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Supervisor’s Foreword

In a quite general sense science can be perceived as dealing with two universal
questions:

• How things work, on all scales, from the macroscopic down to the most
microscopic level possible? and

• Why things sometimes do not work, or do not work correctly?

But can we really understand why things sometimes do not work by knowing
about their function when their structure is normal? For example in medicine, can
we diagnose diseases by analysing and mapping genes, the present day atomic level
for living systems? Can we sometimes map a given disease onto particular sets of
genes, and then replace those genes to cure the disease? It would have been
wonderful if this scenario was possible—but living systems are altogether too
complex for such a picture to apply except perhaps in a few exceptional cases.

With complex systems, where the whole is more than the sum of the parts [1], in
addition to understanding the role of each component, one needs to understand how
they interact. Interaction is a property of the functioning of a system. While the
structure is relatively easy to establish—with today’s advanced technology, effec-
tive imaging can be done at and below the nano-level—the function is usually much
more difficult to decipher. This is because of two extremes inherent in every
function:

(a) When only one entity is being considered, and it has nothing else to interact
with, there is no function. Function is meaningful only when interactions exist.
Of course, the entity in question is probably made up of more micro-scopic
elements, so that it may have internal function, and the boundaries are being
pushed continuously with the advent of new technology. So, one speaks of the
currently accessible microscopic level.

(b) But as soon as we know interactions to exist, we face other questions: how
should the basic functional units be defined? Furthermore, what is the con-
tribution of the interactions and how are they mediated?
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Hence, despite the breath-taking speed of progress in science and technology, or
perhaps as a consequence, we face the problem of how best to make use of these
advances. Ideally, one can expect that the macroscopic-down-to-microscopic scale
approach (also known as the top-down approach) will include the study of
inter-actions and provide details of how things work at every level of complexity.
But in the top-down approach, the interactions are often overlooked.

In the bottom-up approach everything is observed and taken account of simul-
taneously. On the other hand one can expect that the complex systems approach—
when all parts are left to exist without greatly perturbing them—could bring huge
advances, especially in understanding why either natural or man-made systems go
wrong. For this approach to be successful one expects that the function of the
system in question will be recorded in some appropriate way, and preferably in a
way that is non-perturbative (non-invasive) over the relevant period, and recording
simultaneously at as many as possible levels of complexity. However, this brings
yet another set of problems: we can easily end up with too much information which,
in turn, brings huge difficulties of interpretation. Two factors are crucial here:

(i) The availability of basic knowledge about all the parts, and about how they
interact.

(ii) The availability of good methods for making use of the recorded data. These
include good physical models and theories for non-isolated and complex
systems, as well as good methods for the inverse approach, known as
time-series analysis, or signal analysis or data analysis–depending on whether
physicists or mathematicians or, more recently, computer scientists, are
dominating the enterprise.

The step formulated under (ii) is a fundamental problem of decomposition, and it
is relevant to practically every area of science: from biology to astrophysics, from
micro-economics to sociology, from cell dynamics to brain dynamics, from
nature-made to man-made systems.

Although a number of methods have been proposed for dealing with many the
obstacles that arise when tackling the problem of decomposition, the major
unsolved problem to date has been to develop a form of decomposition that takes
explicit account of nonlinearitiy. Nonlinearities can be present both in the basic
functioning units as well as in their interactions. Dima has confronted this problem
directly, and has proposed a new method of decomposition which he has named
Nonlinear Mode Decomposition (NMD).

Of course, every method of decomposition assumes the existence of determin-
ism. Complex systems with a large deterministic contribution are often oscillatory
and, moreover, they often have time-varying characteristic oscillation frequencies.
Therefore, the central part of the work is detection of the “ridges” of the basic
modes and of high harmonics of nonlinear, time varying, oscillatory processes.
Dima has made excellent use of a recently-proposed method for detecting the high
harmonics of noisy time-variable oscillatory processes, based on mutual informa-
tion and surrogate testing [2].
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His work is very systematic and detailed. It not only presents the NMD method,
but also reviews critically the methods available for time-frequency analysis,
including the short-time Fourier transform and wavelet transform. It introduces key
concepts, such as the analytic signal representation, instantaneous frequency,
instantaneous amplitude, and how to detect them from real data. It also introduces
ridge curves and discusses methods for their extraction. Finally, it introduces NMD
itself, which consists of three main steps:

(a) Obtain a time-frequency representation of the signal and extract the time-
evolution of the fundamental harmonics (basic frequency) of the nonlinear
mode.

(b) Select candidates for all high harmonics and identify the true harmonics.
(c) Reconstruct the full nonlinear mode by summing together all the true har-

monics; subtract it from the signal; and iterate the procedure on the residual
until a pre-set stopping criterion is met.

Dima has illustrated the application of the method, not only with several
numerical examples, but also on real signals related to cardiovascular and brain
dynamics. Given that nearly all real systems of an oscillatory character have
imperfect clocks, so that their characteristic frequencies are time-variable, the
method can be expected to be useful in practically all areas of science. The work
also provides an excellent reference for those who would like to gain an in-depth
understanding of recent advances in time-frequency analysis, quite generally.

Lancaster Prof. Aneta Stefanovska
June 2015
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Abstract

This thesis introduces a new adaptive decomposition method—Nonlinear Mode
Decomposition (NMD)—which decomposes a given signal into a set of physically
meaningful oscillations within any waveform, simultaneously removing the noise.
It is based on the powerful combination of two elements. First, time-frequency
analysis techniques with the adaptive parameter choice make the method extremely
noise-robust. Secondly, surrogate data tests are used to identify interdependent
oscillations and to distinguish deterministic from random activity.

The theory of linear time-frequency representations, which represent the foun-
dation of NMD, is first reviewed and advanced, with emphasis being placed on its
practically relevant aspects. Techniques for extracting harmonic oscillations with
time-varying amplitudes and frequencies from the signal’s time-frequency repre-
sentation are then developed. By combining these techniques with additional pro-
cedures devised for distinguishing the retrieved oscillations from noise and for the
recovery of their full waveforms, the NMD is finally formed.

The performance of the method is illustrated on both simulated and real signals,
and its qualitative and quantitative superiority over the other existing approaches
(such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion
and independent component analysis) is shown. In particular, NMD is applied for
the decomposition of human blood flow signals and, based on properties of the
recovered oscillations for different subject groups, certain aspects of cardiovascular
ageing and (treated) hypertension are revealed. Furthermore, applications of the
method for removing the measurement artefacts from a single electroencephalo-
gram recording, and for distinguishing different kinds of systems, are also dem-
onstrated. These examples, however, represent only a few out of many possible
uses of NMD, which can be applied routinely to a diversity of signals coming from
various scientific areas (geophysics, finance, life sciences, etc.). The necessary
MATLAB codes for running NMD are freely available for download.
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Abbreviations and Symbols

All abbreviations and notation will be gradually introduced in the main text, but for
convenience they are all listed below together with the references to the places in
the text where one can find their precise meaning and related discussion.

Abbreviations

BCG Ballistocardiogram (artifacts)
ECG Electrocardiogram
EEG Electroencephalogram
EEMD Ensemble Empirical Mode Decomposition
EMD Empirical Mode Decomposition
FT Fourier Transform
FFT Fast Fourier Transform (algorithm)
ICA Independent Component Analysis
IFFT Inverse Fast Fourier Transform (algorithm)
LDF Laser-Doppler flowmetry (the method for measuring skin blood flow, see

Sect. 5.2.1)
NM Nonlinear Mode (see (4.1) and its discussion)
NMD Nonlinear Mode Decomposition (see Chap. 4)
PCA Principal Component Analysis
TFR Time-Frequency Representation (includes WFT, WT and many others,

but in this work only the former two are considered)
TFS Time-Frequency Support (see Sect. 3.2.2)
WFT Windowed Fourier Transform (see Sect. 2.2.1)
WT Wavelet Transform (see Sect. 2.2.2)
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Terminology

AM/FM component,
or simply component

Sinusoidal oscillation with amplitude and/or fre-
quency modulation, i.e. the function of time t of the
form xðtÞ ¼ AðtÞ cosφðtÞ with AðtÞ[ 0;φ0ðtÞ[ 0; 8t
(see Sect. 2.1 for a more detailed discussion)

Tone AM/FM component of constant amplitude and fre-
quency, i.e. a simple sine xðtÞ ¼ A cosðνt þ ϕÞ

Gaussian window Window function of the form (2.12)
Morlet wavelet Wavelet function of the form (2.18)
Lognormal wavelet Wavelet function of the form (2.19)
Time resolution of the
TFR

The reciprocal of the minimum time lag between the
two time events for which they can both be
represented reliably in the TFR (see Sect. 2.3)

Frequency resolution
of the TFR

The reciprocal of the minimum frequency difference
between the two frequency events (tones) for which
they can both be represented reliably in the TFR (see
Sect. 2.3)

Joint time-frequency
resolution of the TFR

The reciprocal of the minimum time-frequency area
where the interference between two time events and
between two frequency events is simultaneously small
in the TFR (see Sect. 2.3)

Nonlinear Mode (NM) Amplitude and/or frequency modulated oscillation
which, in contrast to simple AM/FM component, is
allowed to have a complex waveform.
Mathematically, it is defined as a function of time t
of the form cðtÞ ¼ AðtÞPh ah cosðφðtÞ þ ϕhÞ with
AðtÞ[ 0;φ0ðtÞ[ 0; 8t (see (4.1) and its discussion for
more details)

Harmonic AM/FM component which represents a part of some
nonlinear mode (4.1); harmonic with the lowest fre-
quency among those corresponding to the same NM is
referred to as its fundamental (or first) harmonic (see
(4.1) and its discussion for more details)
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Main Notation

f̂ ðξÞ Fourier Transform of f ðtÞ, see (2.2)

f�ðtÞ Positive/negative frequency part of f ðtÞ, see (2.2)
hf ðtÞi Time average of f ðtÞ, see (2.2)
std½f ðtÞ� Standard deviation of f ðtÞ, see (2.2)
f �ðtÞ Complex conjugate of f ðtÞ
c:c: Complex conjugate of the preceding expression
Re½x�; Im½x� Real and imaginary parts of x
saðtÞ Analytic signal (2.3), which is twice the signal’s positive

frequency part saðtÞ ¼ 2sþðtÞ. If the original signal is real, as
is assumed in this work, then sðtÞ � hsðtÞi ¼ Re½saðtÞ�

signðxÞ Sign function: signðx[ 0Þ ¼ 1, signðx\0Þ ¼ �1,
signð0Þ ¼ 0

JnðxÞ nth order Bessel function of the first kind
InðxÞ nth order modified Bessel function of the first kind
ΓðaÞ Gamma function ΓðnÞ � R1

0 xa�1e�xdx (¼ ða� 1Þ! if a 2 N)
erf ðxÞ Gauss error function erfðxÞ � 2ffiffiffi

π
p

R x
0 e

�u2du

nGðεÞ Number of standard deviations of the Gaussian distribution
within which its ð1� εÞ part is contained, i.e.R nG

�nG
e�u2=2du

R1
�1 e�u2=2du

¼ erfðnG=
ffiffiffi
2

p Þ ¼ 1� ε. For example,

nGð0:05Þ � 2, nGð0:01Þ � 2:5, nGð0:001Þ � 3:3
Gsðt;ωÞ;Wsðt;ωÞ WFT (2.8) and WT (2.13) of the considered signal sðtÞ,

respectively
gðtÞ; ĝðξÞ Time domain and frequency domain forms of the window

function used for computation of the WFT (2.8), respectively
ψðtÞ; ψ̂ðξÞ Time domain and frequency domain forms of the wavelet

function used for computation of the WT (2.13), respectively
ωg;ωψ Window and wavelet peak frequencies: ωg � argmax

ω

jĝðωÞj,
ωψ � argmax

ω

jψ̂ðωÞj. It is assumed that ωg ¼ 0

Cg;Cψ Integration constants defined in (2.11) and (2.17), respectively
ωg;Dψ Integration constants defined in (7.9) and (7.10), respectively
f0 Window/wavelet resolution parameter which determines the

trade-off between its time and frequency resolutions (in the
sense that increasing f0 increases frequency resolution but
decreases time resolution). The way it is introduced for
different window and wavelet functions is described in
Appendix 7.2

RgðωÞ;PgðτÞ Quantitative measures of the area below ĝðξ\ωÞ and gðt\τÞ,
respectively, as defined in (2.26)
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RψðωÞ;PψðτÞ Quantitative measures of the area below ψ̂ð0\ξ\ωÞ and
gðt\τÞ, respectively, as defined in (2.27)

ξ1;2ðεÞ, τ1;2ðεÞ ε-supports of the window/wavelet function in time and
frequency, defined in (2.26) for windows and in (2.27) for
wavelets; whether it refers to the former or to the latter is
always clear from the context

Hsðω; tÞ Used to denote both Gsðω; tÞ and Wsðω; tÞ in expressions
which are the same for both WFT and WT

½ωmin; ωmax� Frequency range for which the currently considered TFR is
calculated

ωpðtÞ Ridge curve of some component in the currently considered
TFR (see Sect. 3.1.1)

½ω�ðtÞ;ωþðtÞ� Time-frequency support of some component in the currently
considered TFR (see Sect. 3.2.2)

ah;ϕh Amplitude ratios and phase shifts of harmonics for the
currently considered nonlinear mode (4.1)

ηWðtÞ Gaussian white noise of unit variance
ηBðtÞ Brownian noise of unit variance, constructed as a (normalized)

cumulative sum of the Gaussian white noise signal:
ηBðtnÞ�

Pn�1
i¼0 ηW ðiΔtÞ

Assumptions and Conventions

• Where undefined, the integrals are taken over ð�1;1Þ or, in practice, over the
full range of the corresponding variable. For example, given a signal sðtÞ, one
has

R
sðtÞdt � R1

�1 sðtÞdt theoretically and
R
sðtÞdt � R T

0 sðtÞdt practically, with
T denoting the overall time duration of the signal.

• All TFRs are assumed to be computed for a real signal sðtÞ. Additionally,
without loss of generality it is always assumed that argmax

ξ

jĝðξÞj ¼ 0, i.e. that

the window function used for calculating the WFT (2.8) is peaked at zero in the
frequency domain (see Sect. 2.2.1).

• In all examples, unless specified otherwise, the WFT (WT) is calculated using
Gaussian window (2.12) (lognormal wavelet (2.19)) with f0 ¼ 1. The frequency
axis is discretized as ωk ¼ ðk � k0ÞΔω for the WFT, and as ωk=2π ¼ 2ðk�k0Þ=nv
for the WT, with the discretization parameters Δω and nv being selected
according to the criteria (2.34) with Nb ¼ 10 (yielding Δω=2π ¼ 0:02 and nv ¼
33 for the Gaussian window and lognormal wavelet with f0 ¼ 1, respectively).
To reduce boundary effects in the TFRs (see Sect. 2.4.3), the predictive padding
is used by default, with the number of padded values being calculated according
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to (2.36); in the majority of cases, however, only the “distortion-free” TFR parts
(i.e. those lying within the corresponding cones-of-influence (2.39) with
ε ¼ 0:01) are presented.

• To simplify all expressions, the circular frequencies—in rad/s—are mainly used,
denoted by ω; ν; ξ (with additional subscripts or superscripts); to convert these
frequencies to Hz, one needs to divide them by 2π. Note, however, that the
signal’s sampling frequency fs is always taken to be in Hz.
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Chapter 1
Introduction

1.1 Preamble

Oscillatory systems are abundant in nature, surrounding us on all sides. Consider,
for example, the propagating vibrations of a medium that are perceived as sound,
the rhythmic heart pulses pushing blood through the arteries and veins, the repeated
movements of air through the lungs known as breathing, the diurnal (day-night)
cycle, and periodic climate changes. All of these are examples of oscillations. It is
therefore beyond doubt that to understand better the world we live in, or at least to
create a more efficient view of it—which is the main aim of any science—one needs
to study such oscillatory processes.

In practice, real systems are investigated by analysing the observable data that
they generate, which is most commonly presented in the form of time series (i.e.
discrete time signals). These consist of sequences of data points, each having its
own reference time. Simple examples of such time series signals would be an hourly
measured solar flux intensities, or the body temperature measured once per minute.

Due to the very abundance of oscillatory systems, measured signals are usually
composed of a mixture of different oscillations with complex waveforms and time-
varying amplitudes and frequencies. These oscillations, whichwill also be referred to
as modes, contain a great deal of valuable information about the originating system.
They can be used to predict earthquakes from geophysical signals [1], or to infer
possible future market movements from a financial time series [2]. The oscillatory
properties of the signals generated by pieces of machinery can be used to assess
its functionality and to diagnose faults [3–5]; the same is true for signals generated
by the human body (e.g. the electrical activity of the heart), which often have both
diagnostic and prognostic value for a variety of diseases [6, 7]. Quite generally, the
function of any living organism depends on a range of oscillatory processes taking
place on all scales, from microscopic to macroscopic [8, 9].

The question is therefore how to gain access to the properties of the individual
oscillations contained in a measured signal. Though one can often estimate certain
characteristics indirectly, to gain access to all the properties of a particular mode

© Springer International Publishing Switzerland 2015
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2 1 Introduction

it should first be extracted from the signal. Usually, this task is additionally com-
plicated by the presence of noise—an unwanted pseudorandom activity arising as
the cumulative outcome of a large number of small events or weak processes (e.g.
generated by unsynchronized microscopic oscillators [10]). For a reliable analysis,
therefore, one needs to decompose the signal, i.e. recover the individual oscillations
that are present in it, separating them both from each other and from the inevitable
background of noise.

How best to accomplish this decomposition is a long-standing problem, andmany
different approaches have been proposed. Historically, the first approach of this kind
was probably the well-known Fourier transform (FT) introduced by Joseph Fourier
in 1822. It represents the signal as a linear superposition of trigonometric functions,
thus decomposing it into a set of tones—oscillations with constant amplitudes and
frequencies. This approach was so successful, that nearly all areas of research bene-
fitted from it, and now Fourier analysis is widely used in acoustics, optics, quantum
mechanics, econometrics, mathematics and many other disciplines.

However, it is rare for real oscillations to be strictly periodic: they are usually
characterized by time-dependences of their frequency and other parameters. Thus,
the heart does not beat at a constant rate, but continuously adjusts itself, depending
on internal and external influences, such as the respiratory cycle [11, 12]; in turn, the
respiratory cycle is itself also characterized by a time-varying period, as we breath
quite irregularly, sometimes making a long deep breath and sometimes breathing
fast and shallowly [12, 13]; even diurnal cycles change their period slowly due to
the deceleration of the Earth’s rotation [14]. The Fourier transform cannot represent
such time-dependent oscillations as single entities and, instead, it decomposes them
into multiple tones. The latter are therefore of purely mathematical utility and do
not make physical sense, so that the Fourier transform is not usefully interpretable
in such cases.

A natural way to extend Fourier analysis to the case of amplitude/frequency mod-
ulated oscillations is to analyse the FT computed for a sequence of relatively short
sections of signal centered on different times: this can conveniently be effected with
the aid of a sliding time window. This idea gave birth to the so-called windowed (or
short-time) Fourier transform (WFT) [15–17]. Later on, it was observed that the use
of adaptive windows scaled for each frequency can be advantageous in many cases,
which led to the introduction of the wavelet transform (WT) [17–19]. In addition to
the WFT and WT, there are numerous other ways of projecting the signal onto the
time-frequency plane, with such projections generally being called time-frequency
representations (TFRs); theWigner-Ville [20, 21], Rihaczek [22] and Choi-Williams
[23] distributions are the other well-known examples of the TFRs (see [16, 17, 19,
24–28] for a number of excellent books and reviews on the topic).

In the time-frequency plane, the oscillatory components present in the signal
appear in the form of “curves”, formed by the sequences of TFR amplitude peaks.
Having identified these curves, one can then recover the corresponding oscillations,
thereby decomposing the signal. This idea gave birth to the proposal of a variety of
techniques in recent years [29–34], with great advantage of such approaches being
their high noise-robustness [35, 36].
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In line with the development of TFRs, there has also been an intensive activity on
developing decomposition methods for multivariate time-series. The most widely-
used among them are principal component analysis (PCA) [37, 38] and independent
component analysis (ICA) [39, 40], as well as their numerous modifications and
extensions [41, 42]. These methods assume that all signals are linear mixtures of the
same scaled parts, and try to find these parts as the ones that are minimally correlated
(PCA) or maximally independent (ICA). In the present work, however, consideration
is restricted to univariate signals, i.e. those represented by a single time-series. To
apply PCA and ICA in this case, one should first construct a multivariate signal from
the original (univariate) one, which can be accomplished by using its time-shifted
blocks [43]. PCA and ICA can then be applied to this collection of the original
signal’s parts, in which case they are called single-channel PCA (also known as
Karhunen-Loève expansion) and single-channel ICA [44], respectively.

Finally, the other approach for decomposing a univariate signal into a set of oscilla-
tions with time-varying amplitudes and frequencies, empirical mode decomposition
(EMD), was proposed in 1998 [45]. This method works directly in the time domain
and is based on identification and interpolation of peaks and troughs in the signal.
Although purely empirical and very sensitive to noise, EMD nonetheless became
very popular and has already been cited more than 4500 times (according to Web of
Science, while Google Scholar returns>9000 citations), a fact that reflects very well
the importance of the problem being addressed. As a next step, Wu and Huang [46]
proposed a modification called ensemble empirical mode decomposition (EEMD),
which aims to overcome the high noise-sensitivity and other drawbacks of EMD.
The basic idea behind it is to add independent realizations of white Gaussian noise
to the signal and to apply EMD each time, with the final modes being obtained as
the ensemble averages of the modes for each noise realization.

Each of the above-mentioned approaches, however, suffers from at least two of
the following flaws:

1. Themethod contains user-defined parameters and is quite sensitive to their choice.
These parameters cannot be adaptively chosen and there are no more-or-less
universal settings.

2. The method is not noise-robust.
3. If an individual mode has a complex (nonsinusoidal) waveform, the method will

decompose it into a few distinct oscillations with simpler waveforms.
4. The modes returned by the method are not always physically meaningful. For

example, the method will decompose even a random signal, such as Brownian
noise, into a set of oscillations.

Thus, the EMD method suffers from disadvantages 2–4, with 3 manifesting itself
only in cases where the corresponding oscillation has a waveform with multiple
peaks. The EEMD modification to some extent removes the disadvantage 2 (though
still not making the method really noise-robust, at least in comparison with the
alternative approaches), but other flaws remain. Single-channel PCA (or Karhunen-
Loève expansion) and single-channel ICA suffer from drawback 1, as they both are
very susceptible to the choice of time-shifts and of the number of blocks used to
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create the multivariate signal from the original one (as was demonstrated e.g. in [43]
for Karhunen-Loève expansion); in addition, they also suffer from flaw number 4.
Finally, the TFR-based methods, in addition to disadvantage 4, which is common
to all current approaches, also suffer from drawback 3, because any oscillation with
a non-sinusoidal waveform is typically represented by a number of curves in the
time-frequency plane.

These drawbacks greatly restrict the applicability of the approaches currently in
use, so that the decomposition can be carried out successfully only for a small class
of signals. The present work therefore introduces a new method—Nonlinear Mode
Decomposition (NMD)—which is intended to be free from all the disadvantages
considered above. The emphasis of this work is therefore the development of NMD
and its applications, which include (but are not limited to) the decomposition of
blood flow signals, clinical studies of the effects of ageing and hypertension, artifact
removal and system classification.

1.2 Outline

Nonlinear mode decomposition consists ofmany elements, and for a thorough under-
standing of all of them this work builds up the method block-by-block starting from
its foundations. Thus, the WFT andWT, which represent the very basis of NMD, are
first considered in Chap.2. It aims to provide a detailed review of their properties
and related issues, focusing on the most practically relevant aspects and not going
too deeply into the mathematical theory.

Next, Chap. 3 considers the identification and reconstruction of the oscillatory
components present in the signal based on its WFT or WT. It develops the tech-
niques for tracking the oscillatory components in the time-frequency plane, and for
estimating their properties. These techniques allow one to extract the constituent
oscillations from the signal.

Based on theory reviewed/developed in Chaps. 2 and 3, NMD is constructed in
Chap.4, where its subprocedures, their realizations and possible improvements are
developed one-by-one. The particular emphasis is put on the extraction of oscilla-
tions with complex waveforms and related issues, as well as on the determining the
number ofmeaningful oscillations in the signal. The corresponding techniques, being
combined with those developed in Chap.3, form the final decomposition method.

The operation and performance of the method on simulated examples are illus-
trated in Chap. 5, and NMD is then applied to various real-life problems.
Chapter 6 summarizes the work and outlines future perspectives together with the
possible improvements, while Appendix provides mostly technical details that are
omitted from the main text to avoid interrupting the smooth flow of ideas.
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Chapter 2
Linear Time-Frequency Analysis

The identification and quantification of the oscillatory components present in a given
signal represents a classic problem of signal processing, and one of the most success-
ful approaches for solving it has been through time-frequency analysis. Thus, it is
often useful to study the signal’s structure in both time and frequency simultaneously,
which can be done by considering a specifically constructed projection of the signal
onto the time-frequency plane—its time-frequency representation. Such an approach
proves to be especially suitable for signals containing many oscillatory components
with time-varying amplitudes and/or frequencies, which is a very common scenario
for real-life signals [1, 25, 37, 48, 49].

Consider, for example, the activity of the heart: although beatingwith frequency of
1Hz on average, the length of the period between the consecutive beats—and there-
fore the frequency—is time-dependent; moreover, the corresponding variations of
the beat-to-beat interval are of high clinical relevance [36]. These variations and their
properties are straightforward to analyse in the time-frequency plane, where time-
dependent frequency of the heart can be easily traced [9, 10, 17, 18, 25, 26, 50]. The
same applies to many other real-life signals, so the TFRs are now routinely applied
in almost every area of science, from image processing and finance to geophysics
and the life sciences [1, 2, 25, 32–34, 37, 43, 45, 47, 49, 51, 55].

General aspects of time-frequency analysis, and the properties of the different
existing TFRs, have been thoroughly discussed in a number of excellent books
[1, 8, 14, 16, 21, 22, 30, 37, 46] and reviews [13, 23, 41, 43, 51]. There exist two
main TFR classes: linear (such as the WFT and WT [1, 16, 37]) and quadratic (such
as the Wigner-Ville [54, 56], Rihaczek [42] and Choi-Williams [12] distributions,
see [8, 22, 23] for a more comprehensive list). Although each of these has its own
advantages, only the WFT and WT will be considered in this work. This is because,
in contrast to quadratic representations, these types offer an easy and straightforward
way of extracting and reconstructing individual components present in the signal (see
Chap.3), which property will be of crucial importance in what follows.

The present chapter presents a thorough discussion of the WFT and WT, their
implementation, properties and related issues, providing all the information that is
needed to understand them and apply them effectively. Particular attention is paid to
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the practical aspects, but the necessary mathematical theory is also reviewed. The
basic definitions, such as the AM/FM component and the analytic signal, as well
as the need for time-frequency analysis, are first discussed in Sect. 2.1. The WFT
and WT are then defined in Sect. 2.2, which also reviews their basic properties and
illustrates the difference between the two. The resolution properties of the WFT and
WT are considered in Sect. 2.3, while Sect. 2.4 discusses various aspects of “real-
life” TFR usage, namely: signal preprocessing that should be performed; frequency
discretization and how to do it appropriately; boundary distortions due to finite signal
length; and limits on the frequencies that can be studied reliably in theWFT andWT.
The results of the whole chapter are summarized in Sect. 2.5.

Remark 2.0.1 It should be noted, that many advanced methods based on different
TFRs have been developed over the last few decades. Examples are the wavelet
bispectral analysis [28, 29], wavelet coherence [20, 33, 35] and phase coherence
[3, 5, 44] etc. However, it seems in principle impossible to review appropriately all
such techniques, given their large number, so they are not considered here. Rather, the
emphasis in the presentChapter is placedon thebasic time-frequency representations,
which provide the foundation for more sophisticated methods, including nonlinear
mode decomposition developed later.

2.1 AM/FM Components and the Analytic Signal

One of the basic notions of time-frequency analysis is the AM/FM component (or
simply component), which is defined as a function of time t of form

x(t) = A(t) cosφ(t)
(∀t : A(t) > 0, ν(t) ≡ φ′(t) > 0

)
. (2.1)

The time-dependent values A(t), φ(t) and ν(t) ≡ φ′(t) are then called the instanta-
neous amplitude, phase and frequency of the component (2.1) (for a more detailed
discussion of their definitions and related issues see [6, 7, 40]).

Given that the signal is known to be of the form (2.1), the natural question is how
to find its associated A(t),φ(t) and ν(t). Themost convenient way of doing this is the
analytic signal approach. However, before considering it, a few additional notions
should be introduced. Thus, for an arbitrary function f (t), its Fourier transform (FT),
positive and negative frequency parts, time-average and standard deviation will be
denoted as f̂ (ξ), f +(t), f −(t), 〈 f (t)〉 and std[ f (t)], respectively:

f̂ (ξ) ≡
∫ ∞
−∞

f (t)e−iξt dt ⇔ f (t) = 1

2π

∫ ∞
−∞

f̂ (ξ)eiξt dξ = 〈 f (t)〉 + f +(t) + f −(t),

f +(t) ≡ 1

2π

∫ ∞
0+

f̂ (ξ)eiξt dξ, f −(t) ≡ 1

2π

∫ 0−

−∞
f̂ (ξ)eiξt dξ,

〈 f (t)〉 =
∫

f (t)dt
∫

dt
, std[ f (t)] ≡

√
〈[ f (t)]2〉 − [〈 f (t)〉]2, (2.2)
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where, here and in what follows, the integrals are taken over (−∞,∞) if unspecified
(or, in practice, over the full time duration of f (t)). A simple example is f (t) =
a + b cos νt = a + beiνt/2 + be−iνt/2, for which one has f̂ (ξ)/2π = aδ(ξ) +
bδ(ξ − ν)/2+ bδ(ξ + ν)/2, 〈 f (t)〉 = a, f ±(t) = be±iνt/2 and std[ f (t)] = b/

√
2.

Note, that if f (t) is real, then f (t)−〈 f (t)〉 = 2Re f ±(t) and f̂ (ξ) = [ f̂ (−ξ)]∗ ⇒
f +(t) = [ f −(t)]∗, where the star denotes complex conjugation.
For a given signal s(t) (which is always assumed to be real in this work), its

doubled positive frequency part is called its analytic signal and will be denoted as
sa(t):

sa(t) ≡ 2s+(t)
(
s(t) = 〈s(t)〉 + Re[sa(t)]). (2.3)

The analytic signal is complex, so its dynamics can easily be separated into ampli-
tude and phase parts. For signals represented by a single component (2.1), the ana-
lytic amplitude and phase Aa(t),φa(t) match closely the true amplitude and phase
A(t),φ(t), thus providing an easy way to estimate them:

A(t) ≈ Aa(t) ≡ |sa(t)|, φ(t) ≈ φa(t) ≡ arg[sa(t)]. (2.4)

The approximate equality (2.4) will be called the analytic approximation, and it can
alternatively be formulated as [A(t) cosφ(t)]+ ≈ A(t)eiφ(t)/2. As stipulated by the
Bedrosian theorem [4], this approximation is exact when the spectrum of A(t) lies
lower than the spectrum of eiφ(t), and there are no intersections between the two. For
example, in the case of amplitude modulation only, s(t) = A(t) cos(νt + ϕ), (2.4)
gives the exact amplitude andphase if all the spectral content of A(t) lies lower than ν,
i.e. Â(ξ ≥ ν) = 0. Usually, however, there is a small discrepancy between the true
and analytic amplitude/phase (considered in detail in Sect. 7.1), but it is often very
small. Thus, there is arguably still nothing better than the analytic signal approach
for amplitude and phase estimation in the case of a single AM/FM component (2.1)
[52] (except, maybe, the recently proposed direct quadrature method [24]).

However, real-life signals rarely consist of only one component, and they usu-
ally also contain noise. In this case, the analytic signal will represent a mix of the
amplitude and phase dynamics of all components contained in the signal (addition-
ally corrupted by noise), so their individual parameters cannot be recovered from
it. One should therefore employ more sophisticated techniques, able to distinguish
the different components within a single time-series. This can be done by using the
TFR-based approaches that will be described below. The main assumption behind
them (and time-frequency analysis more generally) is that the signal is represented
by a sum of AM/FM components, each of which satisfies the analytic approximation
(2.4), plus some noise η(t):

s(t) =
∑

i

xi (t) + η(t) =
∑

i

Ai (t) cosφi (t) + η(t),

∀t, i : Ai (t) > 0, φ′
i (t) > 0, [Ai (t) cosφi (t)]+ ≈ Ai (t)e

iφi (t)/2.

(2.5)

http://dx.doi.org/10.1007/978-3-319-20016-3_7


10 2 Linear Time-Frequency Analysis

Although signal representation (2.5) is not unique, in practice one aims at the spars-
est among such representations, i.e. the one characterized by the smallest number
of components xi (t). It is also important to note, that the most accurate estimates of
the components’ parameters obtainable using any TFR-based method are the corre-
sponding analytic estimates (2.4), so the (best achievable) goal of such methods is
to extract the separate analytic signals xa

i (t) for each of the chosen xi (t) in (2.5).
The above discussion was related to problems that arise while considering multi-

component signals in the time domain. To make the story complete, the problems
that arise when trying to treat such signals in the frequency domain should also
be addressed. In practice, any signal can be represented by its Fourier expansion
(discrete FT), i.e. as the sum of tones—monochromatic signals Ai cos(νi t + ϕi )—
with different constant amplitudes Ai , phase shiftsϕi and frequencies νi . The same is
obviously true for a single AM/FM component, and its Fourier expansion is directly
related to the spectrum of the corresponding amplitude and frequency modulations:

x(t) =A
(
1 +

∑

a
ra cos(νat + ϕa)

)
cos

(
νt + ϕ +

∑

b

rb sin(νbt + ϕb)
)

= /
expressing cosφ = (eiφ + e−iφ)/2, eia sin φ =

∞∑

n=−∞
Jn(a)einφ/

= Aei(νt+ϕ)
[
1 +

∑

a

ra(ei(νa t+ϕa ) + e−i(νa t+ϕa ))

2

] ∏

b

∑

nb

Jnb (rb)ei(nbνbt+nbϕb) + c.c.

=
∑

{nb}={n1,n2,...}∈Z

[
Ã{nb}eiϕ̃{nb}ei ν̃{nb}t +

∑

a

ra

2
Ã{nb}

(
ei(ϕ̃{nb}+ϕa )ei (̃ν{nb}+νa )t

+ ei(ϕ̃{nb}−ϕa )ei (̃ν{nb}−νa )t )] + c.c., (2.6)

where

Ã{nb} ≡ A
∏

b

Jnb (rb) = AJn1(r1)Jn2(r2) . . . ,

ν̃{nb} ≡ ν +
∑

b

nbνb, ϕ̃{nb} ≡ ϕ +
∑

b

nbϕb, (2.7)

and Jn(rb) = (−1)n J−n(rb) denote Bessel functions of the first kind, while c.c.
stands for the complex conjugate of the preceding expression. Thus, any component
(2.6) can be represented as a sum of tones with frequencies |ν + ∑

b nbνb| and |ν ±
νa+∑

b nbνb| (for all possible combinations ofa ∈ N and {nb} = {n1, n2, . . .} ∈ Z).
But, obviously, not any sum of tones can be represented as the AM/FM component.
What make this possible in (2.6) are the specific relationships between the tones’
amplitudes, phases and frequencies, which encode the corresponding amplitude and
frequency modulations of the component.

Clearly, the representation of x(t) (2.6) as a single entity is more compact and
meaningful than its representation as the sum of tones, which corresponds to its FT.
Thus, for a multi-component signal s(t) (2.5), each component is encoded as a set of
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30 40 50 60 70

0 1 2 3 4 5 6 7 8

Time (s)

(a)

(b)

Frequency (Hz)

(c) (d)

Fig. 2.1 Different representations of a signal composed of threeAM/FMcomponents and corrupted
by noise 0.5 ηW (t), where ηW (t) denotes Gaussian white noise of unit deviation; the parameters
of the components are described above the top panel. a Signal in the time domain; b signal in the
frequency domain, given by its Fourier transform; c, d signal in the time-frequency domain, given
by its WFT and WT (see Sects. 2.2.1 and 2.2.2 below), respectively. Note that for the WT (d) the
frequency scale is logarithmic

entries in the associated frequency representation ŝ(ξ), but it is usually unclear which
entries correspond to what component, and which ones are attributable to noise. This
is illustrated in Fig. 2.1, which shows an example of signal representation in the time,
frequency, and time-frequency domains, with the latter being given by its WFT and
WT, to be discussed below. As can be seen, although all representations by definition
contain the same amount of information about the signal, in the case of Fig. 2.1 the
most readily interpretable view of this information is provided in the time-frequency
domain.

2.2 Time-Frequency Representations (TFRs)

As discussed in the previous section, instead of studying a signal in either one of the
time (s(t)) or frequency (ŝ(ξ)) domains, it is often more useful to study its properties
in time and frequency simultaneously. This can be done by considering specifically
constructed projections of the signal onto a time-frequency plane, i.e. TFRs. Such
an approach gives the possibility of tracking the evolution of the signal’s spectral
content in time, which is typically represented by variations of the amplitudes and
frequencies of the components from which the signal is composed.
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In what follows, attention will be paid exclusively to the two main linear TFRs—
the WFT and the WT—because of their special suitability for the extraction of com-
ponents (the latter will be discussed in more detail in the next Chapter). Note that in
the present Sect. the notions of time, frequency and time-frequency resolutions of the
TFR will sometimes be used; they will be further clarified in Sect. 2.3 below. There
are also many classical books and reviews (e.g. [8, 22, 30, 37]) where an additional
discussion of the WFT/WT and their resolution characteristics can be found.

2.2.1 Windowed Fourier Transform (WFT)

ThewindowedFourier transform (WFT), also called the short-time Fourier transform
or (in a particular form) the Gabor transform, is one of the oldest and thus most-
investigated linear TFRs [19, 22, 37]. The WFT Gs(ω, t) of the signal s(t) can be
calculated either in the time domain or in the frequency domain as [27]:

Gs(ω, t) =
∫

s+(τ )g(τ − t)e−iω(τ−t)dτ = 1

2π

∫ ∞

0
eiξt ŝ(ξ)ĝ(ω − ξ)dξ, (2.8)

where g(t) is the specified window function and ĝ(ξ) is its FT. Without loss of
generality, the |ĝ(ξ)| is considered to have a maximum at ξ = 0:

ωg ≡ argmax |ĝ(ξ)| = 0, (2.9)

which ensures that, for a single tone s(t) = cos νt , the amplitude of the WFT has
a maximum at the frequency ω = ν (see (2.10) below). If this is not the case, one
should always set ωg (2.9) to zero manually by considering the demodulated window
function {g(t), ĝ(ξ)} → {g(t)e−iωg t , ĝ(ξ + ωg)}. An example of the WFT can be
seen in Fig. 2.1c.

Remark 2.2.1 Note, that the definition of the WFT (2.8) is slightly different from
the conventional form. Thus, only the positive frequency part s+(t) is taken into
account instead of the full s(t), for the reasons that are thoroughly discussed in [27].
Basically, such modification is needed to remove the undesirable interference with
negative frequencies (e.g. with e−iνt if s(t) = cos νt), which might seriously corrupt
the representation if it has low resolution in frequency. Nevertheless, in practice this
interference is often very small, so that taking the full signal in (2.8) will not usually
change anything significantly. Additionally, instead of the traditional e−iωτ , which
corresponds to “static” phases of the WFT coefficients, there is e−iω(τ−t) in (2.8),
which corresponds to “dynamic” phases and is thus more convenient in terms of
component reconstruction.

It is easy to see that, for a signal represented by a sum of tones, the corresponding
WFT (2.8) takes the form
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s(t) =
∑

n

An cos(νnt + ϕn) ⇒ Gs(ω, t) = 1

2

∑

n

An ĝ(ω − νn)ei(νn t+ϕn), (2.10)

from which one can gain a first impression of how it works. It should be noted that,
although peaks in |Gs(ω, t)| are all at positive frequencies (as follows from (2.10) and
the assumptions made), the WFT (2.8) is defined on the full interval ω ∈ (−∞,∞),
so that one can calculate it for ω < 0 as well (e.g. to trace the peak’s tails). Usually,
however, this is not needed.

The WFT is an invertible transform, so that the original signal in both time and
frequency domains can be recovered from it as (see Sect. 7.3):

sa(t) = C−1
g

∫
Gs(ω, t)dω, s(t) = 〈s(t)〉 + Re[sa(t)],

ŝ(ω > 0) = C̃−1
g

∫
Gs(ω, t)e−iωt dt, ŝ(−ω) = ŝ∗(ω), (2.11)

Cg ≡ 1

2

∫
ĝ(ξ)dξ = πg(0), C̃g ≡

∫
g(t)dt = ĝ(0).

