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Supervisors’ Foreword

Thanks to a resolute activity, both theoretical and experimental, we have seen
tremendous achievements in cooling, trapping, and controlling atoms in the past
decades. As a result, AMO physics has branched out in diverse directions. The first
demonstrations of condensation of dilute atomic gases paved the way to stretch the
many-body physics aspect further. It was realized early on that tight confinement
into lattice sites can map the physics of ultracold bosonic atoms into a Bose–
Hubbard model supporting a superfluid-Mott insulator quantum phase transition.
Few years after, the transition was experimentally studied in detail using rubidium
atoms cooled down to temperatures close to zero degrees and held trapped in an
optical lattice. The experiments benchmarked the field of ultracold atomic physics.
The high degree of isolation from their environments together with the great
experimental control make these systems ideal for systematic studies of strongly
correlated many-body systems.

This spurred the interest in quantum simulators, tailor-made systems simulating
quantum many-body problems that are intractable on classical computers. Today,
almost one and a half decade after the first superfluid-Mott transition was
demonstrated, we are just about to witness the first experiments that could be
classified as proper quantum simulators. Indeed, the field has within the last years
advanced with an enormous momentum and a plethora of different systems are
studied in the lab; both bosonic and fermionic atoms, various lattice geometries also
including ones with topologically non-trivial states, and spinor condensates com-
prised of atoms where the internal structure of an atom plays an essential role. This
last example is very relevant when it comes to simulating spin models, i.e. quantum
magnetism. An additional achievement, related to the present thesis, is the prepa-
ration of orbital atomic states within the lattice. To prepare and manipulate such
states is highly desirable since we know that they play an important role in exotic
metals and especially superconductors.

The thesis of Fernanda Pinheiro explores the timely topic of orbital physics in
optical lattices. It is written such that it provides an accessible introduction to the
field for the non-experts. A rather comprehensive introduction to the topic of orbital
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states in optical lattices is followed by an in-depth study of topics that should be of
interest also for experts. She derives the relevant models for both p- and d-band
condensates and solves for the phase diagrams at a mean-field level. In particular,
novel effects that the trapping potential causes in the condensation of p-band bosons
are analyzed. The strongly correlated regime is discussed by a systematic mapping
of the bosonic models onto spin models. For lower dimensions, this description
of the atomic states as effective spins is different from those of spinor condensates;
here the spin degree-of-freedom is encoded in the atomic orbital states and not
internal electronic Zeeman levels. As is shown, this has several advantages in terms
of realizing quantum simulators. In higher dimensions, when all three p-orbital
states contribute, the specific shape of the atom–atom interactions implies an
emerging SU(3) structure which suggests that magnetic models beyond the para-
digm Heisenberg ones can be simulated.

In the last part, Fernanda considers a disordered 2D lattice model of coupled
non-interacting atomic states. The freedom in choosing the coupling allows for
realization of models that belong to different symmetry classes of the characteri-
zation table of disordered systems. This is of special relevance in two dimensions
where the system properties change qualitatively depending on the symmetries, for
example the zero energy states may either be metallic or localized/insulating. The
versatility of the cold atom systems thereby offers an interesting platform for
exploring the Anderson problem in different classes.

Stockholm Prof. Jonas Larson
Aalto Prof. Jani-Petri Martikainen
July 2016
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Abstract

In this thesis we explore different aspects of the physics of multi-species atomic
systems in optical lattices. In the first part, we will study cold gases in the first and
second excited bands of optical lattices—the p and d bands. The multi-species
character of the physics in excited bands lies in the existence of an additional orbital
degree of freedom, which gives rise to qualitative properties that are different from
what is known for the systems in the ground band. We will introduce the orbital
degree of freedom in the context of optical lattices and we will study the many-body
systems both in the weakly interacting and in the strongly correlated regimes.

We start with the properties of single particles in excited bands, from where we
investigate the weakly interacting regime of the many-body p- and d-orbital sys-
tems in Chaps. 2 and 3. This presents part of the theoretical framework to be used
throughout this thesis. In Chap. 4, we study Bose–Einstein condensates in the
p band, confined by a harmonic trap. This includes the finite temperature study
of the ideal gas and the characterization of the superfluid phase of the interacting
system at zero temperature for both symmetric and asymmetric lattices.

We continue with the strongly correlated regime in Chap. 5, where we inves-
tigate the Mott insulator phase of various systems in the p and d bands in terms of
effective spin models. Here we show that the Mott phase with a unit filling
of bosons in the p and d bands can be mapped, in two dimensions, to different types
of XYZ Heisenberg models. In addition, we show that the effective Hamiltonian
of the Mott phase with a unit filling in the p band of 3D lattices has degrees of
freedom that are the generators of the SU(3) group. We discuss both the bosonic
and fermionic cases.

In the second part, consisting of Chap. 6, we will change gears and study effects
of disorder in generic systems of two atomic species. We consider different systems
of non-interacting but randomly coupled Bose–Einstein condensates in 2D,
regardless of an orbital degree of freedom. We characterize spectral properties and
discuss the occurrence of Anderson localization in different cases, belonging to
the different chiral orthogonal, chiral unitary, Wigner–Dyson orthogonal and
Wigner–Dyson unitary symmetry classes. We show that the different properties of
localization in the low-lying excited states of the models in the chiral and the
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Wigner–Dyson classes can be understood in terms of an effective model, and we
characterize the excitations in these systems. Furthermore, we discuss the experi-
mental relevance of the Hamiltonians presented here in connection to the Anderson
and the random-flux models.
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Chapter 1
Preamble

After the experimental realization of the optical lattices, and the subsequent
observation in 2002 [1] of the Mott-insulator to superfluid transition predicted 15
years earlier [2], systems of cold atoms became a powerful tool for exploring many-
body quantum phenomena [3]. The degree of control and manipulation in these
systems is so great, that nowadays it is possible to engineer lattices with all sorts
of different configurations, that allow for the study of many-body quantum physics
both in the weakly interacting and in the strongly correlated regimes [4]. In other
words, cold atoms in optical lattices provide highly controllable laboratories for
testing models of solid state and condensed matter physics.

This is because, similar to the behavior of electrons that is described by the cele-
brated Hubbard model, the many-body dynamics in the optical lattice is dominated
by the two basic ingredients consisting of hopping and repulsive interactions [5].
When the constituent particles are bosons, this is well described by the so called
Bose–Hubbard Hamiltonian,

Ĥs = −
∑

〈i, j〉
t (â†i â j + â†j âi ) +

∑

i

U n̂ i
(
n̂ i − 1

)
, (1.1)

where âi (â
†
i ) destroys (creates) an atom in the i th site, in a site-localized state of the

ground—the s band [5]. The first term describes nearest neighbors hopping, which
occurs with amplitude t , and the second term describes the two-body interactions,
which occur with matrix elements proportional to U .

Despite its apparent simple form, the list of experimental achievements with
basis in this model is very long. It includes, among others, the simulation of phase
transitions and magnetic systems [6, 7], the development of single-site addressing
[8, 9], the realization of topological states [10] as well as studies of equilibration
and of Lieb–Robinson bounds [11, 12]. What it doesn’t include, however, is a whole
class of interesting phenomena with origin on the degeneracy of the onsite, or orbital,
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2 1 Preamble

wave-functions. Orbital selective phenomena has been widely studied in the
condensed matter community and are important, for example, for explaining the
transitions from metal to insulator in transition-metal oxides [13, 14], as well as
magnetoresistance [15] and superconductivity in these and other materials [15], and
inHe3 systems [16]. But experimentally controllable systems to address related ques-
tions were not available until very recently, when the first steps were taken towards
the study of orbital physics with cold atoms in optical lattices [17].

Excited bands of optical lattices provide a natural framework for the study of
orbital physics [18]. Indeed, the site-localized states in isotropic square and cubic
lattices feature an intrinsic degeneracy, that can be readily seen from analogy with
the harmonic oscillator in two and three dimensions: Respectively, the first excited
state is two- and three-fold degenerate, the second excited state is three- and six-fold
degenerate, and so on. In addition, the wave-functions of the different states have
different spatial profiles in the different directions, which directly determine the
properties of the dynamics. At the single-particle level, for example, this anisotropy
of the orbitals implies a tunneling rate that is direction dependent. At the many-body
level, the non-vanishing matrix elements characterizing the interacting processes
in the system are also strongly dependent on the spatial profile of the orbital states.
These give rise to very rich phenomena beyond the Bose–Hubbardmodel of Eq. (1.1)
[18, 19]. To cite just a few, it includes a superfluid phase with a complex-valued
order parameter and that spontaneously breaks time-reversal symmetry [20, 21]; and
insulating phases with different types of ordering [22] with possibility of frustration
in 3D and that allow for the study of exotic models of magnetism [23]. Fermionic
systems in the p band have also been characterized and feature very rich physics
beyond the s-wave isotropy of the ground band [24, 25]. Moreover, these are also
alternative systems that can realize multi-species Hamiltonians with cold atoms [18],
and in particular, that can be used to overcome some of the experimental difficulties
of the usual (multi-species) setups in low dimensions [18].

The purpose of this thesis is to provide an introduction to orbital physics in
the excited bands of optical lattices, and to report a number of studies that have
been performed on this and in another multi-species system in the past years. We
will start by discussing the properties of a single particle in a periodic potential
in Chap.2, from where we introduce the orbital states and the dynamics of the
many-body systems. The focus of Chap.3 is the weakly interacting regime. Here
we present an overview on mean-field techniques and study mean-field properties
of the bosonic systems in the p band of two- and three-dimensional optical lattices,
and in the d band of the two-dimensional case. We also compute the phase diagram
of the Mott-insulator to superfluid transition for the d-band system. We present
some results of previous studies on the topic, and part of the work of Ref. [26]. In
Chap.4, we study the superfluid phase of the p band system in two dimensions that
is confined by a harmonic trap. We characterize how the inhomogeneous density
of the confined system affects the physics of the homogeneous case, and we also
study finite temperature properties of the non-interacting case. This is the topic of
Ref. [27].

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_4
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Moving away from the mean-field territory, we study the strongly correlated
regime in the p and d bands in Chap.5. More specifically, we characterize the prop-
erties of the Mott phase with a unit filling of various systems in terms of effective
spin models, that are obtained using perturbation theory with the tunneling as the
small parameter. These systems are explored in the context of quantum simulation,
where they are shown to be useful for the study of paradigm models of quantum
magnetism. We take a step forward in this direction and present an experimen-
tal scheme for implementation and manipulation of the systems discussed. This
is the most extensive chapter of this thesis, and is based on the material of Refs.
[22, 23, 26].

Motivated by the studies of Chap.5, we then investigate, in Chap.6, a system
of non-interacting Bose–Einstein condensates that are randomly coupled in a two-
dimensional optical lattice. This is the content of Ref. [28]. Here we characterize
spectral properties and discuss the occurrence of Anderson localization in differ-
ent cases, that belong to different symmetry classes of the classification scheme
of disordered systems [29]. These consist of the chiral orthogonal, chiral unitary,
Wigner–Dyson orthogonal and Wigner–Dyson unitary symmetry classes. We will
show that when compared to the chiral classes, the onset of localization in terms of
the disorder strength is delayed in the Wigner–Dyson classes, and we explain this
result in terms of an effective model obtained after integrating out the fastest modes
in the system. We also characterize the excitations, which feature vortices in the
unitary classes and domain walls in the orthogonal ones. Furthermore, we discuss
the experimental relevance of these systems for studying both the Anderson and the
random-flux models. Finally, we present the concluding remarks in Chap.7.
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Chapter 2
Introduction to Optical Lattices and Excited
Bands (and All That)

“And God said, “Let there be light,” and there was light. And
God saw that light was good. Some time later, there were optical
lattices; and then it was even better.”

—Adapted from a famous book.

This chapter provides an introduction to the physics in excited bands of optical
lattices. We will start by briefly discussing general features of the physics in optical
lattices in Sect. 2.1. In Sect. 2.2 we review properties of single particles in periodic
potentials and introduce the p and d orbitals in excited bands. The Hamiltonians of
the many-body systems are discussed in Sect. 2.3, together with symmetry properties
of each case.1 In Sect. 2.5 we present an overview about experiments with cold atoms
in excited bands of optical lattices.

2.1 Optical Lattices

Optical lattices are spatially periodic potentials, created from the superposition of linearly
polarized lasers, that can be used to trap neutral atoms via AC Stark shift [5].

The basic idea behind the implementation of optical lattices relies on the use of
electric field with a spatial dependence for inducing a position-dependent shift on
the energy levels of an atom [5, 6]. We will illustrate how this works by considering
the interaction of a two-level atomwithmonochromatic laser light [7, 8]. For that, we

1The presentation of the p-band case follows Refs. [1–3]. The discussion about the d-band case
follows Ref. [4].
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6 2 Introduction to Optical Lattices and Excited Bands (and All That)

start with the Hamiltonian describing two electronic atomic levels, i.e., the ground
|g〉 and excited |e〉,

Ha = Eg|g〉〈g| + Ee|e〉〈e|, (2.1)

where Eg and Ee are the corresponding ground and excited states energies and we
define ω0 = Ee − Eg .

Let us assume that the wavelength of the laser λL is much greater than the atomic
size2 and write the Hamiltonian describing the dipole coupling of the atom with the
oscillating electric field

HI = −e r · E0 cos(ωLt), (2.2)

where −er is the electric dipole moment operator, E0 is the electric field amplitude
and ω0 the laser frequency [7]. The Hamiltonian of the atom-laser interaction then
follows

H = Ha + Hi = �

( −ω0/2 � cos(ωLt)
�∗ cos(ωLt) ω0/2

)
, (2.3)

where � = E0
�

〈g|e r|e〉 is the Rabi frequency, and due to parity selection rules
〈g|r|g〉 = 〈e|r|e〉 = 0.

Two situations are of particular interest here [9]: (i) close to resonance, when
ω0 ≈ ωL, |ω0 −ωL| � ω0,ωL; and (ii) far off resonance, when |ω0 −ωL| � ω0,ωL.
We consider them separately:

(i) Close to resonance, the probability of transition between the |g〉 and |e〉 states is
time dependent and given by

P(t) = �2

|�|2 + (ωL − ω0)2
sin2

(
t

2

√
|�|2 + (ωL − ω0)2

)
. (2.4)

In particular, if an initial state is given such that all the atoms are in the |g〉 state,
a pulse of π duration—the so called π pulse, is capable of exciting the entire
population to the |e〉 state. This is not the regime for implementation of optical
lattices, but as will be discussed later, it is of relevance for manipulations in
experiments with cold atoms.

(ii) The regime of interest for creating optical lattices is far-off resonance, where
one obtains the Stark shifts. In fact, in the rotating frame with respect to the light
field, the effective Hamiltonian of the total system is static, and given by3

H = �

2

(
� 2�
2�∗ −�

)
, (2.5)

2At the atomic scale, i.e., the Bohr radius, spatial variations of the electric field can be neglected.
This is called the dipole approximation [7].
3To derive Eq. (2.5), one applies the rotating wave approximation, where rapidly oscillating terms
are neglected.
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where � = ωL − ω0 is the detuning of the laser with respect to the atomic
transition. Far from resonance, when |�| � |�|, the energies of the eigenstates
of this effective system4 are then given by

εg = −�ω0

2
+ �

4

|�|2
(ωL − ω0)

εe = �ω0

2
− �

4

|�|2
(ωL − ω0)

,

(2.6)

showing that as the result of atom-light interactions, we can create a conservative
potential5 with the shifts of the atomic energy levels. Accordingly, if the electric
field has a spatial dependence,6 then the induced shift on the atomic levels will
also depend on the position. As stated in the beginning, this is the basic principle
underlying the implementation of optical lattices7! The potential produced is in
turn proportional to the intensity of the light field,

V = −1

2
α(ωL)|E|2 = �|�|2

4�
, (2.7)

with α(ωL) the polarizability of the atom [10].

In its simplest implementation, an optical lattice can be constructed from the inter-
ference of counter-propagating laser beams [10]. This gives rise to a standing wave

V (r) =
∑

σ

V0

4
sin2(kσσ), (2.8)

where σ = {x, y, z} labels the different direction, kσ = 2π/λσ is the wave number of
the laser in the direction σ and V0 = ��2

0/4�. From here on, unless stated otherwise,
all the periodic potentials are sinusoidal potentials, as in Eq. (2.8). In this context,
any of the inverse wave vectors lσ = k−1

σ = λσ/2π provide a natural choice for
parametrizing the length scale,8 and any of the recoil energies Eσ

r = �
2k2σ/2m (for

an atom of mass m) provides a natural choice for fixing the energy scale.
Afinal disclaimer is in order:Whenever thewords “dimensionless” and “position”

appear together, we mean that position is scaled in terms of one of the lσ . Whenever

4That is, the bare energies plus the Stark shifts.
5Dissipative processes involve spontaneous emission, that can be neglected in the large detuning
case since excited states have vanishingly probability of being populated.
6That is, if � = �(r).
7As a sidenote, we notice that this relies on the assumption of adiabatic motion of the atoms and
therefore, outside the very low temperature regime, this derivation should include corrections.
8Notice that the size of each site in a 1D lattice taken in the direction σ, for example, is λσ/2, which
is typically of the order of 400 nm. For comparison, the typical size of the cells in solid state is of
the order of Ångströms.
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“dimensionless” comes together with “energy”, the energies are scaled in terms of
one of the Eσ

r , for the direction σ to be specified. 1D, 2D and 3D are used to denote
one, two and three dimensions, respectively.

2.2 Single Particles in Periodic Potentials

Two main properties characterize the problem of a quantum particle interacting with
a periodic potential [11, 12]: (i) that the energy spectrum displays a band structure,
where regions with allowed energies are separated by forbidden gaps, and (ii) that the
solutions of the eigenvalue equation are given by Bloch functions. This is formulated
in one dimension9 (1D) as

Ĥ�(x) = E�(x), where Ĥ = − �
2

2m
∂2
x + V (x) (2.9)

with m the mass of the particle and V (x) = V (x + d) the periodic potential with
periodicity d. The expression for the Bloch functions can be obtained from the Bloch
theorem [12] and is given by

�ν,q(x) = eiqxuν,q(x), (2.10)

where uν,q is a periodic function satisfying uν,q(x) = uν,q(x + d). q and ν are
good quantum numbers labeling, respectively, quasi-momentum and band index,
and the use of ν implicitly assumes the reduced scheme where quasi-momentum
q ∈ [−π/d,π/d) varies in the first Brillouin zone [12]. To each of the values of
ν and q there is an associated energy, and in general the relation between the free
particle momentum and the quasi-momentum q appears in the form of a complicated
(transcendental) equation.10 Nevertheless, the eigenstates ofEq. (2.9) are planewaves
(delocalized in the lattice) that experience a modulation due to the lattice periodicity.

As an alternative to Bloch functions, a basis that is commonly used for describing
particles interacting with periodic potentials is given by theWannier functions [11].
They are constructed in terms of the Bloch functions according to the prescription

wν,j(x) =
∑

q

e−iqRj�ν,q(x), (2.11)

9Extensions to other dimensions are straightforward. We use the 1D case here just as an illustration.
10This is already the case in the simplest example, of the Kronig–Penney problem with a repulsive
potential constructed from equally spaced δ-functions (see, e.g. [12, 13] for an application in the
context of many-body physics in optical lattices).
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where Rj labels the coordinates of the jth site and the sum runs over the quasi-
momenta in the first Brillouin zone. The Wannier basis differs from the Bloch basis
in two main aspects [11]: First, the prescription given by Eq. (2.11) implies that
each of the lattice sites accommodates only one Wannier function with band index
ν. Second, this is a site localized basis labeled by the band index and the position
in the lattice. Since Wannier functions are not the eigenstates of Eq. (2.9), quasi-
momentum is not a good quantum number to be used as a label here. Nevertheless,
Wannier functions at different sites satisfy the following orthonormality condition
in its quantum numbers

∫
dxwν,j(x)wν ′,i(x) = δνν ′δij. (2.12)

We will illustrate further properties of these systems by considering results obtained
from numerical diagonalization of theMathieu equation for a particle in a sinusoidal
potential, Eq. (2.9), where

V (x) = V0 sin
2(kxx), (2.13)

and V0 is the lattice amplitude.
The band structure in Fig. 2.1 immediately reveals that increasing values of V0 are

associated with larger energy gaps and band energies of smaller widths. This should
be the case, because the size of the energy gap is proportional to the absolute value of
the reflection coefficient in the barrier [12], which is larger for larger V0. In the same
way, the width of the band is proportional to the absolute value of the transmission

Fig. 2.1 Band structure of a system with V0 = 0.5Er (blue), V0 = 5Er (red) and V0 = 17Er
(green). As discussed in the text, the widths of the bands are larger for smaller values of the lattice
amplitude. In addition, the energy gaps between the different bands increase for increasing values
of V0 (Color figure online)
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Fig. 2.2 a Real part of the Bloch functions of the first and b second bands for different values of
quasi-momentum q and for V0 = 5Er . Notice here that the Bloch function of the 2nd band is strictly
imaginary if q = 0

Fig. 2.3 Imaginary part of the Bloch functions of the first (in a) and second (in b) bands for
different values of quasi-momentum q and for V0 = 5Er . The parameters of the color scheme in (b)
are identical to the ones used in (a). In contrast to the result of Fig. 2.2, here we notice that the 1st
band Bloch function with q = 0 is strictly real. We point out that there is an arbitrary phase to be
fixed in the definition of the Bloch functions. Once this phase is fixed, however, and say, the Bloch
function of the first band with q = 0 is purely real, then the Bloch function in the second band with
q = 0 will be purely imaginary

coefficient [12],which is smaller for larger values ofV0.11 Furthermore, the narrowing
down of the band widths can be alternatively understood from the viewpoint of an
effective mass, that is defined from the inverse of the band curvature. Namely, flatter
bands are related to heavier effective masses and therefore reduced mobility in the
lattice, whereas the contrary is valid for steeper bands [12].

We compare samples of the Bloch and Wannier functions of the first and second
bands in Figs. 2.2, 2.3 and 2.4, for different values of V0, where the delocalized ver-
sus localized character of the Bloch versus Wannier functions can be immediately

11For amore detailed discussion about how the transmission and reflection coefficients of the barrier
are related to the size of the energy gaps and energy widths, see Exercise 1 (f) and (g) of Chap.8 of
Ashcroft and Mermin, Ref. [12].
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Fig. 2.4 Wannier functions of the first (a) and second (b) bands for systems with V0 = 0.5Er
(green), V0 = 5Er (red) and V0 = 17Er (blue). Notice that the Wannier functions are not positive
definite. This is necessary in order to satisfy the orthonormality relation of Eq. (2.12) (Color figure
online)

Fig. 2.5 Probability density of the first and second bands Wannier functions for systems with
V0 = 0.5Er (green), V0 = 5Er (red) and V0 = 17Er (blue) (Color figure online)

noticed. As for the Wannier functions, increasing values of the potential ampli-
tude V0 promote a faster decay from the position at the minimum of the potential,
yielding Wannier functions that are more localized at each site. For completeness
the probability density associated to each of these Wannier functions is given in
Fig. 2.5a, b.

2.3 Meet the Orbital States!

In the context of optical lattices, orbital states are site-localized states in excited energy
bands [1]. The first excited bands form the p, whereas the second excited bands form the d
band. Accordingly, they have the associated p and d orbitals [1].
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In isotropic square and cubic lattices in 2D and 3D, respectively, excited bands
have an intrinsic degeneracy that gives rise to a degeneracy between the orbitals [1].
In particular, orbital states are anisotropic in magnitude and in some cases also in
parity [14]. In this section, we characterize the properties of the systems in the p and
d bands.

2.3.1 Orbital States in the Harmonic Approximation

In order to become more familiar with the physics in excited bands, we consider the
system in the harmonic approximation. This consists in approximating each well of
the sinusoidal potential with a harmonic potential, i.e., V (x) = sin2(kxx) ≈ k2x x

2, and
therefore exact solutions are easily obtained and simple enough to expose properties
of the physics in analytical terms. We notice, however, that the harmonic approxi-
mation is justified only in very particular cases12 [15, 16] and that its quantitative
predictions are otherwise very limited13 [2, 15]. Nevertheless, we use it here to
construct an intuitive picture of the orbital states.

Let us then consider the eigenvalue problem in a 2D separable lattice,14

Ĥ� =
(

− �
2

2m
∂2
x + Vx sin

2(kxx) − �
2

2m
∂2
y + Vy sin

2(kyy)

)
� = E�, (2.14)

where Vσ and kσ , σ = {x, y} are the potential amplitude and wave vector in the direc-
tion σ. We also rescale the variables with k−1

y to obtain the dimensionless positions
kyy → y′ and kyx → x′, and with Ey

r = �
2k2y/2m to obtain dimensionless energies

Ṽσ = Vσ/Ey
r , and expand the potential around its minimum keeping only first order

contributions. This yields,

Ĥ

Ey
r
� =

(
−∂2

x′ + Ṽx
k2x
k2y

x
′2 − ∂2

y′2 + Ṽyy
′2

)
�. (2.15)

Since we are dealing with the case of a separable lattice, it is possible to find the
solutions in the x- and y-directions by solving each of the equations independently.
We start by solving the equation for y′,

(
−∂2

y′ + Ṽyy
′2
)

�(y′) = εy′�(y′), (2.16)

12The limit of very deep potential wells is required, for example.
13In fact, as we discuss later in greater details, the harmonic approximation can lead to misleading
conclusions in the many-body system.
14By separable lattice we mean that the dynamics of different directions is decoupled.
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from where we identify the characteristic length of the oscillator y−4
0 = Ṽy. The

ground, first and second excited states, with corresponding energies ε0y′ , ε1y′ and ε2y′ ,
are given by

φ0(y
′) = N0(y0)e

−y′2/2y20 = N0(Ṽ
−1/4
y )e−

√
Ṽyy′2/2, (2.17)

φ1(y
′) = N1(y0)y

′ e−y′2/2y20 = N1(Ṽ
−1/4
y )y′ e−

√
Ṽyy′2/2, (2.18)

and

φ2(y
′) = N2(y0)(y

′2 − 1) e−y′2/2y20 = N2(Ṽ
−1/4
y )(y

′2 − 1) e−
√

Ṽyy′2/2, (2.19)

with the normalization factors

N0(z) =
(

1

π1/4z1/2

)
, (2.20)

N1(z) =
( √

2

π1/4z3/2

)
, (2.21)

and

N2(z) =
(

1

π1/2
(
3
4 z

5 − z3 + z
)1/2

)
. (2.22)

The equations for x′ are solved in the same way, but since the scaling has been
taken with respect to the dynamics in the y direction, the characteristic length of the
oscillator is given here by x−4

0 = Ṽxk2x/k
2
y . The expression of the wave-functions of

the ground and excited states, with energies ε0x′ , ε1x′ and ε2x′ follow as

φ0(x
′) = N0(x0)e

−x′2/2x20 = N0(Ṽ
−1/4
x (kx/ky)

−1/2)e−
√

Ṽx kx
ky

x′2/2
, (2.23)

φ1(x
′) = N1(x0)x

′ e−x′2/2x20 = N1(Ṽ
−1/4
x (kx/ky)

−1/2)x′ e−
√

Ṽx kx
ky

x′2/2
, (2.24)

and

φ2(x
′) = N2(x0)(x

′2 − 1) e−x′2/2x20 = N2(Ṽ
−1/4
x (kx/ky)

−1/2)(x
′2 − 1) e−

√
Ṽx kx
ky

x′2/2
.

(2.25)
With the expressions of the eigenfunctions at hand, we can now describe the energy
levels and eigenstates of the 2 dimensional system in the harmonic approximation.
For simplicity we consider from now on an isotropic lattice for which Ṽx = Ṽy and
kx = ky. The true ground state within this approximation has energy E0 = (ε0x′ + ε0y′)

and its eigenfunction has a Gaussian profile in both the x and y directions:



14 2 Introduction to Optical Lattices and Excited Bands (and All That)

Fig. 2.6 Comparison between the numerically obtained Wannier functions and the Wannier func-
tions in the harmonic approximation, Eqs. (2.17) and (2.19), for a 1D system with V0 = 17Er (see
discussion in the text)

�0(x
′, y′) = N0(x0)N0(y0)e

−x′2/2x20−y′2/2y20 . (2.26)

p-Orbital States in the Harmonic Approximation

The first excited state is doubly degenerate. It has energy given by E1 = (ε1x′ + ε0y′) =
(ε0x′ + ε1y′) and the corresponding eigenfunctions are

�x(x
′, y′) = N1(x0)N0(y0)x

′ e−x′2/2x20−y′2/2y20 (2.27)

and
�y(x

′, y′) = N0(x0)N1(y0)y
′ e−x′2/2x20−y′2/2y20 , (2.28)

respectively. These are the p-orbital states15! As can be verified, the different direc-
tions are characterized by different parities, i.e., the spatial profile of the different
orbitals are odd in the direction of the labelα, in which the wave-function has a node,
and even in the perpendicular direction. From here on, we denote the orbital states
in the p band by pα, with α referring to a spatial direction.

In Fig. 2.6 we compare the ground and first excited Wannier functions obtained
from numerical diagonalization of the Mathieu equation with the ground and first
excited states obtained in the harmonic approximation. It illustrates the situation
where V0 = 17Er , which represents a lattice with rather deep wells. This can be seen
from the characteristic flatness of the bands in Fig. 2.1, and the harmonic approxi-
mation is expected to give a good qualitative picture of the system. In addition, in
Fig. 2.7 we show the px and py orbitals obtained from diagonalization of the Math-

15These expressions are valid only in the harmonic approximation.Thequalitative features, however,
are still valid in the general case.



2.3 Meet the Orbital States! 15

Fig. 2.7 Left and right
panels show the px- and the
py-orbital states, obtained
from diagonalization of the
Mathieu equation

ieu equation. Notice, however, the important difference that the energy bands are
not equally spaced in sinusoidal lattices, as will always be the case in the harmonic
approximation. This property has important consequences as we will discuss later
in Sect. 2.6, since it helps improving the stability in experimental realizations of the
many-body system in the p band [17].

d-orbital States in the Harmonic Approximation

We continue with the second excited state, which is triply degenerate in 2D. It has
energy given by E2 = (ε2x′ + ε0y′) = (ε0x′ + ε2y′) = (ε1x′ + ε1y′) and the corresponding
eigenfunctions are given, respectively, by

�x2(x
′, y′) = N2(x0)N0(y0)(x

′2 − 1) e−x′2/2x20−y′2/2y20 , (2.29)

�y2(x
′, y′) = N0(x0)N2(y0)(y

′2 − 1)e−x′2/2x20−y′2/2y20 (2.30)

and
�xy(x

′, y′) = N1(x0)N1(y0)x
′e−x′2/2x20−y′2/2y20 . (2.31)

Now meet the d-orbitals16! In analogy to the p-orbital system, from here on we use
dx2 , dy2 and dxy to denote the states in the d band. As illustrated in Fig. 2.8, these
wave-functions are also labeled after the direction of the node, and the superscript
refers to the existence of two nodes. In particular, the dxy orbital has one node in both
directions.

As a final remark, we notice that the use of the harmonic approximation might be
very dangerous when describing the system in the d band [4]. As shown in Fig. 2.9,
the anharmonicity of the sinusoidal lattice is capable of breaking the three-fold degen-
eracy suggested in analogy with the 2D harmonic oscillator, such that the dxy orbital
has slightly higher energy. The implications for the many-body system are studied
in Sect. 3.2.

