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Preface

During a sabbatical period in 2015 I decided to start working on a book on the
Network-Oriented Modeling approach developed over the past years and which has
turned out useful in modeling complex-integrated individual and social human
processes in the form of networks. The decision to spend a considerable amount of
time on such an enterprise led to further reflection on the modeling approach, and
its presentation and positioning.

This book has been written with a multidisciplinary audience in mind without
assuming much prior knowledge. In principle, the detailed explanations in the book
allow it to be used as an introduction in Network-Oriented Modeling for multi-
disciplinary Master and Ph.D. students. In particular, this implies that, although
some more technical mathematical and formal logical aspects have also been
addressed, they have been kept to the minimum and are presented in a concise
manner in Part IV. They can be skipped if not needed. Much of the material in this
book has been and is being used in teaching multidisciplinary courses for under-
graduate and graduate students, and based on these experiences, the presentation
has been adapted to suit requirements even better. Sometimes there is some overlap
between chapters, and this has been done on purpose in order to make it easier to
read each chapter separately. Lecturers can contact me to receive additional material
such as slides, assignments and software.

The content of the book has benefited much from cooperation with students and
(past and current) members of the Behavioural Informatics Group (formerly the
Agent Systems Group) at the VU University in Amsterdam (Vrije Universiteit
Amsterdam). In the discussion section in each of the chapters, specific publications
and authors related to the material presented in the chapter are mentioned.

Amsterdam, The Netherlands Jan Treur
June 2016
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Chapter 1
Network-Oriented Modeling
and Its Conceptual Foundations

An Introduction

Abstract To address complexity of modeling the world’s processes, over the years
in different scientific disciplines isolation and separation assumptions have been
made, and in some disciplines they have turned out quite useful. They traditionally
serve as a means to address the complexity of processes by some strong form of
decomposition. It can be questioned whether such assumptions are adequate to
address complexity of integrated human mental and social processes and their
interactions. Are there better alternative strategies to address human complexity?
This is discussed in this chapter, and it is pointed out that a Network-Oriented
Modeling perspective can be considered an alternative way to address complexity,
which is better suited for modeling human and social processes.

1.1 Introduction

To address complexity of modeling the world’s processes, over the years different
strategies have been used. From these strategies isolation and separation assump-
tions are quite common in all scientific disciplines and have often turned out very
useful. They traditionally serve as means to address the complexity of processes by
some strong form of decomposition. This also holds for classical disciplines such as
Physics, where, for example, for mechanical modeling for building construction only
forces from objects on earth are taken into account and not forces from all other
objects in the universe, that still do have some effects as well. It is recognized that
these distant effects from sun, moon, planets and other objects do exist, but it
assumed that they can be neglected. For such cases within Physics such an isolation
assumption may be a reasonable choice, but in how far is it equally reasonable to
address complexity of human mental and social processes? Over the years within the
Behavioural and Social Sciences also a number of assumptions have been made in
the sense that some processes can be studied by considering them as separate or
isolated phenomena. However, within these human-directed sciences serious debates
or disputes have occurred time and time again on such a kind of assumptions.
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They essentially have the form of arguments pro or con an assumption that some
processes can be studied by considering them as separate or isolated phenomena.
Examples of such separation assumptions to address human complexity concern:

mind versus body

cognition versus emotion

individual processes versus collective processes
non-adaptive processes versus adaptive processes
earlier versus later: temporal separation

It can be questioned whether, for example, mind can be studied while ignoring
body, or cognition while ignoring emotion, or sensory processing in isolation from
action preparation. Or, put more general, in how far are these traditional means to
address complexity by separation still applicable if the complexity of human mental
and social processes has to be addressed? Do we need to break with such traditions
to be able to make more substantial scientific progress in this area addressing
human processes? And, not unimportant, are there adequate alternative strategies to
address human complexity?

In this chapter, first in Sect. 1.2 the five separation assumptions mentioned above
are discussed in some more detail. Next, in Sect. 1.3 it is discussed how as an
alternative, interaction in networks can be used to address complexity. In Sect. 1.4 the
development of a Network-Oriented Modeling perspective is discussed. Section 1.5
focuses on the need for a temporal dimension to address the dynamics, in particular to
handle cyclic causal connections and realistic timing in human processes. In Sect. 1.6
the Network-Oriented Modeling approach based on temporal-causal networks is
briefly pointed out, which is the modeling approach used in this book, and is discussed
more extensively in Chap. 2. Section 1.7 discusses the scope of applicability of the
approach. Finally, Sect. 1.8 provides an overview of the chapters in the book.

1.2 Addressing Human Complexity by Separation
Assumptions

The position taken in this book is that indeed a number of the traditional separation
and isolation habits followed in order to address human complexity have to be
broken to achieve more progress in scientific development. Partly due to the strong
development of Cognitive, Affective and Social Neuroscience, in recent years for
many of the issues mentioned above, a perspective in which dynamics, interaction
and integration are key elements has become more dominant: a perspective with
interaction as a point of departure instead of separation. Given this background, for
each of the separation issues listed above this will be discussed below in more
detail. It will be pointed out how in many cases separation assumptions as men-
tioned lead to some types of discrepancies or paradoxes.
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Mind versus Body
A first isolation assumption that has a long tradition is the assumption that the mind
can be studied in separation from the body. There has been debate about this since
long ago. Aristotle (350 BC) refer considered properties of ‘mind and desire’ as the
source of motion of a living being: he discusses how the occurrence of certain
internal (mental) state properties (desires) within a living being entails or causes the
occurrence of an action in the external world; see also Nussbaum (1978). Such
internal state properties are sometimes called by him ‘things in the soul’, ‘states of
character’, or ‘moral states’. In that time such ‘things’ were not considered part of
the physical world but of a ghost-like world indicated in this case by ‘soul’. So, in
this context the explanation that such a creature’s position gets changed is that there
is a state of the soul driving it. This assumes a separation between the soul on the
one hand, and the body within the physical world on the other hand. How such
nonphysical states can affect physical states remains unanswered. Over time, within
Philosophy of Mind this has been felt as a more and more pressing problem. The
idea that mental states can cause actions in the physical world is called mental
causation (e.g., Kim 1996, 1998). The problem with this is how exactly non-
physical mental states can cause effects in the physical world, without any mech-
anism known for such an effect. Within Philosophy of Mind a solution for this has
been proposed in the form of a tight relation between mental states and brain states.
Then it is in fact not the mental state causing the action, but the corresponding
(physical) brain state. Due to this the separation is not between the soul or mind,
and the body, but between the brain and the body (Bickle 1998; Kim 1996, 1998).
However, this separation between brain and body also has been debated. More
literature on this from a wider perspective can be found, for example, in Clark
(1998), Lakoff and Johnson (1999), Wilson (2002). It is claimed that mind
essentially is embodied: it cannot be isolated from the body. One specific case
illustrating how brain and body intensely work together and form what is called an
embodied mind is the causal path concerning feelings and emotional responses.
A classical view is that, based on some sensory input, due to internal processing
emotions are felt, and based on this they are expressed in some emotional response
in the form of a body state, such as a face expression:

stimulus —sensory representation — felt emotion

—preparation for a body state — expressed emotion in body state

However, James (1884) claimed a different order in the causal chain (see also
Damasio 2010, pp. 114-116):

stimulus —sensory representation — preparation for a body state
—expressed emotion in body state — sensed body state

—representation of body state — felt emotion
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The perspective of James assumes that a body loop via the expressed emotion is
used to generate a felt emotion by sensing the own body state. So, the body plays a
crucial role in the emergence of states of the brain and mind concerning emotions
and feelings. Damasio made a further step by introducing the possibility of an as-if
body loop bypassing actually expressed bodily changes (e.g., Damasio 1994,
pp. 155-158; see also Damasio 1999, pp. 79-80; Damasio 2010):

stimulus —sensory representation — preparation for body state

—representation of body state — felt emotion

An as-if body loop describes a predictive internal simulation of the bodily
processes, without actually affecting the body, comparable to simulation in order to
perform, for example, prediction of action effects, mindreading or imagination; e.g.,
Becker and Fuchs (1985), Goldman (2006), Hesslow (1994, 2002, 2012). Damasio
(1999, 2010) distinguishes an emotion (or emotional response) from a feeling (or
felt emotion). A brief survey of Damasio’s ideas about emotion and feeling can be
found in (Damasio 2010, pp. 108-129). According to this perspective emotions
relate to actions, whereas feelings relate to perceptions of own body states triggered
by these actions:

... feelings are not a passive perception or a flash in time, especially not in the case of
feelings of joy and sorrow. For a while after an occasion of such feelings begins — for
seconds or for minutes — there is a dynamic engagement of the body, almost certainly in a
repeated fashion, and a subsequent dynamic variation of the perception. We perceive a
series of transitions. We sense an interplay, a give and take (Damasio 2003, pp. 91-92).

See further in Chap. 3, Sect. 3.2. This essentially shows a cyclic process
involving both mind and body that (for a constant environment) can lead to
equilibrium states for both emotional response (preparation) and feeling.

Cognition versus Emotion

Another assumption made traditionally is that cognitive processes can be described
independently, leaving affective states aside. The latter types of states are consid-
ered as being part of a separate line of (affective) processes that produce their own
output, for example, in the sense of emotions and expressions of them. However,
this assumed separation between cognitive and affective processes has been ques-
tioned more and more. Specific examples of questions about interactions between
affective and cognitive states are: how does desiring relate to feeling, and in how far
do sensing and believing relate to feeling? To assume that desiring can be described
without involving emotion already seems a kind of paradox, or at least a discrep-
ancy with what humans experience as desiring. Recent neurological findings sug-
gest that this separation of cognitive and affective processes indeed may not be a
valid and fruitful way to go. For example, Phelps (2006) states:
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The mechanisms of emotion and cognition appear to be intertwined at all stages of stimulus
processing and their distinction can be difficult. (..) Adding the complexity of emotion to
the study of cognition can be daunting, but investigations of the neural mechanisms
underlying these behaviors can help clarify the structure and mechanisms (Phelps 2006,
pp. 46-47).

Here it is recognized that an assumption on isolating cognition from emotion is
not realistic, as far as the brain is concerned. Therefore models based on such an
assumption cannot be biologically plausible and may simply be not valid.
Moreover, it is also acknowledged that taking into account the intense interaction
between emotion and cognition ‘can be daunting’; to avoid this problem was a main
reason for the isolation assumption as a way to address complexity. However,
Phelps (2006) also points at a way out of this: use knowledge about the underlying
neural mechanisms. In the past when there was limited knowledge about the neural
mechanisms this escape route was not available, and therefore the isolation
assumption may have made sense, although the validity of the models based on that
can be questioned. But, now Neuroscience has shown a strong development, this
provides new ways to get rid of this isolation assumption. Similar claims about the
intense interaction between emotion and cognition have been made by Pessoa
(2008). In experimental contexts different types of effects of affective states on
cognitive states have indeed been found; see, for example, Eich et al. (2000), Forgas
et al. (2009), Winkielman et al. (2009), Frijda et al. (2000). Moreover, more
specifically in the rapidly developing area of Cognitive Neuroscience (e.g., Purves
et al. 2008; Gazzaniga 2009) knowledge has been contributed on mechanisms for
the interaction and intertwining of affective and cognitive states and processes (for
example, involving emotion, mood, beliefs or memory); see, for example, Dolan
(2002), LaBar and Cabeza (2006), Pessoa (2008), Phelps (2006), Storbeck and
Clore (2007).

Not only for desiring and believing the isolation assumption for cognition versus
emotion is questioned, but also for rational decision making. Traditionally,
rationality and emotions often have been considered each other’s enemies: decision
making has often been considered as a rational cognitive process in which emotions
can only play a disturbing role. In more recent times this has been questioned as
well. For example, in Loewenstein and Lerner (2003, p. 619) it is pointed at the
positive functions served by emotions:

Throughout recorded human intellectual history there has been active debate about the
nature of the role of emotions or ‘passions’ in human behavior, with the dominant view
being that passions are a negative force in human behavior (...). By contrast, some of the
latest research has been characterized by a new appreciation of the positive functions served
by emotions (Loewenstein and Lerner 2003, p. 619)

In particular, in decision making it may be questioned whether you can make an
adequate decision without feeling good about it. Decisions with bad feelings
associated to them may lack robustness. Many occasions may occur over time that
trigger a temptation to change it into a decision with a better associated feeling. So,
human experience in rational decisions and feelings about them is that they go or
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should go in hand in hand and are not isolated. This indicates another paradox or
discrepancy between the isolation assumption and how real life is experienced:
emotions can be considered a vehicle for rationality (for more details, see Chap. 6).
A brief sketch of the alternative perspective is as follows. Decision making usually
considers a number of options for a choice to be made. Such a choice is often based
on some form of valuing of the options. In this valuing process emotions come in:
the predicted effect of some of the options relate to a more positive feeling than for
other options. It has been found that such valuations relate to amygdala activations
(see, e.g., Morrison and Salzman 2010; Murray 2007; Salzman and Fusi 2010). As
valuing can be seen as a grounding for a decision, it turns out that an emotional type
of grounding is involved. Bad decisions are those that are not solidly grounded by
having a positive feeling about them. They may not last long, as any opportunity to
get rid of them will be a temptation to reconsider the decisions. Recent neurological
literature addressing this idea of emotional valuing and grounding of decisions
relates the notion of value to the amygdala; e.g., Bechara et al. (2003), Bechara
et al. (1999), Montague and Berns (2002), Janak and Tye (2015), Jenison et al.
(2011), Morrison and Salzman (2010), Ousdal et al. (2014), Pessoa (2011), Rangel
et al. (2008).

In Chap. 3 it is discussed how knowledge from Neuroscience can be used to find
out how the integration of emotions and cognitive processes can be modeled,
illustrated for a number of examples. In Chaps. 4 and 5, more specifically the role
of emotions in generating dreams and learning during dreaming is discussed. In
Chap. 6 the specific case of emotions as a basis for rational decision making is
addressed in more detail.

Individual versus Collective

Yet another isolation assumption concerns the distinction between mental processes
within an individual and social processes. The former are usually referred to the
territory of Psychology, whereas the latter are referred to the territory of Social
Science. The idea then is to study social processes as patterns emerging from
interactions between individuals thereby abstracting from the processes within each
of the individuals. This easily leads to some kind of paradoxes. For example, as
persons in a group are autonomous individuals with their own neurological struc-
tures and patterns, carrying, for example, their own emotions, beliefs, desires and
intentions, it would be reasonable to expect that it is very difficult or even
impossible to achieve forms of sharedness and collectiveness. However, it can be
observed that often groups develop coherent views and decisions, and, even more
surprisingly, the group members seem to share a positive feeling about it. In recent
years by developments in Neuroscience new light has been shed on this seeming
paradox of individuality versus sharedness and collectiveness. This has led to the
new discipline called Social Neuroscience; e.g., Cacioppo and Berntson (2005),
Cacioppo et al. (2006), Decety and Cacioppo (2010), Decety and Ickes (2009),
Harmon-Jones and Winkielman (2007). Two interrelated core concepts in this
discipline are mirror neurons and internal simulation of another person’s mental
processes. Mirror neurons are neurons that not only have the function to prepare for
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a certain action or body change, but are also activated upon observing somebody
else who is performing this action or body change; e.g., lacoboni (2008), Pineda
(2009), Rizzolatti and Sinigaglia (2008). Internal simulation is internal mental
processing that copies processes that may take place externally, for example, in
mental processes in another individual; e.g., Damasio (1994, 1999), Gallese and
Goldman (1998), Goldman (2006), Hesslow (1994, 2002, 2012). Mechanisms
involving these core concepts have been described that provide an explanation of
the emergence of sharedness and collectiveness from a biological perspective. This
new perspective breaks the originally assumed separation between processes within
individuals and processes of social interaction. This perspective is discussed in
more detail in Chap. 7.

Adaptive versus Nonadaptive Processes

Another assumption that sometimes is debated is that mental and social processes
are modeled as if they are not adaptive. In reality processes usually have adaptive
elements incorporated, but often these elements are neglected and sometimes
studied as separate phenomena. One example in a social context is the following.
Often a contagion principle based on social interaction is studied, describing how
connected states affect each other by these interactions, whereas the interactions
themselves are assumed not to change over time (for example, qua strength, fre-
quency or intensity). But in reality the interactions also change, for example based
on what is called the homophily principle: the more you are alike, the more you like
(each other); for example, see Byrne (1986), McPherson et al. (2001), Mislove et al.
(2010). Another way of formulating this principle is: birds of a feather flock
together. It can often be observed that persons that have close relationships or
friendships are alike in some respects. For example, they go to the same clubs,
watch the same movies or TV programs, take the same drinks, have the same
opinions, vote for the same or similar parties. Such observations might be con-
sidered support for the contagion principle: they were together and due to that they
affected each other’s states by social contagion, and therefore they became alike.
However, also a different explanation is possible based on the homophily principle:
in the past they already were alike before meeting each other, and due to this they
were attracted to each other. So, the cyclic relation between the states of the
members and the strength of their connection leads to two possible causal expla-
nations of being alike and being connected:

being connected — being alike  (contagion principle)
being alike — being connected  (homophily principle)

Such circular causal relations make it difficult to determine what came first. It
may be a state just emerging from a cyclic process without a single cause. For more
discussion on this issue, for example, see Aral et al. (2009), Shalizi and Thomas
2011, Steglich et al. (2010), Mundt et al. (2012). This phenomenon will be
addressed in more detail in Chap. 11.
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As another example illustrating how adaptivity occurs fully integrated with the
other processes, the function of dreaming is discussed. From a naive perspective,
dreaming might be considered as just playing some movie, thereby triggering some
emotions, and that’s all. But in recent research, the idea has become common that
dreaming is a form of internal simulation of real-life-like processes serving as
training in order to learn or adapt certain capabilities. Dreaming makes use of
memory elements for sensory representations (mental images) and their associated
emotions (learnt in the past) to generate ‘virtual simulations’; e.g., Levin and
Nielsen (2007, pp. 499-500). Taking into account fear emotions that often play an
important role in dreams, strengthening of regulation of such emotions is consid-
ered an important purpose of dreaming; see, for example, Levin and Nielsen (2007),
Walker and van der Helm (2009), van der Helm et al. (2011), Gujar et al. (2011),
Deliens et al. (2014), Pace-Schott et al. (2015), Sotres-Bayon et al. (2004). To this
end in dreams adequate exercising material is needed: sensory representations of
emotion-loaden situations are activated, built on memory elements suitable for high
levels of arousal. The basis of what is called ‘fear extinction learning’ is that
emotion regulation mechanisms are available which are adaptive: they are
strengthened over time when they are intensively used. Fear extinction learning as
an expression may sound a bit paradoxal; it is not a form of unlearning or extinction
of acquired fear associations, but it is additional learning of fear inhibition con-
nections in order to counterbalance the fear associations which themselves remain
intact (e.g., Levin and Nielsen 2007, p. 507). Such a strengthening of connections
can be described by a Hebbian learning principle (Hebb 1949); see also Chap. 2,
Sect. 2.10. The processes of dreaming and the adaptive elements involved in it are
addressed in Chap. 5.

Earlier versus Later: Temporal Separation

Another traditionally made separation assumption is that processes in the brain are
separated in time. For example, sensing, sensory processing, preparation for action
and action execution are assumed to occur in linearly ordered sequential processes:

sensing — sensory processing — preparing for action — executing action

For the case of emotions it was already discussed that such linear temporal
patterns are not applicable. But also more in general it can be argued that such
linear patterns are too much of a simplification, as in reality such processes occur
simultaneously, in parallel; often a form of internal simulation takes place, as put
forward, among others, by Hesslow (1994, 2002, 2012), Damasio (1994, 1999),
Goldman (2006), Barsalou (2009), Marques and Holland (2009), Pezzulo et al.
(2013). The general idea of internal simulation that was also mentioned above in the
specific context of emotions and bodily processes, is that sensory representation
states are activated (e.g., mental images), which in response trigger associated
preparation states for actions, which, by prediction links, in turn activate other
sensory representation states for the predicted effects of the prepared actions:

sensory representation states — preparation states — sensory representation
states
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The latter states represent the effects of the prepared actions or bodily changes,
without actually having executed them. Being inherently cyclic, the simulation
process can go on indefinitely, as the latter sensory representations can again trigger
preparations for actions, and so on, and everything simultaneously, in parallel, as in
the world no process is freezing to wait for another process to finish first. Internal
simulation has been used, for example, to describe (imagined) processes in the
external world, e.g., prediction of effects of own actions (Becker and Fuchs 1985),
or processes in another person’s mind, e.g., emotion recognition or mindreading
(Goldman 2006) or (as discussed above) processes in a person’s own body by as-if
body loops (Damasio 1994). This breaks with the tradition that there is a temporal
separation of processes such as sensing—sensory processing—preparing for action—
executing action. In many of the chapters this is illustrated.

1.3 Addressing Complexity by Interaction
in Networks Instead of by Separation

The separation assumptions to address complexity as discussed in Sect. 1.2 are
strongly debated, as they all come with shortcomings. In this section it is discussed
that in fact the problem is not so much in the specific separation assumptions, but in
the general idea of separation itself. In social contexts it is clear that the intense
interaction between persons based on their mutual and often interrelated cyclic
relationships, makes them not very well suitable for any separation assumptions: all
these interactions take place all the time, simultaneously, in parallel. And this does
not only apply to social processes but also to individual mental processes, as will be
discussed in some more detail here.

In the domain of Neuroscience the structures and mechanisms found suggest that
many parts in the brain are connected by connections that often are part of cyclic paths,
and such cycles are assumed to play an important role in many mental processes (e.g.,
Bell 1999; Crick and Koch 1998; Potter 2007). As an example also put forward above,
there is a growing awareness, fed by findings in Neuroscience that emotions play an
important mediating role in most human processes, and this role often provides a
constructive contribution, and not a disturbing contribution as was sometimes
assumed. Usually mental states trigger emotions and these emotions in turn affect
these and other mental states. It turns out that to address this type of circular effects,
different views on causality and modeling are required, compared to the traditional
views in modeling of mental processes. For example, Scherer (2009) states:

What is the role of causality in the mechanisms suggested here? Because of the constant
recursivity of the process, the widespread notion of linear causality (a single cause for a
single effect) cannot be applied to these mechanisms. Appraisal is a process with constantly
changing results over very short periods of time and, in turn, constantly changing driving
effects on subsystem synchronization (and, consequently, on the type of emotion). (...)
Thus, as is generally the case in self-organizing systems, there is no simple, unidirectional
sense of causality (see also Lewis 1996). (Scherer 2009, p. 3470)
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input: output:
impacts on impacts of
pain state pain state

tissue damage O D> » groans
pain state escaping

Fig. 1.1 Pain state with some of its causal relations

Also in the domain of Philosophy of Mind this issue of cyclic causal connections
is recognized, for example, by Kim (1996). The idea is that a mental state is
characterized by the way it mediates between the input it receives from other states
and the output it provides to other states; this is also called the functional or causal
role of the mental state. The idea is that each mental state is characterized by its
causal role. For example, as a simplified example on the input side a mental state of
being in pain is typically caused by tissue damage and in turn on the output side it
typically causes winces, groans and escape behavior (Kim 1996, p. 104); see
Fig. 1.1. So, in this perspective the question what exactly is pain can be answered
as the state that forms a causal bridge (or causally mediates) from tissue damage to
winces, groans, and escape behavior. Kim describes the overall picture as follows:

Mental events are conceived as nodes in a complex causal network that engages in causal
transactions with the outside world by receiving sensory inputs and emitting behavioral
outputs (Kim 1996, p. 104).

As input not only sensory input can play a role but also input from other mental
states such as in the pain example ‘being alert’. Similarly, as output not only
behavioral output can play a role but also other mental states can be affected, such
as in the pain example feeling distress and a desire to be relieved of it. Within
Philosophy of Mind this is often considered challenging:

But this seems to involve us in a regress or circularity: to explain what a given mental state
is, we need to refer to other mental states, and explaining these can only be expected to
require reference to further mental states, on so on — a process that can go on in an unending
regress, or loop back in a circle (Kim 1996, pp. 104-105).

In Fig. 1.2 an example of such a cyclic causal path is depicted. Here mental state
S| has a causal impact on mental state S,, but one of the states on which S, has an
effect, in turn affects one of the input states for S;.

This view from Philosophy of Mind is another indication that a modeling
approach will have to address causal relations with cycles well. To obtain an
adequate understanding of such cycles and their dynamics and timing it is inevitable
to take into account the temporal dimension of the dynamics of the processes
effectuated by the causal relations. In principle, this situation makes that an endless
cyclic process over time emerges, which in principle works simultaneously, in
parallel, and in interaction with other processes. In such a graph at each point in
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input: output:
impacts impacts
on state S, of state S,
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O/:tate S,
input: output:

state S;

impacts on impacts
state S, of state S,
loop back

Fig. 1.2 Mental states with their causal relations conceived as nodes in a complex, often cyclic
causal network (see also Kim 1996, p. 104)

time activity takes place in every state simultaneously (it is not that one state waits
for the other). The notion of state at some point in time used here refers to a specific
part or aspect of the overall state of a model at this point in time. Such an overall
state can include, for example, at the same time a ‘being in pain’ state, a ‘desire to
get relieved’ state, and an ‘intention to escape’ state. The overall state at some point
in time is the collection of all states at that point in time. All the time the processes
in the brain occur in parallel, in principle involving all specific states within the
overall state, mostly in an unconscious manner. In this sense the brain is not
different from any other part of the universe where everywhere processes take place
simultaneously, in parallel. During all this parallel processing, any change in state
S; in principle will lead to a change in state S,, which in turn will lead to another
change in state S;, which leads to another change in state S,, and so on and on. The
state changes in such a process may become smaller and smaller over time, and the
cyclic process eventually may converge to an equilibrium state in which no further
changes occur anymore; but also other patterns are possible, such as limit cycles in
which the changes eventually end up in a regular, periodic pattern of changes (see
also Chap. 12).

In the sense described above, mental processes can show patterns similar to
patterns occurring in social interactions, where cycles of connections are natural
and quite common. An example from the context of modeling social systems or
societies can be found in (Naudé et al. 2008):

The paper outlines the challenges of modeling and assessing spatially complex
human-ecosystem interactions, and the need to simultaneously consider rural-urban and
rich-poor interactions. The context for exploring these challenges is South Africa, which
has such stark poor-rich and associated rural-urban and other spatial disparities, that it is
often described as a microcosm of the global division between developed and developing
countries. Instead of rigid rural-urban dichotomies and other absolute, “container” views of
space, there is a need to recognise spatial overlaps and complexities such the pervasiveness
of so-called translocal livelihood systems. Accordingly, much more relational, network-
oriented modeling approaches are needed (Naud¢ et al. 2008, p. 1).
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Also here it is claimed that separation in the form of what they call ‘container’
views of space falls short in addressing the complexities involved, and as an
alternative a Network-Oriented Modeling approach is suggested to address human
social complexity. Similar claims are made from the area of organization modeling
by Elzas (1985):

The study of the process-type of organization, which still - at this moment because its
relative novelty - requires modeling to evaluate, can benefit from certain network-oriented
modeling formalisms because of the very nature of the organizational concept. (...) in
addressing (...) the specific coordinating problems of the adaptively interrelated
distributed-action organizational units as they are found in process-based organizational
models (Elzas 1985, p. 162).

So, both from the area of the analysis of mental processes and from the area of
analysis of social processes, the notion of network is suggested as a basis. In next
section the notion of Network-Oriented Modeling is discussed in some more detail.

1.4 Network-Oriented Modeling

This chapter started in Sect. 1.2 by some reflection on traditional means to address
complexity by assuming separation and isolation of processes, and the shortcomings,
discrepancies and paradoxes entailed by these assumptions. In Sect. 1.3 the circular
or cyclic, interactive and distributed character of many processes (involving inter-
acting sub-processes running simultaneously, in parallel) was identified as an
important challenge to be addressed, and it was recognized that a perspective based
on interactions in networks is more suitable for this. In this section a
Network-Oriented Modeling perspective is proposed as an alternative way to address
complexity. This perspective takes the concept of network and the interactions within
anetwork as a basis for conceptualization and structuring of any complex processes.
Network-Oriented Modeling is not considered here as modeling of (given) networks,
but modeling any (complex) processes by networks. It is useful to keep in mind that
the concept network is a just a mental concept and this is used as a conceptual
structuring tool to conceptualize any processes that exist in reality.

The concept of network is easy to visualize on paper, on a screen or mentally and
as such provides a good support for intuition behind a model. Moreover, as
the Network-Oriented Modeling approach presented here (see Sect. 1.6) also
incorporates a temporal dimension enabling interpretation of connections as
temporal-causal connections, the mental concept of network also provides support
for the intuition behind the dynamics of the modeled processes.

The scientific area of networks has already a longer tradition within different
disciplines of more than 60 years. But it has developed further and within many
other disciplines, such as Biology, Neuroscience, Mathematics, Physics,
Economics, Informatics or Computer Science, Artificial Intelligence, and Web
Science; see, for example Boccalettia et al. (2006), Valente (2010), Giles (2012).
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These developments already show how processes in quite different domains can be
conceptualized as networks. Historically the use of the concept network in different
domains can be traced back roughly to the years 1930-1950, or even earlier, for
studying processes such as:

e brain processes in Neuroscience by neural networks; e.g. McCulloch and Pitts
(1943), Rosenblatt (1958)

e metabolic processes in Cell Biology by metabolic networks; e.g., Ouellet and
Benson (1951), Westerhoff et al. (1984)

e social interactions within Social Science by social networks; e.g., Bott (1957),
Aldous and Straus (1966)

e processes in Human Physiology; e.g., Huber (1941), Wiener and Rosenblueth
(1946)

e processes in engineering in Physics; e.g., Hubbard (1931), Bode (1945)

e processes in engineering in Chemistry; e.g., Treloar (1943), Flory (1944)

Within such literature often graphical representations of networks are used as an
important means of presentation. After getting accustomed to such conceptualiza-
tions as networks of processes that exist in the real world, a belief may occur that
these networks actually exist in reality (as neural networks, or as computer net-
works, or as social networks, for example), and modeling by networks happens
sometimes to be phrased alternatively as modeling networks. However, it still has to
be kept in mind that the concept ‘network’ is a mental concept used as a tool to
conceptualize any type of processes. To make this distinction more clear linguis-
tically, the phrase Network-Oriented Modeling is used as indication for modeling
by networks. Within this book the preferred use of the word ‘network’ is to indicate
a model or conceptualization of some process, not to indicate the process in the real
world itself. For example, social media such as Facebook, Twitter, WhatsApp,
Instagram,... do not form or create social networks in reality, but they create social
interactions in reality that can be described (conceptualized, modeled) by (social)
networks or by network models.

Network-Oriented Modeling offers a conceptual tool to model complex pro-
cesses in a structured, intuitive and easily visualizable manner, but the approach
described here also incorporates the dynamics of the processes in these models.
Using this approach, different parts of a process can be distinguished, but in contrast
to the separation and isolation strategy to address complexity, a network-oriented
approach does not separate or isolate these parts, but emphasizes and explicitly
models the way how they are connected and interact. Moreover, by adding a
temporal dimension to incorporate a dynamic perspective, it is explicitly modeled
how they can have intense and circular causal interaction, and how the timing of the
processes is. As intense interaction in network models as a way of modeling
requires a dynamic, temporal perspective, this will be discussed next.
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1.5 The Dynamic Computational Modeling Perspective

The challenge to cope with a dynamical and cyclic picture of both mental processes
and social interaction processes, imposes certain requirements on a modeling
approach. The modeling approach has to be able to handle time and dynamics well.
For example, in (van Gelder and Port 1995) the symbolic computational perspective
is criticized as being not able to address the time-context of cognitive processes in
an adequate manner. In contrast they propose a perspective in which cognition is
considered as dynamics:

The alternative, then, is the dynamical approach. Its core is the application of the mathe-
matical tools of dynamics to the study of cognition. (...) But the dynamical approach is more
than just powerful tools; like the computational approach it is a worldview. The cognitive
system is not a computer, it is a dynamical system. (...) The cognitive system is not a discrete
sequential manipulation of static representational structures; rather, it is a structure of
mutually and simultaneously influencing change (van Gelder and Port 1995, p. 3).

They compare the dynamical perspective to the symbolic computational per-
spective as described by Newell and Simon’s (1976) Physical Symbol System
Hypothesis:

According to this hypothesis, natural cognitive systems are intelligent by virtue of being
physical symbol systems of the right kind. At this same level of generality, dynamicists can be
seen as embracing the Dynamical Hypothesis: Natural cognitive systems are dynamical
systems, and are best understood from the perspective of dynamics. Like its computational
counterpart, the Dynamical Hypothesis forms a general framework within which detailed
theories of particular aspects of cognition can be constructed (van Gelder and Port 1995, p. 5).

It has taken a number of years before the dynamical perspective was adopted
more substantially in practical cognitive and neuroscientific modeling work; see for
example:

Although the idea of applying dynamical systems theory to the study of neural and cog-
nitive mechanisms has been around for at least two decades (Beer 2000; Kelso 1995;
Thelen and Smith 1994; van Gelder 1998), the dynamical systems approach has only
recently begun to figure prominently in neuroscience (...) (Schurger and Uithol 2015).

The notion of state-determined system, adopted from Ashby (1960) is taken by
van Gelder and Port (1995) as a definition of what a dynamical system is:

A system is state-determined only when its current state always determines a unique future
behaviour. Three features of such systems are worth noting.

First, in such systems, the future behaviour cannot depend in any way on whatever states
the system might have been in before the current state. In other words, past history is
irrelevant (or at least, past history only makes a difference insofar as it has left an effect on
the current state).

Second, the fact that the current state determines future behaviour implies the existence of
some rule of evolution describing the behaviour of the system as a function of its current
state. For systems we wish to understand we always hope that this rule can be specified in
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some reasonable succinct and useful fashion. One source of constant inspiration, of course,
has been Newton’s formulation of the laws governing the solar system.

Third, the fact that future behaviours are uniquely determined means that state space
sequences can never fork (van Gelder and Port 1995), p. 6.

Ashby (1960) emphasizes the importance of the identification of state-determined
systems in a wide variety of scientific domains; for more details on this notion, see
Chap. 2, Sect. 2.9. This perspective on mental systems as state-determined
dynamical systems put forward by Ashby (1960) and van Gelder and Port (1995)
can be viewed as a further extension of the world view for the universe as developed
much earlier, for example, by Descartes. As also discussed in Treur (2007, Sects. 2.1
and 2.2, pp. 58-59), Descartes (1634) introduced a perspective on the world that
sometimes is called the clockwork universe. This perspective claims that with suf-
ficiently precise understanding of the world’s dynamics at some starting time, the
future can be predicted just by applying a set of ‘laws of nature’. He first describes
how at some starting time matter came into existence in a diversity of form, size, and
motion. From that time on, dynamics continues according to these laws of nature.

From the first instant that they are created, He makes some begin to move in one direction
and others in another, some faster and others slower (or indeed, if you wish, not at all);
thereafter, He makes them continue their motion according to the ordinary laws of nature.
For God has so wondrously established these laws that, even if we suppose that He creates
nothing more than what I have said, and even if He does not impose any order or proportion
on it but makes of it the most confused and most disordered chaos that the poets could
describe, the laws are sufficient to make the parts of that chaos untangle themselves and
arrange themselves in such right order that they will have the form of a most perfect world,
in which one will be able to see not only light, but also all the other things, both general and
particular, that appear in this true world (Descartes 1634, Chap. 6: Description of a New
World, and on the Qualities of the Matter of Which it is Composed).

Descartes emphasizes that after such a starting time nothing (even no God)
except the laws of nature determines the world’s dynamics:

Know, then, first that by “nature” I do not here mean some deity or other sort of imaginary
power. Rather, I use that word to signify matter itself, insofar as I consider it taken together
with all the qualities that I have attributed to it, and under the condition that God continues
to preserve it in the same way that He created it. For from that alone (i.e., that He continues
thus to preserve it) it follows of necessity that there may be many changes in its parts that
cannot, it seems to me, be properly attributed to the action of God (because that action does
not change) and hence are to be attributed to nature. The rules according to which these
changes take place I call the “laws of nature” (Descartes 1634, Chap. 7: On the Laws of
Nature of this New World).

This view on the world’s dynamics is often compared to a clockwork. The view
assumes that systematic relationships (laws of nature) are possible between world
states over time, in the sense that (properties of) past world states entail (properties
of) future world states. The clockwork universe view has been developed further by
Newton, Leibniz, Laplace and others. The following quotation taken from Laplace
(1825) sketches how an intellect could be able to determine (by means of ‘a single
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formula’) future world states from a present world state, that by itself is the effect of
past world states:

We may regard the present state of the universe as the effect of its past and the cause of its
future. An intellect which at any given moment knew all of the forces that animate nature and
the mutual positions of the beings that compose it, if this intellect were vast enough to submit
the data to analysis, could condense into a single formula the movement of the greatest
bodies of the universe and that of the lightest atom; for such an intellect nothing could be
uncertain and the future just like the past would be present before its eyes (Laplace 1825).

The worldview of Descartes and others described above in principle focuses on
the physical universe. As such it applies to all physical and also biological pro-
cesses in the universe, for example, those in the brain. The dynamical perspective
on cognition put forward by Ashby (1960) and van Gelder and Port (1995) can be
viewed as an extension of the above worldview from the physical world to the
mental world. As this dynamical worldview already is assumed to apply to the
physical processes in the brain, it is an advantage that also assuming such a
worldview for mental processes will make it easier to relate mental and neural
processes, as discussed in Chap. 2, Sect. 2.3.

1.6 Network-Oriented Modeling Based
on Temporal-Causal Networks

As discussed above, both internal mental processing and social processing due to
social interactions often involve multiple cyclic processes and adaptive elements.
This has implications for the type of modeling approach to be used. Within
Network-Oriented Modeling, the network models considered have to integrate such
cycles, and also allow adaptive processes by which individuals can change their
connections. To model such dynamics, a dynamical modeling perspective is needed
that can handle such combinations of cycles and the adaptation of connections over
time. Therefore, within the Network-Oriented Modeling approach as discussed here,
the dynamic perspective has to be incorporated as well: a temporal dimension is
indispensable. This is what is achieved in the Network-Oriented Modeling approach
based on temporal-causal networks described in Chap. 2; see also Treur (2016).
The Network-Oriented Modeling approach based on temporal-causal networks is
a generic and declarative dynamic Al modeling approach based on networks of
causal relations (e.g., Kuipers and Kassirer 1983, Kuipers 1984, Pearl 2000), that
incorporates a continuous time dimension to model dynamics. As discussed above,
this temporal dimension enables causal reasoning and simulation for cyclic causal
graphs or networks that usually inherently contain cycles, such as networks mod-
eling mental or brain processes, or social interaction processes, and also the timing
of such processes. States in such a network are characterised by the connections
they have to other states, comparable to the way in which in Philosophy of Mind
mental states are characterised by their causal roles, as discussed in Sect. 1.3.
Moreover, adaptive elements can be fully integrated. The modeling approach can
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incorporate ingredients from different modeling approaches, for example, ingredi-
ents that are sometimes used in specific types of (continuous time, recurrent) neural
network models, and ingredients that are sometimes used in probabilistic or pos-
sibilistic modeling. It is more generic than such methods in the sense that a much
wider variety of modeling elements are provided, enabling the modeling of many
types of dynamical systems, as described in (Chap. 2, Sect. 2.9).

As discussed in detail in Chap. 2 and (Treur 2016) temporal-causal network
models can be represented at two levels: by a conceptual representation and by a
numerical representation. These model representations can be used not only to
display interesting graphical network pictures, but also for numerical simulation.
Furthermore, they can be analyzed mathematically and validated by comparing their
simulation results to empirical data. Moreover, they usually include a number of
parameters for domain, person, or social context-specific characteristics. To estimate
values for such parameters, a number of parameter tuning methods are available.

A conceptual representation of a temporal-causal network model in the first
place involves representing in a declarative manner states and connections between
them that represent (causal) impacts of states on each other, as assumed to hold for
the application domain addressed. The states are assumed to have (activation) levels
that vary over time. What else is needed to describe processes in which causal
relations play their role? In reality not all causal relations are equally strong, so
some notion of strength of a connection is needed. Furthermore, when more than
one causal relation affects a state, in which manner do these causal effects combine?
So, some way to aggregate multiple causal impacts on a state is needed. Moreover,
not every state has the same extent of flexibility; some states may be able to change
fast, and other states may be more rigid and may change more slowly. Therefore, a
notion of speed of change of a state is used for timing of processes. These three
notions are covered by elements in the Network-Oriented Modeling approach based
on temporal-causal networks, and are part of a conceptual representation of a
temporal-causal network model:

e Strength of a connection oy y

Each connection from a state X to a state Y has a connection weight value wy y
representing the strength of the connection, often between 0 and 1, but sometimes
also below 0 (negative effect) or above 1.

¢ Combining multiple impacts on a state cy(..)

For each state (a reference to) a combination function cy(..) is chosen to combine
the causal impacts of other states on state Y.

e Speed of change of a state ny

For each state Y a speed factor my is used to represent how fast a state is
changing upon causal impact.

Combination functions in general are similar to the functions used in a static
manner in the (deterministic) Structural Causal Model perspective described, for
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example, in Wright (1921), Pearl (2000), Mooij et al. (2013), but in the
Network-Oriented Modeling approach described here they are used in a dynamic
manner, as will be pointed out below briefly, and in more detail in Chap. 2.

Combination functions can have different forms. How exactly does one impact
on a given state add to another impact on the same state? In other words, what types
of combination functions can be considered? The more general issue of how to
combine multiple impacts or multiple sources of knowledge occurs in various forms
in different areas, such as the areas addressing imperfect reasoning or reasoning
with uncertainty or vagueness. For example, in a probabilistic setting, for modeling
multiple causal impacts on a state often independence of these impacts is assumed,
and a product rule is used for the combined effect; e.g., Dubois and Prade (2002). In
practical applications, this assumption is often questionable or difficult to validate.
In the areas addressing modeling of uncertainty also other combination rules are
used, for example, in possibilistic approaches minimum- or maximum-based
combination rules are used; e.g., Dubois and Prade (2002). In another different area,
addressing modeling based on neural networks yet another way of combining
effects is used often. In that area, for combination of the impacts of multiple
neurons on a given neuron usually a logistic sum function is used: adding the
multiple impacts and then applying a logistic function; e.g., Grossberg (1969),
Hirsch (1989), Hopfield (1982, 1984), Beer (1995).

So, there are many different approaches possible to address the issue of combining
multiple impacts. The applicability of a specific combination rule for this may depend
much on the type of application addressed, and even on the type of states within an
application. Therefore the Network-Oriented Modeling approach based on
temporal-causal networks incorporates for each state, as a kind of parameter, a way to
specify how multiple causal impacts on this state are aggregated. For this aggregation
a number of standard combination functions are made available as options and a
number of desirable properties of such combination functions have been identified
(see Chap. 2, Sects. 2.6 and 2.7), some of which are shown in Table 1.1.

These options cover elements from different existing approaches, varying from
approaches considered for reasoning with uncertainty, probability, possibility or
vagueness, to approaches based on recurrent neural networks; e.g., Dubois et al.

Table 1.1 Overview of some standard combination functions c(Vy, ..., V)

Name Description Formula c(Vy, ..., V) =

ssum,(..) Scaled sum (Vy X - x Vp)/h with L >0

product(..) Product Vi X - x WV

cproduct(..) Complement 1-0-V) x - xA-=V
product

min(..) Minimal value min(Vy, ..., V)

max(..) Maximal value max(Vy, ..., Vi)

slogistic -(..) Simple logistic (1 +e WMt +V-1) with 5,1 > 0
sum

alogistic; (..) | Advanced [(1/(1 + e ~oW+=+Vi=0y — (1/(1 + )] (1 + e °F)
logistic sum with o, T > 0
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(1991), Dubois and Prade (2002), Giangiacomo (2001), Zadeh (1978), Grossberg
(1969), Hirsch (1989), Hopfield (1982, 1984), Beer (1995). In addition, there is still
the option to specify any other (non-standard) combination function, preferably
taking into account the desired properties.

The above three concepts (connection weight, speed factor, combination func-
tion) can be considered as parameters representing characteristics in a network
model. In a non-adaptive network model these parameters are fixed over time. But
to model processes by adaptive networks, not only the state levels, but also these
parameters can change over time. For example, the connection weights can change
over time to model evolving connections in network models.

A conceptual representation of a temporal-causal network model can be trans-
formed in a systematic or even automated manner into a numerical representation of
the model as follows (Treur 2016):

e at each time point ¢ each state Y in the model has a real number value in the
interval [0, 1], denoted by ¥(7)

e ateach time point 7 each state X connected to state ¥ has an impact on Y defined as
impacty ,(f) = oy y X(t) where wy y is the weight of the connection from X to ¥

e The aggregated impact of multiple states X; on Y at ¢ is determined using a
combination function cy..):

aggimpact,(r) = c,(impact x, y(?), ..., impact x, y(?))
= ey, yX1(®), +..y O, yXi(0))

where X; are the states with connections to state Y

e The effect of aggimpacty(7) on Y is exerted over time gradually, depending on
speed factor ny:

Y(t+ Ar) = Y (1) + ny[aggimpact, (r) — Y (¢)]At
or dY(r)/dr = ny[aggimpact, (1) — Y (7)]

e Thus, the following difference and differential equation for Y are obtained:

Y(t+Ar) = Y(1) + nyley(ox, yXi (1), . . ., 0x, y Xk (1)) — Y (2)] At
dY([)/d[ = T]y[CY((J)thXI (t), RN (kavyxk(l‘)) — Y(t)]

For modeling processes as adaptive networks, some of parameters (such as
connection weights) are handled in a similar manner, as if they are states. For more
detailed explanation, see Chap. 2, Sect. 2.10.

Summarizing, as will be discussed in more detail in Chap. 2, the Network-
Oriented Modeling approach based on temporal-causal networks described here
provides a complex systems modeling approach that enables a modeler to design
conceptual model representations in the form of networks described as cyclic
graphs (or connection matrices), which can be systematically transformed into
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executable numerical representations that can be used to perform simulation
experiments. The modeling approach makes it easy to take into account on the one
hand theories and findings from any domain from, for example, biological, psy-
chological, neurological or social sciences, as such theories and findings are often
formulated in terms of causal relations. This applies, among others, to mental
processes based on complex brain processes, which, for example, often involve
dynamics based on interrelating and adaptive cycles, but equally well it applies to
social interaction processes and their adaptive dynamics. This enables to address
complex adaptive phenomena such as the integration of emotions within all kinds
of cognitive processes, of internal simulation and mirroring of mental processes of
others, and dynamic social interaction patterns.