Among the window functions g(t) that can be used for calculating WFT (2.8) (see
Sect. 7.2 for a list of common types and their properties), the most suitable choice
seems to be the Gaussian window

g(t) = 1√
2π f0

e−t2/2 f 20 ⇔ ĝ(ξ) = e− f 20 ξ2/2. (2.12)

The time and frequency resolution of the window (2.12) are determined by its spread
in time and frequency,which are controlled by its resolution parameter f0. Therefore,
increasing f0 improves the frequency resolution of the resultant WFT, but reduces
its time resolution.

The Gaussian window is commonly used on account of its unique property of
maximizing the “classic” time-frequency resolution of the transform (to be discussed
in Sect. 2.3); the form (2.12), however, seem to have very good resolution properties
in general, and not only within the traditional definitions (see Sect. 7.2). In what
follows, unless otherwise specified, all simulations are performed using the Gaussian
window (2.12) with f0 = 1. Nonetheless, the considerations and formulas of this
Chapter apply quite generally for any window function.

In numerical applications, given the signal s(tn), n = 1, . . . , N sampled at fre-
quency fs , its WFT is calculated using the fast Fourier transform (FFT) algorithm,
utilizing the frequency domain form of (2.8). The frequency axis is first divided into
equidistant bins ωk = (k − k0)�ω, where�ω is the frequency bin width (its optimal
choice and related issues are discussed in Sect. 2.4.2). One then computes the sig-
nal’s discrete FT ŝ(ξ) = {ŝ(ξn)}, where ξn/2π = (n/N − 1/2) fs , n = 1, . . . , N are
the corresponding discrete frequencies, and sets ŝ(ξn ≤ 0) = 0. Finally, taking the

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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inverse FT of {s(ξn)ĝ(ωk − ξn)} at each frequency ωk gives the full WFT time evolu-
tion Gs(ωk, tn=1,...,N ) for that frequency bin. A complete numerical implementation,
including all relevant issues, is summarized in Sect. 7.5.

2.2.2 Wavelet Transform (WT)

The (continuous) wavelet transform (WT) is the other well-known linear TFRwhich,
in contrast to the WFT, has logarithmic frequency resolution [15, 16, 37]; in other
respects the two TFRs are quite similar. The WT Ws(ω, t) of a signal s(t) can be
calculated as [27]:

Ws(ω, t) =
∫

s+(τ )ψ∗(ω(τ − t)

ωψ

)ωdτ

ωψ
= 1

2π

∫ ∞

0
eiξt ŝ(ξ)ψ̂∗(ωψξ/ω)dξ,

(2.13)
where ψ(t) is the chosen wavelet function, and

ωψ ≡ argmax |ψ̂(ξ)| (2.14)

denotes the wavelet peak frequency. Additionally, the wavelet should satisfy the
admissibility condition

ψ̂(0) =
∫

ψ(t)dt = 0, (2.15)

the need for which will become clear below. An example of the WT can be seen in
Fig. 2.1d.

Remark 2.2.2 It should be noted, that the definition (2.13) represents a modified
version of the traditional one. Thus, the WT is usually defined using the scales a(ω),
while in (2.13) they are already expressed through the frequencies as a(ω) = ωψ/ω
(this relation establishes that, in the simplest case s(t) = A cos(νt +ϕ), the modulus
of the WT |Ws(ω, t)| will be peaked exactly at the tone frequency ω = ν). Next,
similarly to the WFT (2.8), the WT is calculated using only the positive frequency
part of the signal s+(t) (this is in fact equivalent to using the full signal s(t) but set-
ting ψ̂(ξ ≤ 0) = 0, though many wavelets, called analytic, have this property from
the beginning). The reasoning behind this is the same as for the case of theWFT (see
Remark 2.2.1). Finally, there are a few ways of normalizing the WT, and the most
commonly used one corresponds to (2.13) multiplied by

√
ωψ/ω. However, in the

latter case the WT amplitude will be biased towards lower ω, amplifying/reducing
the peaks associated with each component depending on its frequency. Such a situ-
ation does not arise for the normalization (2.13), which therefore seems to be more
natural and convenient, especially in terms of the extraction and reconstruction of
components discussed in Chap.3 below. Nevertheless, the two normalizations differ

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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only in terms of convenience and ease of understanding: the correct usage of each
will by definition give the same results.

Comparing (2.13) with (2.8), it is clear that the continuous WT can be viewed
simply as the WFT with a frequency-varying window, which feature nevertheless
gives rise to a different type of resolution. Thus, the analogue of (2.10) for WT
(2.13) is

s(t) =
∑

n

An cos(νnt +ϕn) ⇒ Ws(ω, t) = 1

2

∑

n

Anψ̂∗(ωψ
νn

ω

)
ei(νn t+ϕn). (2.16)

As can be seen, in contrast to the WFT, which takes into account the frequency
difference ν − ω (2.10), the WT considers the ratio ν/ω (or the difference between
logarithms log ν/ω = log ν− logω), which amounts to the definition of the logarith-
mic frequency resolution. The natural frequency scale is therefore also logarithmic
for the WT, in contrast to the linear scale of the WFT.

The reconstruction formulas in the case of the WT become (see Sect. 7.3)

sa(t) = C−1
ψ

∫ ∞

0
Ws(ω, t)

dω

ω
, s(t) = 〈s(t)〉 + Re[sa(t)],

ŝ(ω > 0) = C̃−1
ψ

∫
Ws(ω, t)e−iωt dt, ŝ(−ω) = ŝ∗(ω), (2.17)

Cψ ≡ 1

2

∫ ∞

0
ψ̂∗(ξ)dξ

ξ
, C̃ψ ≡

[ ∫
ψ(t)e−iωψ t dt

]∗ = ψ̂∗(ωψ).

Note that, in contrast to the WFT (2.11), the signal is reconstructed from the WT by
integration of Ws(ω, t) over the logarithmic scale dω/ω = d logω, which is standard
for the WT-based measures.

From (2.16) and (2.17), the need for the admissibility condition (2.15) now
becomes clear. Thus, for wavelets not satisfying (2.17) the value of Cψ in (2.17)
is infinite, and signal reconstruction from the WT becomes impossible. Even more
importantly, from (2.16) it follows that, if the wavelet FT does not vanish at zero
frequency ψ̂(0) �= 0, then each component will be spread over the whole fre-
quency range of the WT, leading to a highly corrupted representation. For exam-
ple, for a single tone signal s(t) = A cos νt , the WT amplitude approaches
|Ws(ω, t)| = A|ψ̂(ωψν/ω)| → A|ψ̂(0)| as ω → ∞. Hence, |ψ̂(0)| determines
the minimum level to which the WT amplitude for each component decays: if it is
nonzero then even components with infinitely distant frequencies will interfere with
each other. Drawing an analogy with the WFT, use of the wavelet with ψ̂(0) �= 0
corresponds to the use of the window with ĝ(ξ → ∞) �= 0 in (2.8), which is obvi-
ously inappropriate. Each wavelet should therefore be admissible, i.e. should satisfy
(2.15).

Remark 2.2.3 It is often not recognized that, in contrast to the case of the WFT,
rescaling of the wavelet function {ψ(t), ψ̂(ξ)} → {ψ(r t), ψ̂(ξ/r)} has no effect on

http://dx.doi.org/10.1007/978-3-319-20016-3_7
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the resultant WT. Thus, what matters is ψ̂(ωψν/ω), while direct rescaling changes
both ψ̂(ξ) and the peak frequency ωψ → rωψ , having no overall effect when sub-
stituted in (2.13) and (2.16). As an illustration, the parameter k in the wavelet
ψ̂(ξ) = ξae−kξb

is completely redundant, because this wavelet can be represented
in the form ψ̂(ξ) = k−a/b(k1/bξ)ae−(k1/bξ)b

which, up to the constant multiplier, is
equivalent to ψ̂(ξ) = ξae−ξb

. To really change the time and frequency resolutions of
the wavelet, one needs to change either its ωψ while trying to preserve the spread and
the form of |ψ̂(ξ)|, or vice versa (see Sect. 2.3.1). Furthermore, these two approaches
are completely equivalent, as can be seen from (2.13), so it is redundant to define
parameters controlling both the peak frequency of a wavelet and its spread.

Among thewavelet functionsψ(t)used for the continuousWT(2.13) (seeSect. 7.2
for a list of common types and their properties), the most popular choice is theMorlet
wavelet [38]

ψ(u) = 1√
2π

(
ei2π f0u − e−(2π f0)2/2

)
e−u2/2,

ψ̂(ξ) =e−(ξ−2π f0)2/2
(
1 − e−2π f0ξ

)
,

(2.18)

where the admissibility term ∼e−(2π f0)2/2 is needed to satisfy (2.15). The Morlet
wavelet is regarded as the wavelet analogy to the Gaussian window (2.12), and is
used so commonly because of the widespread belief that it has the best resolution
properties. This is, however, not true. Thus, aswill be discussed in Sect. 2.3 below, the
wavelet (2.18) does indeed nearly maximize the “classic” time-frequency resolution
(provided the admissibility term is small), but this traditional measure was originally
devised for the WFT and is completely inappropriate for the WT.

Taking into account the logarithmic frequency resolution of the WT, a more
“correct” wavelet analogy of the Gaussian window (2.12) would be the lognormal
wavelet

ψ̂(ξ > 0) ∼ e−(2π f0 log ξ)2/2, ωψ = 1, (2.19)

where the resolution parameter f0 has a meaning similar to that for the Gaussian
window (2.12), controlling the time and frequency resolutions of the resultant WT.

It turns out (see Sect. 7.2) that the resolution properties of the wavelet (2.19) are
generally slightly better than that of the Morlet wavelet (2.18). Apart from this, the
lognormalwavelet has a variety of other advantages. Thus, it is “infinitely admissible”
(in contrast to the Morlet wavelet), i.e. all its moments

∫
ξ−nψ̂(ξ)dξ/ξ (n ≥ 0) are

finite; this allows direct reconstruction of any order time-derivatives of the compo-
nent’s amplitude and phase from itsWT (see Sects. 3.2 and 7.3 below). Additionally,
the wavelet (2.19) is analytically tractable, allowing one to obtain Cψ (2.17) and
many other quantities in the explicit form. Therefore, while the considerations of the
present Chapter are applicable to any wavelet type, in what follows, unless otherwise
specified„ all the simulations and examples will be based on the lognormal wavelet
with f0 = 1.

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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In numerical applications, given the signal s(tn), n = 1, .., N sampled at fre-
quency fs , its WT is calculated using the frequency domain form of (2.13) and
taking advantage of the FFT algorithm. The procedure is quite similar to that for
the WFT calculation. The frequency axis is first partitioned into equilogspaced bins
ωk/2π = 2(k−k0)/nv , where the number-of-voices nv determines the fineness of this
partition and has the meaning of the number of frequency bins in each diadic interval
(its selection is discussed in Sect. 2.4.2). One then computes the signal’s discrete
FT ŝ(ξ) = {ŝ(ξn)}, where ξn/2π = (n/N − 1/2) fs , n = 1, 2, .., N denote the
corresponding discrete frequencies, and one sets ŝ(ξn ≤ 0) = 0. Finally, taking
the inverse Fourier transform of {ŝ(ξn)ψ̂∗(ωψξn/ωk)} at each frequency ωk gives the
full time-evolution of the WT Ws(ωk, tn=1,..,N ) for this frequency bin. A complete
numerical implementation, including all relevant issues, is summarized in Sect. 7.5.

2.2.3 Difference Between the WFT and the WT

Figure2.2 compares the WFT and WT calculated for the same signal. As men-
tioned before, the main distinction between the two TFR types lies in their different
kinds of frequency resolution: linear for theWFT, and logarithmic for theWT. Thus,
if the signal contains two tones cos ν1,2t , then the WFT takes account of their fre-
quency difference ν2 − ν1, whereas what matters for the WT is their frequency ratio
ν2/ν1 (or difference between logarithms of their frequencies). For example, if there
are two tones with frequencies 0.05 and 0.125 Hz, corresponding to periods of 20

Fig. 2.2 Comparison of the WFT and WT of the same signal consisting of six components, as
shown above the figure. a, b Mean WFT and WT amplitudes, respectively; the yellow regions
indicate 95% ranges for the corresponding amplitudes at each frequency; the vertical dashed lines
show mean frequencies of the components, with their colors being linked to the colors of boxes
at the top of the figure. c, d Full WFT and WT amplitudes, respectively. Note, that for the WT in
(b, d) the frequency scale is logarithmic, in contrast to the linear scale for the WFT in (a, c). The
signal was sampled for 200s at 50Hz

http://dx.doi.org/10.1007/978-3-319-20016-3_7
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and 8 s (components 1,2 in Fig. 2.2), then they will be much better resolved in the
WT (ν2/ν1 − 1 = 1.5) than in the WFT ((ν2 − ν1)/2π = 0.075). At the same time,
if there are two tones with frequencies 2 and 3 Hz, corresponding to periods 0.5 and
≈ 0.33 s (components 4 and 5 in Fig. 2.2), then they will be much better resolved in
the WFT ((ν2 − ν1)/2π = 1 Hz) than in the WT (ν2/ν1 − 1 = 0.5).

On the other hand, theWFT has the same time resolution at each frequency, while
that for the WT increases with frequency, being proportional to ω (see Sect. 2.3
below). This means that, for fixed window/wavelet parameters, the higher the fre-
quency, themore time-variability is allowed for components to be reliably represented
in the WT, while the WFT does not discriminate in this respect. For example, if one
has a frequency-modulated component cos(νt + sin νbt), the WFT accounts for the
value of νb, while theWT considers νb/ν. Thus, if one has a component with a mean
frequency of 0.75Hz subject to sinusoidal modulation at 0.2 Hz (component 3 in
Fig. 2.2), it will be better represented in the WFT (νb/2π = 0.2) than in the WT
(νb/ν ≈ 0.27). On the other hand, if one has a component with mean frequency 6 Hz
and frequency modulation at 0.3 Hz (component 6 in Fig. 2.2), it will be represented
more reliably in the WT (νb/ν = 0.05) than in the WFT (νb/2π = 0.3).

Remark 2.2.4 Note, that the assessment of the quality of representation of two tones
in the WFT and the WT based on the direct comparison between the corresponding
(ν2 − ν1)/2π and ν2/ν1 − 1 is valid only within the assumption that the WFT and
the WT have the same frequency resolution properties at ω = 2π (see Sect. 2.3).
This is true for the case of Fig. 2.2, where the WFT and WT are calculated using
Gaussian window (2.12) and lognormal wavelet (2.19) with the same resolution
parameters f0 = 1, respectively. Likewise, in the discussion about representation
of the frequency-modulated components it was assumed that the time resolution
properties of the WFT and the WT are the same at ω = 2π, which is almost true
in the present case (see Sect. 2.3 below). The related considerations, however, are
only approximately valid because of the difference between the fixed and frequency-
dependent time resolutions of the WFT and the WT, respectively.

Obviously, the resolution parameter f0 (or other window/wavelet parameters, if
present) can always be adjusted to improve the representation of any one chosen
component. However, there is often no universal f0 suitable for all components
present in the signal, so the choice between the WFT andWT depends on how many
such components can in principle be represented reliably. Therefore, contrary towhat
is sometimes thought, the WT is not in general superior to the WFT: it just considers
all on a logarithmic frequency scale, and whether or not this is more useful than the
linear frequency resolution of the WFT depends on the signal structure.

Summarizing, theWT ismost suitable when the ratios of frequencies of the under-
lying oscillations and their relative (to frequency) modulations are more consistent
with each other than the corresponding frequency differences and absolute ampli-
tude/frequency variations. In other words, the WT is preferred to the WFT when the
lower-frequency components are less time-varying and closer in frequency than the
components at higher frequencies. Otherwise, the WFT appears to be more appro-
priate (see also the related discussion and additional examples on pp. 126–134 of
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[37]). Note, however, that many real signals have structure that is more suited to
studies based on the WT. Additionally, one can often analyse a variety of time-series
of different kinds using the same wavelet parameters, while for theWFT the window
parameters should be adjusted for each particular case. Usually, the WT is also com-
putationally cheaper due to the logarithmic frequency scale, requiring fewer bins to
cover the same frequency range. On the other hand, the WFT generally has better
resolution properties (see Sect. 7.2).

2.3 Time-, Frequency- and Time-Frequency Resolution

The notions of time, frequency and time-frequency resolutions have been often used
in the preceding section, but were defined only briefly. In this section different res-
olution characteristics are considered in detail, and the definitions are made more
precise.

2.3.1 General Formulation

Consider a signal sνν(t) (sττ (t)) consisting of two frequency events—tones (time
events—delta-peaks), so that its WFT (2.8) and WT (2.13) are

sνν(t) = cos(νt) + cos((ν + �ν)t + �ϕ)

⇒
{

Gs(ω, t) = 1
2 [ĝ(ω − ν) + ĝ(ω − ν − �ν)ei�νt ei�ϕ]eiνt ,

Ws(ω, t) = 1
2 [ψ̂∗(ωψν/ω) + ψ̂∗(ωψ(ν + �ν)/ω)ei�νt ei�ϕ]eiνt ,

(2.20)

sττ (t) = δ(t − τ ) + δ(t − τ − �τ )ei�ϕ

⇒
{

Gs(ω, t) ∼= [g(τ − t) + g(τ + �τ − t)e−iω�τ ei�ϕ]eiω(t−τ ),

Ws(ω, t) ∼= ω
ωψ

[ψ∗(ω(τ − t)/ωψ) + ψ∗(ω(τ + �τ − t)/ωψ)ei�ϕ].
(2.21)

Everywhere in this section, e.g. in (2.21), the symbol “∼=” denotes equality up to
an error associated with the difference between the WFT/WT (2.8), (2.13) and its
form as calculated using the full signal s(t) instead of the corresponding positive
frequency part s+(t); see [27] for a detailed discussion of this issue and the quality
of the approximation in (2.21). Note that, if redefiningWFT/WT to use the full signal,
the approximate equality will migrate from sττ (t) (2.21) to sνν(t) (2.20) [27].

Remark 2.3.1 Although in this work the original signal is assumed to be real, sττ (t)
(2.20) represents an exception. This is because, without the phase shift introduced by
ei�φ, the analogy between sττ (t) and sνν(t) would be incomplete while, intuitively,
the time and frequency domains should have equal rights. In fact, since the WFT
(2.8) and WT (2.13) are based on the positive frequency part of the signal, the

http://dx.doi.org/10.1007/978-3-319-20016-3_7
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resultant TFR will remain the same if instead of sνν(t) (2.20) one considers s+
νν(t) =

[eiνt + ei(ν+�ν)t ei�ϕ]/2. The latter has the Fourier transform ŝ+
νν(ξ) = [δ(ξ − ν) +

δ(ξ − ν − �ν)ei�ϕ]/2, which is fully analogous to sττ (t). Nevertheless, it turns out
that in all the following considerations nothing changes if one restricts sττ (t) to be
real, which is satisfied for �ϕ = 0,π in (2.21). For example, in Sect. 2.3.4 below,
averaging over these two values (�ϕ = 0,π) in the corresponding reconstruction
errors will give the same result as averaging over the full range �ϕ ∈ [0, 2π].

It seems reasonable to define the time (frequency) resolution γt (γω) of the trans-
form as the reciprocal of theminimum time (frequency) difference�τ (�ν) in sττ (t)
(sνν(t)) for which two delta-peaks (tones) can still be reliably resolved in the TFR:

γt (ν, τ ) = 1/�τmin(ν, τ ), γω(ν, τ ) = 1/�νmin(ν, τ ). (2.22)

However, themeaning of “reliably resolved” still remains imprecise, andwill be dealt
with later. Note, that the definitions (2.22) represent the most general case, where
the resolutions and minimal differences are “localized”, i.e. allowed to depend on
both time and frequency. This is not only useful for the WT, which is characterized
by frequency-dependent resolution properties, but also allows one to consider more
complicated cases, e.g. the WFT with a time-dependent resolution parameter f0 →
f0(t).
The joint time-frequency resolution γωt is most often defined as the reciprocal of

the area of theminimal resolvable square [ν, ν+�νmin(ν, τ )]× [τ , τ+�τmin(ν, t)],
being equal to the product of the time and frequency resolutions. However, within
such a square γt (ν, τ ) and γω(ν, τ ) can vary considerably, so that these variations
should be taken into account to make γωt more meaningful. The latter can therefore
be defined as

γωt (ν, τ ) =
[∫ ν+�νmin(ν,τ )

ν �τmin(ω, τ )dω
∫ τ+�τmin(ν,τ )

τ �νmin(ν, t)dt

�τmin(ν, τ )�νmin(ν, τ )

]−1

.

(2.23)
Note that, if neither �νmin nor �τmin depends on time or frequency, then one has
the traditional γωt = γωγt .

The definitions (2.22) and (2.23) remain valid for any signal representation, not
only theWFT andWT. For example, the time domain representation s(t) has infinite
time resolution, since, theoretically, two delta-peaks can be resolved for any �τ in
sττ (t), but zero frequency resolution, as both tones in sνν(t) have nonzero entries at
almost all times, and thus cannot in principle be resolved, no matter how large�ν is.
On the other hand, the frequency domain representation (Fourier transform) ŝ(ξ) has
infinite frequency resolution, since (in theory) two tones can be perfectly resolved
in ŝνν(ξ) for however small frequency difference �ν; but, at the same time, it has
zero time resolution, because the two delta-peaks are spread over all frequencies in
ŝττ (ξ).

TFRs, on the other hand, represent a “mix” of the time domain and frequency
domain representations. As a result, both time and frequency resolutions are finite



2.3 Time-, Frequency- and Time-Frequency Resolution 21

for them. This can clearly be seen from the WFT and WT for the two-peak and
two-tone signals (2.21), (2.20). Thus, since the window/wavelet function has non-
zero supports in both time and frequency, delta-peaks in sττ (t) (tones in sνν(t))
will interfere in the WFT/WT for small enough �τ (�ν), making their accurate
separation and reconstruction impossible (e.g. see the components 1, 2 in Fig. 2.2a).

From (2.20) and (2.21) one can see that the interference between two tones or
between two delta-peaks in the WFT does not depend on ν or τ . Therefore, for
any meaningful definition of �τmin and �νmin, they also should not depend on
time or frequency. Furthermore, it is also clear that rescaling of the WFT win-
dow function g(t) → g(t/r) ⇔ ĝ(ξ) → ĝ(rξ) changes its resolution properties
as {�τmin,�νmin} → {r�τmin,�νmin/r}. This reflects the repeatedly-mentioned
trade-off between time and frequency resolutions, being a manifestation of the time-
frequency uncertainty principle,which excludes the possibility of simultaneous sharp
localization in time and frequency [30, 37]. Thus, without changing the form of the
window function, there is only the possibility of rescaling both resolutions, increasing
one and decreasing the other, but not treating them separately. Their product, which
in the case of the WFT is equal to the joint time-frequency resolution γωt (2.23),
remains fixed under such rescaling, thus representing an important characteristic of
the window function: the higher it is, the better the trade-off that is possible.

Using the same arguments as for the WFT, from (2.21) and (2.20) it follows that
for the WT both �τmin and �νmin depend on frequency, but not time, so that γt =
γt (ν), γω = γω(ν). Next, one also has �τmin(rν) = �τmin(ν)/r and �νmin(rν) =
r�νmin(ν), so that the time resolution of the WT increases with frequency, while
the frequency resolution decreases. Nevertheless, as will be seen, the time-frequency
resolution (2.23) does not depend on ν or τ , being fixed for the specified wavelet
parameters.

As mentioned above (see Remark 2.2.3), the direct rescaling {ψ(t), ψ̂(ξ)} →
{ψ(t/r), ψ̂(rξ)} does not change anything for the WT, and to tune the resolutions at
a particular frequency one needs to change the wavelet peak frequency ωψ → rωψ

while preserving the spreads and the forms of {ψ(t), ψ̂(ξ)} (or vice versa). If such
a procedure was possible, it would lead to the same trade-off rule as for the WFT,
i.e. γt (ν) → γt (ν)/r , γω(ν) → rγω(ν), with γωt remaining fixed. However, given
restrictions such as the admissibility condition (2.15), changing the wavelet peak
frequency will inevitably affect its form and/or its spread (on the linear scale). Thus,
e.g. for theMorlet wavelet (2.18) a change ofωψ (by varying f0) will be accompanied
by a simultaneous change of its form because of the admissibility term; for the
lognormal wavelet ωψ is fixed, while changing f0 will change wavelet spread in
frequency on the logarithmic scale, but on the linear scale ψ̂(ξ) will become more
asymmetric, affecting the time domain formψ(t). Because of these issues, there does
not seem to be a way of changing the resolution properties of theWTwithout altering
its time-frequency resolution, in contrast to the WFT. Furthermore, γωt (whichever
way defined) progressively worsens with an increase of the wavelet time resolution
(decrease of f0), and it seems in principle impossible to reach a very sharp time-
localization in the WT (see Sect. 7.2).

http://dx.doi.org/10.1007/978-3-319-20016-3_7
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2.3.2 Classical Definitions and Their Flaws

Although�τmin and�νmin in (2.22) were defined respectively as the minimum time
and frequency difference which can reliably be resolved in the TFR, the meaning of
“reliably resolved” remains mathematically unclear. Based on how it is defined, one
can characterize the resolution properties of the TFR in different ways.

The traditional approach [30, 37] implicitly assumes two delta-peaks (tones) to be
well-resolved if the time (frequency) distance between them exceeds some number of
standard deviations of the squared window/wavelet function in the time (frequency)
domain. Within this framework, for the WFT one has

�ν
(cl)
min = k1�ω, �τ

(cl)
min = k2�t ,

�2
ω = E−1

g

1

2π

∫
(ω − ωc)

2|ĝ(ω)|2dω, ωc ≡ E−1
g

1

2π

∫
ω|ĝ(ω)|2dω, (2.24)

�2
t = E−1

g

∫
(t − tc)

2|g(t)|2dt, tc ≡ E−1
g

∫
t |g(t)|2dt,

Eg ≡ 1

2π

∫
|ĝ(ξ)|2dξ =

∫
|g(t)|2dt (by Parseval’s identity),

where k1,2 are implicitly assumed to be the same for all window functions. Obvi-
ously, such a definition is far from universal, since for different windows different
number of standard deviations are needed to resolve the two tones/delta-peaks. As
an illustrative example, the window with asymptotics |ĝ(ξ → ±∞)| ∼ |ξ|−1.25 has
infinite variance of |ĝ(ξ)|2, but can still be used and allows for an accurate resolution
and reconstruction of the two tones for high enough frequency difference between
them.

For the WT, the classic variance-based framework takes the form

�ν(cl)
min(ν) = k1

ν

ωψ
�ω, �τ (cl)

min (ν) = k2
ωψ

ν
�t ,

�2
ω = E−1

ψ

1

2π

∫
(ω − ωc)

2|ψ̂(ω)|2dω, ωc ≡ E−1
ψ

1

2π

∫
ω|ψ̂(ω)|2dω, (2.25)

�2
t = E−1

ψ

∫
(t − tc)

2|ψ(t)|2dt, tc ≡ E−1
ψ

∫
t |ψ(t)|2dt,

Eψ ≡ 1

2π

∫
|ψ̂(ξ)|2dξ =

∫
|ψ(t)|2dt (by Parseval’s identity),

where k1,2 are again implicitly assumed to be the same for all wavelet functions.
This approach has the same drawbacks as (2.24) for the WFT. However, in the case
of the WT it is actually not appropriate at all, at least in terms of the frequency
resolution. Thus, as can be seen from (2.16), the tones are represented in the WT as
terms ∼ ψ̂(ωψν/ω), so that the decay of their contribution as ω → ∞, determined
by the behavior of ψ̂(ξ) as ξ → 0, will obviously have a big effect on the frequency
resolution. At the same time, the usual variance �2

ω (2.25) takes no account of
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this fact, e.g. being invariant under ψ̂(ξ) → ψ̂(ξ + ωψ), that makes the wavelet
inadmissible (inwhich case tones that are infinitely distant in frequency still interfere,
so that the frequency resolution becomes effectively zero). Therefore, for wavelets,
it seems more appropriate to study at least the variance of |ψ̂(ωψ/ξ)|2, but by no
means that of |ψ̂(ξ)|2.

For both WFT and WT, the classic time-frequency resolution measure is taken as
γ

(cl)
ωt = [�ω�t ]−1, with �ω,�t being given by (2.24) for the WFT and by (2.25)

for the WT (note also the difference between γ(cl)
ωt and (2.23) for the latter). It can be

shown [1, 30, 37], that this measure attains its maximum for the Gaussian window
(2.12) and (up to the effect of the admissibility term ∼e−(2π f0)2/2) for the Morlet
wavelet (2.18). However, as follows from the discussion above, only in the case of
the WFT does the classic γ

(cl)
ωt make some sense, though even in this case it remains

highly non-universal.

2.3.3 Notion of the Window/Wavelet ε-Support

Before proceeding to a reconsideration of the classic definitions, it is useful to intro-
duce the notions of the window/wavelet ε-supports in frequency [ξ1(ε), ξ2(ε)] and
time [τ1(ε), τ2(ε)], which will be used frequently in what follows. These ε-supports
are defined as the widest intervals containing the (1 − ε) part of the total integrals
of the window/wavelet function which appear in Cg,ψ and C̃g,ψ (2.11), (2.17). As
will be seen below, they are directly related to the accuracy with which the com-
ponents can be recovered from the WFT/WT, and thus can be used effectively for
quantifying it.

Considering first the WFT, for an arbitrary window function, including functions
that are not always positive and can be oscillating or complex, the corresponding
definitions are

Rg(ω) ≡
∫ ω
−∞ ĝ(ξ)dξ
∫

ĝ(ξ)dξ
= C−1

g

1

2

∫ ω

−∞
ĝ(ξ)dξ,

ξ1,2(ε) : |Rg(ξ ≤ ξ1)| ≤ ε/2, |1 − Rg(ξ ≥ ξ2)| ≤ ε/2,

Pg(τ ) ≡
∫ τ
−∞ g(t)dt
∫

g(t)dt
= C̃−1

g

∫ τ

−∞
g(t)dt,

τ1,2(ε) : |Pg(τ ≤ τ1)| ≤ ε/2, |1 − Pg(τ ≥ τ2)| ≤ ε/2.

(2.26)

Evidently, |Rg(ω)| and |1 − Rg(ω)| quantify the relative parts of ĝ(ξ) that are con-
tained in the ranges ξ < ω and ξ > ω, respectively, while the values ξ1,2(ε) specify
the limits within which the (1− ε) part of the window FT resides. In the same man-
ner, |Pg(τ )| and |1 − Pg(τ )| reflect the relative parts of g(t) contained in the ranges
t < τ and t > τ , respectively, while [τ1(ε), τ2(ε)] represents the region encompass-
ing its (1 − ε) part. The inequalities in the definitions of ξ1,2(ε) (τ1,2(ε)) are needed
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only if ĝ(ξ) (g(t)) is not strictly positive, or complex, to ensure that the integral of
the latter over any frequency (time) region containing the ε-support [ξ1(ε), ξ2(ε)]
([τ1(ε), τ2(ε)]) will always approximate the corresponding full integral with relative
error not higher than ε.

Considering the single tone s(t) = cos νt ⇒ Gs(ω, t) = ĝ(ω − ν)eiνt/2, it
is clear that its WFT at frequencies ω < ξ (ω > ξ) will contain the |Rg(ξ − ν)|
(|1− Rg(ξ − ν)|) part of the signal. Furthermore, its (1− ε) part will be contained in
the frequency range [ν +ξ1(ε), ν +ξ2(ε)], so that e.g. for real ĝ(ξ) the corresponding
signal reconstructed by (2.11) from the WFT in this range will be (1 − ε) cos νt .

Likewise, for the delta-peak s(t) = δ(t − τ ) ⇒ Gs(ω, t) ∼= g(τ − t)eiω(t−τ ) the
WFT at times t < t0 (t > t0) will contain the ∼= |1 − Pg(τ − t0)| (∼= |Pg(τ − t0)|)
part of the signal, while its (1 − ε) part will be contained in the time interval ∼=
[τ − τ2(ε), τ − τ1(ε)]. Thus, e.g. for the real g(t) the delta-peak’s FT reconstructed
by (2.11) from this interval will be ŝ(ξ) ∼= (1 − ε)e−iξτ .

Similarly to the case of the WFT, the ε-supports for the WT are defined based on
(2.17) as

Rψ(ω) ≡
∫ ω
0 ψ̂∗(ξ) dξ

ξ
∫ ∞
0 ψ̂∗(ξ) dξ

ξ

= C−1
ψ

1

2

∫ ω

0
ψ̂∗(ξ)dξ

ξ
,

ξ1,2(ε) : |Rψ(ξ ≤ ξ1)| ≤ ε/2, |1 − Rψ(ξ ≥ ξ2)| ≤ ε/2,

Pψ(τ ) ≡
∫ τ
−∞ ψ∗(t)eiωψ t dt
∫

ψ∗(t)eiωψ t dt
= C̃−1

ψ

∫ τ

−∞
ψ∗(t)eiωψ t dt,

τ1,2(ε) : |Pψ(τ ≤ τ1)| ≤ ε/2, |1 − Pψ(τ ≥ τ2)| ≤ ε/2.

(2.27)

Like |Pg(τ )| in (2.27), |Pψ(τ )| (|1− Pψ(τ )|) quantifies the relative part ofψ(t)e−iωψ t

contained at t < τ (t > τ ), with [τ1(ε), τ2(ε)] specifying the interval encompassing
its (1 − ε) part. In the same manner, |Rψ(ω)| and ξ1,2(ε) are related to the relative
part of ψ̂(ξ), taken on a logarithmic scale.

However, due to the scaling nature of the WT, the relationships of (2.27) to real
quantities differ slightly from the case of the WFT. Thus, for the single tone s(t) =
cos(νt) ⇒ Ws(ω, t) = ψ̂∗(ωψν/ω)eiνt/2 the WT at frequencies ω < ξ (ω > ξ)
will contain the |1− Rψ(ωψν/ξ)| (|Rψ(ωψν/ξ)|) part of the signal, while its (1− ε)
part will lie in the band [ωψν/ξ2(ε),ωψν/ξ1(ε)].

For the delta-function s(t) = δ(t − τ ) ⇒ Ws(ω, t) ∼= ω
ωψ

ψ∗
(

ω(τ−t)
ωψ

)
the WT

spread in time will vary for different ω. At each frequency the part of the delta-
function’s total FT contained in the WT at t < t0 (t > t0) will be ∼= |1 − Pψ(ω(τ −
t0)/ωψ)| (∼= |Pψ(ω(τ − t0)/ωψ)|), while its (1 − ε) part will reside in the interval
∼= [τ − ωψτ2(ε)/ω, τ − ωψτ1(ε)/ω].

The quantities (2.26), (2.27) are very convenient and will be used extensively
below, not only in the present section. For simplicity, τ1,2(ε) and ξ1,2(ε) denote the
respective ε-supports both for the window function in the WFT and for the wavelet
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function in theWT. The meaning will always be clear from the context. Note that the
full supports of the window/wavelet in time (g(t),ψ(t)) and frequency (ĝ(ξ), ψ̂(ξ)),
whether finite or not, are [τ1(0), τ2(0)] and [ξ1(0), ξ2(0)], respectively.

2.3.4 Reconsidered Definitions

Amore universal and appropriate approach (than the traditional variance-based one)
is to regard two components as being reliably resolved if they can each be accurately
identified and reconstructed from the signal’s TFR (i.e. can be recovered with a
relative error not exceeding some threshold). Consider the WFT of the two-tone
signal (2.20), fromwhich one wants to find the individual analytic signals xa

νν;1(t) =
eiνt , xa

νν;2(t) = ei(ν+�ν)t ei�ϕ for each of the two tones. At any time t , this can be
done by first dividing the frequency range at some ω = ωx(t) into two parts, each
responsible for a separate tone, and then integrating theWFT over the corresponding
frequency ranges in the same way as in (2.11). This will give the reconstructed
analytic signals x̃a

νν;1,2(t) which, using (2.20) and (2.26), can be represented as

x̃a
νν;1(t) =

∫ ωx(t)

−∞
Gs(ω, t)dω

= C−1
g

2
eiνt

[∫ ωx(t)

−∞
ĝ(ω − ν)dω + ei(�νt+�ϕ)

∫ ωx(t)

−∞
ĝ(ω − ν − �ν)dω

]

= eiνt
[
(1 − Rg(ν − ωx(t))) + Rg(ωx(t) − ν − �ν)ei(�νt+�ϕ)

]
,

x̃a
νν;2(t) =

∫ ∞
ωx(t)

Gs(ω, t)dω

= C−1
g

2
eiνt

[∫ ∞
ωx(t)

ĝ(ω − ν)dω + ei(�νt+�ϕ)

∫ ∞
ωx(t)

ĝ(ω − ν − �ν)dω

]

= eiνt
[

Rg(ν − ωx(t)) + (1 − Rg(ωx(t) − ν − �ν))ei(�νt+�ϕ)
]
,

(2.28)
where Rg(x) = 1 − Rg(−x) is defined in (2.26).
Obviously, the reconstruction errors xa

νν;1,2(t) − x̃a
νν;1,2(t) generally depend on

the phase-shift �ϕ. Therefore, in the corresponding expressions one should take the
average over �ϕ, which will be denoted as 〈...〉�ϕ. The relative errors of each tone’s
reconstruction ενν;1,2(ν, t,�ν) then become

ε2νν;1,2(ν, t,�ν) ≡ 〈|xa
νν;1,2(t) − x̃a

νν;1,2(t)|2〉�ϕ

〈|xa
νν;1,2(t)|2〉�ϕ

= |Rg(ν − ωx(t))|2 + |Rg(ωx(t) − ν − �ν)|2.
(2.29)
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Note that, in the present case, averaging over �ϕ and time-averaging will give the
same results; however, in general the TFR resolution properties can depend on time,
and taking the mean over phase-shifts allows one to localize these errors at each t .

The minimum resolvable frequency difference �νmin(ν, t) can be defined as the
minimum �ν in (2.29) for which the total error ενν(ν, t,�ν) is still smaller than
some accuracy threshold εr :

�ν ≥ �νmin(ν, t) : ενν(ν, t,�ν) ≡ [ε2νν;1(ν, t,�ν) + ε2νν;2(ν, t,�ν)]1/2 ≤ εr .

(2.30)
It can be expressed through the εr -support of the window in frequency (2.26). Thus,
consider the WFT with real, positive and symmetric ĝ(ω), e.g. a Gaussian (2.12).
Then it follows from (2.20) that the minimum WFT amplitude between the peaks
corresponding to two tones will always appear at ω = ν + �ν/2 (unless these two
peaks are merged into a single one at some times, which might happen if �ν is
too small). Therefore, in practice the respective frequency regions of the tones will
be separated exactly at their average frequency (see Sect. 3.2.2 below), so that one
should use ωx(t) = ν+�ν/2 when estimating the errors (2.29); it can also be shown
that, in the present case, these errors are minimized by such a choice of ωx(t). The
overall reconstruction error is then

ενν(�ν) = [
2|Rg(−�ν/2)|2 + 2|Rg(−�ν/2)|2]1/2 = 2|Rg(−�ν/2)|, (2.31)

and, taking into account that ξ1(ε) = −ξ2(ε) due to the assumed window symmetry,
it follows from (2.30) and (2.26) that the frequency difference for which two tones
are recovered with inaccuracy ε is exactly equal to the ε-support of ĝ(ξ).

For other window forms (e.g. asymmetric ĝ(ξ)) the situation becomes more
complicated, but one can still expect to get an overall error of around ε when
�ν = ξ2(ε) − ξ1(ε). Note that the above considerations hold for reasonably small ε,
so that�ν is high enough and there are always two distinct peaks in theWFT ampli-
tude; otherwise, if the peaks are merged at certain times, the actual reconstruction
errors will be larger than (2.29).

The case of two delta-peaks (2.21) is closely similar to that of two tones, so the
same considerations apply, with just ξ1,2(ε) → τ1,2(ε). Hence, setting εr as the
maximum allowable reconstruction error for which two tones/delta-peaks can still
be regarded as resolved, the minimum resolvable time-delay �τmin and frequency
difference �νmin, and the other resolution parameters based on them, for the WFT
take the forms

�νmin = ξ2(εr ) − ξ1(εr ), �τmin ∼= τ2(εr ) − τ1(εr ),

γω ≡ �ν−1
min, γt = �τ−1

min, γωt ≡ γωγt = [�νmin�τmin]−1, (2.32)

where τ1,2(ε) and ξ1,2(ε) are defined in (2.26). Generally, accurate reconstruction
might reasonably be assumed as being at 95% precision, so one can set εr = 0.05
in (2.32). The resolution characteristics of different windows are listed in Sect. 7.2.

