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Abstract

Quantum entanglement is the most popular kind of quantum correlations, and its
fundamental role in several tasks in quantum information theory like quantum
cryptography, quantum dense coding, and quantum teleportation is undeniable.
However, recent results suggest that various applications in quantum information
theory do not require entanglement, and that their performance can be captured by
a new type of quantum correlation that goes beyond entanglement. Quantum
discord, introduced by Zurek more than a decade ago, is the most popular
candidate for such general quantum correlations. In this work we give an
introduction to this modern research direction. After a short review of the main
concepts of quantum theory and entanglement, we present quantum discord and
general quantum correlations, and discuss three applications based on this new
type of correlations: remote state preparation, entanglement distribution, and
transmission of correlations. We also give an outlook to other research in this
direction.
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Chapter 1
Introduction

Quantum entanglement has fascinated the minds of physicists since the very
inception of quantum theory [1]. Entangled quantum systems can behave in a bizarre
way, exhibiting features which seem to contradict “our common sense notions of how
the world works” [2, p. 114]. This was first pointed out in a seminal work by Einstein,
Podolsky, and Rosen, who concluded that the quantum theory must be incomplete
[3]. However, about 30 years after Einstein’s objection, Bell proposed an experiment,
which aimed to distinguish between predictions made by quantum theory on the one
hand, and Einstein’s arguments on the other hand [4]. Bell’s ideas served as a starting
point for Clauser, Horne, Shimony, and Holt, who formulated an inequality which is
known today as the CHSH inequality [5]. Following Einstein et al., Nature should
respect the CHSH inequality, and the fact that it can be violated in quantum theory
demonstrates the incompleteness of quantum mechanics.

Due to its simplicity, the CHSH inequality could be tested experimentally by
Freedman and Clauser already short time after its discovery [6]. The data showed a
violation of the CHSH inequality, thus invalidating Einstein’s arguments, in favor of
the quantum mechanical description of Nature. Later in the years 1981/1982 Aspect
et al. performed three experiments [7–9], confirming the results of Freedman and
Clauser. Since that time, several experiments have demonstrated violation of the
CHSH inequality, although some loopholes still remained open [10].

The formal definition of entanglement as we use it today can be dated back to
the year 1989, when Werner extended the concept of entanglement to all mixed
quantum states [11]. Werner’s work can be regarded as the starting point for the
theory of entanglement, which studies properties and implications of entanglement,
and its role in such fundamental tasks like quantum cryptography [12], quantum
dense coding [13], and quantum teleportation [14]. Several important contributions
to the theory of entanglement also came from the Horodecki family: one example
is the discovery of bound entanglement [15]. Bound entangled states need some
amount of entanglement to be created, but cannot be used for the extraction of any
pure entangled state. A comprehensive review on this topic can be found in [10].

The role of entanglement in quantumalgorithms is still subject of extensive debate.
This is due to the results by Jozsa and Linden, who showed that a quantum com-

© The Author(s) 2015
A. Streltsov, Quantum Correlations Beyond Entanglement,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-09656-8_1
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2 1 Introduction

puter operating on a pure state needs entanglement in order to have an exponential
speedup compared to classical computation [16, 17]. Although exponential speedup
of a quantum computer is not yet rigorously proven, there is strong evidence for its
existence. One of the most prominent examples pointing in this direction is Shor’s
prime factorization algorithm proposed in [18]. The algorithm is able to find the
prime factors for any product of two primes on a quantum computer, where the time
for the computation grows polynomially in the number of the input bits. This is sig-
nificantly faster, compared to the best known classical algorithm, which exhibits an
exponential increase of the running time.

Due to the presence of entanglement in Shor’s algorithm [17] one might be
tempted to see entanglement as the key resource for quantum computation. While
for pure state quantum computation this is indeed the case, the situation becomes
more involved if mixed state quantum computation is considered [17]. A popular
example for mixed state quantum computation has been presented by Knill and
Laflamme [19]. Surprisingly, their algorithm is able to solve certain problems effi-
ciently for which no efficient classical algorithm is known even with vanishingly
little entanglement [20]. This finding triggered the search for quantum correlations
beyond entanglement, which should be responsible for the efficiency of a quantum
computer.

Quantum discord, introduced by Zurek in the year 2000, has been recognized as a
possible candidate for those general quantum correlations [21, 22]. On the one hand,
quantum discord can even exist in systems which are not entangled. On the other
hand, it has been shown that the algorithm presented by Knill and Laflamme exhibits
nonvanishing amount of discord [23]. An even stronger statement has been made
by Eastin, who showed that mixed state quantum computation with zero discord
in each step can be simulated efficiently on a classical computer [24]. Three years
after Zurek has proposed quantum discord as a new kind of quantum correlations
beyond entanglement, he gave it an alternative thermodynamical interpretation [25].
He considered the amount of work which can be extracted from a quantum system
by a classical and a quantumMaxwell’s demon. He showed that the quantum demon
is more powerful, since it can operate on the whole quantum state, while the classical
demon is restricted to local subsystems only. Zurek concluded that more work can be
extracted in the quantum case, and this quantum advantage is related to the quantum
discord.

Approximately at the same time when Zurek defined quantum discord, a closely
related quantity has been proposed byHenderson andVedral [26]. The authors aimed
to separate correlations into quantum and purely classical parts by postulating several
reasonable properties. This approach is significantly different from Zurek’s, and the
fact that both arrive at the same result is surprising. Another related quantity is the
information deficit, presented in [27]. The authors study the amount of work, which
can be extracted from a heat bath using a mixed quantum state. If the mixed state is
shared by two parties, the amount of extractable work is usually smaller, compared
to the case where the whole state is in possession of a single party. The difference of
these two quantities is the information deficit.
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In the light of these results, it is not surprising that in the last few years an enor-
mous amount of research has been devoted to tasks in quantum information theory
which are not based on entanglement [28]. Quantum discord has been related to
the performance of some of those tasks: remote state preparation [29] and informa-
tion encoding [30] being popular examples. Experimental techniques for detecting
general quantum correlations have also been presented [31]. In this work, we give
an introduction to general quantum correlations beyond entanglement and present
a detailed discussion on their role for remote state preparation [29], entanglement
distribution [32, 33], and transmission of correlations [34, 35]. We start by briefly
reviewing the mathematical framework of quantum theory, followed by a short intro-
duction to quantum entanglement. After introducing quantum discord and related
quantifiers of quantum correlations, we discuss their role in quantum information
theory, and also present a short outlook on other research directions.
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Chapter 2
Quantum Theory

2.1 Quantum States

In quantummechanics, any physical system is completely described by a state vector
|�〉 in aHilbert spaceH. A systemwith a two-dimensionalHilbert space is also called
a qubit (quantum bit). If not otherwise stated, we consider a Hilbert space with an
arbitrary but finite dimension. For two parties, Alice (A) and Bob (B), with Hilbert
spacesHA andHB the total Hilbert space is a tensor product of the subsystem spaces:
HAB = HA ⊗ HB.

Any system which is described by a single state vector is said to be in a pure state.
However, in a realistic experimental setup the physical state of the considered system
is not completely known. If the system is in the pure state |ψi〉 with probability pi,
the physical state of the system can be described using the density operator

ρ =
∑

i

pi |ψi〉 〈ψi| . (2.1)

The state of such a system is called mixed state. In the following, whenever we talk
about quantum states, we usually mean mixed states.

In order to have a meaningful physical interpretation, any density operator has
the following two properties:

• ρ has trace equal to one:

Tr[ρ] = 1, (2.2)

• ρ is a positive operator:

〈ψ |ρ|ψ〉 ≥ 0 (2.3)

for any vector |ψ〉.
Note that the second property also implies that ρ is Hermitian: ρ† = ρ. These two
condition are essential for the definition of quantum measurements and operations,
which is presented in the following.

© The Author(s) 2015
A. Streltsov, Quantum Correlations Beyond Entanglement,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-09656-8_2
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6 2 Quantum Theory

2.2 Quantum Measurements and Operations

Quantum measurement is one of the most important concepts in quantum theory.
Most physicists are familiar with the projective measurement: for a spin- 12 particle
in the state

|ψ〉 = a |↑〉 + b |↓〉 , (2.4)

the probability to measure “spin up” or “spin down” is given by p(↑) = |a|2 or
p(↓) = |b|2 = 1−p(↑).Moreover, themeasurement postulate of quantummechanics
tells us that the quantum state after the measurement is either |↑〉 or |↓〉, depending
on the outcome of the measurement.

In quantum information theory, a more general definition is considered. A general
quantum measurement is described by a collection {Ei} of measurement operators
that satisfy the completeness equation:

∑

i

E†
i Ei = 1, (2.5)

where1 is the identity operator.Given adensity operatorρ and the set ofmeasurement
operators {Ei}, the probability that the result i occurs is given by

pi = Tr[E†
i Eiρ]. (2.6)

After the measurement with outcome i, the state of the system is described by the
density operator

ρi = 1

pi
(EiρE†

i ). (2.7)

The set of operators

Mi = E†
i Ei (2.8)

is also called positive operator-valued measure (POVM). Due to the completeness
Eq. (2.5), the POVM elements Mi sum up to the identity operator:

∑
i Mi = 1.

Moreover, due to Eq. (2.6) the probabilities pi can also be obtained from the POVM
elements Mi: pi = Tr[Miρ]. The positivity of the density operator ρ in Eq. (2.3)
implies that all probabilities are nonnegative: pi ≥ 0. The completeness Eq. (2.5)
together with Eq. (2.2) implies that the probabilities sum up to one:

∑
i pi = 1.

For a projective measurement, the operators Ei are orthogonal projectors: EiEj =
δijEi. Von Neumann measurement is a special type of a projective measurement,
where the measurement operators Ei are orthogonal projectors with rank one. Such a
measurement was considered below Eq. (2.4), there the measurement operators are
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E↑ = |↑〉 〈↑| and E↓ = |↓〉 〈↓|. In general, the measurement operators do not have
to be projectors, they only need to satisfy the completeness Eq. (2.5).