16In the same way as for the p orbitals, although these expressions are only valid in the harmonic
approximation, the qualitative features of the states remain valid in the general case.

http://dx.doi.org/10.1007/978-3-319-43464-3_3
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Fig. 2.8 Left, center and right panels show the dx2 -, dy2 - and the dxy-orbital states, obtained from
numerical diagonalization of the Mathieu equation

Fig. 2.9 The three d bands;
Ex2 (qx, qy), Ey2 (qx, qy) and
Exy(qx, qy) obtained from
numerical diagonalization of
the Mathieu equation for the
potential with amplitude
Vx = Vy = 20Er

2.4 From One to Many: Many-Body Systems
in Excited Bands

In general terms, the dynamics of a gas of N atoms of mass m can be represented by
a Hamiltonian of the type

H =
N∑

i=1

(
p2i
2m

− Vext(ri)
)

+ Vint({ri, rj}), (2.32)

where the first term describes single-particle contributions including effects of an
external potential Vext, and the second term describes interactions between the
atoms—thereby accounting for the effects of collective nature.

In the ideal scenario, Vint should include all interactions in the system, i.e., that
appear from the result of two-body collisions, three-body collisions and so on.17

In real life, however, exact solutions for problems involving interacting many-body
quantum particles are known only in very few or particular cases.18 The way out,
therefore, involves the use of approximations that are capable of accounting not

17“Ambition is the last refugee of failure”—Oscar Wilde.
18When it happens, its almost like finding a unicorn.



2.4 From One to Many: Many-Body Systems in Excited Bands 17

for all, but for all the relevant interactions required for a good description of the
experimental reality.

Recall that our interest is the physics of (many and also a few) interacting atoms in
excited bands of optical lattices. We therefore aim at describing systems of very cold
and dilute gases, where the atoms occupy the orbital states discussed in Sect. 2.4.
By “very cold” we mean that the temperatures considered are close to the absolute
zero.19 By “very dilute” we mean that the distance between any two atoms fixed
by n = N/V—where N is the total number of particles and V the volume of the
system—is very large.20 In the lab, for example, these systems are produced with
densities21 of the order of 1015 atoms per cm3. Under these circumstances, it is
reasonable to truncate the interaction term to the two-body part [18, 19].

Due to the characteristic low densities, the distances between the particles are
always large enough to justify the use of the asymptotic expression of the wave
function of the relative motion [19]. In addition, as a consequence of the low tem-
peratures T , the relative momentum corresponding to kinetic energies kBT , where
kB is the Boltzmann constant, justifies that the collisions are effectively described by
s-wave scattering processes, that are completely characterized by the corresponding
phase shift [20]. At very low temperatures, however, the phase shift is not the best
parameter for characterizing the cross section of the scattering processes.

The reason why this is the case can be illustrated22 by considering the (differential) cross
section σ of two particles in a state with relative momentum k and energy �

2k2/2μ, where
μ is the reduced mass:

dσ

d�
= sin2(δ0(k))

k2
k→0−−→ a2, (2.33)

with δ0(k) the phase shift and a a quantity with dimensions of length. Since at very low
temperatures lim k → 0, the presence of k2 in the denominator of Eq. (2.33) would require
that sin(δ0(k)) vanishes linearly for any value of the cross section [20].

The trick here is to use instead the scattering length a defined as

lim
k→0

k

sin(δ0(k))
≡ −1

a
, (2.34)

that is, up to the choice of a sign, exactly the same length parameter in Eq. (2.33).
Now this is a good quantity for parametrizing the low energy scattering cross section,
for it can also be further interpreted as the first term of the expansion in powers of k
of the effective range expansion [20],

k cot(δ0(k)) ≡ −1

a
+ r0

2
k2 + . . . , (2.35)

19Or much less than the bandwidth. The temperature is typically of the order of ∼1 nK.
20Compared to the scattering length, as we discuss next.
21For comparison, the density of air at room temperature is ∼1.25 × 10−3 g/cm3, the density of
water is 1g/cm3 and the density of a white dwarf can be estimated as 1.3 × 106 g/cm3 [18].
22This argument is based on the discussion presented in Ref. [20].
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where r0 is the so called effective range of the potential. In these terms, low energy
scattering processes can be characterized by only two parameters,23 a and r0.

The values of a are determined with the standard scattering theory. Now assuming
that a is a known quantity, the Hamiltonian (2.32) is implemented in terms of an
effective interaction that we assume can capture the physics seen in the lab. We
consider here that Vint(ri, rj) describes short-range (contact) interactions, Vint =
gδ(ri − rj), with coupling constant given by g = 2π�

2a/μ, where μ is the reduced
mass of the two particles [10]. Accordingly, the effective potential for two identical
particles of mass m follows as

Vint(ri, rj) = 4π�
2a

m
δ(ri − rj). (2.36)

In the language of second quantization, this can be further re-written with the field
operators �̂(r) and �̂†(r), that annihilate and create a particle of mass m at position
r as

V̂int = 4π�
2a

m

∫
dr′dr�̂†(r′)�̂†(r)δ(r − r′)�̂(r)�̂(r′) = 4π�

2a

m

∫
dr′�̂†(r′)�̂†(r′)�̂(r′)�̂(r′).

(2.37)
If the system is composed of bosonic atoms, the operators satisfy the commutation
relations [�̂(r), �̂†(r′)] = δ(r−r′). If the atoms are fermions, then {�̂(r), �̂†(r′)} =
δ(r − r′). Therefore, the full expression of the Hamiltonian describing the weakly-
interacting many-body system is given by

Ĥ =
∫

dr′
{
�̂†(r′)

[
−�

2∇2

2m
+ V (r′)

]
�̂(r′) + Ũ0

2
�̂†(r′)�̂†(r′)�̂(r′)�̂(r′)

}
,

(2.38)
where V (r′) accounts for the effects of external potentials superimposed to the sys-
tem, and the coupling constant Ũ0 = 4π�

2a/m.
We will now expand the field operators in terms of the orbital states of the p and

d bands of the sinusoidal optical lattice24

Vlatt(r) =
∑

σ

Ṽσ sin
2(σ′) (2.39)

in 3D and 2D, respectively, and with σ the corresponding directions. We assume for
the moment that no other external potential is present in the system and therefore we
take V (r′) = Vlatt(r′) in Eq. (2.32).

23In fact, regardless of formal expressions, any two potentials that are characterized by the same
s-wave scattering length a and effective range interaction r0 will give rise to the same effective
interaction.
24Since we will restrict the atoms to live in the corresponding band, we are also assuming the
single-band approximation.
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In these terms, the expression of the field operators follows as

�̂†(r) = ∑
α,j w

∗
α,j(r)â

†
α,j(r)

�̂(r) = ∑
α,j wα,j(r)âα,j(r),

(2.40)

where â†α,j and âα,j create and annihilate an atom in an orbital statewα,j(r), taken here
as the lattice Wannier function in the jth site of the lattice (j = (jx, jy, jz), jx, jy, jz ∈
N ). We will use α ={x, y, z} whenever studying the p-band system with the pα-
orbital states in the 3D lattice; and α = {x2, y2, xy} whenever studying the d-band
system in 2D.

As an additional point, let us stress here that the orbital states are not eigenstates of the
single-particle Hamiltonian. We illustrate this by considering the explicit expression of the
p-orbital wave-functions of a separable lattice, constructed with the site-localized Wannier
functions,25 wν,j(α), with ν = 1, 2 and α a spatial direction,26 that are given by

wx,j(r) = w2,jx (x)w1,jy (y)w1,jz (z)
wy,j(r) = w1,jx (x)w2,jy (y)w1,jz (z)
wz,j(r) = w1,jx (x)w1,jy (y)w2,jz (z).

(2.41)

Now recall that the eigenstates of the single-particle Hamiltonian are Bloch functions (see
Eq. (2.10)), and that the relation between Bloch and Wannier functions is given by

wν,Rj(r) =
∑

q

e−iq·Rjφν,q(r),

where we use Rj = (xj, yj, zj) = (πjx,πjy,πjz) and q = (qx, qy, qz) is the index which
labels the quasi-momentum.

2.4.1 The Many-Body System in the p Band

The Bosonic Case

After inserting (2.40) in Eq. (2.38) and truncating the kinetic term to its leading
contribution—the tight-binding approximation; and the interaction processes to hap-
pen only onsite, the Hamiltonian describing bosonic atoms in the p band of a 3D
optical lattice is given by

ĤB = Ĥ0 + Ĥnn + Ĥnn′ + ĤOD. (2.42)

25Which themselves are also not eigenstates of the single-particle Hamiltonian.
26Our notation here assumes that ν is the index which labels the energy band from which the
Wannier function is computed.
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The first term is the free Hamiltonian

Ĥ0 = −
∑

σ,α

∑

〈i,j〉σ
tασ (â†α,iâα,j + â†α,jâα,i), (2.43)

that describes the nearest neighbour tunneling of atoms in the pα-orbital state, α =
{x, y, z}, in the direction σ = {x, y, z}. Notice the absence of tunneling events with
change of orbital state: Such processes are excluded by parity selection rules.27

The second and third terms of Eq. (2.42) describe different types of density–
density interactions:

Ĥnn =
∑

α

∑

i

Uαα

2
n̂α,i(n̂α,i − 1), (2.44)

between atoms in the same orbital state, with n̂α,i = â†α,iâα,i; and

Ĥnn′ =
∑

α,β,α �=β

∑

i

Uαβ n̂α,in̂β,i, (2.45)

β = {x, y, z}, between atoms in different orbital states.
Finally, the last term

ĤOD =
∑

α,β,α �=β

∑

i

Uαβ

4
(â†α,iâ

†
α,iâβ,iâβ,i + â†β,iâ

†
β,iâα,iâα,i) (2.46)

describes interactions that transfer atoms within different types of orbital states.
The expression for the tunneling amplitude in the direction σ is given in terms of

the orbital states by

tασ = −
∫

drw∗
α,j(r)

[−∇2 + V (r)
]
wα,j+1σ

(r), (2.47)

and due the different curvatures of the excited bands in the directions perpendicular
(⊥) and parallel (‖) to the label of the orbital wave functions, t⊥t‖ < 0, where t⊥
and t‖ refer to the tunnelings in the corresponding directions. In the same way, the
expression of the interaction coefficients is given by

Uαβ = U0

∫
dr |wα,j(r)|2|wβ,j(r)|2. (2.48)

As a final remark we recall that in the bosonic case [âα,i, â
†
β,j] = δαβδij.

27In the separable lattices considered here. This needs not to be the case in different setups.
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Symmetries of the Many-Body Bosonic System in the p Band

Because each term in Eq. (2.42) has the same number of creation and annihilation
operators, the Hamiltonian is clearly invariant under global U(1) transformations.
This reflects the overall conservation of particle number in the system, and therefore

[Ĥ,
∑

j

(nxj + n̂yj + n̂zj )] = 0. (2.49)

Here, however, the key ingredient that distinguishes the dynamics in the p band from
the systems in the ground band, is the presence of processes that transfer atoms
between different orbital states, Eq. (2.46). Although a similar term is present in
the Hamiltonian describing spinor Bose–Einstein condensates, its relative strength
compared to other processes is typically very small, such that these contributions
can be safely neglected [3]. This is not the case for the p-band system, because the
coupling constant of orbital changing processes is exactly the same as the one of
mixed density–density interactions defined in Eq. (2.45). Furthermore, the presence
of orbital changing processes implies that instead of a U(1) × U(1) × U(1) global
symmetry, the dynamics of bosonic atoms in the p band has a U(1)×Z2 ×Z2 global
symmetry, and therefore total population of each of the orbital states is conserved
only modulo 2 [1]. This has also fundamental implications on the establishment
of long-range phase coherence in the system, because the presence of Z2 (discrete)
symmetries violate the assumptions of the Hohenberg–Mermin–Wagner theorem
[21, 22]. As a consequence, this system is not prohibited of (long-range) ordering
even in low dimensions, and therefore the existence of a true condensate in the
thermodynamic limit is not precluded for bosons in the p band.

We also notice that in isotropic lattices28 transformations of the type

âα,j � ±âβ,j (2.50)

leave the Hamiltonian invariant for any permutation of α and β. Moreover, these
lattices feature additional Z2 symmetries, associated to the swapping of any two
orbital states, followed by a change of indices in the lattice, i.e.,

âα,j → âβ,j′

âβ,j → âα,j′ ,
(2.51)

where the j = (jx, jy, jz) indices become jα → jβ and jβ → jα in j′.
Let us now take a closer look at the symmetries of the 2D lattice by considering

the isotropic case, where Uxx = Uyy, Uxy = Uyx, tx‖ = ty‖ and tx⊥ = ty⊥. Here the
rotation

28Where tα‖ = tβ‖ and tα⊥ = tβ⊥ for α �= β and Uxx = Uyy = Uzz with again all the Uαβ equal for
α �= β.
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⎛

⎝
âx,j ′

ây,j ′

⎞

⎠ →
⎛

⎝
cos θ − sin θ

sin θ cos θ

⎞

⎠

⎛

⎝
âx,j

ây,j

⎞

⎠ (2.52)

leaves the Hamiltonian invariant for different values of θ = (0,π/2,π)± kπ, where
k ∈ Z . This is not the case in asymmetric lattices, however, where even under the
condition of orbital degeneracy the tunneling coefficients tα‖ �= tβ‖ , t

α
⊥ �= tβ⊥. As a

consequence, transformations of the type âx,j → ây,j, ây,j → âx,j do not leave the
Hamiltonian unaltered.

For asymmetric lattices there is a particular case for which the system contains an additional
SO(2) symmetry [16]. This corresponds to the harmonic approximation in the limit of vanish-
ing tunneling,29 whereUαα = 3Uαβ = U. As pointed out inRef. [16], this special case is bet-
ter studied with the angular-momentum like annihilation operators â±,j = (âx,j ± iây,j)/

√
2,

in terms of which the local part of the Hamiltonian can be written as [16]

Ĥj = U

2

[
n̂j

(
n̂j − 2

3

)
− 1

3

]
+ δ

[
(n̂j − 1)(L̂+,j + L̂−,j)

]

+λ

[
1

4
L̂2z,j − 3(L̂+,j − L̂2−,j)

2 − n̂j

]
,

(2.53)

where U = (Uxx + Uyy)/2, δ = (Uxx − Uyy)/2 and λ = Uxy − U/3. The density operator

can be expressed as n̂j = â†+,j â+,j + â†−,j â−,j , and the angular momentum operators are

L̂z,j = â†+,j â+,j − â†−,j â−,j and L̂±,j = â†±,j â∓,j/2. It follows from the properties of the har-
monic oscillator eigenstates that in the harmonic approximation λ = δ = 0 for any lattice
configuration, and therefore [Ĥj, L̂z,j] = 0 [16]. This is not the case for sinusoidal optical lat-
tices, for there λ, δ �= 0 destroys the axial symmetry, and consequently [Ĥj, L̂z,j] �= 0 [16].
Notice, however, that rather from being of geometric character, this dynamical enhance-
ment [23] of the SO(2) symmetry appears entirely due to the specific form in which the
eigenvalue problem can be rewritten in the harmonic approximation.30

The Fermionic Case

Due to the Pauli blockade preventing the occupation of the same orbital state by
more than one particle, fermionic atoms in the p band behave according to

ĤF = Ĥ0 + Ĥnn′ , (2.54)

with Ĥ0 and Ĥnn′ defined in Eqs. (2.43) and (2.45), respectively. Here, however,
{âα,i, âβ,j} = δαβδij. The expressions for the tunneling elements and the various cou-
pling constants are the same as in the bosonic case, defined in Eqs. (2.47) and (2.48).

Symmetries of the Many-Body Fermionic System in the p Band

Since Eq. (2.54) contains only number operators, the Hamiltonian of the fermionic
system in the p band has theU(1)×U(1)×U(1) symmetry. Accordingly, in addition

29This is only valid in the case of separable lattices.
30This is similar to the conservation of the Laplace–Runge–Lenz vector in Kepler problems (see
e.g. Ref. [23]).
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to a global U(1) transformation, associated to conservation of total number in the
system, it also conserves the number of particles in each of the orbital states.

To P or not to P? (bands!)
—William Shakespeare. Adapted from the tragedy of Hamlet.

2.4.2 The Many-Body System in the d Band

We obtain the many-body Hamiltonian describing bosonic atoms in the d band by
following the same procedure adopted for treating the p-band system: We expand
the field operators, Eq. (2.40), in terms of the orbital states of the d band for α =
{x2, y2, xy},31 and assume the tight-binding and single-band approximations. The
result is [4]

Ĥ = Ĥd + Ĥxy, (2.55)

where the first term describes the processes involving only the dx2 - and dy2 - orbital
states,while the second termcontains all the processes that involve the dxy orbital. The
two parts of the Hamiltonian can be decomposed further, according to the different
types of processes:

Ĥd = Ĥd
0 + Ĥd

t + Ĥd
nn + Ĥd

da + Ĥd
od (2.56)

and

Ĥxy = Ĥxy
0 + Ĥxy

t + Ĥxy
nn + Ĥxy

da + Ĥxy
od . (2.57)

The first terms in each of these equations describe the onsite energies of the different
orbitals Eα and Exy, with α = {x2, y2},

Ĥd
0 =

∑

α

∑

i

Eαn̂α,i, (2.58)

and

Ĥxy
0 =

∑

i

Exyn̂xy,i. (2.59)

The second terms describe the tunneling processes,

Ĥd
t = −

∑

σ,α

∑

〈i,j〉σ

(
tασ d̂

†
α,id̂α,j + H.c.

)
(2.60)

31We denote the creation and annihilation operators for the states in the d band by d̂†α and d̂α.
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and

Ĥxy
t = −

∑

σ

∑

〈i,j〉σ
tpd̂†xy,id̂xy,j. (2.61)

Notice here thatwhile atoms in thedx2 anddy2 orbitals are characterizedby anisotropic
tunneling in the directions parallel (‖) andperpendicular (⊥) to the nodes of the orbital
state, the dxy-orbital atoms tunnel in both directions with the samemagnitude, tp. The
expressions of the tunneling amplitudes are given below:

tασ = −
∫

drw∗
α,i(r)

[−∇2 + V (r)
]
wα,i+1σ(r)

tp = −
∫

drw∗
xy,i(r)

[−∇2 + V (r)
]
wxy,i+1σ

(r).

(2.62)

In addition, as opposed to the situation in the p band, the parallel and perpendicular
tunnelings in the d band satisfy tα‖ t

α
⊥ > 0. Furthermore, tp < 0.

We turn now to the interacting part of the Eq. (2.55). It contains the density–
density interactions, both between atoms in the same orbital, and in different orbital
states,

Ĥd
nn =

∑

α

∑

i

Uαα

2
n̂α,i

(
n̂α,i − 1

) +
∑

α,β,α �=β

∑

i

Uαβ n̂α,in̂β,i (2.63)

and

Ĥxy
nn =

∑

i

Upp

2
n̂xy,i

(
n̂xy,i − 1

) +
∑

α

∑

i

2Upαn̂xy,in̂α,i; (2.64)

interactions that move population between the orbital states in pairs,32

Ĥd
od =

∑

α,β,α �=β

∑

i

Uαβ

4

(
d̂†α,id̂

†
α,id̂β,id̂β,i + d̂†β,id̂

†
β,id̂α,id̂α,i

)
(2.65)

and

Ĥxy
od =

∑

α

∑

i

⎡

⎣Upα

2

(
d̂†xy,i d̂

†
xy,i d̂α,id̂α,i + d̂†α,id̂

†
α,i d̂xy,i d̂xy,i

)
+

∑

β �=α

Unααβ d̂†α,i d̂
†
β,id̂xy,i d̂xy,i

⎤

⎦

(2.66)

32These are the same orbital-changing interactions of the p-band system.
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and finally, the density-assisted processes that also transfer atoms, albeit without
conserving any particle number apart from the total population, between the different
orbital states:

Ĥd
da =

∑

α,β,α �=β

∑

i

Unpαβ

(
d̂†α,in̂α,id̂β,i + d̂†β,in̂α,id̂α,i

)
(2.67)

and

Ĥxy
da =

∑

α,β,α �=β

∑

i

2Unpαβ d̂
†
α,in̂xy,id̂β,i. (2.68)

The various coupling constants are given by

Uαβ = U0

2

∫
dr |wα,i(r)|2|wβ,i(r)|2, α = (x, y, p), for (x2, y2, xy),

Unααβ = U0

2

∫
dr |wα,i(r)|3|wβ,i(r)|, α = (x, y), for (x2, y2),

Unpαβ = U0

2

∫
dr |wxy,i(r)|2|wα,i(r)||wβ,i(r)|, α = (x, y), for (x2, y2).

(2.69)

Symmetries of the Many-Body Bosonic System in the d Band

Since each term in Eq. (2.55) contains the same number of operators and complex
conjugates, the system is invariant under a global U(1) phase transformation that is
associated to the overall conservation of number in the system. As opposed to the
bosonic system in the p band, however, the presence of density-assisted processes in
the d band breaks the conservation of number modulo 2 in each of the orbital states.
Therefore, the only symmetry left is the Z2 symmetry associated to the swapping of
the dx2 and dy2 orbital states, followed by the interchange of spatial indices. More
explicitly, the many-body Hamiltonian (2.55) is invariant under the transformation

d̂x2,j → d̂y2,j′

d̂y2,j → d̂x2,j′ ,
(2.70)

where j = (jx, jy) and j′ = (jy, jx). In particular, since the tp tunneling amplitude is
isotropic in the different directions, d̂xy,j = d̂xy,j′ .

To D or ..?
—Re-adapted.
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2.5 How to Get There?

The novel features of the dynamics in excited bands, and in particular, the possibility
of probing orbital selective phenomena in optical lattices [17], stimulated consider-
able experimental effort in recent years for exploring the physics beyond the ground
band. Although nowadays we are provided with different techniques [24, 25] for
loading atoms to higher bands, in this section we restrict the discussion to experi-
ments with bosons, and to the ones of greatest relevance to the lattice configurations
that are covered in this thesis.

2.6 Loading Atoms to the p Band—The Experiment
of Müller et al.

As reported in the experiment of Müller et al. [17], bosonic atoms33 can be loaded
from the Mott insulator phase in the s band to the p band of optical lattices with
stimulated Raman transitions.

The idea here is to use the interaction of a two-level atom with the laser light to
couple different vibrational levels of a sinusoidal and separable 3D lattice potential.
Deep in the Mott insulator phase, single sites can be approximated by harmonic
potentials, and different vibrational levels in this potential correspond to the different
bands of the optical lattice.

To illustrate how this happens, consider a Raman coupling between electronic
atomic states of 87Rb. These are two-photon processes where the two levels are
coupled with an intermediate virtual state, far detuned from all the other states of
the system [17]. Because of this intermediate coupling, implementation of Raman
transitions requires the use of two different lasers, whose correspondingwave vectors
we denote here by kL1 and kL2 . In addition, since the photons carry momentum, this
will also couple the vibrational levels that we call |1〉 and |2〉, with a matrix element
given by

�1�
∗
2

δ
〈2|ei(kL1−kL2 ).x|1〉. (2.71)

�i are the Rabi frequencies between the |i〉 states, i = 1, 2 with another far detuned
auxiliary state of this system, say |aux〉, and δ is the detuning between |aux〉 and the
virtual intermediate state.

Now recall the discussion on Sect. 2.1, where in the regime far off resonance
the probability of transitions between the states of the two-level system are time
dependent and given by Eq. (2.4). By selecting a pulse with the appropriate time,

33Fermionic atoms can be promoted to the p band by a different process, which is based on full
occupation of the states in the s band in such a way that the next atoms are restricted to occupy the
excited band.
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and the laser wave vector with the appropriate configuration,34 it is then possible to
transfer population from the ground to the excited vibrational level in a particular
direction [8]. In other words, the coupling here is between the different orbital states!

With use of these techniques, Müller et al. experimented with atoms in the p band
of 1D, 2D and 3D (separable) optical lattices. The main results are summarized here:

(i) Long lifetimes: Atomic population was reported to survive in a metastable state
in the excited band with considerable long lifetimes, of the order of 10–100
times larger than the characteristic scale for tunneling in the lattice. The lifetimes
depend mainly on two factors, namely the atomic density, and the depth of the
lattice sites.

(ii) Decay channels: The reason why the lifetimes in the p band are affected both
by the atomic density and the depth of the lattice sites is because the main decay
channel stems from atom-atom collisions. Therefore the larger the densities, the
larger the probability of atomic collisions. In the same way, the increased rate
of tunneling in the limit of shallower potential wells increases the probability
of encounters between two atoms, and consequently, the probability of atomic
collisions. In addition, we notice that the anharmonicity of the sinusoidal lattices
prevents the occurrence of first order processes in which the energy of a state
of two atoms in the p band is resonant with the energy of a state with one atom
in the s and the other in the d band. Although this increases the stability of the
system in the p band, we remark that higher order processes can still contribute
to the decay of population from the excited band.

(iii) Establishment of coherence: the authors found that by changing the parameters
of the system, i.e., by lowering the lattice such as to reach the regimeof the super-
fluid phase, the system exhibited a state with long-range coherence at nonzero
quasi-momentum. This observation was based on time of flight experiments,
where the momentum distribution in the lattice was recorded. In particular, for
specific conditions of hold times it was possible to notice a π phase difference
in between neighbouring sites in the directions parallel to the label of the orbital
wave functions.

Wewill address experimental considerations about many-body systems in the p band
in Sect. 5.2.2, where the techniques used in this experiment are extended for further
manipulation of the orbital states.

Going Even Higher—A Brief Comment Regarding Experiments in the d Band

The possibility of preparing atoms in the d band with 99% fidelity has been recently
reported in Ref. [25]. This realization is based on the use of a standing-wave pulse,
for instantaneously switching an optical lattice on and off. This induces transitions
between states of definite quasi-momentum in different bands that are allowed by
selection rules. Starting from the ground-state of the system with the lattice switched
off, for example, it is possible to prepare superpositions of states at even bands

34That is, a pulse that couples the two states in different directions of the optical lattice.

http://dx.doi.org/10.1007/978-3-319-43464-3_5
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s, d, g . . . Transitions between the states of odd bands are also possible, with use of
a moving lattice.

Although this experimental scheme is not suitable for promoting atoms to the p
band from the ground-state of a system without the lattice, the lifetime on the d band
is quite long, of the order of μs. As we discuss further in Sect. 5.4, this opens great
opportunities in the context of quantum simulations.

Appendix: p-Band Hamiltonian Parameters in the Harmonic
Approximation

For further reference,we compute here the various coupling constants in the harmonic
approximation. As discussed before, under this assumption the Wannier functions
are taken as Hermite polynomials, and therefore (2.48) and (2.47) can be obtained
from computation of simple Gaussian integrals. Here

Uxx = U0

∫
dx

( √
2

π1/4x3/20

)4

x4 e−2x2/x20

∫
dy

(
1

π1/4y1/20

)4

e−2y2/y20

= U0

( √
2

π1/4x3/20

)4
3

4

√
π

25/2
x50

(
1

π1/4y1/20

)4 √
π

2
y0 = U0

(
3

8π

1

x0y0

)
.

(2.72)

Analogous calculation yields Uyy = U0

(
3
8π

1
x0y0

)
.

We now compute Uxy:

Uxy = U0

∫
dx

( √
2

π1/4x3/20

)2

x2 e−x2/x20

(
1

π1/4x1/20

)2

e−x2/x20×
∫

dy

( √
2

π1/4y3/20

)2

y2 e−y2/y20

(
1

π1/4y1/20

)2

e−y2/y20

= U0

∫
dx

( √
2

π1/2x20

)2

x2e−2x2/x20

∫
dy

( √
2

π1/2y20

)2

y2e−2y2/y20

= U0

(
1

8π

1

x0y0

)
,

(2.73)

from where it follows that Uxx = Uyy = 3Uxy. Notice, however, that the relation
Uαα/Uαβ = 3 is only true in the harmonic approximation, and that this is the case
regardless of the wave vectors of the lattice kx and ky. In fact, it is very surprising
that the coupling constants in the harmonic approximation do not even depend on
the values of the lattice vector, but only on the lattice amplitudes Vx and Vy

35 [16].

35In the harmonic approximation this happens because the degeneracy condition fixes the ratio
kx/ky.

http://dx.doi.org/10.1007/978-3-319-43464-3_5
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This is not the case, however, when the Hamiltonian parameters are computed with
use of the lattice Wannier functions.

Now according to Eq. (2.47), we use Eqs. (2.27) and (2.28) to compute the tun-
neling coefficients as

−txx =
( √

2

π1/4x3/20

)2

Vx

∫
dx x(x + d) sin2 x e−x2/2x20e−(x+d)2/2x20

+
( √

2

π1/4x3/20

)2 ∫
dx

d

dx
(xe−x2/2x20 )

d

dx

(
(x + d)e(x+d)2/2x20

)
.

(2.74)

d is used here as the lattice constant, and we have already used that the integral in
the y-direction yields 1. In the same way,

−txy =
(

1

π1/4y1/20

)2

Vy

∫
dy sin2 y e−y2/2x20e−(y+d)2/2y20

+
(

1

π1/4y1/20

)2 ∫
dy

d

dy
e−y2/2y20

d

dy
e−(y+d)2/2y20 .

(2.75)

The expressions for tyx and tyy are obtained by making x → y and y → x with
x0 → y0 and y0 → x0 (Figs. 2.10 and 2.11).

Fig. 2.10 Comparison between the values of the couplings obtained from analytical and numerical
computations as a function of V . It is shown in a that the harmonic approximation fails to reproduce
the results obtained numerically for the tunneling coefficients when tunneling occurs in the direction
of the node. In b we show the results for the interaction coefficients. In particular the estimates
obtained from the harmonic approximation are always larger than the values of the couplings
computed numerically
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Fig. 2.11 Ratio Uxx/Uxy for
different values of the
amplitude of the optical
potential. Notice here that
Uxx/Uxy is always larger
than 3 for numerical
computations with the lattice
Wannier functions
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Chapter 3
General Properties of the Bosonic System
in the p and in the d Bands

Since the majority of topics covered in this thesis are focused on the properties of
many-body systems with bosons, we use this chapter to discuss general features of
the bosonic case in more details. General properties of the fermionic system will be
discussed whenever required.

The discussion will start with the system in the p band, with special emphasis on
the mean-field formalism that is used to characterize the properties of the superfluid
phase of the confined system inChap.4. This is the content of Sect. 3.1, wherewe also
include an overview of the results of Ref. [1], which studied p-orbital bosons with
homogeneous density in the lattice. Next, in Sect. 3.2, we characterize the superfluid
phase of the bosonic system in the d band.1

3.1 p-Orbital Bosons from a Mean-Field Viewpoint

Mean-field techniques provide an efficient first tool for investigating effects of col-
lective nature in systems of interacting particles [3]. At this level of description, the
system’s symmetries become key ingredients, and the collective properties are char-
acterized by the order parameters that encode the relevant degrees of freedom in the
phases with broken symmetry [3]. This approach has been proven very successful in
the study of the weakly interacting Bose gas [4], and will be adopted here to char-
acterize the properties of the superfluid phase of bosonic atoms in the p band. The
method used proceeds with the following program2:

1This is based on Ref. [2], which contains the first theoretical discussion of d-orbital bosons.
2As will become clear along the text, this approach is equivalent to analysis of the saddle-point
solution of the path integral of Eq. (2.42).
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(i) We will first obtain a mean-field version of the many-body Hamiltonian with
use of the coherent-state ansatz;

(ii) With the mean-field Hamiltonian at hand, we construct the corresponding
Lagrangian, and consider independent variations with respect to the relevant
degrees of freedom. This yields the equations of motion for the order parame-
ter;

(iii) In the last step we will propagate the Euler–Lagrange equations in imaginary
time to obtain the configuration of the order parameters which minimizes the
energy.