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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The same approach straightforwardly extends to the WT case, where one applies
similar considerations in terms of (2.27). Thus, it can be shown that two tones with
frequency ratio ν+�ν

ν = 1 + �ν/ν = ξ2(ε)
ξ1(ε)

are reconstructed from the WT with an

overall relative error of around ε. This estimate is exact if ψ̂(ξ) is real, positive and
symmetric on a logarithmic scale (such as the lognormal wavelet (2.19)), in which
case the tones will always be separated at ωx(t) = exp[log ν + log(ν + �ν)] =√

ν(ν + �ν). For the resolution of two delta-peaks, it follows from (2.21) that one
should consider the ε-supports corresponding to ψ∗(ωt/ωψ), so that the related error
will be different at each frequency ω, characterized by ε calculated from ω�τ/ωψ =
τ2(ε) − τ1(ε). Hence, the resolution parameters (2.22), (2.23) for the WT are

�νmin(ν) = ν
(ξ2(εr )

ξ1(εr )
− 1

)
, �τmin(ν) ∼= ωψ

ν

(
τ2(εr ) − τ1(εr )

)
,

γω(ν) ≡ [�νmin(ν)]−1, γt (ν) = [�τmin(ν)]−1,

γωt ∼=
[
ωψ

(
τ2(εr ) − τ1(εr )

)
log

ξ2(εr )

ξ1(εr )

]−1
, (2.33)

where τ1,2(ε) and ξ1,2(ε) are defined in (2.27), and εr denotes themaximumallowable
reconstruction error, which can be set to εr = 0.05, similarly to that in (2.32). The
resolution characteristics of different wavelets are listed in Sect. 7.2.

Summarizing, in contrast to the classic resolution measures (2.24), (2.25), the
quantities in (2.32), (2.33) are very universal and have clear physical meaning, being
related directly to the accuracy with which two time or frequency events can be
recovered from the resultant TFR. In the context of the present work, where the
main topic is the TFR-based decomposition of the signal (see Chaps. 3 and 4), such
an approach seems to be the most relevant.

2.4 Practical Issues

In theory, one has infinite time and frequency scales, and both of these variables are
continuous. In practice, however, everything is finite and discrete, which has specific
consequences in terms of the resultant TFRs. In this section, the issues that arise
while dealing with real signals are reviewed and studied.

2.4.1 Signal Preprocessing

To obtain a reliable TFR, an initial preprocessing of the signal should be performed.
It consists of eliminating trends, followed by bandpass filtering in the frequency band
of interest (for which the TFR is to be calculated). These two steps are considered
below, with their effects being illustrated in Fig. 2.3.

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 2.3 Preprocessing and its effects on the resultant WFT (the case of the WT is qualitatively
similar). a The original signal, consisting of the trend and three tones (shown at the top). b The same
signal after detrending. c The same signal after detrending plus filtering in the band [0.75, 1.25]Hz.
d, e, f The corresponding mean WFT amplitudes, with their 95% ranges being indicated by yellow
regions; dotted lines show the mean amplitudes for the WFTs of each tone (out of 3) separately.
g, h, i The corresponding WFT amplitudes in the time-frequency plane, with the respective color
ranges being the same as y-axis limits in (d, e, f). It is assumed that one is interested in calculating
the TFR for the frequency range [0.75, 1.25] Hz, which is indicated by gray vertical lines in panels
(d–i), but for completeness the resultant transforms are shown within wider ranges. The signal was
sampled at 100Hz for 100 s

2.4.1.1 Removing the Trends

If the signal contains a trend-like term (i.e. a term of the form K t or more generally
K tα), it can seriously corrupt the resultant TFR and complicate its interpretation.
This is because trends make non-negligible contributions to the signal’s spectral
power in a wide frequency band. Thus, the FT of a trend existing for time T will
be

∫ T
0 K te−iξt dt = K T

ξ e−iξT + K
ξ2

(e−iξT − 1), which is proportional to the overall
time of the trend and decays slowly with ξ. In general, any order contributions K tn ,
n ∈ N will have FT ∼ iT ne−iξT /ξ in the first order over ξ−1. Therefore, it is clear
from the frequency domain form of (2.8) and (2.13) that trends might seriously affect
the representation of the other components in the TFR, as illustrated in Fig. 2.3d, g.

To avoid this, one should remove trends before doing any time-frequency analysis.
To do so, one can subtract a simple linear fit of the data, which will eliminate the
∼ξ−1 spectral contribution of any term ∼ tn, n ≥ 1, changing it to ∼ξ−2 for n > 1.
It might be better, however, to subtract a third order polynomial fit, which will in
addition fully remove the trends ∼t2, t3 and reduce the spectral power of the higher
order terms to ∼ξ−4; it will also eliminate to a large extent the step-increases in
mean value that are sometimes present in real data. This approach is very simple
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and introduces minimal undesirable distortions to the signal’s spectrum, as can be
seen by comparing (d, g) and (e, h) in Fig. 2.3. Third order is suggested because
such a polynomial has at most 3 zero crossings and thus cannot model more than one
oscillation during the whole time-series; and since oscillations having less than one
cycle over the signal time length cannot in principle be reliably studied in the TFR
(see Sect. 2.4.4 below), one does not lose anything by filtering them out.

Remark 2.4.1 Sometimes detrending is performed by subtracting a moving average
from the signal, which additionally filters out the low-frequency spectral content.
However, due both to the properties of such a filter and its associated boundary
effects, this procedure usually introduces more unwanted spectral distortions than
subtraction of a simple polynomial fit followed by bandpass filtering (see below). In
general, however, there exist many different approaches for trend removal [11], with
the preferred choice being application dependent.

2.4.1.2 Bandpass Filtering

Using time-frequency analysis for a given signal, one is usually interested only in
a particular frequency range (e.g. containing a chosen AM/FM component). At the
same time, due to the peak broadening resulting from the TFR’s finite frequency res-
olution, the frequency content of the signal outside the given range can significantly
influence the TFR inside that range. This effect can be especially prominent when the
spread of the window/wavelet function in the frequency domain is large. Therefore,
one should always filter the signal in the frequency range of interest [ωmin,ωmax]
before or during the application of the TFR, i.e. set ŝ(ξ < ωmin) = ŝ(ξ > ωmax) = 0
in (2.8) and (2.13) (or use some other filter to remove spectral content lying outside
the considered frequency range).

This issue is illustrated in Fig. 2.3e, h, where the WFT of the tone in a frequency
range of interest (indicated by gray vertical lines) is seriously corrupted by the other
two tones that lie near in frequency. As seen from Fig. 2.3f, i, filtration of the sig-
nal only within the band considered solves this problem, allowing for an accurate
representation of the corresponding component. Note that, performed alone, band-
pass filtering does not fully remove the influence of a trend in the frequency range
under consideration. That is why trends should be removed first, as described in the
previous subsection.

Remark 2.4.2 It should be noted, that even if the instantaneous frequency of the
AM/FM component lies within the considered frequency range [ωmin,ωmax], some
of the related tones responsible for its amplitude/frequency modulation (see Eq. 2.6
and its discussion) might lie outside this range. In this case they will be filtered out,
which will spoil the representation of the corresponding component to some extent.
However, the probability that the related spectral content lies outside the considered
band is not higher than the probability that there exists some unrelated components
which, if unfiltered, might affect the components of interest to the same or a greater
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extent. Additionally, real signals are usually corrupted by noise, which can be viewed
as many undesirable tones. Therefore, despite the possible drawbacks, it is generally
preferable to filter than not to do so. Note also that there are many other filters [39,
53] that can be used instead of a simple bandpass filtering.

2.4.2 Frequency Discretization

In theory one has a continuous frequency variable ω, for which TFRs are calculated.
In practice, however, the frequency axis is discretized, being partitioned into bins
centered at the chosen discrete values ω = ωk , and the WFT/WT is calculated only
for these frequencies. As discussed previously (see Sect. 2.2), theWFT andWT have
linear and logarithmic frequency resolutions, so that the discretization should also
be performed on linear and logarithmic scales, respectively. It is convenient to take
ωk = (k − k0)�ω (frequency bins [(k − k0 − 1/2)�ω, (k − k0 + 1/2)�ω]) for the
WFT and ωk/2π = 2(k−k0)/nv (frequency bins 2π[2(k−k0−1/2)/nv , 2(k−k0+1/2)/nv ])
for the WT. The question is then what effects the choices of �ω and nv have on the
resultant TFRs, and how to select these parameters appropriately.

Theoretically, the frequency resolution of the TFR is determined only by the
window/wavelet properties (see Sect. 2.3). However, due to frequency discretization
there also appears numerical frequency resolution, determined by the widths of the
frequency bins, i.e. the choice of�ω for theWFT or the number-of-voices nv for the
WT. It imposes an upper bound on the effective frequency resolution of the transform,
which is equal to the minimum among the theoretical and numerical resolutions.
Thus, if �ω or 1/nv is chosen to be too large, a few peaks in the TFR amplitude
might bemerged into one frequency bin, leading to an inability to distinguish between
them and lowering the effective frequency resolution, as illustrated in Fig. 2.4. On the
other hand, if�ω or 1/nv is selected to be too small, it cannot improve the frequency
resolution beyond the theoretical maximum, but it will increase the computational
cost due to requiring the calculation of the TFR at more frequencies. Therefore,
�ω and nv should be selected so as to retain the original, theoretical frequency
resolution, predicted from the chosen window/wavelet parameters. This maximizes
the effective resolution and occurs when the numerical frequency resolution is the
same as or better than the theoretical one. Obviously, the optimal values of �ω and
nv depend on the chosen form of window/wavelet and its properties (see Fig. 2.4).
Thus, while for f0 = 1 a frequency step of�ω/2π = 0.08 is sufficient to distinguish
between two nearby but theoretically resolved components (Fig. 2.4b), for f0 = 4 it
is already insufficient (Fig. 2.4c).

To avoid reducing the original frequency resolution by discretization, for the
WFT the width of a frequency bin �ω should be smaller than the theoretical �νmin
(see Sect. 2.3); while for the WT one has the same criterion but on a logarithmic
frequency scale. In other words, one should break theminimum resolvable frequency
difference (WFT) or ratio (WT) into a large enough number of segments. However,
one is now interested in preserving the TFR’s appearance more generally, i.e. not



2.4 Practical Issues 31

0

0.2

0.4

0.6

0.5 1 1.5 2
0

0.2

0.4

0.6

Frequency ω/ 2π (Hz)

0

0.2

0.4

0.6

0.5 1 1.5 2
0

0.2

0.4

0.6

Frequency ω/ 2π (Hz)

Δω/2π=0.01
Δω/2π=0.04
Δω/2π=0.08
Δω/2π=0.2

(b)

(c)

(d)

(a)

f0 = 1

f0 = 4

Fig. 2.4 Time-averaged WFT amplitudes for the signals s(t) = cos(2πt) + cos(2.5πt) (a, b) and
s(t) = cos(2πt) + cos(2.2πt) (c, d), calculated using different resolution parameters f0 (corre-
sponding to rows) and frequency bin widths �ω; in each case, the small insets on the right show
pictures for the considered �ω individually. The situation for the WT is qualitatively the same

only for the reliably resolved components, but in relation to any components that
can be distinguished in the TFR (even where they are substantially corrupted by
interference). Thus, the optimal frequency bin widths should be smaller than �νmin
(2.32) and (2.33), determined for a relatively high error threshold εr ; the latter is
therefore set to an extreme value of εr = 0.5. Based on these considerations, one
can select an appropriate �ω or nv as

WFT: �ω = ξ2(0.5) − ξ1(0.5)

Nb

(≈1.35/ f0Nb for Gaussian window (2.12)
)
,

WT: nv = Nb log 2

log ξ2(0.5) − log ξ1(0.5)

(≈3.23 f0Nb for lognormal wavelet (2.19)
)
,

(2.34)
where Nb > 1 denotes the chosen number of bins into which the 50%-support of
the window/wavelet FT is divided (in the following Nb = 10 is used by default), and
ξ1,2(ε) are as defined in (2.26) and (2.27) for the WFT and WT, respectively.

The criterion (2.34) is based on (2.32) and (2.33), which are related to the resolu-
tion of two equal-amplitude tones. However, it is clear that, in order to be resolved,
tones with different amplitudes (e.g. s(t) = cos νt + 0.1 cos(ν + �ν)t) should have
a bigger frequency difference than the tones of equal amplitudes. Therefore, �ω and
nv are sufficient to resolve any two components if they are separated theoretically,
as desired.

Remark 2.4.3 It should be noted, that even with the choice (2.34) it is still possible
that at certain times close peaks will appear in the WFT/WT amplitude that are
separated theoretically, but not practically, beingmerged due to insufficient numerical
resolution. However, as mentioned previously, if the bin widths (2.34) are not small
enough to resolve two tones, most of the time they will behave as a single component
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in the TFR, and it will be impossible to investigate them separately. Hence, attributing
the corresponding peaks to one or few components will not make much difference.

2.4.3 Boundary Effects and Padding

Theoretically, one integrates over an infinite time or frequency axis while computing
the WFT (2.8) and WT (2.13), but in practice the signal has a finite time duration
and sampling frequency. Consequently, the resultant TFR becomes ill-defined near
the signal’s time borders (when t is close either to 0 or to the overall time-length T ).
Irrespectively of how this problem is tackled, it often leads to distortions of the TFR
near both signal ends—boundary effects.

2.4.3.1 Padding and Its Schemes

Although this is not really the case in practice (see below), suppose for now that
the WFT and WT are calculated using the convolution in the time domain in
(2.8) and (2.13), respectively. The signal’s positive part s+(τ ) is thus multiplied by
g(τ −t)e−iω(τ−t) (WFT) orψ∗(ω(τ −t)/ωψ) (WT) and integrated over τ . Therefore,
one needs to devise a rule by which the integration can be performed when τ lies
outside the signal’s time limits, i.e. when τ < 0 or τ > T . Generally, this can be
done by continuing the signal beyond its original time interval [0, T ] in some way,
e.g. setting s+(τ /∈ [0, T ]) = 0 in (2.8), (2.13). In practice, the signal is padded
at both ends using a particular convention, then the convolution is calculated with
this padded signal, and after this only the part lying within the original time limits is
taken. An appropriate padding can be constructed by many different schemes, and
the most common/useful ones are listed below, with their effect on the resultant TFR
being illustrated in Fig. 2.5. Note, that padding should be performed after the initial
signal preprocessing, discussed in Sect. 2.4.1, has been completed.

Zero padding, when one pads the signal with zeros at both ends, represents
the simplest and most predictable form of padding. This scheme effectively sets
s(τ < 0) = s(τ > T ) = 0 in (2.8), (2.13), “cutting” the convolution when τ goes
beyond the signal’s time limits. Its effect is illustrated in Fig. 2.5a, e: as can be seen,
this type of padding does not introduce any new behavior (in contrast to a few other
types, see below), always leading to a gradual decay of the TFR amplitude towards
the time ends. This allows one to derive the expressions for boundary errors that arise
in the case of zero padding, which will be done in the following.

Periodic padding is constructed by periodic continuation of the signal. It leads
to quite unpredictable boundary effects, with the TFR near the time borders being
affected by the signal’s behavior at both ends. For example, as illustrated in Fig. 2.5b,
the tone occurring at the beginning (end) has its “phantom” tail near the time end
(beginning) in the WFT. Consequently, this type of padding does not represent the
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Fig. 2.5 Examples of the WFT amplitudes calculated using each of the four padding schemes
discussed in the text (columns) for two different signals (rows): a, e zero padding; b, f periodic
padding; c, g symmetric padding; d, h predictive padding. The effects of different padding strategies
on theWT are qualitatively the same. The signals are indicated in the figure, and they were sampled
at fs = 100 Hz for T = 15 s

preferred choice, unless one knows that the signal is fully periodic over the whole
interval, which almost never occurs in practice.

Symmetric padding whose effects are shown in Fig. 2.5c, g, is performed by
reflecting the signal along t = 0 and t = T . It localizes boundary inaccuracies
at each edge, thus solving the problem of the end-to-end influence that occurs for
periodic padding. Indeed, comparing (c, g) and (b, f) of Fig. 2.5, it can be seen that
the “phantom tails” near the boundaries have been removed. However, the effect of
symmetric padding depends to a large extent on the phases of oscillations at t = 0, T ,
which are quite unpredictable. Thus, if the initial/end phase is not equal to zero or π,
symmetric padding introduces a phase jump and leads to a splitting of the single
peak in the TFR amplitude into several peaks near the time borders. As an example,
in Fig. 2.5b the first oscillation has a phase shift of π/2 at t = 0 and thus is doubled,
while the second one has zero shift at t = T and thus is well represented.

Predictive padding, as implied by its name, continues the signal beyond its time
limits by inferring/forecasting its past/future behavior. Thus, one tries to predict the
values of the signal by assuming some model of the process generating the time-
series and fitting data to this model to find its parameters. In the present case, one is
mainly interested in continuing the signal in such a way as to best represent in the
TFR its existing characteristics near the boundaries, and not in finding the unknown
signal behavior beyond the available data, which is generally impossible. Because
time-frequency analysis is devoted to studying the oscillatory properties of the data,
it seems that the most relevant approach would be to forecast the signal based on
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its local spectral characteristics at both ends. A scheme for doing this is discussed
in Sect. 7.4, while the effect of such padding is shown in Fig. 2.5d, h. As can be
seen, for both signals in Fig. 2.5 predictive padding almost completely eliminates
the boundary distortions. However, it does not represent an “ultimate cure”, and for
a complicated signal some errors might remain; they depend on the signal’s structure
and thus are hard to estimate in general. Nevertheless, in terms of its ability to reduce
boundary effects, predictive padding usually outperforms all other schemes, and it
is therefore used by default in this work.

The remaining question is how many values to pad. At the beginning of this
section it was assumed for simplicity that the WFT/WT are calculated using the
time domain forms of (2.8), (2.13). Such an approach, however, is computationally
very expensive, requiring O(N ) convolutions for each tn=1,...,N and thus being of
O(N 2) in cost. In practice, therefore, the WFT and WT are calculated using the
frequency domain convolutions in (2.8) and (2.13) which, utilizing the FFT algo-
rithm, can be performed in O(N log N ) computations (see Sect. 7.5). However, the
discrete FT of the signal ŝ(ξn), which is used in numerical convolution, represents the
periodic spectrum estimate, being an exact FT of the periodically continued signal:
ŝ(ξn) = ∫

s(modT t)e−iξn t dt . Thus, the absence of padding is in practice completely
equivalent to periodic padding.

One therefore needs to add enough points at both signal ends to guarantee that,
within the original signal time-length, the effects of implicit periodic continuation
due to FFT-based convolution are small. This minimum number of padded values
will obviously depend on the spread of the window/wavelet in time: the larger it is,
the more values one should pad so that most of the window/wavelet is convoluted
with padded values and not with the periodically-continued other end of the signal.
Since the effective window/wavelet length in time (up to a predefined tolerance ε)
can be expressed through its ε-supports τ1,2(ε) (2.26), (2.27), the minimum number
of points n(min)

1 (n(min)
2 ) with which one should pad the signal for t < 0 (t > T ) can

be determined as
WFT: n(min)

1,2 (ε) = fs |τ1,2(ε)|,
WT: n(min)

1,2 (ε) = ωψ

ωmin
fs |τ1,2(ε)|,

(2.35)

where fs is the sampling frequency of the signal, and ωmin denotes the minimum
frequency for which the TFR is calculated. Thus, for the WT the wavelet is rescaled
at each frequency, so the number of points needed to assure the specified precision
ε also scales; to guarantee the accuracy for all frequencies, the maximum number of
points is taken, which corresponds to the lowest frequency.

Additionally, the FFT algorithm requires the total length of the signal in samples
to be a power of two. Therefore, in practice one should simultaneously assure both
the power-of-two points and criterion (2.35), which can be done by padding the signal
from originally N to Np points, with n1 values to the left (t < 0) and n2 to the right
(t > T ), given by

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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Np = NextPowerOfTwo[N + n(min)
1 (ε) + n(min)

2 (ε)] = N + n1 + n2,

n1,2 = n(min)
1,2 (ε)

n(min)
1 (ε) + n(min)

2 (ε)
(Np − N ), (2.36)

where n(min)
1,2 (ε) are as defined in (2.35); by default the precision ε = 0.01 is used.

2.4.3.2 Error Estimates and the Cone-of-influence

As discussed above, for periodic, symmetric and predictive padding the boundary
effects very much depend on the signal’s structure. For zero padding, however, they
are quite universal and can thus be estimated. A simple and straightforward way to
do so is to quantify the relative boundary inaccuracies εb(ω, t) through the difference
between the theoretical (2.10), (2.16) and “practical” WFT/WT of the single-tone
signal s(t) = cos(νt + ϕ), calculated at the tone frequency ν. Then in the case of
zero padding one obtains

WFT:

εb(ν, t) ≡
∣∣Gs(ν, t) − G̃s(ν, t)

∣∣

|Gs(ν, t)|

=
∣∣∣ 12

∫
ei(ντ+ϕ)g(τ − t)e−iν(τ−t)dτ − 1

2

∫ T
0 ei(ντ+ϕ)g(τ − t)e−iν(τ−t)dτ

∣∣∣
∣∣ 1
2

∫
ei(ντ+ϕ)g(τ − t)e−iν(τ−t)dτ

∣∣

≤
∣
∣ ∫ 0

−∞ g(τ − t)dτ
∣
∣ + ∣

∣ ∫ ∞
T g(τ − t)dτ

∣
∣

∣∣ ∫ g(τ )dτ
∣∣

=|Pg(−t)| + |Pg(t − T )|,
(2.37)

WT:

εb(ν, t) ≡
∣
∣Ws(ν, t) − W̃s(ν, t)

∣
∣

|Ws(ν, t)|

=
∣
∣∣ 12

∫
ei(ντ+ϕ)ψ∗(ν(τ − t)/ωψ) νdτ

ωψ
− 1

2

∫ T
0 ei(ντ+ϕ)ψ∗(ν(τ − t)/ωψ) νdτ

ωψ

∣
∣∣

∣
∣∣ 12

∫
ei(ντ+ϕ)ψ∗(ν(τ − t)/ωψ) νdτ

ωψ

∣
∣∣

≤
∣
∣ ∫ 0

−∞ ψ∗(u − νt/ωψ)eiωψudu
∣
∣ + ∣

∣ ∫ ∞
T ψ∗(u − νt/ωψ)eiωψudu

∣
∣

∣
∣ ∫ ψ∗(u − νt/ωψ)eiωψudu

∣
∣

=|Pψ(−νt/ωψ)| + |Pψ(ν(t − T )/ωψ)|,
(2.38)

where G̃s(ω, t) and W̃s(ω, t) denote respectively the WFT and WT obtained in
practice, while Pg,ψ(τ ) are as defined in (2.26), (2.27). Note that εb(ω, t) (2.37),
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Fig. 2.6 a, b, d, e Examples of the time domain Gaussian window functions (2.12) (multiplied
by the corresponding oscillatory part), with which the signal is convoluted while constructing the
WFT (2.8), for different resolution parameters f0 and frequencies ω; thick vertical lines indicate
the time limits of the signal (solid red) and the time t at which the window is centered (dashed
black); the area under the window modulus outside the time limits is filled with gray (note that, for
a Gaussian window (2.12), |g(t)| = g(t)). c, f WFTs for the single tone signal s(t) = cos(2πt) in
the same time limits [0, T ] as in (a, b, d, e), with black and gray lines enclosing the time-frequency
regions where boundary errors (2.37) are small: εb < 0.1 and εb < 0.01, respectively. The signal
was sampled at fs = 100 Hz for T = 7.5 s, and in (c, f) padding with zeros was used

(2.38) does not depend on the phase-shift ϕ of the tone, as would be the case for the
symmetric and periodic padding schemes.

It is clear that the boundary distortions in the TFR manifest themselves when a
non-negligible portion of the window g(τ − t)e−iω(τ−t) or waveletψ∗(ω(τ − t)/ωψ),
by which the signal s+(τ ) is multiplied and integrated in (2.8), (2.13), lies outside
the time limits. This is true for any padding but, in the case of padding with zeros,
the related errors take the simple forms (2.37), (2.38). From the latter it can be seen,
that the dependence of the boundary inaccuracies on time and frequency is different
for the WFT and WT, as illustrated in Figs. 2.6 and 2.7.

In the case of theWFT (Fig. 2.6), the boundary inaccuracies are independent of the
frequency ω and depend only on time t : εb(ω, t) = εb(t). This is because ω controls
the effective number of oscillations within the window, but not its spread in time,
which is determined by the resolution parameter f0. Hence, for each frequency the
relative part of g(τ − t) lying outside the time limits (gray-shaded areas in Fig. 2.6a,
b, d, e) is the same, so that for some (central) time range the WFT is well-behaved
at all frequencies, as shown in Fig. 2.6c, f.

For theWT (Fig. 2.7), on the other hand, the wavelet is rescaled at each frequency
ω, and so is the part of the wavelet outside the time limits (gray-shaded areas in Fig.
2.7a, b, d, e). As a result, the boundary errors depend on both frequency and time, and
the region where the WT coefficients are determined with some predefined accuracy
in terms of boundary effects takes the form of a cone, as shown in Fig. 2.7c, f.
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Fig. 2.7 Same as Fig. 2.6, but for the WT (2.13) with lognormal wavelet (2.19). a, b, d, e the
wavelet function with which the signal is convoluted while constructing the WT (2.13); the area
under the wavelet modulus outside the time limits is filled with gray (note that |ψ(t)| ≈ ψ(t)e−iωψ t

in the present case). c, f WTs for the single tone signal s(t) = cos(2πt) within the same time limits
[0, T ] as in (a, b, d, e). The signal was sampled at fs = 100 Hz for T = 7.5 s, and in (c, f) padding
with zeros was used

The time-frequency region where the boundary errors are small in the current
TFR is called the cone-of-influence (although this region has a truly conic form only
for the WT):

Cone-of-influence {ω, t}(ε)coi : (ω, t) ∈ {ω, t}(ε)coi ⇔ εb(ω, t) ≤ ε, (2.39)

where ε is the chosen accuracy threshold. Examples of the cones-of-influence for
ε = 0.1 and ε = 0.01 have already been presented in Figs. 2.6c, f and 2.7c, f, where
they are enclosed by black and gray lines, respectively. Based on the error estimates
(2.37), (2.38), the cones-of-influence for theWFT andWT can be expressed through
the corresponding window/wavelet ε-supports in time (2.26), (2.27) as

WFT: {ω, t}(ε)coi =
{[

ωmin,ωmax
]
,
[
δt1(ε), T − δt2(ε)

]}
,

δt1(ε) ≤ −τ1(ε), δt2(ε) ≤ τ2(ε),

WT: {ω, t}(ε)coi =
{[

ωmin,ωmax
]
,
[
δt1(ε,ω), T − δt2(ε,ω)

]}
,

δt1(ε,ω) ≤ −ωψτ1(ε)/ω, δt2(ε,ω) ≤ ωψτ2(ε)/ω,

(2.40)

where [ωmin,ωmax] is the frequency range in which the WFT/WT is calculated (the
restrictions on this range and related issues are discussed in Sect. 2.4.4 below).

Because boundary effects can greatly influence the TFR behavior, especially for
the WT, it is recommended that all characteristics (e.g. the WFT/WT mean ampli-
tudes) be calculated using only TFR coefficients inside the cone-of-influence. The
most appropriate padding scheme in this case is zero padding, as the corresponding
boundary effects have a universal and well-defined form. In fact, the boundary errors
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(2.37), (2.38) and the cone-of-influence (2.40) were rigorously estimated exclusively
for this type of padding.

However, if one wants to extract some AM/FM component from the signal’s
TFR (the ways of doing this will be discussed in Chap. 3), then it should obviously
be extracted for all time, and the consideration cannot be restricted to the cone-of-
influence only. Thus, if all the TFR coefficients are to be used, then zero padding
does not represent a good choice, because the WFT/WT near the boundaries will
surely contain considerable errors. In this case predictive padding would be the most
suitable, as it usually has the best performance in terms of reducing boundary effects.

2.4.4 TFR Frequency Range

For completeness, the restrictions on the frequency range [ωmin,ωmax] over which
to calculate the TFR, i.e. how high/low in frequency one can in principle go, should
also be discussed. Consider a signal s(t) sampled at fs Hz for T seconds. Then one
has

ωmin/2π ≥ 1/T, ωmax/2π ≤ fs/2. (2.41)

The restriction on ωmax follows from the Nyquist theorem, which states that oscil-
lations with frequencies higher than half of the sampling frequency cannot be rep-
resented in a discrete time signal. The constraints on ωmin, on the other hand, are
based on simple logic: it is clear that for a particular oscillation to be reliably studied
(generally by any method), there should be at least one of its cycles within the signal.

However, from the statistical viewpoint, to reach any meaningful conclusions
about the characteristics of the oscillatory process, such as its typical amplitude (as
calculated e.g. from the time-averaged TFR amplitude), there should be at least 5-6
corresponding cycles within the signal [31], so that

ω
(stat)
min /2π = 5/T . (2.42)

Thus, although one can in principle estimate the properties of the components at lower
frequencies, the resultant estimates might be highly untypical. Indeed, the number
of cycles can be associated with a number of trials. For example, when testing the
effects of some drug, one cannot base conclusions on only one subject (since the
probability that the subject tested is an outlier is quite high); but if the same effects
appear in 5-6 subjects, this suggests that they are quite common. Note also that, for
statistical comparison of oscillatory properties between different data (e.g. as is done
in [25, 45]), all these properties should be statistically meaningful in themselves, so
that the related oscillations have frequencies ≥ ω

(stat)
min .

Finally, since the cone-of-influence for the WT contracts towards the lower fre-
quencies (see Sect. 2.4.3), there exists also the minimal frequency ω

(ε)
min from the

viewpoint of precision (while there is no such restriction in the case of the WFT).
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The latter can be defined as the minimum frequency for which at least one WT coef-
ficient is determined with accuracy ε in terms of the boundary effects. Using the
estimates (2.40), one obtains

WFT: ω
(ε)
min = −∞; WT: ω

(ε)
min ≤ ωψ(τ2(ε) − τ1(ε))/T . (2.43)

Summarizing, it is quite safe to calculate and analyse the TFR in the range
[ωmin,ωmax] with ωmin > max[2π/T,ω

(ε)
min] and ωmax < 2π fs/2. However, if one

needs to draw conclusions about the typical oscillatory parameters of the data, they
should be based on the TFR within the cone-of-influence (see Sect. 2.4.3) and on at
least 5 cycles of the related oscillations, so that ωmin ≥ max[2π × 5/T,ω

(ε)
min].

Remark 2.4.4 Even if one is interested in the frequency range [ωmin,ωmax] (so that
the signal is filtered in this range on the stage of preprocessing, see Sect. 2.4.1), it
might be useful to calculate the TFR for a larger interval (up to (−∞,∞) for theWFT
and (0,∞) for the WT). This allows to trace the “tails” of the TFR amplitude peaks
located in the original range, which might be needed e.g. for a reliable parameter
reconstruction by the direct method (see Sect. 3.2.2). For example, in Fig. 2.3f, i the
considered frequency band—between the gray vertical lines—contains only themain
part of the corresponding peak, with its tails occupying a wider range. If one wants to
encompass the supports of all possible peaks contained in [ωmin,ωmax] then, while
bandpass filtering the signal in the original frequency band, its WFT/WT should be
calculated within a slightly larger region [ω̃min, ω̃max]. To achieve relative accuracy
ε, so that the new range contains the (1 − ε) part of the total area under any peak in
the range of interest, one should use

WFT: [ω̃min, ω̃max] = [ωmin + ξ1(ε),ωmax + ξ2(ε)],
WT: [ω̃min, ω̃max] =

[
ωmin

ξ1(ε)

ξ2(ε)
,ωmax

ξ2(ε)

ξ1(ε)

]
,

(2.44)

where the ε-supports ξ1,2(ε) for the window and wavelet are defined in (2.26) and
(2.27), respectively. Usually, however, this complication is not needed, unless the
instantaneous frequency of some component of interest lies near ωmin or ωmax.

2.5 Summary

This Chapter reviewed themain properties of theWFT andWTand discussed various
issues related to their practical use, setting the foundations for the more advanced
techniques discussed in the following Chapters. To summarize, the WFT and WT
both represent particular projections of the signal onto the time-frequency plane,
carried out as discussed in Sect. 2.2. They are mainly devoted to analysing signals of
the form (2.5), i.e. those composed of a number of oscillatory components each of

http://dx.doi.org/10.1007/978-3-319-20016-3_3
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which satisfies the analytic approximation (2.4) (so that the corresponding amplitudes
and phases are well-defined).

The WFT and WT, and generally any TFR, have finite time and frequency reso-
lutions. That is, they can represent reliably only signals whose components do not
vary too fast in time and are not too close to each other in frequency. By adjust-
ing window/wavelet parameters (such as the resolution parameter f0 in the case of
Gaussian window and lognormal wavelet), one can vary resolution properties of the
resultant transform. However, high time and high frequency resolutions are mutually
exclusive, and increasing one of them will inevitably decrease the other.

The main difference between the WFT and WT lies in the type of resolution
that they have: while the former resolves components based on absolute differences
between their frequencies, the latter takes into account the corresponding ratios (or
the difference between logarithms); in effect, time resolution of the WFT remains
constant at all frequencies, while that of the WT increases with frequency. The
resolution properties of both transforms, and the approaches that can be used for their
quantification, were thoroughly considered in Sect. 2.3. In particular, it was shown
that classical resolution measures appear to be highly non-universal and can give
misleading results in certain cases (especially for the WT), and a more appropriate
measures were introduced.

There are also many practical issues related to the application of the WFT and
WT, which were discussed in detail in Sect. 2.4. Thus, before calculating the WFT
orWT of the signal, it should first be detrended and filtered in the frequency range of
interest (see Sect. 2.4.1). Next, one should also choose appropriate steps of frequency
discretization, and the formula (2.34) was derived for this purpose. Finally, both
TFRs suffer from the distortions near time boundaries; the expressions to estimate the
related errors and the padding schemewhich can be used to significantly reduce them
were devised in Sect. 2.4.3. Section7.5 provides complete algorithms for calculating
the WFT and WT, while the commonest windows/wavelets and their properties are
listed in Sect. 7.2.

References

1. P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Appli-
cations in Science, Engineering, Medicine and Finance (IOP Publishing, Bristol, 2002)

2. L. Aguiar-Conraria, P.C. Magalhães, M.J. Soares, Cycles in politics: wavelet analysis of polit-
ical time series. Am. J. Pol. Sci. 56(2), 500–518 (2012)

3. A. Bandrivskyy, A. Bernjak, P.V.E. McClintock, A. Stefanovska, Wavelet phase coherence
analysis: application to skin temperature and blood flow. Cardiovasc. Eng. 4(1), 89–93 (2004)

4. E. Bedrosian, A product theorem for Hilbert transforms. Proc. IEEE 51(5), 868–869 (1963)
5. D.S. Bloomfield, R.T.J. McAteer, B.W. Lites, P.G. Judge, M. Mathioudakis, F.P. Keenan,

Wavelet phase coherence analysis: application to a quiet-sun magnetic element. Astrophys.
J. 617(1), 623 (2004)

6. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. I. Funda-
mentals. Proc. IEEE 80(4), 520–538 (1992)

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7


References 41

7. B.Boashash, Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms
and applications. Proc. IEEE 80(4), 540–568 (1992)

8. B. Boashash, Time Frequency Signal Analysis and Processing (Elsevier, New York, 2003)
9. R.A. Carmona, W.L. Hwang, B. Torresani, Characterization of signals by the ridges of their

wavelet transforms. IEEE Trans. Signal Proc. 45(10), 2586–2590 (1997)
10. R.A. Carmona, W.L. Hwang, B. Torresani, Multiridge detection and time-frequency recon-

struction. IEEE Trans. Signal Proc. 47(2), 480–492 (1999)
11. R. Chandler, M. Scott, Statistical Methods for Trend Detection and Analysis in the Environ-

mental Sciences (Wiley, New York, 2011)
12. H.-I. Choi, W.J. Williams, Improved time-frequency representation of multicomponent signals

using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37(6), 862–871 (1989)
13. L. Cohen, Time-frequency distributions: a review. Proc. IEEE 77(7), 941–981 (1989)
14. L. Cohen, Time-Frequency Analysis, vol. 778 (Prentice Hall PTR, New Jersey, 1995)
15. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE

Trans. Inf. Theory 36(5), 961–1005 (1990)
16. I. Daubechies, Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference

Series in Application Mathematics, SIAM, 1992
17. I. Daubechies, J. Lu, H. Wu, Synchrosqueezed wavelet transforms: an empirical mode

decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)
18. N. Delprat, B. Escudie, P. Guillemain, R. Kronland-Martinet, P. Tchamitchian, B. Torrésani,

Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans.
Inf. Theory 38(2), 644–664 (1992)

19. D. Gabor, Theory of communication. J. IEEE 93, 429–457 (1946)
20. A. Grinsted, J.C. Moore, S. Jevrejeva, Application of the cross wavelet transform and wavelet

coherence to geophysical time series. Nonlinear Proc. Geophys. 11(5/6), 561–566 (2004)
21. K. Gröchenig, Foundations of Time-Frequency Analysis (Springer, Berlin, 2001)
22. F. Hlawatsch, F. Auger, Time-Frequency Analysis, vol. 36 (Wiley, New York, 2010)
23. F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal representa-

tions. IEEE Signal Proc. Mag. 9(2), 21–67 (1992)
24. N.E. Huang, Z. Wu, S.R. Long, K.C. Arnold, X. Chen, K. Blank, On instantaneous frequency.

Adv. Adapt. Data Anal. 1(02), 177–229 (2009)
25. D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E.

McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Phil. Trans.
R. Soc. Lond. A 371(1997), 20110622 (2013)

26. D. Iatsenko, P.V.E.McClintock, A. Stefanovska, On the extraction of instantaneous frequencies
from ridges in time-frequency representations of signals [preprint—arXiv:1310.7276], 2014

27. D. Iatsenko, P.V.E. McClintock, A. Stefanovska, Linear and synchrosqueezed time-frequency
representations revisited: Overview, standards of use, reconstruction, resolution, concentration,
and algorithms. Dig. Signal Proc. (in press), 2015, doi:10.1016/j.dsp.2015.03.004

28. J. Jamšek, M. Paluš, A. Stefanovska, Detecting couplings between interacting oscillators with
time-varying basic frequencies: Instantaneous wavelet bispectrum and information theoretic
approach. Phys. Rev. E 81(3), 036207 (2010)

29. J. Jamšek, A. Stefanovska, P.V.E. McClintock, Wavelet bispectral analysis for the study of
interactions among oscillators whose basic frequencies are significantly time variable. Phys.
Rev. E 76(4), 046221 (2007)

30. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994)
31. L. Keselbrener, S. Akselrod, Selective discrete Fourier transform algorithm for time-frequency

analysis:method and application on simulated and cardiovascular signals. IEEETrans. Biomed.
Eng. 43(8), 789–802 (1996)

32. P. Kumar, E. Foufoula-Georgiou,Wavelet analysis for geophysical applications. Rev. Geophys.
35(4), 385–412 (1997)

33. D. Labat, Recent advances in wavelet analyses: part 1. A review of concepts. J. Hydrol. 314(1),
275–288 (2005)

http://arxiv.org/abs/1310.7276
http://dx.doi.org/10.1016/j.dsp.2015.03.004


42 2 Linear Time-Frequency Analysis

34. D. Labat, J. Ronchail, J.L.Guyot, Recent advances inwavelet analyses: part 2. Amazon, Parana,
Orinoco and Congo discharges time scale variability. J. Hydrol. 314(1), 289–311 (2005)

35. J.P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. Le van Quyen, J. Martinerie, F. Varela,
Estimating the time-course of coherence between single-trial brain signals: an introduction to
wavelet coherence. Clin. Neurophysiol. 32(3), 157–174 (2002)

36. M. Malik, Heart rate variability. Ann. Noninvas. Electr. 1(2), 151–181 (1996)
37. S. Mallat, A Wavelet Tour of Signal Processing, 3rd edn. (Academic Press, Burlington, 2008)
38. J. Morlet, Sampling theory and wave propagation, in Issues on Acoustic Signal/Image Process-

ing and Recognition, vol. I, NATO ASI series, ed. by C.H. Chen (Springer, Berlin, 1983), pp.
233–261

39. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-time signal processing, vol. 2. (Prentice
Hall, New Jersey, 1989)

40. B. Picinbono, On instantaneous amplitude and phase of signals. IEEETrans. Signal Proc. 45(3),
552–560 (1997)

41. S. Qian, D. Chen, Joint time-frequency analysis. IEEE Signal Proc. Mag. 16(2), 52–67 (1999)
42. A.W. Rihaczek, Signal energy distribution in time and frequency. IEEE Trans. Inf. Theory

14(3), 369–374 (1968)
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Chapter 3
Extraction of Components from the TFR

The main purpose of the time-frequency analysis can be formulated as the identi-
fication and quantification of the AM/FM components present in the signal. Thus,
with the help of TFRs one can distinguish the individual components present in
the signal and estimate their time-dependent properties, such as the corresponding
instantaneous amplitudes, phases and frequencies. In this respect TFRs can be used
to decompose a signal into its constituent components, or just to recover some par-
ticular components of interest [1, 4–9, 14]. This can be done in two steps. First, the
component of interest should be identified, i.e. in the current TFR the time-frequency
region where it is concentrated should be found. Then, knowing this region, one can
estimate the parameters of the corresponding component using a specific reconstruc-
tion method. The present Chapter discusses these two steps, their implementation
and related issues.

3.1 Identification of the Components

If the construction of the TFR is well-matched to the signal’s structure, then each
AM/FM component will appear as a “curve” in the time-frequency plane (e.g. see
Fig. 2.1), formed by a unique sequence of TFR amplitude peaks—ridge points. To
identify the component, one therefore needs to extract the corresponding curve, i.e.
find the appropriate peak sequence by which this component is represented in the
WFT/WT.