For composite systems consisting of two subsystems, Alice and Bob, it is possible
to perform local measurements on one of the subsystems. If a local measurement is
done on Alice’s subsystem, the subsystem of Bob remains unchanged. In this case,
the measurement operators have the form Ei = EA

i ⊗ 1B, with the identity operator
1B on Bob’s Hilbert space. Similarly, measurement operators corresponding to local
measurement on Bob’s subsystem have the form Ei = 1A ⊗ EB

i .
Finally, we also mention the concept of quantum operations, which is closely

related to quantum measurements. Any set of measurement operators {Ei} can also
be called a quantum operation. The corresponding operators Ei are then called Kraus
operators. The action of a quantum operation {Ei} on a density operator ρ is given by

�(ρ) =
∑

i

EiρE†
i . (2.9)

For composite systems, local quantum operations can be defined in the same way
as it was done for local measurements. The importance of quantum operations lies
in the fact that they describe the most general change of a quantum state possible in
experiments. Quantum operations also play an important role in the study of noisy
systems: noise is usually modeled as a quantum operation.

2.3 Reduced Density Operator

Sometimes one is only interested in one of the subsystems of a composite quantum
system. This situation is captured by the concept of the reduced density operator.
If the total system is described by the density operator ρAB, then the system of A is
described by the reduced density operator

ρA = TrB[ρAB], (2.10)

where TrB is called partial trace over the subsystem B. The partial trace is defined by

TrB[|a1〉 〈a2| ⊗ |b1〉 〈b2|] = |a1〉 〈a2|Tr[|b1〉 〈b2|], (2.11)

where |a1〉 and |a2〉 are any two vectors inHA, and |b1〉 and |b2〉 are any two vectors
in HB. The trace on the right hand side is the usual trace for the subsystem B:
Tr[|b1〉 〈b2|] = 〈b2|b1〉. In addition to Eq. (2.11), we also require that the partial
trace is linear, i.e., TrB[MAB + NAB] = TrB[MAB]+TrB[NAB] for any two operators
MAB and NAB. In this way, the partial trace is defined for all density operators. The
physical meaning of the partial trace lies in the fact that it is the unique operation for
obtaining correct measurement statistics for the subsystem A [1, p. 105ff.].
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2.4 Entropy and Mutual Information

The von Neumann entropy of a quantum state with density operator ρ is defined as

S(ρ) = −Tr[ρ log2 ρ], (2.12)

where the logarithm of the density operator ρ is defined via its eigenvalues λi and
eigenstates |i〉 in the followingway: log2 ρ = ∑

i log2(λi) |i〉 〈i|.With this definition,
the entropy can be written as

S(ρ) = −
∑

i

λi log2 λi, (2.13)

where it is defined that 0 log2 0 = 0.
The von Neumann entropy is the quantum version of the classical Shannon

entropy. For a discrete random variable X which can take a value x with probability
px , the Shannon entropy is defined as

H(X) = −
∑

x

px log2 px. (2.14)

Similar to the Shannon entropy, whichmeasures the uncertainty of a classical random
variable, the vonNeumann entropymeasures the uncertainty of a quantum state. Pure
states represent full knowledge about a quantum system: their von Neumann entropy
is zero. On the other hand, for a d-dimensional Hilbert space, maximal uncertainty
is represented by the completely mixed density operator 1/d with the von Neumann
entropy log2 d.

For two parties, the von Neumann entropy can be used to define the mutual
information between the parties. If the total state is given by the density operator
ρAB with reduced density operators ρA and ρB, the mutual information is defined as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB). (2.15)

The mutual information is zero if the state is completely uncorrelated, i.e., if the
density operator has the form ρAB = ρA ⊗ ρB. Otherwise, the mutual information is
greater than zero: it measures the amount of correlations between A and B.

Closely related to the von Neumann entropy is the quantum relative entropy. For
two density operators ρ and σ it is defined as

S(ρ||σ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ ] (2.16)

if the support ofρ is contained in the support ofσ , and S(ρ||σ) = +∞ otherwise. The
quantum relative entropy is nonnegative, and zero if and only if ρ = σ . The mutual
information defined in Eq. (2.15) can be written as the relative entropy between
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the density operator ρAB and the tensor product of the reduced density operators
ρA ⊗ ρB [2]:

I(ρAB) = S(ρAB||ρA ⊗ ρB). (2.17)

2.5 Distance Between Density Operators

Given two quantum states, how “close” are they to each other? This question, posed
in [1, p. 403], can be answered by defining an appropriate distance onto the set of
density operators. One important and frequently used distance is the trace distance

Dt(ρ, σ ) = 1

2
Tr|ρ − σ |, (2.18)

where ρ and σ are any two density operators, Tr|M| = Tr
√

M†M is the trace norm
of an operator M, and the square root of a Hermitian operator M†M with nonnegative
eigenvalues λi and eigenstates |i〉 is defined as

√
M†M = ∑

i
√

λi |i〉 〈i|. The trace
distance satisfies all properties of a general distance D:

• D(ρ, σ ) ≥ 0, and D(ρ, σ ) = 0 holds if and only if ρ = σ ,
• D is symmetric: D(ρ, σ ) = D(σ, ρ),
• D satisfies the triangle inequality: D(ρ, τ ) ≤ D(ρ, σ ) + D(σ, τ ) for any three
density operators ρ, σ , and τ .

In quantum information theory, the trace distance has an important interpretation:
1
2 + 1

2Dt(ρ, σ ) is the optimal probability of success for distinguishing two quantum
states with density operators ρ and σ [3].

Another frequently used quantity is the fidelity. For two density operators ρ and
σ it is defined as

F(ρ, σ ) =
(
Tr

√√
ρσ

√
ρ

)2

. (2.19)

The fidelity itself is not a distance, since it is one if and only if ρ = σ , and smaller
than one otherwise. However, the fidelity can be used to define the Bures distance:
DB(ρ, σ ) = 2(1 − √

F(ρ, σ )), which satisfies all properties of a mathematical
distance.

Both, the trace distance and the Bures distance have also another important prop-
erty, namely they are nonincreasing under quantum operations:

D(�(ρ),�(σ)) ≤ D(ρ, σ ), (2.20)
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where ρ and σ are any two density operators, and � is any quantum operation. This
property is frequently used in quantum information theory, especially in studying
entanglement and other quantum correlations.

Note that the inequality (2.20) does not follow from the general properties of
a mathematical distance, and thus there exist distances which violate it. One such
distance is the Hilbert-Schmidt distance

DHS(ρ, σ ) = ‖ρ − σ‖ , (2.21)

where ‖M‖ = √
Tr[M†M] is the Hilbert-Schmidt norm of an operator M. For the

Hilbert-Schmidt distance violation of Eq. (2.20) was shown in [4, 5].
Finally, the relative entropy introduced in Eq. (2.16) is not a distance in the mathe-

matical sense since it is not symmetric, and also does not satisfy the triangle inequal-
ity. However, the relative entropy is nonincreasing under quantum operations, i.e., it
satisfies the inequality (2.20) [6].
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Chapter 3
Quantum Entanglement

3.1 Definition

For two parties, Alice (A) and Bob (B), the state of the total quantum system can
have product form1:

|� 〉 = |a 〉 ⊗ |b 〉, (3.1)

where the states |a 〉 and |b 〉 are elements of the corresponding local Hilbert spaces
HA and HB. States of the form given in Eq. (3.1) are not entangled, they are also
called separable. However, not all states are separable, since quantum mechanics
also allows superpositions which are not necessarily product:

|� 〉 = 1

N
(|a1 〉 ⊗ |b1 〉 + |a2 〉 ⊗ |b2 〉), (3.2)

where N assures normalization such that 〈�|�〉 = 1. If |� 〉 cannot be written as a
product, i.e., |� 〉 �= |a 〉 ⊗ |b 〉, the state is called entangled.

Example The singlet state |� 〉 = 1√
2
(|01 〉−|10 〉) is entangled, it cannot be written

as a product.

Amixed state is separable if it can bewritten as a convex combination of pure product
states [1]:

ρsep =
∑

i

pi |ai 〉 〈ai| ⊗ |bi 〉 〈bi| . (3.3)

The pure states |ai 〉 and |bi 〉 are elements of the local Hilbert spaces HA and HB,
and pi ≥ 0 are probabilities summing up to one:

∑
i pi = 1. If the state cannot be

written in this form, it is called entangled.
The idea behind this definition of entanglement is the following: suppose that

Alice and Bob are able to produce any quantum state locally. In addition, they have
access to a classical communication channel, such as a telephone. Then, Alice and

1 Sometimes we write |a 〉 |b 〉 or |ab 〉 instead of |a 〉 ⊗ |b 〉.
© The Author(s) 2015
A. Streltsov, Quantum Correlations Beyond Entanglement,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-09656-8_3
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Bob can produce any separable state as given in Eq. (3.3) by the following procedure:
Alice prepares the state |ai 〉 with the probability pi, and lets Bob know which state
she prepared. Depending on this information, Bob prepares the corresponding state
|bi 〉. On the other hand, it is not possible to create entangled states such as the singlet
state in this way.

3.2 Local Operations and Classical Communication

The process for creating separable states presented above belongs to the class of local
operations and classical communication (LOCC), first introduced in [2]. This class of
operations describes themost general procedure Alice and Bob can apply in quantum
theory, if they are limited to classical communication only. The full mathematical
description of these operations is demanding, and still subject of extensive research
[3]. However, the general idea is simple, and will be explained in the following.

For two parties, Alice and Bob, a quantum operation �LOCC belongs to the class
of LOCC, if it can be decomposed into the following steps:

1. One of the parties, e.g. Alice, performs a local measurement on her subsystem.
2. The outcome of the measurement is communicated classically to the other party,

here Bob.
3. Depending on the received information, Bob performs a local measurement on

his subsystem.
4. The outcome of Bob’s measurement is communicated classically to Alice.
5. Depending on the received information, Alice performs a local measurement on

her subsystem, and the process starts over at step 2.

The class of LOCCplays an important role in quantum information theory, especially
when studying entanglement. As we have mentioned above, any separable state can
be created with LOCC. On the other hand, LOCC cannot be used to create entangled
states [4].

3.3 Entanglement as a Resource

Until the 1990s, quantum entanglement was mainly regarded as a physical curiosity:
an exotic feature with no practical use. This situation started to change in 1991,
whenEkert presented thefirst task in quantum information theorywhichwas based on
entanglement [5]. In hiswork, Ekert showed that if two parties, Alice andBob, share a
large amount of entangled singlet states, they can communicate in a completely secure
way. This task is referred to as quantum cryptography, or quantum key distribution.
This strong result should be compared to the classical cryptography aswe use it today.
The security of classical cryptography is mainly based on the conjecture that a large
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number is hard to factorize, whereas the quantum cryptography protocol presented
by Ekert is provably secure.

