'7#r71+k,r
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Herein £ and O are the even and odd functions defined by

&;j = 1if j is even and 0 otherwise,
O; = 1if j is odd and 0 otherwise; (38)

where obviously O; = 1 — &;, but it is still convenient to use both notations. Also,
note that products such as Hj 4k—1 means “the product over all j -values running
from 1 to s, but excluding j = k”. The notation |a] (resp. [a]) refers to the floor
(resp. ceiling) of a, i.e. the largest integer not exceeding a (resp. the smallest integer
greater than or equal to a).

Now, taking into account the general conditions (31), the only factor in the right
hand sides of (35)—(37) that may become zero appears in (36) and is

p—tur+k—1 (k <mandk odd).

For k = 1 this factor is (p — p1,), and pq, is the largest integer in the first row of the
GZ-pattern (30) (which is also the first part of the partition A, see (29)). Starting from
the vacuum vector, with a GZ-pattern consisting of all zeros, one can raise the entries
in the GZ-pattern by applying the operators c - However, when 1, has reached the
value p it can no longer be increased. As a consequence all vectors |p) with py, > p
belong to the submodule M (p). This gives the structure of U(p).

Theorem 2 An orthonormal basis for the space U (p) is given by the vectors |u),
see (30) and (31), with . < p. The action of the Cartan algebra elements of
osp(2m + 1|2n) is:

k —1
p
help) = —5+Zujk—zuj,k_l W, k=1,....m
Jj= j

k k—1
p
hlp) = 5+ Do mi = D piket | Iw, k=mAlorn(39)
j=1 j=1
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The action of the operators cf, j=1,...,r is given by (33) and (34), where the
CGCs are found in [14] (see formulae (4.9)—(4.17)) and the reduced matrix elements
are given by (35)—(37).

4 Summary and Conclusion

In the present paper we have constructed the Fock spaces U (p) of m parafermions
and n parabosons with relative parafermion relations among them, which are the uni-
tary irreducible representations of osp(2m + 1|2n) with lowest weight of the form
=5, .., =%1%, ..., ). The subalgebra u(m|n) of 0sp(2m + 1|2n), generated by
all supercommutators of the parafermions and parabosons, and its covariant tensor
representations play a crucial role in the analysis. For each irreducible covariant
u(m|n) tensor representation the known Gelfand-Zetlin basis follows the decompo-
sition u(m|n) Dumln —1) D ... Du@m|l) Du(m) Duim —1) D ... D u(l).
The real interest is in such quantum systems (mixed systems of parafermions and
parabosons) with infinite degrees of freedom (m — oo and n — 00). Itis clear that
the GZ-basis used here cannot be used for such a purpose: as m — oo in (30), there is
no longer control over n. In order to investigate such systems one should construct the
irreducible covariant tensor representations of u(n|n) in another Gelfand-Zetlin basis,
namely following the decomposition u(n|n) D ur|ln —1) Durn —1ln—1)...D
u(2]2) D u2|1) D u(1|1) D u(l). We hope to report this result soon.
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Stepwise Square Integrable Representations:
The Concept and Some Consequences

Joseph A. Wolf

Abstract There are some new developments on Plancherel formula and growth of
matrix coefficients for unitary representations of nilpotent Lie groups. These have
several consequences for the geometry of weakly symmetric spaces and analysis
on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional)
locally nilpotent Lie groups. Many of these consequences are still under development.
Inthis note I'll survey a few of these new aspects of representation theory for nilpotent
Lie groups and parabolic subgroups.

1 Introduction

There is a well developed theory of square integrable representations of nilpo-
tent Lie groups [17]. It is based on the general representation theory of Kirillov
[12] for connected nilpotent real Lie groups. A connected simply connected Lie
group N with center Z is called square integrable if it has unitary representations
7 whose coefficients f, ,(x) = (u, m(x)v) satisfy | f, | € L2(N/Z).If N has one
such square integrable representation then there is a certain polynomial function
P(7) on the linear dual space 3* of the Lie algebra of Z that is key to harmonic
analysis on N. Here P () is the Pfaffian of the antisymmetric bilinear form on n/3
given by by (x, y) = A([x, y]) where v = A|;. The square integrable representations
of N are certain easily-constructed representations ., where v € 3* with P(y) # 0,
Plancherel almost irreducible unitary representations of N are square integrable, and
up to an explicit constant | P(y)| is the Plancherel density of the unitary dual N at
my. This theory has some interesting analytic consequences [26].
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More recently there was a serious extension of that theory [27]. Under certain
conditions, the nilpotent Lie group N has a decomposition into subgroups that have
square integrable representations, and the Plancherel formula then is synthesized
explicitly in terms of the Plancherel formulae of those subgroups. In particular the
extended theory applies to nilradicals of minimal parabolic subgroups [27]. With a
minor technical adjustment it has just been extended to nilradicals of arbitrary real
parabolics [32]. The consequences include explicit Plancherel and Fourier inver-
sion formulas. Applications include analysis on minimal parabolic subgroups [28]
and, more generally, on maximal amenable subgroups of parabolics [32], They also
include analysis on commutative spaces, i.e. on Gelfand pairs [31]. We sketch some
of these developments. Due to constraints of time and space we pass over many
aspects of operator theory and orbit geometry, for example those described in [2—4],
related to stepwise square integrable representations.

In Sect. 2 we recall the basic facts [17], with a few extensions, on square integrable
representations of nilpotent Lie groups. In Sect.3 we recall the concept and main
results for stepwise square integrable nilpotent Lie group.

In Sect.4 we show how nilradicals of minimal parabolic subgroups have the
required decomposition for stepwise square integrability. This is a construction based
on concept of strongly orthogonal restricted roots.

In Sect.5 we indicate the consequences for homogeneous compact nilmanifolds,
and in Sect. 6 we mention the application to analysis on commutative nilmanifolds.

In Sect.7 we start the extension of stepwise square integrability results from the
nilradical N of a minimal parabolic P = M AN to various subgroups that contain
N. This section concentrates on the subgroup M N and takes advantage of principal
orbit theory. That gives a sharp simplification to the Plancherel and Fourier Inversion
formulae. In Sect. 8 we look at P and its subgroup AN. They are not unimodular, so
we introduce the Dixmier—Pukanszky operator D whose semi-invariance balances
that of the modular function. It is a key point for the Plancherel and Fourier Inversion
formulae.

Sections 9 and 10 are a short discussion of work in progress on the extension of
results from minimal parabolics to parabolics in general. There are two places where
matters diverge from the minimal parabolic case. First, there is a technical adjustment
to the definition of stepwise square integrable representation, caused by the fact that
in the non-minimal case the restricted roots need not form a root system. Second,
again for technical reasons, the explicit Plancherel Formula only comes through for
the maximal amenable subgroups U AN of G, and not for all of the parabolic.

This work was partially supported by a Simons Foundation grant and by the
award of a Dickson Emeriti Professorship. It expands a talk at the 11-th International
Workshop “Lie Theory and Its Applications in Physics” in Varna. My thanks to Prof.
Vladimir Dobrev and the others on the organizing committee for hospitality at that
Workshop.
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2 Square Integrable Representations

Let G be a unimodular locally compact group with center Z, and let 7 be an
irreducible unitary representation. We associate the central character x, € Z by
m(z) = Xz (x) - 1 for z € Z. Consider a matrix coefficient f, , : x — (u, m(x)v).
Then | f,,.,] is a well defined function on G/Z. Fix Haar measures jig on G, j1z on
Z and pg/z on G/Z such that dug = dpz dpug,z. The following results are well
known.

Theorem 2.1 The following conditions on € G are equivalent.

(1) There exist nonzero u,v € H, with | f,, ,| € EZ(G/Z).
(2) |fuvl € EZ(G/Z)fOr allu,v € H,.
(3) 7 is a discrete summand of the representation Ind g(Xﬁ).

Theorem 2.2 [fthe conditions of Theorem 2.1 are satisfied for an irreducible m € G,
then there is a number deg ™ > 0 such that

fun @) (DG z(xZ) = gz (u, u') (00) (1
G/Z

forallu,u',v,v' € Hy. If m, m € G are inequivalent and satisfy the conditions of
Theorem 2.1, and X, = Xnr,, then

/ (u, m V) {u', M)V )dpgz(xZ) =0 (2)
G/z

SJorallu,v € H; andallu',v' € H,,.
The main results of [17] shows exactly how this works for nilpotent Lie groups.

Theorem 2.3 Let N be a connected simply connected Lie group with center Z, n
and 3 their Lie algebras, and n* the linear dual space of n. Let \ € n* and let ),
denote the irreducible unitary representation attached to Ad*(N)\ by the Kirillov
theory [12]. Then the following conditions are equivalent.

(1) 7y satisfies the conditions of Theorem 2.1.

(2) The coadjoint orbit Ad*(N)X = {v e n* | v]; = Al;.

(3) The bilinear form by(x, y) = A([x, y]) on n/3 is nondegenerate.
(4) The universal enveloping algebra U(3) is the center of U(n).

The Pfaffian polynomial Pt (b)) is a polynomial function P(\|;) on 3%, and the set
of representations wy for which these conditions hold, is parameterized by the set
{v €3 | P(vy) # 0} (which is empty or Zariski open in 3*).

We will say that the connected simply connected Lie group N is square integrable
if there exists A € n* suchthat P(\|;) # 0}. For convenience we will sometimes write
P()) for P(M];) and m, for my where v = Al;.
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Theorem 2.4 Let N be a square integrable connected simply connected Lie group
with center Z. Then Plancherel measure on N is concentrated on {mz | P(N) # 0},
and there the Plancherel measure is given by the measure |P(\)d\| on 3* and the
formal degree deg my = |P(\];)].

Given v € 3* with P(y) # 0 and a Schwartz class (C(N)) function f on N we
write O(y) for the co-adjoint orbit Ad*(N)y = v+ 31, f, for the restriction of
f-expto O(y), and f, for the Fourier transform of f, on O(v).

Theorem 2.5 Let N be a square integrable connected simply connected Lie group
with center Z and f € C(N). Ify € 3* with P() # O then the distribution character
of m, is given by

O (f) = trace / T @) dpg () = ¢ P! / fdv 3
N v

€O(v)

where ¢ = d'2? and d = dim(n/3)/2 and dv is ordinary Lebesgue measure on the
affine space O(v). The Fourier Inversion formula for N is

fx) = C/ Oy (re HIP (V)| dry where (ry f)(y) = f(yx) (right translate). (4)
5

There also are multiplicity results on £2(N/I") where N is square integrable and
I" is a discrete co-compact subgroup, but they are the same as in the stepwise square
integrable case, so we postpone their description.

3 Stepwise Square Integrability

In order to go beyond square integrable nilpotent groups, we suppose that the con-
nected simply connected nilpotent Lie group decomposes as

N=LL,...L,,_1L,, where
(a) each L, has unitary representations with coeff in LX(L,/Z,),
(b) N, := L{L,...L,isnormalin N with N, = N,_; X L, , (®))
©[L,3;]=0and[l,, ] Coforr > s with[, =3, + v,
wheren=s4+v, s =®3, andv =@v,.
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We will use the following notation.

(@) d, = 3 dim(l,/3,) so 1 dim(n/s) =dy + -+ + dyy ,
and ¢ = 2T g \dy! ... d,!
(b) by, : (x,y) = A([x, y]) viewed as a bilinear form on [, /3,
S=212,...Z, =2 xX--- X Z,, where Z, is the center of L,
(d) P : polynomial P(\) = Pf (by,)Pf (by,)...Pf(by,) ons*
et ={ es" | P(N) #0}
) m € N for \ € 5* with P()\) # 0, irreducible unitary representation

(6)

of N=LL,...L, constructed as follows.

Start with the representation 7y, € N specified by A, € 37 with Pf (b)) # 0.
Choose an invariant polarization p| C n; for the linear functional A} € nj that agrees
with Ay on n; and vanishes on [,. Since L, centralizes S,_;, ad*()(A}) 5,4+, = 0,
so p| = p1 + [ where p; 1s an invariant polarlzatlon for A; € nj. The associated
representations are 77/\ € Nz and 7, € N1 Note that N2/P = Ni/ Py, so the rep-
resentation spaces H. ™, = = L2(N,/P]) = L2(N1/P)) = Hz,,- In other words, 7r/\]
extends 7y, to a unitary representation of N> on the same Hilbert space Hr, , and
dmy (32) = 0. Now the Mackey Little Group method gives us

Lemma 3.1 The irreducible unitary representations of N, whose restrictions to N;
are multiples of ,, are the 7T3\] ®~ where y € L, = N,/ Nj.

Given \, € 3; withPf (b),) # Owehavem,, € Z; with coefficientsin L2 (L,/ Z5).
In the notation of Lemma 3.1 we define

— , o~
Ta+x € N2 by T +XA = 7T)\1®7T/\2 : (N

Proposition 3.2 The coefficients f, ., (xy) = (2, Tx,4+1, @Y)w) of T+, belong to

. . 2 2
L2(N2/S$2), in fact satisfy || franl 72 v, /s,) = Gegonsy-destry -

Proposition 3.2 starts a recursion using N,.; = N, X L,;. We fix nonzero
Ai €3 forl £i £ r+ 1, and we start with the representation )y, 4...45, constructed
step by step from the square integrable representations 7y, € L;for 1 <i = r.The
representation space Hr, , ., = Hr, Q- @'HM. The coefficients of 7y, 4..4),
have absolute value in £>(N, /S,). They satisfy

2 _ Lzl lwl*
||fz,w||[:2(N,/S,) T deg(my,)...deg(my,) ®)

Then 7y, 4.4, extends to a representation 7y , ., of L, on the same Hilbert

space HMM_“W , and it satisfies dﬂ’AIJr__‘Mr (3r+1) = 0. Asin Lemma 3.1,
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Lemma 3.3 The irreducibles 7 € N,H, whose restrzctlons to N, are multiples of
T\ +-+),» aF€ the 71'/\ . ®~y where € L,+1 = ,+1/N

. . , ~
As in Proposition 3.2, define 7y, 4.4, = 7 ;. ®7), . Then

1

Proposition 3.4 The coefficients f ., (x1 ... X41) = (2, Tr 4opr, (X1 X2 - - Xpgp)
W) of T\ 4.4, belong to L2(Ny41/8r41), in fact satisfy

I f ||2 — Lzl [w][?
2WIHL2(N, 1/ S41) deg(my,)...deg(my, )

Since deg ), = |Pf (b),)|, Proposition 3.4 is the recursion step for our construc-
tion. Passing to the end case r + 1 = m we see that Plancherel measure is concen-
trated on {m) | A € t*}. Using (5)(c) to see that conjugation by elements of L has
no effect on the Pf (b)) for r < s, we arrive at

Theorem 3.5 Let N be a connected simply connected nilpotent Lie group that satis-
fies (5). Then Plancherel measure for N is concentrated on {m) | A € t*, P(\) # 0}.
Ifxets, P(\) #0and u,v € Hy,, then the coefficient f, ,(x) = (u, m,(x)v) sat-
isfies

1 fuo Pz ss) = Il PHI0IP/I POV ©)

The distribution character Oy, : f > trace fG fx)m(x)dx of wy is given by
O (f)=c 1PV /O . AEAvA(E) for f € C(N) (10)
N

where C(N)/i\s the Schwartz space, O(\) = Ad*(N)X = s+ + \, fristhelift fr(€) =
f(exp(&)), foisits classical Fourier transform, and dv) is the translate of normalized
Lebesgue measure from s to Ad*(N)\. Further,

F) =c / O, (re P POVIAA for f € C(N). (11)
5

Definition 3.6 The representations 7y of (6)(f) are the stepwise square integrable
representations of N relative to (5). <

The left action (I(x) f)(g) = f(x~'g) and the right action (r(y) f)(g) = f(gy)
of N on functions carries over to coefficients of 7 as [(x)7(¥) fu,o = frur(v- If
™ = T stepwise square integrable, u, v € H, are C* vectors, and if @ and ¥ belong
to the universal enveloping algebra U/ (n), then / (<D)r(lI/) Suv = far@yu.dr(@)v 15 just
another coefficient, C* and £>(N/S). If {) € Sis the quasicentral character of 7y
it follows that f, , belongs to the relative Schwartz space C(N/S, (»). In particular
it follows that | f,, ,| € LP(N/S) for all p = 1. Taking Schwartz class wave packets
over S of coefficient functions of stepwise square integrable representations of N one
can express the Plancherel formula of Theorem 3.5 in terms of coefficient functions.
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4 Nilradicals of Minimal Parabolics

Fix areal simple Lie group G, an Iwasawa decomposition G = K AN, and a minimal
parabolic subgroup Q = M AN in G. Let m = rank gG = dimp A. As usual, write
£ for the Lie algebra of K, a for the Lie algebra of A, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra b of g. Then h) = t + a with t = h N €. Now we
have root systems

A(gc, be): roots of ge relative to he (ordinary roots),
A(g, a): roots of g relative to a (restricted roots), (12)
Ap(g,a) ={a € A(g,a) | 2a ¢ A(g, a)} (nonmultipliable).

Here A(g, a) and Ag(g, a) are root systems in the usual sense. Any positive root
system A1 (ge, he) C A(ge, he) defines positive systems

AT(g,a) = {vla | ¥ € A" (gc, be) and 7] # O},

(13)
A (g, @) = Ao(g, @) N AT (g, ).
We can (and do) choose AT (g, h) so that
n is the sum of the positive restricted root spaces and (14)

if v € A(gc, he) and y|q € A*(g, a) theny € A* (ge, o).

Two roots are called strongly orthogonal if their sum and their difference are not
roots. Then they are orthogonal. The Kostant cascade construction is

B1 € At (g, a) is a maximal positive restricted root and
By+1 € AT (g, a) is a maximum among the roots of A* (g, a) (15)

that are orthogonal to all §; withi < r

Then the 3, are mutually strongly orthogonal. Each 3, € A (g, a), and /3; is unique
because A(g, a) is irreducible. For 1 < r < m define

AT ={ae At (g,a) | B —a e At(g,a)} and

Alg={aed @\ (ATU--UAD | B —ae Af(g o). (1o

Lemma 4.1 Ifa € AT (g, a), either o € {01, ..., B} or « belongs to just one A7 .

Lemmad.2 ATU{(,}={ae€ AT |a L f fori <rand (o, () > 0}.Inpartic-
ular, [1,, I;] C [, where t = min{r, s}.

Lemma 4.1 shows that the Lie algebra n of NV is the direct sum of its subspaces

[ =gg +ZA+ goforl <r<m (17)
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and Lemma 4.2 shows that n has an increasing foliation by ideals
n=hL+bL+---+1forl <r<m. (18)

Now we will see that the corresponding group level decomposition N = L{L; ... L,
and the semidirect product decompositions N, = N,_; x L, satisfy (5). Denote

sp, is the Weyl group reflection in 3, and (19)
or 1 A(g, a) = A(g, a) by 0, () = —s5, ().

Note that o, (8;) = —f3; fors # r, +05; ifs = r. If « € A} we still have o, () L f3;
for i <r and (o,(a), B;) > 0. If 0,(a) <O then B, — 0,(a) > [, contradicting
maximality of §,. Thus, using Lemma 4.2, 0, (A}) = AF.

Lemma 4.3 [fa € Al then a+ o,(«) = (3,. (It is possible that o« = 0, () = %ﬁr
when %ﬂ, isaroot.). If a, o/ € AT and o+ o' € A(g, a) then o+ o/ = 3.

Lemma 4.4 Let n be a nilpotent Lie algebra, j its center, and v a vector space
complement to § in n. Suppose thatv =u+u, u= Y u,andv' =D u,, and 3 =
> 35 with dim3, = 1 in such a way that (i) each [ug, u,] =0 = [u,, 1], (i) if
ay # ap then [u,,, w1 = 0 and (iii) for each a there is a nondegenerate pairing
U, @ U, —> 3, byu @ u' v+ [u, u']. Then nis a direct sum of Heisenberg algebras
3b, + Ug + 1, and the commutative algebra that is the sum of the remaining 3p.

Now one runs through a number of special situations: (1) If g is the split real
form of g¢ then each L, has square integrable representations. (2) If g is simple
but not absolutely simple then each L, has square integrable representations. (3) If
G is the quaternion special linear group SL(n; H) then L; has square integrable
representations. (4) If G is the group E¢ f, of collineations of the Cayley projective
plane then L, has square integrable representations. (5) The group L; has square
integrable representations. (6) If g is absolutely simple then each L, has square
integrable representations. Putting these together, Theorem 3.5 applies to nilradicals
of minimal parabolic subgroups:

Theorem 4.5 Let G be a real reductive Lie group, G = K AN an Iwasawa decom-
position, |, and n, the subalgebras of n defined in (17) and (18), and L, and N,
the corresponding analytic subgroups of N. Then the L, and N, satisfy (5). In
particular, Plancherel measure for N is concentrated on {my | A € t*}. If A e t¥,
and if u and v belong to the representation space H,, of m,, then the coefficient

. 2 2 2 . . .
Juw(x) = (u, m\(x)) satisfies || fuol 72 y/5) = ”72,\(&'1;'” . The distribution character

On, of 7y satisfies O (f) = c'|P(\)|™! fo(/\) H(&dvy(€) for f € C(N). Here
C(N) is the Schwartz space, O()) is the coadjoint orbit Ad*(N)X = s+ + X\, f, is
the lift £, (&) = f(exp(€)) tos™ + A, ﬁ is its classical Fourier transform, and dv is
the translate of normalized Lebesgue measure from s* to Ad*(N)\. The Plancherel
formula on N is f(x) = cft* On, (ry HIP V)| for f € C(N).
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5 Compact Nilmanifolds

Here are the basic facts on discrete uniform (i.e. co-compact) subgroups of connected
simply connected nilpotent Lie groups. See [21, Chap. 2] for an exposition.

Proposition 5.1 The following are equivalent.

e N has a discrete subgroup I" with N/I" compact.

e N = Np where Ny is the group of real points in a unipotent linear algebraic group
defined over the rational number field Q.

e 1 has a basis {£;} for which the coefficients cl’fj in[&, 1= cll.fjﬁk are rational
numbers.

Under those conditions let n,, denote the rational span of {£;} and let n, be the integral
span. Then exp(n,) generates a discrete subgroup Nz, of N = Nr and Nr/Ngy, is
compact. Conversely, if I' is a discrete co-compact subgroup of N then the Z-span
of exp~'(I") is a lattice in n for which any generating set {&;} is a basis of n such
that the coefficients C;"(, jinl&, &= > cf-i &k are rational numbers.

The conditions of Proposition 5.1 hold for the nilpotent groups studied in Sect. 4;
there one can choose the basis {;} of n so that the cf‘ ; are integers.

The basic facts on square integrable representations that occur in compact quo-
tients N/I", as described in [17, Theorem 7], are

Proposition 5.2 Let N be a connected simply connected nilpotent Lie group that
has square integrable representations, and let I" a discrete co-compact subgroup.
Let Z be the center of N and normalize the volume form on n/3 by normalizing Haar
measure on N so that N/ZT has volume 1. Let P be the corresponding Pfaffian
polynomial on 3*. Note that I’ N\ Z is a lattice in Z and exp™"(I' N Z) is a lattice
(denote it A) in 3. That defines the dual lattice A* in 3*. Then a square integrable
representation m occurs in L2(N/T") if and only if \ € A*, and in that case T
occurs with multiplicity | P ()\)|.

Definition 5.3 Let N = Ny be defined over Q as in Proposition 5.1, so we have a
fixed rational form Ng. We say that a connected Lie subgroup L C N is rational if
L N Ng is arational form of L, in other words if [N n, contains a basis of [. We say
that a decomposition (5) is rational if the subgroups L, and N, are rational. <&

The following is immediate from this definition.

Lemma 5.4 Let N be defined over QQ as in Proposition 5.1 with rational structure
defined by a discrete co-compact subgroup I'. If the decomposition (5) is rational
theneach I’ NZ, in Z,, each I’ N L, in L,, each I’ N S, in S,, and each I" N N,
in N,, is a discrete co-compact subgroup defining the same rational structure as the
one defined by its intersection with Ng.
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Now assume that N and I" satisfy the rationality conditions of Lemma 5.4. Then
for each r, Z, N I' is a lattice in the center Z, of L,, and A, :=1log(Z, NI")isa
lattice in its Lie algebra 3,. That defines the dual lattice A} in 3. We normalize the
Pfaffian polynomials on the 3, and thus the polynomial P on s*, by requiring that
the N, /(S, - (N, N I")) have volume 1.

Theorem 5.5 Let )\ € t*. Then a stepwise square integrable representation wy of N
occurs in L*(N/T") if and only if each \, € A¥, and in that case the multiplicity of
7y on L2(N/T) is |P(N)].

6 Commutative Spaces

A commutative space X = G/K, or equivalently a Gelfand pair (G, K), consists
of a locally compact group G and a compact subgroup K such that the convolution
algebra L' (K\G/K) is commutative. When G is a connected Lie group it is equiva-
lent to say that the algebra D(G, K) of G-invariant differential operators on G/K is
commutative. We say that the commutative space G/K is acommutative nilmanifold
if it is a nilmanifold in the sense that some nilpotent analytic subgroup N of G acts
transitively. When G /K is connected and simply connected it follows that N is the
nilradical of G, that N acts simply transitively on G/K, and that G is the semidi-
rect product group N x K, so that G/K = (N x K)/K. In this section we study
the role of square integrability and stepwise square integrability for commutative
nilmanifolds G/K = (N x K)/K.

The cases where G/K and (G, K) are irreducible in the sense that [n, n] (which
must be central) is the center of n and K acts irreducibly on n/[n, n], have been
classified by E.B. Vinberg [22, 23]. See [26, Sect. 13.4B] for the Lie algebra structure
v x v — 3. The classification of commutative nilmanifolds is based on Vinberg’s
work and was completed by O. Yakimova in [34, 35].

It turns out that almost all commutative manifolds correspond to nilpotent groups
that are square integrable. The exceptions are those with a certain direct factor, and
in those cases the nilpotent group is stepwise square integrable in two steps, so in
those cases the Plancherel formula follows directly from the general result above.
See [31] for the details.

7 Minimal Parabolics: Subgroup M N

Fix an Iwasawa decomposition G = K AN for a simple Lie group G and the minimal
parabolic subgroup Q = M AN. As usual, write £ for the Lie algebra of K, a for the
Lie algebra of A, m for the Lie algebra of M, and n for the Lie algebra of N.
Complete a to a Cartan subalgebra h of g. Then we have root systems A(gc, hc),
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A(g, a) and Ag(g, a) described in (12). M is the centralizer of A in K. Write © for
identity component; then Q° = M°AN.

Recall the Pf-nonsingular set t* = {\ € s* | Pf (b)) # 0} of (6)(e); so Ad*
(M)t* = t*. Further, if A € * and ¢ # 0 then ¢\ € t*, in fact Pf (b)) = c4im®/=)/2
Pf (b)).

Fix an M-invariant inner product (u, ) on s*. So Ad*(M) preserves each sphere
si={Aes | (AN = t2}. Two orbits Ad* (M) and Ad* (M )v are of the same orbit
type if the isotropy subgroups M, and M, are conjugate, and an orbit is principal if
all nearby orbits are of the same type. Since M and s; are compact, there are only
finitely many orbit types of M on s, there is only one principal orbit type, and the
union of the principal orbits forms a dense open subset of s; whose complement has
codimension 22. See [5, Chap. 4, Sect. 3] for a complete treatment of this material,
or [10, Part I, Chap. 3, Sect. 1] modulo references to [5], or [18, Chap. 5] for a basic
treatment, still with some references to [5].

The action of M on s* commutes with dilation so the structural results on the s,
also hold on s* = |, s;. Define the Pf-nonsingular principal orbit set as follows:

u* = {\ e t* | Ad*(M)\ is a principal M-orbit on s*}. (20)

Now principal orbit set u* is a dense open set with complement of codimension = 2 in
s*. If A\ € u* and ¢ # O then cA € u* withisotropy M.\ = M. If A € u} :=u* Ns;,
so Ad*(M)\is a Pf-nonsingular principal orbit of M on the sphere 57, then Ad*(M°)\
is a principal orbit of M° on s7. Principal orbit isotropy subgroups of compact
connected linear groups are studied in [11] and the possibilities for the isotropy
(M"), are essentially known. The following lets us go from (M°)) to M.

Proposition 7.1 ([28]) Suppose that G is connected and linear. Then M = F ZgM°
where Zg is the center of G, F = (exp(ia) N K) is an elementary abelian 2-group,
and Ad*(F) acts trivially on 5*. If X\ € w* then the isotropy My = F Zg(M"),.

Thus the groups M, are specified by the work of W.-C. and W.-Y. Hsiang [11].

Given A € u* the stepwise square integrable representation 7 € N one proves
that the Mackey obstruction ¢ € H*(My; U (1)) is trivial, and in fact that 7 extends
to a unitary representation 7Tj\ of N x M) on the representation space of 7.

Each A € u* now defines classes

Q) = {wj ®v|ve A@} L FO) = {Ind%%(ﬂ ®7) |mieye E(A)}
2D

of irreducible unitary representations of N x M and N M. The Mackey little group
method, plus the fact that the Plancherel density on N is polynomial on s*, and
s* \ u* has measure 0 in t*, gives us

Proposition 7.2 Plancherel measure for NM is concentrated on |, . F(N),
equivalence classes of irreducible representations ) , := Ind %% (ﬂl ® ) such that
771 ® v € E(N) and X € u*. Further
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maly = (3 )| = [ (@im o) man dondty).
N M/ M,

There is a Borel section o to u* — u*/Ad*(M) that picks out an element in each
M -orbit so that M has the same isotropy subgroup at each of those elements. In other
words in each M-orbit on u* we measurably choose an element A = o(Ad*(M)\)
such that those isotropy subgroups M) are all the same. Let us denote

M_: isotropy subgroup of M at o(Ad*(M)\) for every A € u* (22)

We replace M) by M., independent of A € u*, in Proposition 7.2. That lets us
assemble to representations of Proposition 7.2 for a Plancherel Formula, as follows.
Since M is compact, we have the Schwartz space C(N M) just as in the discussion
of C(N) between (6) and Theorem 3.5, except that the pullback exp* C(NM) #
C(n + m). The same applies to C(NA) and C(NAM).

Proposition 7.3 Let f € C(NM) and write (f,)(n) = f(nm) = (, f)(m) forn €
N and m € M. The Plancherel density at Ind %%@ (ﬂ'j\ ® ) is (dim ) |Pf (by)| and
the Plancherel Formula for NM is

Fomy =c [ S e fo) - dime) - PE ()l
w /AT M) oy

where ¢ =24+ tnd \\dy\ . d,,!, from (6), as in Theorem 3.5.

8 Minimal Parabolics: MAN and AN

Let G be aseparable locally compact group of type I. Then [14, Sect. 1] the Plancherel
formula for G has form

Fx) = /a trace T(D(r (x) f))dp, () 23)

where D is an invertible positive self adjoint operator on L?(G), conjugation-semi-
invariant of weight equal to the modular function d, and p is a positive Borel measure
on the unitary dual G.If G is unimodular then D is the identity and (23) reduces to
the usual Plancherel formula. The point is that semi-invariance of D compensates
any lack of unimodularity. See [14, Sect. 1] for a detailed discussion. D ® p is unique
(up to normalization of Haar measures) and one tries to find a “best” choice of D.
Given any such pair (D, p) we refer to D as a Dixmier—Pukdnszky Operator on G
and to u as the associated Plancherel measure on G. We will construct a Dixmier—
Pukénszky Operator from the Pfaffian polynomial Pf (b)).
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Let 64n and dy denote the modular functions on AN andon Q = MAN. As M
is compact and Ady(N) is unipotent on p, they are determined by their restrictions
to A, where they are given by d(exp(£)) = exp(trace (ad(£))) with £ = loga € a.

Lemma 8.1 Let £ € a. Then %(dim l, +dim3,) € Zfor1 <r < mand
(i) the trace of ad (&) on I, is 3(dim [, + dim 3,) 53, (&),
(ii) the trace of ad(§) on n and on p is % > (dim [, + dim 3,)3,(€),
(iii) the determinant of Ad(exp(€)) on nwand on p is [], exp(G, (§))%(dim lrtdimg,),
(iv) dg(man) = [, exp(B, (log a)) 2 @m -+dmsn) 4nd 5, = G| an.
Now compute
Lemma 8.2 Let £ € a and a = exp(§) € A. Then ad(§)Pf = (% >, dim(l./ 3,)

B,(©)) PF and Ad(@PF = ([T, exp(d, (€)' It/ dmar)) pf

At this point it is convenient to introduce some notation and definitions.

Definition 8.3 The algebra s is the quasi-center of n. The polynomial function
Dete:(A) := [],(8,(\)%m8 on s* is the quasi-center determinant.

For ¢ € a and a = exp(£) € A compute (Ad(a)Dets)(A\) = Dety-(Ad*(a™")
W) = [1.(B-(Ad@@ ) * )™ = [, (5, (exp(B,(£))A)“™ 9 . In other words,

Lemma 8.4 Let a = exp(§) € A. Then Ad(a)Detg: = (]_[r exp(5, (§))dim3’) Det,-
where £ =loga € a.

Combining Lemmas 8.1, 8.2 and 8.4 we have

Proposition 8.5 The product Pf - Det,- is an Ad(M AN)-semi-invariant (and thus
Ad(AN)-semi-invariant) polynomial on s* of degree %(dim n + dim s) and of weight
equal to the respective modular functions of Q and AN.

Fromn = v 4+ swehave N = VS where V = exp(v) and S = exp(s). Now define
D : Fourier transform of Pf - Det,-, acting on the S variable of N = V' §. (24)

Theorem 8.6 The operator D of (24) is an invertible self-adjoint differential oper-
ator of degree %(dim n+dims) on L>(M AN) with dense domain C(M AN), and
it is Ad(M AN)-semi-invariant of weight equal to the modular function Sy ay. In
other words | D| is a Dixmier—Pukdnszky Operator on M AN with domain equal to
the space of rapidly decreasing C* functions. This applies as well to AN.

Since A € t* has nonzero projection on each summand 37 of 5%, and a € A acts
by the positive real scalar exp(3,(log(a))) on 3,,

A, =exp({£ € a | each 5,(€) = 0}), independent of \ € t*. (25)
Because of this independence, and using a, = {£ € a | each 3,(£) = 0}, we define

A = A, for any (and thus for all) A € t*. (26)
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Lemma 8.7 If \ € o(u*) then the stabilizer (MA)) = MyAs.
There is no problem with the Mackey obstruction:

Lemma 8.8 Ler A € o(u*). Recall the extension (before (21)) 71'1; of T\ to NM,.
Then Tl'j\ extends to ™\ € N M A with the same representation space as ).

When A € o(u*), A, consists of the unitary characters exp(i¢) : a > e/¢(o2a)
with ¢ € a. The representations of Q corresponding to A are the

Taq,e -= Ind %%on(ﬂ ® v ® exp(i¢)) where v € ]T/I; and ¢ € ay . (27)

Ad*(A) fixes v because A centralizes M, and it fixes ¢ because A is commutative,
SO

Toms - Ad((ma) ™) = Tad mayr .0 (28)

Proposition 8.9 Plancherel measure for Q is concentrated on the set of all ) - 4

for \ € o(u¥), v ef/[zand ¢ € af,. The equivalence class of ) ., 4 depends only on
(Ad*(M AN, v, 9).

Representations of AN are the case v = 1. In effect, let 7'&';\ denote the obvious
extension 7| 4 Of the stepwise square integrable representation 7y from N to N A
where ) is given by Lemma 8.8. Denote

Tre = Ind 4 (7} ® exp(i¢)) where A € u* and ¢ € a;. (29)

Corollary 8.10 Plancherel measure for AN is concentrated on the set of all 7y 4 for
A e u* and ¢ € af,. The equivalence class of Ty 4 depends only on (Ad* (M A) X, ¢).

A result of C.C. Moore implies

Lemma 8.11 The Pf-nonsingular principal orbit set u* is a finite union of open
Ad* (M A)-orbits.

Let {O, ..., O,} denote the (open) Ad*(M A)-orbits on u*. Denote \; = o(0;),
so O; = Ad*(MA)\; and (MA)), = My A for 1 <i < v. Then Proposition 8.9
becomes

Theorem 8.12 Plancherel measure for M AN is concentrated on the set (of equiva-
—_—
lence classes of) unitary representations Ty, .o for 1 =i < v,y € My and ¢ € af,.

The Plancherel Formula (or Fourier Inversion Formula) for M AN is

Theorem 8.13 Let Q = M AN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. Given Ty 4 € MAN as described in (27) let O, , :h+—
trace ) ,4(h) denote its distribution character. Then ®r, , is a tempered distri-
bution. If f € C(MAN) then ‘



Stepwise Square Integrable Representations ... 195

f=c> > / O, (DO )IPE (by)|dimy do

—Ja

i=1 ’)’EMQ

where ¢ > 0 depends on normalizations of Haar measures.

The Plancherel Theorem for N A follows similar lines. For the main computation
in the proof of Theorem 8.13 we omit M and ~. That gives

/ trace my, »(Dh) do = trace 7y (h)|Pf (b)) |d A (30)
aj ‘ Ad*(A)\o

In order to go from an Ad*(A)\g to an integral over u* we use M to parameterize
the space of Ad*(A)-orbits on u*. If A € u* one proves Ad*(A)A N Ad* (M)A = {\}.
That leads to

Proposition 8.14 Plancherel measure for N A is concentrated on the equivalence
classes of representations Ty 5 = Ind %ﬁo (7, ® exp(ip)) where X € S; := Ad*(M)
i, 1 £i S v, ) extends 7y from N to NA, and ¢ € af. Representations T , and
Ty.¢ are equivalent if and only if N € Ad*(A)A and ¢ = ¢. Further, wy |y =
j;tEA/AQ 7-I-Ad*(a)/\da'

Theorem 8.15 Let Q = M AN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. If my 4 € AN let O,  : h — trace ) 4(h) denote its distribution
character. Then O, , is a tempered distribution. If f € C(AN) then

f(x) =CZ/ / trace T (D (r (x) f)|Pf (by)|dAd ¢.
i=1 AeAdx(M)N; J a,

where ¢ > 0 depends on normalizations of Haar measures.

9 Parabolic Subgroups in General: The Nilradical

In Sects. 7 and 8 we studied minimal parabolic subgroups Q = M AN in simple Lie
groups, along with certain of their subgroups M N and AN . This section and the next
form a glance at more general parabolics. This material is taken from [32], which is
a work in progress, and is limited to the part that I’ve written down. We start with
the structure of the nilradical.

The condition (c) of (5) does not always hold for nilradicals of parabolic sub-
groups. In this section and the next we weaken (5) to
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N=LL,...L,_{L, where
(a) eachL, has unitary representations with coefficients in L*(L, /Z,),
(b)yeach N, := L{L,...L, = N,_; x L, semidirect,
(c)ifr = sthen[l,, 3,] = 0.

€29

The conditions of (31) are sufficient to construct stepwise square integrable repre-
sentations, but are not always sufficient to compute the Pfaffian that is the Plancherel
density. So we refer to (5) as the strong computability condition and make use of the
weak computability condition

Letl, =, & [’ where ' C 3, and v, C [; then [, [,] C I + v, forr > 5. (32)

where we retain [, = 3, + v, andn =5 + v.

Consider an arbitrary parabolic subgroup of G. It contains a minimal parabolic
O = MAN. Let ¥ denote the set of simple roots for the positive system A% (g, a).
Then the parabolic subgroups of G that contain Q are in one to one correspondence
with the subsets @ C ¥, say Q¢ <> @, as follows. Denote ¥ = {1);} and set

red __ _ aly. J— .
Q" = {a = Zu>iet1/n’7’[}’ € A(g, a) | n; = 0 whenever v¢; ¢ @}

nil _ — b + ) )
oMt = {a = Zuewn’w’ € A" (g, a) | n; > 0 for some v); ¢ CD] .

Vi

(33)

On the Lie algebra level, qp = mgp + agp + ngp where

ap ={Ecal) =0forally € @} = ot
mg + ag is the centralizer of ag in g, sO mg has root system @ and (34)

ng = Z ® o 8as nilradical of q4 , sum of the positive ag-root spaces.
aeP™

Since n = D I, as given in (17) and (18) we have

o= mon) =2 (@ Nne)+Y. @Nno)). (3

As ad(m) is irreducible on each restricted root space, if « € {3,} U A then g, N1y
is 0 or all of g,,.

Lemma 9.1 Suppose gg, Nngp = 0. Then [, Nng = 0.

Lemma 9.2 Suppose gs, Nng # 0. Define J, C A by [, Nng = gp, + 2, da-
Decompose J, = J/ U J! where J! = {a € J, | orac € J,}andJ! ={a € J, | o, ¢
J.}. Then gg + ZJVH go belongs to a single ag-root space in ng, i.e. &t|q, = Brlay,
foreverya e J/.



Stepwise Square Integrable Representations ... 197

Lemma 9.3 Suppose [, Nng # 0. Then the algebra |, Nng has center gg +
Zj,” Yo and [, Nng = (gﬂ, + er” ga') + (Zj’{ ga)) Further, [, Nng = (Zj'”ga)

() (Elﬁ, + (Z jy,ga,)) direct sum of ideals.

It will be convenient to define sets of simple ag-roots
Wi =W and ¥y = (Y€ W | (¢, 5) =Ofor 1 i <), (36)

Note that ¥, is the simple root system for {o € AT (g, a) | « L §; fori < r}.
Lemma 9.4 Ifr > sthen[l, Nng, g3 + > ;18a] = 0.

For our dealings with arbitrary parabolics it is not sufficient to consider linear func-
tionalson ", g, . Instead we have to look at linear functionalson ", (gs, + > 7 da)-
of the form A = > A, where A, € g such that b, is nondegenerate on >_, > ga.
We know that (5)(c) holds for the nilradical of the minimal parabolic g that con-
tains q¢. In view of Lemma 9.4 it follows that b) ([, l;) = A([[;, [;(] = 0 for r > s.
For this particular type of A, the bilinear form b, has kernel > (ggs +> Jv/,ga,) and
is nondegenerate on >, >, go. Then Ny = (L1 N No)(Lo N Ny) . .. (L N No)
satisfies the first two conditions of (5). That is enough to carry out the construction
of stepwise square integrable representations 7 of Ng, but one needs to do more to
deal with Pfaffian polynomials as in (5)(c) and (32).

Let It = {i | Bilay = By la,} Where g is the first index of (5) with 3, |4, # 0.
Next, I, = {i | Bila, = By,la,} Where g is the first index of (5) such that g, ¢ I; and
By las # 0. Continuing as long as possible, Iy = {i | Bila, = B¢ la,} Where g is the
first index of (5) such that g; ¢ (/; U---U L1_1) and B, |q, # 0. Then I; U--- U I,
consists of all the indices i for which §;|4, # 0. For 1 £ j < £ define

[¢’j - zielj([i " n(p) - (Zielj [i) Mo and [;’j - zkif[d)'k ’ (37)

Lemma 9.5 If k = j then [lg, lg ;1 C lp, ;. For each index j, lg ; and [;,j are
[T

subalgebras of ne and e j is an ideal in [y, ;.

Lemma 9.6 Ifk > jthen[loy, o ;1N Zielj gs =0.

In the notation of Lemma 9.2, if r € I; then
[ Nng =0 4" where [ = g5, + er, go and I = Z” o (38)

For 1 £ j £ £ define
sog =2, @+ 1) (39)
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and decompose

lo,; =l + Uy where [, ;= > JGandlg ;= Z,-Ez, . (40)

iel;

Lemma 9.7 Recall [;’j = Z,@j[(p,k Sfrom (37). For each j, both 3¢ ; and [;’),j are

central ideals in [; j» and 3o ; is the center of lp ;.

Decompose

g = 3¢ + g Where 3o = Z?)@.,_i , o = Z by j and vy ; = Z Z Yo -

J J ielj ael!
(41)
Then Lemma 9.7 gives us (32) for the lg ;: lp ; =15 ; @[3 ; with [, ; C 3o ; and
vo,; Clop ;-

Lemma 9.8 For generic \j € 3% jthe kernel of by, onle j is just 3o j, in other words
by, is nondegenerate on vg j > lo j/30 - In particular Lo ; has square integrable
representations.

Theorem 9.9 Let G be a real reductive Lie group and Q a real parabolic sub-
group. Express Q = Qg in the notation of (33) and (34). Then its nilradical Ny has
decomposition No = Lo 1L ... Loy that satisfies the conditions of (5) and (32)
as follows. The center Zg ; of Le . j is the analytic subgroup for 3¢ ; and

(a) each Lo j has unitary representations with coefficients in LZ(L¢_j/Zq),j)
(b) each No j := Lo 1Loy> ... Lo, is anormal subgroup of Ng
with N ; = N¢ j—1 X Lo j semidirect,

(c) [[Qk, 34)7]] = 0and [[qyﬁk, [d).j] Cbg + [Z,!jfork > ]
(42)

In particular Ny has stepwise square integrable representations relative to the
decomposition No = Lo 1Leo ... Lo .

10 Amenable Subgroups of Semisimple Lie Groups

In this section we apply the results of Sect.9 to certain important subgroups of the
parabolic Q¢ = Mg Ay N, specifically its amenable subgroups Ag Ng, Ug Ny and
UpAp Ny where Uy is a maximal compact subgroup of M.

The theory of the group Ug N goes exactlyasinSect.7.When Ny = Lo (Lo . ..
L4 ¢ is weakly invariant we can proceed more or less as in [28]. The argument, but
not the final result, will make use of
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Definition 10.1 The decomposition Ny = L 1Lg ... Ly of Theorem 9.9 is
invariant if each ad(mg)3e,; = 30,;, equivalently if each Ad(M¢)30,; = 3¢,j, In
other words whenever 3¢ ; = 9(0.3,]- The decomposition No = Lo 1Loo... Loy
is weakly invariant if each Ad(U¢)30,; = 30,;- &

Set
tp ={Aesy | P(\) # 0and Ad(Ug)A is a principal Ug-orbiton sj,}.  (43)

Then t}; is dense, open and Ug-invariant in s};. By definition of principal orbit the
isotropy subgroups of Uy at the various points of t;, are conjugate, and we take a
measurable section o to v}, — Ug\t} on whose image all the isotropy subgroups
are the same,

Uy, : isotropy subgroup of Uy at o(Ug (M), independent of A € ¢} . (44)

The prln(:lpal isotropy subgroups Uy, are pinned down in [11]. Given A € t}, and
v e U U7, let 7r denote the extension of ) to a representation of U/, Ny on the space
of my and deﬁne

M, = Ind 237 (y © ). (45)

The first result in this setting, as in [28, Proposition 3.3], is

Theorem 10.2 SupposethatNg = Ly Le ... Lg gasin(31). Thenthe Plancherel

density on lm is concentrated on the representations 7 -, of (45), the Plancherel
density at ) ~ is (dim )| P (\)|, and the Plancherel Formula for Ug Ng is

fun) =c / > traceInd gzgg; Fan(f) - dim(y) - |P(N)|dA
vy /Ad*(Us)

V€Vq

where ¢ = 24t g\dy) .. dy) as in (6).

Recall the notion of amenability. A mean on a locally compact group H is a
linear functional ;1 on L*(H) of norm 1 and such that u( f) 2 0 for all real-valued
f = 0. H is amenable if it has a left-invariant mean. Solvable groups and compact
groups are amenable, as are extensions of amenable groups by amenable subgroups.
In particular E¢ := Ugp Agp Ny and its closed subgroups are amenable.

We need a technical condition [16, p. 132]. Let H be the group of real points in
a linear algebraic group whose rational points are Zariski dense, let A be a maximal
R-split torus in H, let Zy(A) denote the centralizer of A in H, and let Hy be
the algebraic connected component of the identity in H. Then H is isotropically
connected if H = Hy - Zy(A). More generally we will say that a subgroup H C G
is isotropically connected if the algebraic hull of Ads (H) is isotropically connected.

Proposition 10.2 [16, Theorem 3.2]. The groups E¢ := UpAgp No are maximal
amenable subgroups of G. They are isotropically connected and self-normalizing.
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The various @ C ¥ are mutually non-conjugate. An amenable subgroup H C G is
contained in some E¢ if and only if it is isotropically connected.

The isotropy subgroups are the same at every A € t,
Al : isotropy subgroup of Ap at A € ¢, . (46)

Given a stepwise square integrable representation 7y where \ € s}, write 7Tj\ for
the extension of 7 to a representation of A, Ny on the same Hilbert space. That
extension exists because the Mackey obstruction vanishes. The representations of
A, Ng corresponding to 7y are the

Tas :=Ind sz: (exp(i¢) ® 7)) where ¢ € a . (47)

Note also that
UDWN Ad(an) = TAd*(a)\,¢ fora € Aq> andn € No . (48)

The resulting formula f(x) = fﬁ trace m(D(r(x) f))dpg (m), H = Agp Ng, is

Theorem 10.3 Let Q¢ = My Ay Ny be a parabolic subgroup of the real reductive
Lie group G. Given 7y 4 € Ap Ng as described in (47), its distribution character
Or,, - h — trace my 4 (h) is a tempered distribution. If f € C(Ap Ng) then

fx) = C/ (/ Or,,(D(r(x) f))[Pf (b)\)|d>\)d¢
(@) \/ 53 /Ad" (40)

where ¢ = 240t d\\dy! L d,).
The representations of Uy Ag Ng corresponding to 7y are the

UpAp No —

Mo = Ind 2321 (7 @ exp(id) ® 7)) where ¢ € ajy andy € U), . (49)

Combining Theorems 10.2 and 10.3 we arrive at

Theorem 10.4 Let Q¢ = My Ay Ny be a parabolic subgroup of the real reductive
Lie group G and decompose No = L, 1Lp ... Lg g asin(31). Then the Plancherel

density on Up Ap No is concentrated on the ) 4., of (49), the Plancherel density
at my, g is (dim )| P(A)|, the distribution character Oy, , : h > trace my ¢ (h) is
tempered, and if f € C(UpAgp Ng) then

fo=eY / / Or,.,.,(D(r(x) f)) deg(y) [P (by)|d | dg
17; (alp)* 5% /Ad*(Up Ag)

where ¢ = 20t e g \\dy! L d,).
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Higher-Dimensional Unified Theories
with Continuous and Fuzzy Coset Spaces
as Extra Dimensions

G. Manolakos and G. Zoupanos

Abstract We first briefly review the Coset Space Dimensional Reduction (CSDR)
programme and present the results of the best model so far, based on the N = 1,
d = 10, Eg gauge theory reduced over the nearly-Kéhler manifold SU (3)/U (1) x
U (1). Then, we present the adjustment of the CSDR programme in the case that the
extra dimensions are considered to be fuzzy coset spaces and then, the best model
constructed in this framework, too, which is the trinification GUT, SU (3).

1 Introduction

During the last decades, unification of the fundamental interactions has focused the
interest of theoretical physicists. This has led to the rise of very interesting and well-
established approaches. Important and appealing are the ones that elaborate extra
dimensions. A consistent framework in this approach is superstring theories [1] with
the Heterotic String [2] (defined in ten dimensions) being the most promising, due
to the possibility that in principle could lead to experimentally testable predictions.
More specifically, the compactification of the 10-dimensional spacetime and the
dimensional reduction of the Eg x Eg initial gauge theory lead to phenomenologi-
cally interesting Grand Unified theories (GUTSs), containing the SM gauge group.
A few years before the development of the superstring theories, another impor-
tant framework aiming at the same direction was employed, that is the dimensional
reduction of higher-dimensional gauge theories. Pioneers in this field were Forgacs-
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Manton and Scherk-Schwartz studying the Coset Space Dimensional Reduction
(CSDR) [3-5] and Scherk-Schwarz group manifold reduction [6], respectively. In
both of these approaches, the higher-dimensional gauge fields are unifying the gauge
and scalar fields, while the 4-dimensional theory contains the surviving components
after the procedure of the dimensional reduction. Moreover, in the CSDR scheme,
the inclusion of fermionic fields in the initial theory leads to Yukawa couplings in the
4-dimensional theory. Furthermore, upgrading the higher-dimensional gauge theory
to N = 1 supersymmetric, i.e. grouping the gauge and fermionic fields of the theory
into the same vector supermultiplet, is a way to unify further the fields of the initial
theory, in certain dimensions [7, 8]. A very remarkable achievement of the CSDR
scheme is the possibility of obtaining chiral theories in four dimensions [9, 10].