3.1.1 Ridge Curve and Its Extraction

In practice, a typical signal has the form (2.5), consisting of many AM/FM compo-
nents xi (t) and somenoise. If the noise is not very strong, and the resolution properties
of the WFT/WT (determined by the parameters of window/wavelet used) are appro-
priate for the characteristic time modulation and frequency separation between the
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Fig. 3.1 Examples of the extracted ridge curves ωp(t) for different signals: a simulated signal
composed of one chirp, one tone and noise, as specified by equation above the panel (ηW (t) denotes
unit-deviation Gaussian white noise); b human electrocardiogram (ECG) signal (3-lead, with elec-
trodes on shoulders and lowest left rib, see e.g. [12]); c human respiration signal (measured by belt,
see e.g. [8]). d, e, f the TFRs of the signals shown in the upper panels; in each case, the black line
shows the extracted ridge curve ωp(t) (i.e. the sequence of TFR amplitude peaks) corresponding
to the dominant component. The signals were sampled at 40Hz for a 200s; b, c 1800s

components then, at each time, there is a unique peak in the TFR amplitude for each
xi (t). The sequence of peaks associated with a particular component will be referred
to as its ridge curve, while the corresponding frequency profile will be denoted as
ωp(t). It is usually represented by the peaks closest to the component’s actual fre-
quency, but the latter is almost never known a priori for real signals. Examples of the
extracted ωp(t) are presented in Fig. 3.1.

The problem of ridge curve extraction lies in selecting from among all possible
combinations the sequence of peaks that corresponds to a single component. This
is not a trivial issue, since in real cases there are often many peaks in the TFR
amplitude at each time, and their number often varies. In such circumstances it can
be unclear which peak corresponds to which component, and which are just noise-
induced artifacts. Practically, it is convenient to extract the most dominant among
xi (t) in (2.5), i.e. the one having the largest 〈x2i (t)〉. One can then reconstruct the
corresponding component (see Sect. 3.2 below), subtract it from the signal and repeat
the procedure to find the other components.

In what follows, the ridge points (i.e. positions of the amplitude peaks at each
time), their numbers and the corresponding TFR amplitudes will be denoted as νm(t),
Np(t) and Qm(t), respectively:

νm(t) :
⎧
⎨

⎩

[
∂ω|Hs(ω, t)|

]

ω=νm (t)
= 0,

[
∂2ω|Hs(ω, t)|

]

ω=νm (t)
< 0,

Qm(t) ≡ |Hs(νm(t), t)|,
m = 1, . . . , Np(t), (3.1)
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where Hs(ω, t) stands for theWFTGs(ω, t) (2.8) or theWTWs(ω, t) (2.13), depend-
ing on which TFR type is used. Clearly, the ridge curve can now be expressed as
ωp(t) = νmc(t)(t), where mc(t) is the sequence of the selected peak indices at each
time t , which one needs to find. Note, that the number of peaks Np(t) can vary in
time and in real cases is often greater than the number of components present in the
signal, e.g. with the additional peaks being attributable to noise.

Remark 3.1.1 Since in practice the frequency scale for the WFT/WT is discretized,
the positions of the peaks νm(t) also take discrete values. As a result, e.g. the time-
derivative dωp(t)/dt cannot be reliably calculated, because its numerical estimate
become “quantized” in steps determined both by the width of the frequency bins
and the signal sampling frequency fs . Thus, given a high enough fs , the numerical
dωp(t)/dt will be zero formost of the time (and exceedingly high at somemoments).
This greatly restricts the choice of techniques that can be used for curve extraction.
Moreover, the performance of the corresponding methods might depend on numer-
ical parameters (e.g. the sampling frequency) in this case. To avoid these adverse
effects, the peak positions νm(t) (as well as their amplitudes Qm(t)) are estimated
more precisely using three-point parabolic interpolation for each peak (see (3.6)
below). Both νm(t) and the numerical dωp(t)/dt then become continuous (rather
than discretized), making all procedures more meaningful and universal.

The procedures that can be used for ridge curve extraction have been discussed,
developed and compared in [9] (see also [1, 4, 5, 8]). Generally, ωp(t) can be
found as the trajectory maximizing some path functional of the ridge amplitudes and
frequencies:

{ωp(t1), . . . , ωp(tN )} = {νmc(t1)(t1), . . . , νmc(tN )(tN )}, {mc(t1), . . . , mc(tN )}

= argmax
{m1,m2,...,m N }

N∑

n=1

F
[
tn, {Qm1(t1), . . . , Qm N (tN )}, {νm1(t1), . . . , νm N (tN )

}]
,

(3.2)

where the optimization is performed over all possible sequences of peak numbers
{m1, m2, . . . , m N }, and F[. . .] denotes the chosen functional of the current discrete
time tn , the whole ridge frequency profile {νm(t)(t)} and the corresponding amplitude
profile {Qm(t)(t)}. Although such an approach appears to be computationally very
expensive, it turns out that, if the functional at each time depends on only a finite
number of the consecutive points rather than the full history, then using a dynamic
programming algorithm [2, 3] one can select the optimal path in terms of (3.2) in
O(N ) computations [9]. The algorithm for doing this is described in Sect. 7.6.

Remark 3.1.2 Note that, instead of the path optimization method (3.2), one can
use a simple one-step optimization, selecting mc(tn) as that maximizing F[tn, . . .]
calculated using amplitude and frequency profiles formed from the points selected

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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at previous steps. However, as investigated in [9], this approach gives results much
worse than those obtained with (3.2) because, in the latter case, all the trajectories
are effectively explored and therefore a more appropriate curve can be found.

3.1.2 Main Procedure

The principal question is what F[. . .] to use in (3.2). Obviously, it should favor the
higher amplitudes Qm(tn). Traditionally, it is also complemented with a penalization
term, which suppresses the frequency differences between the subsequent ridges.
However, such an approach will restrain any frequency variability, irrespectively of
whether this variability is characteristic of some component or not. Therefore, it will
be highly non-universal, working well for one type of signal and failing for the other
(given the same method parameters). Thus, e.g. for chirps x(t) ∼ cos(νt + at2) it is
clear that one should penalize not the frequency jumps, but their difference from the
actual frequency growth rate.

To make the scheme adaptive, the parameters of the functional should be matched
to the properties of the component being extracted, such as typical variations of its
instantaneous frequency. The latter can be characterized by the averages and stan-
dard deviations of the ridge frequencies and their differences. Based on these char-
acteristics, one can construct an adaptive functional by suppressing not the absolute
frequency jumps, but the relative deviations of the component’s frequency and its
derivative from their typical values. It can be chosen as

WFT:
(
ω̃p(tn) ≡ νmn (tn)

)

F[tn, ω̃p(t)] ≡ log |Gs(ω̃p(tn), tn)| − p1

∣∣∣∣
�ω̃p(tn) − 〈�ω̃p(t)〉

std[�ω̃p(t)]
∣∣∣∣

n1

− p2

∣∣∣∣
ω̃p(tn) − 〈ω̃p(t)〉

std[ω̃p(t)]
∣∣∣∣

n2
,

WT:
(
ω̃p(tn) ≡ νmn (tn)

)

F[tn, ω̃p(t)] ≡ log |Ws(ω̃p(tn), tn)| − p1

∣∣∣∣
� log ω̃p(tn) − 〈� log ω̃p(t)〉

std[� log ω̃p(t)]
∣∣∣∣

n1

− p2

∣∣∣∣
log ω̃p(tn) − 〈log ω̃p(t)〉

std[log ω̃p(t)]
∣∣∣∣

n2
,

(3.3)

where�ω̃p(tn) ≡ ω̃p(tn)−ω̃p(tn−1) and� log ω̃p(tn) ≡ log ω̃p(tn)−log ω̃p(tn−1);
for simplicity everything is expressed through ω̃p(tn) ≡ νmn (tn), and (3.2) takes
the form ωp(t) = argmax

ω̃p(t)

∑N
n=1 F[tn, ω̃p(t)]. Note that, to be consistent with the

resolution properties of the respective TFRs (see Sect. 2.3), the frequency variables
are considered on a linear scale for the WFT and on a logarithmic scale for the
WT. The parameters n1,2 and p1,2 in (3.3) determine the laws and the extents of

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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suppression of the corresponding relative deviations; by default their values are set
to n1,2 = 1, p1,2 = 1, because such a choice was found to be quite universal and
seems to work well in the majority of cases [9].

Remark 3.1.3 In (3.3), one can choose another function of the ridge amplitudes
instead of the logarithm, e.g. simply its squared value; however, the logarithm seems
to be the most appropriate because, in this case, the path functional (3.2) depends
on the product of all amplitudes and thus can be significantly influenced even by a
single “wrong” point, making selection of the latter less probable.

By maximizing the path integral (3.2) based on the functional (3.3), one in fact tries
to extract the curve which is most consistent with itself. Thus, the strength of the
respective frequency variations becomes unimportant, and it is only their agreement
and similarity at different times thatmatters. Furthermore, by suppressing the relative
deviations of the component’s frequency from itsmean, the functional (3.3) stabilizes
the curve in its characteristic frequency range, thus lowering the possibility that it
will “escape” and switch to another component.

However, the functional (3.3) depends on the whole time-evolution of ωp(t),
so the path optimization (3.2) cannot be performed using a fast O(N ) algorithm
described in Sect. 7.6. Nevertheless, one can approach the approximate optimum
curve ωp(t) iteratively. Namely, given some initial guess ω

(0)
p (t), one calculates the

corresponding averages and standard deviations, fixes them in (3.3) and, using in
(3.2) the resultant functional (for which the path optimization algorithm discussed
in Appendix 7.6 is applicable), extracts the newer profile ω

(1)
p (t). Then the (fixed)

averages and deviations are updated to those for the ω
(1)
p (t) and, based on them,

the next approximation ω
(2)
p (t) is found. The procedure is repeated until the curves

obtained in two consecutive iterations fully coincide, indicating convergence (which
is usually achieved within only a few iterations).

The initial guessω
(0)
p (t) can be chosen as a simplemaximum-based curve, formed

by the positions of the highest peaks at each time. However, because such a trajectory
might be composed from the parts of curves belonging to different components, it is
better to use not the averages and deviations, but the mediansm[. . .] and 50% ranges
s[. . .]:

〈. . .〉 → m[. . .] = perc0.5[. . .], std[. . .] → s[. . .] = perc0.75[. . .] − perc0.25[. . .],
(3.4)

where percp[ f (t)] denotes the pth quantile of f (t). The medians and ranges are
generally more universal than usual means and standard deviations, so for all calcu-
lations we do the replacement (3.4) in (3.3). Note, however, that such an approach
works well only in conjunction with peak interpolation (see Remark 3.1.1), being
useful only if ωp(t) take continuous values; otherwise, the usual averages/deviations
should be used.

Apart from (3.3), various other functionals were studied in [9]. However, the
choice (3.3)was found to greatly outperformall the other ones.Being highly adaptive,

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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it seems to work well in the majority of cases, e.g. all ωp(t) presented in Fig. 3.1
for various signals were found by this scheme. Thus, the curve extraction procedure
based on (3.2) and (3.3) with the default parameters n1,2 = 1, p1,2 = 1 appears to
be of almost universal utility, being a type of “just apply” method which does not
require any tuning from the user.

Remark 3.1.4 In addition to frequency and its difference, one can also suppress
the relative deviations of the component’s other parameters (the amplitude and its
time-derivative, higher order frequency differences etc.), which can be done by intro-
ducing the corresponding terms into (3.3). However, the performance of the original
functional is already very good [9], so there is no need to complicate it.

3.2 Estimation of the Component’s Parameters

Having extracted the ridge curve ωp(t), the question which immediately arises is
how to find the instantaneous amplitude A(t), phase φ(t) and frequency ν(t) of
the associated component. These parameters can be reconstructed by two methods:
ridge and direct. Both these approaches, as well as the differences between the corre-
sponding estimates, are considered below. Note, that all TFR methods by definition
aim to reconstruct the analytic approximation (2.4) to the component parameters.
Therefore, in rare cases when the analytic estimates are inaccurate, all TFR-based
estimates will be inaccurate to the same or higher extent.

3.2.1 Ridge Reconstruction

The component’s parameters can be reconstructed directly from the TFR at the ridge
points [7, 11, 13], which will be referred to as the ridge reconstruction. Thus, for the
single tone signal s(t) = A cos(νt + ϕ) it follows from (2.10), (2.16) that the TFR
amplitude at each time will be peaked at the tone frequency, and that the tone ampli-
tude and phase can be perfectly reconstructed from the TFR value at any frequency
as Aei(νt+ϕ) = 2Gs(ω, t)/ĝ(ω − ν) (WFT) or Aei(νt+ϕ) = 2Ws(ω, t)/ψ̂∗(ωψν/ω)

(WT). Generalizing such an approach to the case of any AM/FM component, one
obtains the ridge reconstruction formulas:

ridge[WFT]: ν(t) = ωp(t), A(t)eiφ(t) = 2Gs(ωp(t), t)

ĝ(0)
,

ridge[WT]: ν(t) = ωp(t), A(t)eiφ(t) = 2Ws(ωp(t), t)

ψ̂∗(ωψ)
.

(3.5)

Note that, for the WT, the expressions (3.5) should be modified if any other normal-
ization than (2.13) is used (see Remark 2.2.2).

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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The expressions in (3.5) are derived for a continuous frequency scale, but in
practice the TFR is calculated at discrete frequencies ωk = (k − k0)�ω (WFT) or
ωk/2π = 2(k−k0)/nv (WT). If the corresponding estimates are discretized “directly”,
then they will contain errors proportional to �ω (WFT) or n−1

v (WT), which might
be considerable. These errors can be significantly reduced by using the quadratic
interpolation to better locate the position of the peak. Then, denoting as kp(t) the
frequency bin corresponding to the ridge frequency ωp(t), the discretized version of
(3.5) takes the form

ridge[WFT]: ν(t) = ωkp(t)(t) + δνd(t), A(t)eiφ(t) = 2Gs(ωkp(t)(t), t)

ĝ(−δνd(t))
,

δνd(t) = �ω

2

a3 − a1
2a2 − a1 − a3

, a{1,2,3} ≡ |Gs(ω{kp(t)−1,kp(t),kp(t)+1})|,

ridge[WT]: ν(t) = ωkp(t)(t)e
δ log νd (t), A(t)eiφ(t) = 2Ws(ωp(t), t)

ψ̂∗(ωψeδ log νd (t))
,

δ log νd(t) = n−1
v log 2

2

a3 − a1
2a2 − a1 − a3

, a{1,2,3} ≡ |Ws(ω{kp(t)−1,kp(t),kp(t)+1})|,
(3.6)

with the expressions for A(t)eiφ(t) being obtained based on the WFT and WT of
a single tone signal (see discussion preceding (3.5)). For such a signal it can be
shown [10], that the discretization errors of the estimates (3.6) are O(�ω2) (WFT)
or O(n−2

v ) (WT) for ν(t) and φ(t), and O(�ω3) (WFT) or O(n−3
v ) for A(t). These

errors are negligible if �ω and nv are selected based on the criteria (2.34). Note,
however, that the above estimates assume that the first derivatives of the window
and wavelet FTs are continuous at their peaks, i.e. ĝ′′(0) and ψ̂ ′′(ωψ) are finite;
otherwise, all the errors become proportional to the first order of �ω or n−1

v [10].

3.2.2 Direct Reconstruction

Another approach is to reconstruct the component’s parameters from the whole time-
frequency region where it is concentrated in the current TFR. This region will be
called the time-frequency support (TFS) of the component, and will be denoted as
[ω−(t), ω+(t)]. Given the associated ridge curve ωp(t), TFS can be defined as the
widest region of unimodal non-zero amplitude around the corresponding peaks at
each time:

Time-frequency support (TFS) [ω−(t), ω+(t)]:
∀ω ∈ [ω−(t), ω+(t)] : sign(ω − ωp(t))∂ω|Hs(ω, t)| ≤ 0, |Hs(ω, t)| > 0, (3.7)

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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where |Hs(ω, t)| denotes the chosen TFR (WFT Gs(ω, t) or WT Ws(ω, t)), and
sign(. . .) is the sign function.

Indeed, if two components interfere in the TFR, then one expects them to be
nearly-optimally separated at the frequency where the amplitude minimum between
the two corresponding peaks occurs, indicating that one component contribution was
overcome by the other one. This can be shown rigorously (see Sect. 2.3) for theWFT
and WT of the sum of two equal-amplitude tones (2.20) in the case of a real-positive
and unimodal window and wavelet FTs satisfying ĝ(−ξ) = ĝ(ξ),∀ξ (e.g. Gaussian
window) and ψ̂(aωψ) = ψ̂(a−1ωψ),∀a > 0 (e.g. lognormal wavelet), respectively.
In any case, the definition (3.7) is the most straightforward and intuitively clear one,
and there are arguably no other reasonable choices. Examples of time-frequency
supports are shown in Fig. 3.2 for the WFT (for the WT all is qualitatively the same).

Remark 3.2.1 It should be noted, that the definition (3.7) is not suitable for windows
and wavelets with multimodal (i.e. having multiple non-negligible peaks) |ĝ(ξ)|
and |ψ̂(ξ > 0)|, respectively. Thus, for such window/wavelet functions it might be
very hard to understand where is the “line” separating the time-frequency regions
corresponding to different components, because even for the single tone signal s(t) ∼
cos νt there will be multiple peaks in the TFR amplitude. As a possible workaround,
one can redefine the TFS to be enclosed between the points of the first upward zero
crossing of νG,W (ω, t)−ω at both ends of ωp(t), so that νG,W (ω±(t), t)−ω±(t) =
0 and ∂ωνG,W (ω±(t), t) − 1 > 0. This definition would be suitable even for a
very exotic ĝ(ξ) and ψ̂(ξ), though it has its own issues. In any case, multimodal
windows/wavelets enormously complicate the resultant WFT/WT and are therefore
rarely used, so we retain the original intuitive concept of the TFS.

Remark 3.2.2 The signals presented in Fig. 3.2 correspond to a simple case where
the components have disjoint supports in frequency, which allows their separation by
simple filtration of the signal in the respective frequency bands (e.g. [0.5, 1.5]Hz for
the first component in Fig. 3.2a, c, e, g); the components’ amplitudes and phases can
then be estimated from the corresponding analytic signals (see Sect. 2.1). Whether
such an approach will be more accurate and noise-robust than the TFR-based one
depends on many factors, such as how well the frequency bands are chosen. In
general, however, the supports of different components can overlap in the signal’s
FT (e.g. see Fig. 2.1), so there might be no filtration alternative. Nevertheless, the aim
of Fig. 3.2 is not to present the case where time-frequency analysis tools are most
useful, but only to illustrate the concept of the TFS and related issues in a clear and
simple way. The same remark also applies to many other figures in this work.

Given its TFS, the parameters of the component can be reconstructed using the
inversion formulas (2.11), (2.17), where one should restrict the integration over ω to
only the corresponding time-frequency region [ω−(t), ω+(t)]. Such amethodwill be
referred to as direct reconstruction. However, in this way one can estimate only the
amplitude and phase of the component (through reconstructing its analytic signal),
but not its frequency. Nevertheless, the expressions for the latter, as well as for any

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Fig. 3.2 WFT-based examples of the extracted components’ time-frequency supports (TFSs)
[ω−(t), ω+(t)] for two different signals, which are defined by the equations above (a) and (b);
in these equations, ηW (t) denotes unit-deviation Gaussian white noise. Each signal consists of two
components, and in all panels magenta and orange colors refer to the first and second component,
respectively. a, b Snapshots of theWFT amplitudes (thick black lines) at time t0 = 50 s, the borders
of the components’ TFSs at that time (thin colored lines) and the associated ridge points ωp(t)
(filled colored circles). c, d Full WFT amplitude time-evolutions (t0, corresponding to snapshots
in (a, b), are indicated by the dashed gray lines), with the components’ TFSs [ω(1,2)

− (t), ω(1,2)
+ (t)]

being indicated by thin colored lines, and their ridge curves ω
(1,2)
p (t) by thick solid lines of the

same colors. The signals were sampled at 100Hz for 100s

order time-derivatives of amplitude and phase, can be derived in a similar way to
(2.11) and (2.17), as discussed in Sect. 7.3. The direct estimates of the component’s
parameters are then given as

direct[WFT]:

A(t)eiφ(t) = C−1
g

∫ ω+(t)

ω−(t)
Gs(ω, t)dω,

ν(t) = Re

[∫ ω+(t)
ω−(t) ωGs(ω, t)dω
∫ ω+(t)
ω−(t) Gs(ω, t)dω

− ωg

]
, ωg ≡ C−1

g

1

2

∫
ξ ĝ(ξ)dξ,

(ωg = 0 for symmetric ĝ(ξ), e.g. Gaussian window),

direct[WT]:

A(t)eiφ(t) = C−1
ψ

∫ ω+(t)

ω−(t)
Ws(ω, t)

dω

ω
,

ν(t) = Re

[ D−1
ψ

∫ ω+(t)
ω−(t) ωWs(ω, t) dω

ω

C−1
ψ

∫ ω+(t)
ω−(t) Ws(ω, t) dω

ω

]
, Dψ ≡ ωψ

2

∫ ∞

0

1

ξ
ψ̂∗(ξ)

dξ

ξ
.

(3.8)

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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In practice, the frequency axis is partitioned into binsωk = (k −k0)�ω (WFT) or
ωk/2π = 2(k−k0)/nv (WT), so the formulas (3.8) should be also discretized. Taking
into account linear and logarithmic scaling of ωk , the midpoint discretization rule
takes the form

WFT:
∫ ω2

ω1

[. . . (ω)]dω →
∑

k:ωk∈[ω1,ω2]
[. . . (ωk)]�ωk (linearωk = (k − k0)�ω),

WT:
∫ ω2

ω1

[. . . (ω)]dω →
∑

k:ωk∈[ω1,ω2]
ωk [. . . (ωk)] log 2

nv
(logarithmic

ωk

2π
= 2(k−k0)/nv ),

(3.9)

where [. . . (ω)] stands for any functional of frequency, e.g. in the WT inversion
formula (2.17) one has [. . . (ω)] = Ws(ω, t)/ω. If the integrals in (3.8) are discretized
according to (3.9), then the related errors in all direct estimates will be O(�ω2)

(WFT) or O(n−2
v ) (WT) [10], unless ĝ′′(0) or ψ̂ ′′(ωψ) are infinite (in which case

the errors become O(�ω) or O(n−1
v )). These errors are negligible for �ω and nv

chosen according to (2.34).

Remark 3.2.3 The direct WT-based estimate of instantaneous frequency (3.8) is
inapplicable for wavelets characterized by infinite Dψ (3.8). For the latter to be
finite, one needs |ψ̂(ξ)| to decay faster than ξ when ξ → 0, a condition that is not
satisfied e.g. for the Morlet wavelet (2.18). In such circumstances one can use some
kind of hybrid reconstruction

hybrid[WFT]: ν(t) = Re

[∫ ω+(t)
ω−(t) νG(ω, t)Gs(ω, t)dω

∫ ω+(t)
ω−(t) Gs(ω, t)dω

]
, νG(ω, t) ≡ ∂t arg[Gs(ω, t)],

hybrid[WT]: ν(t) = Re

[∫ ω+(t)
ω−(t) νW (ω, t)Ws(ω, t) dω

ω
∫ ω+(t)
ω−(t) Ws(ω, t) dω

ω

]
, νW (ω, t) ≡ ∂t arg[Ws(ω, t)].

(3.10)

Although empirical, it works very well in the majority of cases [10]. However, when
both direct and hybrid reconstructions are possible, direct is obviously the more
accurate (as it was rigorously derived, see Sect. 7.3); but the difference between the
two is usually negligible. Note that, in the case of the WFT, hybrid reconstruction is
rarely needed, as direct frequency estimation (3.8) is possible for most of the window
functions (being inapplicable only for a very exotic ones with | ∫ ξ ĝ(ξ)dξ | = ∞).

3.2.3 Difference Between the Two Estimates

The differences between the direct (3.8) and ridge (3.5) estimates, as well as the
related errors, were studied in detail in [10] (see also [7, 11, 13]). It was found that

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_7
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the ridge method is more robust to noise and interference between the components,
but that the direct method allows the time variability in the component’s parameters
at low noise levels to be followed more accurately. Thus, all direct estimates (3.8)
by definition give exact values (up to the error of the analytic approximation (2.4))
in the “ideal” case when the TFS contains all the energy of the component and
no other contributions. The ridge estimates (3.5), on the other hand, are not exact
even in such a perfect case, as they have errors proportional to the strengths of the
associated amplitude and frequency modulations. However, direct reconstruction is
very susceptible to noise and interference,while ridge reconstruction ismore resistant
to these complications.

This is illustrated in Fig. 3.3. As can be seen, when the noise is small
(Fig. 3.3a, c, e) the direct estimates are preferable, being nearly exact, while ridge
reconstruction underestimates the amplitude and frequency variations of the compo-
nent. The situation changes for higher noise level (Fig. 3.3b, d, f), where the ridge
estimates become slightly more preferable (though the relative performance of the
two approaches in respect to each other varies with time). Thus, the inaccuracies of
both reconstruction methods can be represented as a sum of the theoretical error (the
one appearing in the perfect noiseless case) and the error attributable to noise and
interference. The former is zero for direct estimates and non-zero for ridge estimates,
while the latter is non-zero for both methods, but is smaller in the case of ridge recon-
struction [10]. In the case of Fig. 3.3b, d, f the original (theoretical) inaccuracies of
the ridge method are largely compensated by its higher noise-robustness, thus mak-
ing the total errors smaller than for direct reconstruction (at least on the central time
interval being shown).

3.2.4 Adaptive Choice of the Reconstruction Method

As discussed in the previous section, each of the two reconstruction methods has its
own advantages and drawbacks, so the optimal choice depends on the situation. To
select the most appropriate estimates adaptively, one can use the approach proposed
in [10], which is discussed below.

Having extracted the ridge curve ωp(t) and TFS [ω−(t), ω+(t)] of the com-
ponent, its parameters are first reconstructed by both methods (direct and ridge).
In this way one obtains the amplitudes A(d,r)(t), phases φ(d,r)(t) and frequencies
ν(d,r)(t), where “d” and “r” denote direct and ridge estimates, respectively. One
then calculates the TFR (using the same parameters as originally) of the signal
s(d)(t) = A(d)(t) cosφ(d)(t), extracts the ridge curve and TFS from it (taking sim-
ple maxima ωp(t) = argmaxω |Hs(ω, t)| is sufficient here), and reconstructs by the
direct method the “refined” parameters Ã(d)(t), φ̃(d)(t), ν̃(d)(t). The same procedure
is performed for the “ridge” signal s(r)(t) = A(r)(t) cosφ(r)(t), now using the ridge
method to reconstruct the refined estimates. Next, the discrepancies ε

(d,r)
A,φ,ν between

the original and refined estimates are calculated for each method as

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Fig. 3.3 Comparison of the estimates of a component’s amplitude and frequency obtained using
ridge and direct reconstruction methods in two cases: low noise level (a, c, e) and high noise level
(b, d, f). The signal composition is shown by the equation at the top, where ηW (t) denotes Gaussian
white noise of unit deviation. a, b WFTs of the signals at two noise levels, with the extracted ridge
curves ωp(t) and the associated time-frequency supports [ω−(t), ω+(t)] being shown by black
and gray solid lines, respectively. c, d the corresponding direct (blue) and ridge (red) amplitude
estimates compared with the true amplitude (thick gray background line); related errors for the
same time intervals are shown in the insets. e, f The corresponding direct (blue) and ridge (red)
frequency estimates compared with the true frequency (thick gray background line); related errors
for the same time intervals are shown in the insets. Note that the errors in the ridge estimates of
amplitude depend largely on the strength of the accompanying frequency modulation, as is clear
from (c, e). The signals were sampled at 50Hz for 200s, and the samewhite noise realizations ηW (t)
were used for both (a, c, e) and (b, d, f)

ε
(d,r)
A ≡ κ

(d,r)
A

√
〈( Ã(d,r)(t) − A(d,r)(t))2〉,

ε
(d,r)
φ ≡ κ

(d,r)
φ

√
1 − |〈ei(φ̃(d,r)(t)−φ̃(d,r)(t))〉|2,

ε(d,r)
ν ≡ κ(d,r)

ν

√
〈(ν̃(d,r)(t) − ν(d,r)(t))2〉,

(3.11)

where κ
(d,r)
A,φ,ν are the coefficients that can be used to tune the performance of the

approach (they were found empirically to be κ
(d)
A,φ,ν = {3, 4, 2}, κ(r)

A,φ,ν = 1). Obvi-
ously, for the exact estimates one has εA,φ,ν = 0, so it is natural to assess the relative
performance of the reconstruction methods based on the associated discrepancies
(3.11). Therefore, the direct estimate of the amplitude A(d)(t) seems to be preferable
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to its ridge estimate A(r)(t) if ε
(d)
A < ε

(r)
A , and vice versa; the same considerations

apply to the phase and frequency estimates.
Despite being empirical, the approach outlined above works very well in practice,

selecting the best estimates in the majority of cases. This is illustrated in Fig. 3.4,
where the discrepancies (3.11) are shown together with the actual reconstruction
errors for each method. As can be seen, the values of ε

(d,r)
A,φ,ν are proportional to

the true errors and allow one to judge reliably about the relative performance of the
two reconstruction methods. Thus, for a single tone signal embedded in noise the
ridge estimates are always preferred, which is because in this case they do not have
theoretical errors (i.e. are exact when the noise is absent) [10]; the criteria based
on (3.11) correctly reflects this fact, as can be seen from Fig. 3.4a–c. Next, when
amplitude/frequency modulation is present, at low noise levels the direct estimates
are preferred, but with increase of the noise strength their inaccuracy grows faster
than in the case of ridge reconstruction. Therefore, beyond some threshold noise level
(indicated by gray vertical dashed lines in Fig. 3.4) ridge estimates become the more
accurate; this threshold and the optimal method in each case can be well recovered
from the behavior of the discrepancies (3.11), as is clear from Fig. 3.4d, h, i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.4 The actual reconstruction errors of the direct and ridge methods (light-blue and light-red
lines, respectively) and the corresponding discrepancies (3.11) (direct—blue, ridge—red) in their
dependence on the noise levelσ . The actual inaccuracies are calculated in the sameway as (3.11), but
using the true parameters instead of the refined ones ( Ã(d,r)(t) → A(true)(t), φ̃(d,r)(t) → φ(true)(t),
ν̃(d,r)(t) → ν(true)(t)) and setting all κ

(d,r)
A,φ,ν = 1. a, d, g Amplitude reconstruction errors. b, e, h

Phase reconstruction errors. c, f, i Frequency reconstruction errors (for the cyclic frequency ν(t), in
rad/s). The signals associated with each row are given by the equations above the central panels (b,
e, h), with ηW (t) denoting unit-deviation Gaussian white noise; each signal was sampled at 50Hz
for 200s. Where present, the gray (or black) points with the corresponding dashed lines indicate the
intersections between the true errors (or the discrepancies (3.11)) of the direct and ridge methods
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Remark 3.2.4 To implement the criterion (3.11), one should compute the two new
TFRs, for the direct and ridge signals s(d,r)(t). Obviously, these TFRs do not need
to be calculated for all frequencies (which might be computationally expensive), but
only for the frequency range [ω(1)

min, ω
(1)
max] where the original component resides.

Given the extracted component’s TFS [ω−(t), ω+(t)], this range can be taken as
[minω−(t),maxω+(t)]. However, the maximum of ω+(t) might be excessively
large (it is in theory infinite e.g. if the signal is represented by a single tone); the
same applies to the minimum of ω−(t). Therefore, it is better to utilize a narrower
support [ω̃−(t), ω̃+(t)], defined as thewidest regionof non-negligibleTFRamplitude
within the original TFS:

ω̃−(t) : |Hs(ω ∈ [ω−(t), ω̃−(t)], t)| < εs |Hs(ωp(t), t)|,
ω̃+(t) : |Hs(ω ∈ [ω̃+(t), ω+(t)], t)| < εs |Hs(ωp(t), t)|, (3.12)

where Hs(ω, t) stands for the WFT or WT, εs denotes chosen precision (the default
is set to εs = 0.001), and ωp(t) denotes the positions of the associated peaks
at each time, as always. If ω̃−(t) (3.12) does not exist, e.g. if |Hs(ω−(t), t)| ≥
εs |Hs(ωp(t), t)|, it is taken as ω̃−(t) = ω−(t); the same is done for ω̃+(t) in a
similar case.

With the use of (3.12) the frequency range in which TFR should be calculated (to
encompass most of the component’s energy) can be estimated as

[ω(1)
min, ω

(1)
max] = [

min
{
perc
0.05

[ω̃−(t)],min[ωp(t)]
}
,max

{
perc
0.95

[ω̃+(t)],max[ωp(t)]
}]

,

(3.13)
where percp denotes the p’th largest percentage value of the argument (with perc0
and perc1 corresponding to usual minimum and maximum, respectively). The 95th
percentile of ω̃+(t) is taken in (3.13) instead of the overall maximum because, when
noise is present, ω̃+(t) might sometimes be too large; the same applies to ω̃−(t).

3.3 Summary

This Chapter has elaborated in detail the extraction of components from the signal’s
WFT/WT. Thus, to extract the component one should first identify it by finding the
corresponding ridge curve (Sect. 3.1), and then reconstruct it using either the ridge
(Sect. 3.2.1) or direct (Sect. 3.2.2) method; the choice among the latter two can be
made adaptively using the criteria suggested in Sect. 3.2.4. The techniques developed
in this Chapter are already very powerful and can be used stand-alone to analyse the
properties of the components present in the signal. In the next Chapter, however, they
will be combined with some additional procedures to form an even more powerful
NMD method.
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Chapter 4
Nonlinear Mode Decomposition (NMD)

The extraction of the AM/FM components from the signal’s WFT/WT has been
considered in detail in the previous Chapter, so now it should be clear how to decom-
pose the signal into its constituent components using TFR-based approaches. Thus,
having extracted one component, it is then subtracted from the signal, and the pro-
cedure is iterated on the residual to extract the next ones. However, it is not clear
when to stop this decomposition, i.e. how many components should be extracted.
Furthermore, some of the components typically do not correspond to an indepen-
dent activity, but arise due to the complex waveforms of the particular oscillations to
which they are related. This is because real oscillations are rarely purely sinusoidal,
but havemore complicated shapes as the result of nonlinearities in the generating sys-
tem and/or the measurement apparatus. For example, the AM/FM component (2.1)
raised to the third power [A(t) cosφ(t)]3 = 3

4 A3(t)[cosφ(t) + 1
3 cos 3φ(t)] already

consists of two components, although there is only one meaningful oscillation.
It is therefore better to consider the full Nonlinear Modes (NMs), defined as the

sum of all components corresponding to the same activity:

c(t) = A(t)v(φ(t)) = A(t)
∑

h

ah cos(hφ(t) + ϕh), (4.1)

where v(φ(t)) = v(φ(t) + 2π) is some periodic function of phase (also called the
“wave-shape function” [1]), which due to its periodicity can always be expanded in
the Fourier series (4.1). In what follows, the AM/FM components composing the
NM will be referred to as harmonics, with the hth harmonic being represented by
a term ∼cos(hφ(t) + ϕh) in (4.1). Without loss of generality, the normalization of
A(t) and φ(t) in (4.1) can be fixed by setting a1 = 1,ϕ1 = 0. Then the instantaneous
phase and frequency of the whole NM are those of its first harmonic (which will be
called main, or fundamental), being φ(t) and ν(t) = φ′(t), respectively [1].

Throughout this work, the signal is assumed to have the form (2.5), being com-
posed of the AM/FM components and noise. Obviously, any such signal can be
represented as a sum of NMs ci (t) of the form (4.1), corrupted by some noise η(t)
(its class will be considered later, in Sect. 4.1.5):
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s(t) =
∑

i

ci (t) + η(t). (4.2)

The ultimate goal is then to extract all the NMs present in the signal and to find
their characteristics, such as the corresponding amplitudes A(t), phases φ(t) and
frequencies ν(t), as well as the amplitude scaling factors ah and phase shifts ϕh of
the harmonics.

To achieve this goal, theNonlinearModeDecomposition (NMD)method is devel-
oped anddescribed in the presentChapter. Thebasic idea and ingredients of theNMD,
as well as their implementation, are first considered in Sect. 4.1. Then a few impor-
tant upgrades are introduced in Sect. 4.2. Finally, the choice of parameters for the
method is discussed in Sect. 4.3, and the full procedure is summarized in Sect. 4.4.

4.1 Basic Idea and Ingredients

The main goal of NMD is to decompose a given signal into a set of nonlinear modes
(4.1). To do this, four steps are necessary:

(a) Extract the fundamental harmonic of an NM accurately from the signal’s TFR.
(b) Find candidates for all its possible harmonics, based on its properties.
(c) Identify the true harmonics (i.e. corresponding to the same mode) among them.
(d) Reconstruct the full NM by summing together all the true harmonics; subtract it

from the signal, and iterate the procedure on the residual until a preset stopping
criterion is met.

These individual subprocedures are explained in detail in the sections below.
TheNMD can be based either on theWFT, or on theWT, although in what follows

(Sect. 4.3.2) the choice of the TFR type will be made adaptive. Nevertheless, for now
it will be assumed that a particular type has already been selected and all operations
are performed based on it. Furthermore, the preferred reconstruction method (direct
or ridge, see Sect. 3.2) might differ for different NMD subprocedures, as will be
discussed in Sect. 4.3.3; until then, all parameters are assumed to be estimated using
some chosen method.

Remark 4.1.1 Before applyingNMD the signal should be detrended, which can con-
veniently be done by subtracting a third order polynomial fit from it (see Sect. 2.4.1).
Thus, one cannot decompose the trend, which can be perceived as part of an oscil-
lation of period larger than the time duration of the signal. Moreover, trends, if not
removed, might considerably affect the surrogate test developed later in Sect. 4.1.5.

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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4.1.1 Extraction of the Fundamental Harmonic

Extraction of components from the signal’s TFR has been considered in detail in
Chap.3. Thus, applying the procedure of Sect. 3.1, one can identify the ridge curve
corresponding to the dominant component, while its associated amplitude/phase/
frequency A(1)(t) / φ(1)(t) / ν(1)(t) can then be estimated as discussed in Sect. 3.2.
The component extracted in this way will generally represent the harmonic of some
NM, but not necessarily the fundamental (first) one. For simplicity, however, it will
be assumed that this component is the fundamental harmonic; this assumption will
be removed in Sect. 4.1.4.

4.1.2 Harmonics: Extracting the Candidates

Given the ridge frequency ω
(1)
p (t) of the first harmonic, the hth harmonic is expected

to lie near hω
(1)
p (t). Therefore, its ridge curve ω

(h)
p (t) can be identified simply as

the sequence of peaks which are located in the same time-frequency support (region
of unimodal TFR amplitude at each time, see Sect. 3.2.2) as hω

(1)
p (t); or, in other

words, the sequence of peaks nearest to hω(1)
p (t) in the direction of increasing TFR

amplitude. This is illustrated in Fig. 4.1. Having found ω
(h)
p (t), the parameters of

the hth harmonic A(h)(t),φ(h)(t), ν(h)(t) can be estimated in the usual way (see
Sect. 3.2).

4.1.3 Harmonics: Identifying the True Ones

In general, the procedure of the previous subsection yields what is not necessarily
a genuine harmonic, but just a candidate for one. Thus, even if the NM does not
contain a particular harmonic, one will still obtain some signal for it, consisting

Fig. 4.1 Illustration of the extraction of the hth harmonic ridge curve ω(h)
p (t) based on the funda-

mental ridge frequency ω
(1)
p (t). At each time, starting from the expected ridge frequency hω

(1)
p (t)

of the harmonic (blue points), one climbs (i.e. follows in the direction of increasing TFR amplitude)
to the nearest peak, which is then assigned to ω

(h)
p (t) (red points)

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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of noise or components lying near its expected frequency. Hence, having extracted
the hth harmonic candidate, one needs to determine whether it is a true harmonic
or not. To tackle this problem, one can use the method of surrogate data [2, 3],
testing against the null hypothesis of independence between the first harmonic and the
extracted harmonic candidate. Thus, one first selects ameasure to quantify the degree
of dependence between the dynamics of two harmonics, which is then calculated for
the original harmonic and for a collection of surrogates—a specially constructed
time-series consistent with the null hypothesis being tested. If the original value
of the selected measure lies outside the distribution of its surrogate values, this
indicates genuine interdependence and the harmonic is regarded as true; otherwise,
it is discarded as false.

