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Preface

Agent-based modeling is an interesting tool. It provides model developers with a
great degree of freedom for the design of systems in which heterogeneous entities
interact with each other and the environment. Agent-based models (ABMs) are
therefore a great tool to explore how different assumptions about how individuals
behave and interact affect the evolution of social, economic or ecological systems
as a whole.

The mathematical formalization of these models, however, is still in its infancy
partly due to the fact micro-level heterogeneity or complex interaction structures
often lead to effects in the system dynamics which are not easily accounted for by
macroscopic formulations of the problem. To address this issue an understanding of
the transition from the most informative “atomic” level to the levels at which the
system behavior is typically observed is important, because it can help to derive
and evaluate models on specific levels, on the one hand, and to understand the
temporal and spatial patterns that may emerge in that transition on the other. The
book at hand develops a Markov chain approach that allows a rigorous analysis of a
class of microscopic models which specify the dynamics of a complex system at the
individual level. It provides a general framework of aggregation in agent-based and
related computational models by making use of lumpability and information theory
in order to link between the micro and macro levels of observation.

The starting point is a microscopic Markov chain description of the dynamical
process in complete correspondence with the dynamical behavior of the ABM,
which is obtained by considering the set of all possible agent configurations as
the state space of a huge Markov chain. This is referred to as micro chain, and an
explicit formal representation including microscopic transition rates can be derived
for a class of models by using the random mapping representation of a Markov
process. The explicit micro formulation enables the application of the theory of
Markov chain aggregation—namely, lumpability—in order to reduce the state space
of the micro chain and relate microscopic descriptions to a macroscopic formulation
of interest. Well-known conditions for lumpability make it possible to establish the
cases where the macro model is still Markov, and in this case we obtain a complete
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picture of the dynamics including the transient stage, the most interesting phase in
applications.

For such a purpose a crucial role is played by the type of probability distribution
used to implement the stochastic part of the model which defines the updating rule
and governs the dynamics. Namely, if we decide to remain at a Markovian level,
then the partition, or equivalently, the collective variables, used to build the macro
model must be compatible with the symmetries of the probability distribution !.
Microscopic heterogeneity and constraints translate into dynamical irregularities in
the micro chain and require a refinement of the aggregation and the corresponding
level of observation. This underlines the theoretical importance of homogeneous or
complete mixing in the analysis of “voter-like” models at use in population genetics,
evolutionary game theory and social dynamics.

The problem of aggregation in ABMs and the lumpability conditions in particular
can be embedded into a more general framework which makes use of information
theory in order to identify different levels and relevant scales in complex dynamical
systems. Lumpability and, respectively, the existence of a higher-level Markovian
description is one out of several mutually related criteria which a closed higher-level
description should satisfy. Consequently, the application of information-theoretic
measures of closure to ABMs allows us to quantify the information that is lost
in the transition from the micro dynamics to a particular macro description. The
method informs us in this way about the complexity of a system introduced by
nontrivial interaction relations. Namely, if a favored level of observation is not
compatible with the symmetries in !, a certain amount of memory is introduced
by the transition from the micro level to such a macro description, and this is the
fingerprint of emergence in ABMs. The resulting divergence from Markovianity can
be quantified using information theory, and the book presents a scenario in which
different closure measures can be explicitly computed.

Throughout the book, we mainly rely on two simple models to illustrate these
theoretical ideas: the voter model (VM) and an extension of it called the contrarian
voter model (CVM). Using these examples, the book shows that Markov chain
theory allows for a rather precise understanding of the model dynamics in case
of “simple” population structures where a tractable macro chain can be derived.
Constraining the system by interaction networks with a strong local structure leads
to the emergence of meta-stable states in the transient of the model. Constraints
on the interaction behavior such as bounded confidence or assortative mating lead
to the emergence of new absorbing states in the associated macro chain and are
related to stable patterns of polarization (stable coexistence of different opinions or
species). Constraints and heterogeneities in the microscopic system and complex
social interactions are the basic characteristics of ABMs, and the Markov chain
approach to link the micro chain to a macro-level description (and likewise the
failure of a Markovian link) highlights the crucial role played by those ingredients
in the generation of complex macroscopic outcomes.

This book has developed out of my dissertation project at the department of
Mathematical Physics at the University of Bielefeld. I am very grateful to my
supervisor Philippe Blanchard and to Dima Volchenkov (both in Bielefeld) for an
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Chapter 1
Introduction

1.1 Complex Multi-Level Systems

I think that nowadays most people would confirm that the world we live in is a
complex one. Not only the problems that we face at a global scale (such as climate
change and financial crises) but also many of our very personal day-to-day decisions
(such as choosing between a fresh organic apple from oversee and a local apple
maintained in an energy-expensive cooling chamber) involve nowadays, if carefully
considered, the evaluation of entanglements of global scope. There is a high level
of uncertainty in the evaluation of the consequences of our actions owing to the fact
that those entanglements are often not clearly evident. There is also a high degree of
freedom in what concerns the number of options that are in principle at our disposal,
but if we do not sufficiently understand the functioning of the system there is no way
to choose among them.

The “new science of complex systems” is an attempt to better understand the
behavior of systems that are composed of elementary units and structures of mutual
dependencies (Wechselwirkungen) between those units. The fundamental idea is
that complex patterns of higher-level organization emerge in a dynamical system
of interacting individuals that participate in a self-organizing process. While no
central control is assumed to direct this process, the global emergences that are
generated by it may well have an effect on the individual dynamics. Complexity, in
this dynamical context, relates to the fact that higher-level patterns and processes
are not easily understood by considering the dynamical mechanisms at the lower
level only.

Of course, the fact that the behavior of many real-world systems is not predictable
in simple way from the behavior of the system’s components has been acknowl-
edged long ago. Likewise, the observation that systems from very different fields
and at different scales share important principles of organization. But especially
the last two decades have witnessed a tremendous increase in scientific activity
trying to make visible the empirical fingerprints of complex behavior (such as power
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2 1 Introduction

law distributions or long range correlations) on the one hand, and to extract the
underlying mechanisms and causal relations at work in those systems in order to
really understand the fundamental principles of self-organized complexity on the
other. For its enormous range of application—from biology to sociology, from
physics to linguistics—complexity has become one of the most promising concepts
in modern science.

In all of this, computational tools have become very important. Several method-
ological innovations are in fact enabled only by the general availability of relatively
powerful computers: from the retrieval of information, statistical regularities and
patterns from large amounts of data to the simulative testing of different behavioral
assumptions in models of biological, social or cultural evolution. In general, the
use of computational instruments does not make mathematics dispensable, to the
contrary, it rather calls for the development of sound mathematical foundations
of these new methods. In data science, this relates to questions concerned with
statistical significance, algorithmic complexity, information theory, among many
others; for computational models, it is related to proper formal model specifications,
to the development of mathematical theories for multi-level systems and analytical
solution strategies.

This volume is concerned with the latter problem area. It develops mathematical
concepts for the formal treatment of a class of computational models. Namely, it
formulates agent-based models—models in which a finite number of agents interact
according to simple behavioral assumptions—as Markov chains and makes use of
Markov chain theory to derive explicit statements about the possibility of linking
a microscopic agent model to the dynamical processes at the level of macroscopic
observables. The questions that are addressed in this book are inherently dynamic
ones: the focus is not on the structural properties of certain agent networks, but
rather on the dynamical processes at the micro and the macro level that differently
structured systems give rise to. A particular aspect in that is the role that microscopic
heterogeneity and constraints in the agent behavior play in the generation of
macroscopic complexity. In this way, the book touches upon questions related to the
micro-macro link in social simulation and to computational emergence in general.
Moreover, the question of deriving macroscopic descriptions with a minimal loss of
information also goes to the heart of statistical mechanics.

1.2 Microsimulation and Agent-Based Models

Recent improvements in multidisciplinary methods and, particularly, the availability
of powerful computational tools are giving researchers an ever greater opportunity
to investigate societies in their complex nature. The adoption of a complex systems
approach allows the modeling of macro-sociological or economic structures from a
bottom-up perspective—understood as resulting from the repeated local interaction
of socio-economic agents—without disregarding the consequences of the structures
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themselves on individual behavior, emergence of interaction patterns and social
welfare.

Agent-based models (henceforth ABMs) are at the leading edge of this endeavor.
ABMs are an attempt to understand how macroscopic regularities may emerge
through processes of self-organization in systems of interacting agents. The main
idea is to place a population of agents characterized by a set of attributes within
a virtual environment and specify simple rules of how agents interact with each
other and the environment. The interaction rules are usually based on simple
behavioral assumptions with the aim to mimic the individual behavior of real actors
in their local environment. While the system is modeled at the microscopic level, its
explanatory scope is the macro level. In that, AB modeling follows the tradition
of methodological individualism which claims “that social phenomena must be
explained by showing how they result from individual actions” (Heath 2011, par.1).

AB systems are dynamical systems. Typically implemented on a computer, the
time evolution is computed as an iterative process—an algorithm—in which agents
are updated according to the specified rules. ABMs usually also involve a certain
amount of stochasticity, because the agent choice and sometimes also the choice
among different behavioral options is random. This is why Markov chain theory is
such a good candidate for the mathematical formalization of ABMs.

The Voter Model (VM from now on) is a simple paradigmatic example (Kimura
and Weiss 1964; Castellano et al. 2009, among many others). In the VM, agents
can adopt two different states, which we may denote as white � and black �.
The attribute could account for the opinion of an agent regarding a certain issue,
its approval or disapproval regarding certain attitudes. In an economic context, �
and � could encode two different behavioral strategies, or, in a biological context,
the occurrence of mutants in a population of individuals. The iteration process
implemented by the VM is very simple. At each time step, an agent i is chosen at
random along with one of its neighboring agents j and one of them imitates the state
of the other. In the long run, the model leads to a configuration in which all agents
have adopted the same state (either � or �). In the context of biological evolution,
this has been related to the fixation or extinction of a mutant in a population. The
VM has also been interpreted as a simplistic form of a social influence process by
which a shared convention is established in the entire population.

Let us consider an example simulation run of the VM to provide an intuition
about its behavior (Fig. 1.1). Assume there are 20 agents connected by a chain such
that an agent at position i is connected to agents i � 1 and i C 1 (except the first
and the last agent who have only one neighbor). Let the random initial population
be x D .��������������������/ corresponding to the left-most
column in Fig. 1.1. The time evolution is shown from left to right, the columns
represent the configuration of the population each time after ten VM steps have been
performed. This example shows two main features of the VM: (1) the emergence
of a meta-stable transient state of local alignment, and (2) the final convergence
to complete consensus. The first feature is clearly due to the interaction topology
because initial local divergences are leveled with a high probability and once an
areal of local alignment is achieved change is admitted, due to the chain topology,
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Fig. 1.1 Example of the time evolution of the VM on the chain network

only at the borders of that domain. The second feature is a more general feature of
the finite VM: sooner or later consensus occurs in every connected topology.

When designing an agent model, one is inevitably faced with the problem of
finding an acceptable compromise between realism and simplicity. If many aspects
are included into the agent description, the model might be plausible with regard
to the individual behaviors, but it will be impossible to derive rigorous analytical
results. In fact, it can even be very hard to perform systematic computations to
understand the model dynamics if many parameters and rules are included. On
the other hand, models that allow for an analytical treatment often oversimplify
the problem at hand. The VM is good example of this kind. In AB modeling, we
can find the whole spectrum between these two extremes. While simplicity is often
favored by physicists in order to be able to apply their well-developed tools from
statistical physics, more realistic descriptions are often desired by researchers in the
humanities because they are interested in incorporating into the model a reasonable
part of their qualitative knowledge at the micro and macro scales. Both views have,
of course, their own merits.

1.3 Markov Chain Description of Agent-Based Models

This work is a contribution to interweaving two lines of research that have developed
in almost separate ways: ABMs and Markov chains. The latter represents the
simplest form of a stochastic process while the former puts a strong emphasis on
heterogeneity and social interactions. The main expected output of a Markov chain
strategy applied to AB systems is a better understanding of the relationship between
microscopic and macroscopic dynamical properties. Moreover, we aim to contribute
not only to the understanding of the asymptotic properties of ABMs but also to the
transient mechanisms that rule the system on intermediate time scales. For practical
purposes this is the most relevant information for two reasons: first, in many cases
the chains are absorbing, so the asymptotic dynamics is trivial and second, they
describe the evolution of the system before external perturbations take place and
possibly throw it into a new setting.
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The possibility of using Markov chains in the analysis of ABMs has been pointed
out in Izquierdo et al. (2009). The main idea is to consider all possible configurations
of the agent system as the state space of a huge Markov chain. While Izquierdo et al.
(2009) mainly rely on numerical computations to estimate the stochastic transition
matrices of the models, here we show for a class of models how to derive explicitly
the transition probabilities OP in terms of the update function u and a probability
distribution ! accounting for the stochastic parts in the model. It turns out that
realizations of ABMs with a sequential update scheme can be conceived as random
walks on regular graphs.

Consider an AB system defined by a set N of agents, each one characterized by
individual attributes that are taken from a finite list of possibilities. We denote the
set of possible attributes by S and we call the configuration space ˙ the set of all
possible combinations of attributes of the agents, i.e. ˙ D SN . Therefore, we denote
an agent configuration as x 2 ˙ and write x D .x1; : : : ; xi; : : : ; xN/ with xi 2 S. The
updating process of the attributes of the agents at each time step typically consists
of two parts. First, a random choice of a subset of agents is made according to some
probability distribution !. Then the attributes of the agents are updated according
to a rule u, which depends on the subset of agents selected at this time. With this
specification, ABMs can be represented by a so-called random map representation
which may be taken as an equivalent definition of a Markov chain (Levin et al.
2009). We refer to the process .˙; OP/ as micro chain.

1.4 Markov Chain Aggregation

When performing simulations of an ABM we are actually not interested in all the
dynamical details but rather in the behavior of certain macro-level properties that
inform us about the global state of the system (such as average opinion, number
of communities, etc.). The explicit formulation of ABMs as Markov chains enables
the development of a mathematical framework to link a micro chain corresponding
to an ABM to such a macro-level description of interest. Namely, from the Markov
chain perspective, the transition from the micro to the macro level is a projection
of the micro chain with state space ˙ onto a new state space X by means of a
(projection) map ˘ from ˙ to X. The meaning of the projection ˘ is to lump sets
of micro configurations in ˙ into an aggregate set according to the macro property
of interest. Such a situation naturally arises if the ABM is observed not at the micro
level of ˙ , but rather in terms of a measure � on ˙ by which all configuration in ˙

that give rise to the same measurement are mapped into the same macro state, say
Xk 2 X. An illustration of such a projection is provided in Fig. 1.2.

There are two things that may happen when projecting a micro process onto a
macroscopic state space X. First, under certain conditions the macro-level process
is still a Markov chain. This case is known as lumpability in Markov chain theory
and necessary and sufficient conditions are provided in a well-known textbook on
finite Markov chains by Kemeny and Snell (1976). The questions addressed in what
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transition matrix OP. The macro process is a Markov chain (with P) only in the case of lumpability

follows concerns, first of all, the conditions on the microscopic system and the
projection construction that have to be met in order to lead to a macro process that
is still a Markov chain. In this regard, if we decide to remain at a Markovian level,
then the projection, or equivalently the collective variables to be used to build the
macro model must be compatible with the symmetry of the probability distribution
!. In turn, in the absence of any symmetry, there is no other choice than to stay
at the micro-level because no Markovian macro-level description is possible in this
case.

Secondly, and more generally, the price to pay in passing from the micro to the
macro dynamics by such a projection construction is that the projected system is no
longer a Markov chain. Long memory (even infinite) may appear in the projected
system. Consequently, this setting can provide a suitable framework to understand
how aggregation may lead to the emergence of long range memory effects. This
opens up a series of interesting questions: for instance, why and in what sense
does the behavior of the macro process deviate from Markovianity? How can we
measure these deviations? Do we introduce memory or long-range correlations
at the macro level by the very way we observe a process and is the emergence
of these effects just due to an aggregation which is insensitive to microscopic
heterogeneities? In particular, there is usually a strong interest in the effects that
different interaction topologies have on the transient model dynamics as well as
on the emergence of characteristic meta-stable situations, such as the persistent
pattern of local alignment shown in Fig. 1.1. In that regard, how good does the
mean field solution approximate network dynamics and for which networks does it
provide acceptable approximations? Is there an alternative macro-level formulation
that leads to better results? If yes, which properties can be captured by it? A micro-
macro formalism may shed new light on some of these questions.

To my point of view, the non-Markovian case is in many ways even more
interesting than the case of lumpability. In particular, because it relates microscopic
heterogeneity to macroscopic complexity (structure generation). Constraints, het-
erogeneities in the microscopic system and complex social interactions are the basic
characteristics of ABMs, and the Markov chain approach to link the micro chain to a
macro level description (and likewise the failure of a Markovian link) highlights the



1.5 Micro-Macro Transition in the Voter Model 7

crucial role played by those ingredients in the generation of complex macroscopic
outcomes. The formalization of the relations between the micro and the macro levels
in the description of the dynamics of AB systems as well as their mathematical
characterization is a step towards a mathematical theory of emergence in complex
adaptive systems.

To address these issues, the book includes a chapter which applies recently devel-
oped information-theoretic measures for multi-level systems to quantify deviations
from Markovianity introduced through the transition from one level of description
to the other (see Chap. 7). It shows that memory effects are introduced by a global
aggregation over the agent population without sensitivity to micro- or mesoscopic
structures. While lumpability is a yes-no question, the information-theoretic setting
provides understanding about the amount of information that is lost in the transition
from the micro to the macro level.

1.5 Micro-Macro Transition in the Voter Model

Let us exemplify the link between a micro and a macro chain by Markov chain
aggregation for the VM. From the microscopic perspective, the VM corresponds to
an absorbing random walk on the N-dimensional hypercube. If N agents can be in
two different states, the set of all agent configurations ˙ is the set of all bit-strings
of length N. Due to the dyadic conception of the interaction along with a sequential
update scheme only one agent may change at a time which means that transitions
are only possible between configurations that differ in at most one bit. The structure
of the VM micro chain is shown for a small system of three agents in the upper part
of Fig. 1.3.

{ {

k = 0 k = 1 k = 2 k = 3

ϕ

ϕ ϕ

ϕ

{
{

micro-level

process

macro-level

process

Fig. 1.3 Micro and macro level in the VM with three agents
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In the VM, the most typical level of observation is to count the number of agents
in the different states. In hypercube terminology this corresponds to the Hamming
weight (i.e., �.x/ D h.x/). By the projection that this observation induces, all micro
configurations with the same number of (say) white agents are mapped into the same
macro state. If k is the number of white agents (h.x/ D k), we denote the respective
macro state as Xk. Therefore, if we are dealing with a system of N agents, there
are N C 1 macro states which is a tremendous reduction compared to the 2N micro
configurations. The projection construction for the VM is shown in Fig. 1.3.

Voter-like models—as used in physics-inspired models of social dynamics as
well as in population genetics or evolutionary dynamics—are nice examples where
such a projection construction is particularly meaningful. Namely, because it
corresponds to the most typical description of the model dynamics in terms of
attribute frequencies. Lumpability allows to determine conditions for which the
macro chain on X D .X0; : : : ; Xk; : : : ; XN/ is again a Markov chain and, as will
be shown in Chap. 3, this requires that the probability distribution ! over agent
choices must be invariant under the group SN of all the permutations of N agents,
and therefore uniform. This underlines the theoretical importance of homogeneous
mixing and respectively the complete graph in the analysis of the VM and related
models.

1.6 Outline

The book is organized into ten chapters. Chapter 2 provides an overview over
AB modeling, their mathematical formalization as Markov chains as well as other
concepts that will play an important role in the remainder. It also reviews different
approaches to lumpability in Markov chains and motivates their application to
ABMs.

Chapter 3 develops the most important theoretical ideas. In the first part, an
elementary introduction to ABMs and their dynamical characteristics is provided
which illustrates the usefulness of Markov chains for the formalization of the micro-
level dynamics. This formalization is addressed in the second part of Chap. 3, which
shows how to derive an exact Markov chain description of the AB dynamics for a
class of models. This is followed by general description of the transition from the
micro to the macro level including the main theoretical arguments of how to derive
lumpable macro-descriptions based on the model symmetries.

After that, Chap. 4 proceeds with a detailed analysis of the VM with homoge-
neous mixing and applies Markov chain tools to obtain a detailed understanding
of the transient model dynamics. This analysis may be read as a step-by-step
instruction for the analysis of absorbing Markov chains. It also includes an analysis
of the multi-state version of the VM and shows that interaction constraints such as
bounded confidence may lead to the stable co-existence of polarization.
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In Chap. 5, we discuss what happens in the case of inhomogeneous interaction
probabilities. A systematic approach to aggregation is developed which exploits all
the dynamical redundancies that have its source in the agent network on which the
model is implemented. This enables the analytical treatment of a leader-follower
system as well as the two-community model in which two strongly connected
groups interact weakly with one another.

Chapter 6 applies the results of the previous chapters to an extension of
the VM that accounts for non-conformity behavior. As the model introduces a
small probability with which agents act as contrarians opposing the state of their
interaction partner, this model is called contrarian voter model (CVM). Starting
from the corresponding micro-level description, we analyze the behavior of this
model on the complete and the two-community graph using Markov chain tools.
Since the CVM leads to a non-absorbing, regular Markov chain, this analysis
provides an overview over some of the instruments available for the exploration
of non-absorbing chains.

The main objective of Chap. 7 is to study the influence of interaction topology on
the macro-level dynamics in the case of non-lumpability and to apply information-
theoretic tools to better understand such situations. After a discussion of these
tools and how they relate to lumpability, the two-community CVM is used as an
analytical scenario to study the discrepancy between the lumpable homogeneous
mixing case and the model on a slightly more complex topology. The possibility of
weak lumpability is also discussed.

Chapter 8 shows how the framework developed throughout this book can be
used to understand the (sometimes very subtle) differences between different
implementations of AB systems that are designed on the basis of very similar
conceptual ideas. We inspect two well-known models with application in population
genetics on the one and social dynamics on the other hand. While one main focus
in the former is on the adaptive behavior of a population, the latter is more often
concerned with the emergence of polarization and stable clusters of individuals.
Even though the dynamical update rules used in the modeling of the microscopic
interactions follow the same principles, the behavior of the two models differs
fundamentally which we illustrate by numerical simulations. A Markov chain
analysis of the respective minimal model variants then reveals that the reason for
these differences is due to the way the mechanisms of agent selection, interaction
and replacement are constrained and combined in the modeling.

While the specific issues are discussed at the end of each chapter, Chap. 9
aims at a synthetic view on how this work may contribute more generally to the
study of complexity and emergence. A provisional definition of emergence in terms
of lumpability provides a link between two different perspectives on emergence,
namely, the concept of dynamical incompressibility and Wimsatt’s notion of non-
aggregativity. Finally, Chap. 10 draws a conclusion on the project as a whole and
outlines some ideas and challenges for future research.
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Chapter 2
Background and Concepts

This work is a contribution to interweaving two lines of research that have developed
in almost separate ways: Markov chains and agent-based models (ABMs). The
former represents one of the simplest forms of a stochastic process while the
latter puts a strong emphasis on heterogeneity and social interactions. This chapter
provides an introduction to AB modeling and reviews approaches to use Markov
chains in their analysis.

The main expected output of the Markov chain strategy applied to ABMs is
a better understanding of the relationship between microscopic and macroscopic
dynamical properties. This brings into the discussion concepts of aggregation
and emergence, and it also relates to macroscopic mean-field formulations as a
substantial tool in the statistical mechanics approach to social dynamics. Moreover,
a series of information-theoretic tools to put the notion of levels onto mathematical
grounds have been developed in recent years. A complete review of the literature
dealing with these topics is clearly beyond the scope of this chapter which is rather
aimed at introducing the most important concepts with reference to AB systems
and Markov chains. Especially the physics-inspired approach to social dynamics
has attracted a lot of interest in the last years and a huge number of papers is still
produced every year. For a relatively coherent review (though, may be, no longer
completely up-to-date), the reader may be referred to Castellano et al. (2009).

2.1 Agent-Based and Related Models

ABMs are an attempt to understand how macroscopic regularities may emerge
through processes of self-organization in systems of interacting agents. A system
at question is modeled at the microscopic level by specifying the elementary units
of that system—the agents—and implementing simple rules for how these agents
interact with one another. Typically implemented on a computer, the time evolution
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of such a system is computed as an iterative process—an algorithm—in which
agents are updated according to the specified rules. One of the main purposes of
this modeling strategy is “to enrich our understanding of fundamental processes”
(Axelrod 1997, p. 25) underlying certain observed patterns, or to “explore the
simplest set of behavioral assumptions required to generate a macro pattern of
explanatory interest” (Macy and Willer 2002, p. 146).

One paradigmatic example of ABMs is Reynolds model of the flocking behavior
of birds (Reynolds 1987). While the modeling of a flock as such is difficult, quite
realistic flocking behavior is achieved if the individual birds follow simple rules of
how to react upon the action of other individuals in their neighborhood. Another
well-known example is Schelling’s model of segregation (Schelling 1971). Here,
two kinds of householders (say black and white) located on a lattice are endowed
with a slight preference to settle in a neighborhood with more households of the
same kind. Running that system leads to a clear spatial segregation at the global level
even if the homophily preference is small. Similar effects can be observed in models
of opinion and cultural dynamics, see, for instance, Axelrod (1997), Deffuant
et al. (2001), Hegselmann and Krause (2002), and Banisch et al. (2010). Another
paradigmatic problem that has been addressed by AB research is the emergence
of a set of norms or common conventions. In the naming game proposed by Steels
(1997), for instance, robots learn common word-object relations in a communication
process based on trail and error. Other models in which an initial plurality in a
population of agents evolves to a common consensus state include various models
of opinion formation with the VM as the most simple representative (see Castellano
et al. 2009 for a review of these models).

It is common to trace back the history of AB simulation to the cellular automata
(henceforth CA) designed by von Neumann (1951) and later shaped by Berlekamp
et al. (1982) and Wolfram (1983, 2002). And in fact, many ABMs can be viewed
as a stochastic CA with asynchronous update. The methods developed in this work
apply precisely to that type of models.

However, even some years before von Neumann and Ulam came up with the
first CA design, another type of “individual-based” model had been introduced
in a branch of theoretical biology which is today called population genetics (see
Li 1977 for a collection of the seminal papers in that field). Wright and Fisher
(along with Haldane known as the founders of population genetics) advocated
a simple model for the evolution of allele frequencies (Wright 1932) based on
microscopic assumptions of gene transmission from the parent to the children
generation. In 1958, Moran (1958) made use of Markov chain theory to study
a modified model and introduced what today is known as the Moran process.
Later, Kimura went further in this line of research on a neutral theory of evolution
with the stepping stone model (Kimura and Weiss 1964) which still later became
known as the voter model (abbreviated by VM throughout this book). From the
very beginning population genetics developed as a mathematical discipline and has
inspired various solution strategies from probabilistic methods including Markov
chains and coalescing random walks to mean-field approaches in statistical physics.
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The biological literature on evolutionary dynamics on graphs has mainly started
from the model proposed by Moran (1958). In the Moran model, at each time
step, an individual is chosen at random to reproduce and replaces a second one
chosen at random as well. In the original model, there is no population structure
which means that all individuals are chosen with equal probability. Therefore—this
is something that will be made explicit in the fourth chapter of this thesis—the
dynamics can be formulated as a birth-death random walk on the line. See Claussen
and Traulsen (2005), Traulsen et al. (2005), and Nowak (2006) for treatments of the
associated Moran process. While early studies (Maruyama 1974; Slatkin 1981) had
indicated that population structure has no or only little effect on the model behavior,
it has recently been shown that population structure can have a significant influence
(Liberman et al. 2005; Nowak 2006; Shakarian et al. 2012; Voorhees and Murray
2013; Voorhees 2013, among many others). The setting—sometimes referred to as
evolutionary graph theory (Liberman et al. 2005)—is usually as follows: suppose the
is a population of N individuals with fitness 1; suppose that a mutant with fitness r is
introduced in one of the individuals; what is the probability that the mutant invades
the entire population? The Moran case of unstructured populations is usually taken
as a benchmark such that a graph which leads to a fixation probability different from
the unstructured case are said to suppress or respectively enhance selection.

In the physics literature, the analysis of binary models as the VM is usually
based on mean-field arguments. The system dynamics is traced in form of an
aggregate order parameter and the system is reformulated on the macro-scale as
a differential equation which describes the temporal evolution of that parameter. In
many cases, the average opinion (due to the analogy to spin systems often called
“magnetization”) has proven to be an adequate choice, but sometimes the number
of (re)active interfaces yields a more handable transformation (e.g., Frachebourg
and Krapivsky 1996; Krapivsky and Redner 2003; Vazquez and Eguíluz 2008). A
mean-field analysis for the VM on the complete graph was presented by Slanina and
Lavicka (2003), and naturally, we come across the same results using our method
(Sect. 4.1.2). Slanina and Lavicka (2003) derive expressions for the asymptotic exit
probabilities and the mean time needed to converge, but the partial differential
equations that describe the full probability distribution for the time to reach the
stationary state is too difficult to be solved analytically (Slanina and Lavicka 2003,
p. 4). Further analytical results have been obtained for the VM on d-dimensional
lattices (Cox 1989; Frachebourg and Krapivsky 1996; Liggett 1999; Krapivsky and
Redner 2003) as well as for networks with uncorrelated degree distributions (Sood
and Redner 2005; Vazquez and Eguíluz 2008). It is noteworthy, that the analysis of
the VM (and more generally, of binary-state dynamics) on networks has inspired
a series of solution techniques such as refined mean-field descriptions (e.g., Sood
and Redner 2005; Moretti et al. 2012), pairwise approximation (e.g., De Oliveira
et al. 1993; Vazquez and Eguíluz 2008; Schweitzer and Behera 2009; Pugliese and
Castellano 2009) and approximate master equations (e.g., Gleeson 2011, 2013).

The early works in population genetics (Fisher 1930, in particular) have inspired
still another modeling approach that is related to ABMs, namely, evolutionary game
theory (see Smith 1982 for a seminal volume and Roca et al. 2009 for a recent



14 2 Background and Concepts

review). Here, games are designed in which agents repeatedly play against one
another adopting one out of a set of predefined strategies. A fitness is assigned
to the combinations of strategies and the population evolves as a response to
this fitness. As in the framework of statistical mechanics, the model evolution is
typically captured in form of differential equation describing the evolution of the
(relative) frequencies of the different strategies, referred to as replicator dynamics
in this context (Taylor and Jonker 1978; Schuster and Sigmund 1983; Hofbauer and
Sigmund 2003). One of the main purposes of this work is to spell out explicitly how
to link the dynamics at the micro level to these macroscopic descriptions.

Finally, it is worth mentioning that research in economics has experienced a
growing interest in modeling economic phenomena as the result of the interactions
of heterogeneous individuals (Tesfatsion and Judd 2006). In particular in the
field of finance, this has led to the development of ABMs for the identification
of (macro) patterns of collective dynamics from (micro) investor heterogeneity
in many financial settings (Cont and Bouchaud 2000; LeBaron 2000; Bornholdt
2001; Kaizoji et al. 2002; Hommes 2006; Preis et al. 2013; Krause and Bornholdt
2013; Patzelt and Pawelzik 2013). Noteworthy, there is also a number of empirical
applications of Markov chains in the field of finance (e.g., Corcuera et al. 2005;
Nielsen 2005; Norberg 2006). Interaction and heterogeneity on the one hand, and
non-Gaussianity, heavy tails and long-range correlations on the other appear to be
natural features of modern economies, to which the formerly dominating tradition of
modeling representative agents has, to a large extent, paid little attention. This thesis
shows that memory effects at the macroscopic level are an immediate consequence
of microscopic heterogeneity and it may therefore contribute to the identification of
the relevant microscopic mechanisms that presumably play a role in the market.

2.2 Markov Chain Formalization of Agent-Based Models

The AB approach is first and foremost a computational methodology and the
mathematical formalization of the models is in its infancy. This is probably due
to the fact that a major motivation in the development of AB simulation has been
to relax a series of unrealistic assumptions made in other modeling frameworks just
in order to keep mathematical tractability; namely, rationality, perfect information,
agent homogeneity, and others. The other side of the coin is that the focus on
computer models and algorithms makes difficult the comparison of different models
and also complicates a rigorous analysis of the model behavior. In fact, the problems
of code verification and model comparison including the discussion of standards
for the replication of ABMs has nowadays become an area of research in its own
(e.g., Axtell et al. 1996; Axelrod 2003; Hales et al. 2003; David et al. 2005;
Grimm et al. 2006; Wilensky and Rand 2007; Galán et al. 2009). As a matter of
fact, many of those problems would actually vanish with a sound mathematical
formulation of an AB simulation model. On the other hand, it is also clear that the
precise mathematical specification of a high-dimensional system of heterogeneous
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interacting agents along with their update mechanisms can be cumbersome in more
complex models.

To the authors knowledge, the first systematic approach to the development
of mathematical formalism for ABMs in general is due to Laubenbacher and
co-workers. Laubenbacher et al. (2009) review existing formal frameworks that have
the potential to model AB systems, such as cellular automata and finite dynamical
systems and argue for the latter as an appropriate mathematical framework to repre-
sent ABMs. However, the probabilistic nature of most models can only be accounted
for by the stochastic version—the so-called stochastic finite dynamical systems—
the analysis of which “is still in its infancy” (Laubenbacher et al. 2009, p. 14). On
the other hand, Laubenbacher et al. (2009) recognize that stochastic finite dynamical
systems give rise to Markov chains. However, for reasons that do not become very
clear in their paper, the authors argue:

To understand the effect of structural components such as the topology of the dependency
graph or the stochastic nature of the update, it is important to study them not as Markov
chains but as SFDS [stochastic finite dynamical systems] (Laubenbacher et al. 2009, p. 10)

I clearly disagree with them in this point, because the microscopic specification
of ABMs as Markov chains developed in this thesis turns out to be a useful starting
point for further analysis. But of course, the incentive of Laubenbacher et al. (2009)
to further elaborate the theory of stochastic dynamical systems in order to derive
rigorous results for ABMs in future is highly appreciable.

The usefulness of the Markov chain formalism in the analysis of ABMs has
first been realized by Izquierdo et al. (2009). The authors look at ten well-known
social simulation models and discuss for each of them how to represent the model
as a time-homogeneous Markov chain. Among the models studied in Izquierdo
et al. (2009) are the Schelling segregation model (Schelling 1971, for which some
analytical results are available, for example, in Pollicott and Weiss 2001; Grauwin
et al. 2010), the Axelrod model of cultural dissemination (Axelrod 1997, see also
Castellano et al. 2000 for a mean-field approximation) and the sugarscape model
from Epstein and Axtell (1996). Noteworthy, the sugarscape model—one of the
reference models in the field of social simulation—contains virtually all features that
may occur in ABMs: heterogeneous agents placed in a dynamic spatial environment,
death and birth of agents, various static and dynamic attributes that may evolve on
different time scales.

The main idea of Izquierdo et al. (2009) is to consider all possible configurations
of the system as the state space of a huge Markov chain and the construction of that
state space is actually the main challenge for Izquierdo and co-workers. Despite
the fact that all the information of the dynamics of the ABM is encoded in a
Markov chain, however, it is difficult to learn directly from this fact, due to the
huge dimension of the configuration space and its corresponding Markov transition
matrix. The analyses provided in Izquierdo et al. (2009) are essentially based on the
classification of states into transient and absorbing communicating classes which
allows some statements about the convergence as times goes to infinity.
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The paper of Izquierdo et al. (2009) is designated “for researchers who may
not have a strong mathematical background” (par.1.1) and probably therefore lacks
rigorous arguments sustaining some of the results. Most fundamentally, there is
no proof that the process on the constructed configuration space indeed satisfies
the Markov property. Their work also mainly relies on numerical computations to
estimate the stochastic transition matrices of the models. Both issues are addressed
in this volume. The explicit computation of transition probabilities, in particular,
allows for the application of the theory of Markov chain aggregation in order to
reduce the state space of the model.

2.2.1 A Very Short Introduction to the Markov Chain Setting

For the purposes of this book, it is not necessary to provide an extensive overview
of Markov chain theory. It is more convenient here to introduce the general idea
for using Markov chains for the representation of ABMs and introduce the analysis
tools of Markov chain theory when we apply them to the models. In Chap. 4, for
instance, we will analyze the voter model on the complete graph which gives rise
to an absorbing birth-death process known as Moran process (Moran 1958). The
standard tools for the analysis of absorbing chains are introduced and applied there.
In the same way Chap. 6 can be consulted for the analysis of regular Markov chains.
In the applications of Markov chain tools presented throughout this book we mainly
follow Kemeny and Snell (1976), Behrends (2000), and Levin et al. (2009). Many
other volumes (introductory and advanced) are available.

Here we concentrate on ABMs with a finite number of agents that are charac-
terized by a finite set of discrete attributes. This means that the state space of the
system—that is, the set of all possible system configurations—is also finite.1 It
will be denoted as ˙ in the sequel. Furthermore, AB simulation models usually
implement time-discrete processes and due to these ingredients taken together we
concentrate on finite-state, discrete-time processes.

A Markov chain is a stochastic process in which the probability to observe a
state y at time t C 1 is completely determined by the preceding state x at time t.
It is common to express this in form of a transition probability matrix OP W ˙ !
˙ that contains the transition probabilities for all pairs of states x; y 2 ˙ . Then,
considering a initial distribution O�.0/ that assigns an initial probability to all the
possible system states, the time evolution is given by the repeated application of the
transition matrix O�.t/ D O�.0/ OPt where O�.t/ now contains the probability for the
system states at time t.

1Notice, that this excludes a series of models (e.g. continuous opinion dynamics Deffuant et al.
2001; Hegselmann and Krause 2002) that operate with agents characterized by a continuous
variable.
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Throughout this book, we will mainly be confronted with two different classes
of Markov chains, namely, absorbing and regular chains. This first ones are
characterized by the fact that there are certain states x in the system with no outgoing
probabilities, meaning that the system will remain in x once it has entered it. In
other words, OP.x; x/ D 1 and the process is said to converge to the absorbing state
x. For this reason, questions concerning convergence times and the number of times
the non-absorbing, transient states are visited before convergence are among the
most interesting. As already mentioned, the tools to address those questions are
introduced in Chap. 4.

Regular chains, to the contrary, are characterized by the fact that there is a
certain time t at which the matrix OPt has only positive elements. This obviously
excludes absorbing states as the respective outgoing transition probabilities for these
states will always remain zero. It basically means that in regular chains every state
can be reached from every other state in the course of the process. Moreover, the
powers of the transition probability matrix approach a limiting matrix for t!1 in
which all rows are the same probability vector. Therefore, independent of the initial
distribution O�.0/, a regular chain always converges to a fixed probability vector O�
which is called the stationary distribution of the chain. Since the stationary vector
O� is constant under further application of the transition matrix, one way to compute
this vector is solve the eigenvalue problem O� OP D O� (for the eigenvalue 1). Chapter 6
will deal with an ABM that gives rise to regular chains.

When simulating an ABM, one usually initializes the system with particular
(often random) initial assignments of the agent attribute corresponding to one
specific system configuration x. The initial distribution corresponds in this case to a
vector that contains zero everywhere except for the element representing x where it
is one (i.e., O�x.0/ D 1 and O�y.0/ D 0;8y ¤ x). However, in order to understand the
dynamics of a model, a series of numerical experiments is usually performed each
with a different initial condition. This can be accounted for by setting O� accordingly.
One of the strength of using Markov chains is then that the statistics one derives
from the analysis accounts for the statistics that would be observed for infinitely
many model realizations.

2.3 Lumpability and State Space Aggregation

The state space of a Markov chain derived by considering as states all possible
system configurations is far too big to directly use the respective transition matrix
OP for exact numerical computations. As an example, consider a model with binary
agent attributes such as the VM. A system of N agents will lead to a Markov chain
of size 2N which for our introductory example of only 20 agents (Fig. 1.1) leads to
a chain with more than a million states. In order to use the Markov chain machinery
for AB systems, the system size has to be reduced in some way.
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2.3.1 Strong Lumpability

This brings lumpability into play as a way to combine and aggregate the states of
a Markov chain so that the process at the aggregate level is still a Markov chain.
Consider that the state space of a Markov chain is ˙ and the transition probabilities
between all pairs of states in ˙ are given by the j˙ j � j˙ j transition matrix OP.
Throughout this work, the chain .˙; OP/ will be called micro chain and, respectively,
the states in ˙ micro states. Now assume that X D .X0; X1; : : : ; Xn/ is a partition
of ˙ where each Xk contains a set of micro states in ˙ , such the Xk are disjoint
(Xk \ Xs D ; for any pair of aggregate sets) and for the union of all sets

Sn
iD0 Xi D

˙ . Such a situation naturally arises if the process is observed not at the micro level
of ˙ , but rather in terms of a measure on ˙ , � W ˙ ! f0; 1; : : : ; ng, by which
all states in ˙ that give rise to the same measurement are mapped into the same
aggregate set Xk (also referred to as macro states). An important question that arises
in such a setting is whether the new aggregate process on X is still a Markov chain
or not. This is what lumpability is about. The lumpability theory adopted for the
purposes of this thesis is largely based on Kemeny and Snell (1976), which is, to the
authors knowledge, the first textbook in which the strong as well as the weak form
of lumpability are discussed with some detail. Notice that there are some other early
and seminal works on lumpability, such as Burke and Rosenblatt (1958), Rosenblatt
(1959), and Rogers and Pitman (1981).

To illustrate the concept of strong lumpability, let us use the Land of Oz
example repeatedly considered in Kemeny and Snell (1976) (see pages 29/30 for
the introduction of the example and page 125 for the lumpability example). There, a
three-state Markov chain is formed which approximates how the whether develops
from 1 day to the other. There is rain (R), nice whether (N) and snow (S) and the
transition rates are given by

OP D
R
N
S

0

@
1=2 1=4 1=4

1=2 0 1=2

1=4 1=4 1=2

1

A : (2.1)

Therefore, a nice day is never followed by a nice day, but there is an equal chance
to have rain or snow. For a rainy day as well as for a day with snow, on the contrary,
there is a chance of 1=2 that the whether remains as it is for the next day, and the
remaining options are equally likely with probability 1=4. From this assignment
of probabilities, we can already see that the behavior for rain (R) and snow (S) is
actually equal and therefore we may combine the two states into a “macro” state
called “bad whether” (B D fR; Sg). Hence, the states space is partitioned into two
sets: N on the one hand and B D fR; Sg on the other. Now, as the probability that
nice whether follows is equal for R and S the transition matrix of the new chain is
uniquely defined by:

P D N
B

�
0 1

1=4 3=4

�

: (2.2)
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It is the equality of conjoint transition rates from the states that shall be combined to
all the other partitions ( OP.R; N/ D OP.S; N/ D 1=4 in this simple example) on which
the condition for lumpability is based.

More precisely, if the probability of moving from a micro state x 2 Xk to a macro
state Xl is equal for all micro states in Xk, then all the information about the history
which led to a particular state in Xk is actually irrelevant, because from the macro
perspective the future evolution is equivalent for any state in Xk. This leads to a
condition on the transition matrix OP, namely,

P
y2Xl
OP.x 2 Xk; y 2 Xl/ must be

equal for all x 2 Xk. For a process to be lumpable with respect to a partition X, it
is sufficient and necessary if this is true for any pair of sets Xk; Xl of the partition.
The respective theorem is presented in Kemeny and Snell (1976, Theorem 6.3.2)
and we will come back to it with more detail and a focus on an application to ABMs
in Sect. 3.3.3 (next chapter).

If the chain along with the desired state space partition is given, the application
of the conditions provided in Kemeny and Snell (1976, Theorem 6.3.2) (as well as
the subsequent matrix conditions) is relatively simple. However, if only the chain
is given, it may be a real challenge to find partitions with respect to which the
process is lumpable, not least due to the combinatorial explosion of the number of
possible partitions. In this context, some algorithms have been presented for the task
to find the optimal or coarsest partition (Buchholz 2000; Derisavi et al. 2003). Other
authors have addressed these issues by studying the spectral properties of lumpable
chains and have proposed algorithms based on that (Barr and Thomas 1977; Meila
and Shi 2001; Takacs 2006; Jacobi 2008; Filliger and Hongler 2008; Görnerup and
Jacobi 2010).