Motivated by Ekert’s result, several tasks involving entanglement have been pre-
sented in the following years. In 1992 Bennett and Wiesner showed that two entan-
gled parties can communicate two classical bits by sending only one qubit, i.e., one
quantum system on a two-dimensional Hilbert space [6]. This task is also known as
quantum dense coding, since it suggests that two classical bits can be coded into one
quantum bit.

Another application for entanglement has been proposed in [7]. The authors stud-
ied the task of communicating an unknown quantum state between two parties. An
unknown quantum state cannot be communicated by classical means, which is a
direct consequence of the fact that such a state cannot be cloned [8]. However, if
the two parties share an entangled singlet, Bennett et al. showed that any unknown
quantum bit can be perfectly communicated. This task is also known as quantum
teleportation.

3.4 Entanglement Measures

The tasks presented above, namely quantum cryptography, dense coding and tele-
portation demonstrate the role of entanglement for a very special case. In particular,
two parties, Alice and Bob, need to share entangled singlets in order to perform
these tasks. However, a pure quantum state is not necessarily a singlet, and in a real-
istic scenario the quantum state is usually mixed. For this reason it is natural to ask
whether a general mixed quantum state can also be used for some of these tasks.

The “usefulness” of a quantum state for one of the tasks presented above is usually
quantified by the amount of entanglement contained in the state. One of the most
popular quantifiers is the distillable entanglement [9]: it is defined as the maximal
number of singlets that can be obtained per copy of a given mixed state via local
operations and classical communication, if the number of copies goes to infinity.2

The major disadvantage of the distillable entanglement is the fact that it is hard to
evaluate. Thus, exact expressions are only known in a few special cases. For this
reason, other quantifiers, known as entanglement measures, have been proposed in
the literature. Any entanglement measure E fulfills the following two properties [4]:

1. E does not increase under local operations and classical communication,
2. E vanishes on separable states.

For a pure state |ψ 〉AB distributed between two parties, Alice and Bob, entan-
glement is usually quantified by the von Neumann entropy of the reduced density
operator ρA = TrB[|ψ 〉 〈ψ |AB]:

2 See also [4] for a formal definition.



14 3 Quantum Entanglement

E(|ψ 〉AB) = S(ρA) = −
∑

i

λi log2 λi, (3.4)

where λi are the eigenvalues of ρA. The importance of this quantity in quantum
information theory comes from the fact that it is equal to the distillable entanglement
for all pure states [10].

For a mixed state ρAB, two main classes of entanglement measures are considered
in the literature. These are

• convex roof measures and
• distance-based measures.

Any measure of entanglement E which is defined on all pure states can be extended
to mixed states via the following convex roof construction [11]:

E(ρ) = inf{pi,|ψi 〉}
∑

i

piE(|ψi 〉), (3.5)

where the infimum is taken over all decompositions {pi, |ψi 〉} of the given density
operator ρ with nonnegative probabilities pi, i.e., ρ = ∑

i pi |ψi 〉 〈ψi|.
For bipartite systems, the entanglement of formation defined in [2] is one of

the most popular and frequently used convex roof measures. For pure states it is
defined as the von Neumann entropy of the reduced density operator in Eq. (3.4).
The extension to mixed states is done via the convex roof construction in Eq. (3.5).
Although the infimum in Eq. (3.5) is hard to evaluate in general, Wootters presented
a closed expression for the entanglement of formation for all mixed states of two
qubits [12]. For any such state, the entanglement of formation Ef is given by

Ef (ρ) = h

(
1

2
+ 1

2

√
1 − C2(ρ)

)
(3.6)

with the binary entropy h(x) = −x log2 x − (1− x) log2(1− x), and the concurrence
C(ρ) = max{0, λ1 −λ2 −λ3 −λ4}, where λi are the square roots of the eigenvalues
of ρρ̃ in decreasing order, and ρ̃ is defined as ρ̃ = (σy ⊗ σy)ρ

∗(σy ⊗ σy) with the

Pauli matrix σy =
(
0 −i
i 0

)
. The entanglement of formation satisfies the criteria for

a proper entanglement measure given on page 13: it does not increase under local
operations and classical communication and vanishes on separable states. While the
second property is easy to verify, the first property was proven in [2].

The second main class of entanglement measures are measures based on distance
proposed in [13]. All those measures can be written as

E(ρ) = inf
σ∈S

D(ρ, σ ), (3.7)

where D is a distance, and the infimum is taken over the set of separable states S. If
the distance D does not increase under quantum operations, i.e.,
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D(�(ρ),�(σ)) ≤ D(ρ, σ ) (3.8)

for any quantum operation � and any two states ρ and σ , then the correspond-
ing measure of entanglement does not increase under local operations and classical
communication [13]. This property is satisfied by the relative entropy S(ρ||σ) =
Tr[ρ log2 ρ] − Tr[ρ log2 σ ], although the relative entropy is not a distance in the
mathematical sense. The corresponding measure of entanglement is called relative
entropy of entanglement:

ER(ρ) = min
σ∈S

S(ρ||σ). (3.9)

The relative entropy of entanglement is one of the most popular and widely studied
measures of entanglement. One reason is the fact that the relative entropy itself plays
an important role in quantum information theory [14]. Moreover, the relative entropy
of entanglement is a powerful upper bound for the distillable entanglement [15].

We have already mentioned above that all distance-based entanglement measures
do not increase under local operations and classical communication, if the distance
satisfies Eq. (3.8). This is one of the properties any reasonable measure of entan-
glement should satisfy. Moreover, any entanglement measure should also vanish on
separable states. This is also easily seen to be true for any distance D(ρ, σ ) which is
zero if and only if ρ = σ , and larger than zero otherwise.

Finally, we mention the relation between three of the measures presented in this
section, namely between the distillable entanglement Ed , the relative entropy of
entanglement ER, and the entanglement of formation Ef . As was shown in [15],
these measures satisfy the inequality

Ed ≤ ER ≤ Ef (3.10)

for all mixed states, i.e., the relative entropy of entanglement is always between Ed
and Ef .
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Chapter 4
Quantum Correlations Beyond Entanglement

4.1 Definition

A mixed state shared by two parties, Alice and Bob, is called classically correlated
if it can be written as [1]

ρcc =
∑

i, j

pi j |i〉〈i |A ⊗ | j〉〈 j |B, (4.1)

where {|i〉A} are orthogonal states onAlice’s Hilbert spaceHA and {| j〉B} are orthog-
onal states on Bob’s Hilbert space HB . The probabilities pi j are nonnegative and
sum up to one:

∑
i, j pi j = 1. Otherwise the state is called quantum correlated. Note

that every classically correlated state is also separable. On the other hand, a separa-
ble state ρsep = ∑

i pi |ai 〉 〈ai | ⊗ |bi 〉 〈bi | is not necessarily classically correlated,
since the states {|ai 〉} and {|bi 〉} do not have to be orthogonal. Moreover, a pure
state is quantum correlated if and only if the state is entangled, i.e., both concepts
are equivalent for pure states. For this reason, we will discuss mixed states in the
following.

The intuition behind this definition of classically correlated states comes from the
fact that these states are not disturbed by certain local von Neumann measurements
on Alice’s and Bob’s subspaces. The measurement operators corresponding to these
non-disturbing von Neumann measurements are given by E A

i = |i〉 〈i |A and E B
j =

| j〉 〈 j |B . In a similar way we can also define a class of quantum states which is not
disturbed under certain von Neumann measurements on the subspace of one party
(e.g. Alice) only. In this case the state has the form

ρcq =
∑

i

pi |i〉 〈i |A ⊗ ρB
i , (4.2)

where |i〉A are orthogonal states on Alice’s Hilbert space HA, ρB
i are states on

Bob’s Hilbert spaceHB , and the nonnegative probabilities pi sum up to one. These
states are called classical-quantum states [2, 3]. The corresponding von Neumann
measurement on Alice’s subsystem which does not disturb the total state is given
by the measurement operators E A

i = |i〉 〈i |A. Similarly, a quantum-classical state

© The Author(s) 2015
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has the form ρqc = ∑
i piρ

A
i ⊗ |i〉 〈i |B . Such a state is not disturbed by a local

von Neumann measurement on Bob’s subspace with measurement operators E B
i =

|i〉 〈i |B .

4.2 Measures of Quantum Correlations

A measure of entanglement can be defined via the usefulness of a quantum state
to perform certain tasks. The figure of merit is the distillable entanglement, which
quantifies how many singlets can be extracted per copy of a given quantum state
via local operations and classical communication, if many copies of the same state
are available. Since singlets can be used for many tasks in quantum information
theory, e.g., quantum cryptography, dense coding and teleportation, the distillable
entanglement is directly related to the performance of these tasks.

For general quantum correlations the situation is less clear, since the definition
of “distillable quantum correlations” is meaningless, at least if the concept of local
operations and classical communication is considered. The reason for this is the fact
that local operations and classical communication can be used to create an arbitrary
amount of quantum correlations [4, 5]. This means that a measure of “distillable
quantumcorrelations”wouldbe infinite for all quantumstates.However, several other
approaches to quantify quantumcorrelations have been proposed in the literature. The
most important measures of quantum correlations will be presented in the following.

4.2.1 Quantum Discord

Quantum discord is historically the first measure of quantum correlations beyond
entanglement [6–8]. The definition of quantum discord is based on the fact that in
classical information theory the mutual information between two random variables
X and Y can be expressed in two different ways, namely

I (X : Y ) = H(X) + H(Y ) − H(X, Y ),

J (X : Y ) = H(X) − H(X |Y ). (4.3)

Here, H(X) = −∑
x px log2 px is the classical Shannon entropy of the random

variable X , where px is the probability that the random variable X takes the value
x . H(X, Y ) is the joint entropy of both variables X and Y . The conditional entropy
H(X |Y ) is defined as

H(X |Y ) =
∑

y

py H(X |y), (4.4)

where py is the probability that the random variable Y takes the value y, and H(X |y)

is the entropy of the variable X conditioned on the variable Y taking the value y:
H(X |y) = −∑

x px |y log2 px |y , and px |y is the probability of x given y.
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The equality of I and J for classical random variables follows from Bayes’ rule
px |y = pxy/py , which can be used to show that H(X |Y ) = H(X, Y ) − H(Y ).
However, as was noticed in [7], I and J are no longer equal if quantum theory is
applied. In particular, for a quantum state ρ AB the mutual information between A
and B is given by

I (ρ AB) = S(ρ A) + S(ρB) − S(ρ AB) (4.5)

with the von Neumann entropy S, and the reduced density operators ρ A = TrB[ρ AB]
and ρB = TrA[ρ AB]. This expression is the generalization of the classical mutual
information I (X : Y ) to the quantum theory.