The amplitude, phase and frequency dynamics of a true harmonic should depend
on those for the fundamental harmonic as A(h)(t)/A(1)(t) ≡ ah = const, φ(h)(t) −
hφ(1)(t) ≡ ϕh − hϕ1 = const, ν(h)(t) = hν(1)(t). One can introduce measures
q(h)

A,φ,ν ∈ [0, 1] quantifying the degree of consistency with these laws (0—no consis-
tency, 1—full consistency), i.e. the dependence of the parameters of the hth harmonic
on the corresponding parameters of the first one:

q(h)
A ≡ exp

[
−

√〈[
A(h)(t)〈A(1)(t)〉 − A(1)(t)〈A(h)(t)〉]2〉

〈A(1)(t)A(h)(t)〉
]
,

q(h)
φ ≡ ∣∣〈 exp

[
i
(
φ(h)(t) − hφ(1)(t)

)]〉∣∣,

q(h)
ν ≡ exp

[
−

√〈[
ν(h)(t) − hν(1)(t)

]2〉

〈ν(h)(t)〉
]
.

(4.3)

The overall measure of interdependence between the harmonics can then be taken as

ρ(h)(wA, wφ, wν) =
(

q(h)
A

)wA
(

q(h)
φ

)wφ
(

q(h)
ν

)wν
, (4.4)

with the parameters wA,φ,ν giving weights to each of the consistencies q(h)
A,φ,ν . The

default is set to ρ(h) ≡ ρ(h)(1, 1, 0), with equal weights for the amplitude and phase
consistencies, and no weight for the frequency consistency. The latter is because the
procedure of harmonic extraction (see Sect. 4.1.2), being based on the instantaneous
frequency of the first harmonic, in itself introduces a dependence of ν(h)(t) on ν(1)(t),
so it is better not to base any conclusions on it.

Ideally, for true harmonics one should have q(h)
A,φ,ν = 1, but noise, the finite fre-

quency and time resolutions, and the interferencewith other components all introduce
errors. In reality, therefore, the consistencies will be smaller than unity even for true
harmonics. Hence one cannot identify harmonics based only on the value of ρ(h) but
also needs to perform the surrogate test. For the latter one can utilize the idea of
the time-shifted surrogates [4, 5], using as a first harmonic surrogate its time-shifted
version and as the other harmonic surrogate the corresponding candidate harmonic
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extracted from the time-shifted TFR. Such time-delay destroys any temporal corre-
lations between the signals while preserving all their other properties, thus creating
surrogates consistent with the null hypothesis of independence.

Given the maximal time-shift (in samples) M , the surrogate parameters for the
first harmonic are taken as its original parameters shifted �Td/2 backward in time

{A(1)
d (τ ),φ

(1)
d (τ ), ν

(1)
d (τ )} = {A(1)(τ − �Td/2), φ(1)(τ − �Td/2), ν(1)(τ − �Td/2)},

τ = {tn=1+M/2,...,N−M/2}, �Td=1,...,Nd = M(1 − 2d/Nd )/2 fs ,
(4.5)

where Nd is the number of surrogates, fs is the signal sampling frequency and N is
its total length in samples (note, that the length of the surrogate time series is smaller
than the length of the original signal, being N −M). Using ν

(1)
d (τ ) (4.5) as a reference

profile, the surrogate hth harmonic and its parameters A(h)
d (τ ),φ

(h)
d (τ ), ν

(h)
d (τ ) are

extracted in the same way as described in Sect. 4.1.2, but from the signal’s TFR
shifted �Td/2 forward in time (G(ω, τ + �Td/2) or W (ω, τ + �Td/2)).

The extraction of the corresponding curves for all surrogates can greatly be accel-
erated by initial preprocessing of the TFR, constructing its “skeleton” [6] at the
beginning and then utilizing it for each surrogate. Thus, at each time t one breaks
the TFR into the time-frequency supports (regions of unimodal TFR amplitude)
[ω−,m(t),ω+,m(t)],m = 1, 2, ..., Np(t), and from them reconstructs by (3.5) or (3.8)
the corresponding amplitudes Am(t), phases φm(t) and frequencies νm(t) (which
form the TFR skeleton). Then the surrogate parameters are taken as those corre-
sponding to indices md(t) of the supports in which the expected harmonic frequency
lies:

md (τ ) : hν
(1)
d (τ ) ≡ hν(1)(τ − �Td/2) ∈ [ω−,md (τ )(τ + �Td/2), ω+,md (τ )(τ + �Td/2)]

{A(h)
d (τ ),φ

(h)
d (τ ), ν

(h)
d (τ )} = {Amd (τ )(τ ),φmd (τ )(τ ), νmd (τ )(τ )}.

(4.6)

Remark 4.1.2 Instead of re-extracting A(h)
d (τ ),φ

(h)
d (τ ), ν

(h)
d (τ ) for each time-delay,

one can take the surrogate parameters for the hth harmonic simply by shifting its
original A(h)(t),φ(h)(t), ν(h)(t) forward in time by �Td/2, in the same way as is
done for the fundamental harmonic (4.5). In fact, such an approach gives almost
the same results and at the same time is faster. However, as mentioned before, the
original procedure of harmonic extraction introduces a correlation between ν(h)(t)
and ν(1)(t), and can therefore introduce dependence between other parameters, such
as phases. Therefore, to be rigorous, the full extraction procedure should be repeated
for each surrogate, thus automatically taking into account possible bias of this kind
and producing more reliable estimates of the significance.

Summarizing, to perform the surrogate test one calculates the amplitude-phase
consistencies ρ

(h)
d=1,...,Nd

(1, 1, 0) (4.4) for the surrogate parameters (4.5), (4.6) and

compares them with the value ρ
(h)
0 (1, 1, 0) calculated in the same way but for the

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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zero time shift �T0 = 0. The probability measure (although mathematically not
the true probability) that the extracted hth harmonic is a true harmonic of the main
one is then quantified by the significance of the surrogate test, i.e. by the relative
part of surrogates for which ρ(h)

d < ρ(h)
0 . For example, if one found 1000 surrogate

amplitude-phase consistencies ρ(h)
d=1,..,1000 and 792 of them are smaller than the

original value ρ(h)
0 , then the rough probability that the extracted harmonic candidate

represents a true harmonic is 79.2%. Following the standard convention [2, 3], in
what follows the harmonic is regarded as true if the probability calculated in this
way is ≥95%. By default, the number of surrogates is set to Nd = 100, while the
maximum time shift equals M = N/4, i.e. one quarter of the signal’s length, so that
the surrogates are each of length N − M = 3N/4.

Note that the significance of the surrogate test does not depend on the magnitude
of ρ(h) (4.4). Thus, theremight be an independent component located at the frequency
of a possible harmonic, so that the amplitude-phase consistency would be high but,
because it does not fully adjust its amplitude and phase to that of the fundamental
harmonic, the surrogate test will not reject the null hypothesis of independence.
Thus, the possibility of picking up a spurious component that is nearby in frequency
is largely eliminated.

Remark 4.1.3 Since many harmonic candidates h = 2, 3, ... are tested for being
true, it is natural to expect that sometimes one might encounter false positives, i.e.
the surrogate test will regard as true a harmonic which is actually false. Thus, for
some noise realizations the parameters of the TFR around the expected harmonic fre-
quency might indeed appear to be correlated with the parameters of the fundamental
harmonic. However, in such cases the extracted harmonic candidate will usually have
quite a small consistency ρ(h) (4.4). To reduce the probability of false positives, there-
fore, it is reasonable to introduce some threshold ρmin and to regard the harmonic as
true only if it both passes the surrogate test and at the same time has ρ(h) ≥ ρmin.
Empirically, this threshold is set to

ρmin(wA, wφ, wν) = 0.5wA+wφ , (4.7)

where wA, wφ, wν are the weightings used in (4.4) (as mentioned, the default is
wA = wφ = 1, wν = 0); the value (4.7) was found to be quite universal and to work
well in most cases. Note, that for a true harmonic one can also have ρ(h) < ρmin,
but this will usually mean that it is badly damaged by noise or other influences and
cannot be recovered without large errors.

4.1.4 Harmonics: Practical Issues

Extracting in order To improve the accuracy of reconstruction, each harmonic
which is identified as true should be subtracted from the signal before extracting and
testing the next one. This decreases the errors related to interference between the
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harmonics and makes all procedures more accurate. The same consideration applies
to the first harmonic which, after being found by themethods described in Sect. 4.1.1,
should be subtracted from the signal before extraction of any of the other harmonics.

How many harmonics to extract? Clearly, the maximum number of harmonics
one can extract in principle is hmax = ( fs/2)/〈ν(1)(t)/2π〉, where fs is the sampling
frequency of the signal (so that fs/2 is the maximum achievable, being the Nyquist
frequency) and ν(1)(t) denotes the extracted instantaneous frequency of the first har-
monic. However, checking all harmonics might be computationally very expensive,
and is often not needed. In practice, it is better to stop the search after some chosen
number S of sequential harmonics has been identified as false, making it likely that
there are no more true harmonics. This number is chosen to be S = 3 by default.

What if the extracted component is not the first harmonic? Although intu-
itively the first harmonic should have the highest amplitude (and will therefore be
extracted as the dominant curve), for some complicated waveforms this might be
untrue. Therefore, before extracting the higher harmonics, it should first be ensured
that one starts from the first harmonic. To do this, the same procedure described for
harmonic extraction and identification can be applied, but in the reverse direction, i.e.
using h = 1/2, 1/3, 1/4, .... Then if some of these “fractional” harmonics are iden-
tified as true, the one with the smallest frequency is assigned as the new fundamental
harmonic. The minimum h one can go for can be set as hmin = (1/T )/〈ν(1)(t)/2π〉,
although the statistics will be bad already for h < 5hmin, when the related oscil-
lation has less than 5 cycles over the whole signal time-duration (see Sect. 2.4.4).
Nevertheless, it is better to stop after S0 = 3 consecutive 1/n harmonics have been
identified as false, in the same manner as is done for the usual harmonics.

In which frequency range to calculate TFRs for harmonics? To extract a
particular harmonic candidate, one does not need to calculate the TFR over the
whole frequency range, which would be computationally expensive. Rather, one
can calculate it only in the range where the possible harmonic is expected to lie. As
discussed in [7], themaximum frequency range [ω(h)

min,ω
(h)
max ]where the hth harmonic

is concentrated in the TFR can be estimated as

ω(h) ≡ h〈ω(1)
p (t)〉, �ω(h)

min,max ≡ max(1, h)
[
ω(1)
min,max − 〈ω(1)

p (t)〉],

WFT: ω
(h)
min,max = ω(h) + �ω

(h)
min,max max

(
1,

min(1, h) f (1)
0

h f (h)
0

)
,

WT: ω(h)
min,max = ω(h)

(ω(h) + �ω
(h)
min,max

ω(h)

)max(1,min(1,h) f (1)
0 / f (h)

0 )

,

(4.8)

where ω
(1)
p (t) is the ridge curve for the first harmonic (that is assumed to have been

extracted already), f (h)
0 is the resolution parameter of the WFT/WT from which

the hth harmonic is extracted (it might be adjusted, see Sect. 4.2.1 below), and
[ω(1)

min,ω
(1)
max ] denotes frequency range of the first harmonic in the TFR (it can be

estimated by (3.13)).

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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Remark 4.1.4 Note that the formula (4.8) was derived [7] within the assumption
that the window (wavelet) function used for the WFT (WT) obeys ĝ[ f (h)

0 ](ξ) ∼
ĝ[ f (1)

0 ](ξ f (h)
0 / f (1)

0 ) (ψ̂[ f (h)
0 ](ξ) ∼ ψ̂[ f (1)

0 ](ξ f (h)
0 / f (1)

0 )),whichholds for theGaussian
window (2.12) (lognormal wavelet (2.19)).

4.1.5 Stopping Criterion

Once all the harmonics are identified and reconstructed, they are summed up into
the NM, which is then subtracted from the signal and the procedure is repeated on
the residual. The natural question arises, therefore, of how many nonlinear modes to
extract, i.e. when to stop the decomposition. Obviously, decomposition of any noise
(white, Brownian, any other correlated or not) does not make much sense, so the
reasonable goal is to extract all oscillatory components present in the signal and leave
the noise and trends as the residual. Therefore, after extraction of each NMone needs
to decide whether what is left contains any more meaningful oscillations, in which
case one continues the decomposition, or whether it just represents noise, in which
case one should stop. The problem is thus reduced to distinguishing deterministic
from random dynamics.

To solve it, one can use the surrogate test against the null hypothesis of linear noise
[2, 3], which includes white and colored noises (e.g. Brownian). The surrogates
for this task, called FT surrogates, are constructed by taking the inverse Fourier
transform of the signal’s FT with randomized phases of the Fourier coefficients:
ss(t) = (2π)−1

∫ [ŝ(ξ)eiϕs (ξ)]eiξt dξ, where ϕs(ξ) = −ϕs(−ξ) denote the phases
taken at random uniformly on [0, 2π] for each frequency ξ > 0. The reason for this is
that any linear noise (anARMAprocess x(tn) = a0+b0ηW (tn)+∑P

p=1 apx(tn−p)+
∑M

m=1 bmηW (tn−p), where ηW (tn) denotes Gaussian white noise of unit variance) is
characterized only by the amplitudes of the Fourier coefficients. Randomization of
the Fourier phases preserves the power spectrum, so that the surrogate time series
will represent another realization of the same random process if the original time
series is noise, thus being consistent with the tested null hypothesis. On the other
hand, if some meaningful NMs are present in the signal, the randomization of the
phases will destroy the particular phase relationships responsible for the amplitude
and frequency modulations, making their behavior less deterministic.

One now needs to select the discriminating statistics, which is calculated for
the original signal and the surrogates, so that the null hypothesis of linear noise
is accepted if the original value lies within the surrogate values and rejected oth-
erwise. The commonly used statistics involve one of the generalized Renyi dimen-
sions [8–10], with the correlation dimension calculated by theGrassberger-Procaccia
approach [11–13] remaining the most popular choice. However, it turns out that the
surrogate test based on such measures is extremely sensitive to noise, prohibiting
their use in the NMD which is intended to be noise-robust.

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2


4.1 Basic Idea and Ingredients 67

Therefore, another discriminating statistics should be devised. There are virtually
no restrictions on its choice [14], so that almost any measure can be used. The
only question to be asked is how powerful it is, i.e. how good in distinguishing
the deterministic dynamics from noise. Given that NMD is based on the WFT/WT,
it is reasonable to select statistics based on the properties of the time-frequency
representation obtained. Namely, since at the first step of the NMD procedure one
extracts the component from the signal’s TFR (see Sect. 4.1.1), the discriminating
statistics can be based on the properties of the components extracted (in the sameway)
from the original signal and from its FT surrogates. Thus, if the original component
is true (and not just formed from noise peaks picked in the time-frequency plane),
then it is expected to have more deterministic amplitude and frequency modulation
than the surrogate components, which should be more stochastic; otherwise, there
will be no difference.

The degree of order in the extracted amplitude A(t) and frequency ν(t) can be
quantified by their spectral entropies Q[ Â(ξ)] and Q[ν̂(ξ)], respectively, so that the
discriminating statistics D for the surrogate test can be taken as their combination

D(αA,αν) ≡ αA Q[ Â(ξ)] + αν Q[ν̂(ξ)],

Q[ f (x)] ≡ −
∫ | f (x)|2

∫ | f (x)|2dx
log

| f (x)|2
∫ | f (x)|2dx

dx .
(4.9)

Note that, in practice, due to the finite sampling frequency fs and sample length N of
real signals, the integrals over frequency ξ in Q[ Â(ξ)], Q[ν̂(ξ)] (4.9) are discretized
into sums over the discrete FT frequencies ξn/2π = (n/N − 1/2) fs , n = 1, ..., N .

In the present context, the statistics D(αA,αν) (4.9) appears to be more meaning-
ful and much more powerful than other choices (e.g. the popular correlation dimen-
sion [11–13]). This statistics is directly related to the quality of the representation of
component in the signal’s TFR, so that the significance of the surrogate test based
on it reflects the proportion of the “deterministic” part in the extracted amplitude
and frequency dynamics. Thus, if the residual does not pass the surrogate test (null
hypothesis is not rejected), this might mean either that the residual is indeed noise, or
that the component simply cannot be reliably extracted from the TFR (e.g. because
the resolution characteristics of the latter are not appropriate to represent reliably
the related amplitude/frequency modulation and/or to segregate the component from
noise).

The power of D(αA,αν), i.e. its ability to distinguish deterministic from random
dynamics, depends strongly on the complexity of the component’s amplitude and
frequency modulations: the lower the original spectral entropies Q[ Â(ξ)], Q[ν̂(ξ)]
are, the more powerful is the test. However, even in the (quite unrealistic) case when
the signal contains a meaningful component without any amplitude or frequency
modulation, i.e. a pure tone A cos νt , due to numerical issues [15, 16] the surrogate
test will still be quite powerful in rejecting the null hypothesis (unless this tone has
an integer number of cycles over the time-length of the signal). The power of the test
is also inversely proportional to the spread of Â(ξ), ν̂(ξ): the more concentrated they
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are, the narrower the frequency band that the component A(t) cosφ(t) occupies, so
that the less the noise power that is contained in it.

As to the choice of αA,αν in (4.9), it turns out that the powers of D(1, 0) =
Q[ Â(ξ)] and D(0, 1) = Q[ν̂(ξ)] are often inversely proportional to the strengths of
the amplitude and frequencymodulation, respectively. Thus, D(1, 0) is preferable for
components with relatively small amplitude variability and considerable frequency
variability, while D(0, 1) is better otherwise. Therefore, it is reasonable to perform
three tests, using D(1, 0), D(0, 1) and D(1, 1) as a discriminating statistics, and then
select the significance as the maximum among them. It remains to be established,
however, whether some better statistics not having the drawback mentioned can be
found.

Summarizing, one first extracts the components from the TFR of the original
signal and computes the corresponding D0(αA,αν) (4.9); then one creates Ns FT
surrogates of the signal, for each of them calculates the corresponding TFR, extracts
the component from it and computes the respective Ds=1,...,Ns (αA,αν). The default
surrogate number and significance level are set to Ns = 40 and 95%, respectively,
so that the tested null hypothesis of noise is rejected if the number of surrogates with
Ds > D0 is equal or higher than 0.95 × 40 = 38. The test is performed for three
different (αA,αν) in (4.9), using D(1, 1), D(0, 1) and D(1, 0) as a discriminating
statistic; if at least for one of them the null hypothesis is rejected, the signal is regarded
as not noise and the decomposition continues.

Remark 4.1.5 Similarly to the case of harmonics (see Sect. 4.1.4), it is not necessary
to calculate theWFT/WT of each surrogate over the whole frequency range. Instead,
it is sufficient (andmuch faster) to calculate the surrogate TFRs only for the frequency
range of the original component, which can be estimated by (3.13). Additionally, to
guarantee that the boundary distortions are of the same nature in the original TFR
and those for the surrogates, it is recommended to use padding with zeros (see Sect.
2.4.3); note that in all other cases the more accurate (but at the same time more
computationally expensive) predictive padding is used. To be fully consistent, one
should also recalculate the signal’s TFR using the same padding (with zeros) and
frequency range as for surrogates, extract the component from it and estimate the
original discriminating statistics D0 based on the reconstructed parameters of this
updated component.

Remark 4.1.6 Instead of the FT surrogates used here, one can alternatively utilize
the more advanced IAAFT surrogates [17], which are devoted to testing against the
null hypothesis of an invertibly rescaled linear stochastic process (e.g. Brownian
noise taken to the third power). These surrogates preserve both the power spectrum
and, as much as possible, the distribution of values of the original signal. However,
as can be seen from (2.8) and (2.13), the WFT and WT do not explicitly take into
account the distribution of signal values, but only its FT. Therefore, the simpler and
easier-to-compute FT surrogates seem to be the more natural choice in the present
case, and the test developed above seems to work well even for rescaled (either
invertibly or non-invertibly), non-Gaussian and non-stationary linear noise. In fact,

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2


4.1 Basic Idea and Ingredients 69

the outcome of the test seems to be determined primarily by the “goodness” of the
component representation in the TFR, which is affected only by the noise power and
its distribution in the time-frequency region around the component’s instantaneous
frequency.

4.2 Improvements

The NMD as described in the previous section already represents a very power-
ful decomposition tool. However, it may be made even better with the help of the
upgrades outlined below, although at the expense of greatly increased computational
cost for some of them (though it still remains O(N log N )).

4.2.1 Adaptive Representation of the Harmonics

Even if the first harmonic of some NM is well represented in the TFR and can be
accurately extracted and reconstructed, it does not mean that the same applies to all
the other harmonics too. For example, harmonics of an NM with only amplitude
modulation require the same time and frequency resolution, so that the WFT can
represent them all well, while for theWT, where time and frequency resolution scale
with frequency, onewill need to adjust the resolution parameter f0 for each harmonic.
Thus, consider an NM with simple sinusoidal amplitude modulation:

s(t) =(1 + ra cos(νat + ϕa))

∞∑

h=1

ah cos(hνt + ϕh) ≡
∞∑

h=1

x (h)(t)

⇒ x (h)(t) ≡ ah(1 + ra cos(νat + ϕa)) cos(hνt + ϕh)

= ah
[
cos(hνt + ϕh) + ra

2
cos((hν + νa)t + (ϕh + ϕa))

+ ra

2
cos((hν − νa)t + (ϕh − ϕa))

]
. (4.10)

Clearly, all harmonics have the same amplitude variability (in relative terms), so that
the time resolution of the TFR should also be the same for them. This is reflected
in the fact that each harmonic x (h)(t) is composed of three Fourier terms, which all
have identical amplitude ratios, frequency differences and phase relationships for
each h. Furthermore, the frequency distance between two consecutive harmonics
remains the same, meaning that the frequency resolution also should not be changed
for harmonics.

Therefore, the WFT, having constant time and frequency resolution, will be a
perfect match for this case. This means, first, that if the amplitude modulation of
the first harmonic is represented reliably in the WFT, then the same will also apply
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Fig. 4.2 a Nonlinear mode with amplitude modulation, as specified by the equation for s(t) above
the box. b, c The corresponding WFT and WT amplitudes, respectively. d, e The signal’s FT,
integrated over one frequency bin (vertical lines), with the parts responsible for different harmonics
shown in different colors; the shaded areas show the absolute values of thewindow functions ĝ(ω−ξ)

or wavelet functions ψ̂∗(ωψξ/ω) centered at the mean frequencies of the harmonics ω = 2πh and
rescaled to half of the harmonics’ mean amplitudes. The signal was sampled at 50Hz for 50s

to all other harmonics and, secondly, that if two first harmonics do not interfere
in the WFT, then any two harmonics will also be well-separated. For the WT, the
former is also true, as the time resolution, i.e. the ability to reflect changes in time,
increases with frequency for this type of TFR. However, the frequency resolution of
the WT progressively worsens with the increase of frequency, so that the higher the
harmonics are, the harder it is to resolve them.

This is illustrated in Fig. 4.2, where from (b) and (c) it is clear that, for NMwithout
frequency modulation, all harmonics can be well represented in the WFT, but for
the WT higher harmonics begin to interfere. This issue is explained schematically
in Fig. 4.2d, e. Thus, both the WFT and WT can be seen as convolutions in the
frequency domain of the signal with a window ĝ(ω − ξ) and wavelet ψ̂∗(ωψξ/ω),
as seen from (2.8) and (2.13). Figures4.2d, e show the signal’s discrete FT ŝ(ξ)
together with the (rescaled and centered at the mean frequencies of the harmonics
ω/2π = 1, 2, 5, 6 Hz) Gaussian window (2.12) and lognormal wavelet (2.19) FTs
ĝ(ω−ξ) and ψ̂∗(ωψξ/ω), with which ŝ(ξ) is convoluted while constructing theWFT
and WT, respectively.

Roughly speaking, the quality of the representation of time-variability (the ampli-
tude modulation in the present case) for each harmonic can be estimated based
on the proportion of the associated Fourier coefficients lying below the shown

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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window/wavelet FTs. For both the WFT and WT, each harmonic has three Fourier
coefficients (4.10), all of which lie in the correspondingly shaded areas, meaning that
the time resolution in each case is sufficient to represent amplitudemodulation appro-
priately. The degree of interference between the harmonics in the WFT and WT can
be estimated from the area of overlap between the corresponding window/wavelet
FTs. For the WFT (Fig. 4.2d) the interference between harmonics does not depend
on their frequency, while for theWT (Fig. 4.2e) it increases for the higher harmonics,
which results in the fifth and sixth harmonics being represented as a single compo-
nent (Fig. 4.2c). This is because the minimum frequency difference between two
harmonics is equal to the frequency of the first harmonic, thus being defined on a
linear scale (which is natural for the WFT), but not on a logarithmic one (natural for
the WT).

The situation changes when there is frequency modulation. In this case neither
the WFT nor the WT provides optimal representation of the harmonics; in addition,
it might be in principle not possible to reliably resolve some harmonics with time-
frequency analysis methods. Thus, consider anNMwith simple sinusoidal frequency
modulation

s(t) =
∞∑

h=1

ah cos(hφ(t) + ϕh) ≡
∞∑

h=1

x (h)(t), φ(t) = νt + rb sin(νbt + ϕb)

⇒ x (h)(t) = ah cos(hνt + hrb sin(νbt + ϕb) + ϕh)

= ahRe
[ ∞∑

n=−∞
Jn(hrb)e

i(ϕh+nϕb)ei(hν+nνb)t
]
,

(4.11)

where the formula eia sin φ = ∑∞
n=−∞ Jn(a)einφ has been used. Due to properties

of the Bessel functions Jn(a), after some |n| all terms in (4.11) become negligible.
Therefore, in practice, one can restrict the summation to |n| ≤ n J (ha), with the
maximum non-negligible order n J being determined as

n J (a) :
∑

n: |n|>n J (a) |Jn(a)|2
∑∞

n=−∞ |Jn(a)|2 < εp, (4.12)

where εp denotes a chosen accuracy threshold. The value of n J (a) increases with
a, being (for εp = 0.001): n J (0 � a � 0.3) = 2, n J (0.3 � a � 0.65) = 3,
n J (0.65 � a � 1.13) = 4 etc. As a result, the higher the harmonic, the larger the
frequency range it occupies, i.e. the larger is the number of non-negligible terms in
(4.11).

Consequently, to reflect reliably the frequency modulation of the higher harmon-
ics, one needs higher time resolution for them, a requirement that is satisfied by the
WT, but not by the WFT. This issue is illustrated in Fig. 4.3, where it can be seen
that the WT can represent reliably both the first and third harmonics, while the WFT
reflects appropriately only the first one. However, the increased time resolution of the
WT is provided at the expense of decreased frequency resolution, leading to stronger
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Fig. 4.3 a Nonlinear Mode with frequency modulation, as specified by the equation for s(t) above
the box. b, c The corresponding WFT and WT amplitudes, respectively. d, e The signal’s FT,
integrated over one frequency bin (vertical lines), with the parts responsible for different harmonics
shown in different colors; the shaded areas show the absolute values of thewindow functions ĝ(ω−ξ)

or wavelet functions ψ̂∗(ωψξ/ω) centered at the mean frequencies of the harmonics ω = 2πh and
rescaled to half of the harmonics’ mean amplitudes. The signal was sampled at 50Hz for 55 s

interference between harmonics, as seen from the previous case (Fig. 4.2). Figure4.3
also shows, that in some cases it might in principle be impossible to represent reliably
two harmonics in the TFR. Thus, as can be seen from Fig. 4.3d, e, the FTs x̂ (h)(ξ) of
the sixth and seventh harmonics are “entangled”, i.e. the frequency regions in which
they are contained overlap. Therefore, unless specifically designed for this case, any
window/wavelet function which picks the Fourier coefficients of one harmonic will
inevitably also pick those corresponding to the other one too.

Summarizing, for the general case where both amplitude and frequency modu-
lation are present in the NM, accurate representation of higher harmonics requires
higher time resolution, but the same frequency resolution. However, an increase in
time resolution inevitably leads to a decrease of frequency resolution, so usually
one needs to search for some compromise. Consequently, it is often the case that
neither the WFT nor the WT with a constant resolution parameter f0 can represent
all harmonics reliably.

To tackle this problem, one can adaptively adjust f0 for each harmonic individ-
ually. Assuming that the extracted first harmonic is reconstructed well, the quality
of the representation of the hth harmonic can be assessed through its consistency
ρ(h) (4.4) with the first one. Therefore, the optimal resolution parameter for the hth
harmonic, f (h)

0 , can be selected as that for which ρ(h) (4.4) achieves its maximum
and at the same time the harmonic passes the surrogate test, i.e. is identified as a true
harmonic.
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The remaining question is the regionwithinwhich to search for f (h)
0 . Tofind it, one

first needs to understand in what frequency band [ω(h)
f − �ω

(h)
f /2,ω(h)

f + �ω
(h)
f /2]

the hth harmonic FT x̂ (h)(ξ) is concentrated, given the frequency band of the first
harmonic. In general, ω(h)

f and �ω
(h)
f can be defined as

ω
(h)
f , �ω

(h)
f :

ω
(h)
f −�ω

(h)
f /2∫

0

|x̂(h)(ξ)|2 dξ

2π
= εp

2

E(h)
tot
2

,

∞∫

ω
(h)
f +�ω

(h)
f /2

|x̂(h)(ξ)|2 dξ

2π
= εp

2

E(h)
tot
2

,

(4.13)
where E (h)

tot ≡ (2π)−1
∫ |x̂ (h)(ξ)|2dξ = ∫ |x (h)(t)|2dt is the total energy of the

harmonic, and εp denotes the chosen accuracy threshold (note that, as every-
where else, it is assumed that the analytic approximation (2.4) holds for x (h)(t) =
A(h)(t) cosφ(h)(t)). Then it can be shown [7] that, given ω(1)

f ,�ω(1)
f , the frequency

range for the hth harmonic will be

[ω(h)
f − �ω

(h)
f /2, ω(h)

f + �ω
(h)
f /2] : ω

(h)
f = hω

(1)
f , �ω

(1)
f � �ω

(h)
f � h�ω

(1)
f . (4.14)

Basedon (4.14) and the scaling properties of theWFT/WT, one cannowdetermine the
region within which the optimal resolution parameter f (h)

0 for the hth harmonic lies.
Given that the first harmonic was extracted from the TFR calculated with resolution
parameter f (1)

0 , and assuming that the corresponding time and frequency resolutions
are appropriate for this first harmonic, one has

WFT: f (h)
0 ∈ [ f (1)

0 /h, f (1)
0 ], WT: f (h)

0 ∈ [ f (1)
0 , h f (1)

0 ]. (4.15)

In numerical implementation, the optimal f (h)
0 is searched for by first breaking

the region (4.15) into Nr values f (h)
0;r=1,...,Nr

(the default is Nr = 10). For each of
them one calculates the TFR in the corresponding frequency range (4.8), extracts the
harmonic from it (see Sect. 4.1.2), estimates the corresponding consistency ρ

(h)
r (4.4),

and tests the harmonic for being true (see Sect. 4.1.3). Among the f (h)
0;r for which the

harmonic was identified as true, the one characterized by the highest ρ(h)
r is selected.

It is then used as the initial value for an iterative golden section search of the optimal
f (h)
0 (with default accuracy being ε f = 0.01), maximizing the consistency ρ(h) (4.4).
Note that (4.15) does not take into account the interference between harmonics

and with the other components which might lie nearby in frequency, so that in some
cases the upper bound on f (h)

0 might be higher than (4.15); the same consideration
applies to the lower bound. Therefore, if near the minimum ormaximum of the tested
f (h)
0 the consistency ρ(h) is found to grow, the search is continued in that direction

until the peak appears.

Remark 4.2.1 The same procedure is performed while checking whether the
extracted component represents a first or a higher harmonic by extracting and testing

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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its h = 1/2, 1/3, ... harmonic candidates (see Sect. 4.1.4). The formulas (4.14) and
(4.15) remain valid in this case, but the upper and lower bounds for �ω

(h)
f in (4.14)

and f (h)
0 in (4.15) change places [7].

4.2.2 Improved Reconstruction of Nonlinear Modes

Given the reconstructed amplitudes A(h)(t), phases φ(h)(t) and frequencies ν(h)(t)
of all the true harmonics, the most straightforward way to reconstruct the full NM is
just to add all the A(h) cosφ(h)(t) together. However, in this way the NM picks up
noise contributions from all harmonics, which can make it quite inaccurate.

Fortunately, there is a cleverer way to perform the reconstruction, also yielding
more accurate parameters for the individual harmonics. Thus, one can utilize the
theoretical amplitude, phase and frequency relationships between the harmonics, i.e.
A(h) = ah A(1)(t), φ(h) − hφ(1) = ϕh and ν(h)(t) = hν(1)(t). Then, because the
components with higher amplitudes are expected to be less noise-corrupted, one can
refine the parameters of each harmonic by weighted averaging over the parameters
of all harmonics:

Ã(h)(t) = 〈A(h)(t)〉
∑

h′ A(h′)(t)
∑

h′ 〈A(h′)(t)〉 ,

φ̃(h)(t) = arg
[ ∑

h′
min(1, h′/h)〈A(h′)(t)〉ei(hφ(h′)(t)−�φh′h−2π I [(�φh′h (t)−�φh′h )/2π])/h′]

,

ν̃(h)(t) =
∑

h′ min(1, h′/h)〈A(h′)(t)〉hν(h′)/h′
∑

h′ min(1, h′/h)〈A(h′)(t)〉 , (4.16)

where �φh′h(t) ≡ hφ(h′)(t) − h′φ(h)(t) and �φh′h ≡ arg〈ei�φh′h(t)〉 ∈ [−π,π],
while I [...]denotes rounding to the nearest integer, so that I [0.8] = 1, I [−0.6] = −1
(the corresponding term is needed to eliminate possible noise-induced phase slips,
i.e. the rapid growth by 2π in the phase differences). Note also the multiplier
min(1, h′/h), appearing for phase and frequency refinement in (4.16). It is needed
to account for the scaling of phase and frequency errors of lower harmonics when
they are mapped to higher ones. Thus, if ν(1)(t) has an error ε(t), then hν(1)(t) will
have error hε(t).

Remark 4.2.2 The expressions in (4.16) are based on the assumption that the recon-
struction error for each harmonic is directly proportional to its amplitude. However,
this is true only if, first, there are no side components with which harmonics interfere
and, secondly, the amount of noise picked up while reconstructing harmonics is the
same for each of them. These criteria are rarely both satisfied in practice, so in general
one should take into account the mean absolute reconstruction errors c(h) of the hth
harmonic parameters. This can be done by changing A(h′)(t) → c−1(h′)A(h′)(t) in
all the expressions (4.16). Unfortunately, the errors c(h) are very hard to estimate,
even roughly, and therefore they are not used.



4.2 Improvements 75

The refinement (4.16) not only makes the reconstructed NMmuch more accurate,
solving the problem of picking up the cumulative noise of all the harmonics, but also
reduces the noise level in each harmonic separately. Thus, noise-induced variations
in the parameters of different harmonics are expected to be mutually independent,
and so they average out on being added together. As a result, the more harmonics
are contained in the NM, the more accurately it can be reconstructed. While NMD
is generally noise-robust, due to being based on time-frequency methods for which
only the spectral power of noise in the vicinity of components’ frequencies matters,
NM reconstruction by (4.16) raises this robustness to an extreme extent.

Remark 4.2.3 It should be noted that the refinement (4.16) is not valid if the NM
waveform changes in time, i.e. the relationships between the amplitudes of the har-
monics and their phase shifts are non-constant. In this case one should just sum all
extracted harmonics, even though some of them might be highly corrupted. Never-
theless, in this work it is assumed that the waveform is constant, as otherwise even
the harmonic identification scheme discussed in Sect. 4.1.3 might become inaccurate
(though if the waveform changes slowly enough, it still works well).

4.3 Parameters and Their Choice

There are different settings that can be used while applying NMD. However, many of
the parameters are either set at well-established values, or can be chosen adaptively,
thus removing the ambiguity and making NMD a kind of superadaptive method.
The parameters and their choices are summarized in Table4.1. They are discussed
in more detail below.

4.3.1 Resolution Parameter f0

The resolution parameter f0 of the window/wavelet determines the trade-off between
the time and frequency resolution of the WFT/WT (see Sect. 2.22). For harmonics,
the adaptive choice of f0 has been already discussed in Sect. 4.2.1, but it is still
unclear how to select the resolution parameter at the first step, i.e. when one extracts
the main component (Sect. 4.1.1). This is, however, a fundamental issue related to
the general use of the TFRs that is inherent to all methods which directly or indirectly
rely on them.

In practice, one needs to select it based on a compromise between better reflecting
time variability and better resolving components in frequency, so the optimal choice
depends on the characteristics of the components contained in the signal. Unfortu-
nately, at present there does not seem to be any universal approach enabling one to
choose the resolution parameter appropriately for any given signal (see [6, 19] for a
discussion of this issue and the effects of different choices); it therefore remains the

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Table 4.1 The basic NMD parameters (given by names under which they are implemented in the
codes [18]), their default choices and descriptions

Parameter Default Description

‘TFRtype’ WT first, then chosen adaptively (see
Sect. 4.3.2)

The type of TFR (WFT or WT) to use
for extracting the modes

‘ModeNum’ chosen adaptively (see Sect. 4.1.5) The number of modes to extract

‘SurrType’
‘SurrNum’
‘Signif’

‘FT’
40
0.95

The type of surrogates, their number
and the significance threshold used
for testing the residual against noise
(see Sect. 4.1.5)

‘S’ 3 The required number of consecutive
false harmonics to stop harmonics
extraction (see Sect. 4.1.4)

‘S0’ 3 Same as ‘S’, but for the fractional
(1/n) harmonics that are used to
determine whether the extracted
component is fundamental harmonic
or not (see Sect. 4.1.4)

‘WCons’ [1,1,0] The weighting factors [wA,wφ,wν ]
used for calculating the harmonics’
overall consistencies (4.4), see
Sect. 4.1.3

‘SNumber’
‘SLevel’

100
0.95

The number of surrogates and the
significance threshold used for testing
the harmonics for being true (see
Sect. 4.1.3)

‘CLevel’ determined by (4.7) The minimum consistency required
for harmonic to be true (see Remark
4.1.3)

‘MinSupp’ 0.001 The precision used for determining
the minimal support (3.12), and
therefore for estimating the
component’s frequency range in the
TFR (see Remark (3.2.4))

‘RecMethod’ chosen automatically (see Sect. 4.3.3) Reconstruction method used for
estimating the parameters of the
harmonics

‘AdaptRange’
‘AdaptRes’

determined by (4.15)
10

The range in which to search for f0
for harmonics and the initial number
of guesses to check (see Sect. 4.2.1).
Additional accuracy settings can also
be specified

Note that this table does not include parameters of the WFT/WT itself, which are discussed in
Chap.2

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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only important parameter of NMD that cannot be adaptively selected. The choice
of f0, however, seems to be slightly more universal for the WT, because the latter
adjusts its resolution in relation to the frequency band being studied; for theWTwith
lognormal wavelet (2.19) or Morlet wavelet (2.18), one usually uses f0 = 1, setting
some standard limits on the allowable relative amplitude/frequency modulation of
the components and the frequency distances between them.

Remark 4.3.1 Note, that the very possibility of adjusting time and frequency reso-
lution is a great advantage of the TFR-based methods, and NMD in particular. Thus,
many other techniques, e.g. (ensemble) empirical mode decomposition [20, 21], do
not allow this possibility, having time and frequency resolutions which are fixed
around some implicit values [22, 23]. The choice of f0 therefore gives NMD more
flexibility in comparison to methods not possessing such a parameter.

4.3.2 TFR Type: WFT or WT?

The main difference between the WFT and the WT lies in the type of frequency
resolution (linear for the former and logarithmic for the latter), and the preference
for one type of TFR over the other depends on the signal structure (see Sect. 2.2.3 for
a detailed discussion of this and related issues). Without some a priori knowledge, it
is hard to select adaptively the most apporiate resolution type, especially given the
associated problems related to the choice of the resolution parameter (see previous
subsection). However, after some component has been extracted (even roughly),
based on its properties one can judge whether it can be better represented by theWFT
or by the WT. Thus, if the time-variability of the component’s parameters increases
with frequency, then the WT is the most suitable, whereas otherwise one should
prefer the WFT. Given the initially extracted component’s amplitude A(t), phase
φ(t) and frequency ν(t), an empirical condition for selecting the most appropriate
TFR type can be stated as:

(
1 + V [∂tν(t), ν(t)]

)−1 +
(
1 + V [∂t A(t), ν(t)]

)−1
< 1 ⇒ use WFT;

otherwise ⇒ use WT,

(4.17)

where

V [x(t), y(t)] ≡ std
[|x(t)/y(t)|+]

std
[|x(t)/〈y(t)〉|+] ,

(
| f (t)|+ ≡ | f +(t)|

)
. (4.18)

Thus, the values of V [∂t A(t), ν(t)] and V [∂tν(t), ν(t)] quantify whether the ampli-
tude and frequency modulation of the component become stronger with increasing
frequency (V < 1) or not (V > 1). In the former case a reliable representation
of the component requires higher time resolution for higher frequencies, so the

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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WT is preferred, while for the latter case the WFT should be used. For exam-
ple, for linear (ν(t) = ν0 + at) and hyperbolic (ν(t) = exp(at)) chirps one has
V [∂tν(t), ν(t)] = ∞ and V [∂tν(t), ν(t)] = 0, reflecting the well-known [19] fact
that the WFT and WT are most appropriate for their representation, respectively.