We will implement this routine by first considering the normal ordered version
of Eq. (2.42), where we replace the operators âα, j with the complex numbers ψα, j .
This attributes a coherent state at each site,

|�〉 =
∏

j

|ψ〉 j =
∏

j

|ψx, j ,ψy, j ,ψz, j 〉 j (3.1)

such that âα, j |�〉 = ψα, j |�〉. However, since the product form of Eq. (3.1) cannot
capture effects of correlations between neighboring sites, this is used with self-
consistent equations for obtaining the solutions of the problem in a self-consistent
fashion.

We then continue with the expression of the the single site many-body wave
function in the Fock basis

|ψ〉 j = exp

(
−|ψx, j |2 + |ψy, j |2 + |ψz, j |2

2

) ∑

nx ,ny ,nz

ψnx
x, jψ

ny

y, jψ
nz

z, j√
nx !ny !nz !

|n〉 j , (3.2)

where |n〉 j = |nx , ny, nz〉 j represents the state with nx atoms in the px orbital, ny

atoms in the py orbital and nz atoms in the pz orbital at the site j . Since the onsite
order parameter in this language is the coherent state ψα, j = 〈�|âα, j |�〉, which
clearly does not preserve the number of particles,3 this is used to describe the phase
with broken U (1) symmetry. Furthermore, we use it to express the full onsite order
parameter, containing the onsite spatial dependence, by using the expansion of the
annihilation operator (2.40) in terms of theWannier functions introduced in Sect. 2.1:

ψ j (r) ≡ 〈�̂ j (r)〉 =
∑

α

wα, j 〈âα, j 〉. (3.3)

The behavior of the order parameter ψα will be described from the equations of
motion derived from independent variation of the Lagrangian

L =
∑

α

∑

j

i

2

[
ψ∗

α, j
d

dt
ψα, j − ψα, j

d

dt
ψ∗

α, j

]
− HM F , (3.4)

3In fact, number fluctuations computed on coherent states follow a Poissonian distribution [5].

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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with respect to ψα, j and ψ∗
α, j . The mean-field Hamiltonian is given by4

HM F = −
∑

α,σ

∑

〈i, j〉σ
tα
σ ψ∗

α,iψα, j +
∑

α

∑

j

Uαα

2
nα, jnα, j +

∑

α,β,α �=β

∑

j

Uαβnα, jnβ, j

+
∑

α,β,α �=β

∑

j

Uαβ

4

(
ψ∗

α, jψ
∗
α, jψβ, jψβ, j + ψ∗

β, jψ
∗
β, jψα, jψα, j

)
, (3.5)

where the density of the pα-orbital state is given by nα, j = |ψα, j |2 and normalization
was imposed in the whole lattice as

N = Nx + Ny + Nz =
∑

j

(|ψx, j |2 + |ψy, j |2 + |ψz, j |2
)
, (3.6)

with N the total number of atoms.
We are now ready to write the Euler–Lagrange equations for the order parameters,

−i
∂ψx, j

∂t
= −

∑

σ∈{x,y,z}
t x
σ (ψx, j+1σ

− 2ψx, j + ψx, j−1σ
)

+ (Uxx |ψx, j |2 + (Uxy + Uyx )|ψy, j |2 + (Uxz + Uzx )|ψz, j |2)ψx, j

+
(

Uxy + Uyx

2

)
ψ2

y, jψ
∗
x, j +

(
Uxz + Uzx

2

)
ψ2

z, jψ
∗
x, j

−i
∂ψy, j

∂t
= −

∑

σ∈{x,y,z}
t y
σ (ψy, j+1σ

− 2ψy, j + ψy, j−1σ
)

+ (Uyy |ψy, j |2 + (Uxy + Uyx )|ψx, j |2 + (Uyz + Uzy)|ψz, j |2)ψy, j

+
(

Uxy + Uyx

2

)
ψ2

x, jψ
∗
y, j +

(
Uzy + Uyz

2

)
ψ2

z, jψ
∗
y, j

(3.7)

−i
∂ψz, j

∂t
= −

∑

σ∈{x,y,z}
t z
σ(ψz, j+1σ

− 2ψz, j + ψz, j−1σ
)

+ (Uzz|ψx, j |2 + (Uxz + Uzx )|ψx, j |2 + (Uyz + Uzy)|ψy, j |2)ψz, j

+
(

Uxz + Uzx

2

)
ψ2

x, jψ
∗
z, j +

(
Uyz + Uzy

2

)
ψ2

y, jψ
∗
z, j ,

4Recall that the coherent-state expectation value is carried out with the normal-ordered version of
Hamiltonian (2.42).

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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that correspond to a set of coupled (discrete) Gross–Pitaevskii equations, one for
each of the pα orbitals.

In the next step, Eqs. (3.7) are propagated (numerically) in imaginary time with
a trial initial function. This is the last part of the program and the one which leads to
the configuration of the order parameter at the global energy minimum.

To illustrate how this procedure works [6], let us consider the Schrödinger equation Ĥψ =
Eψ such that the wave function ψ evolves in time according to ψ(t) = e−i Ĥ tψ(0), where
we used � = 1. Writing ψ in the basis of its energy eigenstates, ψ = ∑

n cnφn , with
cn = 〈ψ|φn〉,

ψ(t) =
∑

n

cne−i En tφn,

where En corresponds to the nth energy level of the system. Now using t → iτ , with

ψ(τ ) =
∑

n

cne−Enτ φn,

the overlap between the ground state with the ψ(τ ) propagated in imaginary time, and after
a long propagation time, is given by

〈ψ(τ )|c0φ(τ )〉 → lim
τ→∞

c20e−2E0τ

c20e−2E0τ + ∑
n=1 c2ne−2Enτ

= 1

Therefore, in the limit of τ → ∞, ψ(τ ) will converge to the true ground state of the system,
as long as the overlap between these states is non-vanishing. For finite τ , the corrections
appear as

ψ(τ ) = c0e−E0τ φ(0) + O(e−τ (E1−E0)).

This method can also be applied to the non-linear system described by Eq. (3.7), but in this
case propagation has to be carried out self-consistently.

In the simpler cases, as e.g., when atomic population is homogeneously distributed
in the lattice,5 much of the behavior of the system can be alternatively understood
from direct study of Eq. (3.5). Since the order parameters are complex numbers, say

ψα, j = eiθα, j |ψα, j |, (3.8)

full characterization of the configuration with minimum energy involves knowledge
on both the phases and densities.6 In the situation of equal density, however, we are
only left with analysis of the phases.

From the non-interacting part of the mean-field Hamiltonian

H 0
M F = −

∑

α,σ

∑

〈i, j〉σ
tα
σ ψ∗

α,iψα, j = −2
∑

α,σ

∑

〈i, j〉σ
tα
σ |ψα,i ||ψα, j | cos(θα, j − θα,i ),

(3.9)

5That is, when |�α,i | = |�β,i |.
6This discussion follows Ref. [1, 7].
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we immediately identify that tunneling processes couple the phases of the onsite
order parameters, within the same orbital state, at neighbouring sites. As discussed
in Sect. 2.4, since tα

‖ < 0 and tα
⊥ > 0, these processes minimize energy by imposing

a stripped configuration to the phases along the lattice. In fact, the phase of the pα-
orbital state has values in the lattice that satisfy θα, j = θα( jx , jy, jz) ± π modulo
( jα, 2). Therefore, from tunneling contributions, the order parameters at neighbour-
ing sites are set to exhibit the same phase in the directions perpendicular to the label
of the orbitals, while in the parallel directions they exhibit a π phase difference.

Let us now consider the interacting part of the mean-field Hamiltonian. Substitu-
tion of (3.8) in the terms describing density-density interactions lead to

H ( j)
nn = Uxx

2
|ψx, j |4 + Uyy

2
|ψy, j |4 + Uzz

2
|ψz, j |4

+ 2Uxy |ψx, j |2|ψy, j |2 + 2Uxz|ψx, j |2|ψz, j |2 + 2Uyz|ψy, j |2|ψz, j |2.
(3.10)

Since (2.44) and (2.45) contain onlynumber operators, this term is phase independent.
This is not the case, however, for the processes describing the transfer of population
between different orbitals,

H ( j)
O D = Uxy |ψx, j |2|ψy, j |2 cos(2(θx, j − θy, j )) + Uxz |ψx, j |2|ψz, j |2 cos(2(θx, j − θz, j ))

+ Uyz |ψy, j |2|ψz, j |2 cos(2(θy, j − θz, j )),

(3.11)

where the order parameters are required to satisfy a specific onsite phase-locking.
In what follows, we discuss the cases of the two- and three-dimensional lattices
separately.

3.1.1 The Two-Dimensional Lattice

In the two-dimensional case, the phases between the px and py orbitals are locked
with a π/2 phase difference. This can be easily noticed from the relation

H ( j)
F D 2D

= Uxy |ψx, j |2|ψy, j |2 cos(2(θx, j − θy, j )), (3.12)

which is minimized for θx, j − θy, j = ±π/2 (Uxy > 0). When this is combined with
the stripped pattern imposed by the tunneling contributions, the phases of the order
parameters become constrained as illustrated in Fig. 3.1.

Further properties of this system can be characterized from the expression of the
full onsite order parameter defined in (3.3). Writing its explicit dependence on the
orbital states wave-functions [7],

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Fig. 3.1 Schematic representation of phase ordering of the different orbital states order parameters.
Left panel The direction of the arrows are used here to define an angle.Black and red arrows describe
θx, j and θy, j , respectively. Notice the π/2 phase difference between θx, j and θy, j , that is required
for minimizing the onsite energy of the mean-field Hamiltonian Eq. (3.12). In the right panel we
illustrate the vortex/anti-vortex structure at different lattice sites

ψ j (r) = ψx, jwx, j (r) + ψy, jwy, j (r) (3.13)

and using the condition of π/2 phase difference between the two orbitals, we obtain

ψ j (r) = |ψx, j |wx j (r) ± i |ψy, j |wy, j (r). (3.14)

Four lessons can be learnt from this expression: First, that the ± sign alternates
between neighbouring sites, defining a staggered configuration for the onsite current
flowing between the condensates in the px and py orbitals. Second, that the phase
locking of Eq. (3.14) enforces the density |ψ j (r)|2 to be maximally spread on the
sites, which additionally minimizes the interaction energy. Third, that the complex
character of the order parameter yields a lowest energy state with non-zero angular
momentum. Finally, the fourth lesson we learn is that since the Wannier functions
satisfy the orthonormality conditions (2.12), the onsite order parameter can be inter-
preted as a spinor with the form

ψ j =
[ |ψx, j |

±i |ψy, j |
]

, (3.15)

where the basis states contain all the spatial dependence of the orbital wave-functions
wx, j (r) andwy, j (r), andwhere the length of the spinor gives the onsite atomnumber,
i.e., N j = √|ψx, j |2 + |ψy, j |2. In this formulation the order parameter can be fully
characterized by a Bloch vector J j = (Jx, j , Jy, j , Jz, j ), with components

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Jx, j = ψ∗
x, jψy, j + ψ∗

y, jψx, j ,

Jy, j = i(ψ∗
x, jψy, j − ψ∗

y, jψx, j ),

Jz, j = |ψx, j |2 − |ψy, j |2,

(3.16)

that corresponds to a mean-field version of the Schwinger bosons [8]. The length
of the Bloch vector determines the total number of atoms at the site j , |J j | = N j ,
and Jz, j computes the onsite population imbalance between atoms occupying px -
and the py-orbital states. Due to the required onsite phase-locking relation, Jx, j is
always zero.

We now study the spatial dependence of the order parameter that is absent in the
Bloch vector picture. In the simplest case of the harmonic approximation, where the
Wannier functions can be taken as Hermite polynomials (see Sect. 2.3.1), the onsite
order parameter is given by

ψ(ha)

j = [|ψx, j |x ± i |ψy, j |y
]

e− x2+y2

σ2 , (3.17)

where the effective width of the oscillator σ2 is determined from the lattice parame-
ters. If |ψx, j | = |ψy, j |, then this is an angular momentum eigenstate, Lz, j = −i∂θ j ,

Lz, jψ
(ha)

j (r) = ±ψ(ha)

j (r), and in the whole lattice, the order parameter is in a
staggered-vortex configuration as shown in Fig. 3.1. In terms of the Bloch sphere,
Jx, j = 0 for every j7 and the Bloch vector points parallel to the direction defined
by Jy, j .

Outside the harmonic approximation, when the Wannier functions are the proper
solutions of theMathieu equation, the onsite vortices/anti-vortices are not necessarily
eigenstates of Lz, j even when Jz, j = 0. However, the onsite order parameter has
vanishing density at the center of the site with a vortex-like singularity. In the same
way, a staggered-vortex-like solution permeates the entire lattice.

3.1.2 The Three-Dimensional Lattice

In three-dimensional lattices,8 the onsite order parameter has components Lα, α =
{x, y, z} and

� j =
⎡

⎣
ψx, j

ψy, j

ψz, j

⎤

⎦ =
⎡

⎣
|ψx, j |eiθx, j

|ψy, j |eiθy, j

|ψz, j |eiθz, j

⎤

⎦ . (3.18)

7This was already the case due to the π/2 phase difference between px and py orbitals.
8We follow here the analysis of Ref. [1].

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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The simplest case to characterize phase properties in the state with minimum energy
is that of equal occupation of the three orbitals, i.e., when |ψx, j | = |ψy, j | = |ψz, j |.
Here, Eq. (3.11) isminimized for θx, j−θy, j = θy, j−θz, j = θz, j−θx, j = ±2π/3±π,
such that

� j =
√

N j

3
eiθ j

⎡

⎣
1

e2πi/3

e4πi/3

⎤

⎦ , (3.19)

where N j is the total atom number at the site j and θ j is an arbitrary phase. Here
each of the orbital states has a unit of angular momentum per atom which points
along the axis L ∝ (±1,±1,±1). Now since the phase relation to be satisfied is
a (dependent) linear combination of the phases of the different orbital states and
Uαβ > 0, the relative phases of the orbital order parameters are frustrated. This
property was previously pointed out in Ref. [9], where it is argued9 that “the onsite
frustrated phase configurations come in two different “chiralities” that cannot be
converted into each other by shifting any one of the phases by the π shift allowed by
the Z2 symmetry”. Namely, in a right-hand configuration defined by current flow from
the px → py → pz → px orbitals, the phases are given by θx, j = 0, θy, j = 2π/3
and θz, j = 4π/3. Analogously, in the left-hand configuration current flows from the
px ← py ← pz ← px orbitals and θx, j = 0, θy, j = 4π/3 and θz, j = 2π/3. In
particular, the direction of the current flow is not affected by addition of π to any of
the phases.

In light of the frustrated character of the phase relation in the three orbital case,
one can use known properties of the onsite phase lockings to investigate the system
even further. For example, let us assume the specific phase locking of Eq. (3.19) and
reverse the question by asking: Is this phase relation valid regardless of the values of
Uαα and Uαβ , or is there any condition imposed over the values of these couplings?

We follow here the approach of Ref. [1], and re-write the interacting part of the
mean-field Hamiltonian as10

Hnn = Uxx

2
(n2

x + n2
y + n2

z ) + 2Uxy(nx ny + nx nz + nynz),

HF D = Uxy
(
cos(�xy)nx ny + cos(�xz)nx nz + cos(�xz − �xy)nynz

)
,

(3.20)

where nα = |ψα|2, and �αβ = 2(θα −θβ). In these terms, defining n = (nx , ny, nz),
the interaction energy functional can be written in the quadratic form of the nα

variables,
E[ψx ,ψy,ψz] = nT Mn, (3.21)

9We refer to the original reference [9] formore discussions on the properties of the broken symmetry
phase of three orbital system.
10Due to typos in Ref. [1], there are different factors in the calculations presented here. We point
out, however, that this does not change the conclusions drawn by the authors.
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with

M =

⎡

⎢⎢⎢⎢⎣

Uxx/2 Uxy(2 + cos(�xy)) Uxy(2 + cos(�xz))

Uxy(2 + cos(�xy)) Uxx/2 Uxy(2 + cos(�xz − �xy))

Uxy(2 + cos(�xz)) Uxy(2 + cos(�xz − �xy)) Uxx/2

⎤

⎥⎥⎥⎥⎦
.

(3.22)

Solving for the eigenvalues we find

λ1 = Uxx − 3Uxy

λ2 = Uxx − 3Uxy

λ3 = Uxx + 6Uxy,

(3.23)

which requires Uxx > 3Uxy for having a positive definite matrix M. When this con-
dition is violated, the onsite order parameters cannot lock the phases as in Eq. (3.21).
In fact, since for this range of parameters M is not positive definite, fluctuations on
the top of the state with definite phase become divergent and therefore any type of
ordering is destroyed. Nevertheless, in sinusoidal optical lattices Uxx > 3Uxy , and
therefore this analysis suggests the possibility of finding a degenerate ground-state
with different configurations of phase locking. It also reveals an additional limitation
of the harmonic approximation, in which case Uxx = 3Uxy .

As a final remark we stress that a complete characterization of the frustrated
phases in the three-orbital state requires the study of the |ψx, j | �= |ψy, j | �= |ψz, j |
case, where qualitative properties are expected to be different. Here we refer the
reader to Ref. [1].

3.2 Mean-Field Properties of the Bosonic System
in the d Band

In this section we study the phase diagram of the superfluid to Mott-insulator transi-
tion of the system with bosonic atoms in the d band of 2D isotropic square lattices.11

While the properties of the Mott insulator phase are studied in details in Sect. 5.4, we
focus here on the description of the superfluid phase from a mean-field perspective.
Before proceeding, however, we discuss the techniques used in the computation of
the phase diagram.

11This section is based on the work of Ref. [10].

http://dx.doi.org/10.1007/978-3-319-43464-3_5
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In the mean-field approach of Sect. 3.1, the superfluid phase of the p-band system
was characterized by combining the onsite solutions minimizing the local part of
the mean-field Hamiltonian, Eqs. (3.10) and (3.11), with the conditions required for
minimizing the kinetic term. The result was the global (long-range) phase coher-
ence implemented as a staggered-vortex configuration. While this approach usually
provides an accurate description deep in the superfluid phase, it is not suitable for
capturing the transition to the Mott insulator state.

A next step for improving this naïve mean-field description is provided by the
Gutzwiller mean-field technique [11, 12]. It is based on the use of an ansatz for
the system’s wave-function, that although still factorized on the site indices, is con-
structed such as to include onsite number fluctuations in a self-consistent way. Next,
this wave-function is used to compute an energy functional whose ground-state prop-
erties are used to characterize the many-body system. The improvement here is that
the Gutzwiller method accounts for Gaussian fluctuations on the top of the saddle
point solution, obtained from the partition function in the representation of coherent
states.12 More specifically, and already in the notation of the d orbitals,

|�〉Gutz =
∏

i

ci |φi 〉i , (3.24)

with the wave-function at the site i given by

|φi 〉 =
∑

nx2 ,ny2 ,nxy

c(i)
nx2 ,ny2 ,nxy

|nx2 , ny2 , nxy〉. (3.25)

|nx2 , ny2 , nxy〉 is a Fock state with nβ atoms n the dβ orbital, for β = {x2, y2, xy},
which is normalized as

∑
nx2 ,ny2 ,nxy

|c(i)
nx2 ,ny2 ,nxy

|2 = 1. The energy functional is then

written as EGutz

[
c(i)

nx2 ,ny2 ,nxy

]
= Gutz〈�|Ĥ |�〉Gutz, for the Hamiltonian of Eq. (2.55).

This is further minimized with use of the Nelder–Mead algorithm, with the self-
consistently obtained amplitudes c(i)

nx2 ,ny2 ,nxy
. In particular, since the Mott state is

characterized by vanishing number fluctuations, the Gutzwiller order parameter
ψdβ

= Gutz〈�|d̂β |�〉Gutz also vanishes in this phase, in contrast with the superfluid,
where it has nonzero values.

The Mott phases with different fillings are mapped out after inclusion of the
chemical potential μ. This yields the Hamiltonian (see Eq. (2.55))

Ĥ d + Ĥ xy → Ĥ d + Ĥ xy − μ
∑

i

n̂ i , (3.26)

12In particular, even though mean-field methods are usually not very reliable in low dimensions,
the Gutzwiller ansatz provides a good estimate of the boundaries of the superfluid to Mott insulator
transition in the s band even in 2D [11, 12].

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Fig. 3.2 Order parameterψ = |〈d̂x2,i 〉| = |〈d̂y2,i 〉| of the superfluid phase of bosonic atoms in the d
band. The corresponding order parameter for the dxy -orbital is approximately zero except for t/U <

10−3 where it is, however, at least one order of magnitude smaller than ψ. As is seen, the chemical
potential is varied such that the first four Mott lobes are illustrated (dark blue regions representing
a vanishing superfluid order parameter). For this plot, the relative strengths between the interaction
terms has been taken as {Uxy, Upp, Upx , Un p xy, Unx xy}/U = {0.17, 0.9, 0.3, 0.04, −0.03},
withU = Uxx = Uyy and corresponding to a lattice with amplitude V = 40.With this lattice depth,
Ex2 = Ey2 = 0 and Exy = 1.6U , and the relative tunnelings are {tα⊥, |t p|}/tα‖ = {0.002, 0.007}
(Reprinted from Ref. [2])

with n̂ i = n̂x2,i + n̂ y2,i + n̂xy,i . The numerical study is performed in a truncated
Hilbert space of dimension 64, that accounts for up to three atoms in each of the
three onsite orbital states. Also, since out of four nearest neighbours the tunneling
amplitudes are tα

‖ and tα
⊥ for the two neighbouring sites in the directions parallel and

perpendicular to the node of the wave-functions, the effective Gutzwiller tunneling is
taken as t = 2(tα

‖ + tα
⊥). The results, presented in Fig. 3.2, show the superfluid order

parameter ψ = 〈d̂x2,i 〉 = 〈d̂y2,i 〉 in the μt-plane for the energies scaled withUαα (see
Eq. (2.69)). The order parameter signalling occupation of the dxy orbital, ψxy is zero
everywhere, except for t/Uαα < 10−3. However, still in this case the occupation of
the dxy orbital is two orders of magnitude smaller than of the other two orbitals, and
therefore, the dynamics of bosons on the d band can be described by the effective
two-orbital model of Eq. (2.56). In addition, Fig. 3.2 also shows that the extent of
the Mott lobes fall off with n−1

0 , for n0 the lattice filling. This is in agreement with
mean-field results obtained for the Bose-Hubbard model in the ground band.

At higher fillings when the typical interaction energy becomes considerably larger
than the gap between the Exy and Eα bands, we expect that the dxy orbital will also
become populated. Indeed, as we checked numerically, for the same parameters used
in Fig. 3.2, and {μ, t}/U = {5, 0.5}, for example, the occupations of the three orbitals
are given by (〈n̂x2〉, 〈n̂ y2〉, 〈n̂xy〉) ≈ (3.3, 3.3, 1.7). Here, however, due to the higher
truncation required in the number of particles, computations are considerably more
costly than for the system at low densities, and are thus carried out for a fixed value
of the chemical potential μ/U and for varying t/U . In addition, this suggests that

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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the spatial structure of the onsite order parameter should be studied separately for
the system with both low and high densities, as we continue next.

3.2.1 Onsite Superfluid States

Low/ModerateAtomicDensitiesThe same approach used in Sect. 3.1.1 to study the
spatial shape of the onsite order parameter of the system in the p band can be adapted
for the d-band case. Direct generalization of the onsite vortex structure suggest that
the full onsite order parameter in the d band is characterized by doubly-quantized
vortices, as described by a state of the form

�(r) =
√

Ns

2

[
wx2(r) + wy2(r) ± √

2iwxy(r)
]

⇔

� = √
Ns/2

⎛

⎝
1

−1
±√

2i

⎞

⎠ ,

(3.27)

where Ns is the number of atoms at the site and is fixed a priori. At low densities
the existence of such a state is precluded, however, since according to the Gutzwiller
study the dxy orbital has negligible occupation. In addition, it is not possible to
construct a doubly-quantized vortex with only the dx2 and dy2 states.

To explore the possibilities and to characterize the spatial properties of the full
onsite order parameter, we study the mean-field version of Hamiltonian (2.55),
obtained with use of the coherent-state ansatz. In this picture

d̂α,i → ψα,i = |ψα,i |eiθα,i , (3.28)

which yields

Hd
M F = −

∑

σ,α

∑

〈i, j〉σ
2tασ |ψα,i ||ψα, j | cos

(
θα,i − θα, j

) +
∑

α

∑

i

Eαnα,i +
∑

α

∑

i

Uαα

2
n2

α,i

+
∑

α,β

2Uαβnα,inβ,i +
∑

α

∑

i

Uαβ |ψα,i |2|ψβ,i |2 cos
(
2(θα,i − θβ,i

)
)

+
∑

α

∑

i

2Unααβ |ψα,i |3|ψβ,i | cos
(
θα,i − θβ,i

)
,

(3.29)

forα, β = {x2, y2}, and with the sum over nearest neighbours running through each
pair only once. Even though this approximation is valid for systems with up to ∼10
particles per site, we believe this still gives a good picture of the superfluid state.
Indeed, as we see next, the study of the three-orbital system predicts a similar state
for describing the onsite superfluid.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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In the same way as for the system in the p band, the order parameter of the
superfluid phase in the d band is a complex number and requires the study of both
the density and phase properties. But with the atoms occupying only the dx2 and
dy2 states, and with equal population, we can resume the study to characterization of
phase properties.We then start with the local part of (3.29) and notice the dependence
on the relative phase δi = θx,i − θy,i of the individual order parameters for the
superfluid in the dx2 and dy2 orbitals. Contrary to the system in the p band, where the
relative phase of π/2 is determined by the orbital changing processes, the system in
the d band features the additional density-assisted interactions that are minimized by
a π relative phase at each site. We therefore minimize the full Eq. (3.29) with respect
to δi to obtain

δ̄i = arccos

(
−Unx xy

Uxy

)
, (3.30)

where δ̄i is the relative phase, onsite, at the energy minimum.
This leads to the solution

�vor(r) =
√

Ns

2

(
wx2(r)eiδi + wy2(r)

)
, (3.31)

which is illustrated in Fig. 3.3 for the system with V = 40. In Fig. 3.3a we show
the atomic onsite density |�vor(r)|2, and in b, the phase of the order parameter

Fig. 3.3 The onsite density |�(r)|2/Ns and the corresponding phases Arg[�(r)] in a and c, and b
and d, respectively. Here we assumed that the atomic density is rather low such that we can neglect
any population of the dxy orbital. In the upper two plots we consider a lattice with an amplitude
V = 40. It is seen in (b) that the phase of the order parameter winds 2π at the four points where
the density vanishes. This reflects the presence of four vortices - two vortex/anti-vortex pairs. In the
lower two plots we use the same parameters but put Unx xy = −2Uxy in order to reach the regime
where the state qualitatively changes. Here a dark soliton is separating the central peak from the
surrounding circle (Reprinted from Ref. [2])
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Arg[�(r)]. At each site, the condensate order parameter is characterized by two
vortex/anti-vortex pairs, each of which has a ±2π phase winding around the sin-
gularity point. Now since the tunneling in the d band has the same sign in both the
parallel and the perpendicular directions, i.e., tα

‖ , tβ
⊥ > 0, the orientation of the onsite

vortices at neighbouring sites is the same. Due to the underlying Z2 symmetry of the
system, each of the two vortex-lattices with different orientations correspond to a
state with spontaneously broken symmetry. In the solution of Fig. 3.3, and starting at
the upper left corner, the phase winding is clockwise/anti-clockwise/clockwise/anti-
clockwise. In the alternative solution, the state has anti-clockwise/clockwise/anti-
clockwise/clockwise winding instead.

Now how does the state with restored Z2 symmetry looks like? We answer this
question by noticing that the phase dependence on R = Unx xy/Uxy is the factor
determining the shape of the onsite vortex pairs. In fact, for R = 1, the vortices are
annihilated by the anti-vortices. When R > 1, the onsite order parameter is given by

�sol(r) =
√

Ns

2

(
wdx2

± wdy2

)
, (3.32)

and as shown in Fig. 3.3c, d, it is characterized by an immobile dark soliton with
vanishing density at the circle, together with a phase jump from 0 to π. In case where
the ratio R could be externally controlled, this system would be driven through a
phase transition from a “soliton”-superfluid to a “vortex”-superfluid with broken Z2

symmetry. In addition, the discontinuity of ∂R H d
M F |R=1 suggests the existence of

a first order phase transition. We remark, however, that even though this external
tuning of R might be experimentally non-trivial, this analysis is nevertheless useful
for shedding additional light on the properties of the superfluid phase of bosonic
atoms in the d band.

High Atomic Densities At large fillings, n0 � 1, minimization of the energy func-
tional must be handled with the additional dxy orbital. Therefore we use Eq. (3.28)
together with the equivalent expression for the dxy orbital ψxy,i = |ψxy,i |eiθxy,i , and
we write the full mean-field Hamiltonian for the system in the d band

HM F = H d
M F + H xy

M F , (3.33)

where

H xy
M F = −

∑

σ

∑

〈i, j〉σ
2 t p cos

(
θα,i − θα, j

) +
∑

i

Upp

2
nxy,i

(
nxy,i − 1

) +
∑

α

∑

i

2Upαnxy,inα,i

+
∑

α

∑

i

⎡

⎣Upα|ψxy,i |2|ψα,i |2 cos
(
2(θα,i − θxy,i )

) +
∑

β

4Un p xy cos
(
θα,i − θβ,i

)

+
∑

β

2Unαxy |ψxy,i |2|ψα,i ||ψβ, j | cos
(
2θxy,i − (θα,i − θβ,i )

)
⎤

⎦.

(3.34)
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Fig. 3.4 The same as Fig. 3.3 but deep in the superfluid phase (n0 � 1) where all three orbitals are
considerably populated. The difference between the upper and lower plots is the sign of the order
parameter ψdxy (the two states have equal energy), which reflects the states in two neighbouring
sites in the lattice. Despite the fact that the dxy orbital is largely populated in this case, the general
structure of the superfluid state shown in Fig. 3.3 a and b survives, i.e., the onsite order parameter
hosts two vortex/anti-vortex pairs. However, the state gets distorted with two of the vortices at the
very edge of the distribution. As for Fig. 3.3, the potential amplitude V = 40 (Reprinted from
Ref. [2])

Since the analytical expression of the fix point is not of much help in this case,
we continue with a numerical study. Here again, we minimize the mean-field
Hamiltonian with use of the Nelder–Mead algorithm. The result is shown in
Fig. 3.4, where the onsite occupations of the orbitals are given by (dx2 , dy2 , dxy) =
(0.36, 0.33, 0.31) such that no specific dominance is found. In comparison with the
results of the previous case, the vortex/anti-vortex pairs are rotated in the presence
of dxy-orbital atoms, and the atomic distribution is squeezed. In addition, this exam-
ple clearly shows the tendency of the vortices with positive winding to migrate to
the center of the site, where the density is higher. This suggests that as interactions
become stronger, and the density more squeezed, two of the vortices will be located
in regions with vanishingly small density such that the onsite state would be closer to
a state with doubly quantized vortices. However, this continuous deformation does
not violate conservation of angular momentum, since in reality this corresponds to
two singly excited vortices coming infinitely closed to each other. Furthermore, due
to t p < 0, the ψxy changes sign between neighbouring sites such that the orientation
of the doubly excited vortices alternate in the full lattice, yielding a state with zero
angular momentum. The two possible orientations are again related to the breaking
of the Z2 symmetry, and we have checked that also here, the state with restored
symmetry is characterized by a dark soliton.