1.7 Scope of Applicability and Achievements

Concerning the scope of applicability, it has been shown (see Chap. 2, Sect. 2.9)
that any smooth continuous state-determined system (any dynamical system
described as a state-determined system or by a set of first order differential equa-
tions) can also be modeled by temporal-causal networks, by choosing suitable
parameters such as connection weights, speed factors and combination functions. In
this sense it is as general as modeling approaches put forward, for example, in
Ashby (1960), Forrester (1973, 1987), Thelen and Smith (1994), Port and van
Gelder (1995), van Gelder and Port (1995), Beer (1995), Kelso (1995), van Gelder
(1998), and approaches such as described, for example in Grossberg (1969),
Hopfield (1982, 1984), Hirsch (1989), Funahashi and Nakamura (1993).

To facilitate applications, dedicated software is available supporting the design
of models in a conceptual manner, automatically transforming them into an exe-
cutable format and performing simulation experiments. A variety of example
models that have been designed illustrates the applicability of the approach in more
detail, for example, as shown in a number of chapters in this book (see also
Chap. 18, Sect. 18.4).

The topics addressed have a number of possible applications. An example of
such an application is to analyse the spread of a healthy or unhealthy lifestyle in
society. Another example is to analyse crowd behaviour in emergency situations.
A wider area of application addresses socio-technical systems that consist of
humans and devices, such as smartphones, and use of social media. For such mixed
groups, in addition to analysis of what patterns may emerge, also for the support
side the design of these devices and media can be an important aim, in order to
create a situation that the right types of patterns emerge. This may concern, for
example, safe evacuation in an emergency situation or strengthening development
of a healthy lifestyle. Other application areas may address, for example, support and
mediation in collective decision making and avoiding or resolving conflicts that
may develop.
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1.8 Overview of the Book

The book is composed of six parts:

I. Network-Oriented Modeling: an Introduction
II. Emotions all the Way
II. Yourself and the Others
IV. Analysis Methods for Temporal-Causal Network Models
V. Philosophical, Societal and Educational Perspectives

For each part the chapters are briefly discussed here.

Part I Network-Oriented Modeling: An Introduction

This part is the introduction to the book, both conceptually and in a more technical
sense. It consists of the current introduction Chap. 1, and a next Chap. 2 in which
the Network-Oriented Modeling approach based on temporal-causal networks is
introduced in detail.

Part II Emotions All the Way

In Part II a number of processes and models are discussed that address individuals
and the way in which emotions are integrated in an interactive manner in practically
all mental processes.

In Chap. 3 it is discussed how within Cognitive, Affective and Social
Neuroscience more and more mechanisms have been found that suggest how
emotions interact in a bidirectional manner with many other mental processes and
behaviour. Based on this, in this chapter an overview of neurologically inspired
temporal-causal network models for the dynamics and interaction for emotions is
discussed. Thus an integrative perspective is obtained that can be used to describe,
for example, how emotions interact with beliefs, experiences, decision making, and
emotions of others, and also how emotions can be regulated. It is pointed out how
integrated temporal-causal network models of such mental processes incorporating
emotions can be obtained.

In Chap. 4 it is discussed how emotions play a role in generating dream episodes
from a perspective of internal simulation. Building blocks for this internal simu-
lation are memory elements in the form of sensory representations and their as-
sociated emotions. In the presented temporal-causal network model, under influence
of associated feeling levels and mutual competition, some sensory representation
states pop up in different dream episodes. As a form of emotion regulation the
activation levels of both the feelings and the sensory representation states are
suppressed by control states. The presented model was evaluated by example
simulation experiments.

In Chap. 5 it is discussed how dreaming is used to learn fear extinction. Here
fear extinction has been found not to involve weakening of fear associations, as was
assumed longer ago, but instead it involves the strengthening of fear suppressing
connections that form a counter balance against the still persisting fear associations.
So, to regulate fear associations neural mechanisms are used that take care of
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strengthening these suppressing connections, as a form of learning of emotion
regulation. The presented temporal-causal network model addresses dreaming as
internal simulation incorporating memory elements in the form of sensory repre-
sentations and their associated fear, as in Chap. 4. But this time it is modeled how
the regulation of fear that takes place during dream episodes, is strengthened. This
adaptation or learning process is modeled as an adaptive temporal-causal network
model based on Hebbian learning. The model was evaluated by a number of
simulation experiments for different scenarios.

Chapter 6 addresses the role of emotions in rational decision making.
Traditionally it has been assumed that emotions can only play a disturbing and
non-rational role in decision making. However, more recently it has been found that
neurological mechanisms involving emotions play an important role in rational
decision making. In this chapter an adaptive temporal-causal network model for
decision making based on predictive loops through feeling states is presented,
where the feeling states function in a process of valuing of decision options.
Hebbian learning is considered for different types of connections in the adaptive
model. Moreover, the adaptive temporal-causal network model is analysed from the
perspective of rationality. To assess the extent of rationality, measures are intro-
duced reflecting what would be rational for a given environment’s characteristics
and behaviour. Simulation results and the extents of rationality of different variants
of the model over time are discussed. It is shown how during the adaptive process
this model for decision making achieves higher levels of rationality.

Part III Yourself and the Others
Part III focuses on persons functioning in a social context. Given that each person
has his or her own beliefs, desires, intentions, emotions and still more mental states,
it might be expected that social coherence is not often achieved. However, the fact
that still often social coherence is observed presents a kind of paradox. This
paradox can only be understood by assuming that some neurological mechanisms
are responsible for this, and by analyzing more in detail how through such
mechanisms influences from the social context affect internal mental processes.
First, in Chap. 7 an overview is presented of a number of recent findings from
Social Neuroscience, that form an explanation of how persons can behave in a
social manner. For example, shared understanding and collective power are social
phenomena that serve as a form of glue between individual persons. They easily
emerge and often involve both cognitive and affective aspects. As the behaviour of
each person is based on complex internal mental processes involving, for example,
own goals, emotions and beliefs, it would be expected that such forms of shared-
ness and collectiveness are very hard to achieve. Apparently, specific neurological
mechanisms are required to tune the individual mental processes to each other in
order to enable the emergence of shared mental states and collective behaviour.
Having knowledge about these mechanisms provides a basis to modeling corre-
sponding mechanisms in a computational setting. From a neurological perspective,
mirror neurons and internal simulation are core concepts to explain the mechanisms
underlying such social phenomena. In this chapter it is discussed how based on
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such neurological concepts computational mechanisms can be identified to obtain
temporal-causal network models for social processes. It is discussed how these
models indeed are an adequate basis to simulate the emergence of shared under-
standing and collective power in groups.

Within a social context the notion of ownership of actions is important. Chapter 8
addresses this notion. It is related to mechanisms underlying self-other distinction,
where a self-ownership state is an indication for the self-relatedness of an action and
an other-ownership state to an action attributed to someone else. The temporal-
causal network model presented in this chapter generates prior and retrospective
ownership states for an action based on principles from recent neurological theories.
A prior self-ownership state is affected by prediction of the effects of a prepared
action as a form of internal simulation, and exerts control by strengthening or
suppressing actual execution of the action. A prior other-ownership state plays a
role in mirroring and analysis of an observed action performed by another person,
without imitating the action. A retrospective self-ownership state depends on
whether the sensed consequences of an executed action co-occur with the predicted
consequences, and is the basis for acknowledging authorship of actions in social
context. It is shown how a number of known phenomena can be obtained as
behaviour by the model. For example, scenarios are shown for vetoing a prepared
action due to unsatisfactory predicted effects, Moreover, it is shown how poor
action effect prediction capabilities can lead to reduced retrospective ownership
states, for example, in persons suffering from schizophrenia. This can explain why
sometimes the own actions are attributed to others or actions of others are attributed
to oneself.

Chapter 9 addresses how in social interaction between two persons usually each
person shows understanding of the other person. This may involve both nonverbal
and verbal elements, such as bodily expressing a similar emotion and verbally
expressing beliefs about the other person. Such social interaction relates to an
underlying neural mechanism based on a mirror neuron system. Differences in
social responses of individuals can often be related to differences in functioning of
certain neurological mechanisms, as can be seen, for example, in persons with a
specific type of Autism Spectrum Disorder (ASD). This chapter presents a
temporal-causal network model which, depending on personal characteristics, is
capable of showing different types of social response patterns based on such
mechanisms, adopted from theories on the role of mirror neuron systems, emotion
integration, emotion regulation, and empathy in ASD. The personal characteristics
may show different variations over time. This chapter also addresses this adaptation
over time. To this end it includes an adaptive temporal-causal network model
capable of learning social responses, based on insights from Social Neuroscience.

Chapter 10 addresses joint decision making. The notion of joint decision making
as considered does not only concern a choice for a common decision option, but
also a good feeling about it, and mutually acknowledged empathic understanding
about it. In this chapter a temporal-causal network model for joint decision making
is presented addressing the role of mutually acknowledged empathic understanding
in the decision making. The model is based on principles from recent neurological
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theories on mirror neurons, internal simulation, and emotion-related valuing.
Emotion-related valuing of decision options and mutual contagion of intentions and
emotions between persons are used as a basis for mutual empathic understanding
and convergence of decisions and their associated emotions.

In Chap. 11 it is discussed how adaptive temporal-causal network models can be
used to model evolving social interactions. This perspective simplifies persons to
just one state and expresses the complexity in the structure of the social interactions,
modeled by a network. The states can represent, for example, a person’s emotion, a
belief, an opinion, or a behaviour. Two types of dynamics are addressed: dynamics
based on a fixed structure of interactions (modeled by a non-adaptive
temporal-causal network model), and dynamics where the social interactions
themselves change over time (modeled by an adaptive temporal-causal network
model). In the case of an adaptive network model, the network connections change,
for example their weights may increase or decrease, or connections are added or
removed. Both types of dynamics can also occur together. Different types of
adaptive social network models are addressed, based on different principles: the
homophily principle assuming that connections strengthen more when the persons
are more similar in their state (the more you are alike, the more you like each other),
and the more becomes more principle assuming that persons that already have more
and stronger connections also attract more and stronger connections. Moreover, it is
discussed how dynamics of social interactions can be modeled when (empirical)
information over time is available about actual interaction between persons (both in
the sense of frequency and of intensity), for example, as visible via social media.
Based on such information connection weights can be modeled in an adaptive
manner: the weights are adapted to the actual interaction.

Part IV Analysis Methods for Temporal-Causal Network Models

Models can be analysed by performing simulation experiments in a systematic
manner. For example, it can be found out that under certain conditions a certain
state always gets a certain activation level. Moreover, during such experiments
values for the parameters of a model can be identified by hand such that for these
parameter values the model shows a certain type of behavior. For more complex
models such processes may be difficult. In this part some techniques are discussed
to achieve this by analysis of the model in different ways.

Chapter 12 addresses the analysis of some types of properties of a temporal-
causal network model in an analytical mathematical manner. Properties addressed
describe whether some values for the variables exist for which no change occurs
(stationary points), whether these variables converge to such a value as a limit value
(attracting equilibria), whether variables will show monotonically increasing or
decreasing values over time (monotonicity), and whether situations occur in which
no convergence takes place but in the end a specific sequence of values is repeated
all the time (limit cycle). It is discussed how such analyses can be used for veri-
fication of the (implemented) model. Any discrepancies found, suggest there is
something wrong in the implementation of the model. In this chapter some methods
to analyse such properties of adaptive temporal-causal network models will be
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described and illustrated for the Hebbian learning model, and for adaptive con-
nection weights in social network models.

Chapter 13 discusses dynamic properties of processes describing patterns that
emerge over time, and how they can be identified and verified in a systematic
manner. A process often generates patterns over time that can be described in a
temporally more global manner, by expressing temporal relations over longer time
periods, in contrast to temporal-causal network model descriptions that specify local
mechanisms over small time durations. Such patterns can be considered as emer-
gent phenomena, and it is often a challenge to analyse whether they occur and if so,
how their occurrence relates to the local descriptions of underlying mechanisms and
their characteristics. Properties describing them have in common that within them
references occur to different time points and order relations between time points
such as ‘before’ and ‘after’. Moreover, quantifiers over time are used such as
expressed by ‘eventually’, ‘always’, ‘during’, ‘for some time point...’, or ‘for all
time points...”. Such dynamic properties can be expressed in informal, semiformal
and formal ways. Expressing them in a formal numerical-logical format makes it
possible to verify whether they hold in some given empirical or simulated scenario
in a systematic or even automated manner. This can be helpful in particular if many
of such checks have to be done, for example by analysing the effects of a systematic
variation of initial values and/or parameters in a simulation experiment.

In Chap. 14 it is discussed how a personalised temporal-causal network model
can be obtained that fits well to specific characteristics of persons, and their con-
nections and further context. A model is a close approximation, but always a form
of abstraction of a real world phenomenon. Its accuracy and correctness mainly
depend on the chosen abstracting assumptions and the values of the parameters in
the model. Depending on the complexity of the model, the number of its parameters
can vary from just a couple to thousands. These parameters usually represent
specific characteristics of the modeled phenomenon, for example, for modeling
human processes person-specific characteristics or social interaction characteristics.
No values for such parameters are given at forehand. Estimation of parameters for a
given model is a nontrivial task. There are many parameter estimation methods
available in the literature. In this chapter a number of these methods are briefly
discussed.

Part V Philosophical, Societal and Educational Perspectives

In Part V some wider perspectives are addressed. It is discussed how the
Network-Oriented Modeling approach relates to historical and philosophical
developments concerning dynamics, how it fits in current trends in societal
development, and how such a modeling perspective can play a crucial role in an
integrative multidisciplinary academic curriculum.

In Chap. 15 it is discussed how dynamics has been a challenging issue in
different disciplines since long ago. This issue has been addressed for different
domains, in Physics but also in Mathematics, Cognitive Science and Philosophy of
Mind. In the development of Physics it has led to notions such as velocity,
momentum, kinetic energy and force that drive motion in mechanics. The issue of
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dynamics is still out there today, for example, in the domain of Cognitive Science
and Philosophy of Mind concerning the physical realism of assumed but not
directly physically observable mental states such as desires and intentions that are
supposed to drive (physically observable) behaviour. Four cases of dynamics within
different traditional disciplines are discussed in this chapter. Similarly, it is shown
how in this way causal graphs and transition systems (often used in Al and
Computer Science) can be interpreted from a perspective of dynamics. The chapter
provides a unified view on the explanation of dynamics across different disciplines.
This view is related to the basic assumptions underlying the Network-Oriented
Modeling approach based on temporal-causal networks.

Chapter 16 outlines the strong societal development to the integration of more
and more smart devices in all aspects of life. Scientific areas addressing this
development have names such as Ambient Intelligence, Ubiquitous Computing,
Pervasive Computing, Human-Aware Computing or Socially Aware Computing.
This development in society often results in integrated complex systems involving
humans and technical equipments, also called socio-technical systems. In this
chapter it is discussed how in such systems often not only sensor data, but also
more and more dynamic computational models based on knowledge from the
human-directed sciences such as health sciences, neurosciences, and psychological
and social sciences are incorporated. These models enable the environment to
perform in-depth analyses of the functioning of observed humans, and to come up
with well-informed interventions or actions. It is discussed which ingredients are
important to realize this view in a principled manner, among which dynamical
models such as temporal-causal network models, and how frameworks can be
developed to combine these ingredients to obtain the intended type of systems in
practice.

Chapter 17 discusses the design of a curriculum with main focus on human-
oriented scientific knowledge and how this can be exploited to develop support for
humans by means of advanced smart devices in the daily environment. The aim for
this curriculum was to offer a study path for those students with exact talents but
with an interest mainly in human processes and society. The curriculum was
designed from a problem-oriented perspective in relation to societal problem areas.
From human-oriented disciplines scientific knowledge for human processes in such
problem areas was obtained. Computational modeling for such human processes
plays a central role as an integrating factor in the curriculum. Elements from
Ambient Intelligence, Artificial Intelligence, and Informatics are included for
design of smart support systems.

Part VI Network-Oriented Modeling: Discussion

Chapter 18 is a discussion in which some of the main issues addressed in the book
are briefly reviewed. In particular, the Network-Oriented Modeling approach based
on adaptive temporal-causal networks is discussed and how generic and applicable
it is as a modeling approach and as a computational paradigm.
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Chapter 2
A Temporal-Causal Network Modeling
Approach

With Biological, Neurological and Social
Processes as Inspiration

Abstract This chapter introduces the Network-Oriented Modeling approach pre-
sented in this book. It enables to design complex models in the form of
temporal-causal networks, that on the one hand can be described by high level
conceptual representations and on the other hand by formal numerical representa-
tions of the model. Both representations can easily be translated into each other in a
systematic manner. Dedicated software has been developed to support the design of
models in a conceptual manner, and to automatically transform them into a
numerical and executable format and performing simulation experiments. The
modeling format used makes it easy to take into account complex dynamics based
on interrelating causal cycles as described by theories and findings about brain
processes known from Cognitive, Affective and Social Neuroscience, and complex
dynamics based on social interactions. In this chapter also the scope of applicability
is discussed in general terms; it is shown that any smooth dynamical system can be
modeled by a temporal-causal network. A variety of example models in subsequent
chapters illustrates the applicability of the approach in detail.

2.1 Introduction

In this chapter the details of the dynamic Network-Oriented Modeling approach
used in this book are discussed. The chapter presents a specific complex systems
modeling method which is oriented on networks and is in line with the dynamical
systems perspective advocated, for example, by Ashby (1960) and van Gelder and
Port (1995). It uses modeling through dynamic networks of temporal-causal rela-
tions as a vehicle. This was inspired by the analysis of adaptive causal relations in
networks in different physical, biological, neurological, mental and social appli-
cation domains, among which metabolic networks used as a conceptual structure to
model biochemical reactions in cell biochemistry (e.g., Jonker et al. 2002a, b,
2008), networks of mental states used as conceptual structures to model mental
processes as considered within Cognitive and Affective Neuroscience and
Philosophy of Mind (e.g., Kim 1996), and social networks used as a conceptual
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structure to model social interaction; e.g., (Bosse et al. 2015; Sharpanskykh and
Treur 2014). The choice for (adaptive) networks of temporal-causal relations pro-
vides a modeling approach that can be considered a generic Network-Oriented
Modeling approach for dynamics in adaptive complex processes, suitable to obtain
a variety of network models: network models for mental processes, biological
processes, social processes, and for many other types of processes. The
Network-Oriented Modeling approach based on temporal-causal networks has been
used in a variety of applications in different domains, and has proven is usefulness
(e.g., see the Discussion in Sect. 2.11 of this chapter, and Chaps. 3—11, and the
discussion Chap. 18). The current chapter gives a detailed presentation of the
modeling approach.

Causal modeling, causal reasoning and causal simulation have a long tradition,
in particular, in Artificial Intelligence; e.g., (Kuipers and Kassirer 1983; Kuipers
1984; Pearl 2000). One of the challenges is that causal modeling involving cyclic
paths in causal graphs poses difficulties; therefore many approaches to causal
modeling limit themselves to Directed Acyclic Graphs (DAG’s). More in general,
to avoid temporal complexity, dynamics is often not addressed in approaches based
on causal networks, and the difficulty to allow cyclic paths in a causal network is
one consequence of this form of abstraction. Another consequence of abstracting
from dynamics is that distinctions in timing of causal effects (i.e., how fast causal
effects actually are effectuated) cannot be made, whereas sometimes such differ-
ences in timing are crucial for the processes modeled by a causal network.

Another nontrivial issue in causal modeling is how to combine multiple causal
impacts on one state. Apparently, different approaches are possible to address the
issue of combining multiple causal impacts (see also Chap. 1, Sect. 1.6). As the
applicability of a specific combination rule may depend much on the type of
application addressed, and on the type of states within an application, the
Network-Oriented Modeling approach based on temporal-causal networks incor-
porates for each state as a parameter a combination function specifying how mul-
tiple causal impacts on this state are aggregated. A number of standard combination
functions are available as options and a number of desirable properties of such
combination functions have been identified (see Sects. 2.6 and 2.7 below, respec-
tively). These options cover elements from different existing approaches, as men-
tioned in Chap. 1, Sect. 1.6, varying from approaches considered for reasoning with
uncertainty, probability, possibility or vagueness, to approaches based on recurrent
neural networks; (e.g., Dubois et al. 1991; Dubois and Prade 2002; Giangiacomo
2001; Zadeh 1978; Hirsch 1989; Hopfield 1982, 1984; Beer 1995). Alternatively,
there is still the option to specify any other (non-standard) combination function,
preferably taking into account the properties formulated in Sect. 2.7.

The Network-Oriented Modeling approach based on temporal-causal networks
described here can be viewed as part of the tradition of causal modeling, but it
incorporates the dynamics. This dynamic perspective is based on a continuous time
dimension, represented by real numbers. The temporal dimension enables modeling
by cyclic causal networks as well, and also timing of causal effects can be modeled
in detail. Due to this, causal reasoning and simulation is possible for networks that
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inherently contain cycles, such as networks modeling mental or brain states, or
networks describing social interaction.

The considered Network-Oriented Modeling approach based on temporal-causal
networks has a declarative nature, as, for example, also seen for other approaches
developed within Artificial Intelligence, such as knowledge modeling, logical
modeling, causal reasoning, model-based diagnosis, or agent modeling. This means
that a model description describes (assumed) relations between states (over time)
within the domain addressed, and the computational methods for processing or
analysis of such relations are separated from the model description itself. Using
temporal-causal networks it is relatively easy to design a model at a conceptual,
graphical level and to relate the model to scientific literature from a wide variety of
disciplines in which such causal relations are also used as a main vehicle to express
knowledge. As a particular case, in this way models of mental processes can be
related to neuroscientific literature (e.g., from Cognitive Neuroscience, Affective
Neuroscience or Social Neuroscience) in which networks are considered that model
connections between neurons as a basis for causal relations between the activations
of these neurons and the entailed mental states. However, the Network-Oriented
Modeling approach based on temporal-causal networks discussed in more detail in
this chapter, is much more general and in principle applies to all domains, as in all
scientific domains causal relations are commonly used as a way to describe
processes.

As discussed above, for one of the types of aggregation of multiple causal
impacts, the developed Network-Oriented Modeling approach has similarities to
modeling approaches based on neural networks as, for example, described in Hirsch
(1989), Hopfield (1982, 1984); Beer (1995). More specifically, the modeling
approach adopted here subsumes modeling based on continuous-time recurrent
neural networks, an approach advocated by Beer (1995), and inspired, for example,
by earlier work in Grossberg (1969), Hopfield (1982, 1984), Funahashi and
Nakamura (1993). In Beer (1995) it is claimed that continuous-time recurrent neural
networks are an obvious choice for modeling because

(1) They are the simplest nonlinear, continuous dynamical neural network model

(2) They are universal dynamics approximators in the sense that, for any finite
interval of time, they can approximate the trajectories of any smooth
dynamical system on a compact subset of IR" arbitrarily well (Funahashi and
Nakamura 1993)

(3) They have a plausible neurobiological interpretation

The considered Network-Oriented Modeling approach subsumes the approach
advocated by Beer (1995), and the above three advantages also apply to this
modeling approach, but in a generalized form:

(1) Temporal-causal network models are simple dynamical network models
(2) They are universal dynamics modelers in the sense that, any smooth
dynamical system (which by definition is a state-determined system) can be
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modeled as a temporal-causal network model (see Sect. 2.9; see also item 6. in
the list of desiderata below)

(3) They have a plausible interpretation in relation to scientific knowledge (from

any domain) commonly described by causal relations

The Network-Oriented Modeling approach was developed with a number of

more specific desiderata in mind. In this chapter these desiderata are discussed in
different (sub)sections. A brief overview of them is:

1.

Modeling dynamics of complex cyclic patterns in real continuous time

The approach models dynamics of simultaneous processes and their often cir-
cular or cyclic patterns according to continuous time, where points and intervals
at the time axis are represented by real numbers that correspond to real time
points and real time durations.

. Models at a conceptual level with relations to physical and biological

mechanisms

The models are described at a high conceptual (cognitive, affective, social)
modeling level, but can be related in a transparent manner fo physical and
biological mechanisms underlying the modeled processes, from biologically
oriented disciplines, such as (Cognitive, Affective and Social) Neurosciences.

. Networks of temporal-causal relations as central element

By using networks of temporal-causal relations as a central modeling element it
is facilitated to make use of the large amount of scientific literature in a wide
variety of disciplines with knowledge explaining complex processes in terms of
causal relations between different states.

Design of a conceptual representation as a basis for systematic generation of a
detailed numerical representation of a dynamical network model

Design of a network model can mainly be done at a conceptual level, for
example, using a graphical representation, and values for a number of pa-
rameters and combination functions. On the basis of the conceptual represen-
tation of the model a numerical representation can be generated in a systematic
manner, or even automatically, and used for simulation experiments and further
analysis.

. Applicability of multiple computational methods on a given model

representation

The model representations are declarative and have no built in computational
methods with them. There is a free choice to apply any computational method
on given model descriptions. Such computational methods applied to the model
can address different types of tasks such as simulation, or analysis, for example,
in the context of verification or validation, or identification of personal, social or
other contextual characteristics in the context of empirical information, or
analysis or diagnostics of a process, or planning of actions or interventions as
part of some application.
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6. Applicability in a wide variety of domains

The scope of applicability of the Network-Oriented Modeling approach covers
mental processes (modeled by temporal-causal networks of mental states), social
interaction processes (modeled by temporal-causal social networks), and more.
In fact every scientific area in which causal relations are used to describe the-
ories, hypotheses and findings falls within the scope of applicability. This covers
practically all scientific domains, as causal explanation is used as a main vehicle
almost everywhere in science.

Part of these desiderata have been discussed in Chap. 1, in particular 1.; others
will be discussed in more detail in subsequent sections. First, in Sect. 2.2 an
introduction of the use of temporal-causal networks is presented. Next, in Sect. 2.3
it will be discussed how findings on neural mechanisms from biologically oriented
disciplines such as Cognitive, Affective and Social Neuroscience can be used as a
basis and inspiration to model mental and social processes by temporal-causal
networks. In Sect. 2.4 the temporal-causal network format used as a basis for
dynamical system models is discussed in more detail. Elements used to describe a
design of a conceptual representation of a model in the form of such a network are
states, weighted causal connections between states, update speed factors, and
combination functions to aggregate multiple causal impacts.

In Sect. 2.5 it is shown how on the basis of a declarative conceptual description
of a temporal-causal network model, in a systematic manner a detailed declarative
numerical representation of this model can be generated which can be used for
simulation and further analysis. Such a systematic transformation can be automated
by software that has been developed. Section 2.6 discusses a number of standard
combination functions that can be used, and in Sect. 2.7 a number of properties of
these combination functions are discussed. In Sect. 2.8 it is discussed how to given
conceptual or numerical representations different computational methods can be
applied, such as network analysis methods, forward or backward simulation
methods, model verification, or analysis in the context of empirical data.

In Sect. 2.9 the wide scope of applicability of the Network-Oriented Modeling
approach based on temporal-causal networks is discussed. It is shown in some
detail how this Network-Oriented Modeling approach enables to model any con-
tinuous dynamical system (defined as state-determined system). More specifically,
it is shown how any continuous, smooth state-determined system can be modeled
according to the Network-Oriented Modeling approach using suitable
temporal-causal relations and combination functions to aggregate causal impacts
from multiple states on a given state. Section 2.10 shows how adaptive processes
can be modeled by an adaptive temporal-causal network model. Finally, Sect. 2.11
is a discussion.


http://dx.doi.org/10.1007/978-3-319-45213-5_1

40 2 A Temporal-Causal Network Modeling Approach

2.2 Modeling Complex Processes by Temporal-Causal
Networks

As discussed in Chap. 1, in the domains of Neuroscience, Cognitive Science and
Philosophy of Mind the issue of cyclic causal connections between mental states
has been recognized. The Network-Oriented Modeling method presented in this
book can be used to model the dynamics of cognitive, affective and social inter-
action processes in an integrative manner by temporal-causal networks. This goes
beyond modeling the internal mental processes of individuals; it also covers how
processes emerge from individuals interacting with each other. Overall, these
processes involve two main aspects:

e a social network structure describing how persons interact with each other
e network structures describing specific individual mental processes and how they
generate their behaviour and social interaction

For the area of social processes inspiration can be obtained from the social
network literature within the Social Sciences. A social network model (or short:
social network) is a model for social interaction and is often depicted by the
connections between persons, as shown in Fig. 2.1, which depicts a graph structure
of mutual connections between boxes representing persons. Different types of
network models have been distinguished, for example based on fully connected
networks, random networks, small word networks and scale-free networks (see also
Chap. 11). Many examples of social interaction processes are found in society, that
can be described by social networks, and are supported by social media such as
Facebook, Whatsapp and Twitter. Within such a social context dynamics are
addressed both for mutual influences between states of the different persons
involved (social contagion), and for the connections between them that may
become stronger or weaker over time, or disappear or appear (modeled by adaptive
networks); e.g., (Sharpanskykh and Treur 2014; see also Chap. 11).

Fig. 2.1 Modeling social
interaction processes by a
graphical conceptual network
representation
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The Network-Oriented Modeling approach presented in this book covers such
phenomena: a number of network models for these social interaction phenomena
will be addressed and analysed, starting in the current chapter in Sect. 2.5.3 and
extended in Chaps. 7, 11 and 12. Within a network model for social interaction,
social contagion cycles both for cognitive and affective states can play an important
role. Such cycles form a basic mechanism that in combination with appropriate
internal mental processes enables groups of individuals to develop shared (and
empathic) understanding and to make solid joint decisions (see also Chaps. 7
and 10).

For the aspect concerning individual behaviour, internal cognitive and affective
processes within each person are addressed. Biological mechanisms discovered in
the new and strongly developing disciplines Cognitive, Affective and Social
Neuroscience are exploited to obtain scientifically justifiable network models. In
this case the internal mechanisms can be described by network models of internal
states that causally affect each other (see the network-within-network structure in
Fig. 2.2). Note that again network structures are used as a modeling concept, as was
the case for social interactions, but in this case they describe interacting mental
states.

As discussed in Chap. 1 in more detail, traditionally linear patterns of internal
processing are assumed from sensing via sensory processing and preparation to
action. However, findings from the neuroscience areas strongly suggest that often
parts in the brain are connected by cyclic connections. Such connections are
assumed to play an important and regulatory role in many of the brain’s processes;
e.g., (Bell 1999; Potter 2007). The traditional picture has to be reconsidered, as due

Fig. 2.2 Graphical conceptual network representation of internal processes and social interaction
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to mutual, cyclic (e.g., predictive) connections between preparation and sensory
states, the processing is often intertwined. Also emotions and feelings are consid-
ered to be part of a number of interrelated regulatory cycles, for example,
cognitive-affective cycles and emotion regulation cycles. Based on these cycles
emotional states emerge over time, and in the meantime affect many other human
states and processes.

In the type of network models considered, affective and cognitive processes can
be fully integrated in a bidirectional manner: cognitive states lead to associated
emotions, and emotions affect cognitive states; e.g., (Scherer 2009). Moreover, for
predictive capabilities a core mechanism for internal simulation can be used.
Internal simulation is internal processing copying an external process, for example
another person’s mental process. For social functioning this mechanism for internal
simulation can be used in combination with another core mechanism: mirror
neuron systems. Mirror neurons are certain neurons that are activated either for
preparation of an action or due to observation of another person performing a
corresponding action. These two core mechanisms are the internal basis for the
emergence of shared understanding and collective power for a group of persons,
based on the social interactions they have. The own individual internal processes
are integrated with these mirroring processes (for more details, see Chap. 7).

From Neuroscience it is known that connections within the brain are often
adaptive in that their strengths can change over time: plasticity. This is a basis for
learning; one type of learning that is considered is Hebbian learning; e.g., (Hebb
1949; Gerstner and Kistler 2002). This happens when two connected neurons are
activated at the same time: such activations lead to strengthening of the connection
between them: ‘neurons that fire together, wire together’. Such a Hebbian learning
principle makes that the states of nodes (within a person) affect the strengths of
connections connecting them. This can be applied to learn associations between
stimuli and responses, but also, for example, to learn associations of emotions to
stimuli or other mental states. Also social interactions are often adaptive. Their
structure changes over time, modeled by an adaptive network. This can occur in the
form of addition and removal of connections, but also in the form of changing the
strengths of connections. For example, the homophily principle expresses that
persons that are similar in their states will strengthen their connection; see also
Chap. 11, or (Sharpanskykh and Treur 2014). Examples of such similarities are
having similar beliefs, appreciating the same types of music or movies, or enjoying
the same types of activities. Again this makes that the states of nodes (this time
within a social context) affect the strengths of the connections connecting them, as
in the case of Hebbian learning. Such adaptation principles both for mental states
within persons and for interaction between persons within a social context are also
covered by the Network-Oriented Modeling approach based on temporal-causal
networks presented in this book.
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2.3 Exploiting Knowledge About Physical and Biological
Mechanisms in Modeling

To design justifiable models with a solid grounding in reality, a clear connection to
mechanisms in the physical and biological world is important. Knowledge about
such mechanisms is available in various disciplines each addressing certain aspects
of reality. However, usually trying to copy such mechanisms directly in a model
may easily lead to a model with very high complexity; such a model may lack a
desirable extent of transparency. For example, it may become a very complex
model covering all neurons, connections and other details of the brain, which is
hard to manage. In different scientific disciplines approaches have been developed
to handle such complexity by designing higher level models. Sometimes such
higher level models still relate well to mechanisms from physical or biological
reality although they apply some form of abstraction.

But sometimes higher level models may also relate not so well to such mech-
anisms, and get a status of being isolated or detached from physical or biological
reality. In the latter cases the only relation to reality may be a validation in the form
of a comparison of output of the model to data from reality. The internal func-
tioning of such a more detached higher level model may not relate well to mech-
anisms in reality, and in a sense could be considered as taking place in a black box.
The validation provides only a weak justification of such models. For a more solid
scientific justification of a higher level model it is important that the internal
functioning of the model also relates to scientific knowledge on mechanisms in
physical or biological reality. Below this is discussed for two specific scientific
domains.

First, in Sect. 2.3.1 the domain of computer science is addressed, where the
underlying mechanisms in the physical world concern the functioning of computer
hardware. It is discussed how very complex applications concerning processes on a
computer can become manageable by describing higher level models of these
processes, which still have clear and well-defined relations with the physical
mechanisms. Next, in Sect. 2.3.2 the domain of cognitive modeling is addressed. It
is discussed how knowledge about neural mechanisms can be used in modeling to
obtain models that on the one hand relate in a transparent manner to such mech-
anisms, but on the other hand are of a higher level of abstraction so that their
complexity is manageable.

2.3.1 Addressing Complexity by Higher Level Models Based
on Knowledge from Computer Science

The historical development within Computer Science of languages to describe
dynamics of processes can be sketched as follows (e.g., Tanenbaum 1976; Knuth
1981; Booch 1991; Kotonya and Sommerville 1998); this has been adopted from
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(Jonker et al. 2002). In the early days of Computer Science, languages were
developed that describe the dynamics of processes by specifying step by step the
(physical) transitions within the physical device called computer. Although for
simple processes this may suffice, with a broadening of the scope of applications,
these step-by-step descriptions became more and more complex and lacked trans-
parency. Therefore higher level languages that abstract from some of the details of
these steps were developed. In the higher level languages a description can be
structured in terms of increasingly abstract functional units that cover larger parts of
the processes. The result is an increase in the degree of complexity of the phe-
nomena for which transparent descriptions are feasible. This is a way to handle
complexity in Computer Science.

Each description in one of the high level languages can be related to (and
automatically translated into) lower level descriptions, and ultimately into physical
processes that also can be physically executed within a computer. Translation is
automated in a generic manner and hidden from the designers who use the higher
level languages. In order to perform physical executions in the computer, higher
level descriptions are reduced to lower level ones. The benefit for modelers or
designers is that by working at the more abstract level of the higher level language,
they can keep complexity within the scope of human capabilities, whereas if they
would use the lower level descriptions, the task would become too complex and
unmanageable.

The Network-Oriented Modeling approach discussed in this chapter is actually
also an example of this, as will be shown in subsequent sections. Models can be
described in high-level conceptual representations (see Sect. 2.4), which can be
automatically transformed into numerical representations (see Sect. 2.5), which in
turn can be easily used to obtain computational implementations for simulation in a
high level language such as Java, or Matlab, or Excel, which provides an imple-
mentation representation which in turn is automatically translated into still lower
computer languages until finally physical processes in the computer are performed.

2.3.2 Addressing Complexity by Higher Level Models Based
on Knowledge from Neuroscience

Modeling causal relations discussed in neuroscientific literature in a cognitive/
affective mental level model does not take specific neurons into consideration but
uses more abstract mental states. This abstraction step is a way to make use at the
higher modeling level of results from the large and more and more growing amount
of neurological knowledge. This method can be considered as lifting neurological
knowledge to a higher level of description. In a more detailed manner, in Bickle
(1998), pp. 205-208, such a perspective is discussed; for example:
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... we can expect that injection of some neurobiological details back into folk psychology
would fruitfully enrich the latter, and thus allow development of a more fine-grained
folk-psychological account that better matches the detailed functional profiles that neuro-
biology assigns to its representational states (Bickle 1998, pp. 207-208).

Here Bickle suggests that by relating a (folk) psychological to a neurobiological
account, the former can be enriched based on the more detailed description pro-
vided by the latter. A similar perspective is advocated by van Gelder and Port
(1995). They indicate three main differences between models at the two levels of
description: single neuron versus aggregates of neurons, high dimensional versus
low dimensional, and short versus long time duration; see:

What is involved in studying processes at a higher level? This simple phrase covers a
number of different shifts in focus. Most obviously, dynamical cognitive scientists are
attempting to describe systems and behaviors that are aggregates of vast numbers of
systems and behaviors as described at the neural level. Whereas the neuroscientist may be
attempting to describe the dynamics of a single neuron, the dynamicist is interested in the
dynamics of whole subsystems of the nervous system, comprised of millions, perhaps
billions of neurons. Second, the dynamicist obviously does not study this aggregate system
by means of a mathematical model with billions of dimensions. Rather, the aim is to
provide a low-dimensional model that provides a scientifically tractable description of the
same qualitative dynamics as is exhibited by the high-dimensional system. Thus, studying
systems at a higher level corresponds to studying them in terms of lower-dimensional
mathematical models. Third, dynamical cognitive scientists often attempt to describe the
neural processes at a larger time scale (see Multiple Time Scales, above). The cognitive
time scale is typically assumed to lie between roughly a fifth of a second (the duration of an
eyeblink) on up to hours and years. It happens to be approximately the range of time scales
over which people have awareness of some of their own states and about which they can
talk in natural languages. Neuroscientists, by contrast, typically study processes that occur
on a scale of fractions of a second (van Gelder and Port 1995, p. 35).

These differences distinguishing lower level neurological models and dynamical
models at the higher cognitive/affective level support the view that the latter type of
models have advantages over the former in the sense of being easier to handle. At
the same time, knowledge about the underlying neural mechanisms often provides
crucial input to build realistic and scientifically justifiable models.

2.4 Conceptual Representation of a Temporal-Causal
Network Model

To address modeling of the type of cyclic processes as discussed above and in
Chap. 1, in this book a dynamical Network-Oriented Modeling perspective is
adopted. This modeling perspective covers network models described by a con-
ceptual representation of a network of temporal-causal relations in which cycles are
allowed, and network models described by a numerical representation as often used
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in the (numerical) dynamical systems perspective described, for example, in Ashby
(1960), Port and van Gelder (1995). These two representations are considered here
as two different representations of the same underlying temporal-causal network
model. In Sect. 2.5 it is shown how from such conceptual network representation in
a systematic manner a corresponding numerical representation for this
temporal-causal network model can be obtained.

A description of a temporal-causal network model by a conceptual representa-
tion in the first place involves representing in a declarative manner states and
connections between them that represent causal relations between states, as
assumed to hold for the application domain addressed. What else is needed to
describe processes in which such causal relations play their role? In reality not all
causal relations are equally strong, so some notion of strength of a causal con-
nection is needed. Furthermore, when more than one causal relation affects a state,
in which manner do these causal effects combine? Some way to aggregate multiple
causal impacts on a state is needed. Moreover, not every state has the same extent
of flexibility; some states may be able to change fast, and other states may be more
rigid and may change more slowly. Therefore, a notion of speed of change of a state
is used. These three notions are covered by main elements in the Network-Oriented
Modeling approach based on temporal-causal networks discussed here:

o Strength of a causal relation
Each connection has a weight value representing the strength of the causal
relation, often between O and 1, but sometimes also below 0 (negative effect) or
above 1.

e Combining multiple causal impacts on a state
For each state (a reference to) a combination function is chosen to combine the
causal impacts of other states on this state.

e Speed of change of a state
For each state a speed factor is used to represent how fast a state is changing
upon causal impact.

These notions will be discussed in a conceptual manner in Sect. 2.4.1 and illus-
trated in Sect. 2.4.2.

When any type of function can be used for a combination function, the modeling
format is very general and, for example, able to describe any continuous, smooth
state-determined system and any set of first-order differential equations, as will be
discussed in Sect. 2.9. However, it can also be convenient to make use of a standard
type of combination function, so that for a given model it does not need to be
specified for each state separately. Specializing the format by committing to a
chosen standard type of combination function may make the format less general,
but has been shown to still be useful for many purposes. An overview of more often
used examples of such standard combination functions can be found in Sect. 2.6.
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2.4.1 Conceptual Representations of a Temporal-Causal
Network Model

The following standard conceptual representation will be used to describe the
temporal-causal network models in this book. The representation has a declarative
nature and can be displayed as a graphical representation similar to what is shown
in Figs. 2.1, 2.2 and 2.3, or as a matrix representation, as shown, for example, in
Table 2.1. A generic description in a graphical representation is shown in Fig. 2.3
and in a matrix representation in Table 2.1; see also Fig. 2.4 for a graphical rep-
resentation of a specific instance, and Table 2.2 for a matrix representation of this
instance. The description or specification of such a conceptual representation of a
temporal-causal network model consists of the following elements:
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Fig. 2.3 Generic conceptual representation of a temporal-causal network model: with abstract
names for states X and Y, connection weights wy y, speed factors 1y, and combination functions
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Table 2.1 Matrix representation of the generic graphical conceptual model representation shown
in Fig. 2.3
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conceptual representations

matrix representation _— graphical representation
of a model of a model

Fig. 2.4 Conceptual representations of a model: matrix representation and graphical represen-
tation of a model and systematic mutual transformations into each other

Table 2.2 Matrix representation of the specific model shown in a graphical conceptual
representation in Fig. 2.4; this matrix representation can be obtained by instantiation of the
generic matrix representation of Table 2.1

to
fom | P | Q R S T U A%

P 0.5

Q 0.3
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T 0.7 1.0
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1. A network structure with names for states Y and directed connections between
nodes X and Y.
This is the basic conceptual network structure of the model. The nodes indicate
states and the connections indicate causal relations between them.

2. For each of the connections from any node X to any node Y a nonzero weight
value oy y
Such a weight value expresses the strength of the influence of state X on state
Y. Also connections from a state to itself are allowed; these can be used to model
a form of persistence, for example.

3. For each of the nodes Y a speed factor ny.
This expresses how fast this state ¥ will change (update speed).

4. For each of the nodes Y a reference to (which can be given as a name of it) a
combination function cy(.,..,.).
This function indicates how the multiple impacts from connected states X on
state ¥ are combined into one single impact on state Y. This can be specified, for
example, by referring to a sum or scaled sum combination function, a logistic
sum combination function, any other standard combination function, or to an
own-defined combination function; see Sects. 2.6 and 2.7 for more details of a
number of standard combination functions.

In a graphical representation the states and connections are depicted as nodes
and arrows (see Figs. 2.3 and 2.4). In a matrix representation the states are at two
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axes of a matrix in which each cell can be used to indicate a connection and its
weight: the vertical axis indicating the rows is for the ‘from’ states and the hori-
zontal axis indicating the columns is for the ‘to’ states (see Tables 2.1 and 2.2). In a
graphical representation the value for the connection weight can be indicated next
to the arrow, as shown in Figs. 2.3 and 2.4. However, it is also possible to put a
name of the connection or of the connection weight next to the arrow and specify
separately what the weight value is for this name. In the matrix representation these
elements are written in the cell corresponding to the pair of states involved in the
connection. In a graphical representation the speed factors can be written in the
pictures close to the states to which they relate. In a matrix representation under the
square matrix area for the connections there are two additional rows: one row shows
in each column the speed factor ny for the state Y indicated for that column, and
similarly there is one row for the combination functions cy(...). More rows can be
added for the parameters of such combination functions.

The graph representation depicted in Fig. 2.3 can be transformed into a matrix
representation as shown in Table 2.1. Here, first there is a (light blue) square area in
which for each pair of states X, Y the connection strength my y is indicated in the cell
of the row indicated by X and the column indicated by Y.

This matrix represents the same information of a temporal-causal network model
as the graphical representation does. Conversely, if a matrix representation of a
model is given, it is not difficult to generate an equivalent graphical representation
of the same model. The matrix representation and the graphical representation of a
temporal-causal network model are equivalent in this sense, and they can be
mutually transformed into each other in a systematic manner. In Fig. 2.4 this is
summarized. In Sect. 2.5 this picture will be extended by adding a level of
numerical representations of the same model and systematic transformations to and
from them (see Fig. 2.13).

2.4.2 More Specific Examples of Conceptual
Representations of Temporal-Causal Network Models

In this section two more specific examples will be discussed to illustrate the type of
conceptual representations used. In this context also the practical issue is discussed
of how to name the different elements in a model.

An instance of the graphical conceptual representation depicted in Fig. 2.3 is
shown in Fig. 2.5. This is an instantiation of the generic structure shown in Fig. 2.3,
obtained by specifying values for connection weights and speed factors, and ref-
erences to specific combination functions. The combination functions chosen here
are simple standard combination functions (see also Sect. 2.6): the identity function
id(.) defined by id(V) = V and the sum function sum(.,.) defined by sum(V;,
V,) = Vi + V5. In Table 2.2 the instantiated conceptual matrix representation of the
model is shown, as an instance of the generic matrix representation of Table 2.1;
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Fig. 2.5 A specific instance of a conceptual representation of a temporal-causal network model:
with for states X and Y specific instances for connection weights my y, speed factors 1y, and specific
references to combination functions cy(...)

note that again the graphical representation and the matrix representation contain
the same information.

The states in the above example were not given any meaning. In Fig. 2.6 a more
meaningful specific example of a temporal-causal network model is shown. Here
some stimulus s is sensed and leads to a sensory representation of s. An example of
such a situation is sensing a place to buy icecream (stimulus s); here the sensor state
refers to the state of the eyes receiving an image of the place for icecream. The
sensory representation in the brain for s formed on the basis of this sensor state in
turn affects a preparation state for an action a: the action to go there to get the
icecream. This impact leads to a partial activation of this preparation state (with not
very high activation level). In turn this preparation state for action a affects the
sensory representation of predicted effect e of action a, which is assumed positive:
the predicted satisfaction of having the icecream. This state in turn positively affects
the preparation state for a, due to which it gets a high activation level: the loop
amplifies the activation of the preparation. The high preparation level for action
a makes that the execution state for a gets a high activation level, which represents
the execution of the action a: actually go to get the icecream.