The derivatives ∂tν(t) and ∂t A(t) in (4.17) can be estimated by numerical differ-
entiation. However, when noise is present in A(t) and ν(t), it will be greatly amplified
in such estimates, so theywill be generally quite noisy. Consequently, instead of stan-
dard deviations std[x(t)] in (4.18), it is better to use 75-percentiles, i.e. the width of
the range within which 75% of the values of x(t) are contained. Alternatively, one
can reconstruct ∂tν(t) and ∂t A(t) by deriving the direct reconstruction formulas for
them as explained in Chap. 7.3.

The remained question is which TFR type to use for the preliminary signal explo-
ration, i.e. extraction of the component’s parameters to be used in (4.17). As was
discussed, the answer depends on the signal structure, and there is no universal cri-
terion. However, since the WT is usually faster to calculate (due to its logarithmic
frequency scale) and generally has a more universal choice of the resolution para-
meter (see previous subsection), it is used by default as an initial guess.

Summarizing, one first calculates the WT of the signal and extracts from it the
component and its parameters. Then the criterion (4.17) is utilized to determine
which is the best type of TFR to use in the given case. If this is the WT, one retains
the component already extracted; otherwise, one calculates the WFT of the signal in
the corresponding frequency range (3.13) and re-extracts all the parameters from it.
To preserve the time and frequency resolution properties for which the component
was extracted from the WT (which are assumed to have been appropriate for it), the
resolution parameter for the WFT f (W FT )

0 should be adjusted accordingly. If the
WFT andWT are calculated using a Gaussian window (2.12) and lognormal wavelet
(2.19), the rule is [7]

f (W FT )
0 ≈ 2π f (W T )

0 /〈ν(t)〉. (4.19)

Since for all harmonics by definition one would have identical V [∂tν(t), ν(t)] and
V [∂t A(t), ν(t)] in (4.17), the same type of frequency resolution (linear or logarith-
mic) is appropriate for all of them. Hence, for the extraction of harmonics one should
use the same type of TFR as was selected for the original component.

Remark 4.3.2 The logarithmic frequency resolution of the WT can by itself intro-
duce correlation between the frequency and the amplitude/frequency variations of
the component. For example, when the signal is corrupted with white noise, its power
in the WT will be proportional to frequency, leading to larger noise-induced ampli-
tude/frequency variations in the extracted component at higher frequencies. Such
artificial correlation might cause the criterion (4.17) to select the WT as the pre-
ferred representation even when this is not the case. To avoid this, the threshold 1.1
instead of 1 is used by default in (4.17).

http://dx.doi.org/10.1007/978-3-319-20016-3_7
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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4.3.3 Reconstruction Method: Direct or Ridge?

As discussed in Sect. 3.2, one can use either of two alternative methods for recon-
struction of the components and their parameters from the WFT/WT: direct (3.8)
or ridge (3.5). The ridge method is more noise-robust, but the direct method allows
time variability in the component’s parameters to be followed more accurately at
low noise levels. The optimal parameter estimates for the fundamental component
extracted at the first step (Sect. 4.1.1) can be chosen adaptively as described in Sect.
3.2.4. For harmonics, on the other hand, the appropriate reconstruction method can
be determined simply as that giving the highest consistency ρ(h) (4.4). Therefore,
while adapting the resolution parameter for the harmonic, at each f0 its parameters
are reconstructed by both methods and at the end the one characterized by highest
ρ(h) is selected.

For the other parts of the NMD procedure it is inherently better to use a particular
reconstruction method. Thus, in the criterion for selecting the TFR type (4.17) the
ridge estimates of amplitude A(t) and frequency ν(t) are preferred due to their
noise-robustness. Additionally, while testing the signal against noise in the stopping
criterion (Sect. 4.1.5), the discriminating statistics D (4.9) appears to be slightlymore
powerful if calculated using ridge estimates. This seems natural because the curve
extraction is based on the amplitudes and frequencies of the peaks (see Sect. 3.1),
though the noise-robustness of ridge reconstruction is advantageous here as well.

4.3.4 Other Parameters

All the other parameters can be partitioned into two groups: some pre-fixed settings
and the parameters of numerical accuracy. The former group includes the significance
levels for the two surrogate tests (used for identification of the harmonics, Sect. 4.1.3,
and for the stopping criterion, Sect. 4.1.5), the minimal consistency ρmin (4.7) etc.
Each of these parameters is set to a well-established value, either corresponding to a
standard convention (such as 95% significance of the surrogate tests [2, 3]) or found
empirically (e.g. the expression (4.7) for ρmin).

The second group includes the accuracy with which to determine the optimal
f0 while adapting it to the harmonics, the precision εs to use for determining the
minimal support (3.12), etc. Here one faces the usual tradeoff between accuracy and
computational cost. The default values, however, are sufficient in most cases and
further increase of precision leads to only a slight improvement in the accuracy of
the method.

http://dx.doi.org/10.1007/978-3-319-20016-3_3
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4.4 Summary

In this Chapter NMD has been introduced and developed, with all its subprocedures
and related issues being considered in detail. The method is intended to be adaptive,
which is achieved by matching its parameters to the signal’s structure (Sect. 4.3);
and very robust to noise, as a result of the general noise-robustness of the TFR-based
approaches, and also due to improvements introduced in Sect. 4.2. Furthermore, by
identifying and joining together all harmonics corresponding to the same mode (see
Sects. 4.1.2 and 4.1.3), NMD is able to recover the oscillations within any waveform.
Finally, by stopping the decomposition when the signal obtained at the next iteration
does not pass the surrogate test against noise (Sect. 4.1.5), the method retrieves only
physically meaningful oscillations, with trends and noise being left as the residual.

The full NMD procedure can be summarized as follows:

1. The signal is detrended and tested against the null hypothesis of noise (Sect.
4.1.5). If it does not pass the test, the procedure is stopped.

2. TheWT (Sect. 2.2.2) of the signal is calculated, and themost dominant component
is extracted from it (Sect. 4.1.1). Based on the properties of this component, the
optimal TFR type—WFT or WT—is selected (Sect. 4.3.2); it is then used in all
the subsequent steps. The component is re-extracted from the signal’s WFT if
this type was determined to be the more appropriate than the WT.

3. The component obtained in the previous step generally represents a particular har-
monic of someNM, but not always the first one. To find the latter, the component’s
h = 1/2 possible harmonic is extracted (Sect. 4.1.2) and tested for being true
(Sect. 4.1.3); this is done using theWFTs/WTs calculated for different resolution
parameters f0, with the most appropriate among them being selected as described
in Sect. 4.2.1. The same procedure is performed for h = 1/3, 1/4, ... harmonic
candidates, until three of them in a row are identified as false. The fundamental
harmonic of the NM to which the component belongs is then taken as the true har-
monic with the smallest h (or as the original component if all h = 1/2, 1/3, 1/4
harmonics were identified as false).

4. Based on the parameters of the fundamental harmonic, its possible h = 2, 3, ...
harmonics are extracted and tested for being true in qualitatively the same way
as was done for h = 1/2, 1/3, ... in the previous step.

5. Using the parameters of all true harmonics, the full NM is reconstructed as
described in Sect. 4.2.2. It is then subtracted from the signal, and steps 1–5 are
repeated for the residual.

The choice of the reconstruction method—direct (3.8) or ridge (3.5)—for each step
and substep of the procedure are discussed in Sect. 4.3.3. The operation of NMDwill
also be illustrated on simulated examples in the next Chapter. The codes for running
NMD are freely available [18].

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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Chapter 5
Examples, Applications and Related Issues

After describing all parts of the NMD procedure in the previous Chapter, the method
is now applied to both simulated (Sect. 5.1) and real (Sect. 5.2) examples.

5.1 Simulated Examples

To assess reliably the performance of NMD and compare it to that of the other meth-
ods, this section considers specific simulated signals whose composition is precisely
known, so that the extracted NMs can be compared with the true ones.

5.1.1 Example 1

The first, simple and illustrative, example is taken as the signal depicted in Fig. 5.1a.
Its WFT and WT are shown in Fig. 5.1b, c, respectively. From the figure it is imme-
diately evident that, while in the WFT the harmonics with frequencies around 3 and
4Hz are distinguishable, in theWT they interfere strongly and cannot be resolved; in
contrast, the WT has high enough time resolution at 7Hz to represent the frequency
modulation of the corresponding harmonic, while in the WFT this highest harmonic
self-interferes (there appear “bridges” between consecutive frequency modulation
cycles), indicating that the time resolution is insufficient. Therefore, for the present
case one cannot appropriately extract all harmonics using either WFT or WT with
constant resolution parameter f0. However, adaptive representation of the harmonics,
as discussed in Sect. 4.2.1, solves the problem.

Nonlinear mode decomposition proceeds as follows. First, the WT of the sig-
nal is calculated, and the dominant component is extracted from it as described
in Sect. 4.1.1; in result one obtains the first harmonic of the NM (located around
1Hz). The extracted component is then tested with the surrogates against noise (see
Sect. 4.1.5); in the present case, it passes the test (100% significance) and is therefore
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Fig. 5.1 a The central 50s section of the signal s(t) specified by the equation at the top, which
represents a single NM corrupted by Brownian noise of standard deviation equal to 4 (Brownian
noise of unit deviation ηB(tn) ∼ ∑n

m=1 ηW (tm) is obtained as the normalized cumulative sum of
the Gaussian white noise signal ηW (t)). b, c Central parts of the WFT and WT, respectively, of the
signal s(t) shown in (a). The signal was sampled at 100Hz for 100s

regarded as genuine. By application of the criteria (4.17), the WFT is determined to
be more suitable for the representation of this component than theWT, and is used in
what follows. Thus, the component is re-extracted from the corresponding signal’s
WFT (see Sect. 4.3.2), and its parameters are reconstructed by the both direct (3.8)
and ridge (3.5) methods. Using (3.11), it is established that the ridge estimates of
amplitude, phase and frequency seem to be the more accurate in the present case,
and are therefore taken as the ones to be used.

Next, the extracted component is tested for being the first harmonic by checking
its 1/n harmonic candidates. Thus, first the 1/2 harmonic is extracted and tested for
being true (see Sect. 4.1.3) using different resolution parameters f0 within the range
(4.15); among the direct and ridge estimates obtained for f0 at which the harmonic
was identified as true, the ones maximizing the consistency (4.4) are chosen. In the
present case, the 1/2 harmonic is identified as false for all tested f0, so it is discarded.
The same procedure is performed for 1/3 and 1/4 harmonics,which are both identified
as false. Since there are S0 = 3 consecutive false harmonics (1/2, 1/3 and 1/4), it is
correctly concluded that the extracted component is first (and not higher) harmonic
of the NM.

The higher harmonics h = 2, 3, . . . are then extracted and tested in qualitatively
the same way as was done for h = 1/2, 1/3, 1/4. If some harmonic is identified
as true, it is subtracted from the signal to remove its interference with the other
harmonics. As a result of the procedure, all genuine harmonics h = 3, 4, 7 are
correctly identified as true, and all the others as false. The resolution parameters are
adapted for each harmonic so as to optimally represent and reconstruct it, as discussed

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.2 The WFTs from which each true harmonic is reconstructed, with the corresponding
extracted ridge curves being shown by solid magenta lines. The window resolution parameter
f0 is adjusted individually for each harmonic. After the harmonic is reconstructed, it is subtracted
from the signal, so that e.g. the first harmonic no longer appears in the WFTs of (b–d). Note that
the color scaling in (b–d) covers half the amplitude range of that in (a)

Reconstructed Nonlinear Mode
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Time (s)

Residual

40 45 50 55 60
0
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10(b)

(a)

Fig. 5.3 The result of applying NMD to the signal shown in Fig. 5.1a: a the reconstructed NM
(black line) is compared with the true NM (gray background line); b the residual provided by NMD
(black line) is compared with the actual background noise (gray background line)

in Sect. 4.2.1 and illustrated in Fig. 5.2 for the present case. Harmonic extraction is
stopped when S = 3 consecutive harmonics h = 8, 9, 10 are identified as false.

After reconstructing all harmonics, their parameters are refined using (4.16) and
they are then summed up to form the full nonlinearmode. This NM is subtracted from
the signal, and the procedure is repeated on the residual. However, the component
extracted from it does not pass the surrogate test against noise (see Sect. 4.1.5), and
therefore NMD is stopped, with one NM being extracted and the residual correctly
identified as noise (in the present case Brownian). The result of NMD is shown
in Fig. 5.3, from which one can see that even the residual Brownian noise is well-
recovered. To the best of my knowledge, there is at present no other method that can
decompose even the current relatively simple signal (shown in Fig. 5.1a) in such an
accurate and physically meaningful way.

For example, the results of EMD [13] and EEMD [45] procedures are shown in
Fig. 5.4. In contrast to NMD, (E)EMD produces 13 distinct components, with only
the first harmonic of the NM being more-or-less reliably recovered in one of them.

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.4 The result of applying EMD (left panels) and EEMD (right panels) to the signal shown in
Fig. 5.1. Red lines, where present, show the real 1st harmonic (in C4 for EMD and C5 for EEMD),
sum of the 3rd and 4th harmonics (in C3 for EMD and C4 for EEMD) and the 7th harmonic (in
C2 for EMD and C3 for EEMD). The bottom panels show the sum of the components 7–13. For
EEMD, 1000 Gaussian white noise realizations were used, with their standard deviations being ten
times smaller than that of the signal

Thus, in Fig. 5.4 C4 for EMD and C5 for EEMD represent the first harmonic, C3 for
EMD and C4 for EEMD is the noise-spoiled mix of the 3 and 4 harmonics, C2 for
EMD and C3 for EEMD is the badly corrupted 7th harmonic (with influence from
harmonics 3 and 4 in the case of EEMD), while none of the other “components” has
any physical meaning at all.

Remark 5.1.1 Interestingly, (E)EMD [13, 45] has logarithmic frequency resolution
[10, 30], and therefore suffers from the same drawbacks as the WT in relation to the
representation of harmonics. This is why it merges harmonics 3 and 4 into a single
component (as these harmonics aremerged in theWT aswell, see Fig. 5.1). However,
while for the WT its logarithmic frequency resolution can be tuned by changing f0,
for (E)EMD the resolution is fixed around some implicit value [10, 30].

5.1.2 Example 2

The exceptional noise-robustness of NMD and the power of the surrogate test in
distinguishing true from false harmonics can be demonstrated by considering the
signal shown together with itsWFT andWT in Fig. 5.5. For this signal, the harmonics
of the second NM are located exactly at the places where the harmonics of the first
NM are expected to be, so that they can easily be confused with them. Moreover,
it is very hard to distinguish true from false harmonics in the present case because
each NM has constant amplitude and only very small frequency modulation (the
absolute deviation between the expected frequency of the second harmonic of the



5.1 Simulated Examples 87

Fig. 5.5 a The central 20 s section of the signal s(t) specified by the equation at the top, representing
the sum of two NMs corrupted by Gaussian white noise of standard deviation equal to 1.725; the
phases of the NMs φ1,2(t) were obtained as φ1,2(t) = ∫ t

0 ν1,2(τ )dτ with ν1,2(t)/2π = (1, 2) +
0.01η̃B;1,2(t), where η̃B;1,2(t) are two independent realizations of unit deviation Brownian noise
filtered in the range [0.01, 0.2] Hz. b, c Central parts of the WFT and WT of the signal s(t)
shown in (a). The signal was sampled at 100Hz for 100s

first NM and the frequency of the first harmonic of the second NM is only |2ν(1)
1 (t)−

ν
(1)
2 |/2π = 0.016 ± 0.014 Hz). Furthermore, the noise is exceedingly strong, in
standard deviation being 1.5 times that of the full noise-free signal, 1.8 times that of
the first NM, 2.7 times that of the second NM, and 12.2 times that of the smallest
(3rd) harmonic of the second NM, located at around 6Hz (the latter is buried under
the noise and not even visible in the WFT shown in Fig. 5.5b).

Because the noise is white in the present case, its power in the WT grows with
frequency, as seen from Fig. 5.5 (note, however, that such a situation rarely arises for
real signals). Consequently, instead of using the WT and then adaptively selecting
the appropriate type of TFR, for the present case it is better to use the WFT from
the very beginning. Nonlinear mode decomposition then proceeds as usual: it first
extracts the dominant component and tests it against noise; if it passes the test, NMD
extracts its harmonics and identifies the true ones; then the full NM is reconstructed
and subtracted from the signal, after which the procedure is repeated on the residual
until it does not pass the surrogate test against noise.

The relevant information about the NMD outcome is summarized in Table5.1. As
can be seen, NMD correctly identifies all harmonics and joins them into two distinct
modes.Moreover, the amplitude ratios ah and phase shiftsϕh for eachNM(see (4.1)),
calculated from the reconstructed amplitude and phases as ah = 〈A(h)〉/〈A(1)〉 and
ϕh ≡ arg

[
〈ei(φ(h)−hφ(1))〉

]
, are very close to their actual values; this is true even for the

(buried in noise) 3rd harmonic of the second NM. The ridge method is automatically

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Table 5.1 Summary of the results of NMD applied to the signal shown in Fig. 5.5

Harmonic num-
ber h

ρ(h) Signif.
level

Rec.
method

f (h)
0 Amp. ratio ah Phase shift ϕh/π

True Extr True Extr

First NM (significance against noise = 100%)

1 – – Ridge 1.00 1 1 0 0

2 0.41 50% Ridge 2.85 – – – –

3 0.75 100% Ridge 2.08 0.75 0.74 –0.20 –0.20

4 0.29 69% Ridge 1.77 – – – –

5 0.63 98% Ridge 2.01 0.50 0.51 0.25 0.26

6 0.11 52% Ridge 1.77 – – – –

7 0.04 67% Direct 1.21 – – – –

8 0.06 67% Ridge 0.41 – – – –

Second NM (significance against noise = 100%)

1 – – Ridge 1.00 1 1 0 0

2 0.68 98% Ridge 2.85 0.50 0.45 0.50 0.51

3 0.40 95% Ridge 1.71 0.25 0.29 –0.33 –0.33

4 0.09 79% Ridge 1.95 – – – –

5 0.11 91% Ridge 0.64 – – – –

6 0.07 17% Ridge 1.00 – – – –

Residual (significance against noise = 37%)

For each NM the significance of the surrogate test against noise (see Sect. 4.1.5) was based on 100
surrogates. The columns left-to-right provide information for the hth harmonic: the value of the
consistency ρ(h)(1, 1, 0) (4.4); the significance of the test against independence (see Sect. 4.1.3); the
method chosen for reconstruction of the harmonic (see Sect. 4.3.3); the resolution parameter f (h)

0
adapted for the harmonic considered (see Sect. 4.2.1); the true amplitude ratio ah ≡ A(h)(t)/A(1)(t);
the extracted amplitude ratio; the true phase shift ϕh ≡ φ(h)(t)−hφ(1)(t); the extracted phase shift.
A harmonic was identified as true if both ρ(h) ≥ ρmin = 0.25 (4.7) and the significance level is
≥95%, with the corresponding rows being represented with italic. The numbers of real harmonics
are emboldened, and it can be seen that only they were identified as being true. For simplicity, the
results for h = 1/n harmonics (which are tested to check whether the extracted component is the
first harmonic) are not shown; in each case all three consecutive h = 1/2, 1/3, 1/4 harmonics were
identified as false

selected for reconstructing of all harmonics, which is indeed the preferable choice
due to its noise-robustness (see Sect. 3.2).

From Table1 it can be noted that, for all true harmonics, the resolution parameter
f0 used is higher than the original. This is because the higher the f0, the easier it
is to segregate the component from noise [16]. However, increasing f0 at the same
time worsens the accuracy of representation of amplitude/frequency modulation of
the component [16], so its choice is determined by a compromise between reflecting
well the time-variability of component’s parameters and suppressing the noise; the
adaptive scheme that is used by NMD (see Sect. 4.2.1) effectively implements this
criterion.

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.6 The result of applying NMD to the signal shown in Fig. 5.5. In a and b black lines indicate
the two reconstructed NMs and the gray background lines show the true NMs for comparison.
c Similarly, the black and gray lines show the residual returned by NMD and true background
noise, respectively

The final results of NMD are shown in Fig. 5.6. Both NMs are reconstructed with
great accuracy, which is like a miracle given such strong noise corruption of the
original signal (see Fig. 5.5); even the residual noise is recovered almost exactly.
Such performance is unachievable with the other existing methods, e.g. (E)EMD in
the present case produces 13 components, and none of them reliably represent any
harmonic (not shown). Note, that NMD can produce evenmore accurate results if the
resolution parameter is adjusted from the very beginning, i.e. for the first harmonics
(and not only the higher ones). However, as discussed in Sect. 4.3.1, at present there
does not seem to be a good and universal way of doing this.

5.2 Real Applications

After demonstrating its success in the analysis of simulated signals, NMD and the
related techniques are now applied to real data.

5.2.1 Decomposing Human Blood Flow Signals

The decomposition of skin blood flow signals, measured non-invasively by laser-
Doppler flowmetry (LDF) [28], is a very tough task, with no method at present being
able to do it well. This was demonstrated in [12] for the example of Karhunen-
Loève decomposition, while (E)EMD usually also fails. Thus, blood flow signals
contain a large amount of “physiological” noise, as well as having components with

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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amplitude/frequency modulation whose strength and speed change with time.
Nonetheless, as will be seen, NMD can often tackle even such complicated cases.

Blood flow signals (here and in what follows, “blood flow”means skin blood flow
recorded by LDF) exhibit oscillatory activity at multiple frequencies, and theWT has
been found especially useful in studies of their structure [38]. Six oscillations have
been identified in blood flow and attributed to different physiological mechanisms
[21, 34, 38, 39], with characteristic frequency ranges of (approximately): 0.6–2Hz
(I), 0.15–0.6Hz (II), 0.04–0.15Hz (III), 0.02–0.04Hz (IV), 0.01–0.02Hz (V) and
0.005–0.01Hz (VI). Range I corresponds to cardiac oscillations, which originate
from rhythmical pumping of the heart. Range II corresponds to respiratory oscil-
lations, which are the consequence of the mechanical influence of respiration on
the cardiac output and, to a smaller extent, the respiratory modulation of the heart
rate [17, 32]. The mechanism underlying range III oscillations, which are present in
most hemodynamic signals, is not generally agreed: in studies of cardiac activity and
blood pressure variability they are usually attributed to the sympathetic nerve activ-
ity, being regarded as a result of time-delays in the baroreflex feedback loop [18, 26],
while themany authors studyingmicrovascular blood flow relate these oscillations to
myogenic activity of the smooth muscle cells [34, 38, 39]. Finally, the oscillations in
the IV, V and VI ranges were attributed to the neurogenic, NO-dependent endothelial
and NO-independent endothelial activity [21, 34, 38, 39], respectively.

Armed with this knowledge, one can now apply NMD. To better utilize the prior
information, the procedure is applied to each of the above-mentioned physiological
frequency ranges individually, starting from the first one. Thus, for a given range the
dominant component is first extracted and tested against noise; if it passes the test,
one then extracts its harmonics, reconstructs the NM and subtracts it from the signal;
the procedure is repeated for the same range until the next extracted component does
not pass the test against noise.

The results of the procedure are shown in Figs. 5.7 and 5.8 for the examples of two
blood flows. Clearly, NMD is able to decompose these signals into physically mean-
ingful oscillations with complex waveforms (and it also returns their amplitudes,
phases and frequencies).

In both cases, it was possible to extract the cardiac component (around 1Hz),
while activity in ranges IV, V and VI did not pass the test against noise. However, in
the example of Fig. 5.7 there are strong sympathetic/myogenic oscillations (around
0.1Hz), which were extracted, while there is no apparent activity in the frequency
range II (respiratory) (Fig. 5.7b). In contrast, for the example of Fig. 5.7 the respira-
tory oscillations are present and the sympathetic/myogenic are buried under noise.
The waveforms of the cardiac oscillations are also different in two cases.

We have found that, in practice, NMD is almost always able to extract the cardiac
component accurately from the blood flow signal using the default settings though, to
improve the accuracy and speed of the method, it is advisable to filter the signal in the
corresponding frequency range before applying NMD. The respiratory component,
on the other hand, can be extracted only in a limited number of cases on account of
often being very small in amplitude compared to the physiological noise inherent
in blood flow signals. Thus, one can always obtain “some” component from the
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Fig. 5.7 a An example of a blood flow signal, measured by LDF with the probe over the right
wrist caput ulna (for more details, see [34, 39]); the signal was sampled at 40Hz for 1800s, and
the panel shows its central 600s part. b The WT of the signal shown in (a); for better illustration,
black-and-white colorcode is used in contrast to all other figures. Gray-dotted lines partition the
frequency axis into the regions within which the physiologically meaningful oscillations are located
(according to [21, 34, 38, 39], see text). Bold colored lines indicate those extracted components
which pass the surrogate test against noise, with thinner lines of the same color showing their higher
harmonics. c, d The reconstructed NMs, with the main graph showing them during 50s, and small
insets—during 600s (as in (a)); the colors of the lines correspond to those of the curves in (b). e, f
The waveforms of the oscillations shown in (c) and (d), respectively; the gray dashed line shows a
pure sinusoidal waveform of amplitude equal to that of the first harmonic, and is provided as a guide
to the eye. The cardiacwaveform e has four harmonics h = 1, 2, 3, 4with ah = [1, 0.52, 0.37, 0.16]
and ϕh/π = [0, 0.4, 0.66,−0.97] (in the notation of (4.1)); the waveform in f is characterized by
h = 1, 2, ah = [1, 0.08] and ϕh/π = [0, 0.07]

corresponding frequency range, but it is often very inaccurate and consequently fails
the surrogate test. Nevertheless, if the respiratory signal is also available, then one can
use it as a reference signal for extracting the corresponding oscillations accurately
from the blood flow signal even where they are very weak. An approach for doing
this is discussed in Sect. 5.2.3 below; it can also be used to improve the extraction
of cardiac oscillations if the corresponding ECG, from which cardiac phase can
be extracted more accurately than from the blood flow signal, is available. Finally,
although we were able to extract sympathetic/myogenic oscillations (range III) in
some cases, they are typically very hard to extract, as are also those at even lower
frequencies (ranges IV–VI).

In general, the properties and presence of the oscillations in blood flow varies
from subject to subject, being influenced by many factors, such as the state of the
microvasculature (which might be influenced by age and gender), properties of the
skin etc. Clearly, NMD can be very useful for the study and classification of these
effects, and one example of its possible clinical use will be considered in the next
subsection.

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.8 Same as in Fig. 5.7, but for the blood flow measured from a different subject. The
cardiac waveform (e) has four harmonics h = 1, 2, 3, 4 with ah = [1, 0.32, 0.15, 0.04] and
ϕh/π = [0, 0.41, 0.95,−0.44] (in the notation of (4.1)); the respiratory oscillations have only
one harmonic, so that the waveform in (f) is a pure sinusoid

Remark 5.2.1 As discussed in Sect. 4.1.5, even if the component extracted from a
particular frequency range does not pass the surrogate test against noise (as e.g. for
ranges IV, V and VI in the above examples), this does not necessarily mean that there
is no physiologically meaningful activity there. Thus, the underlying oscillations
might be simply very small so that they are easily masked by noise, which is often
the case for the respiratory oscillations. The other possibility is that the resolution
parameter used is not appropriate to represent reliably the component of interest. This
is often the case for sympathetic/myogenic oscillations, which might change their
amplitude and/or frequency very rapidly at certain times. In fact, the best choice in
such situations would probably be some time-varying f0(t), but its form is generally
very hard to choose.

5.2.2 Clinical Application: Cardiac Waveform Study

In clinical practice, different health aspects are examined through the analysis of
various signals generated by the human body. For example, the state of the cardiovas-
cular system is usually assessed by analysing signals such as the electrocardiogram
(ECG), blood pressure, blood flow (measured on a different sites of the body) etc.
The properties of these signals have both prognostic and diagnostic value for many
diseases [25, 27, 44], including cardiac failure and hypertension, which are among
the today’s most important health problems. In particular, essential hypertension—
a chronic elevation of blood pressure of unclear origin that represents a major risk

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.9 The cardiac waveform (as recovered by NMD from the skin blood flow) for the three
groups: a young healthy; b aged healthy; c aged treated hypertensive. Thin colored lines show
waveforms for individual subjects, while thick black lines correspond to group averages

Table 5.2 Summary of subject characteristics for each group (Y—young healthy, A—aged healthy,
ATH—aged treated hypertensive)

Y pY−A A pA−ATH ATH

Gender (M/F) 15/14 0.45 9/13 0.38 12/10

Age (years) 24.4 ± 3.4 0.00 71.1 ± 6.6 0.93 70.3 ± 6.7

SBP (mmHg) 118.2 ± 16.2 0.36 123.7 ± 12.5 0.02 138.8 ± 16.4

BMI (kg/m2) 22.7 ± 2.7 0.17 23.7 ± 2.5 0.00 27.2 ± 3.9

The values of p indicate the significance of the Wilcoxon rank sum test for each parameter. SBP—
systolic blood pressure, BMI—body mass index

factor for heart attack, stroke andmany other complications—affects more than 30%
of the UK population, being one of the most widespread health issues.

As was demonstrated in the previous subsection, NMD can be very useful for
studying blood flow signals. In particular, using NMD one can accurately recover
the corresponding cardiac oscillations, their variability and waveform. This allows
the investigation of various related aspects, such as the effects of ageing, hyperten-
sion and antihypertensive treatment on the properties of cardiac oscillations in the
microvasculature.

As an example, Fig. 5.9 presents the cardiac waveforms found by NMD for the
three groups: 29 young healthy subjects (group Y); 22 aged healthy subjects (group
A); and 22 aged treated hypertensives (group ATH). The parameters for each group
are shown in Table5.2, while more detailed information about the third group (ATH)
is presented in Table5.3; an unpaired two-sided Wilcoxon rank sum test is used
for comparisons between the groups, with statistical significance being assumed for
p < 0.05.

From Fig. 5.9 it is clear that the form of the cardiac pulses in skin blood flow,
while changing only slightly with age, is affected considerably by treated hyper-
tension. This effect is statistically significant, as follows from the analysis of the
relationships between cardiac harmonics for the three groups, presented in Fig. 5.10.
Hence, although current antihypertensive treatment indeed reduces blood pressure
and regresses many hypertension-associated changes [9, 22, 35, 43], it apparently
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Table 5.3 Left two columns clinical characteristics of the aged treated hypertensive (ATH) group,
apart from those listed in Table5.2

Parameter Mean ± SD Medication No. of subjects

Time since diagnosis
(years)

10.0 ± 6.2 Beta-blockers 10

Total cholesterol
(mmol/l)

4.26 ± 1.22 ACE inhibitors 10

HDL cholesterol
(mmol/l)

1.36 ± 0.38 ARB 4

LDL cholesterol
(mmol/l)

2.32 ± 0.99 CCB 9

Triglycerides (mmol/l) 1.31 ± 0.53 Diuretics 8

hs-CRP (mg/l) 2.62 ± 2.03 Statins 16

Capillary refill time (s) 2.5 ± 0.6 Aspirin 12

Ankle brachial
pressure index

1.08 ± 0.09

Height (m) 1.68 ± 0.10

Weight (kg) 77.6 ± 16.5

Right two columns the number of subjects within the ATH group treated with each type of medica-
tion; the majority were taking multiple medications. ARB—angiotensin receptor blockers, CCB—
calcium channel blockers
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Fig. 5.10 Distributions of the amplitude ratios ah and the sines of halved phase shifts sin ϕh
2 (in the

notation of (4.1)) of cardiac harmonics h = 2 (a, b) and h = 3 (c, d) for the three groups: Y—young
healthy, A—aged healthy, ATH—aged treated hypertensive. The value of p indicates significance
of the Wilcoxon rank sum test for the corresponding distributions; it is shown only if the difference
is significant (p < 0.05). The comparison is made only between groups Y and A, and between A
and ATH

does not restore everything back to normal. The physiological interpretation of the
above results, however, is a separate topic lying out of the scope of the present work.

Remark 5.2.2 Note that the cardiac waveform is only one out of many blood
flow properties to which one can gain access with NMD. For example, the ampli-
tude/frequency variabilities of different flow oscillations can also be studied. Addi-
tionally, given the reconstructed cardiac mode, one can accurately estimate the pulse
transit times (time differences between the R-peaks in the electrocardiogram and the
next cardiac peaks in the flow), which represent another clinically relevant charac-
teristic.

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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5.2.3 Removing Cardiac Artifacts from a Human EEG Signal

Nonlinear mode decomposition can alternatively be used to filter the signal from an
extraneous oscillatory activity, provided that there is an associated signal fromwhich
the phase and frequency of the latter can accurately be extracted. Thus, using the
NMD harmonic extraction procedure, the fundamental harmonic of the extraneous
mode can be extracted as the h = 1 harmonic of the reference component based
on its (reference) phase and frequency. In this way the resolution parameter f (1)

0 is
adjusted from the start, allowing one to represent this fundamental oscillation well
even if it is strongly corrupted by noise or other influences. This application of NMD
will be illustrated on the example of removing cardiac artifacts from the human
electroencephalogram (EEG) recording, using the electrocardiogram (ECG) as the
reference signal.

The EEG often contains artifacts related to heart activity, which arise due to
blood flowpulsations underneath the probes (the so-called ballistocardiogram (BCG)
artifacts [36]) and possibly also due to direct pick up of heart electrical activity. The
BCG artifacts are extremely prominent in the EEG measured in a magnetic field
(e.g. simultaneously with a magnetic resonance imaging scan), in which case they
are usually filtered out by independent component analysis (ICA) [5, 14]. However,
ICA requires as many simultaneous EEG measurements as possible, with cardiac
artifacts being prominent and taking a similar form in most of them, which is not
always the case in practice. It will obviously fail to remove the artifacts if only
one EEG and one ECG signal are available, as the form taken by cardiac activity
in the EEG is completely different from its form in the ECG signal (see below),
contradicting the assumption of linear mixing on which ICA is based. In fact, we
have found that ICA fails even given four EEGs, which is probably because the
artifacts in them are relatively small, being hard to distinguish (although still capable
of affecting some time-frequency measures); and, additionally, because the form and
magnitude of these artifacts might be different in different EEGs (perhaps dependent
on probe position). The (E)EMD method, too, fails to provide meaningful results in
the present case.

Simultaneously measured EEG and ECG time series for the same subject are
presented inFig. 5.11a, b,with theirWFTs for the default resolutionparameter f0 = 1
being shown in (c) and (d), respectively. Clearly, for f0 = 1 the cardiac harmonics are
not well distinguishable in the EEG’s WFT (Fig. 5.11c), so that the extracted curve
might not be very accurate. However, the cardiac phase φ(1)(t) and frequency ν(1)(t)
can of course be extracted directly from the WFT of the ECG (Fig. 5.11d). They
should be the same for the first cardiac harmonic in the EEG and in ECG, because
both activities obviously have the same rhythmicity; however, the corresponding
amplitudesmight be different, and perhaps not even proportional to each other. This is
because, depending on themeasurement and the environment, the same activitymight
undergo various transformations that can change its amplitude dynamics and the
corresponding waveform, but leave phase dynamics largely unaltered. For example,
nonlinear modes c(t) = A(t)[cosφ(t) + a cos 2φ(t)] and exp[c(t)] will have the
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Fig. 5.11 a The EEG signal (measured using a BIS electrode placed on the forehead, as described
in [40]). b The ECG signal (3-lead, with electrodes on shoulders and the lowest left rib, see e.g.
[24]). c, d The WFTs of the EEG and ECG signals shown in (a) and (b), respectively, calculated
using the default resolution parameter f0 = 1. e The WFT of the EEG signal calculated using the
adaptively adjusted resolution parameter f0 = 3.76, due to which the cardiac component becomes
much more visible than in (c). f The cardiac artifacts extracted from the EEG, with an inset showing
them over the same 500s as presented in (a, b); gray background lines show the ECG scaled to
the dimensions of the plot. g The waveform of the cardiac artifacts, which has four harmonics with
ah = [1, 0.33, 0.24, 0.11] and ϕh/π = [0, 0.49, 1,−0.59] (in the notation of (4.1)); the gray-
dashed line represents a pure sinusoid with the amplitude of the first harmonic, for comparison. The
full signals, of duration 20min. each, were recorded simultaneously and were sampled at 80Hz;
the EEG was actually measured under anaesthesia, but the same artifacts arise under all conditions

same fundamental phase and frequency, but different amplitude dynamics (i.e. the
ratio between the amplitudes of the corresponding fundamental components will be
time-varying) and different relationships between the harmonics.

Therefore, as mentioned above, the main cardiac component in the EEG can be
extracted as the h = 1 harmonic of the reference cardiac component found from the
ECG. Using the phase φ(1)(t) and frequency ν(1)(t) of the latter, this can be done
in the usual manner (see Sect. 4.1.2), i.e. selecting the peaks nearest to the expected
frequency profile ν(1)(t) in the WFT/WT of EEG. The extracted first harmonic is
then tested for being true (Sect. 4.1.3), and the procedure is repeated using differ-
ent resolution parameters f (1)

0 to find the most appropriate one (Sect. 4.2.1). How-
ever, because of the (above mentioned) possible discrepancy between the amplitude
dynamics of the related components in different signals, the consistency measure

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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ρ(h)(wA, wφ,wν) (4.4) should be taken not as the default amplitude-phase consis-
tency ρ(1)(1, 1, 0), but as a simple phase consistency ρ(1)(0, 1, 0); note that the
threshold (4.7) becomes ρmin(0, 1, 0) = 0.5 in this case. Finally, if the extracted
first harmonic is regarded as true, one finds its higher harmonics and reconstructs
the corresponding NM in the usual way, i.e. using the unmodified procedures with
ρ(1) = ρ(1)(1, 1, 0) (see Sects. 4.1.2, 4.1.3 and 4.2).

Remark 5.2.3 Note that, in general, there might be a time delay between related
oscillations in different signals, e.g. ECG and cardiac artifacts in EEG. However,
unless it exceeds the characteristic time of the amplitude/frequency variations or
the minimal surrogate time shift (see Sect. 4.1.3), it should not influence the results
significantly. Nevertheless, one can adjust the timings of both components by maxi-
mizing the frequency consistency ρ(1)(0, 0, 1) (4.4) between them.

The EEG’s WFT adapted (by maximizing phase consistency ρ(1)(0, 1, 0)) for
representation of the cardiac component is shown in Fig. 5.11e. Clearly, the corre-
sponding ridge curves have become much more visible than in the default WFT
presented in Fig. 5.11c. The cardiac artifacts extracted from the EEG are shown in
Fig. 5.11f. Their waveform, presented in Fig. 5.11g, very much resembles the shape
of the cardiac waves in the blood flow (cf. Fig. 5.8), but not that of the ECG. This is
an indication of the BCG mechanism by which these cardiac artifacts are generated,
which is also supported by the fact that their strength (and even their shape) might be
different in EEGs from different probes for the same subject. Note that, depending
on the particular EEG measurement, the artifacts might be inverted.

There are many other possible applications of NMD-based filtering. Thus, as
mentioned previously, one can use this approach to extract the cardiac and respiratory
components from the blood flow signal more accurately by utilizing reference phases
obtained from the corresponding ECG and respiration signals. NMD can also be used
to check whether a given signal contains oscillatory activity related to another one:
if there is no oscillation originating from the same source as the reference signal,
then the corresponding first harmonic extracted from a given signal based on the
reference phase and frequency will be regarded as false. For example, we have not
found any respiratory-related activity in the EEG, implying that the measurement
process is almost unaffected by breathing.

Since the situation when one signal contains components related to other signals
is ubiquitous in real life, the NMD-based filtering is expected to be very useful in
many contexts. A great advantage of this approach is that it does not require the
related oscillations in different signals to be of the same form (as is the case of e.g.
ICA), but only to have the same phase dynamics.

5.2.4 Other Applications

In general, NMD can serve as an initial preprocessing which needs to be performed
prior to applying any of the numerous existingmethods for studyingmonocomponent

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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signals or their sets (for a review see [4]). Thus, having first decomposed the original
signal into its constituent NMs, one can then investigate the latter using one or
some of the huge diversity of available techniques. For example, the structure of
the interactions between different modes can be recovered by applying Bayesian
inference to the extracted phases [7, 37], as was done in [15] to reconstruct the
cardiorespiratory interaction; in this application, the high accuracy of the phases
returned by NMD is especially advantageous. Another important problem where
the use of NMD as a preprocessing tool can be very relevant is the classification
of the oscillations contained in the signal, which might yield valuable insights into
the nature and properties of the underlying phenomena. This application will be
discussed in more detail in Sect. 5.3.

5.3 Physical Interpretation and System Classification

Bymeasuring signals generated by a real system, one can get access to a certain subset
of its properties, but many aspects of system behavior usually remain unavailable and
effectively hidden. For example, the ECG reflects the overall electrical activity of the
heart, but not the other numerous features of its operation. The recorded signals can
therefore be viewed as certain projections of system dynamics on the measurement
apparatus. This raises a question regarding the physical interpretation of the modes
retrieved by NMD which, together with the possibility of classifying the extracted
oscillations, is discussed in the present section.