Another approach in which aggregate Markov chain descriptions are derived
on the basis of model specifications that include the hierarchical and symmetric
composition of sub-models has been followed by Buchholz (1995) and is also
advised in the context of interactive Markov chains by Hermanns (1999) and
Hermanns and Katoen (2010). Namely for systems that “include a large number
of identical and symmetric components” (Buchholz 1995, pp. 93/94), a reduced
Markov chain description “resulting from exact lumping” (Buchholz 1995, p. 94)
is constructed directly during the modeling process. This avoids time-consuming
(up to unfeasibility) computations on the huge transition matrices that the model
would give rise to without the reduction. In this work, we formulate explicitly the
complete microscopic system—containing all symmetries that come by the ABM
at question—and lumpability arguments are based on that description (Sects. 3.2
and 3.3, next chapter). However, one of the main messages of this work concerns
the translation of model symmetries into regularities on the associated micro chain
which then enable lumpability. Especially Chap. 5, in which aggregate descriptions
are derived starting from the symmetries of the agent network, is clearly related
to the hierarchical approach due to Buchholz (1995) and the idea of symmetric
composition in Hermanns (1999).
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2.3.2 Weak Lumpability

This thesis mostly applies the strong version of lumpability described above in order
to achieve a Markovian aggregation for ABMs. However, it is important to note
that there is a weaker version of lumpability often referred to as weak lumpability
which will play some role in the seventh chapter. While in the case of strong
lumpability the projected process on X D fX0; X1; : : :g is a Markov chain for any
(initial) distribution, the weaker form of lumpability makes statements about the
possibility to obtain a Markovian process at the aggregate level only for particular
initial vectors.

For a description of the intuition behind weak lumpability the reader is encour-
aged to have a look to Kemeny and Snell (1976, Sect. 6.4., and pages 132/133 in
particular) who themselves refer to Burke and Rosenblatt (1958) for some of their
results. The main idea resides in the following possibility:

Assume that no matter what the past information is, we always end up with the same
assignment of probabilities for being in each of the states in [Xk]. Then again the past can
have no influence on our predictions. (Kemeny and Snell 1976, p. 133)

A necessary and sufficient (though not always practical) condition (Kemeny
and Snell 1976, Theorem 6.4.1) is also provided, but the necessity and sufficiency
of conditions for weak lumpability have also been subject of further discussion,
see Abdel-Moneim and Leysieffer (1982), Rubino and Sericola (1989), and Peng
(1996).

On of the most important observations concerns the fact that if a regular chain is
weakly lumpable with respect to a partition X for some probability vector, then it is
weakly lumpable for the stationary vector (the left invariant vector of the transition
matrix �P D �). See Kemeny and Snell (1976, Theorem 6.4.3) and also Rubino and
Sericola (1989). This may be useful for the decision whether there is one distribution
altogether for which a chain is weakly lumpable or not (Kemeny and Snell 1976,
Theorem 6.4.4). This result has been extended to absorbing Markov chains by
Ledoux et al. (1994). In the absorbing case, the quasi-stationary distribution is
shown to play the role of the stationary vector which allows to relate the lumpability
problem and existing algorithms for irreducible chains to the absorbing case.

2.3.3 Nearly Lumpable and Non-lumpable Aggregation

It is well known that lumpability (the strong as well as the weak version) is rather
an exception than the rule (Chazottes and Ugalde 2003; Gurvits and Ledoux 2005).
Some form of aggregation, state space reduction, or macroscopic observation,
however, is omnipresent in the analysis of complex systems and their dynamics.
The question that then arises concerns the extend to which an aggregate process still
informs us about the real microscopic model behavior.
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There are some works that discuss these issues for the cases that the aggregation
satisfies different types of lumpability. Namely, Schweitzer (1984), Sumita and
Rieders (1989), and Buchholz (1994) show that important stationary and transient
measures are preserved by the lump. However, the direct derivation of stationary
and transient properties of the original chain only by knowledge of the aggregated
chain is possible only for a special case of weak lumpability referred to as exact
lumpability (Buchholz 1994, Theorem 3, Theorem 6). Buchholz (1994) also states
that for any micro process and any partition it is possible to construct an aggregation
that preserves the stationary measure. However, for the construction of this so-called
ideal aggregate the stationary state of the original micro system has to be known.
Though all lumpable aggregation are also ideal, the converse is not true and
Buchholz (1994, p. 6) states:

In all cases considered here, no information about the transient behavior can be gained from
the ideal aggregate.

In Chap. 7 of this work, we will construct an ideal non-lumpable aggregate for the
contrarian VM on networks. While this book does not go much further in analyzing
the relation between that ideal aggregate and the micro process, it does present an
analytical example in which these questions can be addressed.

A second important contribution due to Schweitzer (1984) and Buchholz (1994)
is an operational concept of near lumpability. The main idea is that a nearly
lumpable transition matrix OP can be represented as OP D OAC� OB where OA is lumpable
and � is a sufficiently small constant used in analogy to its use in perturbation theory.
Buchholz (1994) constructs bounding matrices for the transition probabilities that
can be used to compute bounds for the stationary and transient quantities of the
aggregated process. The computation of bounds in Buchholz (1994) is in part based
on the work of Courtois and Semal (1984). See also Franceschinis and Muntz (1994)
and Dayar and Stewart (1997) for other concepts of nearly- or quasi-lumpability.

2.3.4 Aggregation in Dynamical Systems

Finally, to complete this section, we should notice that aggregation and state
space decomposition is a wide field which has been vividly discussed across
different disciplines, during quite some time. In philosophy, it relates strongly
to the more general discussions about the decomposability of a complex system
(Simon 1962) and from there to emergence (Wimsatt 1986; Auger and Poggiale
1998) and even further to the possible limitations of an reductionist account of
complex systems (Wimsatt 2006a). In economics, where much theory is in fact
developed around aggregate measures, techniques for the aggregation of variables in
dynamical systems have been developed (e.g., Theil 1965; Simon and Ando 1961;
Ando and Fisher 1963) as an operationalization “decomposability” and “nearly-
decomposability” of a complex system mentioned above (Simon 1962). These
techniques have been transferred to theoretical biology, ecological modeling and



22 2 Background and Concepts

population dynamics in particular, by Iwasa et al. (1987) in which conditions for
exact aggregation in non-linear dynamical systems are given and Iwasa et al. (1989)
which deals with approximate aggregations. The fact that the explicit consideration
of more and more factors is a tendency in modern model development, has led to
a renewed interest in aggregation techniques not only in Markov chains but also in
the context of dynamical systems (see Auger et al. 2008 for a review of aggregation
methods with application to population dynamics).

It is clear that aggregation techniques are actually relevant to all models which
involve a large number of variables (or agents), in order to derive reduced model
descriptions that might be amenable to analytical strategies. Markov chains and
dynamical systems are probably the two most important mathematical formalisms to
represent complex and high-dimensional systems that evolve in time. In this context,
it is very interesting that methods for aggregation of variables in linear dynamical
systems and lumpability in Markov chains can be based on the same principles, a
fact that has recently been exploited in Jacobi and Görnerup (2009) and Görnerup
and Jacobi (2010).

2.4 The Information-Theoretic Perspective

A useful complementary view on lumpability and state space aggregation more
generally is provided by a series of information-theoretic approaches that are
recently developed in the context of multi-level dynamical systems (Shalizi and
Moore 2003; Görnerup and Jacobi 2008, 2010; Jacobi and Görnerup 2009; Pfante
et al. 2014a,b). Albeit being applied to dynamical systems more generally, the
setting is strongly related to the questions of lumpability in Markov chains. Consider
a Markov chain .˙; OP/ with state space ˙ and a transition matrix OP and an operator
� W ˙ ! X that projects the system onto a higher-level coarse-graining X of ˙

inducing a dynamical process on X. The question of lumpability is basically whether
the induced process on the X-level is still Markovian.

In the previous section, we have somehow considered that the partition X is
already defined. This is reasonable in many cases, for instance, in most AB studies
where the system property one wishes to analyze defines a projection (see Chap. 3).
However, in multi-level systems more generally, the state space partition X might
not be known beforehand. This leads to questions of level-identification where one
has to find projection operators (and consequently partitions) that lead to a “closed”
description (at least approximately), in the sense that the system can be modeled by
the state variables of this level. Information-theoretic measures can be used in order
to quantify “closedness”, or, to be precise, deviations from it. Here we shall mention
three of these measures:

Markovianity Shalizi and Moore (2003) emphasize the particular role of Marko-
vianity in the definition or identification of macroscopic observables. Based on
that, Görnerup and Jacobi (2008) propose a Markovianity measure following the
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idea that an higher level is closed if the dynamic P W X ! X induced at this
level is Markovian. The decision whether the macro process (obtained by a certain
projection) is Markovian or not is based on the mutual information between the
past (: : : ; Xt�2; Xt�1) and the future (XtC1; XtC2; : : :) with respect to the present
(Xt). If the expected mutual information between past and future is zero, looking
further back into the past does not provide any new information about the future
evolution, that is, the future depends only on the present value Xt and the sequence
induced at the macro level is a Markov process. In other words, the conditional
past-future mutual information I.XtC1IXt�1�1jXt/ vanishes. Noteworthy, they show
that their Markovianity measure can be expressed in terms of the slope of block
entropies which bears a relation to process reconstruction in turbulence and finance
(Chazottes et al. 1998; Vilela Mendes et al. 2002).

Informational Closure According to this measure, introduced in Pfante et al.
(2014a), a level is informational closed if the knowledge of the micro-level state
xt at time t does not allow for better predictions of the macro level XtC1 than the
knowledge of the preceding macro state Xt. This can be written as the conditional
mutual information I.XtC1I xtjXt/ which quantifies the information flow from the
original to the higher level. In other words, this measure quantifies micro-level
information that a higher-level description does not account for and consequently
a level is closed if I.XtC1I xtjXt/ vanishes. As shown in Pfante et al. (2014a),
I.XtC1IXt�1�1jXt/ � I.XtC1I xtjXt/ so that vanishing information flow from micro
to macro implies Markovianity. Moreover, in most situations information flow can
distinguish between the strong and the weak form of lumpability as it vanishes for
the former but not for the latter.

Predictive Efficiency The intuition behind predictive efficiency, introduced in
Shalizi (2001) with important predecessors in Grassberger (1986), Lindgren and
Nordahl (1988), and Crutchfield and Young (1989) (among others), is that a coarse-
grained description with state space X can be considered as a level if it is informative
for the dynamics at this level while, at the same time, being not too complex.
Shalizi (2001) introduces the notion as the ratio between excess entropy and
statistical complexity and uses it to define emergent processes. Based on this, two
variants of predictive efficiency are introduced in Pfante et al. (2014b): first, the
ratio I.XtC1IXt/=H.Xt/ between one-step mutual (prediction) information and the
entropy of the description; second, the variational I.XtC1IXt/�ˇH.Xt/ which relates
the measure to the information bottleneck method (Tishby et al. 1999).

We will come back to these measures in the seventh chapter where we study
a non-absorbing variant of the VM on a two-community graph. The projection
of the micro dynamics of this model onto the macroscopic level is not lumpable
which means that memory effects are introduced in the transition from the micro
to the macro level. For the special two-community case we are able to compute
Markovianity and informational closure explicitly.

The information-theoretic setting described in this section is also related to
the framework of computational mechanics (Crutchfield and Young 1989; Shalizi
and Crutchfield 2001; James et al. 2011, and references therein). The main idea
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in computational mechanics is to group histories which give rise to the same
conditional probability distribution over futures into equivalence classes—so-called
causal states—and to construct in this way a minimal causal model—called
�-machines—for the prediction of the process at question. The reader may be
referred to Shalizi and Crutchfield (2001) for an overview and several interesting
theoretical results in computational mechanics. The applicability of these measures
to AB and related computational models is limited by their computational com-
plexity (cf. Görnerup and Jacobi 2008, p. 13). The fact that, even in very simple
ABMs, the state space of the process to be handled becomes very large challenges
these approaches in two ways. The first one concerns the “combinatorial explosion”
(Görnerup and Jacobi 2008, p. 11) of the number of possible partitions, which is
a general difficulty for level identification where the partition is not given a priori.
Secondly, the larger the alphabet, the more data must be generated and evaluated
in order to obtain a workable approximation of the joined probability distribution
of sequence blocks (cf. Shalizi and Crutchfield 2001, Sect. VII.B/C). One way to
deal with this problem is to restrict to block size to one, as in Shalizi et al. (2004),
which is actually exact if the original process is a Markov chain. Still, in this case,
the number of states is huge and the estimation of the conditional probabilities (on
the basis of which equivalence classes are constructed) requires a lot of simulation
data.

2.5 Motivation: Towards a Markov Chain Theory
of Aggregation for Agent-Based Models

2.5.1 Bridging a Gap

Though it has often been recognized that ABMs may be conceived as (stochastic)
dynamical systems or Markov chains (Epstein and Axtell 1996; Laubenbacher et al.
2009; Izquierdo et al. 2009; Page 2012), the afore mentioned aggregation techniques
developed for these systems have not yet been applied to ABMs. One of the reasons
for this is that an explicit formulation of the micro process in terms of dynamical
systems or Markov chains has been accomplished only in an abstract (Laubenbacher
et al. 2009; Page 2012) or approximate (Izquierdo et al. 2009) way. The explicit
formalization of the micro process as a Markov chain—the reasoning presented in
this book will be started with it (Sect. 3.2)—enables the application of the Markov
chain theory of aggregation—that is, lumpability—to ABMs.

The need for a mathematical framework that links the micro and the macro level
has, of course, been noted earlier. For instance:

Of course, microscopic and macroscopic theories are related, and understanding the
connection between the two, e.g., through simulation or by deriving the latter from the
former, is an important goal of any complex systems research. (Lerman 2001, p. 225)
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Also the general possibility of applying mathematical aggregation techniques
(Page 2012) and complexity reduction by symmetry exploitation (Laubenbacher
et al. 2009) has been noted, namely, in the context of dynamical systems and partly
based on earlier work by Iwasa et al. (1987) in population ecology. However, a
sophisticated and practicable mathematical framework for linking between micro
and macro level processes in an AB system does not yet exist. This work is a first
step to bridge this gap.

2.5.2 The Micro-Macro Link

The relation between the microscopic and the macroscopic has since long been
subject for controversy. In sociology, it is manifest in the dichotomy of methodolog-
ical individualism and structural functionalism. A good overview over the historical
development of micro-macro debates from philosophy to social theory is provided
in the introductory chapter (Alexander and Giesen 1987) of a volume headed “The
Micro-Macro Link” (Alexander et al. 1987).

“The Micro-Macro Link” is a collection of essays by very influential social
theorists in the micro as well as in the macro tradition about ways to overcome the
micro-macro divide and link between the different levels of analysis. A synthetic
formulation embracing the different levels from individual action to social order
and back requires on the one hand a link from the micro to the macro pointing
at questions related to various (from weaker to stronger) forms of emergence
(Brodbeck 1968; Giesen 1987), aggregation and equilibrium (Coleman 1987). On
the other, it should also include concepts for the retro-action of the macro on
the micro level, such as internalization (Parsons 1954) or constraints on and the
environment of individual actions (Alexander 1987). One of the first acknowledged
synthetic formulations of this linkage between micro and macro in sociology studies
is from Max Weber (1978) from where we quote the following basic observation:

within the realm of social action, certain empirical uniformities can be observed, that is,
courses of action that are repeated by the actor or (simultaneously) occur among numerous
actors (Weber 1978, p. 29)

We shall see how a stylized version of this belief is incorporated in our study
when passing from micro to macro dynamics.

AB simulation is sometimes considered as a methodology to provide a “theoret-
ical bridge” (Macy and Willer 2002, p. 148) between micro and macro theories (see
also Saam 1999; Squazzoni 2008). Even if most of the models (especially the early
ones) are actually a straight implementation of the individualistic program, there are
some attempts to include into the model agents with some socio-cognitive abilities
(see Squazzoni 2008, pp. 14–16) capable of the perception and internalization of
the macro sphere. Also the experimentation with different interaction topologies
can actually be seen as an attempt to understand the influence of social structure
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(macro) on the emergence of collective order (macro) transmitted through the level
of individual interaction (micro).

Clearly, this book is not about social theory. It is about a mathematical technique
to link micro dynamics to macro dynamics in models that may be designed on the
basis of sociological theorizing. To my opinion, a well posed mathematical basis
for these models may help the understanding of many of their observed properties,
and it also provides a new perspective on aggregation and emergence and on how
they are related. Linking the micro-description of an ABM to a macro-description
in the form of a Markov chain provides information about the transition from the
interaction of individual actors to the complex macroscopic behaviors observed in
social systems. In particular, well-known conditions for lumpability (Sect. 2.3.1)
make it possible to decide whether the macro model is still Markov. Conversely,
this setting can also provide a suitable framework to understand the emergence of
long range memory effects and patterns of spatial organization (Chap. 7).

2.5.3 Computational Emergence and Aggregativity

ABMs and other related computational tools (such as CA) play an increasingly
important role also in the contemporary philosophical discussions of emergence.
Some philosophers (e.g., Bedau 1997, 2003; Huneman and Humphreys 2008;
Humphreys 2008) advocate a position which makes use of computational models
as a playground to address fundamental questions of emergence (see Symons 2008
for a critical consideration). Questions about the relation of these artificial model
environments to real phenomena are not ignored, but considered as an independent
issue which is actually part of another debate. The field of computational emergence
aims to establish “a close link between the concept of emergence and computation or
computer simulations, which can perhaps be captured by the idea that an emergent
phenomenon is one that arises from a computationally incompressible process”
(Huneman and Humphreys 2008, pp. 425/426). The framework presented here
provides explicit knowledge about the (in)compressibility of computational models
and the dynamical processes which these models give rise to.

While scientists use the term “emergence” relatively freely, the philosophical
literature differentiates more carefully between different forms of emergence (onto-
logical versus epistemological, strong versus weak, synchronic versus diachronic
emergence) and the existence of some of these forms (ontological emergence in
particular) is in fact highly controversial. In the context of computational models,
emergence is often paraphrased by “the whole is more than the sum of its parts” and
an emergent property can be a certain macro-level pattern that could not be expected
(and not predicted!) by looking at the micro level rules only. Along this lines, a well-
known and explicitly computational account of weak emergence that fits the use of
the term in complexity science has been offered by Bedau (1997, 2003):
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The behavior of weakly emergent systems cannot be determined by any computation that is
essentially simpler than the intrinsic natural computational process by which the system’s
behavior is generated. (Bedau 2003, p. 18)

Bedau (2003) uses CAs to illustrate these ideas and makes explicit reference to
simulations: according to him a system property is emergent if it can be derived
“only by simulation” (Bedau 2003, p. 15).

An alternative position on emergence has been advocated by Wimsatt (1986)
even before computer simulations became widespread. Wimsatt (1986) starts out
from analyzing the conditions for a system property to be a mere aggregate of
the properties of the parts of which the system is composed (see also Wimsatt
2000, 2006a,b). Accordingly, a property of a system is called emergent if it does
not satisfy these condition for aggregativity. In this way, Wimsatt is able to give a
rather straightforward meaning to the dictum “a complex system is more than the
sum of its parts” by relating emergence to the lack of aggregativity. What makes
Wimsatt’s position particularly interesting for this work is not only that relation
between aggregation and emergence, but also the observation expressed by the
following statements:

[I]t is better to talk about properties of systems and their parts, and to analyze aggregativity
as a kind of relation between these properties. (Wimsatt 1986, p. 260)

Aggregativity and emergence concern the relationship between a property of a system under
study and properties of its parts. (Wimsatt 2006a, p. 675)

The reason for which it is better to focus on properties, or rather to be explicit
on that point, is that a system might be aggregative for one but emergent for another
property. Just as a Markov chain might be lumpable with respect to one but non-
lumpable with respect to another partition!
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Chapter 3
Agent-Based Models as Markov Chains

This chapter spells out the most important theoretical ideas developed in this
book. However, it begins with an illustrative introductory description of agent-
based models (ABMs) in order to provide an intuition for what follows. It then
shows for a class of ABMs that, at the micro level, they give rise to random walks
on regular graphs (Sect. 3.2). The transition from the micro to the macro level is
formulated in Sect. 3.3. When a model is observed in terms of a certain system
property, this effectively partitions the state space of the micro chains such that
micro configurations with the same observable value are projected into the same
macro state. The conditions for the projected process to be again a Markov chain
are given which relates the symmetry structure of the micro chains to the partition
induced by macroscopic observables. We close with a simple example that will be
discussed further in the next chapter.

3.1 Basic Ingredients of Agent-Based Models

Roughly speaking, an ABM is a set of autonomous agents which interact according
to relatively simple interactions rules with other agents and the environment. The
agents themselves are characterized (or modeled) by a set of attributes some of
which may change over time. Interaction rules specify the agent behavior with
respect to other agents in the social environment and in some models there are also
rules for the interaction with an external environment. Accordingly, the environment
in an AB simulation is sometimes a model of a real physical space in which the
agents move and interact upon encounter, in other models interaction relations
between the agents are defined by an agent interaction network and the resulting
neighborhood structure.
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Fig. 3.1 Caricature of an
agent

In the simulation of an ABM the interaction process is iterated and the repeated
application of the rules gives rise to the time evolution. There are different ways
in which this update may be conceived and implemented. As virtually all ABMs
are made to be simulated on a computer, I think it is reasonable to add to the
classic threefold characterization of AB systems as “agents plus interactions plus
environment” a time-component because different modes of event scheduling can
be of considerable importance.

3.1.1 Agents as Elementary Units

In this work, we deal with agents that are characterized by a finite set of attributes.
The agent in the example shown in Fig. 3.1, for instance, can be described by a four-
dimensional vector encoding the four different attributes from top to the bottom. In
the sequel we will denote the state of an agent i as xi. Let us assume that, in this
example, for each of the four features there are two alternatives: blank or covered.
Then we could encode its state from the top to the bottom as xi D .����/, �
accounting for “covered” and � for “blank”. It is clear that, in this case, there are
24 D 16 possible agent states and we shall refer to this set as attribute space and
denote it by S D f�; �g4.

For the purposes of this work, the meaning of the content of such attributes is
not important because the interpretation depends on the application for which the
agent model is designed. It could account for the behavioral strategies with regard
to four different dimensions of an agent’s live, it could be words or utterances that
the agent prefers in a communication with others, or represent a genetic disposition.
Consequently, xi may encode static agent attributes or qualities that change in the
life-time of the agent, or a mixture of static and dynamic features.
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Fig. 3.2 A social agent and its environment

AB simulation is usually an attempt to analyze the behavior of an entire
population of agents as it follows from many individual decisions. Therefore, there
is actually a number of N agents each one characterized by a state xj 2 S. We shall
denote the configuration of N agents by x D .x1; : : : ; xN/ and call this an agent
profile or agent configuration.

3.1.2 The Environment

For the moment, we keep our eye on a single agent and consider environmental
aspects an agent may take into account for its decisions (Fig. 3.2). As noted
earlier, the environment can be a model of real physical space in which the agent
moves around according to some movement rules and where interaction with other
individuals occurs whenever these agents encounter in the physical space. But
environment is actually a more abstract concept in AB modeling. It also accounts for
the agent’s social environment, its friends and family, as well as for social norms,
idols or fads brought about by television. In a biological context the environment
might be modeled by a fitness function which assigns different reproduction chances
to different agent attributes xi.

One of the most important aspects in AB modeling is the introduction of social
relations between the agents. Family structures and friendship relations are usually
included by means of a graph G D .N; E/, the so-called social network. Here N
denotes the set of agents and E is the set of connections .i; j/ between the agents.
These connections, called edges, can be weighted to account for the strength of
the relation between agent i and j and negative values might even be taken to
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Fig. 3.3 Interaction and iteration involve indeterminism and stochasticity. Therefore, there are
several possible future states to which an agent may evolve in one step

model adverse relations. Very often, the probability that two agents are part of the
same interaction event depends directly on their connectivity in G. In fact, many
models, especially simple physics-inspired models of social dynamics, take into
account only a social interaction network and leave other environmental aspects out
of consideration.

3.1.3 Interaction Rules

In an interaction event, typically, an agent has to take a decision on the basis of
the information within its environment. This includes a set of other agents, friends,
family, with which the agent is connected as well as global information about norms,
and possibly, internalized individual preferences. Each decision corresponds to an
update of the agent’s state xi ! yi where we use xi to denote the agent state before
the interaction takes place and yi to denote the updated state (Fig. 3.3).

Usually, an agent in a specific situation has several well-defined behavioral
options. Although in some sophisticated models agents are endowed with the
capacity of evaluating the efficiency of these options, it is an important mark of
ABMs that this evaluation is based on incomplete information and not perfect,
and therefore the choice an agent takes involves a level of uncertainty. That is, a
probability is assigned to the different options and the choice is based on those
probabilities. This means that an agent in state xi may end up after the interaction
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Fig. 3.4 Possible paths in a
small system of three agents
(labeled by 1; 2; 3) where
every agent has three
alternative options (labeled
by a; b; c)

in different states yi; y
0

i ; y
00

i ; : : :. The indeterminism introduced in this way is an
essential difference to neoclassical game-theoretic models and rational choice
theory. And it is the reason why Markov chain theory is such a good candidate
for the mathematical formalization of the AB dynamics.

3.1.4 Iteration Process

The conceptual design of an ABM is mainly concerned with a proper definition
of agents, their interaction rules and the environment in which they are situated.
In order to study the time evolution of such a system of interdependent agents,
however, it is also necessary to define how the system proceeds from one time step to
the other. As virtually all ABMs are simulation models implemented on a computer,
it is an inherent part of the modeling task to specify the order in which events take
place during an update of the system.

A typical procedure is to first choose an agent at random (say agent i). The current
agent state xi along with all the information this agent has about his environment
defines the actual situation of the agent and determines the different behavioral
options. If, in this situation, there is more than one option available to the agent,
in a second step, one of these options has to be chosen with a certain probability. In
this light, the update of an AB system can be seen as a stochastic choice out of a set
of deterministic options, where stochastic elements are involved first into the agent
choice and second into the selection of one out of several well-defined alternatives.

This procedure is illustrated for a small system of three agents in Fig. 3.4. The
current agent profile is x D .x1x2x3/. To proceed to the next time step, first,
one of the agents is chosen to update its state with some probability. So the new
configuration of the system (denoted as y) might differ from x in the first (x1 ! y1),
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the second (x2 ! y2), or the third (x3 ! y3) position. As every agent himself
has three different behavioral alternatives chosen with a certain probability (as in
Fig. 3.3), there are three paths for each potential agent (x1 ! y1a or x1 ! y1b or
x1 ! y1c). As a whole, there are thus 9 (D 3�3) possible future agent configurations
y to which the update process may lead with a well-defined probability after a single
step.

In the update scheme described above the agents are updated one after the
other and therefore this scheme is called sequential or sometime asynchronous
update. A single time step corresponds in this scheme to a single interaction
event. An alternative update scheme is synchronous or simultaneous update where
the agents are updated “in parallel”. That is, given a system profile x, all agents
are chosen, determine and select their behavioral options at the same time. The
transition structure becomes more complex in that case mainly because the number
of possible future configurations y is large compared to the asynchronous case
since all agents change at once and there are several paths for each agent. In our
example system of three agents each with three different options, the number of
possible future states y is 27 (D 33). Most ABMs, however, have been implemented
using the sequential update scheme, may be because the sequential philosophy of
traditional programming languages made it more convenient. In this work, we will
also concentrate on the sequential scheme.

3.2 The Micro Level

3.2.1 The Grammar of an Agent-Based Model

Let us consider an abstract ABM with finite configuration space ˙ D SN (meaning
that there are N agents with attributes xi 2 S). Any iteration of the model (any run of
the ABM algorithm) maps a configuration x 2 ˙ to another configuration y 2 ˙ .
In general, the case that no agent changes such that x D y is also possible. Let us
denote such a mapping by Fz W ˙ ! ˙ and denote the set of all possible mappings
byF . Notice that any element of F can be seen as a word of length j˙ j over an j˙ j-
ary alphabet, and there are j˙ jj˙ j such words (Flajolet and Odlyzko 1990, p. 3).

Any Fz 2 F induces a directed graph .˙; Fz/ the nodes of which are the
elements in ˙ (i.e., the agent configurations) and edges the set of ordered pairs
.x; Fz.x//;8x 2 ˙ . Such a graph is called functional graph of Fz because it displays
the functional relations of the map Fz on ˙ . That is, it represents the logical paths
induced by Fz on the space of configurations for any initial configuration x.

Each iteration of an ABM can be thought of as a stochastic choice out of a
set of deterministic options. For an ABM in a certain configuration x, there are
usually several options (several y) to which the algorithm may lead with a well-
defined probability (see Sect. 3.1). Therefore, in an ABM, the transitions between
the different configurations x; y; : : : 2 ˙ are not defined by one single map Fz,
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Fig. 3.5 Possible paths from
configuration x D .���/

in a small VM of three agents

but there is rather a subset FZ � F of maps out of which one map is chosen at
each time step with certain probability. Let us assume we know all the mappings
FZ D fF1; : : : ; Fz; : : : ; Fng that are realized by the ABM of our interest. With this,
we are able to define a functional graph representation by .˙;FZ/ which takes as
the nodes all elements of ˙ (all agent configurations) and an arc .x; y/ exists if there
is at least one Fz 2 FZ such that Fz.x/ D y. This graph defines the “grammar” of
the system for it displays all the logically possible transitions between any pair of
configurations of the model.

Consider the VM with three agents as an example. In the VM agents have two
possible states (S D f�; �g) and the configuration space for a model of three agents
is ˙ D f�; �g3. In the iteration process, one agent i is chosen at random along
with one of its neighbors j and agent i imitates the state of j. This means that yi D xj

after the interaction event. Notice that once an agent pair .i; j/ is chosen the update
is defined by a deterministic map u W S2 ! S. Stochasticity enters first because
of the random choice of i and second through the random choice of one agent in
the neighborhood. Let us look at an example with three agents in the configuration
x D .���/. If the first agent is chosen (i D 1 and x1 D �) then this agent will
certainly change state to y1 D � because it will in any case meet a black agent. For
the second and the third agent (i D 2 or i D 3) the update result depends on whether
one or the other neighbor is chosen because they are in different states. Noteworthy,
different agent choices may lead to the same configuration. Here, this is the case if
the agent pair .2; 3/ or .3; 2/ is chosen in which case the agent (2 or 3) does not
change its state because x2 D x3. Therefore we have y D x and there are two paths
realizing that transition (Fig. 3.5).

In practice, the explicit construction of the entire functional graph may rapidly
become a tedious task due to the huge dimension of the configuration space and
the fact that one needs to check if Fz.x/ D y for each mapping Fz 2 FZ and all
pairs of configurations x; y. On the other hand, the main interest here is a theoretical
one, because, as a matter of fact, a representation as a functional graph of the form
� D .˙;FZ/ exists for any model that comes in form of a computer algorithm.
It is therefore a quite general way of formalizing ABMs and, as we will see in the
sequel, allows under some conditions to verify the Markovianity of the models at
the micro level.
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Table 3.1 FZ for the VM with three agents

a b c d e f g h

z .i; j/ ��� ��� ��� ��� ��� ��� ��� ���
1 .1; 2/ a b g a h b g h

2 .1; 3/ a f c a h f c h

3 .2; 1/ a b a g b h g h

4 .3; 1/ a a c f c f h h

5 .2; 3/ a e a d e h d h

6 .3; 2/ a a e d e d h h

If we really want to construct the “grammar” of an ABM explicitly this requires
the dissection of stochastic and deterministic elements of the iteration procedure
of the model. As an example, let us consider again the VM for which such a
dissection is not difficult. In the VM, the random part consists of the choice of
two connected agents .i; j/. Once this choice is made we know that yi D xj by
the interaction rule. This is sufficient to derive the functional representation of
the VM, because we need only to check one by one for all possible choices .i; j/
which transitions this choice induces on the configuration space. For a system
of three agents, with all agents connected to the other two, the set of functions
FZ D fF1; : : : ; Fz; : : : ; Fng is specified in Table 3.1. Notice that with three agents,
there are 8 possible configurations indexed here by a; b; : : : ; h. Moreover, there are
6 possible choices for .i; j/ such that FZ consists of n D 6 mappings.

Each row of the table represents a mapping Fz W ˙ ! ˙ by listing to which
configuration y the respective map takes the configurations a to h. The first row, to
make an example, represents the choice of the agent pair .1; 2/. The changes this
choice induces depend on the actual agent configuration x. Namely, for any x with
x1 D x2 we have F1.x/ D F.1;2/.x/ D x. So the configurations a; b; g; h are not
changed by F.1;2/. For the other configurations it is easy to see that .���/ !
.���/ (c ! g), .���/ ! .���/ (d ! a), .���/ ! .���/ (e ! h),
and .���/ ! .���/ ( f ! b). Notice that the two configurations .���/ and
.���/ with all agents equal are not changed by any map and correspond therefore
to the final configurations of the VM.

In Fig. 3.6, the complete functional graph � D .˙;FZ/ of the VM with
three agents is shown. This already gives us some important information about
the behavior of the VM such as the existence of two final configurations with all
agents in the same state. We also observe that the VM iteration gives rise to a very
regular functional graph, namely, the N-dimensional hypercube. In what follows, we
show how to derive the respective transition probabilities associated to the arrows
in Fig. 3.6.
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Fig. 3.6 Grammar of the VM with three agents

3.2.2 From Functional Graphs to Markov Chains

A functional graph � D .˙;FZ/ defines the “grammar” of an ABM in the sense
that it shows all possible transitions enabled by the model. It is the first essential
step in the construction of the Markov chain associated with the ABM at the micro
level because there is a non-zero transition probability only if there is an arrow in the
functional graph. Consequently, all that is missing for a Markov chain description is
the computation of the respective transition probabilities.

For a class of models, including the VM, this is relatively simple because we
can derive a random mapping representation (Levin et al. 2009, pp. 6/7) directly
from the ABM rules. Namely, if Fz1 ; Fz2 ; : : : is a sequence of independent random
maps, each having the same distribution !, and S0 2 ˙ has distribution �0, then the
sequence S0; S1; : : : defined by

St D Fzt.St�1/; t � 1 (3.1)

is a Markov chain on ˙ with transition matrix OP:

OP.x; y/ D Pr!Œz; Fz.x/ D y�I x; y 2 ˙: (3.2)

Conversely (Levin et al. 2009), any Markov chain has a random map representation
(RMR). Therefore, in that case, (3.1) and (3.2) may be taken as an equivalent
definition of a Markov chain. This is particularly useful in our case, because it
shows that an AB simulation models which can be described as above is, from a
mathematical point of view, a Markov chain. This includes several models described
in Izquierdo et al. (2009).

In the VM, the separation of stochastic and deterministic elements is clear-
cut and therefore a random mapping representation is obtained easily. As already
shown in Table 3.1, we can use the possible agent choices .i; j/ directly to index
the collection of maps F.i; j/ 2 FZ . We denote as !.i; j/ the probability of choosing
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the agent pair .i; j/ which corresponds to choosing the map F.i;j/. It is clear that
we can proceed in this way in all models where the stochastic part concerns only
the choice of agents. Then, the distribution ! is independent of the current system
configuration and the same for all times (!.zt/ D !.z/). In this case, we obtain for
the transition probabilities

OP.x; y/ D Pr!Œ.i; j/; F.i;j/.x/ D y� D
X

.i;j/W
F.i;j/.x/Dy

!.i; j/: (3.3)

That is, the probability of transition from x to y is the conjoint probability
P

!.i; j/
of choosing an agent pair .i; j/ such that the corresponding map takes x to y (i.e.,
F.i;j/.x/ D y).

3.2.3 Single-Step Dynamics and Random Walks on Regular
Graphs

In this thesis, we focus on a class of models which we refer to as single-step
dynamics. They are characterized by the fact that only one agent changes at a time
step.1 Notice that this is very often the case in ABMs with a sequential update
scheme and that sequential update is, as a matter of fact, the most typical iteration
scheme in ABMs. In terms of the “grammar” of these models, this means that non-
zero transition probabilities are only possible between system configuration that
differ in at most one position. And this gives rise to random walks on regular graphs.

Consider a set of N agents each one characterized by individual attributes xi that
are taken in a finite list of possibilities S D f1; : : : ; ıg. In this case, the space of
possible agent configurations is ˙ D SN . Consider further a deterministic update
function u W Sr ��! S which takes configuration x 2 ˙ at time t to configuration
y 2 ˙ at tC 1 by

yi D u.xi; xj; : : : ; xk; 	/: (3.4)

To go from one time step to the other in agent systems, usually, an agent i is chosen
first to perform a step. The decision of i then depends on its current state .xi/ and
the attributes of its neighbors .xj; : : : ; xk/. The finite set � accounts for a possible
stochastic part in the update mechanism such that different behavioral options are
implemented by different update functions u.: : : ; 	1/, u.: : : ; 	2/ etc. Notice that
for the case in which the attributes of the agents .xi; xj; : : : ; xk/ uniquely determine
the agent decision we have u W Sr ! S which strongly resembles the update rules
implemented in cellular automata (CA).

1Notice that a slightly more general class of models has been considered in Banisch et al. (2012).
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As opposed to classical CA, however, a sequential update scheme is used in the
class of models considered here. In the iteration process, first, a random choice
of agents along with a 	 to index the possible behavioral options is performed
with probability !.i; j; : : : ; k; 	/. This is followed by the application of the update
function which leads to the new state of agent i by Eq. (3.4).

Due to the sequential application of an update rule of the form u W Sr �� ! S
only one agent (namely agent i) changes at a time so that all elements in x and y are
equal except that element which corresponds to the agent that was updated during
the step from x to y. Therefore, xj D yj;8j ¤ i and xi ¤ yi. We call x and y adjacent

and denote this by x
i� y.

It is then also clear that a transition from x to y is possible if x � y. Therefore, the
adjacency relation � defines the “grammar” �SSD of the entire class of single-step
models. Namely, the existence of a map Fz that takes x to y, y D Fz.x/, implies that

x
i� y for some i 2 f1; : : : ; Ng. This means that any ABM that belongs to the class

of single-step models performs a walk on �SSD or on a subgraph of it.
Let us briefly consider the structure of the graph �SSD associated to the entire

class of single-step models. From x
i� y for i D 1; : : : ; N we know that for any x,

there are .ı�1/N different vectors y which differ from x in a single position, where
ı is the number of possible agent attributes. Therefore, �SSD is a regular graph with
degree .ı � 1/N C 1, because in our case, the system may loop by yi D xi. As
a matter of fact, our definition of adjacency as “different in one position of the
configuration” is precisely the definition of so-called Hamming graphs which tells
us that �SSD D H.N; ı/ (with loops). In the case of the VM, where ı D 2 we find
H.N; 2/ which corresponds to the N-dimensional hypercube.

As before, the transition probability matrix of the micro chain is denoted by
OP with OP.x; y/ being the probability for the transition from x to y. The previous
considerations tell us that non-zero transition probabilities can exist only between
two configurations that are linked in H.N; d/ plus the loop ( OP.x; x/). Therefore, each
row of OP contains no more than ıN C 1 non-zero entries. In the computation of OP
we concentrate on pairs of adjacent configurations. For x

i� y with xi ¤ yi we have

OP.x; y/ D
X

.i;j;:::;k;	/W
yiDu.xi;xj;:::;xk ;	/

!.i; j; : : : ; k; 	/ (3.5)

which is the conjoint probability to choose agents and a rule .i; j; : : : ; k; 	/ such that
the ith agent changes its attribute by yi D u.xi; xj; : : : ; xk; 	/. For the probability that
the model remains in x, OP.x; x/, we have

OP.x; x/ D 1 �
X

y�x

OP.x; y/: (3.6)
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Table 3.2 Update rules yi D u.xi; xj/ for the voter model (VM), anti-ferromagnetic coupling
(AC) and diffusion (DF)

xj xj VM � � AC � � DF � �
xi yi yi � � � � � � � � �
xi yi yi � � � � � � � � �

Equation (3.5) makes visible that the probability distribution ! plays the crucial role
in the computation of the elements of OP.

The VM is a very simple instance of single-step dynamics. The update function
is given by yi D u.xi; xj/ D xj and the stochastic part of the model concerns only
the choice of an agent pair .i; j/ with probability !.i; j/. For adjacent configuration

with x
i� y, Eq. (3.5) simplifies to

OP.x; y/ D
X

jW.yiDu.xi;xj//

!.i; j/ D
X

jW.yiDxj/

!.i; j/ (3.7)

Notice that (3.7) is applicable to all ABMs in which first an agent pair .i; j/ is
chosen at random and second a deterministic update rule yi D u.xi; xj/ defines the
outcome of the interaction between i and j. For a binary attribute space S D f�; �g
some possible update rules u W S � S! S are shown in Table 3.2 below.

3.3 Macrodynamics, Projected Systems and Observables

3.3.1 Micro and Macro in Agent-Based Models

What do we look at when we analyze an ABM? Typically, we try to capture the
dynamical behavior of a model by studying the time evolution of parameters or
indicators that inform us about the global state of the system. Although, in some
cases, we might understand the most important dynamical features of a model
by looking at repeated visualizations of all details of the agent system through
time, basic requirements of the scientific method will eventually enforce a more
systematic analysis of the model behavior in the form of systematic computational
experiments and “extensive sensitivity analysis” (Epstein 2006, p. 28). In this, there
is no other choice than to leave the micro level of all details and to project the system
behavior or state onto global structural indicators representing the system as a
whole. In many cases, a description like that will even be desired, because the focus
of attention in ABMs, the facts to be explained, are usually at a higher macroscopic
level beyond the microscopic description. In fact, the search for microscopic
foundations for macroscopic regularities has been an integral motivation for the
development of AB research (see Macy and Willer 2002; Squazzoni 2008).
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It is characteristic of any such macroscopic system property that it is invariant
with respect to certain details of the agent configuration. In other words, any
observation defines, in effect, a many-to-one relation by which sets of micro
configurations with the same observable value are subsumed into the same macro
state. Consider the population dynamics in the sugarscape model by Epstein and
Axtell (1996) as an example. The macroscopic indicator is, in this case, the number
of agents N. This aggregate value is not sensitive with respect to the exact positions
(the sites) at which the agents are placed, but only to how many sites are occupied.
Consequently, there are many possible configurations of agent occupations in the
sugarspace with an equal number of agents N and all of them correspond to the
same macro state. Another slightly more complicated example is the skewed wealth
distribution in the sugarscape model. It is not important which agents contribute
to each specific wealth (sugar) level, but only how many there are in each level.
This describes how macro descriptions of ABMs are related to observations, system
properties, order parameters and structural indicators, and it also brings into the
discussion to the concepts of aggregation and decomposition.

Namely, aggregation is one way (in fact, a very common one) of realizing such a
many-to-one mapping from micro-configurations to macroscopic system properties
and observables. For simple models of opinion dynamics inspired by spin physics,
for instance, it is very common to use the average opinion—due to the spin analogy
often called “system magnetization”—as an order parameter and to study the system
behavior in this way. Magnetization, computed by summation over the spins and
division by the total number of spins, is a true aggregative measure. Magnetization
levels or values are then used to classify spin or opinion configurations, such that
those configurations with the same magnetization value correspond to the same
macro state. This many-to-one mapping of sets of micro configurations onto macro
states automatically introduces a decomposition of the state space at the micro
level ˙ .

3.3.2 Observables, Partitions and Projected Systems

The formulation of an ABM as a Markov chain developed in the previous section
allows a formalization of this micro-macro link in terms of projections. Namely, a
projection of a Markov chain with state space ˙ is defined by a new state space X
and a projection map ˘ from ˙ to X. The meaning of the projection ˘ is to lump
sets of micro configurations in ˙ according to some macro property in such a way
that, for each X 2 X, all the configurations of ˙ in ˘�1.X/ share the same property.

Therefore, such projections are important when catching the macroscopic prop-
erties of the corresponding ABM because they are in complete correspondence
with a classification based on an observable property of the system. To see how
this correspondence works let us suppose that we are interested in some factual
property of our agent-based system. This means that we are able to assign to each
configuration the specific value of its corresponding property. Regardless of the
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kind of value used to specify the property (qualitative or quantitative), the set X
needed to describe the configurations with respect to the given property is a finite
set, because the set of all configurations is also finite. Let then � W ˙ ! X be the
function that assigns to any configuration x 2 ˙ the corresponding value of the
considered property. It is natural to call such � an observable of the system. Now,
any observable of the system naturally defines a projection ˘ by lumping the set
of all the configurations with the same � value. Conversely any (projection) map
˘ from ˙ to X defines an observable � with values in the image set X. Therefore
these two ways of describing the construction of a macro-dynamics are equivalent
and the choice of one or the other point of view is just a matter of taste.

The price to pay in passing from the micro to the macro-dynamics in this sense
(Kemeny and Snell 1976; Chazottes and Ugalde 2003) is that the projected system
is, in general, no longer a Markov chain: long memory (even infinite) may appear in
the projected system. This “complexification” of the macro dynamics with respect
to the micro dynamics is a fingerprint of dynamical emergence in agent-based and
other computational models (cf. Humphreys 2008).