Note that in Fig. 2.6 the states have no convenient names: they are more like
short descriptions and a bit too long to be used as convenient names. To obtain
more practical names, first some options for naming are discussed.

world state for sensor state for sensory representation preparation state execution state
stimulus s stimulus s state for stimulus s for action a for action a

O »( ) »() »( ) ;O
» >/ -
sensory representation Q/

of predicted effect e

Fig. 2.6 A more specific example of a temporal-causal network model described in a conceptual
graphical representation
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Fig. 2.7 Different groups of states for the example of Fig. 2.6

Naming options: Referring to states

For naming of the states there are different possibilities. How the model works does
not depend on the names of the states, so any names can be chosen. However, for
more complex models with a larger number of states it is advisable to take some
care in giving meaningful names to the states, otherwise the model can easily
become difficult to understand for humans. These naming options can be found in
the literature:

e Every state a specific state name
For example, P, Q, R, S, T or v, w, X, y, z, or any five self-chosen meaningful
words

e Uniform numbered state names
For example, Sy, S,, S3, S4, Ss or Yy, Yo, Y3, Y4, Y5
In some types of literature this type of naming is often chosen. For smaller
numbers of states this may work well, but for larger numbers of states this may
be not very transparent. For general or theoretical explorations where just any
arbitrary model is considered, such a uniform numbered naming format is often
used (and actually very useful), where also the number n of states is arbitrary;
for example, Yy, ..., Y,.

e State names structured according to different groups of states (see Fig. 2.7)
For example, the following five groups of states are often used in the examples.

Group description group Group name State names per group
World states ws WS,

sensor states ss S8

Sensory representation states SIS SISy, SIS,

Preparation states ps PSa

Execution states es es,

Here for humans sensor states can refer, for example, to states of body parts used
to see (eyes), hear (ears), taste (mouth), smell (nose), or feel (skin). In other animals
or robots other types of sensor states can be involved as well, for example, for
ultrasound, or infrared radiation. This type of naming will be often followed here, as
it gives a more transparent conceptual structure to the model. Variants of a notation
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Table .2.3 Naming states State Explanation
according to groups WS, World state for stimulus s
SS Sensor state for stimulus s
SISy Sensory representation for X with X = sor X = e
PSa Preparation state for action a
es, Execution state for action a

srs, are notations such as srs(e) or srs_e. Table 2.3 lists the names of the states
based on these groups for the example model of Fig. 2.6. Moreover, in Fig. 2.8 a
graphical representation of the example model of Fig. 2.6 is shown based on this
naming of states, and in Table 2.4 the same is shown in a matrix representation.
These groups are chosen in such a manner that the model is easily extendable.
For example, if more than one stimulus is involved (sy, s5, ..) and/or more than one
action (ay, a, ..) and/or effects (ey, e, ..), then the groups remain the same and only
more instances of states within the groups will be added. Note, that this group
structure does not affect how the model actually works, it is only a means to support
human understanding of the model. Moreover, the complete description of the

nss: nsrs.v
csss( V) Csrs:( V)
WSy S8 SIS PSa es,
(Dwss.sss f-\ 0)55:,51'55 m (DSYS:J!S(I m (DPSaVESa
O > > < »O
o MNpsa MNes,y
SIS, Stse:psa Cpsa( ", VZ) Cesa( V)
nsrse T
Carse(V)

Wpsg, srse

Fig. 2.8 Referring to states, connection weights, speed factors and combination functions in a
standard manner according to groups of states in the graphical conceptual representation of
Fig. 2.6

Table 2.4 Matrix representation of the example model shown in Fig. 2.8 in graphical
representation

fr:)(;n WSy SSg SIS SIS, PSa es,
WS¢ O s ssg

S8 O 5,515

SISy Dsrsgpsy

SIS, Dsrse,psq

PSa Dpsg, srse O psgesa

€S,

le - nsss nSISS nsrse npsa nesa

Cy ( - ) - CSSS(V) CerS(V) CsrsE(V) Cpsa( Vl > VZ) Cesa(V)
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Table 2.5 Implicit references to connections and weights

Connection Connection From To

weight

Ogs, srs, (8S,,SIS;) Sensor state ss, for stimulus s Sensory representation state

srsg of s

Ogrs, s, (s1845,PSa) Sensory representation state Preparation state ps, for
srs, for stimulus s action a

Ops, es, (PSa»€84) Preparation state ps, for Execution state es, for
action a execution of action a

Ops, 15, (PSa»STSe) Preparation state ps, for Sensory representation state
action a srs, for e

Osrs, ps, (STS¢,PS4) Sensory representation state Preparation state ps, for
srs, for e action a

conceptual matrix representation of the model in Fig. 2.8 is given in Table 2.4.
Note that the conceptual graphical representation and the conceptual matrix rep-
resentation of a model are equivalent: they contain exactly the same information.

Naming options: Referring to connections and their weights

There are two ways to refer to connections: (1) by referring to them implicitly, by
only using the states connected by the connection, or (2) by referring to them
explicitly by giving the connections names themselves.

1. Referring to connections implicitly by the states they connect

Once the states represented by nodes have their names, there is a simple implicit
way to refer to connections. Suppose X and Y are names of states represented by
nodes, then the pair notation (X, Y) can be used for the connection from X to
Y. Note that this only works when there is at most one connection from one state
to another one. In such cases the weight for the connection from X to Y can be
denoted by wy y; see Fig. 2.8, Tables 2.4 and 2.5.

However, if state names X and Y are not very simple, this may become complex
with many subscripts and sub-subscripts. In cases that states are indicated by
numbered variables Yy, .., Y, the notations wy;y; for connection weights are
often simplified to w;;.

2. Referring to connections explicitly by giving them their own names

It is also possible to give the connections names themselves. The advantage then
is that multiple connections from one state to another can be distinguished by
these names. A very simple variant is numbering of the connections: 1, 2, 3, ....
(see Fig. 2.9 and Table 2.6). In this case the connection weights can be indi-
cated by ®, ®,, ... third and maybe most informative way of naming a con-
nection is by using a word or small phrase that indicates the process in which the
connection is involved. For example, the connection from ps,, to srs, concerns
the process of predicting the effect of the action. Therefore the connection can be
named ‘predicting’, and similar for the other connections; see Fig. 2.10 and
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Fig. 2.9 Referring to connections explicitly by assigning numbers to them for the example of
Fig. 2.6
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Table 2.6 Referring to connections and their weights explicitly by using numbers for the example
of Fig. 2.6

Connection weight Connection name From state To state
o) 1 WS SS;
, 2 SS; SIS
o3 3 SIS, PSa
Wy 4 SIS, PSa
o5 5 PSa SIS,
[0 6 PSa es,
WS sensing 88y representing SISy responding PSa executing CSa
»( ) »( ) > >
»O '5/; >
amplifyin,
sts, T plifying
predicting

Fig. 2.10 Referring to connections explicitly by assigning names of processes to them, for the
example of Fig. 2.6

Tables 2.7 and 2.8. Then weights of connections can be indicated by ®prediciing
and so on. This naming of connections can be made more specific by also
including the specific effect e in the name, for example, ‘predicting(e)’ or
‘predicting_e’ or ‘predictinge’. Similarly, also the action a may be included in
the name of the connection.

Naming options: Referring to speed factors and combination functions

Given the names of nodes representing states, there is a standard way to refer to
speed factors and combination functions. Suppose Y is a name of a state represented
by a node, then the following notations can be used:

speed factor for state Y Ny
combination function for stateY cy(...)
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Table 2.7 Referring to connections and their weights explicitly using names indicating processes,
for the example of Fig. 2.6

Connection weight Connection name From state To state
Osensing Sensing WSy SS;
Orepresenting Representing S SIS
Mresponding Responding SIS, PSa
(Damplifying Amphfylng STS, PSa
Dpredicting Predicting PSa SIS,
(Dexecuting Executing PSa €Sq

Table 2.8 Matrix representation of the example model shown in Fig. 2.10 in graphical
representation with meaningful connection names
to
from | W SSy SIS SIS, PS4 es,
WSy @ sensing
SSy O representing
SISy O responding
SIS, O amplifying
PSa O predicting © executing
es,
Ny - nssx nsr5y nerE npsa nesa
CY(' . ) - CssS(V) Csrss(V) csrse(V) Cpsa( Vlw VZ) Cesa(V)

Note that these can be written next to the states in the graph, as shown in
Fig. 2.8, but it is often more practical to describe them separately, so that the graph
stays more transparent, as for example shown in Figs. 2.9, 2.10 and 2.11.

In Sect. 2.6 a number of standard combination functions and their names are
discussed which can be used as more informative names in the model description.
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Fig. 2.11 Indicating boundaries between the internal processes of an individual and processes in

the external world



56 2 A Temporal-Causal Network Modeling Approach

An alternative way of naming for speed factors is by numbering them as 1, 1o, ....
In some cases only two different values for speed factors are used, one for fast
internal processes and one for slow external processes, which can be indicated by

Nfast and Nslow-

Indicating boundaries of an individual

The boundaries between internal and external processes of an individual person
acting in the world (sometimes also called an actor or agent) can be drawn in a
graphical representation in the form of a box as shown in Fig. 2.11. Here world
states are outside, internal states are inside, and the states for interaction with the
world (sensor states, execution states) are on the border of the box. In a matrix
representation the rows and columns for internal and external states can be given
different colours. Note that the execution state for an action a can lead to an effect of
the action in the world (e.g., having the icecream). This can be modeled in the form
of an effectuation connection from the execution state es, to another world state ws,
which in turn can be sensed (this is not depicted in Fig. 2.11). Sensor states have
sensing connections from world states to them, and execution states have effectu-
ation connections from them to world states (outside the box). Moreover, sensor
states usually have representing connections from them to sensory representation
states, and execution states have executing connections from preparation states to
them (within the box).

It might seem that indicating a box as in Fig. 2.11 is just a presentation feature
by which some colour and emphasis can be added to the picture. But this is not
even close to the meaning of such a box. The creation of a boundary between
internal processes (‘internal milieu’, body) and external processes is considered a
crucial step in the development of life forms during evolution; for example, see
(Bernard 1865; Brewer 1992; Cannon 1932; Damasio 1999, pp. 133-145; Dobbyn
and Stuart 2003); see also (Bosse and Treur 2011). The idea is that this boundary
can be crossed only by specific processes: from outside to inside by sensor pro-
cesses (via the sensing states at the boundary), and from inside to outside by
execution processes (via the execution states at the boundary). The rest of the
boundary is not affectable. As an example, the internal processes for a biological
organism are protected against uncontrolled external influences by skin, or bone
(protecting the brain), or shell (e.g., like the shell of a sea animal). As another
example, a company organised by a ‘front office—back office’ structure, protects the
work going on in the back office against uncontrolled external influences. The front
office serves as an interface to the external world, transferring requests for products
or services from external to internal and offers for products or services from internal
to external.

The fact that the boundary can only be crossed by specific processes via sensor
states or execution states can be formulated as a causal factorisation principle. This
principle expresses that if there is a causal relation between an internal state S; and
an external state S,, then there is an intermediate state R at the boundary with causal
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relations to S; and S, such that the causal relation is between S and S, is in fact a
composition of these causal relations of S; and S, with R. In general this factori-
sation (or interpolation) can be described roughly as a pattern

S1 — S, holds =>there exists a state R on the boundary such that
S1 — Rand R — S, hold and entail §; — S,

Here the two causal relations S; — R and R — S, are the factors of which the
causal relation S; — S, is composed. The state R can be called a mediating state or
an interpolant. Given the two directions (inward or outward effect) that are possible
two more specific causal factorisation principles can be distinguished:

Inward causal factorisation principle: external state S; causally affecting internal
state S,

If external state S, causally affects internal state S,, |S; — S, holds = there exists a sensor

then there exists a sensor state R such that S; state R
causally affects R and R causally affects S, such that | such that S — R and R — S, hold, and
the combined effect of these two causal relations S —>RandR— S, = S5 — S,

provides the effect of S; on S,

Outward causal factorisation principle: internal state S; causally affecting
external state S,

If internal state S; causally affects external S1 — S, holds = there exists an execution
state S,, then there exists an execution state state R such that S; — R and R — S, hold,
R such that S causally affects R and and S = Rand R — S, = §; — S,

R causally affects S, such that the combined
effect of these two causal relations provides
the effect of S, on S,

Note that state R can also be a combination of (either sensor or execution) states.
In Fig. 2.12 these principles are shown in a graphical form.

R S

—0

A
|

1
Os
Fig. 2.12 Inward causal factorisation (left hand side) with sensor state R and outward causal
factorisation (right hand side) with execution state R
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2.5 Numerical Representation of a Temporal-Causal
Network Model

In Sect. 2.4 it has been discussed how processes can be modeled in a conceptual,
declarative manner in the form of graph or a matrix representation of a network
with states as nodes and mutual relations as connections between these nodes. In the
current section it is shown how based on such a conceptual representation a
declarative numerical representation of the network and its dynamics can be gen-
erated. More specifically, it will be shown in detail how from such a conceptual
representation in a systematic manner a numerical representation can be obtained,
in particular a first-order differential equation or difference equation. In Fig. 2.13 it
is shown which types of transformations of model representations are addressed in
this chapter. The upper part of this picture shows the two conceptual representations
of a model: the graphical representation and the matrix representation. In Sect. 2.4
it has been discussed how they can be transformed into each other, and the upper
part of Fig. 2.13 was shown in Fig. 2.4. The lower part of the picture shows two
numerical representations. Both types of representations are declarative; they
describe (temporal) relations in the domain that is addressed. In the current section
it will be shown how a (first-order) numerical difference equation representation can
be obtained from a conceptual representation (downward arrow) and from that how
in turn a (first-order) numerical differential equation representation can be obtained
and vice versa (arrows between numerical representations in the lower part). In
Sect. 2.5.1 the systematic transformation from conceptual to numerical represen-
tation (downward arrow) will be described in general. In Sect. 2.5.2 it will be
illustrated for the example model depicted in Fig. 2.10. Note that in the remainder

conceptual representations

matrix representation — graphical representation
of the model — of the model

numerical representations

difference equation representation — differential equation representation
of the model — of the model

Fig. 2.13 Different representations of a model and transformations between them
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of the chapter for a difference equation or differential equation it is always silently
assumed first-order.

2.5.1 The Systematic Transformation from Conceptual
to Numerical Representation

The transformation from a conceptual representation of a temporal-causal network
model to a numerical representation can be used to obtain a basis for simulation and
further mathematical analysis. This step is quite systematic and can even be done
automatically by a generic software application. Three of such applications have
been developed: one in XML and Java, one in Excel, and one as an app on the iPad.
During this systematic generation of a numerical representation, the combination
functions, that in a conceptual representation are only specified by their name, are
incorporated by their mathematical formula. A number of standard combination
functions with their formulae are available as a library; see Sect. 2.6. In Table 2.10
an overview is shown of these combination functions and their properties. These
formulae can just be taken from this library, but it is also possible to specify a
different own-defined, nonstandard combination function. After this numerical
representation has been generated in this way, only initial values for the variables
are needed in order to perform simulation experiments. Note that parameters are
included representing contextual characteristics, such as update speed parameters
Nx and connection weights my y (see Figs. 2.2 and 2.3), and possibly also param-
eters in combination functions. To obtain different simulation experiments these
also can be varied in order to explore different contexts.

The systematic generation of a numerical representation can be done in the
following manner. Here for any state ¥ and any time point 7 the (activation) value of
Y at time ¢ is denoted by Y(?).

For any of the states Y at each point in time ¢, each of the values X (7), ..., Xy(?)
for the states X, ..., X; connected toward Y has a causal impact on the value of Y,
due to which in principle at the next point in time ¢ + At the value of Y has changed.
For each of the states X; this impact on Y at time ¢ is proportional both to the value
X,(t) and the connection weight wy, y and is defined as

impacty () = ox, yXi(?)
The aggregated impact of the multiple impacts impacty, y(?), ..., impacty, y(7)

of Xy(1), ..., Xi(t) on state Y at time ¢ is modeled by a combination function cy/...)
(for example, the sum function) as

aggimpact, (1) = cy (impacty, (1), ..., impacty (1))
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This aggregated impact is defined on the basis of the network specification in
terms of the connection weights my; y and combination functions cy...):

aggimpacty (1) = cy(ox, yX1, - .., 0x, yXi)

Note that here within the combination function an ordering of the arguments (the
different impacts by different connections) is used; such an ordering is usually not
specified in the conceptual representation of the model. However, many often used
combination functions are symmetric, in the sense that the ordering of their argu-
ments does not matter (for example, in a sum, product, max or min function). So, in
all of these cases any chosen ordering leads to the same outcome. But in some
exceptional cases the order of the arguments may matter; in such cases for the
combination function it has to be indicated which argument refers to which con-
nection. Note, however, this is not a temporal order; the multiple impacts are always
assumed to work simultaneously, in parallel.

So, the combination function cy(...) aggregates the multiple impacts
impacty, y(), ..., impacty,_,(z) on Y(7) into one single aggregated impact value
aggimpacty(7); see Fig. 2.14. Note that also the state Y itself may be included in X,
..., X;, although there are also many cases in which it will not be included.
Moreover, as a special case also a combination function can be used for the case of
one single impact, i.e., when k = 1. Although in such a case it is not literally a
process of combination, for convenience also the term combination function is used
for a function applied to obtain the (aggregated) impact on Y for this single impact
case.

The aggregated impact value aggimpact,(r) at time ¢ has an upward or down-
ward effect on the value of state Y; it pushes the value of Y up or down, depending
on how it compares to the current value of Y. More specifically, this aggregated
impact value aggimpact,(7) is compared to the current value Y(#) of Y at 7 by taking
the difference between them (also see Fig. 2.9): aggimpact(r) — Y(z). If this dif-
ference is positive (aggregated impact value aggimpacty(r) at ¢ higher than the
current value of Y at ¢), in the time step from ¢ to ¢ + Az (for some small Af) the

state
value

Y@

Fig. 2.14 Aggregation of other Xi(1)

impacts on a state Y
state

values  Xj(?) multiple impacts impacty, y (?), ..., impacty, y ()

on state value Y(?)

aggregation
of impacts

state
value
Y@

aggregated impact

aggimpacty (7

on state value Y(?)
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aggimpact () | aggimpacty (1)

Y(1) + My (aggimpacty (1) - Y(1)) At
i :I Ny (aggimpacty (¢) — Y(1)) At

aggregated current value Y(?) of state ¥’ next value Y(t+Af) of state Y
impact value at ¢t is compared to the at t+Af is
aggimpacty (¢) at ¢ aggregated impact value Y(1) + y (aggimpacty (¢) — Y(2)) At

aggimpacty (7)

Fig. 2.15 How aggregated impact aggimpact,(r) makes a difference for state Y(#) in the time step
from ¢ to t + At

value Y(z) will increase in the direction of the higher value aggimpact,(7). This
increase is done proportional to the difference, with proportion factor ny At: the
increase is Ny [aggimpacty(r) — Y(1)] At; see Fig. 2.15.

How fast this increase takes place depends on the speed factor ny. For example,
when my=0.9 and Ar=0.5, then a fraction of 0.45 of the difference
aggimpact,(7) — Y(z) is added to the value of Y(t). If it holds ny = 1, then the value
of Y will adapt to aggimpacty(7) fast (big steps), and if ny = 0.1 it will be much
slower (small steps). The same holds for a negative difference aggimpacty(r) — ¥(?):
in that case the value will decrease in the direction of the lower value
aggimpact,(7). The extent to which it is increased depends on the speed factor ny.

So the value Y(z) of state Y at r always moves in the direction of the aggregated
impact value, and eventually may converge to this value. However, during this
convergence process the value of aggimpacty(r) (which itself depends on other
states) may change as well, which makes the process still more dynamic.

The numerical process just discussed is summarized by the following difference
equation representation of the dynamical model:

Y(t+ Ar) = Y(t) + ny[aggimpacty (r) — Y (¢)]At
or, in terms of the combination function cy(...)
Y(l+ AI) = Y(t) + nY[CY((oX_YXI (l), . coxkyka(t)) — Y(f)]Al

This indicates how for any time point t, the value of Y at a next point in time
t + At can be determined by calculating the right hand side of the equation. This
calculation can also be described as
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If at time point ¢
state X, has level V,
and

and state X, haslevel V,

and state Y has level V
then after time duration Az after 7 state Y will have
level V + My [cy(@x, v Vi, ..., Ox,y Vi) - V]AL

Practically any numerical dynamical modeling language or software environ-
ment can be used to model or implement the difference equation format above, for
example, Matlab or Excel. Below a summary of the method.

How to get a numerical representation from a conceptual representation:
summary of the systematic method

Given a conceptual representation with

connection weights Oy y
combination functions  cy(..)
speed factors Ny

do the following.
For any point in time ¢ and for any state Y

1. Determine the multiple impacts on Y

by multiplying the values X,(z), .., Xi(t) for the states X;, .. connected to Y by
connection weights 0y, y, .., 0x, y:

impacty y(t), ... = ox, yXi(?), ...

2. Aggregate the multiple impacts
by applying the combination function cy (..):

aggimpact, (1) = cy (impactxhy(t)7 .. .Jmpactxkly(t))

3. Incorporate timing
by using the speed factor ny.

ny[aggimpact, (1)—Y (1)]
4. Obtain the difference equation

Y(t+ Ar) = Y (1) + ny|aggimpact, (1)—Y ()] Az
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or fully filled out
Y(l + At) = Y(l) + ny[Cy(OJxlvyxl ([), . ka_,YXk(t))—Y(t)]At
Note that from the above explanation and formulae the following criteria can be
obtained for increase, decrease or no change for state X;:

Increase of Y:

Y(r+ Ar) > Y(¢) & aggimpact, (1) > Y (¢)
= Cy((t)xhyxl ([)7 Ceay O)Xk.YXk(t)) > Y(l)

No change for Y:

Y(t+ Ar) = Y(¢) & aggimpact, (1) = Y (¢)
<~ Cy(O)X17yX1 (l), cee ka,YXk(Z)) = Y(t)

Decrease of Y:

Y (14 At) <Y (t) < aggimpact, () <Y (¢)
= cY(o)thXl(t), . COXkAka(Z)) < Y(t)
These criteria will come back in a more general setting in Chap. 12 on mathe-
matical analysis of properties of temporal-causal network models.
The difference equation found above can be rewritten into a different but

equivalent numerical differential equation representation as follows. As a first step,
by subtracting Y(7) from both sides and dividing by At, it can be rewritten into

[¥(t+ Ar) — ¥ ()] /At = ny[aggimpact, (1) — ¥ (1)

Note that here the left hand side is a difference quotient for Y(t). The limit of this
difference quotient for Ar approaching 0 is the differential quotient d¥(z)/ds which is
the derivative Y'(t) of Y(t) as a function of z. So, an alternative (but equivalent)
representation is the differential equation representation of the dynamical model:

dY(r)/dt = ny|aggimpacty (1) — Y (7)]

dY(t)/dt = ny[Cy((thyxl(l‘), R, (DX/“YXk(t)) — Y([)]

Sometimes for the sake of simplicity the variable ¢ is left out of the functions in a
differential equation notation, so then it becomes:

dY/dr = ny[aggimpact, — Y]
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or
dY/dt = ny[cy(ox, v X1, - .., 0x, yXi) — Y)]

Here the dr still reveals that for the states in the equation such as Y, Xj, ..., X
their activation levels are considered as functions of ¢. This differential equation
format can often be found in the literature. It can easily be (inversely) rewritten into
a difference equation format as shown above by replacing dY/dz by [Y(t + At) — Y
()]/At, and then multiplying both sides by Ar and adding Y(?).

Note that, like the conceptual representation, also the numerical representation
obtained in the form of a differential or difference equation is a declarative
description of the addressed domain, this time in the form of numerical (temporal)
relations between states in the domain. The way in which these relations are used to
perform, for example, computational processes for simulation or analysis is inde-
pendent of the numerical representation itself. For example, a differential equation
can be used to compute the value at a next point in time, from the values at a current
time point. However, it is equally well possible to transform the differential
equation into a difference equation that can be used to compute the previous value
of a state from the values at the current time point. The specific computation applied
to the numerical representation can still be chosen; it is independent of the repre-
sentation itself, it is not coded in this representation.

2.5.2 Ilustration of the Transformation for the Example
of Fig. 2.10

When the above approach is applied to the example described graphically in
Fig. 2.10, with some simple standard combination functions, this results in the
following numerical representation of the model. Sometimes the notation LDPy or
LPy is used to indicate the Local Dynamic Property describing the dynamics of a
state X. They may also be numbered: LP;, ..., LP;. For a given model each of these
local dynamic properties can be specified separately, but together they determine
the overall dynamics of the modeled process as a whole. If states and their con-
nections are assumed to be chosen related to some locality criterion, then this
illustrates a locality assumption: overall dynamics is created based on local
mechanisms. However, although in many cases such a locality assumption may
hold for the chosen states, the general approach does not commit to such a locality
assumption on the states. The approach can be used, for example, equally well to
describe dynamics of (communication) actions of operators on Earth that have
impact over a large distance on the behaviour of a Mars Explorer.
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LPg, Sensing a stimulus: determining values for state ss;
sss(t+ Ar) = ssg(t) + Nss, [Cssx(@sensingwss(t)) — ss(1)] At

or
dss; (1) /dt = Mg, [Css, (OsensingWSs (1)) — 885(2)]

By choosing for the combination function cg,(.) the identity combination function
id(.) defined as id(V) = V this becomes

sSs(t + At) = s85(1) + Ngq [Osensing WS (1) — ss4(1)] At
LPg, Representing a stimulus: determining values for state srs;
st8 (1 + At) = s184(1) + Ny, [Cors, (OrepresentingSSs (1)) — srs,(2)] At

or
dSI'SS(l) /dl = Ny, [Csrsx ((Drepresentingsss (t)) - SI‘S‘Y(Z)}

By again choosing the identity combination function id(.) this becomes
stsg (£ 4 At) = sr8(2) + Mg, [OrepresentingSSs () — srsy(2)] At

LP,,, Preparing for a response: determining values for state ps,
s, (t + At) = ps, (1) + Nps, [Cps, (OrespondingSTSs (7)), OamplityingSTSe (1)) — P, ()] At

or
dpSa(t) /dt == nPSu [Cpsa ((Drespondingsrss(t))a mamp]ifyingsrse(t)) - pa(t)]

By choosing for cps,(.,.) a sum combination function sum(.,.) defined by sum(V;,
V) = V| + V,, this becomes

Psu(l + At) = pSa(I) + npsa [mrespondingsrss(t) + Wamplifying STSe (t) ~ Pa (t)]At

LP s7s, Predicting the effect of an action: determining values for state srs,
s8¢ (14 Ar) = s8¢ (1) + N, [Cors, (OpredictingPSq (1)) — 13 (1)] At

or
dsrs, (t) /d[ = Nsrs, [CSISe (mpredictingpsa (t)) — SIS, (t)]



66 2 A Temporal-Causal Network Modeling Approach
By choosing the identity combination function id(.) this becomes

s18, (t + At) = 815, (1) + Ny, [Opredicting PS4 (£) — s18,(1)] At
LP es, Executing an action: determining values for state es,

ey (1 + At) = es4(1) + N, [Ces, (DexccutingPS,4 (1)) — €sq(t)] At

or
desa(t)/dt = Mes, [Ces,, (wexecutingpsa(t)) - esa(t)]

By choosing the identity combination function id(.) this becomes
€S (14 At) = esy (1) 4 Neg, [DexceutingPS, (1) — €sa (1)) At

The numerical relations for the example model obtained above form a declar-
ative, numerical representation of the model. Such a declarative representation is
independent of any computational method. In Sect. 2.8 it is shown how a com-
putational simulation method can be applied to the above numerical representation
for the example model.

2.5.3 Ilustration of the Modeling Perspective for a Social
Contagion Process

As another illustration, a model is described for contagion effects of multiple
individuals on each other due to social interaction. This time each of the persons
A is simply modeled by one state X, and the interactions between persons are
considered by their impact on these states. The state X4 can represent, for example,
an emotion or an opinion of person A. First a conceptual representation is shown in
Fig. 2.16. The weight of the connection from person A to person B is denoted by
4, . Note that more connections may occur than the ones drawn. For example, for
every connection from an person X to an person Y there may also exist a connection
back from Y to X.

This conceptual representation can be transformed into a numerical representa-
tion as shown in Sect. 2.5.1. The following generic numerical representation is
obtained, with

aggimpact, (1) = cg(a, gXa, (1), - - ., ®a, 8X4,(?))

where the combination function cg(...) to combine the impacts from the other
persons still can be chosen:
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Fig. 2.16 Conceptual Xs
graphical representation for a Xa OaB
simple network view on social
contagion

WA D

Xo

LP1 Social contagion of state X in a social network model
dXB/dl = T]B[CB ((DAl,BXA“ cee (DA/‘,BXA/‘)*XB]
XB(t + At) = XB(l) + nB[CB((DAl-,BXAl (l), cee (DA/“BXAk (l))*XB(t)}At

Here the symbols are explained as follows:

Xp person B’s state X

Ng update speed parameter for state Xp
cp(...) combination function for state Xp
WA B weight of connection from A to B

An often used combination function for aggregation of contagion effects of
multiple persons is the scaled sum function:

ssumy, (Vy, ... Vy) = (Vi+ - +V,)/A

where A is the scaling factor. For this example, where all connection weights m4 5
are assumed > 0, this combination function is used for every person B, where the
scaling factor A = ®p is defined as the sum of the incoming weights for B:

W = W4, B+ -+ + 048

So the combination function for any person B is

CB(Vl,...,Vn) = ssumwB(Vl,..., Vn) = (V] —+ - +Vn)/0)3

This combination function makes that the aggregated impact from other persons is
a weighted average of the individual levels Xy (2) of state X,, with weights m4, p/0p
proportional to the connection weights w4, p and with sum of them 1:

:CB(mAl,BXAI (l)., RN (DAMBXAA (l))
= (04, 8Xa, (1) + - -+ + 04, Xa, (1)) /08
= (0a,,8/08)Xa, (1) + - -+ + (0a,8/0p)Xa, (1)

aggimpact; ()
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with

®A1,3/0)B+ +0)Akﬁ3/m3 =1

The interpretation of this combination function is that a person B adapts the level
of his or her state X to what is observed by B as the average level of state X, for all
persons A that have interaction to B; this can result in adapting to the majority in the
population described by the network. However, if the connections only relate to a
small and relatively isolated part of the population, the average over this part can
deviate from the average of the population as a whole.

If this scaled sum combination function is chosen, the numerical representation
of the contagion model becomes:

LP1 Social contagion of state X in a social network model with scaled sum
combination function

dXp/dt = npl(®a, pXa, + -+ + 0 8Xa,) /05— X5

Xp(t+ At) = Xp(1) + npl(0a, 5Xa, (1) + -+ + 04, 5Xa, (1)) / 0p—Xp(1)| AL

Here the symbols are explained as follows:

Xp person B’s state X

Np update speed parameter for state Xz

cp(...) combination function for state Xp

WA B weight of connection fro A to B

op sum of incoming weights = w4, p+ -+ + 4, 5

Figure 2.17 shows an example simulation for this social contagion model. In
Chap. 12 a mathematical analysis will be discussed, for example it is shown that all
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Fig. 2.17 Example simulation of social contagion for 10 persons
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state values will always converge to one and the same value, as long as the network
is strongly connected. In Chaps. 11 and 12 also adaptive extensions of this model
will be discussed.

2.6 Standard Combination Functions

In this section a number of often used examples of standard combination functions
are discussed. For an overview, see Table 2.10. These standard combination
functions can be used during the design of a model as immediately available
building blocks. In software environments that automatically generate a numerical
representation out of a model in conceptual graphical or conceptual matrix repre-
sentation, these standard combination functions can be used without implementing
them first, as they are already offered by the software. In the design of a model only
a reference to the name of the chosen standard combination function is needed, and
sometimes values for some parameters of this combination function.

2.6.1 Basic Standard Combination Functions

Standard combination functions can be of two types. For the basic type they are
directly based on simple functions such as sum, product, max, min or a simple
logistic function. These are discussed in this Sect. 2.6.1. However, also standard
combination functions of a more advanced type can be considered. In this type of
functions combinations of simple functions are used. These will be discussed in
Sect. 2.6.2. In Sect. 2.7 a number of properties that are relevant for combination
functions will be discussed.

The basic standard combination functions considered are SCF1 to SCF4
described below.

SCF1 Sum and identity combination function
In the sum combination function, the different single impacts are simply added to
obtain the aggregate impact:

C(Vlv"'7vk) :Surn(‘/l7 "'7Vk) :V1+ +Vk

Note that when k = 1, this is just the identity function denoted by id(.) and
defined as id(V) = V. Moreover, note that in cases that this combination function is
used for a state X; with X, ..., X; connected toward X; with %; w;; = 1, then the sum
combination function makes a weighted average of the values of states X, ..., Xi:

sum(o; X1, ..., 0 Xk) = 0X) + -+ o Xx


http://dx.doi.org/10.1007/978-3-319-45213-5_11
http://dx.doi.org/10.1007/978-3-319-45213-5_12

70 2 A Temporal-Causal Network Modeling Approach

Note that in the example shown in Figs. 2.10 and 2.11, for the preparation state
indeed the sum of the incoming connections was 1 (both were 0.5), so in that case
indeed a weighted average was used.

SCF2 Product-based combination functions
The product combination function is defined as a multiplication

c(Vi, ..., Vi) = product(Vy,..., Vi) = Vi x--- %V

The complementary product combination function (for values between 0 and 1)
is defined as

c(Vi, .., Vi) = cproduct(Vy, ..., Vi) = 1—(1 — V)x- - x(1—=Vy)

The use of these product combination functions may get inspiration from a
probability view for cases in which different impacts are fully independent, in
which case the probability of the combination is the product of the probabilities.

Note that for V; < 1, the first variant provides a result lower than (or at most as
low as) each of the V;; the second, complementary variant provides a result higher
than (or at least as high as) each V;:

product(Vy, ..., Vi) <min(Vy, ..., V})

cproduct(Vy, ..., Vi) >max(Vy, ..., Vi)
Note that in cases that this combination function is used for a state X; with X},
..., X; connected toward X; then the product combination function provides a

product of the values of X, ..., X; with a product of the values of w;;.

product(mlﬁin, cey (Dk,iXk) = wl,iXI koo *OJk,iXk = (0)11,‘* cee *mk,i)*(Xl LRI *Xk)

The complementary product combination function:
cproduct(®; ; Xy, ..., 0 Xe) = 1—(1 — 01X )% - - - %(1 — o ; Xx)

SCF3 Minimum or maximum combination function
The min and max-based combination function are defined as follows.

c(Vi,..., Vi) =min(Vy, ..., V;) the minimal value among the V;
c(Vi, ..., Vi) =max(Vy, ..., Vi) the maximal value among the V;

The use of these combination functions may get inspiration from approaches
from fuzzy logic and possibility theory (Zadeh 1978), where also such operators are
used to combine different sources of impact.
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Note that the first minimum variant provides a result lower than (or at most as
low as) each of the X;; the second, maximum variant provides a result higher than
(or at least as high as) each X..

The minimum combination function has an effect similar to an and operator: it
only gives a high aggregated impact if all single impacts are high (X, and ... and X;,
have a high level). Similarly the maximum combination function has an effect
similar to an or operator: it already gives a high aggregated impact if at least one of
the single impacts is high (X or ... or X; has a high level).

In cases that this combination function is used for a state X; with X;, ..., X;
connected toward X; then these functions work as follows:

c((nl,,-Xl, caay (,L)kJXk) = min(a)l.’,-Xl, feey (Dk,,'Xk)
c(@iXy, . o Xi) = max(o ; Xy, ..., 0 i Xx)

SCF4 Simple logistic sum combination function

The logistic sum combination function has two closely related variants, the simple
variant SCF4 and the more advanced variant SCF5 (see below). In these functions t
is a threshold parameter and ¢ a steepness parameter. The simple logistic function
SCF4 is defined as:

c(Vi, ..., Vi) = slogistic(Vy, ..., Vi) = 1/(14¢ o1 +V0)

To indicate the dependence of ¢ and T sometimes these are used as subscripts:
slogistic, (V1. ..., Vp).

In cases that this combination function is used for a state X; with X, ..., X,
connected to X; then this function works as follows on the X;:

slogistic(wh,le, e OJk,iXk> = 1/(1 + e olonXi +“.+mk‘,Xk4))

In Fig. 2.18 the simple logistic combination function slogistic(Vy, ..., V) is
depicted with W = V| + --- + V; on the horizontal axis, for a number of values of
the steepness parameter.

Note that it holds c(0, ..., 0) = 1/1 + €°"), and this is nonzero, which may be
considered an artifact of the model which lacks plausibility: it creates activation
from no activation. In Fig. 2.18, this is visible especially in the highest graph for
o = 5, but also in the other cases it is (although closer to) still not zero. This less
desirable phenomenon may suggest to only use the simple logistic sum combination
function for high steepness values, for example, 20 or higher (this also may depend
on the threshold t). However, then it gets a more step function like character and
lacks the more gradual increasing behavior as shown for steepness 10 and lower. If
such a gradual increase is aimed for, the advanced logistic sum function discussed
below may be a better choice. Moreover, note that for very high steepness value ¢
this logistic combination function provides a continuous approximation of a binary
threshold-based function that gives O for V| + --- + V, below the threshold t and 1
for V| + --- + V; above this threshold (e.g., see Fig. 2.18 lowest graph).
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Fig. 2.18 Simple logistic function for threshold T = 0.5 and four different values of steepness:
c=5 06=10, c =200

2.6.2 Building More Complex Standard Combination
Functions

From relatively simple or basic combination functions as described in Sect. 2.6.1
more complex combination functions can be built by considering some combina-
tions, modifications or transformations on them. This can be done, for example, by
adding or multiplying constants to one of them, or by forming linear combinations
(such as a weighted sum) of some of them.

SCF5 Advanced logistic sum combination function

Recall that in the simple logistic variant SCF4 it holds slogistic(0, ..., 0) =
1/1 + €°F), and this is nonzero, which is un desirable property as it creates in an
unintended manner activation out of no activation (see also property CFP1 in
Sect. 2.7). This issue is compensated for in the advanced variant. This advanced
variant is obtained by first subtracting the value at O from it:

1/(1 _|_e7cs(V1+~<+VkJ)) _ (1/(1 +ecr)
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Then a function is obtained that for V| + .- + V,, = 0 gives value 0, so that
problem is solved (this new combination functions satisfies property CFP1 of
Sect. 2.7). However, now the maximal value can be at most

1—(1/(1+e°)=(1+€")/(1+e°) — (1/(1+e°") =
((1+e%) = 1)/(1+e%) = e /(1 +e%) = 1/(1 +e"7)

which is strictly lower than 1. But this can be compensated for by dividing the
whole expression by this value. This provides a function that gives values ranging
from O to 1:

10470 1/ e 0 e ) =
[(1/(1+€ 00T 0)) (1 (1)) (1)

So, the more advanced logistic sum combination function obtained is defined
as:

c(Vi,..., Vi) = alogistic(Vy, ..., Vi)
= [(1/(1+e M Ve9)) — (1/(1+e7))(1+e)

To indicate the dependence of ¢ and t sometimes these are used as subscripts:
alogistic, (V1, ..., Vi)

For this advanced logistic function graphs are shown in Fig. 2.19. Note that only
for the upper graph for ¢ = 5 a difference is visible with the corresponding upper
graph in Fig. 2.18 for ¢ = 5. The other two graphs in Fig. 2.19 for ¢ = 10 and
o = 200 also differ from the corresponding graphs in Fig. 2.18, but these differ-
ences are so small that they are (almost) not visible. This indicates that the simple
variant can be used as a suitable approximation of the advanced one when o7 is
large enough, e.g., ot > 20. However, using high steepness values the model
shows more abrupt behavior, for example, when one of the impact values increases
from below to above the threshold value. In some cases such behaviour may be
realistic and intended, but in other cases it is not. To model more smoothly
behaving processes, often lower values of the steepness ¢ are needed, in which case
the advanced logistic function is more appropriate.

SCF6 Scaled sum combination function
In some cases it is useful to apply a scaling factor to the sum combination function
by dividing it by some scaling factor A:

C(Vl,...7 Vk) :ssum;b(Vl, ceay Vk) = (V1+ +Vk)/)\,

This can be used, for example, to guarantee that values are kept between 0 and 1
for cases that m;; > O for all j and 7 (property CFP5 in Sect. 2.7). If m;; > 0 for all
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Fig. 2.19 Advanced logistic function for threshold t = 0.5 and three different values of steepness:
c=5 06=10, o =200

jandiand X; < 1 for all j, the sum of @ ; X; + -+ + @ ; X; can reach the value o,
; + -+ + O;, which can be more than 1, depending on the values of these con-
nection weights ; ;. By scaling (normalizing) a sum function, a function is obtained
that keeps values between 0 and 1 for cases that ;; > 0 for all j: if as a scaling
factor

M=+ o o

is taken, then this combination function indeed keeps values between 0 and 1. In
fact, this scaled sum combination function provides as outcome a weighted average
of the values of X, to X;: for this scale factor A; it holds

ssumy;(Vi, ..., Vi) =(01,: X1 + -+ +oriXe) /(o0 + - 4+ o)
=(ori/(0ni+ - F o)X+ - A (o / (0 + -+ or)) X
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which is a weighted sum where the sum of the weights is 1:
Oi/(Ori+ o)+ o/ (ot Fog) =1

Note that when one or more of the w;;. is negative, the scaled sum combination
function may result in negative values, and using the sum ®; ; + --- 4+ ®; as scaling
factor, this scaling factor can be close or even equal to O and therefore it may easily
produce results that are above 1 or even infinite. Due to this, for cases with negative
connection weights the scaled sum combination function with the sum of the
weights as scaling factor may not be a recommendable choice of combination
function. Instead, a different scaling factor might be considered, for example, the
sum of the absolute values of the weights or the sum of only the positive weights,
but these options may also not work so well when multiple or most weights are
negative. The first option, for example, will always result in aggregated values that
are much lower than 1, and the second option may result in negative values far
beyond —1.

For certain settings of the parameters the (scaled) sum function and the advanced
logistic sum function approximate each other. For example, in the upper graph in
Fig. 2.20 this is shown for the sum function (A = 1) and the advanced logistic sum
function for o = 2.402 and t = 0.142; in the lower graph the same is shown for
A =2 and ¢ = 1.084 and t = 0.143. Note that for this approximation rather low
steepness values are used, what would not be possible using the simple logistic
function due to its problem with zero activation. An overview for some more values
is shown in Table 2.9. Here o is the slope of the linear function, A is the

1.2

1
0.8
0.6
0.4
0.2

0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
24
2.6
2.8
3.0
3.2
34
3.6
3.8
4.0

Q
o
1.2

1
0.8
0.6
0.4
0.2

0

< e N & © 0 o N & © 00 o & < v
=} A d Hd d AN NN~ M. . ®mo

o o © o
o o o o <

Fig. 2.20 Approximation between scaled sum and advanced logistic sum function: upper graph
A =1, 0 =2402 and t = 0.142, lower graph A =2, ¢ = 1.084 and t = 0.143
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Table 2.9 Corresponding settings for approximation between scaled sum and advanced logistic
sum

A 4.000 3.000 2.000 1.000 0.667

o 0.25 0.33333 0.500 1.000 1.500

c 0.5192 0.7009 1.084 2402 4.137

T 0.143 0.14 0.143 0.142 0.139
average deviation over 0.000043 | 0.000105 |0.000372 |0.003559 |0.014851
[0, 0.5]

corresponding scale factor (which actually is 1/a), and in the last row the average
squares-based deviation over the interval [0, 0.5] is shown.

SCF7 Scaled sum with interaction terms
A sometimes used combination of sum and multiplication is obtained in the fol-
lowing format:

(Vs Vi) = (Vi -+ V) [t D ViV
One example is given in terms of the sum function as follows:
Vi, Vi) =4(Vi+ - +Vi)(1 = (Vi+ - + W)

This is an example of a combination function which is not monotonic. It has an
U-shape with its maximum 1 when Vi + --- + V; = 0.5, and for other values of
Vi + - + Vi it is lower than 1.

SCF8 Advanced product-based combination function

In the combined product-based combination function, the two variants are com-
bined by taking their weighted average with weight factors B and 1 — B for a
parameter § with 0 < B < 1. The overall combination function is obtained as

c(Vi,..., Vi) = aproductg(Vy, ..., Vi)
= (1 — B) product(Vy, ..., Vi) + Beproduct(Vy, ..., V)

B(l— (1= Vi) (1= V) + (1 = B)Vis- . . Vi

Here B is a weight factor that can be used as bias parameter. The higher the value
of B, the more upward bias, and the lower this value, the more downward bias.
For example:

c¢(V1, Va) = aproducty(Vy, Vo) = B(1 — (1 — Vi)(1 — V2)) + (1 — B)V1 V>
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For this case of two arguments § < 0.5 indicates a downward bias and > 0.5
an upward bias; for f = 0.5 a scaled sum function is obtained:

aproduct 5(Vy, Vo) = 0.5(1 — (1 — Vi)(1 — V,))+ 0.5V, V,
=0.5(Vi+V, = ViV5)+0.5V|V,
=Vi+W)/2
=ssumy (Vy, V,)

SCF9 Advanced min and max-based combination function

c(Vi,..., Vi) = aminmaxg(Vy, ..., Vi)
= (1 —B)min(Vy,..., Vi) + Bmax(Vy,..., V)

Here again [ is a bias parameter: as for the case of the advanced product
function, the higher the value of B, the more upward bias, and the lower this value,
the more downward bias.

SCF10 Advanced composed product and scaled sum combination function

c(Vo, ..., Vk) = aproduct — ssumg(Vy, Vi, ..., Vi)
= aproducty(Vo, ssum(Vy, ..., V;))

This is an example of another way in which standard combination functions can
be used as building blocks, in this case by composing them (applying one to the
result of the other). This can be (and actually has been) used, for example, in
models for social contagion where first by a scaled sum combination function ssum
(Vy, ..., V) the average level of the levels Vi, ..., V; of the other, connected persons
is determined, and the result of this is combined with the own level V, by an
advanced product function. In particular, this has been applied to model (amplified)
emotion contagion spirals; see (Bosse et al. 2009, 2015). This function satisfies the
same properties CFP1 to CFPS5 from Sect. 2.7 as the scaled sum function, but does
not satisfy the symmetry property SCF6 concerning its first argument.

2.7 Properties for Combination Functions

Combination functions can satisfy certain properties. A number of such properties
are discussed here. In Table 2.10 it is shown which of these standard combination
functions satisfy which of these properties.

CFP1 Preservation of zero impact
A combination function c(..) preserves zero impact, if it does never provide nonzero
aggregated impact out of zero single impacts:
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Almost all standard combination functions satisfy this property CFP1. The only
exception above is the simple logistic sum combination function SCF4.