In summary, even in the presence of the third dxy orbital, the onsite super-
fluid preserves the structure of the effective two-orbital system discussed in the
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previous section. Therefore, rather than doubly quantized vortices, as one could in
principle expect in analogywith the results obtained for the p-band system, the onsite
superfluid state in the d band features pairs of vortices/anti-vortices.
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Chapter 4
Confined p-Orbital Bosons

In the laboratory, experiments with optical lattices are most often performed in the
presence of an additional external potential for confining the atoms. The confining
potential is typically much weaker1 than the optical lattice, and has a characteristic
length scale much larger than the lattice period. However, the presence of an external
trap gives the system an inhomogeneous density, which can have important conse-
quences for the phase diagram. In fact, different regions with locally homogeneous
densities are now allowed to coexist in the lattice for a given set of parameters,
and therefore considerations of trapped systems are important for obtaining a more
realistic picture of the systems under study.

The mean-field analysis carried in Chap. 3 revealed the structure of the order
parameter characterizing the homogeneous system of bosonic atoms in the p band.
In isotropic square lattices, for example, we have seen that the state with minimum
energy exhibits alternating vortices/anti-vortices at neighbouring sites, that define a
staggered configuration for the onsite current flowing between the condensates in
the px and py orbitals. But how is this picture modified when the system is in the
presence of an external confining potential?

In this chapter, we study the superfluid phase of p-orbital bosons confined by
a harmonic trap. In light of the anisotropic tunneling in the p band, how is the
inhomogeneous density modifying the physics of the homogeneous system? This is
the question addressed in Ref. [1]. We will follow it here, starting with the analysis
of the the ideal gas in the p band in Sect. 4.1, where we also study finite temperature
properties.Weconsider the interacting case fromamean-field perspective inSect. 4.2,
and conclude with a study of the system in anisotropic lattices in Sect. 4.3.

1In the sense that the leading physics stems from the optical potential.
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4.1 The Ideal Gas

Let us start by considering the simplest case of the non-interacting system in an
isotropic optical lattice and in the presence of the harmonic trap

Vtrap(r) = mω̃

2
(x

′2 + y
′2) = ω

2
(x2 + y2). (4.1)

Here ω̃ is the trap frequency, ω = √
2mω̃/�k2 is the dimensionless trap frequency,2

with k the wave-vector of the laser, and x = kx
′
and y = ky

′
are dimensionless

positions.
The Hamiltonian describing this system is given by

H (0) = −
∑

σ,α

∑

〈i, j〉σ
tασ ψ∗

α,iψα, j +
∑

α

∑

j

ω2

2
(x2j + y2j )nα, j , (4.2)

where nα, j = |ψα, j |2 is the onsite density of the pα-orbital state, α = {x, y}.
A remark is in order: For consistency with the notation used in the analysis to be carried
out in the next section, we use here the mean-field notation for the analysis of the ideal gas.
Notice, however, that since the non-interacting case has a quadratic Hamiltonian, we have
actual access to the exact solutions of the problem, rather than that of an effective description.

We proceed with the Schrödinger equation for (4.2),

i
∂

∂t
� = H (0)�. (4.3)

As stated before, this equation is governed by a quadratic Hamiltonian that we notice,
furthermore, has similar structure to the Mathieu equation expanded in momentum
eigenstates [2]. This can be written in matrix form, for each of the orbital states and
say, for the 2D system3 as

2Notice that the characteristic length of the trap ltrap � λ/2, where λ is the wavelength of the laser.
3Since it is straightforward to write the matrix form of the ideal gas Hamiltonian in the 3D lattice,
we only write explicit expressions of the 2D case here.
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i
∂

∂t

⎛

⎜⎜⎜⎜⎜⎜⎝

...

ψα,(i−1,{ j})
ψα,(i,{ j})

ψα,(i+1,{ j})
...

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

h(0)
i−2,{ j} −tαy 0 0 0

. . . −tαy h(0)
i−1,{ j} −tαy 0 0 . . .

. . . 0 −tαy h(0)
i,{ j} −tαy 0 . . .

0 0 −tαy h(0)
i+1,{ j} −tαy

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

...

ψα,(i−1,{ j})
ψα,(i,{ j})

ψα,(i+1,{ j})
...

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(4.4)

In this notation, H (0) is a 2N × 2N matrix, where N counts the number of sites,
ψα,(i,{ j}) is a N × 1 vector whose label j runs over all the columns of the i th row,
i.e., ψ∗

α,(i,{ j}) = (
ψα,(i,1),ψα,(i,2), . . .

)
,

h(0)
i,{ j} =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

ω2

2 R2
i, j−2 −tαx 0 0 0

. . . −tαx
ω2

2 R2
i, j−1 −tαx 0 0 . . .

. . . 0 −tαx
ω2

2 R2
i, j −tαx 0 . . .

0 0 −tαx
ω2

2 R2
i, j+1 −tαx

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

is a 1D tight-bindingHamiltonian, and−tαy = −tαy 1N×N , where1N×N is the identity
matrix of size N × N . Analytical solutions of Eq. (4.4) can be obtained for special
cases, from Fourier expansions of the Mathieu functions. However, since the expres-
sions can be cumbersome, not much is learnt by taking a step in this direction [2].

On the other hand, an analytical study of the trapped system can be performed in
the continuum limit, where the solutions of the problem have simpler closed form. In
this framework we make ψα, j → ψα(x, y), and the expression of the kinetic energy
becomes

ψα, j+1σ
− 2ψα, j + ψα, j−1σ

→ ∂2

∂σ2
ψα(x, y).
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The corresponding Schrödinger equations then reads,

i ∂
∂t ψx (x, y) =

[
−|t xx |∂2

x − |t xy |∂2
y + ω2

2 (x2 + y2)
]
ψx (x, y)

i ∂
∂t ψy(x, y) =

[
−|t yx |∂2

x − |t yy |∂2
y + ω2

2 (x2 + y2)
]
ψy(x, y),

(4.6)

where we have imposed a phase imprint in the wave-function ansatz. In fact, with
the equations in this form, the phase factors associated to the stripped pattern in the
lattice are absorbed in the redefinition of the tunneling coefficients, where we have
transformed tαα → −tαα .

By introducing the effective mass mαβ = |tαβ |−1/2, and parallel and transverse
frequencies

ω‖ = ω
√
2|tαβ |, α = β

ω⊥ = ω
√
2|tαβ |, α �= β,

(4.7)

Equation (4.6) can be further re-written as

i
∂

∂t
ψx (x, y) =

[
p2x

2mxx
+ p2y

2mxy
+ mxxω

2
‖

2
x2 + mxyω

2
⊥

2
y2
]

ψx (x, y), (4.8)

with a corresponding equation for the py orbital state. We notice, moreover, that
by implementing the stripped pattern in the wave-function ansatz prior to taking
the continuum limit, we avoid dealing with a Hamiltonian that is not bounded from
below. This is nothing but a gauge transformation with the overall effect of inverting
the p band and shifting its minimum energy to the center of the Brillouin zone, but
the physics remains unaltered.

In any way, this shows that the continuum approximation enormously simpli-
fies analytical considerations by re-writing Eq. (4.4) as the eigenvalue problem of
a 2D anisotropic harmonic oscillator. In this picture, since both mασ and ωασ (see
Eq. (4.7)) depend intrinsically on the tunneling anisotropy, the ground-state ψα(x, y)
of Eq. (4.8) will have a Gaussian profile, with different widths in the different direc-
tions. This fact can be used to characterize the system in more general terms, by
defining the anisotropy parameter

Sx =
√

(�x x)2

(�x y)2
, (4.9)

where (�αβ)2 = 〈β2〉α − 〈β〉2α, and 〈..〉α represents the expectation value taken with
respect to ψα(x, y). Accordingly, the anisotropy in the density of py-orbital atoms
is characterized by an equivalent expression, that in isotropic square lattices satisfies
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Sx Sy = 1. For this reason we will now drop the subscript and use S = Sx whenever
discussing such anisotropies. In particular, in the continuum case discussed here

Scont =
(

|t xx |
|t xy |

)1/4

=
(

ω‖
ω⊥

)
. (4.10)

The limit where ω‖ = ω⊥ corresponds to the case of isotropic tunneling, and yields
S = 1. As soon as this isotropy is broken, however, S �= 1. Accordingly, this reveals
that the density of atoms in each of the orbital states is narrowed down in the direction
perpendicular to the label.

4.1.1 The Ideal Gas at Finite Temperatures

The possibility of re-writing the Schrödinger equation of the non-interacting system
in a rather simple form allows for the study of thermodynamic properties of con-
densation in the p band. Let us proceed with this analysis by first considering the
simplest case of the continuum limit, described in Eq. (4.6), where known proper-
ties of condensation in harmonically trapped systems can be directly used [3]. The
critical temperatures for Bose–Einstein condensation in 2D and 3D are given by

T (2D)
c = ω(2D)

e f f

√
6N/π2 (4.11)

and

T (3D)
c = ω(3D)

e f f (N/ζ(3))1/3, (4.12)

where ζ(3) ≈ 1.20206. The effective trapping frequencies are defined [3] as

ω(2D)
e f f = 3ω

√
|t xx ||t xy | (4.13)

and

ω(3D)
e f f = 4ω(|t xx ||t xy ||t xz |)1/3 = 4ω(|t xx ||t xy |2)1/3. (4.14)

The critical temperatures for the discrete model can also be computed. This is done
with use of numerically obtained eigenvalues of Eq. (4.4)4 in

NT =
∑

n �=0

1

eβ(En−μ) − 1
, (4.15)

4Diagonalization is performed on the Hamiltonian of a truncated lattice.
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Fig. 4.1 Critical temperature for the establishment of Bose–Einstein condensation in the p band as
a function of the atom number denoted by N . a shows the results of the 2D systemwhile b shows the
results for the 3D system. We also compare the results obtained for the continuum approximation
(dashed line) with the results of the discretemodel obtained numerically (solid line). The parameters
here are ω2/2 = 0.001 for the dimensionless trap strength and |t xx /t xy | = 20.1, which corresponds
to the ratio between the tunneling coefficients for Vx = Vy = 17 (Reprinted from Ref. [1]. In order
to concile with the notation used here we notice that tαβ = tαβ )

where β = Er/kBT is the inverse (dimensionless) temperature and μ is the chemical
potential computed for a fixed number of atoms NT .

The results are shown in Fig. 4.1, where we compare the critical temperatures of
both the discrete and continuous cases. In particular, we notice the disagreements
between the two predictions, which become more pronounced for increasing values
of N .We understand this difference as a consequence of the different density of states
in the two cases. In fact, since the general expression for the critical temperature of a
confined ideal gas in d dimensions kBTc ∝ N 1/d depends on the density of states [4],
any difference between the two cases should become more pronounced for large N .

We proceed by examining the 2D case with more details. In particular, we are
interested in characterizing the behavior of the density as one crosses the transition
to the condensed state: Is there any difference in the profile of the atomic density as
the temperature is lowered below Tc?

In the high temperature limit, we expect the system to show isotropic density.
This is because in this regime, the system should be described by the Boltzmann
distribution, which is itself isotropic. However, as the temperature is lowered, low
temperature properties become relevant and the condensed state of p-orbital bosons
is characterized by a bimodal structure with the atoms squeezed either in the x or
the y direction of the lattice. This is illustrated in Fig. 4.2a and b, where we show the
density

ntotal( j) = N0|ψ0( j)|2 +
∑

n �=0

|ψn( j)|2
eβ(En−μ) − 1

(4.16)

for two different temperatures, above Tc and for the ground state (where T = 0). As
expected, this behavior follows as a consequence of the tunneling anisotropy.
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Fig. 4.2 Populations per site of the 2D Bose gas in the p band and for a single orbital state. a shows
a situation where T > Tc, while in b T = 0. In both cases the total number of atoms in the system
Ntot = 1000, the dimensionless trap strengthω2/2 = 0.001 and potential depths are Vx = Vy = 17
(Reprinted from Ref. [1])

Fig. 4.3 The anisotropy
parameter S (see text) that is
used to characterize the
anisotropy in the density in
the 2D system, and as a
function of the temperatures
scaled with t xx . The number
of atoms considered is
N = 1000, the
dimensionless trap strength
is ω2/2 = 0.001 and
Vx = Vy = 17 (Reprinted
from Ref. [1]. Again we
notice that tαβ = tαβ in the
notation of this thesis)

To conclude this analysis, we use the anisotropy parameter defined in Eq. (4.9) to
characterize the density anisotropy as a function of the temperature for a systemwith
1000 atoms, in Fig. 4.3. As shown in Fig. 4.1a, above the (scaled) critical temperature
Tc ≈ 0.9, the atomic density becomes isotropic in the xy-plane.
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4.2 Mean-Field Equations of the Interacting System in 2D

In this sectionwe extend the approach used in Sect. 3.1 to study the interacting system
of bosons in the p band confined by a harmonic potential. We first recall that the
expression of the many-body Hamiltonian, Eq. (2.42), was obtained from expansion
of the field operators of Eq. (2.38) in terms of the p-orbital states (2.40). For the
confined system, however, the external potential contribution contains an additional
term to describe the harmonic trap, i.e.,

V (r) → Vlatt(r) + Vtrap(r), (4.17)

where as usual

Vlatt(r) = Vx sin
2(x) + Vy sin

2(y), (4.18)

and the expression of the trap potential is given by Eq. (4.1).
As stated previously,we are considering the regimewhere the characteristic length

of the trap ltrap � λ/2, such that the system can be treated in the local density approx-
imation.5 Under this assumption the lattice potential is approximately periodic, and
the orbital states can be taken as the site-localized Wannier functions of the non-
trapped case. The effects of the confinement are implemented locally, as a shift of the
onsite energies, in what amounts to describing the system with a position-dependent
chemical potential. The many-body Hamiltonian then follows as

Ĥ2D = −∑
α

∑
〈i, j〉σ t

α
σ â

†
α,i âα, j + ∑

α

∑
j

ω
2 (x2j + y2j )n̂α, j

+∑
α

∑
j
Uαα

2 n̂α, j (n̂α, j − 1) + ∑
αβ,α �=β

∑
j Uαβ n̂α, j n̂β, j

+∑
αβ,α �=β

∑
j
Uαβ

4 (â†α, j â
†
α, j âβ, j âβ, j + â†β, j â

†
β, j âα, j âα, j ),

(4.19)

where again n̂α, j = â†α, j âα, j is the number operator of the pα-orbital state.
To proceed with the study, we implement the program discussed in Sect. 3.1, and

characterize mean-field properties of the system. This starts with use of the coherent-
state ansatz in Eq. (4.19), which yields the corresponding mean-field Hamiltonian.
This mean-field Hamiltonian is then used in the Euler–Lagrange equations, that are
propagated in imaginary time with a trial wave-function. The result is the state with
minimum energy, that corresponds to the order parameter describing the superfluid
phase of the confined p-orbital bosonic system.

5Notice, however, that because of the tunneling anisotropy, the local chemical potential is not the
only factor determining local properties of the density.

http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_3


4.2 Mean-Field Equations of the Interacting System in 2D 57

As in Sect. 3.6, we impose the normalization in the whole lattice as

N = Nx + Ny =
∑

j

|ψx, j |2 +
∑

j

|ψy, j |2, (4.20)

where N is the total number of atoms, and the order parameters are again governed by
a set of coupled (discrete) Gross-Pitaevskii equations, one for each orbital-state pα,

−i
∂ψx, j

∂t
= −

∑

σ∈{x,y}
t xσ (ψx, j+1σ

− 2ψx, j + ψx, j−1σ
) + ω2

2
(x2j + y2j )ψx, j

+ (Uxx |ψx, j |2 + (Uxy +Uyx )|ψy, j |2)ψx, j +
(
Uxy +Uyx

2

)
ψ2
y, jψ

∗
x, j

−i
∂ψy, j

∂t
= −

∑

σ∈{x,y}
t yσ (ψy, j+1σ

− 2ψy, j + ψy, j−1σ
) + ω2

2
(x2j + y2j )ψy, j

+ (Uyy |ψy, j |2 + (Uxy +Uyx )|ψx, j |2)ψy, j +
(
Uxy +Uyx

2

)
ψ2
x, jψ

∗
y, j ,

(4.21)

where the expressions for the couplings are given by Eqs. (2.47) and (2.48).6

Propagation of a trial wave-function in imaginary time is carried onwith Eq. (4.21)
re-written in the form

i
∂� j

∂t
=

[
H11 H12

H21 H22

]
� j , (4.22)

where � j =
[

ψx, j

ψy, j

]
and

H11 = −t xx ∂2
x − t xy ∂

2
y +Uxx |ψx, j |2 + (Uxy +Uyx )|ψy, j |2,

H22 = −t yx ∂2
x − t yy ∂

2
y +Uyy |ψy, j |2 + (Uxy +Uyx )|ψx, j |2,

H12 =
(
Uxy +Uyx

2

)
ψy, jψ

∗
x, j ,

H21 =
(
Uxy +Uyx

2

)
ψx, jψ

∗
y, j .

(4.23)

Since time evolution is performed by a Hamiltonian containing both position- and
momentum-dependent terms, this step is implemented numerically with the use of
the split-operator method [5]. This method uses the Trotter expansion to factorize

6We remind that the coupling constants and tunneling coefficients are computedwith latticeWannier
functions obtained from numerical solution of the Mathieu equation for the potential (4.18).

http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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the evolution operator, and therefore becomes exact only in the limit of vanishingly
small time steps. For better accuracy, we propagate the system with a tiny time step
that was chosen after consistently checking the results against time steps of different
sizes.

Details of the computation are given in the following:

• The time evolution operator is written as

U (δt) = e−i Hδt = exp

{
−i

[
H11 H12

H21 H22

]
δt

}

= exp

{
−i

([
H11 0
0 H22

]
+

[
0 H12

H21 0

])
δt

}

and since we assume the lim δt → 0, this equation is further approximated as

U (δt) ≈ e
−iδt

⎡

⎣ H11 0
0 H22

⎤

⎦

︸ ︷︷ ︸
U1(δt)

e
−iδt

⎡

⎣ 0 H12

H21 0

⎤

⎦

︸ ︷︷ ︸
U2(δt)

. (4.24)

• We expand U2(δt):

[
0 H12

H21 0

]2
=

⎡

⎣

(
Uxy+Uyx

2

)2 |ψx, j |2|ψy, j |2 0

0
(
Uxy+Uyx

2

)2 |ψx, j |2|ψy, j |2

⎤

⎦ (4.25)

and

[
0 H12

H21 0

]3
=

(
Uxy +Uyx

2

)3

|ψx, j |2|ψy, j |2
[

0 ψy, jψ
∗
x, j

ψx, jψ
∗
y, j 0

]
, (4.26)

from where it follows

(−iδt)n

n! An = (−iδt)n

n! |ψx, j |n−1|ψy, j |n−1

[
0 ψy, jψ

∗
x, j

ψx, jψ
∗
y, j 0

]
(4.27)

for odd n, and
(−iδt)n

n! An = (−iδt)n

n! |ψx, j |n|ψy, j |n
[
1 0
0 1

]
(4.28)

for even n.
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Gathering all the terms of this expansion,

U2(δt) =
⎡

⎣
U (11)

2 U (12)
2

U (21)
2 U (22)

2

⎤

⎦ , (4.29)

where

U (11)
2 = U (22)

2 = cos

((
Uxy +Uyx

2

)
δt |ψx, j ||ψy, j |

)
,

U (12)
2 = −iδt

(
Uxy +Uyx

2

)
sinc

((
Uxy +Uyx

2

)
δt |ψx, j ||ψy, j |

)
ψy, jψ

∗
x, j

and

U (21)
2 = −iδt

(
Uxy +Uyx

2

)
sinc

((
Uxy +Uyx

2

)
δt |ψx, j ||ψy, j |

)
ψx, jψ

∗
y, j .

The idea now is to make �(δt) = U1(δt)U2(δt)� = U1(δt)�1, where �1 = U2

(δt)� with U1(δt) defined in (4.24). This involves evolution with a diagonal matrix
which contains different types of contributions (see the expressions of H11 and H22 in
Eq. (4.23)). Namely, it features a first part with dependence on the spatial derivatives;
and a second part that depends on the densities of the orbital order parameters.Wewill
first evolve�1 with the part ofU1 that depends on the densities. This yield�1 → �̃1.
After this step, the remaining part is handled in momentum space. By means of a
Fourier transform we obtain the expression of �̃1 in the momentum representation,
F[�̃1] = �̃, which can then be easily evolved with the lattice dispersion relations7

[
ψ̃x, j (δt)
ψ̃y, j (δt)

]
=

[
e−iδt[2t xx (1−cos kxx )+2t xy (1−cos kxy )] 0

0 e−iδt[2t yx (1−cos kyx )+2t yy (1−cos kyy )]

][
ψ̃x, j
ψ̃y, j

]
.

(4.30)

By Fourier transforming it back to the position representation, the final result is�(δt)
(cf. Eq. (4.22)). This is used again as a new trial wave-function, that is propagated in
imaginary time. This procedure is repeated until convergence has been reached.

Figure4.4 shows the density profile of the px - and py-orbital order parameters in
the confined system in (a) and (b), respectively. Comparison with Fig. 4.2b, reveals
the same trend observed for the ideal gas case, where the density is elongated in
the direction of the orbital label. Figure4.4c shows the population imbalance in the
lattice that corresponds to the z-component of the Bloch vector defined in (3.16), Jz, j .

7In momentum space the term −tασ ∂2
σ corresponds to tασ k

2
ασ . Here however we use k

2
ασ → 2tασ (1 −

cos kασ) to account for the (inverted) shape of the p band and the discrete character of the system.

http://dx.doi.org/10.1007/978-3-319-43464-3_3.
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Fig. 4.4 a and b showpopulations in the px - and in the py-orbital states respectively. c illustrates the
corresponding population imbalance Jz, j . The dimensionless systemparameters are Vx = Vy = 17,
ω = 0.005, and U0N = 1. Excess of atoms in the px -orbital state appears in the horizontal axis
and is indicated by red color, while in the vertical axis the system displays excess of atoms in the
py-orbital state (Reprinted from Ref. [1])

Since the density anisotropy is a consequence of the tunneling anisotropy, what
happens in the regime where interactions start to dominate over the tunneling contri-
butions? More importantly, how does the system react as we change the parameters
to cross the different regimes? Tunneling contributions can be suppressed in this
lattice in two ways. In the most immediate one, the intensity of the laser is tuned
such as to yield very deep potential wells where the atoms have reduced mobility.
The other way is via Feshbach resonances, that increase the coupling constant Ũ0

(see Eq. (2.38)) and therefore decrease the relative strength of the tunneling relative
to interacting processes. This limit, where interactions are so strong that other effects
of the dynamics can be neglected, is also known as the Thomas–Fermi limit [3].

In the interacting system, anisotropies in the density of the order parameters will
be also characterized with the same quantity defined in Sect. 4.1 for the ideal gas:

S =
√

(�x x)2

(�x y)2
.

We computed it here for different values of the system’s parameters. As Fig. 4.5
shows, this anisotropy parameter approaches S → 1 in the limit of vanishing tun-
neling regardless of the way chosen for suppressing such processes. However, we
notice that suppression of tunneling via the deepening of the lattice potential leads
to an initial increase of S in the V axis. After reaching a maximum value, S decays
monotonically, until reaching 1. Although there is no particular reason for expecting
such behavior, that in fact is not even hinted in the analysis of the continuum limit
(Scont 8 cf. Eq. (4.10)), this can be a consequence of the poor description provided by
the tight-binding approximation in the limit of shallow sites. Accordingly, the results

8It should be noticed, however, that the expression provided by Scont is obtained in the limit of
U0 = 0 and it does not approach 1 as V → ∞. On the other hand, since the kinetic term relative to
interaction becomes negligible under these circumstances, any small U0 > 0 is sufficient to make
Scont → 1. Formoderate values of the lattice depthV , Scont increasesmonotonicallywith increasing

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Fig. 4.5 The condensate anisotropy parameter S (see Eq. (4.9)) as a function of the interaction
strength U0N and of the lattice amplitude V = Vx = Vy for the system with dimensionless trap
frequency ω = 0.005. It illustrates that the system enters the Thomas–Fermi regime whenever the
relative strength of the tunneling compared to interactions becomes small, i.e., S → 1 (Reprinted
from Ref. [1])

Fig. 4.6 These plots display populations in the px -(a) and py-(b) orbital states, for Vx = Vy = 17,
ω = 0.005 and U0N = 15. Due to the strength of interactions, the anisotropy in the density is not
so pronounced as compared to the results in Fig. 4.4a and b (Reprinted from Ref. [1])

should not be taken too literally in that region. We complement the analysis by
showing the density profile of the px and py orbitals in Fig. 4.6a and b for a situation
with moderate interaction, where U0N = 15, ω = 0.005 and V = Vx = Vy = 17.
As expected, it confirms the previous conclusions driven in this section.

values of V . This behavior is not predicted by the discrete model (Eq. (4.6)), and therefore we keep
in mind that the two descriptions yield qualitatively different predictions in the limit of deep lattices.
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Fig. 4.7 Bloch vector at different sites of the optical lattice. We use the horizontal axis to rep-
resent the y-component of the spin and the vertical axis to represent the spin z-component. The
x-component of the spin is strictly zero due to the specific onsite phase locking between the px -
and the py-orbital states. Information about the density is encoded in the length of the Bloch vector
(see Eq. (3.16)) and the offset from the horizontal axis encodes information about the breakdown
of the antiferromagnetic order. The black dots are used to denote the lattice sites. In a U0N = 1
and in bU0N = 15. The other parameters are the same as in Fig. 4.6. This illustrates, in particular,
that the staggered-vortex solution remains valid in a larger number of sites in the center of the trap
in the limit of large interactions (Reprinted from Ref. [1])

Now in light of the inhomogeneous density profile in the confined system, what
is the fate of the staggered vortex solution predicted for the homogeneous case?9 In
order to characterize the stability of the staggered-vortex solution in the presence
of population imbalance between the two orbital states, we invoke the mean-field
version of Schwinger bosons, discussed previously in Sect. 3.1.1. Aswe argued there,
the profile of the full onsite order parameter Eq. (3.3), features true vortices/anti-
vortices, in the sense of eigenstates L̂ z, j , only in the harmonic approximation.Outside
this limit, the condition Ĵz, j = 0 is not enough to ensure a perfect staggered vortex
solution.

In the confined system, we have seen that the tunneling anisotropy introduces
a natural population imbalance in the lattice (see, e.g., Fig. 4.4), and therefore Jz, j
is typically nonzero everywhere. However since population imbalance is more pro-
nounced at the edges of the condensed cloud, it is still possible to have regions of
non-trapped like physics at the center of the trap, where Jz, j ≈ 0. This is illustrated in
Fig. 4.7a andb,whichdisplay theBlochvector in the yz-plane,10 J j = (0, Jy, j , Jz, j ).
Here, we use the horizontal axis to represent the y-spin direction, and the vertical
axis to represent the z-spin direction. Therefore, a clear dominance of the Jy, j com-
ponent appears at the center of the trap. At the edges, the Bloch vector is no longer
pointing to the horizontal direction, revealing the breakdown of the staggered vortex

9Cf. the analysis of Chap.3.
10Recall here that Jx, j is always zero.

http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_3
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solution in these regions. This study also shows, in addition, that in the limit of large
interactions, the staggered vortex solution can survive in a larger number of sites in
the center of the trap.

As a final remark, we notice that an interesting direction consists of the general-
ization of this study to the case of the 3D confined lattice. In the same way as for the
2D system, we expect that the center of the trap can be approximately described by
the homogeneous density case, as discussed in Sect. 3.1.2. However, instead of the
SU (2) structure of the two-orbital system, the structure of the three-orbital one is
intrinsically SU (3).11 In addition, since this case can accomodate frustrated states,
it would be relevant to investigate how effects of the confinement affect frustration.
Furthermore, since the tunneling anisotropy creates population imbalance for only
one of the orbital states (i.e., the one with the parallel label) in each direction, a
systematic study of the properties on the edges of the cloud are also of interest.

4.3 Properties of the System in the Anisotropic Lattice

All the properties discussed so far addressed the case of a symmetric lattice, where
the orbital states are automatically degenerate. In asymmetric or anisotropic lattices,
however, the presence of small asymmetries/anisotropies can be enough to lift this
degeneracy, thereby modifying the picture put forward in the previous section. It is
therefore important to investigate how robust is the physics of the symmetric lattice
with respect to such imperfections. What are the properties of the physics in the
anisotropic lattice, and how stable are the properties of the symmetric lattice with
respect to small imperfections?

Anisotropies in the lattice model discussed here can in principle be introduced in
two ways: either with the use of lasers with different wave vectors, i.e., kx �= ky , or
either by manufacturing the lattice with different amplitudes. We investigate these
issues by considering the second scenario, of a lattice with Vx �= Vy . In order to
control the ratio between the lattice depths in the different directions, we define the
anisotropy parameter

R = Vy

Vx
, (4.31)

where it is clear that the case of R = 1 recovers the symmetric lattice discussed
previously.

We verified numerically that the main effect of asymmetries is to shift the energy
levels and to lift the degeneracy between the orbital states. In the limit of very deep
lattice sites, this splitting is site independent and does not considerably affect the

11The SU (3) structure of the Mott phase with a unit filling of the three-orbital system in the p band
is discussed in details in Sect. 5.3.

http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_5
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physics of the system. Indeed, the splitting energy can be estimated in the harmonic
approximation as

� = Ey − Ex = 2
√
Vx (

√
R − 1), (4.32)

where Eα = ∫
d r w∗

α, j ( j)[−∇2 + Vlat (r)]wα, j ( j) is the energy of the pα orbital
state at the j th site, and therefore, as long as the splitting energy � is much smaller
than the energy scale set by the interaction terms, EU ∼ U0N |ψx |2, it has only very
small effects on the system.

However, this picture becomes more complex when the potentials become shal-
lower and correlations between sites become relevant. In this case, the interaction
can couple the order parameters of the different orbital states in a small region δ
around R = 1, such that small perturbation of the lattice parameters can lead to dras-
tic changes in the properties of the ground state.12 This is an important point, because
the possibility of accurately controlling the lattice in a neighbourhood around the
degeneracy point opens up a great window of new possibilities for applications of
this system. Of particular interest is the study of phenomena similar to adiabatic
ramping through an avoided crossing13 (as discussed in Ref. [6]).