In what follows, it will be assumed that the underlying system which produced
the signal represents a kind of dynamical system [1, 8, 19], i.e. its behavior is fully
determined by a particular set of ordinary differential equations

dx
dt

= F(x) (5.1)

where x = [x1, x2, ..., xD] correspond to system coordinates, the vector field F(x) =
[F1(x), F2(x), ..., FD(x)] is some continuous RD → RD function, and D is the
dimensionality of the system. The resultant signal can then be represented as s(t) =
g(x(t)), where g(·) is the “measurement” function. The behavior of systems of the
form (5.1) and the underlying theory were thoroughly discussed in [1, 8, 19], while
the applications of the numerousmethods for studying different kinds of such systems
are reviewed in [2, 4].

For what follows, it is also of paramount importance for the following to clarify
the notion of nonautonomicity. The system is called nonautonomous if its associated
vector field contains explicit time-dependence (F(x) → F(x, t) in (5.1)); otherwise
it is called autonomous. Note, however, that any nonautonomous system can be
represented as a subsystem of some higher-dimensional autonomous structure. For
example, consider the (nonautonomous) system
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⎧
⎪⎨

⎪⎩

dx1
dt

= x2,

dx2
dt

= −x1[(ω0 + bωb cosωbt)2 − bω2
b sinωbt],

(5.2)

which generates the signal x1(t) = A cos(ω0t + b sinωbt + ϕ), where A and ϕ

are determined by the initial conditions x1,2(0). Choosing two additional variables
x3,4 to account for the terms ∼ sinωbt , ∼ cosωbt in (5.2), one can rewrite the
corresponding equations as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= x2,

dx2
dt

= −x1[(ω0 + ωbx3)
2 + ωbx4],

dx3
dt

= x4, x3(0) = b,

dx4
dt

= −ω2
bx3, x4(0) = 0.

(5.3)

Thus, the nonautonomous system (5.2) can be viewed as part of the higher-
dimensional autonomous system (5.3) starting from a particular set of initial condi-
tions.

However, in real cases the parameters of the full (autonomous) system which
produced the signals can rarely be estimated, so one usually has to analyse its nonau-
tonomous parts. For example, one can measure different aspects of the heart activity,
but this activity is obviously influenced by many other body processes (e.g. respira-
tion), which are in turn influenced by the environment, making treatment of the heart
as autonomous system practically impossible. For an additional illustration, consider
(5.1)with the vector fieldF(x) perturbed by an (in theory infinite-dimensional)multi-
variate Gaussian white noise η(t): for such a case the full autonomous system cannot
be recovered in any finite dimensions, so that one needs to take explicit account of the
time-dependent noise (in this limiting case of nonautonomicity the system is called
stochastic). Generally, whether to treat the system as autonomous or nonautonomous
depends on what approach is more suitable for its analysis in the context considered,
which is largely determined by the amount of information available.

5.3.1 “Decomposability” of Different Systems

It is not fully clear how compatible are the dynamical (5.1) and NMD (4.2) views of
the signal, and many questions regarding this issue remain to be addressed, namely:
How can the results of NMD be interpreted physically within dynamical systems
theory? Are they always interpretable in this sense? Is there any pattern in terms of
the “decomposability” of different systems? To answer these questions and establish

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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the link between the two views, in this section NMD is applied to systems of different
kinds and the results are considered in detail. Performance studies of the numerous
other methods in a similar settings can be found in [2, 4].

In general, there are three types of behavior that dynamical systems (5.1) can
exhibit in the limit t → ∞ [1, 8, 19]: (i) decay to a fixed point (x(t) = x0); (ii)
move periodically (∃Tp : x(t + Tp) = x(t)) or quasi-periodically (the trajectory x(t)
is a superposition of periodic movements over different dimensions—limit cycles);
(iii) move chaotically (i.e. deterministically but in practice unpredictably, with the
trajectory being very sensitive to the choice of initial conditions). The first type of
behavior is trivial and is therefore of no interest for the present analysis, and only
the latter two will be considered.

To understand the effects of different behaviors and system (non)autonomicity on
the NMD performance, consider the forced Duffing oscillator [6, 20]:

d2x

dt2
+δ

dx

dt
+αx +βx3 = A cosωt ⇔

{ dx
dt = y,
dy
dt = A cosωt − δy − αx − βx3.

(5.4)

The system (5.4) will be called autonomous for A = 0 and nonautonomous (in
two dimensions) otherwise; it was also found to exhibit chaotic behavior in certain
parameter regions, where it will be called chaotic. Figure5.12 presents examples
of NMD-based decomposition of x(t) generated by the system (5.4) in different
regimes.

Remark 5.3.1 To provide more information, the signals in Fig. 5.12, as well as in
Figs. 5.13 and 5.14 below, are decomposed into 20 modes (whether meaningful or
not); the decomposition is stopped, however, if the standard deviation of the residual
is lower than 0.05 of that of the signal. Additionally, since one can now have noise-
inducedmodes (i.e. those not passing the surrogate test against noise, see Sect. 4.1.5),
the ridge curve is extracted using the functional (3.3) with p2 = 0 instead of p2 = 1
(other parameters remain the same). Finally, in order to make the decomposition
faster, the fundamental component and all its harmonics are extracted from the WT
and are reconstructed by the direct method (3.8) only (instead of choosing the TFR
type and reconstruction method adaptively, see Sect. 4.3).

As illustrated in Fig. 5.12a, when the system is two-dimensional and autonomous
the most complex behavior it can exhibit is some strictly periodic limit cycle (which
might nevertheless be of complicated shape as a result of nonlinearities in the
system); this corresponds to a single mode of constant amplitude and frequency
(Fig. 5.12d, g, j). Adding nonautonomicity to the original system, one effectively
increases its dimensionality, which canmake its behavior more complex (Fig. 5.12b).
For example, the characteristics of the original limit cycle might be changed, or
quasi-periodic behavior can emerge (the latter resulting in multiple modes and/or
time-variability of the modes’ amplitudes and frequencies).

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.12 The results of decomposition of the x-component of the Duffing system (5.4) in different
regimes; parameters of the system for each regime are indicated on top of the figure. a, b, c The
dynamics of the system (5.4) in the (x, y)-plane. d, e, f The original signal x(t) (thick background
line) and the threemost prominentmodes returned byNMD(thin colored lines), whethermeaningful
or not. g, h, i The wavelet transforms of the corresponding signals in (d, e, f); the ridge curves
associated with fundamental harmonics of the three most prominent modes are indicated by colored
lines (for simplicity, higher harmonics are not shown); gray vertical dashed lines indicate the time
intervals for which the signals are presented in (d, e, f). j, k, l The ratios of standard deviations
of each of the extracted NMs to the standard deviation of the original signal; blue bars indicate
the modes which were regarded as meaningful (i.e. passed the surrogate test against noise, see
Sect. 4.1.5), while red bars correspond to all the other ones. Starting from the initial conditions
x(0) = 0, y(0) = 1, the system (5.4) was integrated using a Heun scheme with time-step of 0.01 s
for 1000s, and the resulting time-series were then resampled to 10Hz. The adjustments to NMD
procedure used for decomposing the signals presented in (d, e, f) are discussed in Remark 5.3.1

Remark 5.3.2 It should be noted, that the dynamics depicted in Fig. 5.12b, e can
actually be represented as a single, fully periodic, mode with a very complex wave-
form. The reasonwhy it is decomposed intomultiple NMs (Fig. 5.12e, h, k) is that the
frequency of this single mode is absolutely constant, which makes it nearly impossi-
ble to correctly identify all true harmonics (especially taking into account that some
of them interfere in the TFR, see Fig. 5.12h). This is, however, a rather uncommon
case.

On the other hand, TFR-based techniques do not seem to be suitable for analysing
Duffing system in the chaotic regime (Fig. 5.12c, f, i, l). Thus, in this case the behavior
of the system in the (x, y)-plane (Fig. 5.12c) can be perceived as rapid and frequent

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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jumping between limit cycles of various forms and periods. Such dynamics cannot
be represented as a superposition of meaningful oscillations with smoothly changing
amplitudes and frequencies, thus violating the basic assumption (4.2) behind NMD
and leading to its failure (Fig. 5.12f, i, l). Overall, Fig. 5.12 shows that the TFR-
based methods usually work well for autonomous/nonautonomous systems, but are
not always suitable for studying chaotic dynamics.

It should be stressed, however, that the inapplicability of NMD to some chaotic
systems cannot be generalized to all cases. Thus, NMD tries to represent the system
dynamics as a set of nonautonomous limit cycles, so everything depends on how
well a given projection of the system behavior—the signal—conforms with such a
representation. Figure5.13 illustrates this important point on examples of the Lorenz
[23] and Rossler [31] chaotic systems:

Lorenz system: Rossler system:⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt = σ(y − x),

dy
dt = x(ρ − z) − y,

dz
dt = xy − βz,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt = −ωy − z,

dy
dt = ωx + ay,

dz
dt = b + z(x − c).

(5.5)

As can be seen, the projection of the Lorenz system dynamics on the x-axis
(Fig. 5.13d) does not contain well-defined oscillations. This is because x(t) cap-
tures all the exotic dynamical features, namely switching between the “wings” of
the Lorenz attractor (see Fig. 5.13a, b) and the corresponding changes in the rotation
direction (the latter being reflected by waveforms of the high-frequency oscilla-
tions, which are different for x(t) < 0 and x(t) > 0, see Fig. 5.13d). Due to this
it is hard for NMD to decompose such a signal (Fig. 5.13d, g, j). In contrast, the
z-coordinate of the Lorenz system (Fig. 5.13b, e) does not reflect the aforementioned
aspects of the dynamics, which allows its approximate representation as a superpo-
sition of nonautonomous limit cycles and therefore leads to a better decomposition
(Fig. 5.13e, h, k).

The signal from a chaotic system, however, does not necessarily need to
miss some aspects of the dynamics to be well decomposable (i.e. admit the pos-
sibility of reliable mapping to the set of nonautonomous limit cycles). Thus, any
component of the Rossler system (Fig. 5.13c) captures all features of its behavior
but still can easily be decomposed by NMD, as illustrated in Fig. 5.13f, i, l for the
x-component. Therefore, although TFR-based approaches are indeed often inap-
plicable for analysing chaotic dynamics, this is not a general rule.

Finally, one should be aware that the emergence of chaos is not the only
complication that might spoil the results. Another (and probably more common)
problem is noise which, being added to the right hand side of system equations
(5.1), can significantly alter the unperturbed behavior. This is illustrated in Fig. 5.14
(cf. Fig. 5.12) for the example of the stochastic Duffing system:

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.13 The results of decomposition of the x- and z-component of the Lorenz system and z-
component of the Rossler system (5.5); parameters of both systems are indicated on top of the figure.
a, c The dynamics of the Lorenz and Rossler systems (5.5) in the full (x, y, z) space. b Projection
of the Lorenz dynamics in (a) onto the (x, z)-plane. d, e, f The original signals to be decom-
posed (thick background line) and the three most prominent modes returned by NMD (thin colored
lines), whether meaningful or not. g, h, i The wavelet transforms of the corresponding signals in
(d, e, f); the ridge curves associated with fundamental harmonics of the three most prominent
modes are indicated by colored lines (for simplicity, higher harmonics are not shown); gray vertical
dashed lines indicate the time intervals for which the signals are presented in (d, e, f). j, k, l The
ratios of standard deviations of each of the extracted NMs to the standard deviation of the original
signal; blue bars indicate the modes which were regarded as meaningful (i.e. passed the surrogate
test against noise, see Sect. 4.1.5), while red bars correspond to all the other ones. Lorenz and
Rossler systems (5.5) were integrated using Heun scheme with time step of 0.01 for 200 and 600s,
respectively; the resulting time-series were then resampled to 40Hz and to 10Hz. The adjustments
to NMD procedure used for decomposing the signals presented in (d, e, f) are discussed in Remark
5.3.1

d2x

dt2
+δ

dx

dt
+αx +βx3 = A cosωt +σηW (t) ⇔

{ dx
dt = y,
dy
dt = A cosωt − δy − αx − βx3 + σηW (t),

(5.6)
where ηW (t), as always, denotes white Gaussian noise of unit variance.

For the usual autonomous regime (Fig. 5.12a), adding dynamical noise changes the
amplitude and frequency of the associated oscillations by causing transitions between
similarly shaped limit cycles of different lengths (Fig. 5.14a). These noise-induced
amplitude and frequency variations are, however, easily traced by NMD, and the sig-
nal can be decomposed reliably (Fig. 5.14d, g, j). In contrast, for the nonautonomous
case (Fig. 5.12b) noise causes transitions between the limit cycles of very different

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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Fig. 5.14 The results of decomposition of the x-component of the stochastic Duffing system (5.6)
in different regimes; parameters of the system for each regime are indicated on top of the figure.
a, b, c The dynamics of the system (5.6) in the (x, y)-plane; magenta and cyan curves in (b) show
approximate shapes of the limit cycles between which the dynamics switches. d, e, f The original
signals to be decomposed (thick background line) and the three most prominent modes returned
by NMD (thin colored lines), whether meaningful or not. g, h, i The wavelet transforms of the
corresponding signals in (d, e, f); the ridge curves associated with fundamental harmonics of the
three most prominent modes are indicated by colored lines (for simplicity, higher harmonics are not
shown); gray vertical dashed lines indicate the time intervals for which the signals are presented
in (d, e, f). j, k, l The ratios of standard deviations of each of the extracted NMs to the standard
deviation of the original signal; blue bars indicate the modes which were regarded as meaningful
(i.e. passed the surrogate test against noise, see Sect. 4.1.5), while red bars correspond to all the other
ones. Starting from the initial conditions x(0) = 0, y(0) = 1, the system (5.6) was integrated using
stochastic Heun scheme [11] with time-step of 0.01 s for 1000s, and the resulting time-series were
then resampled to 10Hz. The adjustments to NMD procedure used for decomposing the signals
presented in (d, e, f) are discussed in Remark 5.3.1

shapes (shown by magenta and cyan lines in Fig. 5.14b), thus making the dynamics
inconsistent at different times (Fig. 5.14e). As a result, particular harmonics persist
only during some time intervals and disappear during the others (Fig. 5.14h), making
their identification and classification problematic and therefore causing problems for
the method (Fig. 5.14k). Finally, in the chaotic regime (Fig. 5.12c) the behavior is
already very complicated for time-frequency methods, so adding dynamical noise
does not in fact change much in terms of decomposition (cf. Figs. 5.14f, i, l and
5.12f, i, l).

Summarizing, the success of decomposition of the signal generated by a system
of the form (5.1), or its nonautonomous/stochastic version, depends on the type of

http://dx.doi.org/10.1007/978-3-319-20016-3_4
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behavior the system exhibits and the projection of this behavior onto the available
data. Thus, NMD assumes that the signal can be represented as a superposition of
physically meaningful oscillations (4.2) with amplitudes and frequencies that vary
smoothly enough to satisfy the analytic approximation (2.4).As discussed previously,
this set of assumptions does not include and is not included into, but rather intersects
with, the set of assumptions of dynamical systems theory,which states that the system
behavior can be described by a number of coupled differential equations (5.1).

Approaches based on either of these two views of the signal can produce spurious
results if the corresponding assumptions are not satisfied, so that the choice of the right
tool for analysing a given signal depends on its properties. Thus, it was demonstrated
that NMD might fail in the case of chaotic behavior, which therefore tends to be
harder to analyse using TFR-based methods as compared to other types of dynamics.
However, no general statement can be made regarding this issue, as there are many
other factors also influencing the results.

The methods of dynamical systems theory, on the other hand, can be inapplicable
when the original system contains time-delays or other features not included in the
description (5.1). Additionally, in practice the coordinates of the system are usually
unavailable, so that one needs to reconstruct the underlying dynamics from the given
set of measurements, which is not always an easy task [1, 8, 19]. This is especially
true for nonautonomous and stochastic systems [2, 4], since e.g. the latter are in
theory infinite-dimensional. For example, for the stochastic Duffing system in the
autonomous regime (Fig. 5.14a), the noise-induced variations of the oscillations’
amplitude and frequency are hard to estimate using themethods of dynamical systems
theory. At the same time, they can accurately be recovered using NMD (Fig. 5.14d,
g, j), which does not require reconstruction of the full coordinate space or any prior
knowledge about the system.

5.3.2 Chronotaxic Systems and Their Identification

Recently, a new subclass of nonautonomous systems—chronotaxic systems—has
been introduced and studied [3, 41, 42]. Roughly speaking (see [41, 42] for a more
detailed definition), a system is chronotaxic if it is: (a) oscillatory (i.e. characterized
by a limit cycle); and (b) its phase φ(t) does not just move freely along the cycle,
as conventionally assumed, but is attracted to some φA(t), conferring the ability to
resist external perturbations. Note, that this is exactly what one often observes in
living systems, which are able to maintain their activity within physiological ranges
even when strongly perturbed.

Chronotaxic behavior by definition satisfies the set of NMD assumptions (dis-
cussed in Sect. 5.3.1). Moreover, since the associated limit cycle is stable to pertur-
bations, such adverse effects as jumping from one trajectory to the other (observed
e.g. for the stochastic Duffing system in the nonautonomous regime, see Fig. 5.14b,
e, h) cannot occur. Therefore, chronotaxic dynamics is always easily decomposable

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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and, more generally, the TFR-based approaches are always appropriate for its analy-
sis.

It is clearly desirable to be able to determine whether the originating systems
generating different oscillations in the signal are chronotaxic or not. However, to
classify these oscillations, one needs to study them separately, i.e. the signal should
first be decomposed into its NMs. This can conveniently and accurately be achieved
withNMD, and related techniqueswere used extensively in the chronotaxicity studies
[3, 41]. Having found the phase φ(t) and frequency ν(t) of a particular mode, it can
be tested for being chronotaxic with an approach suggested by Clemson et al. [3].
Basically, by applying different kinds of filters to the extracted phase one estimates
the difference between the perturbed and unperturbed phases and then uses detrended
fluctuation analysis (DFA) [29, 34] to examine the associated correlations, which are
expected to differ between chronotaxic and non-chronotaxic systems.

The procedure can be summarized as follows:

1. Smooth the mode frequency ν(t) with a moving average of length τm seconds to
obtain ν̃(t):

ν̃(t) =
∫

ν(τ)mτm (τ − t)dτ, (5.7)

where mτ (x ∈ [−τ/2, τ/2]) = 1, mτ (x /∈ [−τ/2, τ/2]) = 0. Note that, in
practice, all signals are discrete, so that the integrals appearing in this and all
other steps of the procedure should be discretized as well.

2. Construct the smoothed phase φ̃(t) by integrating ν̃(t):

φ̃(t) =
∫ t

0
ν̃(τ )dτ (5.8)

3. Calculate an estimate of the difference δφ(t) between the perturbed and unper-
turbed phases as φ̃(t) − φ(t) detrended with a window of length τd seconds:

δφ(t) = φ̃(t) − φ(t) −
∫

[φ̃(τ ) − φ(τ)]mτd (τ − t)dτ (5.9)

The detrending is performed to eliminate “artificial” phase drifts that might be
introduced by the previous two steps.

4. Perform DFA [29, 34] of δφ(t) and find the associated self-similarity
parameter β. To do so, one constructs an integrated signal Y (t) = ∫ t

0 δφ(τ)dτ ,
breaks it into non-overlapping segments each of length τs seconds, and subtracts
the linear fits of every segment from Y (t) (at the corresponding times) to form
Ỹτs (t). The fluctuation strength F(τs) for the scale τs is then determined as

F(τs) =
√

〈Ỹ 2
τs

(t)〉 (5.10)
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Finally, the DFA exponent β is estimated by fitting log F(τs) = α + β log τs in
some range τs ∈ [τ (1)

s , τ
(2)
s ] (by default, 100 equilogspaced values of τs are used).

Note that, to remove the boundary effects of the moving averages used in steps 1
and 3, it is better to perform DFA of only the central part δφ(τm/2+ τd/2 < t <

T − τm/2 − τd/2), where T is the total length of the signal.

Parameter β returned by the method reflects the extent to which δφ(t) is correlated in
time [29, 34]. For chronotaxic systems, the phase is attracted to some time-dependent
φA(t), and therefore the perturbations to φ′(t) are expected to decay rapidly, imply-
ing short-range correlations in δφ(t) (small β); for non-chronotaxic systems, on the
other hand, these perturbations will accumulate, leading to long-range correlations
(high β) [3]. Within the assumption that perturbations to φ′(t) are represented by
white Gaussian noise, for non-chronotaxic systems δφ(t)will take form of a Brown-
ian walk (β = 1.5). It was therefore proposed [3] to regard the system as chrono-
taxic if β � 1.

Obviously, δφ(t) (5.9) represents a very rough approximation to the true dif-
ference between the perturbed and unperturbed phases. However, it still picks up
well the correlation structure of the perturbations [3], allowing for a reliable analy-
sis with DFA. The parameters τm, τd , τ

(1,2)
s of the method are generally chosen by

the user, subject to a constraint τ
(2)
s ≤ min(τm, τd) (see [3] for detailed guide-

lines). However, the number of non-adaptive parameters can be reduced to two by
setting τm = τd = τ

(2)
s .

Figure5.15 illustrates the use of NMDand the approach of [3] (outlined above) for
system classification for the examples of chronotaxic oscillation sc(t) = cosφc(t)
and a non-chronotaxic one snc(t) = cosφnc(t); the corresponding phases φc,nc(t)
are given by

φ′
c(t) =1.25ω0(t) sin(φc(t) − φ0(t)) + 0.5ηW (t), φ0(t) =

∫ t

0
ω0(τ )dτ, (5.11)

φ′
nc(t) = ω0(t) + 0.5ηW (t),

where ω0(t)/2π = 2 − (1/3) cos(0.02t) + (1/3) cos(0.01π t), φc,nc(0) = 0, and
ηW (t) denotes white Gaussian noise of unit variance. Nonlinear mode decompo-
sition is first utilized to find the oscillatory modes present in the signals together
with the corresponding phases φ(t) and frequencies ν(t) (Fig. 5.15a, b); if used for
the classification approach of [3], these phases and frequencies should be recon-
structed by the direct method (Sect. 3.2.2), as it better picks up noise and therefore
allows for a more reliable study of its correlation structure. One then calculates δφ(t)
(5.9) (Fig. 5.15c, d), and uses DFA to estimate the associated self-similarity parame-
ter β (Fig. 5.15e, f). As expected, for the chronotaxic system β is smaller than 1
(Fig. 5.15e), while for the non-chronotaxic system it is close to 1.5 (Fig. 5.15f).

The same scheme can be applied to real-life signals, e.g. to the NMs of both of the
examples in Figs. 5.7 and 5.8. In these examples, no clear evidence of chronotaxicity
was found for any of the corresponding oscillations. However, since the method

http://dx.doi.org/10.1007/978-3-319-20016-3_3
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Fig. 5.15 a, b WFT amplitudes for the signals cosφc(t) and cosφnc(t), where (respectively
chronotaxic and non-chronotaxic) phases φc(t) and φnc(t) are given by (5.11); black lines show
the extracted ridge curves ωp(t), while thin gray lines indicate the time-frequency supports
[ω−(t), ω+(t)] from which the oscillations’ phases and frequencies are reconstructed by the direct
method (see Sect. 3.8). c, d The phase difference δφ(t) (5.9), calculated with the parameters
τm = τd = 20 s in (5.7), (5.9). e, f Dependence of the fluctuation strength F(τs) (5.10) on
the scales τs ∈ [2, 20] s for δφ(t) shown in (c, d); in each case, the gray background line shows a
linear fit of log F(τs) with log τs , and β indicates its slope. Both signals are sampled at 50Hz for
1000s

being used is based on a particular set of assumptions, these oscillations could in
principle still be chronotaxic though falling outside the model considered in [3].
Additionally, although the cardiac phase by itself does not seem to be chronotaxic,
by studying the ECG signal it was shown [3] that the respiratory modulation of
heart activity has pronounced chronotaxic features. It is therefore expected that, with
time, chronotaxicity will be revealed in many real systems across the broad range of
scientific areas.

Remark 5.3.3 It should be noted that the signal does not always reflect well the
underlying physiological mechanisms that generated it. Here one of the biggest
issues is whether or not the microscopic oscillations manifest themselves at the
macroscopic level as a single oscillatory process [33]. Thus, for real signals one
usually does not know whether the extracted mode represents a single oscillation or,
instead, reflects the combined contributions of many distributed oscillators that have
similar frequencies (e.g. are synchronized to some extent or driven by a common
force). For example, blood flow as measured by LDF represents the combined effect
of the flows of a large number of capillaries and arterioles under the probe; the
more consistent the individual flow oscillations are at different locations, the more
consistent and strong will be the corresponding overall oscillation in the measured

http://dx.doi.org/10.1007/978-3-319-20016-3_3
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flow. This issue complicates all aspects of the analysis, and especially those related
to the classification of the underlying processes.

5.4 Limitations and Possible Issues

Although usually being very accurate and noise-robust, NMD does not represent an
“ultimate” solution to any decomposition problem, as it has certain limitations. First
of all, NMD is designed to operate within a particular set of assumptions which,
although being not too restrictive, can sometimes be violated (see Sect. 5.3.1). Thus,
for a reliable decomposition it should in principle be possible to represent signal as a
superposition of meaningful oscillations (4.2) with amplitudes and frequencies that
admit analytic approximation (2.4), i.e. vary smoothly enough.

When all underlying assumptions hold, the main restriction of the method is that
it needs at least some harmonic of each mode contained in the signal to be relatively
well represented in the signal’s WFT or WT. Otherwise, the component extracted at
the first step will not pass the surrogate test (see Sect. 4.1.5), being regarded as noise,
and the procedure will stop. This might happen e.g. when the noise is exceedingly
strong, so that even NMD with its exceptional noise-robustness cannot cope with
it. In such circumstances one can either adjust the initial resolution parameter f (1)

0 ,
which might sometimes help, or continue the procedure anyway, but in this case the
resultant NMs might not have any physical meaning. Furthermore, even when signal
is represented by a superposition of well-defined oscillations, there exist situations
when it is in principle impossible to recover reliably the modes from its TFR due to
the restrictions on time and frequency resolutions of the latter (see e.g. Fig. 4.3 and
related discussion); NMD will obviously be inaccurate in such a case.

Nevertheless, it appears that if NMD fails then other methods, such as (E)EMD
and single-channel PCA/ICA, will not produce meaningful results as well. At the
same time, NMD can perform well even when no alternative approach succeeds,
as was demonstrated in this chapter (see also Sect. 1.1). Moreover, when multiple
methods work, the results obtained with NMD are usually the most accurate ones.

Generally, the only noticeable disadvantage of NMD as compared to other
approaches is its relatively low speed. Thus, although being O(N log N ), the compu-
tational cost of the method can become considerable in some cases due to numerous
recalculations of the TFRs while adapting the resolution parameters for harmon-
ics (see Sect. 4.2.1); adjusting numerical parameters, though, can make NMD much
faster at the cost of slightly decreased accuracy. Note also, that NMD addresses the
problem of decomposition and filtering of a single time series, while for a large sets of
signals PCA and ICAmight sometimes be preferable. Finally, it should be noted that
if one is interested not in all the properties of the mode, but only in its time-averaged
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characteristics, then simpler methods can often be used (e.g. mean amplitudes of the
components can be estimated based on the areas under the corresponding peaks in
the time-averaged TFR amplitude).
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Chapter 6
Conclusion

6.1 Summary

This work has introduced a new method for decomposing a given signal into a
set of oscillatory modes with time-varying amplitudes and frequencies—nonlinear
mode decomposition (NMD). It is based on time-frequency analysis techniques
[1, 2], surrogate data tests [3–6], and the idea of identification of the time-variable
harmonics [7]. Unlikemany previousmethods, NMD retrieves the oscillationswithin
any waveform, and not only the sinusoidal one. It is also extremely noise-robust and
in a sense super-adaptive, meaning that most of its settings are automatically adapted
to the properties of the particular signal under investigation. Finally, in contrast to the
other methods, NMD returns only the physically meaningful oscillations, stopping
the decomposition when the residual is just noise (any type within a large class, see
Sect. 4.1.5).

All the relevant aspects of NMD and its subprocedures (each of which represents
a useful technique in its own right, see Sect. 4.1) have been thoroughly discussed.
Thus, this work includes a review and, to some extent, revision of the linear time-
frequency representations on which NMD is based, namely the WFT and the WT.
Furthermore, the techniques for extraction of the components from these TFRs have
been developed and considered in detail.

The exceptional performance of NMD has been illustrated on both simulated and
real data, including some important applications. Thus, it has been shown that the
method allows one to study effectively many real-life signals such as skin blood
flows, electrocardiograms, electroencephalograms etc. NMD can therefore be used
in clinical practice, and it has already been applied to uncover certain aspects of
cardiovascular ageing and hypertension. Finally, NMD is a necessary prerequisite
for many other methods, e.g. those devoted to identifying the chronotaxicity of the
systems (see Sect. 5.3.2).

The area of applicability of NMD, however, is not limited to the cases considered,
being much wider. For example, it would now be reasonable to reconsider all those
cases where other decompositionmethods, such as (E)EMD [8, 9], have been applied

© Springer International Publishing Switzerland 2015
D. Iatsenko, Nonlinear Mode Decomposition,
Springer Theses, DOI 10.1007/978-3-319-20016-3_6

113

http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_4
http://dx.doi.org/10.1007/978-3-319-20016-3_5


114 6 Conclusion

(e.g. see references in [10, 11]). Furthermore, the exceptional noise-robustness of
NMD and its other advantages allow one to use it even in situations where other
methods fail completely. Thus, it can be applied to a majority of multicomponent
signals of the kind that are ubiquitous in the life sciences, geophysics, astrophysics,
econometrics etc. It is therefore expected that, with time, NMD will become a new
standard in the field.

The latest MATLAB codes needed for running NMD and its individual subproce-
dures are freely available [12], together with detailed instructions and examples, in
both text and video formats. There are a few pre-set templates controlling the speed-
accuracy tradeoff, while most of the other parameters of the method are either quite
universal or are selected adaptively (see Sect. 4.3), so that NMD requires minimal
tuning and should be easy to apply even for inexperienced users.

6.2 Original Contributions

Basically, each Chapter of this work contains original contributions and ideas, with
their concentration growing from the beginning towards the end of the work:

• In addition to a thorough review of linear TFRs and their properties, the work
has also advanced their value by introducing some new procedures and by elab-
orating certain aspects of their use. Thus, the new contributions associated with
Chap.2 include: derivation of the general formulas for reconstructing the signal
and its parameters from the corresponding WFT/WT (Sect. 7.3); introduction of
the window/wavelet ε-support formalism (2.26), (2.27) ‘ time-frequency resolu-
tionmeasures (Sect. 2.3); the criteria (2.34) for selecting the optimal frequency bin
width (Sect. 2.4.2); derivation of the rigorous expressions for the boundary errors
(2.37), (2.38) and cone-of-influence (2.40), as well as for the number of padded
data points (2.35), (2.36), and introduction of the predictive padding scheme (Sect.
2.4.3 and Sect. 7.4).

• This work has elaborated in detail the identification and reconstruction of the
components from the signal’sWFT/WT, and many powerful techniques have been
developed for this task (Chap.3).

• Nonlinearmode decomposition and its subprocedures have beenmethodologically
developed and considered in detail (Chap.4); some related issues, e.g. the optimal
representation of harmonics (Sect. 4.2.1), have also been discussed.

• By applying NMD to real data, the work has approached successfully certain
previously unsolved problems, such as the decomposition of the skin blood flow
signal and the removal of cardiac artifacts from a single EEG recording.Moreover,
with the help of NMD certain new aspects of cardiovascular ageing and hyperten-
sion have been revealed. Performance of the method for different systems and its
possible use for system classification have also been considered.
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6.3 Future Perspectives

The expected future of this research can be outlined as discussed below.

• Apart from those described in this work, there aremany other possible applications
of the method. Thus, it is expected that NMD will be routinely applied to the
multicomponent signals that appear naturally in different areas of research, and
that this work will therefore contribute to the understanding of the nature and
properties of the oscillatory processes encountered in a wide range of real systems.

• Although NMD is already a very powerful tool, it might still be significantly
improved by developing a scheme for the adaptive selection of the initial resolution
parameter f0 (i.e. the one that is used for extracting the first harmonic, see Sect.
4.3.1). Furthermore, the TFR-based surrogate test against noise (Sect. 4.1.5) can
probably be made more powerful by selecting a better discriminating statistic, the
performance of which is not influenced by the relationship between the strengths
of the amplitude and frequency modulations of the component, as is the case for
D(αA,αν) (4.9). It is also possible that, instead of choosing between the direct and
ridge estimates (Sect. 3.2), some universal method for reconstructing parameters
of the component based on its extracted ridge curve can be devised and used.

• In the sameway asNMDhas been used to uncover aspects of cardiovascular ageing
and hypertension, it can be widely applied in clinical studies to investigate how the
properties of the blood flow (or other) signals depend on health and physiological
state. For example, it will be very interesting to see how these properties change
for cardiac failure and diabetic subjects.

• As discussed in Sect. 5.3.2, NMD can be combined with other signal analysis
techniques, and a variety of such combinations is expected to be found.
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Chapter 7
Appendix: Useful Information
and Derivations

7.1 Errors of the Analytic Estimates

For a single AM/FM component (2.1) the error of the analytic estimates Aa(t),φa(t)
(2.4) of its amplitude and phase A(t),φ(t) can be quantified by εa(t) ≡ A(t)eiφ(t) −
Aa(t)eiφa(t). Substituting s(t) = (1/2)[A(t)eiφ(t) + (A(t)eiφ(t))∗] into (2.3), and
taking into account that for real signals ŝ∗(ξ) = [ŝ(−ξ)]∗, one obtains

sa(t) ≡ Aa(t)eiφa(t) = [A(t)eiφ(t)]+ + ([A(t)eiφ(t)]−)∗, (7.1)

Then, subtracting from A(t)eiφ(t) = 〈A(t)eiφ(t)〉+ [A(t)eiφ(t)]+ +[A(t)eiφ(t)]− the
expression for Aa(t)eiφa(t) (7.1), the error of the analytic approximation (2.4) can
be brought to a form

εa(t) ≡ A(t)eiφ(t) − Aa(t)eiφa(t) = 〈Aeiφ(t)〉 + 2iIm
[[

A(t)eiφ(t)]−] . (7.2)

It is usually dominated by the second (purely imaginary) term, while 〈Aeiφ(t)〉 is
often negligible or is exactly zero (see below). Note, that by differentiating (7.2)
one can also find the inaccuracies of the analytic estimates for the higher ampli-
tude/phase time-derivatives, e.g. that for the analytic frequency ∂tφ(t) − ∂tφ

a(t) =
O(∂tε

a(t), εa(t)).
To better understand the properties of εa(t) (7.2), consider an AM/FM component

with a simple sinusoidal law of amplitude and frequency modulation:

s(t) = (1 + ra cos[νat + ϕa ]) cos[νt + ϕ + rb sin(νbt + ϕb)]

= 1

2

[(
1 + 1

2
raei(νa t+ϕa ) + 1

2
rae−i(νa t+ϕa )

) ∞∑

n=−∞
Jn(rb)ei[(ν+nνb)t+(ϕ+nϕb)]

]
+ c.c.,

(7.3)
where the expansion eia sin φ = ∑∞

n=−∞ Jn(a)einφ was used, Jn(x) = (−1)n J−n(x)

denote Bessel functions of the first kind, and c.c. stands for the complex conjugate of
the preceding expression.Note that, because the definition of phase impliesφ′(t) ≥ 0,
one has a restriction rbνb ≤ ν in (7.4), whereas according to the amplitude definition
A(t) ≥ 0 one has ra ≤ 1.
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Substituting (7.3) into (7.2), one obtains

εa(t) = 1

2
〈ε̃(t)〉 + iIm[̃ε(t)],

ε̃(t) ≡
∑

n:ν+nνb≤0

Jn(rb)e
i(ϕ+nϕb)ei(ν+nνb)t

+ ra

2

∑

n:ν+nνb+νa≤0

Jn(rb)e
i(ϕ+nϕb+ϕa)ei(ν+nνb+νa)t

+ ra

2

∑

n:ν+nνb−νa≤0

Jn(rb)e
i(ϕ+nϕb−ϕa)ei(ν+nνb−νa)t . (7.4)

From (7.4) it can be seen, that the average 〈A(t)eiφ(t)〉 is not zero only when
ν + nνb = 0 or ν + nνb ± νa = 0 for some n, i.e. when the frequency content
of A(t) intersects with the frequency content of eiφ(t). Obviously, this is rather a
special case, which requires particular relationships between ν, νa, νb.

As can be seen from (7.4), the error εa(t) is proportional to ra, rb, but the coeffi-
cients of this proportionality are determined by the values of n for which ν+nνb ≤ 0
and/or ν+nνb±νa ≤ 0. Hence, the behavior of εa(t) can be partitioned into different
regimes, separated by discontinuous step increases in error. When only amplitude,
but not frequency, modulation is present (rb = 0 ⇒ Jn �=0(rb) = 0, so that one can
set n = 0 in all terms of (7.4)), it follows that the analytic approximation is exact
(εa(t) = 0) when νa < ν; otherwise the error is linearly proportional to ra . When
there is no amplitudemodulation (ra = 0), but frequencymodulation exists, the εa(t)
depends on rb and νb in a complicated fashion, as the relationships between Jn(rb)

in (7.4) change with rb. However, when rb ∈ [0, 1], one has |Jn1(rb)| 
 |Jn2(rb)| if
|n1| < |n2|. Therefore, in this case the error is largely determined by the smallest n
for which ν −nνb ≤ 0, being negligible for large n but often considerable for n ≤ 2;
it is also proportional to rb, but the dependence is not simple.

The latter case is illustrated in Fig. 7.1a, where it can be seen that the relative
error of the analytic approximation increases in steps when νb passes the levels ν/n.
Because for rb ≤ 1 one has Jn>3(rb) < 0.0025, it becomes non-negligible only for
νb ≥ ν/3. In the case when both amplitude and frequency modulations are present
the situation becomes more complicated, on account of an additional contribution
from the mixing terms ν + nνb ± νa ≤ 0 in (7.4). Thus, there appear additional step
increases in error when νb crosses not only the levels ν/n, but also (ν ± νa)/n, as
shown in Fig. 7.1b–d. Nevertheless, for rb ∈ [0, 1], not-small ra and νa < ν, the
error is largely determined by the smallest n for which ν −νa −nνb ≤ 0, as is clearly
seen in Fig. 7.1d.

Amplitude/frequency modulations more complex than (7.3) can always be
expanded in Fourier series (see 2.6), so that the expression for εa(t) (7.4) in this
case will include additional terms

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Fig. 7.1 Relative error of the analytic approximation 〈|εa(t)|2〉/〈A2(t)〉, where εa(t) is given by
(7.2), in dependence on signal parameters (assuming infinite time-length and sampling frequency):
a its dependence on the parameters of frequency modulation rb, νb for the FM component s(t) =
cos(νt + rb sin νbt); b its dependence on the parameters of frequency modulation rb, νb for the
AM/FM component s(t) = (1+0.5 cos(0.3νt)) cos(νt + rb sin νbt), with parameters of the ampli-
tude modulation being fixed; c its dependence on the parameters of amplitude modulation ra, νa
for the AM/FM component s(t) = (1+ra cos(νat)) cos(νt +0.5 sin 0.3νt), with parameters of the
frequency modulation being fixed; d its dependence on the frequencies of amplitude and frequency
modulations νa, νb for the AM/FM component s(t) = (1 + 0.5 cos(νat)) cos(νt + 0.25 sin νbt),
with other parameters remaining fixed. Solid black lines indicate levels of 0.001, 0.01 and 0.1; for
simplicity, the behavior of the relative error below 0.001 is not shown

∼ r (i)
a

∑

{n( j)}:ν±ν
(i)
a +∑

j n( j)ν
( j)
b ≤0

ei(ν±ν
(i)
a +∑

j n( j)ν
( j)
b )t

∏

j

Jn( j) (r
( j)
b )

for each Fourier term i in the amplitudemodulation (including theDCvalue ν
(0)
a = 0)

and each Fourier term j in the frequency modulation; the behavior of the error will
therefore be partitioned into additional possible regimes.

7.2 Window and Wavelet Functions and Their Properties

This Appendix discusses the properties of the most common window and wavelet
functions. All of them are implemented in the codes [1] under the specific names,
which are provided in the tables below, though one can use any window/wavelet
function by specifying either its frequency domain or time domain form (or both, if
known).

7.2.1 Window Functions

Table7.1 lists the commonest window forms and related quantities. The resolution
characteristics (2.32) for eachwindoware presented in Fig. 7.2a–c. For completeness,
the “classic” resolution characteristics (2.24) are also shown in Fig. 7.2d–f, although

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Table 7.1 Different window types and their characteristics (if known in analytic form)

Name Name in codes Description and characteristics

Gaussian “Gaussian”
(default)

g(t) = 1√
2π f0

e−(t/ f0)2/2, t ∈ (−∞,∞),

ĝ(ξ) = e−( f0ξ)2/2, ξ ∈ (−∞,∞),

Rg(ω) = 1
2

[
erf

(
f −1
0 ω/

√
2
) + 1

]
, ξ1,2(ε) = ∓ f −1

0 nG(ε),

Pg(τ ) = 1
2

[
erf

(
f0τ/

√
2
) + 1

]
, τ1,2(ε) = ∓ f0nG(ε),

Cg = √
π
2 f −1

0 , ωg = 0.