CFP2 Nonnegative
A combination function c(..) is nonnegative if for nonnegative single impacts it
never provides negative aggregated impact:

V;>0foralli = c(Vy,...,V4) >0

Sometimes combination functions are defined in such a way that this automat-
ically holds:

C*(Vl, ...,Vk) (V]7 ...,Vk) ifC(Vl7 ,Vk)ZO

=c
0 otherwise

CFP3 Upward bounded by 1
A combination function c(..) is upward bounded by 1 if it always provides
aggregated impact values not exceeding 1:

Vi<lforalli = c(Vy,...,Vy) <1

Sometimes combination functions are defined in such a way that this automat-
ically holds:

C*(Vl, ...,Vk):C(Vl, ...,Vk) ifC(V], ...,Vk)SI
1 otherwise

Note that the sum combination function SCF1 does not satisfy this property, but
the product combination function SCF2 does, as do the minimum and maximum,
and the logistic sum combination functions SCF3 and SCF4. The advanced
product-based combination function SCF8 also satisfies property CFP3, as can be
seen (for two impacts) as follows.

If V; < 1, it holds

product(Vl, Vz) = V] V2 < 1
and

(1-=V)(1-=V2)>0
—(1-=V)(1=Vy)<0
- (1-V)(1-V)<1
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So, also
cproduct(Vy, V5) <1
Therefore

aproduct(V;, V,) =B cproduct(Vy, V) + (1 — B)product(V;, V,)
=Bl = (1 =V))(1 =V2)) + (1 = B)V1 V>
<B+(1-)
=1

CFP4 Monotonicity
A combination function c(..) is monotonic, if higher single impacts result in a higher
aggregated impact:

c(Viy ..oy, Vi) <c(Wy, ..., Wi) whenever V; < W, for all i

All standard combination functions SCF1 to SCF4 above satisfy this property.
However, sometimes combination functions may be relevant that are not mono-
tonic. For example, outdoor circumstances such as temperature and wind speed may
have impact on how happy you feel. Changing from extremely low to a bit higher
these variables may have an increased impact on you being happy. But changing
from there to extremely high temperature and wind speed may have a decreased
impact on you being happy. So, for some combinations of causal relations it may
hold that the higher the single impacts, the higher the aggregated impact (mono-
tonic combination function), but for some other combinations of causal relations it
may be different; for example, there may be single impact levels that generate a
maximal aggregated impact, and both above and below these single impact levels
the aggregated impact is lower. The example

C(Vl, ceey Vk):4(V1+ +Vk)(1—(V1+ +Vk))

of a combination function SCF7 given above models such a situation.
CFPS5 Keeps values within [0, 1]
A combination function c(..) keeps the values of the states X; within the interval
[0, 1], if for Az < 1 and n; < 1 it holds:
0<X;(r) <1 foralli = 0 <X;(r+ Ar) <1 for alli
This property is entailed by two other properties:

CFP2 & CFP3 = CFP5

Any nonnegative combination function which is upward bounded by 1 keeps
any variable within the interval [0, 1], assuming that it starts in that interval. This
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can be shown as follows. When at time ¢ for all activation values it holds
0 < Xy(t) < 1,then for At < landn; < 1,also 0 < Xj(t + At) < 1; see also
Fig. 2.5. Suppose that this combination function is used for a state X; with X, ...,
X, connected toward X;. Then

Xi(t+ Ar) =X;(t) + nyfei(. . ) — Xi(¢)] At
=X;(1) (1 — n;A1) +nyei(. . ) At
>0

Moreover,
Xi(t+ Ar) =X:(¢) (1 — n;Af) + el . ) Az
< (1 —m;At) +n,Ar
=1

As this CFP5 is a convenient property for modeling, often combination functions
are chosen that fulfill this property.

Finally, the following property is shared by all standard combination functions
presented in Sect. 2.6, except for SCF10.

CFP6 Symmetric
A combination function c(..) is symmetric if any permutation of its arguments
provides the same result:

(U, ., U) = ¢(Vi, ., Vi)

when Uy, ..., Uy is any permutation of Vi, ..., V.

2.8 Applying Computational Methods to Model
Representations

Multiple computational methods can be applied to a declarative conceptual or
numerical representation as discussed in the above sections, varying from simula-
tion methods to analysis methods. Examples of applying such computational
methods are shown in Table 2.11.

As a way of applying a computational method to the declarative numerical
description for this example model, these difference equations can be used calculate
for all states (in parallel) for each time point ¢ the values at time point ¢ + Az. For an
example, see Table 2.13 (for time points 0-20), and see Fig. 2.21 for a graphical
representation of the simulation results up to time point 60. In Table 2.13 each row
represents the overall state S at the time point ¢ indicated in the left column. This
state is described by the values for the six different specific states or state properties
distinguished in the model in each of the columns: from world state for stimulus s to
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Table 2.11 Examples of computational methods that can be applied to a temporal-causal network
model

Conceptual representation Numerical representation

Qualitative causal reasoning Forward simulation, backward simulation
Network analysis Verification of equilibria, monotonicity
Conceptual validation Numerical validation

Identification of qualitative personal or Identification of quantitative personal or
contextual characteristics in the context of contextual characteristics in the context of
empirical information empirical information

Conceptual analysis or diagnostics of a Numerical analysis or diagnostics of a process
process

Conceptual planning of actions or Numerical planning of actions or
interventions as part of some application interventions as part of some application

Table 2.12 Matrix representation of the specific example model with simulation shown in
Table 2.13 and Fig. 2.21

to
from WS | ssg SIS SIS, PSa es,

WSy 1

sS4 1

SIS, 0.5

SIS, 0.5

PSa 1 1

es,

nrl - 0.8 0.8 0.8 0.8 0.4

cy(.)] - id() | id() id(.) | sum(.,.) | id()

execution state for action a. In Table 2.8 at each time point ¢ + At all the values of
the corresponding row are calculated based on the values of the previous row for
time point ¢ (which in turn have been calculated in the previous time step).

In this example simulation all connection weights are 1, except that ®respond-
ing = 0.5 and wamplifying = 0.5. Furthermore, Az = 0.5 and the speed factors 1y for all
states X are 0.8, except for the action execution es, which is 1, = 0.4 (actions are
slower than mental processes). The combination functions are as indicated above:
all cx(...) are identity functions id(.) except the combination function cp (...) for the
preparation state ps,, which is a sum function sum(.,.). All these elements are
indicated in the matrix representation in Table 2.12.

The table and graph show that at time 5 stimulus s occurs in the world (and
disappears after time point 35): the icecream. Through the sensing connection this
stimulus s is sensed from time point 5.5 on. Subsequently, through the representing
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Table 2.13 Simulation values from time point O to time point 20 for the model depicted in
Fig. 2.10 (time steps At = 0.5)

connection from time point 6 on a sensory representation for s is developing, which
by the responding connection leads to a preparation state for action a (to get the
icecream) from time point 6.5 on. By the predicting connection the sensory rep-
resentation of the action effect e becomes active (from time point 7 on), which in
turn strengthens the activation of the preparation state for a through the amplifying
connection (from time point 7.5 on). After that through the executing connection,
from time point 8 on the action execution is developing stronger: getting the
icecream.

As an illustration the simple model depicted in Fig. 2.10 was also simulated by
using the advanced logistic function for two of the states: for the action preparation
state ps, and for the action execution state es,. The for ps, was set Gps, = 5 and the
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Fig. 2.21 Simulation example for the model depicted in Fig. 2.10 using identity and sum
combination functions for all states

threshold 1,5, = 1; the steepness for es, was set Te, = 20 and the threshold
Tes, = 0.6; so:

cps, (V1, V2) = alogistics | (Vi, V)
Ces, (V) = alogisticzo’O‘G(V)

Moreover, this time all connection weights were made 1, also the connections to
the preparation state ps,. In Fig. 2.22 the results are shown. As can be seen the
curves for the preparation and execution states for the action shown increases and
decreases that are a bit more steep than in Fig. 2.21 where sum and identity
combination functions were used for them.

1.2

world state for s

sensor state for s

== sensory representation for s
pi state for action a

08 ff Wf \\\X\ e
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Fig. 2.22 Simulation example for the model depicted in Fig. 2.10 using advanced logistic sum
combination functions for preparation and execution states



2.9 Applicability of the Modeling Perspective 85

2.9 Applicability of the Modeling Perspective

The scope of applicability of the Network-Oriented Modeling approach covers
mental processes described by causal networks of mental states, social (interaction)
processes described by social network models, and more. In fact any scientific area
in which causal relations are used to describe theories, hypotheses and findings falls
within the scope of applicability. This covers practically all scientific domains, as
causal explanation is used as a main vehicle almost everywhere in science. In this
section first in Sect. 2.9.1 the notion of state-determined system is discussed in
some more detail. Next, it is discussed in Sect. 2.9.2 how any smooth continuous
state-determined system can be represented by a set of first-order differential
equations and vice versa. Finally, in Sect. 2.9.3 it is discussed how any smooth
continuous state-determined system (and therefore any model represented by a set
of first-order differential equations) can be modeled by the temporal-causal network
format described in Sects. 2.4 and 2.5.

2.9.1 The State-Determined System Assumption

Recall from Chap. 1, Sect. 1.5 that the notion of state-determined system, adopted
from Ashby (1960) was taken as the basis to describe what a dynamical system is in
van Gelder and Port 1995, p. 6. That a system is state-determined means that its
current state always determines a unique future behaviour. This property is
reflected in modeling and simulation. Three features in particular are (van Gelder
and Port 1995):

e The future behaviour cannot depend on states the system might have been in
before the current state: past history only can make a difference insofar as it has
left an effect on the current state. This means that if you want to make a
prediction on a next state, for example by simulation, only the information from
the current state is needed, not from earlier states.

e That the current state determines future behaviour implies the existence of some
rule of evolution describing the behaviour of the system as a function of its
current state. The idea is that this rule can be specified in some reasonable
succinct and useful fashion. The format introduced in Sects. 2.4 and 2.5 is an
example of a format in which such rules of evolution can be expressed.

e That future behaviours are uniquely determined means that state space
sequences can never fork. This means that when a next state is determined out of
a current state, there is only one outcome.

The possibility of a choice of a proper set of state properties is the crucial factor to
obtain a state-determined system that is practically usable. The validity of the
assumptions underlying the Dynamical Systems Theory depends on the existence of
such sets. For example, if to obtain a proper state-determined system to study some
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mental process, all states of the universe (including, for example the positions of all
planets and stars and even the mental states of all other humans) are needed, then for
practical purposes this perspective is useless. The truth is that, even for those who
believe in science, for example, concerning Newton’s gravitation laws, even for the
application of such solid monumental laws, in principle all mass and positions from
the universe have to be taken into account, which obviously is infeasible. But in
practice, only mass that is not very far away is incorporated in a model, which then in
fact provides an approximation. If such an approximation is accurate enough (ob-
jects very far away have some effect, but this is a very small effect), then still a useful
outcome can be obtained. So, more in general, usually an additional kind of locality
assumption is made that to model a specific process (and not the whole universe), a
limited set of state variables can be found to get a state-determined system. In Ashby
(1960), such a hypothesis is expressed as follows:

Because of its importance, science searches persistently for the state-determined. As a
working guide, the scientist has for some centuries followed the hypothesis that, given a set
of variables, he can always find a larger set that (1) includes the given variables, and (2) is
state-determined. Much research work consists of trying to identify such a larger set, for
when it is too small, important variables will be left out of the account, and the behaviour of
the set will be capricious. The assumption that such a larger set exists is implicit in almost
all science, but, being fundamental, it is seldom mentioned explicitly (Ashby 1960, p. 28).

In this section it will be analyzed in some more depth in what formats in general
state-determined systems can be described adequately. It will turn out that one such
format is by sets of first-order differential equations, and another adequate format is
the temporal-causal network format described in Sects. 2.4 and 2.5.

2.9.2 State-Determined Systems and First-Order Differential
Equations

State-determined systems can be specified in mathematical formats; see (Ashby
1960, pp. 241-252) for some details. In the first place a finite set of states Xi, ..., X,
is assumed describing how the system changes over time via functions X(z), ...,
X,(t) of time . The criteria for state-determined system can be formalized in a
numerical manner by a relation (rule of evolution) that expresses that for each time
point ¢ the future value of each state X; at time t + s uniquely depends s and on
Xi(t), ..., X,(t) and hence can be described via some function Fy(Xj, ..., X,, s) in the
following manner (see also Ashby 1960, pp. 243-244):

X,‘(l—i-s) = Fi(Xl (l), .. .,Xn(l‘),S) fors >0
Assuming continuous processes and smoothness (being differentiable) of the

functions X,(¢) and F;, these relations can be reformulated (see Box 2.1) into a set of
first order differential equations of the form
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Suppose a smooth continuous state-determined system is given. A sketch of
why it can be described by a set of first-order differential equations is as
follows. For any given time point ¢ the future states X,(r+s) at some future
time point time #+s purely depend on s and the states X,(#) at ¢. This can be
described by (smooth) mathematical functions Fy(...):

Xi(t+s) = F,'(X] ([)7 50 o Xn(l), S) fors> 0
In the particular case of s = 0 it holds

Xi([) = Fi(Xl([)v B Xn(t),o)

Subtracting these two expressions above and dividing by s provides:

Xi(t+s) — Xi(0)] /s = [Fi(X1(2), - .., Xu(2), s) — F(X1(2), ..., Xu(2),0)] /s

When the limit for s very small, approaching O is taken, it follows that

dX;(z)/dt = [OF;(X1(2), . .., Xu(2),5)/0s]._,

Now define the function fy(X, ..., X,,) by

fi(Xla ce ey Xn) = [8Fi(X1, ceey Xm s)/as]szo

Then it holds

dX;(¢)/ds = f;(X:(2), - .., Xu(2))

This shows that the given state-determined system can be described by a
set of first-order differential equations.

Box. 2.1 Why a smooth continuous state-determined system can be represented by
a set of first-order differential equations

dX;(¢)/dr = fi(Xa (1), ..., Xu(2))

for some functions fi(X1, ..., X,,) (see also Ashby 1960, pp. 244-246). Note that X;
may also occur in f(Xy, ..., X,).
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Conversely, such a set of first-order differential equations always describes a
state-determined system. So for the smooth continuous numerical case,
state-determined systems are the systems that can be described by sets of first-order
differential equations (Ashby 1960, p. 246).

2.9.3 State-Determined Systems and Modeling Based
on Temporal-Causal Networks

Sets of first order differential equations form a very general format used in com-
putational modeling in many disciplines. However, also in many disciplines, pro-
cesses are described and explained in terms of causal relationships. It would be
helpful for understanding to relate these two perspectives in a transparent con-
ceptual and mathematical manner. This will be discussed here.

For cognitive and neurological modeling in particular, often causal relationships
are used in explaining mental processes (of the type partly depicted in Fig. 2.1). But
also in many other domains, in a wide variety of scientific disciplines causal
relationships play a crucial role. An example is the perspective called System
Dynamics (e.g., Forrester 1973, 1987) in which at a basic conceptual level pro-
cesses are described by means of graphs with states and arrows indicating causal
relationships. In this context it will be useful if it can be explained more explicitly
how any state-determined system can be described or transformed into a format that
more directly relates to causal relationships between states. This indeed can always
be achieved in the format of Sects. 2.4 and 2.5 (when arbitrary combination
functions are allowed), in the manner shown in the following. Note that below in
the current Sect. 2.9.3 (see Fig. 2.23), and also in Sect. 2.10 specific examples can
be found of such a transformation.

In a state-determined system the changes in each state S depend on the other
states. Those states R that actually play a role in this dependence relation form a
subset Dg of the set of all states (in some special cases this subset may be the set of
all states). The states R not in this subset Dy are those states for which never any
state change of R has influence on a change of the state of S. The states in this

Fig. 2.23 Conceptual graph
representation for the example X,
model based on the given
differential equation

representation
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subset Dg can be considered to cause the changes in the state S. Such causal effects
of states on each other by causal relationships can be visualized in a graphical
manner as a conceptual representation of a temporal-causal network model such as
shown in Sect. 2.4, for example, in Fig. 2.3. Such a network model can be simply
defined by the following criterion: for any state R and any state S there is a
connection from R to S if and only if R €Ds. This provides a conceptual repre-
sentation of the state-determined system as a causal graph.

This can also be done at the level of the numerical representation on the basis of
a set of differential equations representing the state-determined system. Suppose a
differential equation for one of the states X; is given of the form:

dXi(t)/dt :f;(Xl (t)v B Xn(t))

Then this function fi(X,(t), ..., X,(t)) will depend on a subset Dy, of the set of
states {Xj, ..., X,,}. Note that X; may occur in Dyx,. Usually this function f; will be
given as a formula in X/, ..., X,;; then this subset can be taken as the set of all states
in {Xy, ..., X,,} that actually occur in this formula. Again, for any two states X; and
X; with j # i a causal connection from X; to X; can be defined by the criterion that
X; €Dx,. Moreover, by defining the function 4(Xj, ..., X,) by

hi(Xy, .. X)) =Xi+fi(X, .. X))

the above differential equation for X; always can be rewritten into a differential
equation of the form

dXi(r)/dt = [hi(Xi (1), - - ., Xa(1)) — Xi(1)]

for some function h,(X,(), ..., X,(t)). This form is a specific case (forn; = 1) of a
more general model of the form

dXi(t)/dt = ni[hi(Xl (l), .. .,Xn(l‘)) — X,(f)]

where the parameter 1); indicates a speed factor for state X;. Note again that X; may
occur in h(Xy, ..., X,).

The obtained causal network model can be generalized further by incorporating
more structure by introducing as additional parameters specific nonzero weight
values w;; for the causal connections from X; to X;. In that case the function A;(X;,
..., X,,) can be considered a combination function c¢,(Xy, ..., X,,), where for this case
for the connection weights it holds w;; = 1. Then the format found above can be
considered as a specific case (for w;; = 1) of the still more general model of the
form

dX;(1) /dt = n;fci(@1: X1 (1), - . ., 0, Xa (1)) — Xi(2)]
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So, having started with any arbitrary continuous, smooth state-determined sys-
tem and its representation

dXi(1)/dr = fi(Xi (1), ..., Xu(2))

in differential equation format, finally a numerical representation of a
temporal-causal network model according to Sect. 2.5 was obtained in the form:

dX,'(l‘)/dl = T]i[ci(wl.ixl (t)a .. wmmixll(l)) - Xi(t>]

with ¢(Vy, ..., V4) a combination function, and 1; and ®;; parameters for a speed

factor and connection weights. The original state-determined system description is a

special case of this temporal-causal network model for settings n; = 1 and w;; = 1.
A discrete variant of this is the following difference equation:

Xi(t+ A1) = Xi(1) + nylci(@1,X1 (1), - - 00, X(1)) — Xi(1)] At

These differential and difference equation formats can be transformed into a
conceptual representation of temporal-causal network models in the manner shown
in Sects. 24 and 2.5 above. This shows that any continuous smooth
state-determined system can be described by a specific temporal-causal network
model as defined in Sects. 2.4 and 2.5, as long as any type of combination function
is allowed.

As an illustration, consider an arbitrary example of a model described in by a
numerical first-order differential equations representation:

3
Xy (1) (1 — X5(2))

=
~
~
(=7
153
I

i
~

|

)
)
1) (1= X3(1))
)
)

To determine the conceptual representation for this temporal-causal network
model, the five states X;, X5, X3, X4, X5 are considered. From each of the equations
by inspecting which states occur in the right hand side it can subsequently be
determined that

Xs affects X
X;and X3 affect Xp
X> affects X3

Xzand X5 affect X4
X4 affects X5
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These causal connections can be represented in graphical form as shown in
Fig. 2.23, and in the matrix representation as shown in Table 2.14.

Note that, when comparing, for example, the first differential equation to the
format defined in Sect. 2.5, it can be written as

dX, (1)/dt =X, (1)(Xs5(1) — 1)
=X1(6)(X5(1) = 1) + X1 (1) — Xu (1)
=[[X1 (1) (X5 (1) — 1) + X1 (1)] =X (1)]

Here the part (X;(t) (X5(t) — 1) + Xi(t)) can be considered the result of a com-
bination function

cx, (Vi,Vs) = Vi+Vi(Vs — 1)

applied to Xi(t) (for V;) and Xs(z) (for Vs). In a similar manner the following
combination functies can be identified from the differential equations

CX](V17 VS) =V +V1(V5 — 1) =VVs
CXZ(Vl,Vg,V3) =V,+Vi—Vo4+V; =Vi+V

cx, (Va, V3) =V + V(1 - V3) =W+V; =W
cx,(Va,Va,Vs) =Va+V3—V4(1 =Vs) =V3+V4Vs
CXS(V4, Vs) =Vs+Vs(l = Vy) =2V5s — V4Vs

Note that these combination functions are not symmetric.
So, in this case the combination functions are built from sum and product
functions. Using these functions the differential equations become:

Table 2.14 Matrix representation for the example model based on the given differential equation
representation

fr;(l)n X X X3 Xy X

X 1 1

X, 1 1

X3 1 1 1

X, 1 1

X; 1 1 1

Ny 1 1 1 1 1
cy(...) ViVs Vit Vs [N+ Va-Vols| Vs+Vals | 2Vs- Vils
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Table 2.15 Matrix representation for the general model subsuming the model based on the given
differential equations

- X X, X X, X5
Xi Oxy, X Ox1,%
X Wy, x, Wy, Xy
X5 D3, % D3, %3 Oxs, Xy
X, Oxy, Xy Oxy, X5
Xs Oy, x; Oy, x, Wy x5
Ny Mx, Nx, Nix; N, MNxs
cy(.) ]| ex (V1. Vs) ex (V1. Ve ey (M2, V3) ex(Vs: Vi cx(Va, V5)
V3) Vs)

This is the numerical representation of a temporal-causal network model as
described in Sect. 2.5 with ny, =1 for all i and wy,x, = 1 for all i and j with
connected states. It turns out that the model described by the differential equations
representation is a special case of the numerical representation of the more general
temporal-causal model described by the following differential equations:

dX; (1) /dt =y, [ cx, (ox, x, X1 (1), 0x; x,X5(1)) — X1 (1)]
dXo (1) /dt =ny, [ cx, (ox, x,X1(7), 0x, x, X2 (1), 0x, x,X3(1)) — X2(1)]
dX;(1)/dt =ny, [ cx, (ox, x,X2(1), 0x, x,X3(1)) — X3(1)]
dXy(z)/dt =ny,[ cx, (ox, x,X3(t), 0x, x,Xa (1), 0x; x,X5(1)) — Xa(1)]
dXs(1)/dt =y, [ cx, (ox, x;Xa (1), 0x; x,X5(1)) — X5(1)]

In matrix representation this more general model representation is described in
Table 2.15.

2.10 Modeling Adaptive Processes by Adaptive
Temporal-Causal Networks

Dynamical systems usually are described in a format in which a number of pa-
rameters represent some of the characteristics of the context they describe. For
example, in the temporal-causal network format described in Sects. 2.4 and 2.5
such parameters can take the form of the connection weights and speed factors, and
perhaps parameters in the combination functions used such as threshold and
steepness parameters in logistic sum functions. Also in the general differential
equations format usually a number of such parameters are included in functions in
the right hand side of these differential equations. In principle such parameters have
specific constant values for a given scenario, and these values represent the
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characteristics of persons, social interactions and other contextual aspects in such a
scenario. By varying these constant values different scenarios can be obtained (in
each of which these values can be different but do not change over time). Such
scenarios can be used to explore different situations, for example, different per-
sonality types of humans.

However, sometimes the modeled processes are adaptive in the sense that
characteristics represented by such parameters can change over time as well, for
example, as a result of learning. To deal with such adaptive behavior it is needed to
interpret these adapting parameters as states that can change (i.e., as variables and
no longer as parameters) and consider the resulting system as the dynamical system
to be considered. To consider their dynamics, parameters conceptually have to be
considered as states that change over time as well. This will be illustrated here for
one specific case: the way in which connection strengths can change based on
Hebbian learning. In Chap. 11 a similar type of adaptivity will be illustrated for
adaptive social network models.

Hebbian learning (Hebb 1949), is based on the principle that strengthening of a
connection between neurons over time may take place when both states are often
active simultaneously (‘neurons that fire together, wire together’); see also
Fig. 2.24. The principle itself goes back to Hebb (1949), but over time has step by
step gained more interest in the area of computational modeling due to more
extensive empirical support (e.g., Bi and Poo 2001), and more advanced mathe-
matical formulations (e.g., Gerstner and Kistler 2002).

More specifically, in the example model considered here it is assumed that the
strength ®; , of such a connection between states X; and X is adapted using the
following Hebbian learning rule, taking into account a maximal connection
strength 1, a learning rate n > 0, and an extinction rate { > 0 (usually small), and
activation levels X;(z) and X,(z) (between O and 1) of the two states involved. The
first expression is in differential equation format, the second one in difference
equation format

do (1) /dt =N X ()X2(7)(1 — @12(1)) — Cor2(2)
0121+ Af) = 012(8) + M X1 ()X2(£) (1 — @12(7)) — oy 2(2)] At

Fig. 2.24 Hebbian learning
principle
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Such Hebbian learning rules can be found, for example, in Gerstner and Kistler
(2002), p. 406. By the factor 1 — ; the learning rule keeps the level of w;,
bounded by 1. When the extinction rate is relatively low, the upward changes
during learning are proportional to both X;(z) and X,(#) and maximal learning takes
place when both are 1. Whenever one of these activation levels is O (or close to 0)
extinction takes over, and m;, slowly decreases, if { > 0. If { = 0 no extinction
takes place, then m;, will never decrease.

It will be discussed how this can be modeled alternatively by considering the
connection weight ®;, as a state that changes over time, represented by a node
Q). Note that this is an example of the transformation discussed for the general
case in Sect. 2.9.3.

As afirst step an extra node for the state representing o,  is added; see Fig. 2.25
and Table 2.16. This state, named €, ,, is affected by both X; and X, due to the
learning, so connections from these states to Q,;, are needed. Moreover a con-
nection from Q; , to X, is needed to represent the effect of the connection strength
on X,.

The weights of all of the connections from and to state Q, , are assumed 1. As a
next step it is explored what combination functions are needed for Q, , and X, in
this new situation depicted in Fig. 2.25. Suppose the previous situation depicted in
Fig. 2.24 is described by the combination function c(Vy, V,) for X, which is
applied to the impacts ®; »(#)X;(¢) and ®;,X3(¢) from X; and X3 on X; of the form

Co (0)112(t)X1 (l‘)7 32 X3 ([))
to obtain the difference equation for X,
Xz(l‘ + Al) = Xz(l‘) + 1]2[02(0)172(1‘))(1 (l‘)7 0)372X3(l‘)) — Xz(l‘)}At

In the new situation depicted in Fig. 2.25 the weight o, is represented by a
state Q; , which changes over time, with activation values € »(¢) the same as the

Fig. 2.25 Hebbian learning
principle with a state Q ,
representing a dynamic
connection weight
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connection weight values ®; 5(#) in the old situation for each #: Q, 5(?) = ®12(?).
Now there are not two but three states with impact on X5, namely X; X; and Q, ».
This requires a combination function c’,(Vy, V,, W) for X, with three arguments,
which is applied to the impacts X (z), m3, X3(2) and Q; »(f) on X,, of the form

h(Xa (1), 32X5(1), Qi 2(7))
to obtain the difference equation for X,
Xo(t+ At) = Xa (1) + M [ch (Xa (1), 3 2X5(1), Qi 2(7)) — Xa(1)] At

This impact ¢'>(Xx(1), 03, X5(2), ) 2(1)) is the same as the impact co(®; »(H)X(2),
3 X3(t)) in the previous model representation depicted in Fig. 2.24:

¢ (X2 (1), 32X3(1), Qi 2 (1)) = ca@12(1)Xa (), @32X5(7))

So, recalling that Q; »(?) = w1 »(?) for all ¢, the new combination function can be
defined as

C,Z(Vl, Vz, W) = CQ(W Vl, Vz)
For example, if c,(V}, V>) is the sum function V| + V5, then
CIQ(Vl, V2, W) = WV] +V2

which is a combination of a product and a sum function. Alternatively, if, for
example, c,(Vy, V) is the simple logistic sum function slogistic(V;, V), then

b (V1, Va, W) = slogistic(W V;, V,) = 1/(1 + e oWV +V2=7))

Note that these combination functions ¢’,(Vy, V,, W) are not symmetric.

Next, the combination function for the state Q , is identified that aggregates the
impacts of X; and X, on o, . The difference equation for the connection weight m; »
can be rewritten into one for the state Q, 5 (with Q, »(?) = ®, »(¢) for all 7) as follows

Qa(t+ A1) =Qi (1) + M X1 ()X () (1 — Qu2(2)) — {Q,(1)]Ar
=Q(0)+ MX1()X2(2)(1 — Q2(r)) — {2y 5(1) + Qi 2(1) — Qi 2(r)]Ar
=Qi(0) + M X1 ()X (1) (1 = Qu2(1) + (1 = §)Qu2(f) — Qua(1)]Ar

From this it follows that the combination function cq , (Vi, V,, W) for the state
Q, » should satisfy

ca,, (X1(2), Xa(1), Q12(1)) = X1 ()X2 (1) (1 = Qu2(2)) + (1 = §)Qu 2 (1)



96 2 A Temporal-Causal Network Modeling Approach

Table 2.16 Matrix representation for the Hebbian learning principle with a state Q, »

. X X, X, Qi
X Oy, x, Dx.01,
X, Ox,.01
X3 Wy, X,
Qi Wa 5, x, W00,
Ny Ny Nx, Ny Moo
cy(..) | eV Vs)  |ex,(Vi, Vo, V3) | cxy(Va, V3) | cqyo(Vs, Va, Vs)

So, the speed factor 1g, , can be assumed 1 and the combination function for the
description in Fig. 2.25 can be defined as:

CQI.Z(V17 Va2, W) =N V1V2(1—W) + (1 _ C)W

This function is a linear combination of sum and product functions. Note that
this is an example of a combination function in which an impact of the state Q, , on
itself is included and aggregated; in the graph, this can be indicated by an arrow
from Q; , to itself. Moreover, note that this combination function is not symmetric
and has two parameters 1 and . In Table 2.17 the instantiated matrix representation
of the generic one shown in Table 2.16 is shown.

As an alternative option (shown in Table 2.17), it is possible to assign weights to
the two upward connections indicating links to the state Q; »: as a value v can be
chosen or more general, n; and 1, with 1 = nnp:

Qua(t+ A1) =Qo(8) + [nMa X1 (1) X2 (1) (1 = Qu2(1)) + (1 = §)Qu 2 (1) — Qua(1)]Ar
=Q (1) + [(M X1 (1)) (X2 (1) (1 = Qu2(2)) + (1 = Q12 (1) — Qua(1)]Ar

In this case:
CQI‘Z(VI, V27 W) = V]VZ(I—W) +(1 — C)W

This is shown in Table 2.18.

Table 2.17 Instantiated matrix representation for the Hebbian learning principle with a state Q; »

to
from Xi X X5 Qi
Xi 1 1
X, 1
X3 Wy, X
Q,, 1 1
Ny MNx, 1
cy(...) WVi+V, NV, 1-w)+1-Ow




2.10 Modeling Adaptive Processes by Adaptive Temporal-Causal Networks 97

Table 2.18 Instantiated matrix representation for the Hebbian learning principle with a state Q; ,
with connections to Q, , not 1

el B¢ X X Q0
X 1 ufl
X M2
X3 Wy, x,
Q. 1 1
Ny Nx, 1
cy(...) WVi+V, _I:l;/lz_g;VW)

Yet another option is to also involve the extinction rate { as a weight 1 — { of
another connection from Q , to Q, itself:

Qua(t+ A1) = Qia(1) + [(M X1 (1)) (M2Xa (1)) (1 = Qi2(2)) + (1 = §)Qu2(1))
— Q]ﬁz(l)]Al

with combination function for the four impacts on Q;, of which the last two
(indicated by the variables W, and W,) are impacts from Q,, itself (without
parameters this time):

ca,,(Vi, Vo, Wi, Wa) = ViVo(1-Wy) + W,

This expresses that the state Q, 5 is assumed to have some persistence, relating to
the extinction rate . Once it has some level, in principle it will keep this level, only
extinction can make it (slowly) decrease. This can be modeled by assuming an
additional connection with weight 1 —  from the state Q 5 to itself, in addition to
the connection from Q, , to itself (with weight 1, shown in Fig. 2.25); see Fig. 2.26
and Table 2.19 for the new variant.

A slightly more sophisticated approach takes into account that at least some acti-
vation of state X; should occur prior to activation of X,. This can be modeled by adding
an extra state X, that becomes active upon activation of X; and which is needed for
activation of Q, : it can be considered to indicate openness for learning; see Fig. 2.27.

In this section Hebbian learning was used as a basis for a case study of an
adaptive network model. It was shown how as an alternative way of modeling the
dynamic connection weights themselves can become states in the temporal-causal
network model. In Chap. 11 it will be discussed how in similar manners adaptive
social network models can be used to model social interaction.
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Fig. 2.26 Hebbian learning principle with a state Q, , representing a connection weight and two
connections to itself

Table 2.19 Instantiated matrix representation for the Hebbian learning principle with a state Q, ,
with double connections from Q , to itself

fr(;(r)n i X2 X3 Qi
X 1 n
X;
Xj or N2
Q2 1 1}§
Nr MNx, 1
cr(.) WV + Vs ViVa(l— W) + W,

Fig. 2.27 Hebbian learning principle with an extra state for prior openness for learning
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2.11 Discussion

The dynamic Network-Oriented Modeling approach based on temporal-causal
networks discussed in this chapter and also presented earlier in Treur (2016)
enables to design complex high level conceptual representations of temporal-causal
network models, which can be systematically or automatically transformed into
executable numerical model representations. The models are declarative; compu-
tational methods for simulation or analysis can be applied to them, but are inde-
pendent of the model descriptions themselves. Dedicated software is available to
support designing models in a conceptual manner (in graphical or matrix format).
Moreover, using this software such conceptual representations can automatically be
transformed into numerical representations in an executable format as a basis for
performing simulation experiments.

In this chapter also the applicability has been discussed. In applications in many
disciplines often state-determined systems are considered; e.g., (Ashby 1960; van
Gelder and Port 1995). Following (Ashby 1960) it has been discussed how any set
of first-order differential equations can be represented as a smooth state-determined
system and conversely. Moreover, it was discussed how the temporal-causal net-
work modeling approach can model any smooth state-determined system. This
shows that the wide variety of applications based on state-determined systems (or
first-order differential equations) all are covered.

The Network-Oriented Modeling approach based on temporal-causal networks
used makes it easy to take into account theories and findings about dynamics of
processes from any scientific discipline, as commonly such processes are described
in terms of causal relations. In particular, this applies to complex brain processes
known from Cognitive, Affective and Social Neuroscience, which often involve
complex dynamics based on interrelating cycles. It enables to address in an inte-
grative manner complex cognitive, affective and social phenomena such as
dynamics related to social interactions, the integration of emotions within cognitive
processes, internal simulation of external processes, mirroring of mental processes
of others, and Hebbian learning; e.g., (Hebb 1949, Gerstner and Kistler 2002;
Keysers and Perrett 2004; Keysers and Gazzola 2014).

It has been discussed how the approach relates to perspectives in Philosophy of
Mind (e.g., Kim 1996), in particular to the notion of causal or functional role of a
mental state, and how based on this notion networks of mental states can be used to
model mental processes (see also Chap. 1). Furthermore, it has been discussed in
Chap. 1 how such an approach relates to the philosophical perspective on dynamics
in the world that is indicated as the clockwork universe; e.g., (Descartes 1634;
Laplace 1825). This perspective relates to the notion of state-determined system;
e.g., (Ashby 1960). The approach has been applied in a variety of domains, a
number of which can be found in subsequent chapters.
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Part 11
Emotions All the Way



Chapter 3
How Emotions Come in Between
Everything

Emotions Serving as Glue in All Mental and
Social Processes

Abstract Within Cognitive, Affective and Social Neuroscience more and more
mechanisms are found that suggest how emotions relate in a bidirectional manner to
many other mental processes and behaviour. Based on this, in this chapter it is explored
how a Network-Oriented Modeling approach can be used to model the dynamics and
interaction of emotions. Using this approach it is illustrated by temporal-causal net-
work models, for example, how emotions relate in a reciprocal manner to feelings,
beliefs, desires, experiences, decision making, and to emotions of others.

3.1 Introduction

From the beginning Artificial Intelligence has addressed the modeling of cognitive
processes behind intelligence. The original practice was that emotions were not
taken into account in such models (for example, see Feigenbaum 1969).
Presumably they were avoided since intelligence was aimed to be modeled in an
idealised manner, and emotions were assumed to disturb that ideal. However, even
in that time from the cognitive area it was pointed out that this was a serious
omission when human intelligence is aimed at. For example, Neisser (1963) and
Simon (1967) formulate this as follows:

Needs and emotions do not merely set the stage for cognitive activity and then retire. They
continue to operate throughout the course of development. Moreover, they do not remain
constant but undergo growth and change of their own, with substantial effects on intel-
lectual activities (Neisser 1963, p. 196).

Information processing theories, however, have generally been silent on the interaction of
cognition with affect. Since in actual human behavior motive and emotion are major
influences on the course of cognitive behavior, a general theory of thinking and problem
solving must incorporate such influences (Simon 1967, p. 29).

This situation in Artificial Intelligence has substantially changed in recent years.
Currently, for conferences on Al, often modeling of emotions is one of the topics
mentioned in their calls. One of the reasons for this change is the nowadays more
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recognized need for human-like models, for example as a basis for virtual agents, or
in Ambient Intelligence applications. Another reason for this change is the growing
awareness fed by the strong development of neuroscience that in human-like
models emotions cannot be neglected, as they play a role in most human processes,
and this role often provides a constructive, and not a disturbing contribution. This
widened scope of Al provides a multitude of new types of research questions that
can be explored using computational modeling methods. Examples of such ques-
tions are:

Does a feeling affect an expressed emotion or the other way around?

In which way is it possible to control emotion?

How does desiring relate to feeling?

In how far do sensing and believing relate to feeling?

How does having experiences over time relate to experiencing emotions?

Can you make an adequate decision without feeling good about it?

In how far is an individual in a group free in having own emotions?

Why do groups with individuals with initially different preferences often come
to common decisions and all members feel good with these decisions?

As discussed in Chap. 1, Sects. 1.2 and 1.3, structures and mechanisms found in
neuroscience suggest that cyclic connections play an important role in many of the
brain’s processes. This holds in particular for the way in which emotions play their
role. Emotions and feelings can be considered as being part of a number of inter-
related adaptive and regulatory cycles, and based on these cycles emotional states
emerge over time, and affect many other human processes. Examples of such types
of cycles are emotional response—feeling cycles (e.g., Damasio 1999, 2010),
emotion regulation cycles (e.g., Gross 1998; Goldin et al. 2008), cognitive-affective
cycles (e.g., Phelps 2006; Pessoa 2008), and social contagion cycles (e.g., lacoboni
2008; Hatfield et al. 2009). More advanced models for emotions and their role in
mental functioning may involve a multiple of such types of cycles, that have to be
integrated. One example of this further integration is described in Aziz et al. (2011)
where an emotion regulation cycle is integrated with a social interaction cycle. As
another example, in Hoogendoorn et al. (2011) and Bosse et al. (2012a)
cognitive-affective cycles are integrated with social interaction cycles.

In the chapter, in subsequent sections, for a number of processes in which
emotions play an important role it is discussed how the Network-Oriented
Modeling perspective based on temporal-causal networks described in Chap. 2 can
be applied. To get the idea of designing models according to this Network-Oriented
Modeling approach, the emphasis in this chapter is on the design of the conceptual
representations of these models, and on the generation of the numerical represen-
tations from these conceptual representations, and not on performing simulation
experiments with them. The latter will be addressed in subsequent chapters for
some specific models involving emotions. The chapter provides a unifying survey
of a perspective for which different instances can be found in specific applications
in the literature.
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First, in Sect. 3.2 the cycle between emotional response and feeling is addressed,
after which in Sect. 3.3 emotion regulation is discussed. Furthermore, in Sect. 3.4
the interaction between cognitive and affective states is discussed, and in Sect. 3.5
the role of emotion-related valuing in decision making. Finally, emotions in social
contagion processes are addressed in Sect. 3.6. The chapter closes with a discussion.

3.2 Generating Emotional Responses and Feelings

The question on the direction of causality between feeling and emotional response
has a long history. A classical view on emotions is that based on some sensory
input, due to internal processing emotions are felt, and based on this they are
expressed in some emotional response (e.g., a body state such as a face expression):

stimulus — sensory representation — felt emotion — preparation for bodily changes —
expressed emotion

James (1884) claimed a different direction of causality (see also Damasio 2010,
pp. 114-116):

stimulus — sensory representation — preparation for bodily changes — expressed emotion
— felt emotion

The perspective of James assumes that a body loop via the expressed emotion is
used to generate a felt emotion by sensing the own body state. Damasio made a
further step by introducing the possibility of an as-if body loop bypassing actually
expressed bodily changes (Damasio 1994, pp. 155-158; see also Damasio 1999,
pp. 79-80; Damasio 2010):

stimulus — sensory representation — preparation for bodily changes — felt emotion

An as-if body loop describes an internal simulation of the bodily processes,
without actually affecting the body, comparable to simulation in order to perform,
for example, prediction, mindreading or imagination; e.g., Becker and Fuchs
(1985), Goldman (2006) and Hesslow (2002). Damasio (1999, 2010) distinguishes
an emotion (or emotional response) from a feeling (or felt emotion). A brief survey
of Damasio’s ideas about emotion and feeling can be found in Damasio (2010,
pp. 108-129). According to this perspective emotions relate to actions, whereas
feelings relate to perceptions of own body states:

Emotion and feeling, albeit part of a tightly bound cycle, are distinguishable processes. (...)
Emotions are complex, largely automated programs of actions concocted by evolution. The
actions are complemented by a cognitive program that includes certain ideas and modes of
cognition, but the world of emotions is largely one of actions carried out in our bodies, from
facial expressions and postures to changes in viscera and internal milieu. Feelings of
emotion, on the other hand, are composite perceptions of what happens in our body and
mind when we are emoting. As far as the body is concerned, feelings are images of actions
rather than actions themselves; the world of feelings is one of perceptions executed in brain
maps. (...) While emotions are actions accompanied by ideas and certain modes of
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thinking, emotional feelings are mostly perceptions of what our bodies do during the
emoting, along with perceptions of our state of mind during that same period of time
(Damasio 2010, pp. 109-110).

Seen from a neural perspective, the emotion-feeling cycle begins in the brain, with the
perception and appraisal of a stimulus potentially capable of causing an emotion and the
subsequent triggering of an emotion. The process then spreads elsewhere in the brain and in
the body proper, building up the emotional state. In closing, the process returns to the brain
for the feeling part of the cycle, although the return involves brain regions different from
those in which it all started (Damasio 2010, p. 111).

The emotion and feeling in principle mutually affect each other in a bidirectional
manner: an as-if body loop usually occurs in a cyclic form by assuming that the
emotion felt in turn affects the prepared bodily changes; see, for example, in
Damasio (2010, pp. 119-122):

emotion felt — preparation for bodily changes

A brief survey of Damasio’s ideas about emotion and feeling, and the ‘tightly
bound cycle’ between them can be found in Damasio (2003, pp. 91-92) and
Damasio (2010, pp. 108-129); for example:

The brain has a direct means to respond to the object as feelings unfold because the object
at the origin is inside the body, rather than external to it. The brain can act directly on the
very object it is perceiving. It can do so by modifying the state of the object, or by altering
the transmission of signals from it. The object at the origin on the one hand, and the brain
map of that object on the other, can influence each other in a sort of reverberative process
that is not to be found, for example, in the perception of an external object. (...)

In other words, feelings are not a passive perception or a flash in time, especially not in the
case of feelings of joy and sorrow. For a while after an occasion of such feelings begins —
for seconds or for minutes — there is a dynamic engagement of the body, almost certainly in
a repeated fashion, and a subsequent dynamic variation of the perception. We perceive a
series of transitions. We sense an interplay, a give and take (Damasio 2003, pp. 91-92).

So, an as-if body loop usually occurs in a cyclic form by assuming that the emotion
felt in turn affects the prepared bodily changes (see also Fig. 3.1, lower part):

emotion felt = based on sensory representation of (simulated) body state b — preparation
for body state b = emotional response

For emotions Damasio describes the following biological substrate:

Emotions work when images processed in the brain call into action a number of
emotion-triggering regions, for example, the amygdala or special regions of the frontal lobe
cortex. Once any of these trigger regions is activated, certain consequences ensue —
chemical molecules are secreted by endocrine glands and by subcorticol nuclei and
delivered to both the brain and the body (e.g., cortisol in the case of fear), certain actions are
taken (e.g., fleeing or freezing; contraction of the gut, again in the case of fear), and certain
expressions are assumed (e.g., a face and posture of terror) (Damasio 2010, p. 110).

Note that here a role of the amygdala is indicated in the process of generating an
emotion, whereas in earlier times often the amygdala was related to feelings. In
contrast, Damasio describes the substrate for feelings as follows:
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sensor state sensory representation preparation state
for stimulus s for stimulus s for b

O

»( )
representing A responding

amplifying
feeling

feeling
state for b

Fig. 3.1 Graphical conceptual representation of a temporal-causal network model for generating
emotions and feelings based on a cyclic as-if body loop

In the late 1980s I hypothesized a role for the somatosensory cortices in feelings, and 1
pointed to the insula as a likely provider of feelings. I wanted to move away from the
hopeless idea of attributing the origin of feeling states to action-driving regions, such as the
amygdalae (Damasio 2010, p. 118).

At that time this idea had a rather hypothetical character, and was not the
accepted view. This changed after 2000:

Since 2000, however, we have known that activity in the insula is indeed an important
correlate for every conceivable kind of feeling (...) The idea that the insular cortex is an
important substrate for feelings is certainly correct. (...) The anterior cingulate cortex tends
to become active in parallel with the insula when we experience feelings. The insula and
anterior cingulate are closely interlocked regions, the two being joined by multiple con-
nections. The insula has dual sensory and motor functions, albeit biased toward the sensory
side of the process, while the anterior cingulate operates as a motor structure (Damasio
2010, p. 118).

In addition to these, the process of generating a feeling involves several sub-
cortical regions for certain preprocessing as well, as ‘they are the first recipients of
information from the viscera and internal milieu with the ability to integrate signals
from the entire range of the body’s interior’ (Damasio 2010, pp. 118-119).