The above context of the CSDR adopted some very welcome suggestions com-
ing from the superstring theories (specifically from the Heterotic String [2]), that
is the dimensions of the space-time and the gauge group of the higher-dimensional
supersymmetric theory. In addition, taking into account the fact that the superstring
theories are consistent only in ten dimensions, the following important issues have
to be addressed, (a) distinguish the extra dimensions from the four observable ones
by considering an appropriate compactification of the metric and (b) determine the
resulting 4-dimensional theory. Additionally, a suitable choice of the compactifica-
tion manifolds could result into A/ = 1 supersymmetry, aiming for a chance to be
led to realistic GUTs.

Aiming at the preservation of an A/ = 1 supersymmetry after the dimensional
reduction, Calabi—Yau (CY) spaces serve as suitable compact internal manifolds
[11]. However, the emergence of the moduli stabilization problem, led to the study
of flux compactification, in the context of which a wider class of internal spaces,
called manifolds with SU (3)-structure, was suggested. In this class of manifolds, a
non-vanishing, globally defined spinor is admitted. This spinor is covariantly constant
with respect to a connection with torsion, versus the CY case, where the spinor is
constant with respect to the Levi-Civita connection. Here, we consider the nearly-
Kihler manifolds, that is an interesting class of SU (3)-structure manifolds [12—
15]. The class of homogeneous nearly-Kiahler manifolds in six dimensions consists
of the non-symmetric coset spaces G,/SU(3), Sp(4)/(SU2) x U (1)) non—max and
SU@B)/U(1) x U(1) and the group manifold SU(2) x SU(2) [15] (see also [12—
14]). It is worth mentioning that 4-dimensional theories which are obtained after
the dimensional reduction of a 10-dimensional A" = 1 supersymmetric gauge theory
over non-symmetric coset spaces, contain supersymmetry breaking terms [16, 17],
contrary to CY spaces.

Another very interesting framework which admits a description of physics at the
Planck scale is non-commutative geometry [18-38]. Regularizing quantum field the-
ories, or even better, building finite ones are the features that render it as a promis-
ing framework. On the other hand, the construction of quantum field theories on
non-commutative spaces is a difficult task and, furthermore, problematic ultraviolet
features have emerged [21] (see also [22, 23]. However, non-commutative geometry
is an appropriate framework to accommodate particle models with non-commutative
gauge theories [24] (see also [25-27]).
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It is remarkable that the two frameworks (superstring theories and
non-commutative geometry) found contact, after the realization that, in M-theory
and open String theory, the effective physics on D-branes can be described by a
non-commutative gauge theory [28, 29], if a non-vanishing background antisym-
metric field is present. Moreover, the type IIB superstring theory (and others related
with type IIB with certain dualities) in its conjectured non-perturbative formulation
as a matrix model [30], is a non-commutative theory. In the framework of non-
commutative geometry, Seiberg and Witten [29] contributed the most with their study
(map between commutative and non-commutative gauge theories) based on which
notable developments [31, 32] were achieved and afterwards a non-commutative
version of the SM was constructed [33]. Unfortunately, such extensions fail to solve
the main problem of the SM, which is the presence of many free parameters.

A very interesting development in the framework of the non-commutative geome-
try is the programme in which the extra dimensions of higher-dimensional theories are
considered to be non-commutative (fuzzy) [34—38]. This programme overcomes the
ultraviolet/infrared problematic behaviours of theories defined in non-commutative
spaces. A very welcome feature of such theories is that they are renormalizable, ver-
sus all known higher-dimensional theories. This aspect of the theory was examined
from the 4-dimensional point of view too, using spontaneous symmetry breakings
which mimic the results of the dimensional reduction of a higher-dimensional gauge
theory with non-commutative (fuzzy) extra dimensions. In addition, another inter-
esting feature is that in theories constructed in this programme, there is an option
of choosing the initial higher-dimensional gauge theory to be abelian. Then, non-
abelian gauge theories result in lower dimensions in the process of the dimensional
reduction over fuzzy coset spaces. Finally, the important problem of chirality in this
framework has been addressed by applying an orbifold projection on a " = 4 SYM
theory. After the orbifolding, the resulting theory is an N = 1 supersymmetric, chiral
SU(3)3.

2 The Coset Space Dimensional Reduction
of a D-Dimensional YMD Lagrangian

An obvious and crude way to realize a dimensional reduction of a higher-dimensional
gauge theory is to demand that all the fields of the theory are independent of the extra
coordinates (trivial reduction) and therefore the Lagrangian is independent, too. A
much more elegant way is to allow for a non-trivial dependence considering that a
symmetry transformation on the fields by an element that belongs in the isometry
group S of the compact coset space B = S/R formed by the extra dimensions is a
gauge transformation (symmetric fields). Therefore, the a priori consideration of the
Lagrangian as gauge invariant, renders it independent of the extra coordinates. The
above way of getting rid of the extra dimensions is the basic concept of the CSDR
scheme [3-5].
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Let us now consider the action of the D-dimensional YM theory with gauge
symmetry G, coupled to fermions defined on M? with metric g™¥

1 I -
A= / d*xd’y/—g [—ZMFMNFKA)gMKg“ + EMMDW} , (D

1
where Dy = Oy — 0y — Ay, With 0y = =04y 4 XV the spin connection of MP

and FMN = 8MAN — 8NAM — [AM, AN], where M,N =1...D and AM, ’t/) are
D-dimensional symmetric fields. The fermions can be accommodated in any repre-
sentation F of G, unless an additional symmetry, e.g. supersymmetry, is considered.

Let&5, (A=1,...,dimSand a =dimR +1,...,dimS§ the curved index) be
the Killing vectors which generate the symmetries of S/R and Wy, the gauge trans-
formation associated with £ 4. The following constraint equations for scalar ¢, vector
A, and spinor %) fields on S/R, derive from the definition of the symmetric fields,
that is the S—transformations of the fields are gauge transformations

540 = E5006 = D(Wa)0, 2)

SalAo = E005A0 + 0uEL A = BuWa — [Wa, Aal, 3)
1 X

Sath = 301 — EGAbczbcw =D(Wa)p, )

where W, depend only on internal coordinates y and D(W,) represents a gauge
transformation in the corresponding representation where the fields belong. Solving
the above constraints (2)—(4), we result with [3, 4] the unconstrained 4-dimensional
fields, as well as with the remaining 4-dimensional gauge symmetry.

We proceed by analysing the constraints on the fields in the theory. We start with
the gauge field Ay on Mp, which splits into its components as (A,, A,) corre-
sponding to M* and S/ R, respectively. Solving the corresponding constraint, (3), we
obtain the following information: First, the 4-dimensional gauge field, A, is com-
pletely independent of the coset space coordinates and second, the 4-dimensional
gauge fields commute with the generators of the subgroup R in G. This means that
the surviving gauge symmetry, H, is the subgroup of G that commutes with R, that
is the centralizer of R in G, i.e. H = C5(Rg). The A (x, ¥) = ¢, (x, y), transform
as scalars in the 4-dimensional theory and ¢, (x, y) act as intertwining operators
connecting induced representations of R acting on G and S/R. In order to find the
representation in which the scalars are accommodated in the 4-dimensional theory,
we have to decompose G according to the embedding

GORgxH., adjG=(djR 1)+ adjH)+> (i.h). (5
and S under R

SOR. adjS=adjR+ s. (6)
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Therefore, we conclude that for every pair r;, s;, where r; and s; are identical irre-
ducible representations of R, there remains a scalar (Higgs) multiplet which trans-
forms under the representation /; of H. All other scalar fields vanish.

As far as the spinors are concerned [4, 9, 10, 39], the analysis of the corresponding
constraint, (4), is quite similar. Again, solving the constraint, one finds that the
spinors in the 4-dimensional theory are independent of the coset coordinates and act
as intertwining operators connecting induced representations of R in SO (d) and in
G. In order to obtain the representation of H, where the fermions are accommodated
in the resulting 4-dimensional theory, one has to decompose the initial representation
F of G under the Rg x H,

GDRoxH, F=Y (rh), @)

and the spinor of SO (d) under R

SOd)DR, o4= 0. (8)

Therefore, for each pair r; and o;, where r; and o; are identical irreducible repre-
sentations, there exists a multiplet, /; of spinor fields in the 4-dimensional theory.
As for the chirality of the surviving fermions, if one begins with Dirac fermions in
the higher-dimensional theory it is impossible to result with chiral fermions in the
4-dimensional theory. Further requirements have to be imposed in order to result with
chiral fermions in the 4-dimensional theory. Indeed, imposing the Weyl condition in
the chiral representations of an even higher-dimensional initial theory, one is led to
a chiral theory in four dimensions. This is not the case in an odd higher-dimensional
initial theory, in which Weyl condition cannot be imposed. The most interesting case
is the D = 2n + 2 even higher dimensional initial theory, in which starting with
fermions in the adjoint representation the Weyl condition leads to two sets of chiral
fermions with the same quantum numbers under H of the 4-dimensional theory. This
doubling of the fermionic spectrum can be eliminated after imposing the Majorana
condition. The two conditions are compatible when D = 4n + 2, which is the case
of our interest.

Now, let us move on and determine the 4-dimensional effective action. The first
and very important step is to compactify the space M? to M* x S/R, with S/R a
compact coset space. After the compactification, the metric will be transformed to

oo
SN — (770 _gab) , )

where n¥ = diag(1, —1, —1, —1) and g is the metric of the coset. Inserting the (9)
into the initial action and taking into account the constraints of the fields, we obtain
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A=C / d*x [—%F;,,F’”” + = (D/,%)’(D”qb")’ +V(p) + %W“Dm -

- Lﬁr“Daw] : (10)

where D,y = 0, — A, and D, = 0, — 0, — ¢, with 0, = %Gabc >b¢ the connection
of the space and C is the volume of the space. The potential V (¢) is given by the
following expression

V(p) = g“‘gder(fb(bc [a, DD (fE DD — [e, Pal), (11)

where, A =1,...,dimS and f’s are the structure constants appearing in the com-
mutators of the Lie algebra of S. Considering the constraints of the fields, (2)—(3),
one finds that the scalar fields ¢, have to obey the following equation:

fR2ép —[da, ¢i1=0, (12)

where the ¢; are the generators of Rg. Consequently, some fields will be filtered out,
while others will survive the reduction and will be identified as the genuine Higgs
fields. The potential V (¢), written down in terms of the surviving scalars (the Higgs
fields), is a quartic polynomial which is invariant under the 4-dimensional gauge
group, H. Then, it follows the determination of the minimum of the potential and the
finding of the remaining gauge symmetry of the vacuum [40-42]. In general, this is
a rather difficult procedure. However, there is a case in which one could obtain the
result of the spontaneous breaking of the gauge group H very easily, whether the
following criterion is satisfied. Whenever S has an isomorphic image S¢ in G, then
the 4-dimensional gauge group H breaks spontaneously to a subgroup K, where K
is the centralizer of S¢ in the gauge group of the initial, higher-dimensional, theory,
G [4, 40-42]. This can be illustrated in the following scheme,

G DS xK
U n
G DR xH (13)

In addition, the potential of the resulting 4-dimensional gauge theory is always of
spontaneous symmetry breaking form, when the coset space is symmetric.! A neg-
ative result in this case is that, after the dimensional reduction, the fermions end up
being supermassive, as in the Kaluza—Klein theory.

Let us now summarize a few results coming from the dimensional reduction of
the N/ =1, Eg SYM over the nearly-Kéhler manifold SU(3)/U (1) x U(1). The
4-dimensional gauge group will be derived by the following decomposition of Eg

I'A coset space is called symmetric when fap = 0.
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under R=U(1) x U(1)
Es DEsxSUB)DEsxU)axU)p. (14)
Satisfying the above criterion, the surviving gauge group in four dimensions is
H=Cg(U()y xU)p) =Esc xU(l)a x U(1)p. (15)

The surviving scalars and fermions in four dimensions are obtained by the decom-
position of the adjoint representation of Ejg, that is the 248, under U (1)4 x U(1)p.
Applying the CSDR rules, one obtains the resulting 4-dimensional theory, which is
an N =1, Eg GUT, with U(1)4, U(1)p global symmetries. The potential is fully
determined after a lengthy calculation and can be found in Ref. [17]. Subtracting
the F— and D— terms contributing to this potential, one can determine also scalar
masses and trilinear scalar terms, which can be identified with the scalar part of the
soft supersymmetry breaking sector of the theory. In addition, the gaugino obtains a
mass, which receives a contribution from the torsion, contrary to the rest soft super-
symmetry breaking terms. The imortant point to note is that the CSDR leads to the
soft supersymmetry breaking sector without any additional assumption.

In order to break further the Eq GUT, one has to employ the Wilson flux mech-
anism. Due to the space limitation we cannot describe here the mechanism and its
application in the present case. The details can be found in Ref. [14]. The resulting
theory is a softly broken A/ = 1, chiral SU (3)? theory which can break further to an
extension of the MSSM.

3 Fuzzy Spaces

3.1 The Fuzzy Sphere

In order to introduce the non-commutative space of the fuzzy sphere, we are going to
begin with the familiar ordinary sphere S? and extend it to its fuzzy version. The S
may be considered as a manifold embedded into the 3-dimensional Euclidean space,
R?. This embedding allows us to specify the algebra of the functions on S? through
R?, by imposing the constraint

3
S2=r, (16)
a=1

where x, are the coordinates of R? and R is the radius of S?. The isometry group of
52 is a global SO (3), which is generated by the three angular momentum operators,
L, = —i€upexp0,, due to the isomorphism SO (3) >~ SU(2).
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If we write the three operators L, in terms of the spherical coordinates 6, ¢, the
generators are expressed as L, = —i£0,, where the greek index, «, denotes the
spherical coordinates and & are the components of the Killing vector fields which
generate the isometries of the sphere.”

The spherical harmonics, Y;,, (0, ¢), are the eigenfunctions of the operator

L= —R’Ag = —Rziaa(g“b@ab). (17)
7

7

Acting with L? on Y, (6, ¢), one obtains its eigenvalues,
LY =1+ DY , (18)

where [ is a non-negative integer. In addition, the Y;,, (6, ¢) obey the orthogonality
condition

/ sin 0d0d oY, Yy = Oy Gy - (19)

Since Yy, (0, ¢) form a complete and orthogonal set of functions, any function on
§? can be expanded on this set

(o]

!
a,0)=>_ D am¥im(0,9), (20)

=0 m=—I

where a;,, are complex coefficients. Alternatively, spherical harmonics can also be
expressed in terms of the coordinates of R3, x,, as

Yim (0, §) = D fur x4, 1)

a

where f  is an /—rank (traceless) symmetric tensor.

Let us now make the extension of S? to its fuzzy version. Fuzzy sphere is a
typical case of a non-commutative space, meaning that the algebra of functions is
not commutative, as it is on S, with / having an upper limit. Therefore, due to this
truncation, one obtains a finite dimensional (non-commutative) algebra, in particular
1% dimensional. Thus, it is natural to consider the truncated algebra as a matrix algebra
and it is consistent to consider the fuzzy sphere as a matrix approximation of the S.

According to the above, it follows that we are able to expand N-dimensional
matrices on a fuzzy sphere as

N—-1 [ R
a=>">" damYim, (22)

=0 m=—I

. 1 ‘
2The $2 metric can be expressed in terms of the Killing vectors as g% = ﬁfgfﬁ .
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where Y, are spherical harmonics of the fuzzy sphere, which are now given by

Yiw = R flm X X (23)
a
where 2R
Xy=—=\", (24)
NZ -1 "“

where A(") are the SU (2) generators in the N-dimensional representation and f}”

is the same tensor that we met in (21). The IA/lm also satisfy the orthonormality
condition

TrN (?;n?l’m’) = 5!1/6mm’ . (25)

Moreover, there is a relation between the expansion of a function, (20), and that
of a matrix, (22) on the original and the fuzzy sphere, respectively

N—1 | N—1 [
a:Z Zalmi}lm g azz Zalmylm(99¢)- (26)
1=0

=0 m=—1 m=—l

The above relation is obviously a map from matrices to functions. Since we intro-
duced the fuzzy sphere as a truncation of the algebra of functions on S2, considering
the same a;,, was just the most natural choice. Of course, the choice of the map is
not unique, since it is not obligatory to consider the same expansion coefficients aj,,.
The above is a 1 : 1 mapping given by [43],

a0, ¢) = D Ten(¥),&)Yim (0, §) . 27)
Im

The matrix trace is mapped to an integral over the sphere:

1 1
—T — [ dS2. 28
N o 47 (28)

Summing up, the fuzzy sphere is a matrix approximation of the ordinary sphere,
S2. The truncation of the algebra of the functions results to loss of commutativity,
ending up with a non-commutative algebra, that of matrices, Mat(N; C). Therefore,
the fuzzy sphere, Sy, is the non-commutative manifold with Xa being the coordinate
functions. As given by (24), X, are N x N hermitian matrices produced by the
generators of SU(2) in the N-dimensional representation. Obviously they have to
obey both the condition

3
> XX, =R, (29)

a=1
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which is the analogue of (16), and the commutation relations

A A . N 2R
[Xo, Xp] = iaepeXe, = ——=. (30)
NZ—1

Equivalently, one can consider the algebra on Sy being described by the antihermitian
matrices

X, = X, 31)
‘7 iaR’

also satisfying the modified relations (29), (30)

D XaXa=-—. [Xa Xp] = CapeXec. (32)
«

where Cupe = —€ape-

Let us proceed by briefly mentioning the differential calculus on the fuzzy sphere,
which is 3-dimensional and SU (2) covariant. The derivations of a function f, along
X, are

ea(f) =[Xa: f1, (33)
and consequently, the Lie derivative on f is
Laf =Xa, [, (34)
where £, obeys the Leibniz rule and the commutation relation of su(2)
[La: Lp] = CapcLe - (35)

Working on the framework of differential forms, §¢ are the 1—forms dual to the
vector fields e,, namely (e,, oby = 52 . Therefore, the exterior derivative, d, acting
on a function f, gives

df =[X., f10°, (36)

and the action of the Lie derivative on the 1—forms 6" gives

L,0° = Capcb° . (37)
The Lie derivative obeys the Leibniz law, therefore its action on any 1—form w =
w,0¢ gives

Lyw = Ly(wa0") = [Xp, wg]0" — w,C}.60°, (38)

where we have applied (34), (37). Therefore, one obtains the result
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(‘wa)a = [Xb’ wa] - WL-CZL, . (39)

After having stated the differential geometry of fuzzy sphere, one could extend the
study of the differential geometry of M* x S%,, which is the product of Minkowski
space and fuzzy sphere with fuzziness level N — 1. For example, any 1—form A of
M* x S2, can be expressed in terms of M* and 53, that is

A=Adx"+ A0", (40)

where A, A, depend on both x* and X, coordinates.

Furthermore, instead of functions on the fuzzy sphere, one can examine the case
of spinors [34]. Moreover, although we do not include them in the present review,
studies of the differential geometry of other higher-dimensional fuzzy spaces (e.g.
fuzzy C P M) have been done [34].

3.2 Gauge Theory on the Fuzzy Sphere

Let us consider [44] a field ¢(X,) on the fuzzy sphere, depending on the powers of
the coordinates, X,. The infinitesimal transformation of ¢(X,) is

0P(X) = AMX)P(X), (41)

where A(X) is the parameter of the gauge transformation. If A(X) is an antihermitian
function of X, the (41) is an infinitesimal (abelian) U (1) transformation. On the
other hand, if A(X) is valued in Lie(U (P)), that is the algebra of P x P hermitian
matrices, then the (41) is infinitesimal (non-abelian), U (P). Naturally, it holds that
0X, = 0, which ensures the invariance of the covariant derivatives under a gauge
transformation. Therefore, in the non-commutative case, left multiplication by a
coordinate is not a covariant operation, that is

0(Xa®) = XA (X)), (42)
and in general it holds that
X AX)p # MX)Xa0p . (43)

Motivated by the non-fuzzy gauge theory, one may introduce the covariant coordi-
nates ¢,, such that

0(Pa®) = a9, (44)

which holds if
5(¢a) = [>\a ¢a] . (45)
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Usual (non-fuzzy) gauge theory also guides one to define
ba = Xa + A, (46)

with the A, being interpreted as the gauge potential of the non-commutative theory.
Therefore, the covariant coordinates ¢, are the non-commutative analogue of the
covariant derivative of ordinary gauge theories. From (46), (45) one is led to the
transformation of A,, that is

0A; = —[Xas A1+ [N, Adl, (47)

a form that encourages the interpretation of A, as a gauge field. In correspondence
with the non-fuzzy gauge theory, one proceeds with defining a field strength tensor,
Fap, as

Fab = [Xav Ab] - [Xb’ Aa] + [Aav Ab] - ijc = [¢av (bb] - C2b¢0 (48)
It can be proven that the transformation of the above field strength tensor is covariant:

5Fab = [)\, Fab] . (49)

4 Ordinary Fuzzy Dimensional Reduction and Gauge
Symmetry Enhancement

Let us now proceed by performing a simple (trivial) dimensional reduction in order to
demonstrate the structure we sketched in the previous section. Starting with a higher-
dimensional theory on M* x (S/R), with gauge group G = U (P), we determine
the produced 4-dimensional theory after performing the reduction and finally we
make comments on the results. Let (S/R)r be a fuzzy coset, e.g. the fuzzy sphere,
S%. The action is

1
Syy = — / d*xkTrtrg Fyy FMV (50)
442

with trg the trace of the gauge group G and kTr® denotes the integration over
(S/R)F, i.e. the fuzzy coset which is described by N x N matrices. Fyy is the
higher-dimensional field strength tensor, which is composed of both 4-dimensional
spacetime and extra-dimensional parts, i.e. (F),,, F,q, Fap). The components of Fiyy
in the extra (non-commutative) directions, are expressed in terms of the covariant
coordinates ¢,, as follows

3In general, k is a parameter related to the size of the fuzzy coset space. In the case of the fuzzy
sphere, k is related to the radius of the sphere and the integer /.
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Fua = y¢a + [A;u ¢a] = u¢a
Fap = [Xa, Ap] = [Xp, Agl + [Aa, Ayl — Cly Age

Putting the above equations in (50), the action takes the form
Sym = [ d*xTrtr LF2 L(D ) — V(o) (51)
YmM = X G 4 B 'UJ, 292 nPa ’
where V (¢) denotes the potential, derived from the kinetic term of F, that is

k
V(9) = =5 Trtrg D FupFay
‘g ab

k .
~ 37 T (Ipas $p116°, "1 = 4Cuped* 6" 0" +2R2¢%) . (52)

It is natural to consider (51) as an action of a 4-dimensional theory. Let A(x*, X%)
be the gauge parameter that appears in an infinitesimal gauge transformation of G.
This transformation can be interpreted as a M* gauge transformation. We write

A, XY = Mo, XHT = N T T (53)

where 7! denote the hermitian generators of the gauge group U (P). M (x#, X9) are
the N x N antihermitian matrices, therefore they can be expressed as A"/ (x*)T",
where 7" are the antihermitian generators of U(N) and \'/"(x*),h =1,..., N2,
are the Kaluza-Klein modes of A/ (x*, X%). In turn, we can assume that the fields
on the right hand side of (53) could be considered as one field that takes values in
the tensor product Lie algebra Lie (U (N)) ® Lie (U (P)), which corresponds to the
algebra Lie (U (N P)). Similarly, the gauge field A, can be written as

Ay (xF, XY = AL (e, XHT! = AR T T (54)

which is interpreted as a gauge field on M* that takes values in the Lie (U (N P))
algebra. A similar consideration can also be applied in the case of scalar fields.*

It is worth noting the enhancement of the gauge symmetry of the 4-dimensional
theory compared to the gauge symmetry of the higher-dimensional theory. In other
words, we can start with an abelian gauge group in higher dimensions and result with
anon-abelian gauge symmetry in the 4-dimensional theory. A defect of this theory is
that the scalars are accommodated in the adjoint representation of the 4-dimensional
gauge group, which means that they cannot induce the electroweak symmetry break-
ing. This motivates the realization of non-trivial dimensional reduction schemes, like
the one that follows in the next section.

4Also, Trtrg is interpreted as the trace of the U (N P) matrices.
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5 Fuzzy CSDR

In order to result with a less defective 4-dimensional gauge theory, we proceed by
performing a non-trivial dimensional reduction, thatis the fuzzy version of the CSDR.

So, in this section we adopt the CSDR programme in the non-commutative frame-
work, where the extra dimensions are fuzzy coset spaces [34], in order to result with
a smaller number of both gauge and scalar fields in the 4-dimensional action (51). In
general, the group S acts on the fuzzy coset (S/R) r, and in accordance with the com-
mutative case, CSDR scheme suggests that the fields of the theory must be invariant
under an infinitesimal group S—transformation, up to an infinitesimal gauge transfor-
mation. Specifically, the fuzzy coset in this case is the fuzzy sphere, (SU (2)/U(1))F,
so the action of an infinitesimal SU (2)—transformation should leave the scalar and
gauge fields invariant, up to an infinitesimal gauge transformation

Ly = ow, = Wy (55)
LyA =0w,A=—DW,, (56)
where A is the gauge potential expressed as an 1—form, see (40), and W, is an anti-
hermitian gauge parameter depending only on the coset coordinates X“. Therefore,
W,, is written as
W, =W/ T", 1=1,2,...,P?, (57)
where 7 are the hermitian generators of U(P) and (W/)" = —W/, where the *
denotes the hermitian conjugation on the X“ coordinates.
Putting into use the covariant coordinates, ¢,, (46), and w,, defined as
Wa = Xa - Wa s (58)
the CSDR constraints, (55) and (56), convert to

[wp, A,u] =0 (59)
Chae®® = [wp, Pal . (60)

Due to the fact that Lie derivatives respect the su(2) commutation relation, (35), one
results with the following consistency condition

[wa, wp] = Copwe (61)
where the transformation of w, is given by

We = w, = qwag ' (62)

5See also [45].
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In the case of spinor fields, the procedure is quite similar [34].

Letus now consider a higher-dimensional theory with gauge symmetry G = U (1).
We are going to perform a fuzzy CSDR, in which the fuzzy sphere is (S/R)r = S%.
The w, = w,(X”) are N x N antihermitian matrices, therefore they can be consid-
ered as elements of Lie(U(N)). At the same time, they satisfy the commutation
relation of Lie(SU (2)), as in the consistency condition, (61). So we have to embed
Lie(SU(2)) into Lie(U (N)). Therefore, if 7", h =1, ..., N? are the Lie(U(N))
generators, in the fundamental representation, then the convention & = (a, u), a =
1,2,3, u=4,5,..., N? can be used, obviously with the generators 7¢ satisfying
Lie(SU(2))

[T, T"] = Cc*T1°. (63)

At last, the embedding is defined by the identification
we=T1,. (64)

So, the constraint (59) implies that the gauge group of the 4-dimensional theory, K,
is the centralizer of the image of SU(2) into U (N), that is

K=Cym(SUR)=SUWN-2)xU(l)xU®1), (65)
where the second U (1) in the right hand side is present due to
UN)>=SUWN)xU(1). (66)

Therefore, A, (x, X) are arbitrary functions over x, but they depend on X in a way
that take values in Lie(K) instead of Lie(U (N)). That means that we result with a
4-dimensional gauge potential which takes values in Lie(K).

Let us now study the next constraint, (60). This one gets satisfied choosing

Ga = rP(X)Wa , (67)

meaning that the degrees of freedom remaining unconstrained are related to the scalar
field, ¢(x), which is singlet under the 4-dimensional gauge group, K.

Summing up the results from the above reduction, the consistency condition (61),
dictated the embedding of SU (2) into U (N). Although the embedding was realized
into the fundamental representation of U (N), we could have used the irreducible N-
dimensional representation of SU(2) by identifying w, = X,. If so, the constraint
(59) would lead to the U (1) to be the 4-dimensional gauge group, with A ,(x) getting
values in U (1). The second constraint, (60), implies that, in this case too, ¢(x) is a
scalar singlet.

To conclude the whole procedure, one starts with a U (1) higher-dimensional gauge
theory on M* x S]2v and because of the consistency condition, (61), an embedding
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of SU(2) into U(N) is 1required.6 So, the first fuzzy CSDR constraint, (59), gives
the 4-dimensional gauge group and from the second one, (60), one obtains the 4-
dimensional scalar fields, surviving from the dimensional reduction.

As far as the fermions are concerned, we briefly mention the results of the above
dimensional reduction. According to the extended analysis [34], it is proven that the
appropriate choice of embedding is

S C §O(dimS), (68)

1
which is achieved by 7, = EC,I;,C rbe, respecting (63). Therefore, v functions as an

intertwining operator between the representations of S and S O (dimS). In accordance
to the commutative (non-fuzzy) case, [4], in order to find the surviving fermions in
the 4-dimensional theory, one has to decompose the adjoint representation of U (N P)
under the product Sy(vpy x K, that is

U(NP)DSU(NP) x K, (69)
adj UNP) =D (si, k). (70)

1

Also, the decomposition of the spinorial representation ¢ of SO (dimS) under S is

SO (dimS) O S, (71)

o= Zae. (72)

Thus, if the two irreducible representations s;, o, are identical, the surviving fermions
of the 4-dimensional theory (4-dimensional spinors) belong to the k; representation
of gauge group K.

Before we move on, this is a suitable point to compare the higher-dimensional
theory M* x (S/R), to its fuzzy extension, M* x (S/R)r. The first similarity has
to do with the fact that fuzziness does not affect the isometries, both spaces have
the same, SO (1, 3) x SO(3). The second is that the gauge couplings defined on
both spaces have the same dimensionality. But, on the other hand, a very striking
difference is that of the two, only the non-commutative higher-dimensional theory
is renormalizable.” In addition, a U (1) initial gauge symmetry on M* x (S/R)r, is
enough in order to result with non-abelian structures in four dimensions.?

This embedding is achieved non-uniquely, specifically in py ways, where py is the possible ways
one can partition the N into a set of non-increasing, positive integers [46].

"The number of counter-terms required to eliminate the divergencies is finite.
8Technically, this is possible because N x N matrices can be decomposed on the U (N) generators.
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6 Orbifolds and Fuzzy Extra Dimensions

The introduction of the orbifold structure (similar to the one developed in [47]) in
the framework of gauge theories with fuzzy extra dimensions was motivated by the
necessity of chiral low energy theories. In order to justify further the renormaliz-
ability of the theories constructed so far using fuzzy extra dimensions, we were led
to consider the reverse procedure and start from a renormalizable theory in four
dimensions and try to reproduce the results of a higher-dimensional theory reduced
over fuzzy coset spaces [35—37]. This idea was realized as follows: one starts with a
4-dimensional gauge theory including appropriate scalar fields and a suitable poten-
tial leading to vacua that could be interpreted as dynamically generated fuzzy extra
dimensions, including a finite Kaluza-Klein tower of massive modes. This reverse
procedure gives hope that an initial abelian gauge theory does not have to be higher-
dimensional and the non-abelian gauge theory structure could emerge from fluctua-
tions of the coordinates [48]. The whole idea eventually seems to have similarities
to the idea of dimensional deconstruction introduced earlier [49].

The inclusion of fermions in such models was desired too, but the best one could
achieve for some time contained mirror fermions in bifundamental representations of
the low-energy gauge group [36, 37]. Mirror fermions do not exclude the possibility
to make contact with phenomenology [50], nevertheless, it is preferred to result with
exactly chiral fermions.

Next, the plan that was sketched above is realized. Specifically, we are going
to deal with the Z; orbifold projection of the N/ = 4 Supersymmetric Yang Mills
(SYM) theory [51], examining the action of the discrete group on the fields of the
theory and the superpotential that emerges in the projected theory.

6.1 N =4 SYM Field Theory and 7.3 Orbifolds

So, let us begin with an N' = 4 supersymmetric SU(3N) gauge theory defined on
the Minkowski spacetime. The particle spectrum of the theory (in the N' =1 ter-
minology) consists of an SU(3N) gauge supermultiplet and three adjoint chiral
supermultiplets @' ,i = 1, 2, 3. The component fields of the above supermultiplets
are the gauge bosons, A, u =1, ..., 4, six adjoint real (or three complex) scalars
¢*, a =1,...,6and four adjoint Weyl fermions ¢, p = 1, ..., 4. The scalars and
Weyl fermions transform according to the 6 and 4 representations of the SU (4)r
R-symmetry of the theory, respectively, while the gauge bosons are singlets.

Then, in order to introduce orbifolds, the discrete group Z3 has to be considered
as a subgroup of SU(4)g. The choice of the embedding of Z3 into SU(4) is not
unique and the options are not equivalent, since the choice of embedding affects the
amount of the remnant supersymmetry [47]:

e Maximal embedding of Zj into SU(4)g is excluded because it would lead to
non-supersymmetric models,



220 G. Manolakos and G. Zoupanos

e Embedding of Z3 in an SU (4) g subgroup:

— Embedding into an SU (2) subgroup would lead to N = 2 supersymmetric mod-
els with SU (2) g R-symmetry

— Embedding into an SU (3) subgroup would lead to N = 1 supersymmetric mod-
els with U (1) R-symmetry.

We focus on the last embedding which is the desired one, since it leads to N = 1
supersymmetric models. Let us consider a generator g € Zs, labeled (for conve-
nience) by three integers a = (ay, a, az) [52] satisfying the relation

a;+a, +a3;=0mod3. (73)

The last equation implies that Z3 is embedded in the SU (3) subgroup, i.e. the remnant
supersymmetry is the desired N = 1 [53].

It is expected that since the various fields of the theory transform differently
under SU (4)g, Z3 will act non-trivially on them. Gauge and gaugino fields are
singlets under SU (4)g, therefore the geometric action of the Zj rotation is trivial.
The action of Z3 on the complex scalar fields is given by the matrix y(g);; = 0;;w®,

where w = 3 and the action of Zs on the fermions ¢' is given by v(g);; = 4 jwb" ,

1
where b; = ——=(a;4+1 + ai+» — a;).° In the case under study the three integers of the

generator g are (1, 1, —2), meaning that a; = b;.
The matter fields are not invariant under a gauge transformation, therefore Zs acts
on their gauge indices, too. The action of this rotation is given by the matrix

1y 0 O
Y3 = 0 wlN 0 . (74)
0 0 Wy

There is no specific reason for these blocks to have the same dimensionality (see
e.g. [54-56]). However, since the projected theory must be free of anomalies, the
dimension of the three blocks is the same.

After the orbifold projection, the spectrum of the theory consists of the fields
that are invariant under the combined action of the discrete group, Zj, on the
“geometric”!® and gauge indices [52]. As far as the gauge bosons are concerned
being singlets, the projection is A, = y3A,7; ! Therefore, taking into consid-
eration (74), the gauge group of the initial theory breaks down to the group
H = SU(N) x SU(N) x SU(N) in the projected theory.

As we have already stated, the complex scalar fields transform non-trivially under
the gauge and R—symmetry, so the projection is ¢, = w! =/ ¢} . where I, J are

9 Also modulo 3.

10In case of ordinary reduction of a 10-dimensional "= 1 SYM theory, one obtains an A" = 4
SYM Yang-Mills theory in four dimensions having a global SU (4) g symmetry which is identified
with the tangent space SO (6) of the extra dimensions [16, 17].
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gauge indices. Therefore, J = I + a;, meaning that the scalar fields surviving the
orbifold projection have the form ¢;, ., and transform under the gauge group H as

3-((N,N, )+ (N,1,N)+ (1,N,N)) . (75)

Similarly, fermions transform non-trivially under the gauge group and
R—symmetry, too with the projection being w; ;= wl=J+b w; ;- Therefore, the
fermions surviving the projection have the form ¢; ; , accommodated in the same
representation of H as the scalars, that is (75), a fact demonstrating the N = 1 rem-
nant supersymmetry. It is worth noting that the representations (75) of the resulting
theory are anomaly free.

The fermions, summing up the above results, are accommodated into chiral repre-
sentations of H and there are three fermionic generations since, as we have mentioned
above, the particle spectrum contains three NV = 1 chiral supermultiplets.

The interactions of the projected model are given by the superpotential. In order to
specify it, one has to begin with the superpotential of the initial A" = 4 SYM theory
[51]

Wiies = €y Tr(@ @7 %) | (76)

where, @', @/, @ are the three chiral superfields of the theory. After the projec-
tion, the structure of the superpotential remains unchanged, but it encrypts only the
interactions among the surviving fields of the N' = 1 theory, that is

(proj) __ i J k
Wy=i’ = Z €ijk Pl 1 4a, ¢1+ai,1+ai+a‘f¢I+a1+a_,-,l . (77
1

6.2 Dynamical Generation of Twisted Fuzzy Spheres

From the superpotential Wf\’;ijl that is given in (77), the scalar potential can be

extracted: 1
VL@ = ;Tr (16", 619", 71) (78)

where, ¢ are the scalar component fields of the superfield @ . The potential V) (¢)
is minimized by vanishing vevs of the fields, so modifications have to be made,
in order that solutions interpreted as vacua of a non-commutative geometry to be
emerged. _

So, in order to result with a minimum of V/%| (¢), N' = 1 soft supersymmetric
terms of the form!!

''The SSB terms that will be inserted into Vf/:{ (¢), are purely scalar. Although this is enough for
our purpose, it is obvious that more SSB terms have to be included too, in order to obtain the full
SSB sector [57].
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1 2 it i 1 i 0j ok
Vssp = Elzm,'fb ¢+ Eijzkhijﬂb ¢’ " + h.c. (79)

are introduced, where A;jx = 0 unless i + j + k = Omod 3. The introduction of
these SSB terms should not come as a surprise, since the presence of an SSB sector
is necessary anyway for a model with realistic aspirations, see e.g. [57]. The inclusion
of the D-terms of the theory is necessary and they are given by

Vp = 1DZ— 1D’D (80)
D_2 _2 17

where D! = ¢! T' ¢!, where T’ are the generators in the representation of the cor-
responding chiral multiplets.
So, the total potential of the theory is given by
V= VI + Vsss + V. 81)

A suitable choice for the parameters m? and h;j; in (79) is m? = 1, hijx = €;j.
Therefore, the total scalar potential, (81), takes the form

1 Nt i)
V= (FDF vy, (82)

where F/ is defined as

FI=[¢, ¢'] —ie*(¢")". (83)

The first term of the scalar potential, (82), is always positive, therefore, the global
minimum of the potential is obtained when

(¢, '] = ien(@)', ¢'(@)' = R, (84)
where (¢')" denotes the hermitian conjugate of ¢' and [R?, ¢'] = 0. It is clear that

the above equations are related to a fuzzy sphere. This becomes more transparent by
considering the untwisted fields ¢, defined by

¢ = ¢, (85)
where §2 # 1 satisfy the relations
=1, [2.¢1=0, 2" =27, @)'=¢ & ¢'=2¢. 36
Therefore, (84) reproduces the ordinary fuzzy sphere relations generated by qBi

[0, ¢/ =iepudt, I'¢ =R?, (87)
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exhibiting the reason why the non-commutative space generated by ¢ is a twisted
fuzzy sphere, 5‘12\,
Next, one can find configurations of the twisted fields ¢', i.e. fields satisfying (84).
Such configuration is
o =218 Ny, (88)

where X& w) are the SU (2) generators in the N-dimensional irreducible representation
and 2 is the matrix

010
R=2:01y, 2=|001], 2°=1. (89)
100

According to the transformation (85), the “off-diagonal” orbifold sectors (75) convert
to the block-diagonal form

) 0 (/\éN))(N,I\_/,l) ) 0 )‘éN) 0 0
¢= 0 0 Awavm | =2 0 Awy O
(/\Z(N))(N,I,N) 0 0 0 O )\;N)

Therefore, the untwisted fields generating the ordinary fuzzy sphere, éi, are written
in a block-diagonal form. Each block can be considered as an ordinary fuzzy sphere,
since they separately satisfy the corresponding commutation relations (87). In turn,
the above configuration in (90), which corresponds to the vacuum of the theory, has
the form of three fuzzy spheres, appearing with relative angles 27/3. Concluding,
the solution ¢’ can be considered as the twisted equivalent of three fuzzy spheres,
conforming with the orbifolding.

Note that the F'/ defined in (83), can be interpreted as the field strength of the
spontaneously generated fuzzy extra dimensions. The second term of the potential,
Vp, induces a change on the radius of the sphere (in a similar way to the case of the
ordinary fuzzy sphere [35, 37, 58]).

6.3 Chiral Models After the Fuzzy Orbifold Projection - the
SU@B). x SUB)L x SU3)g Model

The resulting unification groups after the orbifold projection are various because of
the different ways the gauge group SU (3N) is spontaneously broken. The minimal,
anomaly free models are SU (4) x SU(2) x SU(2), SU4)3 and SU (3)3.12

We focus on the breaking of the latter, which is the trinification group SU (3). x
SU@B)L x SUQB)g [60, 61] (see also [62—-66] and for a string theory approach see

12Similar approaches have been studied in the framework of YM matrix models [59], lacking
phenomenological viability.
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[49]). At first, the integer N has to be decomposed as N = n + 3. Then, for SU (N),
the considered embedding is

SU(N)D SU(n) x SUB) xU(1), 91)
from which it follows that the embedding for the gauge group SU(N)? is

SU(N)* D SU(n) x SUB) x SU(n) x SU3) x SU(n) x SU3) x U(1)*.
92)
The three U (1) factors are ignored'? and the representations are decomposed accord-
ing to (92), (after reordering the factors) as

SU(n) x SU(n) x SU(n) x SU3) x SUQ3) x SU(3),
m,a, 11,1, )+ ,n,n; 1,1, D)+ @, Ln; 1,1, D) +(1,1,1; 3,3, 1)
+(1,1,1;1,3,3) +(1,1,1;3,1,3) + (n, 1, 1; 1,3, )+ (1,n,1; 1, 1, 3)

+ (1, L3, L, )+ @@, 1,11, 1,3) + (1,a, 1:3, 1, D) +(1,1,7; 1,3, 1). (93)

Taking into account the decomposition (91), the gauge group is broken to SU (3)*.
Now, under SU (3)3, the surviving fields transform as

SU@B3) x SU@B) x SU@3), (94)
(3,3, D+ G, 1,3)+(1,3,3) , (95)
which correspond to the desired chiral representations of the trinification group.

Under SU (3). x SU3). x SU(3)r, the quarks and leptons of the first family trans-
form as

duh de d¢ d°
g=|duh|~@331, ¢=uuu|~(@31,3), (96)
duh h¢ h¢ he
N E¢v
A=| ENe | ~(,3,3),
ve e¢ S

respectively. Similarly, one obtains the matrices for the fermions of the other two
families.

It is worth noting that this theory can be upgraded to a two-loop finite theory (for
reviews see [62, 67-69]) and give testable predictions [62], too. Additionally, fuzzy
orbifolds can be used to break spontaneously the unification gauge group down to
MSSM and then to the SU (3). x U(1)¢p-

13As anomalous gaining mass by the Green-Schwarz mechanism and therefore they decouple at
the low energy sector of the theory [55].
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Summarizing this section let us emphasize the general picture of the model that
has been constructed. At very high-scale regime, we have an unbroken renormaliz-
able theory. After the spontaneous symmetry breaking, the resulting gauge theory is
accompanied by a finite tower of massive Kaluza-Klein modes. Finally, the theory
breaks down to an extension of MSSM in the low scale regime. Therefore, we con-
clude that fuzzy extra dimensions can be used in constructing chiral, renormalizable
and phenomenologically viable field-theoretical models.

A natural extension of the above ideas and methods have been reported in ref
[70] (see also [71]), realized in the context of Matrix Models (MM). At a funda-
mental level, the MMs introduced by Banks—Fischler—Shenker—Susskind (BFSS)
and Ishibashi—-Kawai—Kitazawa—Tsuchiya (IKKT), are supposed to provide a non-
perturbative definition of M-theory and type IIB string theory respectively [30, 72].
On the other hand, MMs are also useful laboratories for the study of structures which
could be relevant from a low-energy point of view. Indeed, they generate a plethora
of interesting solutions, corresponding to strings, D-branes and their interactions
[30, 73], as well as to non-commutative/fuzzy spaces, such as fuzzy tori and spheres
[74]. Such backgrounds naturally give rise to non-abelian gauge theories. Therefore,
it appears natural to pose the question whether it is possible to construct phenomeno-
logically interesting particle physics models in this framework as well. In addition,
an orbifold MM was proposed by Aoki-Iso-Suyama (AIS) in [75] as a particular
projection of the IKKT model, and it is directly related to the construction described
above in which fuzzy extra dimensions arise with trinification gauge theory [38]. By
Zs - orbifolding, the original symmetry of the IKKT matrix model with matrix size
3N x 3N is generally reduced from SO (9, 1) x UBN)to SO(3, 1) x U(N)>. This
model is chiral and has D = 4, ' = 1 supersymmetry of Yang-Mills type as well
as an inhomogeneous supersymmetry specific to matrix models. The Z; - invariant
fermion fields transform as bifundamental representations under the unbroken gauge
symmetry exactly as in the constructions described above. In the future we plan to
extend further the studies initiated in refs [70, 71] in the context of orbifolded IKKT
models.

Our current interest is to continue in two directions. Given that the two approaches
discussed here led to the N' = 1 trinification GUT SU (3)?, one plan is to examine
the phenomenological consequences of these models. The models are different in the
details but certainly there exist a certain common ground. Among others we plan to
determine in both cases the spectrum of the Dirac and Laplace operators in the extra
dimensions and use them to study the behaviour of the various couplings, including
the contributions of the massive Kaluza-Klein modes. These contributions are infinite
or finite in number, depending on whether the extra dimensions are continuous or
fuzzy, respectively. We should note that the spectrum of the Dirac operator at least
in the case of SU(3)/U (1) x U (1) is not known.

Another plan is to start with an abelian theory in ten dimensions and with a simple
reduction to obtain an N = (1, 1) abelian theory in six dimensions. Finally, reducing
the latter theory over a fuzzy sphere, possibly with Chern-Simons terms, to obtain
a non-abelian gauge theory in four dimensions provided with soft supersymmetry
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breaking terms. Recall that the last feature was introduced by hand in the realistic
models constructed in the fuzzy extra dimensions framework.
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Higher Genus Amplitudes in SUSY
Double-Well Matrix Model for 2D I1A
Superstring

Fumihiko Sugino

Abstract We discuss a simple supersymmetric double-well matrix model which is
considered to give a perturbation formulation of two-dimensional type ITA super-
string theory on a nontrivial Ramond-Ramond background. Full nonperturbative
contributions to the free energy are computed by using the technique of random
matrix theory, and the result shows that supersymmetry (SUSY) is spontaneously
broken by nonperturbative effects due to instantons. In addition, one-point functions
of operators that are not protected by SUSY are obtained to all orders in genus
expansion.

1 Introduction

Nonperturbative aspects of noncritical bosonic string theory were vigorously inves-
tigated around 1990 by using solvable matrix models (For a review, see [2].), while
little has been known for superstring theory, in particular which possesses target-
space supersymmetry (SUSY). We here consider a solvable matrix model describ-
ing superstring theory with target-space SUSY. We hope our analysis is helpful to
understand nonperturbative dynamics of matrix models of super Yang-Mills type for
critical superstring theory [1, 3, 10].

2 Supersymmetric Double-Well Matrix Model

We start with a simple matrix model given by the action [13]:

S = Ntr[%BeriB(qbz—u2)+zﬁ(¢w+w¢)]. (D
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B and ¢ are N x N hermitian matrices, and ¢ and ) are N x N matrices whose
components are Grassmann numbers. The action S is invariant under SUSY trans-
formations generated by Q and Q:

Q¢ =1, QP=0, Q1§=—iB, 0B =0, (2)

from which one can see the nilpotency: Q> = Q% = {Q, O} = 0. After integrating
out B, we have a scalar potential of a double-well shape: 1(¢* — ;). In case of
u* > 2, alarge-N saddle point solution for the eigenvalue distribution of the matrix
o: p(x) = %tr d(x — @) is given by

“4)

Yoy J(x2 — a?) (b — x2) (a<x<b)
px) =1 "
Zxl/(x2—a?) (B> —x2)  (-b<x < —a),

wherea = /2 —2andb = /2 + 2. The filling fractions (v, v_) satisfying v, +
v_ = 1 indicate that v, N (v_N) eigenvalues are around the right (left) minimum
of the double-well. The large-N free energy and the expectation values (%tr B”)
(n=1,2,...) evaluated at the solution turn out to all vanish [13]. This strongly
suggests that the solution preserves SUSY. Thus, we conclude that the SUSY minima
are infinitely degenerate and parametrized by (v, v_) atlarge N. On the other hand,
in case of u? < 2, non SUSY saddle point solution is obtained [14]. Transition
between the SUSY phase (u? > 2) and the SUSY broken phase (1> < 2) is of the
third order.

The partition function after B, ¢ and ¢ are integrated out is expressed as a Gaussian
one-matrix model by the Nicolai mapping H = ¢?, where the H-integration is over
the positive definite hermitian matrices, not over all the hermitian matrices. Refer-
ences [6, 12] discuss that the difference of the integration region has only effects
which are nonperturbative in 1/N, and the model can be regarded as the standard
Gaussian matrix model at each order of genus expansion.

The Nicolai mapping changes the operators %tr ¢*"(n = 1,2, ...)toregular oper-
ators %tr H". Hence, the behavior of their correlators is expected to be described
by the Gaussian one-matrix model (the ¢ = —2 topological gravity) at least pertur-
batively in 1/N. However, the operators %tr ¢*"*!' (n=0,1,2,...) are mapped to
i%tr H"+1/2 that are singular at the origin. They are not observables in the ¢ = —2
topological gravity, while they are natural observables as well as %tr > in the
original setting (1). Correlation functions among operators

1 L -
tr ¢2n+1’ Ntr wZn-‘rl’ Ntr ¢2”+1 n=0,1,2,...) (5)

at the solution (4) exhibit logarithmic singular behavior of powers of In (uz —2)[15].
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3 2D Type IIA Superstring

The two-dimensional type II superstring theory discussed in Refs. [7, 11, 17, 19]
has the target space (¢, x) € (Liouville direction) x (S' with self-dual radius). The
holomorphic energy-momentum tensor on the string world-sheet is

= Lo Ly op. - Lopr+orp— L
T = =200 = S0y = 5 (09) + o — SO (6)

excluding ghosts’ part. v, and 1, are superpartners of x and ¢, respectively. Target-
space supercurrents in the type IIA theory

qi(z) = ef%zﬁ(z)ng(z)fix(z)’ G_(2) = e 2 PO+EH@+EE) (7)

exist only for the S' target space of the self-dual radius. ¢ (¢) is the holomorphic
(anti-holomorphic) bosonized superconformal ghost, and the fermions are bosonized
as Yy £+ ith, = 2eFH by +ith, = /2eFH . In addition, we should care about
cocycle factors in order to realize the anticommuting nature between ¢4 and g_.
See [16] for details in the cocycle factors. The supercharges

d - dz
0, =y§—zq+(z>, 0_ =f—z.c77(z> ®)

27 2mi

are nilpotent Qi = 0% ={Q,, 0_} = 0, which indeed matches the property of the
supercharges Q and Q in the matrix model.

The spectrum except special massive states is represented by the NS vertex oper-
ator (in (—1) picture):

Tk — e*¢+ikx+p[<,9’ '1_“1; — e*(jﬁ+i/€i+py@’ (9)
and by the R vertex operator (in (— %) picture):

Vie= e—§@+geH+ikx+pw, ‘7];’% — e—%<2>+gaf1+ﬂéf+m¢ (10)
with €, € = £1. Details in cocycle factors for the vertex operators are also presented
in [16]. Locality with the supercurrents, mutual locality, superconformal invariance
(including the Dirac equation constraint) and the level matching condition determine
physical vertex operators. As discussed in [11], there are two consistent sets of
physical vertex operators - “momentum background” and “winding background”.
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Let us consider the “winding background”.! The physical spectrum in the “winding
background” is given by

(NS, NS) : Ty (keZ+3),

R+, R=) 0 Vi1 Vg o1 (k= % % c),

R—R+): Vo 1 Vi1 (k=0,1,2,--), (an
(NS,R—): TV (k=1 3.,

(R+’ NS) : Vk,+1 T]( (k = %’ %’ . .)’

where we take a branch of p, = 1 — |k| satisfying the locality bound p, < Q/2 =
1 [22]. We can see that the vertex operators

T 1

v V-4, e (12)

L+ ‘7—;—1’ T

l—

form a quartet under Q. and Q_ which are isomorphic to (2) and (3), respectively.
It leads to correspondence of single-trace operators in the matrix model to integrated
vertex operators in the type IIA theory:

& = %tré & Vy(0) = gf/aﬂz Vi 1@ ‘7_%,_1(2),
¥ = %w & Vu(0) = gf/cﬂz T @ V.1 @),
b= wd 6 V0 =4 [ P2, 0T 6.
FECIB @0 =¢ [ 21,016, (13)

where the bare string coupling g, is put in the right hand sides to count the number
of external lines of amplitudes in the IIA theory. Furthermore, it can be naturally
extended as

1 . - _
Doy = T #* ! + (mixing) & Vy(k) = g2 / d*z Vier 1@ Vo1 (@),
1 _
‘1’2k+1 = NU‘ ’(/)2k+l + (mlxlng) < VU(]C) = gf/dzz T_k_%(Z) V_k_%,_l(Z)»
Gt = g 4 (mixing) & VR = @ [ P2V 1@ Ton@ (14)
Ul = g () = g Vit 102 L3 12

for higher k(= 1, 2, - - -). “(mixing)” means lower-power operators needed to sub-
tract nonuniversal contributions. In (14), we see that the powers of matrices are
interpreted as windings or momenta in the S' direction of the type IIA theory.