In this sense, the parameter

Jz = 1

N

∑

j

Jz, j , (4.33)

which computes population imbalance between the different orbital states arises as a
natural candidate for characterizing sensitivity of the systemwith respect to R. When
Jz = −1, all the particles occupy only py orbital states, and in the same way, when
Jz = 1 all the particles occupy only px orbital states. The case of Jz = 0 recovers the
symmetric lattice, that is characterized by the equal sharing of population among the
different orbitals. We remark, however, that since the trap defines an effective size
for the system that is fixed by ω, the sensitivity under variations of R is expected to
depend strongly on the values of the trap frequency.14 This is illustrated in Fig. 4.8,
where the behavior of Jz around R = 1 is compared for different values of ω. In
particular, since the range of δ becomes smaller for larger systems, this implies
that qualitative properties of the ground state are expected to change more abruptly
with increasing systems sizes. We also verified numerically that δ increases with
increasing values of the interaction strength U0N , which confirms the picture that
the orbital order parameters are coupled by interactions.

Therefore, from the study of the asymmetric lattice, we learn that a better tuning
of the (symmetric) lattice parameters is required when studying the p-orbital bosons

12In the proper sense of changing the symmetry of the ground state.
13It is important to point out, however, that since here the densities of different orbital states are
spatially different, adiabatic driving could lead to macroscopic flow of particles within the trap.
14Since the trap frequency also determines the susceptibility of the system to finite size effects, it
can transform energy level crossings into avoided crossings, for example.
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Fig. 4.8 The parameter for measuring population imbalance Jz as a function of the lattice asymme-
try parameter, R, and for different values of the trapping frequency. Here U0N = 1 and Vx = 17.
The vertical dashed lines are used to denote the typical sizes δ of the transition region where atoms
coexist in the two orbital states. In particular, smaller values of ω are associated with smaller values
of δ. This means that the transition becomes sharper as the system’s size increases (Reprinted from
Ref. [1])

in the weakly interacting regime. As interactions become stronger, the properties dis-
cussed previously becomemore robust to the presence of imperfections. In fact, even
a small temperature could already contribute to the establishment of phase coher-
ence between the order parameters of the px and py orbital states in experimental
realizations. This is a consequence of the reduced energy gap between the ground
and first excited states around the R = 1 point, that contributes to the occupation of
the first excited state (this is particularly needed for balancing the population of the
two orbitals). We furthermore notice that the transition from one to the other extreme
of Jz is smooth for non-zero ω, and that by controlling the lattice amplitudes this
system could realize a many-body Landau–Zener transition [7], which when R is
tuned externally, could form a play-ground of the Kibble–Zurek [8] mechanism. A
more detailed study in this direction is presented in Ref. [9].
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Chapter 5
Beyond the Mean-Field Approximation:
Effective Pseudospin Hamiltonians
via Exchange Interaction

In the previous chapters we investigated the weakly interacting regime of the many-
body bosonic system in the p and d bands. The properties of the order parameters
describing the superfluid phases in both cases were characterized with use of mean-
field techniques, which among other features revealed the onsite structure of vortices
in the different cases. In this chapter we move away from the weakly interacting
territory to explore the physics in the strongly correlated regime of theMott insulator
phase.

In the approach used here, the dynamics of the Mott insulator phase with a unit
filling (Mott-1) is described by an effectivemodel derived fromperturbative treatment
of the tunneling processes relative to the onsite interaction terms. We study p-orbital
systems in 2D and 3D, and the d-orbital system in 2D.

As it was first shown in Ref. [1], which we explain in details in this text, the
case of bosonic atoms in the p band of a 2D optical lattice can be mapped into
the spin-1/2 XYZ quantum Heisenberg model in an external field. This model is of
particular interest in the study of quantummagnetism [2, 3], and falls into the class of
nonintegrable models [4], where analytical solutions are not known in closed form.
We explore the correspondence between these two systems and use known properties
of the XYZ model to understand the physics in the p band. At the same time, we
study the p-orbital system in the context of quantum simulation [5, 6], where we
proposemanipulation and detection schemes for experimentally probing observables
that are relevant in the study of quantum magnetism.

The techniques used in the study of the 2D systemare further extended and applied
to the 3D three-orbital case. In this case, the Mott phase with a unit filling in the p
band is effectively described by a Hamiltonian with degrees of freedom that are the
generators of the SU (3) group. This was first shown in Ref. [7], which is the basis of
this part of the text. We will investigate both the bosonic and the fermionic cases, and
wewill show that the anisotropies in the couplings of the effectivemodels intrinsically
depend on the statistics of the atoms. Manipulation and detection schemes are also
discussed for probing the physics of SU (3) Heisenberg models.

© Springer International Publishing Switzerland 2016
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Finally, we use the same approach to characterize the Mott phase of the d-orbital
system in 2D. As discussed in Sect. 3.2, this corresponds to the situation where
occupation of the dxy orbital vanishes for a large range of experimentally relevant
system’s parameters, such that the effective spin model is derived from the corre-
sponding two-orbital description. In particular, we show that due to the presence of
density-assisted processes, the effective spin model for bosonic atoms in the d band
is of the spin-1/2 XYZ type1 with an external field even in the 2D isotropic lattice.
In addition, breaking the isotropy of the lattice while still keeping the two orbitals
degenerate addsDzyaloshinskii–Moriya exchange processes (DM).We discuss qual-
itative properties of the ground-state phase diagram and the different phases expected
for this system. These studies were reported in Ref. [8].

We will start this chapter by presenting the perturbative method for treating a
general system of multi-species that can be used to encode a (pseudo) spin degree of
freedom.We then apply this method to obtain the effective spin models in the p band
in Sects. 5.2 and 5.3, respectively, for the 2- and 3-orbital systems in 2D and 3D. We
use Sect. 5.2.3 to discuss the experimental probes for the p-orbital system and the
effects due to imperfections in the loading process are investigated in Sect. 5.2.4. In
Sect. 5.4 we characterize the effective spin Hamiltonians describing the Mott phase
with a unit filling in the d band, and generalizations of this method are also discussed
throughout the text.

5.1 Effective Hamiltonian for Describing the Mott Phase
with Unit Filling

As a starting point for the derivations to be presented here, let us assume that
Ĥ = ĤK + ĤU is the Hamiltonian describing a generic many-body system in
an optical lattice. ĤK contains the kinetic part which describes tunneling processes
with amplitude proportional to t , and ĤU contains interaction terms with strength
proportional to U . We assume that the system is deep in the Mott insulator phase,
where t � U , and study the dynamics in terms of an effective Hamiltonian where
tunneling processes are treated perturbatively [3, 9].

Since the Mott phase is characterized by a fixed number of particles per site,
derivation of the effective Hamiltonian can be naturally handled with use of projec-
tion operators that divide the Hilbert space of the eigenvalue problem in orthogonal
subspaces according to site occupations. Our interest is the Mott phase with a unit
filling, and therefore we define the P̂ and Q̂ operators, P̂2 = P̂ , Q̂2 = Q̂ and
P̂ + Q̂ = 1, that project, respectively, into the Hilbert space of singly occupied
sites HP , and the states that have at least one site with double occupation HQ . The
eigenvalue problem can be written as

Ĥ(P̂ + Q̂)� → (ĤK + ĤU )(P̂ + Q̂)� = E�, (5.1)

1That is, with anisotropic couplings in the interactions of all the spin components.

http://dx.doi.org/10.1007/978-3-319-43464-3_3
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which becomes
(

Q̂ ĤK P̂ + Q̂ ĤK Q̂ + Q̂ ĤU P̂ + Q̂ ĤU Q̂
)

� = E Q̂�, (5.2)

(
P̂ ĤK P̂ + P̂ ĤK Q̂ + P̂ ĤU P̂ + P̂ ĤU Q̂

)
� = E P̂� (5.3)

after operating from the left with the P̂ and Q̂ projectors in Eq. (5.1).
From all contributions, P̂ ĤK P̂ , P̂ ĤU Q̂ and P̂ ĤU P̂ are identically zero. The first

two, for computing overlaps between elements of the basis in disjoint subspaces
of the Hilbert space. The last term, for computing two-body interactions in singly
occupied sites. Thus, we are left with

Q̂� = − 1

Q̂ Ĥ Q̂ − E
Q̂ ĤK P̂�, (5.4)

which leads to

ĤMott1 = −P̂ ĤK Q̂
1

Q̂ Ĥ Q̂ − E
Q̂ ĤK P̂. (5.5)

So far this expression is exact, and it provides the basic framework for the derivation
of the various effective spin Hamiltonians to be discussed here. Now under the
assumptions of the Mott phase, the resolvent K̂ = 1/(Q̂ Ĥ Q̂ − E) can be expanded
such that the effective Hamiltonian contains contributions to second order in t/U [3,
9]. Thus, it readily follows that the intermediate and final states of the perturbative
procedure in the HQ and HP subspaces, respectively, are connected via tunneling
processes. In addition, since E ∼ t2/U , K̂ ∼ H−1

Q , and due to the tight-binding
approximation, it is possible to restrict the study to the two-site problem.We describe
it in terms of a basis denoted by |site j , site j + 1〉. Now let us consider an initial
situation with a unit filling of the lattice sites. Via action of the tunneling, the atom
at the site j tunnels to the site j + 1, which becomes doubly occupied. This is the
intermediate state inHQ , with an energy cost due to the interaction, that is given by the
processes defined in ĤU . After interaction has taken place, one of the atoms tunnels
back to site j , and the final state is again characterized by unit filling—therefore, in
theHP subspace.

Let us assume that this generic system described by Ĥ is composed of at least
two different atomic species, with corresponding tunneling amplitudes tα

σ and tβ
σ in

the direction σ, and write all the different possible states in theHP subspace as

HP → {|α,α〉, |α,β〉}, (5.6)

where α �= β and α,β should account for all the possible combinations between the
components, and |α,β〉 = â†

α,i â
†
β, j |0〉.
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In the same way, the different states in the basis of theHQ subspace follow

HQ → {|0, 2α〉, |0,αβ〉}, (5.7)

where |0, 2α〉 = 2−1/2â†
α, j âα, j |0〉 and |0,αβ〉 = â†

α, j â
†
β, j |0〉, with again α and β

accounting for all the possible combinations between the multiple components. Let
us furthermore assume that this system does not include tunneling processes with
change of state,2 i.e., only operators of the type â†

α, j âα,i generate non-vanishing

contributions. In addition, let us call K αβ
αβ = 〈0,αβ ˆ|K |0,αβ〉 the elements of K̂ =

Ĥ−1 in the basis of the HQ subspace. A list of all the possible transitions between
the different states in this two-species system follow:

The states of the type |αi ,α j 〉 are connected via tunneling to the three different
intermediate states in theHQ subspace, i.e.,

K̂ â†
α, j âα,i |αi ,α j 〉 = √

2K̂ |0, 2α j 〉

= √
2
(
K αα

αα |0, 2α j 〉 + K αβ
αα |0,α jβ j 〉 + K ββ

αα |0, 2β j 〉
)
.

The possible transitions are

(i) To |αi ,α j 〉 via action of â†
α, j âα,i , which contribute to the effective Hamiltonian

with terms of the type

−
∑

〈i, j〉σ

∑

α,β

2 |tα
σ |2K αα

αα n̂α,i n̂α, j . (5.8)

(ii) To |αi ,β j 〉 via action of â†
α, j âα,i , contributing to the effective Hamiltonian with

−
∑

〈i, j〉σ

∑

α,β

√
2 |tα

σ |2K αβ
αα n̂α,i â

†
β, j âα, j . (5.9)

(iii) To |βi ,α j 〉 via action of â†
β, j âβ,i , contributing to the effective Hamiltonian with

−
∑

〈i, j〉σ

∑

α,β

√
2 tα

σ tβ
σ K βα

αα â†
β,i âα,i n̂α, j . (5.10)

(iv) To |βi ,β j 〉 via action of â†
β, j âβ,i , which contribute to the effective Hamiltonian

with terms of the type

2This assumption is used here only because in the systems to be discussed next, these processes yield
vanishing contributions. We notice, however, that this method can be easily extended to account for
other situations.
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−
∑

〈i, j〉σ

∑

α,β

2 tα
σ tβ

σ K ββ
αα â†

β,i âα,i â
†
β, j âα, j . (5.11)

The states of the type |αi ,β j 〉 are also connected via tunneling to the three interme-
diate states in the HQ subspace:

K̂ â†
α,i âα, j |αi ,β j 〉 = K̂ |0,α jβ j 〉

=
(

K αα
αβ |0, 2α j 〉 + K αβ

αβ |0,α jβ j 〉 + K ββ
αβ |0, 2β j 〉

)
.

(5.12)

Here, in addition to the conjugates of Eqs. (5.9) and (5.10), the other possible
transitions are

(v) To |αi ,β j 〉 via action of â†
α, j âα,i , which contribute to the effective Hamiltonian

with
−
∑

〈i, j〉σ

∑

α,β

|tα
σ |2K αβ

αβ n̂α,i n̂β, j . (5.13)

(vi) To |βi ,α j 〉 via action of â†
β, j âβ,i , contributing with

−
∑

〈i, j〉σ

∑

α,β

tα
σ tβ

σ K βα
αβ â†

β,i âα,i â
†
α, j âβ, j . (5.14)

In the following sections we apply this method to different systems, with explicit
computations for each case.

5.2 p-Orbital Bosonic System in the 2D Lattice

We recall the explicit expression of the local part of the Hamiltonian describing the
bosonic system in the p band of a 2D optical lattice,

ĤU =
∑

i

Uxx

2
n̂x,i

(
n̂x,i − 1

)+
∑

i

Uyy

2
n̂ y,i

(
n̂ y,i − 1

)+
∑

i

2Uxyn̂x,i n̂ y,i

+
∑

i

Uxy

2

(
â†

x,i â
†
x,i ây,i ây,i + â†

y,i â
†
y,i âx,i âx,i

)

(5.15)

with the parameters given by Eq. (2.48).
For this system, with the px and py orbitals, the basis of states in theHP andHQ

subspaces are given by

HP → |x, x〉, |x, y〉, |y, x〉, |y, y〉 (5.16)

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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and
HQ → |0, 2x〉, |0, 2y〉, |0, xy〉. (5.17)

With the basis in this order,

ĤQ =
⎛

⎝
Uxx Uxy 0
Uxy Uyy 0
0 0 2Uxy

⎞

⎠ . (5.18)

Due to the processes that transfer the atoms between the orbital states,3 however,
ĤQ is not diagonal in the basis of intermediate states of the perturbative treatment,
of doubly occupied sites. We thus adapt the usual procedure and compute the matrix
elements characterizing the exchange interaction from the inverse K̂ = Ĥ−1

Q . Explic-
itly,

K̂ =
⎛

⎝
Uyy/U 2 −Uxy/U 2 0

−Uxy/U 2 Uxx/U 2 0
0 0 1/2Uxy,

⎞

⎠ (5.19)

where U 2 = UxxUyy − U 2
xy .

We are now ready to gather all the processes contributing to the effective spin
Hamiltonian from the list of transitions of Sect. 5.1. But first, let us notice the fact
that since the Hamiltonian in the p band conserves the number of atoms in each of
the orbital states modulo 2, the processes of number (ii) and (iii) are excluded. In
fact, all the elements K αα

αβ = 0 in Eq. (5.19). Using the explicit expressions of the

matrix elements of K̂ obtained from (5.19) in the (i), (iv), (v) and (vi) processes of
the above list, we obtain the effective Hamiltonian describing the Mott-1 phase of
bosons in the p band

ĤMott1 = −
∑

σ,α �=β

∑

〈i, j〉σ

(
2
|tα

σ |2Uββ

U 2
n̂α,i n̂α, j + |tα

σ |2
2Uxy

n̂α,i n̂β, j

−2
tα
σ tβ

σ Uαβ

U 2
â†

α,i âβ,i â
†
α, j âβ, j + tα

σ tβ
σ

2Uαβ
â†

α,i âβ,i â
†
β, j âα, j

)
.

(5.20)

We now use the orbital states to define the Schwinger spin operators [3, 10]

Ŝz
i = 1

2

(
â†

x,i âx,i − â†
y,i ây,i

)

Ŝ+
i = Ŝx

i + i Ŝ y
i = â†

x,i ây,i

Ŝ−
i = Ŝx

i − i Ŝ y
i = â†

y,i âx,i ,

(5.21)

3See the last line in Eq. (5.15).
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and together with the constraint of a unit filling of the lattice sites in the first Mott
lobe, n̂x,i + n̂ y,i = 1, we re-write Eq. (5.20) as

ĤMott1 = −
∑

σ

∑

〈i, j〉σ

(
J zz Ŝz

i Ŝz
j + J xx Ŝx

i Ŝx
j + J yy Ŝy

i Ŝ y
j

)
+
∑

i

J z Ŝz
i , (5.22)

where the various couplings depend intrinsically on the lattice configuration and are
given by

J xx = 2
t x
σ t y

σ

Uxy

(
1 − 4

U 2
xy

U 2

)
, (5.23)

J yy = 2
t x
σ t y

σ

Uxy

(
1 + 4

U 2
xy

U 2

)
, (5.24)

J zz = 4
|t x

σ |2Uyy

U 2
+ 4

|t y
σ |2Uxx

U 2
− |t x

σ |2
Uxy

− |t y
σ |2

Uxy
, (5.25)

and

J z =
∑

σ

(
2
|t x

σ |2Uyy

U 2
− 2

|t y
σ |2Uxx

U 2

)
+ (

Eos
x − Eos

y

)
. (5.26)

This is one of the main results of this thesis. It shows that the Mott insulator phase
with a unit filling of bosonic atoms in the p band of a 2D optical lattice is effectively
described by the XYZ Heisenberg model. In turn, this is one of the paradigm models
in the study of quantum magnetism, making it possible to use known properties of
the XYZ model to understand the physics in the p band. At the same time, as we
argue here, it also makes the system of p-orbital bosons a useful tool in the context
of quantum simulation [6].

The first property to notice in Eq. (5.22) is that contrary to the effective spin
Hamiltonians obtained from Bose-Hubbard models in the ground-band of optical
lattices4 [11], the effective spin model describing the first Mott lobe in the p band is
fully anisotropic in its couplings. This is a consequence of the Z2 symmetry of the
orbital-changing processes, that break the U (1) symmetry typical of the (density-
density) interactions ofmulti-species systems in the groundband.5 In the XYZ model,
this symmetry corresponds to the invariance of the Hamiltonian (5.22) with respect
to the transformation

4Due to the continuous symmetry in the interaction terms of the many-body Hamiltonian of this
case, these systems typically yield Heisenberg models of the X X Z or XY types.
5As already stated in Sect. 2.4.1, spinor condensates have an interaction term describing processes
similar to the orbital-changing interaction in the p band, but with a relative coupling constant that is
small enough to be neglected. This follows from the fact that the scattering lengths of the different
Zeeman levels are typically very similar.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Ŝx → −Ŝx

Ŝ y → −Ŝ y

Ŝz → Ŝz .

(5.27)

Next, we notice that since the tunneling in the p band satisfies t x
σ t y

σ < 0, the coupling
constants for interaction between nearest neighbours in the x and y components of
the spin, J xx and J yy , are negative, and therefore favor primarily anti-ferromagnetic
order. This is an interesting result for a bosonic system, because exchange interactions
preserve the sign of the wave-function in the bosonic case, making it more natural
for the bosonic system to favor ferromagnetic order at neighbouring sites. This is not
the case here, however, and only because of the particular tunneling in the p band.

In the 2D isotropic lattice, we notice in addition that J z = 0. In fact, since
here t x

‖ = t y
‖ and t x

⊥ = t y
⊥, the vanishing external field is a direct consequence of

the invariance under the parity transformation discussed in Eq. (2.51). However,
whenever this symmetry is broken, the XYZ model has the additional external field
in the spin z-component, as we discuss next in the realization of an effective 1D
system.

Many-body quantum systems in one dimension are extremely attractive from both theo-
retical and experimental viewpoints. On the theoretical side, one of their striking features is
the requirement of a description in terms of the collective rather than the individual behavior
of their many constituent parts [12]. To give an example, let us consider the description of
a system of spinless bosons with repulsive interactions in one dimension. The most general
property one could guess, is that this system is characterized by a symmetric wave-function,
as should be the case since bosonic particles are symmetric under exchange. Now let us
consider the limit of infinitely repulsive interactions, called the Tonks–Girardeau limit. Here
a very reasonable assumption is that the amplitude of the wave-function should decrease in
the neighborhood of any of the bosonic particles, and vanish completely at the exact values
where the probability of finding any of them is maximum, as shown in Fig. 5.1.

Now via reflection to the negative axis, this symmetric wave-function can be used to
construct an alternative anti-symmetric wave-function that reproduces the nodes of the
symmetric case.At the level of thewave-functions, the description provided by the symmetric
and anti-symmetric wave-functions will be very different. In fact, collective anti-symmetric
wave-functions describe systems of non-interacting fermions, not of bosons. But this anti-
symmetric wave-function can be constructed, for example, in such a way that its absolute
value reproduces the absolute value of the symmetric one. In this case, even though the wave-
functions are describing different systems or even more, systems with particles of different
statistics, the properties of the bosonic system at the level of densities, as e.g. density-density
correlation functions, can be completely inferred from the properties of a system of non-
interacting fermions. This process is usually referred to as the fermionization of bosons [13].
It illustrates here one of the many peculiarities of many-body systems in 1D.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Fig. 5.1 1D system of infinitely repulsive bosonic particles. The position of the bosons are the black
dots in the x axis and the red and bluewave-functions correspond, respectively, to the symmetric and
anti-symmetric descriptions discussed above. This figure is taken from Ref. [13] with permission
of the author (color figure online)

5.2.1 Properties of the Ground-State: The Phase Diagram
of the XYZ Model

Very little is known about the XYZ Heisenberg model in 2D. In addition to not
having known analytical solutions, numerical treatment of this problem becomes
very hard due to the exponential growth of the Hilbert space that makes it intractable
already for a system as small as a 6×6 lattice in 2D. Therefore, as we already stated,
Eq. (5.22) puts forward the p-orbital system as an obvious candidate for simulating
the XYZ model.

We will illustrate that this is indeed the case, by considering a lattice with very
deep wells in the y direction, such that the dynamics is restricted to happen in the x
axis. The idea is to obtain an effective 1D system out of the asymmetric 2D lattice,
that is appropriately tuned to still keep the (quasi) degeneracy between the orbitals. In
this setup, the Z2 symmetry of Eq. (2.51) is broken and the system has the additional
term describing the external field. In the presence of the field the XYZ model is
non-integrable—and therefore the need for quantum simulation, but properties of
the ground-state can still be extracted with a combination of different techniques. As
we show here, this system has a rich phase diagram with different phases separated
by different types of phase transitions.Wewill explore these in the context of p-band
physics.

In 1D, the study of the XYZ model has a long history. It was first shown by Suther-
land in 1970 [4, 14] that the transfer matrix of any eight-vertex model commutes with the
Hamiltonian of the XYZ Heisenberg model. Baxter showed in 1971 and 1972 that the mini-
mum eigenvalue of the XY Z model with no external field can be obtained for any values of
the couplings, because this Hamiltonian is effectively a logarithmic derivative of an eight-
vertex transfer matrix [4, 14]. Baxter studied the ground-state properties of the XY Z model
by generalizing the Bethe ansatz [4] and in 1973 Baxter’s results were generalized by other
authors for computing the energy of excitations.

Before proceeding, let us first we re-write Eq. (5.22) in the standard notation

ĤMott1 =
∑

〈i, j〉
J

[
(1 + γ)Ŝx

i Ŝx
j + (1 − γ)Ŝ y

i Ŝ y
j + �

J
Ŝz

i Ŝz
j

]
+
∑

i

h Ŝz
i , (5.28)

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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and in 1D, where J = −2t x t y/Uxy , � = −J zz , γ = −4U 2
xy/U 2 and h = J z with

σ = x (see Eq. (5.26)). We re-write it once more with the use of the Jordan–Wigner
transformation

Ŝ−
i = eiπ

∑i−1
j=1 ĉ†j ĉ j ĉi

Ŝ+
i = ĉ†j e

iπ
∑i−1

j=1 ĉ†j ĉ j ,
(5.29)

in terms of the fermionic operators ĉ j satisfying {ĉi , ĉ j } = {ĉ†i , ĉ†j } = 0 and {ĉi , ĉ†j } =
δi j . This yields the fermionic Hamiltonian

ĤKitaev/J =
∑

n

[
(ĉ†nĉn+1 + ĉ†n+1ĉn) + γ(ĉ†nĉ†n+1 + ĉn+1ĉn)

+�
J (ĉ†nĉn − 1

2 )(ĉ
†
n+1c†n+1 − 1

2 ) + h
J (ĉ†nĉn − 1

2 )
]
,

(5.30)

that contains a pairing term proportional to the anisotropy parameter γ. The presence
of a pairing term typically opens a gap in the energy spectrum, and accordingly, we
expect the spectrum to be gapped whenever γ �= 0. This should indeed be the
case, because the anisotropy on the couplings is generated by the orbital-changing
interactions, that reduce the otherwise U (1) continuous symmetry of the density-
density interactions to a Z2 discrete symmetry. In addition, we notice furthermore
that the limit of � → 0 is a realization of the Kitaev chain [15].

Now in 1D, the ground-state of the XYZ Heisenberg model in an external field
described by Eq. (5.28) is characterized by four different phases as one varies the
system’s parameters [16]. A schematic phase diagram is illustrated in Fig. 5.2. At
zero field, the XYZ model is integrable andwith known analytical expressions for the
eigenvalues and eigenvectors [14]. At large and positive values of �/J the system
has anti-ferromagnetic order in the z spin component. For small values of �/J , the
system is in the so called spin-flop phase [16], that is characterized by Nèel order
in the x or y spin component.6 For large and negative values of �/J and h = 0,
the z component of the spin is in a Z2-parity symmetry broken ferromagnetic state,
and regardless of the sign of the couplings, the limit of very large external field is
characterized by a highly magnetized state that is referred to as polarized phase.
These three phases also characterize the phase diagram of the X X Z model in a
longitudinal field.7 For non-zero anisotropy γ, however, the system has an additional
phase between the anti-ferromagnetic and spin-flop phases that is called the floating
phase. This is a gapless phase characterized by algebraic decay of correlations8 [2],

6It depends on the largest coupling. For the value of γ considered here the ordering occurs in the y
component of the spin.
7Notice, however, that the spin-flop phase is called the XY phase in the phase diagram of the
X X Z model. The difference between these two phases is the gapless versus gapped character of
the excitations in the X X Z versus XYZ models, respectively.
8In terms of bosonization and renormalization group arguments [16, 17], the floating phase is
characterized by irrelevantUmklapp terms and accordingly described by the Luttinger liquid theory.
Upon entering the XY phase these terms are no longer irrelevant and the phase becomes gapped [16].
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Fig. 5.2 Schematic phase diagram of the XYZ chain. AFM denotes the anti-ferromagnetic phase,
FP the floating phase, SF the spin-flop phase and PP the polarized phase. The properties of these
phases and different types of phase transitions are discussed in the text (Reprinted from Ref. [1])

which is rather unexpected from the viewpoint of the fermionic chain. In fact, since
the pairing term in the Hamiltonian (5.30) is proportional to γ, we would expect the
entire phase diagram to be gapped.

All these phases are separated by different types of phase transitions [16]. The
transition from the anti-ferromagnetic to the floating phase is of the commensurate-
to-incommensurate (C-IC) type, whereas the transition from the floating phase to
the spin-flop phase is a Berezinski–Kosterlitz–Thouless (BKT) transition. For � <

−(1+ |γ|), at h = 0, the transition between the two magnetized phases9 of positive
and negative total magnetization is first order, and finally, between the spin-flop and
the polarized phases there is an Ising transition.

In what follows we give a brief overview on the different phases and phase transitions
discussed above. For illustrative purposes, magnetization properties are considered here in
the context of an Ising-like Hamiltonian given by

HIsing = −J
∑

〈i, j〉
Ŝi Ŝ j + h

∑

i

Ŝi .

• Nèel order: Nèel order is the term generally used to describe a state with broken symmetry
and for which

〈Ŝi 〉 �= 0

for all the spins [18]. Although this is most commonly used to refer to the bipartite lattice
of the (Nèel) anti-ferromagnet, with alternating orientation of neighbouring spins [18],
we notice the existence of more complex patterns that also correspond to a Nèel state [18].

• Anti-ferromagnetic phase (J < 0): as stated above, the anti-ferromagnetic phase is char-
acterized by Nèel order with alternating neighboring spins. States of this type are charac-
terized by staggered magnetization [18], and therefore with vanishing net magnetization:

M =
∑

i

〈Ŝi 〉 = 0.

• Floating phase (J < 0): this is a gapless phase without a local order parameter, and for
which the correlations decay algebraically [19].

9The highly magnetized phase is also referred to as polarized phase.
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• Spin-flop phase (J < 0): this corresponds to a gapped phase with Nèel order in the x and
y components of the spin, with exponential decay of the correlations.

• Highly magnetized state or polarized phase (J < 0): for sufficiently large h, the phase
diagram of spin models subjected to external fields will always display a highly mag-
netized state, where the spins align in the direction of the field. This corresponds to an
“imposed” ordering, in the sense that it does not involve symmetry breaking and the spins
are uncorrelated.

• Ferromagnetic phase (J > 0): all the spins align in the same direction, building a state of
saturate magnetization. The ordering process involves symmetry breaking with an order
parameter similar to that of the anti-ferromagnetic phase [18].

We now briefly discuss the properties of the different types of phase transitions that appear
in the phase diagram of the infinite system, Fig. 5.2:

• Ising transition: the transition between the polarized and the spin flop phases belongs to
the universality class of the 2D Isingmodel. It is classified as a continuous or second order
phase transition, and therefore the discontinuities appear at the level of the order parameter
(or second derivatives of the energy). In the Ising transition, the critical exponent related
to the divergence of the correlation length goes as ξ ∝ (distance from the transition)−1 as
one approaches the critical point, and in addition, the dynamical critical exponent10 (z)
is also equal to one [21, 22].

• Berezinski–Kosterlitz–Thouless transition (BKT): BKT transitions also belong to the class
of continuous phase transitions. They are rather special, however, because all the deriva-
tives are continuous (they are sometimes referred to as infinite order phase transitions), and
there is no local order parameter [23]. In fact, BKT transitions do not involve symmetry
breaking and are not described by the Landau theory.

• Commensurate to incommensurate transition (C-IC): the C-IC transition happens due to
the interplay of competing length scales in the system. In a periodic system, for example,
the collective excitations can develop a periodic structure that has different period from
the “natural period of the system”. These structures could appear in the form of kinks,
walls or solitons11 [24].

• First order phase transition: in thermodynamic systems, first order phase transitions are
defined as transitions that involve coexistence of phases, latent heat, and the discontinuities
appear in the first derivative of the free energy [21]. In the same way, in quantum phase
transitions,12 the discontinuities appear in the first derivative of the ground state energy
as one of the Hamiltonian’s parameters is varied.