This essentially shows a cyclic process that (for a constant environment) can lead
to equilibrium states for both emotional response (preparation) and feeling. These
biological mechanisms as briefly sketched have been used to obtain a conceptual
representation of a temporal-causal network model depicted as a graph in Fig. 3.1.
Here b is a label indicating a specific body state corresponding to the considered
emotion. Note that what is called stimulus s here can be taken as the sensor state
sensing s. This answers the question on the direction of the causality between
feeling and emotional response in the sense that both emotional response affects
feeling and feeling affects emotional response, in a cyclic manner. Note that for
stimuli s and body states b indicate abstract states which by themselves may be
characterised by multiple aspects; see also, for example, Damasio (1999), Lazarus
(1991), Roseman (1996), Scherer (1999, 2009). For example preparation for a
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Table 3.1 .Conceptual matrix 1, . 1S, PSs fs,
representation for the From
temporal-causal network
model described in Fig. 3.1 885 Orepresenting
SIS (Dresponding
Ps» O~)feeling
fS/, wamplirying
Ny - rlsrsj nps,, ’7fs,,
CY() - Csrs‘\(v) CSrSX(Vlv VZ) Cfs,,(v)

specific emotional response b can involve different aspects of the body such as heart
rate, skin, and specific chemicals in the blood. In many cases these abstract states
can be related to vectors of values for such multiple aspects (see also Bosse et al.
2008a). Moreover, in more complex models more than one stimulus s and more
than one body state b can be modeled as abstract states, for example, as sy, s», ...
and by, b, ... Then for each combination of an s; and a b; relations as depicted in
Fig. 3.1 can be covered by the model (multiple stimuli have a combined effect on
each preparation state). Note that the perspective presented here uses explicitly
represented feeling states, which contrasts to approaches that consider emotions to
be not explicitly represented as states having a causal effect; see, for example, Peck
and Kozloski (2011).

In matrix representation the model shown in Fig. 3.1 is described by Table 3.1.

The conceptual representation of a temporal-causal network model described in
Fig. 3.1 has been used to obtain a numerical representation of this temporal-causal
network model, according to the systematic approach described in Chap. 2; see
Box 3.1. Here each of the states has an associated differential equation for the
update of its activation level, and all connection weights are nonnegative. Note that
due to monotonicity of the combination functions cx(...), it holds that the higher the
value of Wyecling, the stronger the level of the response state affects the level of the
feeling state fs;, and the higher the value of @ymplifying, the stronger the feeling level
affects the emotional response level ps;. Due to the cyclic nature of the model this
effect propagates back and forth between the two states.

LP1 Representing stimulus s
dsrs / dr = Msrs, [Csrsx((Drepresentingsss> - SI‘SS]
sts (1 + At) = srsy(1) + MNsrs, [Crs, ((Drepresentingsss (£)) — srsg(2)] At

LP2 Generating and amplifying preparation for response b
dps,/dr = Mps, [Cpsh (Oresponding STSs, Pamplifyingfss) — psy]

ps,(t+Ar) = ps,(t) + MNps, [Cpsb ((Urespondingsrss(t)a mamplifyingfsb(t)) — ps,(1)]At
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LP3 Feeling b
dfs,/dt = Nts, [cts, ((’erelingpsb) — fsp]
fsy (2 + At) = fsb(t) + Mg, [Cfsb ((’)feelingpsb(t)) - fsb(t)]At

The state symbols are explained as follows:

ss, sensor state for stimulus s

srsy  sensory representation state for stimulus s
ps, preparation state for emotional response b
fs, feeling state for b

Box 3.1 Numerical representation of a temporal-causal network model for the
emotion-feeling cycle

The biological mechanisms briefly sketched above have been used as inspiration
for computational mechanisms in earlier work as well, for example, described in
Bosse et al. (2008a, b, 2012b). Here in Bosse et al. (2008a, b) a qualitative model
without cycles is described; the connection from feeling to preparation was not
covered. In Bosse et al. (2012a) the focus is on emotion reading in a social context.
A more complex model is presented of which the cycle shown in Fig. 3.1 is
part. The computational model specification in both cases (Bosse et al. 2008a, b,
2012b) is not in terms of differential equations as above, but in terms of the hybrid
temporal-causal LEADSTO format which covers differential equations as well; e.g.,
Bosse et al. (2007).

3.3 Emotion Regulation

Controlling or regulating your emotion is often associated to suppressing an emo-
tional response, for example, expressing a neutral poker face. This type of con-
trolling emotions is sometimes considered not very healthy, and a risk for
developing serious medical problems. However, it has been found that the mecha-
nisms to regulate emotions form a much wider variety. For example, closing or
covering your eyes when a movie is felt as too scary, or avoiding an aggressive
person are different forms of control. Emotion regulation mechanisms (e.g., Gross
1998; Goldin et al. 2008) cover antecedent-focused regulation (e.g., selection and
modification of the situation, attentional deployment, and reappraisal) and response-
focused regulation (suppression of a response). Examples of antecedent-focused
mechanisms are closing your eyes or turning away your gaze from stimuli that
trigger too high levels of emotions, redirecting attention, or changing the cognitive
interpretation of the situation. Response-focused emotion regulation mechanisms
suppress the emotional responses without taking away or modulating the triggers.
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Expressing a poker face or fighting against tears are examples of such mechanisms.
Emotion regulation mechanisms are processes with a cyclic character. In modeling
emotion regulation, in the first place a control state is needed to detect whether an
undesired level of emotion occurs. This is assumed to be realised in the prefrontal
cortex (Goldin et al. 2008). When this control state has a high activation level (for
example, indicating too high levels of an undesired emotion), this can affect
a number of other states. Response-focused mechanisms can be modeled by
suppressing connections (with negative weight factors) from the control state to
preparation and/or effector states. Antecedent-focused mechanisms can be mod-
eled by suppressing connections from the control state to sensor states, sensory
representation states or interpretation states. In the conceptual representation of a
temporal-causal network model shown in Fig. 3.2 some of these possibilities are
depicted.

In conceptual matrix representation the temporal-causal network model shown in
Fig. 3.1 is described by Table 3.1. The conceptual representation of the model for
emotion regulation as depicted in Fig. 3.2 (or Table 3.2) has been used to obtain a
numerical representation of the model according to the systematic approach
described in the Chap. 2, as shown in Box 3.2.

Note that here the connection weights from the control state cs;, to other states
have a negative value. These connections suppress the activation levels of the
destination nodes. The more negative these connection weights are, the stronger the
suppression.

control
state for b
monitoring .. )Q( ..... monitoring
representation“;‘" T " response b
R i
of s & i
suppressmg: suppress n-g
{ representatfon *, B
H R * response bt
i ofs H
O representing 0 ..réspondi
- .
sensor state sensory o preparation
for s representation MONtOrng state for b
state for s fecling b
feeling

feeling
state for b

Fig. 3.2 Conceptual representation of a temporal-causal network model showing the cyclic
mechanisms for emotion regulation
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Table 3.2 Conceptual matrix representation for the model for emotion regulation shown in

Fig. 3.2
To SS; SIS PS» fs,, csy

From

SS¢ mrepreseming

SIS mresponding mmoniloring;\'

PS» Ofeeling Omonitoring_response
fSb mamplifying mmonitoring_feeling
CSp 0~)supprc:ssinchsponsc msupprcssingifccling

My - nsrs,\ npsh nfs;, ncs;,

CY() - Csrs,s(v) CpSh(Vlv VZ, V3) Cfs;,(vls V2) Ccsb(Vl, VZ, VS)

LP1 Generating and regulating representation of stimulus s

dSI’SS/ dr = ﬂer; [Csrsx ((Drepresenting SSs, (Dsuppressing_s Csb) - SI‘SS]
stsy(t + Atr) = srsg(t) + MNisrs, [Csrs, ((Drepresenting sss (), Osuppressing_s csp (1)) — srs; (t)]At

LP2 Generating and regulating preparation for response b

dpr/ dr = npsb [Cpsb ((Dresponding SIS, Wamplifying be, Msuppressing_response Csb) - PSb]

ps(t+At) = ps, (1)

LP3 Generating and regulating feeling b

+ nPSb [ Cpsb ((’Jresponding SIS (t)y (Damplifying fsb (t);

Msuppressing_response CSh (t)) — PSp (t) ]At

dfsb/dt = N, [Cfs;, ((Dfeeling PSp s Dsuppressing _feeling CS[,) - be]
fsp(t+ Ar) = fs,(2)
+ M, [Cfsb ((Dfeeling PSb(f)7 Msuppressing_feeling Csb<t)) - be(l)]Al

LP4 Monitoring stimulus s and response and feeling b

dCSb/ dr = MNes,, [Ccsb (mmonitoring_s SIS, Wmonitoring__response PSp s Omonitoring_ feeling be) - Csb]
csp(t+ Ar) = csp(r)
a4 Nes, [Ccsb ((Dmonitoring_s SIS (l )7 ®monitoring_response PSp (t )7

®monitoring_feeling fsp (t)) —CSp (t)]At

The state symbols are explained as follows:

ss, sensor state for stimulus s

srsy  sensory representation state for stimulus s
psS, preparation state for emotional response b
fs, feeling state for b

cs, control state for b

Box 3.2 Numerical representation for the temporal-causal network model for
emotion regulation



114 3 How Emotions Come in Between Everything

Biological mechanisms for emotion regulation as discussed also have been the
inspiration for computational mechanisms, for example, in Chow et al. (2005),
which takes homeostatic principles as a point of departure to address emotion
regulation computationally. Also in Bosse et al. (2010a, b, c) such principles are the
underlying assumptions, and they are applied to the different phases considered by
Gross (1998): situation selection, situation modification, attention deployment,
reappraisal, response suppression. Here a different type of specification is used, in
LEADSTO format (e.g., Bosse et al. 2007). In Chap. 9 a temporal-causal network
model for (reduced) social interaction is presented in which emotion regulation is
used for cases of enhanced sensory processing sensitivity to avoid stimuli that are
felt as having a too strong impact; also see Treur (2011c, d). This model uses a
similar mechanism as described here, but for a specific type of regulation. The same
applies to the adaptive temporal-causal network model for dreaming discussed in
Chap. 5; here emotion regulation is used to down-regulate fear in dream episodes;
see also Treur (2011a). Within Abro et al. (2015) and Manzoor et al. (2016)
temporal-causal network models integrating different emotion regulation strategies
and for decision making about emotion regulation strategies are discussed. Within
Abro et al. (2014) a computational model of the relation between regulation of
negative emotions and mood is presented.

3.4 Interaction Between Cognitive and Affective States

Usually it is assumed that behaviour can be described in relation to cognitive states
such as beliefs and desires, while leaving affective states aside. The latter types of
states are considered as being part of a separate line of (affective) processes that
produce their own output, for example, in the sense of emotions and expressions of
them. However, this assumed separation between cognitive and affective processes
is questioned more and more. Specific examples of questions about such interac-
tions are: how does desiring relate to feeling, and in how far do sensing and
believing relate to feeling? Recent neurological findings suggest that this separation
of processes may not be a fruitful way to go. For example, as also illustrated in
Chap. 1, Sect. 1.2, Phelps (2006) states:

The mechanisms of emotion and cognition appear to be intertwined at all stages of stimulus
processing and their distinction can be difficult. (..) Adding the complexity of emotion to the
study of cognition can be daunting, but investigations of the neural mechanisms underlying
these behaviors can help clarify the structure and mechanisms (Phelps 2006, pp. 46—47).

Similar claims have been made by Pessoa (2008). In experimental contexts dif-
ferent types of effects of affective states on cognitive states have indeed been found;
see, for example, Eich et al. (2000), Forgas et al. (2009) and Winkielman et al. (2009).
Moreover, in the rapidly developing area of cognitive neuroscience (e.g., Purves et al.
2008; Gazzaniga 2009) more in general knowledge has been contributed on mech-
anisms for the interaction and intertwining of affective and cognitive states and
processes (for example, involving emotion, mood, beliefs or memory); see, for
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example, Dolan (2002), LaBar and Cabeza (2006), Pessoa (2008), Phelps (2006) and
Storbeck and Clore (2007).

To become a bit more specific, the interaction between beliefs and emotions is
discussed in a bit more detail. For example, in Damasio (1999, 2003) it is described
how in a person a belief state induces emotions felt within this person:

Even when we somewhat misuse the notion of feeling — as in “I feel I am right about this”
or “I feel I cannot agree with you” — we are referring, at least vaguely, to the feeling that
accompanies the idea of believing a certain fact or endorsing a certain view. This is because
believing and endorsing cause a certain emotion to happen. (..) Through either innate
design or by learning, we react to most, perhaps all, objects with emotions, however weak,
and subsequent feelings, however feeble (Damasio 2003, p. 93).

For the sake of simplicity it is assumed that beliefs are cognitive states repre-
senting knowledge about the world and generated (mainly) on the basis of sensing;
however, the further processing discussed here does not depend on this. So, for the
case of beliefs as cognitive states, during the process that they are generated, beliefs
trigger emotional responses that result in certain feelings. However, the process of
generation of a cognitive state such as a belief is not fully independent of such
associated feelings, as also put forward by Frijda (1993), Lewis (1996), Frijda et al.
(2000) and Spinoza (1677):

Beliefs thus are regarded as one of major determinants of emotion, and therefore an
important part of the study of emotion can properly be seen as falling under the umbrella of
cognitive psychology. Oddly enough, however, the reverse direction of influence in the
relation between emotion and cognition has received scant attention. (...) Indeed, such an
influence has traditionally been considered to be one of the most important things to be said
about emotions. Spinoza (1677/1989) defined emotions as “states that make the mind
inclined to think one thing rather than another”. (...) The general proposal thus is that
emotions can awaken, intrude into, and shape beliefs, by creating them, by amplifying or
altering them, and by making them resistant to change (Frijda et al. 2000, p. 1, 5).

Support for a connection from feeling to belief can be found as well in Damasio’s
Somatic Marker Hypothesis; Damasio (1994, 2003), Bechara and Damasio (2005).
This is a theory on decision making which provides a central role to emotions felt.
Each decision option induces (via an emotional response) a feeling which is used to
mark the option. A negative marker has a weakening effect and a positive marker a
strengthening effect for the option. Usually the Somatic Marker Hypothesis is
applied to provide endorsements or valuations for options for a person’s actions.
However, it may be considered plausible that such a mechanism is applicable to
valuations of internal states such as beliefs as well. In summary, some indications can
be found for the assumption that a belief generates emotional responses and related
feelings, and these feelings in turn affect the belief. This provides a pattern based on
two cycles in the conceptual representation of a temporal-causal network model
depicted in Fig. 3.3. This shows how the cognitive and affective processes are
intertwined. Note that the network shown in Fig. 3.3 applies as well to multiple
cognitive states active at the same time and multiple emotional responses and feel-
ings. In such a case the level of a given emotion can be affected by the levels of more
than one cognitive state by some combination function and similarly the level of a
given cognitive state can be affected by the levels of more than one emotion.
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Similar analyses can be made for other types of cognitive states. For example,
desires are often considered cognitive states with the function of focusing the
behaviour by constraining or indicating the options for actions to be chosen. Yet,
there is much more to the process of ‘desiring’, especially concerning the feelings
associated to it. Desires lead to activations for responses in the form of preparations
for certain actions (to fulfill the desire) and their related emotions. Such responses
in turn relate in a reciprocal manner to feelings, via cyclic as-if body loops as
discussed above. For example, a desire to have some food may trigger a preparation
to take some chocolate, which by an as-if body loop in a cyclic manner goes hand in
hand with activation of some feeling. This feeling can strengthen both the desire
and the preparation. The two cycles shown in Fig. 3.3 model these processes.

A third type of cognitive state considered is a sensory representation. Such a state
is closely related to a sensor state and at least this type of state may be believed not to
be affected by affective states. However, even here recently findings have been
reported suggesting that this independence of affective states cannot be claimed. In
particular, in Gazzola et al. (2012) it is reported how for heterosexual men one and the
same stimulus (a leg being touched in an invisible manner, by a woman) leads to
different sensory activation levels depending on a presented video of either a woman
or aman. Such findings suggest that in a diagram as depicted in Fig. 3.3, also an arrow
from feeling to sensory representation state can be drawn (Table 3.3).

A numerical representation for this temporal-causal network model for the
interaction between (activation levels of) cognitive and affective states can be found
in Box 3.3. Here the connection weights are assumed nonnegative. Note that the
higher the values minterpreting memotionﬁintegration and 0)responding of the Weights of the
connections from and to the cognitive state c, and the values ®,mpiification ANd Ofecling
for the connections between the emotional response and feeling state, the higher the
activation value of the cognitive state c.

cognitive
state ¢

interpreting responding

representing emotion
integration|
sensor state sensory preparation
for stimulus s representation state

for stimulus s

state for b

feeling
state for b

Fig. 3.3 Graphical conceptual representation of a temporal-causal network model of the cyclic
processes of mutual interaction between cognitive and affective states
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Table 3.3 Conceptual matrix representation of the temporal-causal network model for interaction

between cognitive and affective states

To SSg SIS c pPs» fs
From

SS¢ (Drepreseming

SIS (Dimerpretin g

C (Dresponding

Ps» (Dfeeling
fSb wcmolioniintcgration 0~)amplifying

My - nsrs,‘ nc nps,, ”fs;,
CY(~ - ) - Csrs,‘(V) CC(Vlv VZ) cps,,(vlv VZ) Cfs;)(V)

LP1 Representing stimulus s
dsrsy / dr = Msrs, [Csrss ((Drepresentingsss) — SC Ss]
SIS (l‘ F At) = SrSs(t) == Mars, [Csrs; ((Drepresentingsss (t)) — SISy (t)]At

LP2 Generating interpretation ¢
dC/ dr = Ne [Cc(minlerpreling SISy, (Demotion_imegrationfsb) - C]
C(f aF At) = C(t) + T‘lc[Cc((»Oimerprc-:tingsrss (t)a memotion_integrationfsb(t)) - C(t)]At

LP3 Generating and amplifying response b
dPSb/df = Mps, [Cpsb ((Drespondingca (Damplifyingfsb) - PSb]

psy(t+At) = psy(t) + Ny, [Cps, (Oresponding€ (1), Gamplitying £S5 () — Psy (1) At

LP4 Feeling b
dfs,/dr = N, [cts, ((Dfeelingpsb) — 1]
fsb(t + Al‘) = fs, (t) aF Ngs, [Cfsb (wfeelingpsb(t)) - fsb(t)]At

The symbols are explained as follows:

ss, sensor state for stimulus s

Srs; sensory representation state for stimulus s
ps» preparation state for emotional response b
fs;, feeling state for b

c cognitive interpretation state ¢

Box 3.3 Numerical representation for a temporal-causal network model for inter-
action between cognitive and affective states



118 3 How Emotions Come in Between Everything

The interaction between belief and feeling has also been addressed in Memon
and Treur (2010), using a temporal-causal network model specified in LEADSTO
format (Bosse et al. 2007). Moreover, in Memon and Treur (2010) the connection to
the belief is adaptive. The type of combination function cp,(...) used in Memon
and Treur (2010) is:

cps, (V1, V2) =aproducty(Vy, V2)
= Beproduct(V,, V,) + (1 — p)product(Vy, V2)
=Bl -1 -V)I-=W))+ (1 -pViV>

with f a bias parameter in [0, 1]. The interaction between desire and feeling has
been worked out in more detail in an adaptive temporal-causal network model in
Bosse et al. (2010a, b, c). Here adaptivity based on feedback of actual execution is
part of the model. Also this model was specified in LEADSTO format.

3.5 Emotion-Related Valuing in Decision-Making

In the area of decision making the role of emotions has been discussed since long.
From an idealised rationality perspective it has long been assumed that emotions
can only disturb proper rational decision making and should be left out of the
process in order to come up with adequate decisions. However, this has been
questioned in more recent times. For example, in Loewenstein and Lerner (2003,
p. 619) it is claimed that recent research points at the positive functions served by
emotions; see also the quote in Chap. 1, Sect. 1.2. Can you make an adequate
decision without feeling good about it? If you make a decision with a bad feeling
this may cast doubt on how robust the decision is: at any occasion in the (near)
future you may be tempted to change it into a different decision. The area of
decision making is another specific area in which affective elements play an
important role. The focus in decision making is on how to perform valuing of
situations or options for actions to be decided for. More specifically, feelings
generated in relation to an observed situation and prepared action option play an
important role in valuing predicted or imagined effects of such an action in the
situation. Such valuations have been related to amygdala activations (see, e.g.,
Morrison and Salzman 2010; Murray 2007; Salzman and Fusi 2010). Although
traditionally an important function attributed to the amygdala concerns the context
of fear, in recent years much evidence on the amygdala in humans has been col-
lected showing a function beyond this fear context.

A model for such a decision process can be designed based on the following
cyclic processes. A preparation state for one or more actions a is triggered by a
sensed stimulus s, and by internal simulation a prediction is made of the effect e of
such an action a:
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sensor state for stimulus s — sensory representation of s — preparation state for a —
sensory representation of predicted effect e

A preparation for an emotional response b is triggered by this predicted effect e,
and via a cyclic as-if body loop a feeling for this emotion is generated:

sensory representation of e — preparation state for emotion b — feeling state for b
feeling state for b — preparation state for emotion b

Feeling this emotion represents a way of experiencing the value of the predicted
effect e of action a: to which extent it is felt as positive. This valuation in turn
affects the activation of the concerning option in the sense that the more positive
this feeling, the more is the preparation for a strengthened:

feeling state for b — preparation state for a

This adds an extra cycle in the process, so this pattern involves two cycles. See
also Chap. 6 for more details (e.g., Sect. 6.2, Fig. 3.1). In that chapter also a
simplified but adaptive model is discussed, based on Treur and Umair (2011, 2015).
In particular, it is analysed how adaptivity can be added and in how far this makes
the model behave rationally for a given environment.

3.6 Emotions and Social Contagion

Emotions also play an important role in mutual social interactions. In a social
context usually emotions of different individuals affect each other: emotion con-
tagion. The question that may arise, for example, is in how far an individual in a
group free is in having his or her own emotions. Moreover, the role of emotion
contagion may be considered for the miracle that groups with individuals with
initially different preferences often come to coherent common decisions and all
members feel good with these decisions.

The mechanisms underlying emotion contagion can be considered in a more
detailed manner. From the area of Social Neuroscience it has been found that mirror
neurons and internal simulation are key elements in these mechanisms. Mirror
neurons are neurons that do not only have the function to prepare for a certain action
or body change (e.g., a face expression), but are also activated upon observing
somebody else who is performing this action or body change. They have been found
both in monkeys and humans; e.g., Rizzolatti and Sinigaglia (2008), Iacoboni (2008)
and Mukamel et al. (2010). Mirror neurons make that some specific sensory input
(an observed person) directly links to activation of related preparation states.

Viewed from a distance, an emotion contagion cycle for two persons A and
B can be described by causal chains as follows. Here an emotion b shown is not
only affected by a stimulus s from the (non-human) environment, but also by
sensing emotions shown by other individuals. First, person A responds by showing
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emotion b (for example, a smile) both to a stimulus s (for example, a funny picture)
or to observing person B showing b:

sensor state of person A for stimulus s — person A shows b
sensor state of person A for person B showing b — person A shows b

The same applies to person B with respect to person A:

sensor state of person B for stimulus s — person B shows b
sensor state of person B for person A showing b — person B shows b

This makes a cyclic process through the two persons, and if more persons are
taken into account a combination of multiple cyclic processes through them.

The internal mechanisms behind such social contagion by mirroring based on
mirror states and internal simulation are addressed in more detail in Chap. 7. In
Chap. 11 more detailed adaptive temporal-causal network models for social inter-
action are addressed, thereby abstracting from internal processes. In Manzoor and
Treur (2013, 2015) an integrated temporal-causal network model for emotion
regulation and emotion contagion is discussed.

3.7 Discussion

In this chapter a unifying neurologically inspired perspective on the dynamics and
interaction of emotions was discussed, making use of knowledge of mechanisms
from Cognitive, Affective and Social Neuroscience. The contents of this chapter are
mainly based on a number of earlier papers. The part on emotions and feelings in
Sect. 3.2 is based on Bosse et al. (2008b, 2010a, b). The part on emotion regulation
in Sect. 3.3 is based on Treur (2011a, b, 2014), Bosse et al. (2013). The part on
interaction between cognitive and affective states in Sect. 3.4 is based on Memon
and Treur (2010), Bosse et al. (2010a, b). The part on rationality and emotion is
based on Treur and Umair (2011). The part on emotion contagion in Sect. 3.5 is
based on Bosse et al. (2015).

It was discussed how many cyclic connections in the brain can be found and play
an important role in brain processes (see also, Bell 1999; Crick and Koch 1998;
Potter 2007; Sporns et al. 2000), and in particular how affective states can have
bidirectional associations to many other types of mental states and behaviour (e.g.,
Critchley 2005; Damasio 2003; Frijda et al. 2000; Scherer 2009). It was indicated
how according to a Network-Oriented Modeling approach the type of processes
considered can be described by graphical conceptual representations of
temporal-causal networks, or by conceptual matrix representations, and by
numerical representations in difference and differential equation format, in line with
what was discussed in Chap. 2. Thus a unifying integrative dynamical perspective
on modeling emotions was obtained that can be used to model how emotions relate
to a variety of other mental states and processes such as feelings, beliefs, desires,
experiences, and valuations in decision making. Moreover, the approach covers
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how emotions of different persons affect each other (emotion contagion). This
social element will be discussed in more detail in Chap. 7.

The types of examples of cycles discussed here can be and actually have been
integrated further. More advanced temporal-causal network models for emotions
and their role in mental functioning may involve different types of cycles that have
to be integrated. Examples of this further integration are integration of an emotion
regulation cycle with a social interaction cycle as described in Aziz et al. (2011), or
the integration of cognitive-affective cycles with social interaction cycles as
described in Bosse et al. (2012a) and Hoogendoorn et al. (2011). Furthermore, in a
number of models mechanisms for adaptivity and emotional response-feeling cycles
have been integrated with other types of cycles (e.g., Bosse et al. 2010a, b, c;
Memon and Treur 2010).

Note that the perspective as described here assumes that cognitive and affective
states can be distinguished, while their interaction makes the cognitive and affective
processes intertwined. However, as discussed, for example, in Samsonovich (2012)
as an alternative it is also possible to consider mental states in general that are not
distinguishable as either cognitive or affective, but which may have both a cognitive
and an affective aspect. This makes an alternative perspective possible where the
distinction cognitive/affective can almost disappear.

In subsequent chapters the integration of emotions in different types of mental
processes will be addressed in some more detail, in particular for emotions and
dreaming (Chap. 4), emotions, dreaming and fear extinction learning (Chap. 5),
emotions and rationality in action selection (Chap. 6), and emotions within social
processes (Chap. 7).
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Chapter 4
How Do You Feel Dreaming

Using Internal Simulation to Generate
Emotional Dream Episodes

Abstract In this chapter a Network-Oriented Modeling approach is applied to
model dreaming based on internal simulation. Building blocks for this internal
simulation are memory elements in the form of sensory representations and their
associated emotions. In the presented temporal-causal network model, under
influence of associated feeling levels and mutual competition, some sensory rep-
resentation states pop up in different dream episodes. The activation levels of both
the feeling and the sensory representation states are regulated by control states. The
model was evaluated by a number of simulation experiments for different scenarios.

4.1 Introduction

The mechanisms and functions of dreaming have received much attention in the
recent cognitive and neurological literature; e.g., Hobson (2009), Levin and Nielsen
(2007, 2009), Revonsuo (2000), Valli et al. (2005); Valli and Revonsuo (2009),
Windt and Noreika (2011), Yoo et al. (2007), Kahn et al. (2013), Deliens et al.
(2014), Goldstein and Walker (2014). As often negative emotions play an important
role in dreams, this aspect is also addressed in some depth, especially in the context
of improving skills for coping with threatening situations (e.g., Revonsuo 2000;
Valli et al. 2005; Valli and Revonsuo 2009) or strengthening regulation of fear
emotions by what is called fear extinction learning (e.g., Levin and Nielsen 2007,
Walker and van der Helm 2009; van der Helm et al. 2011; Rosales-Lagarde et al.
2012; Markarian et al. 2013; Mauss et al. 2013; Pace-Schott et al. 2015). Abstracting
from more specific context or purpose, a more general perspective present in dream
literature as mentioned, is that dreaming can be considered a form of internal sim-
ulation of real-life-like processes as a form of training in order to learn, adapt or
improve capabilities, which would be less easy to achieve in real life.

In this chapter a Network-Oriented Modeling approach based on temporal-causal
network models is presented that addresses the type of internal simulation that is
assumed to take place in dreaming. For the different episodes, the internal simulation
incorporates interrelated processes of activation of sensory representation states
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(from memory) providing mental images, and activation of associated feelings.
Moreover, the model uses a mechanism for emotion regulation to suppress the
feeling levels and the sensory representation states.

The structure of the chapter is as follows. In Sect. 4.2 the basic concepts used are
briefly introduced. In Sect. 4.3 the temporal-causal network model is described in
more detail. Section 4.4 discusses simulation results providing dream scenarios. In
Sect. 4.5 the relation of the model with neurological theories and findings is
addressed. Finally, Sect. 4.6 is a discussion.

4.2 Memory Elements, Emotions and Internal
Simulation in Dreaming

In this section it is discussed how in dreaming memory elements with their asso-
ciated emotions are used as building blocks for an internal simulation of real life.

Using memory elements and their emotional associations Within the literature
the role of memory elements providing content for dreams is well-recognized; e.g.:

... dreaming tends to express memory elements as though original memories had been
reduced to more basic units (..). Often, these appear as isolated features, such as an attribute
of a familiar place or character (e.g., “there was a stranger who had my mother’s style of
hair”) (Levin and Nielsen 2007, p. 499).

The role of emotional aspects in activating such memory elements is empha-
sized; e.g.:

...elements may be activated as a function of emotional concerns (..) but with the possible
introduction of some pseudorandom and incompatible associations (Levin and Nielsen
2007, p. 500).

In particular, it is recognized that the choice for memory elements with some
emotional association and (re)combining them into a dream facilitates fear
generation:

During dreaming, conjunctive representations are rendered into virtual simulations or
“here-and-now” illusions (Nielsen and Stenstrom 2005) to maximize their impact upon the
amygdala, which tends to respond to perceptual, rather than imaginal, stimuli (Levin and
Nielsen 2007, p. 500).

The emotional associations of the sensory memory elements may make that a
person has to cope with high levels of emotions (e.g., fear) felt in the dream.
Emotion regulation mechanisms are used to control emotions that are felt as too
strong; e.g., Goldin et al. (2008), Gross (1998, 2007). Such mechanisms cover
antecedent-focused regulation (e.g., selection and modification of the situation,
attentional deployment, and reappraisal) and response-focused regulation (sup-
pression of a response).
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Dreaming as internal simulation Dreams can be considered as flows of acti-
vated sequences of images based on (re)combined memory elements:

Recombinations of memory elements give dreams at once their alien and their familiar
quality. (...) the new image sequences consist, for the most part, of lifelike simulations of
first-person reality. Memory elements are recombined (..) to produce coherent, continuous
simulations of waking life experience (Levin and Nielsen 2007, p. 500).

Such flows can be related to the notion of internal simulation put forward,
among others, by Hesslow (1994, 2002, 2012), Damasio (1994, 1999), Goldman
(2006), Barsalou (2009), Marques and Holland (2009), Pezzulo et al. (2013). The
idea of internal simulation is that sensory representation states are activated (e.g.,
mental images), which in response trigger associated preparation states for actions
or bodily changes, which, by prediction links, in turn activate other sensory rep-
resentation states.

sensory representation states — preparation states — sensory representation states

The latter states represent the effects of the prepared actions or bodily changes,
without actually having executed them. Being inherently cyclic, the simulation
process can go on indefinitely. Internal simulation has been used, for example, to
describe (imagined) processes in the external world, e.g., prediction of effects of
own actions (Becker and Fuchs 1985), or processes in another person’s mind, e.g.,
emotion recognition or mindreading (Goldman 2006) or processes in a person’s
own body (Damasio 1994). Although usually internal simulation as briefly
described above concerns mental processes for awake persons, it is easy to imagine
that it may be applicable as well to describe dreaming.

Feeling emotions by internal simulation of body states The idea of internal
simulation has been exploited in particular by applying it to bodily changes
expressing emotions, using the notion of as-if body loop (Damasio 1994). For more
details on the role of body loops and as-if body loops in emotions, see Chap. 3.

On purposes of dreaming as internal simulation One theory explicitly refer-
ring to a purpose of dreaming as internal simulation is the threat simulation theory of
the evolutionary function of dreaming (e.g. Revonsuo 2000; Valli et al. 2005; Valli
and Revonsuo 2009). This theory assumes that dreaming is an evolutionary adap-
tation to be able to rehearse coping with threatening situations in a safe manner.
Others consider the function of dreaming in strengthening the emotion regulation
capabilities for fear; e.g., Levin and Nielsen (2007, 2009), Franzen et al. (2009),
Gujar et al. (2011), Walker (2009), Walker and van der Helm (2009), Yoo et al.
(2007), van der Helm et al. (2011), Rosales-Lagarde et al. (2012), Mauss et al.
(2013), Goldstein and Walker (2014), Pace-Schott et al. (2015). For this perspective,
the purpose of dreaming is to improve the coping with the own fear emotions in real
life. For both purposes adequate exercising material is needed for the dreams: fearful
situations have to be imagined, built on memory elements suitable for fear arousal.
The temporal-causal network model presented in Sect. 4.3 provides this, but it
abstracts from the purpose; it does not commit to any of the purposes mentioned.
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4.3 A Temporal-Causal Network Model Generating

Dream Episodes

The temporal-causal network model presented here models the mechanisms dis-
cussed in Sect. 4.2. It is meant to address scenarios of the following type:

Fearful stimulus

A (maybe traumatic) stimulus s; is given for which previously a high extent of
fear has been developed, and for which from time to time a sensory represen-
tation state is triggered by memory (for the model this is considered an external
trigger)

Emotional response

The activation of the sensory representation of s; leads to preparation for a
bodily fear response b, and by an as-if body loop to an enhanced feeling level
based on b

Emotion regulation

By emotion regulation the sensory representation of s; and the feeling state are
suppressed: both the experience of fear, and the activation level of the sensory
representation of s; become low; also no episode state for s; occurs, as this is
blocked due to the traumatic event

Visualisation of the fear

Other fear-associated stimuli s, for k > 2 are available for which the person has
less strong previous experiences; the sensory representation states for these s;
are activated by links from the preparation state for b, depending on the strength
of these links; this can be viewed as visualisation of the fear

Emotional response to visualisation

When the sensory representation state of a stimulus s, is activated, this leads to
an enhanced activation level of the preparation state for b

Experiencing more fear

Due to the higher activation level of preparation for b, via the as-if body loop
also the feeling level for b becomes higher: the person experiences more fear
Stronger emotion regulation

By the control states for emotion regulation for an active sensory representation
for s, both the fear feeling level and the sensory activation level of s; are
suppressed

Competition for dream episodes

The active sensory representations for s; lead to corresponding dream episode
states, which are in competition with each other by mutual inhibition to get
dominance as a dream episode

In Fig. 4.1 the basic model for a given sensory representation state srs, is

shown. It shows emotion generation via emotional response preparation state ps,
and feeling state fs;, (as-if body loop) and emotion regulation through control state
csy,» suppressing the feeling state fs, and the given sensory representation state
srsg,; a summary of the states used is shown in Table 4.1. The inhibiting links are
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Fig. 4.1 Graphical CSspb
conceptual representation of a suppressing srs
temporal-causal network
model for generation and
regulation
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indicated by dotted arrows (in red). The two links between srs,, and ps,, indicate the
association between stimulus s, and emotional response b; the link from ps,, to srsy,
indicates the (predictive link) which is a basis for the internal simulation: e.g., the
emotion triggers a certain (expected) mental image. The links between ps, and fs,,
indicate an as-if body loop.

As shown in Table 4.1 a dream episode state for s, is indicated by des;,.
moreover the trigger for srs,, from memory is indicated by mt,,; this will be applied
for s;. Note that in Fig. 4.1 a sensory representation state for only one stimulus s; is
depicted. In the specification of the model below an arbitrary number n of such
states are taken into account. See Fig. 4.2 for an overall picture for 4 stimuli, also
with the episode states. Table 4.2 shows a conceptual matrix representation of the
model depicted in conceptual graphical representation in Figs. 4.1 and 4.2. In
Table 4.3 the connection weights are described.

The numerical representation of the model by a set of local dynamic properties
involving differential equations is presented below and is summarized in Box 4.1.
During processing, each state has a strength represented by a real number between 0
and 1. Parameter n is a speed factor, indicating the speed by which an activation
level is updated upon received input from other states. Below, the dynamics are
described in more detail subsequently for each state by a dynamic (temporally)
Local Property (LP) specifying how the activation value for this state is updated
(after a time step of Ar) based on the activation values of the states connected to it
(the incoming arrows in Figs. 4.1 and 4.2).

The numerical representation of the temporal-causal network model is discussed
in the form of local dynamic properties LP1, ... for each of the states. In these
dynamic local properties logistic sum combination functions are used. In the

Table 4.1 Overview of the State

Explanation
states used

PS» Preparation state for bodily response b
fs, Feeling state for b
SISy, Sensory representation state for sy

CSsi.b Control state for regulation of sensory representation
of s; and feeling b

desy, Dream episode state for s;

mt,, Memory trigger for sy
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Table 4.2 Conceptual matrix representation for the temporal-causal network model depicted in

Figs. 4.1 and 4.2

To mtg, | SIS, ps» CSs, b desy, fs;,

From

mtsk (Dmemory_m'ggering_sk

SIS, Oresponding b | @monitoring_s; | © ing_s;

PSp Oyisualising_s; Ofeeling_b

CSs b [ i ion [ _feeling

dessk (Dmulualisuppressing

fsy, Damplifying 5 | @monitoring_b

Ny - rlsrsxk nps,, ncs:k b ndesxk rlfs,,

CY() - Csrsk\k () Cps,,(--~) Cessy b () Cdess;(n») Cfs,,(w-)

Fig. 4.2 Conceptual fsp

representation of the overall CSer1 «— > CSonh

1, 54,

temporal-causal network

model with four episode states

and one feeling state (m = 1,

n=4) CSsy,b
SI'Ssq O ST'Ssy
dessy I~~~ — dess,

Table 4.3 Overview of connections and

weight names

From states To state Weight names Connection types
SISg; 5 -..s SISg, Psp O 15005 D1y Responding

fsy Q%) Amplifying

Ps» fsy, 3 Feeling

CSgy b 5 ++5 CSs, b Wy 15 -oey Ogy Suppressing feeling
PS» SISy, 5 4 Visualising

CSsib W6 i Suppressing srs
miy, W0 % Memory triggering
SIS, CSsb W74 Monitoring srs

fs;, g % Monitoring feeling
SISy, desy, Wo & Episode manifesting
desy, , ..., desy, @101 % > D10k Mutual suppressing
CSsi,b O1,% Traumatic suppressing
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simulation experiments for the combination function in LP1-LP4 the following
advanced logistic sum function is used:

. . 1 1 —0T
aloglstch(Vl LR Vk) = (1 4 e oVit - +Vi—1) 1 + ect) (1 te )

Here o is a steepness and T a threshold parameter. In LP5 the simple logistic sum
function is used:

1
= 1 +670(V1 + o Vi—1)

slogistic,, . (V1,. .., Vi)

The first property LP1 describes how preparation for response b is affected by
the sensory representations of stimuli s; (triggering the response), and by the feeling
state for b:

LP1 Preparation state for response b
dps,(t)/dt = n [alogistic(®, iS1585, (), ..., O, SIS;, (1), @2fs,(1)) — Psy(?)]
psp(t + Af) = psy(2) + n [alogistic(m; S8, (7), ..., O 818, (1), 0xfS,(2)) — psp()] At

The feeling state for b is not only affected by a corresponding preparation state
for b, but also by the (inhibiting) control states for s; and b. This is expressed in
dynamic property LP2. Note that for this suppressing effect the connection weight
g4, from the control state for s; and b to feeling state for b is taken negative, for
example m,;, = —1.

LP2 Feeling state for b
d fs,(H)/dr = n [alogistic(ws psy(?), 041 CSs,. p(1), ..., D4, CSs,. p(1)) — 185(2)]
fsp(t + Ar) = fs,(¢) + n [alogistic(w; ps,(?), 041 €Sy, p(2), ..., ®4., S5, . p(2) —Tsp(H)] At

The sensory representation state for s, is triggered by memory state mt,, and
further affected by the preparation state for b, and by the suppressing control state
for s; and b. For this suppressing effect the connection weight g ; from the control
state for s, and b is taken negative. This is expressed in dynamic property LP3.

LP3 Sensory representation state for s,
d srs, (1)/dt = n [alogistic(wsy psp(1), We i CSy, p(1), W6 Mty () — sr8,,(£)]
SIS, (t + Af) = sts,, (1) + n [alogistic(ws, psy(1), e x CSs, b (1), W Mty (1)) — ST, (£)] At

Note that property LP3 can be used to describe how the sensory representation of
any traumatic s; is triggered from memory, as a starting point for a dream: in a
scenario the memory trigger values are taken 1. For non-traumatic s; such triggering
does not take place: the values are set to O.

Activation of a control state for a specific sensory representation for s; and b is
based on the level of feeling b and the level of the sensory representation of s;:

LP4 Control state for s, and b

d csy, 5(H/dt = n [alogistic(wy 4 s15,, (1), 0g 4 £55(2)) — ¢S, p(D]
csg p(t + At) = csg, (1) + M [alogistic(w; ; S8, (£), g T5,(1)) — csg, 5 ()] At
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Due to the inherent parallellism in neural processes, at each point in time multiple
sensory representation states can be active simultaneously. For cases of awake
functioning the Global Workspace Theory (Baars 1997, 2002) was developed to
describe how a single flow of conscious experience can come out of such a large
multiplicity of (unconscious) processes; see also (Shanahan 2006) for an approach
combining internal simulation and Global Workspace Theory, and (Dennett 1991,
2005) for a comparable perspective; see also (Windt and Noreika 2011).

The basic idea is that based on the various unconscious processes a winner-takes-it-
all competition takes place to determine which one will get dominance and be
included in the single flow of consciousness (after which it is accessible to all pro-
cesses). This idea was applied in the dreaming context to determine which sensory
representation elements will be included as an episode state des,, in a dream episode
during the flow of dreams. This competition process is described in LPS, using
inhibiting connections from the episode states des,, with i # k to des,,. For the sup-
pressing effects the connection weights from the des,, with i # k to des,, are taken
negative. Note that for the sake of notational simplicity ®;g sz = O is used. For
traumatic stimuli s; an additional and strong way of inhibition of the corresponding
episode state takes place, blocking the generation of an episode state for this stimulus.
It is based on the control state for s, and b and is assumed to have a strong negative
connection strength ®;; 4. For non-traumatic stimuli this connection is given strength
0; note that for the sake of simplicity this connection was not depicted in Fig. 4.2.

LPS Episode state for s,

d des,, (1)/dt = n [slogistic(woy S5, (7), W11 4 CSs p(1), O10,14 desg (D), ..., O1ok
desy, (1)) — desy, (1)]

desg, (r + Af) = des,, (f) + 1 [slogistic(woy srsg, (£), 11 & CSs; p(£), ®10.14 dess, (D), ...,
®10,, % desy, (1)) — des,, ()] At

LP1 Generating and amplifying a preparation state for response b
d psy()/dt = n [ alogistic(®, 818y, (?), .., O, SIS, (£), 02fs,(1)) - psp(?)]
psp(t+A1) = psy(f) + 1 [ alogistic(m; jstsg, (7), ..., @1, Stsy, (£), 0:f5,(2)) - psp(1)] At

LP2 Generating and regulating a feeling state for b

d fs,(H)/dt = n [alogistic(®s psy(f), W41 CSyy, (D)., Day €Sy, (1) — £84(D)]
fs,,(t+A1) = fs,(7) + n [alogistic(ws ps,(7), 041 Sy, p(2), ., Day €S, p(1)) — f5,()] At
LP3 Generating and regulating a sensory representation state for s;

d srsg, (1)/dt = n [alogistic(®si PSy(2), Dex CSs, p(2), W Mty (7)) — srS, (7)]
stsg, (1+A7) = srsg, (¢) + 1 [alogistic(®sy psy(7), ey CSs, 4(1), O Mity, (7)) — st8g, ()] At
LP4 Generating a control state for s; and b

d csy, 4(7)/dt = n [alogistic(@7x srse(?), 0sk £85(7)) — 85 5(7)]

CcSs (4 Af) = csq, (¢) + M [alogistic(mzy srse(7), g fsp(7)) — c8g, 5(2)] At

LP5 Generating and suppressing an episode state for s;
d des,, (1)/dr = n [slogistic(wo sty (1), ®11.4 €S, 5(2), 1015 dessi (1)), - - - O10.uk desgn (£)) — desy(7)]

des,, (1 + At) = desg (1) + 1 [slogistic(wox st55(7), 0114 C85,.5(1), ®10,15 desg1 (7)), - -+, O10,ux desg (7)) — desq(1)]

Box 4.1 The temporal-causal network model in numerical representation
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4.4 Simulations of Example Dream Scenarios

A variety of simulation experiments have been performed, using numerical software.
In the simulation experiments discussed below the settings were as shown in
Table 4.3 (set by hand). As shown in the left hand side of the table, all non-inhibiting
connections to preparation, feeling and control states have strength 1, and all
inhibiting connections to feeling and sensory representation states have strengths
—0.2, resp. —0.5, with an exception for the sensory representation state for s, which
is inhibited by strength —1 (due to a previous traumatic event involving s;). Small
differences in emotional association between the different s, are expressed by
different strengths from preparation of emotional response to sensory representation
states, varying from 0.5 to 0.45. The sensory representation states are connected to
the corresponding episode states with strength 1.2 and the latter states mutually
inhibit each other by strength —0.6. The threshold and steepness values used are
shown in the right hand side of Table 4.4. Relatively low steepness values were
used, except for the episode states. The threshold values for preparation and feeling
states were taken 0.5; in order to model differences in emotional associations
between the s;, different threshold values were taken for their sensory representation
and control states. The initial values of all states were set to 0, except for the initial
value of srs;, which was set to 1 (a memory activation for a traumatic event). The
speed factor n was 0.5, and the step size At was 0.1.

It may be convenient to read the scenario with a certain interpretation in mind.
For example, s, may refer to a traumatic experience of seeing somebody who was
dying (without having possibilities to save the person). Moreover, s, may refer to a
situation where a presentation is due in a few minutes time, and no laptop nor slides

Table 4_'4 Settings used for From state | Connection To state | Threshold | Steepness
connection strength, threshold
and steepness parameters: STSs o |1 Psy 0> 4
scenarios 1 and 2 fs;, @2 1
PS» 3 1 fs, 0.5 4
CSy.b W4 -0.2
PS» s 1 0.5 SISy, 0.5 4
CSsy b 01 |1
PS» W5 0.5 SIS, 0.2 4
CSy, b W2 -0.5
PS» W53 0.45 | srsy, 0.22 4
CSyy.b W63 -0.5
SISy, W74 1 CSy, b 0.8 8
fsy g |1 S, 0 1.1 8
CSsy.b 1.4 8
SISy, o 1 1.2 esy, 0 200
€Sy, ®iox |—0.6
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are available. Finally, s3 may refer to a situation where an enormous traffic jam
stands in the way of reaching an important meeting in time.