On the other hand, the generalization of J (X : Y ) is not completely straightfor-
ward. Ollivier and Zurek have proposed the following way to generalize J to the
quantum theory [7]: for a bipartite quantum state ρ AB they defined the conditional
entropy of A conditioned on a measurement on B:

S(A|{�B
i }) =

∑

i

pi S(ρ A
i ), (4.6)

where {�B
i } are measurement operators corresponding to a von Neumann measure-

ment on the subsystem B, i.e., orthogonal projectors with rank one. The probability
pi for obtaining the outcome i is given by pi = Tr[�B

i ρ AB], and the corresponding
post-measurement state of the subsystem A is given by ρ A

i = TrB[�B
i ρ AB]/pi . The

quantity J can now be extended to quantum states as follows [7]:

J (ρ AB){�B
i } = S(ρ A) − S(A|{�B

i }), (4.7)

where the index {�B
i } clarifies that the value depends on the choice of the measure-

ment operators �B
i . The quantity J represents the amount of information gained

about the subsystem A by measuring the subsystem B [7].
Quantum discord is the difference of these two inequivalent expressions for the

mutual information, minimized over all von Neumann measurements:

δB|A(ρ AB) = min
{�B

i }

[
I (ρ AB) − J (ρ AB){�B

i }
]
, (4.8)

where the minimum over all von Neumann measurements is taken in order to have a
measurement-independent expression [7]. Aswas also shown in [7], quantumdiscord
is nonnegative, and is equal to zero on quantum-classical states only. These are states
of the form ρqc = ∑

i piρ
A
i ⊗ |i〉 〈i |B .

A closely related quantity was proposed by Henderson and Vedral in [8]. The
authors aimed to quantify classical correlations in quantum states by defining a
measure of classical correlationsCB which is equal to J given inEq. (4.7),maximized
over all positive operator-valued measures (POVMs) on the subsystem B:
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CB(ρ AB) = sup
{M B

i }
J (ρ AB){M B

i }. (4.9)

Here, M B
i are POVM elements on the subsystem B, and J (ρ AB){M B

i } is the gener-
alization of Eq. (4.7) to POVMs:

J (ρ AB){M B
i } = S(ρ A) − S(A|{M B

i }) (4.10)

with S(A|{M B
i }) = ∑

i pi S(ρ A
i ). The measurement probabilities are now given by

pi = Tr[M B
i ρ AB], and the corresponding post-measurement state of the subsystem

A is given by ρ A
i = TrB[M B

i ρ AB]/pi .
In today’s literature, quantum discord is frequently defined as the difference

between the mutual information I , and the amount of classical correlations CB [9]:

DB|A(ρ AB) = I (ρ AB) − CB(ρ AB). (4.11)

This measure is in general different from the original quantum discord δB|A proposed
by Ollivier and Zurek. However, this quantity is also nonnegative, and vanishes on
quantum-classical states only [10].Quantumdiscord as defined inEq. (4.11) is related
to the entanglement of formation E f via the Koashi-Winter relation [11, 12]:

DB|A(ρ AB) = E f (ρ
AC ) − S(ρ AB) + S(ρB), (4.12)

where the total state ρ ABC is pure, i.e., ρ ABC = |ψ〉 〈ψ |ABC .

4.2.2 General Measures of Quantum Correlations

Postulates for general measures of quantum correlations have been proposed in [13].
There the authors identify three necessary conditions every measure of quantum
correlations Q should satisfy. These conditions are:

1. Q is nonnegative,
2. Q is invariant under local unitary operations,
3. Q is zero on classically correlated states.

Note that both versions of quantum discord, δ and D, satisfy all these criteria. In the
following we will present main measures of general quantum correlations apart from
quantum discord.

Information deficit is a measure of quantum correlations which was originally
based on the task of extracting work from a heat bath using a quantum state [1, 2]. In
particular, the amount of extractable work from a heat bath of temperature T using
a mixed state ρ of n qubits is given by
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W = kT {n − S(ρ)}, (4.13)

where k is the Boltzmann constant and S is the von Neumann entropy. However, if
the state is shared by two parties, Alice and Bob, each of them having access to the
local subsystem only, the amount of extractable work W ′ will in general be different
from W . If Alice is allowed to perform a single von Neumann measurement on her
local system and send the resulting state to Bob, the maximal amount of work which
Bob can extract from the resulting state in this way is given by

W ′ = W − kT · �A|B(ρ AB), (4.14)

where �A|B is known as the one-way information deficit [2]:

�A|B(ρ AB) = min
{�A

i }
S(ρ AB ||

∑

i

�A
i ρ AB�A

i ). (4.15)

S(ρ||σ) is the relative entropy between the states ρ and σ , and the minimum is
taken over local von Neumann measurements {�A

i } on the subsystem A. The one-
way information deficit is zero on classical-quantum states only, and can also be
written as the minimal relative entropy between the given state ρ AB and the set of
classical-quantum states C Q [14]:

�A|B(ρ AB) = min
σ AB∈C Q

S(ρ AB ||σ AB). (4.16)

For this reason, this quantity is also called relative entropy of discord. In a similar
way, it is possible to define the relative entropy of quantumness as the minimal
relative entropy between ρ AB and the set of classically correlated states CC [15]:

Q R(ρ AB) = min
σ AB∈CC

S(ρ AB ||σ AB). (4.17)

Inspired by the expression for the relative entropy of discord as the minimal
relative entropy between a given state and the set of classical-quantum states C Q,
Dakić et al. defined the geometric measure of discord as theminimal squaredHilbert-
Schmidt distance between a given state ρ AB and C Q [4]:

D A|B
G (ρ AB) = min

σ AB∈C Q

∥∥∥ρ AB − σ AB
∥∥∥
2

(4.18)

with the Hilbert-Schmidt norm ‖M‖ = √
Tr[M†M]. The main advantage of the

geometric measure of discord was already presented in the original work by Dakić
et al.: this measure has an analytical expression for all two-qubit states [4]. If ρ AB

is a two-qubit state, then the geometric measure of discord can be written as [4]
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D A|B
G (ρ AB) = 1

4
(a2 + Tr[ET E] − kmax), (4.19)

where a is a 3-dimensional vector with entries ai = Tr[(σi ⊗ 1)ρ AB], and E is
the 3 × 3 correlation tensor with components Ei j = Tr[(σi ⊗ σ j )ρ

AB]. The Pauli
operators σi are given as σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. Finally,

kmax is the largest eigenvalue of the real matrix aaT + E ET .
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Chapter 5
Quantum Discord in Quantum Information
Theory

5.1 Remote State Preparation

5.1.1 Deterministic Remote State Preparation

The role of quantum discord in the task of remote state preparation was considered
by Dakić et al. [1]. In this task Alice aims to remotely prepare Bob’s system in the
quantum state

|ψ〉 = 1√
2
(|0〉 + eiφ |1〉). (5.1)

To this end Alice and Bob have access to an additional shared quantum state and
a classical communication channel. In contrast to the standard quantum teleporta-
tion [2], which can be applied to remotely prepare an arbitrary quantum state by
making use of a shared singlet and two bits of classical communication, remote
preparation of the state given in Eq. (5.1) requires a shared singlet supported by only
one classical bit [3]. To achieve this task, Alice applies a von Neumann measure-
ment in the basis {|ψ⊥〉 〈ψ⊥| , |ψ〉 〈ψ |} on her part of the singlet, where the state
|ψ⊥〉 = (|0〉 − eiφ |1〉)/√2 is orthogonal to |ψ〉. Depending on her outcome, Bob’s
system is found in one of the states |ψ〉 〈ψ | or |ψ⊥〉 〈ψ⊥|. By sending the outcome of
her measurement to Bob—which implies sending one classical bit—he either finds
his system in the desired state |ψ〉 〈ψ |, or can correct his state |ψ⊥〉 〈ψ⊥| by applying
the Pauli operator σz .

Note that the Bloch vector of the state |ψ〉 in Eq. (5.1) lies in the equatorial plane
of the Bloch sphere orthogonal to the z axis. Moreover, the σz operation which is
applied by Bob to the state |ψ⊥〉 〈ψ⊥| can be regarded as a π rotation around the z
axis of the corresponding Bloch vector. In a similar way Alice can remotely prepare
any pure state in a fixed equatorial plane of the Bloch sphere. If s is the Bloch vector
of the state |s〉 〈s|Alice wishes to prepare and β is a normalized vector orthogonal to
the corresponding equatorial plane, Alice can achieve this task by performing a von
Neumann measurement in the basis {|−s〉 〈−s| , |s〉 〈s|} on her part of the singlet and
send the outcome to Bob. Depending on the measurement outcome, Bob either finds

© The Author(s) 2015
A. Streltsov, Quantum Correlations Beyond Entanglement,
SpringerBriefs in Physics, DOI 10.1007/978-3-319-09656-8_5
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Fig. 5.1 Remote state preparation. Alice can remotely prepare any state |s〉 〈s| with Bloch vector s
on a fixed equatorial plane of the Bloch sphere by performing a von Neumann measurement in the
basis {|−s〉 〈−s| , |s〉 〈s|} on her part of the singlet and by sending the outcome of themeasurement to
Bob. Depending on the outcome, Bob’s system is found in one of the states |s〉 〈s| or |−s〉 〈−s|. Bob
can correct the latter by applying aπ rotation around the directionβ orthogonal to the corresponding
equatorial plane

his system in the state |s〉 〈s| or |−s〉 〈−s| and can correct the latter by applying a π

rotation around the direction β, see also Fig. 5.1 for illustration.