'We can repeat the parallel argument for “momentum background” in the type IIB theory, which
is equivalent to the “winding background” in the type IIA theory through T-duality with respect to
the S! direction.
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Note that (R—, R+) operators are singlets under the target-space SUSYs Q, O_,
and appear to have no counterpart in the matrix model side. Since the expectation
value of operators measuring an RR charge @, at the solution (4) does not van-
ish [15], the matrix model is considered to correspond to the type IIA theory on
a nontrivial background of the (R—, R+) fields. We may introduce the (R—, R+)
background in the form of vertex operators, when the strength of the background
(v4 —v_) is small. In this treatment of the background, various correlation func-
tions among the above vertex operators in the type IIA theory are computed in [16],
which provides a number of evidence of correspondence between the matrix model
and the type IIA theory.

4 Nonperturbative SUSY Breaking in the Matrix Model

In this section, we obtain the full nonperturbative free energy of the matrix model as
the Tracy-Widom distribution in random matrix theory in the double scaling limit

N — oo, p?—2 withs = N?3(u?> —2) fixed (15)

as discussed in [5, 20]. In its weakly coupled region (s: large), instanton effects can
be seen in the matrix model which are nonperturbative in 1/N. Although such effects
are typically of the order e~V and vanish in the simple large-N limit, interestingly
we will see that they are nonvanishing in the double scaling limit (15).

The partition function of the matrix model given by the action (1) is expressed as

7 = / dV e N qet(p @ 1+ 1@ ¢)

N N
=CN/(HdA,-)A(A)2 [T+ Ape ¥ E=id=e? 0 (16)
i=1

ij=1

after integrating out matrices other than ¢. Here, 1 is an N x N unit matrix, \; (i =
1,---,N) are eigenvalue§ of ¢, and A()\) denotes the Vandermonde determinant
AN = Hi>j (Ai — Aj). Cy is an numerical factor depending only on N given by

N

1 o k!
= /(Hd)\i) A2 e NIL N = (2w)¥Hk;N°2. (17)
Cn i=1 NT
Contributions to the partition function are divided by sectors labeled by the filling
fraction (v,,v_) as

N
N!
Z = S — 18
V%{)(hzv)z(u_m! pv) (18)
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with
oo fV+N 0 N N
Ziwy = CN/ (H d/\i)/ [T v (Hz/\n)
0 i=1 =% \ j=v, N+1 n=1
e P )
Here, it is easy to see
Zowy=ED"NZq 0, (20)

which leads to the vanishing partition function:
Z=(0+1)"Z1 =0. (2D

In order for expectation values normalized by the partition function to be well-
defined, we regularize the partition function by introducing a factor e =**-" with
small « in front of Z,, , . The regularized partition function becomes

N!

. —iav_N —io\N
M Zo )y = (1 — Zao. (22
N N E o) = (1 =€ Zao. - (22)

N
Zy = Z
_N=

v. 0

Notice that calculations in large-N expansion [15] concern the partition function in
a single sector (Z(,, ,_)), in which this kind of regularization was not needed. On
the other hand, since nonperturbative contributions to be computed here possibly
communicate among various sectors of filling fractions, we should consider the total
partition function (18) and its vanishing value requires the regularization.

The expectation value of %tr(i B) under the regularization (22) is expressed as

tr (i B) L1 9 Z
—1tr [ —
NP TNz, a0
11 ) 1 1.0
— m —Z(LO) —8(112) Z(l,o) = <Ntr (lB)> (23)

due to a cancellation of the factor (1 — e~®)" in (22) between the numerator and
the denominator. The regularized expectation value (%tr (iB))a is independent of
« and well-defined in the limit « — 0, and thus serves as an order parameter for
spontaneous SUSY breaking.
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4.1 Tracy-Widom Distribution

Under the change of variables x; = —)\iz + 1 (the Nicolai mapping), the partition
function Zj o) defined in (19) reduces to Gaussian matrix integrals

Y
Zao = CN/ (H dxi) A(x)? eV EL 3 (24)
— \i=1

It seems almost trivial, but a nontrivial effect arises from the upper bound of the

integration region. Techniques in random matrix theory [23] give a closed form for
the partition function in the double scaling limit (15):

F(s)=—-InZu0 = /Oo(x — 5)q(x)*dx, (25)
where g (x) satisfies a Painlevé II differential equation
q(x)" = xq(x) +2q(x)* (26)
with the boundary condition
qg(x) —> Ai(x) (x —> 400). 27
Such a solution is unique and known as the Hastings-McLeod solution [9]. Since

Eq. (15) indicates that the string coupling constant g; ~ 1/N is proportional to s /2,
the region of s > 1 (0 < s < 1) describes the weakly (strongly) coupled IIA strings.

4.2 Weak Coupling Expansion

The partition function is given by the Fredholm determinant of the Airy kernel [23]
Z1.0) = Det(1 — Kailis.o0)), (28)

where the operator K Aills.00) can be represented as the integration kernel on the
interval [s, 00):

Ai(x)AT'(y) — Ai'(x)Ai(y)
X =Yy .

Kai(x, y) = (29)

From the above fact, it turns out that the weak coupling expansion (large-s expansion)
of the free energy is expressed as an instanton sum
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[o¢]

F=-nZuo =) Fiinm (30)
k=1

with

1 o0
Fiingt. = %/ dt;...dt Kai(t, 1) Kai(t2, 13) - - - Kaj(t, 1)

1 1 2\
~2 (W e;‘wz) [1+afk)s*3/2+a§k)s’3+-~-]. 31)

Some of the coefficients are

o) 35 a 3745 ) 805805
a)’ =——, G =——, U3 = —————, """
24 1152 82944
o) 35 @ 619 @) 592117
al = -, az = -, a3 = — R
12 72 20736
3) 35 3 2059 3) 184591
ay = ——Q, Oy = -~ d3 = — o
8 128 3072
@ 35 @ 3701 ) 1112077
ap == G = 43 =
6 144 ; 10368
(32)
The contribution to the free energy has no perturbative part and starts from non-
perturbative effects of the instanton action %s3/ 2 o N and its fluctuations expanded

by s7¥2 o« N~!. It seems plausible that the nonperturbative contributions are pro-

vided by D-brane like objects. The order parameter of the SUSY breaking (with the
wave function renormalization factor N4/3) N*/3, (%tr(iB))(l’O) = —F’(s) remains
nonzero, implying that the target-space SUSY in the two-dimensional ITA theory
is spontaneously broken by D-brane like objects. Corresponding Nambu-Goldstone
fermions are identified with %tr@/; and %tm/} associated with the breaking of Q and

Q, respectively [5].

4.3 Strong Coupling Expansion

The Taylor series expansion of (25) around s = 0 is

F(s) = 0.0311059853 — 0.0690913807s + 0.0673670913s>
—0.0361399144s% + - .. | (33)

which gives strong coupling expansion of the ITA superstring theory. The strong
coupling limit is regular and finite. In particular, the expression is smooth around
s = 0 and there is no obstruction to be continued to the s < O region (i.e., /ﬂ < 2),
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whereas in Sect.2 we had mentioned the third order phase transition across the
point x> = 2 in the planar limit. Thus, the singularity in the planar limit becomes
completely smeared out in the double scaling limit. In the string-theory perspective,
singular behavior at the string tree level is smoothed out by quantum effects. Similar
phenomenon can be seen in the unitary one-matrix model [21].

5 Higher Genus Amplitudes in the Matrix Model

In this section, we calculate the one-point function of @, to all orders in the string
perturbation theory. Since the operators are not protected by SUSY, nontrivial large-
order behavior is expected here. As discussed in [15], the one-point function at the
(v, v_) filling fraction is simply related to that at the (1, 0) filling fraction by

1 Wy v-) 1 (1,0)
—tr® = —v_)(—tr® . 34
<N r 2k+1> vy —v )<N r 2k+1> 34

So, it is sufficient to consider the sector of the (1, 0) filling fraction alone. The object
is recast to the contour integral of the resolvent of ¢? as

1 (0 dz o1\
—tro =¢ —Z . 2(—uw—0 e (35
<N r 2k+1> f}a,b] i’ Y + (35)

where the integration contour surrounds the support of the eigenvalue distribution
[a, b]. - - - stands for nonuniversal analytic terms in s which we will ignore below.
Notice that the resolvent is protected by SUSY because ¢? is essentially equivalent
with the auxiliary variable B. The resolvent can be explicitly computed at each order
of the 1/N expansion by using the result of the Gaussian matrix model [8]. After
taking the double scaling limit (15), we end up with the following genus expansion:

1,0)
N3*+2) Ltr P2+ _
N

) 3 [] I\" gk-3ne2
R S )
57 ( +2) h_o( 12) nk—3h+2)0

(_1)k+l 3 et Bh —k —3)! sk+2—3h
T z .
ten T\ , %“H h! 128 (36
=L3

The infinite series in the third line is divergent and not Borel summable. In fact, the
Borel resummation leads to
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11 ght2 00 2\ 72
(2nd line) >~ — dz (1 — —) e’
A 34052 (ke + 3)(k + 3) 2
+(less singular) (37)

with z9 = —s3/ 2. The integrand has a branch cut singularity at z = zo which sits

on the 1ntegrat10n contour. The result of the integral changes depending on avoid-
ing the singularity upwards or downwards. The difference gives the amount of the
nonperturbative ambiguity:

rk+2) sk ks
Tk 2 [ —2
e R e Dt 2)/ ( 1) «nO9

that is of the order e~ " coinciding with the leading instanton contribution (31).

Recently, resurgence theory has been discussed in quantum mechanical systems
and matrix models, which tells that ambiguity from large-order behavior of pertur-
bation series should cancel with ambiguity from instanton contributions so that the
total expression is well-defined (For example, see [4, 18].). It is interesting to com-
pute instanton effects to the one-point function and check whether the resurgence
program works in our case.

6 Summary and Discussion

We have discussed a SUSY double-well matrix model and its correspondence to
two-dimensional type ITA superstring theory on a nontrivial (R—, R+) background.
This is an interesting example of matrix models for superstrings with target-space
SUSY, in which various amplitudes are explicitly calculable.

We have seen that nonperturbative effects in the matrix model spontaneously
break the SUSY. Since the effects survive in the double scaling limit (15), the result
indicates spontaneous SUSY breaking in the type IIA theory by nonperturbative
contributions. It is interesting to investigate dynamics of D-branes in the type IIA
theory and to reproduce the instanton contributions seen here.

In addition, the one-point function of the non-SUSY operator @, has been
computed to all orders in genus expansion. The series is divergent and not Borel
summable. It is interesting to see that the ambiguity arising from the Borel resum-
mation procedure cancels with that from instanton contributions as the resurgence
theory suggests.
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Kruskal-Penrose Formalism
for Lightlike Thin-Shell Wormbholes

Eduardo Guendelman, Emil Nissimov, Svetlana Pacheva
and Michail Stoilov

Abstract The original formulation of the “Einstein—Rosen bridge” in the classic
paper of Einstein and Rosen (1935) is historically the first example of a static
spherically-symmetric wormhole solution. It is not equivalent to the concept of
the dynamical and non-traversable Schwarzschild wormhole, also called “Einstein—
Rosen bridge” in modern textbooks on general relativity. In previous papers of ours
we have provided a mathematically correct treatment of the original “Einstein—Rosen
bridge” as a traversable wormhole by showing that it requires the presence of a spe-
cial kind of “exotic matter” located on the wormhole throat — a lightlike brane (the
latter was overlooked in the original 1935 paper). In the present note we continue
our thorough study of the original “Einstein—Rosen bridge” as a simplest example
of a lightlike thin-shell wormhole by explicitly deriving its description in terms of
the Kruskal-Penrose formalism for maximal analytic extension of the underlying
wormhole spacetime manifold. Further, we generalize the Kruskal-Penrose descrip-
tion to the case of more complicated lightlike thin-shell wormholes with two throats
exhibiting a remarkable property of QCD-like charge confinement.
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1 Introduction

The principal object of study in the present note is the class of static spherically
symmetric lightlike thin-shell wormhole solutions in general relativity, i.e., space-
times with wormhole geometries and “throats” being lightlike (“null””) hypersur-
faces (for the importance and impact of lightlike hypersurfaces, see Refs. [1-3]).
The explicit construction of lightlike thin-shell wormholes based on a self-consistent
Lagrangian action formalism for the underlying lightlike branes occupying the worm-
hole “throats” and serving as material (and electrical charge) sources for the gravity to
generate the wormhole spacetime geometry was given in a series of previous papers
[4-8].!

The celebrated “Einstein—Rosen bridge”, originally formulated in the classic paper
[10], is historically the first and simplest example of a static spherically-symmetric
wormhole solution — it is a 4-dimensional spacetime manifold consisting of two iden-
tical copies of the exterior Schwarzschild spacetime region matched (glued together)
along their common horizon.

Let us immediately emphasize that the original construction in [10] of the
“Einstein—Rosen bridge” is not equivalent to the notion of the dynamical Schwarz-
schild wormbhole, also called “Einstein—Rosen bridge” in several standard textbooks
(e.g. Ref. [11]), which employs the formalism of Kruskal-Szekeres maximal analytic
extension of Schwarzschild black hole spacetime geometry. Namely, the two regions
in Kruskal-Szekeres manifold corresponding to the outer Schwarzschild spacetime
region beyond the horizon (r > 2m) and labeled (/) and (//1) in Ref. [11] are
generally disconnected and share only a two-sphere (the angular part) as a com-
mon border (U = 0, V = 0 in Kruskal-Szekeres coordinates), whereas in the orig-
inal Einstein—Rosen “bridge” construction the boundary between the two identical
copies of the outer Schwarzschild space-time region (r > 2m) is a three-dimensional
lightlike hypersurface (r = 2m). Physically, the most significant difference is that
the “textbook” version of the “Einstein—Rosen bridge” (Schwarzschild wormhole) is
non-traversable, i.e., there are no timelike or lightlike geodesics connecting points
belonging to the two separate outer Schwarzschild regions (I) and (/17). This is in
sharp contrast w.r.t. the original Einstein—Rosen bridge (within its consistent formu-
lation as a lightlike thin-shell wormhole [5]), which is a traversable wormhole (see
also Sect. 3 below).

However, as explicitly demonstrated in Refs. [5, 6], the originally proposed in [10]
Einstein—Rosen “bridge” wormhole solution does not satisfy the vacuum Einstein
equations at the wormhole “throat”. The mathematically consistent formulation of the
original Einstein—Rosen “bridge” requires solving Einstein equations of bulk D = 4
gravity coupled to a lightlike brane with a well-defined world-volume action [12—
15]. The lightlike brane locates itself automatically on the wormhole throat gluing
together the two “universes” - two identical copies of the external spacetime region of
a Schwarzschild black hole matched at their common horizon, with a special relation

IFor the general construction of timelike thin-shell wormholes, see the book [9].
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between the (negative) brane tension and the Schwarzschild mass parameter. This is
briefly reviewed in Sect. 2.

Traversability of the correctly formulated Einstein—Rosen bridge as a lightlike
thin-shell wormhole is explicitly demonstrated in Sect.3 in the sense of passing
through the wormhole throat from the “left” to the “right” universe within finite
proper time of a travelling observer.

In Sect. 4 we explicitly construct the Kruskal-Penrose maximal analytic extension
of the proper Einstein—Rosen bridge wormhole manifold. In particular, the pertinent
Kruskal-Penrose manifold involves a special identification of the future horizon
of the “right” universe with the past horizon of the “left” universe, which is the
mathematical manifestation of the wormhole traversability.

In Sect. 5 we extend our construction of Kruskal-Penrose maximal analytic exten-
sion of the total wormhole manifold to the case of a physically interesting wormhole
solution with two “throats” which exhibits a remarkable property of charge and elec-
tric flux confinement [16] resembling the quark confinement property of quantum
chromodynamics.

Section 6 contains our concluding remarks.

2 Einstein—-Rosen Bridge as Lightlike Thin-Shell Wormhole

The Schwarzschild spacetime metric is the simplest static spherically symmetric
black hole metric, written in standard coordinates (¢, r, 8, ) (e.g. [11]):

1
ds* = —ACIE + o sdr 0% (40 s’ 0) L A =1 - Do
r r

where ry = 2m (m — black hole mass parameter):

e 7 > r( defines the exterior spacetime region; r < ry is the black hole region;
e 1 is the horizon radius, where A(rg) = 0 (r = ry is a non-physical coordinate
singularity of the metric (1), unlike the physical spacetime singularity at r = 0).

In constructing the maximal analytic extension of the Schwarzschild spacetime
geometry — the Kruskal-Szekeres coordinate chart — essential intermediate use is
made of the so called “tortoise” coordinate »* (for light rays ¢ + r* = const):

dr* B 1
dr ~ A(r)

— r=r+4+rgn|r—ryl. 2)

The Kruskal-Szekeres (“light-cone’) coordinates (v, w) are defined as follows
(e.g. [11]):

1 k, (H—r*) 1 —k (l—r*)
-+ h — h 3
Y 2k, ¢ CwET 2k, ¢ ©)
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with all combinations of the overall signs, where k;, = %&A(r) ]r:roz 2]70 is the so

called “surface gravity” (related to the Hawking temperature as 5—; = kg Thawking)-
Equation (3) are equivalent to:

ie2khr*
h

Fow = . Fo = (4)
w

wherefrom ¢ and r* are determined as functions of vw.
Depending on the combination of the overall signs Eq. (3) define a doubling the
regions of the standard Schwarzschild geometry [11]:

(i) (4, —) — exterior Schwarzschild region r > r( (region 7);

(i1) (4, +) —black hole r < ry (region I1);
(iii) (—, +) — second copy of exterior Schwarzschild region r > ry (region /11);
(iv) (—, —) — “white” hole region r < r( (region I'V).

The metric (1) becomes:

A(r(vw))

2
kjvw

ds®> = A(vw)dvdw + r’(vw) (d92 + sin® Hdgaz) . Aw) = , (5

so that now there is no coordinate singularity on the horizon (v = 0 or w = 0) upon
using Eq. (2): A(0) = —4.

In the classic paper [10] Einstein and Rosen introduced in (1) a new radial-like
coordinate u viar = ry + u* and let u € (—00, +00):

M2

u? +rg

ds* = dt* +4@u® + ro)du® + (u* + ro)* (d0* +sin” 0dp?) . (6)
Thus, (6) describes two identical copies of the exterior Schwarzschild spacetime
region (r > rg) foru > Oandu < 0, which are formally glued together at the horizon
u=>0.

Unfortunately, there are serious problems with (6):

e The FEinstein—Rosen metric (6) has coordinate singularity at u = 0:
det “gul/”u:O =0.

e More seriously, the Einstein equations for (6) acquire an ill-defined non-vanishing
“matter” stress-energy tensor term on the r.h.s., which was overlooked in the orig-
inal 1935 paper!

Indeed, as explained in [5], from Levi-Civita identity R = — %Vé) (vV/=900)

—900
we deduce that (6) solves vacuum Einstein equation Rg = O for all u # 0. However,
. . o2 s el el s .
s;lnce ~—9goo ~ |u| as u — 0 and since e |u| = 26(u), Levi-Civita identity tells us
that:

R) ~ L(5(14) ~8@u?) , (7N

o]
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and similarly for the scalar curvature R ~ il L) ~ 5u?).

In [5] we proposed a correct reformulation of the original Einstein—Rosen bridge
as a mathematically consistent traversable lightlike thin-shell wormhole introducing
a different radial-like coordinate 7 € (—o0, 4-00), by substituting r = ro + || in
(1):

ds? Il Il +ro

= ————dt’ + ———dn* + (In| + r0)* (d6* +sin*0dp?) . (8)
Inl + ro In]

Equation (8) is the correct spacetime metric for the original Einstein—Rosen
bridge:

e Equation (8) describes two ‘“universes” — two identical copies of the exterior
Schwarzschild spacetime region for > 0 and n < 0.

e Both “universes” are correctly glued together at their common horizon 7 = 0.
Namely, the metric (8) solves Einstein equations:

1
Ry = 59w R = 87T, )

where on the r.h.s. T/l(ly”“”e) = §,,0(n) is the energy-momentum tensor of a special
kind of lightlike brane located on the common horizon 17 = 0 — the wormhole
“throat”.

e Thelightlike analogues of W. Israel’s junction conditions on the wormhole “throat”
are satisfied [5, 6].

e The resulting lightlike thin-shell wormhole is traversable (see Sect. 3 below).

The energy-momentum tensor of lightlike branes Tlff’“”e) is self-consistently

derived as T)\l7") = \/2* gjj‘} from the following manifestly reparametrization
invariant world-volume Polyakov-type lightlike brane action (written for arbitrary
= (p + 1) + 1 embedding spacetime dimension and (p + 1)-dimensional brane

world-volume):

1 Bl

SLL = —E/derlJ Tb()z —"}/ [’}/abgab - b()(p - 1)] ] (10)
_ 1
i = g — 5 O+ g A) G+ g A) . A= 0,X°4, (1)

Here and below the following notations are used:

e 7, is the intrinsic Riemannian metric on the world-volume with v = det ||V l;
by is a positive constant measuring the World volume “cosmological constant”;
(0) = (6*) witha =0,1,...,p; 0, _00"'

e X" (o) are the p-brane embedding coordinates in the bulk D-dimensional space-
time with Riemannian metric g, (x) (4, v =0,1,..., D —1). A, is a spacetime
electromagnetic field (absent in the present case).
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® gu = 0,X"g,,(X)0,X" is the induced metric on the world-volume which
becomes singular on-shell — manifestation of the lightlike nature of the brane.

e u is auxiliary world-volume scalar field defining the lightlike direction of the
induced metric and it is a non-propagating degree of freedom.

e T is dynamical (variable) brane tension (also a non-propagating degree of free-
dom).

e Coupling parameter g is the surface charge density of the LL-brane (¢ = 0 in the
present case).

The Einstein Eq. (9) imply the following relation between the lightlike brane
parameters and the Einstein—Rosen bridge “mass” (ryp = 2m):

T =—  by=

" 8mm (12)

1
1
i.e., the lightlike brane dynamical tension 7' becomes negative on-shell — manifesta-
tion of “exotic matter” nature.

3 Einstein—Rosen Bridge as Traversable Wormbhole

As already noted in [5, 6] traversability of the original Einstein—Rosen bridge is a
particular manifestation of the traversability of lightlike “thin-shell” wormholes.?
Here for completeness we will present the explicit details of the traversability within
the proper Einstein—Rosen bridge wormhole coordinate chart (8) which are needed
for the construction of the pertinent Kruskal-Penrose diagram in Sect. 4.

The motion of test-particle (“observer’””) of mass m in a gravitational background
is given by the reparametrization-invariant world-line action:

1 1 ey
Sparticle = E/d)\ [zguuxlx - em%:| ) (13)

. 4 . . . . .
where x# = ¢~ ¢ is the world-line “einbein” and in the present case (x*) =

ax>
(t,1.0, ).

For a static spherically symmetric background such as (8) there are conserved
Noether “charges” — energy £ and angular momentum 7. In what follows we will
consider purely “radial” motion (J = 0) so, upon taking into account the “mass-
shell” constraint (the equation of motion w.r.t. ¢) and introducing the world-line
proper-time parameter 7 (j—; = emy), the timelike geodesic equations (world-lines
of massive point particles) read:

2Subsequently, traversability of the Einstein—Rosen bridge has been studied using Kruskal-Szekeres
coordinates for the Schwarzschild black hole [17], or the 1935 Einstein—Rosen coordinate chart (6)
[18].
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dn\?2  &? dt & 7]
N == —Am) , —=———, A= 14
(Z) w2 A T meam AP S e Y

where A(n) is the “—ggy” component of the proper Einstein—Rosen bridge metric
(8).

For a test-particle starting for 7 = 0 at initial position in “our” (right) universe
no = n(0) , to = t(0) and infalling towards the “throat” the solutions of Eq. (14) read:

2kpmo

2 1
dy [+ pp[a+-Zp] =7, a9

2knmo Jopner)

1 2knmo 1 2

_ m
AT (=2 =10~ (6
T o DT +ip[a+ (=] =t -6 a6

e Equation (15) shows that the particle will cross the wormhole “throat” (n = 0) for
a finite proper-time 7y > 0:

2knmo
0= Zkhm()/ dy)/ A+ 1|1+ (1——)|y|] .an

e It will continue into the second (left) universe and reach any point n; = (1) < 0
within another finite proper-time 7, > 7.

e On the other hand, from (16) it follows that 7 (7p — 0) = 400, i.e., from the point of
view of a static observer in “our” (right) universe it will take infinite “laboratory”
time for the particle to reach the “throat” — the latter appears to the static observer
as a future black hole horizon.

e Equation (16) also implies 7 (7y + 0) = —oo, which means that from the point of
view of a static observer in the second (left) universe, upon crossing the “throat”,
the particle starts its motion in the second (left) universe from infinite past, so that
it will take an infinite amount of “laboratory” time to reach the point 7; < 0 —1i.e.
the “throat” now appears as a past black hole horizon.

In analogy with the usual “tortoise” coordinate r* for the Schwarzschild black
hole geometry (2) let us now introduce Einstein—Rosen bridge “tortoise” coordinate
n* (recall ry = ﬁ):

dn* Inl+ro
dn 7l

n" =1+ sign(n)roln|n] . (18)

Let us note here an important difference in the behavior of the “tortoise” coordinates
r* (2) and n* (18) in the vicinity of the horizon. Namely:

r*— —oo for r - rg£0, (19)
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i.e., when r approaches the horizon either from above or from below, whereas when
7 approaches the horizon from above or from below:

n* — Foo for n — £0. (20)

For infalling/outgoing massless particles (light rays) Eqgs. (15)—(18) imply:
t +n* = const . 21
For infalling massive particles towards the “throat” ( = 0) starting at 7y > 0 in
“our” (right) universe and crossing into the second (left) universe, or starting in the
second (left) universe at some 7, < 0 and crossing into the “our” (right) universe,

we have correspondingly (replacing T-dependence with functional dependence w.r.t.
7 using first Eq. (14)):

. +1 [ 1 mi -1
[l =5 [ dy(”m) /<1+|y|>[<1+(1—§)|y|] ~1

knm
(22)

4 Kruskal-Penrose Diagram for Einstein—Rosen Bridge

We now define the maximal analytic extension of original Einstein—Rosen wormhole
geometry (8) via introducing Kruskal-like coordinates (v, w) as follows:

1

-4+ 1 e ERn(t+n*) L ow= :F_em/,(t—rz*) , (23)
2kh 2kh
implying: .
_ B2k v — 2kt 24
rw Zkh e s " e . ( )

Here and below n* is given by (18).

e The upper signs in (23) and (24) correspond to region I (v > 0, w < 0) describing
“our” (right) universe n > 0.

e Thelowersignsin (23)and (24) correspondtoregion / / (v < 0, w > 0) describing
the second (left) universe < 0.

The metric (8) of Einstein—Rosen bridge in the Kruskal-like coordinates (23)
reads:
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ds> = A(vw)dvdw + 72(vw)(d92 + sin® 9d302) , (25)
1
Flvw) = ryg + [n(vw)| (ro = m) ,
~ A(n(vw)) Qe 2knlnww)|
Avw) = = - : 26
(ww) kjvw 1 4 2k |n(vw)] (26)

where n(vw) is determined from (24) and (18) as:

1
—pw = %e%h\’l\ — |77(Uu))| = 2kh W(—4k%vw) 3 (27)

W(z) being the Lambert (product-logarithm) function (z = W(z)e"V®).
Using the explicit expression (18) for n* in (24) we find for the metric (25) and
(26):

e “Throats” (horizons) —at v =0 or w = 0;

e In region / the “throat” (v > 0, w = 0) is a future horizon (n =0, t - 400),
whereas the “throat” (v = 0, w < 0) is a past horizon (n =0, t - —00).

e Inregion /7 the “throat” (v = 0, w > 0) is a future horizon (n =0, t — +00),
whereas the “throat” (v < 0, w = 0) is a past horizon (n =0, t - —00).

It is customary to replace Kruskal-like coordinates (v, w) (23) with compactified
Penrose-like coordinates (v, w):

v = arctan(y/2k, v) , w = arctan(y/2k, w) , (28)

mapping the various “throats” (horizons) and infinities to finite lines/points:

e In region /: future horizon (0 < v < 7, w = 0); past horizon (v =0, -5 <

w < 0). ’
e In region //: future horizon (v =0,0 < w < %); past horizon (—72—r <v <0,
w = 0).
e iy — spacelike infinity (+ = fixed, n — =£00):
io = (3, —%) inregion I; iy = (=7, 5) inregion /1.
e i, — future/past timelike infinity ( — o0, 7 = fixed):
iy =(5,0),i- =(0,-%)inregion I; iy = (0, ), i— = (=7, 0) inregion /1.
e J, —future lightlike infinity (f — 400,17 — *o00, t F n* = fixed):
Jy=@w=73,-5 <w <0)inregion I,
Ji=(=5 <v<0,w=7)inregion /1.
e J_ —past lightlike infinity ( — —o0, n — £00), t £ n* = fixed):
J_=0<v<ZI, w= —%) in region I:
J_=@W= —%,0 <w< %) in region 71.

For infalling light rays starting in region / and crossing into region / I we have the
lightlike geodesic t + n* = ¢; = const. Thus, according to (23) we must identify the
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A

Fig. 1 Kruskal-Penrose diagram of the original Einstein—Rosen bridge

crossing point A on the future horizon of region / having Kruskal-like coordinates
(v= \/%Tvekh"l , 0) with the point B on the past horizon of region /I where the light

rays enters into region / I whose Kruskal-like coordinates are (v = — ﬁe‘k"”‘ , 0).

Similarly, for infalling light rays starting in region // and crossing into region /
we have t — n* = ¢, = const. Therefore, the crossing point C on the future horizon

of region /1 having Kruskal-like coordinates (0, w = ﬁek“z) must be identified
with the exit point D (0, w = _2;1%6_]%2) on the past horizon of region I.

Inserting Eqgs. (18)—(22) into the definitions of Kruskal-like (23) and Penrose-like
(28) coordinates and taking into account the above identifications of horizons, we
obtain the following visual representation of the Kruskal-Penrose diagram of the
proper Einstein—Rosen bridge geometry (8) as depicted in Fig. 1:

e Future horizon in region [ is identified with past horizon in region /1 as:

_ . T

(5, 0) ~ (v -3 0) . (29)
Infalling light rays cross from region [ into region /[ via paths P, - A ~ B —
P, — all the way within finite world-line time intervals (the symbol ~ means
identification according to (29)). Similarly, infalling massive particles cross from
region / into region /1 via paths Q; — E ~ F — (, within finite proper-time
interval.

e Future horizon in /1 is identified with past horizon in I:

0, ) ~ (o, & — g) . (30)
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Infalling light rays cross from region /1 into region [ via paths Ry - C ~ D —
Ry where C ~ D is identified according to (30).

5 Kruskal-Penrose Formalism for Two-Throat Lightlike
Thin-Shell Wormhole

Now we will briefly discuss the extension of the construction of Kruskal-Penrose
diagram for the proper Einstein—Rosen bridge wormhole to the case of lightlike
“thin-shell” wormholes with two throats. To this end we will consider the physically
interesting example of the charge-confining two-throat “tube-like” wormhole studied
in [16]. It is a solution of gravity interacting with a special non-linear gauge field
system and both coupled to a pair of oppositely charged lightlike branes (cf. Egs.
(10) and (11) above).

The full wormhole spacetime consists of three “universes” glued pairwise via the
two oppositely charged lightlike branes located on their common horizons:

e Region /: right-most non-compact electrically neutral “universe” — exterior region
beyond the Schwarzschild horizon of a Schwarzschild-de Sitter black hole;

e Region /7: middle “tube-like” “universe” of Levi-Civita—Bertotti-Robinson type
[19-21] with finite radial-like spacial extend and compactified transverse spacial
dimensions;

e Region /11: left-most non-compact electrically neutral “universe” — exterior
region beyond the Schwarzschild horizon of a Schwarzschild-de Sitter black hole,
mirror copy of the left-most “universe”.

e Most remarkable property is that the whole electric flux generated by the two
oppositely charged lightlike branes sitting on the two “throats” is completely con-
fined within the finite-spacial-size middle “tube-like” universe — analog of QCD
quark confinement!

For a visual representation, see Fig.2 [16].
Generically, the metric of a spherically symmetric traversable lightlike thin-shell
wormhole with two “throats” reads [16] (—oo0 < 1 < o0):

d2
ds> = —A(pdi® + A?) +r2(n) (46 + sin® 6d )
7
(31
A =0, Al =0, a¥ =+ 4 0.4 =+224 0
() =0, Alm) =0, ag) =+7-4], >0, agy =+7-41, 0> 0.

Accordingly, for the wormhole “tortoise” coordinate n* defined as in first Eq. (18)
we have in the vicinity of the two horizons 7; »:
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Fig. 2 Shape of ¢ = const and § = 7 slice of charge-confining wormhole geometry. The whole
electric flux is confined within the middle cylindric “tube” (region /1) connecting the two infinite
“funnels” (region / and region /1 I). The rings on the edges of the “tube” depict the two oppositely
charged lightlike branes

7" = sign(n —n)al) Inn — il + 0 ((n—m)?) (32)
7" = sign(n — m)a2) Inln — nal + O ((n — m)?) . (33)

Now we can introduce the Kruskal-like and the compactified Kruskal-Penrose
coordinates (v, w) for the maximal analytic extension of the two-throat lightlike
thin-shell wormhole generalizing formulas (23) and (28) as follows:

e In region / (right-most universe) — (400 > 1 > 1;):

T 1
+—+ —
[ [
2\ac Ay
o) )

e Inregion /7 (middle universe) — (11 > n > 1p);herea ) = a ;) whichis satisfied
in the case of the charge-confining two-throat “tube” wormhole:

o [t
o, W= arctan(e 24 ™ i')) (34)

1

D)
ay

o LW
v,w ==+ arctan(ei"(*)(" i’)) . (35)

e Inregion /71 (left-most universe) — (17, > n > —00):

o s 1 1@
v, W=7F + arctan(eéaw(" jEt)) ) (36)
2 a(z) a(z)
=) (=

—



Kruskal-Penrose Formalism for Lightlike Thin-Shell Wormholes 257

. 7 N
fo < o

Fig. 3 Kruskal-Penrose diagram of “‘charge-confining” two-throat wormhole

The resulting Kruskal-Penrose diagram is depicted on Fig. 3.

In particular, infalling light ray starting in region / arrives in region / /1 within
finite world-line time interval (“proper-time” in the case of massive particle) on the
path P - A; ~ A, — B ~ B3y — P3;, where the symbol ~ indicates identifica-
tion of the pertinent future and past horizons of the “glued” together neighboring
“universes” analogous to the identification (29), (30) in the simpler case of Einstein—
Rosen one-throat wormhole.

And similarly for an infalling light ray starting in region / / I and arriving in region
I within finite world-line time interval on the path Q3 - C3 ~ C, — D, ~ D| —

0.

6 Conclusions

The mathematically correct reformulation [5] of original Einstein—Rosen “bridge”
construction, briefly reviewed in Sect. 2 above, shows that it is the simplest example
in the class of static spherically symmetric traversable lightlike “thin-shell” worm-
hole solutions in general relativity. The consistency of Einstein—Rosen “bridge” as
a traversable wormhole solution is guaranteed by the remarkable special properties
of the world-volume dynamics of the lightlike brane, which serves as an “exotic”
thin-shell matter (and charge) source of gravity.

In the present note we have explicitly derived the Kruskal-like extension and
the associated Kruskal-Penrose diagram representation of the mathematically cor-
rectly defined original Einstein—Rosen “bridge” [5] with the following significant
differences w.r.t. Kruskal-Penrose extension of the standard Schwarzschild black
hole defining the corresponding “textbook” version of Einstein—Rosen “bridge” (the
Schwarzschild wormhole) [11]:
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e The pertinent Kruskal-Penrose diagram for the proper Einstein—Rosen bridge
(Fig. 1) has only two regions corresponding to “our” (right) and the second (left)
“universes” unlike the four regions in the standard Schwarzschild black hole case
(no black/white hole regions).

e The proper original Einstein—Rosen bridge is a traversable static spherically sym-
metric wormhole unlike the non-traversable non-static “textbook” version. Tra-
versability is equivalent to the pairwise specific identifications of future with past
horizons of the neighboring Kruskal regions.

We have also extended the Kruskal-Penrose diagram construction to the case of
lightlike “thin-shell” wormholes with two throats.
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Metric-Independent Spacetime
Volume-Forms and Dark Energy/Dark
Matter Unification

Eduardo Guendelman, Emil Nissimov and Svetlana Pacheva

Abstract The method of non-Riemannian (metric-independent) spacetime volume-
forms (alternative generally-covariant integration measure densities) is applied to
construct a modified model of gravity coupled to a single scalar field providing
an explicit unification of dark energy (as a dynamically generated cosmological
constant) and dust fluid dark matter flowing along geodesics as an exact sum of
two separate terms in the scalar field energy-momentum tensor. The fundamental
reason for the dark species unification is the presence of a non-Riemannian volume-
form in the scalar field action which both triggers the dynamical generation of the
cosmological constant as well as gives rise to a hidden nonlinear Noether symmetry
underlying the dust dark matter fluid nature. Upon adding appropriate perturbation
breaking the hidden “dust” Noether symmetry we preserve the geodesic flow property
of the dark matter while we suggest a way to get growing dark energy in the present
universe’ epoch free of evolution pathologies. Also, an intrinsic relation between the
above modified gravity + single scalar field model and a special quadratic purely
kinetic “k-essence” model is established as a weak-versus-strong-coupling duality.

1 Introduction

According to the standard cosmological model (ACDM model [1-3]) the energy
density of the late time Universe is dominated by two “dark” components - around
70 % made out of “dark energy” [4-6] and around 25 % made out of “dark matter”
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[7-9]. Since more than a decade a principal challenge in modern cosmology is to
understand theoretically from first principles the nature of both “dark” species of the
universe’s substance as a manifestation of the dynamics of a single entity of matter.
Among the multitude of approaches to this seminal problem proposed so far are
the (generalized) “Chaplygin gas” models [10-13], the “purely kinetic k-essence”
models [14—17] based on the class of kinetic “quintessence” models [18-21], and
more recently — the so called “mimetic” dark matter model [22, 23] and its extensions
[24, 25], as well as constant-pressure-ansatz models [26].

Here we will describe a new approach achieving unified description of dark energy
and dark matter based on a class of generalized models of gravity interacting with
a single scalar field employing the method of non-Riemannian volume-forms on
the pertinent spacetime manifold [27-31] (for further developments, see Refs. [32,
33]). Non-Riemannian spacetime volume-forms or, equivalently, alternative gener-
ally covariant integration measure densities are defined in terms of auxiliary maximal-
rank antisymmetric tensor gauge fields (“measure gauge fields”) unlike the standard
Riemannian integration measure density given in terms of the square root of the
determinant of the spacetime metric. These non-Riemannian-measure-modified
gravity-matter models are also called “two-measure gravity theories”.

Let us particularly stress that the method of non-Riemannian spacetime volume-
forms is a very powerful one having profound impact in any (field theory) models
with general coordinate reparametrization invariance, such as general relativity and
its extensions [27-39]; strings and (higher-dimensional) membranes [40, 41]; and
supergravity [42, 43]. Among its main features we should mention:

e Dynamical generation of cosmological constant as arbitrary integration constant
in the solution of the equations of motion for the auxiliary “measure” gauge fields
(see also Eq. (6) below).

e Using the canonical Hamiltonian formalism for Dirac-constrained systems we find
that the auxiliary “measure” gauge fields are in fact almost pure gauge degrees of
freedom except for the above mentioned arbitrary integration constants which are
identified with the conserved Dirac-constrained canonical momenta conjugated to
the “magnetic” components of the “measure” gauge fields [38, 39].

e Applying the non-Riemannian volume-form formalism to minimal N = 1 super-
gravity the appearance of a dynamically generated cosmological constant triggers
spontaneous supersymmetry breaking and mass generation for the gravitino (super-
symmetric Brout-Englert-Higgs effect) [42, 43]. Applying the same formalism to
anti-de Sitter supergravity allows to produce simultaneously a very large physical
gravitino mass and a very small positive observable cosmological constant [42, 43]
in accordance with modern cosmological scenarios for slowly expanding universe
of the present epoch [4-6].

e Employing two independent non-Riemannian volume-forms produces effective
scalar potential with two infinitely large flat regions [37, 38] (one for large neg-
ative and another one for large positive values of the scalar field ) with vastly
different scales appropriate for a unified description of both the early and late uni-
verse’ evolution. A remarkable feature is the existence of a stable initial phase of
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non-singular universe creation preceding the inflationary phase — stable “emergent
universe” without “Big-Bang” [37].

In Sect.2 below we briefly discuss a non-standard model of gravity interacting
with a single scalar field which couples symmetrically to a standard Riemannian
as well as to another non-Riemannian volume form (spacetime integration measure
density). We show that the auxiliary “measure” gauge field dynamics produces an
arbitrary integration constant identified as a dynamically generated cosmological
constant giving rise to a the dark energy term in the pertinent energy-momentum
tensor. Simultaneously, a hidden strongly nonlinear Noether symmetry of the scalar
Lagrangian action is revealed leading to a “dust” fluid representation of the second
term in the energy-momentum tensor, which accordingly is identified as a “dust”
dark matter flowing along geodesics. Thus, both “dark™ species are explicitly unified
as an exact sum of two separate contributions to the energy-momentum tensor.

In Sect. 3 some implications for cosmology are briefly considered. Specifically, we
briefly study an appropriate perturbation of our modified-measure gravity + scalar-
field model which breaks the above crucial hidden Noether symmetry and introduces
exchange between the dark energy and dark matter components, while preserving the
geodesic flow property of the dark matter fluid. Further, we suggest how to obtain
a growing dark energy in the present day universe’ epoch without invoking any
pathologies of “cosmic doomsday” or future singularities kind [44—46].

In Sect.4 below we couple the above modified-measure scalar-field model to a
quadratic f(R)-gravity. We derive the pertinent “Einstein”-frame effective theory
which turns out be a very special quadratic purely kinetic “k-essence” gravity-matter
model. The main result here is establishing duality (in the standard sense of weak
versus strong coupling) between the latter and the original quadratic f (R)-gravity
plus modified-measure scalar-field model, whose matter part delivers an exact unified
description of dynamical dark energy and dust fluid dark matter.

Section 5 contains our concluding remarks.

For further details, in particular, canonical Hamiltonian treatment and Wheeler-
DeWitt quantization of the above unified model of dark energy and dark matter, see
Refs. [36, 47].

2 Gravity-Matter Theory with a Non-Riemannian
Volume-Form in The Scalar Field Action — Hidden
Noether Symmetry and Unification of Dark Energy
and Dark Matter

Let us consider the following simple particular case of a non-conventional gravity-
scalar-field action — a member of the general class of the “two-measure” gravity-
matter theories [28-31] (for simplicity we use units with the Newton constant
Gy = 1/16m):
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S =/d4x¢—_gR+/d4x(J—_g+¢>(B))L(<p, X). (1)

Here R denotes the standard Riemannian scalar curvature for the pertinent
Riemannian metric g,,. The second term in (1) — the scalar field action is con-
structed in terms of two mutually independent spacetime volume-forms (integration
measure densities):

(@) /—g = /—det | gl is the standard Riemannian integration measure density;

(b) @(B) denotes an alternative non-Riemannian generally covariant integration
measure density independent of g,,,, and defining an alternative non-Riemannian
volume-form:

1 )
@ (B) = gef“’““aﬂBm : 2)

where B, is an auxiliary maximal rank antisymmetric tensor gauge field indepen-
dent of the Riemannian metric, also called “measure gauge field”.

L(y, X) is general-coordinate invariant Lagrangian of a single scalar field ¢ (x),
the simplest example being:

1
L, X)=X—-V(p) , X= —Eg‘“’(?ugo@,,cp , 3)

As it will become clear below, the final result about the unification of dark energy and
dark matter resulting from an underlying hidden Noether symmetry (see (9) below)
of the scalar field action (second term in (1)) does not depend on the detailed form
of L(p, X) which could be of an arbitrary generic “k-essence” form [18-21]:

N
L(p, X) = > A X" = V() . )

n=1

i.e., a nonlinear (in general) function of the scalar kinetic term X.
Due to general-coordinate invariance we have covariant conservation of the scalar
field energy-momentum tensor:

D(B L
( )) 8 8/1,@81/90 5 VVT/H/ =0 . (5)

T/W = g/wL(QD’ X) + (1 + ﬁ 8_X
Equivalently, energy-momentum conservation (5) follows from the second-order
equation of motion w.r.t. . The latter, however, becomes redundant because the
modified-measure scalar field action (second term in (1)) exhibits a crucial new
property — it yields a dynamical constraint on L(p, X) as a result of the equations
of motion w.r.t. “measure” gauge field B, \:



Metric-Independent Spacetime Volume-Forms ... 265
OuL(p,X)=0 — L(p,X)=—2M = const, (6)

in particular, for (3):
X—V(p)=-2M — X=V(p) —2M, (7)

where M is arbitrary integration constant. The factor 2 in front of M is for later con-
venience, moreover, we will take M > 01in view of its interpretation as a dynamically
generated cosmological constant.! Indeed, taking into account (6), the expression (5)

becomes:
T, =-2Mg,, + 1+¢(B) oL
2 Guv \/_—g X
As already shown in Ref. [36] the scalar field action in (1) possesses a hidden
strongly nonlinear Noether symmetry, namely (1) is invariant (up to a total derivative)
under the following nonlinear symmetry transformations:

OOy . ®)

Sp=eVX | 0gu=0 , 6B"=—e—=g"dp(®(B)+/—g). ©)

1
2VX
where BV = %5/‘”’” B,..\. Under (9) the action (1) transforms as

6.S=[d 4x8,; (L (¢, X)6 B”) . Then, the standard Noether procedure yields the con-
served current:

& (B) oL
[— - N7 yng it
v,Jht=0 , J _(1+ H)«/H(g 8V<an . (10)

T}, (8) and J* (10) can be cast into a relativistic hydrodynamical form:

T/w = _2Mg/w + pol, Uy Jh = p()u# ’ (11)
where: ®(B) 5L 5
@
- 1+—)2X— Dy =Py, =1, (12)
= Jg) ox T ax

For the pressure p and energy density p we have accordingly (with pg as in (12)):

®(B) OL
p=-2M=const , p=py—p=\(14+—=)2X—-+2M, (13)

V=9 0X

The physical meaning of the “measure” gauge field By (2) as well as the meaning of the integra-
tion constant M are most straightforwardly seen within the canonical Hamiltonian treatment of (1)
[36]. For more details about the canonical Hamiltonian treatment of general gravity-matter theories
with (several independent) non-Riemannian volume-forms we refer to [38, 39].
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where the integration constant M appears as dynamically generated cosmological
constant.
Thus, 7}, (11) represents an exact sum of two contributions of the two dark species

with p = ppg + ppm and p = ppg + ppom:
poE=—2M , ppp=2M ; ppom=0, ppm =0, (14)

i.e., the dark matter component is a dust fluid (ppm = 0).

Covariant conservation of 7, (11) immediately implies both (i) the covariant
conservation of J* = pou (10) describing dust dark matter “particle number” con-
servation, and (ii) the geodesic flow equation of the dust dark matter fluid:

V,,,(pou“) =0, u,Vu,=0. (15)

3 Some Cosmological Implications

Let us now consider a perturbation of the initial modified-measure gravity + scalar-
field action (1) by some additional scalar field Lagrangian L(p, X) independent of
the initial scalar Lagrangian L(p, X):

§:/d4x¢?gR+/d4x(Jfg+¢(B))L(go, X)+/d4x\/jg/L\(<p, X). (16)

An important property of the perturbed action (16) is that once again the scalar field
(-dynamics is given by the unperturbed dynamical constraint Eq. (6) of the initial
scalar Lagrangian L (¢, X), which is completely independent of the perturbing scalar
Lagrangian Z(gp, X).

Henceforth, for simplicity we will take the scalar Lagrangians in the canonical
form L(p, X) =X — V(v), Z(ap, X) =X — U(yp), where U () is independent of
V(p).

The associated scalar field energy-momentum tensor now reads (cf. Egs. (11)—

(13)):

T = Pottytty + g (—4M + V — U) ﬁO=2(V—2M)(1+¢’(B))

224 % g s = ,
(17

or, equivalently:
ﬁ”z(ﬁ+ﬁ)u;¢uu+ﬁguu , p=—4M+V - U, (18)
pP=p—p=2V 2M)(1+¢(B))+4M+U 14 (19)
pP=po—P= - — -V,
V=g

where (7) is used.
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The perturbed energy-momentum (17) conservation V“’T‘W = 0 now implies:

e The perturbed action (16) does not any more possess the hidden symmetry (9) and,
therefore, the conservation of the dust particle number current J# = pou* (11) is
now replaced by:

ov 8U)=0. 20)

V*(Pouy) +v/2(V —2M) (% ~ 9

e Once again we obtain the geodesic flow equation for the dark matter “fluid” (second
Eq. (15)). Let us stress that this is due to the fact that the perturbed pressure p
(second relation in (18)), because of the dynamical constraint (7) triggered by the
non-Riemannian volume-form in (16), is a function of ¢ only but not of X.

Thus, we conclude that the geodesic flow dynamics of the cosmological fluid
described by the action (16) persist irrespective of the presence of the perturbation
(last term in (16)) as well as of the specific form of the latter.

In the cosmological context, when taking the spacetime metric in the standard
Friedmann-Lemaitre—-Robertson—Walker (FLRW) form, the scalar field is assumed
to be time-dependent only: ¢ = (#). Thus, in this case the dynamical constraint Eq.
(7) and its solution assume the form:

(1)
¢*=2(V(p) —2M) —> /ﬁ ad =41 . 1)

e 2(V(p) —2M)

Choosing the + sign in (21) corresponds to ((¢#) monotonically growing with ¢
irrespective of the detailed form of the potential V (¢). The only condition due to
consistency of the dynamical constraint (first Eq. (21)) is V() > 2M for the whole
interval of classically accessible values of (. Also, note the “strange” looking second-
order (in time derivatives) form of the first Eq. (21): © —adV/0p = 0, where we
specifically stress on the opposite sign in the force term. Thus, it is fully consistent
for ¢(¢) to “climb” a growing w.r.t. ¢ scalar potential.

As already stressed above, the dynamics of the ((¢) does not depend at all on the
presence of the perturbing scalar potential U (). Therefore, if we choose the per-
turbation U () in (16) such that the potential difference U (¢) — V (¢) is a growing
function at large ¢ (e.g., U(p) — V() ~ e“?, a small positive) then, when ¢(¢)
evolves through (21) to large positive values, it (slowly) “climbs” U (¢) — V (¢) and
according to the expression ppr = 4M + U(p) — V(¢) = —p for the dark energy
density (cf. (17) and (18)), the latter will (slowly) grow up! Let us emphasize that in
this way we obtain growing dark energy of the “late” universe without any pathologies
in the universe’ evolution like “cosmic doomsday” or future singularities [44—-46].
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4 Duality to Purely Kinetic “K-Essence”

Let us now consider a different perturbation of the modified-measure gravity +
scalar-field action (1) by replacing the standard Einstein-Hilbert gravity action (the
first term in (1)) with a f(R) = R — aR? extended gravity action in the first-order
Palatini formalism:

s(@ =/d4xJ?g(R(g, r)—aR*@g, ) +/d4x(J?g+ ®(B))L(p, X), (22)

where R(g, I') = g" R, (I'), i.e., with a priori independent metric g,,, and affine
connection I/}

Since the scalar field action — the second term in (22) — remains the same as in the
original action (1), and the hidden nonlinear Noether symmetry (9) does not affect the
metric, all results in Sect. 2 remain valid. Namely, the Noether symmetry (9) produces
“dust” fluid particle number conserved current (first Eq. (15)) and interpretation
of ¢ as describing simultaneously dark energy (because of the dynamical scalar
Lagrangian constraint (6)) and dust dark matter with geodesic dust fluid flow (second
Eq. (15)) remains intact.