Scenario 1: no dream episode The first scenario discussed addresses the case
where s, and s3 do not play a role (by putting the connections from preparation to
sensory representation s, = 0 for k > 2). In Fig. 4.3 is shown that the control
state for s; becomes active to reach level 0.2, and the activity of the sensory
representation (indicated by rep) for s; drops to a low level. The preparation level
stays below 0.5 and the feeling level stays below 0.4. Due to these modest values no
dream episode state develops based on s;. The feeling level can be considered too
low to seriously activate an internal simulation.

Scenario 2: two dream episodes In Fig. 4.4 a scenario is shown where the
episode state des,, based on srs;, is succeeded (after time point 13) by an episode
state des,, based on srs,, (see upper graph). Here the connection from preparation

0.6 -

0.4 1 feel b

/’— prep b
rep sl
0.2 1 cs(s, b)
0.0

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 4.3 Scenario 1: no strong feeling and no dream episode generated

1.0 4
0.8 A
0.6 - episode s1
0.4 4 episode s2
0.2 episode s3
0 2 4 6 8 10 12 14 16 18 20 22 24
1.0
feel b
0.8 prep b
rep sl
0.6 A
¥ rep s2
0.4 4 rep s3
02 cs(s1, b)
0.0

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 4.4 Secenario 2: two subsequent dream episodes
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for emotional response to sensory representation of s3 has been given strength
s 3 = 0.45. As shown in the lower graph in Fig. 4.4, for this case the feeling level
goes to 0.7, which is a situation in which regulation facilities become active. For
example, due to this high feeling level the suppressing control state for s; becomes
more active. In the lower graph of Fig. 4.4 the comparison between the sensory
representations of s, and s3 is shown; it is shown that first, up to time point 8, the
sensory representation of s, dominates, reaching a level of around 0.6, which leads
to a dream episode state des,, based on it, as shown in the upper graph in Fig. 4.4.
But after time point 8 the sensory representation for s, is suppressed by the trig-
gered regulation, and therefore beaten by the sensory representation for s;. As a
consequence, after time point 13 the episode state for s; has won the competition,
and provides the basis for a second dream episode. Note that the competition
process took about 5 time units before the episode related to the sensory repre-
sentation state that became the highest activated one at time 9 was able to beat the
previous one.

Scenario 3: three dream episodes Similarly, scenarios for three or more dream
episodes can be shown; see Fig. 4.5. Note that which episode states pop up depends
on the association strengths to the emotional response. For example, if the emo-
tional association strength s 3 for s5 is made slightly lower, then the episode state
for s3 will never pop up due to the mutual inhibition. Moreover, the strength of the
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Fig. 4.5 Secenario 3: Three subsequent dream episodes
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Table 4.5 Settings used for connection strength, threshold and steepness parameters: scenario 3

from state connection to state threshold steepness
SISy [T 1
‘ Lk PS5 0.5 4
fsy W, 1
J ) (O] 1
} fs, 0.5 4
CSsp.b Wy s -0.2
psy ®s | 0.5
SISy, 0.5 8
CSs1.6 (0T -2
ps» [0) 0.5
>2 STS;, 0.25 8
CSsy,b ('06,2 -0.5
ps» s 3 0.43
SISs; 0.25 8
CSs3.0 63 -0.5
ps» M54 0.38
SISy 0.25 8
CSs4.b ('06,4 -0.5
CSs1.b 0.7 8
SISy, 74 1 CSsp 1.1 8
fs, Wg 4 1 CSs3 14 8
CSsyb 1.8 8
SISy (0] 1
* ok des,, 025 60
dCSj/ (010,/"1{ -0.4

inhibition links affect whether or not two different episode states are considered
compatible. If such mutual inhibition links have lower or zero strengths, then in one
episode multiple (apparently compatible) episode states can co-occur.

In Table 4.5 the settings for this scenario are shown, where the cells with values
that differ from the values in the previous scenarios are shaded in yellow.

4.5 Relations to Neurological Theories and Findings

In Levin and Nielsen (2007) dreaming is related to four main components
Amygdala, Medial PreFrontal Cortex (MPFC), Hippocampus, Anterior Cingulate
Cortex (ACC).

There is ample evidence of anatomical connections between the regions (..). Amygdala, in
particular, is massively connected to the other regions in a reciprocal fashion (..). The four
regions are also robustly connected to sensory, motor, and autonomic brain regions and
thus are well suited to mediate higher cognitive functions, behaviors, and affective
responses (Levin and Nielsen 2007, p. 505).
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The biological counterparts of the preparation and sensory representation states
in the model can be found in the sensory and (pre)motor cortices, indicated in Levin
and Nielsen (2007) to be ‘robustly connected’ to the components as mentioned. The
relations between sensory memory elements and their emotional associations are
stored in the Hippocampus; in the model these relations are assumed to be fixed and
modeled by the (bidirectional) connections between the sensory representations
states srs;, and preparation states ps; of the emotional response b. The feeling state
fs;, in the model can be related to the Amygdala, in combination with some limbic
areas involved in maintaining ‘body maps’. As discussed in Sect. 4.2, the inter-
action between preparation state ps;, and feeling state fs; is in line with the neu-
rological theories of Damasio (1994, 1999, 2003, 2010). About the role of ACC
empirical studies show evidence in different directions (e.g., Levin and Nielsen
2007, pp. 505-512); therefore it is not clear yet how it can be related to the model.

The interaction between MPFC and Amygdala has been extensively studied; e.g.
Damasio (1994, 1999), Davidson (2002), Sotres-Bayon et al. (2004), Salzman and
Fusi (2010), Levin and Nielsen (2007). In various empirical studies it has been
found that lower activity of MPFC correlates to less controlled feeling levels, and,
moreover, REM sleep is found to strengthen MPFC activation and reduce feeling
levels. This regulating role of MPFC with respect to Amygdala activation makes
these two neurological components suitable candidates for biological counterparts
of the control state cs, ;, and the feeling states fs, in the temporal-causal network
model presented in Sect. 4.3. As before, the connections between the two types of
states may be related to the Hippocampus. Note that in the model the control states
csy,» also have a role in suppressing the activation of the corresponding sensory
representation state srsy,, which can be justified as being a form of emotion regu-
lation by attentional deployment; e.g. Gross (1998, 2007); see also Sect. 4.2. The
episode states des,, and their competition, as explained in Sect. 4.3 can be justified
by referring to the Global Workspace Theory of consciousness by Baars (1997,
2002) and the perspective of Dennett (1991, 2005) who assume a similar compe-
tition mechanism.

4.6 Discussion

In this chapter based on a Network-Oriented Modeling approach, a temporal-causal
network model was presented that models the generation of dream episodes from an
internal simulation perspective, abstracting from a specific purpose. The contents of
this chapter are based on (Treur 2011a).

The assumption that dreaming, especially when negative emotions are involved,
can be considered as a purposeful form of internal simulation is widely supported;
see, for example, for the purpose of improving coping skills to handle threatful
situations (Revonsuo 2000; Valli et al. 2005; Valli and Revonsuo 2009), or for the
purpose of strengthening fear emotion regulation capabilities (Levin and Nielsen
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2007, 2009; Franzen et al. 2009; Gujar et al. 2011; Walker 2009; Walker and van
der Helm 2009; Yoo et al. 2007; van der Helm et al. 2011; Rosales-Lagarde et al.
2012; Markarian et al. 2013; Mauss et al. 2013; Pace-Schott et al. 2015).

Internal simulation takes place when in response to sensory representation states
activations associated preparation states for actions or bodily changes are activated,
which in turn, by prediction links, activate other sensory representation states; see,
for example, Hesslow (1994, 2002, 2012), Damasio (1994, 1999), Goldman (2006,
Barsalou (2009), Marques and Holland (2009), Pezzulo et al. (2013). Building
blocks to create such internal simulations are memory elements in the form of
sensory representations and their associated emotions. The model exploits a mutual
(winner-takes-it-all) competition process to determine sensory representation states
that dominate in different dream episodes, comparable to one of the central ideas
underlying Baars (1997, 2002)’s Global Workspace Theory of consciousness and
Dennet (1991, 2005)’s perspective on consciousness. Emotion regulation mecha-
nisms (Goldin et al. 2008; Gross 1998, 2007) were incorporated to regulate the
activation levels of the feeling and the sensory representation states. The model was
evaluated by a number of simulation experiments for scenarios with different
numbers of dream episodes.

Note that the presented temporal-causal network model is meant as a plausible
model of a human. Mechanisms identified in the neurological and cognitive liter-
ature were used in order to obtain a human-like temporal-causal network model,
and to support its plausibility. Once such a human-like model is available, potential
applications can be explored. A specific class of possible applications may concern
virtual agents in the context of serious or non-serious gaming. In this context also
some types of validation can be performed, for example, by evaluating how
believable they are considered (also in dependence of parameter settings). Such
applications and validations are a subject for future research.

A number of variations of the current model can be made. One variation is to
take into account more than one emotion triggered by certain sensory representa-
tions. The model can easily be extended to cover this case. Another variation which
is possible is to incorporate dependencies between sensory representations (e.g.,
resulting from sensory preconditioning; e.g. Brogden (1939), Hall (1996). As an
extension of the current model, an adaptive temporal-causal network model has
been developed for fear extinction learning during dreaming (Treur 2011b); this
will be discussed in Chap. 5.
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Chapter 5
Dreaming Your Fear Away

Fear Extinction Learning During Dreaming

Abstract In this chapter, following a Network-Oriented Modeling approach, an
adaptive temporal-causal network model is presented that models how dreaming is
used to learn fear extinction. The network model addresses dreaming as internal
simulation incorporating memory elements in the form of sensory representations
and their associated fear. During dream episodes regulation of fear takes place,
which is strengthened in an adaptive manner by Hebbian learning. The model was
evaluated by a number of simulation experiments for different scenarios.

5.1 Introduction

In the recent cognitive and neurological literature the mechanisms and functions of
dreaming have received much attention; e.g., (Hobson 2009; Levin and Nielsen
2007, 2009; Nielsen and Stenstrom 2005; Revonsuo 2000; Pace-Schott et al. 2015;
van der Helm et al. 2011; Goldstein and Walker 2014; Deliens et al. 2014; Valli
et al. 2005; Valli and Revonsuo 2009; Walker 2009; Walker and van der Helm
2009; Yoo et al. 2007).

In such literature, usually dreaming is considered a form of internal simulation of
real-life-like processes serving as training in order to learn or adapt certain capa-
bilities. Dreaming makes use of memory elements for sensory representations
(mental images) and their associated emotions to generate ‘virtual simulations’;
e.g., (Levin and Nielsen 2007, pp. 499-500). Taking into account fear emotions that
often play an important role in dreams, strengthening of regulation of such emo-
tions is considered an important purpose of dreaming; see, for example, (Levin and
Nielsen 2007; Walker and van der Helm 2009; van der Helm et al. 2011; Deliens
et al. 2014; Pace-Schott et al. 2015). To this end in dreams adequate exercising
material is needed: sensory representations of emotion-loaded situations are acti-
vated, built on memory elements suitable for high levels of arousal:

© Springer International Publishing Switzerland 2016 141
J. Treur, Network-Oriented Modeling, Understanding Complex Systems,
DOI 10.1007/978-3-319-45213-5_5



142 5 Dreaming Your Fear Away

They are recombined or remapped in order to introduce elements that are incompatible with
existing fear memories, thus facilitating (among other functions) the acquisition or main-
tenance of extinction memories. The latter inhibit fear memories (..), and consequently
alleviate affect load (Levin and Nielsen 2007, pp. 500-501).

A comparison can be made to a virtual reality form of exposure therapy (Levin
and Nielsen 2007, pp. 500-501). Strong fear associations of the sensory memory
elements used to make up a dream creates situations in which a person has to cope
with high levels of fear.

Adopting basic elements from Chap. 4 the adaptive temporal-causal network
model presented here generates the type of internal simulation that is assumed to
take place in dreaming. For the different dream episodes, the internal simulation
incorporates interrelated processes of activation of sensory representation states
(from memory) providing mental images, and activation of associated feelings.
Moreover, it incorporates emotion regulation to suppress the feeling levels and the
sensory representation states. The regulation mechanism is adaptive by strength-
ening the relevant connections by Hebbian learning; e.g., (Bi and Poo 2001;
Gerstner and Kistler 2002; Hebb 1949); this adaptive mechanism was described
earlier in (Treur 2011b).

The structure of the chapter is as follows. In Sect. 5.2 the adaptive temporal-
causal network model is described in more detail both in a conceptual and a
numerical representation. Section 5.3 presents simulation results providing some
dream scenarios. In Sect. 5.4 the relation of the model with neurological theories
and findings is addressed. Finally, Sect. 5.5 is a discussion.

5.2 An Adaptive Temporal-Causal Network Model
for Fear Extinction Learning

The adaptive temporal-causal network model presented here is based on mecha-
nisms suggested in neurological literature. First a conceptual representation is
discussed and next a numerical representation.

5.2.1 Conceptual Representation of the Adaptive Network
Model

In Fig. 5.1 a conceptual graphical representation of the model is shown which gives
an overview of the states and connections. Some of the (non-adaptive) basic ele-
ments were adopted from (Treur 2011a); see Chap. 4. In Fig. 5.1 the basic model
for a given stimulus s, with sensory representation state srsy; and dream episode
state des, is shown (k = 1, ..., n). An explanation of the states used is shown in
Table 5.1; an overview of the connections and their weights is shown in Table 5.2.
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CSsib

Fig. 5.1 Graphical conceptual representation of the adaptive temporal-causal network model

Table 5.1 Overview of the state variables used

State Explanation

PSh Preparation state for bodily response b

fsy, Feeling state for b

SISy, Sensory representation state for stimulus s,

CSy b Control state for regulation of sensory representation of s; and feeling b
CS, Dream episode state for sy

CSg, Memory trigger for sy

Table 5.2 Overview of From states To state Weights LP
connections and weights
SIS, , .. ., SISy, PS» D115 ey Opp LP1
fs, (o)
dCSS”. ..7dCSsn ®12 1,5 D125
PS» fsy o3 LP2
CSsy by -+ -3 CSs, b W41, «ves Ogp
PS» SISy, s 4 LP3
CSsi,b We
mity, Mo,k
SISy, CSsp.b W7, LP4
fsp, W38k
des,, ©13,k
SISy, des,, Wg k LP5
dess”---7dess,, ®©10.1,k - O10,nk
CSs.b 11,k

Note that in Fig. 5.1 a sensory representation state and episode state for only one
stimulus s, is depicted. In the specification of the model below an arbitrary number
n of such states are taken into account. In Sect. 5.3, a simulation scenario with four
stimuli s; is presented.

The inhibiting links for fear regulation are indicated by dotted arrows (in red)
from csg, 5, to srsy,, fs, and desy,. The two links between srsy, and ps,, indicate the
bidirectional association between stimulus representation srs;, and emotional
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feeling fs;,. The links between ps;, and fs;, indicate a recursive as-if body loop (see
below). The links from srs;, and csy, j; to @7 and from fs;, and cs, 5, to wg  indicate
the adaptive element in the model.

The adaptive network model incorporates four connected cycles (see Fig. 5.1):

A positive preparation-feeling cycle ps;, — fs;, (right lower part in Fig. 5.1)

A positive preparation-sensory representation cycle ps;, — srs;, (left lower part)
A negative emotion regulation cycle csy, j — fs;, stsy,, des,, (upper part)

A positive fear extinction learning cycle csg, , — 074, Mg, (upper part)

Each of these cycles will be briefly discussed.

The preparation-feeling cycle ps; — fs,,

As indicated in Sect. 5.1 above, dreams can be considered as flows of activated
imaginations based on (re)combined sensory memory elements with emotional
associations. Such flows can be related to the notion of internal simulation of body
states put forward, among others, by (Damasio 1994, 1999). The idea of internal
simulation of body states is that sensory representation states are activated (e.g.,
mental images), which in response trigger associated preparation states for actions
or bodily changes, which, by prediction links, in turn activate sensory representa-
tion states for body states.

sensory representation states — preparation states
— sensory representation states

Internal simulation has been used in general, for example, to describe prediction
of effects of own actions (e.g., Becker and Fuchs 1985), processes in another
person’s mind (e.g., Goldman 2006) or processes in a person’s own body (e.g.,
Damasio 1994). The idea of internal simulation is exploited in this cycle more in
particular by applying it to bodily changes expressing emotions, using the notion of
as-if body loop (e.g., Damasio 1994, pp. 155-158; Damasio 1999, pp. 79-80;
Damasio 2010); see also Chap. 3:

sensory representation — preparation for bodily changes = emotional response —

emotion felt = based on sensory representation of (simulated) bodily changes

The preparation-sensory representation cycle ps; — srs;,

Sensory representations as stored in memory usually have emotional responses
associated to them. This means that as soon as a sensory representation is activated
also its associated emotional response preparations are activated, and conversely,
when an emotional response preparation is active, also the sensory representations
associated to this type of response become active. This results in a cycle between
sensory representations srsy, and emotional response preparations ps, shown in the
left lower part of Fig. 5.1. The link from ps, to srs,, triggers a (predicted or
expected) sensory representation upon activation of the (emotional) preparation
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state ps;, as a form of internal simulation. This can be related to, among others,
(Hesslow 1994, 2002, 2012). Together with the preparation—feeling cycle dis-
cussed above, this provides a state of fear as a complex and cyclic activation state of
fear response preparations, fear feelings and fearful sensory representations.

The emotion regulation cycle cs, ; — fs;, srsy,, srs,

Fear extinction indicates the process of suppressing fear states. This can be con-
sidered a specific type of emotion regulation to control emotions that are felt as too
strong; e.g., (Goldin et al. 2008; Gross 1998, 2007). Emotion regulation mecha-
nisms cover antecedent-focused regulation (e.g., selection and modification of the
situation, attentional deployment, and reappraisal) and response-focused regulation
(suppression of a response). Regulation of high levels of fear can take place by
antecedent-focused emotion regulation, for example, by attentional deployment in
the form of focusing attention in such a way that situations or aspects of situations
in which too strong fear-related stimuli occur are kept out of the attention focus, or
by a form of re-appraisal decreasing the negative feeling level based on changing
the cognitive interpretation of fear-related stimuli into a less negative one. In the
upper part of Fig. 5.1 such an emotion regulation mechanism is depicted. The
upward arrows to the control state csy,;, take care for monitoring the sensory
representations srsy,, feeling state fs;, and dream episode state des,, for the fear state,
and when the fear level is too high, this leads to activation of the relevant control
states csy, 5. These control states in turn lead to inhibition of the fear-related states
(the downward, dotted arrows in the upper part of Fig. 5.1).

The fear extinction learning cycle csy, , — 07, Og4

The basis of fear extinction learning is that the emotion regulation mechanisms
discussed above are adaptive: they are strenghtened over time when they are
intensively used. Note that fear extinction learning is not a form of unlearning or
extinction of acquired fear associations, but it is additional learning of fear inhi-
bition in order to counterbalance the fear associations which themselves remain
intact (e.g., Levin and Nielsen 2007, p. 507). This learning process is modeled by
applying a Hebbian learning principle (e.g., Bi and Poo 2001; Gerstner and Kistler
2002; Hebb 1949) to the upward connections ®;; and mg, from sensory repre-
sentation state srs,, and feeling state fs, to the control state cs, 4 in the upper part of
Fig. 5.1. Note that the dream episode state and its upward link to the control state
serve as an amplifier in this Hebbian learning process. The positive cyclic character
of this learning process is as follows: the stronger the upward connections become,
the higher the activation level of the control state, and this again strengthens the
learning process for the connections.

The adaptive temporal-causal network model has been designed according to the
format discussed in Chap. 2. Parameter 1| is a speed factor, indicating the speed by
which an activation level is updated upon received input from other states. During
processing, each state has an activation level represented by a real number between
0 and 1.
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5.2.2 Numerical Representation of the Adaptive Network
Model

Below, the numerical representation of the model is discussed in the form of (tem-
porally). Local Properties (LP) for the dynamics of the states based on the connections
between the states; these local properties are described by differential equations.

In these specifications the advanced logistic sum combination function alogis-
tics «(...) is used with & a steepness and t a threshold parameter (see also Chap. 2):

1 1
1+ e—o(Vi++V-1) - 1+ e°°

alogistic, .(V1, .., Vi) = ( ) (14+¢7°7)
Note that for higher values of ot (e.g., ¢ higher than 20/t) this threshold

function can be approximated by the simple logistic sum combination function
slogistic, .(V, .., V}); this has been used in LP5:

1
- 1+eoWVit+V—1

slogistic,, (V1 .., Vi)

The first property LP1 describes how preparation for response b is affected by
the sensory representation and episode states of stimuli s; (triggering the response),
and by the feeling state for b:

LP1 Preparation state for response b

dps,,()/dt =
N [alogistic,, (0,118, (1), .., @1 kTS5, (), 02 f55(2), 012,184, (2), .., ©12,4€85, (1)) — PSp(1)]

The feeling state for b is not only affected by a corresponding preparation state
for b, but also by the inhibiting control states for s; and b. This is expressed in
dynamic property LP2. Note that for this suppressing effect the connection weight
44 from the control state for s; and b to feeling state for b is taken negative, for
example w4, = —1.

LP2 Feeling state for b
dfs,(r)/dr = n [alogisticc’r(m psp(2), @41 €85, (1), -, Dag CSg, p(2)) —T55(1)]

The sensory representation state for sy is affected by the preparation state for b (fear
association) and by the suppressing control state for s; and b. For this suppressing
effect the connection weight mg ; from the control state for s, and b is taken negative.
This is expressed in dynamic property LP3. Moreover, property LP3 is used to
describe how the sensory representation of any traumatic sy is triggered from memory,
as a starting point for a dream: in a scenario the memory trigger values are set 1. For
non-traumatic s such triggering does not take place: the values are set 0.
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LP3 Sensory representation state for s;
dsrs,, (1) /dr = n [alogistic,; (s x s, (1), W6k CSg,.5(1), Do x Mty (£))—srSg, (£)]

Activation of a control state for a specific sensory representation for s; and b is
based on the level for feeling b and the activation level of the sensory representation
and episode states of s:

LP4 Control state for s; and b
dcsy, (1) /dt = m [alogistic, (074 srsg, (1), g i fsy (1), 013k desy, (1)) —csq, 5 (2)]

Due to the inherent parallellism in neural processes, at each point in time
multiple sensory representation states can be active simultaneously. For cases of
awake functioning the Global Workspace Theory (e.g., Baars 1997) was developed
to describe how a single flow of conscious experience can come out of such a large
multiplicity of (unconscious) parallel processes. The basic idea is that based on the
various unconscious processes a winner-takes-it-all competition takes place to
determine which one will get dominance and be included in the single flow of
consciousness. This idea was applied here in the dreaming context to determine
which sensory representation element will be included as an episode state des;, in a
dream. This competition process is decribed in LP5, using mutual inhibiting con-
nections from episode states des;, with i # k to des;,. For the suppressing effects the
connection weights from the des;, with i # k to des,, are taken negative, for
example m;9;, = —0.6 for i # k. Note that for the sake of notational simplicity
®oxx = 0 is taken. For traumatic stimuli s; an additional and strong way of
inhibition of the corresponding episode state takes place, blocking the generation of
an episode state for this stimulus. It is based on the control state for s; and b and is
assumed to have a strong negative connection strength ®;; ;. For non-traumatic
stimuli this connection is given strength 0.

LPS Episode state for s,

des;, (7)/dr =

n|[slogistic, (o xsts, (1), ®114C85,5(1), ®10,1 £dess, (2), .., W10, xdes, (1)) —desy, (¢)

Hebbian learning to strengthen fear extinction

From a Hebbian perspective, strengthening of a connection over time may take
place when both nodes are often active simultaneously (‘neurons that fire together
wire together’). The principle goes back to Hebb (1949), but has recently gained
enhanced interest by more extensive empirical support (e.g., Bi and Poo 2001), and
more advanced mathematical formulations (e.g., Gerstner and Kistler 2002); also
see Chap. 2, Sect. 2.10. In the adaptive temporal-causal network model two upward
connections that play a role in monitoring for the emotion regulation cycle are
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adapted based on a Hebbian learning principle. More specifically, for such a con-
nection from state X; to state X; its strength ®;; is adapted using the following
Hebbian learning rule, taking into account a maximal connection strength 1, a
learning rate m, , and an extinction rate C%_, usually taken small (see also Chap. 2,

Sect. 2.10):

do; (1) /dr =, Xi()Xj(1) (1 = @;(1)) = Gy, 05(1)
= N, Xi(DX;(1) — (Mo, Xi(0)X; (1) + G, )05 (1)

Here X,(t) and Xj(t) are the activation levels of state X; and X; at time ¢ and
;(?) is the strength of the connection from state X; to state X; at time ¢. A similar
Hebbian learning rule can be found in (Gerstner and Kistler 2002, p. 406). This
learning principle has been applied (simultaneously) to the two upward connections
from sensory representation and feeling states to the control state in Fig. 5.1,
according to the following instantiations of the general learning rule above:

t

o i (1) /At = N, 5785, ()85, (1) (1 = 074(1)) = By, @74(2)
(1)

= Neyy, ST, (1)€85,.5(2) — (Moo, T8, (£)€8g, 6 (2) + Loy, ) O74(2)
dog (2)/dt = M, f55(7) (1 — @54(1)) — Gy, 054(2)
)

= Mg, 155 (2) 85, (1) — (nmsykfsb(t)cssbb(t) + Cong, ) 084 (1)

In principle, the learning rate n and extinction rate {, can be taken differently for
the different connections. In the example simulations discussed in Sect. 5.3 (shown
in Fig. 5.2) the following values have been used: n = 0.7 for all w7, and n = 0.4 for
all wgy, and { = 0.001 for all ®;; and mg.

5.3 Simulations of Fear Extinction Learning in Dream
Scenarios

In the dream scenarios that are described in this section the cycles as discussed play
their roles as follows.

Triggering s,

e A stimulus s; is given for which previously a high extent of fear has been
experienced, and for which from time to time (in particular during sleep) a
sensory representation state is triggered by memory (for the model this is
considered an external trigger); note that such a memory trigger was not used for
the other stimuli: their activation automatically happens due to the high fear
levels induced by triggering s;, and maintained by the subsequent dream
episodes.
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Fig. 5.2 Dream with three episodes showing extinction learning and reduction of feeling level

e The activation of the sensory representation of s, leads to activation of an
enhanced preparation level for a bodily fear response b

The positive preparation-feeling cycle ps; — fs,

e By an as-if body loop an enhanced preparation level for b leads to an enhanced
fear feeling level for b and vice versa
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Blocking s,

e By a strong form of emotion regulation in particular the sensory representation
and episode state of s; are strongly suppressed: the activation level of the
sensory representation of s; becomes low, and no dream episode state for s;
occurs, as this is blocked

The positive preparation-sensory representation cycle ps; — srsg

e Other fear-associated stimuli s, for k > 2 are available for which the person has
less strong previous experiences; the sensory representation states for these sy
are activated by links from the high preparation state for b, depending on the
strength of these links

e When the sensory representation state of a stimulus s, is activated, this leads to
an enhanced activation level of the preparation state for the emotional fear
response

The positive preparation-feeling cycle ps, — fs,

e Due to the higher activation level of preparation for fear based on b, via the as-if
body loop also the feeling level for b becomes higher: the person experiences
more fear

Competition to achieve a dream episode des;,

e The active sensory representation for some s; leads to a corresponding dream
episode state, according to a competition process by mutual inhibition to get
dominance in the episode

The negative emotion regulation cycle cs,, , — fs;, srs,, des,,

e By the control states for emotion regulation for an active sensory representation
for s; both the fear feeling level and the sensory activation level of s; are
suppressed (attentional deployment)

The fear extinction learning cycle csy, 5, — 07, 0g«

e Due to nonzero activation levels of the control states and the fear feeling state
for b, and the sensory representation and episode states for s, Hebbian learning
takes place strengthening the connections from feeling state and sensory rep-
resentation to control state

e Increased connection strengths lead to higher activation levels for the control
states

A variety of simulation experiments have been performed according to such
scenarios, using numerical software. In the experiments discussed below (see
Fig. 5.2) the settings were as shown in Table 5.3.

As shown in the left hand side of the table, all non-inhibiting connections to
preparation, feeling, control, and episode states have strength 1, and the inhibiting
connections from control states to feeling, sensory representation states and episode
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Table 5.'3 Settings used for From state | Connection | To Threshold | Steepness
connection strength, threshold state
and steepness parameters
SISy, ™ & 1 PS» 0.5 4
fs,, [} 1
€Sy, 12k 1
PS» o3 1 fs;, 0.5 4
CSg b W44 —0.2
PS» s 1 0.5 SISy, 0.25 8
CSy,.b W61 -2
PS» W52 0.5 SISy, 0.25 8
CSs, b W2 -0.5
PS» s 3 0.45 | srsy, 0.25 8
CSy, b W63 —0.5
PS» Ws.4 0.4 SISy, 0.25 8
CSgy.b wea |05
SIS, ™7, 1 CSg, b 1 8
fs,, g1 1
esy, o3, |03
SISy, o & 1 esy, 0.25 60
es; G Ak |0 |06
€Sy, b oy | —0.2
(k > 2)
CSg,.b oy |20

states, and mutually between episode states have strengths —0.2, —0.5, —0.2, and
—0.6, respectively, with an exception for the sensory representation and episode
states for s, which are inhibited by strength —2 and —20 (they are blocked due to a
previous traumatic event involving s;). Small differences in emotional associations
for the different s, are expressed by different strengths from preparation of emo-
tional response to sensory representation states, varying from 0.5 to 0.4. In the
scenarios considered, the memory trigger for the sensory representation of s; has
level 1 and connection strength 0.5. The threshold and steepness values used are
shown in the right hand side of Table 5.3. Relatively low steepness values were
used, except for the episode states. The threshold values for preparation and feeling
states were taken 0.5; in order to model differences in emotional associations
between the sy, different threshold values were taken for their sensory representation
and control states. The initial values of all states were taken 0, and for the adaptive
connection strengths 0.1 initially (which also could be taken 0). The speed factor n
was 1, and the step size Ar used was 0.1. For learning and extinction rates the
following values have been used: 1, , = 0.7 for all @7, and N, , = 0.4 for all wg,

and C,,, = C,,, = 0.001 for all ®7; and wg.
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The example scenario discussed addresses a case where three dream episodes
occur, related to the sensory representations of s5, 53, 54, subsequently. In Fig. 5.2
time is on the horizontal axis and the activation levels of the indicated states and
connections are on the vertical axis. In the first graph it is shown that right from the
start the sensory representation for s; becomes active (triggered from memory).
Immediately the emotional response preparation for b starts to develop, and the
related feeling, as shown in the third graph. Also in the third graph it is shown how
as a result the control state for s, becomes active. Due to the strong suppression, no
(full) dream episode develops for s;, as shown in the second graph. Due to the
relatively high emotional response and feeling level, the sensory representations for
2, 83, S4 become active, following that order and strength (first graph).

In a cyclic process, this further increases the emotional response preparation and
feeling levels (third graph). As the sensory representation of s, is the strongest, it
wins the competition for the dream episode from time point 3-9 (second graph).

Given this first episode and the high feeling and sensory representation levels,
extinction learning takes place of the connections to the control state for s, (see
fourth graph), reaching strengths one around 1 at time point 9, and hand in hand
with this process the level of the control state for s, jumps up from time point 7 on
(see third graph). As a result of this, control is exerted, suppressing after time point
9 the feeling level (third graph), the sensory representation of s, (first graph), and
the related episode (second graph). As the feeling level was only partly reduced,
and the sensory representation for s, does not compete anymore, from time point 11
on a second episode occurs, based on the sensory representation of s3 (second
graph). Again the whole adaptation process occurs, this time related to s3. From
time point 16 on, this brings the feeling level more down (third graph), and sup-
presses the sensory representation of s3 (first graph), and the related episode (second
graph). After this, the whole process repeats itself for a third dream episode, based
on the sensory representation of s4. This leads to another reduction of the feeling
level around time 25. Overall, all connections for fear extinction in relation to the
most strongly fear-related sensory representations have been learned and have
values around 1, and the feeling level was reduced to below 0.6.

5.4 Relating the Adaptive Temporal-Causal Network
Model to Neurological Theories

Recall from Chap. 4 that according to (Levin and Nielsen 2007) dreaming is related
to four main brain components and their connections: Amygdala, Medial PreFrontal
Cortex (MPFC), Hippocampus, Anterior Cingulate Cortex (ACC). Note that the
biological counterparts of the preparation and sensory representation states in the
model can be found in the sensory and (pre)motor cortices, indicated in (Levin and
Nielsen 2007, p. 505) to be ‘robustly connected’ to the above mentioned compo-
nents. One of the roles of the Hippocampus is to store and maintain the relations
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between sensory memory elements and their emotional associations; in the model
these connections are assumed to be fixed and modeled by the (bidirectional)
connections between the sensory representations states srs,, and preparation states
ps,, of the emotional response b. The feeling state fs;, in the model can be related to
the Amygdala, possibly in combination with some limbic areas involved in
maintaining ‘body maps’. As discussed in Sect. 5.2, the interaction between
preparation state ps, and feeling state fs,, is in line with the neurological theories of
Damasio (1994, 1999, 2003, 2010). About the role of ACC empirical studies show
evidence in different directions (e.g., Levin and Nielsen 2007, pp. 505-512);
therefore it is not clear yet what exactly its function is in dreaming and how it can
be related to the model presented in Sect. 5.2.

Especially the interaction between MPFC and Amygdala in fear extinction during
dreaming has been extensively studied; (e.g. Davidson 2002; Levin and Nielsen
2007; Salzman and Fusi 2010; Sotres-Bayon et al. 2004). In various empirical
studies it has been found that lower activity of MPFC correlates to less controlled
feeling levels, and, moreover, REM sleep is found to strengthen MPFC activation
and reduce feeling levels; see, for example, (Goldin et al. 2008; Gujar et al. 2011;
Levin and Nielsen 2007; Walker and van der Helm 2009; Yoo et al. 2007). This
regulating role of MPFC with respect to Amygdala activation makes MPFC a
suitable candidate for biological counterpart of the control state cs;, in the
temporal-causal network model presented in Sect. 5.2. Moreover, the reported
finding suggests that fear extinction learning affects activation of MPFC; this is in
accordance with the modeling choice that the Hebbian learning was applied to the
two upward connections from sensory representation and feeling states to the control
state. As before, the connections between the two types of states may be related to
the Hippocampus. Note that in the temporal-causal network model the control states
s, » also have a role in suppressing the activation of the corresponding sensory
representation state srs;, which can be justified as being a form of emotion regulation
by attentional deployment (Gross 1998, 2007); see also Sect. 5.2. The episode states
des,, and their competition can be justified by referring to the Global Workspace
Theory of consciousness (e.g., Baars 1997), as explained in Sect. 5.2.

5.5 Discussion

In this chapter, following a Network-Oriented Modeling approach an adaptive
temporal-causal network model was presented that models the generation of dream
episodes from an internal simulation perspective, and uses these episodes for fear
extinction learning. The contents of this chapter are based on (Treur 2011b).

The assumption that dreaming, especially when negative emotions are involved,
can be considered as a purposeful form of internal simulation is widely supported,
in particular, for the purpose of strengthening fear emotion regulation capabilities;
e.g., (Levin and Nielsen 2007; Walker and van der Helm 2009; van der Helm et al.
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2011; Deliens et al. 2014; Pace-Schott et al. 2015). Building blocks to create such
internal simulations are memory elements in the form of sensory representations
and their associated emotions. The model exploits a mutual (winner-takes-it-all)
competition process to determine sensory representation states that dominate in
different dream episodes, comparable to one of the central ideas underlying the
Global Workspace Theory of consciousness (Baars 1997). Adaptive emotion reg-
ulation mechanisms (e.g., Bi and Poo 2001; Gerstner and Kistler 2002; Hebb 1949)
were incorporated to regulate the activation levels of the feeling (by re-appraisal)
and the sensory representation states (by attentional deployment). Adaptation in the
model is based on Hebbian learning (see also Chap. 2, Sect. 2.10). The
temporal-causal network model was evaluated by a number of simulation experi-
ments for scenarios with different numbers of dream episodes.
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Chapter 6
Emotions as a Vehicle for Rationality
in Decision Making

Experiencing Emotions for Decisions Based
on Experience

Abstract In this chapter, following a Network-Oriented Modeling approach, an
adaptive temporal-causal network model is presented for decision making using
valuing of action options based on predictive loops through feeling states. Hebbian
learning is used for different types of connections in the adaptive network model.
To assess the extent of rationality, a measure is introduced reflecting the environ-
ment’s behaviour. Simulation results and the extents of rationality of the different
models over time are presented and analysed.

6.1 Introduction

Decision making has often been considered as a rational process in which emotions
can only play a disturbing role. In more recent times this has been questioned. For
example, Loewenstein and Lerner (2003, p. 619) point at the positive functions served
by emotions (see also Chap. 3, Sect. 3.5, and the quote in Chap. 1, Sect. 1.2). In
particular, in decision making it may be questioned whether you can make an adequate
decision without feeling good about it. Decisions with bad feelings associated to them
may lack robustness. Many occasions may occur over time that trigger a temptation to
change it into a decision with a better associated feeling. Decision making usually
considers a number of options for an action to be chosen. Such a choice is often based
on some form of valuing the options. In this valuing process emotions come in: some
of the options relate to a more positive feeling that the other options. It has been found
that valuations relate to amygdala activations (see, e.g., Morrison and Salzman 2010;
Murray 2007; Salzman and Fusi 2010). As valuing can be seen as a grounding for a
decision, it turns out that it concerns an emotional grounding. Bad decisions are those
that are not solidly grounded by having a positive feeling about them. They may not
last long, as any opportunity to get rid of them will be a temptation to reconsider the
decision. Recent neurological literature addressing this idea of emotional valuing and
grounding of decisions relates the notion of value to the amygdala; e.g., Bechara et al.
(2003), Bechara et al. (1999), Montague and Berns (2002), Janak and Tye (2015),
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Jenison et al. (2011), Morrison and Salzman (2010), Ousdal et al. (2014), Pessoa
(2010), Rangel et al. (2008) and Rudebeck and Murray (2014).

So, in this perspective emotions and the assumed rationality of decision making
are assumed to go hand in hand. This theme is the focus of this chapter. The
question addressed is how computational models for emotion generation can be
used to model decision making processes, and how it can be analysed how rational
such a decision making model is. So, it will be computationally addressed how
emotions are not an enemy but a vehicle for rationality, and it will be analysed in
what sense emotional valuing as a basis for decision making satisfies some
rationality criterion.

To analyse this it has to be taken into account that decision making is not just an
instantaneous process in the present, but it has an embedding in the temporal
dimension. In this temporal dimension experiences with the environment in earlier
situations are relevant, as they have implications for future decision situations:
adaptive processes tune the decision making mechanism to such experiences. These
experiences relate to emotions and by strengthening the associations to such emo-
tions, in future decision situations the effect of these emotions will be stronger. As a
consequence the decisions will be adapted better to the environment. By such an
adaptive process the decisions in some way become more rational, given the
increasing amount of knowledge about the environment built up by experiences over
time. Sometimes it can be observed that within sport, athletes may show a strong
emotion after they made an effort. For example, tennis players after they have hit a
decisive ball: when successful a positive emotion occurs, and when not successful a
negative emotion. Given the above analysis, by learning these emotions get a stronger
association to the specific performance. This will already work when feeling the
emotions without expressing them. But perhaps expressing the emotions will provide
additional strengthening, as via the body loop (see Chap. 3, Sect. 3.2) this will
increase the level of emotion felt, and therefore will strengthen the learning process.

In this chapter in particular it will be analyzed to which extent a biologically
plausible emotion generation model together with a biologically plausible learning
model is able to model decision making processes that satisfy some rationality
criterion.

The adaptive temporal-causal network model for decision making considered in
this chapter, first generates preparations for a number of options relevant for a
situation at hand. By internal simulation the effects of these options are predicted as
sensory representations. Then emotions are generated: these predicted effects trig-
ger preparations for emotional responses and based on predictive as-if body loops,
associated feeling states are generated. Thus emotional valuations of the options are
obtained; e.g., Damasio (1994, 2004, 2010), Janak and Tye (2015), Jenison et al.
(2011), Ousdal et al. (2014), Pearson et al. (2014), Pessoa (2010) and Rangel et al.
(2008). The activation level of such a feeling state (which is considered as positive),
strengthens the preparation for the related option. This process leads to an emerging
strongest option as an outcome of the decision.

The type of biologically inspired learning modeled incorporated in a slightly sim-
plified version of the decision model is a Hebbian learning model (e.g., Hebb 1949;
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Gerstner and Kistler 2002), which has been applied to different types of connections in
the decision model: not only to the association from stimulus to preparation (as in
classical conditioning), but also to the connections in the as-if body loops that represent
the strength of the association between preparation and feeling.

The next question addressed is how it can be evaluated to which extent a specific
decision making model can be considered as being rational. To this end two dif-
ferent notions of rationality are defined, depending on characteristics of the envi-
ronment. What is rational indeed depends strongly on the characteristics of the
environment, as this environment determines what the effects of a chosen action
will be. For example, buying fruit in some shop may lead to quite positive feelings
if the quality of this fruit is good, but not when this quality is bad. Therefore a
rationality measure has to relate to the environment’s characteristics in the sense of
the environment’s behaviour when actions are performed. Two examples of such a
rationality measure were defined and have been applied to evaluate the computa-
tional decision model. These notions of rationality are based on the assumption that
the more the person makes choices that are the most beneficial within the given
environment, the more rational it is.

In this chapter, in Sect. 6.2 the adaptive temporal-causal network model for
decision making is introduced. Sections 6.3—6.5 present a number of simulation
results for a deterministic world, a stochastic world and a changing world, respec-
tively. In Sect. 6.6 measures for rationality are discussed, and the adaptive network
model is evaluated with respect to these measures. Finally, Sect. 6.7 is a discussion.

6.2 The Adaptive Temporal-Causal Network Model
for Decision Making

The adaptive temporal-causal network model described here is based on neuro-
logical notions such as valuing of decision options in relation to feeling, and
internal simulation loops and execution loops for each of the options. These loops
cover as-if body loops and body loops involving generated feelings.

Although an important function attributed to the amygdala concerns fear, in
recent years also a function beyond this fear context has been found; e.g., Lindquist
and Barrett (2012), Murray (2007) and Pessoa (2010). Parts of the prefrontal cortex
(PFC) and other brain areas such as hippocampus, basal ganglia, and hypothalamus
have extensive, often have bidirectional connections with the amygdala; see, for
example, Ghashghaei et al. (2007), Janak and Tye (2015), Likhtik and Paz (2015),
Morrison and Salzman (2010) and Salzman and Fusi (2010). Usually stimuli lead to
associated responses and their predicted effects, which in turn trigger emotional
responses relating to a rewarding or aversive feeling. These feelings represent a way
of experiencing the value of such a predicted effect of a response: the extent to which
it is positive or negative for the person. The underlying idea of neurologically
represented value also plays a central role in neuroeconomics, for example, in work
on the neural basis of economic choice. Much literature addresses the way in which
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in decision-making different options are compared, and choices are related to a
notion of value as represented in the amygdala; e.g., Bechara et al. (2003), Bechara
et al. (1999), Montague and Berns (2002), Morrison and Salzman (2010), Ousdal
et al. (2014), Pessoa (2010), Rangel et al. (2008) and Sugrue et al. (2005). For more
details about emotions and their role on other mental processes, also see Chap. 3.

In Fig. 6.1 it is shown how a sensed stimulus s leads to its sensory representation
which in turn triggers a preparation state for one or more actions a. Note that the
adaptive element has been left out of consideration here. Such a preparation state leads
to a sensory representation of a predicted effect e: internal simulation of action a. By
this sensory representation of e, preparations for emotional responses b are triggered
for which a prediction is made, thus generating a feeling state b: as-if body loop for
internal simulation of body state b. Feeling these emotions represents a way of
experiencing the value of such a prediction: to which extent it is positive or negative.
This feeling state serves as a valuation, and in turn amplifies the activation of the
preparation for the concerning option. The pattern involves two cycles, as depicted in
Fig. 6.1. Table 6.1 shows a conceptual matrix representation for this model.

Note that these cycles are active in parallel for all options a (partially) triggered
by s, and result in specific valuation values for each of the options, which,
depending on their value, strengthen the options. In this way the valuing process
strengthens some of these option preparations more due to higher values of the
connections involved in the two cycles, such as the connection from valuation to
preparation, or the connections involved in prediction and in the as-if body loop.

Note that this pattern is similar to what is considered in Damasio (1994)’s
Somatic Marker Hypothesis. Moreover, note that this provides a (circular) causal
role of feelings in decisions for actions, which has some parallel to the discussion in
Philosophy of Mind on the causal role of qualia; e.g., Kim (1996).

sensory
ffenS(t)'r St?;te ripiésen;atlon preparation
or stimulus s of stimulus s state for a
)
A

representing s responding by a

predicting e, amplifying a

sensory O responding by b

representation preparation
of predicted state for b
effect e

feeling b

feeling state
for b

Fig. 6.1 Conceptual graphical representation of a temporal-causal network model for decision
making based on emotion-related valuing
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Table 6.1 Conceptual matrix representation of a temporal-causal network model for decision
making based on emotion-related valuing

To SSg SIS PSa SIS, PSh be
From

S mrepresenting

SIS wresponding_a

PS» (Dpredicling

SIS, Oresponding_b

PS» mfeeling
fSb mamplifying_a (Damplifying_b

Ny - nsrs‘ npsb nsrsy nps,, T]fs,,
CY(~ . ) - Cars, (V) Cpsu (Vla V2) Csrs, (V) Cps[, (Vla V2) Cfsy, (V)

The numerical model is shown in Box 6.1, with connection weights wyy > O.
Note that the connection weights determine the valuation generated for a given
option a. For example, when in a special case for a given option a all of
Oresponding_a» Opredictings Presponding_bs Dfeclings and Wamplifying_a 4T hlgher than those
for all other options, then this option a will get the highest activation level for
feeling fs;, and for ps,. On the other hand, it may well be the case that some option
a has the highest Oreqponding_a» but still gets the lowest valuation by the feeling level
of fs;, and as a consequence lowest activation level ps,, due to lower values for other
connections involved in the cycles for this option. In such a case, although at
forehand there are good indications for a as a response for the given stimulus s, still
because of negative valuation of the predicted effect it is not pursued.