Finite Size Effects

As we stated before, the rich phase diagram of the XYZ model in an external
field makes the system of bosons in the p band an attractive tool for quantum

10The dynamical critical exponent is the exponent defined to characterize the behavior of the cor-
relation time near the critical point. In the same way as it works for the correlation length, the
correlation time also diverges in the vicinity of the phase transition. The divergence of the correla-
tion time implies that the fluctuations become incredibly slow, a phenomenon that is known as the
critical slowing down [20, 21].
11A very good review on the subject is given in Ref. [19].
12Here there is no concept of temperature, i.e., quantum phase transitions happen at T = 0 and due
to competition between non-commuting terms in the Hamiltonian of the system [25].
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Fig. 5.3 Finite size phase
diagram obtained from exact
diagonalization of a system
with 18 spins and with the
anisotropy parameter
γ = 0.2. It displays the total
magnetization M (as defined
in the text) which is
characterized by an
incomplete devil’s staircase
of SDW between the AFM
and the PP phases (Reprinted
from Ref. [1])

simulation. In fact, in a controllable environment this would open up for the possi-
bility of probing properties of different phases in the vicinity of different types of
phase transitions. However, the outcomes of any experiments of such systems should
be analyzed with additional considerations to account the effects of finite size due to
the harmonic confinement inevitably required in experiments with cold atoms. It is
therefore important to reproduce the theoretical study in systems with finite size. We
notice, first, that if the trap is smooth enough in the confined system, the couplings
of the spin model are only renormalized to acquire a spatial dependence. If the size
of the orbitals is very small compared to the length scale imposed by the trap, then
this spatial dependence is not relevant for the physics and can be safely neglected.

We therefore restrict the study of finite size effects to the open chain13 with
constant couplings, where we perform exact diagonalization for systems with up to
18 spins. We focus on the behavior of the total magnetization of the ground state

M =
∑

i

〈Ŝz
i 〉 (5.31)

for different values of h/J and �. γ is assumed to be fixed. The result for the case
of 18 spins is presented in Fig. 5.3, that clearly shows the well defined values of
total magnetization M expected for the anti-ferromagnetic and polarized phases. In
between, however, we observe various plateaus that mark the different values of M
due to modulation of the anti-ferromagnetic Nèel state with increasing values of h,
building a devil’s staircase structure of spin-density waves (SDW) [19, 26]. This also
suggests that in terms of the total magnetization M , the Ising transition between the
polarized and the spin flop phase is the one for which we expect a better quantitative
estimate. While it is not clear whether the C-IC transition can be captured with this

13That is, with open boundary conditions.
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order parameter,14 the BKT transition is most likely overshadowed due to the sharp
transitions between the different spin density waves. In the thermodynamic limit this
staircase becomes complete and one then recovers the phase diagram displayed in
Fig. 5.2.15 These transitions between the different SDW are more pronounced for
moderate system sizes and we estimate approximately 15 different SDW between
the anti-ferromagnetic and polarized phases of a system with 50 spins.16

5.2.2 Experimental Probes, Measurements
and Manipulations

All theory, dear friend, is gray, but the golden tree of life springs ever green.

—From Faust, Johann Wolfgang von Goethe.

The entire derivation of the effective spin model presented so far is based on the fact
that the spins are encoded in spatial degrees of freedom rather than in internal atomic
states. Accordingly, experimental manipulation/detection in this system requires the
ability of controlling the spatial states of the atoms at single sites. As we argue here,
a possible protocol for the experimental probes can be implemented with the use of
trapped-ion techniques [29] combined with single-site addressing [30, 31].

Indeed, in the region of parameters relevant for the physics deep in the Mott
insulator phase, the sites of the optical lattice can be accurately approximated by a
harmonic potential with frequency ωα = √

2Vαk2
α/m (recall that kα are the wave

vectors of the optical lattice laser in the direction α) [32]. In this potential, different
vibrational levels, that correspond to the different bands in the context of optical
lattices, can then be coupled via stimulated Raman transitions performed in a two-
level atom [33]. As we mentioned in Sect. 2.5 this technique has been successfully
employed in Ref. [33] for promoting atoms from the s to p bands, in the Mott phase,
of 1D, 2D and 3D lattices. However, since that study focused on the properties
of coherence of the superfluid phase, further manipulation of the orbital degrees of
freedom in the Mott phase have not been discussed. We therefore extend the method
and propose an experimental scheme to account for this case. Before this, we revise
the key concepts involved in the experimental procedure.

Consider thus a Raman coupling between the |1〉 = |F = 1〉 and |2〉 = |F = 2〉
atomic electronic states of 87Rb. These are two-photon processeswhere the two levels
are coupled with an intermediate virtual state, far detuned from all the other states of

14Notice, however, that this is not excluding the possibility of having different order parameters
with more accurate predictions for the phases in between the polarized and the anti-ferromagnetic
ones.
15In fact, it has been conjectured [27] that using similar heuristics for going up and down the steps
of a complete devil’s staircase, Chuck Norris counted to infinity—twice [28].
16We consider here that the chain with 50 spins is supposed to provide a very good experimental
picture of the system that we would like to realize.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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the system [33]. Because of this intermediate coupling, implementation of Raman
transitions require the use of two different lasers, whose corresponding wave vectors
are denoted here by kL1 and kL2 . The matrix element characterizing this transition is
given by

�1�
∗
2

δ
〈2|ei(kL1−kL2 )·x |1〉, (5.32)

where �i are the Rabi frequencies between the |i〉 states, i = 1, 2 with another far
detuned auxiliary state of this system, say |aux〉, and δ is the detuning between |aux〉
and the virtual intermediate state.

After adiabatic elimination of the auxiliary state, the interaction between the atom
in the harmonic potential with the lasers driving the Raman coupling is given by [32]

H =
∑

α

ωαâ†a −
∑

α

[
�α

2
σz + 1

2
�
(
σ+eiηα(â+â†) + H.c.

)]
, (5.33)

where the first termaccounts for the center ofmassmotion of the atom in the harmonic
potential, and the second and third terms describe the driven two-level system in the
rotating-wave approximation [32]. In this notation � = �1�

∗
2/δ is the effective

Rabi frequency, σ+ = (σ−)† = |2〉〈1|, σz = |2〉〈2| − |1〉〈1|, �α = ωα − ω12 are the
detunings of the lasers with respect to the atomic transition, of frequency ω12, and
ηα = �kL ,α

√
�/2mωα is the Lamb–Dicke parameter, with �kL ,α = kL1,α − kL2,α.

In the Lamb–Dicke regime, when ηα � 1, the expansion of the exponential can
be truncated to eiηα(â+â†) ≈ 1+ηα(â + â†) [32], and the corresponding Hamiltonian
describes a two-level system coupled to the phonon excitations of the harmonic
oscillator with bare Hamiltonian given by H0 = â†a − 1

2�ασz . The eigenstates
of this system can be denoted by |1, n〉 and |2, n〉, with n labeling the vibrational
level. By carefully choosing the driver frequency, three possible transitions can be
implemented [32]:

(i) The carrier transition, when �α = 0,

Hcar = �

2
�
[
σ+ + H.c.

]
, (5.34)

which couples the orbital states but has no effect in the vibrational state.
(ii) The red sideband transitions, when �α = −ωα,

Hrsb = �

2
�ηα

[
â(σ−)† + â†σ−

]
, (5.35)

that decrease the vibrational state n by one quanta, when the atom swaps from
|1〉 to |2〉.
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Fig. 5.4 Schematic
couplings between the
different orbital states. While
the carrier transition does not
change the vibrational state
of the atom, red and blue
sideband transitions can be
used to lower and to raise the
vibrational states of the
atom, which therefore
couples different orbital
states (color figure online)

(iii) The blue sideband transitions, when �α = ωα

Hbsb = �

2
�ηα

[
â†(σ−)† + âσ−

]
, (5.36)

that increase the vibrational level n by one for the same atomic transition as
above.

These transitions are schematically shown in Fig. 5.4.
In addition to selective transitions, it is also possible to selectively address the

different orbital states [30]. px orbitals, for example, can be addressed by choosing
driver lasers with no component in the y and z directions, i.e., kL1 − kL2 = kLx .
Analogous relations hold for manipulations of py orbitals only.

Now in order to show that these techniques provide full control of the system, we
discuss implementation of arbitrary rotations R̂β(φ) = eŜβφ, where β = {x, y, z}
and φ is an effective angle of rotation. The simplest case, of rotations around the z
component of the spin, can be performed by noticing that Ŝz = Ŝ+ Ŝ−−1. Therefore,
it is enough to realize the operation Ŝ+ Ŝ−, which phase shifts one of the orbitals.
This is nothing but a Stark shift of one of the orbitals,17 which can be implemented
via driving the carrier transition off-resonantly for one of the two-orbitals.

The R̂x (φ)operation canbe implementedby simultaneously drivingoff-resonantly
the red sidebands of the two orbitals. Due to the large detuning, the s-band will never
become populated but the transition between the two orbitals can be made resonant.
This operation involves the three states that we denote here as {|x, 0, 0〉, |0, y, 0〉
and |0, 0, s〉}, where the last entry of the ket refers to the state in the s band. The
p orbitals are coupled to the s orbital in a V -configuration [34], that in the rotating
wave approximation is described by [34, 35]

17Recall that the driving occurs in the largely detuned case.
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ĤV =
⎡

⎣
0 0 �1

0 0 �2

�1 �2 δ

⎤

⎦ , (5.37)

where �1 and �2 are taken to be real and spatially dependent. For δ � �1, �2 the
Hamiltonian that generates a rotation with the x component of the spin, R̂x (φ) [34],

Ĥx =
[
0 �

� 0

]
= �Ŝx , (5.38)

is then obtained after adiabatic elimination of the state |0, 0, s〉. Note, however,
that if the Raman transition between the two orbitals is not resonant, then this
process will perform a combination of rotations with the x and z spin compo-
nents. Finally, the rotations with the y component of the spin can be performed
in two ways, either by adjusting the phases of the lasers, or by noticing that
R̂y(φ) = R̂z(π/4)R̂x (φ)R̂z(−π/4).

This method allows thus for any manipulation of single spins at a given site. To
measure the state of the spin in a given direction, one then combines the rotationswith
single site resolved fluorescence (which measures Ŝz

i ) [36]. More precisely, since the
drive laser can couple to the two orbitals individually, one of the orbitals will be
transparent to the laser while the other one will show fluorescence. In other words,
this is equivalent to measuring Ŝz

i on a single site. The other components of the spin
can also bemeasured in thisway, but after the correct rotation to the spin state has been
previously implemented. Furthermore, with the help of coincident detection [37], it
is possible to extract correlators of the type 〈Ŝα

i Ŝβ
j 〉, α,β = {x, y} [38].

External Tuning of the Couplings

The spin mapping carried out in Sect. 5.2 provides a route for obtaining the
Hamiltonian that effectively describes the physics of Mott-1 phase of p-orbital
bosons. In that procedure, all the couplings in the spinmodel are shown to depend ini-
tially on the parameters of the bosonic system, and therefore also on the configuration
of the optical potential.

In order to gain some intuition on the character of the couplings and to locate the
system in the phase diagram of Fig. 5.2, we compute the couplings of the spin model
with use of the analytical expressions of the parameters of the bosonic system in
the harmonic approximation (see Appendix “p-band Hamiltonian parameters in the
harmonic approximation”). Introducing σα to denote the widths of the orbital wave
functions for the spatial directions α ={x, y, z},18 we obtain

Uxx = Uyy = 3Uxy = u0

σxσyσz
, (5.39)

18Notice that the two-orbital system is obtained from the 3D lattice with the dynamics suppressed
in z direction and without preserving the degeneracy of the third orbital.
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where u0 is the effective strength of the interactions, proportional to the s-wave
scattering length. Now by noticing that |t x |2 � |t y|2, from Eq. (5.25),

� ≈ −|t x |2
(
4

Uyy

UxxUyy − U 2
xy

− 1

Uxy

)
, (5.40)

which corresponds to

� = −|t x |2 3σxσyσz

2u0
< 0. (5.41)

Since this estimate yields � < 0, the exchange interactions in the z spin component
favor primarily ferromagnetic order. Similar computation yields γ = 1/2, which
according to Eqs. (5.23) and (5.24) yield interactions favoring anti-ferromagnetic
ordering in the x and y spin components. Although this is quantitatively different
from the result obtained from numerical computation with use of the lattice Wannier
functions, the qualitative picture provided by the estimate with the couplings in the
harmonic approximation is correct. Namely, numerical computation always yields
� < 0 and therefore puts the system in the ferromagnetic side of the phase diagram.
For the p-band system, this means that the orbitals are “ferromagnetically” aligned
in the direction of the node, while anti-aligned in the perpendicular direction.

However, the schematic phase diagram of Fig. 5.2 shows that a great deal of
interesting physics is found in the region of anti-ferromagnetic type of interactions
in the z component of the spin. Now is it possible to drive the p-orbital system into
the anti-ferromagnetic part of the phase diagram?

Fortunately, the experimental techniques discussed in the previous section can be
used to selectively reshape the orbital states in such a way to control the relative
magnitude of the parameters of the many-body system. This can be experimentally
implemented by driving the carrier transition of either of the two orbitals dispersively,
with a spatially dependent field.19 If the shape of the drive is chosen in such a way
that the resulting Stark shift is weaker in the center of the sites, then this procedure
will narrow the orbital in one of the directions and we say that the orbital is squeezed.
Let us assume that the squeezing is implemented here in the y direction. Then the
only requirement is that the spatial profile of the field driving the carrier transition
changes in the length scale of the lattice spacing in this direction. The tunneling rates
t x and t y will not be affected by the squeezing but both Uyy and Uxy and therefore
also the coupling constants, will.

To be more specific, let us assume that the ratio σ of the harmonic length scales of
the px and the py orbitals is tuned (in the y direction). A straightforward calculation
using harmonic oscillator functions yields

19This is nothing but a potential that reshapes the lattice sites in different ways for the different
orbitals, and that can be implemented as a change in the σy widths of the differentWannier functions
(wx (r) and wy(r)) of the orbitals, while the widths σx are kept unaltered.
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α ≡ Uxx

Uxy
= 2−3/23

(1 + σ2)3/2

σ
(5.42)

and
β ≡ Uyy/Uyx = 2−3/23(1 + σ2)3/2, (5.43)

from where we can write the dependence of the coupling constants on the width σ
by

�/J = 2t x(t y)−1 β

(αβ − 1)
= 2t y(t x)−1 α

(αβ − 1)
− t x (t y)−1 + t y(t x )−1

2
(5.44)

and

γ = − 4

(αβ − 1)
. (5.45)

This allows for experimentation with different types of XYZ chains. Indeed, while
the interactions of Ŝ y always favor antiferromagnetic order, the interactions in Ŝx

and Ŝz can happen with couplings that support both ferro and anti-ferromagnetic
ordering as shown in Fig. 5.5. Therefore, the p-orbital system is a tunable quantum
simulator for different types of XYZ Heisenberg models.

Fig. 5.5 Different types of models that are achieved by varying the relative tunneling strength
and the relative orbital squeezing. The three different parameter regions are: (I) anti-ferromagnetic
couplings in all the components of the spin with � > J (1 + |γ|), (II) ferromagnetic or anti-
ferromagnetic couplings in the z component of the spin and anti-ferromagnetic in the y component
with J (1 + |γ|) > �, and (III) the same as in (II) but with |�| > J (1 + |γ|). The inset shows
one example of the spin parameters where t y/t x = −0.1, and J xx = (1 + γ), J yy = (1 − γ) and
J zz = �/J (Reprinted from Ref. [1]. We notice that Jαα = Jαα, and tα = tα in the notation of
this thesis)
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5.2.3 Experimental Realization

As discussed in Sect. 2.5, the lifetimes in experimental realizations with bosonic
atoms in the p band are surprisingly long. In fact, in the study of Ref. [33], the atoms
could tunnel hundreds of times before decaying to the s band in a 1D realization with
mean occupation of two atoms per site. Since the main decay mechanism stems from
atom-atom collisions [33, 39], the lifetimes are expected to increase considerably
when the lattice is prepared with a unit filling.20

We can estimate the typical values for the tunneling times from the overlap inte-
grals of neighboring Wannier functions (see Eq. (2.47)). Considering 87Rb atoms,
for example, and λlat = 843nm to be the wavelength (in the y-direction) which sets
the recoil energy ER , we obtain J/ER ∼ 0.01 and the characteristic tunneling time
τ = �/J ∼ 5ms for the system with Vx = 30ER , Vy = 50ER and Vz = 60ER .
This corresponds to a few dozens of times smaller than the expected lifetimes [33],
which should allow for experimental explorations of the systems proposed here. In
addition, it is possible to use the external driving discussed above to increase the
lifetimes even further.

As a last remark we notice that the temperatures required for observation of the
spin correlations are of the order of kB T � J ∼ t2/U [11]. Although it might be
experimentally challenging to reach such low temperatures in the laboratory at the
moment, the rapid development in the field of cold atoms gives an optimistic prospect
for explorations of this type of physics in the near future [40].

5.2.4 Effective Model Including Imperfections
Due to s-Orbital Atoms

In addition to the low temperatures required for the implementation of effective spin
models with systems of cold atoms, another experimental challenge for the system
in the p band is related to experimental imperfections on the process of loading. The
techniques used in Ref. [33], based on stimulated Raman transitions reported 80%
fidelity in the process of promoting the atoms from the Mott phase in the s to the p
band. Therefore, it is important to understand how the presence of residual s-orbital
atoms affects the physics discussed so far.

Let us start by considering

Uspα
= U0

∫
d r|ws, j (r)|2|wα, j (r)|2, (5.46)

20In fact, Ref. [33] estimates an increase of up to a factor of 5 in the lifetimes for the situation with
unit filling of the lattice sites.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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which characterize the strength of repulsive interactions between an s- and a pα-
orbital atom at the site j . Since the pα-orbital wave-functions are spatially broader
than the s-orbital ones, Uspα

> Uαβ , and accordingly, the repulsive interaction
between s-orbital and p-orbital atoms is larger than the repulsive interaction when
both atoms are in the p band.

Now to the list of Sect. 5.1, two additional processes should be added in the
effective model. The first one, which includes tunneling of s-orbital atoms, can be
safely neglected due to the reduced rate of tunneling in the s band and the larger value
of the coupling constant for repulsive interaction Usp. The second process, which
involves tunneling of pα-orbital atoms, will contribute to the Hamiltonian with the
following term

− |tα
σ |2

Usp
â†

α,i â
†
s, j âα,i âs, j = −|tα

σ |2
Usp

n̂α,i , (5.47)

where âs, j (â†
s, j ) annihilates (creates) an s-orbital atom at the site j and where we

used that n̂s, j = 1. The presence of residual s-orbital atoms is therefore associated
with local fluctuations of the external fields, that is described by the additional term

Ĥ dis
i = 1

2Usp

(|t x
σ |2 − |t y

σ |2) δ1,ns
i

Ŝz
i = hz

i Ŝ
z
i . (5.48)

The result is the Hamiltonian of the XYZ model in a random external field,

Ĥ (dis)
Mott1 = −

∑

〈i, j〉σ

(
J zz Ŝz

i Ŝz
j + J xx Ŝx

i Ŝx
j + J yy Ŝy

i Ŝ y
j

)
−
∑

i

J z
i Ŝz

i , (5.49)

where
J z

i → J z + hz
i . (5.50)

Since the loading of atoms to the p band is implemented globally, a coherent loading
will prepare translationally invariant states with a fraction of the population in the
s band. However, whenever the loading is not perfectly coherent, we may envision
situations where decoherence process lock the s-band atoms at fixed sites. In such
cases, the collapse of the state describing these residual atoms, induced by decoher-
ence, will break the translational symmetry and the overall effect of the s-band atoms
will be that of static disorder in the fields as in Eq. (5.49). In light of the Imry-Ma
argument [41], which establishes a criteria for the stability of ordered phases in the
presence of disorder, we expect the phase diagram of the 1D system (see Fig. 5.2)
to be robust against a small number of s-orbital atoms. As the fraction of impurity
atoms increases, and as such, the number of sites with a disordered external field,
we expect the disorder to become relevant, and the qualitative picture to change.
However, the study of the random-field XYZ chain is out of the scope of the present
thesis and is left for the future (Fig. 5.6).
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Fig. 5.6 Schematic plot of
three random experimental
realizations of the insulating
state. The yellow balls
represent an s-orbital atom,
while the blue ones represent
p-orbital atoms

Let us consider the effect of random-field disorder in the classical Isingmodel21 described
by

H = −J
∑

〈i, j〉
Si S j −

∑

i

hi Si , (5.51)

where 〈hi 〉 = 0 ensures that global symmetries of the clean system remains untouched, and
〈hi hi 〉 = Wδi j .

In the limit where W � J 2, the ground state is a random paramagnet, where each Si
aligns with the local fields hi . In the other limit, where W � J 2, the ground state is a
state with most of the spins aligned with the neighbors. Now the question behind the Imry-
Ma argument is: “is it still possible to have ferromagnetic order in the presence of a weak
random field?”. Here it is important to understand whether it is favorable for the system to
form domains. According to Imry and Ma, the relevant energetic balance lies on the tradeoff
between the energy loss due to the formation of domain walls with the energy gain due to the
random field. Therefore in d dimensions, one needs to compute the energy cost for creating
the domain wall with respect to its size, and the uniform state is stable if the random field
energy ERF is smaller than the domain wall energy EDW ,

√
W Ld/2 < J Ld−1, or

√
W < J Ld/2−1. (5.52)

Since for weak disorder
√

W � J , if d > 2 the ordered state is stable and the ferromagnetic
state is possible to be attained, whereas if d ≤ 2 the ordered state is unstable and it is more
favorable for the system to form domains if L is large enough. This also means that if d ≤ 2,
arbitrarily weak disorder can destroy ferromagnetic order in a classical model.22

The rigorous proof of this result, the Aizenman–Wehr theorem, states that the presence
of a random field is capable of destroying long range order if the system has an order
parameter with discrete symmetry for all d ≤ 2, while if the order parameter has continuous
symmetry,23 random fields destroy long-range order for all d ≤ 4.

21This discussion is based on Ref. [21].
22Due to the classical to quantumcorrespondencevia partition function in imaginary time, a quantum
system in d dimensions is usually equivalent to a classical system in d + 1 dimensions.
23The energy of domain walls in systems with continuous symmetries scales as EDW ∼ Ld−2.
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5.3 3D System and Simulation of Heisenberg Models
Beyond Spin-1/2

The analysis of the two-orbital system in the p band revealed an interesting cor-
respondence between this and the XYZ Heisenberg model, that furthermore, due
to the particular dynamics in the p band, extends the realizations of spin sys-
tems with cold atoms in optical lattices to the Hamiltonian of the fully anisotropic
Heisenberg model. Now how to describe the three-orbital system in terms of an
effective pseudospin Hamiltonian and what are the properties of the corresponding
model?

From the mean-field analysis of Sect. 3.1.2 we have seen that in 3D lattices, the
three-orbital system has a plethora of interesting properties that are absent in the 2D
model, as for example the possibility of frustrated configurations for the phase of the
order parameter. But what happens in the Mott insulating phase?

In this section, we study the physics of the first Mott lobe of the three-orbital
system in the p band of 3D optical lattices.Wewill show that this system is effectively
described by a Hamiltonian with nearest neighbors interactions, where the degrees
of freedom are the generators of the SU (3) group. We will extend the method used
in the previous sections to account for the third orbital, and we discuss properties
of both the bosonic and the fermionic many-body systems, starting next with the
bosonic case.

5.3.1 The Bosonic Case

Let us recall the explicit expression of the local part of the Hamiltonian of the three-
orbital system in the p band,

Ĥb
U =

∑

i

[
Uxx

2
n̂x,i

(
n̂x,i − 1

)+ Uyy

2
n̂ y,i

(
n̂ y,i − 1

)+ Uzz

2
n̂z,i

(
n̂z,i − 1

)]

+
∑

i

(
2Uxy n̂x,i n̂ y,i + 2Uxzn̂x,i n̂z,i + 2Uyx n̂y,i n̂z,i

)

+
∑

i

[
Uxy

2

(
â†x,i â

†
x,i ây,i ây,i

)
+ Uxz

2

(
â†x,i â

†
x,i âz,i âz,i

)
+ Uyz

2

(
â†y,i â

†
y,i âz,i âz,i

)
+ H.c.

]

(5.53)
and define the basis in the HP and HQ subspaces by (see Sect. 5.1)

HP = { |x, x〉, |x, y〉, |x, z〉, |y, x〉, |y, y〉, |y, z〉, |z, x〉, |z, y〉, |z, z〉}, (5.54)

and
HQ = {|0, 2x〉, |0, 2y〉, |0, 2z〉, |0, xy〉, |0, xz〉, |0, yz〉}. (5.55)

http://dx.doi.org/10.1007/978-3-319-43464-3_3
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With the basis of HQ ordered according to (5.55), the projected Hamiltonian24

ĤQ can be written in block diagonal form of 3 × 3 matrices as

ĤQ =
(

ĤQ1 0
0 ĤQ2

)
, (5.56)

where the first block captures the action of ĤU in the states of the type |0, 2α〉, while
the second block accounts for the effects of ĤU in the |0,αβ〉 states for α,β =
{x, y, z}. The explicit expressions follow,

ĤQ1 =
⎛

⎝
Uxx Uxy Uxz

Uxy Uyy Uyz

Uxz Uyz Uzz

⎞

⎠ (5.57)

and

ĤQ2 =
⎛

⎝
2Uxy 0 0
0 2Uxz 0
0 0 2Uyz

⎞

⎠ , (5.58)

from where K̂ = Ĥ−1
Q is easily computed. In the first block, the elements of K̂ (1) =

Ĥ−1
Q1

can be written as

K (1)
αα = 1

2�

∑
βγ

(
εαβγ

)2 (
UββUγγ − U 2

βγ

)
,

K (1)
αβ = 1

�

∑
γ

(
εαβγ

)2 (
UαβUβγ − UαβUγγ

)
(5.59)

where εαβγ is the Levi-Civita symbol and {α,β, γ} = (1, 2, 3)whenever {α,β, γ} =
(x, y, z), and

� = (
UxxUyyUzz − U 2

xzUyy − U 2
yzUxx − U 2

xyUzz + 2UxyUxzUyz
)
. (5.60)

For simplicity, the elements of K (2) = Ĥ−1
Q2

, in the second block, are denoted by

K (2)
αβ = 1

2Uαβ
, (5.61)

and in the same way, {α,β} = (1, 2, 3), whenever {α,β} = (x, y, z).
According to the list of processes in Sect. 5.1 and the symmetries of the

Hamiltonian of the bosonic case with three-orbitals, Eq. (2.42), the processes con-
tributing to the effective Hamiltonian of the Mott-1 phase are (i), (iv), (v) and (vi). In
the sameway as for the two-orbital system, the transitions that break the conservation

24Recall the derivation of Sect. 5.1 if necessary.

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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of number modulo 2 in each of the orbital states yield non-vanishing contributions,
as should indeed be the case since such processes are absent in Eq. (5.53).

Now gathering the different contributions with the explicit expressions of the
non-vanishingmatrix elements for the different transitions, the effective Hamiltonian
describing the Mott-1 phase of bosons in the p band of the three orbital system is
given by

Ĥb
M1

= −
∑

σ

∑

〈i, j〉σ

∑

α,β,γ

[ |tασ |2
�

(
εαβγ

)2 (
UββUγγ − U2

βγ

)
n̂α,i n̂α, j + |tασ |2

Uαβ
n̂α,i n̂α, j

+ 2
tασ tβσ
�

(
εαβγ

)2(
UαβUβγ − UαβUγγ

)
â†
β,i âα,i â

†
β, j âα, j + tασ tβσ

Uαβ
â†
β,i âα,i â

†
α, j âβ, j

]
.

(5.62)

We now use the generators of the SU (3) group to encode the pseudospins of the
three-orbital system. Although individually the orbital states have the structure of
angular momentum, the generators of the SU (2) group fail to give a description of
the effective dynamics of the many-body system with three orbitals in the p band.
The reason is that the dynamical processes in the p band treat any combination of
different orbital states at the same footing, and as a consequence, the ladder operators
act as in the Lie algebra of the SU (3) group (see Fig. 5.7).

The SU(3) group has 8 generators, that are considered here in the representation
defined by the Gell-Mann matrices [42]

λ1 =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠, λ2 =
⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠, λ4 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠, λ5 =
⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠,

Fig. 5.7 Dynamical processes relating the different orbital states in the many-body bosonic system
(as discussed in Eq. (2.54), the fermionic case contains only the density-density interactions part).
Due to the symmetric coupling among the three orbital states, pairs of atoms in different orbitals
scatter with equal amplitude for all the combinations of states, and a correct description requires
the use of the generators of the SU (3) group. In fact, in the language of p orbitals, rather than
the triangular scheme displayed above, the ladder operators of a three-state system with SU (2)
symmetry act as pα � pβ � pγ

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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λ6 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠, λ7 =
⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠, λ3 =
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠, λ8 = 1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠.

(5.63)

The Lie algebra of SU (3) is given by [λi ,λ j ] = 2i fi jkλk , where i, j = 1, . . . , 8 fi jk =
− f j ik = − fik j . . . are totally antisymmetric structure constants. The values for the different
combinations of indices follow f123 = 1, f147 = − f156 = f246 = f257 = f345 = − f367 =
1
2 and f458 = f678 =

√
3
2 . In addition, the two Casimir operators of the SU (3) group are

given by [42]
C1(λi ) = 1

4

∑
i λ2

i and

C2(λi ) = 1
8

∑
i jk di jkλi λ j λk ,

where d118 = d228 = d338 = −d888 = 1√
3
, d146 = d157 = d344 = d355 = −d366 =

−d377 = 1
2 , and d448 = d558 = d668 = d778 = − 1

2
√
3
.

Now using the condition that n̂x,i + n̂ y,i + n̂z,i = 1 in the Mott-1 phase, the diagonal
elements λ3 and λ8 can be written as

n̂x,i = 1
3 + 1

2λ3,i +
√
3
6 λ8,i ,

n̂ y,i = 1
3 − 1

2λ3,i +
√
3
6 λ8,i ,

n̂z,i = 1
3 −

√
3
6 λ8,i .

(5.64)

The SU (3) ladder operators are defined in terms of the non-diagonal Gell-Mann
matrices. In terms of the orbital states,

T̂ ±
i
2 = â†

x,i ây,i = λ1
z,i ± iλ2

z,i ,

V̂ ±
i
2 = â†

x,i âz,i = λ1
y,i ± iλ2

y,i ,

Û±
i
2 = â†

z,i ây,i = λ1
x,i ± iλ2

x,i ,

(5.65)

where we simplified notation by relabelling the Gell-Mann matrices with the index
of the symmetry axis of rotation of the corresponding SU (2) sub-algebra. In the
usual setting λ1

z = λ1, λ2
z = λ2, λ1

y = λ4, λ2
z = λ5, λ1

x = λ6 and λ2
x = λ7.

This allows the Hamiltonian (5.62) to be written in a more compact form as,

Ĥ b
M1

= −
∑

σ

∑

〈i, j〉σ

[
J b
3,σλ3,iλ3, j + J b

8,σλ8,iλ8, j + J b
38,σ

(
λ3,iλ8, j + λ8,iλ3, j

)

+
∑

γ

J 1
γ,σλ1

γ,iλ
1
γ, j + J 2

γ,σλ2
γ,iλ

2
γ, j

]
−
∑

i

(
hb
3λ3,i + hb

8λ8,i

)
.