3.3.3 Lumpability and Symmetry

Under certain conditions, the projection of a Markov chain .˙; OP/ onto a coarse-
grained partition X, obtained by aggregation of states, is still a Markov chain.
In Markov chain theory this is known as lumpability (or strong lumpability), and
necessary and sufficient conditions for this to happen are known. Let us restate the
respective Theorem 6.3.2 of Kemeny and Snell (1976) using our notations, where
˙ denotes the configuration space of the micro chain and OP the respective transition
matrix, and X D .X1; : : : ; Xr/ is a partition of ˙ . Let OpxY D P

y2Y

OP.x; y/ denote the

conjoint probability for x 2 ˙ to go to the set of elements y 2 Y where Y � ˙ is a
subset of the configuration space.

Theorem 3.1 (Kemeny and Snell 1976, p. 124) A necessary and sufficient condi-
tion for a Markov chain to be lumpable with respect to a partition X D .X1; : : : ; Xr/

is that for every pair of sets Xi and Xj, OpxXj have the same value for every x in Xi.
These common values fOpijg form the transition matrix for the lumped chain.

In general it may happen that, for a given Markov chain, some projections are
Markov and others not. Therefore a judicious choice of the macro properties to
be studied may help the analysis.

In order to establish the lumpability in the cases of interest we shall use
symmetries of the model. For further convenience, we state a result for which the
proof is easily given Theorem 6.3.2 of Kemeny and Snell (1976):

Theorem 3.2 Let .˙; OP/ be a Markov chain and X D .X1; : : : ; Xn/ a partition of
˙ . Suppose that there exists a group G of bijections on ˙ that preserve the partition
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.8x 2 Xi and 8O
 2 G we have O
.x/ 2 Xi/. If the Markov transition probability OP is
symmetric with respect to G ,

OP.x; y/ D OP. O
.x/; O
.y// W 8 O
 2 G ; (3.8)

the partition .X1; : : : ; Xn/ is (strongly) lumpable.

Proof For the proof it is sufficient to show that any two configurations x and x0 with
x0 D O
.x/ satisfy

OpxY D
X

y2Y

OP.x; y/ D
X

y2Y

OP.x0; y/ D Opx0Y (3.9)

for all Y 2 X. Consider any two subsets X; Y 2 X and take x 2 X. Because G
preserves the partition it is true that x0 2 X. Now we have to show that Eq. (3.9)
holds. First the probability for x0 D O
.x/ to go to an element y 2 Y is

Op O
.x/Y D
X

y2Y

OP. O
.x/; y/: (3.10)

Because the O
 are bijections that preserve the partition X we have O
.Y/ D Y and
there is for every y 2 Y exactly one O
.y/ 2 Y. Therefore we can substitute

Op O
.x/Y D
X

y2Y

OP. O
.x/; O
.y// D
X

y2Y

OP.x; y/ D OpxY ; (3.11)

where the second equality comes by the symmetry condition (3.8) that OP.x; y/ D
OP. O
.x/; O
.y//.

The usefulness of the conditions for lumpability stated in Theorem 3.2 becomes
apparent recalling that AB simulations can be seen as random walks on regular
graphs defined by the functional graph or “grammar” of the model � D .˙;FZ/.
The full specification of the random walk .˙; OP/ is obtained by assigning transition
probabilities to the connections in � and we can interpret this as a weighted graph.
The regularities of .˙; OP/ are captured by a number of non-trivial automorphisms
which, in the case of ABMs, reflect the symmetries of the models.

In fact, Theorem 3.2 allows to systematically exploit the symmetries of an agent
model in the construction of partitions with respect to which the micro chain is
lumpable. Namely, the symmetry requirement in Theorem 3.2, that is, Eq. (3.8),
corresponds precisely to the usual definition of automorphisms of .˙; OP/. The set
of all permutations O
 that satisfy (3.8) corresponds then to the automorphism group
of .˙; OP/.
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Lemma 3.1 Let G be the automorphism group of the micro chain .˙; OP/. The orbits
of G define a lumpable partition X such that every pair of micro configurations
x; x0 2 ˙ for which 9 O
 2 G such that x0 D O
.x/ belong to the same subset Xi 2 X.

Note 3.1 Lemma 3.1 actually applies to any G that is a proper subgroup of the
automorphism group of .˙; OP/. The basic requirement for such a subset G to be a
group is that be closed under the group operation which establishes that O
.Xi/ D Xi.
With the closure property, it is easy that any such subgroup G defines a lumpable
partition in the sense of Theorem 3.2.

3.4 From Automorphisms to Macro Chains

In this section we illustrate the previous ideas at the example of three state single-
step dynamics. Consider a system of N agents each one characterized by an attribute
xi 2 fa; b; cg, that is ı D 3. As discussed in Sect. 3.2.3, the corresponding graph �

encoding all the possible transitions is the Hamming graph H.N; 3/. The nodes x; y
in H.N; 3/ correspond to all possible agent combinations and are written as vectors
x D .x1; : : : ; xN/ with symbols xi 2 fa; b; cg. The automorphism group of H.N; 3/

is composed of two groups generated by operations changing the order of elements
in the vector (agent permutations) and by permutations acting on the set of symbols
S D fa; b; cg (agent attributes). Namely, it is given by the direct product

Aut.H.N; ı// D SN ˝Sı (3.12)

of the symmetric group SN acting on the agents and the group Sı acting on the
agent attributes.

Let us first look at a very small system of N D 2 agents and ı D 3 states. The
corresponding microscopic structure—the graph H.2; 3/—is shown on the l.h.s. of
Fig. 3.7. It also illustrates the action of SN on the x; y 2 ˙ , that is, the bijection
induced on the configuration space by permuting the agent labels. Noteworthy, in the
case of N D 2 there is only one alternative ordering of agents denoted here as O
!.x/

which takes .x1; x2/
O
! ! .x2; x1/. The respective group SND2 therefore induces a

partition in which all configurations x; y with the same number of attributes a; b; c
are lumped into the same set, which we may denote as Xhka;kb;kci. See r.h.s. of Fig. 3.7.

More generally in the case of N agents and ı agent attributes the group SN

induces a partition of the configuration space ˙ by which all configurations with the
same attribute frequencies are collected in the same macro set. Let us define Ns.x/

to be the number of agents in the configuration x with attribute s, s D 1; : : : ; ı, and
then Xhk1;k2;:::;kıi � ˙ as
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Fig. 3.7 H.2; 3/ and the reduction induced by SN

Xhk1;:::;ks;:::;kıi D
(

x 2 ˙ W N1.x/ D k1; : : : ; Ns.x/ D ks; : : :

: : : ; Nı.x/ D kı and
ıX

sD1

ks D N

)

:

(3.13)

Each Xhk1;k2;:::;kıi contains all the configurations x in which exactly ks agents hold
attribute s for any s. We use the notation hk1; k2; : : : ; kıi to indicate that

Pı
sD1 ks D

N. Therefore, the reduced state space is organized as a ı-simplex lattice, see Fig. 3.8.
For a model with N D 8 and ı D 3 the resulting reduced state space is shown in

Fig. 3.8. The transition structure depicted in Fig. 3.8 corresponds to the VM to which
we will come back in the next chapter. The number of a, b and c agents is denoted
by (respectively) k, l and m so that X D fXhk;l;mi W 0 � k; l; m � N; kC lCm D Ng.
The number of states for a system with N agents is S DPN

iD0.iC 1/ D .NC1/.NC2/

2
.

For Voter-like models—used, for instance, as models of opinion and social
dynamics—it is not unusual to study the dynamical behavior by looking at the time
evolution of the respective attribute frequencies. It is important to notice, however,
that the resulting partition is lumpable only if the transition matrix OP is symmetric
with respect to the action of SN on ˙ , namely if Theorem 3.2 holds for SN . The
next chapter will show that this is only true for homogeneous mixing and the case
of inhomogeneous interaction topologies is discussed in Chap. 7.

Let us now consider Sı. On the l.h.s. of Fig. 3.9 the graph H.2; 3/ is shown
along with the bijections on it induced by permutation of attributes a and c,

abc
O
ı1 ! cba/. Effectively, this corresponds to the situation of looking at “one

attribute (b) against the other two (x D a [ c)”. Noteworthy, taking that perspective
(see graph in the middle of Fig. 3.9) corresponds to a reduction of H.2; 3/ to H.2; 2/

or, more generally, of H.N; 3/ to the hypercube H.N; 2/. This means that, under
the assumption of symmetric agent rules with respect to the attributes, single-step
models with ı states are reducible to the binary case.
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Fig. 3.8 For a three-state single step model the macroscopic process is a walk on triangular lattice
(here for N D 8)

aa

bb

cc

ba

ab

acca

cb

bc
σ̂δ1

bb

xb bx

xx

σ̂δ2

yy

xy yxσ̂δ1

σ̂δ1

σ̂δ1

Fig. 3.9 H.2; 3/ and the reductions induced by Sı

Moreover, even the binary case allows for further reduction (see r.h.s. of Fig. 3.9).

Namely, assuming the additional symmetry bx
O
ı2 ! xb/ corresponding in a binary

setting to the simultaneous flip of all agent states xi ! Nxi;8i. The VM is a nice
example in which independent of the interaction topology, OP.x; y/ D OP.Nx; Ny/. This
reduces the state space to one half of H.N; 2/, which we shall denote as H1=2.N; 2/.

The most interesting reductions can be reached by the combination of SN and
Sı. Figure 3.10 shows possible combinations and the resulting macroscopic state
spaces starting from H.N; 3/. For instance, partitioning H.N; 3/ by using the set
of agent permutations SN leads to state space organized as a triangular lattice (see
also Fig. 3.8). Lumpability of the micro process .˙; OP/ on H.N; 3/ with respect
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to this state space rests upon the symmetry of the agent interaction probabilities
with respect to all agent permutations. From the triangular structure shown on the
upper right in Fig. 3.10, a further reduction ca be obtained by taking into account
the symmetry of the interaction rules with respect to (at least) one pair of attributes,
which we have denoted as O
ı1 . The resulting macro process on X D .X0; : : : ; XN/

is a random walk on the line with N C 1 states, known as Moran process for the
VM interaction (after Moran 1958). In a binary setting, the macro states Xk collect
all micro configurations with k agents in state � (and therefore N � k agents in �).
Notice that a Markov projection to the Moran process is possible also for ı > 3

if the micro process is symmetric with respect to permutations of (at least) ı � 1

attributes. The group of transformations associated to this partition may be written
as SN ˝Sı�1 � Aut.H.N; ı//.

The reduction obtained by using the full automorphism group of H.N; 3/ is
shown on the bottom of Fig. 3.10. With respect to the Moran process on X D
.X0; : : : ; XN/, it means that the pairs fXk; X.N�k/g are lumped into the same state
Yk. This can be done if we have for any k, P.Xk; Xk˙1/ D P.X.N�k/; X.N�k/�1/. As a
matter of fact, this description still captures the number of agents in the same state,
but now information about in which state they are is omitted. This is only possible
(lumpable) if the model implements completely symmetric interaction rules.

H(N,3)
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H1/2(N,2)
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< >

<
 >

<

<

>

<
 >

<
 >

<< < >>
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Fig. 3.10 Different levels of description are associated to different symmetry groups of H.N; 3/
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3.5 Summary and Discussion

This chapter analyzed the probabilistic structure of a class of agent-based models
(ABMs). In an ABM in which N agents can be in ı different states there are ıN

possible agent configurations and each iteration of the model takes one configuration
into another one. It is therefore convenient to conceive of the agent configurations
as the nodes of a huge directed graph and to link two configurations x; y whenever
the application of the ABM rules to x may lead to y in one step. If a model operates
with a sequential update scheme by which one agent is chosen to update its state at
a time, transitions are only allowed between system configurations that differ with
respect to a single element (agent). The graph associated to those single-step models
is the Hamming graph H.N; ı/.

In this context, the random map representation (RMR) of a Markov process helps
to understand the role devoted to the collection of (deterministic) dynamical rules
used in the model from one side and of the probability distribution ! governing
the sequential choice of the dynamical rule used to update the system at each
time step from the other side. The importance of this probability distribution, often
neglected, is to encode the design of the social structure of the exchange actions at
the time of the analysis. Not only, then, are features of this probability distribution
concerned with the social context the model aims to describe, but they are also
crucial in predicting the properties of the macro dynamics. If we decide to remain at
a Markovian level, then the partition, or equivalently the collective variables, to be
used to build the model should be compatible with the symmetry of the probability
distribution !.

The fact that a single-step ABM corresponds to a random walk on a regular
graph allows for a systematic study of the symmetries in the dynamical structure of
an ABM. Namely, the existence of non-trivial automorphisms of the ABM micro
chain tells us that certain sets of agent configurations can be interchanged without
changing the probability structure of the random walk. These sets of micro states
can be aggregated or lumped into a single macro state and the resulting macro-
level process is still a Markov chain. If the microscopic rules are symmetric with
respect agent (SN) and attribute (Sı) permutations the full automorphism group of
H.N; ı/ is realized and allows for a reduction from ıN micro to around N=2 macro
states. Moreover, different combinations of subgroups of automorphisms and the
reductions they imply are rather meaningful in terms of observables and system
properties.

Notice finally that other update schemes (e.g., synchronous update) that go
beyond single-step dynamics do not necessarily affect the symmetries of the micro
process. The described approach may be applied to these cases as well. Extending
the framework to models with continuous agent attributes is another challenging
issue to be addressed by future work.
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Chapter 4
The Voter Model with Homogeneous Mixing

This chapter is devoted to the analysis of a simple opinion model in order to illustrate
the ideas developed in the previous chapter. The projection from micro to macro
emphasizes the particular role played by homogeneous mixing as a requirement for
the Markovianity of the projected model. We present a Markov chain analysis of the
binary voter model (VM) with a particular focus on its transient dynamics and show
that the general VM can be reduced to the binary case by further projection. Finally,
the question of interaction constraints in form of bounded confidence is addressed.
Homogeneous interaction probabilities (homogeneous mixing) are assumed in all
the analyses presented in this chapter. Interaction heterogeneities are left for the
next chapters.

4.1 Opinion Dynamics and Projected Systems

Voter-like models—here we shall interpret them as models of opinion and social
dynamics—provide nice examples where such a projection construction is particu-
larly meaningful. If there are ı possible agent attributes, we consider the projection
˘ that maps each x 2 ˙ into a macro state Xhk1;:::;kıi 2 X where ks, s D 1; : : : ; ı,
is the number of agents in x with attribute s. This captures the model dynamics in
terms of frequencies of all ı attributes. The projected configuration space is then
made of the Xhk1;:::;kıi where ks � 0, s D 1; : : : ; ı and

Pı
1 ks D N. We shall now

treat in detail the VM as an example of the previous ideas.

© Springer International Publishing Switzerland 2016
S. Banisch, Markov Chain Aggregation for Agent-Based Models,
Understanding Complex Systems, DOI 10.1007/978-3-319-24877-6_4
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4.1.1 The Macro Dynamics of the Binary Voter Model

The case of a binary opinion model, ı D 2, is particularly simple and therefore
well-suited for an analytical starting point. In binary state models, the attribute of
agent i at time t is a binary variable xi.t/ 2 f�; �g 	 f0; 1g. The opinion profile
is given by the bit-string x.t/ D fx1.t/; : : : ; xN.t/g so that, as for all binary single-
step dynamics, the space of all possible configurations is the set of all bit-strings of
length N, ˙ D f�; �gN .

For further convenience, let us use the convention that the black state is treated as
zero and the white state as one (� 	 0 and � 	 1) and let us define the Hamming
weight of a configuration as

h.x/ D
NX

iD1

xi D N�.x/: (4.1)

Notice that the Hamming weight is precisely the measure usually considered in the
analysis of binary opinion or population genetics models as it corresponds to the
opinion or gene frequency. With N� D h.x/ and N� D N � h.x/, the Hamming
weight h.x/ defines the most relevant macroscopic observable � of interest in the
context of these models.

As stated earlier, h.x/ (just as any other macroscopic observable) defines a
partition of the configuration space ˙ . Namely, we can look at h.x/ as an
equivalence relation such that any two configurations x; x0 2 ˙ with h.x/ D h.x0/
belong to the same equivalence class. The respective equivalence classes therefore
collect all configurations with the same Hamming weight, or respectively, opinion
frequency. Formally, let us define Xk � ˙ by

Xk D fx W h.x/ D kg : (4.2)

Each Xk 2 X; k D 0 : : : N contains all the configurations (x) in which exactly k
agents hold opinion � (and then N � k hold opinion �). In this way we obtain a
partition X D fX0; X1; : : : ; XNg of the configuration space ˙ . Notice that X0 and XN

contain only one configuration, namely the final configurations X0 D f.�� : : : �/g
and XN D f.�� : : : �/g.

The projection of the VM micro chain .˙; OP/ yields a new macro process with
state space X D .X0; : : : ; XN/. This is illustrated for a small system of three agents
in Fig. 4.1. Noteworthy, in this macro description, the number of states is reduced
from 2N to N C 1. While the number of states grows exponentially with the system
size in the micro description, it grows now only linearly in the macro description.

Now, what are the conditions under which the macro process on the state space
X D .X0; : : : ; XN/ is again a Markov chain? It is easy to see that the partition X
is preserved under the group of all permutations of the N agents, denoted by SN .
Agent permutations are also compatible with the equivalence relation defined by
h.x/ because h.x/ is invariant with respect to any alternative labeling of the agents.
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Fig. 4.1 The micro chain for the VM with three agents and its projection onto a birth-death
random walk obtained by agglomeration of states with the Hamming weight h.x/ D k

We can therefore use SN in the construction of a group of bijections G that satisfies
Theorem 3.2. Namely, for each 
 2 SN we define a O
 2 G such that

O
.x/ WD .x
1; : : : ; x
 i; : : : ; x
N/: (4.3)

The respective group G acting on ˙ preserves X and is compatible with h.x/: that
is, for 8O
 2 G and 8Xi 2 X, x 2 Xi implies that O
.x/ 2 Xi and h.x/ D h. O
.x//.
Therefore, according to Theorem 3.2, lumpability leans on the condition of the
invariance of the Markov transition matrix OP under the permutation group of agents,
OP.x; y/ D OP. O
.x/; O
.y//. It is easy to see by Eq. (3.7) that this is satisfied if the
probability distribution ! is invariant under the permutation groupSN and therefore
uniform: !.i; j/ D 1=N2, for all pairs of agents (i; j).1

This emphasizes the particular role of homogeneous mixing in the context of
these models. Homogeneous mixing is special insofar as we can get rid of the sum
in Eq. (3.7) because ! is uniform. In this case OP.x; y/ can be expressed only in terms
of the Hamming weight of x

OP.x; y/ D
X

xi¤xj

!.i; j/ D h.x/ŒN � h.x/�

N2
; (4.4)

1Notice that permutation invariance is also present if “self interactions” are excluded such that
!.i; i/ D 0. Then !.i; j/ D 1=N.N � 1/; 8i ¤ j. For the following computations the possibility
that an agent i “interacts” with itself is not excluded.
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because only the numbers of possible attribute pairs with .xi; xj/ D .�; �/

(respectively .xi; xj/ D .�; �/) matter. For the macro chain we obtain therefore:

P.Xk; XkC1/ D P.Xk; Xk�1/ D k.N � k/

N2
: (4.5)

and

P.Xk; Xk/ D k2 C .N � k/2

N2
: (4.6)

The macro process specified by Eqs. (4.5) and (4.6) is a typical birth-death random
walk sometimes referred to as Moran process (Moran 1958). It has two absorbing
states X0 and XN for P.X0; X0/ D P.XN ; XN/ D 1 corresponding to the two
consensus configurations with all agents in the same state. The Markovianity of
the VM process obtained by a projection onto X D .X0; : : : ; XN/ is well-established
in the case of homogeneous mixing, but it seems to be less well-known that the
preservation of Markovianity by this projection construction is the exception rather
than the rule. This is due to the fact that for heterogeneous ! the second equality in
Eq. (4.4) does not hold in general, and the transition rates depend not only on the
Hamming weight, but also on the population structure.

The macro chain for the binary VM with homogeneous mixing is shown in
Fig. 4.2. The transition probability matrix P of the Markov chain is given by the
stochastic transition matrix:

P D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 : : : 0

p1 q1 p1 0 0 : : : 0

0 p2 q2 p2 0 : : : 0
:::

: : :
: : :

: : :
:::

0 pk qk pk 0
:::

: : :
: : :

: : :
:::

0 : : : 0 pN�2 qN�2 pN�2 0

0 : : : 0 0 pN�1 qN�1 pN�1

0 : : : 0 0 0 0 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (4.7)

with pk D P.Xk; Xk˙1/ and qk D P.Xk; Xk/ given in (4.5) and (4.6).

X
0

X
1

X
k-1

X
k

X
k+1

X
N

X
N-1

Fig. 4.2 Macro chain for the binary VM with homogeneous mixing
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The probability that any opinion change happens in the system is 2pk and then
depends on the current opinion balance. But there is no general tendency of the
system to be attracted by one of the extremes. In other words, the macro chain
performs an unbiased random walk. Due to the particular form of pk the prevalence
of one opinion results in a reduced probability of further opinion change, contrary
to the usual random walk with constant transition probabilities.

For k Š N
2

we have pk Š 1
4
. By contrast, when k is closed to 0 or N, there

is a large probability for the system to stay unchanged. Notice that for k D 1 or
k D N�1 this probability tends to 1 when N !1. This indicates that in this model
once one opinion dominates over the other, public opinion as a whole becomes less
dynamic, which also reveals a difficulty for new opinions to spread in the artificial
society.

4.1.2 Transient Macro Dynamics

In Markov chains with absorbing states (and therefore in ABMs) the asymptotic
status is quite trivial. As a result, it is the understanding of the transient that becomes
the interesting issue. We shall now analyze the transient dynamics for the macro
dynamics of the binary VM. In order to do so, all that is needed is to compute
the fundamental matrix F of the Markov chain (Kemeny and Snell 1976; Behrends
2000).

Let us express P in its standard form in which the two first rows and columns
stand for the absorbing states X0 and XN and the remaining for the N � 1 transient
states:

P D
 

1 j 0

R j Q

!

: (4.8)

Here, Q is the .N�1/�.N�1/ matrix corresponding to the transient states (without
the first two rows and columns associated with X0 and XN). The fundamental matrix
F is the inverse of .1 � Q/ where 1 is the .N � 1/ � .N � 1/ identity matrix. Due
to the structure of P, .1 � Q/ is a tridiagonal matrix that can be inverted using, for
instance, the tridiagonal matrix algorithm (also known as Thomas algorithm, Conte
and Boor 1980).
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For the VM, moreover, we have P.Xk; XkC1/ D P.Xk; Xk�1/ D pk which allows
for an analytical inversion of .1 � Q/. We have

.1 �Q/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

2p1 �p1 0 0 0 : : : 0

�p2 2p2 �p2 0 0 : : : 0
:::

: : :
: : :

: : :
:::

0 �pk 2pk �pk 0
:::

: : :
: : :

: : :
:::

0 : : : 0 0 �pN�2 2pN�2 �pN�2

0 : : : 0 0 0 pN�1 2pN�1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

: (4.9)

In order to compute .1 � Q/�1 we can use the system of equations defined by 1 D
.1 � Q/�1F and 1 D F.1 � Q/�1. Due to the fact that there is only one variable
per row (namely, pk) the recursive equations that have to be solved simplify and we
have as a general solution of .1 � Q/�1:

Fij D
( i.N�j/

Npj
W i � j

j.N�i/
Npj
W i > j

)

: (4.10)

For the VM, with pk given by Eq. (4.5) we obtain:

Fij D
(

Ni
j W i � j

N.N�i/
N�j W i > j

)

: (4.11)

Equation (4.11) provides us with the fundamental matrix of the system for an
arbitrary number of agents N, giving information about mean quantities of the
transient dynamics in this model.

The corresponding matrix G that encodes information about the variance
(Kemeny and Snell 1976, pp. 82–84) of the same quantities can be computed
on the basis of F by

G D F.Fdiag � 1/Fsquare (4.12)

where Fdiag contains the diagonal elements of F and is zero for the non-diagonal
elements and .Fsquare/ij D .F/2

ij. For the VM it reads:

Gij D

8
ˆ̂
<

ˆ̂
:

N.N � 1/ W i D j

.2N2 � N/
.N�i/
.N�j/ � N2 .N�i/2

.N�j/2 W i > j

.2N2 � N/ i
j � N2 i2

j2
W i < j

9
>>=

>>;
: (4.13)
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The matrices F and G provide us with a good understanding about the transient
dynamics of the VM: Fi;k is the mean of the time the process is in the transient
configuration Xk when started in the configuration Xi and Gi;k is the corresponding
variance.

An interesting quantity to characterize opinion dynamics is the time a process
starting in Xk takes to end in one of the two consensual absorbing states. Defining
�k and �k as the mean and the variance of the random variable for k D 1; : : : ; N � 1

we got from (4.11) and Kemeny and Snell (1976):

�k D N

2

4
k�1X

jD1

.N � k/

.N � j/
C 1C

N�1X

jDkC1

k

j

3

5 (4.14)

and the corresponding expression for � can explicitly be written from (4.13) using:

� D .2F � 1/� � �sq (4.15)

where �sq denotes the vector resulting from � by squaring each entry. This yields

�k D 2N2.N � k/

2

4
k�1X

iD1

1

.N � i/

0

@
i�1X

jD1

.N � i/

.N � j/
C 1C

N�1X

jDiC1

i

j

1

A

3

5C (4.16)

C.2N � 1/N

0

@
k�1X

jD1

.N � k/

.N � j/
C 1C

N�1X

jDkC1

k

j

1

AC

C2N2k

2

4
N�1X

iD1

1

kC i

0

@
kCi�1X

jD1

.N � k � i/

.N � j/
C 1C

N�1X

jDkCiC1

kC i

j

1

A

3

5 �

�N2

0

@
k�1X

jD1

.N � k/

N � j
C 1C

N�1X

jDkC1

k

j

1

A

2

:

For a system of 1000 agents, Fig. 4.3 shows the mean times until absorption �k

from each Xk and the corresponding variances �k. Notice the contrast among the two
scales showing how the variance is large compared with the mean.

There are interesting consequences of (4.14) and (4.16), in cases where the
number of agents (N) becomes large. First, as already pointed out, we see that the
ratio between the variance and the mean is quite large and in fact it diverges with
N. Hence, the means are fairly unreliable estimates in this system. This is often
the case for absorbing Markov chains (Kemeny and Snell 1976) making a direct
interpretation of numerical simulations for this type of models tough. Even more
subtle, the time scale depends significantly on the starting configuration k. In fact �k

scales as N log N for k D 1 and k D N � 1 but as N2 for k D N
2

. We are therefore
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Fig. 4.3 Mean time �k (l.h.s.) and variance �k (r.h.s.) until absorption as a function of the initial
configuration Xk for N D 1000

faced with a situation where to take the limit of asymptotic times first and then
large number of agents or to do it in the reverse order is not equivalent. In other
words, for a finite, even large, number of agents, there is a probability 1 of reaching
one of the consensual configurations in finite time. By contrast, in the limit of an
infinite number of agents this probability is 0 and the process will stay essentially
in the configurations close to parity, k D N

2
. Together with the presence of large

fluctuations revealed in (4.16) (see Fig. 4.3) this fact is the imprint of a (dynamical)
phase transition.

Besides this analysis of the scaling law of the dynamics for large N, it is also
interesting to have an insight into the distributions of absorbing times for a system
of fixed number of agents, the second item mentioned above. As known by the
Perron-Frobenius Theorem (Seneta 2006) this distribution is exponential for large t
with rate (1 � 	max), 	max being the maximal eigenvalue of the matrix Q. However,
the correction to this distribution for intermediate times depends on the initial
configuration. Indeed in our case, the distribution of the times taken by the process
to fall into one of the consensual configurations departs from the exponential in a
way that is strongly dependent upon the initial state, as shown in Figs. 4.4 and 4.5.

The computation of the full time distribution is based on the fact that the powers
Qt of Q contain all the information about the probability that the process is still
not absorbed after t steps. To be precise, the sum over the kth row of Qt equals
the probability that the process starting at Xk is not absorbed after t iterations. This
yields the cumulative distribution function shown in Fig. 4.4 for a system of 100
agents and three starting configurations k D 1 (green), k D 24 (blue) and k D 50

(red). The vertical dashed lines represent the respective mean values �k obtained
using Eq. (4.14). For k D 50 it becomes clear that around 60 % of simulation
runs are absorbed until the expected absorption time is reached. Figure 4.5 shows
the probability that the process is absorbed exactly at time tabs. The three solid
curves represent the respective probabilities for k D 1; 24; 50. The dashed curves
are exponential functions that fit the distributions for large tabs showing that the
distributions decay with (1� 	max) as claimed above.
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Fig. 4.4 Cumulative probability of being absorbed after time tabs for N D 100 and three starting
configurations k D 1 (green), k D 24 (blue) and k D 50 (red). Vertical lines show the respective
expected mean convergence times �k
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Fig. 4.5 Probability of absorbency at time tabs for N D 100 and three starting configurations
k D 1 (green), k D 24 (blue) and k D 50 (red). Exponential functions (dashed) are shown to
illustrate the exponential decay of the convergence times as a function of (1 � 	max)
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This leads to an interesting feature of the distribution of the absorption times
coming from the fact that 	max tends to one when N ! 1. More precisely Seneta
(2006) and (4.7) implies

1 > 	max � 1 � p1 � N � 1

N
: (4.17)

As a consequence, we see that the times for the system to get absorbed in the
final states diverge with N, and Q approaches a stochastic matrix. In fact in the
limit of infinite N consensus cannot be reached. This is not the only reason why
the dynamics inside the transient configurations is so important. In fact we might
speculate that, in a more realistic description, exogenous events may interfere with
the system and reset it from time to time, and then, in view of the previous analysis,
even when the number of agents is finite but sufficiently large, the system will
similarly never fall into a final absorbing consensus configuration.

Notice that Eqs. (4.11) and (4.13) can be used to gain new insight into the
dynamics inside the transient. As noted above, Fi;k is the mean of the time the
process is in the transient configuration Xk when started in the configuration Xi

and Gi;k is the corresponding variance. Figures 4.6 and 4.7 show a quite different
behavior depending on the initial situation. Starting from Xi close to X1 or XN�1—
the strongly “biased” configurations—the residence mean times in Xk naturally
decrease with the distance from i, but become almost independent of k and N
for large k, whereas the corresponding variance diverges with N. Instead, starting
from Xi close to XN=2—the quasi-homogeneous configurations—the residence mean
times and variance in Xk always diverge.
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Fig. 4.6 The mean times for the process in a configuration Xk before absorption for a walk starting
in X1; X24 and X50 as function of k for N D 100
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Fig. 4.7 The variance in the number of times a realization starting in X1; X24 and X50 is in Xk

before absorption as function of k for N D 100. Notice the scale as compared with Fig. 4.6
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The reason for such “strange” behavior is quite clear: as N becomes large,
almost all the realizations are trapped during very large times close to their
initial configuration, see (4.7), and only very few realizations reach the opposite
configurations but staying there for large times. That is, a complete overturn of
the opinions is very rare but, when happened, the new situation naturally becomes
as stable as the previous. Therefore we are in a case where there is almost no
realization behaving as the mean. On the other hand, starting from Xi closed to
XN=2, the “homogeneous” configurations, the mean times in Xk also decrease with
the distance from N=2, but now the mean times all scale linearly with N and the
variances with N2. Surprisingly these two behaviors—almost static on the border
and very unstable “back-and-forth” in the center—compensate perfectly to end up
in the same mean residence times and variance (the diagonals of F and G) for all
the initial configurations. The same compensation appears when we compare the
probabilities for a walk stating in Xi to return in Xi, which is independent of i and
almost sure for large N:

lim
t!1 P.t/.Xi; Xi/ D Fii � 1

Fii
D N � 1

N
: (4.18)

It is reasonable to hypothesize a correlation, if not a causal link, between fast
changes in the agent opinion induced by the social process, here stylized in the
dynamical rules, and the inconsistency experienced by agents between the micro and
the macro level. This conflict is referred to as practical emergence (Giesen 1987).
It consists of a gradual separation of the individual mental patterns from the reality.
The agent is then faced with a representation that is not always perfectly in keeping
with the situation (Giesen 1987, p. 342). In the opinion model, a possible rating
of this practical emergence inconsistency is the mean time the macro process takes
to change of state. Indeed any change of state in this process corresponds to an
opinion change of an agent. Therefore the faster this rate, the smaller the switching
mean time, and the more likely is the emergence of a practical disruption between
picture and reality from the agent’s point of view.

From (4.5) and Kemeny and Snell (1976), Theorem 3.5.6, the mean time 
k that
the process remains in state Xk once the state is entered (including the entering
step) is:


k D N2

2k.N � k/
: (4.19)

Therefore, 
k is of order N
2

for k close to (but smaller than) N and 2 for k close to
N
2

. Again, for N large the process will be almost stationary in presence of a large
majority supporting one of the opinions but extremely unstable when no opinion is
clearly predominant. In the latter case practical emergence is plausible. We suggest
correlating small values of 
k with this phenomenon.
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Fig. 4.8 Different
realizations of simulations
with 24 out of 100 agents in
initial state � (i.e. a process
starting in X24). Markov chain
analysis shows that with
probability 0:95 the process is
in the shaded region
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To conclude the analysis of the transient dynamics, Fig. 4.8 shows different
realizations of the agent simulation along with the expected evolution in form of
a confidence interval. The measure of the realizations inside a given confidence
interval is an increasing function of time. However, since any individual realization
may cross the border of this interval several times before falling in one of the
final absorbing states a numerical evaluation of the convergence times may be quite
delicate.

4.1.3 Exit Probabilities

The fundamental matrix F, Eq. (4.11), can also be used to compute the probabilities
for a process starting in Xi to end up in X0 or XN . These probabilities are obtained
by multiplying FR where R is the respective submatrix from the canonical form of
P shown in Eq. (4.8). It is well-known that the exit probabilities depend linearly on
the initial proportion of agents in the different states as

lim
t!1 P.t/.Xi; X0/ D N � i

N
(4.20)

and

lim
t!1 P.t/.Xi; XN/ D i

N
: (4.21)

In other words, the probability to end up in configuration .�� : : : �/ is proportional
to the initial number of �-agents.
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4.1.4 Macrodynamics of the General Voter Model

For the VM with ı different attributes, the state of any agent i at time t is
a variable xi.t/ 2 f0; : : : ; ı � 1g. The opinion profile is given by the vector
x.t/ D fx1.t/; : : : ; xN.t/g. The space of all possible configurations is then ˙ D
f0; : : : ; ı � 1gN . As described in Sect. 3.2, the micro chain of single-step model with
jSj D ı is a random walk with loops on the Hamming graph H.N; ı/.

In the projection construction, we follow the same argument as for ı D 2. We
define Ns.x/ to be the number of agents in the configuration x with opinion s, s D
0; : : : ; ı � 1, and then Xhk0;k1;:::;kı�1i � ˙ as

Xhk0;:::;ks;:::;kı�1i D
(

x 2 ˙ W N0.x/ D k0; : : : ; Ns.x/ D ks; : : :

: : : ; Nı�1.x/ D kı�1 and
ı�1X

sD0

ks D N

)

:

(4.22)

Each Xhk0;k1;:::;kı�1i contains all the configurations x in which exactly ks agents hold
opinion s for any s. We use the notation hk0; k1; : : : ; kı�1i to indicate that

Pı�1
sD0 ks D

N. As in the binary case, we obtain in this way a partition X of the configuration
space ˙ .

Again, as for the binary model, the symmetry condition (3.8) of Theorem 3.2
is verified if the probability distribution ! is permutation invariant and therefore
uniform: !.i; j/ D 1

N2 , for all pairs of agents (i; j). That is, the projection of the

micro process .˙; OP/ onto X yields a Markov chain in the case of homogeneous
mixing. In this case, Eq. (4.5) generalizes to:

P.Xhk0;k1;:::;kı�1i; Xhk0

0;k0

1;:::;k0

ı�1i/ D
kskr

N2
(4.23)

if k0
s D ks ˙ 1 and k0

r D kr 
 1 whereas k0
j D kj for all other j, and the probability

that no opinion changes, Eq. (4.6), becomes

P.Xhk0;k1;:::;kı�1i; Xhk0;k1;:::;kı�1i/ D 1

N2

ı�1X

sD0

.ks/
2:

The structure of (4.23) has an interesting consequence on the dynamics of the
system. We see that, if there is an s for which ks D 0, the probability of transition
to a state with ks > 0 is zero. In other words, to change the number of agents
sharing opinion s, at least one agent with such an opinion is needed. Therefore, the
state space is organized as a ı-simplex with absorbing faces ordered by inclusion,
corresponding to increasing sets of opinions with no supporters.

Starting in some state with no null ks the process will finish at certain time in a
state where, for the first time, ks D 0 for some s (notice that only one s at each time
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can fall to zero since the sum of all ks is constant). From there, the given ks will stay
equal to zero for ever, and (4.23)–(4.24) tell us that the transition probabilities are
now those of a system with ı�1 opinions. Because the condition

Pı�1
sD0 ks D N is to

be fulfilled by the remaining opinions, the system will then evolve exactly as if the
N agents share ı � 1 opinions from the very beginning. After a certain time a new
opinion will lose all its supporters and the system is now equivalent to a full system
of ı � 2 opinions, and so on. The system will cascade up to the final absorbing
state, with only one opinion shared by all the N agents. We recall that each of such
cascade transitions is achieved in finite (random) times.

By computing the fundamental matrix of the subsystems it would be possible
to access the mean and variance of the times the system evolves between two
successive extinctions of group opinions. We conjecture the same scaling laws for a
system of ı opinions as the ones already described for ı D 2.

4.1.5 Further Reduction

Alternatively, we can make use of the symmetries in the structure of (4.23) and
search for lumpable partitions to further reduce the problem. This can be done by
considering the model from the perspective of a single “party” associated with (say)
opinion 0. For that “party”, it may be important to know how many agents are
supportive because they share the same opinion, and how many are not because
they support one of the remaining opinions. Thus, we reduce the model to a quasi-
binary variant with the supporter opinion 0 on one side and all other opinions
(1 [ � � � [ ı � 1) on the other, grouping together all the states with k0 D r,
r D 0; : : : ; N.

The corresponding partition reads:

Y0
r D

[

k1;:::;kı�1
k0Dr

Xhr;k1;:::;kı�1i; r D 0; : : : ; N: (4.24)

It is easy to verify that the chain (on X) is indeed lumpable with respect to Y by
considering the transition probabilities (4.23).2 One can show that

X

k1;:::;kı�1
k0Dr

P.Xhr;k1;:::;kı�1i; Y0
r˙1/ D

r.N � r/

N2
(4.25)

2Alternatively, one could also verify the lumpability of Y directly with respect to the micro process.
Namely, as shown in Sect. 3.2, the micro chain is a random walk on H.N; ı/. The group SN

acting on the agents as well as the permutation group Sı acting on the agent attributes give rise
to automorphisms of H.N; ı/ such that the automorphism group is given by the direct product
Aut.H.N; ı// D SN ˝ Sı . The transformation group that generates the new partition Y is a
subgroup of that, namely, � D SN ˝ Sı�1 � SN ˝ Sı .
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and therefore independent of the ks; s > 0. This tells us that

P.Y0
r ; Y0

rC1/ D P.Y0
r ; Y0

r�1/ D r.N � r/

N2
: (4.26)

It thus turns out that the chain formed by the Y0
r ; r D 0; 1; : : : ; N is exactly the same

as the chain derived for the binary model. Therefore, the questions regarding the
evolution of one opinion in relation to all the others taken together are addressed by
the transient analysis performed in Sect. 4.1.2. That is to say, from this point of view,
each “party” may rely on the dynamics of a binary model as a coarse description of
the evolution of its own status.

There is however an important subtlety when doing such an analysis. The
asymmetry of the partition one-against-all-others will be encoded in the initial
condition. For instance, starting with an equally distributed profile of N agents
corresponds to the initial condition Xhk;k;:::;ki in the detailed description but to Y0

N=ı

in the coarse case. In such a way the asymmetry in the one-against-all-others
description is recovered.

In particular, this tells us that the probability to end up in the final configuration
Y0

N D f.�� : : : �/g is proportional to this initial bias and becomes

lim
t!1 P.t/.Y0

N=ı; Y0
N/ D 1

ı
: (4.27)

Consequently, with probability 1 � 1=ı the process will transit to the class of states
in which r D 0 with a zero probability to return to the r > 0 class. Viewed in the
space X, the process is not finished then, but performs a random walk until one of
the uniformity states is reached, each with equal probability 1=ı.

4.2 Bounded Confidence and the Emergence of Opinion
Polarization

An important issue in the study of opinion dynamics concerns the effects of bounded
confidence on the model dynamics. Especially the models conceived by Hegselmann
and Krause (2002) and Deffuant et al. (2001) (but also Axelrod 1997; Banisch
et al. 2010) are designed to study the situation that the willingness of agents to
communicate depends on the similarity of their attributes. It is also noteworthy that
similarity constraints of this kind play an important role in population genetics,
where they go under the label assortative mating (e.g., Kondrashov and Shpak 1998;
Dieckmann and Doebeli 1999, see also Banisch and Araújo 2012).

In this section, we treat in detail the simplest case where bounded confidence
(and other communication constraints) can be integrated, namely ı D 3. Consider
that agents can choose between three different alternatives S D fa; b; cg. In order to
model bounded confidence we define a S� S “confidence matrix” ˛ which encodes
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for any attribute pair whether or not the attributes are compatible. If all entries in ˛

are one, this yields the unconstrained VM with ı D 3 and the results of the previous
section apply. For bounded confidence, we set ˛.a; c/ D ˛.c; a/ D 0 meaning that
the attributes a and c are incompatible (a ½ c). The consequence of this constraint
is the emergence of non-consensual absorbing states, that is, the stable co-existence
of different attributes.

4.2.1 The Unconstrained Case

We are particularly interested in the ı D 3 case because it is the simplest version in
which one can meaningfully consider the effects of bounded confidence. According
to the general results of Sect. 4.1.4, the projection from micro to macro dynamics
is lumpable with respect to X (under the homogeneous hypothesis on ! of course).
We denote the number of a, b and c agents by (respectively) k, l and m so that
X D fXhk;l;mi W 0 � k; l; m � N; k C l C m D Ng. The Markov chain topology
obtained by this projection is shown in Fig. 4.9 along with the transition structure for
a system of eight agents. The probabilities of the transitions are given by Eqs. (4.23)
and (4.24) which allows us to compute the complete transition matrix P.
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Fig. 4.9 Transition structure (l.h.s.) and state topology (r.h.s.) of the unbounded confidence model
with three opinions S D fa; b; cg, here N D 8
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Fig. 4.10 The probabilities of reaching the three absorbing states for all initial nodes Xhk;l;mi.
Notice that all three final states can be reached only from the inner nodes (numbers 25–45)

For the construction of P, the nodes in the Markov chain are labeled in increasing
order from the absorbing to the central nodes, see Fig. 4.9: labels 1–3 (black) for
absorbing consensus states, labels 4–24 (blue) for two-opinion states, labels 25–
39 (red) for three-opinion states with one of the opinion supporters reduced to one
element, and labels 40–45 (red) for the remainder states. It is possible to compute
the fundamental matrix, at least numerically if N is large, and this makes it possible
to compute the significant statistical indicators of the model. For instance, if N D 8,
the state space of the macro dynamics has 45 states and the mean times for the
transient nodes to reach an absorbing state (consensus) range between 21 and 48
time steps, see Fig. 4.13. Not surprisingly the mean transition times are a function
of the distance to the absorbing states as measured on the graph of the state space
(Fig. 4.9).

From the fundamental matrix F it is also easy to compute the probabilities of
ending up in each of the absorbing (consensus) states starting from any transient
node using the matrix B D FR, where R is defined as in (4.8). For instance, for
N D 8, the absorbing probabilities for any state are represented in Fig. 4.10.