LP1 Representing stimulus s
dSI‘SS/ dt = MNars, [Csrss (mrepresentingsss) — Srss]
SIS (t + At) = SIS (t) + nsrss [Csrss ((Drepresemjngsss (t)) — SISy (t)]Al

LP2 Generating and amplifying response a
dpsﬂ/ dt = Mps, [Cpsa (mresponding_asrssv 0)amplifying_afsb) - psa]

ps,(t+ Ar) = ps, (1) + MNps, [Cpsﬂ ((Dresponding_asrss (1), (Damp]ifyingfsb(t)) — ps,(1) ]At

LP3 Generating and amplifying response b
dps,,/dt = Mg, [Cps, (Oresponding_»STSe; Damplitying_»{S5) — PSy]
ps,(t+ At) = ps,(?)
+ Nps, [Cps, (Oresponding_5STSe (1), Damplitying_»TS5 (1)) — P, (1) | AL
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LP4 Predicting effect e
dsrs, / dt = MNsrs, [CsrsP ((Dpredictingpsa) = SrSe]
st (1 + At) = srs(t) + Nsrs, [Cors. (mpredictingpsa (2)) — srse ()] At

LP5 Feeling b
dfs,/dt = N, [crs, (OteetingPS,) — Fsp]
fsy (¢ + A1) = fsy(t) + Ny, [Cs, (OteetingPS, (1)) — T35 ()] At

The symbols are explained as follows:

ssy  sensor state for stimulus s

srs, sensory representation state for stimulus s

ps, preparation state for decision option a

ps, preparation state for emotional response b

srs, sensory representation state for predicted effect e
fs;, feeling state for b

Box 6.1 Numerical representation of a temporal-causal network model for decision
making based on emotion-related valuing

The analysis of rationality of decision models based on emotional valuing has
been based on a simplified variant of the decision making model discussed above.
This simplified variant was adopted from Treur and Umair (2011, 2015). For this
variant it has been analysed how adaptivity can be added and in how far this makes
the model behave rationally for a given environment.

A graphical conceptual representation of the model of this adaptive
temporal-causal network model is depicted in Fig. 6.2. This picture also shows
formal name representations explained in Table 6.2. The numerical representation
of the model is given in the detailed specifications below. A main difference with
the model depicted in Fig. 6.1 is that the causal chain

sensory representation of predicted effect e — preparation state for emotion b — feeling b
is shortened into a causal chain
sensory representation of predicted effect e — feeling e

Here ‘feeling e’ plays the role of the emotion effect b related to e. Moreover, a
subscript i is added to represent different options a; for i = 1, 2, ... Furthermore, the
weights of the connections to which Hebbian learning is applied are indicated by
;; (from stimulus to response), ®,; (from feeling to preparation), and s,



6.2 The Adaptive Temporal-Causal Network Model for Decision Making 163

ws,, ossy SIS, /—\‘ '/\psai
sensing O,
O I C: representing O responding

amplifying

SSe;

representing feeling

effectuating and sensing ~ A;

Fig. 6.2 Graphical conceptual representation of the adaptive temporal-causal network model for
decision making, which will be evaluated from a rationality perspective

Table 6.2 Overview of the (dynamic) states and adaptive connections used in the model

Formal | Informal name Description
name
WS, World state for w This characterizes the current external world
situation the person is facing
S Sensor state for w The person observes the world state through the
sensor state, which provides sensory input
SSe, Sensor state for effect e; The person observes the effect e; through the sensor
state, which provides sensory input
SIS, Sensory representation state | Internal representation of w
for w
SIS, Sensory representation state | A feeling state fs,, is generated, via the predicted
for effect e; sensory representation srs,, for action a;. This
fs,. Feeling state for effect ¢; provides a valuing for action option q;
PS,, Preparation state for action a; | Preparation for a response a;
sy, Execution state for a; Execution of a;
O, Weight of the responding This models the relation between stimulus w and
connection from srs,, to ps, | directly associated response a;
Wy Weight of the amplifying This models how the generated feeling affects
connection from fs,; to ps,, (amplifies) the preparation for response a;
O3 Weight of the predicting This models how the preparation for response a;

connection from ps, to srs,, | affects (predicts) the representation for effect e;

(prediction of the effect). Note that for three options a; for i = 1, 2, 3, these are 9
connections that can be learnt.

To get an idea of a real life context for the model, consider a simple scenario in
which a person can choose among three options a; with i = 1, 2, or 3, indicating
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going to three different shops to get a certain product, for example, fruit. In the
world each of the three options provides this product with a certain satisfaction
factor, indicated by the world’s characteristics or effectiveness rates \; with i = 1, 2,
or 3 (A; measured between O and 1) for the three options respectively. The model
describes a situation in which a number of times the person goes to all three shops
to find out (and learn) how these satisfaction factors are. In each of the shops the
person buys a fraction of the fruit corresponding to the person’s tendency or
preference to decide for this shop.

For each i the execution state for option a; combined with the (possibly
stochastic) effectiveness of executing «; in the world (indicated by A;) activates the
sensor state for effect e; via a prediction link as described above (internal simula-
tion). Each of the preparations for a; generates a level of feeling for e;. This
functions as a valuation of the prediction of the action effect by the internal sim-
ulation. Therefore in turn it affects the level of the related preparation for a;, which
creates a recursive loop. Dynamic interaction within each of these three loops
results in an equilibrium state for the strength of the preparation and of the feeling.
Depending on these values, the option a; is actually activated with a certain
intensity. The specific strengths of the connections from the sensory representation
to the preparations, and within the recursive loops can be innate, or are acquired in
an adaptive manner during lifetime by learning. The adaptivity in the model is
based on Hebbian learning.

The numerical representation of the model is presented below through local
(dynamic) properties LPO to LP9. As a first step sensing of the world state w takes
place (see also Fig. 6.2, the arrow in the left upper corner, with label sensing). This
means that the activation value of the sensor state for w is updated (gradually) to get
its value more in the direction of the value of the world state for w (the weight of the
connection is set on 1). After a few steps these activation values will become
(practically) equal. This is expressed in property LPO.

LPO Sensing a world state
dss,,(¢)/dt = Mg [ws,,(2) — $8,,(7)]
Sy (1 + At) = s8,,(F) + Mo [Ws (1) — ss,,(1)] At

From the sensor state for w, the sensory representation of w is updated by
dynamic property LP1. Again this means that the activation value of the sensory
representation for w is updated (gradually) to get its value more in the direction of
the value of the sensor state of w (also this link gets weight 1). After a few steps
these values will become (practically) equal. This is expressed in property LP1.

LP1 Representing a sensed world state
dsrs,, (1) /dr = ng[ssw(2) — st8,,(7)]
st8,, (1 4 A1) = s15,,(1) + Mg S8 (7) — s15,,(£)] At
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To get an updated value of the preparation state for action a;, there are impacts of
two other states (see the two arrows pointing at the preparation state in Fig. 6.2,
right upper corner): the sensory representation of w and the feeling state for effect e;.
This means that a combination of the activation values of these states has impact on
the activation value of the preparation state. The combination function c(..) to
aggregate the two impacts is the advanced logistic function alogistic, .(Vy, V>),
thus keeping the resultant value in the range [0, 1]:

1 1
1+efc(V1 +Vo—1) - 1+4eo"

alogistic, . (V1,V,) = ( ) (I+e7°)

where o is the steepness and 7t is the threshold value.

Using this, dynamic property LP2 describes the update of the preparation state
for a; upon impact from the sensory representation of w and feeling state for
effect e;.

LP2 Generating and amplifying a response a;
dps,, (1)/de = m, [alogistic,, (e ;(1)s5,.(1), ©2,:(¢) £5,,(1)) — ps, (1)
psai([+ Al) = psa,-(t) + m [alOgiStico‘i,ri(wl,i(t)srsw(t)ﬂ 0)2‘1'([) fs@i(t)) - psai(t)]At

In a similar manner dynamic property LP3 describes the update of the activation
level of the sensory representation of effect e; upon impact from the values for the
preparation state for a; and the sensor state for ¢; (see Fig. 6.2, left under corner).
LP3 Representing effect ¢; based on predicted and sensed effect

dSI‘Se’. (t)/dt = nZ[alOgiStica;m(0‘)3,ipsa,» (t)a Sse,’(t)) - SI‘S&.(I)]
sts,, (1 + At) = srs,, () 4 n,[alogistic,, . (3,ps,, (1), ss,,(2)) — srs,, (1)]At

Dynamic property LP4 describes the update of the activation level of the feeling
state for effect e; upon impact from the activation level of the sensory representation
for e; (see Fig. 6.2 in the middle under).

LP4 Feeling for effect e;

dfs,, (1) /dt = ng[srs,, (1) — fs,,(2)]
fse, (1 + Ar) = fs,,(2) + np[srse, (7) — fs, (7)] At

LP5 describes how the activation level of the execution state for action a; is
updated upon impact from the activation level of its preparation state (see Fig. 6.2,
right upper corner).

LP5 Executing action a;

dese, (1)/d = o[ps, (1) — es4 ()]
esq (t+ At) = es,, (1) + no[PSa,.(f) — esq, (1)]At
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LP6 describes the update of the activation level of the sensor state for effect e;
upon impact from the activation level of the execution state for action a; (see
Fig. 6.2, the arrow from right upper corner to left under corner). Here the world
characteristics A; play their role.

LP6 Effectuating and sensing effect e; of action a;
dssei (t)/dt = no[xiesai (t) — SSg; (t)]
88, (1 + Ar) = ss,,(1) + Mo [Aiesq, (1) — ss, (1)) At

Just to get the idea, Fig. 6.3 shows some of the variables for a simple instance of
the scenario and the output of the basic model in a deterministic environment without
learning. This Fig. 6.3 only shows the output of the execution states for the options
a; over time without learning any of the connections, for given deterministic world
characteristics or preferences for the available options. The horizontal axis represents
time (corresponds to simulation steps). The vertical axis represents the activation
values of the depicted states which can be any values between 0 and 1. The upper left
hand graph indicates the recurring world state ws,, for which the decision problem
and the options occur. This serves as input. The activation value for this world state
switches from O to 1 and back only. The upper right hand graph shows the (different)
world characteristics A; for the three options. They are preset as world characteristics
for any given scenario. The lower left hand graph shows that the strengths ®,; for all
three connections from srs,, to ps, are the same for this case and constant for the
three options (no learning takes place). The lower right hand graph shows that the
tendencies to choose for the three responses or decision options a;, a, or az for
w remain the same (due to the fact that no learning takes place).

For the considered case study it was assumed that three options are available to
the person and the objective is to see how rationally a person makes his or her
decisions using the model as described here, under deterministic as well as stochastic
world characteristics and for static as well as changing worlds. The dynamic
properties LP7 to LP9 describe a learning mechanism for three connection weights:

(A) connection weight my; for the responding connection from sensory represen-
tation state for w to preparation state for action option q;

(B) connection weight m,; for the amplifying connection from feeling state for
effect e; to preparation state for action option «;

(C) connection weight w3; for the predicting connection from preparation state for
a; to sensory representation state for (predicted) effect e;

These have been explored separately (A), (B), or (C), and in combination
(ABC). The first type of learning (A) corresponds to learning as considered tradi-
tionally for an association between stimulus and response. The other two types of
learning (B and C) concern strengthening of the predictive and valuing loop. This
models the association of the feeling for effect e; to option @; and how this feeling
has impact on the preparation state for @; as a way of valuing for this option.
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The learning model used is Hebbian learning (Hebb 1949; Gerstner and Kistler
2002). This is based on the principle that strengthening of a connection between
neurons over time may take place when both nodes are often active simultaneously
(‘neurons that fire together wire together’); see also Chap. 2, Sect. 2.10. More
specifically, here it is assumed that the strength @ of a connection between states X; and
X, is adapted using the following Hebbian learning rule, taking into account a maximal
connection weight 1, a learning rate 1 > 0, and an extinction rate { > 0 (usually
small), and activation levels X;(#) and X,(¢) of the two states involved. The first
expression is in differential equation format, the last one in difference equation format

do(r)/dr = n X, (1) X3 (1) (1 — o(0) — Co(r)
o(t+Af) = o(t) + M X1()X2(1) (1 — o(n) — Lo (D)At

Such Hebbian learning rules can be found, for example, in Gerstner and Kistler
(2002, p. 406). By the factor 1 — o the learning rule keeps the level of ® bounded
by 1. When the extinction rate { is relatively low, the upward changes during
learning are proportional to both X;(f) and X,(f) and maximal learning takes place
when both are 1. Whenever one of these activation levels is O (or close to 0)
extinction takes over, and ® slowly decreases (unlearning).

First, based on the Hebbian learning mechanism described above local dynamic
property LP7 models the update of the strength of the connection from sensory
representation of world state w to preparation of a; (type A; see Fig. 6.2 the arrow
with labels responding and o, ; in the upper part, in the middle).

LP7 (A) Learning the responding links from representation of w to prepara-
tion for a;

doy (1) /dr = nsrs,, (1)ps,, (1) (1 — 01,i(1)) — Coui(7)
®1i(1+ A1) = @1(7) + 5183 (1)ps, (1) (1 — ©01,(2)) — Lo ()] Az
Similarly the learning of the two connections involved in the predicting and

valuing loop (B and C) are specified in LP8 and LP9 (see Fig. 6.2, the arrows with
label m,; (B) and o3 ; (C)).

LP8 (B) Learning the amplifying links from feeling for e; to preparation for a;
don (1) /dt = nfs,, (1)ps,, (1) (1 — 02,(1)) — Coi(2)
2,i(1 4 A1) = 02,1(1) + [nfs, (£)ps,, (1) (1 — @2,(7)) — Ceni(2)] At

LP9 (C) Learning the predicting links from preparation of ¢, to representation of e;
dos (1) /dt = nps,, ()srs, (1) (1 — 03,:(2)) — Cos (1)
@3,1(1 4 At) = @3,(1) + [Mps,, (1)stse, (1) (1 — @3,4(2)) — Cos 4(2)| A
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6.3 Simulation Results for a Deterministic World

In this section some of the simulation results, performed using numerical software,
are described in detail. A real life scenario context that can be kept in mind to
understand what is happening is the following.

Scenario context

At regular times (for example, every week) a person faces the decision problem where to
buy a certain type of fruit. There are three options for shops to choose from. Each option
i has its own characteristics (price and quality, for example); based on these characteristics
buying in this shop provides a satisfaction factor A; between 0 and 1. For the deterministic
case it is just this value that is obtained for this option. For the stochastic case a probability
distribution around this A; will determine the outcome. For a static world the A; remain
constant, whereas for a dynamic world they may change over time. By going to a shop the
person experiences the related outcome A; and learns from this. To find out which shop is
most satisfactory, each time the person decides to go to all three of them to buy some
fraction of the amount of fruit needed. This fraction corresponds to the person’s tendency or
preference to decide for this shop. Due to the learning this tendency changes over time, in
favour of the shop(s) which provide(s) the highest satisfaction.

The simulation results address different scenarios reflecting different types of
world characteristics, from worlds that are deterministic to stochastic, and from a
static to a changing world. Moreover, learning the connections was done one at a
time (A), (B), (C), and learning multiple connections simultaneously (ABC). An
overall summary of the results is given in Table 6.2. Note that this table only
contains the values of the connection weights and activation levels of the execution
states after completion of the simulation experiments: at the end time. In contrast in
the current and next section the processes are shown performed to achieve these
final values.

Results for the rationality measures are presented in the next section. For all
simulation results shown, time is on the horizontal axis whereas the vertical axis
shows the activation level of the different states. Step size for all simulations is
At = 1. Figure 6.3 shows simulation results for the model under constant, deter-
ministic world characteristics: A; = 0.9, A, = 0.2, and A3 = 0.1. Other parameters
are set as: learning rate m = 0.04, extinction rate { = 0.0015, initial connection
weight m,; = 03; = 0.8, speed factors ng = 1, n; = 0.5, 1, = 1, steepness ¢ = 2 and
threshold t = 1.2 for preparation state, and ¢ = 10 and t = 0.3 for sensory repre-
sentation of e;. For the initial 80 time units the stimulus w is kept 1 and for next 170
time units it is kept O and the same sequence of activation and deactivation for the
stimulus is repeated for the rest of the simulation (Fig. 6.4).

Moreover, it depicts the situation in which only one type of link with weight ®;;
is learned as specified in LP7 using the Hebbian approach (A) for the responding
connections from sensory representation of w to the preparation states for the
options a;. It is shown that the model adapts the connection weights m,; of these
links according to the world characteristics given by A;. So ®;; strengthens more
and more over time, resulting in the higher activation level of the execution state for
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Fig. 6.3 Output of the basic model without learning
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Fig. 6.4 Deterministic world: a responding connection weights (A) b execution states for a;.
Initial values w; ; = @15 = w13 = 0.5; 1 = 0.04, { = 0.0015

a; compared to the activation level of the execution states for the other two options
ar and as.

Figures 6.5 and 6.6 show the simulation results while learning is performed for
the weights of the amplifying links (B) from feeling to preparation state for a; and
the predicting links (C) from preparation state to sensory representation of e;,
respectively.

Figure 6.7 shows the results when the Hebbian learning is applied on all links
simultaneously (ABC). These results show that for deterministic world character-
istics the person successfully adapts the connection weight in all four different cases
rationally, as these connection weights become more in line with the world
characteristics.
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Fig. 6.7 Deterministic world: weights for all three connections (ABC) and execution states for a;.
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6.4 Simulation Results for a Stochastic World

Other experiments were carried out for a stochastic world with four different cases
as mentioned earlier. To simulate the stochastic world, probability distribution
functions (PDF) were defined for A; according to a Normal Distribution. Using
these PDFs, the random numbers were generated for A; limiting the values for the
interval [0, 1] with p; =0.9, p, =0.2 and p3 = 0.1 for the A; respectively.
Furthermore the standard deviation for all A; was taken 0.1. Figure 6.8 shows the
world state w and stochastic world characteristics A;. Figures 6.9, 6.10, 6.11 and
6.12 show the simulation results while learning is performed for the links (A) from
sensory representation of w to preparation state for a;, (B) from feeling to

world state ws,, 12 Stochastic World
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0
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Fig. 6.8 Stochastic world
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Fig. 6.9 Stochastic world: a responding connection weights (A) b execution states. Initial values
O =W =01 3= 0.5; n= 0.04, C = 0.0015
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Fig. 6.10 Stochastic world: a amplifying connection weights (B) b execution states. Initial values
Wy =W =Wr3= 05, n= 004, C = 0.0015
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Fig. 6.12 Stochastic world: weights for all three connections (ABC) and execution states. Initial
values O =W =0 3= 05, Wy =W =0Mr3= 08, W3] =W32 =033 = 08, ni = 004,
¢ =0.0013

preparation state for @;, and (C) from preparation state to sensory representation of
e; respectively, one at a time, and (ABC) all three.

It can be seen from these results that also in a stochastic scenario the
temporal-causal network model successfully learnt the connections and adapted the
connections and execution states to the world characteristics with results quite
similar to the results for a deterministic world.

6.5 Simulation Results for a Changing Stochastic World

Another scenario was explored in which the (stochastic) world characteristics were
changing drastically from p; = 0.9, g, = 0.2 and p3 = 0.1 for the A, respectively to
p; = 0.1, py = 0.2 and p3 = 0.9 for the A; respectively with standard deviation of
0.1 for all. Figures 6.13, 6.14, 6.15 and 6.16 show the results for such a scenario.
The results show that the person has successfully adapted to the changing world
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Fig. 6.13 Changing stochastic world: a responding connection weights (A) b execution states.
Initial values w; ; = 0.78, ;, = 0.53, o, 3 = 0.52; 1 = 0.04,{ = 0.0015
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Fig. 6.14 Changing stochastic world: a amplifying connection weights (B) b execution states.
Initial values @, ; = 0.88, ,, = 0.58, 0,3 = 0.47; 1 = 0.04, { = 0.0015
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Fig. 6.15 Changing stochastic world: a predicting connection weights (C) b execution states.
Initial values w3 ; = 0.87, w3, = 0.30, w33 = 0.23; n = 0.04, { = 0.0015

characteristics over time, as the final execution states reflect more the changed
world characteristics. The initial settings in this experiment were taken from the
previous simulation results shown in Figs. 6.8 and 6.9 to keep the continuity of the
experiment. It can be observed that the connection weight for option 3 becomes
higher compared to the other options, and consequently the value of the execution
state for a; becomes higher than for the other two by the end of experiment.

Note that the Table 6.3 contains the values of different connection weights and
the activation level of execution states after the completion of simulation experi-
ments (at the end time).
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Fig. 6.16 Changing stochastic world: weights for all three connections (ABC) and execution
states. Initial values Wy = 080, Wyp = 055, O3 = 0.54, Wy = W3 = 084, Wrp = W32 = 030,
Wy3 = W33 = 029, ni = 004, Ci =0.001

Table 6.3 Overview of the simulation results for all cases (A), (B), (C) and (ABC)

Connection Scenario (O Wy g3 ES; ES, ES;
Responding connection Deterministic  [0.78 [0.53 |0.52 |0.56 |0.15 0.14
(A) Stochastic 078 1053 |052 056 [0.15 |0.14
Changing 040 (038 [0.80 |0.09 |0.09 |0.58
Amplifying connection Deterministic  [0.89 |0.58 |046 |0.65 |0.38 |0.31
(B) Stochastic 089 10359 |047 065 [039 032
Changing 0.42 0.57 0.89 0.30 0.37 0.65
Predicting connection Deterministic  [0.88 |0.29 023 |0.63 |0.28 |0.26
© Stochastic 088 1029 |023 063 [028 |0.27
Changing 0.04 0.08 0.87 0.25 0.26 0.63
All three connections Deterministic 0.81 0.55 0.54 0.59 0.13 0.13
(ABC) 085 (030 [0.29
085 (030 [0.29
Stochastic 0.80 0.55 0.54 0.57 0.13 0.13
0.84 0.30 0.29
084 (030 [0.29
Changing 064 (064 |094 |0.16 |[0.16 |0.75
0.02 0.03 0.96
0.02 0.03 0.96




6.6 Evaluating the Adaptive Temporal-Causal Network Model on Rationality 175

6.6 Evaluating the Adaptive Temporal-Causal Network
Model on Rationality

In the previous section it was shown that the temporal-causal network model
behaves rationally in different scenarios. These scenarios and its different cases are
elaborated in detail in the previous section, but the results were assessed with respect
to their rationality in a qualitative and rather informal manner. For example, no
attempt was made to assign an extent or level to the rationality observed during these
experiments. The current section addresses this and to this end two different formally
defined measures to assess the extent of the rationality are introduced. The notion of
rationality aimed at in this chapter concerns that the person makes the choices that
are most beneficial to it in the given environment. For example, it does not take into
account the extent to which the person has information about the environment. So, if
the person has had no experiences yet with the given environment (extreme form of
incomplete information), then according to the notion considered here it will behave
totally irrational. Only when the person gathers more information about the envi-
ronment by having experiences with choices previously made, its behaviour will
become more and more rational as an adaptation to its environment. The focus then
is on how rational the person will become over time, in such an adaptation process to
the environment. From the rationality measures considered here one rationality
measure is based on a discrete scale and the other one on a continuous scale.

Method 1 (Discrete Rationality Measure)

The first method presented is based on the following point of departure: a person
which has the same respective order of execution state activation levels for the
different options compared to the order of world characteristics A; will be con-
sidered highly rational. So in this method the rank of the average value 4; at any
given time unit is determined, and compared with the rank of the respective exe-
cution state levels. More specifically, the following formula is used to determine the
irrationality factor IF.

IF = iabs(mnk(esai) — rank(};))

i=1

where n is the number of options available. This irrationality factor tells to which
extent the person is behaving rationally in the sense that the higher the irrationality
factor IF is, the lower is the rationality of the person. It is assumed that the there is
uniqueness in ranking and none of the two values assign a similar rank. To calculate
the discrete rationality factor DRF, the maximum possible irrationality factor Max.
IF can be determined as follows.

1
Max. IF = m

7~ ceiling(g)
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Here ceiling(x) is the first integer higher than x. Note that Max. IF is approxi-
mately “n”. As a higher IF means lower rationality, the discrete rationality factor
DREF is calculated as:

IF
Max. IF

DRF =1 —

On this scale, for each n only a limited number of values are possible; for
example, for n = 3 three values are possible: 0, 0.5, and 1. In general 2 Max. IF + 1
values are possible, which is approximately “n® + 1. As an example, suppose
during a simulation average values of A, = 0.107636, A, = 0.203044, and
A3 = 0.888522 are given, whereas the execution state values for es,, , €s,,, and es,,
at a given time point are 0.170554, 0.12367 and 0.43477, respectively. Then
according to the given data the world’s ranks will be 3, 2, 1 for A, A,, A3 and the
person’s ranks are 2, 3, 1 for es,,, €s,,, and es,;, respectively. So, according to the
given formulas IF = 2, Max. IF = 4 and DRF = 0.5. So in this particular case at
this given time point the person is behaving rationally for 50 %.

Method 2 (Continuous Rationality Measure)

The second method presented is based on the following point of departure: a person
which receives the maximum benefit will be the highly rational person. This is only
possible if es,, gets 1 for the option whose A; is the highest. In this method to
calculate the continuous rationality factor CRF, to account for the effort spent in
performing actions, the execution state values ES; for es,, are normalised as follows.

ES ESi
nkS; = =<——=
Ei:l ES;

Here n is the number of options available. Based on this, the continuous
rationality factor CRF Is determined as follows, with Max(2;) the maximal value of
the different A,.

27:1 nkES, i }\.,'
CRF = Max (M)

This method enables to measure to which extent the person is behaving
rationally in a continuous manner. For the given example used to illustrate the
previous method CRF = 0.6633. So according to this method the person is con-
sidered to behaving for 66.33 % rationally in the given world. Figures 6.17, 6.18,
6.19 and 6.20 show the two types of rationality (depicted as percentages) of the
person for the different scenarios for a changing stochastic world. In these figures
the first 250 time points show the rationality achieved by the person just before
changing the world characteristics for the simulations shown in Sect. 6.5; after the
world change rationality drops drastically, but then starts to increase again in a
process to adapt to the changed world.
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From time point 250 onwards, the rationality of the person after the change has
been made is depicted in Figs. 6.17, 6.18, 6.19 and 6.20 (see Sect. 6.5). The
depicted results show that in all four cases the rationality of the person increases
over time for the given (new) world. In three of the four cases the discrete
rationality notion reaches 100 %. The only exception is the (classical)
stimulus-response connection which does not involve the valuing based on the
associated feelings. The other connections do involve the feeling association and
based on them the person turns out to reach a higher level of rationality according to
the discrete rationality measure.
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6.7 Discussion

In this chapter, by a Network-Oriented Modeling approach it was addressed in how
far an adaptive human-like temporal-causal network model based on generated
emotions for the decision options shows a form of rationality. Parts of this chapter are
based on Treur and Umair (2011, 2015). The topic was analysed for a decision model
based on valuing of predictions involving feeling states generated in the amygdala;
e.g., Bechara et al. (2003), Bechara et al. (1999), Damasio (1994, 2004), Montague
and Berns (2002), Janak and Tye (2015), Jenison et al. (2011), Morrison and Salzman
(2010), Ousdal et al. (2014), Pessoa (2010), Rangel et al. (2008) and Rudebeck and
Murray (2014). To adapt to a specific environment, the model was made adaptive
using Hebbian learning; e.g., Gerstner and Kistler (2002) and Hebb (1949).

Two measures were introduced to evaluate the extent of rationality with respect
to given world characteristics. Using these measure, the extents of rationality of the
different models were analysed. The notions of rationality were chosen in such a
manner that the more the person makes the most beneficial choices within the given
environment, the more rational it is. It was shown how according to these measures
by the adaptivity of the person as modeled by Hebbian learning a high level of
rationality was obtained. It was also found that this is robust for major changes in
the world: after such a world change, after some delay the rationality level is
achieved again. It has been demonstrated that emotion-related valuing of predic-
tions in the amygdala as a basis for adaptive decision making according to Hebbian
learning indeed satisfies rationality criteria. Thus the model shows how in
human-like decision making emotions serve as a vehicle to obtain rational deci-
sions. This contrasts with the traditional view that emotions and rationality disturb
each other in decision processes. Recent findings from neuroscience show that this
traditional view is an inadequate way of conceptualisation of processes in the brain,
and the model analysed here takes these new insights into account.

The presented model has been extended by social interaction, which shows how
the social context also contributes to rationality for the case of collective decision
making; see Bosse et al. (2012). In Treur and Umair (2012) it is discussed how
some other types of decision and learning models can be evaluated according to the
rationality measures used here. In Abro and Treur (2016) an adaptive
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temporal-causal network model is described for decision making on food choice in
which different valuing perspectives are integrated, among which valuing per-
spectives related to satisfaction with respect to short term and long term goals.
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Chapter 7

From Mirroring to the Emergence

of Shared Understanding and Collective
Power

Biological and Computational Perspectives on
the Emergence of Social Phenomena

Abstract Shared understanding and collective power are social phenomena that
serve as a form of glue between individual persons. They easily emerge and often
involve both cognitive and affective aspects. As the behaviour of each person is
based on complex internal mental processes involving, for example, own goals,
emotions and beliefs, it would be expected that such sharedness and collectiveness
is very hard to achieve. Apparently, specific mechanisms are required to tune the
individual mental processes to each other in order to enable the emergence of
shared mental states and collective behaviour. Having knowledge about these
mechanisms from a biological context provides a basis to modeling corresponding
mechanisms in a computational setting. From a biological perspective, mirror
neurons and internal simulation are core concepts to explain the mechanisms
underlying such social phenomena. In this chapter it is discussed how through a
Network-Oriented Modeling approach such neurological concepts can be used to
obtain human-like temporal-causal network models for such social phenomena. It is
discussed how these models indeed are an adequate basis for the emergence of
social phenomena such as shared understanding and collective power.

7.1 Introduction

In society often some form of ‘sharedness’ of understanding or ‘collectiveness’ of
action is experienced, which usually covers both cognitive and affective dimensions.
Although this is a very common type of social phenomenon, at forehand it is not at
all clear how it can emerge. For example, the experience of feeling good being part of
a group with a shared understanding and collective action may be experienced as
quite natural. However, as persons in a group are autonomous agents with their own
neurological structures and patterns, carrying, for example, their own emotions,
beliefs, desires and intentions, it would be more reasonable to expect that such
sharedness and collectiveness is impossible to achieve. Nevertheless, often groups
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develop coherent views and decisions, and, even more surprisingly, the group
members seem to share a positive feeling with it. These processes depend on pos-
sibilities for informational and emotional transfer between individuals, which can be
enhanced by technological infrastructure such as social media.

In recent years by developments in neuroscience new light has been shed on this
seeming paradox of individuality versus sharedness and collectiveness. This has led
to the new discipline called Social Neuroscience; e.g., Cacioppo and Berntson
(2005), Cacioppo et al. (2006), Decety and Cacioppo (2010), Decety and Ickes
(2009), Harmon-Jones and Winkielman (2007). Two interrelated core concepts in
this discipline are mirror neurons and internal simulation of another person’s mental
processes. Mirror neurons are neurons that not only have the function to prepare for
a certain action or body change, but are also activated upon observing somebody
else who is performing this action or body change; e.g., lacoboni (2008), Pineda
(2009), Rizzolatti and Sinigaglia (2008). Internal simulation is internal mental
processing that copies processes that may take place externally, for example, mental
processes in another individual; e.g., Damasio (1994, 1999), Gallese and Goldman
(1998), Goldman (2006), Hesslow (1994, 2002, 2012). Mechanisms involving
these core concepts have been described that provide an explanation of the emer-
gence of sharedness and collectiveness from a biological perspective. Formalisation
of such mechanisms provides a basis for the design of human-like temporal-causal
network models, able to show similar patterns of emerging shared understanding
and collective action.

The type of biologically inspired human-like temporal-causal network models
discussed in this chapter have a number of possible application areas. In the first
place they can be used for the analysis of human social processes in groups, crowds
or in societies as a whole. Examples of this are the analysis of collective decision
making in groups, crowd behaviour in emergency situations, social contagion of
emotions and opinions, and the development of societal or political movements.
A second area of application addresses analysis and design of socio-technological
systems including, for example, social media. This concerns groups that partly
consist of humans and partly of artificial agents in the form of devices such as
smartphones, and the use of human-made infrastructure for communication such as
Internet and social media. For such socio-technological systems it can not only be
analysed what patterns may emerge under which circumstances, but the focus can
also be on the design of these devices and media, in order to create a situation in
which the right types of patterns emerge, for example, to enable safe evacuation in
emergency situations. A third possible area of application concerns close empathic
interaction and emotional attachment between a human and a device.

In this chapter, first in Sect. 7.2 the concepts of mirror neurons and internal
simulation as mentioned are briefly reviewed, and it is discussed how they can be
modeled by a Network-Oriented Modeling approach. Next, in Sect. 7.3 it is dis-
cussed how based on biological mechanisms involving these concepts shared
understanding can emerge. This covers both cognitive and affective understanding,
and in a combined form empathic understanding. In Sect. 7.4 biological mechanisms
are discussed enabling the emerge of collective decisions and actions, and it is shown
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how such collective actions can be grounded in shared cognitive and affective
understanding. Section 7.5 illustrates how in general the integration of internal and
external impacts can be modeled as computational mechanisms in temporal-causal
network models, and in Sect. 7.6 it is pointed out how certain abstraction methods
can be applied to such models. Finally, Sect. 7.7 is a discussion.

7.2 Mirror Neuron Activation and Internal Simulation

Social contagion is the basic phenomenon that due to social interaction persons
affect each other’s states and behaviours, such as emotions, beliefs, opinions,
preferences or appreciations, eating and drinking behaviour, and so on. Sometimes
sayings refer to this, for example the saying ‘Mom happy, everybody happy’, which
assumes a central role for the mom in the social interaction patterns in the family,
and as a consequence due to contagion also in the family members’ happiness.
Social contagion could be addressed abstracting from internal processes within the
persons. An assumption can be made that contagion takes place, but the question
about which internal mechanisms within persons make this contagion happen may
still leave an unsatisfied feeling. In how far can a model not taking into account
these internal mechanisms be human-like? In the current section these mechanisms
will be discussed, as they have been discovered in recent years: mirror neurons and
internal simulation of another person’s mental processes. Together these concepts
are a basis for biological mechanisms that realise an individual’s mental function of
mirroring mental processes of another individual, and that mechanism explains the
assumption on social contagion. More specifically, this function plays a crucial role
in enabling the emergence of shared and empathic understanding and collective
action, as will be discussed in Sects. 7.3 and 7.4.

7.2.1 The Discovery of Mirror Neurons

Recently it has been found that in humans a specific type of neurons exists, called
mirror neurons, which both are active when the person prepares for certain actions
or bodily changes and when the person observes such actions or body states of
other persons. The discovery of mirror neurons originates from single cell recording
experiments with monkeys in Parma in the 1990s. In particular, the focus was on an
area in the premotor cortex (F5) involved in the preparation of grasp actions. To
their own surprise, the researchers discovered that some of the recorded cells were
not only firing when the monkey was preparing a grasp action, but also when
somebody in the lab was grasping something and the monkey just observed that,
see Gallese et al. (1996), Rizzolatti et al. (1996); see also Iacoboni (2008a),
Rizzolatti and Craighero (2004), Rizzolatti and Sinigaglia (2008). The highly
unexpected element was that sensory processing of observed actions of others
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involves neurons that are also involved the subject’s preparation for the same type
of action. Traditionally sensory processing was assumed to be separate from
preparing. It turned out that in the premotor area F5 about 20 % of the neurons are
both active when preparing and when observing the action.

After the discovery of mirror neurons in monkeys it has been hypothesized that
similar types of neurons also occur in humans. Indeed, for humans from the usual
imaging methods it can be found that in certain premotor areas activity occurs both
when an action is observed and when the action is prepared; e.g., Cochin et al.
(1999), Gastout and Bert (1954) based on EEG data, (Grafton et al. 1996; Rizzolatti
et al. 1996) based on PET data, and (Iacoboni et al. 2005) based on fMRI; see also
reviews in Molenberghs et al. (2012), Kilner and Lemon (2013). However, due to
limitations in resolution, from such methods it cannot be found whether the neurons
active in action observation are exactly the same neurons as those that are active in
preparing for an action. In principle they could be different neurons in the same
area. Therefore in the years after the discovery of mirror neurons in monkeys it still
has been subject to debate whether they also exist in humans; e.g., Hickok (2009).
But in recent years the existence of mirror neurons in humans has found support in
single cell experiments with epilepsy patients undergoing pre-surgical evaluation of
the foci of epilepsy; e.g., Fried et al. (2011), Mukamel et al. (2010); see also
Iacoboni (2008a, pp. 201-203) and Iacoboni (2008b), Keysers and Gazzola (2010).
In these experiments for 14 patients the activity of approximately 500 neurons was
recorded; they were located in three sectors of the mesial frontal cortex (the ventral
and dorsal sectors of the anterior cingulate cortex and the pre-supplementary motor
cortex (SMA)/SMA proper complex). The subjects were tested both for
hand-grasping actions and for emotional face expressions. Some of the main
findings were that neurons with mirror neuron properties were found in all sites in
the mesial frontal cortex where recording took place, in total for approximately
12 % of all recorded neurons; about half of them related to hand-grasping, and the
other half to emotional face expressions; e.g., lacoboni (2008b).

7.2.2 Neurons for Control and Self-other Distinction

Due to the multiple functions of mirror neurons, the functional meaning of acti-
vation of them (e.g., preparing or observing an action, or both) in principle is
context-dependent. The context determines in which cases their activation is meant
to lead to actual execution of the action (e.g., in self-initiated action performance, or
imitation), and in which cases it is not (e.g., in action observation and interpreta-
tion). A specific set of neurons has been found (sometimes called super mirror
neurons: lacoboni (2008b) that seem to be able to indicate such a context and play a
role in the control of actual execution of a prepared action. These neurons are
suggested to exert control by allowing or suppressing action execution and/or
preparation states. More specifically, in the single cell recording experiments with
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epileptic patients mentioned above, also cells were found that are active when the
person prepares an own action that is executed, but shut down when the action is
only observed. This has led to the hypothesis that these cells may be involved in the
functional distinction between a preparation state activated in order to actually
perform the action, or a preparation state only activated to interpret an observed
action. In Tacoboni (2008a, pp. 201-202) it is also described that some of such cells
are sensitive to a specific person, so that the action can be attributed to the specific
person that was observed: self-other distinction; see also Brass and Spengler (2009).
More details on such types of neurons can be found in Brass and Spengler (2009),
Tacoboni (2008a, b, pp. 196-203).

7.2.3 Generating Emotions and Feelings by Internal
Simulation: As-if Body Loops

Activation of mirror neurons is important not by itself, but because it plays a crucial
role in an important mental function: mirroring mental processes of other persons
by internal simulation. How mirroring relates to internal processes involving
emotions and feelings may ask for some further explanation.

Recall from Chap. 3, Sect. 3.2 the discussion about the classical view on
emotions assuming that based on some sensory input, due to internal processing
associated emotions are felt, and subsequently these emotions are expressed in
some body state; e.g., a face expression. As an alternative for this classical view the
notions of body loop and of as-if body loop were discussed. An as-if body loop is a
form of internal simulation of the own body states; this is a process in which the
preparation for some body state affects the sensory representation of this body state,
which in turn affects the preparation of this body state (see Chap. 3, Sect. 3.2):

sensory representation of s — preparation for body state b —
sensory representation of (simulated) body state » — preparation for body state b

This provides a cyclic process that (for a constant environment) can lead to
equilibrium states for feelings (based on sensory representations of body states) and
emotional responses.

7.2.4 Mirroring Process: Mirror Neuron Activation
and Internal Simulation

From a more general viewpoint, as-if body loops as introduced by Damasio (1994)
contribute:

(1) sensory input directly affects preparation states and execution states, after
which further internal processing takes place, in line with, e.g., James (1884)
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(2) the notion of internal simulation involving preparations and sensory repre-
sentations, in line with, e.g., Becker and Fuchs (1985, Hesslow (1994, 2002,
2012), Barsalou (2009), Marques and Holland (2009), Pezzulo et al. (2013).

Here (1) breaks with the tradition that there is a standard order of processing
sensing—internal processing—preparation for action, and (2) allows for involving
changing body representations in internal processes without actually having to change
any body state. As mirror neurons make that some specific sensory input (an observed
person) directly links to related preparation states, just like (1) above, it fits quite well
in the perspective based on as-if body loops. In this way mirroring is a process that
fully integrates mirror neuron activation states in the ongoing internal simulation
processes based on as-if loops; see also Damasio (2010, pp. 102-104), or Chap. 3.

From a behavioural perspective social contagion processes can be described at a
conceptual level by a graphical conceptual representation of a temporal-causal
network model as shown in Fig. 7.1 (in this case for two persons only); see Table 7.1
for notations and explanations for the states used. For a person Y behaviour b (de-
noted by esy;) can be affected by some stimulus s, but also by sensing the same
behaviour shown by another person. In the latter case the (executed) behaviour b (for
example, showing a face expression with a specific emotion) of one person X is
sensed by another person Y, through ¥’s sensor state sSy s, , and vice versa. Note that
now different persons are involved, always an extra indication (subscript) is needed
in the notations to make clear which person’s state is meant.

The graphical conceptual representation shown in Fig. 7.1 can be described by a
conceptual matrix representation as shown in Table 7.2.

person A sensing b of person B

person B’s
sensor state

for person A..
showing b A
P 4

person A’s\
sensor state 9~
for person B

A responding B responding

t0 b of B § -

howin, e
showing b person B Sensing Pie
-~ “bof person A -7
person A’s YT 0% person B's TUI0K
sensor state person A sensor state person B
for stimulus s showing b for stimulus s showing b

person A person B

Fig. 7.1 Conceptual representation of a behavioural temporal-causal network model for social
contagion

Table 7.1 Notations and explanations for the states used in the conceptual representation of the
behavioural model depicted in Fig. 7.1

State Description

SSy.s Sensor state of person Y for stimulus s

SSY esys Sensor state of person Y sensing execution state esy , of person X for b
eSy.p Execution state of person Y for b
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Table 7.2 Conceptual matrix representation for the behavioural model depicted in Fig. 7.1

To SSy.s eSy.p SSY esy s

from

SSy.s wY,respnndingfloﬁs

€Sx.» mY,sensing,b,of,X
SSY.,esXJ, (DY,responding_to_b_of_X

My - Nesy nSSy.c.w_h

cy(...) - Cesy, () Csvesy, ()
person Y’s person Y’s sensory

sensor state representation of

for b of person X person X showing b

Y responding to
b of person X

Y representing b of X

person Y’s person Y’s
preparation state execution state

v ~  Yrepresentings ~~ Yresponding tos for b R />f0r b
l;:r::g?sta:e ;,,U Y executing TN
for stimulus s person s sensory
representation
for stimulus s Y amp

Y feeling

person Y’s feeling
state for b

Fig. 7.2 Graphical conceptual representation of a temporal-causal network model for mirroring
process within an person Y responding to another person X: mirror neuron activation and internal
simulation by an as-if body loop

This behavioural model only provides a kind of black box view on the contagion
processes. The mirroring process is the neural mechanism within the persons
realising the contagion processes; this is shown in a more detailed view on the
internal processes as depicted in Fig. 7.2; see Table 7.2 for notations and expla-
nations for the states used. This graphical conceptual representation can be seen as a
refinement (zooming in) of what is depicted as a box in the graphical representation
in Fig. 7.1 (Table 7.3).

Here, again the preparation for body state b (e.g., some emotional response) can
either be triggered by sensing an external stimulus s (path in the middle of the graph
shown in Fig. 7.2), or by observing somebody else performing b (upper path in the
graph shown in Fig. 7.2). However, now in both cases, as a first step, from the
sensor states sensory representations are generated and these sensory representa-
tions in turn affect the preparation state. Moreover, after generation of the prepa-
ration state, internal simulation takes place based on the as-if body loop (lower part
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Table 7.3 Notations and explanations of the states in the internal temporal-causal network model
depicted in Fig. 7.2

State Description

SSy.s Sensor state of person Y for stimulus s

esy.p Execution state of person Y for b

SSY esxs Sensor state of person Y for execution state of person X for b

SISy Sensory representation of person Y for stimulus s

STSY sy Sensory representation of person Y for execution state of person X for b
PSy.p Preparation state of person Y for b

fsyp Feeling state of person Y for b

Table 7.4 Conceptual matrix representation for the internal temporal-causal network model
depicted as a graphical representation in Fig. 7.2

To SSys | €Sy SSY sy SISy, SISY sy, PSy» fsyp
from

SSy.s Oy representing_s

€Sx p @y sensing_b_of_X

SSY esyxs Oy representing_b_of_X

SISy s Oy responding_to_s

SISY esy,, @y responding_to_b_of_X

PSy.p Oy executing OY feeling
fsy, Oy amplifying

Ny - Nesy,, Nssy ey, Nsrsy Mty esy Npsy, Nisy
er..) - Cesyy () Csm\x_,,(') Carsy,. () Csmyc,x,,() Cpsy, () Chiy,y ()

in Fig. 7.2) which affects both the activation levels of the related feeling and the
preparation state. Finally based on the activation level of the preparation state the
corresponding execution state can be activated by which the behaviour is shown.
Note that, as this mirroring process happens mostly in an unconscious manner, in a
social context mirroring imposes (often unnoticed) serious limitations on the
freedom for individuals to have their own personal emotions, beliefs, intentions,
and actions. Table 7.4 shows a conceptual matrix representation of the model
depicted as a graphical conceptual representation in Fig. 7.2.