(5.66)

Since the explicit expressions of the coupling constants are not very informative at
first sight, we leave them to Appendix “Coupling Constants of the SU (3) Pseudospin
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Fig. 5.8 Left panel Effective fields for the bosonic system. The indices labeling different directions
are used to illustrate the contribution of external field terms in asymmetric lattices, i.e., where effec-
tive 1D and 2D systems are obtained by suppressing the tunneling in 1 or 2 directions. In particular,
due to the symmetries of the dynamics in the cubic lattice, the term associated to hb

3 vanishes in this
case. Right panel Effective couplings for the nearest neighbors interactions

(
λ8,iλ3,i + λ3,iλ8,i

)
.

In the same way as for the external fields shown in Fig. 5.8, the relative sign for the couplings of the
dynamics in the x and y directions follow directly from the symmetries in the p band of isotropic
cubic lattices (see details in the text). In addition, these processes vanish in the case of isotropic
cubic lattices

Fig. 5.9 Left panel Effective couplings of the bosonic many-body system for λ3,iλ3, j interactions
in the different directions. Right panel Effective couplings of the bosonic many-body system for
λ8,iλ8, j interactions in the different directions

Hamiltonians” and we proceed by analyzing the properties of the system in the
isotropic lattice, where much of the physics can be understood from symmetry argu-
ments. For reference, Figs. 5.8, 5.9 and 5.10 display the strength of the couplings of
the spin model, computed with use of the lattice Wannier functions25 for Vσ = V0

and σ = {x, y, z}. All the energies are scaled with ER .
The first notable difference, as compared to other systems of cold atoms used to

mimic SU (3) Heisenberg models,26 is that due to the tunneling anisotropy in the
p band, the values of the couplings depend on the dynamics direction. This system
contains two external fields, associated to the diagonal λ3 and λ8 matrices. These are,

25TheWannier functions are obtained fromdiagonalization of theMathieu equation of a free particle
in a sinusoidal lattice in 3D as discussed in Sect. 2.2.
26They are mainly based on implementations of the pseudospin degree of freedom with use of
internal atomic states. See, e.g., Refs. [43, 44].

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Fig. 5.10 Effective couplings for nearest neighbors interactions obtained from the ladder operators.
Notice, in particular, that the couplings associated to the λ1

γ,iλ
1
γ, j interactions are not the same as

the couplings of λ2
γ,iλ

2
γ, j . This is a XYZ -like anisotropy, which is typical for the bosonic system in

the p band [1]. In fact, this is a direct consequence from the combination of anisotropic tunneling
with orbital-changing interaction terms

respectively, the isospin and hypercharge operators in the study of strong interactions
in QCD,whose eigenvalues are used to label the states of the SU (3)multiplet [42]. In
the context of p-band physics, the external fields are related to the onsite population
imbalance of the different orbital states, and due to the parity symmetries discussed in
Eq. (2.51), they yield vanishing contributions in the isotropic cubic lattice. However,
whenever these symmetries are broken, as e.g. by engineering effective 2D or 1D
lattices, the contributions of the external fields are restored.

The second one is seen from a quick inspection of Eq. (5.66), which reveals
that in the same way as for the effective dynamics of the two-orbital system in
the p band [1], nearest neighbors interactions derived from the ladder operators
yield XYZ -like anisotropies in the couplings of λ1

γ and λ2
γ , J 1

γ,σ and J 2
γ,σ . Due to

the tunneling anisotropies and the different types of interactions in the many-body

system, J {1,2}
γ,‖ �= J {1,2}

γ,⊥ , but as long as we are considering the isotropic case J {1,2}
γ,‖ and

J {1,2}
γ,⊥ are the same for all γ = {x, y, x} (recall that γ labels the different SU (2) sub-

algebras). This should indeed be the case, since this anisotropy stems from the orbital-
changing processes, that have identical couplings in the cubic lattice regardless of
the states involved.

Now the leading couplings in this pseudospin Hamiltonian stem from contri-
butions of density-density interactions in the many-body system, that are both
between atoms in the same and in different orbital states. They also give rise to
Dzyaloshinskii–Moriya exchange, that vanish in the cubic lattice due to the parity
symmetry, but are again restored whenever this symmetry is broken. This provides an
interesting framework for quantum simulation, because ferromagnetic SU (3)models
with Dzyaloshinskii–Moriya interactions in 1D and 2D are expected to have ground
states with spiral spin textures [45], and the appearance of such terms in effective 1D
and 2D lattices is very natural for this system. Indeed, the spiral spin textures would

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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be manifest here as a rotation (or change in the relative angle of the onsite orbital
orientations) of one of the orbital states at each lattice site. Moreover, we expect
that in the same way as for the superfluid phase in 3D, discussed in Sect. 3.1.2, the
Mott-1 phase of the three-orbital system in the p band has a degeneracy stemming
from frustrated configurations of the orbitals in the lattice. A further step, however
left for the future, is the study of this system with use of flavor-wave theory.27 The
aim is to identify the possibility of an order-by-disorder mechanism [46, 47], where
quantum fluctuations help stabilizing the classical ground state between the various
possibilities in this degenerate manifold.

5.3.2 The Fermionic Case

The derivation of the effective Hamiltonian describing the Mott-1 phase of fermions
in the p band of 3D lattices is simplified due to the absence of interactions involving
two atoms in the same orbital state. Indeed, in this case

Ĥ f
U =

∑

i

(
2Uxyn̂x,i n̂ y,i + 2Uxzn̂x,i n̂z,i + 2Uyx n̂y,i n̂z,i

)
, (5.67)

and although the basis spanning theHP subspace is the same as the one defined for
the bosonic case in (5.16), the basis in the HQ has only the â†

α,i â
†
β,i |0〉 states with

α �= β = {x, y, z}.
Here, ĤQ is diagonal in the basis of intermediate states of the perturbative calcu-

lation, and has the same expression of Eq. (5.58) discussed together with the bosonic
case. The only processes with non-vanishing matrix elements are described by items
(v) and (vi) in the list of Sect. 5.1, and therefore, gathering the corresponding con-
tributions with the explicit expressions of the K (2)

αβ defined in (5.61), the effective
Hamiltonian describing the Mott phase with a unit filling of the fermionic system in
the p band is given by

Ĥ f
M1

= −
∑

〈i, j〉

∑

α,β �=α

[
2|tα

σ |2 1

2Uαβ
n̂α,i n̂β, j + 2tα

σ tβ
σ

1

2Uαβ
â†

β,i âα,i â
†
α, j âβ, j

]
. (5.68)

Furthermore, this is given in terms of the Gell-Mann matrices (see Eqs. (5.64)
and (5.65)) by (Fig.5.11)

27The flavor-wave theory is a generalization of the spin-wave theory for systems with three com-
ponents (see Refs. [46, 47]).

http://dx.doi.org/10.1007/978-3-319-43464-3_3
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Fig. 5.11 Left panel Effective fields of the effective model with fermionic atoms in isotropic cubic
lattices. The situation is again similar to what is discussed for the bosonic case in Fig. 5.8. This
should be the case, since the external fields account for single particle contributions and therefore
are independent from the statistics of the atoms. In the p-band system, in particular, the external
fields encode the degree of imbalance in the occupation of the different orbital states. Right panel
Coefficients of

(
λ3,iλ8, j + λ8,iλ, j

)
for the fermionic case. In the same way as discussed in the

bosonic case, these terms yield no contribution to the energy in the isotropic cubic lattice

Fig. 5.12 Left panel J f
8 for the fermionic case. Notice here that the λ8,iλ8, j term contributes very

little for the dynamics in the x and y directions, while it is very significant for the dynamics in the z
direction. Right panel Coefficients of λ3,iλ3, j for interactions in the fermionic case in the different
directions and as a function of the lattice depth

Ĥ f
M1

= −
∑

σ

∑

〈i, j〉σ

[
J f
3,σλ3,iλ3, j + J f

8,σλ8,iλ8, j + J f
38,σ

(
λ3,iλ8, j + λ8,iλ3, j

)

+
∑

γ

J f
γ,σ

(
λ1

γ,iλ
1
γ, j + λ2

γ,iλ
2
γ, j

) ]−
∑

i

(
h f
3 λ3,i + h f

8 λ8,i

)
.

(5.69)

The strength of the various couplings is shown in Figs. 5.12 and 5.13. In the
same way as for the bosonic case, the leading terms stem from contributions due
to the density-density interactions that are accordingly described by the diagonal
Gell-Mann matrices. In the fermionic case, however, the density-density interactions
happen only between atoms in different orbital states. For the same reason as already
discussed in the study of the bosonic case, the vanishing of the external fields and
of the Dzyaloshinskii–Moriya interactions in the isotropic cubic lattice is a conse-
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Fig. 5.13 Coefficients of the
interaction stemming from
the ladder operators in the
fermionic case. Notice, in
particular, the X X Z -like
type of couplings, which
differ from the XYZ -like
couplings obtained for the
same terms in the bosonic
case (see Fig. 5.10)

quence of the parity symmetry. These terms, are nevertheless restored whenever this
symmetry is broken, as again, for example, in effective 1D or 2D realizations.

The fermionic case differs from the bosonic one in two main aspects: First,
that instead of ferromagnetic, the couplings of the pseudospin model favor anti-
ferromagnetic ordering. Second, that due to the absence of orbital changing inter-
actions in Eq. (5.53), the exchange terms deriving from ladder operators have the
same couplings for both theλ1

γ,iλ
1
γ, j andλ2

γ,iλ
2
γ, j processes. Therefore, the fermionic

version of the SU (3) model has a structure of couplings that is similar to that of the
X X Z Heisenberg model for spin 1/2 systems.

The study of anti-ferromagnetic SU (3)Heisenbergmodels has a long history [48],
and owing to the complexity of the ground states, they constitute very attractive
systems for quantum simulation. In 1D, the case with (fully) isotropic couplings
admits a Bethe ansatz solution [46], the spectrum of excitations is known to be
gapless [46] and correlations decay algebraically [46]. Much less is known for this
system in higher dimensions [46, 47]. In fact, studies of both the triangular and the
square lattices in 2D and the cubic lattice in 3D have been carried out numerically
rather recently [46, 47], and complement an important previous analysis based on
applications of flavor-wave theory [48]. These studies confirm the prediction of a
highly degenerate manifold of ground states with both 2- and 3-sublattice ordering
for the square and cubic lattices, whose degeneracy is lifted by a mechanism of
order-by-disorder [46, 47]. More specifically, while the low energy states favor the
2-sublattice structure, the ground state at zero temperature is expected to have a 3-
sublattice ordering both in 2D and 3D. Therefore, lowering the temperature drives
the system through a phase transition from a state with 2- to a state with 3-sublattice
structure. In 2D, this is expected to be a thermal transition. The mechanism of this
transition in 3D is not fully known. However, it is possible that the 3-sublattice state
is formed from the 2-sublattice one due to quantum fluctuations, or else, directly
from a paramagnetic state associated to a first-order phase transition [46].

The above are some examples of the physics that can be encountered in the SU(3)
models described here. More precisely, by monitoring the system as the temperature
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decreases, we expect different sublattice structures to be detected.28 However, the
properties discussed above characterize the SU (3) model with fully isotropic cou-
plings. Although this is not the same case as in Eq. (5.67), in analogy with SU (2)
spin systems we expect the anisotropic case to have a rich phase diagram, both in
the limit of very low energies and at zero temperature. Furthermore we also notice
that effective 1D and 2D realizations can be engineered with external fields and
Dzyaloshiskii–Moriya interactions, leading to rather unexplored models of mag-
netism. As well as for the bosonic case, the flavor-wave analysis of these cases, both
in 2D and 3D, is also an interesting future direction.

Extension of the Manipulation/Detection Schemes for the SU (3) Case

Detection andmanipulation of the systems discussed here are based on the same ideas
presented in Sect. 5.2.2 for the spin-1/2 case. Since the pseudospins are encoded in
the different orbital states, we are required to operate on the vibrational levels of the
lattice. Here, however, those techniques must be extended to account for the third
orbital, and arbitrary rotations are performedwith the generators of the SU (3) group.

Let us start then by noticing that the carrier, the red and the blue sideband transi-
tions are implemented in the same way as for the spin-1/2 case, but now with a laser
with the wave vector having all three components. The px orbital can be selectively
addressed by choosing driver lasers with no component in the y and z directions, i.e.,
kL1 − kL2 = kLx , where kLi with i = 1, 2 refer to the wave vectors of the two lasers
used in the Raman transition.29 Analogous relations hold for manipulations of only
the py and/or the pz orbitals.

Now rotations with the generators of the SU (3) group are given by R̂β(φ) =
e−λβφ/2, where β = 1, . . . , 8 and φ is the effective angle. To implement such
operations we make use of the three SU (2) subgroups. The simplest case, of rota-
tions with λ8, can be achieved via Stark shift of the pz orbital without any dis-
turbance of px and py orbitals. R̂3(φ) rotations are also implemented via Stark
shift, but now with a dispersive coupling between both px and py orbitals which
already renders the shift with correct (opposite) sign. R̂1(φ), R̂4(φ) and R̂6(φ)

rotations are implemented by driving red sideband transitions off-resonantly, for
two orbitals. The first case will involve the px and py orbitals, while in the
second and third, px and pz , and py and pz orbitals, respectively. The other
three rotations, around λ2, λ5 and λ7 can be achieved by noticing that R̂2(φ) =
R̂3(π/2)R̂1(φ)R̂3(−π/2), R̂5(φ) = R̂3(π)R̂8(−

√
3π)R4(φ)R̂3(−π)R̂8(

√
3π), and

R̂7(φ) = R̂3(π/2)R̂8(
√
3π/2)R6(φ)R̂3(−π/2) R̂8(−

√
3π/2).

To resolve the SU (3) pseudospins, we borrow again the scheme discussed for
SU (2) case. Namely, the px and py states are resolved via single-site fluorescence
after measurement of λ3, and the pz orbital after measurement of λ8. Likewise,
〈λαλβ〉 correlation functions can be obtained by using the same techniques, but now
combined with coincident measurement of the fluorescent photons. Finally, since

28We discuss detection schemes/measurements in the next subsection.
29Recall the matrix elements �1�

∗
2/δ〈2|ei(kL1−kL2 )|1〉, where �i are the Rabi frequencies and the

notation is the same used in Sect. 5.2.3.
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temperature considerations are exactly the same discussed for the spin-1/2 case, we
refer to Sect. 5.2.3.

Imperfections Due to the Presence of Residual s Atoms

In the three-orbital case, the random field due to the presence of residual s-band
atoms is given by (see Sect. 5.2.4)

Hdis =
[ √

3

6Usp
λ8,i

(|t x
σ |2 + |t y

σ |2 − 2|t z
σ|2
)+ λ3,i

2Usp

(|t x
σ |2 − |t y

σ |2)
]

δ1,nsi
(5.70)

for both the bosonic and fermionic cases. Based on the Imry-Ma argument, we
notice that even though the ground-state properties of the fermionic model might be
affected by the random field in 1D and 2D, the discrete symmetry of the bosonic
model helps stabilizing the phases of the clean system even in low dimensions. In
higher dimensions, however, both cases are expected to be robust when the disorder
is not too strong.

5.4 The d-Band System in 2D Lattices

The last system which will have the Mott phase investigated from the perspective of
a pseudospin model is described by Eq. (2.55), of bosons in the d band. Recall that
throughout this thesis we consider it in the 2D isotropic lattice.

This system is interesting for different reasons: First, due to the presence of
density-assisted processes (see Eqs. (2.67) and (2.68)), it lacks the Z2-parity symme-
try30 characteristic of the system in the p band. Second, according to the Gutzwiller
study of Sect. 3.2, this is a two-orbital system for a large region of experimentally
relevant parameters. Therefore, let us consider the dynamics involving only the dα2

orbitals31 and write

Ĥ d
U=

∑

i

{
Uxx

2
n̂x2,i (n̂x2,i −1)+ Uyy

2
n̂ y2,i (n̂ y2,i −1) +2Uxyn̂x2,i n̂ y2,i

+Uxy

2

[(
d̂†

x2,i d̂
†
x2,i d̂y2,i d̂y2,i + d̂†

y2,i d̂
†
y2,i d̂x2,i d̂x2,i

)]

+ Unx xy

(
d̂†

x2,i n̂x2,i d̂y2,i + d̂†
y2,i n̂x2,i d̂x2,i

)

+Uny xy

(
d̂†

x2,i n̂ y2,i d̂y2,i + d̂†
y2,i n̂ y2,i d̂x2,i

)}

(5.71)

30Related to conservation of particles modulo 2 in each of the orbital states.
31Recall that here α = {x, y} and that in the isotropic lattice Uxx = Uyy and Unx xy = Uny xy
(see (2.69)).

http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_2
http://dx.doi.org/10.1007/978-3-319-43464-3_3
http://dx.doi.org/10.1007/978-3-319-43464-3_2
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Using the same basis of Eqs. (5.16) to span HP , and the basis in the HQ subspace
in the order {|0, 2x〉, |0, xy〉, |0, 2y〉}, we obtain

Ĥ d
Q =

⎛

⎝
Uxx

√
2Unx xy Uxy√

2Unx xy 2Uxy

√
2Uny xy

Uxy

√
2Uny xy Uyy

⎞

⎠ (5.72)

and

K̂d =
(

Ĥd
Q

)−1

= �

⎛

⎜⎜⎝

2
(

UxyUyy − U2
nx xy

) √
2(UxyUny xy − Unx xyUyy) 2

(
Unx xyUny xy − U2

xy

)

√
2(UxyUny xy − Unx xyUyy) Uxx Uyy − U2

xy

√
2(UxyUnx xy − Uny xyUxx )

2
(

Unx xyUny xy − U2
xy

) √
2(UxyUnx xy − Uny xyUxx ) 2

(
UxyUxx − U2

nx xy

)

⎞

⎟⎟⎠ ,

(5.73)

with

� =
(
2U 3

xy + 4Unx xyUxyUny xy − 2UxxU 2
ny xy − 2Unx xyUyy + 2UxxUxyUyy

)−1
.

(5.74)

To determine the final form of the effective Hamiltonian, we notice that all the
processes listed in Sect. 5.1 have non-vanishing matrix elements such that

Ĥn0=1 = −�
∑

αβ

∑

〈i, j〉σ

{
8 |tασ |2

(
UαβUββ − U2

nβαβ

)
n̂α,i n̂α, j

+2
(
|tασ |2 + |tβσ |

) (
UααUββ − U2

αβ

) (
n̂α,i n̂β, j + n̂β,i n̂α, j

)

+8 tασ tβσ
(

UnααβUnβαβ − U2
αβ

) (
d̂†β,i d̂α,i d̂†β, j d̂α, j + d̂†α,i d̂β,i d̂†α, j d̂β, j

)

+2 tασ tβσ

(
UαβUββ − U2

nβαβ

)(
d̂†β,i d̂α,i d̂†α, j d̂β, j + d̂†α,i d̂β,i d̂†β, j d̂α, j

)

+2
(
|tασ |2 + tασ tβσ

) (
UnβαβUαβ − UnααβUββ

) [
n̂α,i

(
d̂†β, j d̂α, j + d̂†α, j d̂β, j

)

+ n̂α,i

(
d̂†β, j d̂α, j + d̂†α, j d̂β, j

)]}
.

(5.75)
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By further employing the Schwinger angular momentum representation [3, 10]

Ŝz
i = 1

2

(
n̂x2,i − n̂ y2,i

)

Ŝ+
i = Ŝx

i + i Ŝ y
i = d̂†

x2,i d̂y2,i

Ŝ−
i = Ŝx

i − i Ŝ y
i = d̂†

y2,i d̂x2,i

(5.76)

together with the constraint of unit filling, i.e., n̂ i = n̂x,i + n̂ y,i = 1, Eq. (5.75) can
be mapped into a spin-1/2 XYZ model with DM interactions [49, 50] and external
fields

ĤXYZ = −
∑

〈i, j〉σ
J
[
(1 + γ)Sx

i Sx
j + (1 − γ)Sy

i Sy
j

]

−
∑

〈i, j〉σ

[
�Sz

i Sz
j + δ

(
Sx
i Sz

j + Sz
i Sx

j

)]
+
∑

i

(
�Sx

i + hSz
i

)
.

(5.77)

Here J = −t x
σ t y

σU 2/�, with U 2 = 4(UxxUyy − U 2
xy) and � given by Eq. (5.74), the

anisotropy parameter γ = 16
(
Unx xyUny xy − U 2

xy

)
/U 2,

� = 8|t x
σ |2

(
UxyUyy − U 2

ny xy

)
+ 8|t y

σ |2 (UxyUxx − U 2
nx xy

)

−2
(|t x

σ |2 + |t y
σ |2) (UxxUyy − U 2

xy

)
,

δ = 4
(
Uny xyUxy − Unx xyUyy

) (|t x
σ |2 + t x

σ t y
σ

)

− 4
(
Uny xyUxy − Uny xyUxx

) (|t y
σ |2 + t x

σ t y
σ

)
,

� = 2
(
Uny xyUxy − Unx xyUyy

) (|t x
σ |2 + t x

σ t y
σ

)

+ 2
(
Uny xyUxy − Uny xyUxx

) (|t y
σ |2 + t x

σ t y
σ

)
,

and
h = 8|t x

σ |2
(

UxyUyy − U 2
ny xy

)
− 8|t y

σ |2 (UxyUxx − U 2
nx xy

)
.

In the isotropic lattice, however, the external field h and the DM interactions vanish
due to the parity symmetry of Eq. (2.51),32 and are accordingly restored whenever
the symmetry is broken, i.e., when t x

‖ �= t y
‖ and t x

⊥ �= t y
⊥, such that δ �= 0.

We notice that in the sameway as for the system of bosons in the p band, d-orbital
bosons can provide an alternative realization of the XYZ model, albeit here in the
presence of an external field even in the isotropic case. This is a consequence of the
density-assisted processes breaking the Z2 symmetry of the orbital-changing inter-

32This symmetry is translated in the spin language by Ŝx
i → Ŝx

i , Ŝ y
i → −Ŝ y

i , and Ŝz
i → −Ŝz

i .

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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actions such that only the total number of particles is now conserved. Indeed, the
external field contains a Ŝx -dependent term, and moreover, the presence of Ŝx in the
DM interactions derives also from density-assisted processes.33 In the limit of van-
ishing density-assisted interactions, the effective spinHamiltonian becomes identical
to the corresponding one for the system in the p band discussed in Sect. 5.2, as should
indeed be the case since the γ anisotropy is due to orbital changing processes. These
two systems are different, however in the character of the interactions, since the
tα
‖ tβ

⊥ < 0 property of the tunneling in the p band naturally yields anti-ferromagnetic

exchange for some of the spin components, while in the d band tα
‖ tβ

⊥ > 0, and all
interactions are primarily ferromagnetic.

To the best of our knowledge, the phase diagram of this model is not fully known
in 2D even for the simplest case of the isotropic lattice, where δ = 0. However, due to
the parity symmetry of Eq. (2.51) we expect a rich phase diagramwith the possibility
of symmetry broken phases. For example, the limit of �/J � �/J (|γ| < 1) should
be characterized by a highly magnetized state in the x component of the spin, while
in the opposite limit the system is in a ferromagnetic state (noting that � > 0) with
broken symmetry in the z component. If the relative strength of �/J and �/J is
much larger than the other couplings in the model, this system is a natural realization
of the transverse Ising model. In fact, the techniques discussed in Sect. 5.2.2 could
be used to engineer such a situation. When J ∼ γ,�, the ground state could be in
another symmetry broken ferromagnetic state in the xy plane or else, in a gapless
floating phase as discussed for the 1D XYZ model in Sect. 5.2.1. Furthermore we
notice that effective 1D realizations are also interesting, since the XYZ model with
DM interactions has been recently reported to have a rich phase diagram, with both
ferromagnetic and Luttinger liquid phases [51].

Finally we remark that if occupation of the d̂xy orbital becomes non-negligible,
then the pseudospins must be described by the generators of the SU (3). In addition,
the corresponding spin model will feature DM interactions in all the components.

Appendix: Coupling Constants of the SU(3) Pseudospin
Hamiltonians

The expressions of the various coupling constants used in the text are given below
for both the bosonic and fermionic many-body systems.

Bosonic Case
In the notation below we use σ to denote 〈i, j〉σ . This defines the values of the
tunneling amplitudes, which are different for various orbital states in the different
directions.

33Notice here the difference with the SU (3) case, where the DM interactions still conserve the
orbital-changing Z2 symmetry and accordingly, depend only on the diagonal Gell-Mann matrices
(see Eqs. (5.62) and (5.66)).

http://dx.doi.org/10.1007/978-3-319-43464-3_2
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J b
8,σ = K (1)

xx
3 |t x

σ |2 + K (1)
yy
3 |t y

σ |2 + 4
3 K (1)

zz |t z
σ |2 + K (2)

xy
6

(|t x
σ |2 + |t y

σ |2)− 2
9 K (2)

xz
(|t x

σ |2 + |t z
σ |2)

− 2
9 K (2)

yz
(|t y

σ |2 + |t z
σ|2)

(5.78)

J b
38,σ =

√
3

3
K (1)

xx |t x
σ |2 −

√
3

3
K (1)

yy |t y
σ |2 − √

3
K (2)

xz

6

(
|t x

σ |2 + |t z
σ|2

)
+ √

3
K (2)

yz

6

(
|t y

σ |2 + |t z
σ |2

)

(5.79)

hb
8,σ = 4

√
3
9 K (1)

xx |t x
σ |2 + 4

√
3
9 K (1)

yy |t y
σ |2 − 8

√
3
9 K (1)

zz |t z
σ|2 −

√
3
9 K (2)

xy
(|t x

σ |2 + |t y
σ |2)

−
√
3
9 K (2)

yz
(|t y

σ |2 + |t z
σ|2)

(5.80)

hb
3,σ = 4

3
K (1)

xx |t x
σ |2 − 4

3
K (1)

yy |t y
σ |2 + K (2)

xz

3

(
|t x

σ |2 + |t z
σ |2

)
− K (2)

yz

3

(
|t y

σ |2 + |t z
σ|2

)
(5.81)

J b
3,σ = K (1)

xx |t x
σ |2 + K (1)

yy |t y
σ |2 − K (2)

xy

2

(
|t x

σ |2 + |t y
σ |2

)
(5.82)

J 1
γ,σ = K (1)

αβ tασ tβσ + 2K (2)
αβ tασ tβσ (5.83)

J 2
γ,σ = K (1)

αβ tασ tβσ − 2K (2)
αβ tασ tβσ (5.84)

Fermionic Case
In the same way as for the bosonic case discussed above, σ is used below to define
the value of the tunneling amplitudes.

J f
8,σ = K (2)

xy

6

(|t x
σ |2 + |t y

σ |2)− 2
K (2)

xz

9

(|t x
σ |2 + |t z

σ|2)− 2
K (2)

yz

9

(|t y
σ |2 + |t z

σ|2
)

(5.85)

J f
3,σ = − K (2)

xy

2

(|t x
σ |2 + |t y

σ |2) (5.86)

J f
38,σ = −√

3
K (2)

xz

6

(|t x
σ |2 + |t z

σ|2
)+ √

3
K (2)

yz

6

(|t y
σ |2 + |t z

σ|2
)

(5.87)

h f
8,σ = 2

√
3

9
K (2)

xy

(|t x
σ |2 + |t y

σ |2)−
√
3

9
K (2)

xz

(|t x
σ |2 + |t z

σ|2
)−

√
3

9
K (2)

yz

(|t y
σ |2 + |t z

σ|2
)

(5.88)

h f
3,σ = K (2)

xz

3

(|t x
σ |2 + |t z

σ|2
)− K (2)

yz

3

(|t y
σ |2 + |t z

σ|2) (5.89)

J f
γ,σ = tα

σ tβ
σ K (2)

αβ (5.90)
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Chapter 6
Effects of Disorder in Multi-species Systems

In the previous Chapter we came across an example where experimental
imperfections may give rise to disorder. Effects of disorder can affect qualitative
properties of the physics, and serve as an interesting area of research on its own [1–
3]. In the context of cold atoms, for example, it is possible to fabricate systems where
the properties of the disorder can be externally controlled [4–6]. Motivated by these
observations, in this chapter we study not multi-orbital, but multi-species systems
in the presence of disorder. The reason for this shift is simply because the type
of couplings considered here are easy to realize experimentally with multi-species
atoms.

Effects of disorder in condensed matter systems have been intensely investigated
since its formal appearance in the literature1 in 1958. By studying a system of nonin-
teracting electrons tunneling in a 3D lattice (tight-bindingmodel) in a random energy
landscape, Phillip Anderson showed that the presence of impurities can affect trans-
port properties of quantum mechanical systems in a dramatic way [1], due to the
existence of localized states.

AfterAnderson’s seminalwork,much effortwas directed in understanding the role
of dimensionality in the phenomenon of Anderson localization. In 1D, for example,
all the eigenstates of this problem were shown to be localized,2 even for arbitrarily
weak disorder [7]. From analysis based on scaling arguments, 2D systems are also
generically considered to have localized eigenstates in the entire spectrum.3 This
situation is different in 3D systems, where localized and extended eigenstates are
separated by a mobility edge [9]. These studies played a central role for the theory
of metal-insulator transitions [2, 10], and nowadays, much of the current research in

1According to [2], studies of disordered systems in condensed matter were very scarce and lacked
a systematic framework before Anderson’s work [1].
2That is, to decay exponentially from a center in real space.
3Exceptions to the scaling argument in 2D include chiral systems [8], some of which will be
discussed in this chapter.
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this area is focused on the properties of systemswith interactions, in the phenomenon
called many-body localization [11].

In this Chapter we study effects of disorder in bosonic multi-species systems that
are coupledvia a disorderedpotential. This is thematerial ofRef. [12].Wewill start by
presenting the differentmodels under investigation in Sect. 6.1 andwe followwith the
study of the symmetries in different cases in Sects. 6.2 and 6.3. These different cases
belong the different chiral orthogonal, chiral unitary, Wigner-Dyson orthogonal and
Wigner-Dyson unitary symmetry classes. We characterize the spectral properties in
Sect. 6.4. In particular, we show that when compared to the chiral classes, the onset of
localization in terms of the disorder strength is delayed in theWigner-Dyson classes,
and we explain this result in terms of an effectivemodel obtained after integrating out
the fastest modes in the system, in Sect. 6.5. Finally, in Sect. 6.6, we briefly discuss
the experimental relevance of the systems studied here. Far from being a survey on
the theory of disordered systems, our aim is to report a series of results obtained in
the latest year, and to illustrate the very rich physics appearing in systems of coupled
multi-species. However, despite the non-introductory character of these discussions,
we present it in a self-contained fashion. For reviews on the theory of Anderson
localization and of disordered quantum systems we refer to [2, 10].

6.1 Meet the Hamiltonians

“One Hamiltonian to understand them all..”

—Adapted from another famous book.

Let us consider theHamiltoniandescribing a systemof twonon-interacting species
that are tunneling in a 2D lattice and that are randomly coupled at each site

Ĥ = −
∑

〈i, j〉σ

(
â†
i â j + b̂†

i b̂ j

)
+ g

∑

i

(
h i b̂

†
i âi + h∗

i â
†
i b̂i

)
+

∑

i

(
μan̂a

i + μbn̂b
i

)
.