4.2.2 Bounded Confidence

Let us now turn to the question of what happens if agents with a certain opinion
do not accept to change their opinion after meeting an agent of another given
opinion. In the opinion dynamics literature, this is referred to as bounded confidence
(Deffuant et al. 2001; Hegselmann and Krause 2002). From the Markov chain
perspective the emergence of opinion polarization becomes a simple consequence
of the restrictions posed on the interaction process. As certain transitions are
excluded, the state space topology of the Markov chain changes in a way that new
absorbing states become present. The respective states correspond to non-consensus
configurations, hence, they represent a population with opinion clustering.
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As an example, let us assume that agents in opinion state a are not willing to com-
municate with agents in state c and vice versa, that is to say ˛.a; c/ D ˛.c; a/ D 0.
The corresponding Markov transition matrix P now reads:

P.Xhk;l;mi; Xhk�1;l;mC1i/ D P.Xhk;l;mi; XhkC1;l;m�1i/ D 0: (4.28)

and

P.Xhk;l;mi; Xhk;l;mi/ D
�

k2 C l2 C m2

N2

�

C 2

�
km

N2

�

: (4.29)

The remaining entries are, as before, given by (4.23) and (4.24). The resulting
state space topology is shown in Fig. 4.11, where all horizontal transition paths are
removed, since those paths correspond to the a$ c opinion changes.

For the set of bordering nodes Xhk;0;N�ki W k D 1; : : : ; N � 1 with l D 0 (no
b-agents) there is no longer any transition that leads away from them, so that all
these nodes become absorbing states. The fact that these additional absorbing states
Xhk;0;N�ki represent opinion configurations with k agents in state a and N � k agents
in state c explains why the introduction of interaction restrictions leads to possible
final states with opinion polarization. It is noteworthy, however, that the opinion
clustering would not be observed if only one of the two transitions, a! c or c! a,
were excluded. In this case, there would still be a path leading away from the
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Fig. 4.11 Transition structure and state topology of the bounded confidence model for N D 8. All
states on the l D 0 line (no b-agents) are now absorbing states



4.2 Bounded Confidence and the Emergence of OpinionPolarization 75

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445
0

0.2

0.4

0.6

0.8

1

X
<k,l,m>

P
(X

 −
>

 X
ab

s)

P(X
<k,l,m>

−> X
<0,0,N>

)

P(X
<k,l,m>

−> X
<N,0,0>

)

P(X
<k,l,m>

−> X
<0,N,0>

)

P(X
<k,l,m>

−> X
<k,0,N−k>

)

Fig. 4.12 The probabilities for all initial nodes Xhk;l;mi converging to opinion clustering or to the
three consensus nodes. Notice again that all final states and the non-consensus states in particular
can be reached only from the inner nodes (numbers 25–45)

bordering nodes to one of the nodes (Xh0;0;Ni or XhN;0;0i) in the corner of the graph.
Such a set-up corresponds to an asymmetric model where the bordering atoms
Xhk;0;N�ki W k D 1; : : : ; N�1 become again transient, such that the process eventually
leads to the final consensus configurations as previously described. However, in the
case that a! c but c ¹ a the final configuration x D .cc : : : c/ would be much
more likely than x D .aa : : : a/, as a consequence of the asymmetry of such a model
variant.

As for the unconstrained case, the fundamental matrix can be computed here
as well and allows us to calculate the statistical quantities of the model such as
absorbing probabilities and times. In Fig. 4.12 the probabilities of a realization
starting in one of the transient states ending up in each of the absorbing final states
are shown for each initial node (computed again by B D FR). If the process is
in the first 10 nodes at t D 0, it will remain there forever as all these nodes are
absorbing in the bounded confidence case. Notice that nothing changes for the nodes
11–24 with respect to the unconstrained case shown in Fig. 4.10. For a system in
these configurations the communication constraint has no effect on the dynamics.
The six absorbing non-consensus states (numbers 4–10 with only a and c opinion
supporters) are reachable only from the inner nodes, that is only if all opinions
are present initially. It becomes clear that for some of these configurations, the
probability of converging to consensus becomes very small (e.g. nodes 25–30).

Finally, we can compare the mean time before a realization starting in a transient
state remains in the transient before absorption for the bounded and the unbounded
case. This statistical indicator is represented in Fig. 4.13. Notice that the times for
the states 1–3 (unbounded) and 1–10 (bounded) are zero as in this case the process
is absorbed from the very beginning. Again, the non-absorbing two-opinion states
(11–24) are not affected.
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Fig. 4.13 Mean times for the transient nodes to reach an absorbing state. Blue bars: unbounded
confidence, red bars: bounded confidence with a 6$ c. Labels of the nodes are explained in the
text

4.2.3 Non-lumpability for Further Reduction

As in the general case of any ı, we can search here for lumpable partitions to further
reduce the problem taking the point of view of each “party” associated with opinions
a, b or c. For the unconstrained case, we have shown in Sect. 4.1.5 that the dynamics
from any of these points of view reduces to the ı D 2 case. The status of the bounded
confidence model is different. From the perspective of opinion b the partition in
“supporters” and “opponents” is lumpable, therefore, the system evolves as a binary
chain (see next section). This is not the case from the perspectives of opinions a
or c. For instance, from the point of view of opinion a, the corresponding partition
reads:

Ya
r D

[

lCmDN�r

Xhr;l;mi; r D 0; 1; : : : ; N: (4.30)

and

P.Xhr;l;mi; Ya
rC1/ D

rl

N2
: (4.31)

It turns out that the chain formed by the Ya
r ; r D 0; 1; : : : ; N is not a Markov chain

since the r.h.s. of (4.31) depends on l and not only on r (Kemeny and Snell 1976).
We see that the introduction of bounded confidence in this model leads to

memory effects due to the fact that an agent switching from opinion a to opinion c
necessarily goes through a visit to opinion b for at least one time step. Therefore,
the probability of this transfer will depend on the number of supporters of opinion
b at that time.
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4.2.4 Transient Behavior with Bounded Confidence

As noted above, a further reduction of the Markov chain is possible if the dynamics
are considered from the perspective of “party” b. The corresponding partition reads

Yb
r D

[

kCmDN�r

Xhk;r;mi; r D 0; 1; : : : ; N (4.32)

and the transition probabilities are

P.Xhk;r;mi; Yb
rC1/ D r.N � r/

N2
: (4.33)

As discussed in Sect. 4.1.5, the probability to converge to Yb
N D f.bb : : : b/g is 1=ı D

1=3 and the probability to end up in one of the configurations in Yb
0 is 2=3, provided

that the model is initialized with an equal number of a, b and c agents. Notice that
contrary to the unbounded confidence case the process is really in its final state
whenever r D 0 as all configurations in Yb

0 are absorbing.
The convergence times (see Fig. 4.13 for a small system) are composed of the

(relatively short) time needed to end up in the class of states Yb
0 including those of

opinion polarization and the (relatively long) time needed to converge to Yb
N . In the

following, we use a transformation proposed in Kemeny and Snell (1976, pp. 64/65),
in order to assess the two times independently. Notice that all the results obtained in
this section are also applicable to the binary VM (with Xk 	 Yb

k ) to study the effects
of initial opinion bias.

The basic idea is to “compute all probabilities relative to the hypothesis that the
process ends up in the given absorbing state” (Kemeny and Snell 1976, p. 64). This
leads to a new absorbing chain with the specified state as the single absorbing state.
In fact, for our purpose, it is not necessary to completely determine the transition
matrix for that new chain as the fundamental matrix of the original process (F)
can be used directly to compute the fundamental matrix of the new chain ( QF). Let
B D FR where F is the fundamental matrix of the binary chain (4.11) and R the
respective 2 � N submatrix of the canonical form (4.8). The elements b1j (b2j) of B
correspond to the exit probabilities of the process started in j to end up in X0 	 Yb

0

(XN 	 Yb
N). Recall that b1j D .N � j/=N and b2j D j=N (see Sect. 4.1.3). Now let D0

be a diagonal matrix with djj D b1j and respectively define DN as djj D b2j. Then,
according to Kemeny and Snell (1976, p. 65), the fundamental matrices of the new
chains with absorbing state X0 	 Yb

0 and XN 	 Yb
N respectively is given by

QF0 D D�1
0 FD0

QFN D D�1
N FDN : (4.34)
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In our case with the fundamental matrix given in Eq. (4.11) we obtain

. QF0/ij D b1j
Fij

b1i
D
(

iN.N�j/
j.N�i/ W i � j

N W i > j
(4.35)

and

. QFN/ij D b2j
Fij

b2i
D
(

N W i � j
jN.N�i/
i.N�j/ W i > j

: (4.36)

The fundamental matrices QF0 and QFN allow for a very good understanding of
the average behavior of the model. QF0 encodes the mean number of steps that the
realizations which eventually converge to Yb

0 pass through any state Yb
r , and QFN

informs us about the mean behavior of realizations that end up in Yb
N . For instance,

we can compute the mean convergence time to each absorbing state independently.
For convergence to Yb

0 from the initial state Yb
r we have

Q�0.r/ D rN C
NX

jDrC1

rN.N � j/

j.N � r/
(4.37)

and for convergence to uniformity corresponding to Yb
N

Q�N.r/ D .N � r/N C
r�1X

jD1

jN.N � r/

r.N � j/
(4.38)

For a system of 100 agents these times are shown in Fig. 4.14. It becomes clear
that the mean convergence times to Yb

0 and Yb
N are equal if the initial situation is

unbiased, that is, if there are r D N=2 agents with attribute b and N=2 agents in the
other two states a or c. However, with an increasing initial bias, there is an increasing
gap between average convergence time to one or the other absorbing state. For the
system with three possible attributes a, b and c and random initial conditions the
initial number of b agents is around N=3 � 33. This is illustrated by the dashed
vertical line. In that case, the mean convergence time for realizations that end up
in possible polarized configurations with only a and c agents becomes considerably
smaller compared to the configuration with all agents in state b.
QF0 and QFN enable moreover to study the transient behavior of the model with

initial bias in more detail. For a system of 100 agents, Fig. 4.15 shows the mean
number of steps that a process ending up in Yb

0 (l.h.s.) and Yb
N (r.h.s.) is in the

transient states provided the model is initialized with 33 agents in b and 67 agents
in a or c. This information is encoded in the 33rd row of QF0 and QFN respectively.
We first comment on the l.h.s. showing the mean behavior of realizations ending
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Fig. 4.14 Mean convergence times to X0 � Yb
0 (red) and XN � Yb

N (blue) independently. The
vertical dashed line represents the initial bias for the model with ı D 3
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Fig. 4.15 Mean number of steps a process that eventually converges to Yb
0 (l.h.s.) and Yb

N (r.h.s.)
is in the transient states for a system of 100 agents and an initial number of r D 33 agent in state b

up in an absorbing configuration where only a and c agents remain (Yb
0 ). The

figure shows that, in average, all the transient states that are closer to Yb
0 than the

initial configuration in Yb
33 are met N times. Naturally, the states “to the right” are

encountered less frequently. It should be clear that the entries of QF0 should not
be read as the mean behavior of every single realization, but rather as the average
behavior over a large series of realizations. For instance, the mean number of steps
to Yb

99, which is very close to the opposite absorbing state, is approximately 1=2.
However, this does not mean that every second realization approaches the opposite
absorbing state so closely. It rather means that there are rare realizations that take
that way, and once they are at the opposite extreme, these realizations have a high
chance to stay there for some while. In fact, the fundamental matrix QF0 tells us that,
once a realization reached Yb

99, the mean number of returns to that state is N � 1.
The interpretation of the r.h.s. ( QFN) goes in the same way.
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Fig. 4.16 Probability distribution of convergence times for a system of 100 agents when started
with r D 33. Convergence to Yb

0 , �0, is considerably faster than convergence to Yb
N , �N

Finally, the probability distribution of convergence times to one or the other
absorbing state can be computed easily for a given N. In this computation, we first
compute the respective matrices QQ0 as . QQ0/ij D .b1j=b1i/Qij and QQN as . QQN/ij D
.b2j=b2i/Qij. This is in complete analogy to the computation of the independent
fundamental matrices and follows the work of Kemeny and Snell (1976, pp. 64–65).
The computation of the probability distribution is then based on the evaluation of
powers of QQ as done in Sect. 4.1.2. The result is shown in Fig. 4.16. For comparison,
the distribution of convergence times to either absorbing state (dashed, red) is shown
for r D 33. All in all, this shows how the general convergence behavior is a
composite of the two different convergence trends obtained by considering the two
absorbing states independently.

4.3 Simple Generalizations

We first mention an easy generalization of the existence of absorbing states for the
case of bounded confidence in a model with any number ı of different opinions.
In order to get non-consensual absorbing states it is necessary and sufficient
that a subset of opinions is mutually incommunicable. In this case all the states
belonging to the simplex generated by the mutually incommunicable opinions
become absorbing. It is worthwhile noticing that absorbing states may appear in
different clusters of simplexes provided that the corresponding opinions are related
by chains of communicating links. An example of this type appears for ı D 3 if
(a ½ b) and (a ½ c) but (b$ c) where the absorbing states are either the simplex
with only a and b or with only a and c opinions.
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Another interesting issue concerns agent models with vectorial (or equivalently
matrix or table) individual attribute space. Suppose that at each time step each agent
i is characterized by a list of q attributes, where the first attribute may take n1

possible values, the second attribute n2 values and so on up to the qth attribute with
nq possible values. The corresponding ABM can then be easily built as in Sect. 4.1.4
by taking ı D n1 � n2 � � � � � nq. As long as one is interested in following the
macrodynamics obtained by lumping all agent configurations with an equal attribute
frequency for all the ı attributes, the reduction proposed in Sect. 4.1.5 also applies.
Moreover, absorbing non-consensual states will appear in exactly the same way as
described above as a consequence of bounded confidence.

For this vectorial opinion model there is, however, an unexpected subtlety when
we are interested in the macrodynamics of the agents ranked by only one of their
attributes, for instance, if the agents are separated in n1 different groups according
to the number of agents sharing their first attribute. Then, the partition is no longer
lumpable, and therefore the evolution of the corresponding random variables (for
instance, the number of elements of each group) is not a Markov chain. Again, in
this case, new memory effects may appear from this choice of aggregation to build
the macrodynamics. The proof can be done as in (4.30) and (4.31).

4.4 Summary and Discussion

In this chapter, we considered the VM from a Markovian perspective and derive
explicit statements about the possibility of linking a microscopic agent model to
the dynamical processes of macroscopic observables that are useful for a precise
understanding of the model dynamics. In this way the dynamics of collective
variables (i.e., opinion frequency) may be studied, and a description of macro
dynamics as emergent properties of micro dynamics, in particularly during transient
times, is possible.

Using Markov chain computations, we obtain a very detailed understanding
of the VM with homogeneous mixing. On the one hand, the computation of the
fundamental matrix of the macro chain provides us with precise knowledge about
the mean transient behavior, on the other, it also tells us that some care must be taken
in order to relate those mean quantities to single realizations of the model. Regarding
convergence times, full information (probability distribution of convergence times)
is provided by numerical integration over the transient states which gives a better
idea of the transient behaviors that single realizations may exhibit. The analysis
is extended to the general (multi-state) VM, the analysis of which is reducible
to the binary case in the absence of interaction constraints. On the other hand,
similarity constraints as bounded confidence or assortative mating lead to additional
absorbing states in the macro chain. This shows that opinion polarization is a direct
consequence of bounded confidence (see Chap. 8 for a biological interpretation in
terms of sympatric speciation).
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This is what makes homogeneous mixing (and respectively, the complete graph)
so special because the full permutation invariance is realized (Aut.KN/ D SN). On
the other hand, an important mark of ABMs is their ability to include arbitrary levels
of heterogeneity and stochasticity (or uncertainty) into the description of a system
of interacting agents. In a sense, the partition of the configuration space defining the
macro level of the description has to be refined in order to account for an increased
level of heterogeneity or a falloff in the symmetry of the probability distribution. It
is, however, clear that, in absence of any symmetry, there is no other choice for this
partition than to stay at the micro level and, in this sense, no Markovian description
of a macro level is possible in this case. This will be spelled out in detail in the next
chapter.
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Chapter 5
From Network Symmetries to Markov
Projections

In the third chapter, we have seen that an agent-based model (ABM) defines a
process of change at the individual level—a micro process—by which in each
time step one configuration of individuals is transformed into another configuration.
For a class of models we have shown this micro process to be a Markov chain
on the space of all possible agent configurations. Moreover, we have shown that
the full aggregation—that is, the re-formulation of the model by mere aggregation
over the individual attributes of all agents—may give rise to a new process that
is again a Markov chain, however, only under the rather restrictive assumption of
homogeneous mixing. Heterogeneities in the micro description, in general, destroy
the Markov property of the macro process obtained by such a full aggregation.

The question addressed in this chapter is how to derive Markovian coarse-
grainings (Markov projections) if the assumption of homogeneous mixing is
relaxed. In other words, how must the micro model and the projection construction
be so that the projected system is still a Markov chain? We develop a tool which
relates symmetries in the interaction topology to partitions of the configuration
space with respect to which the micro process is lumpable. In effect, this leads to a
refinement of the full aggregation which exploits all the dynamical redundancies that
have its source in the agent network on which the model is implemented. Notably,
the result is stated in terms of the symmetries of the agent network which is much
simpler than the micro chain on the configuration space where the aggregation
process (lump) is achieved. Some of the results presented here are also available
under Banisch and Lima (2013).
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5.1 Interaction Heterogeneity and Projection Refinement

Let us begin this chapter with the simple example that is running through this
thesis. Consider the VM with three agents on different networks defined by a 3 � 3

adjacency matrix A with aij D 1 whenever i and j are connected. As before, in
the iteration process, an agent pair .i; j/ is chosen at random out of the set of all
agent pairs with aij D 1 and the first adopts the state of the second. Notice that an
alternative way of realizing the agent update is to first choose an agent i and then
choose another agent j out of all agents connected to i. The former is called link
update and the latter node update dynamics and we shall see that this can lead to
different probability distributions !. We mainly consider link update in this chapter,
but comment on the differences between the two variants in Sect. 5.2.

We first consider the complete graph defined by aij D 1 whenever i ¤ j and
aii D 0. Notice that in that case, the two update variants are lead to the same !.i; j/.
Namely, the probability of a pair .i; j/ to be chosen is for every pair ! D 1=6. That
is, except for the exclusion of self-choice (with !.i; i/ D 0) it leads to the case dealt
with in the previous chapter. Figure 5.1 briefly recalls the respective Markov chain
formulation and projection by illustrating (1) the connectivity structure !.i; j/ D
!I 8i ¤ j, (2) the micro chain this leads to along with the transition rates, and (3)
the resulting macro chain.

In order to go beyond complete homogeneity let us consider what happens to
that picture of one link is removed. Therefore, let us assume that a23 D a32 D 0.
Under link update this leads to the following interaction probabilities: !.1; 2/ D
!.2; 1/ D !.1; 3/ D !.3; 1/ D ! D 1=4, and !.2; 3/ D !.3; 2/ D 0. This
topology, the resulting micro chain and the probabilistic effects on the macro level
are shown in Fig. 5.2.
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Fig. 5.1 Probabilistic structure of the model with three agents on the complete graph
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Fig. 5.2 Probabilistic structure of the model with three agents if the connection between 2 and 3
is absent
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Fig. 5.3 Refinement of the partition that preserves Markovianity

It becomes clear that the introduction of interaction heterogeneity translates
into irregularities in the probabilistic structure of the micro chain in a way that
the symmetry condition in Theorem 3.2, OP.x; y/ D OP. O
.x/; O
.y//, is violated for
the macro partition X D .X0; X1; X2; X3/. In other words, it leads to the non-
lumpability of the partition X D .X0; X1; X2; X3/. As shown in Fig. 5.2 the transition
probabilities at the macro level are not uniquely defined and depend upon the
respective micro configuration. Consider, as an example, the transitions from X2

to X3. The probability (3.7) of a transition form configuration .���/ to .���/

is OP.���; ���/ D !.1; 2/ C !.1; 3/ D 2!, whereas OP.���; ���/ D
!.2; 1/ C !.2; 3/ D ! and OP.���; ���/ D !.3; 1/ C !.3; 2/ D !. While
all these probabilities are equal for the complete graph (as !.i; j/ D ! W 8i; j) they
are not all equal if one or two connections are absent which violates the lumpability
condition.

Deriving a partition such that the micro process projected onto it is a Markov
chain requires a refinement of the aggregation procedure. For the example consid-
ered here the respective refined partition is shown in Fig. 5.3.
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Fig. 5.4 The three different configurations .���/, .���/ and .���/ of length 3 with one
agent in � and two in � (k D 2). The first two configurations .���/ and .���/ are what we
will call macroscopically equivalent

The main purpose of this chapter is to develop a systematic approach to this
projection refinement by exploiting all the dynamical redundancies resulting from
the symmetries of agent network. Network symmetries can be used to identify
bundles of micro configurations that can be interchanged without changing the
hypercubic micro chain. Our example may provide a first intuition. The interaction
graph in our example has a symmetry such that the agents 2 and 3 can be permuted
without affecting the connectivity structure, (i.e., Aut! D .1/.23/). This symmetry
imposes a symmetries in the hypercube graph associated to the micro process such
that the configurations .���/ and .���/ with k D 2 and respectively .���/

and .���/ with k D 1 can be permuted without affecting the transition structure.
See also Fig. 5.4. In this simple example, therefore, the previous macro atoms X2

(and X1) must be refined such that the sets of configurations f.���/; .���/g
(respectively f.���/; .���/g) on the one hand and f.���/g (respectively
f.���/g) on the other form different sets in a Markovian partition.

5.2 Social Structure at the Micro Level

The effect of different social networks on the dynamics of ABMs plays an
increasingly important role in the research of these models. Certain aspects of the
model behavior may sometimes be very different when implemented on different
topologies. One might be surprised that in the consideration of the micro level
dynamics (Sect. 3.2, previous chapter) nothing is said about how different agent
networks incorporate into this framework. The simple reason is that the role of
networks in the models is essentially to determine the interaction probabilities
of agents and that we consider that kind of information via the probability
distribution !.

For instance, in the VM two agents .i; j/ linked in the network are chosen at
random. From the network it is possible to infer directly the respective probability
!.i; j/. As mentioned earlier, there are two different ways of agent choice: first, one
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can first choose an agent i and then choose another agent j out of its neighborhood
(node update dynamics); second, both agents are chosen at one instance by the
choice of an edge in the network (link update dynamics). In general, the two modes
of agent choice lead to a different !.i; j/. Node update leads to

!.i; j/ D 1

N

1

ki
; (5.1)

where ki is the degree of agent i. For the second version with link choice, on a graph
with adjacency matrix A the probability !.i; j/ is

!.i; j/ D aij

jEj ; (5.2)

where aij is the element in A corresponding to the edge .i; j/ and jEj is the total
number of edges in the graph.

Figure 5.5 illustrates the differences in the probability distribution ! for node
and link update using the small example considered in the previous section. Notice
that in any case

P
!.i; j/ D 1 for it is a distribution over agent choices. Notice

moreover, that the symmetry .1/.23/ is preserves for the two update schemes.
The notion of ! is quite general and allows also to incorporate other types of

social structure. There may be cases in which agents are heterogeneous with respect
to certain static characteristics: for instance, if they belong to different ethnical
groups or working classes. This might effect not only there likeliness to meet in
the model, but also the choice probabilities for different behavioral options, that is,
the behavior of agents within their group may be different from the agent behavior
across different groups. All those effect are encoded into the probability distribution
! along with the social network of agents.
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original network ω with link updateω with node update

Fig. 5.5 Node versus link update in the example considered above
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5.3 Markovian Aggregation

For those reasons, it is convenient to formulate the theoretical ideas presented in
this section in terms of the probability distribution !. We first define the notion
of macroscopic equivalence, then we consider the VM and finally we discuss the
generalization to the class of models with single-step dynamics (see Sect. 3.2.3).

5.3.1 Macroscopic Equivalence

Let .˙; OP/ be a micro chain corresponding to an ABM. Let M be a partition of
the configuration space ˙ with respect to which the micro process is lumpable. For
further convenience we define the following notion of macroscopic equivalence:

Definition 5.1 Two configurations x and x0 are macroscopically equivalent if the
lumpability condition (Kemeny and Snell 1976, Theorem 6.3.2)

OpxY D
X

y2Y

OP.x; y/ D
X

y2Y

OP.x0; y/ D Opx0Y (5.3)

is satisfied for all Y 2 M . Then x and x0 belong to the same atom X of the
partition M .

The notion of macroscopic equivalence is motivated by the fact that two macroscop-
ically equivalent configurations contribute in exactly the same way to the dynamical
behavior of the macro process on M . It is important to notice that macroscopic
equivalence is inherently linked to a partition M , that is, with a macro description
of the process, because two configurations that are equivalent with respect to one
partition might not be with respect to another.

5.3.2 The Voter Model

Let Aut!.N/ be the subgroup of the permutations 
 acting on the set N of agents such
that !.
 i; 
 j/ D !.i; j/ for all i; j 2 N. To each 
 2 Aut!.N/ we associate a O
 which
is a bijection on the configuration space ˙ . If x 2 ˙ with x D .x1; : : : ; xi; : : : ; xN/

then

O
.x/ D .x
1; : : : ; x
 i; : : : ; x
N/: (5.4)



5.3 Markovian Aggregation 89

We now define a partition M! of ˙ using Aut!.N/. Two configurations
x; x0 2 ˙ belong to the same atom of the partition M! iff there is a 
 2 Aut!.N/

such that x0 D O
.x/. Clearly this is an equivalence relation and therefore it defines
a partition on ˙ .

Proposition 5.1 The partitionM! is lumpable for the agent model on ˙ with agent
choice based on ! and therefore the corresponding projected process is a Markov
chain.

Proof Consider the distribution of interaction probabilities ! and its permutation
group of symmetries Aut!.N/ D f
 W !.
 i; 
 j/ D !.i; j/;8i; j 2 Ng. Suppose we
know (at least) one configuration (the generator) xk 2 ˙ for each Xk � ˙ and
construct the partition M! D .X1; : : : ; Xk; : : :/ by

Xk D Aut!.N/ ı xk D
[

8O

O
.xk/: (5.5)

A necessary and sufficient condition for lumpability is that the transition probability
from a configuration x 2 Xk to any atom Xs 2 M! be the same for all x 2 Xk

(Kemeny and Snell 1976, Theorem 6.3.2). That is, we have to show macroscopic
equivalence, Eq. (5.1), for the pairs of configurations x and O
.x/. By Theorem 3.2
we know that this is satisfied whenever OP.x; y/ D OP. O
.x/; O
.y// for any 
 2
Aut!.N/.

In the VM, for the case that x
i� y we know that xj D yj for all j except i and that

the transition requires the choice of an edge .i; : /. Denoting xi D s and yi D Ns we
rewrite Eq. (3.7) as

OP.x; y/ D
X

jW.xjDNs/
!.i; j/: (5.6)

If x
i� y it is easy to show that O
.x/


 i� O
.y/ and we know that s D O
.x
 i/ ¤
O
.y
 i/ D Ns. The transition therefore requires the choice of an edge .
 i; : /. We obtain

OP. O
.x/; O
.y// D
X

kW.
.xk/DNs/
!.
 i; k/: (5.7)

Given an arbitrary configuration x, for any j with xj D Ns we have a corresponding
k D 
 j with O
.xk/ D Ns because xj D Ns , O
.x
 j/ D Ns. That is, the summations in
Eqs. (5.6) and (5.7) are equal for any 
 for which !.i; j/ D !.
 i; 
 j/. This is true
by the definition of Aut!.N/ for all permutations 
 2 Aut!.N/.
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5.3.3 Single-Step Dynamics

Proposition 5.1 can be applied without modification to any interacting particle
system in which the local transition probabilities are a function solely of the local
neighborhood configuration, as defined by an unchanging graph.1 For the class
of models with single-step dynamics the proof can be done following the same
argument.

As discussed in Sect. 3.2.3, the update from one time step to the next is defined
by a function u W Sr � � ! S that depends on the attributes of an arbitrary
number of agents (r) and on an additional variable 	 2 � accounting for a possible
stochastic part in the update mechanism. The probability distribution ! is therefore
over rC 1-tuples (!.i; j; : : : ; k; 	/). For the construction of a partition M! we must
now consider the group of 
 2 Aut! with !.i; j; : : : ; k; 	/ D !.
 i; 
 j; : : : ; 
k; 
	/.
Then, as before, classes of macroscopically equivalent configurations (and therewith
M!) are defined by x0 D O
.x/ with O
.x/ as in (5.4).

5.4 The Two-Community Model

5.4.1 Model

Consider a population composed of two sub-population of size L and M such that
L C M D N and assume that individuals within the same sub-population are
connected by strong ties whereas only weak ties connect individuals that belong
to different communities. We could think of that in terms of a spatial topology with
the paradigmatic example of two villages with intensive interaction among people
of the same village and some contact across the villages. This is similar to the most
common interpretation in population genetics where this is called the island model
(Wright 1943). In another reading the model could by related to status homophily
(Lazarsfeld and Merton 1954) accounting for a situation where agents belonging to
the same class (social class, race, religious community) interact more intensively
than people belonging to different classes (Fig. 5.6).

Let us adopt the perspective of a weighted graph and say that an edge with weight
aij D 1 connects agents of the same community whereas edges across the two
communities have a weight aij D r. Therefore, r is the ratio between strong and
weak ties. For the VM run on such a network, notice again that there may be subtle
differences in the resulting interaction probabilities !.i; j/ depending on how the
agent choice is performed. First, in the case of link update dynamics a link .i; j/
is chosen out of the set of all links and so the !.i; j/ are proportional to the edge
weight. Namely, let � denote the interaction probability between agents of the same

1I am grateful to an anonymous reviewer for this formulation.
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Fig. 5.6 A two-component graph with two homogeneous sub-populations

community and ˛ the respective probability across communities, then

� D 1

2LM C ..L � 1/LC .M � 1/M/r
(5.8)

˛ D r

2LM C ..L � 1/LC .M � 1/M/r
; (5.9)

where the divisor is the sum over all edge weights and establishes thatP
.i; j/ !.i; j/ D 1. A second mode of agent choice is to first choose an agent i

and then choose a second agent j out of its neighbor set. In the case that M ¤ L, the
interaction probabilities become different from (5.9). In the following, however, we
will concentrate on the example with M D L D 50, and in this case Eq. (5.9) gives
the right interaction probabilities for node and link update dynamics.

5.4.2 Markov Projection

Notice, moreover, that independent of M and L both update modes give rise to the
same symmetry group Aut!.N/ D .1 : : : M/.M C 1 : : : N/. Aut!.N/ is composed
of the symmetric group SL and SM acting on the two subgraphs and it means that
! is invariant under permutations of agents within the same community.2 Let us
denote by m and l the number of �-agents in M and L. It is then clear that all
configurations x and y with Œm.x/ D m.y/� \ Œl.x/ D l.y/� are macroscopically
equivalent. As 0 � m � M and 0 � l � L the aggregation defines a Markov
chain with .M C 1/.LC 1/ states which is still very small compared to the number
of 2.MCL/ micro configurations. Notice that this generalizes naturally to a larger
number of subgraphs. Notice also that the multipartite graphs studied in Sood and

2Notice that the case M D L is special because it leads to additional symmetries as the two
communities are interchangeable. This is not generally the case and therefore we develop the more
general case of M ¤ L here, even if the computations are mostly performed for the example
M D L D 50.
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Fig. 5.7 The structure of the chain for L D M D 10. The consensus states QX0;0; QXM;L as well as the
states of inter-community polarization QX0;L; QXM;0 are highlighted. The quasi-stationary distribution
is mapped into node colors from blue (low values) to red (high values)

Redner (2005) fall into this category and that the authors used the respective sub-
densities in their mean-field description.

The structure of the Markov chain associated to the VM on the two-community
graph is shown in Fig. 5.7. For the system of size M and L the transition probabilities
for the transitions leaving an atom QXm;l are given by

P. QXm;l; QXmC1;l/ D �.m.M � m//C ˛.M � m/l

P. QXm;l; QXm�1;l/ D �.m.M � m//C ˛m.L � l/

P. QXm;l; QXm;lC1/ D �.L� l/lC ˛.L � l/m

P. QXm;l; QXm;l�1/ D �.L� l/lC ˛.M �m/l

The four states located at the corners are highlighted in Fig. 5.7. The atom on the
lower left (l D 0; m D 0) and the upper right corner (l D L; m D M) correspond to
the two states of complete consensus where all agent in the two communities have
adopted the same state. These are the absorbing states of the process. The other
two (l D L; m D 0 and l D 0; m D M) correspond to the situation that agents
within the same community are aligned, but there is disagreement between the
different communities. This is a form of “local alignment and global polarization”,
and especially if the coupling across the communities becomes weak, there is a
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relatively high transient (quasi-stationary) probability for those situations. We will
refer to them as inter-community polarization.

In what follows, we study a system with M D L D 50. This gives a Markov chain
of size .MC 1/.LC 1/ D 2601. Notice that the computations (matrix inversion and
powers) needed in the analysis of that chain bear already some computational cost
and that a further increase in system size will increase these costs greatly.

5.4.3 Convergence Times

We start the analysis of the model behavior on the two-community topology
by computing the mean number of steps required to reach a final consensus
configuration QX0;0 or QXM;L. The mean convergence times can be computed on
the basis of the fundamental matrix F which contains the mean number of visits
before absorption for all node pairs (see Sect. 4.1.2). Figure 5.8 compares the mean
convergence times for all initial states QXm;l and a coupling ratio of r D 1=100 (l.h.s.)
to the homogeneous mixing situation with r D 1 (r.h.s.). In comparison to the
homogeneous mixing case [Eq. (4.14)] the mean number of steps before absorption
increases considerably for all initial configurations. For m C l D k D 50 the
complete graph will order in average after 6880 steps whereas for a weak coupling
with r D 1=100 this number increases to 9437 for the completely disordered
configurations with m D 25; l D 25. Notably, it increases further to 11921 for the
initial configurations with consensus in the communities but disagreement between
the two islands (polarization).
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Fig. 5.8 Mean convergence times for M D L D 50 for all initial configurations Xm;l. The
disordered initial configuration XM=2;L=2 and the two ordered configurations QXM;0 and QX0;L are
highlighted by C. On the l.h.s. r D ˛=� D 1=100, on the r.h.s. r D 1; ˛ D �



94 5 From Network Symmetries to Markov Projections

Notice, that in the homogeneous situation where ˛ D � the convergence times
are only a function of the total density k D mC l. For every two atoms QXm1;l1 ; QXm2;l2
for which m1 C l1 D m2 C l2 we obtain the same mean convergence time. This is
not surprising, of course, because for ˛ D � the Markov chain on QX is lumpable
with respect to the full aggregation X D .X0; : : : ; Xk; : : : ; XN/ and so the behavior
of every QXm;l within the same Xk is identical, from the macro perspective. This
changes if the VM is run on the two-community topology and the coupling between
the communities is smaller than the coupling among agents in the same island
(i.e., ˛ < � ). Due to the topological effects and a reduced communication across
communities, the emergence of a meta-stable configuration of local alignment
within communities but global polarization across communities is likely. In general,
the process requires more time to converge if initialized in a situation where one
community is ordered from the beginning and the opinions diverging from that
consensus concentrate in the other community. Notably, an increase in convergence
times is observed even for the initial configurations which are completely disordered
(e.g., QX25;25), because a considerable number of realizations is first driven to a state
of inter-community polarization before it eventually evolves further to a consensus
profile (see below).

We compare these two situations (namely initial disorder QX25;25 and initial order
QX50;0) by considering the distribution of convergence times for two configurations
with m C l D N=2 D 50. The respective cumulative distributions for r D 1=100

is shown on the l.h.s. of Fig. 5.9 and on the r.h.s. the respective probability of
absorbency at time t is shown.

In the case of initial disorder (red curve), where the states � and � are distributed
equally over the two islands, there is a certain number of realizations that approaches
one absorbing consensus state without entering the states of partial order ( QXM;0 and
QX0;L). The probability of absorbency reaches a peak after a relatively short time
of around t � 3000 steps whereas the highest absorbency probability lies around
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Fig. 5.9 Distribution of convergence times � for M D L D 50, r D 1=100 for the disordered
initial configuration XM=2;L=2 and the two ordered configurations QXM;0 and QX0;L with inter-
community polarization
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Fig. 5.10 Mean convergence times � as a function of the relative inter-group interaction strength
r D ˛=� for the ordered initial configuration QXM;0 and the disordered initial configuration QXM=2;L=2

t � 5000 for the ordered initial condition. At around t � 5000 already 40 % of
realizations have converged for the disordered case, but only 20 % in case of initial
order. This shows that there is a strong influence of the interaction topology leading
to a high heterogeneity between different initial configurations with the same global
magnetization k D m C l. The ordered configurations QXM;0 and QX0;L function as
dynamical traps and it may take a long time to escape from them especially when r
becomes small. On the other hand, however, Markov chain theory tells us that the
probability for very long waiting times decays exponentially.

In Fig. 5.10, a more detailed picture of how convergence times increases as r D
˛=� decreases is provided. For the two initial situations considered previously the
mean convergence times are shown as a function of r D ˛=� . Notice again that
these extreme configuration are highlighted by C in Fig. 5.8. It is clear that the
mean times to absorbency diverge as r approaches zero, lim

r!0
� D 1. This is due

to the fact that the interaction topology becomes disconnected in that extreme case,
and therefore, the non-consensus configurations QXM;0 and QX0;L become absorbing. In
other words, to go from (say) QX0;L to (say) QX0;0 requires an infinite number of steps.
In fact, we then deal with a completely new chain that has four absorbing states, or
more precisely, with two chains one for each island. However, as long as r > 0 the
possibility to escape from QX0;L remains, even if it takes very long.

5.4.4 Quasi-Stationary Distribution

Finally, to characterize the long-term transient behavior, let us look at the quasi-
stationary distribution of the two-community VM. This distribution contains the
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Fig. 5.11 Quasi-stationary distribution for the VM on two islands with r D 1=100 (l.h.s.) and
r D 1 (r.h.s.)

probabilities to be in the different transient states for realizations that are not
absorbed after a certain time. It corresponds the normalized left eigenvector
associated to the largest eigenvalue of the transient sub-matrix Q of P (just as the
stationary distribution of a regular chain is the normalized left eigenvector of the
transition matrix P). See, for instance, Darroch and Seneta (1965) (pages 91–93 in
particular) for a description of the quasi-stationary distribution.

Figure 5.11 shows the quasi-stationary distribution for the two-community VM
with r D 1=100 and r D 1. Notice again that the later corresponds to the
homogeneous mixing case. If r is small there is a high (conditional) probability
that the process is trapped in one of the states of inter-community polarization.
Also the states QXm;0 and QX0;l with one uniform sub-population have a relatively high
probability indicating that convergence to complete consensus out of local order
does not happen via a transition through complete disorder. This is in stark contrast
to the homogeneous mixing situation, which is shown on the r.h.s. of Fig. 5.11. In
this case, states of inter-community polarization (m D M; l D 0 and m D 0; l D L)
and states close to that become in effect very rare random events.3

5.5 On the Role of Peer-to-Peer Communication
in an Opinion Model with Leader

This section presents a Markov chain treatment of the VM on a topology that models
leadership. We show how the probability that the leader imposes its opinion on
a follower population increases with the influence asymmetry between a leader
and the followers and is independent of peer-to-peer processes among followers.

3The reason for this is clear. The number of micro configurations x 2 ˙ mapped into the state
QXm;l is

�M
m

��L
l

�
which is a huge number for m � M=2; l � L=2 but only 1 for m D M; l D 0

and m D 0; l D L. Because under homogeneous mixing there is no favoring of particular agent
configurations with the same k D m C l the stationary probability at macro scale is proportional to
the cardinality of the set QXm;l.
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A greater influence does not only increase the respective exit probability, it also
accelerates the convergence process. However, this acceleration is undermined by a
stronger peer-to-peer communication among followers.

5.5.1 Model

Here we study the binary VM on an asymmetric topology. Namely, we introduce an
opinion leader that has an increased influence on the rest of the agent population.
Therefore, consider a homogeneous population of N agents indexed by i D
1; : : : ; N. As before, each agent can adopt two opinions, � or �. Consider further
that there is another agent (the leader indexed by i D 0) with a stronger influence on
the population such that the probability that its attribute spreads in the population
is increased. In principle, we also want to allow that the population influences the
leader, but the probability of such an event is rather small.

The VM operates by choosing an agent (i) which adopts the opinion of one of
its neighbors ( j). As before, !.i; j/ is the probability that the pair .i; j/ is chosen.
Under link update, and with the convention that the first agent (i) imitates the second
( j), leadership can be included by introducing an asymmetry in the interaction
probabilities such that it is more probable to choose the leader in second place.
Then, it becomes more probable that its state is adopted by another agent. We index
the leader with a 0 and assign the following interaction probabilities:

!.0; j/ D ˇ;

!.i; 0/ D ˛;

!.i; j/ D �; (5.10)

i; j D 1; : : : ; N. An increased probability that the leader opinion is adopted by a
follower is modeled by ˛ 
 ˇ. The third probability, � , accounts for the probability
of a peer-to-peer interaction which does not involve the leader. Notice that with
Eq. (5.10) the model is formulated directly in terms of interaction probabilities !

by which we avoid a possible confusion between link and node update dynamics
(Sect. 5.2). The resulting interaction topology is shown in Fig. 5.12.

5.5.2 Markov Projection

It is clear that ! is still highly symmetric, because !.i; j/ D � (5.10) for all agents
in the follower population. More precisely, ! is invariant under all permutations
SN of the N agents in the follower population and therefore the topology shown in
Fig. 5.12 is topologically equivalent to the star graph of size N C 1 (in fact, with
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Fig. 5.12 Agent interaction topology in which one agent (indexed by 0) has an increased influence
on the rest of the population
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Fig. 5.13 The macro chain associated with the binary VM on the leader-follower topology. The
transition probabilities are also shown

� D 0 it is a star). Notice, moreover, that the leader topology is actually a special
case of the two-community structure obtained by setting M D 1 and L D N.

Namely, the topology shown in Fig. 5.12 gives rise to the symmetry group
Aut! D .0/.1 : : : N/. In this case, a lumpable partition is obtained by the
independent observation of the state of the leader x0 and the number of follower
agents in the different states (given by f D N�.x=x0/). This partition is given by
QX D f QXl; f W l D 0; 1I f D 0; : : : ; Ng with

QXl; f D fx W N�.x0/ D l \ N�.x=x0/ D f g: (5.11)

In words, the subsets QX0;f contain all configurations x 2 ˙ in which the leader is in
state � and f follower agents are in state �. Respectively, the subsets QX1;f contain
the configurations with x0 D � and f follower agents in state �. It is thus clear that
for the leader-follower system with total size of NC1 the macro chain has 2.NC1/

states. The associated chain along with the corresponding transition probabilities is
shown in Fig. 5.13.
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In principle, all the information about the convergence probabilities and the
transient behavior can be obtained by computing the fundamental matrix of that
system (Kemeny and Snell 1976, Chap. 3). For the leader-follower system the
transition matrix P is a 2.NC 1/� 2.NC 1/ dimensional matrix and the matrices Q
and F D .1�Q/�1 are of size 2N�2N. Hence, the computation of the fundamental
matrix requires the inversion of a matrix of that size. At least numerically, this is
doable on an up-to-date computer platform for systems of several thousand agents.

5.5.3 Simple Observations

However, let us begin the analysis with two simple observations. First of all, it is
clear from Fig. 5.13 and the transition probabilities that the macro chain has two
absorbing states corresponding to the uniformity configurations QX1;N 	 .�� : : : �/

and QX0;0 	 .�� : : : �/.
Secondly, notice that in case ˇ D 0—the case that followers have no influence

on the leader at all—there is a zero probability that the leader changes its state.
This means that the macro chain is disconnected and the model performs a random
walk on the upper or the lower chain depending on the initial state of the leader (see
Fig. 5.13). It is clear, then, that the process converges to the configuration in which
all follower agents adopted the state of the leader.

5.5.4 Influence of the Leader

How does an increasing asymmetry (˛ > ˇ) effect the model behavior? To address
this question we compute the probability that the system converges to the initial state
of the leader. Consider the opinion leader is in state � at t D 0. The probability that
all agents end up in � as t!1 is

Prt!1Œ QX1;f ! QX1;N � D ˛ C f ˇ

˛ C Nˇ
: (5.12)

As the ratio ˛
ˇ

increases, the chances that the system converges to the leader’s
opinion increase very fast in the beginning, and approach 1 in the limit ˛

ˇ
! 1.

Notice that even in the case that all followers are against the opinion of the leader, an
influence ratio of ˛

ˇ
> N is sufficient to obtain a chance of Prt!1Œ QX1;0 ! QX1;N � >

1=2 that the leader imposes its opinion against the consensus opinion in the follower
population. More precisely, for ˛

ˇ
D N, Eq. (5.12) becomes Prt!1Œ QX1;0 ! QX1;N � D

1
2
C f

N . If the leader has such a strong influence, convergence to its state hence
becomes the most probable option.