However, the gravitational equations of motion derived from (22) are not of the
standard Einstein form:

1
R,U.I/(F) = F[T/M/ + f(R)g;w] ) (23)
R

where f(R) = R(g, ") — osz(g, Iy, fr=1—=2aR(g, I') and T, is the same
as in (8).

The equations of motion w.r.t. independent I"!, resulting from (22) yield (for
an analogous derivation, see [28]) the following solution for I“V“A as a Levi-Civita
connection:

7 L — 1_ K — — —
Fl///\ = sz)\(g) = Egul (8l/gx\n + a/\gun - 8f€gy)\) ) (24)
w.r.t. to the Weyl-rescaled metric g,,, :

G = T 9w » (25)

so that g, is called (physical) “Einstein-frame” metric. In passing over to the
“Einstein-frame” it is also useful to perform the following ¢-field redefinition:

1 e 1
= —ngap,@auip = > (26)

~ do ~
gp—)gp:/— , X=X
J (Ve —2m) Tx

where the last relation follows from the Lagrangian dynamical constraint (7) together
with (25).
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Derivation of the explicit expressions for the Einstein-frame gravitational equa-
tions, i.e., equations w.r.t. Einstein-frame metric (25) and the Einstein-frame scalar
field (first Eq. (26)), yields the latter in the standard form of Einstein gravity equa-
tions:

— — 1=

Ry = 5GuR = 5T . 27)

Here the following notations are used:

@) ﬁ/w and R are the standard Ricci tensor and scalar curvature of the Einstein-
frame metric (25).
(i) The Einstein-frame energy-momentum tensor:

= = OLesr
T;w = guyLeff - 2?;

(28)
is given in terms of the following effective p-scalar field Lagrangian of a specific
quadratic purely kinetic “k-essence” form:

Let(X) = I ooae-tyxs L (29)
4o 2 4o

Thus, the Einstein-frame gravity+scalar-field action reads:

Skess = /d“\/Ty[EJr (i - 2M)f(2 - i)? i] . (30)

The Einstein-frame effective energy-momentum-tensor (28) in the perfect fluid
representation reads (taking into account the explicit form of L (29)):

- e e e, ~ e~ ~
Tuv=9;wl7+”uuu(/’+P) ) Mu:ﬁ . g, =—-1, (1)

_ (1 - Lo 1 1 o
=\——-2M)X " ——X+—, p=3{—-2M) X" — —X — — 32
b (4a ) 2« + 4o p <4a ) 2 4o (32)
Let us stress that the quadratic purely kinetic “k-essence” scalar Lagrangian (29)

is indeed a very special one:

e The three coupling constants in (29) depend only on two independent parameters
(a, M), the second one being a dynamically generated integration constant in the
original theory (22).

e The quadratic gravity term —aR? in (22) is just a small perturbation w.r.t. the
initial action (1) when o — 0, whereas the coupling constants in the Einstein-
frame effective action (30) diverge as 1/, i.e., weak coupling in (22) is equivalent
to a strong coupling in (30).
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e Due to the apparent Noether symmetry of (29) under constant shift of  (p — ¢ +
const) the corresponding Noether conservation law is identical to the p-equations

of motion:
— 6‘Le
(-ﬂ”a 7] “) =0, (33)
0X

where V, is covariant derivative w.r.t. the Levi-Civita connection (24) in the [
(Einstein) frame. Equation (33) is the Einstein-frame counterpart of the “dust”
Noether conservation law (10) in the original theory (1) or (22).

Thus, we have found an explicit duality in the usual sense of “weak versus strong
coupling” between the original non-standard gravity+scalar-field model providing
exact unified description of dynamical dark energy and dust fluid dark matter in the
matter sector, on one hand, and a special quadratic purely kinetic “k-essence” gravity-
matter model, on the other hand. The latter dual theory arises as the “Einstein-frame”
effective theory of its original counterpart.

To make explicit the existence of smooth strong coupling limit & — 0 on-shell in
the dual “k-essence” energy density p and “k-essence” pressure p (32) in spite of the
divergence of the corresponding constant coefficients, let us consider a reduction of
the dual quadratic purely kinetic “k-essence” gravity + scalar-field model (30) for
the Friedmann—Lemaitre—Robertson—Walker (FLRW) class of metrics:

d 2
ds = —N2(t)d* + az(t)[; 20 + sin29d¢2)] R
1 - Kr?

The FLRW reduction of the ¢ = p-equation of motion (33) (using henceforth the
gauge N = 1) reads:

dpy

1.1 .
=0 — p¢:a3[—£¢+(——2M)¢3], (35)

4o

where p is the constant conserved canonically conjugated momentum of ¢ = @.
Thus, the velocity ¢ = <z)(p®/a3) is a function of the Friedmann scale factor a(t)
through the ratio p,/a’ and solves the cubic algebraic equation (35) for any . For
small o we get:

d(pofa®) =2+ a(4ﬁM + %) +00?) . (36)

Then, inserting (36) into the FLRW-reduced X = %qbz and substituting it into the
expressions (32) we obtain for the small-o asymptotics of the “k-essence” energy
density and “k-essence” pressure:
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—2M+\/_p¢+a[16M2+4\/_Mp“ ;(pa):l-i-o( ), (37

F=—-2M—al16M* - 2(5"’)]+0( o?).  (38)

The limiting values p = 2M + \/557 and p = —2M precisely coincide with the
corresponding values of p and p (13) in the FLRW reduced original theory (1) [36].

5 Conclusions

In the present note we have demonstrated the power of the method of non-Riemannian
spacetime volume-forms (alternative generally-covariant integration measure den-
sities) by applying it to construct a modified model of gravity coupled to a single
scalar field which delivers a unification of dark energy (as a dynamically generated
cosmological constant) and dust fluid dark matter flowing along geodesics (due to a
hidden nonlinear Noether symmetry). Both “dark”™ species appear as an exact sum of
two separate contributions in the energy-momentum tensor of the single scalar field.
Upon perturbation of the scalar field action, which breaks the hidden “dust” Noether
symmetry but preserves the geodesic flow property, we show how to obtain a grow-
ing dark energy in the late Universe without evolution pathologies. Furthermore, we
have established a duality (in the standard sense of weak versus strong coupling) of
the above model unifying dark energy and dark matter, on one hand, and a specific
quadratic purely kinetic “k-essence” model. This duality elucidates the ability of
purely kinetic “k-essence” theories to describe approximately the unification of dark
energy and dark matter and explains how the “k-essence” description becomes exact
in the strong coupling limit on the “k-essence” side.
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Large Volume Supersymmetry Breaking
Without Decompactification Problem

Hervé Partouche

Abstract We consider heterotic string backgrounds in four-dimensional Minkowski
space, where N = 1 supersymmetry is spontaneously broken at a low scale m3,; by a
stringy Scherk-Schwarz mechanism. We review how the effective gauge couplings at
1-loop may evade the “decompactification problem”, namely the proportionality of
the gauge threshold corrections, with the large volume of the compact space involved
in the supersymmetry breaking.

1 Introduction

A sensible physical theory must at least meet two requirements: Be realistic and
analytically under control. The first point can be satisfied by considering string the-
ory, which has the advantage to be, at present time, the only setup in which both
gravitational and gauge interactions can be described consistently at the quantum
level. In this review, we do not consider cosmological issues and thus analyze mod-
els defined classically in four-dimensional Minkowski space. The “no-scale models”
are particularly interesting since, by definition, they describe in supergravity or string
theory classical backgrounds, in which supersymmetry is spontaneously broken at
an arbitrary scale m3/, in flat space [1]. In other words, even if supersymmetry is not
explicit, the classical vacuum energy vanishes.

The most conservative way to preserve analytical control is to ensure the validity
of perturbation theory. In string theory, quantum loops can be evaluated explicitly,
when the underlying two-dimensional conformal field theory is itself under control.
Clearly, this is the case, when one considers free field on the world sheet, for instance
in toroidal orbifold models [2] or fermionic constructions [3]. In these frameworks,
the N'= 1 — N = 0 spontaneous breaking of supersymmetry can be implemented
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at tree level via a stringy version [4] of the Scherk-Schwarz mechanism [5]." In
this case, the supersymmetry breaking scale is of order of the inverse volume of the
internal directions involved in the breaking. For a single circle of radius R, one has

M !
map =4 (D
where Mj is the string scale, so that having a low m3,, = O(10 TeV) imposes the
circle to be extremely large, R = O(10'7) [6]. Such large directions yield towers
of light Kaluza—Klein states and a problem arises from those charged under some
gauge group factor G'. In general, their contributions to the quantum corrections
to the inverse squared gauge coupling is proportional to the very large volume and
invalidates the use of perturbation theory.
To be specific, let us consider in heterotic string the 1-loop low energy running

gauge coupling g; (i) , which satisfies [7]

1672 . lem? LoM? ;
- = —+b'In— 4+ A" )
g; () 94 1z

In this expression, g is the string coupling and &’ is the Kac-Moody level of G'.
The logarithmic contribution, which depends on the energy scale p, arises from the
massless states and is proportional to the 3-function coefficient b’, while the massive
modes yield the threshold corrections A?. The main contributions to the latter arise
from the light Kaluza—Klein states, which for a single large radius yield

, ) . 1
A’:C’R—b’lnR2+O(E), (3)

where C' = Cb' — C'k', for some non-negative C and C’ that depend on other mod-
uli. When C! = O(1), requiring in Eq. (2) the loop correction to be small compared
to the tree level contribution imposes g>R < 1. In other words, for perturbation
theory to be valid, the string coupling must be extremely weak, g, < O(10753). If
C' > 0, which implies G' is not asymptotically free, Eq. (2) imposes the running
gauge coupling to be essentially free, g; (1) = O(gs), and G' describes a hidden
gauge group. However, if C! < 0, which is the case if G’ is asymptotically free, the
very large tree level contribution proportional to 1/gZ must cancel C'R, up to very
high accuracy, for the running gauge coupling to be of order 1 and have a chance to
describe realistic gauge interactions. This unnatural fine-tuning is a manifestation of
the so-called “decompactification problem”, which actually arises generically, when
a submanifold of the internal space is large, compared to the string scale, i.e. when

INote that non-perturbative mechanisms based on gaugino condensation could also be considered,
but only at the level of the low energy effective supergravity, thus at the price of loosing part of the
string predictability.
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the internal conformal field theory allows a geometrical interpretation in terms of a
compactified space.

To avoid the above described behavior, C! can be required to vanish. This is
trivially the case in the N = 4 supersymmetric theories, where actually b’ = 0 and
Al = 0. The condition C' = 0 remains valid in the theories realizing the N' = 4 —
N = 2 spontaneous breaking, provided N = 4 is recovered when the volume is sent
to infinity [8]. In this case, the threshold corrections scale logarithmically with the
volume and no fine-tuning is required for perturbation theory to be valid. In Sect. 2,
we review the construction of models that realize an ' = 1 — A = 0 spontaneous
breaking at a low scale m3,», while avoiding the decompactification problem. The
corresponding threshold corrections are computed in Sect.3 [9, 10].

2 The Non-supersymmetric Z, x Z; Models

In the present work, we focus on heterotic string backgrounds in four-dimensional
Minkowski space and analyze the gauge coupling threshold corrections. At 1-loop,
their formal expression is [7, 11, 12]

A =/ (1> eew (P?<2w)—L)T Z[3] v, 2) = b
F 1 \2% ’ l dmry ) 2 TEET

Fh0g 2l )
O 9
£ /27

where F is the fundamental domain of SL(2,7) and Z [Z](Zv, 2w) is a refined
partition function for given spin structure (a, b) € Z, x Z;.P;(2w) acts on the right-
moving sector as the squared charge operator of the gauge group factor G', while
Q[Z]Qv) acts on the left-moving sector as the helicity operator,?

. 1 gy i o[5]2v)
Q1) = 1= AED ——Orlogn=—0, e

v=w=0

From now on, we consider Z, x Z, orbifold models [2] or fermionic constructions
[3] in which the marginal deformations parameterized by the Kihler and complex
structures Ty, Uy, I = 1, 2, 3, associated to the three internal 2-tori are switched on [9,
14]. In both cases, orbifolds or “moduli-deformed fermionic constructions”, N = 1
supersymmetry is spontaneously broken by a stringy Scherk-Schwarz mechanism
[4]. The associated genus-1 refined partition function is

2Q0ur conventions for the Jacobi functions 0[;;](147) (or Oo(V|T), aa=1,..., 4) and Dedekind
function can be found in [13].
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_ 1
Z(2v,2w) = ) X (6)
1 wrvrar O[5]20) Q[Zj—gi] Q[Zigi] Q[Zj—g:]
DI PI D B
R SR 1 3 P A P

i

.9

where our notations are as follows:

e The Z, ; conformal blocks arise from the three internal 2-tori. The genus-1 surface
having two non-trivial cycles, (ht, gi) €lo xln,i=1,2, 1 =1,2,3 denote
associated shifts of the six coordinates. Similarly, (H;, G;) € Z, x Z, refer to the
twists, where we have defined for convenience (H3, G3) = (—H, — H,, — G| —
G»). Explicitly, we have

Fzz[ ](TI,UI)

; (7777)2 ’ hen (H;, G;) = (0,0) mod 2
h h Hr | _ when I 1) = B mo .
Zoo[l ] = e )
——HA  r—mT Ol 2
0[}_2”1] 0[}_21’,] j}’ 2’: 0mod2 jé ;’: 0mod?2
otherwise ,

where I3, is a shifted lattice that depends on the Kéhler and complex structure
moduli 77, U; of the I™ 2-torus. The arguments of the Kronecker symbols are
determinants.

e When defining each model, linear constraints on the shifts (h', gi) and twists
(H;, G;) may be imposed, leaving effectively N independent shifts.

e Zy 16 denotes the contribution of the 32 extra right-moving world sheet fermions.
Its dependance on the shifts and twists may generate discrete Wilson lines, which
break partially Eg x Eg or SO(32).

e The first line contains the contribution of the spacetime light-cone bosons, while
the second is that of the left-moving fermions.

e S, is a conformal block-dependent sign that implements the stringy Scherk-
Schwarz mechanism. A choice of §; that correlates the spin structure (a, b) to
some shift (h%, g7) implements the N' = 1 — N = 0 spontaneous breaking.

The Z, x 7, models contain three N = 2 sectors. For the decompactification
problem not to arise, we impose one of them to be realized as a spontaneously
broken phase of N = 4. This can be done by demanding the Z, action characterized
by (H,, G,) to be free. The associated generator twists the 2" and 3™ 2-tori (i.e.
the directions X%, X7, X8, X° in bosonic language) and shifts some direction(s) of
the 1% 2-torus, say X° only. To simplify our discussion, we take the generator of the
other Z,, whose action is characterized by (Hj, G1), to not be free : It twists the 1%
and 3" 2-tori, and fixes the 2" one. Similarly, we suppose that the product of the two
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generators, whose action is characterized by (Hz, G3), twists the 1% and 2" 2 _tori,
and fixes the 3" one. These restrictions impose the moduli 7>, U, and T3, U3 not to
be far from 1, in order to avoid the decompactification problem to occur from the
remaining two A/ = 2 sectors. However, our care in choosing the orbifold action is
allowing us to take the volume of the 1% 2-torus to be large.

The above remarks have an important consequence, since the final stringy Scherk-
Schwarz mechanism responsible of the N'=1 — A = 0 spontaneous breaking
must involve the moduli 77, U; only, for the gravitino mass to be light. Thus, this
breaking must be implemented via a shift along the 1% 2-torus, say X*, and a non-
trivial choice of S, . Therefore, the sector (H;, G) = (0, 0) realizes the pattern of
spontaneous breaking N’ = 4 — AN =2 — N = 0, while the other two N = 2 sec-
tors, which have 2" and 3™ 2-tori respectively fixed, are independent of 7} and U; and
thus remain supersymmetric. As a result, we have in the two following independent
modular orbits:

Sp = (=1)®@i+bhi+hisl “when (H,, Gy) = (0,0),
S =1, when (H;, Gy) #(0,0).

(®)

Given the fact that we have imposed (h?, g%) = (H,, G»), the 1% 2-torus lattice
takes the explicit form

hl H, 11,2 I SR N 20,2, 1
d 22[55 GZ](TI, Up) = D (—ymoimG gintlm (i)t (s )] o
mi,nt
2

o~ Tty | TH (' 3 hD) AT (045 o)+ Uym! = 9)

T

This expression can be used to find the squared scales of spontaneous N = 4 —

N =2and N =2 — N = 0 breaking. For Re (U) € (—3, 1], they are
M? U,|>M?
s m§/2 - |1|—5 (10)
ImT1 ImUl ImTl ImU1

where the latter is nothing but the gravitino mass squared of the full N' = 0 theory.
For these scales to be small compared to M, we consider the regime Im 77 > 1,
U = O0®).

3 Threshold Corrections

The threshold corrections can be evaluated in each conformal block [9]. Starting
with those where (H;, G1) = (0, 0), the discussion is facilitated by summing over
the spin structures. Focussing on the relevant parts of the refined partition function
Z, we have
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3 2D D o0 o101 00 ] -

)l 1-n1 72 1—h!+H,7?
(_l)h{gll+G2(l+l]+H2)0[179111] (”)a[kgfici] ), D

which shows how many odd 6, (v) = 6[}]1(v) functions (or equivalently how many
fermionic zero modes in the path integral) arise for given shift (h!, g1) and twist
(Ha, G2).

Conformal block A : (h!, gll) = (0,0), (Hy, G») = (0,0)

This block is proportional to 9[}]4(1)) = O(v*). Up to an overall factor 1/23, it is the
contribution of the A" = 4 spectrum of the parent theory, when neither the Z, x Z,
action nor the stringy Scherk-Schwarz mechanism are implemented. Therefore, it
does not contribute to the 1-loop gauge couplings.

Conformal blocks B : (h}, gl) # (0, 0), (Hz, G2) = (0, 0)
14

They are proportional to 9[}_2}] (v) = O(1). The parity of the winding number

1

along the compact direction X* being h}, the blocks with h} = 1 involve states,
which are super massive compared to the pure Kaluza—Klein modes. These blocks
are therefore exponentially suppressed, compared to the block (h1, g) = (0, 1).
Up to an overall factor 1/22, the latter arises from the spectrum considered in the
conformal block A, but in the A =4 — N = 0 spontaneously broken phase, and

contributes to the gauge couplings.

Conformal blocks C : (h!, gll) = (0,0), (Hz, G3) # (0,0)

They are proportional to 9[}] (v)ZQ[}:gi]z(v) = O(v?) and do contribute to A, due
to the action of the helicity operator. Reasoning as in the previous case, the parity of
the winding number along the compact direction X° is H,, which implies the blocks
with H, = 1 yield exponentially suppressed contributions, compared to that asso-
ciated to the block (H;, G») = (0, 1). Up to an overall factor 1/ 22, the latter arises
from a spectrum realizing the spontaneous N = 4 — N¢ = 2 breaking, which con-
tributes to the couplings.

Conformal blocks D : (h!, gll) = (Hy, Gy) #(0,0)

They are proportional to 6 }:gﬁ]z(v)e[}](v)z = O(v?). The situation is identical to
that of the conformal blocks C, except that the generator of the Z, free action respon-
sible of the partial spontaneous breaking of N = 4 twists X®, X7, X%, X° and shifts
X*, X°. The dominant contribution to the threshold corrections arises again from
the block (H,, G,) = (0, 1), which describes a spectrum realizing the spontaneous
N =4 — Np = 2 breaking.

hi H

Conformal blocks E : o Go

£0
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I
The remaining conformal blocks have non-trivial determinant ‘ | gz s
1—,(]]] +G,
(h!, Hy) # (0, 0), which means the modes in these blocks have non-trivial wind-
ing number(s) along X*, X> or both. Therefore, their contributions to the gauge
couplings are non-trivial but exponentially suppressed.

[1 o ] (v )0[1 h'+H2] (v) = O(1). However, this condition is also saying that

Having analyzed all conformal blocks satisfying (H;, G;) = (0, 0), we proceed
with the study of the modular orbit (H;, G1) # (0, 0), where the sign Sy, is trivial.
Since the 1% 2-torus is twisted, these blocks are independent of the moduli 77, U and
thus mj3,,. They can be analyzed as in the case of Z, x Z,, N' = 1 supersymmetric
models. Actually, summing over the spin structures, the relevant terms in the refined
partition function Z become

—Z( e eI paty U v U i
(— 1)(Gl+Gz)(l+H|+H2) 9[ ]( )9[1 Hl](v) 9[}:gi](v)0[}iglligzz](v) (12)

which invites us to split the discussion in three parts.

N = 2 conformal blocks, wzthﬁxed 2" 2 -torus : (Hy, G,) = (0, 0)

They are proportional to 6] ] [}~ H‘] (v) = O(v?). The 2™ internal 2-torus is
fixed by the non-free action of the Z, characterized by (H;, G1). Adding the con-
formal block A, we obtain an A/ = 2 sector of the theory, up to an overall factor
1/2 associated to the second Z,. This spectrum leads to non-trivial corrections to the
gauge couplings.

N = 2 conformal blocks, with fixed 3" 2-torus : (Hy, G1) = (H», G»)

Thy are proportional to 9[{]2(1))9[%:?]]2(11) = O®?). Actually, (Hs, G3) = (0, 0),
which means that the 3™ 2-torus is fixed by the combined action of the generators
of the two Z,’s. Adding the conformal block A, one obtains the last N = 2 sector
of the theory, up to an overall factor 1/2. Again, this spectrum yields a non-trivial
contribution to the gauge couplings.

N = 1 conformal blocks : | &| # 0

The remaining blocks have non-trivial determinant, |H V1 | # 0, which implies they
are proportional to 9[ ](v) 0[1 g: ](v) 9[}75;]( ) H[ﬁgiig’z]( ) = O(v). Acting on
them with the helicity operator, the result is proportional to

AR IOT I (O s (ORI (O) [
02 (01) 020 0:0) 0s)) | =0, (13)
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thanks to the oddness of 6, (v) and evenness of 6, 3 4 (v). Thus, these conformal blocks
do not contribute to the thresholds.

In the class of models we consider, the effective running gauge coupling associated
to some gauge group factor G' has a universal form at 1-loop [9]. It can be elegantly
expressed in terms of three moduli-dependent squared mass scales arising from the
corrections associated to the conformal blocks B, C, D,

> M; ) M;
M: = . MZ= ,
510U Im Ty Im U,y 04(UD)|*Im Ty Im U,
M2
Mp = : : (14)
|93(U1)|4 Im T1 Im U]
which are of order m% /20 and two more scales
M2
2 s [1=2,3, (15)

M: = 7
" 6T U Im T; Im U,

of order M? that encode the contributions of the A/ = 2 sectors associated to the
fixed 2" and 3" internal 2-tori. It is also useful to introduce a “renormalized string
coupling” [11],

16 w2 16 72 1

1
PRI Y12, U2) = Y (T3, Us) (16)
renor S

1 [ & 3\ BB -
where Y(T,U) = — | &5 0T, U) (Ez——) 420 511008,
12)Fr m T 24

n
in which I, = I »[( 0] is the unshifted lattice, while for g = €™, Ey46 = 1 +
O(q) are holomorphic Eisenstein series of modular weights 2, 4, 6 and j = 1/q +
744 + O(q) is holomorphic and modular invariant. The inverse squared 1-loop gauge
coupling at energy scale Q% = ;> - is then

tor” =k"16”2—%1n(' < )_&ln( < )_ (17)
g2 (0) Gonor 4 \Q2+Mz) 4 \Q2+ M

bi 2 b 2 b 2 m?

4 \er+my) 2 \M3) 27 \m3 M:
which depends only on five model-dependent G-function coefficients and the Kac—
Moody level. In this final result, we have shifted M3 . , — Q% + M .. , in order
to implement the thresholds at which the sectors B, C or D decouple, i.e. when Q

exceeds Mp, Mc or Mp. Thus, this expression is valid as long as Q is lower than the
mass of the heavy states we have neglected the exponentially suppressed contribu-
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tions i.e. the string or GUT scale, depending on the model. Taking Q lower than at
least one of the scales Mg, M or Mp, ther.h.s. of Eq. (17) scales as In Im 77, which is
the logarithm of the large 1% 2-torus volume, as expected for the decompactification
problem not to arise.

To conclude, we would like to mention two important remarks. First of all, we
stress that the Z, x Z, models, where a Z, is freely acting and a stringy Scherk-
Schwarz mechanism responsible of the final breaking of A" = 1 takes place, have
non-chiral massless spectra. This is due to the fact thatin the A" = 1,Z, x Z, models,
chiral families occur from twisted states localized at fixed points. In the models we
have considered, fixed points localized on the 27 and 3" 2-tori can arise but are
independent of the moduli 77, U i.e. m3,,. Thus, taking the large volume limit of
the 1% 2-torus, where N = 2 supersymmetry is recovered, one concludes that the
twisted states are actually hypermultiplets i.e. couples of families and anti-families.

Second, we point out that in the models analyzed in the present work, the confor-
mal block B is the only non-supersymmetric and non-negligible contribution to the
partition function Z, and thus to the 1-loop effective potential. In Refs. [10, 15], it
is shown that in some models, the latter is positive semi-definite. The motion of the
moduli 7>, U, and T3, U; is thus attracted to points [ 16], where the effective potential
vanishes, allowing m 3, to be arbitrary. In other words, the defining properties of the
no-scale models, namely arbitrariness of the supersymmetry breaking scale m3;, in
flat space, which are valid at tree level, are extended to the 1-loop level. This very
fact, characteristic of the so-called “super no-scale models”, may have interesting
consequences on the smallness of a cosmological constant generated at higher orders.
In Ref. [17], other models having 1-loop vanishing cosmological constant are also
considered, which however suffer from the decompactification problem.
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Glueball Inflation and Gauge/Gravity Duality

Lilia Anguelova

Abstract We summarize our work on building glueball inflation models with the
methods of the gauge/gravity duality. We review the relevant five-dimensional con-
sistent truncation of type IIB supergravity. We consider solutions of this effective
theory, whose metric has the form of a dS, foliation over a radial direction. By turning
on small (in an appropriate sense) time-dependent deformations around these solu-
tions, one can build models of glueball inflation. We discuss a particular deformed
solution, describing an ultra-slow roll inflationary regime.

1 Introduction

Composite inflation models [1, 2] provide a possible resolution to the well-known
n-problem [3, 4] of inflationary model-building. However, they are quite challenging
to study with standard QFT methods, since they involve a strongly-coupled gauge
sector. This has motivated interest in developing descriptions of such models via a
string-theoretic tool aimed precisely at studying the nonperturbative regime of gauge
theories, namely the gauge/gravity duality. Gravitational duals, in which the inflaton
arises from the position of a D3-brane probe have been considered in [5-9]. Instead,
in [10-12] we studied models, whose inflaton arises from the background fields of
the gravitational solution and is thus a glueball in the dual gauge theory.

The backgrounds of interest for us solve the equations of motion of the 5d consis-
tent truncation of type IIB supergravity established in [13]. The latter encompasses
a wide variety of prominent gravity duals, like [14—18], as special solutions and thus
provides a unifying framework for gauge/gravity duality investigations. The work
[10] obtained new non-supersymmetric classes of solutions of this theory, whose
metric is of the form of a dSy fibration over the fifth direction. These backgrounds
provide a useful playground for studying certain strongly-coupled gauge theories in
de Sitter space. To have an inflationary model, however, one needs a time-dependent
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Hubble parameter. Therefore, in [12] we investigated time-dependent deformations
around a solution of [10], in order to search for gravity duals of glueball inflation.

It is worth pointing out that the main cosmological observables of an inflationary
model (like the scalar spectral index n; and the tensor-to-scalar ratio r) are entirely
determined by the Hubble parameter and inflaton field as functions of time [19].
Hence, once one has a deformed background in the above set-up, one can immedi-
ately compute the desired quantities. This is the sense, in which the time-dependent
deformations of the previous paragraph give models of cosmological inflation. In
that vein, in [12] we calculated the slow roll parameters for a solution we found there
and thus established that it gives a gravity dual of ultra-slow roll glueball inflation.
The ultra-slow roll regime may play an important role in understanding the observed
low / anomaly in the power spectrum of the CMB. Hence it deserves further study.
We also discuss here perspectives for building gravity duals of standard slow roll
inflationary models.

2 Effective 5d Theory

In this section we summarize necessary material about the 5d consistent truncation
of type IIB supergravity relevant for our considerations. We also recall a particular
solution of this theory, whose time-dependent deformations we will investigate in
the next subsection.

2.1 Action and Field Equations

Let us briefly review the basic characteristics of the five-dimensional consistent trun-
cation of [13]. Using a particular ansatz for the bosonic fields of type IIB supergravity
in terms of certain 5d fields and integrating out five compact dimensions, one reduces
the ten-dimensional IIB action to the following five-dimensional one:

S = /dsx\/—detg [—§ + %G,-,(ds)aﬂp"a’q)f + V(GD)} . (1)

Here {®'} is a set of 5d scalar fields, that arise from the components of the 10d ones
including metric warp factors, V(@) is a rather complicated potential, G;(®) is a
diagonal sigma-model metric and, finally, R is the Ricci scalar of the 5d spacetime
metric g;;. The full expressions for V(@) and G;;(®) can be found in [13]; for a
more concise summary, see also [10]. The field equations that the action (1) implies
are:
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V! + Gl g” (0,90, - VI =0 |

i N4
—Ry +2G; (0P")(0,9) + 3 guV =0, )

where VI = GV, , V; = 2 and Gy are the Christoffel symbols of the sigma-
model metric G;.

2.2 A Solution with dS4 Slicing

We will be interested in time-dependent deformations around a particular solution of
the system (2) found in [10]. So let us first recall its form. In the notation of [10] and
working within the same subtruncation as there (i.e., with zero NS flux), we have six
scalars in the 5d effective theory:

{2/} = PO, x(x), g, p(x"), ax’), b(x)} . 3)

The work [10] found three families of solutions of (2) with a 5d metric of the form

3
ds? = M@ |:—dt2 + (1) Z(dx'")z} +d? )

m=1

where s(7) = e™" with H = const. In all of them, three of the scalars & vanish

identically, namely:
gy =0, ath=0 ., bGx')=0 . (5)

Two of those solutions are numerical and one is analytical. For convenience, we will
study deformations around the latter. Denoting its metric functions and scalar fields
by the subscript 0, we have [10]:

U (7.,
Ao(@) =In@z+C) + 5 In{ 3H; )

(z) = 1ln(—i-C) 1ln L
po(z) = - Z 12 9 )

XO(Z) = _6P0(Z) ’ ¢0 =0 5 (6)

where C and N are constants.

Let us mention in passing that the form of (6) is consistent with ALD (asymptoti-
cally linear dilaton) behavior at large z. This is not obvious at first sight due to the use
of a different coordinate system (in string frame) compared to the conventional one
(in Einstein frame), in which the holographic renormalization of ALD backgrounds
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was developed [20]. This issue was discussed in more detail in [10, 11], where it
was also pointed out that the same kind of asymptotics characterizes the walking
solutions of [16] as well.

3 Deforming the dS4 Solution

Now we are ready to turn to the investigation of solutions of the system (2), which
are deformations around the zeroth order background (6). Since our aim is to study
glueball inflation, we would like to find solutions, whose 5d metric is of the form (4)
but with H # 0. Recall that the Hubble parameter is defined as

§
H=-, )

N

where for convenience we have denoted " = % Now, one of the slow roll conditions
widely used in inflationary model building' is the following [19]:

—%<<1. (8

In view of that, we will look for solutions with time-dependent H by considering
small, in the sense of (8), deformations around an H = const solution.
For that purpose, let us introduce a small parameter -, satisfying

vy<<1, ©))

and search for solutions that are expansions in powers of this parameter. To do this,
we make the following ansatz for the nonvanishing 5d fields:

pt,z) =po(z) , x(t,2) =x(2) ,

B(t.2) =7 00)(t.2) + V' d) (1, 2) + OF)

A(t,2) = Ao(@) + V' Ap) (1. 2) + O(YY)

H(t,2) = Hot +v*Hp)(t,2) + O (10)

where H (¢, z) is a warp factor defined via

3
ds3 = A9 [—dﬂ + 20D Z(dx'")2:| +d? (11)

m=1

1One should keep in mind, though, that there are more exotic inflationary regimes, in which one or
more of the slow roll conditions can be violated; see [21-23], for instance.
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In other words, we keep the scalars p(x') and x(x') the same as in (6), while allowing
small deviations around that zeroth order solution in the scalar ¢ and the metric
functions A and H.

Itis worth commenting a bit more on the form of the deformation ansatz (10). First
of all, in order to obtain solutions with H # 0, we need to turn on time dependence
in at least one scalar. It is convenient to take this scalar to be ¢ since, unlike p and
x, it vanishes at zeroth order and, furthermore, it is a flat direction of the potential;
see [12]. Therefore, ¢ will play the role of the inflaton in our set-up. Also note that,
although we would like to have 7-dependent H only, we have allowed z-dependence
too, for more generality. And, finally, the different powers of v in the expansion of
¢, compared to the expansions of the warp factors, will be of great significance for
finding an analytical solution, as will become clear below.

3.1 Egquations of Motion

Let us now substitute the ansatz (10) in the system (2) and study the result order by
order in . Clearly, since we are expanding around a zeroth order solution, there is
no contribution at order ~°.

At order v, we have the following field equation [12]:

) +3Ho day = (o)) +4A5e0,)) (12)
where ' = 0% To find a solution, let us make the ansatz
¢y = P1(1) P2(2) (13)
and solve the eigen-problems
D) +3Ho® = AP, and (D) +44,D)) =\ D, (14)

with A\ being some constant. One easily obtains that [12]:

3, v IHG+4A

1) = Gy 1 Gy where 5 + —F (15)

and C| , are integration constants, while

3 4\

oy [ H 3
D5(2) = C3(z+ O)* + Ca(z + O)*~ with ar=-—5%7 1+TH% (16)

and C; 4 being integration constants.
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Note that if A = 0, then one is free to add an arbitrary constant to the ¢, solution,
determined by (14). This will be important in the following.

At order 42, we find a coupled system for the warp factor deformations A and
H(, namely [12]:

7 56
El: — H(Z,(g(z + C)zA/(/z) + ?(Z + C)Ab) +7(z+ C)H(,z) + 6A(2))
+ Ho (3A(2) + 6H(2)) + 3A(2) + 3H(2) + §¢%1) =0 ,
2 7 2 ” " 56 I 49 /
E2: Hg| 3G+ O [Aly + Hp) |+ 5@+ OAy + 5 @+ OHp,
+ 6A<2>) —Ho(5A@) +6Hp) —Ap) —Hay =0,
. 7" 7 2 / / l 72
E3: A +3Hy + — (440 +3Hp) + 561 =0
A7 "/ ’ L. /
E4 : SA(Z) + 3H(2) + 3H()H(2) + §¢(1)¢(1) =0 . a7

To solve this rather involved system, let us take for convenience the ¢, solution to
be:

bay =Cs+ Cel'(z+C)*  with  Cy, C = const , (18)

where k is any of k+ and « is any of a... Note that the addition of the arbitrary
constant Cy;, in (18) makes no difference for the solutions of (17), since the function
@1 enters those equations only through its derivatives. However, the presence of Cy
will turn out to be useful later. Plus, it will become clear shortly that it is consistent
with (14).

Now, the form of E£3 in (17), together with (18), suggests looking for a solution
with the following ansatz:

Ao (t,2) =e™A(z)  and  Hpy(t,2) = Cy + MH(2) | (19)

where é‘H = const. Again, we have included an arbitrary constant C'H, since H(y)
enters the system (17) only via its derivatives. Substituting (19) and (18) into (17),
one can see that the time-dependence factors out. Thus, one is left with a coupled
system of ODEs for the functions A(z) and H (z). A detailed investigation in [12]
showed that this system has a solution only for?

a=0, (20)

2To prove this, one also needs to use the fact that (15) and (16) imply the following relation between
kand a: k = _%7—(0 + @HO-
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in which case both A = const and H = const. Substituting a = 0 in (16), we find
that A = 0 as well. This in turn implies that we are free to add the constant Cy in
(18), as commented below (16). Finally, from (15) we now have:

k=-3Hy , (21)

where we have taken the value of k_ in order to have time-dependence in the inflaton
field ¢.

3.2 Ultra-Slow Roll Inflation

The solution we described above gives a dual description of an ultra-slow roll glueball
inflation model. To see this, let us compute the inflationary slow-roll parameters. They
are defined in terms of the inflaton field and Hubble parameter as [19]:

5:—% and n:—% (22)
From the results of Sect. 3.1, we have that ¢ and H are given by:

6= (Cot Ce™) 7100,

H =Hy— Cr e 42+ O (23)

where Cy, is some constant; for more details, see [12].3
Substituting (23) in (22), we find that the slow roll parameters behave ase = (9(72)
andn = 3 4+ O(7?); see [12] for more detailed expressions. In other words, at leading
order we have:
e<x<1l and n=3 . 24)

These are precisely the values of € and 7 for the ultra-slow regime, considered in
[24, 25]. In fact, our result for the inflaton in (23) also agrees completely with the
expression in [25].

It is worth pointing out a similarity between our model and the constant-rate-of-
roll solutions of [23]. For that purpose, let us introduce the following series of slow
roll parameters:

3Note that, since the correction A(2) to the warp factor A(z, z) in (11) also depends on ¢, as can be seen
from (19), one should, in principle, first perform a coordinate transformation + — 7 that absorbs
that dependence, before computing the physical Hubble parameter H(7) and inflaton field ¢ (7).
However, in the present case, this leads to exactly the same expressions as (23) with ¢ substituted
by 7, with the only difference being the numerical value of the constant C7,. So we will not discuss
the details of that transformation here.
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H d En
eil=—-— and &, =
H? He,

. (25)

where obviously €1 = . One can easily compute that, at large ¢, our solution gives
[12]:
1 — 0 and &, > —6 . (26)

This is the same asymptotics as in [23]. It would be interesting to investigate whether
there is a deeper underlying reason for that.

In conclusion, let us make a few comments regarding other inflationary models in
our framework. Although an ultra-slow roll inflationary regime may be desirable to
account for the low / anomaly in the CMB power spectrum, it is rather short-lived. So
it has to be succeeded by regular slow roll, in order to have enough expansion and thus
give a complete inflationary model. To obtain such solutions in our gauge/gravity
duality set-up, one may need to study deformations around the numerical solutions of
[10], instead of the analytical one (6). It could also be that duals of regular slow roll can
be found by modifying the initial ansatz for the deformations around the analytical
solution. Finally, it would be interesting to investigate what kind of models can be
obtained by going to the next order in «y in the expansions (10), while taking ¢,
A(2) and H(y) to vanish. This seems to open much wider possibilities for inflationary
model building, as the equations of motion for Ay and H4, would be independent
of ¢(3). Thus, many of the restrictions we encountered here (and as a result of which
we ended up with ultra-slow roll) would not occur.

Acknowledgements I have received partial support from the European COST Action MP-1210
and the Bulgarian NSF grant DENI T02/6.

References

—

. P. Channuie, J. Joergensen, F. Sannino, JCAP 1105 (2001) 007, arXiv:1102.2898 [hep-ph].

2. E. Bezrukov, P. Channuie, J. Joergensen, F. Sannino, Phys. Rev. D86 (2012) 063513,
arXiv:1112.4054 [hep-ph].
3. E. Copeland, A. Liddle, D. Lyth, E. Stewart, D. Wands, Phys. Rev. D49 (1994) 6410.
4. M. Dine, L. Randall, S. Thomas, Phys. Rev. Lett. 75 (1995) 398.
5. A. Buchel, Phys. Rev. D65 (2002) 125015, hep-th/0203041.
6. A. Buchel, P. Langfelder, J. Walcher, Phys. Rev. D67 (2003) 024011, hep-th/0207214.
7. A. Buchel, A. Ghodsi, Phys. Rev. D70 (2004) 126008, hep-th/0404151.
8. A. Buchel, Phys. Rev. D74 (2006) 046009, hep-th/0601013.
9. N. Evans, J. French, K. Kim, JHEP 1011 (2010) 145, arXiv:1009.5678 [hep-th].
10. L. Anguelova, P. Suranyi, L.C. Rohana Wijewardhana, Nucl. Phys. B899 (2015) 651,

arXiv:1412.8422 [hep-th].

. L. Anguelova, P. Suranyi, L.C. Rohana Wijewardhana, Bulg. J. Phys. 42 (2015) 277,
arXiv:1507.04053 [hep-th].

12. L. Anguelova, arXiv:1512.08556 [hep-th].

13. M. Berg, M. Haack, W. Muck, Nucl. Phys. B736 (2006) 82, hep-th/0507285.

14. J. Maldacena, C. Nunez, Phys. Rev. Lett. 86 (2001) 588, hep-th/0008001.

—_
—


http://arxiv.org/abs/1102.2898
http://arxiv.org/abs/1112.4054
http://arxiv.org/abs/1009.5678
http://arxiv.org/abs/1412.8422
http://arxiv.org/abs/1507.04053
http://arxiv.org/abs/1512.08556

Glueball Inflation and Gauge/Gravity Duality 293

15.
16.

17.

18.
19.

20.
21.
22.
23.

24.

25

I. Klebanov, M. Strassler, JHEP 0008 (2000) 052, hep-th/0007191.

C. Nunez, 1. Papadimitriou, M. Piai, Int. J. Mod. Phys. A25 (2010) 2837, arXiv:0812.3655
[hep-th].

D. Elander, C. Nunez, M. Piai, Phys. Lett. B686 (2010) 64, arXiv:0908.2808 [hep-th].

D. Elander, J. Gaillard, C. Nunez, M. Piai, JHEP 1107 (2011) 056, arXiv:1104.3963 [hep-th].
D. Baumann, TASI Lectures on Inflation, Conference Proceedings for “Physics of the Large
and the Small”, Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder,
Colorado, June 2009, arXiv:0907.5424 [hep-th].

R. Mann, R. McNees, Class. Quant. Grav. 27 (2010) 065015, arXiv:0905.3848 [hep-th].

A. Linde, JHEP 0111 (2001) 052, arXiv:hep-th/0110195.

J. Martin, H. Motohashi and T. Suyama, Phys. Rev. D87 (2013) 023514, arXiv:1211.0083
[astro-ph.CO].

H. Motohashi, A. Starobinsky and J. Yokoyama, JCAP 09 (2015) 018, arXiv:1411.5021 [astro-
ph.CO].

N. Tsamis and R. Woodard, Phys. Rev. D69 (2004) 084005, astro-ph/0307463.

W. Kinney, Phys. Rev. D72 (2005) 023515, gr-qc/0503017.


http://arxiv.org/abs/0812.3655
http://arxiv.org/abs/0908.2808
http://arxiv.org/abs/1104.3963
http://arxiv.org/abs/0907.5424
http://arxiv.org/abs/0905.3848
http://arxiv.org/abs/hep-th/0110195
http://arxiv.org/abs/1211.0083
http://arxiv.org/abs/1411.5021

Degenerate Metrics and Their Applications
to Spacetime

Ovidiu Cristinel Stoica

Abstract The Lie groups preserving degenerate quadratic forms appear in various
contexts related to spacetime. The homogeneous Galilei group is the intersection of
two such groups. The structure group of sub-Riemannian geometry and of singular
semi-Riemannian geometry, as well as of some submanifolds of semi-Riemannian
manifolds, is of this kind. Such groups are shown to replace the Lorentz group at a
very large class of singularities in general relativity. Also, these groups are shown to
be fundamental in Kaluza-Klein theory and in gauge theory, where they provide an
explanation why we may not be able to probe extra-dimensional lengths.

1 Introduction

In the following, we will discuss some modern applications of the degenerate metrics
in the physics of spacetime. While normally spacetime is considered endowed with
a non-degenerate metric, we will see some situations where the spacetime metric is
degenerate and what are the implications. These situations include Galilei spacetime,
spacetime singularities, and Kaluza theories. But first, let us remind some definitions
and fix some notations.

Let (V, g) be a vector space endowed with a symmetric bilinear form g, which in
the following will be named inner product or metric. The signature of g is (7, s, t)
if g can be diagonalized to diag(—1,, I, O,). We denote by O(z, s, r) the group of
transformations of the vector space R” which preserve this bilinear form. The metric g
is called degenerate if r > 0. For example, the orthogonal group O(n) = O(0, n, 0)
preserves the non-degenerate metric diag(l, ..., 1), the Lorentz group O(1, 3) =
O(1, 3, 0) preserves the Lorentz metric diag(—1, 1, 1, 1), which is non-degenerate,
and the general linear group GL(n) = O(0, 0, n) preserves the degenerate metric
g = 0. In this article, we are interested in O(¢, s, r) with r > 0.
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We define the morphism b : V — V* by u — u® :=bu) = u” = g(u, ). The
radical V, := kerb = V-1 isthe set of isotropic vectors in V. The radical annihilator
V* :=imb < V*is the image of b. It has the property that for any n € V*, n|y, =
0. The inner product g induces on V* an inner product defined by g.(u?, u?) =
g(u1, up), which is the inverse of ¢ iff det g # 0. The quotient V, := V/V, consists
in the equivalence classes of the form u 4+ V,. On V,, g induces an inner product
9 + Vo, us + Vo) i= gur, uz).

These definitions can be applied to the tangent space of a manifold. Until recently,
the state of the art of spacetimes with degenerate metric was the work of D. Kupeli
[1, 2], but there were two limitations. The first was that the theory worked only
for metrics with constant signature, while in general relativity the signature has
to change, if singularities are involved. The second limitation is that the method
is not invariant,depending on the choice of a distribution transversal to ker g. But
the approach introduced in [3] applies to both constant and changing signature, is
invariant, and generalize both Riemann’s and Kupeli’s results.

For example, degenerate metrics have applications to Galilei’s spacetime. The
laws of Newtonian mechanics are invariant to Galilei transformations of the space G
with coordinates (z, x, y, z). Galilei’s transformations are those linear transformations
which preserve a degenerate metric on the underlying vector space (also denoted here
by G), and one on its dual space G* [4-6]. The degenerate metric gopaeeii ON G* has
the rank equal to 3, and its radical is the three-dimensional space S < G. It induces
a three-dimensional (sub-Riemannian) metric ggpaceij On S, which is the Euclidean
metric of space. The other degenerate metric iS Gimeij := t ® ¢, where ¢ is the one-
form ¢ defining the time, and which annihilates S.

In the following, we will see some applications of degenerate metrics to spacetime,
in the higher-dimensional theories like Kaluza’s, and in the problem of singularities
in general relativity.

2 Gauge Theory and Kaluza Theory

Let us consider a fiber bundle (E, M, 7, F), with total space E, fiber F, and projection
7 : E — M, where the base space is a semi-Riemannian manifold with metric g. The
pull-back of the metric ¢ is a degenerate metric § = 7*¢g on the total space E. The
vertical bundle V := ker(dm) is a sub-bundle of TE. The vertical tangent space V,
at a point p € E is the radical of g,, ker(dm), = ker g,.

If there is a free group action of a group Gon E, then (E, M, 7, F, G) is a principal
G-bundle, and the dimension of the fiber F'is dim F' = d = dim G. In gauge theory,
the gauge connection A = A}; defines a horizontal distribution /' < TE on the prin-
cipal bundle. Also, on the Vertlcal bundle is defined a metric /. Both of them are
gauge invariant, and together they are equivalent to a gauge invariant metric honTE
which is degenerate on H, given by h(X Y) =hy(mvX, myvY), wherey : TE — V
is the projection on V along H, and H = ker h.



Degenerate Metrics ... 297

The metric g induces a non-degenerate metric gy on the horizontal distribution H.
Because g|ly = 0, H, V and gy allows one torecover gby g(X, Y) = gy (7uX, 7xY),
where 7y : TE — H is the projection on H along V. _

The Kaluza metric go on E is obtained from the two metrics gy on H and iy on
Vby go(X,Y) =9(X,Y)+ h(X, Y). The components of gy in a frame composed of
a horizontal and a vertical frame are denoted by

~ [ YGab 0
gO - ( 0 hnﬁ) . (1)

Locally, one can identify E to the product E = M x F. The metric gy in a frame
made of a frame of M and one of F is obtained by a transformation preserving the
fibers and projecting the horizontal space H,, onto the space T,M,

(14 A
5= (O Id) . @)
Then, the Kaluza metric (1) takes in an M x F-frame the form
3)

~ o on o _ [ Gab T huwALAY hyupAl
gij = S90S —( han AL s )

in terms of the Lorentzian metric g, on M and the metric A, on the fiber. This is
the Kaluza metric, generalized to an arbitrary gauge group (see eg Kerner [7]).

In particular, if G = U(1) and & = 1, one obtains the original Kaluza theory. The
Lagrangian density in the Kaluza theory is the scalar curvature corresponding to g,
leading to the Einstein-Maxwell equations, which include the source-free Maxwell
equations, and the Einstein equation on M with the electromagnetic stress-energy
tensor T, = Nio (FusFp* — YFyF* gap).

Because the metric g vanishes on the fiber, any experiments aiming to detect extra
dimensions will fail, and the only evidence of extra dimensions are the gauge fields
and gauge symmetry.

3 Degenerate Metrics in Singular General Relativity

The two big problems of general relativity are the occurrence of singularities [8],
and the fact that quantum gravity is perturbatively non-renormalizable. There are two
types of singularities: malign singularities, which have components g,, — 0o, and
benign singularities, whose components g,, are smooth and finite, but det g — 0,
so the reciprocal metric g” is undefined or singular. Both these types of singulari-
ties cause problems which prevent us from using the standard geometric tools. The

1
Christoffel symbols "¢, = 3 G (Dugps + Opgsa — Osgap), needed to define covariant
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derivatives, blow up even in the benign case, because ¢ is singular. This makes writ-
ing partial differential equations impossible. Because Christoffel’s symbols are used
in writing the Riemann curvature R, = Fdac,,, — Fda;,,c + 4, S, — 4o I,
the Ricci curvature R, = R®,, and the scalar curvature R = g’ R,,, these are also
singular, making Einstein’s tensor

1
Gab =Ru — ERgab (4)

singular too. Even if g, are all finite, these equations contain g*’, and g% — oo
when det g — O.

Fortunately, we can define other geometric objects, which allow us to do what
covariant derivative and curvature do outside the singularities, but can also work at
singularities. The constructions associated to a metric on a vector space, introduced
in Sect. 1, also applies to the tangent bundle 7M of a manifold M. In the following,
we will work on a manifold M endowed with a metric g which can be degenerate.

The Koszul object is defined as K : X(M)? — R, K(X,Y,Z) := %{X(Y,Z) +
Y{Z,X)-Z{X,Y)— (X, [Y.Z]) + (Y, [Z,X]) + (Z,[X,Y])}. In local coordi-
nates, Kupe = K(9y, Op, O:) = I'zp.. When the metric is non-degenerate, the Levi-
Civita connection is obtained by VyY = (X, Y, )% For the degenerate case, when
the contraction with ¢ is not defined, we can instead successfully work in many
cases with the lower covariant derivative of a vector field Y in the direction of a
vector field X,

(VoY) (2Z) == K(X.Y,Z). (5)

The covariant derivative of differential forms is defined by
(Vxw) (V) := X @(Y)) = go(Vy Y, w), (6)
Vw1 @ ... Quws) =Vx(w))®...0ws+... w1 ®...8 Vx(wy), (7)

where the 1-forms w, wy, ..., ws; € I'(T*M). For non-degenerate metrics it becomes
the usual covariant derivative. We denote the space of these sections by A°(M).
Similarly, we define the covariant derivative of a tensor 7 € ®k T°M, by (VxT)
Y1, X)) =X (T, ..., %)) — S5 KX, Vi) TV, s orenees Y0,
where , stands for contraction with g,.

A semi-regular semi-Riemannian manifold is defined by the condition that vector
fields admit double covariant derivative, VXV;’,Z € A*(M). This is equivalent to
KX,Y,)K(Z,T,,) € F(M). We can define the Riemann curvature by

R(X.Y.Z.T) = (VxVyZ)(T) — (VyVyZ)(T) — (Viy 1 Z2)(T). ®)

The Riemann curvature defined above is a smooth radical annihilator tensor field and
has the same symmetry properties as the usual Riemann curvature [3].
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The Ricci decomposition
Rupea = Sabcd + Eupea + Cabcd (9)

where Sqpeq = ﬁR(g B g)abcds Eupea = ﬁ(s o g)abcd, Sab = Rap — %Rgab’ and
(h o K)apea = hackpa — haakpe + hpakae — hpckaq, holds as well for degenerate met-
rics [9]. If the Ricci decomposition is such that all of the terms are smooth, then the
metric is called quasi-regular. Examples include isotropic singularities (obtained by
conformally scaling a non-degenerate metric), degenerate warped products B xy F
with dim B = 1 and dim F' = 3 (in particular, FLRW singularities), Schwarzschild
singularities [9]. The Weyl curvature tensor Cuped = Raped — Sabed — Eabea Satisfies
Curea — 0 as approaching a quasi-regular singularity [10].