5.1.2 Remote State Preparation in the Presence of Noise

So far we considered deterministic remote state preparation where Alice could
remotely prepare the desired state with certainty. However, this is not possible in
general if the state shared by Alice and Bob is mixed, and the above procedure will
leave Bob’s system in a mixed state with Bloch vector r . The aim of Alice in this
case is to adjust her measurement such that Bob’s final Bloch vector r becomes as
close as possible to the desired vector s. As a quantifier of the performance of this
procedure Dakić et al. introduced the payoff-function [1]

P = (r · s)2. (5.2)

For a pure state |s〉 with Bloch vector s and a mixed state ρ with Bloch vector r the
payoff function is directly related to the fidelity 〈s|ρ|s〉 between the two states. This
can be seen by writing the fidelity explicitly as 〈s|ρ|s〉 = (1+ r · s)/2, and thus we
get the desired relation P = (2〈s|ρ|s〉 − 1)2.
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The aim of Alice is to maximize the payoff function for a given Bloch vector
s. As was shown in [1], this maximization can be performed for any mixed two-
qubit state shared by Alice and Bob. Note that any such state admits the following
representation:

ρ = 1

4

⎛

⎝1 ⊗ 1 +
3∑

i=1

ai · σi ⊗ 1 +
3∑

j=1

b j · 1 ⊗ σ j +
3∑

k,l=1

Ekl · σk ⊗ σl

⎞

⎠ . (5.3)

The vectors a = (a1, a2, a3) and b = (b1, b2, b3) are the Bloch vectors of Alice’s
and Bob’s local state respectively, and Ekl = Tr[σk ⊗ σlρ] are the elements of
the correlation tensor E . If Alice applies a von Neumann measurement in the basis
{|α〉 〈α| , |−α〉 〈−α|} on her part of the mixed state, she obtains one of two outcomes
with corresponding probabilities pα and p−α = 1 − pα . By using the relation
|α〉 〈α| = 1

2 (1 + α · σ ), where σ = (σ1, σ2, σ3) is a vector containing the Pauli
matrices, we can express the probability pα as follows:

pα = Tr [|α〉 〈α| ⊗ 1ρ] = 1

2
(1 + α · a). (5.4)

Conditioned on the outcome of this measurement, the state of Bob’s system is found
to be

ρB
α = TrA [|α〉 〈α| ⊗ 1ρ]

pα
. (5.5)

Recall that this state can also be written in the form ρB
α = (1 + bα · σ )/2 with the

Bloch vector bα . By inserting Eqs. (5.3) and (5.4) into Eq. (5.5) the Bloch vector bα

can be written explicitly as

bα = b + ET α

1 + α · a
, (5.6)

where ET is the transposed correlation tensor E .
In the next steps Alice and Bob follow the same procedure as for the deterministic

remote state preparation discussed above (see Fig. 5.1). In particular, Alice sends
the outcome of her measurement to Bob, who applies a π rotation Rπ around the
direction β conditioned on the outcome of the measurement. After these steps the
Bloch vector rα of Bob’s final state takes the form

rα = pαbα + p−α Rπ b−α. (5.7)

Note that this procedure is optimal if the state shared by Alice and Bob is a singlet,
and if Alice chooses her measurement basis {|α〉 〈α| , |−α〉 〈−α|} such that α = −s,
where s is the Bloch vector of the state |s〉 Alice wishes to prepare. In this case the
Bloch vector of Bob’s final state r−s is equal to s.
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For evaluating the payoff function P = (r · s)2 it is crucial to note that any vector
x satisfies the following equality: (Rπ x) · s = −x · s. This equality can be proven by
using the invariance of the scalar product under rotations, i.e., (Rπ x) · (Rπ y) = x · y
for any two vectors x and y. With this in mind, we see that (Rπ x) · s = (R2

π x) ·
(Rπ s) = −x · s, where in the last step we used the fact that double application of
the rotation Rπ does not change the vector, i.e., R2

π x = x, and that the rotation Rπ

applied to the vector s takes it to −s, see Fig. 5.1. Using these results the product
r · s takes the following form: r · s = pαbα · s − p−αb−α · s. By using Eqs. (5.4)
and (5.6) this product can also be written as r · s = αE s, and the payoff function
reduces to

P = (αE s)2. (5.8)

This expression is valid for any von Neumann measurement of Alice in the basis
{|α〉 〈α| , |−α〉 〈−α|}. Maximal payoff is achieved if the vector α is parallel to the
vector E s, i.e., α = E s/

√
(E s)2, and the maximum is thus given by the simple

expression
Pmax = (E s)2 . (5.9)

5.1.3 Average Payoff

Following the discussion in [1], we will assess the average quality of the remote
preparation procedure by the average payoff 〈Pmax〉, where the mean value is taken
over all Bloch vectors s for a fixed direction β (see Fig. 5.1). The calculation of
〈Pmax〉 can be simplified by introducing a rotation matrix R which rotates the vector
β onto the z axis: β̃ = Rβ = (0, 0, 1), and an arbitrary vector x is rotated to
x̃ = Rx. If we further introduce the rotated correlation tensor Ẽ = RE RT , we see
that rotations do not change the maximal payoff:

Pmax = (E s)2 =
(

Ẽ s̃
)2

. (5.10)

Since the vectors s and β are orthogonal, the same is also true for s̃ and β̃ = (0, 0, 1),
and thus the normalized vector s̃ takes the form s̃ = (cosφ, sin φ, 0). Using these
tools we are now in position to give a closed expression for the average payoff:

〈Pmax〉 = 1

2π

∫ 2π

0
dφ

(
Ẽ s̃

)2 = 1

2
Tr

[
ET E

]
− 1

2
(Eβ)2 . (5.11)

This expression can be proven by writing
(

Ẽ s̃
)2

explicitly as
(

Ẽ s̃
)2 = ∑3

i=1

(Ẽi1 cosφ+Ẽi2 sin φ)2 and evaluating the integral inEq. (5.11): 1
2π

∫ 2π
0 dφ

(
Ẽ s̃

)2 =
1
2

∑3
i=1(Ẽ2

i1 + Ẽ2
i2). By using the relations Tr[ẼT Ẽ] = ∑3

i, j=1 Ẽ2
i j and Ẽ β̃ =
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(Ẽ13, Ẽ23, Ẽ33) the integral can further be expressed as 1
2π

∫ 2π
0 dφ

(
Ẽ s̃

)2 =
1
2Tr[ẼT Ẽ] − 1

2

(
Ẽ β̃

)2
. The desired equality (5.11) follows by noting that both

terms Tr[ẼT Ẽ] and
(

Ẽ β̃
)2

are invariant under rotations, i.e., Tr[ẼT Ẽ] = Tr[ET E]
and

(
Ẽ β̃

)2 = (Eβ)2.

5.1.4 The Role of Quantum Correlations

Note that the matrix ET E has three nonnegative eigenvalues λ1 ≥ λ2 ≥ λ3, and the
average payoff 〈Pmax〉 satisfies the inequality

〈Pmax〉 ≥ min
β

〈Pmax〉 = 1

2
(λ2 + λ3), (5.12)

where theminimum is taken over all normalized vectorsβ . This can be seen by noting
that minβ 〈Pmax〉 = 1

2Tr
[
ET E

] − 1
2 maxβ (Eβ)2, and the latter maximization can

be performed as maxβ (Eβ)2 = maxβ(βET Eβ) = λ1 (see p. 176 in [4]). The result
in Eq. (5.12) is obtained by noting that Tr

[
ET E

] = ∑3
i=1 λi .

According to [1], the quantity minβ 〈Pmax〉 can be regarded as the quantifier of
efficiency for remote state preparation in theworst case, i.e., for themost inconvenient
choice of the direction β. The relation to quantum discord is established by noting
that in a large number of scenarios this expression corresponds to the geometric
measure of discord of the shared state. In general, the geometric measure of discord
is defined as [5]

DG(ρ) = min
σ∈C Q

||ρ − σ ||2, (5.13)

where the minimum is taken over all classical-quantum states σ , and ||M || =√
Tr[M†M] is the Hilbert-Schmidt norm of the operator M . For states of two qubits

as given in Eq. (5.3) the geometric measure of discord takes the form [5]

DG(ρ) = 1

4
(a2 + Tr[ET E] − kmax), (5.14)

where a is the Bloch vector of Alice’s subsystem, and kmax is the largest eigenvalue
of the matrix aaT + E ET .

By the singular value decomposition of the correlation tensor E it follows that the
eigenvalues λ1 ≥ λ2 ≥ λ3 of the matrix ET E are also eigenvalues of E ET . Let now
λ1 be the normalized eigenvector of E ET corresponding to the largest eigenvalue λ1
and consider the situation where the Bloch vector a of Alice’s subsystem is parallel
to λ1, i.e., a = √

a2λ1. In this case the eigenvalues of the matrix aaT + E ET are
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given as {a2 + λ1, λ2, λ3}, and the largest eigenvalue becomes kmax = a2 + λ1.
Inserting this result into Eq. (5.14) and recalling that Tr[ET E] = ∑3

i=1 λi we obtain
the expression DG(ρ) = 1

4 (λ2 + λ3). Together with Eq. (5.12) this result implies
that for the particular family of shared states ρ where the Bloch vector a is parallel
to λ1 the average payoff is bounded below by the geometric measure of discord:

〈Pmax〉 ≥ min
β

〈Pmax〉 = 2DG(ρ). (5.15)

In particular, this inequality holds for shared states ρ where the subsystem of Alice
is maximally mixed. In this case the Bloch vector of Alice is the zero vector a = 0.
Another scenario satisfying the inequality is givenby the stateswith correlation tensor
proportional to the identity matrix, i.e., Ei j = μδi j . In this case the eigenvalues of
E ET are all equal to μ2, and there is no further restriction on the Bloch vector of
Alice.

An important family of states satisfying both of these conditions are the Werner
states

ρw = p |ψ−〉 〈ψ−| + (1 − p)
1

4
(5.16)

with the singlet |ψ−〉 = (|01〉− |10〉)/√2. The state is separable for p ≤ 1/3 which
can be seen by checking the positivity of the partial transpose. As can also be seen by
inspection, the elements of the correlation tensor are given as Ei j = −pδi j , and the
geometric measure of discord for this state becomes DG(ρw) = p2/2. In [1] these
states were compared to another family of states given by

σ = 1 − k

4
|ψ+〉 〈ψ+| + 1 + 3k

4
|ψ−〉 〈ψ−|

+ 1 − 2t − k

4
|00〉 〈00| + 1 + 2t − k

4
|11〉 〈11| (5.17)

with |ψ+〉 = (|01〉+ |10〉)/√2. For this family of states it can be verified by inspec-
tion that the elements of the correlation tensor are given as Ei j = −kδi j , and thus
the geometric measure of discord of this state is given by DG(σ ) = k2/2. As was
also noted in [1], for the parameters k = 1/5 and t = 2/5 the state is entangled.
This can be verified by calculating the concurrence C using the formula given in [6]:
C = 1/5.