100 5 From Network Symmetries to Markov Projections

Fig. 5.14 The probability that the leader imposes its opinion onto the entire population as a
function of ˛

ˇ
for different initial proportions f of follower agents in the leader’s state

Figure 5.14 shows this probability as a function of the ratio ˛
ˇ

for different initial
proportions f of follower agents in the same state as the leader. We set N D 100 in
Eq. (5.12) in which case f D N=2 D 50 corresponds to the case that the followers
are divided into two groups of equal size.

It is noteworthy, that the exit probabilities do not depend on the strength of the
peer-to-peer interaction � . Therefore the influence of the opinion leader is as if there
was no communication at all among the followers. At a first sight this seems a bit
counter-intuitive, but considering that � does not introduce any bias in favor of one
or the other consensus state it is not too surprising (see Fig. 5.13).

Finally, we see from Eq. (5.12) that the case ˛ D ˇ restores the results obtained
in the VM with homogeneous mixing (and in general for the VM on undirected
networks). For the configurations with the leader in � we obtain for Prt!1Œ QX1;0 !QX1;N � D f C1

NC1
where f C1 is just the total number of individuals in state � and NC1

the total number of agents.

5.5.5 Convergence Times

We now look at the mean convergence times as a function of the network parameters
˛; ˇ and � for a finite system of N D 100 followers and one leader. Because
! is a distribution over all agent pairs, we have NŒ˛ C ˇ C .N � 1/�� D 1.
This means that there are effectively two free parameters in that analysis and it
is convenient to study the network influence in term of the ratios ˛=ˇ and �=ˇ. To
obtain the mean convergence time, the fundamental matrix is computed for different
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Fig. 5.15 Mean convergence
times for ˛=ˇ D 1 : : : 50 and
�=ˇ D 1 : : : 50. The thick
blue line indicates the
convergence time for the VM
with homogeneous mixing

ratios ˛=ˇ D 1; 2; : : : 50 and �=ˇ D 1; 2; : : : 50 from which the respective mean
convergence times can be obtained directly (Kemeny and Snell 1976, pp. 49–51).
Notice that with any relative increase of ˛=ˇ and �=ˇ the probability ˇ decreases
and this means that a leader change becomes less likely. Increasing ˛=ˇ corresponds
to an increasing asymmetry between leader and followers, an increase in �=ˇ to an
intensification of the (symmetric) mutual influence in the follower population.

The result of this analysis is shown in form of a contour plot in Fig. 5.15. We
notice two basic opposing trends in that plot. First, a stronger influence of the leader
(increasing ˛=ˇ) tremendously speeds up the convergence to one of the absorbing
consensus states. The leader strongly drives the entire system towards its initial state
and with a relatively high probability consensus is reached without a state change of
the leader. On the other hand, however, an increasing mutual influence among the
followers (increasing �=ˇ) may rule out this effect and slow down the process so
that convergence to a final consensus state takes more time. Noteworthy, in a large
area of the parameter space it takes even more time than the VM with homogeneous
mixing of the same size (obtained with ˛ D ˇ D � ). This is illustrated by the
thicker blue contour line. For all parameter configurations above this line, mean
convergence times become larger compared to the homogeneous mixing case.

Let us consider two examples. First, the case ˛=ˇ D 100 and �=ˇ D 1 in a
system of N D 100 followers with an initial number of N=2 D 50 followers and
the leader in �. With this parameter constellation, the mean number of steps until
convergence is (only) 887 steps. It is easy to compute that in this relatively short
period, approximately 60 % of the realizations have been absorbed, 50 % in QX1;N

and 10 % in QX0;0 (the latter involving at least one change of the leader). Virtually all
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Fig. 5.16 The probability to observe f followers in the long run for the two examples computed
using the quasi-stationary distribution

remaining 40 % of realizations are in fact very close to absorbency: in � 33:5 % of
the cases more than 90 % of followers are in the state of the leader.

While a stronger mutual influence among the followers does not affect the overall
exit probabilities (see above), it may rule out the acceleration of convergence to the
state a strong leader. Consider, as another extreme example, the case ˛=ˇ D 100 and
�=ˇ D 100 in a system of N D 100 followers with an initial number of N=2 D 50

followers and the leader in �. This leads to an average convergence time of 9278

steps and to a long-term transient behavior in which all follower constellations are
equally likely (see below, Fig. 5.16).

5.5.6 Transient Behavior

In order to obtain a complete picture of the transient behavior of the model, we
first compute the quasi-stationary distribution for the two examples. The respective
probability to observe f followers in state � in the long run is shown in Fig. 5.16.
The blue curve represents the case of a strong leader (˛=ˇ D 100 and �=ˇ D 1).
Equation (5.10) tells us that in this case, an agent pair .i; 0/ (follower, leader) will
be chosen in half of the cases (as N˛ D 1=2), the probability for the choice of two
follower agents is also close to one half, namely N.N � 1/� D 99=200. Therefore,
a constellation (0; j) (leader, follower) is chosen in average only once in 200 time
steps. Notice, moreover, that a state change really takes place only if x0 ¤ xi and
that therefore the change of the leader becomes even more unlikely because the
leader has already imposed its opinion on most of the followers. Therefore, even
if the parameter constellation allows that followers change the state of the leader
(ˇ > 0), a persistent situation in which the follower population opposes the leader
or at least remains close to the fifty-fifty configuration cannot be observed. Once the
leader changes its state, it quite immediately drives the population of followers to
the opposite extreme corresponding to its opinion.
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Fig. 5.17 Mean number of steps a process starting in QX1;50 is in the different atoms QX1;f (light) and
QX0;f (dark) for ˛=ˇ D 100 and �=ˇ D 1

The most likely behavior of the model with strong leader is also highlighted by
the mean hitting times shown in Fig. 5.17. It shows the expected number of steps
a process starting in QX1;50 is in the different atoms QX1;f (white circles for x0 D �)
and QX0;f (dark circles for x0 D �). Notice that the initial state QX1;50 corresponds to
the light circle at f D 50. In order to approach the more probable absorbing state
QX1;N the process has to transit through all the states to the right with f > 50, and
consequently the mean hitting times of these states are high compared to the rest.
If, on that way, a state change of the leader takes place, the process goes to the
other extreme passing through the transient states with intermediate f rather rapidly.
Finally, the drop off in the hitting time to the left of the initial state gives an idea of
how strong the leader influence is in this case. There is virtually a zero probability
that social influence processes among the followers drive the system far from the
leader state and, in fact, at least in a small system of 100 followers a second state
change of the leader is quite rare.

In the second example with ˛=ˇ D 100 and �=ˇ D 100 the model behaves in
a different way. First of all, the quasi-stationary distribution shown in Fig. 5.16 (red
curve) tells us that, in the long run, all follower constellations are equally likely. This
decoupling from the leader is surprising if we recall that the exit probabilities are
strongly biased in favor of the initial state of the leader (see Eq. (5.12) and Fig. 5.12)
and are not affected by the strong peer-to-peer interaction.

The mean hitting times for that example are shown in Fig. 5.18. It becomes clear
that the behavior strongly resembles the behavior of the VM with homogeneous
mixing (see Fig. 4.6, previous chapter). But despite these similarities in mixing
behavior the exit probabilities remain strongly biased for ˛=ˇ D 100. The main
reason for the difference in the transient behavior is that the effective influence rate
of the leader is reduced tremendously as � approaches ˛. By Eq. (5.10) we see that
the probability of choosing an agent pair .i; 0/ (follower, leader) becomes in fact
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Fig. 5.18 Mean number of steps a process starting in QX1;50 is in the different atoms QX1;f (light) and
QX0;f (dark) for ˛=ˇ D 100 and �=ˇ D 100

very small now (as N˛ D 100=10001 � 1 %), the probability for the choice of
two follower agents instead effectively increases to N.N � 1/� D 9900=10001 �
98:99 %. Consequently, a constellation (0; j) (leader, follower) in which the leader
could change its state is chosen in average only once in 10;000 time steps.

5.5.7 Alternative Interpretation

In fact, the second example with ˛=ˇ D 100 and �=ˇ D 100 (and consequently
˛ D � ) calls for an interpretation not in terms of leader and followers, but suggests
to understand the “leader” as a member of the group that is just not so amenable to
influence, compared to the others. Namely, !.i; 0/ D ˛ D � D !.i; j/ means that
followers give the same importance to the leader as to any other follower agent. On
the other hand, ˇ becomes very small so that the chances that followers change the
leader are reduced. Of course, such a situation may appear only in a small system,
but not at the scale of populations. It may happen at the group level of (say) 20
individuals (of course, only in an approximate sense). In this context, the analysis
shows that a single stubborn individual can strongly influence the outcome of a
consensus process (in small groups).

5.6 The Ring

5.6.1 Strongly Lumpable Partition

Proposition 5.1 generalizes to networks with arbitrary automorphisms which we
illustrate at the example of the ring graph. When the model on the ring with nearest
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Fig. 5.19 Two configurations with equal k D 2 which are not macroscopically equivalent for the
ring with N D 5

neighbor interactions is defined by !.i; iC1/ D 1
N W i mod N, it possesses an invari-

ance with respect to translations. That is, the automorphism group Aut!.N/ consists
of all cyclic shifts of agents generated by 
 W .1; 2; : : : ; N/! .N; 1; 2; : : : ; N � 1/.
Notice that translational symmetries of this kind also play an important role in the
determination of the relevant dimensions of spin rings (Bärwinkel et al. 2000) and
that there are interesting parallels in between the two problems.

Consider a ring of five agents (N D 5) with 25 D 32 micro states. For x D
.�����/ it is clear that 
k.x/ D x for all k. That is, x D .�����/ with
k D 0 constitutes a class of its own. For k D 1, we may use x1 D .�����/ as
a generator (5.5) for its class. As all 5 configurations with k D 1 can be obtained
shifting x1, all of them are in the same equivalence class. The 10 configurations
with k D 2 cannot be lumped into the same macro state. There are two classes
differentiated by the distance of zero or one in between the two black agents (see
Fig. 5.19). Using the two configurations shown in Fig. 5.19 as generators yields two
equivalence classes each containing five micro states. The cases k D 3; 4; 5 follow
by symmetry so that all in all the dimension QX of macro chain is reduced to 8.

In the general case of N agents we can in principle proceed in the same way.
However, the number of macro states will increase considerably with the system
size. We finish this section with a quantification of this number for the ring for
which we can use a well-known enumeration theorem due to Pólya (see Harary and
Palmer 1973, pp. 35–45, Eqs. (2.2.10) and (2.4.15) in particular). According to this,
the number of macro states is

j QXj D 1

N

X

kjN
'.k/2

N
k (5.13)

where '.k/ is the Euler '-function and the sum is over the divisors kjN of N. As an
approximation we have j QXj � 2N=N. Hence, an explicit solution of the macro chain
will be possible only for very small systems.
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5.7 Discussion

We have seen in the previous chapter that the full aggregation illustrated in
Figs. 4.1 and 5.1 is lumpable only if the interaction probabilities are uniform. This
corresponds to the VM implemented on the complete graph in which !.i; j/ D
1=N.N � 1/ (or 1=N2 if self-choice is allowed). It is, of course, well-known that
the macro model obtained in terms of h.x/ D k fully describes the evolution
of the micro model on the complete graph, but not on other topologies, see
Slanina and Lavicka (2003, p. 3) and Castellano et al. (2009, p. 601). Nevertheless,
Proposition 5.1 sheds light on the (probabilistic) reason for this. Namely, the
complete graph and respectively homogeneous mixing is the only topology for
which the automorphism group is the group SN of all permutations of N agents.
In this case, for any two configurations x; x0 with an equivalent aggregate k there
is a 
 2 SN such that x D 
.x0/. Hence, an equivalent aggregate value k implies
macroscopic equivalence. The fact that this is only true for complete graph and
homogeneous mixing underlines how restrictive these conditions are.

The more complex the internal structure of the agents and the more heteroge-
neous their interaction behavior, the lower our chances to derive a loss-less coarse-
graining that leads to a tractable Markov chain. It is clear that in heterogeneous
networks with a small number of automorphisms the coarse-graining is limited
because only a few micro states are macroscopically equivalent and can be lumped.
As this method is based on exact graph automorphisms it is more suited for stylized
situations as the two-community and the leadership model discussed in Sects. 5.4
and 5.5.

On the other hand, the method informs us in this way about the complexity of a
system introduced by non-trivial interaction relations. Even in a model as simple as
the VM, the behavior of whole system is not completely described by summation
over its elements (full aggregation in terms of k), because non-trivial dynamical and
spatial effects may emerge at the macro level. In this sense, our work is related
to key concepts in the area of computational emergence (Bedau 2003; Huneman
and Humphreys 2008) dealing with criteria and proper definitions of emergence.
Thereafter “an emergent phenomenon is one that arises from a computationally
incompressible process” (Huneman and Humphreys 2008, pp. 425–426). Markov
projections as discussed here in the context of the VM provide explicit knowledge
about the (in)compressibility of computational models and may therefore help to
operationalize these rather abstract definitions. This issue is further discussed in
Chaps. 7 and 9, see also Banisch (2014).

Let us finally note that in general there may be many partitions M of the state
space that are lumpable and here no statement is made here about optimality of the
partition M! generated by the application of Proposition 5.1. On the other hand,
a simple answer is provided by a closer inspection of the VM with homogeneous
mixing telling us that M! is not optimal in that case. Namely, we have for any k,
P.Xk; Xk˙1/ D P.X.N�k/; X.N�k/�1/ which means that the pairs fXk; X.N�k/g can
be lumped into the same state. The reason for this is that the VM update rule



References 107

brings about an additional symmetry that is not accounted for in Aut! and therefore
not in M! . More generally, the micro structure of the VM is always symmetric
with respect to the simultaneous flip of all agent states xi ! Nxi;8i and therefore,
independent of the interaction topology, OP.x; y/ D OP.Nx; Ny/.
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Chapter 6
Application to the Contrarian Voter Model

In this chapter, the results from the previous chapters are applied to the contrarian
voter model (CVM from now on). This model is an extension of the VM which
accounts for so-called contrarian behavior. Contrarian behavior relates to the
presence of individuals that do not seek conformity under all circumstances or to
the existence of certain situations in which agents would not desire to adopt the
behavior or attitude of their interaction partner. In our case this shall be included
into the model by introducing a small probability p with which agents to not imitate
their interaction partner, but adopt precisely the opposite opinion. This leads to a
non-absorbing random walk as the consensus profiles .�� � � ��/ and .�� � � ��/

are left with probability p.
In the next section, we shall briefly review the field of non-conformity opinion

dynamics to which the CVM belongs. As with the VM in Chap. 3, we then start
the analysis with a derivation of the micro-level description including a random
mapping representation (RMR) associated to the CVM. Markov chain aggregation
is then used to derive a macro chain for the complete graph as well as a meso-
level description for the two-community graph composed of two (weakly) coupled
sub-communities. The model dynamics are studies in terms of the contrarian rate
p and the coupling r between the two communities with a particular focus on the
stationary dynamics of the model. In both cases, a detailed understanding of the
model behavior is possible using Markov chain tools.

6.1 Non-conformity Opinion Models

In most binary models of opinion dynamics (see Galam 2002; Sznajd-Weron 2004
for two well-known variants and Castellano et al. 2009 for an overview) a mecha-
nism of local alignment leads to a system which converges to a final profile of global
conformity (consensus) in which all agent share the same opinion. As an attempt to
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make these models more realistic and avoid convergence to a fixed consensus profile
in which no further opinion change is possible, several mechanisms to include
nonconformity behavior into the models have been proposed. This includes agents
that act independently of their interaction partner, inflexible agents that never change
their mind and anti-conformity or contrarian behavior by which agents choose the
opposite of their interlocutor.

The approach adopted for the CVM studied here is probably the most simple
mechanism. In our choice, we basically follow Galam (2004) which, based on the
concept of contrarian investment strategies in finance (Dreman 1980; Corcos et al.
2002), is the first study to introduce contrarian behavior into a model of opinion
dynamics (namely, into Galam’s majority model). While the majority model without
contrarians is characterized by a relatively fast convergence to complete consensus,
the introduction of only a small rate of contrarian choices leads to the coexistence
of the two opinions with a clear majority-minority splitting. Noteworthy, as the
contrarian rate increases further, the model exhibits a phase transition to a disordered
phase in which no opinion dominates in the population. Similar observations have
been made for the Sznajd model (de la Lama et al. 2005; Sznajd-Weron et al. 2011;
Nyczka et al. 2012).

More recently the literature often distinguishes between two types of nonconfor-
mity: (1) anti-conformity or contrarian behavior and (2) independent or inflexible
agents (Sznajd-Weron et al. 2011; Nyczka et al. 2012; Crokidakis et al. 2014).
See Mobilia (2003), Galam and Jacobs (2007), Sznajd-Weron et al. (2011), Nyczka
et al. (2012), Crokidakis et al. (2014), and Maity and Mukherjee (2016) for opinion
models that include independent or inflexible agents. The importance of a distinction
between individuals that generally oppose the group norm or act independently of it
is, from the socio-psychological perspective, relatively obvious. The fact that these
two behaviors may also give rise to qualitatively different dynamical properties,
however, has been established only recently (Nyczka et al. 2012). Here we stick to
contrarians.

The voter model with contrarians presented in Masuda (2013) is probably the one
that relates most to the model used here. The main difference is that a fixed number
of agents always acts in a contrarian way whereas in the present model all agents
take contrarian choices with a small probability p. In that setting, Masuda (2013)
could not observe the phase transition from majority-minority splitting to disorder,
but rather a change from a uniform to a Gaussian equilibrium distribution. While this
difference in comparison with the Sznajd and Galam models has been attributed to
the linearity of the CVM in Masuda (2013), this chapter shows that there is in fact
an order-disorder phase transition in the CVM as well. However, the ordered phase
can be observed only below a very small contrarian rate of p� D 1=.NC1/ at which
the equilibrium distribution is uniform (see Sect. 6.3.2), in accordance with Masuda
(2013). In the setting of Masuda (2013) with a fixed number of contrarian agents,
however, this value is already reached, on average, with only a single contrarian,
independent of the population size.

Notice, finally, that the complete graph plays an exceptional role for the
analytical treatment of nonconformity models commended on above. From the
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Markovian point of view, this is due to the fact that for the complete graph binary
opinion models are lumpable—that is reducible without loss of information—to a
macroscopic description in terms of the average opinion or “magnetizationy (see
Chap. 3). This paper analyses the complete graph as well, but it goes beyond it by
studying the CVM on a perfect two-community graph. According to the method
introduced in Chap. 5, a loss-less macro description is obtained by taking into
account separately the average opinion in the two sub-graphs, that is, by a refinement
of the level of observation.

6.2 The CVM Micro Chain

6.2.1 Model

As the VM, which has been discussed at length in the previous chapters, the CVM
is a binary opinion model where N agents can adopt two different opinions: � and
�. The model is an extension of the VM in order to include a form of contrarian
behavior. At each step, an agent (i) is chosen at random along with one of its
neighbors ( j). Usually (with probability 1 � p), i imitates j, but there is also a
small probability p that agent i will do the opposite (contrarian extension). More
specifically, if i holds opinion � and meets an agent j in �, i will change to � with
probability 1� p, and will maintain its current state � with probability p. Likewise,
if i and j are in the same state, i will flip to the opposite state with probability p.

While the VM rule may be interpreted as a kind of ferromagnetic coupling by
which neighboring spins (agents) align, the contrarian rule can be interpreted as anti-
ferromagnetic coupling by which neighbors are of opposed sign after the interaction.
Table 6.1 illustrates the update rules for the CVM.

6.2.2 Micro Dynamics

From the micro-level perspective (see Sect. 3.2), the CVM implements an update
function of the form u W S�S��! S. That is, the new state of a randomly chosen

Table 6.1 Update rules yi D u.xi; xj/ for the CVM

Prob. xj xj .1 � p/ � � p � �
xi yi yi � � � � � �
xi yi yi � � � � � �

The VM rule (ferromagnetic coupling) is applied with probability .1 � p/, the contrarian rule
(anti-ferromagnetic coupling) with probability p
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agent i is given by

yi D u.xi; xj; 	/ D
�

xj W 	 D 	V

Nxj W 	 D 	C

�

; (6.1)

where Nxj denotes the opposite attribute of xj. In each iteration, two agents i; j are
chosen along with a random variable 	 2 � D f	V ; 	Cg that decides whether
the voter (	V ) or the contrarian rule (	C) is performed. The probability for that is
!.i; j; 	/. Notice that the update rule is equal for all agents and independent from the
agent choice. Therefore the probability that an agent pair .i; j/ is chosen to perform
the contrarian rule can be written as !.i; j/Pr.	 D 	C/ D p!.i; j/. Respectively, we
have .1 � p/!.i; j/ for the VM rule.

Let us briefly discuss the random mapping representation of the CVM for three
agents and complete connections (i.e., !.i; j/ D 1=N.N � 1/; 8i ¤ j). As shown
in Table 6.2, this model variant implements 12 mappings Fz, because for any of the
6 possible agent choices .i; j/ there is an additional binary choice between the voter
(	V) and the contrarian (	C) update mechanism. To index the set FZ of mappings
we now use a triple .i; j; 	/ where i and j correspond to the random agent choice and
	 D f	V ; 	Cg to the random choice of one or the other rule. From Table 6.2 it is
easy to see that the respective probability distribution !.i; j; 	/ is independent and
identically distributed as it remains the same for any iteration at any time. That is to
say, the micro-level process is a Markov chain.

The CVM with sequential update belongs to the class of single-step models for
which the microscopic transition probabilities have been discussed in Sect. 3.2.3.
Considering that 	C (for contrarian rule) is chosen with probability p and 	V (VM
rule) with .1� p/, and that this choice is independent of the agent choice, the CVM

micro-level transition probability OP.x; y/ between two adjacent configurations x
i� y

Table 6.2 FZ for the CVM with three agents

a b c d e f g h

z .i; j; 	/ ��� ��� ��� ��� ��� ��� ��� ���
1 .1; 2; 	V/ a b g a h b g h

2 .1; 2; 	C/ d f c d e f c e

3 .1; 3; 	V/ a f c a h f c h

4 .1; 3; 	C/ d b g d e b g e

5 .2; 1; 	V/ a b a g b h g h

6 .2; 1; 	C/ c e c d e f d f

7 .3; 1; 	V/ a a c f c f h h

8 .3; 1; 	C/ b b e d c d g g

9 .2; 3; 	V/ a e a d e h d h

10 .2; 3; 	C/ c b c g b f g f

11 .3; 2; 	V/ a a e d e d h h

12 .3; 2; 	C/ b b c f c f g g
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is given by

OP.x; y/ D .1 � p/
X

jW.yiDxj/

!.i; j/C p
X

jW.yiDNxj/

!.i; j/: (6.2)

It is clear that, as for the original VM, the micro-level process for the CVM
corresponds to a random walk on the hypercube. However, it is noteworthy that
the CVM leads to a regular chain (as opposed to an absorbing random walk for
the original VM). Namely, whenever p > 0, there is a non-zero probability that the
process leaves the consensus states .�� : : : �/ and .�� : : : �/. Equation (6.2) tells
us that this probability is precisely p. Therefore, the system does not converge to a
fixed configuration and the long-term behavior of the model can be characterized by
its stationary distribution.

6.3 Homogeneous Mixing

This section analyses the behavior of the CVM for homogeneous mixing. As
seen in the previous chapters, the case of homogeneous mixing is particularly
simple because the micro chain is lumpable with respect to the partition X D
fX0; : : : ; Xk; : : : ; XNg (with 0 � k � N) induced by the macroscopic measure that
counts the number of agents in the different states. Therefore, important entities of
interest (e.g., stationary distribution and mean passage times) can be computed on
the basis of the respective transition matrix.

6.3.1 Macro Chain

Let us consider that the model is implemented on the complete graph without
loops. In that case, the probability to choose a pair .i; j/ of agents becomes
!.i; j/ D 1=N.N � 1/ whenever i ¤ j and !.i; i/ D 0;8i. As before, it is clear
that the interaction structure is invariant with respect to all agent permutations
(that is, !.i; j/ D !.
 i; 
 j/;8
 2 SN and all pairs .i; j/) and therefore all
agent configurations with the same number k of agents in � (and therefore N � k
in �) belong to the same class of macroscopic equivalence and can be mapped
into the same macro atom (Xk). See Sect. 4.1.1 and Proposition 5.1. In other
words, for homogeneous mixing full aggregation over all agents does not destroy
Markovianity, which is in complete analogy to the pure VM. Notice again that
in hypercube terminology that level of observation corresponds to the Hamming
weight of a configuration h.x/ D k.

Consequently, since all agents interact with all the others with equal probability,
the respective transition rates depend only on the numbers k and N � k of agents in
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the two states. Consider, for example, the probability P.Xk; XkC1/ that a black agent
flips its state. There are two situations in which this change can happen: first, if a
pair of states .xi; xj/ D .�; �/ along with VM update is chosen, i.e., .xi; xj; 	/ D
.�; �; 	V /, second, if a pair .�; �/ is chosen along with contrarian update, i.e.,
.xi; xj; 	/ D .�; �; 	C/. In a configuration with k agents in �, there are .N � k/k
possibilities for the first option and .N � k/.N � k � 1/ possibilities for the latter.1

Alternatively, P.Xk; XkC1/ can be obtained by evaluating the transition probabil-
ity (6.2) from some x 2 Xk to the set of y 2 XkC1, denoted in the previous chapter
as Opx;XkC1

Then we obtain

P.Xk; XkC1/ D P

xiD�

2

4.1 � p/
P

jW.xjD�/
!.i; j/C p

P

jW.xjD�/
!.i; j/

3

5

D .N � k/ Œ.1 � p/k! C p.N � k/!�

D .1 � p/
.N�k/k
N.N�1/

C p .N�k/.N�k�1/

N.N�1/
:

(6.3)

Similarly, we obtain for P.Xk; Xk�1/

P.Xk; Xk�1/ D .1� p/
.N�k/k
N.N�1/

C p k.k�1/

N.N�1/
: (6.4)

And finally,

P.Xk; Xk/ D k2.2�4p/C2kN.2p�1/CN.N�NpCp�1/

N.N�1/
(6.5)

Figure 6.1 aims at giving an intuition about the dynamical structure of the process
by considering the relation between the probability for a transition one step to the
right, P.Xk; XkC1/, and a transition to the left, P.Xk; Xk�1/, as a function of k. This
informs us about the more probable tendency for future evolution for every atom in
the macro chain. Figure 6.1 shows that P.Xk; XkC1/ > P.Xk; Xk�1/ for k < N=2 and
respectively P.Xk; XkC1/ < P.Xk; Xk�1/ for k > N=2 telling us that the contrarian
rule (performed with probability p) introduces in every atom Xk a small bias that
drives the system towards the fifty-fifty configurations. This bias is given by

P.Xk; XkC1/ � P.Xk; Xk�1/ D p � 2kp

N
: (6.6)

1Notice that, contrary to the treatment of the VM in Chap. 3, we do not allow that agents interact
with themselves. In the case self-choice is allowed (!.i; i/ > 0), the number of possibilities for
.�; �/ modifies to .N � k/2 . We also have !.i; j/ D 1=N.N � 1/; 8i ¤ j compared to 1=N2 in
the model with self-choice. Even for systems of moderate size the dynamical effect of this slight
difference in transition rates is neglectable.
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Fig. 6.1 Transition probabilities and difference in transition probabilities as function of k
(N D 100)

6.3.2 Stationary Dynamics for Homogeneous Mixing

As already mentioned, contrary to the pure VM, the contrarian variant does no
longer lead to an absorbing Markov chain, but results in a regular chain. In the
case that the population reaches consensus (k D 0 or k D N) there is still a small
probability, (namely P.X0; X1/ D P.XN ; XN�1/ D p) with which the consensus
configuration is left. In that case, a statistical understanding of the model behavior
is provided by the limiting vector or stationary distribution it converges to. That is,
by the distribution � that remains unchanged under further application of P:

�P D �: (6.7)

Notice that Eq. (6.7) tells us that the stationary distribution � of a Markov chain
.X; P/ is proportional to the left eigenvector of P associated to the maximal
eigenvalue 	max D 1. It is well-known (Kemeny and Snell 1976, p. 69ff) that regular
chains have a unique limiting vector and that the process converges to it for any
initial distribution. Notice also, that the rate of convergence is usually related to the
second largest eigenvalue of P (	2 < 1) in the sense that the order of convergence
is proportional to 	t

2 (Kemeny and Snell 1976; Behrends 2000, among others).
For a system of 100 agents the stationary vector � is shown in Fig. 6.2 for

various contrarian rates p. The horizontal axis represents the macro states Xk for
k D 0; 1; : : : ; N and the �k correspond to the probability with which the process
is in atom Xk provided it is run long enough and has reached stationarity. Notice
that, for a large number of steps, the �k also represent the expected value for the
fraction of time the process is in Xk (Kemeny and Snell 1976, Sect. 4.2). On the
bottom of Fig. 6.2, three characteristic time series (three single simulation runs) are
shown, one for large, one for intermediate and one for low p values. This provides
a better understanding of the meaning of the stationary vector in relation to the time
evolution of the respective processes.

Two different regimes can be observed in Fig. 6.2 characterized by the green
and the red curves respectively. A large contrarian rate p (green curves) leads to a
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Fig. 6.2 Stationary vector of the CVM with N D 100 and homogeneous mixing for various p.
There is a transition from the absorbing VM to the random fluctuations around the mean. On the
bottom, the respective example time series are shown

process which fluctuates around the states with approximately the same number of
black and white agents—the fifty-fifty situation (k D N=2) being the most probable
observation. The larger p, the lower the probability to deviate strongly from the
fifty-fifty configurations. In fact, the process resembles a random process in which
agent states are flipped at random.

A different behavior is observed if p is small. This is represented by the red
curves. For a small contrarian rate, the population is almost uniform (consensus)
for long periods of time, but due to the random shocks introduced by the contrarian
rule there are rare transitions between the two extremes. This is very similar to the
VM at low (but non-zero) temperature, where random state switches or excitations
take the role of mutations and prevent the system from complete freezing to the
zero-temperature ground state. In between these two regimes, there is a p � 0:01

for which the process wanders through the entire state space, in such a way that the
stationary distribution is almost uniform.

Figure 6.3 shows the situation for a system of 1000 agents. The same two regimes
are observed for the larger system. However, the value p at which the behavior
changes from the switching between two consensus states to fluctuations around
the fifty-fifty situation is decreased compared to the N D 100 case. In the case of
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Fig. 6.3 Stationary vector of the CVM with 1000 agents. Notice the (almost) uniform stationary
distribution when p D 1=N

N D 1000, an almost uniform stationary distribution is observed for p � 0:001 D
1=N. To be more precise, it is, in fact, not difficult to show that for any system
size N the stationary distribution is uniform with �k D 1=.N C 1/;8k exactly for
p� D 1=.NC 1/. All that is necessary in order to verify this is to show that �P D �

in this case. Hence, we have to show that

1

N C 1
.P.Xk�1; Xk/C P.Xk; Xk/C P.XkC1; Xk// D 1

N C 1
(6.8)

which is satisfied whenever

P.Xk�1; Xk/C P.Xk; Xk/C P.XkC1; Xk/ D 1: (6.9)

Notice that Eq. (6.9) is equivalent to requiring that P is a doubly stochastic matrix,
and it is well-known that any doubly stochastic matrix has a uniform stationary
vector. It is easy to show that for the CVM, Eqs. (6.8) and (6.9) are satisfied precisely
for p� D 1=.N C 1/, but not for other contrarian rates.

When the contrarian rate p crosses the critical value p� D 1=.N C 1/, the
system undergoes a continuous phase transition from majority-minority switching
(ordered phase) to a balanced fifty-fifty situation in which no stable majorities form
(disordered phase). The fact that p� D 1=.N C 1/ leads to �k D 1=.N C 1/;8k
shows the existence of large fluctuations at the critical contrarian rate, because the
only way to have a stationary uniform distribution is to have very large fluctuations
at any value of the state space. For large p, the system behaves around the mean
value (here 50 and respectively 500) with only small deviations. For small p closed
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to 0, the system is rarely far from the two states of complete order (the consensus
states) and in the limit of p D 0 has no asymptotic fluctuations at all.

The emergence of a phase transition in the presence of contrarians has been
reported in several previous studies (Galam 2004; de la Lama et al. 2005; Sznajd-
Weron et al. 2011; Nyczka et al. 2012). However, in the Galam as well as the
Sznajd model the ordered phase is characterized by the co-existence of majority and
minority opinions whereas in our case the system permanently switches between
the two consensus profiles. In relation to Masuda (2013), where a fixed number of
agents that always act as contrarians is used, the result derived here explains why
such a phase transition cannot be observed in this setting. The reason is that the
transition value p� D 1=.N C 1/ scales inversely with the population size in such
a way that, independent of the system size, the effective contrarian rate is already
larger than p� even if there is only a single contrarian agent (in that case p D 1=N).
On the other hand, the observation from Masuda (2013) that a single contrarian
leads to a uniform stationary distribution is confirmed.

6.3.3 Rate of Majority-Minority Switching

One of the most interesting advantages of using Markov chains as a macro
description of the model is that it facilitates the computation of a series of quantities
that one might wish to look at and which are more difficult to assess with other
techniques. For the CVM, for instance, we can look at the mean number of steps
required to go from one consensus state to the opposite consensus state. As in the
absorbing case, the key to this (and to several other) computations is a matrix called
the fundamental matrix (Kemeny and Snell 1976, p. 75ff). For regular chains it is
computed by

F D .I � .P �W//�1 (6.10)

where W is the limiting matrix with all rows equal to � (note that, lim
n!1 Pn D

W). Following Kemeny and Snell (1976), the fundamental matrix can be used to
compute another matrix M which contains the mean number of steps between two
states, say i and j, for any pair of states:

M D .I � FC EFdiag/D (6.11)

where E is a matrix with all elements equal to one, Fdiag the diagonal fundamental
matrix with .Fdiag/ii D .F/iiI .Fdiag/ij D 0, and D the diagonal matrix with .D/ii D
1=�i. The mean time from one consensus state to the other is then given by the
element M.0; N/ which is plotted in Fig. 6.4 for system sizes from N D 100 to
N D 500.
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Fig. 6.4 Mean number of
steps required to go from one
to the other consensus state as
a function of the scaled
contrarian rate .N C 1/p
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Notice that in Fig. 6.4 the contrarian rate p is scaled by the size of the macro
chain .N C 1/ in order to compare the different cases. This accounts for the above-
mentioned fact that the “critical” parameter value p� at which a uniform stationary
distribution is found depends inversely on the number of agents as p� D 1=.NC 1/.
Consequently, in Fig. 6.4, the uniform case is represented by .N C 1/p D 1. The
switching behavior (from one consensus to the other and back) is found for values
below that and the behavior approaches the random regime for values larger than
one.

We observe in Fig. 6.4 that transitions between the two different consensus states
are most frequent for a contrarian rate that is slightly below the “critical” contrarian
rate p�. There is a trade-off between the probability to indeed enter the state of
complete consensus and the probability to go away from that and approach to the
other extreme. For the p-values where M.0; N/ is minimal, both probabilities are
relatively high. As contrarian rate decreases, the probability to reach consensus
increases significantly, but a transition to the opposite consensus state is becoming
rare. On the other hand, when p increases slightly, transitions from k � 0 to k � N
and back are still rather likely, but in many case the process turns in direction before
a complete ordering has been achieved. This is true also for p � p�. As p increases
further, there is a strong decrease in probability to reach consensus altogether (see
Fig. 6.2) and therefore the mean time between the two consensus states increases
tremendously.

Finally, Fig. 6.5 shows the same analysis for transitions between states with
a strong majority of �-agents to an equally strong majority of �-agents. The
same qualitative behavior is observed in the sense that switching between strong
majorities (X0 $ XN ; X5 $ X95; X10 $ X90) becomes rather unlikely as the
contrarian rate increases. On the other hand, transitions between moderate majorities
of different sign (80 % and respectively 67 %) occur rather frequently and the
contrarian rate at which the mean time between them becomes minimal is larger.
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Fig. 6.5 Mean number of
steps required to go from Xk

to Xs as a function of the
scaled contrarian rate
.N C 1/p. Here N D 100
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6.4 Two-Community Model

In this section, we consider the CVM on a two-community graph where the size of
the two communities is given by M D L D 50. The pure VM on two communities
has been discussed in the previous chapter (Sect. 5.4) and for the CVM the same
procedure can be used to obtain a Markov projection by strong lumpability; namely,
Proposition 5.1.

6.4.1 Meso Chain

In particular, the description of the interaction topology in Sect. 5.4.1 and derivation
of the respective interaction probabilities ! is in complete analogy to the previous
chapter. That is,

� D r

2LM C ..L � 1/LC .M � 1/M/r

˛ D 1

2LM C ..L � 1/LC .M � 1/M/r
; (6.12)

where � is the probability of intra-community interaction (strong ties) and ˛ the
probability of inter-community interaction (weak ties), and r D ˛=� the ratio
between the two.

As described in Sect. 5.4.2 for the pure VM, the interaction probabilities !

defined by Eq. (6.12) give rise to a symmetry group Aut!.N/ D .1 : : : M/.M C
1 : : : N/ and Proposition 5.1 tells us that Markovianity is preserved by a projection
onto the .M C 1/ � .L C 1/ lattice. Each lattice point QXm;l is associated to the
attribute frequencies m and l within the two sub-communities. In other words, the
model dynamics can be captured without loss of information by a “mesoscopic”
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Fig. 6.6 The structure of the CVM meso chain for L D M D 10. The consensus states QX0;0; QXM;L

as well as the states of inter-community polarization QX0;L; QXM;0 are highlighted. The stationary
distribution is mapped into node colors from blue (low values) to red (high values)

formulation in terms of attribute frequencies m and l in the two communities. The
state space of the projected model is visualized in Fig. 6.6.

The colors shown in Fig. 6.6 represent the stationary distribution of the CVM
with a relatively small contrarian probability p and a very weak coupling between
the two islands. The large atoms in the corners of the grid highlight the states that
represent configurations of high order. On the one hand (red-shaded in Fig. 6.6) there
are the consensus configuration with all agents in the same state: QXL;M and QX0;0. On
the other hand (yellow-shaded), we have the states in which all agents of the same
sup-group are aligned, but there is a disagreement across the sub-groups: QX0;M and
QXL;0. As before, we refer to these states as inter-community polarization.

In what follows, we shall refer to the chain shown in Fig. 6.6 (obtained
via strong lumpability) as meso chain and denote the state space as QX D
. QX0;0; : : : ; QXm;l; : : : ; QXM;L/. The notion of “meso” in this context accounts for the fact
that the process . QX; QP/ is indeed in between the micro and the macro level. Namely,
it is a strong reduction compared to the microscopic chain .˙; OP/, but the number
of states is still considerably larger than the macro system .X; P/ obtained by
aggregation over the entire agent population (h.x/ D k). While the full aggregation
compatible with homogeneous mixing has lead to a random walk on the line with
N C 1 D O.N/ states, the two-community model leads to a random walk on a 2D
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lattice with O.N2/ states. Noteworthy, the latter is a proper refinement of the former,
a fact that shall be exploited in the next chapter.

The transition probabilities of the meso chain are obtained on the basis of
Eq. (6.2) by substitution of the respective interaction probabilities (6.12). That is,
!.i; j/ D � whenever two agent i and j are in the same community and !.i; j/ D ˛

whenever they are in different communities. For the CVM on two islands of size M
and L the transition probabilities for the transitions leaving the atom QXm;l are then
given by

QP. QXm;l; QXmC1;l/ D .1 � p/Œ�.m.M �m//C ˛.M �m/l�
C pŒ�.M � m/.M �m � 1/C ˛.L � l/.M � m/�

QP. QXm;l; QXm�1;l/ D .1 � p/Œ�.m.M �m//C ˛m.L � l/�
C pŒ�m.m � 1/C ˛lm�

QP. QXm;l; QXm;lC1/ D .1 � p/Œ�.L � l/lC ˛.L � l/m�

C pŒ�.L� l/.L � l � 1/C ˛.L � l/.M � m/�
QP. QXm;l; QXm;l�1/ D .1 � p/Œ�.L � l/lC ˛.M � m/l�

C pŒ� l.l � 1/C ˛lm�:

(6.13)

6.4.2 Stationary Dynamics on the Two-Community Graph

As described in Sect. 6.3.2, the stationary distribution � of a Markov chain with
transition matrix P is the probability vector that satisfies �P D � so that the
computation of � requires the computation of the left eigenvector of P. The Markov
projection of the two-community model with M D L D 50 results in a Markov chain
of size .M C 1/.LC 1/ D 2601. For a matrix of size 2601 � 2601 the (numerical)
solution of the corresponding eigenvalue problem is still possible, but increasing
the number of agents (that is, M and L) will soon lead to matrix sizes for which the
solution for eigenvalues and vectors is rather costly.

There are two parameters that decide about the dynamical behavior of the CVM
on the two-community graph: (1) the contrarian rate p, and (2) the coupling between
the two islands captured by r D ˛=� . To obtain a complete picture of the model
dynamics, the stationary distribution has been computed for various different values
p and r which is shown in Fig. 6.7. From the top to the bottom, p is increased from
p D 0:01, p D 0:015, p D 0:02 to p D 0:03. The plots in the left-hand column
show the result for a moderate coupling between the two island with r D 1=100. A
reduced coupling of r D 1=1000 is shown in the plots in the right-hand column.

The comparison of the left- and the right-hand side of Fig. 6.7 shows that the
stationary probability for states of inter-community polarization, as well as the states
close to them, increases with a decreasing coupling between the communities. That
is, the configurations with intra-community consensus, but disagreement across the
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Fig. 6.7 Stationary distribution for different p and r for a system of M D L D 50. The column
on the l.h.s. is for a moderate coupling r D 1=100 and the four plots on the r.h.s. are for a weak
coupling r D 1=1000. From top to bottom the contrarian rates are p D 0:01; 0:015; 0:02; 0:03.
The stationary probability for the consensus states (m D l D 0 and m D l D 50) increases
with decreasing p. The stationary probability for the states of partial order (m D M; l D 0 and
m D 0; l D L) increases as the coupling between the island r decreases. This topological effect is
undermined by an increasing contrarian rate p

communities become more and more probable. This is very obvious for the plots
with a small contrarian rate p D 0:01 and p D 0:015 where the probability to
observe the states QX0;50 or QX50;0 becomes very high when decreasing the coupling
to r D 1=1000. In fact, all configurations in which consensus is formed in at least
one of the communities are rather likely (values along the border of the surface)
whereas disordered configurations are rare. This is in direct analogy to the pure
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Fig. 6.8 Stationary distribution for p D 0:01 and p D 0:03 for a system of M D L D 50 and
˛ D � (homogeneous mixing). States of partial order (m D M; l D 0 and m D 0; l D L) become
a very rare random event

VM (p D 0) and the corresponding quasi-stationary distribution (see Fig. 5.11).
However, this significant difference between a moderate (r D 1=100) and a very
weak (r D 1=1000) coupling diminishes as the contrarian rate becomes larger.
This second trend observed in Fig. 6.7 is in agreement with what happens in the
homogeneous mixing case as the contrarian rate p increases: the probability to
observe consensus configurations with all agents in equal state becomes more
and more unlikely and it is more and more likely to observe disordered agent
configurations all together. In fact, a further increase of the contrarian rate will lead
to a behavior that is essentially random and insensitive to topological constraints
since the consensus formation within the communities is frequently perturbed by
random events.

In order to show that a decreasing inter-community coupling leads generally to an
increased stationary probability of intra-community polarization (local alignment,
global polarization), let us compare the previous cases to the homogeneous mixing
situation (r D 1). This is shown in Fig. 6.8 for the (relatively small) contrarian
rates p D 0:01 and p D 0:03. It becomes clear that for ˛ D � states of partial
order (m D M; l D 0 and m D 0; l D L) and states close to that become in effect
exceptionally rare random events. The reason for this is clear. The number of micro
configurations x 2 ˙ mapped into the state QXm;l is

�M
m

��L
l

�
which is a huge number

for m � M=2; l � L=2 but only 1 for m D M; l D 0 and m D 0; l D L. Because
under homogeneous mixing there is no favoring of particular agent configurations
with the same k D mC l the stationary probability at meso scale is proportional to
the cardinality of the set QXm;l.

6.5 Discussion

This chapter has provided an analysis of the CVM on the complete and the two-
community graph. Based on the previous chapters, higher-level Markov chain
descriptions have been derived and allow a detailed understanding of the two cases.
A large contrarian rate p leads to a process which fluctuates around the states with
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approximately the same number of black and white agents, the fifty-fifty situation
k D N=2 being the most probable observation. This is true for homogeneous mixing
as well as for the two-community model. However, if p is small, a significant
difference between the two topologies emerges as the coupling between the two
communities becomes weaker. On the complete graph the population is almost
uniform for long periods of time, but due to the random perturbations introduced
by the contrarian rule there are rare transitions between the two consensus profiles.
On the community graph, an effect of local alignment is observed in addition to
that, because the system is likely to approach a meta-stable state of intra-community
consensus but inter-community polarization.