In dimension n = 4, if the metric is quasi-regular, we can cast Einstein’s equation
in the form

(G © 9abea + A(g © Pabea = K(T © G)avea- (10)

This is equivalent to Einstein’s equation if the metric is non-degenerate, but in addi-
tion it also holds smoothly at quasi-regular singularities [9].

We apply now the new methods to the Friedmann-Lemaitre-Robertson-Walker
spacetime, which is the warped product I x, ¥ between a three dimensional
Riemannian manifold (X, gx) (representing the space) and a one-dimensional Rie-
mannian manifold (I, —d?),

ds? = —dr® + a*(1)dx>. (11)

In general the warping function a € F(I) is taken a(f) > 0O for every ¢ € I. Here we
allow a(t) > 0, including possible singularities, which turn out to be quasi-regular
[11, 12]. By taking the time component and the trace of Einstein’s equation, we get
the Friedmann equation, the acceleration equation, and the fluid equation expressing
the conservation of mass-energy,

k 6a a
p=——F— p+3dp=—— p=-3-(p+p). (12)
a KR a a

We see that p, and in general also p, become singular for a = 0. This is because
they are defined in an orthonormal frame, but when a = 0, the metric (11) is degen-
erate, and there is no orthonormal frame.

To obtain the total mass at ¢, one integrates the 3-form pd,,;,, where d,,, :=
\/g_gtdx Ady Adz = d? J9sdx Ady A dz = i, dyor, Where dy is the volume form,
or volume element, dyy; := /—gdt Adx Ady Adz = @ /gsdi Adx Ady Adz.

Hence, one should rewrite the equations using 4-forms or scalar densities p =
pv/—g = pa’/gs and p = p\/—g = pa’,/gx, which luckily can be defined in any
coordinates/frames. The Friedmann equation and the acceleration equation become
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-~ 3 o~ 6 ,.
p:;a(az—i-k)\/g):, P+3P=—;aza gz (13)
Hence, p and p are smooth, as it is the densitized stress-energy tensor

Tah —g = (ﬁ"'ﬁ) UgUp +ﬁgab~ (14)

The equations are smooth in any frame. Consequently, the Einstein tensor density
G.p+/—¢ 1s smooth too, so we can use a densitized version of Einstein’s equation,
which has all involved quantities finite at the singularity.

The case of black-hole singularities is a bit more difficult, because the singularity
r = 0 is malign. The Schwarzschild metric is in Schwarzschild coordinates

2 2m\ !
ds? = — (1 - —m) ar? + (1 - —m) dr? + r2do?, (15)

r r

where do? = d#? + sin” §d¢?. The singularities » = 0 and r = 2m are malign, since
there g, has infinite components. The singularity » = 2m can be removed by the
Eddington—Finkelstein coordinates [13, 14]. But the singularity » = 0 cannot be
removed like this. However it can be made semi-regular by the coordinate transfor-

_ 2
mation [ : : 27_4 [15]. The four-metric becomes:

4

4
ds? = 5 T 2d7'2 + 2m — )7 (4&dT + 7dE)? + THdo?, (16)
m — T

which is smooth and analytic and quasi-regular at r = 0 [9, 15].

The new form of the Schwarzschild metric extends analytically at and beyond
r = 0. It can be used to construct globally hyperbolic spacetimes with singularities,
including evaporating black holes which preserve the spacetime structure [16].

For the Reissner—Nordstrdom metric

) 2m g ) 2m g ! ) 2. o
ds® = — 1——+_2 dre + 1__+_2 dr +rd0’, (17)
r r r r

. t=71p" [S>1
we choose the coordinates p and 7, so that [ S I T>S+1"

The metric has, in the new coordinates, the following form
ds? = _Apzr—zs—z (pdr + Tpo)z +52A—1p4s—2dp2 + pzsd027 (18)
where A = pzs — 2mp5 + qz. In the new coordinates (7, p, ¢, #) the metric is ana-

Iytic at r = 0. The electromagnetic potential is A = —gp’ 5! (pdr + T7dp), and
the electromagnetic field is F = q(2T — S)p” 5~'dr A dp, and they are analytic
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everywhere, including at the singularity p = 0 [17]. Similar results apply to the
Kerr—Newman black holes [18].

We have seen thus that the use of degenerate metrics allowed us to remove infinities
in important examples of spacetime singularities. Singularities are therefore not as
bad as were considered. In addition, it turned out that they may be useful in quantum
gravity. In various approaches to quantum gravity, the evidence accumulated so far
suggests, or even requires, that in the UV limit there is a dimensional reduction to two
dimensions [19]. What is under debate is the meaning, the nature, the explicit cause of
this spontaneous dimensional reduction. The singularities are naturally accompanied
by some of the dimensional reduction effects which were postulated ad-hoc in vari-
ous approaches to quantum gravity. Consequently, if in the perturbative expansions
one accounts for the fact that the point-particles in general relativity are spacetime
singularities, the dimensional reduction effects appear naturally [20].
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The Heun Functions and Their Applications
in Astrophysics

Denitsa Staicova and Plamen Fiziev

Abstract The Heun functions are often called the hypergemeotry successors of the
21st century, because of the wide number of their applications. In this proceeding we
discuss their application to the problem of perturbations of rotating and non-rotating
black holes and highlight some recent results on their late-time ring-down obtained
using those functions.

1 The Heun Functions

The Heun functions are gaining popularity due to the vast number of their appli-
cations. The Heun project, a site dedicated to gathering scientists working in this
area, has already accumulated more than 500 articles on the theory and the appli-
cations of those functions. Among the topics are the Schrodinger equation with
anharmoic potential, the Teukolsky linear perturbation theory for the Schwarzschild
and Kerr metrics, transversable wormholes, quantum Rabi models, confinement of
graphene electrons in different potentials, quantum critical systems, crystalline mate-
rials, three-dimensional atmospheric and ocean waves, single polymer dynamics,
economics, genetics e.t.c (see the bibliography section in [10]).

The general Heun function is defined as the local solution of the following second
order Fuchsian ordinary differential equation (ODE) [5, 6]:

D. Staicova ()

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria

e-mail: dstaicova@inrne.bas.bg

P. Fiziev

Sofia University Foundation for Theoretical and Computational Physics and Astrophysics,
5 James Bourchier Blvd., 1164 Sofia, Bulgaria and JINR, Dubna,

141980 Moscow Region, Russia

e-mail: fiziev@phys.uni-sofia.bg

© Springer Nature Singapore Pte Ltd. 2016 303
V. Dobrev (ed.), Lie Theory and Its Applications in Physics,

Springer Proceedings in Mathematics & Statistics 191,

DOI 10.1007/978-981-10-2636-2_20



304 D. Staicova and P. Fiziev

2

dz?

H(z)=0 (1)

H(Z)+|:g+ € :|dH(z)+ afz —q

z—1 z—a]| dz 2(z—1D(z—a)

normalized to 1 at z = 0. Here e = oo + 8 — v — § + 1. This equation posses 4 reg-
ular singularities: z = 0, 1, a, oo and it generalizes the hypergeometric function, the
Lamé function, the Mathieu function, the spheroidal wave functions etc. Its group of
symmetries is of order 192.

For comparison, the hypregeometric differential equation has 3 regular singulari-
ties z(z — 1)6’%5“ +lc— (a+b+ Dz] 42 — abw(z) = 0 with group of symme-
tries of order 24.

Recalling the definition of irregular singularity:

Definition 1 For an ODE of the form: P(x)y”(x) + Q(x)y' (x) + R(x)y(x) =0,
the point xo is singular if Q(x)/P(x) or R(x)/P(x) diverge at x = xq. If the limits
11m)Hx0 P(’C) (x — Xp) and llm)Hx0 P(x) (x — xo)? exist and are finite then the point

Xo 1s regular singularity, otherwise, it is irregular or essential singularity. The point
Xo = oo is treated the same way under the change x = 1/z.

The general Heun function has 4 regular singularities, from which under
the process called confluence of singularities, one obtains 4 different types of
confluent Heun functions with fewer singularities but of higher s-rank (See Fig. 1 for
illustration).

General Heun function (GHE)
Singularities: regular={0, 1, a, 00}

L —227%  pey=o

a2 v 5 8
— HE)+ | = ——+
= : z—-1 z—a)dz 2(z — 1)(z — a) )

Y
Confluent Heun function (CHE)
blnguldrltles regular={0, 1}, irregular={co1 }

~

a2 —aB aq
= HG )+{ +—-+}—H( )+( 1-7->H<z):n
Biconfluent Heun function (BHE) Doubleconfluent Heun function (DHE)
Singularities: regular={0}, 1rreguldr {ocz} Smouldrltles 1egu1 ar={}, irregular={—11, 11}
a2 { 1+«} d ( (l+(v)/i+6) a2 o 42z + az? - 223 d 5+ (20 + )z + 622
= H(z)+|22-06+ H(z)+|v—a—2— H(z)=0 H(z)— H(z)+ H(z)=0
dz2 = | d= 22 dz2 (= +1)2(z = 1)2  d= (- 13(+1)3

o~

[ Triconfluent Heun function (THE) ]

\

Singularities: regular={}, irregular={cos}

a
H(z)— (v 4 322) © H(z)+(a + Bz — 32)H(2) =0
dz2 dz

Fig. 1 A scheme of the different confluent ODEs obtainable from the ODE of the general Heun
function (in Maple’s notations). The subscript next to the irregular singularities is their rank
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For the confluent Heun function which we will use below, this process means the
redefinition of 3 = f3a, € = ea, ¢ = ga and taking the limit @ — oo. This gives us
the following ODE:

2
L) - (e - - (M +H =0
Z Z z—1 Z
In Maple notations, the default form of the solution of this type of ODE
is denoted as HeunC(a, 3,7, 0,1, z) which we adopt. To obtain from Maple’s
default form Eq. 1, one needs to set & = —(6% —4gn)'?, 8 = Y —1,v=—1+4do,
d=—aofo + (1/2)do€0 + (1/2)€070, 1 = —(1/2)d070 — (1/2)€070 + go + 1/2and

@ 9

vise versa (the “y” subscript denotes the parameters in Eq. 2.

2 Applications of the Heun Functions in Astrophysics

2.1 Teukolsky Angular Equation and Teukolsky
Radial Equation

In the frame of the Teukolsky linear perturbations theory, the late-time ringing of a
black hole due to a perturbation of different spin is described by one Master equation.
Under the substitution W(z, r, 0, ¢) = /@) S@)R(r) (where m =0, +1, +2)
this equation splits in two second order ODEs of the confluent Heun type — The
Teukolsky Angular Equation (TAE):

d d 2
E( (l—uz) ESI'" (u)) + ((awu)2 + 2awsu+E —s* — %) Sim(u) =0,
(3)

and the Teukolsky Radial Equation (TRE):
dle,m(r)Jr(1 . 1 1 dRy () s K2
dr? s r— r—r— dr (r—r+)(r—r_)_
is ( ! + ! )K —)\—4iswr)—Rl’m(r) =0 4)
r—rt r—r_ r—ry)r—ro)

where A=r>=2Mr+ad>= @ —r_)r—rg), K = —w(@? + a®) — ma,
A=E —s(s+ 1)+ a*w?+2amw and u = cos(f). Here rp = M £ V/M? — a2
are the inner and outer horizon of the rotating black hole. Being interested in elec-
tromagnetic perturbations we fix the spin to s = —1.

In this system, the unknown quantities are the complex frequencies wy ,, ,, giving us
the spectrum and the constant of separation E; ,, , whichfora =0is E =1( + 1)
(for s = —1). The only physical parameters of the system, in agreement with the
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No-Hair Theorem, are the rotational parameter a and the mass of the black hole M,
which we here fixto M = 1/2.

The singularities of the two equations are as follows: for the TRE r = ry. —regular
and r = oo — irregular. For the TAE, the regular singularities are: # = +7 and the
irregular is again 6 = oo.

2.2 Boundary Conditions

In order to find the spectrum, we need to solve the central two-point connection
problem, imposing appropriate boundary conditions on two of the singular points.
Details on the boundary conditions, as well as on the whole approach and the explicit
values of the parameters, can be found in [1-4, 7-9]. In brief, we require:

1. On the TAE:

a. Quasi-normal modes (QNMs): we require angular regularity. This translate
into the following determinant

HeunC' (a1, 1, 1, 81, 11, (cos (7/6))%)
HeunC(av, 81, 71, 61, 71, (cos (/6))%)
HeunC' (v, B2, 72, 02, 12, (sin (1/6))?)
HeunC(az, Ba, 72, 02, 7, (sin (1/6))%)

WIS, $:1 =

®)

where details on the parameters can be seen in [1, 4, 7, 8].

b. Jet modes: A qualitatively new boundary condition has been used in [8] to
obtain the so-called primary jet modes. The condition was that of angular
singularity which translates into polynomial condition for the solutions of

the TAE, i.e.:
1)
LA e P VA
« 2
Anyi(n) =0

where Ay () is tridiagonal determinant [3].
2. On the TRE:

a. Black hole boundary conditions: For any m, the solution R, is valid
for frequencies for which R(w) ¢ (—2['{/’1‘2, 0) and also that: sin(arg(w)+
arg(r)) < 0.

b. Quasi-bound boundary conditions: For any m, the solution R; is valid
for frequencies for which R(w) ¢ (—21’\”4‘;+, 0) and also that: sin(arg(w)+
arg(r)) > 0.
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Fig. 2 Examples of the different spectra obtained from the spectral system. a Complex plot of the
first 7 modes in the QNMs (crosses) and primary jet modes (diamonds) b QNMs (point-line) and
the non-physical spurious modes (solid lines) for a = [0, M]

2.3 Numerical Results

The so described boundary conditions lead to a two-dimensional spectral system
on the unknowns w and E. Because of the complexity of the confluent Heun func-
tions, we use an algorithm developed by the team to find the roots of the system.
The numerical results give different spectra of discrete complex frequencies some
of which can be seen on Fig. 2. As part of our study, we examined how those spectra
change with introduction of rotation (a # 0), up to the limit a — M, and we tested
the numerical stability of the so-obtained frequencies, in order to ensure they rep-
resent physical quantities and not a numerical artifact (an example can be seen on
Fig.2b).

The physically interesting results are the qualitatively different spectra
(Fig.2a), depending on the boundary conditions imposed on the system, which can
be used as an independent tool to discover the nature of the physical object emitting
electromagnetic or gravitational waves.

3 Conclusion

In this proceeding we discussed the application of the Heun functions to the problem
of quasinormal modes of rotating and non-rotating black holes. We presented some
of our latest numerical results, key to which is the development of the theory of the
Heun functions and their numerical implementation.
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Boundary Effects on the Supersymmetric
Sine-Gordon Model Through Light-Cone
Lattice Regularization

Chihiro Matsui

Abstract In this report, we discuss how the boundary condition of the spin-1 XXZ
chain affects its low-energy effective field theory. The low-energy effective field
theory of the spin-1 XXZ model is known as the supersymmetric (SUSY) sine-
Gordon model. As a SUSY model, the theory consists of two subspaces called the
Neveu-Schwarz (NS) sector and the Ramond (R) sector. In the Bethe-ansatz contest,
the spin chain and its effective field theory are connected via the light-cone lattice
regularization in the sense that these two models share the same transfer matrices.
Conversely, the effective field theory is obtained in the scaling limit of the spin chain.
Using the nonlinear integral equations (NLIEs) for the eigenvalues of the transfer
matrices, we derived the scattering matrices of the SUSY sine-Gordon model from
the large volume limit analysis of the spin-1 XXZ chain with boundary magnetic
fields. At the same time, we derived the conformal dimensions of the SUSY sine-
Gordon model in the small volume limit. From these quantities, we found that the
different sector of the SUSY sine-Gordon model is realized from the spin-1 XXZ
chain depending on the values of boundary magnetic fields.

1 Introduction

Since any real material is a finite-size system, it is important to know boundary
effects on physical quantities. To study finite-size systems is important also because
they show interesting features such as edge states and boundary critical exponents.
Nevertheless, existence of boundaries often destroys good symmetry obtained for
infinite systems. This makes it difficult to analyze systems with boundaries.

For the reasons described above, it would be nice to find good symmetries which
hold for finite-size systems. One of such examples is the integrable boundary system,
whose exact solvability is ensured by the Yang—Baxter equation and the reflection
relation [1, 2]. Due to the Yang—Baxter equation and the reflection relation, many-
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body scatterings are decomposed into a sequence of two-body scatterings which
allows us to find exact scattering and reflection matrices.

An example which possesses these symmetries is the XXZ spin chain associated
with Uy (sl). The R-matrix is obtained as a solution of the Yang-Baxter equation
of the U, (sl»)-type, while the K-matrices as the diagonal solutions of the reflection
relation describe the boundary reflections under boundary magnetic fields. Another
example is the sine-Gordon (SG) type model with Dirichlet boundary conditions. The
model is obtained through bosonization of the spin chain with boundary magnetic
fields. The model serves as the low-energy effective field theory of the spin chain.
These two models share the same R-matrix and the K-matrices associated with the
U,(sh) [3, 4].

Different methods have been developed for spin chains and quantum field the-
ories, since the former are discrete systems, while the latter are continuum mod-
els. The transfer matrix method is often used to solve spin chains by regarding a
two-dimensional lattice with time sequence of the transfer matrix. The Bethe-ansatz
method is one of the most successful methods to diagonalize a transfer matrix [5]. This
method is applied to a system with non-trivial boundaries, as long as the reflection
relation holds for the system. For instance, the XXZ model with boundary magnetic
fields was solved by the coordinate Bethe-ansatz method [6] and then the method
was algebraically reformulated for the diagonal boundary case by introducing the
double-row transfer matrix [2].

On the other hand, exact analysis of a continuum theory has been achieved through
the bootstrap approach [7]. This method allows us to compute a scattering matrix
between any asymptotic states including bound states subsequently from a scattering
between asymptotic soliton states. The S-matrix between asymptotic soliton states
satisfies the Yang—Baxter equation. The boundary reflection matrix for the asymptotic
soliton state is obtained as the solution of the reflection relation. Analogous to the
bulk case, the boundary bootstrap principle was developed which subsequently gives
reflection matrices for the asymptotic boundary bound states [8].

If one knows the complete correspondence between a spin chain and a quan-
tum field theory, the methods independently developed for discrete and continuum
systems can be applied to each other. Therefore, our aim is to derive exact corre-
spondence between a spin chain and a quantum field theory.

In this report, we consider to discretize a quantum field theory, instead of taking the
continuum limit of a spin chain. The notion to discretize an integrable quantum field
theory was used in the context of the quantum inverse scattering method first in [9].
Among various discretization, we employ the light-cone lattice regularization [10-
12]. The light-cone lattice regularization is achieved by setting discrete trajectories of
particles. A discretized light-cone then looks like a two-dimensional lattice system.
A right-mover runs over a line from left-bottom to right-top, while a left-mover runs
over a line from right-bottom to left-top. A scattering occurs only at a vertex. The
amplitudes depend on the states of four legs around a vertex, i.e. the presence or
absence of a particle. Thus, the scattering amplitudes of the quantum field theory are
regarded as the Boltzmann weights of the two-dimensional lattice, i.e. the R-matrix
of the spin chain, through the light-cone lattice regularization.



Boundary Effects on the Supersymmetric Sine-Gordon Model ... 313

Therefore, through the light-cone lattice regularization, characteristic quantities
in quantum field theories, such as S-matrices and conformal dimensions, are derived
through the diagonalization of the transfer matrices defined on the light-cone lattice.
The diagonalization of the transfer matrices is achieved by two methods. The first
one is based on the physical Bethe-ansatz equations, the derivation of which requires
the string hypothesis [13—17]. The second is to use the nonlinear integral equations
(NLIEs) derived from the analyticity structure of the eigenvalue functions of the
transfer matrices [18—-21]. In the framework of this method, there is no need to assume
the string solutions to the Bethe-ansatz equations. Since Bethe strings deviate at the
order of the inverse system size, we use the latter method throughout this report in
order to deal with the finite-size system.

Correspondence between the spin chain and the quantum field theory for the
spin-% case has been closely studied for both the periodic boundary case and the
open boundary case with boundary magnetic fields [22-24]. What was found for
the periodic spin chain is that the conformal dimension of the sine-Gordon (SG)
model admits only an even winding number through the light-cone lattice approach.
This is due to the technical problem of the light-cone lattice regularization, which
requires the spin chain of even length. Later in [24], it has been suggested that an
odd winding number is obtained from the spin-1/2 XXZ chain consisting of odd
length, although it has not been found yet how to construct the transfer matrix for
the odd-length chain on the light-cone lattice. On the other hand, it was found that
the spin chain with boundary magnetic fields results in the SG model with Dirichlet
boundaries [22, 23]. In this case, the allowed winding number relies on the values
of boundary parameters.

Our interest is to find more variation of the exact correspondence between spin
chains and quantum field theories. Here we focus on the boundary effects on the
supersymmetric sine-Gordon (SSG) model [25]. The SSG model [26] is obtained as
the low-energy effective field theory of the spin-1 Zamolodchikov—Fateev (ZF) spin
chain [27-29]. Although the SSG model has been discussed through the light-cone
approach for both the periodic case [30-32] and the Dirichlet boundary case [28],
only the NS sector was obtained, since the authors of [28] limited the range of bound-
ary parameters. Performing analytic continuation, we obtained distinct three regimes
of boundary parameters each of which is characterized by a different NLIE. From
each set of NLIEs, we derived the scattering matrix and the conformal dimension.
We found the Ramond sector in one of three parameter regimes [33].

The plan of this report is as follows. Throughout this report, we analyze the SSG
model with Dirichlet boundaries. We focus on the repulsive regime where no breather
exists. In Sect. 2, we introduce the SSG model and review known results from both
viewpoints of the perturbation of the conformal field theory (CFT) and the integrable
quantum field theory. The light-cone lattice regularization is also explained in this
section in connection with the spin chain. In Sect. 3, we derive the NLIEs of the spin-1
ZF chain. We show the three distinct regimes of boundary parameters, each of which
is characterized by a different NLIE. In the next section, scattering and reflection
amplitudes are discussed by taking the infrared (IR) limit. We show that the different
NLIEs for three boundary regimes are connected via the boundary bootstrap method.
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Then in Sect. 5, the ultraviolet (UV) limit is considered. Conformal dimensions are
computed for three distinct regimes and then we show one of them belongs to the R
sector. The last section is devoted to concluding remarks and future works.

2 SSG Model with Dirichlet Boundary Conditions

The SSG model is an integrable (1 + 1)-dimensional quantum field theory consisting
of a real scalar field @ and a Majorana fermion ¥. On a finite system size L, the
action of the SSG model is given by

(o) L
Assa =/ dt/ dx Lssg(x; 1),
—0 0 (1)
LssGg = 18 PO D + iti/ rgw — 10 cos(BP)PW + i cos?(fP)
ssc—2 M ) YV Ou ) 23 >

u/:(g), 7°=(i)i(i)), 'y'=(?(i)). 2)

A mass parameter m determined in such a way that realizes a proper scaling limit [34]
is related to the physical soliton mass via the relation found in [35].

The theory behaves differently depending on a value of the coupling constant 3.
In the attractive regime (0 < 3% < 4?”), solitons form bound states called breathers,
while the repulsive regime (%” < (3% < 4m) does not admit breathers. Throughout
this report, we concentrate on the repulsive regime.

The Dirichlet boundary conditions are given by fixing the value of a scalar field
at the boundaries:

where

OO0 )=d_, D(L:t)=b,. 3)

2.1 SSG Model as a Perturbed CFT

From a viewpoint of the renormalization group theory, the SSG model is a perturba-
tion from the A = 1 superconformal field theory [30]. The N = 1 superconformal
field theory consists of free bosons and free fermions compactified on a cylinder
with radius R = %E. The third term in the Lagrangian (1) serves as an irrelevant
perturbation in the UV limit (mqL — 0). In an arbitrary compactification radius, the
following two boundary conditions are allowed for a fermion:
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w(0;1)=W(L;t), W O;t)=W(L;1), 4)
w(0;1) =—W(L;t), W(0;t)=—-¥(L;t) 5

where the first condition is called the NS boundary condition, while the second is
called the R boundary condition.

The highest weight vectors of the current algebra |m, n) are generated from the
vacuum |0, 0) by using the vertex operator:

Im, I’L) = V(m,n)(Zs Z)|O, 0), (6)

Vi = @ MRERIOQTHMR=500G) g, (7)

Here we used the normal order : % :. ¢ and ¢ are the holomorphic and anti-
holomorphic part of a normalized boson defined by

1
D =—
Wz

Using the vertex operator (7), one finds that the perturbation termin (1) is the primary
operator proportional to V(; o) + V(-1,0).

The winding number m represents the number of windings of a boson which is
compactified on a cylinder with radius R (Fig. 1). The momentum number 7 in (7)
must be zero in the presence of boundaries since there is no momentum flux at the
boundary.

The energy is given by

(0(2) + ¢(2)). (8)

E(L) = —%(c —24A) + O(L7D), 9)

where the central charge ¢ and the conformal dimension A consist of the boson part
and fermion part:
c=cg+cr, A=Ap+ A, (10

Fig. 1 A conformal map from a cylinder with radius R onto a complex plane. The circles in the
complex plane represent the contours with respect to time 7
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each of which is written by using the winding number and compactification radius:

’

=

CB = 1, Cp =
2 (11)

Ap=3(L @0 )+mR).  Ar=0.4 L

=

where Agp = 0, % is for the NS sector and Ar = 11—6 is for the R sector.

2.2 Scattering Theory of the SSG Model

Supersymmetric solitons are generated by non-commuting operators AZ’,.HM. The
superscript denotes a soliton charge €; € {&}, while the subscript denotes an RSOS
index a; € {0, &=1}. A set of the RSOS indices must satisfies the adjacency condition
laj —ajuil = 1.

2.2.1 Bulk S-Matrix

The soliton creation operator satisfies the following commutation relations:

AL ODAZ0) = > 3" SIS0 — 0)AZ (0D ALO),  (12)
d

o
€1,6

which gives the scattering amplitudes between solitons. The parameter §; is rapidity
of a supersymmetric soliton.

Since the SSG model is an integrable quantum field theory, the S-matrix satisfies
the Yang—Baxter equation. The S-matrix of the SSG model is decomposed into a
tensor product of the SG part and the RSOS part [17, 36]:

SCIL185(0) = SHIE(0) x Sg5 (). (13)

As a result, the SG part and the RSOS part independently satisfy the Yang—Baxter
equation:

SIF (01 — 0)S57 (01 — 03)S35 (0> — 03) =

"o
1]

= SEE(02 = 0S5 (0 — 0)S57 (01 — o), (14)
Spo Oy — 02) S5 (01 — 03)Sjs (62 — 03) =
= SUl(62 — 63)S;] (01 — 0:)S1: (61 — 62). (15)
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The solution to the SG part has been derived in [7, 37]:

S (0) = S(0), (16)
sinh \@ sin T\

S0 = mS(é’), S0 = ims(m,

where € € {}. The solution is closely related to the R-matrix of the six-vertex

model [37]. By setting u = i6, the overall factor S(0) is written by

X TQU-DA=2TQIA+1 - M)
S0 = _111 M@ —DA= 2@ — DA+1—

. dt sm—smh(A — 1)
—exp| i / i (18)
0 't coshi 5 sinh 55

The parameter \ is determined by a coupling constant 3 via A\ = é—g - % [28].
The solution to the RSOS part has been derived in [8, 38—40]:

/( - —u) (17

Spa(0) = X590 K (0), (19)
where
X:l::t(e) lim=0)/2mi (o ﬁ o X% (0) = 2927 cos E (20)
4 4) = 4i )

j ; 0 A 6
X(:)EO%E(Q) — lm=0)/2mi o (Z + %) . XiO;(H) — 20/27i g (Z . g) .

The overall factor K () is written by

1
i )F(k ﬂ'l)
K () = H i : 1)
F(k+ 2 27rz)F(k+ 2m)
—i ) dt sin £ sinh ¥ )
 V2sinh 5T P 1/0 7 sinh 21 cosh o

2.2.2 Boundary Reflection Matrix

In a finite and non-periodic system, a soliton is reflected at a boundary. The soliton
creation operator obeys the reflection relation given by

AL 0)B =" >" R[5 A5.(—0)B. (23)
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Here we denote the boundary creation operator by B.
As in the case of the bulk S-matrix, the reflection matrix of the SSG model is
decomposed into a tensor product of the SG part and the RSOS part [39]:
R 15,(0) = RG(6) x Ry, (0). (24)
Thus, the reflection relation independently holds for the SG part and the RSOS part:

Sl (6 — 02 R (92)56?7',,(91 +02)R; /,,(91)

= R (0, )SE‘“( 01—92)R62(92)S‘%‘~( 01 + 02), (25)
Spe1 — 02)R](02) ST (01 + O2) RS, (61) =
= R (0)S), (=01 — 02) RS, (02) S5/ (=01 + 602). (26)

The solution which leads to the Dirichlet boundaries is given by the diagonal
matrix [8]:
a(0,8)

RE(H) = cos(€ + Au)Ro(u )—sg Q7

where Ry(u) is given by

ad F@IN— 29T @AM — 1) + 1 — 24
Rotw) = H [r((41 —HA—BH(@ - DA+ 1 - 2A“)/( U= —u) %)

The overall factor o (8, £) is written by [41, 42]

cosé [l rG+E+@—-pr—2 20
0’ — T
7.9 cos(§ + Au) H“r(% —Sr Q@ -2r- M)
1_ £ _ Lu
F( + 2l — 1)/\ ) = —u) (29)

rG + $ 420\ — ALy

. cosé "

= cosE ) )\u)(Rl (@) + R2(0)),

where
o (% gt [ sinh(1 — —)j sinh( Lf — 7J — 1)/\ @
Rl (6) = exp |:l/() t (ZSlnh 2)\ cos hé + smh ) s 7r:|

(30)

0 Jr sinh(l — =%) 5 2]
Ry (0) = exp i/ t(ihsin—t , 31
0 ¢ 2sinh & 3 coshj s
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o inh 3 sinh(+ — 1)L
Rg(@):exp|:i/ dr sinh g Stnh(3 )4] (32)
0

- - t
t sinh ¢ sinh oY

A boundary parameter ¢ is connected to field values at boundaries through &4 =
Z oL [28].

The solution of the RSOS part has been derived in [39, 40]. Different solutions
were obtained for two sectors of the superconformal field theory. For the NS sector,
the solution is given by

R (0;€) = P(8; 9, (33)

RE'(0;¢) = (cos g + i sinh g) 29ITK (0 —i&)K (O +iPO;E), (34)

where

sin & — i sinh €
P, = ——Py(0), 35
©.8 sin& + i sinh 6 0®) (33)

0 Ik — k-2 ~
PO(G)_IH[F(k—j—‘—%)F(k+§—i)/w—) 0) (36)

2mi
0, 2+1/°°d; sin 2 37
=exp[ ——1n — — T ).
P\ 727 8.Jo t cosh®tcosh®

Thus only diagonal matrix elements are non-zero in the reflection matrix of the NS
sector.
On the other hand, the solution to the R sector is obtained as

R, (0:.€) = cos SK (0~ iK 0+ i) P(;©), (38)
R%,_(6; &) = —ir° sinh gK(Q —iOK@O+i&PO; ), (39)
RG,(8; &) = 2" P(0; €). (40)

Unlike the NS sector, the reflection matrix of the R sector has non-diagonal ele-
ments Ri¢(9; £). The matrices (38)—(40) have the block diagonal structure. The
subspace which includes the non-diagonal elements is diagonalized with the eigen-
values cos % =+ i sinh g Thus, we obtain the common eigenvalues for the NS and R
sectors from the reflection matrix up to the factor 2%/, which can be removed by a
similarity transformation.
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2.3 Light-Cone Lattice Regularization

The light-cone lattice regularization of a quantum field theory is achieved by setting
discrete trajectories of particles with a lattice spacing a [10-12]. A discretized light-
cone forms a two-dimensional lattice. A right-mover runs over a line from left-bottom
to right-top, while a left-mover runs over a line from right-bottom to left-top, (Fig. 2).

Particle scatterings occur only at vertices. The amplitudes depend on the states
of four legs around a vertex, i.e. the presence or absence of a particle. Thus, the
scattering amplitudes of the quantum field theory are regarded as the Boltzmann
weights of the two-dimensional lattice through the light-cone lattice regularization.
For an integrable quantum field theory, the two-dimensional lattice obtained as the
light-cone lattice is identified with an integrable lattice model. For instance, the light-
cone lattice of the SG model is regarded as the time sequence of the transfer matrix
of the spin—% XXZ model, while that of the SSG model is obtained in the spin-1 ZF
model [28, 32]. Thus, particle trajectories in an integrable quantum field theory are
described by the transfer matrix of the corresponding integrable spin chain.

Now we focus on the SSG model connected to the spin-1 ZF model. The spin-1
ZF model is defined by

N-1
H = [Tj — (T;)* — 2sin®y (T7 + (Sj)2 + (SjH)2 - (Tf)2) + 4D
j=1
.2 1z 1
+4sin® 3 (TFT] + T | + M,
where
Tj:Sj-Sj_H, TJJ':S; ;C+1+S;’S;)+1, TJZ:SJZ ;Jrl' (42)

left movef right mover

auxiliary space R N L Ny 28

time direction

L space direction 6+=0+0

6-=0-0

Fig.2 The light-cone lattice with a lattice spacing a. A right-mover runs over a line from left-bottom
to right-top, while a left-mover runs over a line from right-bottom to left-top. The inhomogeneities
denoted by £6 give the rapidities of the right-movers and left-movers
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The operator S;-Y (v € {x,y, z}) is the three-dimensional SU(2) generator which
nontrivially acts on the jth space of the N-fold tensor product. The parameter -y is
an anisotropy parameter which determines a coupling constant of the SSG model
via 3% = 4(m — 2v). Since 3* is a real value, y must be less than 5. In a spin chain
realm, the condition v < 7 indicates that the system is gapless.

Dirichlet boundaries of the SSG model are realized by imposing boundary mag-
netic fields on the spin-1 ZF model. Since the Dirichlet boundaries do not change
the soliton charge, the boundary magnetic fields are imposed in the direction of the

Z-axis:
Hp = hi(H-)S§ + ho(H-)(S5)? + h1(Hy) S5 + ha (Hy ) (S5)%, (43)

where two functions 4 and &, share the same parameter H:

hy(H) = L sin2y (cot 2 4 cot “H”)) , (44)

hy(H) = § sin 2y ( cot ’H + cot V(H“)) (45)

The boundary fields are a—f-periodic functions with respect to H (Fig.3). The

periodic unit consists of two domains [—2 + 2, 2] and [@, -2+ 2%]

(n € Z), in each of which we expect different phyglcs !
The transfer matrix of the ZF model is obtained from the R-matrix of the 19-vertex
model [26]:

T(0) = Roan (20 — &an))Roon-1(Z(0 + Eanv—1)) - - Roa(2(0 — &) X
X Ror(2(0 + &),
T(6) = Rio(2(0+im+ &) Rao(2(0 +im — &) -+ -

~ Ron-10(2(O0 +im + San—1)) Ran o (20 +iT — Ean)), (46)
8n h2(H)
AL
2F
| ‘ — H
10 5 10
b h(H)

Fig. 3 The boundary magnetlc fields as functions of the boundary parameter H The anisotropy
parameter is taken to be v = Z. Both functions 4 (H) and hy(H) possess the 2& perlodlclty In
each periodic unit, two distinct domains are obtained
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where £; is an inhomogeneity parameter which to be taken as O for the spin chain.
The double-row transfer matrix [4] allows us to deal with boundary reflection:

T = tro[K ()T (0)K_(O)T (6)]po- (47)

As we discussed, particle trajectories in the SSG model are described by the same
transfer matrix. Corresponding to the rapidity of a right-mover and a left-mover, we
choose the inhomogeneity parameters as

Sn-1=0, & =—0 @neN). (48)

Then the transfer matrices are independently given for the right-mover and the left-
mover:

Tr = tro[K ()T O)K_(O)T (0)]p—0,
L = oK (T O K _ ()T (0)]p——o- (49)

The Hamiltonian and total momentum are expressed by using the double-row transfer
matrices:

H=-—[nTx+InT], P=-"[inTgx—InTl (50)
2mwa 2ma

3 Nonlinear Integral Equations

3.1 Analyticity Structure of the Transfer Matrix

There are two independent transfer matrices corresponding to the two- and three-
dimensional representations of the auxiliary space. The eigenvalues of the two trans-
fer matrices are given by [28]

T1(0) = L1 (0) + 1 (9), (1)
T(0) = A (0) + X (0) + A3(0), (52)
where 0_ i
11(0) = sinh 2 (20 + im) B4 (0) (0 + m)%,
0O +im) (53)

1>(8) = sinh 2(20 — im)B_ ()¢ (@ — i) 0
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and

Ai(0) = sinh 2(20 — 2im)B_(0 — T)B_(0 + T) x

i) Q0+ 50
00—’

Xa(0) = sinh 2(260)B, (0 — T)B_(0 + ) x

Q0+ 300 — Ir)
00— 500 +5)"
A3(0) = sinh 220 + 2im) B, (0 — 5)B (6 + ) x

X (0 — 30 —

x (0 — T)p0 + )

x (0 + 2 (0 + %T)QQ((Z;;?)). (54)
The function ¢(0) gives the phase shift:
¢(0) = sinh" 2(0 — @) sinh™ 2(0 + ©) (55)
and the functions B4 () give the boundary effects:
B.(9) = sinh 2(0 £ "2+ sinh 2 (0 + ). (56)
The function Q(6) becomes zero at the Bethe roots:
M
Q(6) = [ ] sinh 2(6 — ;) sinh (6 + 0). (57)

j=1

The functions 77 (6) and 7,(6) are symmetric under §; <> —0;, and therefore the
Bethe roots symmetrically locate to the origin in a complex plane.
Note that the following relation holds for 7} () and T5(6):

Ti(0 — DT O+ T) =5L0O - DL+ F) +sinh 2Q0)T2(0).  (58)

This is the fusion relation obtained for the transfer matrices [43] and later alge-
braically formulated in the context of the thermodynamic Bethe-ansatz [44].

Now we discuss the analyticity structure of the T-functions. The function 75 ()
is analytic and nonzero (ANZ) around the real axis except for the origin and the
positions of holes. Since the hole indicates an excitation particle, rapidity of a soliton
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Fig. 4 The contours C; and Im 6
C>. The vertical lines are
taken at 00
c2 in/2+ie
| C1 ie
R
0 e o
-ig ’
in/2-ie

is characterized by the hole. By writing the positions of holes in the real axis by
h; € R, we have the following integral equation through the Cauchy theorem:

) 27k i
ik " o__ ikh;
}i] do M0 = (1 + hZERe ) (59)

The contour C; is shown in Fig. 4.
For the function 7;(6), we need the analyticity structure of Im6 € [-7, 7). By

writing the positions of holes by hﬁl) , the following integral equation is obtained:

. 27k )
ik6 nwo__ o =nr lk]’lj
jiz d9 &M lInT,(9))" = = (1 + > e ) (60)

e~k
mh{"e[-3.5)

where the contour C, is shown in Fig.4.

Thus, we obtained two integral equations from the 7-functions. In the next sub-
section, we derive coupled integral equations by rewriting the left-hand sides of
equations.

3.2 Nonlinear Integral Equations

We consider the auxiliary functions [45] defined by

A0+ (0 - A3(0) + (0
b(O) = %, b)) = % — b(—0),
sinh 1(20)T»(0) (61)

) = A —.
YO = e Hne+ D
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We also define _ _
B(9) =1+ b(H), B(0) =1+ b(H), 62)
Y(0) =1+ y(@).

The auxiliary functions have different analyticity structure from the 7 -functions.
Besides the origin and the positions of holes, the function B(f) has zeros at the
positions of roots 5 (6 = 6 & 7). Note that these positions become two-string
centers in the IR limit [46].

Substituting (61) and (62) into the integral equations (59) and (60), we obtain the
nonlinear integral equations (NLIEs) [33]:

Inb(0) :/ d9 GO —0 —ie)ln B +ie) —

o0

— / d9' GO —0 +ie)ln B —ic)

o0

+/ dY' Gx(0—0 —Z +ie)lnY (O —ie) +

oo

+ i Do (0) + i Dg(0) +iD(0) + C” (63)

In y(6) :/ df' G0 —0' +Z —ie)ln B0 +ie) +

o0

+ / df Gx(0—0 —Z +ie)ln B —ie)

o0

+iDsg(0) +iDk () + C,. (64)

The integration constants C;, and C, are determined from the asymptotic behaviors
of the NLIEs. The functions G(#) and G (f) show the phase shift coming from
soliton-soliton scatterings:

ik (T Tk )
* dk e smh(; =35 ® dk e ik
GO = /,oo 27 2 cosh ZX sinh(Z — 2) X’ G (6) = /,oo 27 2 cosh ZX (65)
2 ~ 2 2

The effect of the bulk phase shift is contained in

sinh 6

Dyux(0) = 2N arctan .
butk () oh @

(66)
This is the only term which concerns the scaling limit given by a — 0 by fixing

L = Na, my=—e . ©67)
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As a result, the scaling limit of Dy, () is written by the mass parameter and the
system length of the SSG model:

sinh 6
2N arctan
cosh ®

— 2imgL sinh 6. (68)
The effects of the existence of particles are obtained in

Do) = cifgip®@—0,) + 9,0 +6,),

T . (69)
9(60) = 27 / 40 GO, gx(0) = 2 / 40 Gy (@),
0 0

where §; — sgn(Imf); Z is an effective Bethe root. The form of the function g, (6)
depends on the types of particles:

g0 £0;)+g(®+0; —imsgn(m0)) « < [Imf;| < T — 3

~ 0+0; +i O+6; —i Imf,|== =
gH(O@x0)) = 9( /~+l6)+g( j—ie) |~m J|(1) 2y 2
gK(a:liej) 0; =h
g0 +6;) otherwise,
(70)
where we choose
1 for hol
¢j = +1 for ho ?S 1)
—1 otherwise.
The term Dg () is interpreted as the effects of the existence of kinks:
Dx () = lim Dk (0 + T —ie)
5 _ o) j o) i (72)
D (0) = D cilg©® —0,) + g0 + 6))),
J
where g(;) (0) is defined by
g0 +0,) +gx(@+6;, —imsgn(Im@)) =0 :
m<|mf;| < T —T;
g0 £0) = 1gx (@£ 0; +ie)+gx O £0; —ie) : (73)
0 P T .
) mf;| == — 1
gr(@£0)) : otherwise.

The boundary terms Dg(f) and Dsg(6) have different forms depending on the
boundary parameters. By writing the boundary terms by
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Dg(0) = F(0; Hy) + F(0; H-) + J(0) (74)
Dsg(0) = Fy(0; Hy) + Fy(0; H-) + Jk (0), (75)

the last terms do not depend on the boundary parameters:

o0 o0 _cosh ¥ sinh(Z — 3)Tk

J () = / do’ / dk =% S— =, (76)
0 —o0 cosh 7 smh(g -5

Ik (0) = 2gx (0) = hTong(e + Z —ie). (77

The functions F(0; H) and F,(0; H) include the integrands which cross the branch
cut when H = +£1. Taking into account of the periodicity with respect to H, there
are three distinct regimes:

Regime (a): 1 < Hy < 27” —

o0 o0 _ sinh(Z — H)=
/ —ikf Y 2
F(9; H) = do dk e —— — (78)
0 o0 2 cosh = s1nh(; — 2)7

Fy(0; H) = 0. (79)

Regime (b): —1 < Hy <1

oo oo - sinh(Z 4+ mH —2)%F
F; H) = — / deo’ / dk e — -, (80)
0 —0 2 cosh “7 smh(% — 2)%
Fy(0; H) = gx (0 — T 4 G (0 + 20D, (81)
Regime (c): —27” +1<Hy <-1
oo © gk . sinh(Z+ H)™
F0: H) = — / do’ / 2T ikt L ., (82)
0 oo 2T 2 cosh % smh(;—f — 2)%
F,(6; H) = 0. (83)

3.3 Ground State and Boundary Bound States

In this subsection, we discuss the boundary effects on the ground state from the view-
point of Bethe roots. Under the presence of strong enough boundary magnetic fields,
it has been found that boundary bound states emerge. The existence of boundary
bound states was first discussed in [8] as poles in the reflection matrix. Then later,
it was discussed by using the g-deformed vertex operator [47] and the Bethe-ansatz
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method [42, 48]. In a realm of the Bethe-ansatz method, boundary bound states are
obtained as imaginary roots of the Bethe-ansatz equations.

The existence of boundary bound states modifies the root density of the bulk in
the order of the inverse of the system size. Here we determine the root component
of the ground state through calculation of the boundary energy.

The eigenenergy of the SSG model is calculated from the transfer matrix [49].
From (50), the eigenenergy is obtained as

1 (d d
E=—\—IT ——InT
dia (dQ ! 2(9)‘9=@+%‘ a9 " 2(0)}9:@";)

= Epuk + Eg + Ex + Ec,

(84)

where the bulk, particle excitation, and Casimir energy are respectively given by

Epux =0, (85)
Ny Mc
E. = mp ZCoshhj —mOZcosth, (86)
j=1 j=1
Ec =20 / dfe " 1n B(#). (87)
27 —00—i€

The boundary energy is given by

Eg =mo+ Ev(Hy) + Ep(H-), (33)
0 |H| > 1,

Ey(H) = 89

o(H) [mgcosw |H| < 1. (89)

The boundary dependence of the ground-state and first-excitation energy subtracted
by E¢ is shown in Fig.5.

Taking into account that the rapidity of a boundary bound state approaches % 1 -
H_) in the thermodynamic limit [33], we find that the two-string state (depicted by
bold dotted line) gives the boundary excitation state for0 < H < 1 and -2 < H <
—1. And, subsequently, this implies that the ground state includes a boundary bound
state. This fact is numerically checked in the isotopic case for (H,, H-) = (1.5,2.2),
(1.5,0.3),and (1.5, —1.8). From Fig. 6, it seems that the rapidity of a boundary bound
state is fixed at 0 = %(1 — H)).

4 Boundary Effect on the Scattering Theory

Now we discuss the boundary effect of the scattering theory of the SSG model. Since
the scattering and reflection matrices of a quantum field theory are defined between
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P H
-8 6 =

H
-8 -6 -4

Fig. 5 The ground-state and first-excitation energy subtracted by the Casimir energy is shown
together with the behavior of the boundary magnetic fields. The energy of the two-string state is
given by the bold dotted line. The anisotropy parameter is taken as v = % and the mass parameter
by mog =1

T10) I . . T20) Im

. T16) Im . . T20) Im

o) (e HO) = (15,03)

T10) Im T20) Im

Re Re

(©) (Ho H )= (15,-18)

Fig.6 Analyticity structure of 77 (f) and 7> () is plotted for three regimes. The zeros of T'-functions
are depicted by black dots, while the roots by gray dots. These are numerically calculated for the 4
two-string roots in the N = 8 isotropic chain
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the asymptotic states obtained long before and after the scattering, we analyze the
NLIEs in the IR limit moL — oo.

In the IR limit, the first and second terms of (63) and (64) become negligibly
small [32]. Therefore, we obtain the NLIEs in the IR limit as follows:

o0
In b(0) =/ do Gg (0 -0 — ’7” +ie)InY (0 —ie) + 2imgL sinh §

+iDg(0) +iD() + inCL, (90)
In y(0) =iDsg(6) + i Dk (6) + iwC. 1)

Since the auxiliary function B(6) has zeros at the positions of holes, the function
b(0) satisfies the quantization condition given by

b(hj) =—1. (92)

On the other hand, the quantization condition in a realm of the scattering theory [13,
16] is written in terms of the scattering and reflection amplitudes:

O R@G: E4) - [ SO —00SB; +6) - RO 6)=1.  (93)

I=1
I#j

By comparing the above two conditions, we obtain the relation between the NLIEs
and the scattering theory:

InR @) =iF"@; H (r=a,b,c), o)
InR,(0) =iJ ().

The function F)(#; H) has different forms depending on the regimes denoted by

the superscript 7. Remind that the ground state includes a boundary bound state for

—2 < H < —1and 0 < H < 1 (Fig.5). Thus, change of the function at H = 1 is

understood as coming from change of the ground-state description. Indeed, we obtain

the boundary bootstrap relation between two functions:

iFP0; H)y =i F“0; H) +ig0 — Z(1 — H)) +ig(®+ Z(1 — H),

~ . - . 95)
iF"(0; H) =iF“0; H)+igg (0 — 51 — H)) +igx (0 + 5 (1 — H)),
where the rapidity of the boundary bound state is what we obtained from the numerical
calculation (Fig.6). Similarly, the change of the function at H = —1 is understood
from the emergence of a boundary bound state. The boundary bootstrap relation is

obtained as
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Table 1 The relation between parameters in the NLIEs and the scattering theory. Three domains
require different relations. These domain separation matches that obtained in Fig.3

H>0 0>H> -2 —-2>H
_ 2 1 _ 2 1 _ 2 1
H=-5+y1+1 H=->=+5-1 H=-3-3-

iF9©; H)=iF?O; H) +ig(0 — Z(1+ H)) +ig(0 + T (1 + H)),

_ A _ A (96)
iF\90: H) =iF"0: H) +igx (0 + Z(1+ H) +igg(0 — 51+ H)).

Thus, we obtain the relation between parameters in the NLIEs and the scattering
theory as Table 1. The parameter relation for the regime (c) is realized from that
for the regime (a) through the transformation H — —H — 277 — 2, which gives the
soliton-antisoliton exchange transformation:

iF90;—H - % -2)=iF90;—H - Z =2) =InR (#), (97
while this transformation maps the relation for the regime (b) to itself:

iF?0; —H —2) —igg(0 — Z(—H —2)) —igg (0 + T(—H —2)) =In R (6).
(98)

Here we used the zw—ﬂ—periodicity of the reflection amplitude with respect to H. This
fact supports our assumption that the two domains obtained in Fig.3 are described
by different physics.

5 Boundary Effect on the UV Behavior

The SSG model shows the conformal invariance in the UV limit moL — 0. The
N = 1 super CFT obtained from the UV limit of the SSG model consists of the NS
and R sectors, which are realized by the different boundary conditions of fermions.
The UV limit of the SSG model has been studied for the periodic case [30-32] and
the limited regime of the Dirichlet boundaries [28], and it was found that only the
NS sector is realized through the light-cone lattice regularization. We study how the
UV behavior is affected by the boundaries in this section.

In the UV limit, some Bethe roots stay finite, while the others go to infinity. Such
roots that go to infinity behave as 6 ~ 6 —In moL in the limit moL — 0 [18]. We
introduce the scaling function defined by f +(é) =f (é — InmgL), which is a step-
like function [18, 21, 50]. By focusing on the roots which go to infinity, the NLIEs
in the UV limit are written as

o0
1nb+(9)=/ A0 GO -0 —ieyIn BT(0 +ie) —

o0
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- / d0' GO — 0 +ie)ln BT (@ —ie)

o]

o0 a
+/ d6 Gx(@—0 — T yiolny* @ —ie)+ie® +

oo
+i D cigi@—0) +inCy, (99)
J

o0
Iny™ () = / dY' Gx(0—0 +Z —ie)ln BT(0' +ie)

o]
+/ df' Gx (0 —0' —Z +ie)ln BT (0 —ie) +

o0
+iY cig@—0)+inC,, (100)
J

where C;, and C ,, are determined from the asymptotic behavior of the NLIEs.