Combining the aforementioned results, we see that the average payoff for the
separable state ρw with p = 1/3 is bounded below as 〈Pmax〉 ≥ minβ 〈Pmax〉 =
2DG(ρw) = 1/9. In [1] this result was compared to the average payoff achievable
with the entangled state σ for the parameters k = 1/5 and t = 2/5: 〈Pmax〉 ≥
minβ 〈Pmax〉 = 2DG(σ ) = 1/25. These results imply that for some directions β the
separable state ρw leads to a higher average payoff when compared to the state σ ,
despite the fact that the latter state is entangled.
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5.1.5 Discussion

Dakić et al. conclude that a shared separable state can show a better performance
for remote state preparation when compared to entangled states [1]. In particular,
if Alice and Bob strictly follow the protocol, i.e., Alice performs von Neumann
measurements and Bob conditionally applies a π rotation around a given axis, there
exist scenarios where shared entangled states can be outperformed by shared states
without any entanglement. As a quantifier of the performance of the process Dakić
et al. introduced a payoff function P , and showed that the average optimal payoff is
bounded below by the geometric measure of discord in a large number of scenarios.
In these situations, the presence of discord guarantees that remote state preparation
can always be achieved with nonzero average payoff. Experiment supporting these
results has also been reported [1].

We complete the discussion by referring to the recent criticism of this approach.
On the one hand, it was shown in [7] that a state can lead to nonzero average payoff
even if its discord has been produced by local noise. According to [7] such states are
unlikely to be useful in quantum information theory. On the other hand, the restriction
of the protocol to von Neumann measurements of Alice and conditional rotations of
Bob was criticized in [8]. This issue was further explored in [9], where it was shown
that by relaxing these restrictions the advantage of separable states disappears if the
standard fidelity (1 + r · s)/2 is used as a figure of merit of the protocol. However,
regardless of this objection, it was also shown in [9] that in some situations separable
states can still provide advantage for remote state preparation also for the standard
fidelity (1 + r · s)/2.

5.2 Entanglement Distribution

5.2.1 General Protocol for Entanglement Distribution

The role of quantum discord in the task of entanglement distribution was considered
in [10, 11]. The general setting is illustrated in Fig. 5.2: Alice is initially in possession
of two particles, A and C , while Bob is in possession of one particle B (upper part of
Fig. 5.2). If Alice sends the particle C to Bob via a perfect quantum channel (middle
part of Fig. 5.2), they end up in the final setup, where Bob is in possession of both
particles B and C , while Alice is in possession of A (lower part of Fig. 5.2).

If the total state shared by Alice and Bob is ρ = ρ ABC , then the initial amount of
entanglement between them is given by E AC|B = E AC|B(ρ), while the final amount
of entanglement after sending the particle C is given by E A|BC = E A|BC (ρ). The
amount of entanglement distributed in this process is then given by the difference
between the final and the initial entanglement: E A|BC − E AC|B . In the following, the
entanglement is quantified via the relative entropy of entanglement. For two parties
X and Y it is defined as the minimal relative entropy between a given state ρXY and
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A B

C

Initial setup

A B

C

Transmission process

A B

C

Final setup

Alice’s lab Bob’s lab

Fig. 5.2 General protocol for entanglement distribution [10]. Copyright (2012) by the American
Physical Society

the set of separable states S:

E X |Y (ρXY ) = min
σ XY ∈S

S(ρXY ||σ XY ), (5.18)

where S(ρ||σ) = Tr[ρ log2 ρ] − Tr[ρ log2 σ ] is the relative entropy between the
states ρ and σ .

5.2.2 The Role of Quantum Correlations

The main result of [10, 11] is the finding that the amount of entanglement E A|BC −
E AC|B distributed in this protocol is limited by the amount of discord between the
exchanged particle C and the rest of the system AB:

E A|BC − E AC|B ≤ 	C|AB . (5.19)

Here, 	C|AB = 	C|AB(ρ) is the relative entropy of discord, defined as the minimal
relative entropy between a given state ρXY and the same state after a local von
Neumann measurement:

	X |Y (ρXY ) = min{

X

i

} S(ρXY ||
∑

i


X
i ρXY 
X

i ), (5.20)

and the minimum is taken over local von Neumann measurements {
X
i } on the

subsystem X .
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Fig. 5.3 Proof of the main result in Eq. (5.19) [10]. Copyright (2012) by the American Physical
Society

In the following we will reproduce the proof of Eq. (5.19) as presented in [10]
and sketched in Fig. 5.3. In particular, consider the state σ which is separable with
respect to the bipartition AC |B and at the same time the closest separable state to
ρ, i.e., E AC|B(ρ) = S(ρ||σ). Moreover, define a von Neumann measurement {
C

i }
such that themeasured state ρ′ = ∑

i 
C
i ρ
C

i hasminimal relative entropy to ρ, i.e.,
	C|AB(ρ) = S(ρ||ρ′). Finally, the state σ ′ = ∑

i 
C
i σ
C

i is defined by applying
the same von Neumann measurement on the state σ . The proof of Eq. (5.19) now
follows by observing that the states ρ, ρ′ and σ ′ lie on a straight line [10]:

S(ρ||σ ′) = S(ρ||ρ′) + S(ρ′||σ ′). (5.21)

Beforeweprove this equality,wenote that all quantities in this expression arefinite. In
particular, S(ρ||ρ′) is finite due to the definition of the stateρ′: S(ρ||ρ′) = 	C|AB(ρ).
This also implies that the support of ρ is contained in the support of ρ′. Moreover,
S(ρ′||σ ′) is finite due to the fact that the relative entropy does not increase under
quantum operations, and thus

S(ρ′||σ ′) ≤ S(ρ||σ) = E AC|B(ρ). (5.22)

This also means that the support of ρ′ is contained in the support of σ ′. Combining
these results we see that the support of ρ is contained in the support of σ ′, and thus
S(ρ||σ ′) is also finite.

For proving Eq. (5.21) we will first prove the following equalities:

Tr[ρ log2 σ ′] = Tr[ρ′ log2 σ ′], (5.23a)

Tr[ρ log2 ρ′] = Tr[ρ′ log2 ρ′], (5.23b)

where all quantities are finite due to the arguments mentioned above. Eq. (5.23a) can
be proven by noting that the state σ ′ = ∑

i 
C
i σ
C

i has the form of a quantum-
classical state:σ ′ = ∑

i piσ
AB

i ⊗
C
i with positive probabilities pi > 0. Ifwe further

express the states σ AB
i in the eigendecomposition σ AB

i = ∑
j λi j |ψi j 〉 〈ψi j |AB with

positive eigenvalues λi j > 0 and eigenstates |ψ AB
i j 〉, we obtain the following:
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Tr[ρ′ log2 σ ′] = Tr

⎡

⎣
(
∑

k


C
k ρ
C

k

)⎛

⎝
∑

i j

log2(pi λi j ) |ψi j 〉 〈ψi j |AB ⊗ 
C
i

⎞

⎠

⎤

⎦ (5.24a)

=
∑

i jk

log2(pi λi j )Tr
[

C

k ρ
C
k |ψi j 〉 〈ψi j |AB ⊗ 
C

i

]
(5.24b)

=
∑

i jk

log2(pi λi j )Tr
[
ρ |ψi j 〉 〈ψi j |AB ⊗ 
C

k 
C
i 
C

k

]
(5.24c)

=
∑

i j

log2(pi λi j )Tr
[
ρ |ψi j 〉 〈ψi j |AB ⊗ 
C

i

]
(5.24d)

= Tr

⎡

⎣ρ
∑

i j

log2(pi λi j ) |ψi j 〉 〈ψi j |AB ⊗ 
C
i

⎤

⎦ = Tr[ρ log2 σ ′]. (5.24e)

In Eq. (5.24b) we used the linearity of the trace, and in Eq. (5.24c) its cyclic invari-
ance. In Eq. (5.24d) we used the orthogonality of projectors, i.e., 
C

k 
C
i 
C

k =
δki


C
i . By applying the linearity of the trace once again in Eq. (5.24e) we arrive

at the desired result: Tr[ρ log2 σ ′] = Tr[ρ′ log2 σ ′]. Using the same arguments
Eq. (5.23b) is also seen to be correct.

The proof of Eq. (5.21) now follows by applying these results to the sum
S(ρ||ρ′) + S(ρ′||σ ′):

S(ρ||ρ′) + S(ρ′||σ ′) = Tr[ρ log2 ρ] − Tr[ρ log2 ρ′] + Tr[ρ′ log2 ρ′] − Tr[ρ′ log2 σ ′]
Eq. (5.23b)= Tr[ρ log2 ρ] − Tr[ρ′ log2 ρ′] + Tr[ρ′ log2 ρ′] − Tr[ρ′ log2 σ ′]
= Tr[ρ log2 ρ] − Tr[ρ′ log2 σ ′]
Eq. (5.23a)= Tr[ρ log2 ρ] − Tr[ρ log2 σ ′] = S(ρ||σ ′). (5.25)

We now turn to the proof of the main result in Eq. (5.19). Starting from Eq. (5.21)
and recalling that the state ρ′ was defined such that S(ρ||ρ′) = 	C|AB(ρ) we obtain
the following equality: S(ρ||σ ′) = 	C|AB(ρ) + S(ρ′||σ ′). In the next step we make
use of Eq. (5.22) arriving at the following result:

S(ρ||σ ′) ≤ 	C|AB(ρ) + E AC|B(ρ). (5.26)

In the final step, recall that the state σ is separable with respect to the bipartition
AC |B, and thus can be written as σ = ∑

j q jσ
AC
j ⊗ σ B

j . Using this expression, we

can write the state σ ′ = ∑
i 
C

i σ
C
i as

σ ′ =
∑

i j

pi j q jσ
A

i j ⊗ σ B
j ⊗ 
C

i (5.27)
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with
∑

i 
C
i σ AC

j 
C
i = ∑

i pi jσ
A

i j ⊗ 
C
i . From this result we see that the state

σ ′ is fully separable, and thus the relative entropy between ρ and σ ′ is an upper
bound on the relative entropy of entanglement E A|BC , i.e., E A|BC (ρ) ≤ S(ρ||σ ′).
Inserting this inequality into Eq. (5.26) we arrive at the desired result: E A|BC (ρ) ≤
	C|AB(ρ) + E AC|B(ρ). This completes the proof of Eq. (5.19).

As was further pointed out in [10], the inequality (5.19) also holds in a more
general case, where the relative entropy S in both Eqs. (5.18) and (5.20) is replaced
by a general distance D which has the following properties:

• D does not increase under quantum operations, i.e.,

D(�[ρ],�[σ ]) ≤ D(ρ, σ ) (5.28)

for any quantum operation � and any pair of states ρ and σ ,
• D satisfies the triangle inequality, i.e.,

D(ρ, σ ) ≤ D(ρ, τ ) + D(τ, σ ) (5.29)

for any states ρ, σ , and τ .