(6.1)

〈i, j〉σ denotes the nearest neighbors in the direction σ = {x, y}, âi (â
†
i ) and b̂i

(b̂†
i ) destroy (create) a particle of the type a and b, respectively, at the site i , g > 0

is a coupling constant and h i is a complex valued random field with 〈� (h i )〉 =
〈� (h i )〉 = 0, 〈|h i |2〉 = ξ, and 〈· · · 〉 denotes the disorder averaging. Such multi-
species systems are typically implemented with use of two different Zeeman levels
of an atom [13], and the random coupling with the use of Raman pulses [14].

We are interested in the spectral properties of this system for the four different
cases: (i) of μa = μb = 0 and real-valued h i ; (ii) of μa = μb = 0 and complex-
valued h i ; (iii) ofμa,μb �= 0 and real-valued h i ; and (iv) ofμa,μb �= 0 and complex-
valued h i .
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6.2 Symmetries of the Real-Valued Random-Field Case

Let us start by considering the symmetries of Eq. (6.1) for the case of real-valued h i .
Without loss of generality,4 let us assume that μa = −μb = μ, and re-write (6.1) as

ĤR = −t
∑

〈i, j〉σ

[
â†
i b̂†

i

]
1

[
â j

b̂ j

]
+

∑

i

[
â†
i b̂†

i

] (
g h iσ

x + μσz
) [

âi

b̂i

]
, (6.2)

where σα, α = {x, y, z} are the Pauli matrices. The above expression is clearly
invariant under multiplication of a global phase âi → eiφâi and b̂i → eiφb̂i , which
is related to conservation of total number of particles in the system. In addition, ĤR is
real and symmetric, and therefore it is invariant under time-reversal transformations.
Therefore, in spite of the intrinsic spin structure of Eq. (6.2), the presence of σz does
not play the role of a magnetic field in this pseudo-spin picture.

The situation of μ = 0 is of particular interest. In this case, the Hamiltonian is
also invariant under âi → b̂i transformations, and in addition, since it is possible to
find a unitary transformation that anti-commutes with the Hamiltonian,

U † Ĥ (μ=0)
R U = −Ĥ (μ=0)

R , (6.3)

with

U = diag

⎛

⎝1,−1, 1,−1 . . .︸ ︷︷ ︸
N

| −1, 1,−1, 1 . . .︸ ︷︷ ︸
N

⎞

⎠, (6.4)

and N the number of sites, theHamiltonian has chiral symmetry [15]. Thismeans that
there exists a basis for which this Hamiltonian has a manifestly off-diagonal block
form,5 that for each eigenvalue ε that is a solution of the characteristic equation, −ε
is also a solution, and as a consequence, the spectrum is symmetric around the zero
energy. It also means that the states with ε and −ε energies are related by a chiral
transformation [15, 16].

The study of this system lead to an interesting observation about the properties of certain
banded matrices with random entries as we show here. Consider the M1 and M2 matrices
defined below, where hi and μ are real numbers.

4Defining the chemical potential in this way is equivalent to adding a constant to the Hamiltonian.
5Here a reordination of the basis as

(a11,b12 , a13 , b14 , . . . , a1(n−1) , b1n , b21 , a22 , b23 , a24 , . . . b2(n−1) , a2n
︸ ︷︷ ︸

Block 1

| b11 , a12 , b13 , a14 , . . . , b1(n−1) , a1n , a21 , b22 , a23 , b24 , . . . , a2(n−1) , b2n
︸ ︷︷ ︸

Block 2

),

for example, where ai j and bi j are the amplitudes of the wave-functions of particles a and b at the
site (i, j), would rewrite the Hamiltonian in the desired off-diagonal shape.
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M1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ J 0 . . . . . . h1 0 0 . . . . . .

J μ J 0 . . . 0 h2 0 0 . . .

0 J μ J 0 0 0 h3 0 0
.
.
.

. . .
.
.
.

. . .

h1 0 0 . . . . . . −μ J 0 . . . . . .

0 h2 0 0 . . . J −μ J 0 . . .

0 0 h3 0 0 0 J −μ J . . .

.

.

.
. . .

.

.

.
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5)

and

M2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 J 0 . . . . . . μ 0 0 . . . . . .

J h2 J 0 . . . 0 μ 0 0 . . .

0 J h3 J 0 0 0 μ 0 0
.
.
.

. . .
.
.
.

. . .

μ 0 0 . . . . . . −h1 J 0 . . . . . .

0 μ 0 0 . . . J −h2 J 0 . . .

0 0 μ 0 0 0 J −h3 J . . .

.

.

.
. . .

.

.

.
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.6)

The claim is that M1 and M2 have exactly the same eigenvalues.

We can show that this statement is true by noticing that M1 and M2 are the Hamiltonians
of two tight-binding problems that can be mapped into each other by a linear transformation.
Explicitly, consider the following Hamiltonians:

Ĥ1 = J
∑

〈i, j〉
(â†

i â j + b̂†i b̂ j + H.c.) +
∑

i

hi (â
†
i b̂i + b̂†i âi ) + μ

∑

i

(â†
i âi − b̂†i b̂i ), (6.7)

describing a two-species system of non-interacting atoms that are randomly coupled, and

Ĥ2 = J
∑

〈i, j〉
(ĉ†i ĉ j + d̂†

i d̂ j + H.c.) + μ
∑

i

(ĉ†i d̂i + d̂†
i ĉi ) +

∑

i

hi (ĉ
†
i ĉi − d̂†

i d̂i ), (6.8)

describing a coupled system of non-interacting two-species that are tunneling in a ran-
dom energy landscape. Since the transformation ĉi → (âi + b̂i )/2 and d̂i → (âi − b̂i )/2
maps Ĥ1 → Ĥ2, and M1 and M2 are the matrix forms for representing the corresponding
Hamiltonians, these systems must have identical eigenvalues. This accounts for a Hadamard
transformation of the Pauli matrices,

σ̂x → ÛH σ̂x Û−1
H = σ̂z,

σ̂z → ÛH σ̂zÛ−1
H = σ̂x ,

σ̂y → ÛH σ̂yÛ−1
H = −σ̂y,

which is nothing but a π rotation in xz-plane. Since ÛH is independent of the site index, the
Hadamard transformation does not depend on the disorder realization. Furthermore, this is
a canonical transformation and accordingly, it preserves the bosonic commutation relations
[ĉi , ĉ†j ] = δi j , [d̂i , d̂†

j ] = δi j and [ĉi , d̂†
j ] = 0. In addition, we notice that this property
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extends6 to tight-binding Hamiltonians in 2D and 3D, and also for the case of a random
chemical potential where μ → μi .7

It would be interesting, therefore, to find different systems in other areas of physics8 that
are described by the same type of matrix as (6.5) or (6.6). Such analogies not only allow
for the use of technology developed in the context of tight-binding models for exploring the
physics of these other models, but it could also establish a valuable connection between the
corresponding systems and the systems of cold atoms we discuss here.9

With the above observation, we have shown, in addition, that for μ = 0 this system
of randomly coupled species can be mapped into two independent Anderson prob-
lems, one for each type of atom, that are tunneling in a random energy landscape
with the same magnitude but with opposite signs. Therefore, this provides an alter-
native setup for experimental studies of Anderson localization. Furthermore, we also
notice that although the chiral symmetry and the corresponding off-diagonal block
representation of the Hamiltonian are usually associated to the presence of only non-
vanishing bonds in off-diagonal elements of the Hamiltonian10 [15, 16], we explore
the multi-species character in Ĥ (μ= 0)

R to obtain a chiral model with onsite disorder.11

6.3 Symmetries of the Complex-Valued Random Field Case

Following the discussion of the real-valued field case, Eq. (6.2) can be written as

ĤC = −t
∑

〈i, j〉σ

[
â†
i b̂†i

]
1

[
â j

b̂ j

]
+

∑

i

[
â†
i b̂†i

] (|h i | cos θiσ
x + |h i | sin θiσ

y + μσz)
[

âi
b̂i

]
,

(6.9)

where we used that h i = |h i |eiθi . In this case the Hamiltonian is a Hermitian matrix,
and therefore time-reversal symmetry is absent even for the situation inwhichμ = 0.
In fact, this system is only invariant under multiplication of a global phase, which
again reflects the conservation of total number of particles in the system.

When μ = 0, however, Ĥ (μ=0)
C is a chiral Hamiltonian, and can be written in

block off-diagonal form with the basis ordered in the same way as discussed for the
real-valued field case (see footnote 3 of Sect. 6.2). The spectral properties discussed

6The main difference with the 2D and 3D cases is that the tunneling part will be described by block
matrices, in the same way as we discussed in Sect. 4.1 for the ideal gas in the p band.
7We could also think of situations where μi and hi are taken from different distributions and so on.
8As for example in statistical mechanics of complex systems.
9The author also finds it extremely interesting to think of a cold atom system as a realization of a
generic matrix.
10As would be the case, for example in a tight-binding Hamiltonian with random nearest-neighbors
hopping.
11Notice that the presence of an onsite term in a usual tight-binding type of model necessarily
destroys the chiral symmetry.

http://dx.doi.org/10.1007/978-3-319-43464-3_4
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in that case are also valid here: the spectrum is symmetric around the zero energy and
the eigenstates of positive and negative eigenvalues ε and −ε are connected via the
chiral transformation [15, 16]. The difference, however, as compared to that case, is
the lack of time-reversal symmetry.

Let us now proceed with the study of (6.9), and for the chiral case with μ = 0 by
considering the following transformation of the operators:

α̂†
i = e−iθi â†

i

β̂i = e−iθi b̂i ,
(6.10)

in such a way that

Ĥr f = −t
∑

〈i, j〉σ

(
e−i(θi−θ j )α̂†

i α̂ j + ei(θi−θ j )β̂†
i β̂ j + H.c.

)
+

∑

i

|h i |
(
α̂†
i β̂i + β̂†

i α̂i

)
.

(6.11)
It describes the coupled system where the α and β species acquire a random phase
as they tunnel around in the lattice, and are randomly converted into each other
by a random real-valued field. Due to the chiral symmetry, this system is closely
related to the so called random flux model12 [15] and therefore provides a controlable
environment for experimental realizations of such system.

6.4 Spectral Properties

Before presenting the results of numerical studies, let us discuss qualitative prop-
erties of the spectrum by considering limiting situations. We start with the limit of
vanishingly small disorder, ξ → 0. Here, when the chemical potential is also zero,
the matrix of Eq. (6.1) becomes essentially block diagonal, and the system approxi-
mately corresponds to two independent copies of a tight-bindingmodel. Accordingly,
all the energy levels are degenerate because all the eigenvalues appear once in each
block. When μ �= 0, the two tight-binding copies become coupled at each site, and
thereby the degeneracy is lifted.

By increasing the strength of the disorder ξ, and in particular, by increasing the
coupling between the two species via varying g, the energies of the excitations are
lowered, leading to avoided crossings of the energy levels. This is shown in Figs. 6.1
and 6.2. We have checked that these avoided crossings are smoothened out after
averaging over different realizations.

12Although the random flux model does not have an onsite term, the chiral symmetry of Eq. (6.11)
allows it to be re-written as H̃r f = ∑

〈i, j〉 eiϕi â†
i â j + H.c., where eϕi is a random phase. We also

note that the term “flux” derives from the fact that for charged particles hopping on a lattice, a
random magnetic field, i.e., flux, becomes manifested on the phases.
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Fig. 6.1 Ten first energy levels (of a single realization) of the real-valued random field cases on a
40 × 40 lattice and the IPR for the three first states for the system with t = 1 and ξ = 0.4. In the
non-chiral case μ = 0.4. Since in the wave-functions for the a and b particles are identical in the
chiral case (see text), we do not distinguish the IPRs of the a and b eigenstates in the left panel. In
the right panel the a and b labels refer to the IPR of the corresponding type of state. Notice here
that the regions of discontinuity in the IPR are associated to the avoided crossings in the energy
spectrum

6.4.1 Properties of the Ground State and Low Lying
Excitations

Localization in the eigenstates is characterized with the inverse participation ratio
(IPR) given by

IPR =
∑

i |φi |4∑
i |φi |2 , (6.12)

where φi = 〈xi |�〉 are the coefficients of the eigenstates of the Hamiltonian in the
space representation. In the limit of IPR → 0, the states are extended over the entire
lattice,13 and larger values of the IPR signal the occurrence of localization.14 As
shown in Figs. 6.1 and 6.2, the regions of avoided crossings in single realizations of

13For finite lattices the IPR → 1/N , where N is the number of sites.
14The extreme where IPR → 1 would correspond to having a particle localized in one site.



114 6 Effects of Disorder in Multi-species Systems

Fig. 6.2 Ten first energy levels (of a single realization) of the complex-valued random field cases
on a 40 × 40 lattice and the IPR for the three first states for the system with t = 1 and ξ = 0.4. In
the non-chiral case we use again μ = 0.4. In the same way as in Fig. 6.1, the a and b labels denote
the IPR of the a and b particles in the left panel. The regions of discontinuity in the IPR are also
associated here to the avoided crossings in the energy spectrum

the disorder are also associated to jumps in the IPR. This can be understood from the
fact that typically, localized states that are close in energy, are localized in different
regions of space [17].

All the cases studied here displayed localized eigenstates for strong enough dis-
order, but as shown in Figs. 6.1 and 6.2, the states of the non-chiral classes are more
robust against the disorder and become localized for larger values of g. This will be
characterized further in the next section, were we study these systems in terms of an
effective model that accounts only for the dominant particles with the smaller value
of μ.15 Localization in the excited states is also characterized with use of the IPR.
Except for the states in the middle of the spectrum of the chiral Hamiltonians, which
are known to be extended [8], all the different cases studied here show localized
eigenstates for g/t > 1.

Let us now consider the region of parameters for which the coupling with the
disorder is not strong enough to completely localize the states. In the presence of
disorder, what are the properties of the phase of the eigenstates of these systems? Is

15By dominant we mean that the amplitude of the wave-functions of the particles with lowest
chemical potential are the largest ones.
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Fig. 6.3 Ground state amplitude and phase for different values of the coupling with the disorder g
for the non-chiral Hamiltonian with a real-valued random field whose spectral properties are shown
in the left panel of Fig. 6.1. Notice that despite the disorder, the wave-functions of the dominant b
mode does not change sign in the lattice. It thus becomes clear that the system chooses to minimize
the kinetic energy of the dominant particles via fixing the phase, while the less populated species
carries a large kinetic energy

there any possibility of long-range phase coherence in the wave-functions of the a
and b particles,16 or else, is it possible for the relative phase of the a and b particles,
due to the coupling with the disorder, to exhibit any type of phase locking?

Figure6.3, displays the ground-state wave-functions of the a and b particles for
a single realization of the non-chiral case with real-valued random field and with
μa/t = −μb/t = 0.4. The different values of g/t for which we show the phases
of �a and �b correspond to the values of g where the states are still extended,17

and it is clear that �b has phase coherence along the lattice. Interestingly, this is
not what happens for �a , whose sign oscillates between the different sites. It is
also very interesting that the density of the dominant b particles is very smooth and
extended, while the non-dominant a particles have a density with a large number of
different peaks. This is not what happens in the chiral case, for which |�a| = |�b|.
Here both wave-functions have phase coherence over the lattice, and therefore also
relative phase coherence. We attribute this property to the fact that as opposed to the

16In the sense of phase coherence of the order parameter.
17In the sense of a large localization length.
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Fig. 6.4 Ground state amplitude and phase for different values of the coupling with the disorder
g for the non-chiral Hamiltonian with a complex-valued random field. This is for the same system
whose spectrum is shown in Fig. 6.2 and therefore t = 1 and ξ = 0.4

real-valued random field case, where the phase of the random field couples to the
relative phase of the a and b wave-functions with discrete values, i.e., with a zero or
π phase at each site, the relative phase of the a and b wave-functions couple to all the
possible values between [0,π] of the random phase in the complex-valued random
field case.

The ground-state wave-function of the non-chiral case with complex-valued ran-
dom field with μa/t = −μb/t = 0.4 is shown in Fig. 6.4. The properties of the
density are similar to what was discussed above for the real-valued random field
case, but with the difference that no phase coherence is present in the wave-function
of the dominating b particles. In the same way, the chiral case with complex-valued
field is also characterized by |�a| = |�b|. Contrary to the chiral real-valued field
case, however, this case does not present any phase coherence in any of the wave-
functions of the a and b particles, and accordingly, no relative phase is established.

The excited states of these systems also display a very interesting profile. In the
non-chiral cases, the densities of the dominant and non-dominant particles follow
the same trend already discussed for the ground-state: the dominant particles have
extended and smoothwave-functions, while the amplitudes of the non-dominant ones
are highly oscillating in the lattice. The phase behavior is also similar to that already
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Fig. 6.5 Amplitudes and phases for different values of the coupling with the disorder g for the
first excited state of the non-chiral Hamiltonian with a real-valued random field. The phase of the
wave-function describing particles of the a type behaves in a very similar way to what is shown in
Fig. 6.3 and therefore is not shown here. In contrast, notice the appearance of domain walls in the
phase of the wave-function of particles of the b type

seen in the ground-state, and thus these plots are not repeated here. Now the main
property of the excitations of these systems is that the phase of the dominant wave-
function �b is characterized by the appearance of domain walls in the real-valued
random field case (see Figs. 6.5 and 6.6), while in the complex-valued random field
case, the phase of�b features pairs of vortices/anti-vortices18 (see Figs. 6.7 and 6.8).
These properties are the same in the chiral cases, with the difference that the densities
of a and b particles are exactly the same. For real-valued random field, �a and �b

exhibit phase coherence along the lattice, and therefore also relative phase coherence.
Whether this relative phase coherence is a consequence of the no-node theorem [18]
or a manifestation of the phenomenon known by the name of random-field induced
order (see below) is still a matter of investigation. In the complex-valued random
field case, �a and �b don’t exhibit any type of phase coherence.

The phenomenon of random-field induced order [14, 19] refers to the ability that certain
systems have of establishing order only in the presence of disorder. The reasoning is as fol-
lows: suppose we are studying a clean system in 1D or 2D, with a continuous symmetry, and
that satisfies the assumptions of the Hohenberg–Mermin–Wagner theorem [20, 21]. Accord-
ingly, this system is prohibited of having long-range order with an order parameter of the

18The number of vortices/anti-vortices is larger for higher excited states, but there does not seem to
be a general rule which relates the number of vortex/anti-vortex pairs with the corresponding nth
excitation number.
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Fig. 6.6 In the same way as for Fig. 6.5, we show the amplitudes and phases for the second excited
state of the non-chiral Hamiltonian with a real-valued random field. We again draw attention to the
presence of domain walls in the phase of the wave-function of the b particles

Fig. 6.7 Amplitudes and phases for different values of the coupling with the disorder g for the first
excited state of the non-chiral Hamiltonian with a complex-valued random field. Since the phase of
the wave-function describing the a particles is very similar to what is shown in Fig. 6.4, we present
only the phase of the wave-function of particles of the b type. In particular, notice the appearance
on vortices/anti-vortices pairs, as discussed in the text
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Fig. 6.8 Amplitudes and phases for different values of the coupling with the disorder g for the
second excited state of the non-chiral Hamiltonian with a complex-valued random field. In the
same way as for Fig. 6.7, we show only the phase of the b particles, which feature vortices/anti-
vortices pairs

magnetization type [20, 21]. Now let us assume that it is possible to add a random field to this
system in such away to break the continuous symmetry. Because the system now has discrete
rather than continous symmetry, it does not fulfil the assumptions of the Mermin-Wagner
theorem and therefore there is nothing prohibiting global ordering in the strict sense [14, 22].
Although counterintuitive, this mechanism seems to be related to the possibility of order in
graphene quantumHall ferromagnets [23]. In interacting Bose–Einstein condensates that are
randomly coupled via Raman pulses, for example, random-field induced order appears in the
form of a fixed phase, ofπ/2, in the order parameters of the two condensates [14]. In addition,
a rigorous mathematical proof has been recently given for the occurrence of random-field
induced order in the classical XY model [19] and it is argued that this phenomenon should
also occur in the quantum case [22].

6.5 Effective Model for the Non-chiral Systems

The numerical study of Sect. 6.4 revealed that by breaking the degeneracy of the
onsite wave-functions with the additional species-dependent chemical potential and
for not too strong values of ξ, the wave-functions of one of the species become
essentially insensitive to the presence of disorder. This behavior can be understood
from the construction of a simple effective model, obtained from tracing out the
species with the fastest oscillating modes. In order to obtain this effective model, let
us consider the coherent state representation of the partition function for the system



120 6 Effects of Disorder in Multi-species Systems

of Eq. (6.1). We consider here the functional integral in the frequency representation
such that

Z =
∫

D[ψ∗
a ,ψa,ψ

∗
b ,ψb]e−S[ψ∗

a ,ψa ,ψ∗
b ,ψb], (6.13)

where ψα, α = a, b are coherent states, D[ψ∗
a ,ψa,ψ

∗
b ,ψb] = �nd[ψ∗

a,n,ψa,n,ψ
∗
b,n,

ψb,n] defines the measure with n the label of the nth mode and the Matsubara fre-
quencies at temperature T are given by ωn = 2nπT . In this framework the action
takes the form

S[ψ∗
a ,ψa,ψ

∗
b ,ψb] = ∑

n

∑
〈i, j〉σ ψ∗

an,i

[
(−iωn − μa)δi j − 1

]
︸ ︷︷ ︸

Ai j

ψan, j

+ ∑
n

∑
〈i, j〉σ ψ∗

bn,i

[
(−iωn − μb)δi j − 1

]
︸ ︷︷ ︸

Bi j

ψbn, j

+ ∑
n

∑
i

(
ψ∗

an,ih i ψbn,i + ψ∗
bn,ih

∗
i ψan,i

)
.

(6.14)

Now let us assume the species-dependent chemical potential to satisfy μa > μb,
such that the fastest modes are associated to the dynamics of ψa . The effective action
describing the dynamics of the species b can then be obtained after a partial trace
over the degrees of freedom of the a species as

Zb = ∫
dψ∗

b,ndψb,n e
∑

n �∗
bn B�bn

∫
dψ∗

a,ndψa,n e[
∑

n �∗
an A�an+�∗

anC�bn+�∗
bnC

∗�an]

= det [A]−1 ∫
dψ∗

b,ndψb,n exp
[∑

n �∗
bn

(
B − C∗A−1C

)
︸ ︷︷ ︸

H b
ef f

�bn

]
,

(6.15)

where we use the matrix notation with �αn = (ψαn,1, . . . ,ψαn,N )T , with N the
number of sites, and H b

ef f is the effective Hamiltonian describing the b species. This
expression makes it clear that the characteristic energy of the degrees of freedom
that were integrated out enters the disorder, in such a way that the coupling with
the disorder has different magnitudes in the effective modes describing the a and b
particles. The elements of the A and B matrices are given above, and C is the matrix
with the (random field) couplings between the a and b species. These are also the
matrices obtained after expressing Eq. (6.1) in a block form

H =
(

A C
C∗ B

)
, (6.16)

although we notice that in this form the A and B blocks in Eq. (6.1) do not contain
the frequency dependence embedded in (6.15). In particular, it is interesting to notice
the structure of H b

ef f , which is determined by the Green function of a tight-binding
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model.19 Indeed, the presence of a particles induces an effective long-range hop-
ping for the dominating b particles, such that this long-range hopping counteracts
localization. Since it does not have an exponential fall off, the states are not extended
in the strict sense, but display a larger localization length, as seen in the results of
the numerical study of Figs. 6.1 and 6.2.

6.6 Experimental Realizations of Disordered Systems

As discussed in this chapter, the different possibilities for the choice of the Raman
coupling and chemical potential in Eq. (6.1) make the system of randomly coupled
Bose–Einstein condensates an alternative candidate for the study of quantum systems
in the presence of disorder.20 At zero chemical potential, for example, the real-
valued random field case can be mapped into the Anderson model, whereas the case
with a complex-valued random field is related to the random flux model. The fact
that (6.1) is a quadratic Hamiltonian allows the use of the classification scheme of
disordered systems. In this scheme, the real-valued random field cases belong to
orthogonal classes, whereas the Hamiltonians with complex-valued random field
belong to unitary classes. The symmetries of each case subdivide the orthogonal and
unitary classes even further [24, 25], as we show in Table6.1.

The orthogonal class contains the matrices that are real and symmetric, which
yield the models discussed in Sect. 6.2, with time-reversal symmetry [17, 25]. At
zero chemical potential, the system has the additional chiral symmetry and belongs
to the chiral orthogonal class.Whenμ �= 0, theHamiltonianbelongs to the orthogonal
Wigner–Dyson one [17, 25]. The cases with a complex-valued random field belong
to the unitary classes [17, 25]. At zero chemical potential the system is in the chiral
unitary class, whereas it is in the Wigner–Dyson unitary one otherwise [17, 25].

As a final remark, we notice that these different cases can also be connected to the
classification scheme of topological insulators [25]. This is particularly useful for
characterizing Anderson localization as well as universal properties of these systems.
The different possibilities are also listed in Table6.1. In addition, these different
classes allow for the existence of a topological insulator in different dimensions [25].
This means that a term of topological origin can be added to the non-linear-σ-
model description of the system at the (d −1)-dimensional boundary which prevents
Anderson localization [25]. From the cases discussed above, the BDI class admits
a Z2 in 0D and a Z term in 1D, the AIII class admits a Z term in 3D, the AI class
admits a Z term in 0D, and last but not least, the A class admits a Z term in 2D [25].

19That is, the A−1 part.
20Anderson localization has been studied in systems of cold atoms with the disorder created by
laser speckels (see [5] and references therein).
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Table 6.1 Classification of Eq. (6.1) for different choices of hi and μ (see text for details)

Case hi μ Class Classification scheme

(i) Real-valued Zero Chiral orthogonal BDI

(ii) Complex-valued Zero Chiral unitary AIII

(iii) Real-valued Non-zero Wigner–Dyson orthogonal AI

(iv) Complex-valued Non-zero Wigner–Dyson unitary A

Accordingly, these systems of randomly coupled Bose–Einstein condensates could
also be relevant for experiments in this direction.

Beware! Too much disorder might localize your thoughts.

—(Not so) Common knowledge.

References

1. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109(5):1492
2. Ziman JM (1979) Models of disorder: the theoretical physics of homogeneously disordered

systems. CUP Archive
3. Abrahams E (2010) 50 years of anderson localization. World Scientific, Singapore
4. Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M,

Inguscio M (2008) Anderson localization of a non-interacting Bose–Einstein condensate.
Nature 453(7197):895–898

5. Aspect A, Inguscio M (2009) Anderson localization of ultracold atoms. Phys Today 62(8):30–
35

6. Modugno G (2010) Anderson localization in Bose–Einstein condensates. Rep Prog Phys
73(10):102401

7. Nevill F (1961)Mott andWD twose. The theory of impurity conduction. Adv Phys 10(38):107–
163

8. König EJ, Ostrovsky PM, Protopopov IV, Mirlin AD (2012) Metal-insulator transition in 2d
random fermion systems of chiral symmetry classes. arXiv:1201.6288

9. Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of
localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42(10):673–676

10. Evers F, Mirlin AD (2008) Anderson transitions. Rev Mod Phys 80(4):1355
11. Huse D, Nandkishore R (2015) Many-body localization and thermalization in quantum statis-

tical mechanics. Annu Rev Condens Matter Phys 6(1):15–38
12. Pinheiro F, Larson J (2015) Disordered cold atoms in different symmetry classes. Phys Rev A

92(2):023612
13. Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger

P, Lewenstein M, Sengstock K (2011) Multi-component quantum gases in spin-dependent
hexagonal lattices. Nat Phys 7(5):434–440

14. Niederberger A, Schulte T, Wehr J, Lewenstein M, Sanchez-Palencia L, Sacha K (2008)
Disorder-induced order in two-component Bose–Einstein condensates. Phys Rev Lett
100(3):030403

15. Altland A, Simons BD (1999) Field theory of the random fluxmodel. Nucl Phys B 562(3):445–
476

http://arxiv.org/abs/1201.6288


References 123

16. Bocquet M, Chalker JT (2003) Network models for localization problems belonging to the
chiral symmetry classes. Phys Rev B 67(5):054204

17. Haake F (2010) Quantum Signatures of Chaos, vol 54. Springer, Berlin
18. FeynmanRP (1972) Statistical mechanics, a set of lectures., Frontiers in physicsPerseus Books,

New York
19. Crawford N (2013) Random field induced order in low dimension. EPL (Europhys Lett)

102(3):36003
20. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or

two-dimensional isotropic Heisenberg models. Phys Rev Lett 17(22):1133
21. Hohenberg PC (1967) Existence of long-range order in one and two dimensions. Phys Rev

158(2):383
22. Niederberger A, Rams MM, Dziarmaga J, Cucchietti FM, Wehr J, Lewenstein M (2010)

Disorder-induced order in quantum XY chains. Phys Rev A 82(1):013630
23. Abanin AD, Lee PA, Levitov LS (2007) Randomness-induced XY ordering in a graphene

quantum hall ferromagnet. Phys Rev Lett 98(15):156801
24. Altland A, Zirnbauer MR (1997) Nonstandard symmetry classes in mesoscopic normal-

superconducting hybrid structures. Phys Rev B 55(2):1142
25. Ryu S, Schnyder AP, Furusaki A, Ludwig AWW (2010) Topological insulators and supercon-

ductors: tenfold way and dimensional hierarchy. New J Phys 12(6):065010



Chapter 7
Conclusions

In this thesis we presented different aspects of the physics ofmulti-species systems in
optical lattices. Although the focus was mainly on orbital physics, we also discussed
the properties of a simple two-species system in the presence of disorder.

We reserved final remarks to the Conclusions section, and in particular we will
focus here on possible interesting directions for future research:

• Among the systems presented in Chap.3, it would be interesting to study the
d-band case further, from a perspective that goes beyond the tight-binding and
single-band approximations. In the p band, for example, it has been argued that
an additional nearest-neighbors interaction, if strong enough, could give rise to
supersolid phases [1]. Since the Wannier functions in the d band are even broader
than the ones in the p band, a study about the possibility of finding such phases
in the d band system could be of relevance for experiments. Different lattice
geometries provide another interesting continuation, specially since upcoming
experiments on the d band consider non-separable lattices [2];

• Several interesting directions have the starting point on the systems discussed in
Chap.5:
For the p band system in 1D, for example, one interesting problem is the study
of the XYZ chain in an external random field with DMRG techniques. This is of
experimental relevance, since implementation of such a setup can take advantage
of the presence of residual s band atoms;
A throughout characterization of both the bosonic and fermionic SU (3)models via
flavor-wave analysis would be of interest. In fact, together with the methods pre-
sented in Sect. 5.3.2, this would allow for experimental investigation of frustrated
phases and of phenomena emerging from the mechanism of order-by-disorder;
Still regarding the studies of orbital physics in the Mott phase of excited bands,
another interesting direction corresponds to the spin mapping of the Hamiltonian
describing the fermionic system in the d band. Since in this case it is possible to
have the coupling between the different dx2 and dy2 orbitals via the dxy one, the
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corresponding spin systemwould loose the continuous symmetry, as opposed to the
case of fermionic atoms in the p band. In addition, the situation of a multi-orbital
system with an internal spin degree of freedom could also lead to the appearance
of novel properties.

• The results presented in the last chapter are still part of ongoing research. How-
ever, the main question to be addressed in the future is related to the possibility
of using that system to investigate, experimentally, the phenomenon of random-
field-induced order. In particular, it would be important to understand how this
phenomenon is related to the localization of the excitations in the systems where
it occurs, or with the localization of spin waves.
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