The eigenenergy in the UV limit is calculated through the formula (50). Since
the central charge and conformal dimensions show up in the particle excitation and
Casimir energy, we define:

Ecrr(L) = E(L) — (Evux + Ep) = Eex(L) + Ec(L),
1 . 0, Z1md
Eex(L)=ij§ej_i Z e’ 27,

3
5 <tmf;| <5

(101)
1 N T
Ec(L) = —Im df e’ In BT (0).
2L o
Then Ecpr(L) is expressed by

1 _ —
Ecer(L) = 47T—L{L+(b+(00)) — Ly (b7 (=00)) + L1 (b"(00)) — L4 (b™ (=00))

+ Ly (y"(00)) = L (y* (—00))}

i 0 ) ) A A _ . A 00
+ 8L [[69 + chgm(@ -0+ wa}(ln BT (0) —In B+(9)):|7oo
7
—i MpH A A 00
Ty [{ D i@ =0+ 7TCy} In Y+(0)]—oo’
J
(102)
using the dilogarithm function defined by
1 In(1 ]
L+(x):_/ dy(n( +y) ny)' o
2 Jo y 1+y

From the formula obtained for the dilogarithm function [44, 51-56], we have
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2
™[ 1 YHy +1D  y(H-+1D T
Ecrr(L) = + ﬁ{?(_ 2T —27 2Jw—27) HK/E} (104)

+ %( (sgn(l — Hy) +sgn(l — H-) +sgn(l + H4) + sgn(l + H_)))

0d2’

where
= —S+ J(sgn(1 — Hy) +sgn(l — H-) +sgn(l + Hy) +sgn(l + H-)).  (105)

We used the effective soliton charge S defined in [33]. By setting the compactification
radius R and the boundary parameters @ as

Hy+1
m o, = 72D (106)

R=|——,
=2y 2T =2y

the energy (104) is the form of

Ecrr = =557 (en + cr = 24(4p + 4p) ). (107)

where ¢ = cg + cF is the central charge and A = Ag + Ag is the conformal dimen-
sion given by

1

CB = 1, Cgp = E’ (108)
1,0, — @ 2
Ap = 5(T +mR) , (109)
1
Ap = 16( (sen(l — Hy) + sen(l — H_) + sgn(1 + H,) + (110)
+ sen(l + H,)))mm. (111)

Consequently, m defined in (105) is interpreted as the winding number. Thus, the
sector of the SUSY realized through the light-cone lattice regularization depends on
the boundary parameters H. . In Fig.7, we showed the boundary dependence of the
sectors obtained through the light-cone lattice regularization. This indicates that the
R sector is also obtained by properly choosing the boundary parameters, although
the sector separation does not match the domain separation obtained in the boundary
magnetic fields (Fig. 3).

6 Conclusions

We discussed the boundary effects on the light-cone lattice regularization of the SSG
model with Dirichlet boundaries. By regarding the light-cone lattice with the time
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Fig. 7 The boundary H+
dependence of the sectors .
obtained through the I
light-cone lattice NS |
regularization. A proper I

choice of boundary Rt S
parameters admits the R !
sector 1 or 1

sequence of the transfer matrix of the spin-1 ZF model, we calculated the scattering
matrix and the conformal dimensions of the SSG model through the NLIEs.

As aresult, we obtained a boundary bound state for certain values of the boundary
parameters. The emergence of a boundary bound state was understood from the
boundary bootstrap principle of the scattering theory, and subsequently, it explains
the three different forms of the NLIEs. The boundary dependence of the NLIEs
also leads to the conformal dimension as a function of the boundary parameters. By
choosing the boundary parameters properly, we found that both of two sectors of the
N =1 SUSY CFT are obtained through the light-cone lattice regularization.

However, the domain separation obtained in the IR limit does not match the sec-
tor separation in the UV limit. Therefore, it is important to understand the physics
of the SSG model in an intermediate volume. At the same time, it is an interest-
ing problem to ask how is determined the sector obtained from a certain set of
the boundary parameters. Recently, the supercharges were introduced to the inte-
grable spin chain [57, 58]. In order to properly define the super algebra on the spin
chain, they used the supercharges which change the length of the integrable spin
chain by one. Thus, the supercharges defined in this way connect the even-length
chain and odd-length chain, which we expect that give the new insights to the quan-
tum field theories obtained through the light-cone lattice regularization.

Acknowledgements Iam grateful to the organizers of the 11th International Workshop “Lie Theory
and Its Applications in Physics” for giving me a chance to talk and make fruitful discussions. This
work is partially supported by JSPS Grants-in-Aid No. 15K20939.

References
1. LV. Cherednik. Theor. Math. Phys., 612:977-983, 1984.
2. E.K. Sklyanin. J. Phys. A: Math. Gen., 212:2375-2389, 1988.
3. M. Jimbo. Lett. Math. Phys., 10:63-69, 1985.
4. P.P. Kulish, N.Yu. Reshetikhin, and E.K. Sklyanin. Lett. Math. Phys., 5:393—-403, 1981.
5. H. Bethe. Zeit. Phys., 71:205-226, 1931.



Boundary Effects on the Supersymmetric Sine-Gordon Model ... 335

. E.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter, and G.R.W. Quispel. J. Phys. A: Math.

Gen., 20:6397-6490, 1987.

. A.B. Zamolodchikov and Al.B. Zamolodchikov. Ann. Phys., 120:253-291, 1979.

. S. Goshal and A. Zamolodchikov. Int. J. Mod. Phys. A, 9:3841-3886, 1994.

. E.K. Sklyanin, L.A. Takhtajan, and L.D. Faddeev. Theor. Math. Phys., 40:688-706, 1980.
. H.J. de Vega. Int. J. Mod. Phys. A, 4:2371-2463, 1989.

. H.J. de Vega. Int. J. Mod. Phys. B, 4:735-801, 1990.

. C. Destri and H.J. de Vega. Nucl. Phys. B, 290:363-391, 1987.

. N. Andrei and C. Destri. Nucl. Phys. B, 231:445-480, 1984.

. C. Destri and J.H. Lowenstein. Nucl. Phys. B, 205:369-385, 1982.

. G.I. Japaridze, A.A. Nersesyan, and P.B. Wiegmann. Phys. Scr., 27:5-7, 1983.

. V.E. Korepin. Theor. Math. Phys., 41:953-967, 1979.

. N. Reshetikhin. J. Phys. A: Math. Gen., 24:3299-3309, 1991.

. C. Destri and H.J. de Vega. Phys. Rev. Lett., 69:2313-2317, 1992.

. C. Destri and H.J. de Vega. Nucl. Phys. B, 504:621-664, 1997.

. D. Fioravanti, A. Mariottini, E. Quattrini, and F. Ravanini. Phys. Lett. B, 390:243-251, 1997.
. A. Kliimper, M. Batchelor, and P.A. Pearce. J. Phys. A: Math. Gen., 24:3111-3133, 1991.
. C. Ahn, Z. Bajnok, L. Palla, and F. Ravanini. Nucl. Phys. B, 799:379—402, 2008.

. C. Ahn, M. Bellacosa, and F. Ravanini. Phys. Lett. B, 595:537-546, 2004.

. G. Feverati, F. Ravanini, and G. Takacs. Phys. Lett. B, 444:442-450, 1998.

. S. Ferrara, L. Girardello, and S. Sciuto. Phys. Lett. B, 76:303-306, 1978.

. A.B. Zamolodchikov and A.V. Fateev. Sov. J. Nucl. Phys., 32:298-303, 1980.

. C. Ahn. Nucl. Phys. B, 422:449-475, 1994.

. C. Ahn, R.I. Nepomechie, and J. Suzuki. Nucl. Phys. B, 767:250-294, 2007.

. T.Inami and S. Odake. Phys. Rev. Lett., 70:2016-2019, 1993.

. Z.Bajnok, C. Dunning, L. Palla, G. Takacs, and F. Wagner. Nucl. Phys. B, 679:521-544, 2004.
. C. Dunning. J. Phys. A: Math. Gen., 36:5463-5476, 2003.

A, Hegedtis, F. Ravanini, and J. Suzuki. Nucl. Phys. B, 763:330-353, 2007.

. C. Matsui. Nucl. Phys. B, 885:373-408, 2014.

. C. Destri and H.J. de Vega. Phys. Lett. B, 201:261-268, 1988.

. P.Baseilhac and V.A. Fateev. Nucl. Phys. B, 532:567-587, 1998.

. C. Ahn, D. Bernard, and A. Leclair. Nucl. Phys. B, 346:409-439, 1990.

. A.B. Zamolodchikov. Commun. Math. Phys., 55:183-186, 1977.

. C. Ahn. Nucl. Phys. B, 354:57-84, 1991.

. C. Ahn and W.-M. Koo. J. Phys. A: Math. Gen., 29:5845-5854, 1996.

. R.I. Nepomechie and C. Ahn. Nucl. Phys. B, 647:433-470, 2002.

. P. Fendley and H. Saleur. Nucl. Phys. B, 428:691-693, 1994.

. S. Skorik and H. Saleur. J. Phys. A: Math. Gen., 28:6605-6622, 1995.

. A.N. Kirillov and N.Yu. Reshetikhin. J. Phys. A: Math. Gen., 20:1565-1585, 1987.

. ALB. Zamolodchikov. Phys. Lett. B, 253:391-394, 1991.

. J. Suzuki. J. Phys. A: Math. Gen., 32:2341-2359, 1999.

. L.A. Takhtajan. Phys. Lett. A, 87:479-482, 1982.

. M. Jimbo, R. Kedem, T. Kojima, H. Konno, and T. Miwa. Nucl. Phys. B, 441:437-470, 1995.
. A. Kapustin and S. Skorik. J. Phys. A: Math. Gen., 29:1629-1638, 1996.

. L. Mezincescu, R.I. Nepomechie, and V. Rittenberg. Phys. Lett. A, 147:70-78, 1990.
. A.B. Zamolodchikov. Nucl. Phys. B, 342:695-720, 1990.

. V. Bazhanov and N. Reshetikhin. J. Phys. A: Math. Gen., 23:1477-1492, 1990.

. A.N. Kirillov. J. Sov. Math., 47:2450-2459, 1989.

. AN. Kirillov. Prog. Theor. Phys. Suppl., 118:61-142, 1995.

. A. Kuniba. Nucl. Phys. B, 389:209-244, 1993.

. F. Ravanini, A. Valleriani, and R. Tateo. Int. J. Mod. Phys. A, 8:1707-1728, 1993.

. J. Suzuki. J. Phys. A: Math. Gen., 37:11957-11970, 2004.

. C. Hagendorf. J. Stat. Phys., 150:609-657, 2013.

. C. Hagendorf and P. Fendley. J. Stat. Phys., 146:1122-1155, 2012.



Infinite Dimensional Matrix Product States
for Long-Range Quantum Spin Models

Roberto Bondesan and Thomas Quella

Abstract We describe a systematic construction of long-range 1D and 2D SU(N)
quantum spin models which is based on the algebraic structure of an underlying
Wess—Zumino—Witten conformal field theory. The resulting Hamiltonians are put
into the context of the Haldane-Shastry model, the paradigmatic example of long-
range spin models.

1 Introduction

The analysis of quantum spin models has led to profound insights into the properties
of strongly correlated quantum systems. The study of exactly solvable models, the
idea of renormalization, the effective field theory approach, including the relevance
of topological contributions to the action functional; there are many areas where the
conceptual advancement of theoretical physics has gone hand in hand with questions
originally posed in spin systems. One of the reasons for the prominent role of spin
models is their simplicity. Due to their extremely high degree of symmetry, they have
a very clear and concise mathematical description. In spite of this, various natural
questions such as those about the existence or absence of gaps, the presence of phase
transitions, the breaking of symmetries or the nature of excitations are physically
deep and mathematically challenging.

Here we would like to present recent progress in understanding connections
between quantum many-body physics and quantum information theory. Our goal
is the systematic design of quantum states and systems with definite properties. To
be specific, we will use quantum information theoretic methods to impose a certain
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(a) (b) (0

Sk ‘ Sk Sk
S S S

l

Fig. 1 a The spin configuration in the Haldane-Shastry model and the interactions with the spin
Sk. b The three-spin interactions encountered in the parent Hamiltonian (5). ¢ Sketch of the action
of the operator Px ({z;}) (Color figure online)

entanglement structure on the aspired ground state of an SU(N) quantum spin system
and we will associate a natural Hamiltonian with it which is then studied in detail.
Technically, this goes under the name of infinite dimensional matrix product states
(coMPS). Both the construction of the ground state and of the Hamiltonian will make
heavy use of the machinery of conformal field theory (CFT) (see [8]).

The physical systems we wish to design are lattice realizations of one-dimensional
critical systems or two-dimensional gapped chiral spin liquids, prominent examples
of topological phases of matter. Since the latter exhibit massless degrees of freedom
at their boundary, these two types of systems are, in fact, intimately related, see the
seminal work by Moore and Read for a discussion in the context of continuous frac-
tional quantum Hall samples [17]. While predominantly interested in the realization
of 1D critical systems we will also briefly review progress on the 2D side. In this
contribution we are aiming at a presentation of the basic philosophy to a non-expert
audience while referring to the original articles for most of the more technical aspects.

2 The Haldane-Shastry Model as a Paradigm

Among all known spin chains, the Haldane-Shastry model [11, 24] plays a special role
due its analytical tractability and its connections to numerous fields of physics and
mathematics. In its original definition for SU(2), it was regarded as a basic model for
spin-1/2 degrees of freedom with long-range interactions on a circular 1D lattice with
L equidistant sites z; = exp(%k) in the complex plane, see Fig. 1a. The interactions
take an inverse-square form in the cord distance |z; — z|* = 4 sin® 7(k —1) in the
2D plane. In standard normalization, the Hamiltonian reads

m=(7) 2= () Sartay

T
o | —al k<l

This normalization ensures that, for L — oo and |k — /| < L, the leading contribu-

tion reduces to the usual Heisenberg Hamiltonian without L-dependent prefactors.
The Haldane-Shastry model exhibits a rather peculiar type of integrability. Indeed,

the Hamiltonian may be shown to commute with the generators of an infinite-
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dimensional Yangian Y (s/,) [14]. This statement is true for arbitrary chain lengths
and it allows for a convenient decomposition of the quantum mechanical Hilbert
space into irreducible Yangian multiplets inside of which all states are energetically
degenerate. The explicit decomposition and determination of the energy levels can
be achieved using the theory of degenerate affine Hecke algebras and symmetric
polynomials [20]. Using the exact knowledge of the ground state wave function, one
also has access to (dynamical) correlation functions [16].

One of the important physical insights which can be inferred from the analysis of
the Haldane-Shastry model is that the elementary excitations are spinons (rather than
magnons), i.e. particles which carry half-integer spin and obey fractional exclusion
statistics. A configuration of spinons can be described in terms of so-called motifs [13]
whose combinatorial structure provides an explicit implementation of a generalized
form of Pauli’s exclusion principle [12]. A detailed discussion of the Haldane-Shastry
model, including a more comprehensive guide to the literature, can be found in
Haldane’s review [13] and in recent work by Greiter [10].

In the thermodynamic limit L — oo, the Haldane-Shastry model provides a real-
ization of the SU(2); WZW conformal field theory. It is thus not surprising that this
CFT also admits an action of the Yangian Y (s/;) and that its spectrum may be orga-
nized in terms of Yangian multiplets [1, 23]. The investigation of these connections
led to remarkable results on finitized (i.e. truncated) characters for representations
of affine Lie algebras such as Qz, see [4] and references therein. In contrast to the
usual ones in terms of the Weyl-Kac character formula, these expressions have been
termed fermionic since they are manifestly positive and do not involve alternating
sums. This is due to the absence of null states and signals that the spinons indeed
provide the correct basis for the description of quasi-particle excitations.

Since this aspect is important for the motivation of our work let us emphasize that
some of the main features of the Haldane-Shastry model differ considerably from
those of systems which are solvable by standard Bethe ansatz methods. This is even
true for the spin-1/2 Heisenberg model which realizes the same SU(2); WZW model
as L — oo. For the Heisenberg model, the Hamiltonian can be constructed from the
Yangian Y (sl,) but does not commute with it. The Yangian hence plays the role of
a spectrum generating symmetry. On a technical level, this is the reason why Bethe
ansatz may be used to derive the full spectrum. The Yangian only becomes a true
symmetry as L — oo [6].!

This simple fact has profound physical consequences. First of all, the spinon exci-
tations are interacting in the Heisenberg model but non-interacting in the Haldane-
Shastry model. This is reflected in the spinon’s scattering matrix which is momentum
dependent in the former case while it is a purely statistical phase factor for the lat-
ter. Similarly, the Heisenberg model only realizes the SU(2); WZW model up to
logarithmic corrections while the latter are absent in the Haldane-Shastry model.
In view of the non-interacting nature of the spinons and the absence of logarithmic
corrections we are tempted to think of the Haldane-Shastry model as providing an

I'The quantum affine algebra Uy (sl) of this paper degenerates into the Yangian Y(s/) as ¢ — 1.
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(d)

1D chain square triangular honeycomb random 2D

Fig. 2 Examples of 1D and 2D lattices that are of potential interest in physical applications.
Different colors denote distinct representations of the physical spin (Color figure online)

“optimal discretization” of the SU(2); WZW model. It is currently unclear whether
similar “optimal discretizations” also exist for all other WZW theories.

The last statement immediately brings us to the central motivation for our study
of coMPS. While the Hamiltonian (1) of the Haldane-Shastry model can, of course,
immediately be defined for any Lie algebra with an invariant and non-degenerate
bilinear form (such that S; - S; can be defined), the special properties mentioned
above only arise for SU(N) and spins transforming in the fundamental (or anti-
fundamental) representation. The goal of this note is to come up with natural gener-
alizations of the Haldane-Shastry model which relax its inherent restrictions while
trying to preserve its nice properties. In particular, we would like to allow for other
symmetry groups, spins transforming in arbitrary representations and general loca-
tions on the circle or even in the complex plane. A sketch of possible situations of
interest can be found in Fig.2. As we will see below, all three generalizations can be
achieved conveniently in the framework of coMPS. The latter provide a convenient
tool to imprint the desired entanglement structure on the aspired ground state.

3 Matrix Product States and Their Parent Hamiltonians

The description of a general quantum state in the Hilbert space H = V®L of a spin
model requires the specification of an exponentially large number of coefficients.
However, recent studies suggest that ground states of quantum spin systems have
very particular properties and only populate a tiny corner of the full Hilbert space.
This statement can be made rather rigorous for gapped 1D systems and it implies
that the ground state of all such systems admits a good approximation in terms of a
so-called matrix product state (MPS)?

[0) = 3, AR AR ) € VO 2)

The symbols A* in this formula refer to matrices acting on an auxiliary space B whose
(arbitrary but fixed) dimensionality d depends on the system under consideration

2For simplicity we restrict our attention to translation invariant configurations.
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(a) 7‘ ? % % (b) § é é

AF1 Ak2 AF3 AFa
3

Fig. 3 Sketch of an MPS (left) and of an coMPS (right). In both cases, the states are defined by
coupling the physical degrees of freedom (blue) to an auxiliary entanglement layer (green) which
reflects the spatial structure of the system and encodes the state’s entanglement (Color figure online)

[21]. It is convenient to view the symbols A as intertwiners 5 ® B* — V. This has
the physical interpretation of attaching two auxiliary spins B and B* to each physical
space V. The matrix multiplication and the trace in Eq. (2) then simply correspond
to the formation of singlet bonds between auxiliary spins on neighboring physical
sites, see Fig. 3 for an illustration.

Let us now try to extract the essential properties of the physical system which gave
rise to a specific state |¢). More precisely, we wish to construct a new prototypical
Hamiltonian H which ideally should have [¢)) as its unique zero energy ground
state and reflect the basic physical properties of the original system. This so-called
parent Hamiltonian is constructed as follows. We start with two-site Hamiltonians
h® which are specific projectors chosen as to annihilate 1) (see [21]). If B ® B* is
a subspace of the two-site Hilbert space VV ® V, these operators can simply be chosen
to project onto the orthogonal complement (B ® B*)*. By way of construction, the
translation invariant sum H = >, h,(cz,z 4 satisfies H > 0 and H|¢) = 0. In other
words, the MPS defined in Eq. (2) is a ground state of the Hamiltonian. If the system
under study admits the action of a symmetry group and the matrices A have been
chosen to be intertwiners, then H will also be invariant. Under certain technical
assumptions (and sometimes more generally), the ground state will, moreover, be
unique and gapped. Whenever the last two properties fail to be true they can be
restored at the cost of block renormalizing the physical spin and the Hamiltonian.
Effectively, this introduces interactions beyond neighboring sites.

Let us once more emphasize the change of perspective that we introduced through
the back-door. The fundamental object in the previous paragraph was the MPS 1))
whose properties are fully characterized by the coupling of the physical spins to the
auxiliary entanglement layer, i.e. by the matrices A*. The associated parent Hamil-
tonian H only entered in a second step and should hence be regarded as a derived
concept. The construction is motivated by the hope that the knowledge of the ground
state |1)) will generally be sufficient in order to determine the essential features of
the (low energy) physics of the associated quantum system. In the next section we
will lift this philosophy to an even more sophisticated level by generalizing MPS to
ocoMPS.
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4 From CFT to Long-Range Spin Models

In the present note we are mainly interested in the realization of critical 1D systems
and 2D gapped chiral topological phases. In both cases, the size of the matrices
A* needs to grow beyond any limit, as can be inferred from the respective scaling
laws for the entanglement entropy (see, e.g., [9]). It is then natural to replace the
matrices A¥ by operators of an auxiliary quantum field theory (QFT) and the trace
by a correlation function since this involves a natural prescription of how to deal
with products of operators on an infinite dimensional (auxiliary) Hilbert space. The
state in the associated quantum spin system then reads

[Y) = z{k,}<¢kl (z1) - d)kL(ZL)) ki, ... k1) € POL 3)

QFT correlator

We note that the coordinates {z;} and hence also the dimensionality of the QFT
simply play the role of parameters. In a general QFT, the expression (3) will usually
only be defined perturbatively. However, if the underlying QFT is a 2D CFT, the
correlator coincides with a chiral conformal block and is mathematically absolutely
well-defined. This is the case we will focus on from now on. In the CFT context, a
subtle point concerns the fact that conformal blocks are usually not single-valued.
Uniqueness (up to phase factors) imposes strong restrictions on the fields which have
to be used in Eq. (3). In particular, it is custom to choose the fields ¢(z) to be primary
fields with abelian fusion in order to avoid an exponential ground state degeneracy.

As we have discussed in Sect. 3, for any MPS of the usual kind there is an asso-
ciated parent Hamiltonian which is constructed as a sum over projectors. For an
ooMPS, this type of construction turns out to be impossible. When the underlying
CFT is a WZW model based on a Lie group G [8], one can nevertheless easily come
up with linear operators Py ({zl}) for each physical site k£ which annihilate the quan-
tum state |¢0) that has been defined in Eq. (3). This is due to the existence of null fields
X (z) which are descendants of the primary fields ¢(z), i.e. which can be reached by
applying the symmetry generators of the WZW model [8]. A parent Hamiltonian
associated with the coMPS |1) can then be defined as [5]

H=>"P(la)" Pe(la}) - )
k

As before, the Hamiltonian is manifestly hermitean, positive and invariant under the
action of G. Actually it is more appropriate to speak about a whole family of Hamil-
tonians which are parametrized by the choice of positions {z}. The construction can
easily be adapted to also allow for varying representations of the physical spins.
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5 Application to SU(N) Spin Models

The procedure just sketched has been suggested in [5] and then further refined in [18].
In these publications it was also established that the parent Hamiltonian associated
with the SU(2); WZW model, in fact, basically reproduces the Haldane-Shastry
model. A generalization of this analysis to SUN); WZW models has been studied
in [2, 27]. The new feature that arises here is the possibility to study alternating
setups in which part of the physical spins reside in the fundamental representation
and others in the anti-fundamental, see Fig. 2a.

For the WZW model at level 1, the relevant null vectors x(z;) for fields ¢(zx)
transforming in the fundamental or the anti-fundamental representation are located
at the first energy level. The associated algebraic operators which annihilate the
0oMPS |¢)) can then be chosen to be Py ({z1}) = 4 Wi P, Sy withwy = (zx +
21)/(zx — 21) [2, 27]. Here, P}, is a specific projection matrix which involves the spin
operator Sy at site k and a is an sl Lie algebra index. The action of P} ({zl}) on the
physical spins is sketched in Fig. 1c. Using the concrete form of the projection matrix
Py, and di € {0, 1} to distinguish between the two different types of representations,
one finally finds the parent Hamiltonian

H = Zm @) Pee) =D D wiwi S PeasS? 5)
k i,j(F#k)
- i a c —1)4 a c
= 30w { N fune SIS)SE — S e SYS)SE +
ki, j(#k)
_N+2
+ 552808

In contrast to the Hamiltonian of the Haldane-Shastry model, this expression involves
SU(N)-invariant long-range couplings between two and three spins (see Fig. 1b)
which are mediated by the structure constants f,;. and by the completely symmetric
rank-3 tensor d,;.. In the general form (5), the Hamiltonian can be used to describe
1D or 2D quantum spin systems with arbitrary positions of the spins.

Let us now specialize to the 1D setup where all spins transform in the fundamental
representation and the spin locations are chosen equidistantly on the unit circle. Under
these circumstances, the Hamiltonian (5) simplifies considerably and reads

Sk - S .
H=C Z k- Z|2 +C2 8%+ C3dupe S°S"SC +Cy ©6)
—Z
k#l o ! coupling to total spin S

with L-dependent constants C;. We have thus succeeded in recovering the SU(N)
Haldane-Shastry model from the coMPS construction, at least up to terms which
couple the total spin to generalized chemical potentials. Of course, these terms do
not affect the solvability of the model.
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The previous considerations may easily be generalized to 1D configurations in
which the spins alternate between the fundamental and the anti-fundamental rep-
resentation. While the resulting model does not appear to be solvable, numerical
evidence using either ground state entanglement scaling [27], the determination of
spin-spin correlation functions [27] or exact diagonalization [2] suggests that the
theory is critical. For the last type of analysis it is convenient to interpret the sys-
tem as a loop model at fugacity N = dim()). This procedure, which is based on a
generalized Schur—Weyl duality of SU(N) with a walled Brauer algebra, allows for
a convenient graphical representation of the states and of the Hamiltonian. In this
way, computations can be carried out efficiently for arbitrary values of N [2], provid-
ing substantial evidence for a critical thermodynamic limit which deviates from the
SU(N); WZW model. Nevertheless, the precise identification of the critical theory is
an open problem. Since the SU(N); WZW model underlying the coMPS construction
admits a free field representation in terms of N — 1 bosons (or N complex fermions
modulo a boson), writing down concrete expressions for the CFT correlator featuring
in Eq. (3) and hence the coMPS |v), the unique ground state of H, is straightforward,
independent of the particular arrangement of spins [2, 27].

6 Conclusions and Outlook

In this note we have reviewed the general philosophy underlying the construction
of coMPS states and their associated parent Hamiltonians. As an application we
have discussed the specific example of SU(N); WZW models. As we have seen,
the resulting family of Hamiltonians provides a natural generalization of the SU(N)
Haldane-Shastry model which is recovered for particular types of spins and their
positions. A full exposition of our results can be found in the article [2].

The SU(N); WZW theories are rather special in that they admit a realization in
terms of free fields. Non-abelian features will only become visible if one considers
higher level theories, i.e. SU(N), with k£ > 2. To our knowledge, an “optimal dis-
cretization” of these theories in the sense of Sect.2 is currently not available. It is
an interesting question whether the coMPS construction can remedy this deficiency.
Another goal which can be pursued with coMPS is the systematic search for parent
Hamiltonians which realize 2D non-abelian chiral SU(N) spin liquids. Since these
will always be long-ranged, it is also natural to study the effect of truncating the
interaction range, see [19] for the corresponding study in the context of SU(2).

Besides tuning the WZW level one can also modify the symmetry group. Here,
implementations of the coMPS formalism have already been considered for U(1) and
SON) [25, 26]. It immediately suggests itself to generalize the construction to spins
transforming under the supergroup SU(M|N) or close derivatives such as GL(M|N)
[3]. Beyond potential applications in string theory, disordered systems and statistical
physics this may also provide lattice discretizations of logarithmic CFTs which are
naturally associated with supergroup WZW models [22]. It would also be interesting
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to leave the realm of WZW models and to apply the coMPS construction to other
types of CFTs such as minimal models.

One of the appealing features of the coMPS construction is the exact knowledge
of the ground state of the associated Hamiltonian. The ground state can indeed be
used to provide a detailed characterization of the system and to verify a number of
properties, both in 1D and in 2D. First of all, this includes its criticality or topolog-
ical non-triviality. The scaling of the ground state entanglement indeed gives direct
access to the central charge (in 1D) and to the total quantum dimension of anyonic
excitations (in 2D), respectively (see [27] for examples and additional references).
Via the calculation of spin-spin correlation functions and ground state overlaps one
can also infer data characterizing expected excitations such as conformal dimensions
(in 1D) [18, 27] and topological spins of anyons and their modular data (in 2D) [7].
For the latter it is necessary to extend the ideas presented here from the complex
plane to higher genus Riemann surfaces such as the torus.

The complete solution of a quantum system, including its thermodynamic proper-
ties, also requires knowledge about the excited states. For SU(2), it has been shown
how low-lying excited states may be constructed systematically in coMPS form [15]
using CFT correlators involving descendant fields. Whether this still holds true for
other symmetries and/or higher levels remains to be investigated.

Let us finally return to the most important aspect of the coMPS construction: The
systematic design of quantum entanglement in a state through the coupling to an
auxiliary entanglement layer. It is tempting to speculate whether this intimate link
may allow to lift special structures which are, a priori, only defined in the underlying
continuum theory to the associated quantum lattice model. A simple example would
be the aforementioned study of excitations (in the spin model) in terms of descendent
fields (excitations in the CFT). More interestingly, the continuum theory may exhibit
additional structures such as a Yangian symmetry which may also be reflected in the
lattice model, at least in disguise. While this is known to be true for the coMPS based
on SU(N); WZW theories, at least as long as the quantum spins all transform in the
fundamental representation, the further exploration of these connections may lead to
fruitful new insights into the properties of general quantum spin models.
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Group Analysis of a Class of Nonlinear
Kolmogorov Equations

Olena Vaneeva, Yuri Karadzhov and Christodoulos Sophocleous

Abstract A class of (1+2)-dimensional diffusion-convection equations (nonlinear
Kolmogorov equations) with time-dependent coefficients is studied with Lie sym-
metry point of view. The complete group classification is achieved using a gauging
of arbitrary elements (i.e., via reducing the number of variable coefficients) with the
application of equivalence transformations. Two possible gaugings are discussed in
order to show how equivalence group can serve in making the optimal choice.

1 Introduction

Second-order partial differential equations of the form
u; = Duyy +v[K(u)l,, (1)

where D and v are nonzero constants, K is a smooth nonlinear function of the depen-
dent variable u, appear in various applications. In particular, they describe diffusion-
convection processes [ 1], model an interaction of particles with two kinds of particles
on a lattice [2], arise in mathematical finance, when studying agents’ decisions under
risk [3, 4]. Equations (1) are called in the literature diffusion-advection equations,
nonlinear ultraparabolic equations and nonlinear Kolmogorov equations. They were
studied from various points of view. An important study of partial differential equa-
tions and especially nonlinear ones is finding Lie groups of point transformations
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that leave an equation under study invariant. Such symmetry transformations allow
one to apply powerful and what is most important algorithmic method for finding
exact solutions of a given nonlinear equation. Moreover, Lie symmetries can serve
as a selection criterion of physically important models among possible ones [5]. Lie
symmetries of Eq. (1) and the corresponding group invariant solutions were classi-
fied by Demetriou et al. [6]. There are also some studies on Lie symmetries of lin-
ear Kolmogorov equations [7, 8] and of constant coefficient nonlinear Kolmogorov
equations of the form u;, — uy, — uu, = f(u) [9].

An attempt of group classification of more general than (1) class of diffusion-
convection equations in (14-2)-dimensions, namely, the equations with time depen-
dent coefficients

up = fOuyy —gOIK@)], . f9Ku # 0, @)

where f and g are smooth nonvanishing functions of the variable ¢, K is a smooth
nonlinear function of #, was recently made [ 10]. Nevertheless the classification of Lie
symmetries was not achieved therein, in particular, the case K = u In u was missed
and dimensions of maximal Lie symmetry algebras as well as some of their basis
elements for the other cases of extensions were presented incorrectly. Moreover, the
important for applications case K = u? was not studied with Lie symmetry point of
view at all.

In this paper we perform the complete group classification of Eq. (2). As class (2)
is parameterized by three arbitrary elements, K (), f(¢) and g(¢), the group clas-
sification problem appears to be too complicated to be solved completely without
modern approaches based on the usage of point equivalence transformations. One
of such tools is the gauging of arbitrary elements by equivalence transformations
(i.e., reducing of a class to its subclass with fewer number of arbitrary elements). To
use this technique, we firstly look for the equivalence group of class (2) in Sect. 2.
A gauging of arbitrary elements is performed in the same section. In Sect.3 Lie
symmetries of the simplified class are exhaustively classified. In Sect.4 we discuss
how to choose an optimal gauging among possible ones. To illustrate that the chosen
gauging is optimal we also adduce results on group classification of class (2) carried
out for alternative gauging.

2 Equivalence Transformations

Equivalence transformations are nondegenerate point transformations, that preserve
the differential structure of the class under study, change only its arbitrary elements
and form a group. There are several kinds of equivalence groups. The usual equiva-
lence group, used for solving group classification problems since late 50’s, consists of
the nondegenerate point transformations of the independent and dependent variables
and of the arbitrary elements of the class, where transformations for independent and
dependent variables do not involve arbitrary elements of the class [11]. The notion of
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the generalized equivalence group, where transformations of variables of given DEs
explicitly depend on arbitrary elements, appeared in works by Meleshko in middle
nineties [12, 13]. The extended equivalence group is an equivalence group whose
transformations include nonlocalities with respect to arbitrary elements [14]. The
generalized extended equivalence group possesses the properties of both generalized
and extended equivalence groups. The group classification problem becomes simpler
for solving if one use the widest possible equivalence group, the comparison of usage
of usual and generalized extended equivalence groups was presented recently in [15].
Moreover, in some cases the usage of generalized extended equivalence groups is
the only way to present the complete group classification, see, e.g., [16].

To derive the equivalence group of the class under consideration we use the direct
method [17]. The details of calculations are skipped for brevity and we only present
the results.

As it is more convenient for the study of Lie symmetries to consider the equivalent
form of the above class,

u; = f(Ouyy, — gk, fgk, #0, 3)

where f and g are smooth nonvanishing functions of the variable ¢, k is an arbitrary
smooth nonconstant function of u, we present transformations for both K andk = K|,
in the theorems below.

Theorem 1 The generalized extended equivalence group G~ of class (2) (resp. (3))
is formed by the transformations

= T(t), Xx=0x+0 /g(l)dl + 63, y = (54y + 05, U = dgu + 07,
642 .
Fi) = %f(t), () = %gm,
K@) = 5—6 (01K () + 61 + €7) , (resp. k@) = Sl(mk(u) + 52),)
1 1

where 0;,i = 1,...,7, €| and e, are arbitrary constants with §,040¢c1 # 0, T(¢) is
an arbitrary smooth function with T, # 0.

The usual equivalence group of class (2) (resp. (3)) consists of the above trans-
formations with 6, = 0.

It appears that if K = u? (resp. k = u) the class of equations under study admits
a wider equivalence group.

Theorem 2 The generalized extended equivalence group (A;lw of the class

up = fOuyy —gOuuy, fg#0, “4)

comprises the transformations
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t=T@), ¥x=X@)x+ 53/g(t)X(t)2dt 4+ 04, Yy=01y+ 62,

u L X029 . 6 f@)
55(m — dpx +53), gt) = T, f@) = 6T,

i

where X (t) = (56 fg(t)dt + 57)71 ,0;, i =1,...,7, are arbitrary constants with
8105(82 + 62) # 0, and T (t) is an arbitrary smooth function with T, # 0.

The usual equivalence group of class (4) consists of the above transformations
with 3 = d¢ = 0.

Equivalence transformations generate a subset of a set of admissible transforma-
tions [18] which can be interpreted as triples, each of which consists of two fixed
equations from a class and a point transformation that links these two equations. The
set of admissible transformations considered with the standard operation of compo-
sition of transformations is also called the equivalence groupoid [19]. Theorems 1
and 2 give the descriptions of the equivalence groupoids of class (3) with nonlinear
k and of class (4), respectively.

As there is one arbitrary function, 7'(¢), in the transformations from the group G,
we can set one of the arbitrary elements f or g of the initial class equals to a nonzero
constant value. We choose to perform the gauging g = 1 by using the equivalence
transformation

= /g(t)dt, X=x, U=u. 5

Then, any equation from class (2) (resp. (3)) is mapped to an equation from its
subclass that is singled out by the condition g = 1. The detailed discussion on optimal
choice of gauging is presented in Sect. 4.

Without loss of generality, we can restrict ourselves to the study of the class (2)
with g = 1 or, what is more convenient, its equivalent form

up = fOuyy —k@uy, fk, #0, (6)

since all results on symmetries, conservation laws, classical solutions and other
related objects can be found for Eq. (3) using the similar results derived for Eq. (6).

The equivalence groups of class (6) and its subclass with k = u are presented in
the following theorems.

Theorem 3 The usual equivalence group G~ of class (6) consists of the transfor-
mations

52811‘4-50, X=01x+0t+0;, Yy=0y+0d, u=du-+d,

Y - 1
FO =211, k@)= —0k@w)+b),
€1 €1

where 6;,i = 1,...,7, € and gy are arbitrary constants with §,040¢¢1 # 0.
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Theorem 4 The usual equivalence group G of the class

u, = f(t)uyy — UlUy, f # 0, (7)
is formed by the transformations

at + 3 i_ﬁ;x—}—ut—}—u

f=——,
vt + 46 vt + 9

. Y=y +e,

1 - 2
U= A (k(yt + 0)u — kyx +op— ), [f()= /\Z(vt +0)’ f (),

where «, B, v, 6, K, i, and v are arbitrary constants defined up to a nonzero
multiplier with A = ad — By # 0, k # 0; X and ¢ are arbitrary constants, \ # 0.

Theorem 4 implies that any Eq.(7) with f = a(t + b)~2, where a # 0 and b are
constants, is mapped by a point transformation to a constant-coefficient equation
from the same class.

We present also the results on equivalence transformations for the subclass of
class (3) singled out by the condition f = 1, which we will use for the comparison
of the cases f = 1 and g = 1 in Sect. 4.

Theorem 5 The generalized extended equivalence group é; of the class

Uy = Uyy — gWOk@u,, gk, #0, 3

comprises the transformations
f= (521‘-}*(50: x =51x+52/g(t)dt+(53, Yy =04y + 65, u=0deu+ 7,

- ~ 1
(i) = Z—;gm, ki) = — (B1k() + b,) .
i €1

where 6;,i =0, 1,...,7, and | are arbitrary constants with 6164061 % 0.

Theorem 6 The generalized extended equivalence group é; of the class

up =uy, — guuy, g#0, 9
consists of the transformations

X+ 04

Fe 040y, o T4
e 7 [9dt + 72

+55a 5’251}’4‘53,

. e 9(0)
u=20ds\\7 [ 9Odr + 7 Ju—mx+d)), §O)=— 5
6106 (1 f9(0)dt + )

where 6;,i = 1,...,6, v and 7y, are arbitrary constants with 5156(712 + 7%) # 0.
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3 Lie Symmetries

The group classification problem for class (3) up to G”-equivalence reduces to the
similar problem for class (6) up to G™-equivalence (resp. the group classification
problem for class (4) up to Gl”—equivalence reduces to such a problem for class (7)
up to G "-equivalence). To solve the group classification problem for class (6) we use
the classical approach based on integration of determining equations implied by the
infinitesimal invariance criterion [11]. We search for symmetry operators of the form
Q=7(tx,y,u)0 +&(t, x,y, u)0: +n(t,x,y,u)0, +0(t, x, y,u)0, generating
one-parameter Lie groups of transformations that leave Eq. (6) invariant [11, 20]. It
is required that the action of the second prolongation Q® of the operator Q on (6)
vanishes identically modulo equation (6),

0P u, — fOuyy + k@Y=, —kau, = 0. (10)

The infinitesimal invariance criterion (10) implies the determining equations, sim-
plest of which result in

T=7(), £=E0tx), n=0"Oy+n°0®), 0=t x, u+p x,y),

where 7, &, n', n°, v and v are arbitrary smooth functions of their variables. Then
the rest of the determining equations are

ThH=Cn' =) f. 2fey=-nly =1, (11)
(pu + )k, + (1, — EDk = &, (12)
(pxtt + P)k + (o1 — foyyu + e — f1hyy, = 0. (13)

Firstly we integrate equations (12) and (13) for k up to the G~ -equivalence taking
into account that k, # 0. The method of furcate split [21, 22] is further used. For
any operator Q € A™ Eq.(12) gives some equations on k of the general form

(au + bk, +ck =d, (14)

where a, b, ¢, and d are constants. The number s of such independent equations is
not greater than two, otherwise such equations form incompatible system for k. If
s = 0, then (14) is not an equation on k but an identity, this corresponds to the case
of arbitrary k. If s = 1, then the integration of (14) up to the G™-equivalence gives
three different cases: (i) k = u", n # 0, 1; (ii) k = €*; (iii) k = Inu. If s = 2, then
the function k is linear in u, k = u mod G

The determining Eq. (13) implies that there exist two essentially different cases
of classification: I. k,,,, # 0, and II. k,,, = 0, i.e. k = u mod G~

Consider firstly the case of arbitrary function k. In this case Eqgs.(12) and (13)
should be split with respect to k and k,. The splitting results in the equations
p=v=¢§ =1 —& =0. Therefore 7 = c1t + ¢, £ = c1x + ¢3. As ¢ =0, the
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Table 1 The group classification of class (6) up to the G~ -equivalence

No. [0 | Basis of A"

Arbitrary k

1 v Oy, Oy

2 tP Ox, 0y,2t0; +2x0x + (p+ 1)y0y

3 e Oy, Dy, 20, + yd,

4 Oy, Oy, Oy, 210; + 2x0x + Y0,
k=u",n#0,1

5 v Ox, Oy, nx0x + ud,

6 tP Ox, Oy, nx0y + u0y, 2t0; + 2x0x + (p+ 1)y0,
7 e’ Oy, Oy, nx0x +ud,, 20, + y0y

8 Ox, Oy, nx0y +udy, Oy, 2t0; + 2x0x + y0y
k=e"

9 A Oy, Oy, xOx + Oy

10 tP Ox, Oy, xOx + 0y, 2t0; + 2x0x + (p+ 1) y0y
11 e Ox, Oy, X0y 4 O, 20; + y0,

12 Oy, Oy, X0y + Oy, Or, 2t0; + 2x0x + yOy
k=1Inu

13 v Oy, Oy, 10y + udy,

14 tP O, Oy, 10y +udy, 2t0; + 2x0x + (p + D)yd,
15 e Oy, Oy, 10y +udy,, 20, + yoy

16 1 Oy, Oy, t0x + udy, O;, 219, + 2x0x + yoy

Here n and p are arbitrary nonzero constants, and n # 1

second equation of (11) implies 7! = n® =0, i.e. n' = ¢4, and 7° = c¢s. Here ¢,
i=1,...,5, are arbitrary constants. Then the general form of the infinitesimal
generator is Q = (¢t + ¢2)0; + (c1x + ¢3)0x + (c4y + ¢5)0, and the first equation
of (11) takes the form

(cit + ) fr = Qes — 1) f. (15)

This is the classifying equation for f. If f is an arbitrary nonvanishing smooth func-
tion, then the latter equation should be split with respect to f and its derivative, which
results in ¢; = ¢ = ¢4 = 0. Therefore, the kernel A” of the maximal Lie invariance
algebras of equations from class (6) is A" = (9x, dy) (Case 1 of Table 1). To per-
form the further classification we integrate equation (15) up to the G~ -equivalence.
All G™-inequivalent values of f that provide Lie symmetry extensions for equations
from class (6) with arbitrary k are exhausted by the following values: f = ¢*, p # 0;
f =¢'; f = 1. The corresponding bases of maximal Lie invariance algebras are pre-
sented by Cases 2—4 of Table 1.

If k=u", n #0,1, then splitting Eqgs. (12) and (13) with respect to different
powers of u leads to the system § =¥ = ¢, =0, ¢, = fp,y, np+7 — & =0.
These equations together with (11) imply 7 = ¢t + ¢2, € = (¢| + ncg)x + 3,
N =c4y +cs, ¢ = cg, Where ¢;, i =1, ..., 6, are arbitrary constants. The classi-
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fying equation for f takes the form (15). Therefore, the cases of Lie symmetry
extensions are given by the same forms of f as in previous case, namely, arbitrary,
power, exponential and constant. See Cases 5-8 of Table 1. The dimensions of the
respective Lie symmetry algebras increase by one in comparing with the case of
arbitrary k. The highest dimension is five, not six as it was stated in the paper by
Kumar et al. [10].

The consideration of the cases k = " and k = In u is rather similar to the case of
k = u" withn #£ 0, 1, therefore, we omit the details of calculations. The classification
results are presented in Cases 9-16 of Table 1.

Consider the case of linear &, then up to the equivalence we can assume k = u.
We substitute £ = u to Eqgs.(12) and (13) and further split them with respect to
different powers of u. This leads to the system ¢y =&, 7 — &+ ¢ =0, ¢ =0,
Yy + o — fyy =0, and 9, — fihy, = 0. We differentiate the first and the sec-
ond equation of this system with respect to the variable y and get the additional
conditions ¢, = 1), = 0. Then also 1); = ¥y = ¢, =0 and the second equa-
tion of (11) gives 5! = n? = 0. The general form of the infinitesimal operator Q
is O = (c2t? +c1t +¢0)d + ((cat + ca)x + c3t + ¢5)y + (c6y + ¢7)y + ((ca —
c1 — ct)u + cax + ¢3)0,, where ¢;, i =0, ..., 7, are arbitrary constants. The clas-
sifying equation for f is

(2’ + 1t +¢o) f = Qe — ¢1 — 2¢at) f. (16)

If this is not an equation on f but an identity then ¢y = ¢; = ¢, = ¢¢ = 0. There-
fore, the constants c3, ¢4, cs5, c; appearing in the infinitesimal generator Q are
arbitrary and the maximal Lie invariance algebra of the Eq. (7) with arbitrary f is
the four-dimensional algebra (O, 0, x0x + ud,, t0x + 0,) (Case 1 of Table2).

The further group classification of Eq. (6) with k = u, i.e. Eq.(7), is equivalent to
the integration of the equation on f of the form

(at’> + bt +¢) f, = (d — 2at) f, (17)

where a, b, ¢ and d are arbitrary constants with (a, b, ¢) # (0, 0,0). Up to G} -
equivalence the parameter quadruple (a, b, ¢, d) can be assumed to belong to the set
{(1,0,1,0), (0,1,0, p), (0,0, 1, 1), (0,0, 1, 0)}, where o, p are nonzero constants,
p < —1. The proof is similar to ones presented in Vaneeva et al. [16, 23]. It is based
on the fact that transformations from the equivalence group G} can be extended to
the coefficients a, b, ¢ and d as follows

a = pu@d® —byd +cv?), b= pu(—=2a86 + b(ad + B7) — 2cary),
&= p@f® —baf+ca?), d=pudA+2aB6 —2b3y + 2car),

where A = ad — B and p is an arbitrary nonzero constant.
Integration of the Eq. (17) for four inequivalent cases of the quadruple (a, b, ¢, d)
gives respectively f = A f=t",p#0, f =€ and f = 1. We further sub-
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Table 2 The group classification of class (7) up to the G -equivalence

No. f@) Basis of A™M#

1 v Ox, Oy, xOx + u0y, t0x + 0y

2 — Oy, Dy, X0y + udy, 10 + Ou, (1> + 1, + 1x0; + S0 y0,
+(x — tu)d,

3 tP Ox, Oy, xOx +u0y, t0x + 0y, 2t0; + (p + 1)y0y — 2u0,

4 e Oy, Oy, X0y + udy, 10y + 9y, 20, + y0y

5 1 O, Oy, X0y + udy, 10y + 0y, 0y, 2t0; + yOy — 2ud,

Here p and o are arbitrary constants with p # 0, —2. Moreover p < —1 mod G’

stitute the obtained inequivalent values of f into Eq.(16) and find the corresponding
values of constants ¢; and, therefore, the general forms of the infinitesimal generators.
The results of the group classification of class (7) are presented in Table 2.

The classification lists presented in Tables 1 and 2 give exhaustive group classifi-
cation of the class of variable coefficient nonlinear Kolmogorov equations (3).

4 Discussion on the Choice of the Optimal Gauging

Appropriate choice of gauging of the arbitrary elements is a crucial step in solving
group classification problems. In our case the gauging f = 1 could seem more con-
venient if one look for the determining equations for finding Lie symmetries. For
class (8) they have the form

20y =T, My — N =2y, (pu+ gk + 79 + (1 — E)glk = &,
(@xu + wx)gk + (‘Pr - <pyy)u + wt - Z/Jyy =0.

For the case k # u the difference in classification is not so crucial (cf. Table 1 with
Table 3). Though one can see that for k = In u the operator 19, + u0, appearing in
Cases 1316 of Table 1 transforms to various forms in the respective cases of Table 3.
For the case k = u the difficulty of group classification of the class (3) with f =1
increases essentially in comparison with the gauging g = 1. Solving the determining
equations results in the following form of the infinitesimal generator

0 = (c1t + ¢c0)0; + [(c2x + ¢3) [g(0)dr + cax + ¢510x +
(3¢1y + €6)0y + [(c7 — ¢2 [g(t)dD)u + c2x + €3]0y,

where ¢;, i =0, ...,7, are arbitrary constants. The classifying equation for g is
the integro-differential equation (ci7 4 co)gr + (c1 — cs + ¢7 — 2¢ [g(1)dt) g =0
(cf. with the classifying Eq.(16) for f that is much simpler). The results of group
classification for class (9) are presented in Table 4. Comparing Tables 2 and 4 one can
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Table 3 The group classification of class (8) up to the é; -equivalence

No. ‘ g(t) ‘ Basis of AMa%

Arbitrary k

1 v Oy, Oy

2 P Ox, Oy, 2t0; +2(p + Dx0x + y0y

3 e Oy, Oy, O + x0x

4 Oy, Oy, 0r, 2t0; + 2x0x + y0,
k=u"n+#0,1

5 v Ox, Oy, nx0y + u0,

6 tP Oy, Oy, nx0y +udy, 2t0; + 2(p + D)x0y + y0,
7 e Ox, Oy, nx0y + u0y, Oy + x0x

8 Ox, Oy, nx0y + u0y, Or, 2t0; 4+ 2x0x + yOy
k=e"

9 v Oy, Oy, x0x + Oy

10 tP Ox, Oy, xOx + 0y, 2t0; + 2(p + 1)x0x + y0y
11 e’ Ox, Oy, xOx + Oy, Or + x0x

12 Oy, Oy, X0y + Oy, Oy, 2t0; + 2x0y + y0)
k=1Inu

13 v Ox, Oy, fg(t)dt Oy + udy

14, 1P, p#E—1 |9y, 0y, tP0 + (p+ Dudy, 2t9; +2(p + 1)x0y + y0,
14y, ! Oy, Oy, Int Oy + udy, 2t9, + yOy

15 e’ Oy, Oy, €' Ox + udy, 0y + x0x

16 1 Oy, Oy, 10y +udy, 2t0; + 2x0x + y0y, 0

Here n and p are arbitrary nonzero constants

Table 4 The group classification of class (9) up to the G 3 -equivalence

No. g(t) Basis of A™a*

v Ox, Oy, xOx + udy, [g(t)dt Oy + 0,
2 ooy | Ox Oy x0x + udy, tan(wIn )0y + v,

t0; + vxtan(vInt)dy + %yay + v(vx — tan(vInt)u)o,

ﬁz—t Ox, Oy, xOx +u0y, tantOy + Oy, Oy + x tant0x + (x —utant)o,
4, tP Oy, Oy, x0x + 10y, 110y + (p+ 19y, 2t0; + 2(p + 1)x0y + yOy
4p ! Ox, Oy, xOx + u0y, Int Ox + 0y, 2t0; + y0,
5 e! Oy, Oy, X0y + udy, €' 0y + 0y, O + x0,
6 1 Ox, Oy, X0y 4 U0y, t0x + Oy, Oy, 2t0; 4 2x0x + yOy

Here p and v are arbitrary nonzero constants. Moreover p < —1 mod G;, p#E=2

conclude that forms of the basis operators of the maximal Lie invariance algebras
are more cumbersome in Table4.