A order-disorder phase transition as the contrarian rate increases has been
observed on the complete graph in several previous contrarian opinion models (e.g.,
Galam 2004; de la Lama et al. 2005; Sznajd-Weron et al. 2011; Nyczka et al. 2012).
For the CVM, in the transition from consensus switching to disorder there is a
phase in which the process leads uniform stationary distribution in which all opinion
frequency levels 0 � k � N are observed with equal probability (�k D 1=.N C 1/).
The contrarian rate p at which this happens is p� D 1=.NC1/ and depends inversely
on the system size such that a model with a single contrarian agent fails to enter the
ordered regime. This confirms and explains the behavior observed in Masuda (2013)
for a model with a fixed number of contrarian agents.

It would be very interesting to perform the two-community analysis for other
opinion models and different kinds of nonconformity behavior. For the Galam
and the Sznajd model with contrarians (see Galam 2004; Nyczka et al. 2012) we
hypothesize a more interesting distribution in which the four peaks are located
at mixed minority-majority configurations. Furthermore, it would be interesting to
analyze the effect of independent agents as studied in the q-voter model in Nyczka
et al. (2012). Namely, on the complete graph (for q > 5) a third peak emerges
centered at the fifty-fifty profiles and it is not clear how this effect translates on the
two-community graph.

In the next chapter, we will stay with the CVM and focus on the effect of
inhomogeneities in the interaction topology on the model behavior. We have seen in
this chapter that homogeneous mixing compatible with the usual way of aggregation
over all agents leads to a random walk on the line with NC1 D O.N/ states whereas
the two-community model leads to a random walk on a 2D lattice with O.N2/ states.
As the latter is a proper refinement of the former this will give us means to study
the relation between the two coarse-grainings in a Markov chain setting. The next
chapter will show that the two-community CVM serves as a suitable scenario to
assess the macroscopic effects introduced by a slight microscopic heterogeneity.
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Chapter 7
Information-Theoretic Measures
for the Non-Markovian Case

This chapter is devoted to the study of a non-Markovian case building upon the
analysis of the contrarian voter model (CVM) discussed in the previous chapter.
As noted earlier, two things may happen by projecting the microscopic Markov
chain associated to an agent-based model (ABM) onto a coarser partition. First, the
macro process is still a Markov chain which is the case of lumpability discussed
most extensively throughout this book. Secondly, Markovianity may be lost after
the projection induced by a certain observable which means that memory effects are
introduced at the macroscopic level. This is a fingerprint of emergence in models of
self-organizing systems. Noteworthy, in ABMs as well as more generally in Markov
chains, this situation is the rule rather than an exception (Chazottes and Ugalde
2003; Gurvits and Ledoux 2005; Banisch et al. 2012; Banisch 2014).

In order to better understand the transition from the most informative “atomicy
level to the levels at which the system behavior is typically observed we draw on the
information-theoretic framework developed in Pfante et al. (2014a). We show that
information-theoretic measures such as conditional past-future mutual information
(Görnerup and Jacobi 2008) and micro-to-macro information flow (Pfante et al.
2014a) provide a reasonable framework to quantify the memory effects that are
introduced by a global aggregation over the agent population without sensitivity
to micro- or mesoscopic structures. The two-community CVM provides us with
a suitable scenario to study how microscopic inhomogeneities in ABMs may
lead to macroscopic complexity when the aggregation procedure defines a non-
Markovian macro process. Using this scenario, we will first consider in detail the
non-Markovianity of the model with respect to global aggregation and then quantify
the emergent memory effects using the Markovianity measure (Görnerup and Jacobi
2008) and informational closure (Pfante et al. 2014a). This is a first step to gain a
better insight into the principal microscopic conditions and mechanisms responsible
for temporal correlation patterns observed at aggregate levels.

© Springer International Publishing Switzerland 2016
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We shall begin this chapter with an introductory section which introduces
different information-theoretic measures for multi-level systems and recalls the
relation between those measures and (non)-lumpability. We then turn to the CVM
example and describe the macroscopic process that is obtained by full aggregation
over the attributes of the entire agent population. It is shown that different interaction
networks may have a strong effect on the macroscopic stationary behavior of the
CVM depending essentially on the propensity to foster local opinion clustering. In
Sects. 7.3, 7.4 and 7.5 we focus on the two-community CVM. We first consider in
detail why lumpability (in the strong as well as in the weak form) fails. After that we
quantify the deviations from an idealized Markovian description using conditional
past-future mutual information (intra-level deviation from Markovianity) and micro-
to-macro information flow (inter-level flow) (mainly following Görnerup and Jacobi
2008 and Pfante et al. 2014a).

7.1 Lumpability and the Notion of Closure

Lumpability and information-theoretic closure measures provide two strongly inter-
related perspectives to look at the relation between different levels of description in
complex multi-level systems. Let us briefly reconsider these different notions here
as an entry point into this chapter.

7.1.1 Information Measures for Multi-Level Systems

ABMs are an attempt to understand how macroscopic regularities emerge through
processes of self-organization in systems of interacting agents. Aggregation and
a multi-level perspective are key features in this modeling strategy. In addition
to the prescribed individual level and the levels associated to the macroscopic
observables, clustering and local alignment may lead to a hierarchy of intermediate
levels which can be distinguished according to temporal and spatial scales and levels
of aggregation. One of the main motivations for this book has been an improved
theoretical understanding of the relation between different levels. In this chapter
we study this relation for the case of non-Markovian aggregation by applying
information-theoretic approaches for level identification in complex multi-level
systems to ABMs.

The mathematical analysis of the relation between different levels of description
is at the heart of statistical mechanics and has recently received some attention
in the complex systems literature (Shalizi and Moore 2003; Görnerup and Jacobi
2010, 2008; Jacobi and Görnerup 2009; Pfante et al. 2014a,b). Consider a dynamical
system OP W ˙ ! ˙ with state space ˙ and a Markovian (or deterministic) transition
kernel OP. Further, consider an operator � W ˙ ! X that projects the system onto a
partition X of ˙ inducing a dynamical process ( OP) on X. As before, it is completely
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convenient to think of � as a measurement process, a coarse-graining or aggregation
of the original state space such that all states x; x0 2 ˙ which give rise to the same
measurement �.x/ D �.x0/ are mapped into the same state in X. It is therefore also
convenient to think of ˙ and X as micro- and macroscopic state spaces respectively.

There are two interrelated ways of looking at such a multi-level description. The
first one is related to level identification in cases where a higher level description is
not given a priori, the second one with level qualification if a desired higher level
of description is given beforehand by the level of observation that the problem at
hand calls for, as often in AB research. Level identification tackles the problem of
finding projection operators � which lead to a “closed” description, in the sense that
the system can be modeled by the state variables at the resulting X-level without
loss of information. In level qualification ˙; � and consequently X are pre-defined
and one may ask questions about the properties of the higher level process with
respect to the original one. Notice that in many cases these two ways go hand
in hand because the desired aggregate description is also the one which captures
the dynamical details appropriately (see Shalizi and Moore 2003 for a discussion
of this relation). Moreover, the task of level identification typically also involves
the qualification of the different levels induced by the various different projection
operators �" W ˙ ! X because the induced higher-level descriptions are evaluated
with respect to an idealized “closed” description (Pfante et al. 2014a,b).

A series of information-theoretic measures and concepts have recently proven
to provide a suitable framework for the quantification of “closure” in multi-level
systems (Görnerup and Jacobi 2008; Pfante et al. 2014a,b):

1. Markovianity: the induced higher-level dynamics P is Markovian. Deviation
from Markovianity is quantified by the conditional mutual information I.XtC1 W
Xt�1�1jXt/ (Shalizi and Moore 2003; Görnerup and Jacobi 2008; Pfante et al.
2014a).

2. Informational closure: a level is informational closed if the knowledge of the
micro state xt does not allow for better predictions of XtC1 than the knowledge
of Xt, i.e. I.XtC1I xtjXt/ D 0 (Pfante et al. 2014a,b).

3. Predictive efficiency: quantifies the predictive information of a process in relation
to its complexity. In Shalizi (2001) the notion is introduced as the ratio between
excess entropy and statistical complexity measured in terms of the entropy
(Shalizi 2001; Pfante et al. 2014b).

4. Commutativity: meaning that there exists some transition kernel such that the
diagram (Fig. 7.1) commutes (Pfante et al. 2014a).

5. Observational commutativity: it makes no difference, whether we perform the
aggregation first, and then observe the upper process, or we observe the process
on the micro state level, and then lumping together the states (Pfante et al. 2014a).

A comprehensive study of the relation between different measures has been
presented in Pfante et al. (2014a). It has been shown, among many other things,
that informational closure implies commutativity, observational commutativity and
Markovianity. So far, the measures have been mainly applied to the evaluation of
different coarse-grainings of simple dynamical systems with non-trivial dynamics
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Fig. 7.1 A simple illustration of the multi-level perspective

(Görnerup and Jacobi 2008; Pfante et al. 2014b) with the focus to systematically
explore different partitions. Görnerup and Jacobi (2008) apply their Markovianity
measure to evaluate all possible partitions of a discretized version of the roof map
as well as a 4-state automata and identify those partitions that lead to Markovian
dynamics. In Pfante et al. (2014b), explicitly compute the Markovianity measure,
informational closure and predictive efficiency for different coarse gainings of the
tent map. In Pfante et al. (2014b) Markovianity, informational closure and predictive
efficiency have been computed for different coarse gainings of the tent map.

For the purposes of this chapter—namely, the quantification of memory effects
generated through a non-Markovian aggregation procedure—we will concentrate on
the first and the second: Markovianity and informational closure.

The particular role of Markovianity in the definition or identification of macro-
scopic observables has been emphasized in Shalizi and Moore (2003). Based on
that, Görnerup and Jacobi (2008) propose a Markovianity measure based on the
idea is that an higher level is closed if the dynamic P W X! X induced at this level
is Markovian. It is clear that this relates directly to the idea of lumpability. The aim
of the Markovianity measure is to quantify how much information about the next
symbol (XtC1) is on average over all symbols contained in the sequence of symbols
(Xt�1�1 D Œ: : : ; Xt�2; Xt�1�) before the current symbol (Xt), or, in other words, how
much does knowledge of the past reduce uncertainty about XtC1 given Xt. In the
Markovian case the conditional past future mutual information

I.XtC1 W Xt�1�1jXt/ D H.XtC1jXt/ �H.XtC1jXt�1�1/ (7.1)

vanishes because looking further back into the past (denoted as Xt�1�1) does not pro-
vide any new information about the future evolution. Noteworthy, the Markovianity
measure can be expressed in terms of the slope of block entropies which bears an
relation to process reconstruction in turbulence and finance (Chazottes et al. 1998;
Vilela Mendes et al. 2002) which we will come back to in Sect. 7.4.

According to the measure of informational closure, introduced in Pfante et al.
(2014a), a level is informational closed if the knowledge of the micro state xt does
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not allow for better predictions of XtC1 than the knowledge of the previous macro
state Xt. This is quantified by the information flow from the original to the higher
level

I.XnC1 W xnjXn/ D H.XnC1jXn/� H.XnC1jxn/ (7.2)

which vanishes whenever the knowledge of the micro state xn does not reduce
uncertainty about the macroscopic evolution compared to the macro level prediction
(i.e., when H.XtC1jXt/ D H.XtC1jxt/). As shown in Pfante et al. (2014a), I.XtC1 W
Xt�1�1jXt/ � I.XtC1I xtjXt/ so that vanishing information flow from micro to macro
implies Markovianity.

In Sects. 7.4 and 7.5 , we will compute these two measures with respect to the
global aggregation for the two-community CVM. This model provides a simple
toy model of a multi-level system since, in addition to the micro and macro scale,
an intermediate (lumpable) level exists (see Chaps. 5 and 6). But before, we will
discuss the relation between the two closure measures and lumpability.

7.1.2 Lumpability and Closure

As before, we denote as .˙; OP/ a general micro chain with state space ˙ and
transition probabilities OP W ˙ ! ˙ corresponding to an ABM and assume a
projection operator � W ˙ ! X that projects the chain onto a macroscopic level of
interest which corresponds to a partition of ˙ denoted as X. Intuitively, as discussed
in detail throughout the previous chapters, lumpability requires that the transition
probability between pairs of macro states Xk; Xl 2 X is independent of the particular
microscopic configuration x 2 Xk. One way in which this may be satisfied is that
for all pairs Xk; Xl 2 X the probability to go to Xl is equal for all micro states x; y
within Xk. This corresponds to the case of strong lumpability.

From the point of view of closure, it is clear that in the case of lumpability
the macro process .X; P/ obtained by the lumpable projection provides a closed
description of the original process in the sense that all information about the
original dynamics is contained in the macroscopic description. For the Markovianity
measure proposed by Görnerup and Jacobi (2008) (7.1) this is relatively obvious
for it captures precisely the very idea of lumpability. According to this the higher
level is closed if the dynamic P W X ! X induced at this level is Markovian,
which is satisfied by definition for any lumpable construction (for strong and
for weak lumpability). More precisely, the macro-level conditional past future
mutual information I.XtC1 W Xt�1�1jXt/ vanishes whenever .X; P/ is again a Markov
chain for the past .Xn�1�1/ does not provide any additional information about the
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future evolution. While lumpability is a rather restrictive “yes-no-question” either
satisfied or not, Markovianity measured by I.XtC1 W Xt�1�1jXt/ allows to quantify
to what extend a derived macro process deviates from Markovianity. It is therefore
a measure of the memory effects introduced at the aggregate level by a specific
aggregation map �.

Vanishing information flow (7.2) for the case of strong lumpability is also
relatively obvious. To see this let us look at the conditional entropies used in the
computation of the measure:

H.XtC1jXt/ D � P

Xt2X
p.Xt/

P

XtC12X
p.XtC1jXt/ log p.XtC1jXt/ (7.3)

and

H.XtC1jxt/ D �P
x2X

p.x/
P

XtC12X
p.XtC1jxt/ log p.XtC1jxt/: (7.4)

Here p.Xt/ is the stationary probability that the process is in the macro state
Xt computed on the basis of microscopic stationary probabilities as p.Xt/ DP

x2Xt
Op.x/ and for the strongly lumpable case the probabilities p.x/ are equal for all

micro states in the same macroscopic set. Likewise, strong lumpability requires that
the probabilities p.XtC1jxt/ are equal for all micro states in the same macroscopic
state (Xt). For this reason, the conditional entropies H.XtC1jxt/ are maximal and
equal to H.XtC1jXt/ so that the information flow vanishes.

However, for the case of weak lumpability the situation is not so simple. Namely
because weak lumpability does not discard the case of heterogeneous probabilities
( p.XnC1jx/ ¤ p.XnC1jy/I x; y 2 Xn) such that the transition probability to the set
XnC1 may be high for one but low for another micro state within the same subset
Xn. Intuitively, therefore, knowledge of the micro state (whether the process is in x
or y) may provide additional information about the transition to XnC1.

In fact, both things may happen: there are cases of weak lumpability in which
informational flow vanishes and others where it does not. An example for the former
is the VM on the chain (or the ring). The corresponding micro chain is weakly
lumpable with respect to the macroscopic partition X but information flow measured
by Eq. (7.2) vanishes.1 An example for the situation that information flow does not

1This example will be explored carefully in future work. For now, just notice that the VM on the
ring leads to a long-lasting pattern of a single white and a single black regime and further change
in the number of white and black agents only happens when an edge at the interface between the
two regimes is chosen. The respective probability is equal for all micro configurations of this kind
and other (disordered) configurations are not visited once such a situation has been reached. See
also Fig. 1.1 in the Introduction.
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vanish is provided with the weakly lumpable example chain given in Kemeny and
Snell (1976, Ex. 6.4.2)

OP D
S1

S2

0

@

1
4

1
4

1
2

0 1
6

5
6

7
8

1
8

0

1

A
.1�3a;a;2a/�! P D S1

S2

�
1
4

3
4

7
12

5
12

�

: (7.5)

This chain is weakly lumpable with respect to the partition .S1; S2/ for all vectors of
the form .1�3a; a; 2a/ and, in particular, for the stationary vector .7=16; 3=16; 3=8/

leading to the chain P on the right-hand side. The information flow (I.XnC1 W xnjXn/)
for this example is 9=16 log.3/� 15=64 log.5/ � 0:347.

Finally, as noted in the previous section, Pfante et al. (2014a) shows that I.XnC1 W
xnjXn/ � I.XnC1 W Xn�1�1jXn/ so that vanishing information flow from micro to
macro implies Markovianity. For strong lumpability both measures vanish. For weak
lumpability, information flow may in fact only vanish in special cases (such as the
VM on the ring).

7.2 Network Dynamics from the Macro Perspective

We now turn to the CVM and consider the behavior on different networks. We first
recall what we consider as the macro level throughout this chapter.

7.2.1 Full Aggregation

The most natural level of observation in binary state dynamics is to consider
the temporal evolution of the attribute densities, or respectively, the number of
agents in the two different states. While a mean-field description would typically
formulate the macro dynamics a differential equation describing the evolution of
attribute densities, the Markov chain approach operates with a discrete description
(in time as well as in space) in which all possible levels of absolute attribute
frequencies and transitions between them are taken into account. Regardless of the
microscopic details such as more complex interaction networks or rules, a macro
level description of that kind—always a tremendous reduction of original system—
is desirable in order to obtain a better understanding of the model behavior. As a
matter of fact, it is desirable for both numerical as well as analytical arguments.

One of the main contributions of the framework proposed here is that the link
between the microscopic system and a certain macro level description is made
explicit. In order to better understand the Markovian as well as the non-Markovian
cases such an explicit link between the micro and the macro level is a prerequisite.
Let us, as before, denote as k the number of �-agents in the population (k D N�)
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X0 X1 Xk-1 Xk Xk+1 XNXN-1

Prβ(k-1|k)

Prβ(k|k-1)

Prβ(k|k+1)
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Fig. 7.2 Full aggregation is obtained by the agglomeration of states with the same Hamming
weight h.x/ D k. The resulting macro process is, in general, a non-Markovian process on the line

and refer to this level of observation as global or full aggregation. As explained in
detail in Chap. 3, Sect. 3.3, the system-level property k D h.x/ induces a partition
X D fX0; : : : ; Xk; : : : ; XNg, with 0 � k � N on the space of all possible micro
configurations and the macro-level process corresponds to the original micro chain
.˙; OP/ projected onto that partition. Notice again that in case of the CVM the micro
process is a random walk on the N-dimensional hypercube and that each macro state
Xk collects all micro configurations with the same Hamming weight.

In this regard, one important observation in Chap. 3 has been that, for the VM
and related models, homogeneous mixing is a prerequisite for lumpability, and that
microscopic heterogeneities (be it in the agents or in their connections) translate
into dynamical irregularities that prevent lumpability with respect to X. This means
that full aggregation over the agent attributes (k D h.x/) leads in general to
a non-Markovian macro process. We illustrate this process in Fig. 7.2. Still, the
process obtained by the projection from micro to macro is characterized by the
fact that from an atom Xk the only possible transitions are the loop to Xk, or a
transition to neighboring atoms Xk�1 and XkC1. This is due to the fact that the
CVM implements single-step dynamics in which only one agent changes at a time.
However, the micro level transition rates—see Eq. (6.2) in the previous chapter—
depend essentially on the connectivity structure between the agents, and therefore,
the transition probabilities at the macro level (denoted as Prˇ.ljk/ in Fig. 7.2) are
not uniquely defined (except for the case of homogeneous mixing). That is, for
two configurations in the same macro state x; x0 2 Xk the probability to go to
another macro state (e.g., XkC1) may be very different which violates the lumpability
conditions of Theorem 6.3.2 in Kemeny and Snell (1976).

The information-theoretic measures introduced above provide us with instru-
ments to study the macro-level effects to which a non-trivial interaction structure
at the micro level may lead. The questions we aim to address are of the following
type: Why and in what sense does the behavior of the macro process deviate
from Markovianity? Do we introduce memory or even long-range correlations
at the macro level by the very way we observe the process? Is the emergence
of these effects just due to an aggregation which is insensitive to microscopic
heterogeneities? And furthermore: How good does the mean field (homogeneous
mixing) solution approximate network dynamics and for which networks does it
provide acceptable approximations? Is there an alternative assignment of probabili-
ties Prˇ.ljk/ that leads to better results? Which properties can be captured? Finally,
an interesting question concerns the reducibility of the micro chain by the weaker
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form of lumpability. At least to some of these question answers will be provided in
the remainder of this chapter.

7.2.2 Network Influence on the Stationary Dynamics

Let us first consider, in a numerical experiment, the effect of different interaction
topologies ! on the stationary dynamics of the resulting macro process. For this
purpose, we define the stationary macro measure � as

�k D
X

x2Xk

O�x: (7.6)

In other words, the elements �k of the stationary vector are determined by counting
the frequency with which the model is in the respective set of micro states with
h.x/ D k. Notice that on the basis of a stationary micro chain, it is always possible
to construct an approximate macro chain—an aggregation—the stationary vector of
which satisfies Eq. (7.6) (see Kemeny and Snell 1976, p. 140 and Buchholz 1994,
pp. 61–63). This will be discussed below.

To compute the �k, a series of simulations has been performed in which the
CVM with N D 100 is run on different paradigmatic agent networks. To capture
the model in stationarity, the model is iterated for several thousands of steps first
and the statistics of this “burn-in” phase are not considered in the computation of
�k. (In this exploratory analysis with 100 agents a “burn-in” period of 20,000 steps
has been used.) The result is shown in Fig. 7.3 for the case of a small contrarian rate
p D 0:005.

We observe in Fig. 7.3 that some interaction topologies give rise to strong
deviations from the theoretical result derived for homogeneous mixing (solid, blue).
In general, there is an increase in the probability to observe balanced configurations
and the case of complete consensus tends to become less likely. However, the
results obtained for the random graph are indeed very similar to the theoretical
prediction and also the scale-free topology leads to stationary statistics that, in
qualitative terms, correspond to the mean-field case. On the other hand, we observe
a strong “modulation” of the stationary statistics by networks that tend to foster
the emergence of “local alignment and global polarization”. By local alignment
and the dynamics that lead to it, we refer to situations in which different clusters
of agents approach independently a certain local consensus which is in general
different from agent cluster to agent cluster. From the global perspective the entire
population appears to be far from complete consensus and the probability to observe
the respective intermediate macro states is increased. These effects are observed for
the small-world network, the two-community graph as well as for the lattice, and it
is strongest for the ring where the probability of complete consensus is practically
zero.
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Fig. 7.3 Stationary statistics for the CVM on different topologies. Due to effects of local ordering,
the stationary behavior of the small-world network, the ring and the lattice as well as the two-
community topology differs greatly from the well-mixed situations

7.2.3 The Two-Community Case

For the two-community graph with a peak around k D N=2 the interpretation of the
result is particularly straightforward. Local alignment, in this case, refers to inter-
community polarization—the situation in which a different consensus has emerged
in the two communities. If the size of the communities is N=2, as in the example
we study, the polarization configurations give rise to an macro observation k D N=2

since one half of the population (organized in one community) agrees on � and the
other half (that is, the other community) is in state �.

The two-community CVM is particularly interesting because we can compute the
exact stationary vector by analyzing the respective meso chain . QX; QP/ obtained via
strong lumpability. This has been done in Sect. 6.4.2. We first compute the stationary
distribution of the meso chain assigning the respective limiting probability Q�m;l to
each state QXm;l. In that case, Eq. 7.6 reads

�k D
X

mClDk

Q�m;l: (7.7)

That is, �k associated to the macro state Xk is obtained by summing up the respective
Q�m;l with m C l D k. This is shown in Fig. 7.4 for different contrarian rates p and
different couplings between the two sub-graphs.
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Fig. 7.4 The stationary distribution from the macro perspective for different r D ˛=� D
1; 1=10; 1=100; 1=1000. From left to right p D 0:005; 0:01; 0:02

It becomes clear that the probability to observe a fifty-fifty situation (k � N=2)
generally increases, the weaker the coupling between the communities. The analysis
of the meso level stationary distribution shown in Fig. 6.7 (previous chapter)
makes clear that this is due to an increased probability for the configurations with
intra-community consensus and inter-community polarization ( QXN=2;0; QX0;N=2) which
contribute to that probability. (Notice that the community sizes have a direct effect
onto the macro level statistics and that in general the states with k D L and k D M
will be observed more frequently when the coupling is weak.) In general, we can
also observe that the influence of the different topological choices onto the macro
behavior (captured here in terms of �k) decreases with an increasing contrarian
rate p. As explained in Sect. 6.4.2, the more contrarian behavior is allowed by the
parameter setting, the more random becomes the entire process which undermines
the effects of local alignment and, consequently, of interaction topology. This can
be taken is a first indication that the mean-field solution (here represented by r D 1)
might approximate well the model behavior with a relatively high contrarian rate
because the entire setting is characterized more and more by random state flips. It
will be less accurate for a small contrarian rate where dynamics of local ordering
become more and more characteristic.

7.3 Non-Markovianity of the Two-Community CVM

7.3.1 From Micro to Meso, and from Meso to Macro

The previous section has shown that heterogeneous interaction structures can have
a strong impact on the model behavior. From the lumpability point of view, but
also from the point of view of observation, a macro process obtained by global
aggregation over the agent attributes neglects important information about the
microscopic details. In other words, for heterogeneous networks the macroscopic
process describing the dynamics of the system by the state variables associated
to the level of full aggregation does not provide a “closed” description of the
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original micro process derived from the ABM. A series of measures—among them
conditional past-future mutual information (Görnerup and Jacobi 2008) and micro-
to-macro information flow (Pfante et al. 2014a)—have been developed to quantify
the deviations from such an idealized closed description (see Sect. 2.4 and the first
section of this chapter for a brief overview). The remainder of this chapter is an
attempt to better understand this loss of information and the macro-level effects this
leads to.

Even though the questions addressed in this section may be not directly relevant
for an interpretation in terms of a specific application (such as opinion dynamics in
case of the CVM), an improved understanding of the dynamical effects introduced
by the way an agent system is observed is of great relevance for ABMs more
generally. The simple rules of the CVM along with the controllable two-community
topology make this scenario well-suited for a first step to analyze the effects
at an aggregate level introduced by aggregation without sensitivity to micro- or
mesoscopic structures.

The general idea is illustrated in Fig. 7.5. Consider the CVM on the
two-community graph and the associated micro-level process .˙; OP/. The two-
community micro chain .˙; OP/ is (strongly) lumpable with respect to the partition
QX. This gives rise to what we have called the meso-level process . QX; QP/ in the
previous chapter (see Sect. 6.4). The meso chain gives us a complete understanding
of the (micro) behavior of the CVM on two coupled communities, because the
coarse-graining via strong lumpability is compatible with the exact symmetries of
the micro process. That is, no information is lost by a formulation of the dynamics in
terms of the frequencies m and l in the two communities. However, the process (the
micro as well as the meso chain) is not lumpable with respect to the macro level of
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Fig. 7.5 From micro to meso, and from meso to macro
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full aggregation (partition X) which formulates the dynamics in terms of the opinion
frequency in the entire population (k D mC l). Therefore, if we wish to observe the
process at the global level, which is often the case in binary state models, we must
live with the fact that the resulting macro process on X is no longer a Markov chain.
In other words, more complex temporal correlations (memory effects) emerge at
the macro level.

As illustrated in Fig. 7.5, here we project onto the level of full aggregation despite
the fact that Markovianity is lost, in order to understand (1) the reasons for which
lumpability is violated and (2) the dynamical effects that this introduces at the macro
level. That is, all meso states QXm;l with the same global opinion frequency k D
m C l are projected into the same macro state Xk. We make use of the fact the
two-community coarse-graining ( QX) is a proper refinement of the full aggregation
(X) which describes exactly the model dynamics on an interaction topology with a
small amount of inhomogeneity and is, at the same time, small enough for explicit
computations. This explicit understanding of the meso chain facilitates an explicit
analysis of the transition from micro to meso to macro.

7.3.2 Why Lumpability Fails

Let us first inspect the reasons for which the meso chain . QX; QP/ is not lumpable
with respect to the macro partition X. By the lumpability theorem (Kemeny and
Snell 1976, Theorem 6.3.2), it is clear that the non-lumpability of the meso chain
with respect to X comes by the fact that the transition probabilities Pr.Xkj QXm;l/ are
not equal for all meso states QXm;l 2 X.mCl/ in the same macro set. As an example,
let us consider the transition rates from the single QXm;l 2 X50 to the macro set
X51 in a system with M D L D 50. One by one, the conjoint probability from
QX0;50; QX1;49; QX2;48; : : : ; QX50;0 to the sets QXm;l 2 X51 is shown in Fig. 7.6 for various
ratios r and a small contrarian rate p D 0:01.
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Fig. 7.6 The island topology leads to inhomogeneous transition probabilities and is therefore not
(strongly) lumpable. Here the example of a transition from QXm;l 2 X50 to X51 in a system with
M D L D 50 is shown
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We first notice that the transition rates QP. QXm;l; X.mClC1// are uniform when the
coupling within is equal to the coupling across communities, that is for ˛ D � and
r D 1. Obviously, this is the case of homogeneous mixing and the uniformity of the
QP. QXm;l; X.mClC1// is precisely the lumpability condition spelled out in Theorem 6.3.2
of Kemeny and Snell (1976).

In general, the QP. QXm;l; X.mClC1// are no longer equal for all m and l with mCl D k
when heterogeneity is introduced in form of a different coupling within and across
communities, i.e., ˛ ¤ � . This explains the non-lumpability of the two-community
model with respect to X. As the weak ties across communities becomes weaker such
that the ratio r between strong and weak ties decreases, the transition rates become
inhomogeneous, the main effect being a strong decrease of QP. QXm;l; X.mClC1// for the
atoms close to polarization (m D M; l D 0 and m D 0; l D L). This decrease in
transition probability, in turn, explains the increased stationary probability of the
states QX50;0 and QX0;50, because once entered there is a relatively small probability to
leave them so that the process is likely to “wait” in these states for quite some time.

Notice that there is only the small difference in transition rates between r D 1=10

and r D 1=100 (the difference to r D 1=1000 is even smaller!). On the one hand,
this is somewhat surprising, as from the dynamical point of view r D 1=10 is much
more related to the homogeneous mixing case (r D 1) than to the situation with
r D 1=100 (cf. Fig. 7.4). On the other hand, the probability to leave a polarized
state ( QX0;50; QX50;0) decreases significantly with every decrease in r and therefore
the waiting times for these states grow tremendously. Notice, however, that in the
limit of r ! 0, the probability of leaving a polarized state converges to p (with
QP. QXM;0; X.MC1// D QP. QXM;0; X.M�1// D p=2). Therefore a strong difference between
a weak (e.g., r D 1=100) and a very weak coupling (r D 1=1000) in form of
an increased stationary probability of polarization can be expected only if also
the contrarian rate p is small. Likewise, as already observed in Sect. 6.4.2, a large
contrarian rate can completely undermine effects of polarization altogether.

7.3.3 Stationarity and Aggregation

We shall now look at what happens to the macro level system as the micro or
respectively meso process reaches stationarity. For this purpose we first look at
the time evolution of the macroscopic transition rates. It is well-known that this
measure (corresponding to the time dependent distribution over blocks of length
two) converges in the case of an stationary macro process. We develop these ideas
for a general micro chain .˙; OP/ and show the two-community case (where we can
indeed compute these entities) as an example.

Let Ǒ.0/ denote the initial distribution over all micro configurations and Ǒ.t/ be
the respective distribution at time t. Notice that Ǒ.t/ D Ǒ.0/ OPt. Let us further define
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the probability distribution at time t restricted to the macro set Xk 2 X as Ǒk.t/. That
is, the xth element Ǒkx.t/ D 0 whenever x … Xk and proportional to Ǒx.t/ with

Ǒk
x.t/ D

Ǒ
x.t/

P

8x02Xk

Ǒ
x0.t/

; (7.8)

for every x 2 Xk. Notice that by convention Ǒkx.t/ D 0 whenever x … Xk and that
Ǒk.t/ is defined only if

P

x02Xk

Ǒ
x0.t/ > 0, that is, if there is a positive probability

that the process has reached at least one configuration x0 2 Xk. The probability
Ǒk
x.t/ shall be interpreted as the conditional probability that the process is in the

configuration x at time t provided that it is in the set Xk at that time.
We now denote the expected transition probability from macro state Xk to macro

state Xs as Pr t
Ǒ.0/

.XsjXk/. With Ǒk.t/ defined as above, it is given by

Pr t
Ǒ.0/

.XsjXk/ D
X

x2Xk

2

4 Ǒk
x.t/

X

y2Xs

OP.x; y/

3

5 : (7.9)

For the interpretation of Eq. (7.9) consider that Ǒkx.t/ is the probability (restricted

to Xk) that the process is in x 2 Xk at time t and
P

y2Xs

OP.x; y/ D OP.x; Xs/ is the

probability for a transition from x to some y 2 Xs. A transition from the set Xk to
Xs is then the conjoint transition probability considering all x 2 Xk along with their
conditional probability Ǒkx.t/ (first sum). Notice again that (7.9) corresponds to the
probability of observing a sequence of two measurements .h.x/; h.y// D .k; s/ at a
certain time t when looking at the micro system through the eye of absolute attribute
frequencies.

Notice also that we can write Eq. (7.9) in matrix form as

P D Uˇ
OPV; (7.10)

OP being the transition matrix of the original process and Uˇ and V define the
projection � as follows: The number of states of the original chain .˙; OP/ and the
reduced macro process X is 2N and N C 1 respectively (N C 1 < 2N). Then V is a
2N � N C 1 matrix with Vxk D 1 if the micro state x is mapped to the macro state
Xk by � and zero elsewhere (i.e., if �.x/ D k). U is a N C 1 � 2N matrix defined
in a similar way such that Ukx > 0 whenever �.x/ D Xk. However, the values of
Ukx are chosen such that information about the distribution ˇ is included. Namely,
Ukx D Ǒkx (7.8).
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model for some of the meso states considered in Fig. 7.6 and different initial conditions

Now, notice that the only time dependent term in Eq. (7.9) is the conditional
distribution Ǒkx.t/ which is obtain by (7.8) from Ǒ.t/, and Ǒ.t/ D Ǒ.0/ OPt.
Considering that .˙; OP/ is regular, it is clear that the process reaches its stationary
state ( lim

t!1
Ǒ.t/ D O�) independent of the initial Ǒ.0/. Therefore, the Pr t

Ǒ.0/
.XsjXk/

converge to

Pr O�.XsjXk/ D
X

x2Xk

2

4 O�k
x

X

y2Xs

OP.x; y/

3

5 (7.11)

as the micro process reaches stationarity. See Fig. 7.7 for the two community
model. Consequently (Kemeny and Snell 1976; Buchholz 1994), Eq. (7.11) can be
interpreted as a macroscopic transition matrix with P.Xk; Xs/ D Pr O�.XsjXk/, and the
stationary vector of that matrix will be correct in the sense of Eq. (7.6).

The possibility of deriving such a macro description has been commented on by
Kemeny and Snell (1976), p. 140, and it is discussed with some detail by Buchholz
(1994), pp. 61–63, where it is referred to as an ideal aggregate. The most important
thing to notice (Kemeny and Snell 1976, p. 140) is that P2 does not correctly
describe the two-step transition probabilities that would be measured on the micro
system. That is, the system evolution described solely at the aggregated macro
level is different from the macro evolution that would be observed by running the
microscopic process and performing an aggregation after each micro step. In other
words, in the general non-lumpable case we have .U�

OPV/.U�
OPV/ ¤ .U�

OP OPV/.
The reader may be referred to Kemeny and Snell (1976, pp. 135/136) where this is
used to derive conditions for (weak) lumpability. In fact, one can basically look at
an ideal aggregate obtained by (7.11) as a Markov model that approximates a certain
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stationary process (in our case the macro process obtained by measurements from
the micro chain) on the basis of the empirical distribution of cylinders of length
two. It is in fact not clear whether the process is informative about certain properties
of the real macro process beyond the stationary measure (see Sect. 2.3.3). Finally,
even if the chain defined by (7.11) would be informative about certain transient
properties of the real macro process, it still suffers from the fact that the construction
of it requires knowledge of the stationary distribution of the micro chain O� which is
usually unknown.

Notice that Eqs. (7.9) and (7.11) do not involve any particular assumption on the
nature of the partition meaning that an ideal aggregate can be constructed by them
for any partition of ˙ . Buchholz (1994), Theorem 1, has shown that if the original
transition matrix ( OP in our case) is irreducible than the transition matrix of the ideal
aggregate P.Xk; Xs/ D Pr O�.XsjXk/ will also be irreducible and therefore possess a
unique stationary distribution.

7.3.4 Why Weak Lumpability Fails

Weak lumpability (see Sect. 2.3.2) refers to the fact that a Markov chain might
be lumpable only for particular starting vectors (Burke and Rosenblatt 1958;
Kemeny and Snell 1976; Ledoux et al. 1994). The question whether or not an
ideal aggregate (and hence the micro chain) is weakly lumpable arises naturally
from our construction of an ideal aggregate, (7.9) and (7.11), mainly by two
considerations: first, it is well-known that if a chain is weakly lumpable with respect
to some distribution, it must be lumpable with respect to the stationary distribution;
and second, the transition probabilities of the lumped process would be given by
Eq. (7.11) (Kemeny and Snell 1976, Theorem 6.4.3). Therefore questions of weak
lumpability of the micro process with respect to full aggregation X can be answered
by checking if the ideal aggregate is lumpable.

For the two-community model it is in fact easy to show that the CVM process is
not weakly lumpable by the construction of a counter example which shows that the
conditions of Theorem 6.4.1 in Kemeny and Snell (1976) are violated. The argument
is twofold. First, starting from O� the process generally reaches different assignments
of probabilities over the micro states in the different macro sets (different Ǒs),
because, at least for the two-community model,

.�kP/s ¤ �s: (7.12)

The superscripts k and s denotes, as before, restriction to Xk and Xs respectively. Let
us denote the left-hand side of (7.12) as O� 0s D .�kP/s. Notice that, in fact, for weak
lumpability it would be sufficient to show that O� 0s D �s is satisfied for any k and s
(cf. Kemeny and Snell 1976, p.136). However, even if the situation is as in (7.12),
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weak lumpability could still be the case if the two distribution O� 0s and �s lead to the
same transition probabilities to all other macro sets Xl

Pr O�.XljXs/ D Pr O� 0.XljXs/: (7.13)

In other words, weak lumpability (according to Kemeny and Snell 1976, Theo-
rem 6.4.1) is violated if the probability of a transition from Xs to another macro
state Xl is different for O�s and O� 0s. This is the case for the two-community model,
as will be shown in the sequel.

As an example, let us consider a small system with M D L D 2. That is, the two
communities each consist of only two agents. Let us say the process is in equilibrium
with distribution O� at time t. Now we consider the macro probability X2 ! X1,
Pr O�.X1jX2/, which is given by:

Pr O�.X1jX2/ D .1C r � p/.2r.�1C p/� p/.1C p/

2 .�1C 2r2.�2C p/C 2p � 3p2 C r .�1 � 7pC 6p2//
(7.14)

for arbitrary r and p. Let us further assume that the process performs a loop in the
first step (t ! t C 1) and transits to X1 only after that (in t C 1 ! t C 2). That
is, X2 ! X2 ! X1. For weak lumpability with starting vector O� the probability of
X2 ! X1 must be the same independent of how many and which previous steps are
taken. However, for the second case we have O� 02 D .�2P/2 ¤ �2 and then

Pr O� 0 .X1jX2/ D .1 C r � p/.2r.�1 C p/ � p/
�
1 � 2p � 4r.�2 C p/p C 3p2 C r2

�
2 C 4p2

��

2.1 C 2r/2 .1 � 3p C 3p2 C p3 C 2r2 .1 � p C p2/ � r .1 � 8p C 5p2 C 2p3//
;

(7.15)

which is obviously not equal to (7.14). This shows that the two-community model
is not weakly lumpable with respect to X.

In Fig. 7.8 we show the probabilities Pr Ǒ.X1jX2/ for the cases from X2 ! X1 to
X2 ! X2 ! X2 ! X2 ! X1 as a function of p (top) and r (bottom). As we would
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Fig. 7.8 Transition probabilities Pr Ǒ.X1jX2/ for Ǒ D O�; O� 0; O� 00; O� 000 for the small example M D
L D 2 are not equal as would be required for weak lumpability. Top: Pr Ǒ.X1jX2/ is shown as a
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is shown as a function of r for p D 1=5. Equal probabilities are observed for the strongly lumpable
case r D 1
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expect (see figure on the bottom and the inset) the curves approach the same value
as r! 1. This is the strongly lumpable case of homogeneous mixing. Interestingly,
we observe in the upper image of Fig. 7.8 that the probabilities are actually equal
for p D 1=2, namely Pr Ǒ.X1jX2/ D 1=4 in that case. See the respective inset in the
upper figure. This indicates lumpability of the process for p D 1=2 and, in fact, it
is possible to show that the two-community model is strongly lumpable whenever
p D 1=2. The reason is that for p D 1=2, the meso-level transition matrix QP is
independent of the topological parameter r. Even if the case p D 1=2 is not that
interesting from the point of view of the dynamical behavior of the CVM, it would
be interesting to check whether a similar effect also occurs for other networks.

7.4 Closure Measures for the Two-Community CVM

7.4.1 Computation of the Markovianity Measure

Having shown that the macro process associated to the CVM on two coupled
communities is non-Markovian, the next logical step is to quantify in some way
the deviations from Markovianity. The framework of information theory—relative
entropy and mutual information in particular—has been shown to be quite useful
for this purpose (Chazottes et al. 1998; Vilela Mendes et al. 2002; Görnerup and
Jacobi 2008; Ball et al. 2010; James et al. 2011; Pfante et al. 2014a, among others).
Here we motivate the Markovianity measure introduced previously as the mutual
information I.XnC1 W Xn�1�1jXn/ (see Chap. 2 and Sect. 7.1 of this chapter) from the
perspective of time series and dynamical systems.

Let us, to simplify the writing, denote as Œ: : : ; kt�2; kt�1; kt; ktC1; ktC2;:::� a
sequence of macro states : : : ! Xkt�2 ! Xkt�1 ! Xkt ! XktC1

! XktC2
! : : :.

Likewise, let us denote as Œkt�m; : : : ; kt� a finite sequence of m macro states and
refer to this as block or cylinder of length m. Then, the block entropy associated to
cylinders of length m is defined by

Hm D �
X

Œkt�m ;:::;kt �2Gm

�.Œkt�m; : : : ; kt�/ log �.Œkt�m; : : : ; kt�/ (7.16)

where �.Œkt�m; : : : ; kt�/ denotes the probability to observe the respective cylinder
Œkt�m; : : : ; kt�. Notice that for m > 1 there exist in general “forbidden” sequences
with �.Œkt�m; : : : ; kt�/ D 0, a fact that is usually formalized in terms of a grammar
Gm � Xm by defining Gm WD fŒkt�m; : : : ; kt� W �.Œkt�m; : : : ; kt�/ > 0g. In our case
of single-step dynamics, all sequences containing subsequent elements with jkt �
kt�1j > 1 are “forbidden” because only Xk; Xk�1 and XkC1 can be reached from Xk

in one step.
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It is well-known (Chazottes et al. 1998; Vilela Mendes et al. 2002; James et al.
2011) that the slope of the block entropy �Hm D Hm � Hm�1 converges to a fixed
value called entropy rate (usually denoted as h.�/) and that this fact can be used
to estimate the memory range of the process. Namely, following Chazottes et al.
(1998) and Vilela Mendes et al. (2002), the range of the process is given, at least in
an approximative sense, by the m at which �Hm reaches a constant value, that is,
�Hm ��HmC1 � 0. It is clear then that for a Markovian process this point must be
reached at m D 2 such that

�H2 ��H3 D 0 (7.17)

and more generally

�H2 ��Hm D 0: (7.18)

Notice that Eq. (7.18) is precisely the “Markov property measure” proposed in
Görnerup and Jacobi (2008), pp.6–8, to identify projections of a process onto a
smaller state space (a partition of the original process) which lead to Markovian
dynamics. Noteworthy, the starting point of Görnerup and Jacobi (2008) and
consequently of Pfante et al. (2014a) has been the expected mutual information hIi
between pasts and the future state. The aim is to quantify how much information
about the next symbol (ktC1) is on average over all symbols contained in the
sequence of symbols (Œ: : : ; kt�2; kt�1�) before the current symbol (kt), or, in other
words, how much does knowledge of the past reduce uncertainty of ktC1 given kt.
We follow Görnerup and Jacobi (2008) and Pfante et al. (2014a) and write

hIi D I.ktC1 W kŒ�1;:::;t�1�jkt/

D H.ktC1jkt/� H.ktC1jkŒ�1;:::;t�1�/

D �H2 ��H1
(7.19)

which shows that the expected past future mutual information I.ktC1 W
kŒ�1;:::;t�1�jkt/ can be expressed in terms of the slopes of the block entropy relating
it directly to the previous considerations.