By virtue of the triangle inequality, Eq. (5.21) changes to the inequality

D(ρ, σ ′) ≤ D(ρ, ρ′) + D(ρ′, σ ′). (5.30)

Starting from this result, Eq. (5.19) can be proven following the same reasoning as
for the relative entropy. Important examples for distances having these properties are
the trace distance Dt (ρ1, ρ2) = 1

2Tr|ρ1 − ρ2| with the trace norm of an operator

M defined as Tr|M | = Tr
√

M†M and the Bures distance DB(ρ1, ρ2) = 2(1 −√
F(ρ1, ρ2)) with the fidelity F(ρ1, ρ2) = (

Tr
√√

ρ1ρ2
√

ρ1
)2
.

5.2.3 Discussion

The result in Eq. (5.19) reveals a fundamental relation between the amount of entan-
glement in different splits of a quantum system. This can be seen by permuting the
parties A and B in Eq. (5.19), which delivers the following inequality [11]:

∣∣∣E A|BC − E AC|B
∣∣∣ ≤ 	C|AB . (5.31)

This inequality provides a strong link between E A|BC and E AC|B . In particular,
for zero quantum discord 	C|AB = 0 this result immediately implies that these
quantities are equal: E A|BC = E AC|B .
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Finally, we notice that for successful entanglement distribution the exchanged
particle does not need to be entangled with the rest of the system. In particular,
there exist states ρ = ρ ABC which exhibit no entanglement between the exchanged
particle C and the rest of the system AB, i.e,

ρ =
∑

i

pi · ρ AB
i ⊗ ρC

i , (5.32)

while at the same time the final amount of entanglement E A|BC is strictly larger
than the initial amount of entanglement E AC|B : E A|BC (ρ) > E AC|B(ρ). The possi-
bility of such entanglement distribution with separable states was first pointed out
by Cubitt et al. in [12], who proved that this phenomenon is possible with vanish-
ing initial entanglement E AC|B(ρ) = 0. In the last years these results were further
extended to different classes of quantum states [11, 13–15], and a classical counter-
part for this quantum phenomenon was also presented [16]. The limits for this effect
were further explored in [17], where it was shown that entanglement distribution
with separable states requires states with rank at least three if the amount of entan-
glement is quantified via the logarithmic negativity. Very recently, three independent
experiments have also shown that entanglement distribution with separable states is
indeed possible with current technology [18–21].

5.3 Transmission of Correlations

5.3.1 Classical Transmission of Correlations

The role of quantum discord for the transmission of correlations was studied in [22].
The setup is illustrated in Fig. 5.4: initially Alice and Bob share a joint quantum state
ρ AB . The third party Charlie is initially uncorrelated with Alice and Bob, i.e., the
total initial state is given by

Initial setup Communication process Final setup

A

B C

A

B C

classical
communication

A

B C

Fig. 5.4 Classical transmission of correlations
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ρ ABC = ρ AB ⊗ ρC , (5.33)

see left part of Fig. 5.4. In the task of classical transmission Bob aims to transfer
his state to Charlie by the means of local operations and classical communication
(LOCC), see middle part of Fig. 5.4. After this process the final state takes the form

ρ ABC
f = �B↔C [ρ ABC ], (5.34)

where �B↔C denotes an LOCC operation between Bob and Charlie. In the ideal
case the final state ρ AC

f shared by Alice and Charlie is equal to the initial state ρ AB

shared by Alice and Bob (right part of Fig. 5.4):

ρ AC
f = ρ AB . (5.35)

As was pointed out in [22], such an ideal process is not possible in general. In
particular, due to the fact that entanglement cannot be created by LOCC, the final
state ρ AC

f is always separable. This implies that Eq. (5.35) is never fulfilled if Alice

and Bob share an entangled initial state ρ AB . As was further shown in [22], the ideal
process is possible if and only if Alice and Bob share a quantum-classical state:

ρ AB =
∑

i

piρ
A
i ⊗ |i〉 〈i |B . (5.36)

This was shown by introducing a figure of merit I c which quantifies the maximal
mutual information between Alice and Charlie achievable in this procedure. The
formal definition of I c can be given as follows:

I c(ρ AB) = lim
dC →∞ sup

�B↔C

I (ρ AC
f ), (5.37)

where the supremum is taken over all LOCC operations �B↔C between Bob and
Charlie, I is the mutual information, and dC is the dimension of Charlie’s system.

5.3.2 The Role of Quantum Correlations

As was shown in [22], the figure of merit for the classical transmission I c introduced
in Eq. (5.37) is closely related to the amount of discord in the initial state ρ AB . The
latter is defined as

DB|A(ρ AB) = I (ρ AB) − sup
{M B

i }
J (ρ AB){M B

i }, (5.38)
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where J (ρ AB){M B
i } is given as

J (ρ AB){M B
i } = S(ρ A) −

∑

i

pi S(ρ A
i ). (5.39)

Here, {M B
i } is a positive operator-valued measure (POVM) on Bob’s system B,

pi = Tr[M B
i ρ AB] is the probability for the outcome i , and ρ A

i = TrB[M B
i ρ AB]/pi

is the state of Alice after the outcome i has been obtained. I c is related to the discord
DB|A as follows:

I c(ρ AB) = I (ρ AB) − DB|A(ρ AB). (5.40)

This equality was proven in [22], and we will present an alternative proof in the
following. In particular we will prove the inequalities

I c(ρ AB) ≤ I (ρ AB) − DB|A(ρ AB), (5.41)

I c(ρ AB) ≥ I (ρ AB) − DB|A(ρ AB), (5.42)

which taken together imply Eq. (5.40).
For proving Eq. (5.41) we consider the structure of the final state ρ ABC

f =
�B↔C [ρ ABC ] using the fact that any LOCC operation �B↔C can be written as
a separable operation1

ρ ABC
f = �B↔C [ρ ABC ] =

m∑

i=1

Bi ⊗ Ciρ
ABC B†

i ⊗ C†
i (5.43)

with a finite number of termsm andKraus operators Bi ⊗Ci satisfying
∑m

i=1 B†
i Bi ⊗

C†
i Ci = 1B ⊗1C [23]. In the next step recall that the initial state ρ ABC has the form

ρ ABC = ρ AB ⊗ ρC . Moreover, I c does not depend on the choice of the state ρC ,
and thus we choose ρC = 1C/dC . With this in mind, the final state ρ ABC

f can also
be written as

ρ ABC
f = 1

dC

m∑

i=1

Biρ
AB B†

i ⊗ Ci C
†
i . (5.44)

Now we define positive numbers qi = Tr[Ci C
†
i ] > 0 and quantum states σC

i =
Ci C

†
i /qi . The expression for the final state ρ ABC

f further reduces to

ρ ABC
f =

m∑

i=1

E B
i ρ AB

(
E B

i

)† ⊗ σC
i . (5.45)

1 The inverse is not true in general, i.e., a separable operation does not necessarily correspond to
LOCC [23].
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Here, E B
i are Kraus operators on the subsystem B defined as E B

i =
√

qi
dC

Bi . The

fact that E B
i are indeed Kraus operators, i.e., satisfy

∑m
i=1

(
E B

i

)†
E B

i = 1B , can be
verified by inspection:

m∑

i=1

(
E B

i

)†
E B

i =
m∑

i=1

qi

dC
B†

i Bi = 1

dC

m∑

i=1

Tr[Ci C
†
i ] · B†

i Bi (5.46)

= 1

dC
TrC

[
m∑

i=1

B†
i Bi ⊗ C†

i Ci

]
= 1

dC
TrC

[
1B ⊗ 1C

]
= 1B .

Starting from the result in Eq. (5.45) the final state shared by Alice and Charlie
takes the form

ρ AC
f =

m∑

i=1

TrB

[
M B

i ρ AB
]

⊗ σC
i , (5.47)

where M B
i are POVM elements on the subsystem B defined as M B

i = (
E B

i

)†
E B

i .
We will now show that for any such state the mutual information is bounded above
as follows:

I (ρ AC
f ) ≤ I (ρ AB) − DB|A(ρ AB). (5.48)

Since the figure of merit I c was defined as the supremum of the mutual information
between Alice and Charlie over all LOCC protocols in the limit dC → ∞, this result
will imply the inequality (5.41). To prove this statement we introduce the state

τ AC̃ =
m∑

i=1

TrB

[
M B

i ρ AB
]

⊗ |i〉 〈i |C̃ (5.49)

with a new system C̃ having dimension dC̃ = max{dC , m}. Note that the latter state
can be transformed into the state �C̃ [τ AC̃ ] = ∑m

i=1 TrB
[
M B

i ρ AB
]⊗ σ C̃

i by a local

operation2 �C̃ , where the states σ C̃
i are the same as σC

i in Eq. (5.47). Since the
mutual information does not increase under local operations, it follows that the state
τ AC̃ has at least the same mutual information as ρ AC

f :

I (τ AC̃ ) ≥ I (ρ AC
f ). (5.50)

2 The local operation that achieves this task is a measure-and-prepare map with Kraus operators

K C̃
ab =

√
σ C̃

b |a〉 〈b|C̃ .
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Finally, it is straightforward to verify that the mutual information of τ AC̃ can be
written as

I (τ AC̃ ) = J (ρ AB){M B
i } (5.51)

with J (ρ AB){M B
i } defined in Eq. (5.39). Combining these results we arrive at the

inequality

I (ρ AC
f ) ≤ I (τ AC̃ ) ≤ sup

{M B
i }

J (ρ AB){M B
i } = I (ρ AB) − DB|A(ρ AB), (5.52)

where the last equality follows from the definition of discord in Eq. (5.38). This
completes the proof of Eq. (5.48) and the inequality (5.41).

We will now complete the proof of Eq. (5.40) by proving the inequality (5.42).
This can be done by considering a specific LOCC protocol where Bob performs a
measurement with dC Kraus operators E B

i on his subsystem B. The outcome of the
measurement is sent to Charlie who stores it in his system C of dimension dC . After
performing this protocol, the final state ρ AC

f shared by Alice and Charlie takes the
form

ρ AC
f =

dC∑

i=1

TrB

[
M B

i ρ AB
]

⊗ |i〉 〈i |C (5.53)

with POVM elements M B
i = (

E B
i

)†
E B

i . Since we consider a specific LOCC proto-
col, Ic cannot be smaller than the mutual information for any state obtained in this
way, and thus

I c(ρ AB) ≥ lim
dC →∞ sup

{M B
i }

I (ρ AC
f ). (5.54)

The inequality (5.42) follows by noting that the state ρ AC
f has the same form as τ AC̃

in Eq. (5.49), and thus by applying the same arguments as for τ AC̃ we see that the
mutual information of ρ AC

f can be written as I (ρ AC
f ) = J (ρ AB){M B

i }. Together with
the definition of discord in Eq. (5.38) this completes the proof of Eqs. (5.42) and
(5.40).