The links between equations of the form (9) are also more tricky than between
equations from class (7). For example, the equation
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1

U = Uy — ——————UU
" tcosh?(vint)

X

where the variable coefficient can be rewritten as m, admits the
five-dimensional maximal Lie invariance algebra with the basis operators J,, 8_,,,
tanh(v Int)9, + v0,, x0y +ud,, and td, — vxtanh(v1Inr)d, + %yay —v(vx —
tanh(v In7)u)0,. The equivalence of this equation and the equation

iy = 55 — Fy_lﬁﬁ;-
from the same class does not seem obvious. Nevertheless, there exists transformation
from the equivalence group that establishes a link between these equations, which is

u

Fet, Fo= o ' +1), 3 =y
=1, X = —X , =Yy, u = —_
4 Y=y 412

X.
This shows that the distinguishing inequivalent cases of Lie symmetry extensions
for class (9) is also more difficult task than for class (7).

Therefore, the gauging g = 1 is without a doubt the right choice to perform a
group classification for the class (3) and especially its subclass (4).

So, is there a regular way that can help one to indicate which gauging is prefer-
able among several possible ones? Equivalence group appears to be that indicator
showing the right choice of gauging. Indeed, if we compare equivalence groups pre-
sented in Theorems3 and 4 with those adduced in Theorems5 and 6, we can see
that equivalence groups of class (6) and its subclass (7) are of the usual type whereas
equivalence groups of class (8) and its subclass (9) remain to be generalized extended
as the equivalence group of the initial class. Transformations from the generalized
extended groups become point only after fixing arbitrary elements and integrals of
g then naturally appear in the forms of Lie symmetry generators and even in the
classifying equation. This of course makes the calculations more difficult.

Therefore, the widest possible equivalence group should be necessarily found
even before applying Lie invariance criterion to the equations under study in order
to choose the optimal gauging and to optimize the process of group classification.

5 Conclusion

The complete group classification of class (2) is performed using the gauging of
arbitrary elements by the equivalence transformations. We presented classification
lists for the equivalent form of this class, namely, for class (3). The correspondences
between k and K are the following: k = u",n #0, —1, < K = Wtk =u! <o
K=huk=eé"<K=¢€";k=Ilnu<~ K=ulnu.

Application of the widest possible (generalized extended) equivalence groups
allowed us to write down classification lists in an explicit and concise form. We have
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also shown that the equivalence group is that indicator which helps one to choose
the optimal gauging among several possible ones.

The derived Lie symmetries can be now used to to reduce the nonlinear Kol-
mogorov equations (2) to ordinary differential equations and, therefore, for finding
exact solutions. The reductions can be achieved using two-dimensional subalgebras
of the corresponding maximal Lie invariance algebras.

Acknowledgements O.V. would like to thank the Organizing Committee of LT-11 and especially
Prof. Vladimir Dobrev for the hospitality and support. O.V. and Yu. K. also acknowledge the support
provided by the University of Cyprus. The authors express their gratitude to Roman Popovych for
useful discussions.

References

. M. Escobedo, J.L. Vazquez, E. Zuazua, Trans. Amer. Math. Soc. 343 (1994), no. 2, 829-842.
. FJ. Alexander, J.L. Lebowitz, J. Phys. A: Math. Gen. 27 (1994), 683-696.
. G. Citti, A. Pascucci, S. Polidoro, Differential Integral Equations 14 (2001), 701-738.
A. Pascucci, S. Polidoro, STAM J. Math. Anal. 35 (2003), no. 3, 579-595.
. W.I. Fushchich, A.G. Nikitin, Symmetries of Equations of Quantum Mechanics, (New York,
Allerton Press Inc., 1994).
. E. Demetriou, M.A. Christou, C. Sophocleous, Appl. Math. Comput. 187 (2007), no. 2, 1333—
1350.
7. S.S. Kovalenko, I.M. Kopas, V.I. Stogniy, Research Bull. NTUU “KPI” (2013), no. 4, 67-72
(in Ukrainian).
8. V.I. Stogniy, I.M. Kopas, S.S. Kovalenko, Research Bull. NTUU “KPI” (2014), no. 4, 102-107
(in Ukrainian).
9. M.L Serov, S.V. Spichak, V.I. Stogniy, I.V. Rassokha, Research Bull. NTUU “KPI” (2013),
no. 4, 88-93 (in Ukrainian).
10. V. Kumar, R.K. Gupta, R. Jiwari, Chin. Phys. B 23, no. 3, (2014), 030201.
11. L.V. Ovsiannikov, Group Analysis of Differential Equations, (New York, Academic Press,
1982).
12. S.V. Meleshko, J. Appl. Math. Mech. 58 (1994), 629-635.
13. S.V. Meleshko, Nonlinear Mathematical Physics 3 (1996), no. 1, 170-174.
14. N.M. Ivanova, R.O. Popovych, C. Sophocleous, in: N.H. Ibragimov et al. (ed.), Proc. of Tenth
International Conference in Modern Group Analysis (Larnaca, Cyprus, 2004), Nicosia, 2005,
pp- 107-113.
15. O. Vaneeva, O. Kuriksha, C. Sophocleous, Commun. Nonlinear Sci. Numer. Simulat. 22 (2015),
1243-1251.
16. O.0. Vaneeva, R.O. Popovych, C. Sophocleous, J. Math. Anal. Appl. 396 (2012), 225-242.
17. 1.G. Kingston, C. Sophocleous, J. Phys. A: Math. Gen. 31 (1998), 1597-1619.
18. R.O. Popovych, M. Kunzinger, H. Eshraghi, Acta Appl. Math. 109 (2010), 315-359.
19. R.O. Popovych, A. Bihlo, J. Math. Phys. 53 (2012), 073102, 36 pp.
20. PJ.Olver, Applications of Lie Groups to Differential Equations, 2nd edn., (New York, Springer-
Verlag, 2000).
21. N.M. Ivanova, R.O. Popovych, C. Sophocleous, Lobachevskii J. Math. 31 (2010), 100-122.
22. A.G. Nikitin, R.O. Popovych, Ukr. Math. J. 53 (2001), 1255-1265.
23. 0.0. Vaneeva, C. Sophocleous, P.G.L. Leach, J. Eng. Math. 91 (2015), 165-176.

=)}



Thermoelectric Characteristics of 7,
Parafermion Coulomb Islands

Lachezar S. Georgiev

Abstract Using the explicit rational conformal field theory partition functions for
the Z; parafermion quantum Hall states on a disk we compute numerically the ther-
moelectric power factor for Coulomb-blockaded islands at finite temperature. We
demonstrate that the power factor is rather sensitive to the neutral degrees of free-
dom and could eventually be used to distinguish experimentally between different
quantum Hall states having identical electric properties. This might help us to con-
firm whether non-Abelian quasiparticles, such as the Fibonacci anyons, are indeed
present in the experimentally observed quantum Hall states.

1 Introduction: Non-Abelian Anyons and Topological
Quantum Computation

We shall start this section with the question of what non-Abelian statistics is. It is well
known that when we exchange indistinguishable particles the quantum state acquires
aphase e'"®/™ which is proportional to the statistical angle § /7. In three-dimensional
coordinate space this phase can be either O when the particles are bosons, or 1 when
the particles are fermions. In two-dimensional space, however, this restriction is not
valid and the particles can have any statistical angle between 0 and 1, that’s why they
are called anyons. For example, the Laughlin anyons corresponding to the fractional
quantum Hall (FQH) state with filling factor 1/3 have 6, /7 = 1/3.In addition, while
the n-particle quantum states in three dimensions are constructed as representations
of the symmetric group S,,, which are symmetric for bosons and antisymmetric for
fermions, in two dimensions the n-particle states are build up as representations of
the braid group B,,. The non-Abelian anyons are such particles in two dimensional
space whose n-particle states belong to representations of 3, whose dimension is
bigger than 1. In terms of n-particle states this means that the non-Abelian anyons’
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wave functions belong to degenerate multiplets and that the statistical angle § may
be a non-trivial matrix, in which case the statistical phase e’’ would be non-Abelian.

The anyonic states of matter are labeled by fusion paths [1] which are defined as
concatenation of fusion channels and can be displayed in Bratteli diagrams. The
fusion channels are denoted by the index ‘c’ in the fusion process of two par-

g

ticles of type a and b which is denoted symbolically as ¥, X ¥, = > N ¥,
c=1

where the fusion coefficients (N,;)¢ are integers which are symmetric and asso-

ciative [2]. Put another way, a collection of particles {¥,} are non-Abelian anyons

if Nyp© # O for more than one c. As an example we consider the Ising anyons
Yi(z) =0(z2) : eiﬁ@“) : realized in a conformal field theory (CFT) with M/(B X
Ising symmetry, where ¢(z) is a normalized M/(-B boson and o is the chiral spin field
in the Ising CFT model,

oxo=I0+1.

Besides the fact that non-Abelian statistics is a new fundamental concept in particle
physics it is also important for the so-called topological quantum computation (TQC)
[3, 4]. In this context quantum information is encoded into the fusion channels

0y =(0,0)1 <«—> oxo—1
1) =(0,0)y <— o0x0—1,

which s atopological quantity—it is independent of the fusion process details, depend-
ing only on the topology of the coordinate space. Fusion channel is also independent
of the anyon separation and is preserved when the two particles are separated—if we
fuse two particles and then split them again, their fusion channel does not change.
The basic idea of TQC is that quantum information can be encoded into the fusion
channels and the quantum gates can be implemented by braiding non-Abelian anyons.
As an illustration we can consider 8 Ising anyons, which in the quantum information
language can be used to encode 3 topological qubits, and transport adiabatically
anyon number 7 along a complete loop around anyon number 6. Then the 8-anyons

states are multiplied by a statistical phase (Bég'*) )2 = X3 which implements the
NOT gate X3 =1, ® [, ® X on the third qubit [3, 5].

Another promising example of non-Abelian anyons are the Fibonacci anyons
[6] realized in the diagonal coset of the Z3 parafermion FQH states [7, 8] (or, in
the three-state Pots model) as the parafermion primary field e corresponding to the
nontrivial orbit of the simple-current’s action I = {Ag + Ag, A} + Ay, Ay + A3}
e={Ag+ Ay, Ay + Ay, Ag + Ay} with fusion rules

IxI=I Ixe=¢ exe=I+e.
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The information encoding for Fibonacci anyons is again in the fusion channels,
denoted by the field I and € of the resulting fusion, however, this time for triples of
anyons [6]

10) = (e, )1, ©)e
1) = (€. O)c: Oes

and the third state ((e, €)., €)1, having a trivial quantum dimension, decouples from
the previous two and is called non-computational [6].

Given that non-Abelian statistics is a new concept a natural question arises: how
can it be discovered? In the rest of this paper we will discuss, how non-Abelian
statistics might be observed in Coulomb-blockade conductance spectrometry and by
measuring certain thermoelectric characteristics of Coulomb-blockaded islands.

2 Coulomb Island Spectroscopy

Let us consider a Coulomb-blockaded island, which can be realized as a quantum dot
with drain, source and a side gate which is equivalent to single-electron transistor,
like in Ref. [9]. This setup is an almost closed quantum system, which still has
discrete energy levels and is like a large artificial atom but is highly tunable by
Aharonov—Bohm flux and side-gate voltage.

2.1 Coulomb Island’s Conductance—CFT Approach

In this section we are going to use the chiral Grand canonical partition function
for a disk fractional quantum Hall sample to calculate its thermoelectric properties.
In such samples the bulk is inert due to the nonzero mobility gap while the edge
is mobile and can be described by a rational unitary CFT [2, 10, 11]. The Grand
partition function is

Zdisk (T, C) — trHedge e—ﬂ(H—;l,N) — trHsdgs e27TiT(L0—C/24)eZ7Ti<JU , (1)

where H = hh% (Lo - 2‘—4) is the edge Hamiltonian expressed in terms of the zero
mode L of the Virasoro stress-energy tensor (with a central charge c¢), N = —./vy Jy

is the particle number on the edge expressed in terms of the Jy zero mode of the u(1)
current and vy is the FQH filling factor. The trace is taken over the edge-states’
Hilbert space Hegqge Which depends on the number of quasiparticles localized in
the bulk. The temperature 7 and chemical potential y are related to the modular
parameters [2] 7 and ¢ by
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. Ty hvr .M
T=in—, Thy=——, (=i——mr,
T 7TkBL 2’/TkBT

where v is the Fermi velocity at the edge and L is the circumference of the edge.
The CFT disk partition function in presence of AB flux ¢ = eB.A/ h, threading the
disk, is modified by simply shifting the chemical potential [12]

(= CHor, Zig (T, Q) = Zask(T, { + ¢7).

It is interesting to note that the side-gate voltage V, affects the quantum dot (QD)
in the same way as the AB flux [13], through the (continuous) externally induced
electric charge [14] onthe QD —C,V, /e = vy ¢ = Qex, Where C is the capacitance
of the gate.

The thermodynamic Grand potential on the edge is defined as usual as 2(7', ) =
—kpT In Zgisk (7, ¢) and the electron number can be computed as [15]

(Net(9)) 8,y = VH (¢ + Z) + 32 (Fo) 8_(;5 In Zy(T, py) 2)
Similarly the edge conductance in the linear-response regime can be computed by
[15]
e’ 1 T\ 0?
G(p) = — — = )=—=mZ,(T,0)). 3
@)=~ (uﬁw(%) 57 In 2ot )) 3)

There are certain difficulties in measuring QD conductance and distinguishing FQH
states: experiments are performed in extreme conditions (high B, very low T') with
expensive samples. Moreover, there are many doppelgangers [16], i.e., distinct states
with the same conductance patterns with differences in the neutral sector where G
is not sensitive. Under these conditions the sequential tunneling of electrons one-
by-one is dominating the cotunneling, which is a higher-order process associated
with almost simultaneous virtual tunneling of pairs of electrons [14], that will not be
considered here.

3 Thermopower: A Finer Spectroscopic Tool

The thermopower, or the Seebeck coefficient, is defined [13, 14] as the potential
difference V between the leads of the SET when AT = T — T < Ty, under the
condition that / = 0. Usually thermopower is expressed as S = Gr/G, where G
and Gr are electric and thermal conductances, respectively. However, for the SET
configuration Gy — 0 and G — 0 in the Coulomb blockade valleys, so that it is
more appropriate to use another expression [14]
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where () is the average energy of the tunneling electrons. In the CFT approach
using the Grand partition function for the FQH edge of the QD we can express the
average tunneling energy as the difference between the energy of the QD with N 4 1
electrons and that of the QD with N electrons

o Eap™ (@) = Eg" @)
P ™ AN(D)) g — (N(D)) 3 pun

The total QD energy (in the Grand canonical ensemble) can be written as

Ny
EGSY(6) = D Ei + (Herr(9)) .y -

i=1

where E;, i =1, ..., Ny are the occupied single-electron states in the bulk of the
QD, and (---)s , is the Grand canonical average of Hcpr on the edge at inverse
temperature 3 = (kgT)~' and chemical potential . The chemical potentials sy
and py.1 of the QD with N and N + 1 electrons can be chosen as [13]

27TUF

1 1
Un = —EAG, LN+l = EAe, Ae=h

Another important observable is the thermoelectric power factor [13] P which is
defined as the electric power P generated by the temperature difference AT

P =V?/R =Pr(AT)?, Pr=S°G, (4)

where R = 1/G is the electric resistance of the CB island. The average tunneling
energy can be expressed in terms of the CFT averages of the Hamiltonian and particle
number as follows [13]

- (Hcrr () 5.y — (Herr(0)) 5,1y

s = TN s = (N

®)

The electron number average can be computed from Eq. (2) and the edge energy
average can be obtained from the Grand potential £24(T, pn) = —kpT In Z4(T, 1)
in presence of AB flux ¢ as

0R24(T, pn) i 0824(T, pn)

(HCFT(d)))ﬁ,,uN = Q¢(T, /lzN) - T T N au

(6)
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4 7y Parafermion Quantum Hall Islands

The CFT for the Z; parafermion quantum Hall islands (or QDs) contains an electric
charge part u(1) and a neutral part which is realized as a parafermion diagonal coset

[7] .
(M/(B@) su(k)l/EB\su(k)l)
su(k),

The total disk partition function for the Z; parafermion quantum Hall islands [7] is
labeled by two integers / mod k + 2 and p mod k satisfying [ — p < p mod k and
can be written as follows

k—1

Xi,p(T, €) = Z K52 (T, kG k(k +2))ch(Aj—pis + Apis)(T), (7
s=0

where K; (7, k(; k(k + 2)) are the chiral partition functions of the u/(B part while
ch(A, + A,)(7) are the characters of the neutral part of the CFT. The u(1) part
corresponds to Luttinger liquid partition function (with compactification radius R, =

1/m)
o0
Kir Com) = <2 20E) 2nic(n ).
n(r) =

where the modular parameter is related to the temperature

; . 27TUF
g = e—@Ae — eZ'frm'7 Ae=h

and the Dedekind function and Cappelli-Zemba factors [2, 11] are given by

oo
m ()2
nm =g Ja-q", cz=emn'ir,

n=1

The neutral partition function are labeled by a level-2 weight A, + A, with the
condition 0 < p < p < k — 1 and have the form [7]

m.C™" (m—A,)

o0
0)—37 4
chroM=q""7F 3,
:0 m my—

my,ma,..., my—1
1

T Y _olk—o0) _2(k—1)
@ =[]0 =g, A0 =Ty T kia

j=1
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Fig. 1 Conductance peaks (right Y scale) and thermopower (left Y scale) for the Z3 parafermion
FQH state without bulk quasiparticles

where m = (my, ..., my_1), 0 <o < Q <k—1and C~! is the inverse Cartan
matrix for su (k). The coset weight labels are related to o and Q by = Q — o,
p = Q. Using the explicit formulas (5) for the thermopower in terms of the average
tunneling energy expressed in terms of the Grand canonical averages (2) and (6) and
the partition function (7), as well as Eq. (3) for the conductance, we can compute the
thermopower for the Z3 parafermion FQH state. We plot in Fig. 1 the electric conduc-
tance and thermopower as functions of the AB flux ¢, or, equivalently as functions
of the side-gate voltage V,, for the Z3 parafermion FQH state without quasiparticles
in the bulk, i.e., for / = 0 and p = 0. Just like the thermopower of metallic quantum
dots [14], we see in Fig. 1 that the peaks of the conductance precisely corresponds
to the (continuous in the limit 7 — 0) zeros of the thermopower.

Similarly, we can compute from Eq. (4) the power factor Pr for the Z3 parafermion
FQH state without quasiparticles in the bulk (/ =0 and p = 0), which is plotted
together with the conductance in Fig. 2.

5 Conclusion and Perspectives

The thermoelectric characteristics of Coulomb blockaded QDs, such as the ther-
mopower and especially the thermoelectric power factor, appear to be more sensitive
to the neutral modes in the FQH liquid than the tunneling conductance. These could
be used as experimental signatures to identify (non-Abelian) Fibonacci anyons [6],
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Fig.2 Power factor and conductance for the Z3 parafermion FQH state without bulk quasiparticles

which are believed to exist in the vy = 12/5 quantum Hall state. This experimentally
observed FQH state [17] might be a realization of the particle-hole conjugate of the
Z5 parafermion quantum Hall state in the second Landau level with filling factor
vy =3 —k/(k+2)fork =3.

A recent experiment [ 18] demonstrated that the power factor of a Coulomb block-
aded quantum dot might be directly measurable like the observable plotted in Fig. 3c
there. This could allow us to estimate from the experiment the ratio between the Fermi
velocities of the charged and neutral edge modes by comparing with the power factor
profile computed theoretically from the CFT [8]. Finally, this possibility to distin-
guish neutral characteristics of FQH states is bringing a new hope that we could
eventually decide whether Fibonacci anyons are indeed realized in Nature.
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First Order Hamiltonian Operators
of Differential-Geometric Type in 2D

Paolo Lorenzoni and Andrea Savoldi

Abstract We present an alternative approach to the problem of classification of first
order Hamiltonian operators of differential-geometric type in 2D.

1 Introduction

Multi-dimensional Hamiltonian operators of hydrodynamic type have been intro-
duced in 1984 by Dubrovin and Novikov [1]. In two dimensions, they are given
by

.. L. d ii ~ii d ~ij
Pl = g (M)a 4 bkj (u)ufc + g¥ (M)E + bkj (u)u];, (D

where u = (u', ..., u"). In the non-degenerate case g and § define a pair of com-
patible flat (pseudo)-metrics [1-3] and satisfy a set of additional constraints coming
from the skew-symmetry condition and the Jacobi identity [2].

Hamiltonian operators of this kind have been classified up to n = 4 components
[4]. A full classification has also been obtained in some special cases: in the semi-
simple case (that is, when the affinor L; = §* g ; has distinct eigenvalues) [3], and
in the case of a direct sum of Jordan blocks with distinct eigenvalues [4].

In this paper we are going to present an alternative approach to the classification
problem. For simplicity we will consider the case of a direct sum of Jordan blocks
with distinct eigenvalues, providing full details in the cases n = 2, 3.
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1.1 Mokhov’s Conditions Rewritten

The set of relations determining when an operator of the form (1) defines a Hamil-
tonian operator was found by Mokhov (see [2, 3] for further details). Recently, it has
been proved that these conditions can be rewritten in the following form [4]:

Theorem 1 Two flat metrics g and g define a two-dimensional first order Hamil-
tonian operator of hydrodynamic type if and only if the following conditions are
satisfied:

e the contravariant (pseudo)-metric §'* is linear in the flat coordinates of g,
e the Nijenhuis torsion of the affinor L', = g gij vanishes,

e §is a Killing tensor of g: Vgt + Vkgii + vigik = 0.
Moreover, the flatness of g and the above conditions imply the flatness of g.

The classification approach presented in [4] is based on the fact that a pair of
symmetric (constant) bivectors can be reduced to a normal form called the Segre
normal form. The procedure used can be summarized as follows. Working in the
flat coordinates of the first metric g, and setting § = a,/u* + g; (where ;" and g;
are constant), we have that g and go can be fixed using the Segre classification. The
unknowns a;’ can be found imposing first of all the Killing condition, and then the
vanishing of the Nijenhuis torsion.

2 Mokhov’s Relations in a Non Holonomic Frame

We can address the problem of classification in a different way. Let us consider the
case where L is one Jordan block.
As stated in [5] there exists a moving frame e, .. ., €(,) such that:
ik i i
Liegy) = Aep) +€(p1ys
i 0
9ij€p)€lg) = Fpas

where we set efpfl) = 0if p = 1, the metric 9,y = 6, s4+1—4 is the usual constant

anti-diagonal metric and A is the eigenvalue of L. We point out that the frame is not
assumed to be holonomic, which means that

lep), €] = Cpge)- )

Let us now write the Mokhov’s conditions in the non holonomic frame e,
i=1,...,n.
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e Vanishing of the Nijenhuis torsion.
According to [5] the vanishing of the Nijenhuis torsion of L implies that

epm(N) =0, Vp=1,...,n—1. 3)
Using this condition, we obtain

[Leq). Le(j)] — Llew). Legy] — LlLe). eyl + L[eq). e(j] =
= (L — A\D)*[egy, e(jy] — (L — AD)legy, ej—1)] — (L — ADlei—1y, ejy] +

+ lei—1), ej—n] — ey Negi—ny + ey(MNei-1) =
n—2

_ k42 _ KLk n
z ,(C Cij—1 Ci 1j+cl 1,j— 1)e(k) (1]—1+ci—1,j -

- Cifl,j_l)em—l) +cilyjm1em — ei(Neg—1y + ey(Nei-1) = 0.

e Killing condition
In a non holonomic frame, the Christoffel symbols are defined as

fo(me(CI) = F p€s) “4)

and can be written in terms of the coefficients of the commutators [e(,), e4)] and
— i)
of the scalar products 7,, = gije, e, as

s 1 s
qu = 577 Z(thp + Cptg — th[))a (5)

where ¢;;, = 77le . In this context, the Killing condition reads

(ViLE)Ygn + (VLY gom + (Vi LR g = 0. (6)

Multiplying by efp), e’(z), €,» taking the sum over /,m, n, we get, after some
computations

Ve(p, (Lk )el(q;)gkne?r) + (VemL;()eép)gkmel(Z) + (Ve(q)Lﬁ)e?r)gklel(p) =

”'H 4 n+1—r n+1—r n+l—q n+l—q n+l—p
rq 1 +cpq—l +Cq,p—1 +Cr,p—l + p.r—1 + q,r—1

+e(p) ()‘)nqr + e(r)(>\)77pq + € ()\)nrp =0.

e Vanishing of the curvature:

eq)(Iy) = e (Iy) + Iy Ty = Ty Ty + ¢ 1y = 0. 9
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Thus, summarizing we have the following conditions

1. en(N) =0, Vp=1,...,n—1
2. Fori < j:

n—2
k+2 k+1 k+1 k n n
Z(Cij —C i1 —C ;T Ci—l,j—l)e(k) - (ci,j—l TG
k=1
~1
— ¢y j_Dem—1) T ¢y j_1em) — ey (Negi—1y + ey (Nei-1) = 0.
3. Forp<gqg<r:
n+l—p n+l—r n+l—r n+l—q
r,q—1 + Cpg-1 + Cq.p—1 t+ec + Cpr—1

e(p) (MNgr + €y (MN1pg + €y (M1 = 0.

n+l—q
r,p—1

n+l—p

¢ q,r—1

+c +

4. Vanishing of the curvature (7).

Let us know discuss in detail the cases n = 2, 3.

2.1 One?2 x 2 Jordan Block

Let us consider the case n = 2. Applying the previous conditions we obtain
=0, ¢, =ex.
In other words we have the following commutations relation
leqy, e@)] = e@)(Ne).

Applying the definition, let us compute now the Christoffel symbols in the non
holonomic frame. We have

Flll = —e@)(N), F121 =0, Fll2 =0, F211 =0,
Iy,=0,I't=0, I} =exN), I'h=0.

The vanishing of the curvature (7) implies

emy(ey(N) = (6’(2)()\))2, 3
e (e (V) =0. &)

It is a straightforward computation to check that the above condition coincides with
the condition
ey, €] =0,
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for the frame

(Cys €2y = (eqy, e) I, (10)

where J is the orthogonal transformation

1
J = (€<2)(A) 0 )
0 6‘(2) ()\)

Therefore, the new frame e(yy, €y is holonomic. Notice that after this orthogonal

transformation we have
)\ 1
JLI7 =" (cow)’
0 A

In the Mokhov case this is exactly the transformation reducing the affinor to the
Mokhov’s form.
The system given by (8) and (9) for the unknown function f = e, (), written

in the new holonomic frame ¢; = %, reads
of
P r. (11)
of
P 0. (12)

1

The general solution is given by f(ii!) = —
— M1+

= Using (10), one can easily see
1

that
enN) =0, ep\) =1,

which implies A = &> + C».
Notice that up to shifts of @', 5%, L coincides with Mokhov’s example.

Remark 1 The case A = const is trivial. Indeed, the starting frame is already holo-
nomic, and Mokhov’s condition implies L = const.

2.2 One 3 x 3 Jordan Block

Let us consider the case n = 3. In this case applying conditions 1, 2 and 3 we obtain

2 _ 3 _ 3 _ 1 _ 2 1 2 _
cp=cp=cj3 =03 =0, c3=—cp, cj3 = €3N,

1 1
Oy = 56(3>()‘)’ cp = —56(3)()\)
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In other words, we have the following commutations relations

1
ey, el = —56(3)0\)6(1),
leqy e3)] = clzeq) + e (Neg).
1
le), e@)] = —cize) + 7€0) (Neg),

where ¢} is an arbitrary function of u', u?, u?.

Assuming e3)(\) # 0 we can reduce L to the Mokhov’s form by an orthogonal
transformation:

I S i3
e3)(\) 4 (e (V)3
JLJ ' = 1
0 A e (M)
0 O A
1 _ ) _ (c})?
e3)(N) (e3(N)? (e (V)
J = _ _ 0113
0 1 2 (e (V)
O 0 6(3) (/\)

Applying the definition, let us compute now the Christoffel symbols in the non
holonomic frame. We have

1
FIIIZO’ F121=0, F131=0’ F112=_§€(3>(>‘)v F122=0’ F132=0,

F1]3=_C{3» F123=0’ I’%:O, 1’3‘1:0, 1"321=e(3)(>\), F331=0,
Ly =—eaN), I3 =0, I3 =0, Iy =cjy, I =0, I5=0,

1
F213 =0, F223 =0, F233 =0, Falz =0, F322 = _C%s’ F332 = ~e3) (M),

F313:0» F323:0’ F333:C{3- i
The vanishing of the curvature (7) implies
e (eN) = cjzea (), (13)
ey (cly) = %[eo)()\)]z, (14)
eo(ery) = %C}aem()\)’ (15)

e (cr3) = 2lcs). (16)
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It is a straightforward computation that the above condition coincide with the con-
dition

ey, eH] =0,
for the frame

e -1
ey, €2), e3)) = (eqy, ey, e3) J . (17

Thus, again the new frame is holonomic. Using the commutativity conditions and
conditions

6(])()\) = 0, (18)
eoy(N) =0, (19)

we can complete the system (13)—(16) for the unknown functions f = e(3)(\) and
¢ = ¢}, obtaining

1
e (f) =0, e<z><f>=§f2, e (f) =cf,

1 1
em(c) = zfz, ce)(©) = 3¢f,  e() = 2¢%

This system written in the new holonomic frame ¢; = % has the general solution
4i' + C, 2
C= 5> = ———=5-
QCy +u?)? 2C +a?

Finally, using (17)—(19), one can easily see that
enN) =0, epN) =0, ez =1,
and then A = u3 + C;. Up to a shift of @', 7% and @, this result coincides with the

functions providing Mokhov’s solutions.
If )\ is constant we obtain

leay. el =0, [eq). el =ceny, lew),e3]=—cew.
with
eqy(c) =0, en)(c) =0, ea)(c) = 2¢2.
It is easy to check that the frame

~ 1 ~ _1 ~ _3
em =crew, e =C *ew, €3 =C ey
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is holonomic. Using this fact one can prove that ¢ = (&°)* and that

A@EH? 0 001
L={0 X @2, #g=@)*(010
0 O A 100
In the new coordinates ! =i! — (g;f, 0? = —g—z, i’ =—2 we obtain the
formulas
A’ =242 001
L=[ox & ), #H=(|010
00 X\ 100

that coincide with those obtained in [4].
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Exact Solutions for Generalized KdV
Equations with Variable Coefficients
Using the Equivalence Method

Oksana Braginets and Olena Magda

Abstract Using an example of variable-coefficient KdV equations we compare
effectiveness of the “equivalence method” and the “extended mapping transforma-
tion method”. It is shown that the “equivalence method” is more efficient. A formula
for generation of exact solutions for variable-coefficient KdV equations is derived.

1 Introduction

A number of models for different types of wave processes (including gravity waves
and waves in plasma) are reducible to the classical Korteweg—de Vries (KdV) equa-
tion or its generalizations. This explains a great interest of researchers in seeking new
techniques for finding exact solutions of such equations. Unfortunately the majority
of the proposed techniques lead to the equivalent forms of the solutions which are
known already. This is because the equivalence of the models and the corresponding
solutions is not systematically investigated.

In [1] exact solutions for the “general” KdV equations with variable coefficients
of the form

up = IMy(Duuy + y(Ourxr + 280U + (t) + BE)x)uy =0, (D
with M~ # 0 were constructed using the so-called extended mapping transformation

method. Here «, 3 and -y are arbitrary smooth functions of the variable ¢ with v #~ 0
and M is a nonzero constant.
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In this paper we would like to show that the equivalence transformations are much
more efficient tools for finding exact solutions for this model.

2 Derivation of the Solution Formula via
the Equivalence Method

It was shown in [2] that any equation from the class (1) is reduced to the standard
KdV equation
—6uuz +uzzz =0 )

by a point transformation (see Example 4 therein). We derive the most general form
of this transformation, that is

i=4d /’y(t)e‘” YOt gt 4 6 3)

= _ 6]g_j-f3(t)dtx +/ ji([)dt 5 ’y(t)e 2] B(t)dt (S]Oé(l‘))dl‘ + 53’ (4)
i = zfﬂ(t)dr &
- 2 37
251 60

where ¢;, j =0, 1, 2, 3, are arbitrary constants with J; 7 0. Then the formula for
the generating solutions of Eq. (1) from solutions of the Eq. (2) has the form

25% =2 [Bwdt | ~ (7 = )
u= ﬁe [u (t,x) + 6_5f:| , 5

where i is an exact solution of the Eq.(2) and the variables 7 and X should be
replaced by expressions (3) and (4), respectively. See a collection of solutions of the
KdV equation (2), for example, in [3].

Using (5) one can construct a number of exact solutions (of different types!) for
equations from the class (1). For example, the two-soliton solution of (2) has the
form

2
iz 1 (1 + by T AT L pe® T L A byel@tai- <“1+“z>f)
8x

2
where ay, ay, by and b, are arbitrary constants, A = (%) . This solution leads to

the following solution of the Eq. (1):

5 =2 [ B)dt | 62 9 (2 01+
i — — —In(1 b 1 bre”? Ab. b 146> ,
3 5] 3 Il( + bre’t + bre’* + 102€ )
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2
where ay, a,, by and b, are arbitrary constants, A = (Z:%Zf) ,

9,' = aiéleffﬂ(’)d’x + Ci 4+
+a; / e~ o ((52 — a}s})y(r)e 2 P 51a(t)) dt,

where ¢; = a;03 — al.350 are constants, i = 1, 2. Using the formula (5) one can con-
struct multi-soliton, rational, “one-soliton+one-pole” solutions and, of course, solu-
tions in terms of Jacobi elliptic functions for equations from the class (1) from known
solutions of the classical KdV equation.

Concerning the method suggested in [1], it is based mainly on seeking “new
general solutions” of first-order ordinary differential equation

¢* =ao+a1¢ + ad® + azd’ + asg?,

where ¢ = ¢(&) is the unknown function and @;, i =0, ..., 4, are constant para-
meters. It is well known for a long time that solutions of such equations can be
expressed in terms of Jacobi elliptic functions (which are reduced for some values of
parameters to trigonometric, hyperbolic or rational functions) [4]. Note that seeking
solutions of this equation in the form (4) of [1] does not provide new solutions but
only equivalent forms of known solutions. This is a common error in finding exact
solutions described in [5]. Consider for simplicity the trigonometric solution found
in [1] (see Case 3). It can be checked by direct substitution that in fact this is a
solution only for r = =£1. Thus, consider the particular solution

1+4siné

¢= 1 +sin€ cosé

(6)

of the equation ¢? = 1 (1 —2¢ + 2(;52)2 . This is the equation appearing in Case 3
of [1] for » = =£1. Its general solution is

e e
1 C 1 sin =5= COs >5—
=~ 1:|:tan€L — 122 " 2
2 2 2 cos 3€ cos £5€

_ lcos§+cosC £sin £sinC

2 cosé +cosC

bl

where C is an arbitrary constant. If we set C = 7/4 and perform the shift of the vari-
able £ on —m /4 then, taking into account that sin(§ — 7/4) = V2(sin € — cos x) /2,
cos(E — m/4) = /2(sin & + cos ) /2, we get exactly (6) with the positive sign of
cos&. The solution (6) with the negative sign is equivalent to that with the pos-
itive sign up to the reflection & — —¢ and the simultaneous shift on 7 since
cos(m — x) = —cos & and sin(m — x) = sin&.
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Consider one more equation on ¢ presented in [1], i.e., the equation

29> + (1 —m)(1 —2¢)) (2¢* + (1 +m)(1 —2¢)) .

Bl—

¢/2 —

Using the “improved method” particular solutions of this equation were constructed
in the form

B en(, m) _ en(§, m)
~ +14sn(, m) +cen(,m)’ ¢= +1 Fsn(é, m) +cen(é, m)’

¢

whereas its general solution can be represented as

1 1 é
== rs ~ Cs q )
o 5 + 25sn(2§+ m)
where C is an arbitrary constant, § = m + v/m? — 1 and 1 = (1 + 8m?*(m? — 1) +

Am@2m? — DV/m? — 1)~ > Formulas for various connections between Jacobi elliptic
functions can be found, for example, in [6].

3 Conclusion

In this paper we have shown that each equation from the class (1) is similar to the
classical KdV equation (2) with respect to a point transformation. For such equations
the equivalence-based approach [2, 7] works much better than other existing meth-
ods since it allows one to use the variety of known solutions of the classical KdV
equation. Moreover, we have also shown that the “extended mapping deformation
method” cannot provide new solutions but only equivalent to known ones. When
one deals with variable coefficients KdV or mKdV equations it is necessary to check
firstly whether equations under study are reducible to the classical KdV or mKdV
equations. The corresponding criteria are given, e.g., in [2] in the course of the study
admissible transformations (called also form-preserving or allowed transformations,
see definitions in [8—10]) within the classes

u+ fOuuy + g(O)urxx +h(Ou + (p(t) + q@)x)uy + k()x +1() =0
and

ur+ fOUuy + §Ouer +h(Ou+ (p(t) + q(O)x)uy + k(Huuy +1(t) = 0.

Acknowledgements O.Braginets (née Kuriksha) is grateful to the Organizing Committee of LT-11
for the hospitality and support.
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Part IV
Representation Theory



Classifying A 4(\) Modules by Their
Dirac Cohomology

Pavle Pandzié¢

Abstract This talk is a preliminary report on the joint work with Jing-Song Huang
and David Vogan. The main question we address is: to what extent is an A, ()
module determined by its Dirac cohomology? The focus of the talk is not so much
on explaining this question and its answer, which are mentioned briefly at the end.
Rather, the focus is on introducing the whole setting and giving some background
material about representation theory, especially the notion of Dirac cohomology.

1 Real Reductive Groups and Their Representations

1.1 Real Reductive Groups

A Lie group G is called reductive if its complexified Lie algebra g is reductive, i.e.,
g is the direct sum of its center and simple ideals. We are interested in connected real
reductive Lie groups G, with Cartan involution #, such that K = G? is a (maximal)
compact subgroup of G.

The main examples of G, which are sufficient for our purposes, are closed sub-
groups of GL(n, C), stable under 6(g) =' g~—'. For example, G could be SL(n, R),
U(p,q), Sp(2n,R), or O(p, q)o. (Here the subscript 0 denotes the connected
component of the identity.) The corresponding K are SO (n) C SL(n,R); U(p) x
U(g) CU(p,q); U(n) C Sp(2n,R); (O(p) x O(g))o C O(p, q)o-
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1.2 Representations

A representation of G is a complex topological vector space V with a continuous
G-action by linear operators. More precise definitions would require that the action
map

GxV—->YV

be continuous, or that the map
G — GL(V)

be continuous, where GL(V) denotes the groups of invertible continuous linear
operators on V equipped with strong topology. These conditions are equivalent under
reasonable assumptions on V.

Group representations are the main objects of harmonic analysis and have many
applications.

1.3 (g, K)-Modules

To study algebraic properties of representations, it is convenient to introduce their
algebraic analogs, (g, K)-modules. For a representation V of G, let Vk be the space
of K-finite vectors in V/, i.e., the space of vectors v € V such that the span of Kv is
finite-dimensional. The space Vi has an action of the Lie algebra gy of G. Namely,
one can show that each K -finite vector satisfies an elliptic differential equation, so it
is in particular smooth. This implies that one can differentiate the G-action to obtain
an action of go on such vectors. Thus the complexified Lie algebra g = (go)c also
acts on V.

A (g, K)-module is a vector space M with a Lie algebra action of g and a locally
finite action of K, which are compatible, i.e., induce the same action of €, the Lie
algebra of K. A typical example is M = Vi as above.

Any (g, K)-module M can be decomposed under K as

M = @ M5E5.

sek

Here K denotes the set of (isomorphism classes of) irreducible finite-dimensional
representations of K, and for each § € K , E; is the space of d and m; is the multi-
plicity of § in M. All § with ms > 0 are called the K -types of M. The existence of
such a decomposition is one of the basic properties of locally finite representations
of compact groups.

M is a Harish-Chandra module if it is finitely generated and all m; are finite.
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1.4 Example: G = SU(1,1) = SL(2, R).

The complexified Lie algebra of G is g = s[(2, C), consisting of 2x2 matrices of
trace 0. g has a basis

10 01 00
= (00) =) = (0)
The possible irreducible (g, K)-modules can be described by the following pic-
tures:

Lokt 2kid. (1)
o k—4—k-2 @)
:n —n.+2 ; 3)
Cilaiienll @

where k > 0, n > 0 and i are integers.

Each dot represents a K-type, which is in this case simply a one-dimensional
h-eigenspace. The numbers are the h-eigenvalues. e raises the eigenvalue by 2, and
f lowers it by 2.

Each of the first three pictures determines a unique irreducible (g, K)-module.
There are however many non-isomorphic modules corresponding to the fourth pic-
ture. In order to distinguish between them, one can use the concept of infinitesimal
character which we introduce below.

1.5 Infinitesimal Character

Let U (g) be the universal enveloping algebra of g, i.e., the associative algebra with
unit, generated by g, with relations

xy —yx =[x, y], X,y €g.
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Let Z(g) be the center of U(g). By a version of Schur’s lemma, all z € Z(g) act as
scalars on any irreducible (g, K)-module M. This defines the infinitesimal character
of M, xu : Z(g) — C.

Harish-Chandra proved that Z(g) = P(h*)V, where P (h*) denotes the algebra
of polynomial functions on the dual of a Cartan subalgebra fj of g, and W is the Weyl
group of (g, h), a certain finite group generated by reflections. In typical matrix
examples, h can be taken to consist of diagonal matrices in g, and W acts on h* by
operations like permuting, or changing signs, of coordinates.

Since any character of the polynomial algebra P (h*) is given by evaluation at an
element of h*, it follows that infinitesimal characters correspond to the elements of
b/ w.

The simplest nontrivial element of Z(g) is the Casimir element

Casg = Z b,‘d,‘,

where b; and d; are dual bases of g with respect to the (slightly modified) Killing
form B. For semisimple Lie algebras, the Killing form is defined by

B(x,y) =tr(ad x ad y), X,yEgQ

and if g has a center, B can be modified on the center in order to get a nondegenerate
form. For matrix groups, another choice is to take

B(x,y) =tr(xy) x,y€g.
For g = s1(2, C), Z(g) consists of polynomials in
1
Casy = Eh +ef + fe.
The infinitesimal character of an irreducible module M can thus be determined from
the scalar by which Casg acts on M. To complete the list of irreducible modules in
Sect. 1.4, one shows that for each complex A which is not an integer of the same

parity as i + 1, there is a unique module corresponding to the picture (4) on which
Casg acts by A%

2 Dirac Operators and Dirac Cohomology

2.1 The Clifford Algebra for G

Let g = £ @ p be the Cartan decomposition. Here £ and p are the 1 eigenspaces
of the Cartan involution, which was already mentioned as an involution of G, but
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now it is differentiated and complexified to get an involution of g. Note that € is the
complexified Lie algebra of K.

The Clifford algebra C(p) of p with respect to B is the associative algebra with
unit, generated by p, with relations

xy 4+ yx = =2B(x, y).

2.2 The Dirac Operator for G

Let b; be any basis of p and let d; be the dual basis with respect to B. The Dirac
operator for G is defined by the formula

D=3 b®d cU@®CH).

It is easy to see that D is independent of the choice of b;, and K-invariant for the
adjoint action on both factors.

This Dirac operator was introduced by Parthasarathy [21] in order to construct
the discrete series representations. He also proved that D? is the spin Laplacean:

D? = — Casy ®1 + Casy, + constant.

Here Casg respectively Casg, are the Casimir elements of U (g) respectively U (£4),
and £, is the diagonal copy of £ in U(g) ® C(p), defined by &€ — U(g) and
t — so(p) — C(p).

2.3 Dirac Cohomology

Let M be a (g, K)-module, and let S be a spin module for C(p). Recall that § is
constructed by choosing a pair of dual maximal isotropic subspaces p™ and p~ and

putting
s=/A».

with p* acting by wedging and p~ by contracting. If dim p is even, thenp = pT @ p~,
so this completely determines S, and one shows that S is the unique simple C(p)-
module. If dim p is odd, there is an element Z of p such that B(Z, Z) = 1, and such
that p = p* @ p~ @ CZ. In this case there are two ways to make Z act on S: either
by i on A= p* and by —i on A\°*p*, orby —i on A" p* and by i on A°*p*.
This gives two non-isomorphic C(p)-modules, both of them simple, and these two
are the only simple C (p)-modules. They are both called spin modules.
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Now we consider M ® S as a module for the algebra U (g) ® C(p) in the obvious
way. In particular, the Dirac operator D acts on M ® S. Following [28], we define
the Dirac cohomology of M as

Hp(M) =ker D/Im D Nker D.

Then Hp (M) is a module for the spin double cover K of K.

Suppose M is unitary, i.e., there is a Hermitian inner product (, ) on M such that
K acts by unitary operators and the real Lie algebra gy of G acts by skew-Hermitian
operators. Then there is a natural Hermitian inner product on M ® S such that D is
self adjoint with respect to this inner product. It follows that

Hp(M) = ker D = ker D>.

Furthermore, D? > 0. The last inequality is called Parthasarathy’s Dirac inequality
and it was proved in [22]. It is a very useful necessary condition for unitarity, and it
was used in several classification results.

2.4 Example: G = SU(1,1) = SL(2,R)

The modules corresponding to pictures (1)—(3) have Hp # 0. For each such M,
Hp(M) consists of K -types corresponding to the highest weight+-1 and/or the lowest
weight—1.

The modules corresponding to picture (4) all have Hp = 0.

2.5 Vogan’s Conjecture

Let h = t & a be a fundamental Cartan subalgebra of g (i.e., tis a Cartan subalgebra
of £). View t* C h* via extension by 0 over a.

The following result was conjectured by Vogan [28], and proved by Huang-
Pandzi¢ [6].

Theorem 1 Assume M has infinitesimal character and Hp(M) contains a K -type
E., of highest weight y € t*.
Then the infinitesimal character of M is v + pe up to the Weyl group of (g, b).
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2.6 Motivation

Irreducible unitary M with Hp # 0 are interesting:

e discrete series representations (implicit in [21]);
e many of the A, () modules [10];

e unitary highest weight modules [9, 11];

e some unipotent reps [2, 3];

e also finite-dimensional modules [10, 17].

The study of Dirac cohomology is related to the unitarity problem, for example
through Dirac inequality and its improvements. Furthermore, irreducible unitary M
with Hp # 0 should form a nice part of the unitary dual. Dirac cohomology is
also related to classical topics like generalized Weyl character formula, generalized
Bott—-Borel-Weil Theorem, construction of the discrete series representations, and
multiplicities of automorphic forms. See [8] for details.

There are connections between Dirac cohomology and n-cohomology in spe-
cial cases [9], and to (g, K)-cohomology [10] (more details below). There are also
relations to characters and branching problems [12]. Furthermore, there are several
generalizations to other settings:

quadratic subalgebras [17], with D replaced by a cubic version [5, 16];
certain Lie superalgebras [7];

affine Lie algebras [14];

graded affine Hecke algebras and p-adic groups [4];

noncommutative equivariant cohomology [1, 18].

It is also possible to construct reps with Hp # 0 via “algebraic Dirac induction”
[20, 23, 24]. Finally, there is a translation principle for the Euler characteristic of
Hp, i.e., the Dirac index [19].

2.7 (g, K)-Cohomology

Let X bea (g, K)-module with the same infinitesimal character as a finite-dimensional
module F. The (twisted) (g, K)-cohomology of X is the space H(g, K; X) =
Ext, g (F, X).

If X is unitary, then

H (g, K; X) = Homg (Hp(F), Hp(X)).

(Or twice this if dim p is odd.) See [10] for details and explanations.
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3 A4(A) Modules

3.1 Definition of Aq(\) Modules

Let g = [ @ u be a f-stable parabolic subalgebra of g, i.e., the sum of nonnegative
eigenspaces of ad(H ), where H is some fixed element of it (recall that hy = to @ ag
is a fundamental Cartan subalgebra of gg). The Levi subalgebra [ of q is the zero
eigenspace of ad(H), while the nilradical u of q is the sum of positive eigenspaces
of ad(H). We choose positive roots for (g, h) and for ([, h) so that

AT(g) =AT(HUA®W).

As usual, we denote by p the half sum of roots in AT (g), etc.

The Levi subalgebra [ of q is real, i.e., [ is the complexification of a subalgebra
lp of go. Let L denote the connected subgroup of G corresponding to [y. Let A € [*
be admissible, i.e., A is the complexified differential of a unitary character of L
satisfying the following positivity condition:

(a, Al¢) =0, forall a e A(u).

Then A is orthogonal to all roots of [, so we can view A as an element of h*.
Aq4(X) modules can be defined by the following result of Vogan and Zuckerman
[29].

Theorem 2 ([27, 29]) Let q be a 0-stable parabolic subalgebra of g and let X € h*
be admissible as above. Then there is a unique irreducible unitary (g, K)-module
Aq () with the following properties:

(i) The restriction of Aq()) to € contains the representation with highest weight
w(g, A) = ¢ + 2p(u N p), where p(uN p) denotes the half sum of (positive) roots
inunp;

(ii) Aq(\) has infinitesimal character \ + p;

(iii) If the representation of € occurs in Aq(N), then its highest weight is of the
form

pa N+ D naB ©)

BeA(unp)

with ng non-negative integers. In particular, i1(q, \) is the lowest K -type of Aq(\)
(and its multiplicity is 1).

Vogan and Zuckerman proved in [29] that every irreducible unitary module with
nonzero (g, K)-cohomology is an Aq(A) module. More generally, it is proved in
[25] that any irreducible unitary module with strongly regular infinitesimal character
is an A4(\) module. In particular, any unitary module with the same infinitesimal
character as a finite-dimensional module is an A4(\) module.
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3.2 Construction of Aq(X\) Modules

The module A4()) is constructed by the so called cohomological induction, starting
from the one-dimensional ([, L N K)-module C), on which any x € [ acts by the
scalar \(x). This module is now shifted by the one-dimensional ([, L N K)-module
/\top u. From here, there are two versions of the construction. In the first version,
we define a g-action on Z = C, ® A'® u by letting u act by zero, and consider the
produced (g, L N K)-module

Homy ) (U (9), Z) LAk —finite>

with naturally defined actions. One now applies the derived Zuckerman functor in the
middle degree to obtain a (g, K)-module. (The Zuckerman functor roughly speaking
extracts the K -finite part of a (g, L N K) module, but this is very often zero, so one
needs to use derived functors.)

The other construction is to first make Z into a g-module by letting u act by zero,
then consider the induced (g, L N K)-module

U(g) ®ua Z,

and finally apply the derived Bernstein functor in the middle degree. (The Bernstein
functor is similar to the Zuckerman functor, it is defined by a dual construction.)

3.3 Dirac Cohomology of Aq(\) Modules

As shown in [10], A4(A) has nonzero Dirac cohomology precisely when 6A = A,
and in this case the Dirac cohomology is given by the formula

Hp(Aq)) = @ 2 E, 01 -
weW(l,t)!

Here as before, ) = t @ a is a fundamental Cartan subalgebra of g. Positive root
systems for (g, b), (g, t), (£, t) and (I, t) are chosen in a compatible way, and p and
pe are the half sums of positive roots for (g, h) respectively (€, t). W([, t)! consists
of the elements of the Weyl group W ([, t) which take the dominant [-chamber into
the dominant [ N £-chamber. For each integral p € t*, E,, denotes the K -type with
highest weight p.
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3.4 Question

Is an A4()\) module uniquely determined by its Dirac cohomology? More precisely,
suppose that q and ¢’ are #-stable parabolic subalgebras of g such that the semisimple
parts of the real forms of the Levi subalgebras [ and [’ have no compact factors.
Assuming that Hp(A4(N\)) = Hp(Ag (X)), can we conclude thatq = q"and A = \'?

This question arises in the study of elliptic tempered characters (Huang). It is also
a natural classification question. Furthermore, it is related to Dirac induction and the
issue of reconstructing modules from their Dirac cohomology.

3.5 Answer [HPV]

Yes, if the real forms of [ and " do not have factors s0(2n, 1), sp(p, ¢) or the nonsplit
fa. In particular, the answer is always yes if g is of type A, D, E or G. It is also always
yes if (g, £) is Hermitian.

The question boils down to the issue whether W (I, t)! generates W (I, t). The
answer involves the study of modifications of Vogan diagrams by simple noncompact
reflections.

3.6 Example: gg = so(2n, 1)

Foreachk =1, ..., n, thereis a f-stable parabolic subalgebra q; with the semisimple
part of the real form of the Levi factor equal to so(2k, 1).

The modules Ag, (0) are different, but they all have the same Dirac cohomology,
consisting of two K -types, with highest weights

1 31 1 3 1
n——,...,—, — and n——=,...,—,—— 1.
2 22 2 22

(We are using the usual coordinates.)
There are also two discrete series representations with infinitesimal character p,
each with a single K-type in the Dirac cohomology.