In real computations, however, one always has to restrict to finite histories since
it is not possible to compute �H1 D H.ktC1jkŒ�1;:::;t�1�/ in practice. Therefore,
Görnerup and Jacobi (2008) introduce the finite history variant

hIni D I.ktC1 W kŒt�n;:::;t�1�jkt/ D �H2 ��H2Cn (7.20)

and compute hI2i D �H2 ��H4 for their examples which means that they have to
consider cylinders up to length four Œkt�2; kt�1; kt; ktC1� in their Markovianity test.
Notice that in their notation n accounts for the ranges beyond the Markov range
of two (m D n C 2 in Eq. 7.18). We will follow this notation here and compute
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Fig. 7.9 Possible paths of
length 3 through Xk

kk

k-1

k+1

k

k-1

k+1

hI1i D �H2 ��H3 and hI2i D �H2 ��H4, the latter being used also by Görnerup
and Jacobi (2008).

The advantage of the two-community CVM as a framework to link between a
micro and a macro level of description via an intermediate meso level description is
that we are able to compute the Markovianity measures hI1i and hI2i instead of
performing an extensive series of numerical simulations. Namely, it is possible
to compute the �.Œkt�1; kt; ktC1�/ and respectively the �.Œkt�2; kt�1; kt; ktC1�/ on
the basis of the meso chain . QX; QP/ which in turn is a loss-less description of the
microscopic system (see Fig. 7.5).

Let us consider that for the cylinders of length 3. As noted above, the grammar
G3 of the system is determined by the fact that jkt � kt�1j � 1 and jktC1 � ktj � 1.
Therefore, as illustrated in Fig. 7.9, for any kt D k with 0 < k < N there are nine
possible paths Œkt�1; k; ktC1� and for k D 0 and k D N there are respectively four
paths. In order to compute the probability of a certain macro path, say Œp; k; f � p for
past and f for future, we have to sum over all meso level paths that contribute to
the given macro path. Let us denote a meso level path as Œ.mplp/; .ml/; .mf lf /� with
mp C lp D p, mC l D k and mf C lf D f . Its probability is given by

�.Œ.mplp/; .ml/; .mf lf /�/ D Q�mp;lp
QP. QXmp;lp ; QXm;l/ QP. QXm;l; QXmf ;lf /: (7.21)

The l.h.s. in Fig. 7.10 illustrates the possible paths for one QXm;l with m C l D k.
Notice that for a given macro state Xk there are k C 1 meso states if k � M and
respectively N�kC1 meso states for k > M (these numbers are for the case M D L
with MCL D N). In the case sequences of length three are considered, the situation
is still quite clear. For instance, a macro path Œk� 1; k; kC 1� can be realized in four
different ways for each2 QXm;l with mC l D k:

Œ.m � 1 l/; .m l/; .mC 1 l/� (7.22)

Œ.m � 1 l/; .m l/; .m lC 1/�

Œ.m l� 1/; .m l/; .mC 1 l/�

Œ.m l� 1/; .m l/; .m lC 1/�

2Notice that the number of possibilities reduces at the corners or borders of the meso chain
whenever m D 0 or l D 0.
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Fig. 7.10 Illustration of the possible paths for one QXm;l with mCl D k for cylinders of length three
(l.h.s.) and four (r.h.s.) An arrow indicates whether or not one state can be followed by another in
a sequence

The same reasoning can be applied to derive the probabilities for cylinders of length
four even though the situation becomes slightly more complicated, as illustrated on
the r.h.s. of Fig. 7.10.

Once the probabilities to for blocks of length three and four respectively, the
computation of the Markovianity measures hI1i D �H2 � �H3 and hI2i D
�H2��H4 is straightforward. All that is needed is to compute the respective block
entropies.

7.4.2 Computation of Informational Flow

While the Markovianity measure informs us about the memory effects introduced
at the macroscopic level, information flow measures the amount of information
that knowledge about the micro level would add to the Markovian macroscopic
formulation. In order to compute the information flow I.XtC1 W xtjXt/ we have
to compute H.XtC1jXt/ D �H2 (see Eq. 7.3) as well as the conditional entropy
H.XtC1jxt/ between the micro and the macro level (see Eq. 7.4). For the two-
community model, the micro states x are replaced by the respective meso-level state
QXm;l so that (7.4) reads

H.XtC1j QXt/ D � P

QXt2 QX
Q�t

P

XtC12X
p.XtC1j QXt/ log p.XtC1j QXt/

D � P

QXm;l2 QX
Q�m;l

P

k
PrŒXf j QXm;l� log PrŒXf j QXm;l�

(7.23)
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where the transition probabilities PrŒXf j QXm;l� are computed on the basis of the
mesoscopic transition matrix QP as

PrŒXf j QXm;l� D
X

mf Clf Df

QP. QXm;l; QXmf ;lf /: (7.24)

Notice that in analogy to the previous section and to make clear that it refers to
transition probabilities3 we use the subscript f to indicate the future state at time
tC 1.

The meso-to-macro probabilities PrŒXf j QXm;l� are illustrated in Fig. 7.11 which
shows the transitions from the meso-level states with m C l D k (Xk) to the
neighboring macro set with mf C lf D k C 1 (XkC1). Notice that for any meso
state QXm;l there are, in general, only two possibilities to go to XkC1: depending on

Fig. 7.11 Illustration of the
meso-to-macro transitions
PrŒXf j QXm;l� for two subsets Xk

and XkC1 (so that m C l D k
and mf C lf D k C 1) of the
macroscopic partition. In the
non-lumpable case the
probabilities differ from one
meso state to another

Xk Xk+1

m=k
l=0

m=0
l=k

k/2
k/2

3This is to avoid a possible ambiguity because the probability PrŒXkj QXm;l� could also be read in
terms of the projection from QX to X where PrŒXkj QXm;l� would indicate the probability with which
the meso state QXm;l is taken by � to the macro state Xk.



150 7 Information-Theoretic Measures for the Non-Markovian Case

the community in which an agent change happens it may transit to QXmC1;l or QXm;lC1.
An example for the transition from X50 to X51 has been shown in Sect. 7.3.2, Fig. 7.6.
As the coupling across communities decreases (in relation to the intra-community
coupling) the meso-to-macro transition probabilities become more heterogeneous.
The reduction in uncertainty about the macroscopic evolution that information flow
captures is due to this heterogeneity because H.XtC1j QXt/ is small compared to the
uniform lumpable case (i.e., for r D 1).

7.5 Results

We first look at the resulting information quantities as a function of the coupling
between the two communities r for a system of N D 100 agents (M D L D 50).
Figure 7.12 shows hI1i (dashed curves) and hI2i (solid curves) as a function of the
coupling between the two communities r for a system of N D 100 agents (M D
L D 50). The different curves represent various different contrarian rates p from
0:001 to 0:05. Notice the log-linear scaling of the figure.

What becomes clear in Fig. 7.12, first of all, is that the deviation from Marko-
vianity is most significant for small inter-community couplings. This means, in the
reading of Görnerup and Jacobi (2008), that the additional information about the
future state (beyond that given by the present) provided by pasts of length n is
larger than zero if r becomes small. In general and not surprisingly, hI2i > hI1i
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Fig. 7.12 hI1i (dashed curves) and hI2i (solid curves) as a function of the coupling between the
two communities r for a system of N D 100 agents. The different curves represent various different
contrarian rates p from 0:05 to 0:001, see legend
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which means that both the first and the second outcome before the present provide a
considerable amount of information. In fact, the numbers indicate that the first and
the second step into the past contribute in almost the same way. Noteworthy, the two
measures hI1i and hI2i behave in the same way from the qualitative point of view
which suggests that the computationally less expensive hI1i can be well-suited for
the general Markovianity test.

The inset in Fig. 7.12 shows the situation for values around r D 1 (homogeneous
mixing) as well as r > 1. As we would expect by the strong lumpability of
homogeneous mixing, hI1i and hI2i are effectively zero (order 10�17) in the case
r D 1. Also if the inter-community coupling becomes larger than the coupling
within communities (a situation that resembles a bipartite graph) hI1i and hI2i
are very small which indicates that a Markovian macro description (that is, ideal
aggregation) describes well these situations.

Next, Fig. 7.13 compares the Markovianity measure hI2i D I.XtC1 W
Xt�1; Xt�2jXt/ with informational closure I.XtC1 W QXtjXt/. Here we consider two
different contrarian rates p D 0:001 (green curves) and p D 0:005 (blue curves).
We clearly observe that I.XtC1 W Xt�1; Xt�2jXt/ < I.XtC1 W QXtjXt/ and remember
that Pfante et al. (2014a) has proven that I.XtC1 W Xt�1�1jXt/ � I.XtC1 W QXtjXt/. It
would of course be desirable to analyze the behavior of the Markovianity for longer
histories in order to find out whether I.XtC1 W Xt�1�1jXt/ eventually converges to
I.XtC1 W QXtjXt/ or if their remains a gab between information flow from micro to
macro and macroscopic memory.

Fig. 7.13 Comparing the Markovianity measure hI2i D I.XtC1 W Xt�1; Xt�2jXt/ (dashed) with
informational closure I.XtC1 W QXtjXt/ (solid) as a function of the coupling between the two
communities r for a system of N D 100 agents. The different curves represent two different
contrarian rates p D 0:001 (green) and p D 0:005 (blue), see legend
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Fig. 7.14 hI1i and hI2i as a function of the contrarian rate p for various coupling ratios r and a
system of M D L D 50

We notice in Figs. 7.12 and 7.13 that the measures do not generally increase
monotonically with a decreasing ratio r which is most obvious for the example
with a very small p D 1=1000 (green curves). This is somewhat unexpected and
it indicates the existence of certain parameter constellations at which macroscopic
complexity (for this is how non-Markovianity may be read) is maximized. To obtain
a better understanding of this behavior, the Markovianity measures hI1i and hI2i are
plot in Fig. 7.14 as a function of the contrarian rate p. Notice again the log-linear
scaling of the plot.

It becomes clear that there is a strong and non-trivial dependence of the
Markovianity measures on the contrarian rate p. Namely, hI1i and hI2i are very small
if p is relatively large but they are also relatively small if p becomes very small.
There is a parameter regime in between in which deviations from Markovianity
become most significant. Notice that in the inset of Fig. 7.14 the same curves are
shown on a double-logarithmic scale. This shows, first, that hI1i and hI2i for very
small p are still significantly larger compared to the case of relatively large p (say
p > 0:1). Secondly, we observe that hI1i and hI2i actually vanish for p D 1=2. As
discussed in the previous section, the reason for that is the strong lumpability of the
two-community CVM whenever p D 1=2.

Finally, a detailed picture of the dependence of hIni on the contrarian rate is
provided in Fig. 7.15. The plot compares the cases r D 1=100 and r D 1=1000 in
order to show that the peak in the hIni depend also on r. For the interpretation of this
behavior, notice that the p at which deviations from Markovianity become largest,
lie precisely in the parameter interval in which switching times between the two
complete consensus states become minimal. Compare Fig. 6.4 in Sect. 6.3.3.
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Fig. 7.15 Detailed picture of
the dependence of hIni on the
contrarian rate. Blue curves
correspond to r D 1=100 and
red curves to r D 1=1000. In
the first case the peak is at
around p � 0:05, in the latter
at p � 0:065

0.00 0.01 0.02 0.03 0.04 0.05
0.000

0.002

0.004

0.006

0.008

p
I n

I2 r 1 1000

I2 r 1 100

I1 r 1 1000

I1 r 1 100

7.6 Summary and Discussion

This chapter has been devoted to the study of the non-Markovian case using the
example of the two-community CVM. We have first considered the example from
the lumpability point of view and examined the reasons for which strong and weak
lumpability are not satisfied. Then, following the setting proposed in Pfante et al.
(2014a) and Görnerup and Jacobi (2008), we have adopted an information-theoretic
perspective in order to analyze the effects that an inhomogeneous interaction graph
brings about at the macroscopic level.

Therefore, this analysis can be seen as a first step to measure the complexity
introduced by aggregation without sensitivity to the micro- or mesoscopic struc-
tures. The two-community CVM, in which the population is composed of two
sub-population of size L and M such that L C M D N and it is assumed that
individuals within the same sub-population are connected by strong ties whereas
only weak ties connect individuals belonging to different communities, is a well-
suited example to study aggregation artifacts for an inhomogeneous (though still
very simple) interaction topology. While a lumpable description can be obtained
by an independent aggregation of the two communities, leading to a Markov chain
of . QX; QP/ manageable size (O.N2/), aggregation over the entire agent population
without sensitivity to the population structure leads to a description which is not
lumpable. On the basis of the intermediate meso chain . QX; QP/ it is possible to
explicitly compute the information flow from micro to macro I.XtC1 W xtjXt/ (Pfante
et al. 2014a) as well as the Markovianity measures hI1i D I.XtC1 W Xt�1jXt/

and hI2i D I.XtC1 W Xt�1; Xt�2jXt/ (Görnerup and Jacobi 2008) with respect
to the non-lumpable macro description obtained by aggregation over the entire
population. While information flow accounts for the information that a macroscopic
formulation omits, the Markovianity measures show that this information is (at least
in part) still present at the macro level in form of temporal correlations. This shows
that information-theoretic measures are a promising tool to study the relationship
between different levels of description in complex multilevel systems such as ABMs
and that global aggregation over an agent population without sensitivity to micro-
or mesoscopic structures leads to memory effects at the macroscopic level.
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Further work is needed to better understand these results and extend the analysis
beyond this relatively simple stylized case. By experiments with more complex
interaction structures and variations of the interaction rules we may gain an insight
into the microscopic conditions and mechanisms responsible for the temporal and
spatial patterns observed at aggregate levels. In this regard, I would like to mention
the possibility of applying the arguments developed throughout this chapter to the
case of models with absorbing states as, for instance, the pure VM ( p D 0). In
that case, the quasi-stationary distribution (see Darroch and Seneta 1965) takes
the role of O� or respectively Q� in the construction of an ideal aggregate and the
computation of cylinder measures. Finally, I envision that the framework might be
useful for the evaluation of different approximation schemes developed for complex
high-dimensional agent models.

References

Ball, R. C., Diakonova, M., & Mackay, R. S. (2010). Quantifying emergence in terms of persistent
mutual information. Advances in Complex Systems, 13(03), 327–338.

Banisch, S. (2014). From microscopic heterogeneity to macroscopic complexity in the contrarian
voter model. Advances in Complex Systems, 17, 1450025.

Banisch, S., Lima, R., & Araújo, T. (2012). Agent based models and opinion dynamics as Markov
chains. Social Networks, 34, 549–561.

Buchholz, P. (1994). Exact and ordinary lumpability in finite Markov chains. Journal of Applied
Probability, 31(1), 59–75.

Burke, C. J., & Rosenblatt, M. (1958). A Markovian function of a Markov chain. The Annals of
Mathematical Statistics, 29(4), 1112–1122.

Chazottes, J.-R., Floriani, E., & Lima, R. (1998). Relative entropy and identification of Gibbs
measures in dynamical systems. Journal of Statistical Physics, 90(3–4), 697–725.

Chazottes, J.-R., & Ugalde, E. (2003). Projection of Markov measures may be Gibbsian. Journal
of Statistical Physics, 111(5/6), 1245–1272.

Darroch, J.N., & Seneta, E. (1965). On quasi-stationary distributions in absorbing discrete-time
finite Markov chains. Journal of Applied Probability, 2(1), 88–100.

Görnerup, O., & Jacobi, M. N. (2008). A method for inferring hierarchical dynamics in stochastic
processes. Advances in Complex Systems, 11(1), 1–16.

Görnerup, O., & Jacobi, M. N. (2010). A method for finding aggregated representations of linear
dynamical systems. Advances in Complex Systems, 13(02), 199–215.

Gurvits, L., & Ledoux, J. (2005). Markov property for a function of a Markov chain: A linear
algebra approach. Linear Algebra and its Applications, 404(0), 85–117.

Jacobi, M. N., & Görnerup, O. (2009). A spectral method for aggregating variables in linear
dynamical systems with application to cellular automata renormalization. Advances in Complex
Systems, 12(02), 131–155.

James, R. G., Ellison, C. J., & Crutchfield, J. P. (2011). Anatomy of a bit: Information in a time
series observation. Chaos, 21(3), 7109.

Kemeny, J. G., & Snell, J. L. (1976). Finite Markov chains. New York: Springer.
Ledoux, J., Rubino, G., & Sericola, B. (1994). Exact aggregation of absorbing Markov processes

using the quasi-stationary distribution. Journal of Applied Probability, 31, 626–634.
Pfante, O., Bertschinger, N., Olbrich, E., Ay, N., & Jost, J. (2014a). Comparison between different

methods of level identification. Advances in Complex Systems, 17, 1450007.



References 155

Pfante, O., Olbrich, E., Bertschinger, N., Ay, N., & Jost, J. (2014b). Closure measures for coarse-
graining of the tent map. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(1),
013136.

Shalizi, C. R. (2001). Causal architecture, complexity and self-organization in the time series and
cellular automata. (Doctoral dissertation, University of Wisconsin–Madison).

Shalizi, C. R., & Moore, C. (2003). What is a Macrostate? Subjective observations and objective
dynamics. In CoRR. arXiv:cond-mat/0303625.

Vilela Mendes, R., Lima, R., & Araújo, T. (2002). A process-reconstruction analysis of market
fluctuations. International Journal of Theoretical and Applied Finance, 5(08), 797–821.



Chapter 8
Overlapping Versus Non-overlapping
Generations

In this chapter, we inspect well-known population genetics and social dynamics
models. In these models, interacting individuals, while participating in a self-
organizing process, give rise to the emergence of complex behaviors and patterns.
While one main focus in population genetics is on the adaptive behavior of a
population, social dynamics is more often concerned with the splitting of a con-
nected array of individuals into a state of global polarization, that is, the emergence
of speciation. Using numerical simulations and the mathematical tools developed
in the previous chapters we show that the way the mechanisms of selection,
interaction and replacement are constrained and combined in the modeling have an
important bearing on both adaptation and the emergence of speciation. Differently
(un)constraining the mechanism of individual replacement provides the conditions
required for either speciation or adaptation, since these features appear as two
opposing phenomena, not achieved by one and the same model. Even though natural
selection, operating as an external, environmental mechanism, is neither necessary
nor sufficient for the creation of speciation, our modeling exercises highlight the
important role played by natural selection in the interplay of the evolutionary and
the self-organization modeling methodologies.

8.1 Introduction

There are two important phenomena observed in evolutionary dynamical systems of
any kind: self-organization and emergence. Both phenomena are the exclusive result
of endogenous interactions of the individual elements of an evolutionary dynamical
system. Emergence characterizes the patterns that are situated at a higher macro
level and that arise from interactions taking place at the lower micro level of the
system. Self-organization, besides departing from the individual micro interactions,
implies an increase in order of the system, being usually associated to the promotion
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of a specific functionality and to the generation of patterns. Typically, complex
patterns emerge in a system of interacting individuals that participate in a self-
organizing process. Self-organization is more frequently related to the process itself,
while emergence is usually associated to an outcome of the process.

Although less frequently mentioned, the emergence of patterns from self-
organizing processes may be strongly dependent on locality. Emergence and self-
organization are not enough to distinguish between two important and quite different
circumstances: the presence of an influence that impacts the system globally and,
conversely, the absence of any global influence and the lack of information about
any global property of the system. In the latter case, the system itself is the exclusive
result of local interactions.

Such a global influence (entity or property) is often associated with the concept
of environment. Noteworthy, the latter circumstance may be considered a case of
the former: when no global entity exists, the environment for each agent is just the
set of all the other agents. Conversely, when a global entity exists, it is considered
part of the environment and may have an inhomogeneous impact on the individual
dynamics.

Regardless of the environmental type, economical, ecological and social envi-
ronments share as a common feature the fact that the agents operating in these
environments usually try to improve some kind of utility, related either to profit,
to food, to reproduction or to comfort and power. A general concept that is attached
to this improvement attempt is the idea of adaptation.

In the economy, adaptation may be concerned with the development of new
products to capture a higher market share or with the improvement of the production
processes to increase profits: that is, innovation. In ecology, adaptation concerns
better ways to achieve security or food intake or reproduction chance and, in the
social context, some of the above economical and biological drives plus a few other
less survival-oriented needs. In all cases, adaptation aims at finding strategies to
better deal with the surrounding environment (Araújo and Vilela Mendes 2009).

Natural selection through fitness landscapes or geographic barriers are good
examples how global influences are considered when modeling adaptation in an
evolutionary process. On the other hand, adaptation also operates in many structure
generating mechanisms that can be found in both physical and social sciences but
that are built on the exclusive occurrence of local interactions.

In biology, the ultimate domain of evolution and natural selection, we are
confronted with tremendous organic diversity—virtually infinite forms and shapes
none of which found twice—but the distribution is well-structured in a way that
allows us to order this diversity and to speak of species, families, orders etc. A
quite illustrative description is given by the evolutionary geneticist Theodosius
Dobzhanski (1970, p. 21):

Suppose that we make a fairly large collection, say some 10,000 specimens, of birds or
butterflies or flowering plants in a small territory, perhaps 100 km2. No two individuals will
be exactly alike. Let us, however, consider the entire collection. The variations that we find
in size, in color, or in other traits among our specimens do not form continuous distributions.
Instead, arrays of discrete distributions are found. The distributions are separated by gaps,
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that is, by the absence of specimens with intermediate characteristics. We soon learn
to distinguish the arrays of specimens to which the vernacular names English sparrow,
chickadee, blue jay, blackbird, cardinal, and the like, are applied.

If we had to make a visual representation of this description of intra- and inter-
species variations it would perhaps look like the multi-modal distribution shown in
Fig. 8.1. What we call a species, is in fact some norm or mean characteristics of a
cluster of individuals.

Evolutionary theory is ultimately a theory about the history which led to such
a pattern. And if the organic diversity we observe nowadays evolved in a way that
is characterized by some kind of “Tree of Live”, then there must be events that
may lead to the split of a connected set of individuals (protospecies) into (at least)
two sets that are not connected any longer (see Fig. 8.2). In biology, this is called
speciation. As we will see in this chapter, though, the generation of such a split with
simple but well-known evolutionary models in which “natural selection impels and
directs evolutionary changes” (Dobzhanski 1970, p. 2) is not straightforward. It so
happens that constraints on the interaction behavior are required.

The phenotype of living beings is not the only domain where patterns of
structured diversity as illustrated in Fig. 8.1 are observed. Phenomena include

Species
G

Species
R Species

B

Fig. 8.1 Schematic illustration of organic diversity

AUSTRALOPITHECUS
ROBUSTUS

AUSTRALOPITHECUS
BOISEI

AFRICANUS
AUSTRALOPITHECUS

Fig. 8.2 Illustration of a speciation event. I am are grateful to Andreas Dress for providing me this
figure
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certain phases of structure formation in physical cosmology, distribution of cultural
behavior, languages and dialects, herd behavior in finance, among others.

Especially for the latter examples in the field of socio-cultural dynamics a variety
of models has been proposed which do not rely on the evolutionary concept of
(natural) selection.1

They are rather based on the idea of exclusively Local Interactions (LI) imple-
mented in form of a system of agents that interact locally according to simple rules
like assimilation or conformity. In these systems, finding strategies to better deal
with the surrounding environment (and thus improving fitness) is not constrained
by any global property. It may, however, be constrained by local (individual) rules.

As we shall see later in this chapter, constraints on the mechanisms of selection,
interaction and replacement and the way they are combined in the modeling of an
evolutionary process have an important bearing on both adaptation and emergence
of speciation. Locality operating in each of these mechanisms seems to be the
fundamental modeling principle by which emergence of a multi-modal distribution
as shown in Fig. 8.1 can be explained. On the basis of these observations about the
“modelability” of speciation with evolutionary and self-organisatory models, we
study in this chapter the conditions and mechanisms required for speciation and the
emergence of a multi-modal distribution.

In this analysis, we rely on computational models (Sect. 8.2) and apply the
mathematical tools developed throughout this book to simplified versions of the
models to understand these numerical findings (Sect. 8.3). Our models simulate
how a population of individuals evolves in time in an abstract attribute space .S/

that represent phenetic traits, attitudes, verbal behavior, etcetera. Modeling agents
as points in an attribute space of this kind is of course a highly artificial abstraction
from the complexity and multi-dimensionality of real agents.

For the purposes of this chapter, let us conceptualize an interaction event,
defining the system evolution from one time step to the other, by the following three
components:

1. selection of agents,
2. application of interaction rules,
3. replacement of agents.

Any interaction event (e.g., mating, communication,. . . ) that takes place in the
course of a simulation of the model consists of the sequential application of these
three steps. The reason to dissect the interaction events in this way is twofold:

1. we want to look at the dynamical and structural effects of constraints applied to
each of the three components independently;

2. the scheduling of interaction events may have a crucial effect on the model
behavior, and with the distinction between selection and interaction on the one
hand, and replacement on the other, we are able to make this effect explicit.

1See Castellano et al. (2009) for a comprehensive overview over models in this field.
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The way interaction events are scheduled in the implementation of the models is
not always given much importance in existing simulation studies. In the presence
of constraints on the selection and interaction mechanisms, however, the outcome
as well as the dynamical properties depend in a crucial way on the different
choices. On the other hand, there are studies that do analyze the differences
between synchronous and asynchronous update (see, for instance, Huberman and
Glance 1993; Banisch 2010) as well as studies on non-overlapping (NOLG) and
respectively overlapping generations (OLG) in biology and economics (for instance,
Kehoe and Levine 1984).

Here we show that especially when the interaction is constrained (as in the case of
assortative mating) there emerges an important qualitative difference between OLG
and NOLG models. Namely, speciation is observed in the former, but not in the
latter case, whereas adaptation is favored by the latter and hindered by the former.
However, by the distinction of selection, interaction and replacement we are able to
show that in fact the difference between local and non-local replacement plays the
determinant role (and not the distinction between OLG and NOLG). Even though
locality also impacts selection and interaction mechanisms, it is on the replacement
mode where relies the fundamental difference with respect to the conditions required
for either adaptiveness or speciation.

The chapter is organized as follows: Sect. 8.2 addresses the main issues of both
the fitness landscape and the self-organizing models from a computer simulation
framework. In both cases, microscopic implementation rules are tested against their
capability of reproducing adaptiveness and speciation. In Sect. 8.3, the emergence of
speciation is analytically shown to be dependent on the choice of different replace-
ment modes. This is accomplished through a probabilistic description of a minimal
model of just three phenetic traits where the transition probabilities between traits
follow a Markov chain. Section 8.4 is targeted at presenting concluding remarks and
a framework that relates interaction events to the emergence of collective structures
in adaptive and self-organizing complex systems.

8.2 From Adaptive Dynamics to Cluster Formation

8.2.1 Adaptive Walks on Fitness Landscapes

In biology, and population genetics in particular, adaptive walks on fitness land-
scapes have been studied intensively. The main questions addressed by fitness
landscapes approaches are related to the possible structure of the landscapes (e.g.,
Kauffman 1993), to how populations climb an adaptive peak in the landscape (e.g.,
Fisher 1930), and to the circumstances under which a population might wander from
one peak to another by crossing adaptive valleys (e.g. Wright 1932).

One of the best-known models for populations on fitness landscapes is
the Wright-Fisher model with non-overlapping generations (sometimes called
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Wright-Fisher sampling and shortened in the sequel by WF model, see Crow and
Kimura 1970 and also Drossel 2001). Noteworthy, the WF model is an important
predecessor of the voter model (VM), which has been studied most extensively
throughout this work. Consider a population of N individuals which is said to
constitute the original generation (g D 0). We consider only the case of sexual
reproduction here, in which the genotype of a new-born individual is obtained by
the recombination of the genomes of two randomly chosen parent individuals. As
noted above, the choice of two parents and the application of a recombination rule is
referred to as interaction (or mating) event. In the WF model, N such mating events
are performed until a new generation of N individuals is complete. As soon as it
is complete, the parent generation is canceled and the process is repeated taking
the new generation as parents. Therefore, in the WF model the population size is
always maintained at N. We will denote the generation number by g D 0; 1; 2; : : :.

We implemented this simple model and performed simulations on different
toy fitness landscapes. The microscopic rules involved into the creation of a new
individual, that is, the mating event, are as follows:

1. selection of two individuals with a probability proportional to their fitness,
2. application of recombination and mutation rules,
3. replacement of an agent from the parent generation.

In this toy model, we consider only one phenetic trait (locus) that takes discrete
values (from 0 to 99). We denote the traits of the two chosen parent individuals i
and j as xi and xj respectively and model recombination by taking the average of the
two, xnew D .xi C xj/=2. To model mutations we add a random value to xnew. In the
WF model, xnew is stored at an arbitrary place in the children array and this chapter
will clarify that this has important consequences for the model dynamics.

An adaptive landscape is introduced into the model by assigning a fitness value
to each of the 100 traits. For the first analysis shown in Fig. 8.3, a single-peaked
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Fig. 8.3 WF model approaches an adaptive peak. In the upper row the initial generation (g D 0)
and the distribution after the first (g D 1) and the second (g D 2) iteration are shown from left to
right. Bottom row shows, from left to right, the 5th, 10th and 20th generation (g D 5; 10; 20)
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fitness function with a peak at trait 75 is used and the fitness assigned to trait x is
given by

F.x/ D 1

15
e� 2

225 .�75Cx/2

r
2

�
D N.�; 
2/: (8.1)

We have used the normal distribution with � D 75 and 
2 D 7:5 in the construction
of the fitness landscape (solid line in Fig. 8.3). In the iteration process, individuals
are chosen as parents with a probability proportional to F.x/, x being the trait of the
respective individual.

For the illustrative model realizations in this section, we set N D 500. Initially,
the 500 individuals are distributed in this space according to a normal distribution
with mean � D 50 and 
2 D 10 (see first image of Fig. 8.3).

This section is mainly thought as an illustration of the different behaviors and
patterns generated by certain constraints on the interaction mechanism. As the
qualitative effects of different assumptions become evident and comprehensible in
single simulations of the model, there is no need for a rigorous statistical analysis
of suites of simulations with varying initial conditions. Moreover, a mathematical
analysis of the model dynamics is presented in the second part of this chapter
(Sect. 8.3).

Figure 8.3 shows the first few iterations of the WF model. The adaptive peak at
around 75 is reached within only a few iterations. Due to mutations, the population
does not become fixed at one specific trait, but maintains a certain amount of
variation. Populations simulated with the WF model are very fast in reaching an
adaptive peak in the fitness landscape.

8.2.2 Sympatric Speciation

Figure 8.3 shows that the WF model is well-suited to show how a finite population
approaches a peak in the fitness landscape. However, what about speciation? To
get a first insight about whether the splitting of the unimodal initial distribution
into a bimodal distribution with two clusters is possible we simulated the model
with a two-peaked fitness landscape. So the difference with respect to the previous
simulation is that the fitness function (solid line) has two adaptive peaks, one
centered at 25 and the other at 75. The fitness (that is, the probability of choosing an
individual in state x) is defined by a mixture of two normal distributions N.25; 7:5/

and N.75; 7:5/:

F.x/ D e� 2
225 .�75Cx/2

15
p

2�
C e� 2

225 .�25Cx/2

15
p

2�
: (8.2)
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Fig. 8.4 WF model with a two-peaked fitness landscape approaches a single adaptive peak. From
top left to bottom right the initial state (g D 0) and the first five generations are shown (g D
1; 2; 3; 4; 5)

The first five iterations of that model are shown in Fig. 8.4. The initial distribution
is as in the previous example. We see that multi-modal shapes emerge only in
the very first few generations of the model. Namely, after the first and the second
iteration, there are three clusters: two located at the peaks and a third one with low
fitness in between the other two. The latter can be seen as hybrid individuals with
strong selective disadvantages that are obtained by a recombination of individuals
from the different peaks. However, the disappearance of clustering is very fast and
after only four iterations all the population concentrates at one of the peaks. Hence,
in the model it is difficult to generate a stable co-existence of species.

The case considered here is the case of speciation in sympatry: no geographic
constraints are assumed to divide the population into reproductive islands or to
constrain the mating chances of pairs of individuals in any other way. A possible
explanation why the simulation of sympatric speciation is not possible in the WF
model as described above is provided in the seminal paper on sympatric speciation
by Smith (1966). Smith showed that besides selective forces, it is necessary that the
population sizes of the (two) sub-populations are regulated independently. Because
the total population size is usually constant in the WF model (in our case N D 500),
it does not implement an independent regulation of sub-populations.

An issue frequently discussed in the context of sympatric speciation is assortative
mating (see, for instance, Kondrashov and Shpak 1998; Dieckmann and Doebeli
1999 and references therein). We also simulated the WF model with the additional
constraint that two individuals need to be similar in order to produce offspring. Two
chosen individuals i and j only produce an individual for the new generation if the
their difference is small (here jxi � xjj < 10). The microscopic rules become:

1. selection of two individuals with a probability proportional to their fitness,
2. application of recombination and mutation rules if the individuals are similar,
3. replacement of an agent from the parent generation.
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Fig. 8.5 WF model with a two-peaked fitness landscape and assortative mating approaches a
single adaptive peak. From left to right the first three generations are shown (g D 1; 2; 3). The
initial state is as in Fig. 8.4

In Fig. 8.5 the first three generations obtained by the iteration of this model are
shown. The only difference with respect to the pure random mating case (Fig. 8.4)
is that the intermediate cluster does not appear because the interbreeding of a pair
of individuals from either peak is prohibited by the assortativity condition.

8.2.3 Cluster Formation in Opinion Dynamics

From the point of view of self-organizing systems in opinion or cultural dynamics
(e.g. Axelrod 1997; Deffuant et al. 2001) the result shown in Fig. 8.5 is somewhat
surprising because the introduction of interaction constraints is known to lead to
co-existence of clusters of individuals (assortative mating is often called bounded
confidence in this context). This is even more interesting as the microscopic rules
used to model the self-organization in opinion dynamics are very similar.

1. selection of two individuals, all with equal probability.
2. application of recombination and mutation rules if the individuals are similar,
3. update of one parent agent.

In this scheme, we emphasized differences with respect to the WF model. Notice
that mutations, sometimes interpreted as cultural drift, are not always taken into
account.

Notice also that this form of replacement where effectively one parent individual
is chosen to die to make place for the new-born is sometimes considered in
population genetics (see, for instance, Moran 1958; Korolev et al. 2010).

In opinion dynamics the initial population is usually distributed according to the
uniform distribution. In general, there are no global influences such as a fitness
landscape so that the probability of selection is equal for all individuals independent
of their position in the trait space.

The locally-interacting model (henceforward called LI model) is implemented as
a model of overlapping generations (OLG). That is, the population is updated after
each single interaction event (and not after N events). Notice that this means that
the new state of an individual that is updated is from then on taken into account in
the later iterations. Therefore, a single iteration actually means a single interaction
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Fig. 8.6 Emergence of clustering in the LI model with assortativity. In the upper row the initial
population and the distribution of the first and the tenth generation are shown from left to right
(g D 0; 1; 10). Bottom row shows, from left to right, the 20th, 40th and 100th generation (g D
20; 40; 100)

event involving two individuals. Nevertheless, for the sake of comparability with the
WF model, we can consider generations in the LI model by assuming that we pass
from one generation to the next (g! gC 1) after N iterations (interaction events).

In Fig. 8.6 we show a realization of the simulation for 500 individuals initially
distributed uniformly over the traits from 0 to 99. Update only takes place if the
distance between two individuals is smaller then 10. It becomes clear that initial
inhomogeneities are reinforced during the process such that clusters of individuals
are formed. Compared to the WF simulations this process is slow. In Fig. 8.6
we show from top left to bottom right the original population (g D 0), and the
population in the 1st, 10th, 20th, 40th and 100th generation (g D 1; 10; 20; 40; 100).
From generations 40–100 some of the clusters have disappeared so that only two
large sub-populations (and a very small one at around 90) remain. In the long run
these clusters might merge due to mutations (drift). In any case the co-existence of
“reproductively isolated” sub-populations is rather stable during long periods of the
process.

8.2.4 Overlapping Versus Non-overlapping Generations

There seems to be a subtle difference between the LI model and the WF model,
with a crucial effect, however. There are three potential sources of the different
behavior:

1. There is uniform fitness in the LI model but a peaked landscape in the WF model.
2. The LI model is implemented as a model of OLG whereas the WF model

implements NOLG.
3. In the LI model, the state change of an individual is modeled whereas the creation

of a new individual is considered in the WF model.
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Fig. 8.7 WF model with overlapping generations with flat fitness landscape, assortative mating
and uniform initial population as in Fig. 8.6. From left to right the first three generations (g D
1; 2; 3) are shown

The first two cases can be checked easily by implementing the WF model with
OLG and looking at a realization using the same conditions as in Fig. 8.6. This is
sometimes referred to as Moran model (Moran 1958; Korolev et al. 2010). Two
individuals give rise to a new individual which replaces another individual in the
current generation. Notice that the assortativity constrained (interaction only takes
place if jxi � xjj < 10) is included. The first three generations (g D 1; 2; 3

corresponding to the population after 500, 1000 and 1500 sequential mating events)
are shown in Fig. 8.7. The initial population is the same as before (upper left in
Fig. 8.6). The behavior of the model is in drastic contrast to the behavior of the LI
scheme. In fact, the behavior is very similar to the original WF model with NOLG.

We conclude that the qualitative differences between the WF model and the LI
model are neither due to different ways of dealing with generations (OLG versus
NOLG) nor to the choices of different fitness landscapes.

8.2.5 Local Versus Non-local Replacement

It turns out that in the implementation of the WF model with OLG, a decision must
be taken whether the new individual replaces one of its parents or an arbitrary
individual from the generation and that the two alternatives result in qualitatively
different dynamical behaviors. We will call local replacement the case that the
new individual replaces one of its parents and non-local replacement refers to the
case that an arbitrary individual is replaced by the new one. Noteworthy, there is
a tendency that models with NOLG implement a form of non-local replacement
because no care is usually taken about the order of individuals such that a child
will in general appear at a position in the population array that is distant from the
position of the parents.

In this way, non-local replacement undermines the effects of assortative mating,
because an individual with a trait xi can effectively be replaced by an individual with
trait xj even if jxi � xjj > 10.
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Fig. 8.8 The self-organization LI model with local update on a peaked fitness landscape. From
left to right the initial population and the first two generations (g D 0; 1; 2) are shown

8.2.6 (Non-)adaptiveness of Local Replacement

Earlier we saw that modeling speciation in a model with a fixed population size
requires that the update process operates with local replacement. However, it turns
out that in this case the process looses its adaptiveness. Figure 8.8 shows the first
generations (g D 0; 1; 2) of the self-organization model with local replacement
performed on a fitness landscape with a single peak (compare Fig. 8.3). The
population is actually pushed away from the peak. This is due to the fact that
the individuals close to the peak, though frequently chosen, are not replaced by
individuals with low fitness (rarely chosen) so that the proportion of fit individuals
does not increase. To the contrary, mutations tend to drive fittest individuals away
from the peak. Hence, the mode of replacement in these two models with almost
the same microscopic rules has a dramatic effect on the dynamics behavior. Cluster
formation (or speciation) and adaptiveness are in the context of these models two
opposing phenomena such that an explanation of the two together is not achieved
by one and the same model.

8.3 Probabilistic Analysis of a Minimal Model

The simulations show that there are decisive differences between different imple-
mentations of the simulation models even though the microscopic rules of agent
choice and recombination are in fact equal. In particular, it turned out that the
qualitative differences in the model behavior are due to different modes of agent
replacement. This section elaborates these differences for a minimal model where
the number of allowed traits is reduced from 100 to three. The model implements the
same mechanisms as before, on this reduced space with three traits only, excepting
mutations. Looking at the rate (probabilities) of transitions from one trait to the
other we derive Markov chains, and the transition structure of these chains inform
us about the dynamic mechanisms which different replacement modes give rise to.
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8.3.1 A Minimal Model

Consider that there are only three different phenetic traits: the states left (L), right
(R) and intermediate (M). As before, in every interaction event pairs of individuals
are chosen and the state of the new individual is determined by the recombination
of the parent states. We do not consider mutations here. In accordance with the
recombination rule in the previous section, whenever two parents are in the same
state, the child will also be in that state: we denote this by LL ! L; MM ! M
and RR ! R. If one of the parents is in L and the other in R recombination will
lead to M, that is, LR ! M and RL ! M. In case L mates with M we say that
recombination leads to M (LM ! M) and vice versa if M mates with L it leads to
L (ML ! L). Likewise, for matings between M and R-agents, we set RM ! M
and vice versa MR! R. Notice that in the case of complete, homogeneous mixing
the choice probabilities are symmetric such that choosing two agents with RM is
equally likely as choosing them in reverse order MR. Notice that this model is very
similar to the three-state VM studied in Chap. 4.

Associated with each of these nine possible transitions we define an additional
probability ˛ to be the probability that the recombination step is indeed performed
once the respective trait combination is chosen. In the model without trait-dependent
mating constraints or fitness differences, all the ˛ are set to one. The reason for
introducing this probability is that we can model assortative mating by setting ˛LR D
˛RL D 0. In that case, a pair of individuals in L and R are assumed to be unable to
produce offspring. Because no state changes take place in that case, the respective
probabilities now contribute to keeping whole population unchanged.

8.3.2 Transition Rates

We consider a system of N agents and characterize a population by counting the
number of agents in the respective states L; M and R. Let us denote the number of
agents in state L by l, the number of M-agents by m and the number of agent in R
by r. After a mating event, the counters l; m; r are either unchanged or one of them
increases while another one decreases by one (ex. l�1; mC1). The latter case simply
means that one new individual (in state M) has replaced another one (in state L). In
the case of complete mixing, all the agents have equal probabilities to be chosen in
the iteration process. Therefore, we model the choice of an individual as a choice
from an urn with N balls of three different colors L, M and R. It is then clear that the
choice of an individual with feature F is f =N (generic F).

In this way, it is possible to derive equations for the probabilities of all the
possible changes of l; m and r from one mating event to the other. Notice that
already Moran adopted a similar Markov chain approach in the analysis of his model
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in Moran (1958). A careful consideration of the relation between these macro-
level equations and the microscopic simulation model has been at the heart of the
preceding chapters.

Let us denote the probability that m increases while l decreases by one as Pm
l .

For the model with local replacement we use the convention that the agent chosen
first is always replaced by the new one. Under this assumption the event .l; m/ !
.l�1; mC1/ takes place if the states of the agent pair are either .L; R/ or .L; M/. The
probability that a pair .L; R/ is chosen is lr

N2 which we denote as pLR.2 For .L; M/

we have pLM D lm
N2 . We integrate into this description the additional constraint ˛LR

(˛LM) as the probability that the respective combination, once chosen, gives indeed
rise to a new individual. Then we obtain for probability PrŒLR ! M� D ˛LR pLR

(PrŒLM ! M� D ˛LM pLM). With this definitions we obtain

Pm
l D ˛LR

lr

N2
C ˛LM

lm

N2
D ˛LR pLR C ˛LM pLM: (8.3)

Equivalently, for the other non-zero transitions in the local case we find

Pm
r D ˛RL pRL C ˛RM pRM

Pl
m D ˛ML pML

Pr
m D ˛MR pMR:

(8.4)

For the model with non-local (random) replacement we assume that the new-born
individual replaces a randomly chosen agent. The probability that this is an agent in
state F is again f =N (generic F). With this convention we find for the replacement
of an L-agent

Pm
l D l

N .˛LR pLR C ˛RL pRLC
C ˛LM pLM C ˛RM pRM C ˛MM pMM/

Pr
l D l

N .˛RR pRR C ˛MR pMR/ :

(8.5)

For the replacement of an R-agent we have

Pm
r D r

N .˛LR pLR C ˛RL pRLC
C ˛LM pLM C ˛RM pRM C ˛MM pMM/

Pl
r D r

N .˛LL pLL C ˛ML pML/ ;

(8.6)

2Notice that the agent choice is with replacement so that an individual may be chosen twice. This
corresponds to self-fertilization and we allow it to keep the model as simple as possible.