Hann “Hann” q = 4.4 f0,

g(t) = (1 + cos(2πt/q))/2 = sin2(πt/q + π/2), t ∈
(−q/2, q/2),

ĝ(ξ) = −(4π2/q2) sin(ξq/2)
ξ(ξ2−4π2/q2)

, ξ ∈ (−∞,∞),

Pg(τ ) = 2τ/q − (1/2π) sin(2πτ/q),

Cg = π, ωg = 0.

Blackman “Blackman” q = 5.6 f0, α = 0.16,

g(t) = (1 + cos(2πt/q))/2 − α(1 + cos(4πt/q))/2, t ∈
(−q/2, q/2),

ĝ(ξ) = −(4π2/q2) sin(ξq/2)
ξ

[
1

ξ2−4π2/q2 − 4α
ξ2−16π2/q2

]
,

ξ ∈ (−∞,∞),

Pg(τ ) = 2τ/q − [(1/2π) sin(2πτ/q) −
(α/4π) sin(4πτ/q)]/(1 − α),

Cg = π(1 − α), ωg = 0.

Exponential “Exp” q = 6.5 f0,

g(t) = e−|t |/q , t ∈ (−∞,∞),

ĝ(ξ) = 2q−1[ξ2 + q−2]−1, ξ ∈ (−∞,∞),

Rg(ω) = 1/2 + π−1 arctan(qω), ξ1,2(ε) = ∓q−1ctg(πε/2),

Pg(τ ) = 1/2 + (sign(τ )/2)[1 − e−q−1|τ |], τ1,2(ε) = ±q log ε,

Cg = π, ωg = 0.

Rectangular “Rect” q = 10 f0,

g(t) = 1, t ∈ [−q/2, q/2],
ĝ(ξ) = 2 sin(qξ/2)

ξ , ξ ∈ (−∞,∞),

Pg(τ ) = τ/q + 0.5, τ1,2(ε) = ±q(1 − ε)/2,

Cg = π, ωg = 0.

Kaiser “Kaiser-a” (e.g.
“Kaiser-2.5”)

q = 3
√
1 + |a − 1/a| f0,

g(t) = I0(πa
√
1 − (2t/q)2)/I0(πa), t ∈ (−q/2, q/2),

Cg = π, ωg = 0.

The names under which these windows are implemented in the codes [1] are given in the second
column, but one can specify any window function there. The resolution parameter f0 for each
window is adjusted in such away that, for the same f0, all of them have similar frequency resolutions
(as defined in (2.32) with εr = 0.05), see Fig. 7.2a below. Note, however, that it is hard to ensure this
for all a in the Kaiser window, so some deviations are possible in that case. See List of Abbreviations
and Symbols for an explanation of the mathematical notation

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Fig. 7.2 a–c Resolution characteristics of the windows listed in Table7.1, according to (2.32) with
εr = 0.05. The minimum resolvable frequency �νmin in dependence on the window resolution
parameter f0 is shown in (a), while the dependences of the minimum resolvable time lag �τmin
and the joint time-frequency resolution γωt on �νmin are shown in (b) and (c), respectively. d–f
The same as (a–c), but for the “classic” resolution characteristics (2.24), though they are not fully
appropriate (see Sect. 2.3.2); there are no lines for the rectangular window here, as it is characterized
by �ω = ∞

they do not have a straightforward relationship to the resolution of two components
in the WFT, as discussed in Sect. 2.3.2.

Defined in any way, the time and frequency resolutions of all windows have
simple linear proportionality to f −1

0 and f0, respectively (see Fig. 7.2); this is an
obvious result given that in all cases g[ f0](t) = g[1](t/ f0). The joint time-frequency
resolutions, which remain fixed, provide more useful information. Thus, it is clear
that, for all conventions, exponential and rectangular windows have much worse
resolution properties compared to other windows considered. Surprisingly, in terms
of time-frequency resolution the Kaiser and Hann windows outperform slightly the
Gaussian window (Fig. 7.2c), which is widely believed to have the best resolution
properties; these two windows are also very close to Gaussian even in terms of the
(not fully appropriate) “classic” γωt (Fig. 7.2f), that is maximized for the latter [2,
10, 13].

However, the Kaiser and Hann windows, apart from worse analytical tractability,
have one very significant drawback as compared to the Gaussian window: they are
not unimodal in the frequency domain, which makes the time-frequency support (see
Sect. 3.2.2) ill-defined and the reconstruction of components from the WFT more
problematic. Because the corresponding difference in the time-frequency resolution
is not huge (Fig. 7.2c), the Gaussian window therefore remains a preferred choice
and is implemented as default in the codes.

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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7.2.2 Wavelet Functions

Table7.2 lists the commonest wavelet forms and related quantities. Note that many
wavelets are included within the generalized Morse family, which was introduced
in [14] and studied in detail in [11, 12]. Thus, this family includes Cauchy (a = 1),
the derivative of Gaussian (a = 2), Airy (a = 3) and other wavelets [12]. Dif-
ferent resolution characteristics for each wavelet are presented in Fig. 7.3a–c. For
completeness, the “classic” resolution characteristics (2.25) are also shown in Fig.
7.3d–f but, as discussed in Sect. 2.3.2, they are actually irrelevant and therefore will
not be considered in what follows.

From Fig. 7.3a, b one can see that the widely used Morlet wavelet has the
upper (lower) limit on its time (frequency) resolution. Thus, for this wavelet type,
�νmin(2π) saturates at some level when f0 decreases, and the same happens with
�τmin(2π). As a result, lowering f0 below ≈0.05 does not effectively change any-
thing: neither the time, nor the frequency, nor the joint time-frequency resolution.
This happens because the Morlet wavelet for f0 � 1 becomes ψ̂(ξ) ≈ 2π f0ξe−ξ2/2

with ωψ ≈ 1, so that f0 determines only the (unimportant) constant multiplier.

Table 7.2 Different wavelet types and their characteristics (if known in analytic form)

Name Name in codes Description and characteristics

Lognormal “Lognorm” (default) ψ̂(ξ) = e−(2π f0 log ξ)2/2, ξ ∈ (0,∞),

Rψ(ω) = 1
2

[
erf

(
(2π f0)−1 logω/

√
2
)

+ 1
]
, ξ1,2(ε)

= exp
[
∓ nG (ε)

2π f0

]
,

ωψ = 1, Cψ = √
π
2 f −1

0 /2π, Dψ = Cψe
1
2

(
4π2 f 20

)−1
.

Morlet “Morlet” ψ̂(ξ) = e−(ξ−2π f0)2 (1 − e−2π f0ξ), ξ ∈ (0,∞),

ψ(t) = 1√
2π

e−t2/2ei2π f0t + O(e−(2π f0)2/2), t ∈
(−∞,∞),

ωψ = 2π f0 + O(e−(2π f0)2/2), Dψ = ∞.

Bump “Bump” � = 0.4 f −1
0 ≤ 1 (so that f0 ≥ 0.4),

ψ̂(ξ) = exp
(
1 − 1

1−�−2(1−ξ)2

)
, ξ ∈ (1−�, 1+�),

ωψ = 1, Dψ < ∞.

Generalized
Morse family

“Morse-a” (e.g.
“Morse-2.5”)

q = 30 f0/a,

ψ̂(ξ) = Bξq e−ξa = e−ξa+q log ξ+log B , ξ ∈
(0,∞), B ≡ (ea/q)q/a ,

Dψ = ωψ B
2a �((q − 1)/a) (= ∞ for q ≤ 1),

ωψ = (q/a)1/a, Cψ = B
2a �(q/a).

The names under which these wavelets are implemented in the codes [1] are given in the second
column, but one can specify any wavelet function there. The resolution parameter f0 for each
wavelet is adjusted in such a way that at f0 = 1 all of them have similar frequency resolutions (as
defined in (2.33) with εr = 0.05), see Fig. 7.3a below. See List of Abbreviations and Symbols for
an explanation of the mathematical notation

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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Fig. 7.3 a–c Resolution characteristics of the wavelets listed in Table7.2, according to (2.33) with
εr = 0.05. The minimal resolvable frequency �νmin(ω) at ω = 2π in dependence on the wavelet
resolution parameter f0 is shown in (a), while the dependences of the minimum resolvable time
lag �τmin(2π) and the joint time-frequency resolution γωt on �νmin(2π) are shown in (b) and
(c), respectively. d–f The same as (a–c), but for the “classic” resolution characteristics (2.25). The
latter, however, are completely inappropriate, see Sect. 2.3.2

However, the impossibility of achieving high time resolution, as well as the wors-
ening of joint time-frequency resolution for low f0, appears to be a general property
of wavelets. It is probably related to the fact that the WT effectively considers the
wavelet on a linear scale in time (although rescaled at each frequency), and on a
logarithmic scale in frequency (totally independent of time), as can be seen e.g. from
(2.20) and (2.21). Thus, the properties of ψ̂(ξ) on both linear and logarithmic scales
are important: the former determines the time resolution (since ψ(t) is the inverse
FT of the ψ̂(ξ), considered on a linear scale), while the latter is responsible for the
frequency resolution (see Sect. 2.3).

Consider a few examples.Assuming for simplicity that thewavelet peak frequency
ωψ is fixed, it is clear that to decrease the effective spread of the wavelet in time (and
therefore increase its time resolution), one needs to increase its spread in frequency.
If ψ̂(ξ) has a finite support in terms of log ξ, then one can increase its spread around
fixed ωψ only up to some limiting point determined by preserving the admissibility
ψ̂(0) = 0; this is the case of the bump wavelet. On the other hand, if ψ̂(ξ) has
an infinite support in terms of log ξ, then increasing its spread will typically lead
to increase of the asymmetry of ψ̂(ξ) on a linear scale and its more rapid drop to
zero as ξ → 0. Both of these have negative effects on the decay of ψ(t)e−iωψ t ,
thus counteracting the desired increase in time resolution; this is the case of e.g. the
lognormal wavelet. Hence, whether it is possible to achieve high time resolution with
the WT, and whether there exists a wavelet form for which the joint time-frequency
resolution is relatively unaffected by changing the tradeoff between its time and
frequency resolutions, are open questions.

From Fig. 7.3 it can be seen that theMorse wavelets have slightly better resolution
properties than the other forms (Fig. 7.3c). However, with increasing εr in (2.33)

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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(Fig. 7.3 corresponds to εr = 0.05), the lognormal wavelet becomes progressively
better in terms of the time-frequency resolution γωt (not shown), outperforming
Morse wavelets at εr � 0.1. It also possesses the many other advantages discussed
in detail in Sect. 2.2.2, thus being a preferred choice among those listed in Table7.2
(and so the lognormal wavelet is implemented as default in the codes). Nevertheless,
it remains possible that some better wavelet form could be constructed that would
greatly outperform those considered.

7.3 Derivation of the Direct Reconstruction Formulas

Using the frequency domain forms of the WFT (2.8) and WT (2.13) one can show
that

∫
ωnGs(ω, t)dω =

∫
ωndω

1

2π

∫ ∞

0
ŝ(ξ)ĝ(ω − ξ)eiξt dξ

= /
ω = ω̃ + ξ, (ω̃ + ξ)n =

n∑

k=0

Ck
n ω̃n−kξk/

=
n∑

k=0

Cn
k

( ∫
ω̃n−k ĝ(ω̃)dω̃

)( 1

2π

∫ ∞

0
ξk ŝ(ξ)eiξt dξ

)

=
n∑

k=0

Cn
k

(1
2

∫
ω̃n−k ĝ(ω̃)dω̃

)
(−i)k∂k

t sa(t)

(7.5)

∫ ∞

0
ωWs(ω, t)

dω

ω
=

∫ ∞

0
ωn−1dω

1

2π

∫ ∞

0
ŝ(ξ)ψ̂∗(ωψξ/ω)dξ

= /
ω = ωψξ/ω̃, after which the integrals decouple

/

=
(
ωn

ψ

∫ ∞

0
ψ̂∗(ω̃)

dω̃

ω̃n+1

)( 1

2π

∫ ∞

0
ξnŝ(ξ)eiξt dξ

)

=
(ωn

ψ

2

∫ ∞

0
ψ̂∗(ω̃)

dω̃

ω̃n+1

)
(−i)n∂n

t sa(t), (7.6)

where it was taken into account that
∫∞
0 ξk ŝ(ξ)eiξt dξ = (−i∂t )

k
∫∞
0 ŝ(ξ)eiξt dξ =

(−i)k∂k
t sa(t)/2, and Cn

k ≡ n!
k!(n−k)! are the binomial coefficients.

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
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In a similar manner, using the time domain forms of theWFT (2.8) andWT (2.13)
it can be shown that

∫
tnGs(ω, t)e−iωt dt =

∫
tndt

∫
s+(τ )g(τ − t)e−iωτ dτ

=/
t = τ − t̃, (τ − t̃)n =

n∑

k=0

Ck
n (−t̃)n−kτ k/

=
n∑

k=0

Cn
k

( ∫
(−t̃)n−kg(t̃)dt̃

)( ∫
τ ks+(τ )e−iωτ dτ

)

=

⎧
⎪⎪⎨

⎪⎪⎩

n∑

k=0
(−1)nCn

k

( ∫
t̃ n−kg(t̃)dt̃

)
(−i)k∂k

ω ŝ(ω) if ω > 0

0 if ω < 0

(7.7)

∫
tn Ws(ω, t)e−iωt dt =

∫
tndt

∫
s+(τ )ψ∗(ω(τ − t)/ωψ)

ωdτ

ωψ

=/
t = τ − ωψ t̃/ω, (τ − ωψ t̃/ω)n =

n∑

k=0

Ck
n (−ωψ t̃/ω)n−kτ k/

=
n∑

k=0

Cn
k

(ωn−k
ψ

ωn−k

∫
(−t̃)n−kψ∗(t̃)eiωψ t̃ d t̃

)( ∫
τ ks+(τ )e−iωτ dτ

)

=

⎧
⎪⎪⎨

⎪⎪⎩

n∑

k=0
(−1)nCn

k

( ∫
t̃ n−kψ∗(t̃)eiωψ t̃ d t̃

)
(−i)k∂k

ω ŝ(ω) if ω > 0

0 if ω < 0

(7.8)

where it was taken into account that
∫

τ ks+(τ )e−iωτ dτ = (−i∂ω)k
∫

s+(τ )e−iωτ

dτ = (−i)k∂k
ω ŝ(ω) if ω > 0 and = 0 otherwise (as only the positive frequency part

of the signal s+(t) is used).
The expressions (7.5–7.8) provide a way to reconstruct any order derivatives of

the signal’s representation in time and frequency from its WFT/WT. Thus, the basic
reconstruction formulas—(2.11) for theWFT and (2.17) for theWT—follow directly
from (7.5), (7.7) and (7.6), (7.8) with n = 0, respectively.

The formulas for the direct frequency estimation (3.8) follow from (7.5) and (7.6)
with n = 1, that can be rewritten as

∫
ωGs(t,ω)dω = Cgωgsa(t) + Cg(−i∂t s

a(t)), ωg ≡ 1

2Cg

∫
ωĝ(ω)dω, (7.9)

∫
ωWs(t,ω)

dω

ω
= Dψ(−i∂t s

a(t)), Dψ ≡ ωψ

2

∫ ∞

0
ψ̂∗(ω)

dω

ω2 , (7.10)

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3


126 7 Appendix: Useful Information and Derivations

where Cg,ψ are as defined in (2.11), (2.17). For a single AM/FM component (2.1)

one has sa(t) = Aa(t)eiφa(t) and ∂t sa(t) = sa(t)
[∂t Aa(t)

Aa(t) + i∂tφ(t)
]
, so that

∂t Aa(t)
Aa(t) = Re ∂t sa(t)

sa(t) , ∂tφ
a(t) = Im ∂t sa(t)

sa(t) . Therefore, dividing both sides of (7.9)
by

∫
Gs(ω, t)dω = Cgsa(t) (2.11) and separating real and imaginary parts of the

result, one obtains

νa(t) ≡ ∂tφ
a(t) =Re

[∫
ωGs(ω, t)dω

∫
Gs(ω, t)dω

− ωg

]
,

∂t Aa(t)

Aa(t)
= −Im

[∫
ωGs(ω, t)dω

∫
Gs(ω, t)dω

− ωg

]
.

(7.11)

If the analytic amplitude and phase are the same as the actual ones (2.4), as is assumed
in this work, the first of (7.11) coincides with the WFT-based direct frequency esti-
mate (3.8), while the second one provides a way to estimate the time-derivative of
the amplitude. The WT-based counterpart of (7.11) is derived in the same way, i.e.
dividing both sides of (7.10) by

∫∞
0 Ws(ω, t) dω

ω = Cψsa(t) (2.17) and separating
the real and imaginary parts of the result, which gives

νa(t) ≡ ∂tφ
a(t) =Re

[ D−1
ψ

∫
ωWs(ω, t) dω

ω

C−1
ψ

∫
Ws(ω, t) dω

ω

]
,

∂t Aa(t)

Aa(t)
= −Im

[ D−1
ψ

∫
ωWs(ω, t) dω

ω

C−1
ψ

∫
Ws(ω, t) dω

ω

]
.

(7.12)

Obviously, using (7.5) and (7.6) with an appropriate n, one can derive the recon-
struction formulas for higher-order derivatives ∂n

t A(t) and ∂n
t φ(t) as well. The max-

imum order of n that one can go to is determined by the condition
∫

ωn ĝ(ω)dω < ∞
for the WFT, and by

∫∞
0 ψ̂∗(ω) dω

ωn+1 < ∞ for the WT. For the WFT with a Gaussian
window (2.12) and for the WT with a lognormal wavelet (2.19) this condition is
satisfied for all n ≥ 0, while for the WT with a Morlet wavelet (2.18) one has n < 1
(so that even the instantaneous frequency cannot be estimated by (3.8), and one needs
to use hybrid reconstruction (3.10) instead).

7.4 Forecasting Model for Predictive Padding

The predictive padding strategy, introduced in Sect. 2.4.3, aims to eliminate boundary
effects in the signal’s TFR by complementing the signal with its inferred/forecast
past/future values. This appendix discusses the scheme used to predict the signal’s
behavior beyond its time limits.

Given a signal s(tn = (n − 1)�t), n = 1, . . . , N , consider first its extension
for t > T , with T = (N − 1)�t denoting its time duration. In the context of

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_2


7.4 Forecasting Model for Predictive Padding 127

time-frequency analysis, it seems most appropriate to forecast the signal based on
its spectral content. The simplest way of doing this is to represent signal as a sum of
tones and continue this behavior to t > T . Thus, the signal is modelled as

s(tn) = x(tn) + σηW (tn) = c0 +
M∑

m=1

cm cos(ωmtn + ϕm) + σηW (tn)

= a0 +
M∑

m=1

[am cosωmtn + bm sinωmtn] + σηW (tn), (7.13)

where M denotes the chosen model order, ηW (tn) is Gaussian white noise of unit
variance, and x(tn) stands for the noise-free signal, given by the sum of sinusoids.
Having found appropriate cm,ϕm,ωm , the signal is then padded for t > T with
values of x(t).

However, it is not easy to find the parameters in (7.13). It might seem at first glance
that an approximation to x(t) can readily be obtained from the signal’s discrete FT
ŝ(ξn) as x(t) = ∑N

m=1 ŝ(ξm)eiξm t , but this is not so: the discrete FT represents a
periodic spectrum estimate, being an exact FT only for signals that repeat themselves
with period T . As a result, predicting the signal based on its discrete FT is equivalent
to the usual periodic continuation.

There are many methods devoted to fitting the signal with the sinusoidal model
[16], using which the parameters cm,ϕm,ωm in (7.13) can be estimated reliably (i.e.
without the periodicity constraint). However, these methods, although very accurate,
are usually quite expensive computationally, aswell as giving rise to a variety of issues
when applied in practice. Therefore, it is reasonable to use the more convenient and
computationally cheaper procedure of estimating tone frequencies by simple iterative
fitting of the signal with the corresponding sinusoids, as described below.

Using least squaresfitting, the residual error of the signal’s fitwithq0+q1 cosωtn+
q2 sinωtn is first minimized over ω; then the value of ω for which the local minimum
occurs and the associated “best-fit” parametersq1,2 are taken as one of theωm, am, bm

in (7.13); these two steps are repeated M − 1 times using in place of signal s(tn) ≡
s(1)(tn) the residual signal s(m)(tn), obtained by subtracting from s(tn) the tones
found at m − 1 previous steps. To provide more accurate and faster optimization,
at each iteration it is recommended to start the search for the optimal ωm from the
frequency of the highest peak in the residual signal’s discrete FT ŝ(m)(ξn).

An important problem of the outlined approach is that the model (7.13) is sta-
tionary, and so it cannot adequately describe nonstationary signals, where spectral
content changes in time (e.g. when the tones persist only during some time intervals,
as in Fig. 2.5a–d). Therefore, for adequate prediction the model (7.13) should reflect
mainly a “local” spectrum near the signal’s end (t around T ). This can be achieved by
using a weighted least squares procedure, with more weight being concentrated near
the corresponding time boundary. Then the full procedure of estimating the “local”
parameters of (7.13) can be summarized as

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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⎡

⎢
⎢
⎢
⎢⎢
⎣

q(m)
0 (ω)

q(m)
1 (ω)

q(m)
2 (ω)

⎤

⎥
⎥
⎥
⎥⎥
⎦

= argmin
[q̃0,q̃1,q̃2]

[ 1

N

N∑

n=1

w(tn)
(
s(m)(tn) − q̃0 − q̃1 cosωtn − q̃2 sinωtn

)2]
,

ρ(m)(ω) ≡ 1

N

N∑

n=1

w(tn)
[
s(m)(tn) − q(m)

0 (ω) − q(m)
1 (ω) cosωtn − q(m)

2 (ω) sinωtn
]2

,

ωm = argmin
ω

[
ρ(m)(ω)

]
,

s(m+1)(tn) ≡ s(m)(tn) − q(m)
0 (ωm) − q(m)

1 (ωm) cosωmtn − q(m)
2 (ωm) sinωmtn,

(7.14)

where one begins with s(1)(tn) ≡ s(tn), while w(tn) denotes the chosen weighting
function, and the “best-fit” values of q(m)

0,1,2(ω) are found by weighted least squares

for each ω. The search for a minimum ρ(m)(ω) is started from the frequency of the
maximum in the discrete FT of

√
w(tn)s(m)(tn) and, by default, theωm forwhich such

a minimum occurs is determined with accuracy 0.01× 2π/T . The other parameters
of (7.13) are then am = q(m)

1 (ωm), bm = q(m)
2 (ωm) and a0 = ∑M

m=1 q(m)
0 (ωm).

Since the maximum amount of nonstationarity (i.e. the “quickness” of the spec-
trum’s changes in time) which can be represented in TFR reliably is determined by
the window/wavelet parameters [9], the choice of the weighting function should be
based on the window g(t) or wavelet ψ(t) used. Therefore, w(tn) is selected as an
exponential whose rate of decay is determined from the window/wavelet 0.5-support
(2.26), (2.27) in time:

WFT: w(tn) = exp
[

− (T − tn) log 2

τ2(0.5) − τ1(0.5)

]
,

WT: w(tn) = exp
[

− ωmin

ωψ

(T − tn) log 2

τ2(0.5) − τ1(0.5)

]
.

(7.15)

Note, that the time resolution of the WT varies with frequency, so that the optimal
w(tn)will generally depend on frequency as well. Because using different weighting
functions for each ω would be computationally very expensive, the optimal weights
for the WT in (7.15) are taken as those for the minimum frequency ωmin, where the
wavelet ismost spread in time. Such a choice, however,might not be fully appropriate
for higher frequencies, so the predictive padding is better defined for theWFT, whose
time resolution is fixed (see Sect. 2.2.3).

It remains to choose an appropriate order M of the sinusoidal model (7.13). This
can be done using the Bayesian (Schwarz) information criterion (BIC) [15], which
was empirically found to be superior to the (corrected)Akaike’s information criterion
[3, 6, 8] in the present context. Thus, the number M of sinusoidal components in
(7.13) can be selected by minimizing the functional
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http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2


7.4 Forecasting Model for Predictive Padding 129

B I C = N log
[
2πρ(M)(ωM )

] + N + (3M + 1) log N , (7.16)

where ρ(M)(ωM ) is given in (7.14), while 3M + 1 is the number of parameters
in the model (one a0 plus M of each am, bm,ωm in (7.13)). The order M can be
estimated “on the fly” while performing iterations (7.14): at each such iteration one
calculates the BIC (7.16), and if two of its consecutive values are higher than the
current minimum (which in this case usually coincides with the global minimum),
then the procedure is stopped.

The above considerations refer to forecasting the signal for t > T . To predict it
for t < 0, one can use the same procedure on the reversed version of the signal:
s(t) → s(T − t). Finally, it should be noted that the approach outlined does not aim
to provide the best or most rigorous predictive scheme, and other forecasting models
can be employed instead. Nevertheless, the procedure discussed works well for the
majority of signals, being at the same time very straightforward and computationally
cheap. It is therefore a convenient choice given that the predictive padding represents
a useful addition rather than an essential part of time-frequency analysis.

Remark 7.4.1 For sophisticated signals the order M selected by BIC (7.16) can be
quite high, so one should restrict its maximum value to ensure that the cost of the
estimation (7.13), O(M N ), is notmuchhigher than the computational cost of theTFR
calculation itself, which is O(N f Ñ log Ñ ) (with N f being the number of frequencies
atwhichTFR is calculated, and Ñ denoting the length of the padded signal). To ensure
that this is the case, it is reasonable to limit M to the maximum possible number of
peaks in the TFR amplitude at each time, which is N f /2. Additionally, since the N
data points composing the signal are modeled using 3M +1 parameters in (7.13), the
value of M cannot exceed (N − 1)/3. Therefore, the maximum order can be chosen
as Mmax = min[N f /2, (N − 1)/3].

7.5 Step-by-step WFT and WT Algorithms

MatLab codes for computing the different TFRs considered in this work are avail-
able at [1] together with detailed documentation and video-instructions. They allow
for the use of any window/wavelet, both standard and user-defined (either in time
or frequency domain, or both), and include implementation of all the aspects dis-
cussed in previous Chap.2, e.g. signal preprocessing, automatic determination of
the frequency bin widths and the cone-of-influence, different padding schemes (with
predictive padding being default) etc. Each algorithm is considered in detail below,
summarizing all related issues and steps.

In what follows, it is assumed that the original signal s(tn) is sampled at tn =
(n − 1)�t , n = 1, . . . , N (so its sampling frequency and the overall time-duration
are fs = 1/�t and T = (N − 1)�t , respectively), and the signal’s TFR needs to be
calculated for frequencies ω ∈ [ωmin,ωmax]. In what follows, ε will denote the fixed
relative precision for determination of the cone-of-influence and padding (see Sect.

http://dx.doi.org/10.1007/978-3-319-20016-3_2
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2.4.3), while [x]↑ and [x]↓ will stand for rounding of x up and down, respectively
(e.g. [1.3]↑ = 2, [1.3]↓ = 1).

The discrete FT of the signal calculated using the FFT algorithm will be denoted
as

ŝ(ξn) : [ŝ(ξ1), . . . , ŝ(ξN )] = FFT[s(t1), . . . , s(tN )], (7.17)

where usually (e.g. in the MatLab FFT implementation) the FT is returned at fre-
quencies ξn in the order

[
ξ1, . . . , ξN

] = [
0, 2π fs/N , . . . , 2π[(N − 1)/2]↑ fs/N ,

− 2π[(N − 1)/2]↓ fs/N , . . . ,−2π fs/N
]
, (7.18)

so that the positive frequencies come first, and only then the negative ones. The
original signal can be recovered by applying the inverse fast Fourier transform (IFFT)
algorithm to the signal’s discrete FT: [s(t1), . . . , s(tN )] = IFFT[ŝ(ξ1), . . . , ŝ(ξN )].
It should also be noted, that throughout this work the literals ω and ξ (e.g. ωmin,max)
denote the circular frequency (in rad/s), with only the sampling frequency fs , where
present, being taken in Hz; in the codes [1], however, all frequencies are in Hz, so
that e.g. the frequencies for which the TFR is calculated are returned as fk = ωk/2π.

Remark 7.5.1 In some steps of the TFR algorithms one will need to calculate the ε-
supports (2.26), (2.27), as well as ωψ (2.14) for theWT. The corresponding formulas
assume that window/wavelet functions are known both in time and frequency, but
this is not always so, e.g. the explicit form might be available for g(t) only, and not
for ĝ(ξ). In such cases, one will need to calculate numerically the window/wavelet
FT or inverse FT, and use it to obtain the values needed. The implementation of
this approach for the general case is quite cumbersome and brings some numerical
issues. It will not be further discussed here, but it is included in the codes [1].

7.5.1 WFT Gs(ωk, tn)

1. Preprocess a signal as described in Sect. 2.4.1: first subtract a third-order poly-
nomial fit from it, and then bandpass-filter what is left in the frequency band
[ωmin,ωmax].

2. Select a padding scheme (see Sect. 2.4.3) and accordingly pad the preprocessed
signal at both ends with n1 values to the left and n2 to the right, where n1,2 are
determined by (2.36). Denote the padded signal as sp(t̃ j )with t̃ j = ( j −1−n1)�t
and j = 1, . . . , Np = N + n1 + n2.

3. Break the frequency interval [ωmin,ωmax] into bins ωk = (k − k0)�ω, where
k0 = 1 − [ωmin

�ω ]↑ and k = 1, . . . , k0 + [ωmax
�ω ]↓; the optimal frequency step �ω

can be determined by (2.34) (in the latter, Nb = 10 is used by default). Note
that the positions of ωk do not depend on any signal parameters (e.g. fs or T ), as
is sometimes the case, being determined only by �ω: this is convenient since it
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allows WFTs of different signals to be calculated at the same frequencies, so that
their characteristics (e.g. mean amplitudes at each frequency) can be compared.

4. Calculate the FT of a padded signal: [ŝ p(ξ̃1), . . . , ŝ p(ξ̃Np )] = FFT[sp(t̃1), . . . ,

sp(t̃Np )], where frequencies ξ̃ j are given by (7.18) with N → Np, n → j . Set

the FT at negative frequencies to zero: ŝ(ξ̃ j ≤ 0) = 0.
5. For each frequency ωk :

(a) If the explicit form of the window function FT is available (e.g. for the
Gaussian window (2.12)), calculate ĝ(ωk − ξ̃ j ) by direct substitution of the argu-
ments ωk − ξ̃ j into the known ĝ(ξ). Otherwise, if only g(t) is available, compute
[ĝ(ωk − ξ̃1), . . . , ĝ(ωk − ξ̃Np )] = �t FFT[g(τ1)e−iωkτ1, . . . , g(τNp )e

−iωkτN p ],
where τ j = −( j −1)�t for j = 1, . . . , [(Np −1)/2]↑ and τ j = (Np − j +1)�t
for other j .
(b) According to the frequency domain form of (2.8), calculate the convolu-
tions c(t̃ j ) of the padded signal s+

p (u) with g(u − t̃ j )e−iωk (u−t̃ j ) as: [c(t̃1), . . . ,
c(t̃Np )] = IFFT[ŝ p(ξ̃1)ĝ(ωk − ξ̃1), . . . , ŝ p(ξ̃Np )ĝ(ωk − ξ̃Np )], where ĝ(ωk − ξ̃ j )

were obtained in the previous substep (a), while ŝ p(ξ̃ j ) were calculated in step 4
(and are zero at negative frequencies).
(c) The WFT at frequency ωk is then equal to c(t̃ j ) for times within the original
signal’s time limits: Gs(ωk, tn=1,...,N ) = c(t̃ j=1+n1,...,Np−n2).

7.5.2 WT Ws(ωk, tn)

1. Preprocess the signal as described in Sect. 2.4.1: first subtract a third-order poly-
nomial fit from it, and then bandpass-filter what is left in the frequency band
[ωmin,ωmax].

2. Select a padding scheme (see Sect. 2.4.3) and accordingly pad the preprocessed
signal at both ends with n1 values to the left and n2 to the right, where n1,2 are
determined by (2.36). Denote the padded signal as sp(t̃ j )with t̃ j = ( j −1−n1)�t
and j = 1, . . . , Np = N + n1 + n2.

3. Break the frequency interval [ωmin,ωmax] into bins ωk/2π = 2(k−k0)/nv , where
k0 = 1−[nv log2

ωmin
2π ]↑ and k = 1, . . . , k0+[nv log2

ωmax
2π ]↓; the optimal number-

of-voicesnv can be determined by (2.34) (in the latter, Nb = 10 is used bydefault).
Note that the positions of ωk do not depend on any signal parameters (e.g. fs or
T ), as is sometimes the case, being determined only by nv: this is convenient since
it allowsWTs of different signals to be calculated at the same frequencies, so that
their characteristics (e.g. mean amplitudes at each frequency) can be compared.

4. Calculate the FT of a padded signal: [ŝ p(ξ̃1), . . . , ŝ p(ξ̃Np )] = FFT[sp(t̃1), . . . ,

sp(t̃Np )], where frequencies ξ̃ j are given by (7.18) with N → Np, n → j . Set

the FT at negative frequencies to zero: ŝ(ξ̃ j ≤ 0) = 0.
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5. For each frequency ωk :
(a) If the explicit form of the wavelet function FT is available (e.g. for the lognor-

mal wavelet (2.19)), calculate ψ̂∗
(

ωψξ̃ j
ωk

)
by direct substitution of the arguments

ωψξ̃ j/ωk into the known ψ̂∗(ξ). Otherwise, if only ψ(t) is available, compute
[
ψ̂∗

(
ωψξ̃1
ωk

)
, . . . , ψ̂∗

(
ωψξ̃N p

ωk

)]
= �t FFT

[
ψ∗

(
ωkτ1
ωψ

)
, . . . ,ψ∗

(
ωkτN p

ωψ

)]
,

where τ j = −( j −1)�t for j = 1, . . . , [(Np −1)/2]↑ and τ j = (Np − j +1)�t
for other j .
(b) According to the frequency domain form of (2.13), calculate the convo-
lutions c(t̃ j ) of the padded signal s+

p (u) with (ω/ωψ)ψ∗(ωk(u − t̃ j )/ωψ) as:

[c(t̃1), . . . , c(t̃Np )] = IFFT
[
ŝ p(ξ̃1)ψ̂

∗(ωψξ̃1/ωk), . . . , ŝ p(ξ̃Np )ψ̂
∗(ωψξ̃Np/ωk)

]
,

where ψ̂∗(ωψξ̃ j/ωk)were obtained in the previous substep (a), while ŝ p(ξ̃ j )were
calculated in step 4 (and are zero at negative frequencies).
(c) The WT at frequency ωk is then equal to c(t̃ j ) for times within the original
signal’s time limits: Ws(ωk, tn=1,...,N ) = c(t̃ j=1+n1,...,Np−n2).

7.6 Fast O(N) Algorithm for Path Optimization

Finding the solution ωp(t) to the path optimization problem (3.2) is generally very
expensive computationally, usually being carried out by simulated annealing [7].
However, if the functional F[...] depends on the finite number of the subsequent
points (rather than the whole ridge profile), then the optimal path can be found in
O(N ) operations using a dynamic programming algorithm [4, 5], as discussed below.

Consider the functional F[Qm(tn), νm(tn),ωp(tn−1)], which depends only on
the ridge point at the current time tn (characterized by Qm(tn) and νm(tn)) and the
frequency of the previous oneωp(tn−1). Then the optimization problem (3.2) consists
of finding the sequence of ridge point indices mc(tn) maximizing the integral of this
functional over time:

{mc(t)} = argmax
{m1,m2,...,m N }

N∑

n=1

F
[
Qmn (tn), νmn (tn), νmn−1(tn−1)

]
, (7.19)

after which the ridge curve is recovered as ωp(tn) = νmc(tn)(tn).
It is clear that at each time tn for each ridge νm(tn) there exists a unique history of

previous peaks {m̃c(m, tn, t1), . . . , m̃c(m, tn, tn−1)}which maximizes the integral to
this point

http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_2
http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3


7.6 Fast O(N ) Algorithm for Path Optimization 133

U (m, tn) =F[Qm(tn), νm(tn), νm̃c(m,tn ,tn−1)(tn−1)]

+
n−1∑

i=1

F[Qm̃c(m,tn ,ti ), νm̃c(m,tn ,ti )(ti ), νm̃c(m,tn ,ti−1)(ti−1)]. (7.20)

What makes a fast path optimization possible is that, for functionals depend-
ing only on the current and previous points, if the profile {mc(t)} maximizing
(3.2) includes νm(tn), then it should include the best path to νm(tn) as well:
{mc(t1), . . . , mc(tn)} = {m̃c(m, tn, t1), . . . , m̃c(m, tn, tn−1), m}. This is because
the behavior of mc(ti=n+1,...,N ) does not influence the integral over the previously
extracted points mc(ti=1,...,n−1). Therefore, at each step one can leave only the best
paths to each peak νm(t) and discard all the others.

It is useful to express m̃c(m, tn, ti ) through the matrix q(m, tn) which maps the
peak number m at time tn to the previous peak number in such a way that (7.20) is
maximized, so that

q[i](m, tn) ≡ m̃c(m, tn, tn−i ) = q(q[i − 1](m, tn), tn−i+1) :
q[0](m, tn) = m,

q[1](m, tn) = q(m, tn) = m̃c(m, tn−1),

q[2](m, tn) = q(q(m, tn), tn−1) = m̃c(m, tn−2),

. . .

(7.21)

What remains is to find at each time tn (starting from t1), and for each ridge m =
1, . . . , Np(tn), the maximum value U (m, tn) of the integral up to this point and the
index of the previous ridge q(m, tn) for which this maximum is achieved:

for n = 1, . . . , N do:

form = 1, . . . , Np(tn)do:

q(m, tn) = argmax
k

{
F[Qm(tn), νm(tn), νk(tn−1)] + U (k, tn−1)

}

U (m, tn) = F[Qm(tn), νm(tn), νq(m,tn)(tn−1)] + U (q(m, tn), tn−1),

(7.22)

Then U (m, tN ) represents the full integrals (7.19) through the best possible trajecto-
ries to each of the last ridges νm(tN ), so that one has mc(tN ) = argmaxm U (m, tN ),
and the sequence corresponding to this index is the optimal path: {mc(t)} =
{q[N − 1](mc(tN ), tN ), . . . , q[1](mc(tN ), tN ), mc(tN )}.

For example, for the functional F[...] = log Qmn (tn) + w(νmn (tn), νmn−1(tn−1)),
which is effectively used in Sect. 3.1.2, the procedure can be summarized as

http://dx.doi.org/10.1007/978-3-319-20016-3_3
http://dx.doi.org/10.1007/978-3-319-20016-3_3
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t1 : for m = 1, . . . , Np(t1)

q(m, t1) = 0, U (m, t1) = log Qm(t1),

t2 : for m = 1, . . . , Np(t2)

q(m, t2) = argmax
k

{
log Qm(t2) + w(νm(t2), νk(t1)) + U (k, t1)

}
,

U (m, t2) = log Qm(t2) + w(νm(t2), νq(m,t1)(t1)) + U (q(m, t2), t1),

t3 : for m = 1, . . . , Np(t3)

q(m, t3) = argmax
k

{
log Qm(t3) + w(νm(t3), νk(t2)) + U (k, t2)

}
,

U (m, t3) = log Qm(t3) + w(νm(t3), νq(m,t2)(t2)) + U (q(m, t3), t2),

. . .

(7.23)

where q(m, t1) is set to zero because there are no peaks before the starting time.
Numerically, q(m, tn) and U (m, tn) represent Mp × N matrices, updated at each

step, where Mp = maxn Np(tn) is the maximum number of peaks; the excess entries
q({Np(tn) + 1, . . . , Mp}, tn) and U ({Np(tn) + 1, . . . , Mp}, tn) are set to Not-a-
Numbers (NaNs). Since at each time tn one needs to calculate for each of the Np(tn)
peaks the functional with each of the Np(tn−1) of the previous peaks (to find the one
maximizing it), the overall computational cost of the procedure is O(M2

p N ). The
outcome of the algorithm is illustrated below on a schematic example:

Note, that in this example there are two ways of going from the second peak at time
t1: either to the second row (mc(t2) = 2), corresponding to U (2, t2) = 2.0, or to the
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third one, corresponding to U (3, t2) = 2.4. Naively, one would select the third peak,
but the path optimization approach (3.2) explores all the possibilities, and finds out
that going through the second peak leads at the end to the higher path functional.

The algorithm outlined for optimizing (7.19) can be adapted for functionals
depending on any finite number of consecutive ridge points. However, the longer
the history that one needs to take into account, the more computationally expensive
it becomes. For example, if the functional F[...] depends on two previous points
ωp(tn−1) and ωp(tn−2), then one can apply the same procedure but instead of single
ridges treat their one-step sequences. Thus, in this case one selects the trajectory
maximizing the path functional (3.2) to each of the Np(tn−1) × Np(tn) point com-
binations {νk(tn−1), νm(tn)}. The general case of accounting for d previous points
is qualitatively similar, so the computational cost of the procedure is O(Md+1

p N ),
with the required memory of O(Md

p N ).
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