Acknowledgements The author was supported by grant no. 4176 of the Croatian Science Foun-
dation and by the Center of Excellence QuantiXLie.
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B-Orbits in Abelian Nilradicals of Types B, C
and D: Towards a Conjecture of Panyushev

Nurit Barnea and Anna Melnikov

Abstract Let B be a Borel subgroup of a semisimple algebraic group G and let m
be an abelian nilradical in b = Lie(B). Using subsets of strongly orthogonal roots in
the subset of positive roots corresponding to m, D. Panyushev [1] gives in particular
classification of B—orbits in m and m* and states general conjectures on the closure
and dimensions of the B—orbits in both m and m* in terms of involutions of the Weyl
group. Using Pyasetskii correspondence between B—orbits in m and m* he shows
the equivalence of these two conjectures. In this Note we prove his conjecture in
types B, C,, and D,, for adjoint case.

1 Abelian Nilradicals and Panyushev’s Conjecture

1.1 Minimal Nilradicals

Let G be a semisimple linear algebraic group over C and let g be its Lie algebra. Let
B be its Borel subgroup and b = Lie(B). Let g = n @ h & n~ be its corresponding
triangular decomposition, where b = n @ . B acts adjointly on n. For x € n let B.x
denote its orbit.

Since the description of B—orbits in n immediately reduces to simple Lie algebras
in what follows we assume that g is simple.

Let R be the root system of g and W its Weyl group. For o € R let s, be the
corresponding reflection in W.

Let R™ (resp. R™) denote the subset of positive (resp. negative) roots. For o € R let
X,, denote the standard root vector in g so thatn = @ CX,.Let A = {a;}_, C R"

Q€RT
be a set of simple roots. Let 6 be the maximal root in R™.
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Recall that any standard parabolic subgroup P of G is of the form P =L x M
where L is a standard Levy subgroup and M is the unipotent radical of P. If Ry, is the
root system of [ = Lie(L) then A, = ANR;. Let Wp denote Weyl group of [. Let
w be the longest element of Wp.

P is maximal if and only if Ay = A\ {oy}. We will write Py, = P, M,, = M,
Ry, =R, R} = R} and W,, = Wp in this case. We put E:,» = RY\ R} .Putm,, =
LieM,,) = @ CX,.

aeﬁl
A nilradical m is abelian if and only if m = m,, andin§ = _ kja; one has k; = 1
Jj=1

(cf. [1] for details).

1.2 Strongly Orthogonal Sets and B—Orbits in
Ans By, Cyy Dy

A set S C R* is called strongly orthogonal if o & 3 ¢ R for any «, 3 € S. Given
k

a strongly orthogonal set S = {3;}*_, put o5 := [] s5,. Note that this is an involu-
i=1

tion. As it is shown in [1] each B—orbit in an abelian nilradical m,, has a unique

representative of form > X, where S C E:,- is strongly orthogonal.

aeS
We choose the following root systems:

InA,: R ={e; — ei}izizgjznt1, R ={ej — eili<icjznt1, A ={eix1 —e}l:
InC,: R ={%(e; £ e)}i<icjen U{E2e;},, RT = {ej L ei}1<icj<n U {2e}l;,
A =2y, eip1 — el

e InB,: R={%(¢ejLe)}i<icj<n U{xe )|, R ={ej L ei}i<icjen U {e},.
A={er, e — el

InD, : R={£(ej £ e)}i<icj<n, RT = {ej £ ei}1<icjzn,

n—1
A={es+er, e —e)_,.

We call roots oo =¢j £ e; or o = ¢;(2¢;), B =e; e, or 3 = ex(2ex) disjoint if
{i,j}n{k, 1} = 0.

In A, and C, the roots «, (3 are strongly orthogonal iff they are disjoint. In these
two cases, (as well as in D,,) root vector X,, is of nilpotency order two. As it is shown

in [2, 3] in theses two cases each B—orbit of nilpotency order two in n has a unique
k

representative of the form > X3 where {ﬂi}le C R™ is a strongly orthogonal (i.e.
i=1

pairwise disjoint) set. On the other hand, each involution of W can be written as a

(commutative) product of pairwise disjoint reflections in the unique way, so there is

a one-to-one correspondence between the strongly orthogonal sets and involutions

of W so that B—orbits of nilpotency order 2 are indexed by involutions in these two

cases.
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As for the cases B, and D, there is no bijection between B—orbits of nilpotent
order 2 in n and involutions of W because of two reasons. First of all, a root vec-
tor X,, in B, and a sum of strongly orthogonal root vectors Xej—e; + Xeite; (roots
e; — e; and e; + e; are strongly orthogonal in s0,,) are matrices of nilpotency order 3
both in B,, and D,,. The second obstacle is that different sets of strongly orthogonal
roots correspond to the same involution in W, for example, oo, ¢+e;) = Tlere;)
but X, + X+ and X, + X,, are representatives of different B—orbits (of nilpo-
tency order 3) in B,. Exactly in the same way oy, ¢, ¢,.¢;) i connected to 3 different
strongly orthogonal sets in D, namely {e,, — e,, e;, + €5,, €, — €s,, €1, + €5,} where
{s1, 82,11, 12} = {i,j, k, [} and s, < t, forr = 1, 2 (and additional 7 different strongly
orthogonal sets in B,) and the corresponding sums of roots are representatives of
different B—orbits (of nilpotency order 3). However when we restrict ourselves to
abelian nilradicals there is a bijection between the sets of strongly orthogonal roots
in R and subset of involutions of W so that B—orbits are indexed by involutions
1ns1de abelian nilradicals in the unique way. Some of these orbits are of nilpotency
order 3.

1.3 Abelian Nilradicals in A,,, B,,, C,,, D,

Abelian nilradicals in A,,, B,, C,, D, are (cf. [1], for example for the details).

(1) In sl, any m,,,, _, is abelian so that there are n — 1 abelian nilradicals. They

are of the form
Moy j—er = @ (CXej—e,

1<i<k<j<n

One can see at once that in this case m,,,, ., is a subspace of matrices of
nilpotency order 2 and respectively all B—orbits there are indexed by sets of
pairwise disjoint roots {e; — e; }i' | where iy < k and j, > k + 1 for any s :
1<s<m.

(i1) In sp,, the abelian nilradical is unique and it is

Mo, = 6}9 (1Xq+m &)€£9¢:Xéa

1<i<j<n

Again this is a subspace of matrices of nilpotency order 2, so that all the B—orbits
there are indexed by sets of pairwise disjoint roots {Zelj} 1 Uler +¢, 1.
(iii) In s0y,4 the abelian nilradical is unique and it is

n—1 n—1

men_en—l = @ CXe/x_el @ @ CXE;H'eI ® CXen .

i=1 i=1



402

(iv)

N. Barnea and A. Melnikov

By [1]1{Xe,, Xe,+e¢;» Xey—e; + XenJre,.}:.:ll is the set of the (unique) representatives
of B—orbits in the form of sums of strongly orthogonal root vectors. Note that
the corresponding set of involutions {s,, Se,+e; sguse,.};.“:_l1 is defined uniquely
on this subset.

In so,, there are 3 abelian nilradicals; two of them are isomorphic, namely,

Me,—¢, = My, 4o, . It is enough to consider

Meyte = @ CX@_,’+€:‘

1<i<j<n

This is the subspace of matrices of nilpotency order 2 and a B—orbit in it has
a unique representative in the form > " X, +e;, Where {e; +e; }{_, is a set of
pairwise disjoint roots.

The third nilradical is

n—1

n—1
men_en—l = @Xen_ei @ @Xeﬁ—e,w
i=1

i=1

By [1] {Xe,+e;» Xey—e; + XenJrei}f,’:’l1 is the set of the (unique) representatives of
B—orbits in the form of sums of strongly orthogonal root vectors. Note that the
corresponding set of involutions {s., +,, Se,,se,-}:'lz_ll is defined uniquely on this
subset.

In particular, as we see, all B—orbits in an abelian nilradical for A,,, B,,, C, and D,, are

indexed by strongly orthogonal subsets in E;. For a strongly orthogonal set S C I_QZ
put Bs := B.( > X,).

14

aeS

Panyushev’s Conjecture

To formulate the conjecture we need the following notation. For w € W put £(w)
to be its length, that is £(w) := #{ao € Rt : w(«a) € R™}. For a strongly orthogonal
set S let #(S) denote its cardinality. Let < denote Bruhat order on W.

Respectively, for (coadjoint) B—orbits in m}, Panyushev shows that they are
labeled by the same strongly orthogonal sets S and we denote them by B.

Conjecture 1 (Panyushev) Let m,, be an abelian nilradical in a simple g, and W,,
be the corresponding Weyl group. Let W denote the longest element of W,,.
Let S, S C E;r be strongly orthogonal and let 0 = 0g, 0’ = og. Then

(i)
(ii)

Bs C Bs if and only if Wow < wo'w.
dim BS — Z(waw)er#(S) .
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Respectively, for coadjoint orbits one has

(i*) Bs C B*s ifand only ifo < o’
(ii*) dimBY = {23¥S),

Panyushev shows, using Pyasetskii correspondence that these two conjectures are
equivalent.

Taking into account that by [4] for B—orbits 1, B’ one has B’ is in the boundary
of B iff codimzB’ = 1 the part (ii) of the conjecture follows straightforwardly from
part (7).

In cases of A,, and C, both adjoint and coadjoint B—orbits of nilpotency order 2
are indexed by involutions [2, 3, 5, 6] and by [5, 6] for involutions o, ¢’ € W one
has B} C B*, if and only if ¢ < ¢’ so that the conjecture is a private case of a more
general phenomenon.

As for B, and D, we were informed by M. Ignatyev that general description
of inclusions of coadjoint B—orbit closures of nilpotent order 2 is not given by
restriction of Bruhat order to involutions. We think that this happens because of the
same difficulties with bijection between the strongly orthogonal sets and involutions
that are described above.

For adjoint orbits in A, and C,,, in general, the combinatorial order on involutions
defined by the inclusion of B—orbit closures of nilpotency order 2 is not connected
to Bruhat order. However, for B—orbits in an abelian nilradical the conjecture is
obtained as a straightforward corollary of [2, 3].

In this Note we reprove the conjecture for A, and C, and prove it for B, and
D,, for adjoint case. We also provide a simple combinatorial expression for £(o) for
involutions in S,,, W¢, and Wp,. To do this we introduce link patterns. May be the
expression can be obtained from the results of F. Incitti and is known to experts, but
we have not found this result in the literature.

2 Link Patterns and ¢(o) for the Weyl Group

Recall that Weyl group of s, is S, and its action on roots is obtained by extend-
ing linearly w(e;) = ey). Weyl group W, of either sp,, or s0z,4 is a group
of maps from {—n, ..., —1,1,..., n} onto itself symmetric around zero, namely
i+ j & —ir> —j and its action on roots is obtained by extending linearly
w(e;) = sign(w(i))ejy . Finally, Weyl group Wp, is a subgroup of W¢, of maps
sending even number of positive numbers to negative numbers. It acts on roots
exactly in the same way as Wp, .

A link pattern on n points with k arcs is a graph on n (numbered) vertexes (drawn
on a horizontal line) with k disjoint edges {(is,js)}if:1 (that is, {ig, js} N {i;,j;} =0
for 1 < s # t < k) drawn over the line and called arcs. Vertex f ¢ {ij, jx}f:1 is called
a fixed point.

A strongly orthogonal set {e;, — eiy}le in sl, (or corresponding involution in
S,) can be drawn as a link pattern on 1, ..., n with edges {is, js}le; respectively
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a strongly orthogonal set in C, (or corresponding involution in W¢,) can be drawn
as a link pattern symmetric around zero on —n, ..., —1, 1, ..., n where 2e; corre-
sponds to arc (—i, i) and ¢; & ¢; for 0 < i < j < n corresponds to two arcs (Fi, j)
and (%i, —j). Respectively, for an involution of W¢, to be an element of Wp, we need
the even number of cycles of type (—i, i) so that it can be drawn as a link pattern on
—n,...,—1,1,..., n symmetric around zero with even number of arcs over zero.

Given a strongly orthogonal set S = {e;, —¢; }iL, (resp. S = {e;, F e, }i (U
{ex, }i)) let Ps be the corresponding link pattern. Let |S| denote the number of
arcs in Ps. Note that in case of 5[, one has #(S) = |S]; in case of C, or D,, one has
#(S) < |S| < 2#(S) (depending on the roots).

Let (ay, by) ... (an, by,), where m = |S|, be the list of arcs of Ps written in such
a way that a; < b;. We also need the following statistics on Pgs:

(i) setc(ay, by) :=#{t : a; < a; < b; < by} to be the number of arcs crossing the

given arc (ay, by) on the left and ¢(S) := >_ ¢(ay, b;) to be the total number of

s=1
Crosses;

(i1) setr(ay, bs) := #{t : a; > b} to be the number of arcs to the right of the given

arc (ay, by) and r(S) := >_ r(ay, by) to be the total number of arcs to the right
s=1
of some arc;
(iii) set b(ays, by) :=#{p : a; <p < by and p ¢ {a,, b;}]_,} to be the number of
fixed points under the given arc (bridge) (ay, b,); and b(S) := z b(ay, by) to

be the total number of fixed points under the arcs, or in other words the total
number of bridges over all fixed points.

For example, let S = {e, — e1, €6 + €3, 2e4} in Cg, then

A 2 Na\ )

6 -5 4 -3 -2 -1 1 2 3 4 5 6
and |S| =5, ¢(S) =3, r(S) =1, b(S) =2.

Proposition 1 Let S be a strongly orthogonal set in either sl, or C, (D,) and let
0 = os be an involution in the corresponding Weyl group.

1. ForS = {e;, — e, }'_, in sl, one has
(o) =2|8)> — S| 4 2b(S) — 4r(S) — 2¢(S)
2. For S ={e, —e;}i_ U{2e¢, } LU den, + e }le in C, one has for o in Wc,

o) =|SI> —a+b(S) — c(S) —2r(S)
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3. ForS ={e;, —e;}°_, U{er}?, Ufen, + e }j;:l so that o € Wp, one has
£(0) = |SI* = |S| +a+ b(S) — c(S) —2r(S)

Proof We prove (1) by the induction on |o| and induction on n. It is trivial for
n = 2. Assume it is true for o € S, and show for o € S,. Recall that s, ., = (i, /)
in cyclic form so that |S| = 1 iff os = (i, ). If (i,j) # (1, n) we can regard it as
an element of S,_; so that £((i,j)) is obtained by induction. For (1, n) one has
that (1, n)(e; — e;) is negative iff t = n or s = 1 so that £((1, n)) = 2n — 3. On the
other hand b((1, n)) = n — 2 and ¢((1, n)) = r((1, n)) = 0 so that the expression is
satisfied.

Now assume this is true for os € S, where |S’| < k — 1 and show for os of
|S| = k. Let 0 = 0/(i, j) where o’ = (i1, 1) ... (ix—1,Jk—1) and j > j, for any 1 <
s <k — 1.Ifj < n we can regard o as an element of S,,_; and the result is obtained
by induction on n. If j = n one has

—(e,—e) if (s,1) = (i,n) ()
ei—a(ey) ift=n, s#£i )

o(e, —e) =0'(i,n)(e, —e;) =1 e, —o'(e)ift =i 011))
o(e)—e,ifs=i,t<n (IV)
o' (e; — es) otherwise V)

Take into account that

e d'(e, —e;)) = e, — ¢; so that case (I) adds 1 to the length;

o 0'(e, —e5) = e, —d'(e;) € RT. On the other hand ¢; — o/(e;) € R~ exactly for
n— 1 —i roots since for every i < s < n either o'(s) = s or there exists r < j
such that ¢/(r) = 5. Thus ({I) adds (n — 1 — i) to the length;

o o(e; —e;) = e, — 0'(e;) € R always. On the other hand for any (is, j;) such that
Iy < i <j, one has o'(e; — e;) = e¢; —e¢j, € R~ so that in case (/I]) we have to
reduce c(i, n) from the length;

o o(e;—e¢)=0'(e;) —e, € R forallr : i <rando’'(e; —e;) =0'(e;) —e; € R™
iff t = j; where iy <i < j; <j. Thus case (IV) adds n — 1 —i — ¢(i, n) to the
length;

e Case (V) does not add anything to the length.

Summarizing, we get £(0) = 2(n — i) — 1 — 2¢(i, n) + £(0’).

Putu(i,n) :=#{t : i <i,,j, < n}tobe the number of arcs under (i, 7). One has:
c(S) = c(8) + c(i, n);
b(S)=b(S)—cli,n)+mn—1—10i)—c@,n) —2u(i,n) =b(S)+n—1-1)
—2c¢(i,n) — 2u(i, n)
r(S) = r(S8) + (k — 1) — c(i, n) — u(i, n) since for any (iy, j,) it is either to the left
of (i, n) or under (i, n) or crosses it on the left.
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Taking all this into account we get straightforwardly £(o) = 2k — k 4+ 2b(S) —
2¢(S) — 4r(S) in accordance with the expression.

(2) Let S = {¢;, — e, }°_, U (2ex.}_, U {ew, + ¢,Y._, in C, so that |S| = 2a +
d +2f and let 0 = 0s. Taking into account that s, = (=i, 1), Sexe, = (Fi, )
(&i, —j) by (i) its length as an element of S, is £s, (0) = |S|> — |S| + 2b(S) —
4r(S) — 2¢(S). On the other hand, in C,, all the short roots are sums (up to sign) of two
roots in sly,. Let x(o) be the number of positive long roots 2¢; such that o (2¢,) € R™.

Then (o) = %(352,, (0) + x(0)). Further, note that s, , (2¢;) € R* always,

—2e, if s = k;
2e; otherwise.

ey if s = i, j;

$2¢, (2e5) = i
26, (2€5) 2e, otherwise.

and s, 1., (2¢,) = [

Thus x(0) = d + 2f = |S| — 2a. Summarizing, we get £(c) = |S|> —a + b(S) —
c(S) —2r(S).

(3) Finally let S = {¢j, —e;,}°_, U {er, )24, U {en, + els}§:1 so that |S| =2a +
2d 4+ 2f and o € Wp,. By (2) its length as an element of Wp, is £p,(0) = IS|? —a+
b(S) — c(S) — 2r(S). Let x(o) be the number of positive short roots e, such that
o(es) € Ry . Then £(0) = €p,(0) — x(0). Asitis shown in (2) x(0) = |S| — 2a. By
a straightforward computation we get expression (3) which completes the proof.

3 The Proof of Panyushev’s Conjecture

3.1 Case sl,

It is known that the conjecture is true for sl, (cf. [1]). The proof is straightforward
and we provide it in short here since we use it in what follows.

Let S, denote a standard symmetric group and Sj; ;; a symmetric group on the
elements i,i+ 1,...,j. For a strongly orthogonal set S C R" let m;;(S) =S N
{e; — ex}i<k<i<j.- By [3], Bs C Bs for S, S’ C R* strongly orthogonal sets in s, iff
foranyi,j : 1 <i <j <nonehas|r;;j(S)| < |m;;(S)|. Moreover these inclusions
are generated by elementary moves on link patterns defined as follows:

1. Let e — e; € S and let S’ be obtained from S by exclusion of this root. Then
Bs C Bs;

2. Lete; —e; € S and let k > j be a fixed point of Ps. Let S’ be obtained from S
by changing e; — ¢; to ¢, — ¢;, then Bs C Bs;

3. Lete; —e; € S and let k < i be a fixed point of Ps. Let S’ be obtained from S
by changing e; — e; to ¢; — ey, then Bs C Bs;

4. Lete; —ej, ex —ej € Sbesuchthati <j < k < [. Let S’ be obtained from S by
changing e; — ¢;, ex —ej to ex — e, ¢ — ¢, then Bs C Bs.

5. Lete; —e;, e, — ex € Sbesuchthatj < k. Let S’ be obtained from S by changing
ej—ej,ep—etoe, —e, e —ej,thenBs C ﬁg;
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For m,,, ., onehas W,,, _o, = Sk X Sppimandw = [k, ..., L,n, ..., k+1].

Note that Bs C my,,,—, iff S = {e;, — €, }{_| ; >4 1» and therefore, WosW =
oz where S = {e,1—j, — exy1-i, Jie ;-

Since on one hand inclusion of B—orbit closures is generated by elementary moves
on link patterns and on the other hand Bruhat order is generated by products by (i, j)
we have only to compare these two actions.

For § = {e;, — ¢; }iL, put (os) = {is, js}ir, to be the list of end points of Pgs.
We have to take into account that the restriction of Bruhat order to involutions is
generated by o < o(i, j) only if {i, j} N (o) = @, otherwise we have to compare o

and (i, j)o (i, j).

—+ . C o
Let 0 = os where S C R, - Note that in order for (i,j)o in the first case
C e —+
(resp. (i, j)o (i, j) in the second case) to be og for S’ C R€k+1—ek one needs to choose

i<kandj > k+ 1 (resp.eitheri,j < kori,j>k+1).

(i) 0 = o(i,j): Let S = {e;, — eis}izl and let ¢; — ¢; be strongly orthogonal to &’
then S = &’ U {¢; — ¢;} is strongly orthogonal so that Bs: C Bs by (1) on one
hand and on the other hand W(i, j)osw = (k+ 1 —i,n+1—j)og > 0g;

(i) o — (i,))o(i,j) whereeitheri,j < kori,j > k+ 1 and |{i,j} N ()| = 1: Let
S={e, —e,}UT where T = {e;, —e; }i,. Letj=1i;and i ¢ {i;}|., (resp.
i=j and j ¢ {j}iL ). Let " ={ej, —e;}UT (resp. S’ = {ej —e;,} UT).
Then on one hand by (2) Bs C Bs iff i < i (resp. by (3) iff j > j;). On
the other hand Wosw = (k+ 1 —i,n+ 1 —j))o7 (resp. wosw = (k+ 1 —
ii,n+1—j)oz)and wosw = (k+1—1i;,n+ 1 —j))oz so that Wosgw <
wosw iff i < iy (resp.j > ji).

(iii) o — (I,))o@,j) where {i,j} C(o): Let S={e, —e;,e, —e,}UT
where i1 < (< k) and (i, j) = (i}, i) (this is equal to action on o by (i, j) =
(1, j2))- Then (i, j)o (i, j) = 05 where S’ = {e;, —e;,, ¢j, —¢€;,} UT. On one
hand by (4) Bs: C Bs iff j; > j», on the other hand Wosw = (k+ 1 — iy, n +
1—jp)k+1—ir,n+1—j)osz and wosw = (k+1—ij,n+1—j)k+
1—in+1—j)os sothat wosw < wosw iff j, < jj.

3.2 Case sp,,

For sp,, the unique abelian nilradical is my,,. In this case Wy, =S, and @ =
[n,...,1]. One has Bs C my,, iff S = {Ze;cx}zl:1 U {em, + elx}‘ﬁ:].

In this case the conjecture is obtained as a straightforward corollary of the result
for sl,, and the following facts:

1. A set of strongly orthogonal roots S in C, can be considered as a set S of S|
strongly orthogonal roots in sl,,. In these terms for Bs, Bs: C R* in sp,, one has
by [2] Bs' C By iff they are restriction to sp,, of the orbits Bz, B, from sb,

/ .
such that Bg, CBg;
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2. my,, of sp,, is the restriction to sp,, of m,,,, ., of sly,;

3. 0,0’ € W, are elements of S, and ¢’ < o in W¢, iff 0/ < o in Sy, — this is
shown for example in [7, Sect. 4];

4. W € Wa,, is identified with the maximal element of S,, X Sp,41.24]-

3.3 Case soy,4+1

For 505,41 the unique abelian nilradical is m,,_,, ,. In this case W, _, , = Wp, |
and W =s,, ...5,,_,-

Bs C m,,_,, , if either S ={e,} or S ={e, Lte;}, or S={e, —ei, e, +ei}
for 1 <i < n. Note that Ws,,+0,W = Spe;s WSe, W = S,, ANd WO, —g;.0,e) W =
Ole,—ei entei}:

The restriction of Bruhat order to our set of involutions is as follows (cf. [7], for
example):

Septens = Seqtena = 7 Septer = Sey—er > > Sey—e, s

Se, = Se,—e; s @)
se,,—e,,,lse,,-ﬁ-e,,,l > > se,,—else,,+e| > Se,, 5

se,,fe,se,ﬂre,- > Se,Hre,- (”)

Also s+, and s, are incompatible for any i < n. As for inclusions of B—orbit
closures one has

(i) In order to show By, ,} C E{e”,ei} note that Exp(aXe—_¢,_,)-Xe,—e; =
X,,—¢; — aX,,—c,, so that by torus action we get X,, . , € B, —e,. This cor-
responds to S,, +¢; > Se,+e;,, fOri : 2<i<n-—1.

Letus show that By, ,) C By, ). Indeed, Exp(aX,,) . X,, o, = Xo,—e, — aXo, —

a?

5 Xe,+e, - Further by torus action we get X, 1, € B, _.,). This corresponds to
Se,+e1 = Se,—er - _

To show By, 4e,) CBie4e;y note that Exp(aXe, —c)-Xe,4e; = Xeyte, +
aX,, te,, S0 that by torus action we get X, 1., € By, .. This corresponds
0 S¢,—¢, > Se—e;y, fOri 1 1 <i<n-—2.

Exactly in the same way, Exp(aX,,).X,, = X., + aX,,+., and then by torus action
we get X,, ¢, € By,,) which corresponds to s¢,—,, < s,

Obviously By, —.,; and B, are incompatible.

(i1)) Toshow By, ¢, ¢, +e C E{en,epeﬁej}forl <i < j < n— 1wenote asbefore that
Exp(a(xej—e,- + Xej+ei))~(Xen—ej + Xe,,+ej)=Xen—ej + Xe,l-‘rej - a(Xe,,—ei + Xen+ei)
and then by torus action we get X, _., + X, 1., € E{e,,—e/,e,,-&-e/} which corresponds
10 Se,—e;Se,+¢; > Se,—e;Se,+e; fOr 1 < i <j<n—1
To show By, C E{en,eﬁeﬁef} for 1 <j <n — 1 note that Exp(ﬁng).(Xen,ef +
Xeyte) = Xey—e; — v/2X,, and then by torus action we get X, € E{en_ej,eﬁej} for
any 1 <j <n — 1 which corresponds to Sey—e;Sente; > Se, forl <j<n-—1.
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Obviously by torus action we get X, _. € By, ¢ ¢+ Which provides
Se,—eSente; > Septe; for1 <i <n—1.

3.4 Case soy,

Recall that there are 3 abelian nilradicals in the case of 505, namely m,,_., = M, 4,
andm,,_,, ,.

Let us start with m,,_,,_, which can be obtained from the previous case. In this
case W,,_., , = Wp, , and

oo | Se e Sen ifn=2k+1;
T Sey kS, if n=2k;

Bs Cc m,,_,, , if either S={e,Lte} or S={e, —ei,en+e} for 1 <i<n.
Se, e, 1f 1 = 2Kk;
Se,xe, if 1 =2k +1;
WSe,—¢,8¢,+¢; W = Se,—¢,S¢, 1¢;- The restriction of Bruhat order from Wy to Wp_ pro-
vides

Note that Ws,,4e,W = Se,ze; fOr i > 1, WS, e, W = [ and

Septen1 = Septens = 77 = Seyters Sen—er = Sey,—en >

> > S o 1 (@)
Se,4er = Se,—ers Sept+er = Se,—ers (iM)

Sey—en1Senten 1 = 77 Sey—erSepters Se,—eiSe,te; >

> Se,teis Se,—eiSe,4e; = Se,te (”l)

The only differences with Wp, are that s, 4.,, S.,—., are incompatible (they are of the
same length by Proposition 1) and s, ¢ Wp,. As for inclusions of B—orbit closures
we have to take into account that inclusions of B—orbit closures in D,, implies the
inclusions of corresponding B—orbit closures in B, so that we have to check only
the corresponding cases from Sect.3.3. We get:

(1) + (i1) Exactly as in 60,41 one has By, _, ,} C E[en_e‘.} fori : 2<i<n-—1
which  corresponds  t0  Se,4e, , > 0 > Sete,  ANd  So i, >
[ Seyber i =2k +1; Further note that Exp(aX,, . ).X, =X —

Se,—e, ifn= Zk, . erytep ) Aep—ey ep—er

aX,, 1., so that by torus action we get X, 1, € B,, ., which corresponds to

s >[seng] ifn=2k+1;

enter Septe, if B =2k;

Exactly as in 502, one has B, 1., C By, e, for 1 <i < n — 2. This cor-

responds t0  Se,—¢, > Se, for i : 2<i<n-—2 and s,

[sen_e] ifn=2k+1;
< .

—Ci+1

Se e, I n = 2k;

Let us show that By, .., C B, .. Indeed, Exp(aXe,+e,)-Xe,—e, =
X, —e, +aX,, ., so that by torus action we get X, ., € By, _.,}. This cor-
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Se,4e, If 1 =2k +1;

Se,—e, if N =2k;
To finish (i) and (ii) we have to check that B,, ., Z En_el . This is obtained
straightforwardly from the fact dimB,, ., = dimB,,_,, =n — 1.

(iii) Exactly as in Sect.3.3 one has By, ¢, ¢, +¢;) C E{En,ebgﬁei} forl <i<j<

responds to S, —., <

n — 1. Obviously by torus action we get X, ., € Bie,—¢;.¢,+¢;) and Xo, 1, €

By, ¢, e,+e1} SO We get all the relations from (iii).

Since m,, ., = m,,_,, it is enough to consider m,, ., . One has

Me,te; = @ CXe/+e;

1<i<j<n

Comparing m,, ., wWith my,, of sp, one can see at once that root vectors here cor-
respond (up to sign in the sum) to root vectors in my,, for short roots. In particular,
this is a subspace of matrices of nilpotency order 2. The truth of the conjecture for
M,,+¢, 1S Obtained from its truth for m,,, by the following facts:

1.

2.

W

The sets of strongly orthogonal roots in m,, ., coincide with the sets of strongly
orthogonal short roots in my,, .

Only forroot v = e; — e; the action of Exp(aX,) onroots X, 4., can be non-trivial
both in C,, and D,, and this action in both cases coincide up to sign, apart from case

Exp(aXehei),Xe#Ei = [X€j+€i + 20X2ej in Cp;

Xej+e; in Dy;
Xs' € Bg for strongly orthogonal sets S, S inm,, ., iff Xs' € Bs in my,,.

w of W,, 1., (in Wp,) is equal to w of Wy, (in W¢,).

Bruhat order restricted to multiplication of reflections of strongly orthogonal roots
of type e; + ¢; coincides for W¢, and Wp, . (cf., for example [7, Sect.4]).

which is irrelevant here. Thus,
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Anti de Sitter Holography
via Sekiguchi Decomposition

Vladimir Dobrev and Patrick Moylan

Abstract In the present paper we start consideration of anti de Sitter holography
in the general case of the (g + 1)-dimensional anti de Sitter bulk with boundary
g-dimensional Minkowski space-time. We present the group-theoretic foundations
that are necessary in our approach. Comparing what is done for ¢ = 3 the new element
in the present paper is the presentation of the bulk space as the homogeneous space
G/H = 50(q,2)/SO(q, 1), which homogeneous space was studied by Sekiguchi.

1 Introduction

For the last fifteen years due to the remarkable proposal of [1] the AdS/CFT corre-
spondence is a dominant subject in string theory and conformal field theory. Actually
the possible relation of field theory on anti de Sitter space to conformal field theory
on boundary Minkowski space-time was studied also before, cf., e.g., [2-7]. The pro-
posal of [1] was further elaborated in [8] and [9]. After that there was an explosion
of related research which continues also currently.

Let us recall that the AdS/CFT correspondence has 2 ingredients [1, 8, 9]: 1.
the holography principle, which is very old, and means the reconstruction of some
objects in the bulk (that may be classical or quantum) from some objects on the
boundary; 2. the reconstruction of quantum objects, like 2-point functions on the
boundary, from appropriate actions on the bulk.

Our focus is on the first ingredient. We note that until recently the explicit
presentation of the holography principle was realized in the Euclidean case, i.e.,
for the group SO(g + 1, 1) relying on Wick rotations of the final results, cf., e.g.,
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[9, 10]. Yet it is desirable to show the holography principle by direct construction in
Minkowski space-time, i.e., for the conformal group SO(q, 2).

This was done for the case g = 3 in detail in [11]. In the present paper we start
consideration of the general case of the (¢ + 1)-dimensional anti de Sitter bulk
with boundary g-dimensional Minkowski space-time. Actually, here we only lay
the group-theoretic foundations that are necessary in our approach while the actual
construction is postponed to [12]. As historical remark we mention that this approach
originated in the construction of the discrete series of unitary representations in [13,
14], which was then applied in [15] for the Euclidean conformal group SO(4, 1). A
different approach was applied to the general Euclidean case SO(N, 1) in [10]. Also
the nonrelativistic Schrodinger algebra case was considered in [16].

The new element in the present paper is the presentation of the bulk space as
the homogeneous space G/H = SO(q, 2)/SO(q, 1). For this we use the Sekiguchi
decomposition [17]

G= |loc N AH

where A is the subgroup of dilatations, & is isomorphic to the subgroup of translations.
The above means that the subgroup NAH is an open dense set of G, and thus the
homogeneous space G/H is locally isomorphic to bulk space NA.

2 Preliminaries

We need some well-known preliminaries to set up our notation and conventions. The
Lie algebra G = so(g, 2) may be defined as the set of (¢ +2) X (g + 2) matrices X
which fulfil the relation:

X+ X =0, (1)

where the metric 7 is given by
n = (nap) = diag(—1,1,...,1,-1), A,B=0,1,---,q+1 2)
Then we can choose a basis X3 = —Xpa of G satisfying the commutation relations
[Xas, Xcpl = nacXsp + nppXac — napXsc — npcXap- €)]

We list the important subalgebras of G:

e C =s0(q) & so(2), generators: Xap : (A,B) € {1,...,q}, {0, g+ 1}, maximal
compact subalgebra;

e Q, generators: X4p: A € {1,...,q}, B € {0, g+ 1}, non-compact completion of
K

e A =ys0(1, 1), generator: D = Xg,q+1 » dilatations;
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e M =s0(q—1,1), generators: Xap : (A,B)€{0,...,qg—1}, Lorentz
subalgebra;

° A[ generators: T, = X,,, + X, g+1, t =0, ..., g — 1, translations;

e N, generators: C w=Xuqg — Xug+1, 4 =0, ..., g — 1, special conformal transfor-
mations;

o Ay =so(l, 1) @ so(1, 1), generators: Xo 41, Xg g+1 5

e My = so(q — 2), generators: Xup : (A,B) € {1,...,q —2};

e Ny, generators: T, pn=0,...,q—1, T/L =Xo+X, -1, p=1,...,9-2,
ei(tended translations;

o Ny, generators: Cy, 1 =0,...,q9—1, C=Xu—Xug1, p=1,...,4 -2,
extended special conformal transformations;

e H = so(q, 1), generators: Xup : (A, B) € {0, ..., g}

The last subalgebra is the analog of the maximal compact subalgebra so(g + 1) of the
Euclidean conformal algebra so(g + 1, 1) of g-dimensional Euclidean space. Thus,
it may result from the Wick rotation of the Euclidean conformal algebra so(g + 1, 1)
to the Minkowskian conformal algebra so(q, 2).

Thus, we have several decompositions:

e G =Ko Q, Cartan decompositiog;

e G=K& A DNy, (also~j\/0 — M), Iwasawa decomposition;

o G =Ny® My & Ay & Np, minimal Bruhat decomposition;

e G=N &M & AN, maximal Bruhat decomposition;

e G=H®ADN, (also N — N), Sekiguchi decomposition [17].

The subalgebra Py = My & :40 ® j\70 is a minimal parabolic subalgebra of G. The
subalgebra P = M @& A @ N is a maximal parabolic subalgebra of G.

Finally, we introduce the corresponding Lie groups:
G = S0y(gq,2) with Lie algebra G = so(q,2), H = SO(gq, 1) with Lie algebra
H = so(q, 1), K = SO(q) x SO(2) is the maximal compact subgroup of G, Ay =
exp(Ag) = S0(1, 1) x SOy(1, 1) is abelian simply connected, Ny = exp(Np) =
Ny = exp(Np), are abelian simply connected subgroups of G preserved by the action
of Ag. The group My = SOy(q — 2) (with Lie algebra M) commutes with A.
Further A = exp(A) = SOy (1, 1) is abelian simply connected, N = exp(N) = N =
exp(NNV), are abelian simply connected subgroups of G preserved by the action of A.
The group M = SOy (g — 1, 1) (with Lie algebra M) commutes with A.

We mention also some group decompositions:

G = KAgNy, (alsoNy — ﬁo), Iwasawa decomposition; (4a)
G = ioe NAMN , maximal Bruhat decomposition; (4b)
G = ioc NAH, (also N—>N ), Sekiguchi decomposition (4¢)

In (4b, 4c) the groups on the RHS are open dense subsets of G. We should note that
in [17] was studied the more general case SOy (g, r + 1)/SO(q, r).

The subgroup Py = MyAoNy is a minimal parabolic subgroup of G. The sub-
group P = MAN is a maximal parabolic subgroup of G. Parabolic subgroups are
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important because the representations induced from them generate all admissible irre-
ducible representations of semisimple groups [18, 19]. The group (algebra) SOy (g, 2)
(so(g, 2)) has one more maximal (cuspidal) parabolic subgroup (subalgebra) which
we do not give here for the lack of space, cf., e.g., [20, 21] for g = 4.

3 Elementary Representations

‘We use the approach of [22] which we adapt in a condensed form here. We work with
so-called elementary representations (ERs). They are induced from representations
of the parabolic subgroups. Here we work with the maximal parabolic P = MAN ,
where we use (non-unitary) finite-dimensional representations A of M = SO(q —
1, 1) in the space V), (non-unitary) characters of A represented by the conformal
weight A, and the factor N is represented trivially. For further use we give explicit
parametrization of A:

A=), = 154] 5)

where [w] is the largest integer not greater than w. The numbers J; are all integer or
all half-integer and they fulfill the following conditions:

Ml <X << )Ny, forgeven (6)
0<A =X =<-=<XAgpp, forqgodd

The data A, A is enough to determine a weight x € H};, where Hg is the Cartan
subalgebra of G, cf. [22]. Thus, we shall denote the ERs by CX. Sometimes we shall
write: x = [\, A]. The representation spaces are C* functions on G/P, or equiv-
alently, on the locally isomorphic group N with appropriate asymptotic conditions
(which we do not need explicitly, cf., e.g., [21, 22]). We recall that N is isomor-
phic to g-dimensional Minkowski space-time 9t whose elements will be denoted by
x = (xo, ..., X4—1), while the corresponding elements of N will be denoted by n, .
The Lorentzian inner product in 91 is defined as usual:

{0, x) = xoxp — -+ = X1y (N

and we use the notation x> = (x, x) .
The representation action is given as follows:

(T(9))(x) =y~ D (m) p(x') )
the various factors being defined from the local Bruhat decomposition (4b) G =i,

NAMN:
g ' =Ty a;lm_ln_1 , 9)
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where y € R, parametrizes the elements a € A, m € M, D*(m) denotes the repre-
sentation action of M on the space V), n € N.
On these functions the infinitesimal action of our representations looks as follows:

T, =0, O,= 0

= bl
ox,,

g—1
D=— zxﬂaﬂ — A,
1=0

X0a=x080+x080+50a’ a=1,~-.,6]—1,

Xab = —%40p + 04 + Sap, 1561<b§q—1,
q—1

Cp = =25, D+ 370, — 2D x5y,

v=0

p=0,...,9—1, (10)

where s, are the infinitesimal generators of DNm) .
We recall several facts about elementary representations [15, 22]:

e The Casimir operators C; of G have constant values on the ERs:
CUXD o) = xi(\, A p), i=1,....rankG=[3g]+1, (11

where {X} denotes symbolically the generators of the Lie algebra G of G, the action
of which is given in (10).

e On the ERs are defined the integral Knapp-Stein G, operators which intertwine
the representation y with the representation y = A q — A], where )\ is the mirror
image of \. We recall that the mirror image \is equivalent to A when ¢ is odd,
while for g even and A parametrized as in (5): A = (A1, A2, ..., Ay2) we have
A= (=21 2, 0 Ag).

e The representations x and y are called partially equivalent due to the existence
of the intertwining operator G, between them. The representations are called
equivalent if the intertwining operator G, is onto and invertible.

e We also recall that the Casimirs ; have the same values on the partially equivalent
ERs: B

X 4) = xi(h, g — 4) (12)

In the above general definition ¢(x) are considered as elements of the finite-
dimensional representation space V* in which act the operators D*(mm). The repre-
sentation space CX can be thought of as the space of smooth sections of the homo-
geneous vector bundle (called also vector G-bundle) with base space G/P and fibre
V\, (which is an associated bundle to the principal P-bundle with total space G).
Actually, we do not need this description, but following [22] we replace the above
homogeneous vector bundle with a line bundle again with base space G/P. The
resulting functions ¢ can be thought of as smooth sections of this line bundle.
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In the case when the representation A is of symmetric traceless tensors of rank
£,ie, A= (0,...,0,¢), we can be more explicit following [15]. Namely, the func-
tions  are scalar functions over an extended space 2T x 90,, where 9 is a cone
parametrized by the variable ¢ = (o, ..., {4—1) subject to the condition:

C=O0=G——¢,=0. (13)

The functions on the extended space will be denoted as p(x, ¢). The internal
variable ¢ will carry the representation D*. Thus, on the functions ¢ the infinitesimal
generators §,,, from (10) are given as follows:

0 7 0

Sap = —Caa— + G

. 14
o o 19

0
S0a = oz + Cazs
0 CO@C,; CaCo

4 Bulk Representations

It is well known that the group SO(q, 2) is called also anti de Sitter group, as it is the
group of isometry of (q + 1)-dimensional anti de Sitter space:

ABmpp=1, AB=0,....,q+1. (15)

There are several ways to parametrize anti de Sitter space. For ¢ = 3 in the paper [11]
was utilized the same local Bruhat decomposition (4b) that we used in the previous
section. In the present paper we shall use the Sekiguchi decomposition (4c), i.e.,
the factor-space G/H = NA. In fact, we use isomorphic (w.r.t. [11]) coordinates
(x,y) = (x0, ..., Xg—1,¥), ¥y € Ry . In this setting anti de Sitter space is called bulk
space, while g-dimensional Minkowski space-time is called boundary space, as it is
identified with the bulk boundary value y = 0. _

Itis natural to discuss representations on anti de Sitter space NA which are induced
from the subgroup H = SO(q, 1). Namely, we consider the representation space:

C, ={¢p € C*[R? x Ry, V,)) (16)

where 7 is an arbitrary finite-dimensional irrespective of H, V. is the finite-
dimensional representation space of 7, with representation action:

(T7(9)d)(x, y) = D™(h) $(x',y') a7
where the Sekiguchi decomposition is used:

gilﬁxay = ﬁxray/hfl, geG, heH, ni,ne €N, ay,ay €A (18)
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and D7 (k) is the representation matrix of 7 in V. . For later use we give the parame-
trization of the relevant subgroups:

H= {h - [’5 fl} h € S00(q.2). I €SO0(a. 1), | =50, 1) (19

I, O 0
A= ja,=| 0 cosh(s) sinh(s) | [y=¢€",seR (20)
0 sinh(s) cosh(s)

I, 0 t t
N 0L | L) =—=eRl @D
1" s lt5-5 S-% e ="5¢ (
—t s s _ 14+ - L
2 2 2 2

The infinitesimal generators of (17) are given as follows:

T,=08, p=0,...,q9-1 (22)
g—1

D=— Zx}ﬁ/,, — y0y,
pn=0

Xou = %004 + X200 + 500, 0 = 1,...,q—1

Xap = —%0p + 404 + 50, 1<a<b<g-—1
g—1

Cp = —2mx,D + & + )10, — 2D x5, — 29T,
v=0

where s, I', are infinitesimal generators of DT(h), such that (due to the compati-
bility of A and 7) 5, = [T, TV, (80, ) = mup Ty — 0up T

Note that the realization of so(g, 2) on the boundary given in (10) may be obtained
from (22) by replacing y0, — A and then taking the limit y — 0.

What is important is that, unlike the ERs, the representations (17) are highly
reducible. Our aim is to extract from C; representations that may be equivalent to
Cy,x = [\, A]. The first condition for this is that the M-representation )\ is contained
in the restriction of the H-representation 7 to M, i.e., A € 7|y . Another condition is
that the two representations would have the same Casimir values \;(\, A).

This procedure is actually well understood and used in the construction of the
discrete series of unitary representations, cf. [13, 14], (also [11, 15] for g = 4).
The method utilizes the fact that in the bulk the Casimir operators are not fixed
numerically. Thus, when a vector-field realization of the anti de Sitter algebra so(q, 2)
(e.g.,(22)) is substituted in the bulk Casimirs the latter turn into differential operators.
In contrast, the boundary Casimir operators are fixed by the quantum numbers of the
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fields under consideration. Then the bulk/boundary correspondence forces eigenvalue
equations involving the Casimir differential operators. Actually the 2nd order Casimir
is enough for this purpose. That corresponding eigenvalue 2nd order differential
equation is used to find the two-point Green function in the bulk which is then used
to construct the boundary-to-bulk integral intertwining operator. This operator maps
a boundary field to a bulk field. For our setting this will be given in detail in [12].

Having in mind the degeneracy of Casimir values for partially equivalent repre-
sentations (e.g., (12)) we add also the appropriate asymptotic condition. Furthermore,
from now on we shall suppose that A is real.

Thus, the representation (partially) equivalent to the ER ' is defined as:

Cl={¢eC: CHXD d(x.y) = Ni(\, A) d(x,y), Vi, A&y,
P, y) ~ y* () fory — 0} (23)

where X denotes the action (22) of G on the bulk fields.

In the case of symmetric traceless tensors of rank £ for both M and H we can extend
the functions on the bulk extended also with the cone 91, . These extended functions
will be denoted by ¢(x, y, (). On these functions we have the infinitesimal action
given by (22) with s, are given by (14), while I, are certain finite-dimensional
matrices which we shall give in [12].

5 Two Parametrizations of Bulk Space

As we mentioned in [11] we used as parametrization of the bulk space the coset
G/MN = |joc NA. The local coordinates of this coset come from the Bruhat decom-
position:

g = {9ag} = nyaymn (24)

which exists for g € G forming a dense subset of G. The local coordinates of the
above bulk are:

y= %(gqq + 9gq+1 t Ggt1.q T Ggriq+1) > (25)
— 9p.g T Gu,g+1
9aq t 9q.q+1 T Gg+1.9 + 9g+1.4+1

X, , w=0,...,9g—1

The parametrization used in the present paper for the bulk space is the coset
G/H = |joc NA. Certainly, it is isomorphic to the bulk above, however, the local
coordinates are different, namely, the latter. come from the Sekiguchi decomposition:

g = {gAB} = ;ixayh (26)
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Explicitly, they are given as follows:

Y = 19g+1.q + Jg+1.9+11 27)

Gu.q+1
xﬂ—u—ﬁuzo,...,q—l

Jg+1.q t Gg+1.q+1

Comparing the two parametrizations (25) and (27) we see that the latter is simpler
and thus easier to implement. Thus, in the follow-up paper [12] we shall use the
Sekiguchi decomposition (26).
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Localization and the Canonical
Commutation Relations

Patrick Moylan

Abstract Let W, (R) be the Weyl algebra of index n. We have shown that by using
extension and localization, it is possible to construct homomorphisms of W, (RR)
onto its image in a localization, or a quotient thereof, of (s0(2, ¢)), the universal
enveloping algebra of s0(2, g), for n depending upon g [1]. Here we treat the so(2, 1)
case in complete detail. We establish an isomorphism of skew fields, specifically,
5{5/0(2, 1)) >~ ®,1)(R) where © | (R) is the fraction field of Wy 1 (R) ~ W;(R) ®
R(y) with R(y) being the ring of polynomials in the indeterminate y and 55?570 2, 1))
is a certain extension of the skew field of fractions of {{(so(2, 1)), which is described
below. We give applications of this result to representations. In particular we are
able to construct representations of W (R) out of representations of so(2, 1). Thus,
we are able, for this lowest dimensional case, to obtain the canonical commutation
relations and representations of them out of s0(2, 1) symmetry. Using similar results
in higher dimensions [1] we are able to construct representations of W, (R) out of
representations of s0(2, g).

1 Introduction

Localization, or formation of quotients, is a powerful tool in mathematics with many
known applications. Itis used to relate different algebraic structures which share some
common similarities. An important example is the Gelfand-Kirillov conjecture [2]
which is very much related to what we do here. Another example, extremely inter-
esting from the physical viewpoint, is an isomorphism between Lie field extensions
of SOy (1, 4) and the Poincaré group which was first demonstrated in [3].

In this paper we study a physically interesting problem similar in nature to the
ones just mentioned, namely, given a real Lie algebra, L, is it possible to obtain an
embedding of W,,(R) (for certain n depending upon L) into a commutative algebraic
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extension of a localization of $1(L) or a suitable quotient thereof? We have studied
in some detail the case of L = s0(2, g) and have reported some of our results in [1].
Our method of approach rests upon the conformal realization of so(2, g) as vector-
valued differential operators on a g dimensional pseudo-Euclidean space of signature
(1, ¢ — 1) and it essentially amounts to obtaining of the canonical commutation rela-
tions out of conformal symmetry. Usually the canonical commutation relations are
derived from some form of translational symmetry (homogeneity of space) with
additional assumptions, e.g. a system of imprimitivity [4, 5]. The arguments pre-
sented herein rest solely upon conformal symmetry and extension and localization.
For us, the noncommutativity of the momentum and position operators comes from
the noncommutativity of pseudorotations in different directions of conformal space.
Our arguments provide a different and perhaps more convincing derivation than those
presented in the just mentioned references.

2 Facts About Enveloping Algebras, Weyl Algebras
and SOy (2, 1)

$I(L) denotes the universal enveloping algebra of a Lie algebra L over R. It is a
ring with identity which we denote by 1. £I(L) is a filtered algebra i.e. L, (L) =
{pr(X1, Xy, ..Xp)|deg(p,) < i;X; € L} withtlp(L) =R, (L) =R-1+ Landil,
(L) Us(L) C U,15(L). A basis for U, (L) is Xf'ng. X with g+ g + ..., <.
The graded algebra associated with {(L)is G =G ' @ G'®... B G @ ... with
G' = 4;(L)/U;i_ (L) (U-;(L) = 0). Y(L) admits a fraction field which we denote
by ©(L) [6]. Denote the centers of ${(L) and D (L) by 3(L) and c(L), respectively.

The Weyl algebra W,(R) is determined by the 2n generators pi, ...,
Pns 41, - - - » gn With relations

pi.pjl = lgiqi1 =0 (1)
[pi, gj]1 = 0y (2)

for all i, j < n. Given a collection of free variables yy, ..., y; we define
W, s(R) :== W,(R) @ Rlyi, ..., ysl. 3)

Being a Noetherian domain [7] the algebra W,, ;(R) also admits a field of fractions
denoted ©,, ;(R). In W, ;(R) we have the filtration W, ;(R)o C W, ;(R); C ...
where W, (R); is set of all polynomials of degree < iingqy, ..., qu, p1, - - ., Py With
coefficients in R[yy, ..., y,]. The associated graded ring G, ;(R) is isomorphic to
the polynomial ring R[p1, ..., Ps; q1s - -+ Gsi Y1y -+ -5 Vsl

Let R[x;, . ..x;] be the ring of polynomial functions in n variables x{, x5, ..., X,
with coefficients in R. We have a homomorphism p from W,(R) into End
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(R[x;, . ..x;]) determined by p(p;) = 0/0x;(= ;) and p(x;) = “multiplication by”
x;. Since W, (IR) is simple [6], it is easy to see that p is injective. Thus this represen-
tation of W, (R) is isomorphic to W, (R). From an algebraic standpoint, we can and
shall use this representation of W, (R) interchangeably with W, (R).

SO02,1) ={g € SL3,R)|g"Bog = Bo} (Bo = diag(1, 1, —1)).S0y(2, 1) is the
connected component and so0(2, 1) = {X € s[(3, R)| XT3y + foX = 0} is the Lie
algebra of SOy(2, 1). A basis of g =s0(2,1) isL; (i, j=-1,0,1,i < j). We

let Lj = —Lj; fori > j, and the L;; satisfy the following commutation relations:
[Labs Lbc] = —€ Lac (4)
with e_; = ¢p = —e; = 1. All other commutators vanish. The relation of the L;; to

a basis for 2, R)is H = —2iL_; , X* =L_y; F iLy; where H and X* are the