8.3 Probabilistic Analysis of a Minimal Model 171

l-1
m+1

r

(L,R) (L,M
)

l+1
m-1

r

l+1
m
r-1

l
m
r

l-1
m

r+1

l
m+1
r-1

l
m-1
r+1

(R
,L

)(R
,M

)

(M
,L)(M

,R
)

l-1
m+1

r

x
k =L

(L,R)(R,L)(.,M
)

l+1
m-1

r

l+1
m
r-1

l
m
r

l-1
m

r+1

l
m+1
r-1

l
m-1
r+1

x k
=R

(L
,R

)(R
,L

)(.
,M

)

xk=R
(L,L)(M,L)

xk=L
(R,R)(M,R)

x
k =M

(L,L)(M
,L)

x k=
M

(R
,R

)(M
,R

)

Fig. 8.9 Possible transitions in terms of the counters l; m; r for local (l.h.s.) and random (r.h.s.)
replacement

and for replacement of an M-agent

Pl
m D m

N .˛LL pLL C ˛ML pML/

Pr
m D m

N .˛RR pRR C ˛MR pMR/ :
(8.7)

For a better orientation we visualize the possible transitions for both replacement
modes along with the conditions for the transitions in Fig. 8.9.

8.3.3 Random Mating

If all the ˛ are equal to one, the transition equations (8.3) and (8.4) and respectively
Eqs. (8.5)–(8.7) realize all the transitions shown in Fig. 8.9 with a probability greater
than zero. In Fig. 8.10 the complete transition structure is shown for the model with
five agents. Notice that for N D 5 each counter (l; r; m) can take values in between
zero and five and that the triangular structure appears because we have lCmCr D N.

The larger gray atoms are the absorbing states of the process: they can be reached
by a transition, but once reached, there is no transition leaving them. Therefore they
characterize the final configurations of the process. For both local and non-local
replacement the absorbing states are the three corners of the triangle grid with l D N
or m D N or r D N. This means that the process will converge to a population
with all individuals in the same state. The smaller light-blue states indicate the
transient atoms and the chances that the process remains in those atoms decreases
exponentially with time (see, for instance, Seneta 2006, and Chaps. 4 and 5).
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Fig. 8.10 Transition structure for local replacement (l.h.s.) and random replacement (r.h.s.)
with random mating. In both cases, there are three absorbing states each corresponding to a
homogeneous population
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Fig. 8.11 Transition structure for local replacement (l.h.s.) and random replacement (r.h.s.) with
assortative mating. Additional absorbing states emerge under local replacement, but not under
random replacement as used in the WF model

8.3.4 Assortative Mating

The situation becomes different if we set ˛LR D ˛RL D 0 by which we prohibit
mating between L- and R-agents. This is assortative mating which means, in this
simple model with only three traits, that left and right agents are incompatible and
cannot produce offspring. As noted above, the respective probabilities contribute to
the probability that nothing changes as in that cases .l; m; r/ ! .l; m; r/. For both
replacement modes the assortativity condition changes the transition probabilities
and we compare the resulting transition structures in Fig. 8.11.

Most importantly, for the local model, all the probabilities in (8.3) and (8.4)
become zero if m D 0. Hence, if there is no intermediate individual left (m D 0) the
process will remain where it is even if both l and r are larger than zero. Assortative
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mating may therefore lead to the stable co-existence of L- and R-agents (just as
it has been observed for the three-state VM, see Chap. 4 and Banisch et al. 2012).
Under non-local replacement this does not happen because even if certain transitions
are canceled there remain horizontal transitions leading away from the respective
two-species configurations. This explains why speciation cannot be observed in the
simulations performed in the first part of this chapter.

It so happens that random replacement sets aside the effects of bounded
confidence and consequently—like in the case of undirected genetic drift—leads to
the merging of subpopulations. As random interbreeding contributes to conservative
dynamics, random replacement is also an opposing force to speciation. This is due
to the fact that under this replacement mode, a newcomer agent may take the place
of a former-distant one. In so doing, forbidden transitions turn out to be allowed so
that the consequences at the macro level become the same of unbounded confidence.

8.3.5 Two-Peaked Fitness Landscape

Next, let us discuss an extreme case of a two-peaked fitness function. We consider
the case that intermediate individuals have a zero fitness which we model by
prohibiting all matings in which M-agents are involved. This situation can be
obtained by assigning a zero probability to all the respective transitions, that is:
˛LM D ˛ML D ˛MM D ˛RM D ˛MR D 0.

From Eq. (8.4) we see that in the case of local replacement this leads to the
strange situation that the probabilities for all those transitions by which the number
of intermediates decreases become zero: Pl

m D Pr
m D 0. Unless initialized with all

agents in L or R, the simulation will converge to the situation where all individuals
are in the intermediate state (M), with zero fitness. This clearly points at a deficiency
of modeling adaptive dynamics with local replacement.

All in all, we can conclude that adaptiveness is favored by non-local replacement
while it is difficult to achieve speciation. As opposed to this, under local replacement
speciation becomes a natural result of assortative mating, but then the process is not
convenient for approaching adaptive peaks in a fitness landscape.

8.4 Summary and Discussion

In the context of the models we studied in this chapter, evolutionary models
that build on natural selection and locally interacting dynamics building on self-
organization do not appear as opposing one another. In fact, the dynamical update
rules used in the modeling of the microscopic interactions follow the same
principles.

Let us try to adopt a broader perspective and to figure out a general framework
comprising the main mechanisms leading to the emergence of collective structures
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Table 8.1 Summary of the effects that constraints imposed on the selection, interaction and
replacement step lead to

Mechanisms Emergent patterns

Selection Interaction Replacement Outcome Example

1 peak Random Random Convergence with adaptation Figure 8.3

2 peaks Random Random Convergence with adaptation Figure 8.4

1 peak Assortative Random Convergence with adaptation Figure 8.5

Random Assortative Local Speciation Figures 8.6 and
8.11(left)

Random Assortative Random Convergence Figures 8.7 and
8.11(right)

1 peak Assortative Local Convergence without adaptation Figure 8.8

2 peaks Assortative Local Convergence without adaptation —(Sect. 8.3.5)

Random Random Local Convergence Figure 8.10(left)

Random Random Random Convergence Figure 8.10(right)

in adaptive and self-organizing complex systems. Back to the two phenomena
that we address in this chapter, we may say that the main consequences to the
“modelability” of either adaptation or speciation are due to the constraints imposed
on each of the mechanisms of selection, interaction and replacement. Their interplay
is summarized in Table 8.1.

The framework presented in Table 8.1 schematically shows the consequences of
adopting (un)constrained mechanisms to the emergent outcome of a self-organizing
process. It helps to emphasize that the emergence of some specific patterns may
be strongly dependent on the way constraints dictate limitations on the selection,
interaction and replacement mechanisms. More specifically, it shows that differently
(un)constraining the replacement mechanism of a process provides the conditions
required for either speciation (the emergence of multi-modal distributions) or
adaptation, since these features appear as two opposing phenomena, not achieved
by one and the same model.

In the same way that random interbreeding leads to conservative dynamics,
random replacement is also an opposing force to speciation since newcomers may
take the place of formerly distant agents. At the macro level, random replacement
sets aside the effect of bounded confidence and—like undirected genetic drift—may
lead to the merging of subpopulations. This sheds light on the fact that some of the
differences observed between models with overlapping versus models with non-
overlapping generations are due to the tendency that the former implement a form
of local and the latter a form of random replacement.

Even though this exercise shows that natural selection, operating as an external,
environmental mechanism, is neither necessary nor sufficient for the creation of
clustered populations, we do not want to argue against natural selection as an
important mechanism in the biological domain and a substantive driving force in
the speciation process. To the contrary, the concept of (natural) selection operating
at a global level may provide us with plausible interpretations of the model results,
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even in disciplines where such interpretations are still lacking. In the words of
Dobzhanski (1970, pp. 5–6):

[. . . ] in biology nothing makes sense except in the light of evolution. It is possible to
describe living beings without asking questions about their origins. The descriptions acquire
meaning and coherence, however, only when viewed in the perspective of evolutionary
development.
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Chapter 9
Aggregation and Emergence: A Synthesis

This chapter is an attempt to synthesize some of the thoughts that have been
developed throughout this work and relate them to computational accounts of
emergence. While more specific problems concerning the methods developed in
the previous chapters—their limitations and possible generalizations—have been
discussed at the end of each chapter, this chapter aims at a synthetic view on how
this work may contribute to an important aspect of complexity science. We discuss
definitions of weak emergence put forth by Bedau (1997), Huneman and Humphreys
(2008) and others and show that a definition of emergence in terms of lumpability
provides a link between the concept of dynamical incompressibility and Wimsatt’s
notion of non-aggregativity (Wimsatt 1986).

9.1 The Computational View on Emergence

To my point of view, one of the most important contributions is the perspective
that a Markov chain theory of aggregation for agent-based models (ABMs) may
provide on emergence and emergent phenomena. Namely, as sketched at the
end of the second chapter, ABMs along with cellular automata (CA), genetic
algorithms and other related computational tools play an increasingly important
role in the philosophical discussions around emergence. Interestingly enough,
some philosophers advocate a position which makes use of computational models
as a playground to address fundamental questions of emergence (Bedau 1997;
Huneman and Humphreys 2008; Humphreys 2008, among others). Questions about
the relation of these artificial model environments to real phenomena are not
ignored, but considered as an independent issue which is actually part of another

© Springer International Publishing Switzerland 2016
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debate.1 In this way, the philosophical controversy that usually comes with the term
“emergence” (see O’Connor and Wong 2012) is circumvented to some extend. This
work has been following a similar tradition, as the models dealt with are also very
simple and the focus has been on the method rather than on empirical adequacy.

Let us quote from the introduction to a special issue on “Dynamical Emer-
gence and Computation” in Minds & Machines (2008) Volume 18 (Huneman and
Humphreys 2008, p. 426) in order to point out in what regard our approach may
contribute to these discussions:

Other problems appear concerning the criteria for those types of emergence. Up to this
point, the link between criteria for emergence and simulation can be put in this way:
Is the unavoidability of simulation, or the incompressibility of computing the final state,
a sufficient criterion for diachronic emergence? And is this criterion epistemological or
ontological, i.e. does this criterion lead to a description of emergence which depends on our
cognitive abilities, or does it provide an essential characterization of the phenomenon? Yet
how can we prove that the unpredictability, except by simulations, picks out an objective
property of a system, and is not a peculiar limitation of our cognitive abilities? What kind
of further criteria do we need if we want a more fine-grained classification of diachronic
emergences? Can we derive such a classification from a typology of simulations?

By means of a formulation of computational models as Markov chains we
may shed new light on some of these questions. First of all, a Markov chain
formulation at the micro level challenges a definition that makes strong reference to
simulation (as by “unavoidability of simulation”, Huneman and Humphreys 2008,
p. 426) or likewise to analytical unpredictability (“emergent phenomena [. . . ] as
unpredictable in an analytical way from the equations of the system”, Huneman
and Humphreys 2008, p. 425) of dynamical emergent phenomena. All criteria with
reference to our capabilities of dealing analytically with the problems are prone
to mere epistemological accounts of emergence and will not lead to an ontology
of dynamical emergences. On the other hand, the possibility or impossibility to
lump sets of states into a new chain at the macro level—that is, to compress the
process—indicates that the dynamical incompressibility of a computational process
might indeed form an appropriate criterion for dynamical emergence. Though both
“the unavoidability of simulations” and “the incompressibility of computing the
final state” capture the essential aspect of computational emergence, dynamical
incompressibility seems to be the more sophisticated argument.

This is not least so because it should be in the relation between the micro and
the macro where appropriate criteria for emergence may be found. In fact, the
analysis of the micro-macro link in simple computational models as the voter model
(VM), leads naturally to some of the conditions for non-aggregativity (and therefore
emergence) proposed in Wimsatt (1986, 2006a). Wimsatt’s aggregativity conditions,
most importantly inter-substitution of parts, are derived in a probabilistic framework
to be the mathematical conditions that have to be met so that the micro process is

1To me, this position has been most clearly articulated by Humphreys (2012) in a talk given at the
2012 DPG Tagung. See Symons (2008) for a critical account on the possible contributions of this
approach to the “metaphysical” problem of emergence.
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lumpable. This work suggests to base a proper differentiation between emergent
phenomena and non-emergent features on the question whether they meet certain
aggregativity conditions, notably, in a dynamical setting.

9.2 Challenging Definitions of Weak Emergence

9.2.1 Unavoidability of Simulations

Bedau (2003) defines weak emergence in the following way:

Assume that P is a nominally emergent property possessed by some locally reducible system
S. Then P is weakly emergent if and only if P is derivable from all of S’s micro facts but
only by simulation. (p.15)

We have shown in Chap. 3 that many computational models can be formalized
as random walks on more or less regular graphs. The configuration space ˙

of the model is the set of all possible configurations of the simulation and for
a considerable class of models we are able to derive explicitly the transition
probabilities between all these configurations, among them models that are widely
considered to give rise to weakly emergent patterns. As a result we have at hand
an analytical description of the computational model that allows us, in principle,
to understand all the dynamical processes, final states or stationary distributions
without a need of performing simulations. For instance, if the emergent property P
is a stable pattern which the model converges to, this corresponds to an absorbing
state in the Markov chain formulation. We are able to compute the probability with
which the random walk will end up in that (and in any alternative absorbing) state,
and, even without any computation, we know that convergence happens in finite
time. In principle, therefore, simulations are avoidable.

However, analytical predictability of the model results are challenged by the
exponential increase of the dimension of the Markov chain description as the num-
ber of elements increases. In practice, therefore, the problem remains unpredictable
at this level of description and there is no other choice than performing simulations.
The resulting unavoidability of simulations is then essentially due to the cognitive
difficulties to derive and calculate the explicit Markov chains for some more
complicated and bigger models and the technical impossibility to handle matrices
of that size on current computer systems. Seen in this way, a criterion based on the
analytical unpredictability of a model of emergent phenomena is an epistemological
criterion and leads to an epistemological account of emergence. One could also
object that even if an analytical description in form of a micro chain .˙; OP/ is found,
one still has to “simulate” the chain by applying the transition matrix to a certain
initial distribution of interest. One still has to rely on all “micro facts”. On the other
hand, however, certain properties of the chain (as, for instance, convergence to an
absorbing state in finite time) can be assessed without any computation or reduction
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to a simpler description (see also Izquierdo et al. 2009 who mention some of these
properties for rather complex models).

To my point of view, criteria for emergent behavior should not be defined with
reference to our capabilities of dealing with the respective problem using analytical
methods. It seems that this view originates from an implicit tendency to assume
that analytical descriptions are differential equation describing the problem at an
aggregate macro level, disregarding the possibility of an analytical formulation
at the micro level. For our mathematical tools are under constant development
and because we cannot foresee whether new methods for the analysis of complex
systems allow analytical predictions in the future, any such criterion makes—by the
very construction—emergence a purely epistemological question and rules out any
hypothesis about emergent phenomena in an ontological sense.

9.2.2 Computational Incompressibility

Very often, the necessity of performing simulations has been related to the impossi-
bility to reduce the problem to a simpler one by deriving “directly” a macroscopic
description of the problem. In his 2003 paper Bedau (2003), from which the above
definition has been cited, Bedau himself equates weak emergence and compu-
tational irreducibility (“Computational irreducibility—that is, weak emergence”,
p.18) with reference to the well-known work on CA by Wolfram (1994). Here we
will use the term computational incompressibility which has been used by Huneman
and Humphreys (2008), Humphreys (2008) especially in the context of diachronic
(i.e., dynamical) emergence.

While preserving the essence of the argument, the concept of dynamical incom-
pressibility provides a definition of weak emergence which is not by construction
an epistemological one, because the question whether a process or a model can
be compressed is truly a property of the process. It is certainly closely related to
analytical predictability (and thus to the unavoidability of simulations), namely,
when a macro description in form of, for instance, a differential equation is
considered as the reference analytical formulation to which the micro process can
be reduced. According to this view, a property is weakly emergent if the process
leading to the generation of it is computationally incompressible (Humphreys 2008).
Markov chain aggregation provides precise arguments for whether such a complex-
ity reduction is feasible. The transition from micro to macro corresponds, in essence,
to a compression of subsets of micro configurations into macro states and in this
way Markov chain aggregation—that is, lumpability—operationalizes the concept
of computational compressibility. The question of dynamical incompressibility (and
therefore, the question of emergence) is then understood as whether this transition
from micro to macro is with or without loss of information.

More precisely, we have seen in the third chapter (and other have before, e.g.,
Shalizi and Moore 2003) that any system property defines a partition of the state
space of the micro chain. Then, there are necessary and sufficient conditions
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(Kemeny and Snell 1976, Theorem 6.3.2; see also Sect. 3.3) for the process
projected onto this partition to be again a Markov chain, that is, a macro description
of the process which contains all information about the system (in the true sense of
information, see Chap. 7, Sect. 7.4). If we want to keep up a definition of emergence
on the basis of dynamical incompressibility, we could put forth the following
definition: a system property P is emergent if the system is lumpable with respect
to the macro description defined by P.

At its core, this Markov chain approach to emergence deals with a type of
emergent behavior that might be called “process emergence”. It relates processes
at a micro level, typically those arising from simple local rules, to processes at a
macro level typically obtained by averaging or aggregating certain properties. The
focus is not on the emergence of a stable pattern or a higher level structure that
“results” from a simulation, it is rather on establishing a relation between processes
on the different levels. In fact, “resultant” stable or recurring macro properties are
often reflected, in the process point of view, as absorbing or meta-stable states with
a high stationary probability (or classes of those).

Notice that this view on computational incompressibility is closely related to the
information-theoretic approaches to measure complexity and emergence as devel-
oped, for instance, in Grassberger (1986), Lindgren and Nordahl (1988), Crutchfield
and Young (1989), Crutchfield and Shalizi (1999), Shalizi and Crutchfield (2001),
Shalizi et al. (2004), Ball et al. (2010), and Gmeiner (2013) and that a construction
based on Markovianity is in fact a special case of these more general approaches.

I briefly comment on some possible objections to such a definition. The first
point is in fact a general difficulty of defining a property as weakly emergent if the
processes leading to it are computationally incompressible. Consider, as an example,
the emergence of “spatial alignment” in voter-like and segregation models. See
Fig. 9.1 for an instance of “spatial alignment” that emerged in a simple version of
Schelling’s segregation model (Schelling 1971). In the two-community model (for
the VM as well as for the CVM) we observe the emergence of “spatial alignment”
or segregation in the form of intra-community consensus and inter-community
polarization (Chaps. 5 and 6). However, the process with 2.MCL/ states at the micro
level (M and L being the community sizes) is compressible to a description of size
.M C 1/ � .L C 1/ which is an essential reduction. On the other hand, we have
seen that on the ring topology (and similarly for the grid, see Fig. 9.1) the number
of states that are needed to obtain a Markovian macro description is larger than
2N=N states which cannot be considered “essentially simpler than the microscopic
computational process by which the system’s behavior is generated” (Bedau 2003, p.
18). This raises the question whether “spatial alignment” is emergent in one case but
not in the other. In the same way one could ask whether the emergence of complete
consensus in the VM (which often comes as a surprise to people unacquainted with
this kind of models) is emergent if the model is run on a complex network but not
emergent if it is run on the complete graph.
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Fig. 9.1 An instance of emergent “spatial alignment” in a simple segregation model

Secondly, a definition based on Markov chain aggregation requires to rigorously
define the system property corresponding to a certain emergent feature. On the
one hand, this points at a deficiency of existing definitions which are usually not
explicit on the property and the processes related to it. On the other hand, it may
not always by easy to rigorously define the system property corresponding to a
pattern of interest even if the feature catches the observer’s eye immediately when
looking at the outcome of a simulation. In the above example, one could argue
that it is not so clear to which micro configurations an observer would ascribe the
property of “spatial alignment”. However, there are clearly ways to measure the
amount of alignment, for instance, by taking into account the number of aligned
neighbors. The respective measure defines again a partition on the space of micro
configuration. In fact, pair approximation and approximate mean field theories
(Gleeson 2013, and references therein) derive systems of differential equations in
a similar way. This point also brings into the discussion the role of the observer and
the idea that emergence comes in degrees (Humphreys 2008). In this regard, the non-
Markovianity measure used in Sect. 7.4 could be a way to “measure emergence”.

Finally, a definition based on exact lumpability may be too unrestrictive on
the one and not widely applicable on the other hand. Too unrestrictive because in
Markov chains in general lumpability is the exception rather than the rule (Chazottes
and Ugalde 2003; Gurvits and Ledoux 2005). Not applicable to important cases,
because the full specification of a micro chain and the projection operator may
become very complicated for more sophisticated computational models. Even for
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classical CA with synchronous update, which are widely used in the context of
computational emergence, such a specification is by no means straightforward.2

9.3 From Computational Incompressibility
to Non-aggregativity

Emergence is a concept that relates parts and wholes. Dynamical (or diachronic)
emergence is a concept that relates processes on the level of parts to processes on
the level of the whole. In our setting, processes at the micro level are processes of
change of certain attributes of a set of agents arising from simple local interaction
rules. The macro-level process is obtained by the observation or measurement of
certain indicators that inform us about the global state of the entire agent population.
Typically (though probably not in every case) such a measurement corresponds
to an averaging or aggregation of certain agent properties or of properties of the
links between agents (i.e., link-between-parts properties). In the VM, for instance,
considering the frequency of the different attributes in the population is a one of the
simplest forms of aggregation. In the sugarscape model (Epstein and Axtell 1996),
to make another example, the number of agents in the environment or the average
amount of sugar they carry are similarly aggregative measures. Examples of system
properties obtained by aggregation over links-between-parts properties include the
number of unaligned neighbors (active bonds) in the VM or, in a more complex
setting, the time evolution of density or other structural indicators of a network that
co-evolves in the simulation.

Hence, the link between the level of parts and the whole is realized in form of
system properties and the typical way to define them is via some form of aggrega-
tion. Emergence occurs when the dynamical evolution of the system property ceases
to be Markovian. That is, when a Markovian process at the micro-level gives rise to
a non-Markovian process at the macro-level. In other words, when aggregation fails
to capture all the dynamical details of the micro-level process.

In this reading, emergence and “aggregativity” define a fundamental dichotomy
between emergent and non-emergent phenomena; a view that, to the authors
knowledge, has first been expressed by Wimsatt (1986, 2006a,b):

Aggregativity, a claim that “the whole is nothing more than the sum of its parts”, is the
proper opposite to emergence (Wimsatt 2006b, p. 4)

Calling for an account of emergence consistent with reductionism, Wimsatt starts
out from the question of aggregativity: “When intuitively is a system “more than
the sum of its parts”?” (Wimsatt 2006a, p. 673). He states four criteria that a system

2Notice that CA with asynchronous stochastic update, to the contrary, belong to the class of single-
step dynamics the specification of which has been the subject of this book.
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property in relation with the parts of that system must fulfill to be a fully aggregative
property (Wimsatt 2006a, p. 676):

1. invariance of the system property under operations rearranging the parts (inter-
substitution),

2. qualitative similarity of the system property under addition or subtraction of parts
(size scaling),

3. invariance of the system property under operations involving decomposition and
re-aggregation of parts (decomposition and re-aggregation),

4. there are no cooperative or inhibitory interactions among the parts which affect
the system property (linearity).

Noteworthy (see Chap. 2), such an account of emergence requires to be explicit on
the definition of the system property at question, for one and the same system might
be aggregative for one but emergent for another property. This is very similar to
lumpability which only makes sense (it is actually only defined) in relation to a
certain partition of the state space.

With the analysis of the VM in Chap. 4 we recover the first of Wimsatt’s criteria.3

Actually we came to the conclusion that aggregativity depends exclusively on the
invariance of the system property with respect to the inter-substitution of parts. If the
system property (the projection from micro to macro) is defined in accordance with
the symmetries of the agent relations, it will be an aggregative measure and correctly
describe the evolution of the system (Chap. 5). It might be that models with more
complicated interaction mechanisms will require a closer inspection of the other
three criteria. On the other hand, Wimsatt (2006a) notes that “[t]hese conditions
are not independent of one another.” (p.675). Moreover, for all models in which
the local transitions depend only on the neighborhood configurations, invariance of
agent relations with respect to agent permutations is sufficient for lumpability and
ensures compressibility of the process.

Finally, in order to stress that we are dealing with dynamical emergence, let
me mention a subtlety when applying Wimsatt’s arguments to the VM. One could
actually argue that all of the aggregativity criteria are met by a macro formulation
in terms of attribute frequencies h.x/ (Hamming weight) independent of the agent
network. Namely, at each instance, that is, for each single micro configuration,
the system property h.x/ satisfies all of Wimsatt’s aggregativity conditions. It
is invariant with respect to alternative arrangements of the agents. Qualitative
similarity (even an obvious quantitative relation) after addition or subtraction of
parts is also satisfied. Thirdly, given any configuration x, it is possible to decompose
the system in an arbitrary way, compute h.x/ for subsets of agents, and re-aggregate
(sum up) the measures for the different subsets. Finally, h.x/ is also invariant with

3One of Wimsatt’s main concerns is to show that in natural phenomena full aggregativity (present
if all four conditions are satisfied) is the exception rather than the rule and that in many
models—including voter-like models of population genetics—the use of aggregative procedures
is unjustified (Wimsatt 2006a).
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respect to non-symmetric interaction relation, just because it only takes into account
node (agent) properties. Noteworthy, this works for any agent network.

The answer to this simple puzzle resides in the shift from a synchronic to a
diachronic—that is, process-based—perspective. Namely, in the context of Markov
chain aggregation the system property on which aggregativity conditions must be
assessed is not the attribute frequency, but rather the transition probability from one
frequency level to the other. From the point of view of lumpability this is obvious,
but it is not, in general, from the point of view of emergence. A dynamical argument
is also presented in Wimsatt (2006a) to illustrate aggregation failures in classical
population genetics, but the distinction between a synchronic and a diachronic
emergence is not always clear. It might even be the case (but this certainly deserves
a further inspection) that the aggregativity criteria with reference to dynamical
operations (most importantly criteria 4) appear redundant if an explicit process
perspective is taken.

To sum up, a definition of emergence in terms of lumpability provides a link
between the concept of dynamical incompressibility and Wimsatt’s notion of non-
aggregativity. It shares an intrinsic emphasis on processes with the former and with
the latter a clear concept of system property as well as the idea that emergence and
aggregativity define a dichotomy between emergent and non-emergent phenomena.
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Chapter 10
Conclusion

This book presents a Markov chain approach for the analysis of agent-based models
(ABMs). It provides a general framework of aggregation in agent-based and related
computational models by making use of Markov chain aggregation and lumpability
theory in order to link between the micro-level dynamical behavior and higher-
level processes defined by macroscopic observables. The starting point is a formal
representation of a class of ABMs as Markov chains—so-called micro chains—
obtained by considering the set of all possible agent configurations as the state
space of a huge Markov chain. This allows for the application of the theory of
Markov chain aggregation—namely, lumpability—in order to reduce the state space
of the models and relate microscopic descriptions to a macroscopic formulation
of interest. In some cases, the aggregation is without loss of information and the
macro chain can be used to compute several stationary and transient characteristics
of the models. In general, however, a certain amount of macroscopic complexity
is introduced by the transition from the micro level to a favored macro description
which is a fingerprint of emergence in agent-based computational models.

1. ABMs are Markov chains.

While Markov chains represent a relatively simple form of a stochastic process,
ABMs put a strong emphasis on heterogeneity and social interactions. Nevertheless,
most ABMs are from the formal point of view Markov chains. Intuitively, this might
be clear by the fact that ABMs usually come in form of a computer program which
takes a certain initial population of agents as an input and iteratively applies an
algorithm to evolve the agent population from one time step to the other. In order
to formally represent such an iterative process as a Markov chain, a single state
of the chain must be conceived of as a possible configuration of the entire system
and contain all the dynamical variables and microscopic details—agent attributes,
their connectivity structure, state of the environment etc. A rigorous proof of the
Markovianity of ABMs is not always straightforward. However, the micro process
is a Markov chain whenever the iteration it implements can be understood as a
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(time-independent) stochastic choice out of a set of deterministic options. In this
respect, the random mapping representation of a Markov process (Chap. 3, Sect. 3.2)
helps to understand the role of the collection of (deterministic) dynamical rules
used in the model from one side and of the probability distribution ! governing
the sequential choice of the dynamical rule used to update the system at each time
step from the other side.

2. A class of ABMs that we have called single-step models give rise to random walks
on regular graphs.

Moreover, for a class of models which we have referred to as single-step
dynamics, it is possible to derive explicitly the transition probabilities OP in terms
of the update function u and the probability distribution !. Due to a sequential
update mechanism in which an agent along with a set of neighbors is chosen and
the state of that agent is updated as a function of the neighborhood configuration,
non-zero transition probabilities are possible only between configurations that differ
in at most on element (one agent). This characterizes ABMs as random walks
on regular graphs. Namely, in a system with N agents each of which may be in
one out of ı states, the set ˙ of all agent configurations is the set of strings of
length N of ı possible symbols. Under sequential update of only one agent at a
time, transitions are possible only between adjacent strings so that the maximal
“grammar” of such a system is the Hamming graph H.N; ı/. However, a completely
regular walk on H.N; ı/ with non-zero transition probabilities between all adjacent
configurations is realized only if no constraints act in the system. In particular, as
will be resumed below, if the interaction probabilities and therewith the distribution
! are constrained, for instance, by an underlying interaction network, the structure
of the micro chain becomes more and more irregular. The same is true for other
interaction constraints such as assortativity or bounded confidence.

3. Regularity implies dynamical redundancy and therefore the possibility of state
space reduction.

Nevertheless, the approach to AB simulations as random walks on more or less
regular graphs hints at the possibility of reducing the state space of the micro chain
by exploiting systematically the dynamical symmetries that an ABM gives rise to.
Namely, the existence of non-trivial automorphisms of the micro chain tells us
that certain sets of micro configurations can be interchanged without changing the
probability structure of the chain. These sets of micro states can be aggregated or
lumped into a single macro state and the resulting macro-level process is still a
Markov chain. In Markov chain theory, such a state space reduction by which no
information about the dynamical behavior is lost is known as lumpability.

4. Macro observations and system properties induce state space partitions and
reductions.

There is another way of looking at state space reductions or aggregation which
is particularly relevant in the study of ABMs. Namely, any observable of the system
naturally defines a many-to-one relation by which sets of micro configurations with
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the same observable value are aggregated into the same macro state. In other
words, tracking the time evolution of a model in terms of a system property or
order parameter � that informs us about the global state of the system corresponds
to a projection ˘ of the micro chain onto a partition X of the space of micro
configurations ˙ . Vice versa, any projection map ˘ from ˙ to X defines an
observable � with values in the image set X that are in complete correspondence
with a classification based on an observable property of the system. These two ways
of describing the construction of macro-dynamics are equivalent and the choice of
one or the other point of view is just a matter of taste.

5. A macro observation defines a Markov process if it is compatible with the
symmetries of the micro chain.

6. Vice versa, the symmetries of the micro chain induce a partition with respect to
which the process is lumpable

The main question that this thesis has been concerned with is about the conditions
on the microscopic system .˙; OP/ and the projection construction (˘ W ˙ ! X
or respectively �) that have to be met in order to lead to a macro process that
is still a Markov chain. The starting point has been Kemeny and Snell (1976,
Theorem 6.3.2), in which necessary and sufficient condition for lumpability are
provided. On that basis, a sufficient condition has been provided with Theorem 3.2
that relates the question of lumpability to the symmetries in the dynamical structure
of the micro chain. Namely, to any partition X of ˙ there is a transformation group
G acting on ˙ that generates X and Theorem 3.2 states that the micro process
. OP; ˙/ is lumpable to a macro process .X; P/, if OP is symmetric with respect to
G . The automorphisms of the microscopic transition matrix (for G � Aut. OP/, see
Lemma 3.1) can therefore be used to construct a partition (X) with respect to which
the process is lumpable. In turn, an observation on the system will define a lumpable
macro process if it is compatible with the symmetries of the micro chain.

7. In the voter model, homogeneous mixing is a prerequisite for lumpability with
respect to aggregation over all agent attributes.

This thesis has made extensive use of the voter model (VM)—one of the simplest
ABMs—to illustrate these points. In the binary VM each agent can be in two
possible states � and �. At each time step, two agents (linked in the interaction
network) are chosen at random with probability !.i; j/ and one of them copies the
state of the other. From the microscopic perspective the binary VM is a random walk
on the N-dimensional hypercube (H.N; 2/) and the Hamming weight �.x/ D h.x/

(to maintain this terminology) of an agent configuration is the most typical macro
level of observation. In effect, all micro configurations with the same Hamming
weight are mapped into the same macro state which is a tremendous reduction
from 2N micro states to N C 1 macro states. However, we have shown (Chap. 4,
Sect. 4.1.1) that the symmetries of the micro chain OP are compatible with that level
of observation only if the probability distribution ! is invariant with respect to all
agent permutations. Markovianity at the macro level requires that the probability
with which two agents are chosen !.i; j/ is equal for all agents pairs which renders
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homogeneous mixing a prerequisite for lumpability. The resulting process is known
as Moran process (after Moran 1958).

8. The use of Markov chain theory enables a complete characterization of the
dynamical behavior of the VM with homogeneous mixing.

Throughout Chap. 4 the VM with homogeneous mixing and the resulting macro
chain on X D .X0; : : : ; Xk; : : : XN/ with h.x/ D k has been discussed in detail.
Due to the structure of the macro chain it has been possible to derive a closed-
form expression for the fundamental matrix F for arbitrary N. Encoding the
recurrence and hitting times of the system, this provides all the information
about the mean quantities and variances of the transient dynamics in this model.
Noteworthy, Markov chain theory allows for some computations that are not easy
with other methods such as mean-field approaches. For instance, it is possible to
characterize the convergence behavior of realizations that end up in one absorbing
state independently from those that end up in the other one (Sect. 4.2.4). Moreover,
the multi-state VM in which agents can adopt ı different states is shown to be
reducible to the binary VM by a further lumping. However, only if the interaction
is unconstrained in the sense that all agents and all attributes interact in the same
way. In turn, if interactions are constrained by assortativity or bounded confidence
this may lead to a stable pattern of polarization at the level of the entire population
(Sect. 4.2).

9. Microscopic heterogeneity translates into dynamical irregularities in the micro
chain and requires a refinement of the aggregation and the corresponding level
of observation.

When inhomogeneities are introduced in the model, the symmetry conditions for
lumpability in Theorem 3.2 (as well as Kemeny and Snell 1976, Theorem 6.3.2, ) are
no longer satisfied for the partition X induced by aggregation over all agents (i.e.,
by h.x/). However, Chap. 5 shows at the example of the VM that a refinement of
the aggregation procedure is possible which is based entirely on the symmetries
of the interaction probabilities !. Proposition 5.1 states that the automorphism
of ! may be used to define a group G of bijections on ˙ which generates a
lumpable partition M! of ˙ . Noteworthy, while Theorem 3.2 as well as common
approaches to lumpability require the analysis of the ıN-dimensional micro chain,
with Proposition 5.1 the result is stated in terms of the symmetries of a interaction
network of size N. The most important implication of Proposition 5.1 is that the
higher the amount of heterogeneity in the agent system, the lesser the coarse-
graining that is possible if a Markovian description is desired to capture all the
dynamical details of the micro process. In other words, the more constrained
and heterogeneous the microscopic interaction probabilities and rules, the more
irregular the micro process and the lower the chances to obtain a reasonable
reduction by Markov chain aggregation.

10. Markov chain aggregation leads to solvable chains (only for) for “simple”
population structures.
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It is clear then that the exact aggregation by lumpability significantly reduces
the number of states only if the interaction network that underlies the model
possesses a lot of symmetries. This restricts the applicability of the method as a
solution technique for ABMs to stylized situations as the leader-follower topology
(Sect. 5.5) or the two-community model (Sects. 5.4 and 6.4). Nevertheless, even in
those stylized situations interesting features can be observed. In the leader-follower
system, the probability that the leader imposes its opinion on a follower population
increases with the influence asymmetry between a leader and the followers but is
independent of peer-to-peer processes among followers. A greater influence of the
leader also accelerates the convergence process, however, this effect is undermined
by a stronger peer-to-peer communication (Sect. 5.5). For the two-community VM,
in which a weak influence exists between two strongly connected groups, a general
increase in convergence times is observed due to the existence of meta-stable
states of intra-community consensus and inter-community polarization. This is also
observed in the quasi-stationary distribution of the two-community VM.

Similar results are obtained for the contrarian VM (CVM) in which agents act
in a contrarian way with a small probability p (Chap. 6). An increasing contrarian
rate leads to a process that is characterized more and more by random state
flips independent of whether the agents are completely connected or organized in
communities. As p becomes smaller, topological effects become visible. On the
complete graph the population is almost uniform for long periods of time, but due to
the random perturbations introduced by the contrarian rule there are rare transitions
between the two consensus profiles. Noteworthy, there is a characteristic p at which
the rate of switching becomes maximal (Sect. 6.3.2). On the two-community graph
the system is likely to approach the states of inter-community polarization and
remain there for quite some time. Such ordering behavior is also observed for other
networks with a strong local structure (Sect. 7.2.2).

11. Microscopic heterogeneity leads to macroscopic complexity.

Another interpretation that Proposition 5.1 suggests is that microscopic hetero-
geneity introduces complexity at the macroscopic level. This idea has been taken
up in Chap. 7 using the CVM as an example. If we decide to stay at the level of
full aggregation over all agents (h.x/) despite the fact that it is not compatible with
the symmetries of the micro chain, the process obtained by this projection is no
longer a Markov chain. This means that a certain amount of memory is introduced
at the macroscopic level by the very way the system is observed. In the last part
of Chap. 7, this divergence from Markovianity has been quantified in terms of the
information that the past (before the present) contains about the future. The two-
community CVM has served as a scenario in which these entities can be explicitly
computed. Again, there is a characteristic contrarian rate p at which deviations from
Markovianity are maximal.

The method informs us in this way about the complexity of a system intro-
duced by non-trivial interaction relations. Namely, the theory of Markov chain
aggregation makes explicit statements about when a micro process is compressible
to a certain macro-level description. This links non-lumpability to computational
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incompressibility, one of the key concepts in dynamical emergence (Bedau 2003;
Huneman and Humphreys 2008, among others). Moreover, in the context of Markov
chain aggregation, computational incompressibility becomes directly related to
Wimsatt’s notion of non-aggregativity (Wimsatt 1986, 2006), another important
account of emergence. The argumentation in Chap. 9 suggests that deviations from
Markovianity at the macro level can be understood as a fingerprint of dynamical
emergence—and hence complexity—as the macroscopic process displays features
that are not present in the micro level process.

The models used throughout this book are very simple and I would not claim
that they are reasonable descriptions of real social phenomena. Their main purpose
is to shed light on some fundamental mechanism of self-organizing systems. In this
regard, I would like to emphasize the role that constraints on the agent behavior
play regarding the aggregativity or reducibility of the models to a macro-level
description. Even in those simple models, complex and heterogeneous interactions
structures rule out completely the possibility of deriving a loss-less Markovian
macro description which is sensitive to all dynamical details. Likewise do con-
straints on the interaction rules (as assortativity) necessitate the inclusion of more
detail into a valid macro-level description in order to account for population effects
(as polarization) that emerge from them. With their obvious limitations, the models
used here do not allow for a direct generalization to more realistic cases, their
treatment is only the first step in the stochastic analysis of the micro-macro link
in social simulation. On the other hand, an increase in model complexity in more
sophisticated ABMs comes often by introducing various levels or dimensions of
agent heterogeneity, different types of agents with different rules, and a possibly
variable environment. The macro patterns we observe in them are always the result
of an adjustment of the constraints on and heterogeneities in the microscopic system
and the fundamental mechanisms those that are at play also in the simpler models.

Nevertheless, the application of the ideas presented in this thesis to other ABMs
is certainly an interesting issue for the future. Even if this has to be carefully
considered model by model, a micro formulation in form of a micro chain will
usually be possible (see Sects. 3.2.3 and 4.3). For more sophisticated ABMs,
however, deriving an exact aggregate description of a size which allows for direct
computations by the use of strong lumpability is not likely. On the other hand, there
are nowadays powerful computational techniques to deal with large Markov chains,
and interestingly, these methods are often based on approximate aggregations of
the chains (Buchholz 2006; Stewart 2009; Touzene 2013, among many others). In
this context, the presented concepts might help in the analysis of the adequacy of
such approximate techniques, and they may also shed light on the relation between
approximate aggregations and the macroscopic measures they can be associated
with.

The method is most directly applicable to models at use in socio-cultural
dynamics, evolutionary graph theory as well as to stochastic cellular automata (CA).
Regarding the first field, one interesting extension concerns simple forms of memory
in the agent decisions such as agents that remember the states that they have already
visited (Bornholdt et al. 2011) or by assuming that the probability of an agent
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to change its opinion decreases with the time it sticks to the current one (Stark
et al. 2008). The macroscopic effects of these simple extensions are very interesting
and encouraging for further analysis. Likewise, a more sophisticated modeling
consists of coupling the individual agent dynamics with the macro dynamics and
allow certain macro-structural properties to feed back onto the level of individual
decisions. Such ingredients have been introduced into models of herd behavior in
finance (Krause and Bornholdt 2013) and they are also relevant in voting behavior
(Caruso and Castorina 2005).

Secondly, the main question in evolutionary graph theory is how the population
structure ! affects the outcome of an evolutionary process. It is now well-known that
certain population structures may enhance or suppress selection in the sense that the
probability of a randomly placed mutant to invade the entire population differs from
the respective Moran probability obtained for homogeneous mixing (Liberman et al.
2005). We have seen such a divergence from the Moran probabilities in Sect. 5.5
where the VM on a leader-follower topology has been discussed. The search for
paradigmatic network structures which affect the fixation probabilities is still a topic
of current research (e.g., Shakarian et al. 2012; Voorhees and Murray 2013) and the
methods developed here, Proposition 5.1 in particular, can be directly applied to
study not only exit probabilities, but also the pace of mutant fixation.

Thirdly, regarding the idea of relating lumpability to dynamical emergence
(Chap. 9), the application to CA is a particularly compelling idea. However, a micro
description of the original synchronous CA as Markov chains is challenging as, in
principle, all agents can change at a time (notice that original CA are deterministic
systems, but that their transitions can nevertheless be encoded in a “transition
matrix”). On the other hand, their asynchronous probabilistic counterparts belong
precisely to the class of single-step dynamics which we have been concerned with
in this book. (See, for instance, Schönfisch and de Roos, 1999; Nehaniv 2004
for the relation between asynchronous and synchronous automata.) In particular,
when the probability of choosing a triple .i; j; k/ of cells is equal for all triples
(complete graph), the micro chain is lumpable with respect to a (macro) description
in term of the number of white and respectively black cells (as sensible as such a
description might be). Some preliminary computations with the respective macro
chains indicate, that the different rules alone, even in a non-localized form, lead to
behaviors by which the more complex rules are distinguishable from the simpler
ones. This might be useful for classification. While this work has been more
concerned with the effects of heterogeneity in !, the systematic study of elementary
CA in a homogeneous setting could be a way to understand the contribution of
different update rules u to the dynamic behavior of complex computational models.

Another more general topic that should be addressed in the future is to obtain
a more detailed but also more synthetic understanding of the macroscopic effects
that may emerge in micro simulation models. One starting point could be a
quantification of the range of memory at the macro level in order to gain insight
about the microscopic conditions for long-term memory effects that are known to
exist in many real world systems from Finance (Cont 2001) to Biology (Stanley
et al. 1994). This work shows that a crucial role in the emergence of temporal
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correlations is played by the patterns of microscopic heterogeneity implemented
in the agent model, the nature of the correlations due to the underlying structure and
the constraints in the interaction rules. Along the lines of Chap. 7, insight into the
fundamental principles for the emergence of temporal correlations in microscopic
simulation models could be obtained by applying information-theoretic tools and
Markov chain theory to ABMs.

More generally, under certain circumstances the macro process may undergo
dynamical changes in its own structural rules. This fact is referred to as explanatory
emergence, a controversial issue in social theory (Giesen 1987). It can be understood
either as a consequence of some external (to the model) inputs or on the basis of deep
accelerations of the micro dynamics that in turn bring about the processes of change
at the macro level. In both cases this question opens up to new theoretical as well as
very interesting practical developments.

All in all, the theory of Markov chain aggregation applied to ABMs provides a
useful instrument for the analysis of the link from a microscopic AB description of
a dynamical system to macroscopic observables and may therefore contribute to our
understanding of aggregation and emergence in complex adaptive systems.
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