5.3.3 Quantum Transmission of Correlations

The task of quantum transmission was considered in [22] and independently in
[24]. The setup is illustrated in Fig. 5.5. Similar to the scenario for the classical
transmission, Alice and Bob share a joint initial state ρ AB (left part of Fig. 5.5). The
system of Charlie now consists of two subsystems C1 and C2, initially uncorrelated
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Initial setup Communication process Final setup

A

B C1

C2

A
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C2

quantum
communication

A

B C1

C2

Fig. 5.5 Quantum transmission of correlations

with Alice and Bob, and the total initial state is thus given by

ρ ABC = ρ AB ⊗ ρC1C2 . (5.55)

Moreover, Bob andCharlie have access to a general quantumcommunication channel
�BC (middle part of Fig. 5.5), and the final state after the application of the channel
takes the form

ρ ABC
f = �BC [ρ ABC ], (5.56)

see right part of Fig. 5.5.
The aim of this process is to achieve maximal mutual information between the

system of Alice and each of Charlie’s subsystems C1 and C2 on average. Following
[22] we denote the corresponding figure of merit by I q

2 , where the superscript q tells
us that quantum communication is considered, and the index 2 gives the number of
Charlie’s subsystems. The formal definition of I q

2 can be given as follows:

I q
2 (ρ AB) = lim

d→∞ sup
�BC

I (ρ
AC1
f ) + I (ρ

AC2
f )

2
, (5.57)

where both subsystems of Charlie have the same dimension d = dC1 = dC2 . It is
straightforward to generalize this quantity to n subsystems of Charlie:

I q
n (ρ AB) = lim

d→∞ sup
�BC

∑n
i=1 I (ρ

ACi
f )

n
, (5.58)

where d = dC1 = dC2 = . . . = dCn is the dimension of each of Charlie’s subsystems.
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5.3.4 Equivalence of Quantum and Classical Transmission
for Pure States

In the scenario where Alice and Bob share a pure initial state ρ AB = |ψ〉 〈ψ |AB

quantum and classical transmission are equivalent [22]:

I q
n (|ψ〉 〈ψ |AB) = I c(|ψ〉 〈ψ |AB) (5.59)

for any number of Charlie’s subsystems n ≥ 2. We will present the proof for this
statement following the arguments of [22]. First, it is important to note that I q

n cannot
be smaller than I c:

I q
n (ρ AB) ≥ I c(ρ AB), (5.60)

which follows from the fact that quantum communication is more general than clas-
sical communication. In the following we will show that for pure states |ψ〉AB and
n ≥ 2 the inverse inequality also holds:

I q
n (|ψ〉 〈ψ |AB) ≤ I c(|ψ〉 〈ψ |AB). (5.61)

This result together with Eq. (5.60) will complete the proof of the desired equality
(5.59).

In the first step we will show that the sum
∑n

i=1 I (ρ
ACi
f ) is in general bounded

above as follows:

n∑

i=1

I (ρ
ACi
f ) ≤ nS(ρ A

f ). (5.62)

This inequality can be proven by using the fact that any tripartite state ρXY Z satisfies
the inequality

I (ρXY ) + I (ρX Z ) ≤ 2S(ρX ), (5.63)

which can be seen by rewriting it as S(ρY )+ S(ρZ ) ≤ S(ρXY )+ S(ρX Z ) and noting
that the latter inequality is equivalent to the strong subadditivity of the von Neumann
entropy [see p. 521 in [25]]. If we apply this inequality to the state ρ

ACkCl
f with k �= l,

we arrive at the following inequality:

I (ρ
ACk
f ) + I (ρ

ACl
f ) ≤ 2S(ρ A

f ). (5.64)

Starting from this result we will now prove Eq. (5.62) for even n ≥ 2, i.e., n = 2m.
In this case the sum can be bounded as
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n∑

i=1

I (ρ
ACi
f ) =

m∑

j=1

{
I (ρ

AC2 j−1
f ) + I (ρ

AC2 j
f )

}
≤ 2mS(ρ A

f ) = nS(ρ A
f ), (5.65)

where we used Eq. (5.64) to obtain I (ρ
AC2 j−1
f )+ I (ρ

AC2 j
f ) ≤ 2S(ρ A

f ). For odd n ≥ 3
we can write

2
n∑

i=1

I (ρ
ACi
f ) =

n∑

k=1

I (ρ
ACk
f ) +

n∑

l=1

I (ρ
ACl
f )

= I (ρ
AC1
f ) +

n∑

k=2

I (ρ
ACk
f ) +

n−1∑

l=1

I (ρ
ACl
f ) + I (ρ

ACn
f )

=
n∑

k=2

I (ρ
ACk
f ) +

n−1∑

l=1

I (ρ
ACl
f ) + I (ρ

AC1
f ) + I (ρ

ACn
f ). (5.66)

Note that the sums
∑n

k=2 I (ρ
ACk
f ) and

∑n−1
l=1 I (ρ

ACl
f ) each have n − 1 terms, which

is an even number. Thus, we can use the same arguments as in Eq. (5.65) to see that
both of them are bounded from above by (n − 1)S(ρ A

f ). Finally, due to Eq. (5.64)

the sum I (ρ
AC1
f ) + I (ρ

ACn
f ) is bounded from above by 2S(ρ A

f ). Combining these
results we see that

2
n∑

i=1

I (ρ
ACi
f ) ≤ 2nS(ρ A

f ), (5.67)

which completes the proof of the desired inequality (5.62) for any n ≥ 2.
Recalling that the state of Alice never changes in the process, i.e., ρ A

f = ρ A,

Eq. (5.62) implies that the average mutual information 1
n

∑n
i=1 I (ρ

ACi
f ) never

exceeds the entropy of ρ A:

1

n

n∑

i=1

I (ρ
ACi
f ) ≤ S(ρ A). (5.68)

Due to the definition of I q
n in Eq. (5.58) this result immediately implies that S(ρ A)

is also an upper bound for I q
n :

I q
n (ρ AB) ≤ S(ρ A). (5.69)

In the final step, note that for pure states ρ AB = |ψ〉 〈ψ |AB the quantity I c coincides
with the entropy of ρ A:

I c(|ψ〉 〈ψ |AB) = S(ρ A). (5.70)
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This follows from the relation between I c and quantum discord provided in
Eq. (5.40) by noting that for pure states the mutual information and the discord are
given as I (|ψ〉 〈ψ |AB) = 2S(ρ A) and DB|A(|ψ〉 〈ψ |AB) = S(ρ A). This completes
the proof of Eq. (5.61) and the desired equality (5.59) immediately follows.

5.3.5 Discussion

As was pointed out in [22], ideal classical transmission as illustrated in Fig. 5.4 is
possible if and only if the initial state ρ AB is quantum-classical:

ρ AB =
∑

i

piρ
A
i ⊗ |i〉 〈i |B . (5.71)

For any other state the discord DB|A(ρ AB) is nonzero, and the process of classical
transmission unavoidably leads to a loss of information, i.e., the mutual information
between Alice and Charlie is never larger than the difference I (ρ AB)− DB|A(ρ AB).
The amount of quantum discord DB|A(ρ AB) thus quantifies the loss of information
in the task of classical transmission.

It was further shown in [22] that the equivalence between quantum and classical
transmission stated in Eq. (5.59) only holds for pure initial state. In particular, there
exist mixed states ρ AB for which quantum transmission leads to a better performance
when compared to the classical transmission: I q

2 (ρ AB) > I c(ρ AB). In this context,
an important result was obtained recently by Brandão et al., who showed that I q

n and
I c coincide in the asymptotic limit [24]:

lim
n→∞ I q

n (ρ AB) = I c(ρ AB). (5.72)

Thus, quantum and classical transmission are equivalent for any initial state ρ AB if
the number of Charlie’s subsystems goes to infinity.
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Chapter 6
Outlook

In this work, we discussed the role of quantum correlations beyond entanglement in
three fundamental tasks in quantum information theory: remote state preparation [1],
entanglement distribution [2, 3], and transmission of correlations [4, 5]. Although
these tasks clearly demonstrate the relevance of quantum discord and general quan-
tum correlations in quantum information theory, they cannot cover thewhole range of
applications of quantum correlations beyond entanglement that have been presented
recently. In the following, we will give an outlook on some of the developments in
this direction.

The role of quantum discord in quantum metrology was first investigated byModi
et al. [6], and important contributions in this directionweremade recently byGirolami
et al. in [7, 8]. In the scenario considered in [8], Alice and Bob share a bipartite state
ρ AB undergoing a local unitary evolution UA = e−iϕHA on the subsystem of Alice
with a nondegenerate Hamiltonian HA. The final state UAρ ABU †

A is then used to
estimate the unknown parameter ϕ. As was shown in [8], the parameter ϕ can always
be estimatedwith nonzero precisionwhenever the stateρ AB is not classical-quantum,
i.e., not of the form ρ AB = ∑

i pi |i〉 〈i |A ⊗ ρB
i . The authors of [8] investigate this

phenomenon by introducing a new quantifier of quantum correlations which they call
interferometric power. They show that the interferometric power is able to capture
the worst-case precision of the procedure, and conclude that the presence of discord
in a quantum state guarantees its usefulness for quantum metrology. Experiment
supporting these theoretical results has also been reported in [8].

A great amount of attention was also attracted by the relation between entan-
glement and discord in the quantum measurement process [9–11]. In particular, it
was shown in [9, 10] that for performing a von Neumann measurement on one part
of a composite quantum state ρ AB , the creation of entanglement between the sys-
tem and the measurement apparatus is unavoidable whenever the state has nonzero
quantum discord. Recently, experimental demonstration of this effect has also been
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46 6 Outlook

reported [12]. These results support the role of quantumdiscord and general quantum
correlations for studying entanglement on the one hand, and for understanding phe-
nomena which cannot be explained solely by the presence of entanglement on the
other hand. In this context, useful results can be expected from the investigation of
quantum discord in the framework of coherence, recently introduced by Baumgratz
et al. [13]. Themain aim of this research directionwould be the unification of all three
concepts: entanglement, quantum correlations beyond entanglement, and coherence.
This research may further lead to the discovery of new tasks in quantum informa-
tion theory which are not based on entanglement, and which require new types of
quantum correlations to capture their performance.
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