A numerical representation for the model depicted by the conceptual represen-
tation in Table 7.4 is shown in Box 7.1

For persons X and ¥ with X=A and Y=B,or X=B and ¥ = A:

LP1 Person Y sensing b of person X
dSSY,esm7 /dt = nSSY,esx,b [ CSSywes){yb (mY,sensing_b_of_XesX,b) - SSY,esX_b]

88 sy, (1 + A1) = 88ye6,, (1) + Ny, [ Cssray, (OF sensing_b_of_x€8x,5()) — 85y esy,, ()] AL
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LP2 Person Y representing b of person X
derY,esX_/,/dl - nSI‘Sy_QQXb[ CS[SY@SX,» ((DY,representingvhvovaSSY,esx_,,) - SrSY,esX_/,]
SISY ey, (4 Al) = S1Sy 5y, (1)

Ak nsrs“»‘xh [ CS“SY.uX_[, (mY,represeming b_of _XSSY esy (t)) — SISy esy, (t) ]At

LP3 Person Y representing stimulus s
derY‘s/dt = nsrsy“‘. [Cery‘s((DY,representing_sSSY,s) - SrSY,s]
SrSY,-Y(t + At) = erY-,S(t) + nsrsy_x[ Cery_,\.(mY,represeming_sSSY,s(t)) - SrSY,s(t) ]At

LP4 Person Y generating and amplifying response b

dpSY,b/dl = ﬂps”[ cpsy_b (UJY,responding_to_ssrsYA,s7 (DY,respnnding to_b_of XerY,esx_b7

O amplifyingfS¥,6) — PSy p)
PSy 5 (t+ At) = sy () + Mps, , [ Cps,., (O responding_to_sST8¥,5(2),
O responding_to_b_of_XSTSY esy, (£); Oy amplifyingfSy.5(¢)) — psy ,(¢) At
LP5 Person Y feeling b
dfsy,/dt = Mg, [Crsy, (OF feclingPSy ) — 57.5]
fsy (1 + At) = fsy(t) + N, , [Crsy, (O fectingPSy () — fsy,p (1) | AL

LP6 Person Y executing b
deSY,b/dt = neSY,b [Ces”, (O)Y,executingpsyvb)* eSY,b]

esy (1 -+ At) = esy (1) + Nes, , [Cesy, (O exceutingPSy 5 (1)) — esv (1) A1

The symbols are explained as follows:

S external stimulus

b behavioural response, for example, an emotion

esy, execution state: person Y shows response b

SSyz sensor state: person Y senses Z with Z = s or Z = esy,,
pSy, preparation state: person Y prepares for response b
esy, execution state: person Y shows response b

fsy, feeling state of person Y for b

srsyz sensory representation of person Y for Z with Z = s or Z = esy,,
SSyz person Y senses Z with Z =s or Z = esy,,

Ns update speed parameter for state S

Cs combination function for state S

Box 7.1 Numerical representation of the temporal-causal network model shown as
conceptual matrix representation in Table 7.4 social contagion integrating internal
mirroring processes
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Note that the connection weights of some of the connections represent aspects of
the relation between person X and Y. For example, the weights of three connections
determine how open or responsive person Y is for influence from person X:

o the weight Oy sensing_s_or x Of the sensing connection from the execution state of
person X to the sensor state of person Y

e the weight Oy representing_ps_of_x Of ¥’s representation connection from Y’s sensor
state to Y’s sensory representation state

e the weight Oy esponding o_p_ot x Of Y’s responding connection from Y’s sensory
representation state to Y’s preparation state

If one or more of these connections have very low weights, then person Y is
hardly affected by person X. Moreover, the overall effect of X on Y also depends on
the strength Wy executing Of the connection within person X from preparation state to
execution state (person X’s expressiveness). If person X is not expressing very well,
then person Y does not sense much to respond to. The specific weights of such
connections represent specific characteristics of persons and relationships. By
assuming variations in weights for these connections, a wide variety of persons and
relationships can be modeled.

More complex variations of social contagion models involving both beliefs and
emotions or intentions and emotions have been addressed in Hoogendoorn et al.
(2011), using similar mechanisms as discussed here. Moreover, in Bosse et al.
(2013) the model ASCRIBE is presented, in which internal dynamics involving
emotions, beliefs and intentions and the social contagion of these states are inte-
grated in a similar manner; also see Sect. 7.5.

7.2.5 Development of the Discipline Social Neuroscience

Above it has been pointed out how mirroring internal processes and states of other
persons lead to activation of a person’s corresponding own processes and states.
The latter processes and states at the same time play a crucial role in the person’s
own feelings and actions. Metaphorically spoken, mirroring has not been designed
as a separate mental function with data stuctures and processes fully disjoint from
the other mental functions; instead mirroring is fully integrated in the person’s own
mental processes and uses shared data stuctures and processes. This integration
provides an effective mechanism for how actions and feelings of other persons and
own actions and feelings affect each other. This biological mechanism explains how
in a social context persons fundamentally tune their personal actions and states to
each other, including their feelings. Given these implications, the discovery of
mirror neurons and how they play their role in mirroring processes is considered a
crucial step for the further development of the disciplines of social cognition and
social psychology, by providing a biological basis for social phenomena. Many
examples of social phenomena now can be explained by relating them to biological
mechanisms that realize mirroring, for example:
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social diffusion or contagion of personal states (e.g., opinions or emotions)
empathic understanding

group formation, group cohesion

collective decision making.

Based on these developments, and their wide applicability the new discipline
Social Neuroscience has shown a fast development; e.g., Cacioppo and Berntson
(2005), Cacioppo et al. (2006), Decety and Cacioppo (2010), Decety and Ickes
(2009), Harmon-Jones and Winkielman (2007). The impact of this discipline is very
wide, as it is considered to cover not only the items indicated above, but also, for
example, the concept of social reality (Butz 2008), spiritual and religious experi-
ence (Seybold 2010), and collective consciousness or global empathy and its role in
the future evolution (Combs and Krippner 2008; Rifkin 2010). In the next two
sections it will be discussed in some more detail how different types of shared
understanding and collective power can emerge based on mirroring processes.

7.3 The Emergence of Shared Understanding

Understanding can be viewed as a relation between an internal mental state and the
world state to which the understanding refers. It can occur in different types, that
can be distinguished from each side of the relation: from the internal mental state
side, and from the side of the concerning world state to which the understanding
refers. First distinctions from the former (internal state) side are discussed, and next
distinctions from the latter (world state) side.

A person can have an understanding of a world state by generating and maintaining
an internal cognitive state in relation to it (e.g., one or more beliefs about it). This can
be distinguished as a cognitive type of understanding. A person can also form and
maintain an internal affective state in relation to a world state (e.g., a specific emotion
or feeling associated to it). Such a form of understanding can be distinguished as an
affective type of understanding. An important role of this type of understanding is that
it provides a basis for experiencing in the understanding. Affective and cognitive
understanding are often related to each other. Within a person, any cognitive state
relates to an associated emotional response which based on an as-if body loop
involving a sensory representation of a body state which is the basis of the related
feeling (e.g., Damasio 1994, 1999, 2003, 2010); see also Sect. 7.2. When mirroring
takes place for both the cognitive and affective state, this provides a mechanism to
obtain shared understanding integrating cognitive and affective aspects. For the case
of similar neural architectures, the (bidirectional) associations between cognitive state
and emotion in an observing person are similar to these associations in an observed
person. This will further strengthen the shared integrated cognitive and affective
understanding; more extreme cases of this occur in identical twins.

A second way of distinguishing different types of understanding is by consid-
ering differentiations of the concerning world state to which the understanding
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refers. The world can be conceptualised as a kind of landscape in which persons
occur as active, living entities. The internal processes of the persons are also part of
the world, and can be distinguished from person-independent aspects of the land-
scape. Given this picture, understanding may refer to either a person-external world
state or a person-internal world state. For example, having beliefs about another
person’s emotions, beliefs or goals is of the second, person-internal type, whereas
having beliefs about the weather is of the first type.

The two dimensions of distinctions for types of understanding introduced above
can be applied to shared understanding of an person B with an person A, from
which a matrix results as illustrated in Table 7.5 with different examples.

7.3.1 The Emergence of Shared Understanding for External
World States

A person’s understanding of the external world in the form of a collection of beliefs
is sometimes called the person’s world model. This can be considered a cognitive
world model. More general, shared understanding of an external world state can
involve (see Table 7.5):

e a shared cognitive world model
(e.g., sharing beliefs about an external world state)
e a shared affective world model
(e.g., sharing feelings about an external world state)
e a combined shared cognitive-affective world model
(e.g., sharing both beliefs and feelings about an external world state)

Some examples of the first, cognitive type of shared understanding of
person-external states for different (sub) populations concerning climate change and
its cause are shown in Table 7.6. For example, an understanding shared in population
C is that the climate is changing, but this is not due to human action, it has a natural
cause. As another example, a shared understanding in population D is that the climate

Table 7.5 Examples of different types of shared understanding

Person-internal Person-external
Shared cognitive * Having beliefs about person A’s * Sharing beliefs with person A
understanding beliefs, intentions or goals about an external world state
* Sharing goals for an internal person |+ Sharing goals for an external
state world state
Shared affective * Feeling the same as person A is » Sharing a good or bad feeling
understanding feeling about an internal state about an external world state
Shared cognitive * Believing that person A feels bad « Sharing a belief or goal and
and affective * Believing X and feeling Y, and feeling
understanding believing that person A also believes | Sharing a belief and a feeling
X and feels Y that intention X will achieve
goal Y
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Table 7.6 Cognitive understanding of person-external states shared in different populations

Belief on climate Belief on cause
Population A Climate is changing Due to human action
Population B Climate is not changing Not due to human action
Population C Climate is changing Not due to human action
Population D Climate is not changing Due to human action

is not changing, and this is due to human action (e.g., without human action the
temperature would have a decreasing trend, but human action compensates for this).
An example of a shared combined cognitive-affective person-external under-
standing is sharing a belief that climate change has some serious effects and sharing
a bad feeling about that, or sharing a belief that a new iPhone will come out soon
and sharing a good feeling about that. Obtaining such shared understanding of the
external world may make use of different means. Individual information gathering
can play a role, but also verbal and nonverbal interaction between persons. If some
external world state is considered by persons, both verbal and nonverbal expres-
sions are input for mirroring processes. These mirroring processes affect, for
example, both the strength by which something is believed about this state, and the
strength of the feeling associated to it. Thus both cognitive and affective shared
understanding can develop, based on (mostly unconscious) mirroring processes.

7.3.2 The Emergence of Shared Understanding for Internal
Mental States

A second type of understanding concerns world states that are internal for one of the
persons in the world. For such understanding different terms are used; e.g., min-
dreading, Theory of Mind (ToM), empathy, or more specific terms such as emotion
or intention recognition; e.g., Decety and Ickes (2009), Goldman (2006), Preston
and de Waal (2002). Also here understanding may be limited to cognitive under-
standing; for example, believing that another person has the intention to go out for a
dinner, or believing that this person feels depressed. However, for humans also an
affective type of mutual understanding is common, usually combined with some
form of cognitive understanding. One of the most fundamental forms of mutual
understanding is indicated by the notion of empathy; e.g., see De Vignemont and
Singer (2006), Decety and Ickes (2009), Iacoboni (2008a), Preston and de Waal
(2002), Shamay-Tsoory (2008, 2011), Singer and Leiberg (2009). Originally by
Lipps (1903) the notion was named by the German word ‘einfiihlung’ which could
be translated as ‘feeling into’; e.g., Preston and de Waal (2002). As this word
indicates more explicitly, the notion of empathy has a strong relation to feeling:
empathic understanding includes experiencing what the other person feels, but also
believing that the experienced feeling is felt by the other person, based on self-other
distinction. Therefore empathic understanding can be considered a form of
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combined affective and cognitive understanding; see also Shamay-Tsoory (2008,
2011). As an example, in Singer and Leiberg (2009), and De Vignemont and Singer
(2006, p. 435), the following four criteria of empathy of B for A are formulated:

(1) Presence of an affective state in a person B

(2) Isomorphism of B’s own and A’s affective state

(3) Elicitation of the B’s affective state upon observation of A’s affective state
(4) Knowledge of B that A’s affective state is the source of the B’s own affective state.

The understanding indeed is both affective (1) and cognitive (4), but in this case
it concerns in particular an affective state and not a cognitive state of the other
person. Therefore it can be called affective-focused empathy. In contrast, to indicate
affective and cognitive understanding of another person’s cognitive state (e.g.,
another person’s belief) the term cognitive-focused empathy may be used. The term
full empathy can be used to indicate combined cognitive-affective understanding of
both cognitive and (associated) affective states of another person. Note that
empathy always involves feelings, so this is also the case, for example, in
cognitive-focused empathy. However, in case of full empathy these feelings are
related to the other person (using self-other distinction), and in case of purely
cognitive-focused empathy the feelings are experienced, but not related to the other
person (for example, due to impaired self-other distinction). Table 7.7 illustrates
these types of understanding for person B having understanding of states of person
A. That mirroring (together with self-other distinction) provides a basic mechanism
involved in the creation of empathic understanding has much support in the recent
literature; e.g., Gallese (2003), Shamay-Tsoory (2008, 2011), Singer and Leiberg
(2009), Iacoboni (2008a, pp. 106—129).

Table 7.7 Examples of different types of theory of mind and empathy of person B w.r.t. person A

Person A Affective states Cognitive states Affective and

Person B cognitive states

Affective Feeling but not having | Feeling but not having a | Feeling but not having

understanding | a belief for A’s emotion | belief for A’s belief a belief for A’s emotion
(emotion contagion) and belief

Cognitive Having a belief but no | Having a belief but no Having a belief but no

understanding | feeling for A’s emotion | feeling for A’s belief feeling for A’s emotion

(affective-focused ToM)

(cognitive-focused ToM)

and belief
(ToM)

Affective and
cognitive
understanding

Having both a belief
and feeling for A’s
emotion (affective-
focused empathy)

Having both a belief and
feeling for A’s belief
(cognitive-focused
empathy)

Having a belief and
feeling for A’s belief
and feeling

(full empathy)
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The notion of empathic understanding as described above is an important ingredient
in the temporal-causal network models for social responses described in Chap. 9, based
on Treur (2014), and for joint decision making described in Chap. 10.

7.4 The Emergence of Collective Power

Each individual person can exert a certain amount and direction of power by his or
her actions, depending on personal characteristics and states. In a situation where
such powers are exerted in different directions by multiple individuals, they can
easily annihilate each other, or, metaphorically spoken, result in a kind of Brownian
motion where particles move back and forth but do not change place much. In cases
that the individual momenta (the individual powers and their directions) have an
arbitrary distribution over a population, no serious collective momentum will
emerge.

7.4.1 The Emergence of Collective Action Based
on Mirroring

To obtain emergence of collective power, the individual momenta should converge
to a similar direction so that a collective momentum can result. Using another
metaphor, this is what happens in the universe when, for example, comets or planets
are formed out of smaller particles, based on mutual attraction based on gravitation.
More specifically, to obtain collective action within groups, by some mutual tuning
process by mirroring, shared person states have to emerge that in an anticipatory
sense relate to action, and by which collective power can be developed. Types of
internal states relating to action are intentions or preparations. They can be seen as
tendencies to perform a specific action; the emergence of shared preparations by
mirroring may be quite effective in this sense. However, individual internal pro-
cesses also play an important role in deciding about actions. In generating actions or
behaviours usually options are prepared for which a choice has to be made, and to
one of which an ownership or commitment has to be developed. In the recent
cognitive and neurological literature much can be found on the mechanisms behind
developing ownership of an action (e.g., Voss et al. 2010). In this literature a
distinction is made between prior ownership states, among others based on pre-
diction of effects of a prepared action, and retrospective ownership states, for which
in addition the monitored execution of the action and the sensed actual effects play
an important role; see also Treur (2011, 2012a) or Chap. 8 below. Prior ownership
states play an important role in self-control: controlling the actual execution of an
action; they also may entail a form of metacognitive functioning to the extent that
such states can be made aware and accessible to reflection.
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One of the issues that play an important role for both prior and retrospective
ownership states, is internal simulation as a means for prediction of the (expected)
effects of a prepared action. As discussed earlier, the idea of internal simulation is
that in a certain context (which may cover sensed aspects of the external world, but
als internal aspects such as the own goals and attitudes) preparation states for
actions or bodily changes are activated, which, by prediction links, in turn activate
other sensory representation states. The latter states represent the effects of the
prepared actions or bodily changes, without actually having executed them. The
notion of internal simulation has a longer tradition, and has been put forward,
among others, for prediction of effects of one’s own prepared motor actions (Becker
and Fuchs 1985), imagination (Hesslow 2002), processes in a person’s own body
related to emotional responding through as-if body loops (Damasio 1994, 1999),
and recognition or reading another person’s emotions or mind (Goldman 2006).

Thus, based on internal simulation, predictions are made for the effects of pre-
pared actions and based on these, a prior ownership state is generated to support
self-control. More specifically, if the predicted effects of a prepared action are
valued as satisfactory with respect to the person’s goals (prior valuation), this may
entail a ‘go’ decision for the actual execution of the action, thus exerting control
over action execution. In contrast, predicted effects valued as less satisfactory for
the person’s goals may lead to a ‘no go’ decision for that option. Over the years the
idea has developed that retrospective ownership is based on some form of (retro-
spective valuing of) co-occurrence of predicted effects and sensed actual effects,
after execution of the action. This has traditionally been described by a so-called
‘comparator model’ inspired by cybernetics and control theory (Wolpert 1997).
More recently it has been found that to obtain a retrospective ownership state the
predicted effect and the sensed actual effect are in fact not compared but added to
each other in some integration process (Voss et al. 2010).

Behaviour options usually have emotional responses associated to them relating
to a prediction of a rewarding or aversive consequence in the context of the person’s
goals. Therefore, valuing of options to decide for some behaviour, prior to a choice
or in retrospection after a choice was made, have a strong emotional component. In
recent neurological literature this has been studied in relation to a notion of value as
represented in the amygdala (Bechara et al. 2003; Damasio 1994; Morrison and
Salzman 2010); see also Chap. 6. In making a decision for a certain behaviour,
experiences with the environment (from the past) play an important role. By a
retrospective process, the valuations (and their related emotions) of behaviour
options are adapted to the experiences, so that the decision making is adapted to the
environment as reflected in these past experiences. In humans parts of the prefrontal
cortex (PFC) and other brain areas such as hippocampus, basal ganglia, and
hypothalamus have extensive, often bidirectional connections with the amygdala
(Morrison and Salzman 2010). Usually emotional responses are triggered by stimuli
for which a predictive association is made of a rewarding or aversive consequence,
given the context including the person’s goals. Feeling these emotions represents a
way of experiencing the value of such a prediction, and to which extent it is positive
or negative for the person’s goals: prior valuation of the option. Similarly, feelings
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of satisfaction are an important element of retrospective valuation of what is
experienced after behaviour has been chosen.

In emerging collective decision making the individual internal processes have to
be dealt with. A mirroring process may help to achieve that a specific preparation
option gets a high activation level for all individuals in a group. However, when the
own internal processes would keep on driving the person in a different direction, no
collectiveness will be achieved. Therefore the mirroring will not only have to
address the preparation states, but also the emotion-related valuation states that play
a main role in the own internal process. This will be discussed subsequently.

7.4.2 The Role of Feelings and Valuing in the Emergence
of Collective Action

In some more detail the situation is as follows. Usually in the individual process of
action selection, before a prepared action comes in focus to be executed, an internal
simulation to predict the effects of the action takes place: the action is simulated
based on prediction links, and in particular for the associated affective effects, based
on as-if body loops that predict the body state which is the basis of the related
feeling (Damasio 1994, 1999, 2003, 2010). Based on these predicted effects a
valuation of the action takes place, which may involve or be mainly based on the
associated affective state, as, for example, described in Bechara et al. (2003),
Damasio (1994, 1996, 2003), Morrison and Salzman (2010), Murray (2007). The
idea here is that by an as-if body loop each option (prepared action) induces a
simulated effect including a feeling which is used to value the option. For example,
when a negative feeling and value is induced by a particular option, it provides a
negative assessment of that option, whereas a positive feeling and value provides a
positive assessment. The decision for executing a prepared action is based on the
most positive assessment for it.

This simulation process for prepared actions does not only take place for
preparations of self-generated actions, but also for intentions or actions from other
persons that are observed. In this way by the mirroring process not only a form of
action or intention recognition takes place in the form of activation of corre-
sponding own preparation states by mirror neurons, but in addition also the (pre-
dicted) effects are simulated, including the affective effects. This provides an
emotionally grounded form of understanding of the observed intention or action,
including its valuing, which is shared with the observed person; see also Damasio
(2010, pp. 102-104).

Given the important role of the feeling states associated to preparations of
actions, it may be unrealistic to expect that a common action can be strong when the
individual feelings and valuations about such an action have much variation over a
group. When only the preparations for options are tuned to each other while in the
meantime still the individual internal processes underlying the decision making
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Fig. 7.3 Mirroring processes for both emotions and intentions and their internal interaction

remain a strong drive in a different direction, the overall process may result in no
collectiveness at all. To achieve emergence of strong collective action, also a shared
feeling and valuation for this action has to develop: also mirroring of the associated
emotions has to play an important role. When this is achieved, the collective action
has a solid shared emotional grounding: the group members do not only intend to
perform that action collectively, but they also share a good feeling about it. In this
process social media can play an important facilitating role in that (1) they dra-
matically strengthen the connections between large numbers of individuals, and
(2) they do not only support transfer of, for example, beliefs and intentions as such,
but also associated emotions reinforcing them. Thus emergence of collectiveness of
action is achieved by not only tuning the preparations or intentions for options to
each other, but by also tuning the individual internal processes underlying the
decision making for these options; see Fig. 7.3. This double-effective form of
contagion enables both the emergence of a collective action and of a solid emo-
tional grounding for this collective action.

The notion of double-effective contagion as described above is an important
ingredient in the temporal-causal network model for joint decision making
described in Chap. 10.

7.5 Integration of External Effects and Internal Processes

In more realistic cases an interplay occurs between impact of other persons and
other internal states. For example, Fig. 7.4 shows an internal model where a certain
cognitive state (for example, a sensory representation or belief) has both a cognitive
and affective impact on a person’s emotions and preparations. Usually such impacts
also have feedback loops; an example of this is an as-if body loop (see Sect. 7.2).
Therefore, often an internal model consists of a number of cycles, for example, as
shown in Fig. 8. In processing, these loops may converge to some equilibrium,
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when impact from outside is not changing too fast. Such a way of combination was
used in the computational model for emotion-grounded collective decision making
described in Hoogendoorn et al. (2011), based on the principles discussed in
Sect. 7.4 above. In this case mirroring was applied to both emotion and intention
states for any option O:

e mirroring of emotions as a mechanism for how emotions felt about a certain
considered decision option O in different individuals mutually affect each other
e mirroring of intentions as a mechanism for how strengths of intentions (action
tendencies) for a certain decision option O in different individuals affect each other.

In the model not only intentions of others, but also a person’s emotions affect the
person’s own intentions (the arrow from affective state to preparation state in
Fig. 7.4). In updating the level of an intention state S relating to an option O, the
intention states of others for O and the values for the emotion state S’ for O were
taken into account, and aggregated using the approach indicated above. In simu-
lations in most cases not only a collective decision for an intention was emerging,
but also a shared underlying feeling. For more details and simulation results, see
Hoogendoorn et al. (2011). Examples of exceptions occur when group members
have no openness for others, or are not connected to others.

An example of a more complex computational model is the collective decision
making model ASCRIBE addressing an interplay of beliefs, intentions, and emo-
tions, see Fig. 7.5; e.g., Hoogendoorn et al. (2011), Bosse et al. (2013). The internal
model used here instantiates part of the general picture of Fig. 7.4. Beliefs
instantiate the cognitive, emotions the affective, and intentions the preparation
states. In this specific internal model it is assumed that an individual’s strength of an
intention for a certain decision option depends on the person’s beliefs (cognitive
responding) and emotions (emotion-related valuing or somatic marking) in relation
to that option. Moreover, it is assumed that beliefs may generate certain emotions
(affective responding), for example of fear, that in turn may affect the strength of
beliefs (affective biasing). Note that these latter emotion impacts are independent of
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specific decision options (e.g., a general fear level). Mirroring was used in three
different forms (the dotted arrows in Fig. 7.5): of emotions (both fear and emotions
felt about a certain decision option O), of beliefs, and of intentions (for a certain
decision option O). In the model for the dynamics of intentions, the impact from
mirroring is combined with impact from the emotion states and impact from beliefs,
in a similar manner as described above. The same applies, for example, to the
impact of beliefs on the emotion state. However, in this model also a different type
of combination of mirroring and internal processes takes place, involving impact of
fear states to beliefs: it is assumed that some of the parameters, for example, for
biases and openness with respect to beliefs are affected by fear levels. For more
details of this model, including the model specifications for the internal processes of
each person and a number of example simulations, see Hoogendoorn et al. (2011);
in Bosse et al. (2011, 2013) an application to a real world crowd behaviour case is
presented.

7.6 Abstraction of Complex Internal Temporal-Causal
Network Models

The temporal-causal network models discussed above were specified as internal
models at the cognitive and affective level, and often involve loops between different
internal states, for example, loops between cognitive and affective states. However,
under certain assumptions such internal models can be abstracted to behavioural
temporal-causal network models providing more efficient processing, which is
important especially when larger numbers of persons are simulated. In Sharpanskykh
and Treur (2010a, b) it is addressed how more complex internal temporal-causal
network models can be abstracted to less complex behavioural models.
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Temporal-causal network models used for collective social phenomena tradi-
tionally are kept simple, and often are specified by simple reactive rules that
determine a direct response (output) based on the person’s current perception (in-
put). However, in recent years it is more and more acknowledged that in some cases
temporal-causal network models specified in the simple format as input—output
associations are too limited. Dynamics of internal processes of a person are usually
modeled by an internal temporal-causal network model specifying relations
between mental states of the person. Often such temporal-causal network models
are specified in an executable format following a non-cyclic causal graph. However,
for more complex and adaptive types of persons, models may be needed that have a
format of dynamical systems including internal loops. Such cyclic interactions are
well-known from neurological and brain research areas, for example, loops to
model the mutual interaction between affective and cognitive states (see also
Figs. 7.5 and 6 above). Thus, although the non-cyclic graph assumption behind
most existing models may be useful for the design of (artificial) software agents, it
seriously limits applicability for modeling more realistic neurologically inspired
processes in a natural context.

In Sharpanskykh and Treur (2010b) an automated transformation is introduced
from an internal temporal-causal network model to a behavioural model, abstracting
from the internal states. Within this transformation, techniques for loop abstraction
are applied by identifying how equilibrium states depend on inputs for these loops.
This loop elimination approach can be applied if some underlying assumptions are
fulfilled, for example, that the internal dynamics develop an order of magnitude
faster than the dynamics external to the person, that the loop indeed reaches an
equilibrium, and that the value for this equilibrium can be determined analytically
(by solving the equilibrium equations with the input for the loop as parameter). The
idea is that when these assumptions are fulfilled, for each received input, before
new input arrives, the person computes its internal equilibrium states, and based on
that determines its behaviour. More on such abstraction methods can be found in
(Sharpanskykh and Treur 2010a, b, 2012).

7.7 Discussion

In this chapter it was discussed how biological mechanisms from the discipline
Social Neuroscience can be exploited to obtain biologically grounded temporal-
causal network models for social phenomena, covering both cognitive and affective
processes, and their interaction. The contents of this chapter are mainly based on
Treur (2011b, c, 2012b). Core mechanisms used are mirror neurons and internal
simulation. Mirror neurons are certain neurons that are activated due to observation
of another person having a corresponding state; e.g., lacoboni (2008a), Pineda
(2009), Rizzolatti and Sinigaglia (2008), Molenberghs et al. (2012), Kilner and
Lemon (2013). Internal simulation is internal processing copying an external pro-
cess, for example another person’s mental process; e.g., Damasio (1994, 1999),
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Gallese and Goldman (1998), Goldman (2006), Hesslow (1994, 2002, 2012),
Barsalou (2009), Marques and Holland (2009), Pezzulo et al. (2013).

It was shown how from a Network-Oriented Modeling perspective, temporal-
causal network models can be designed for such processes and used to perform
simulation and analysis of the emergence of shared understanding of a group.
Furthermore, it was shown how such temporal-causal network models can be used to
perform simulation and analysis of the emergence of collective power of a
group. This was addressed both in a cognitive or affective or combined sense, so that
not only the group members together go for a collective action, but they also share
the experience of a good feeling about it, which gives the collective action a solid
emotional grounding. It was discussed how such processes depend on the connection
strengths between persons, which are strengthened, for example, by social media.

The type of (social) persons modeled from this perspective are integrative in three
different manners. In the first place, within the person’s individual internal mental
processes affective and cognitive processes are not separate mental processes, but are
fully integrated in an bidirectional interactive manner: cognitive states lead to asso-
ciated emotions, and emotions affect cognitive states. Secondly, also preparations and
sensory representation states affect each other in a bidirectional interactive manner.
Thus, the individual internal functioning is modeled using intensively cyclic pro-
cesses, instead of the traditional view based on relatively simple non-cyclic processes
according to a linear sequence from sensing to preparing for an action. In the third
place the modeled social persons integrate their individual internal processes with
mirroring processes based on the social context in which they function. As a result
temporal-causal network models are obtained that are integrative in multiple respects:
integrating cognitive-affective, preparing-sensing, and individual-social impacts.
Note that also adaptive processes may take place by which the persons for example
change their connections between certain internal states. For such adaptive persons the
above elements are also integrated with the adaptation processes. This was left outside
the scope of the current chapter, but is addressed in other chapters; for example,
Chaps. 2, 5, 6, 11, 12.

The perspective put forward in this chapter has a number of possible application
areas. In the first place it can be used to analyse human social processes in groups,
crowds or in societies as a whole. The application to crowd behaviour in emergency
situations addressed in Bosse et al. (2011, 2013) is an example of such an application.
Other cases address, for example, collective decision making, the construction of
social reality (Butz 2008), the development of collective consciousness (Combs and
Krippner 2008), and global empathy enabling to solve global problems such as cli-
mate change (Rifkin 2010), or spiritual and religious experience (Seybold 2010).

A second area of application addresses socio-technological systems that consist
of groups that partly consist of humans and partly of devices, such as smartphones,
and use of social media. For such mixed groups in addition to analysis of what
patterns may emerge, also the design of these devices and media can be an
important aim, in order to create a situation that the right types of patterns emerge,
for example, with safe evacuation in an emergency situation as a consequence.


http://dx.doi.org/10.1007/978-3-319-45213-5_2
http://dx.doi.org/10.1007/978-3-319-45213-5_5
http://dx.doi.org/10.1007/978-3-319-45213-5_6
http://dx.doi.org/10.1007/978-3-319-45213-5_11
http://dx.doi.org/10.1007/978-3-319-45213-5_12

7.7 Discussion 205

A third area of application concerns a close empathic interaction between a
human and a device. The importance of computational models in a virtual context
for ‘caring’ virtual agents showing empathy has also been well-recognized in the
literature; see, for example (Bickmore and Picard 2004). In Sect. 7.3 it has been
discussed how such a virtual agent can have empathic understanding by having the
same feeling as the human and believing that this is the feeling of the human. This
can be shown by a combined communication: showing feeling (nonverbally) and
showing knowing (verbally). As a fourth area of application team formation can be
addressed. In this area it may be analysed in what way the above perspective
provides possibilities that differ compared to already existing approaches.

More variations and details of models as pointed out in this chapter, can be
found in the next four chapters. Moreover, references to specific papers can be
provided. For example, in Bosse et al. (2012); Laan and Treur (2011) it is shown in
more detail how mirroring plays a role in emotion recognition. Examples with both
mirroring and control functions can be found in Hendriks and Treur (2010), Treur
(2011a, b). In Hendriks and Treur (2010) it is shown how depending on the context
through control states, activation of a preparation state has a function in either
execution, recognition, imagination or imitation of an action. In Treur (2011a) it is
shown how such control states play a role in regulation of different forms of social
response patterns, and in Treur (2011b) in prior and retrospective ownership states
for an action. Network models for the emergence of shared understanding can be
found, for example, in Bosse et al. (2009, 2015) where a model for converging
emotion spirals (e.g., of fear) is described. In Hoogendoorn et al. (2011) a model for
cognitive states (beliefs), and affective states (fear) with respect to the external
world (in mutual relation) is described which shows how for such combined cases
shared understanding emerges. Models that have been developed for different types
of shared understanding of internal states of persons based on a mirroring mech-
anism, can be found, for example, in Bosse et al. (2012), Treur et al. (2011a) for
affective-focused empathic understanding and social responses, and in Memon and
Treur (2012) for full empathic understanding.
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Chapter 8
Am I Going to Do This? Is It Me
Who Did This?

Prior and Retrospective Ownership
States for Actions

Abstract In this chapter a Network-Oriented Modeling approach is used to obtain
a temporal-causal network model that generates prior and retrospective ownership
states for an action based on principles from recent neurological theories. A prior
ownership state is affected by prediction of the effects of a prepared action, and
exerts control by strengthening or suppressing actual execution of the action.
A retrospective ownership state depends on whether the sensed consequences of an
executed action co-occur with the predicted consequences, and is the basis for
acknowledging authorship of actions, for example, in a social context. It is shown
how a number of known phenomena can occur. For example, scenarios are shown
for vetoing a prepared action due to unsatisfactory predicted effects, and for mir-
roring an observed action performed by another person, without imitating
the action. Moreover, it is shown how poor action effect prediction capabilities can
lead to reduced retrospective ownership states, as in persons suffering from
Schizophrenia. The obtained temporal-causal network model can be used as a basis
for simulation-based training, for example, to develop a virtual patient based on the
model so that a psychiatrist or psycho-therapist (e.g., during his or her education)
can gain insight in the processes in certain types of patients, or to analyse how
effective a certain form of therapy can be. A second type of application is in the area
of gaming or virtual stories in which, for example, persons with deviations in
ownership states play a role and based on that show unexpected behaviour.

8.1 Introduction

In the cognitive and neurological literature the notion of ownership of an action has
received much attention: in how far does a person attribute an action to him or
herself, or to another person. For example, persons suffering from schizophrenia
may easily attribute self-generated actions to (real or imaginary) other persons. One
of the issues that plays an important role both in the execution decisions for an
action, and in its attribution, is the prediction of the (expected) effects of the action,
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based on internal simulation starting from the preparation of the action (e.g.,
Wolpert 1997; Haggard 2008). If these predicted effects are satisfactory, this may
entail a ‘go’ decision for the execution of the action, thus exerting control over
action execution. In contrast, less satisfactory predicted effects may lead to vetoing
a prepared action: a ‘no go’ decision.

Predicted action effects play an important role in attribution of the action to a
person after it has been performed. In neurological research it has been found that
poor predictive capabilities are a basis for false attributions of actions, for example,
for patients suffering from schizophrenia; (e.g., Synofzik et al. 2010; Voss et al.
2010). The traditional approach is that comparison of predicted sensory effects and
sensed actual effects (after execution of the action) is an important condition for
proper retrospective self-attribution of a self-generated action. The so-called
‘comparator model’ (e.g., Feinberg 1978; Frith 1992; Wolpert 1997; Frith et al.
2000) is a computational formalisation of this idea. In contrast to this, it has been
reported more recently that the predicted sensory effect and the sensed actual effect
are not simply compared, but integrated with each other (e.g., Moore and Haggard
2008; Synofzik et al. 2010; Voss et al. 2010).

The temporal-causal network model presented in this chapter aims at providing a
computational formalisation for the perspective reported, for example, in the latter
recent literature. In designing this computational network model, in line with this
literature a distinction was made between prior ownership states, among others
based on prediction of sensory effects of a prepared action, and retrospective
ownership states, for which in addition the monitored execution of the action and
the sensed actual effects are used. Within the network model prior ownership states
play an important role in controlling the actual execution of actions (go/no-go
decisions, vetoing), whereas retrospective ownership states are important for
acknowledging authorship of an action in a social context, but also may play a role
in reflection on one’s own functioning and personal learning and development (e.g.,
learning from less optimal choices).

The temporal-causal network model can be used as a basis for development of a
virtual patient that can be used by therapists, for example during their education to
increase their insights in the dynamics of processes involving ownership, and
deviations that may occur in these processes. Moreover, in the area of gaming or
virtual stories the model can be used to develop virtual characters that show special
behaviour in relation to certain characteristics concerning ownership.

In this chapter, in Sect. 8.3 the temporal-causal network model is presented,
based on neurological principles discussed in Sect. 8.2. Section 8.4 illustrates the
model by presenting four different scenarios, among which vetoing an action
because of unsatisfactory predicted effects, execution of an action with false attri-
bution due to poor predictive capabilities as happens in schizophrenia, and mir-
roring an observed action of another person and properly attributing it to the other
person. In Sect. 8.5 it is discussed how elements of the model can be related to
recent neurological findings. Finally, Sect. 8.6 is a discussion.
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8.2 Neurological Background

Within the literature over the years the idea developed that an important condition for
proper retrospective self-attribution of a self-generated action is co-occurrence of
predicted sensory effects and sensed actual effects (after execution of the action); e.g.,
Moore and Haggard (2008). In what is called the comparator model or the central
monitoring theory (e.g., Feinberg 1978; Wolpert 1997; Frith 1992; Frith et al. 2000;
David et al. 2008), the predicted effect and the sensed actual effect are compared or
matched. In Fig. 8.1 a schematic overview of the comparator model is shown, com-
parable to similar pictures shown in Wolpert (1997) and David et al. (2008).

The notion of comparison was originally taken from the area of cybernetics, and
assumes that two activation strengths are compared. For example, if a binary case is
assumed, two signals 1 provide an outcome O (i.e., no difference: self agency), and a
combination of 0 and 1 gives an outcome 1 (no self agency). Also two strengths 0
would give a comparison outcome 0 (self agency) in this model. Moreover, for the
nonbinary case, for example, two equal values 0.3 (or 0.5) would give an outcome 0
as well, which is the same as the outcome for two values 1 (self agency). Such
simple examples, especially for lower but equal values may not always be con-
sidered intuitive.

In recent years it has been reported in neurological literature that the predicted
effect and the sensed actual effect are not simply compared or matched, as claimed
in the comparator model, but in fact are added to each other in some integration
process (e.g., Moore and Haggard 2008; Synofzik et al. 2010; Voss et al. 2010). In
such a case the outcome would not always be the same as for the comparator model.
For example, integrating two equal levels 1 will provide an outcome (self agency)
that is quite different from the outcome for two equal lower values 0.3 or two equal
values 0. Moreover, the integration process involves a temporal element which is
not taken into account in the comparator model: first the predicted sensory effect
starts to become active whereas later on the sensing of the actual effect in some
sense is added to it.

Furthermore, another peculiar aspect that plays a role here is that within the
process, based on the predicted sensory effect, suppression of the sensed effect takes
place, which has been reported since a longer time, for example, around the
question “Why can’t you tickle yourself?’; e.g., Weiskrantz et al. (1971), Claxton

predicted sensory effect incongruence ——p no self agency
intention — motor plan comparison
execution —p actual sensory effect congruence —p self agency

Fig. 8.1 Overview of the comparator model
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(1975), Collins et al. (1998), Blakemore et al. (1999, 2000a, b), Fourneret et al.
(2002) and Blakemore and Frith (2003). This shows an interesting phenomenon. On
the one hand the predicted effect suppresses the sensed effect, but on the other hand
the two effects are combined with each other to obtain a basis for a (retrospective)
proper attribution of the action. From a logical point of view these findings from the
neurological literature may sound paradoxal, but from a dynamical systems per-
spective this may well be modeled adequately in a temporal manner, thus providing
a more realistic type of model than would be possible in a purely logical setting.

Another element, put forward in Moore and Haggard (2008), is the distinction
between ownership based on prediction (prior to execution), and ownership based
on inference after execution of the action (in retrospect):

Our results suggest that both predictive and inferential processes contribute to the conscious
awareness of operant action. The relative contribution of each of these processes seems to
be context dependent. When we can predict the consequences of our actions, as in a high
action-effect contingency block, the awareness of action reflects these predictions. This
would provide us with a predictive sense of our own agency. In addition, our results show
clear evidence that inferential processes also influence the conscious awareness of operant
action (Moore and Haggard 2008 p. 142).

Also here it is put forward that the temporal pattern may be interesting to take
into account:

The interaction between predictive and inferential processes is of particular interest. (...)
The time course over which information about action is built up may be an important clue
to this interaction. Specifically, predictive information about actions and effects may
operate only over the brief timescale of motor preparation, and may be discarded when
sensory evidence makes inference possible. Predictions may be based on an internal for-
ward model (Blakemore et al. 2002). This representation is available for the control of
action and on-line guidance of behaviour, but does not outlast the current action. Sensory
feedback provides more precise evidence about actions and their effects. This evidence
becomes available only after a short sensory delay, but can then be transferred to memory.
Thus, reliable and enduring sensory evidence replaces short-lived predictive estimates. We
suggest that awareness of action therefore switches from a predictive to an inferential
source as the action itself occurs, and as sensory information becomes available. This
time-varying mixture of predictive and inferential information may ensure that our expe-
rience of our own action is an optimal reflection of the actual relation between our vol-
untary motor system and the outside world (Moore and Haggard 2008, pp. 142-143).

The issues and perspectives briefly reviewed above have been used as a basis for
the temporal-causal network model presented below. More specifically, the fol-
lowing have been taken as a point of departure:

(1) action effect prediction from preparation of an action a to sensory represen-
tation of effect b

(2) suppressing the sensory representation of effect e after this effect was predicted
and action a was initiated

(3) a prior ownership state depends on preparation for the action, predicted
effects, and context
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(4) aretrospective ownership state depends on a combination of predicted sensory
effects of the action and action effects sensed afterwards (a form of integration)

(5) a prior ownership state exerts control over the execution of a prepared action
(go/no-go decision, vetoing)

(6) a retrospective ownership state is an infernal state that also can lead to
acknowledging authorship of the action, for example, in social context.

In Sect. 8.5 it will be discussed in some more detail how the concepts used in the
model relate to neurological concepts.

8.3 A Temporal-Causal Network Model for Ownership

The temporal-causal network model presented below has been designed with the
issues discussed in Sect. 8.2 as a point of departure [in particular (1)—(6)].

8.3.1 Conceptual Representation of the Temporal-Causal
Network Model

For a graphical conceptual representation of the model, see Fig. 8.2; here the circles
denote the states explained in Table 8.1.

In this model, s denotes a stimulus, ¢ a context, a an action, and e a world state
affected by the action. Examples of contexts are another person B which is
observed, or the person self. The effect state e is considered to be positive for the
person (e.g., in accordance with a goal). Note that these are used as parameters in
the names of states so that a structured naming convention is obtained; they are not
values. The states used in the model are summarised in Table 8.1. Sensor states ssy,

WS, ss. i SIS, 10S 4 0c.s 1 €SCO g

action execution

Fig. 8.2 Graphical conceptual representation of the temporal-causal network model
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Table 8.1 State properties used

Notation | Description

s Stimulus

a Action

e Action effect

c Context (person self, or another person B, or another context)

WSy World state for W (W is a context ¢, stimulus s, or effect ¢)

SSw Sensor state for W (W is a context ¢, stimulus s, or effect )

SISy Sensory representation state for W (W is a context ¢, stimulus s, or effect e)
PSa Preparation state for action a

es, Execution state for action a

POSuecs Prior ownership state for action a with effect e, context ¢, and stimulus s

1084005 Retrospective ownership state for action a with effect e, context ¢, and stimulus s

€SCqec.s Execution state for communication of ownership of action a with effect e, context
¢, and stimulus s

for a world property W are assumed to be generated (i.e., get nonzero activation
values) by sensing or observing the world. This includes the context ¢ which can be
self or another person B. As expressed in (3) and (4) in Sect. 8.2, the temporal-
causal network model distinguishes prior and retrospective ownership states for
actions, indicated by pos, ., .s and ros, . s, respectively (see Fig. 8.2). These states
are taken specific for a given action q, effect e, context ¢, and stimulus s (triggering
preparation of a@). When the context c is self, an ownership state for ¢ indicates
self-ownership attribution, whereas for context ¢ an observed person B, it indicates
ownership attributed to B. Note that the stimulus s triggering preparation of action
a can be of any type; for social scenarios, it can be taken as a body state (e.g., face
expression) of the other person B which is observed. An action effect state e can be
any state of the world (possibly including body states).

In accordance with (3) in Sect. 8.2, the prior ownership state pos,, ..., is affected
by the preparation state ps, for the action a, the sensory representation srs, of the
(predicted) effect e, the sensory representation srs, of the stimulus s, and the sensory
representation srs. of the context c; see the four arrows to pos,.., in Fig. 8.2.
Similarly, as expressed in (4) in Sect. 8.2, the retrospective ownership state 10s,, . .. s
is affected by the sensory representation srs. of the context ¢, the sensory repre-
sentation srs, of the effect e of the action, the prior ownership state pos, . .5, and the
execution es, of the action a; see the arrows to ros, ., in Fig. 8.2.

Action prediction, expressed in (1) in Sect. 8.2, is modeled by the connection
from the action preparation ps, to the sensory representation srs, of the effect
e. Suppression of the sensory representation of the effect, expressed as (2) in
Sect. 8.2, is modeled by the (inhibiting) connection from the prior ownership state
POSg.c.c.s tO sensory representation srs,. The control exerted by the prior ownership
state, expressed in (5) in Sect. 8.2, is modeled by the connection from pos, . to
es,. Finally, acknowledging of ownership, expressed in (6) in Sect. 8.2, is modeled
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by the connection from the retrospective ownership state ros, .., to the commu-
nication execution state €sC, e ¢ s

Connections between states (the arrows in Fig. 8.2) have weights oy, as indicated
in Table 8.2. In this table the column LP refers to the (temporally) Local Properties
LP1 to LP9 presented below. A weight o, has a value between —1 and 1 and may
depend on the specific context ¢, stimulus s, action a and/or effect state e involved.
By varying these connection strengths, different possibilities for the repertoire
offered by the model can be realised. Note that usually weights are assumed
non-negative, except for the inhibiting connections, such as ®,, (see Table 8.2)
which models suppression of the sensory representation of effect e.

8.3.2 Numerical Representation of the Temporal-Causal
Network Model

Below, the dynamics following the connections between the states in Fig. 8.2 are
described in the form of a numerical representation of the model. This is done for
each state by a dynamic property specifying how the activation value for this state is
updated based on the activation values of the states connected to it (the incoming
arrows in Fig. 8.2). The model is based on a Network-Oriented Modeling approach
(see Chap. 1), in particular, the temporal-causal network modeling approach
described in Chap. 2. Note that modeling the causal relations discussed in neuro-
logical literature and shown in Fig. 8.2 does not follow specific single neurons but

Table 8.2 Overview of the g grates | To state | Weight | Connection type

connections and their weights -
SSw SISy ® Representing
PSa SIS, , Prediction
POSy e, seif s M2 Suppressing
SSp, 3 Representing
SIS PSa [N Responding to s
SIS, s Amplifying
SIS, POSuccs | M6 Prior owning
SIS (03]
SIS, mg
PSa @9
POSy, e, self s €S, ®19 Controlling
PSa o1 Executing action
es, WS, o2 Effectuating
WSy SSw ™3 Sensing
SIS, I0Syecs | ®14 Retrospective owning
SISy, M5
POSqe,c,s ®16
€S, ®7
0S40, €SChecs | D13 Executing communication
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abstracts them to cognitive or mental states. By this abstraction neurological
knowledge is lifted to a mental (cognitive/affective) modeling level. See also the
discussion in Bickle (1998) which he illustrates for the higher level (e.g., folk
psychological) in relation to the lower-level (e.g., neurobiological) explanation in
the context of Hawkin and Kandel’s (1984a, b) work; see Chap. 2, Sect. 2.3.

Activation levels of states affect activation levels of other states (to which they
are causally connected; see the arrows in Fig. 8.2). In numerical representation
these are specified as Local Properties (LP) for each of the different states. Such a
specification uses a parameter 1 as a speed factor, indicating the speed by which the
activation level is updated upon received input from other states. For a state cau-
sally depending on multiple other states, values for incoming activation levels are
combined, using a combination function c(...) for which different choices can be
made.

In the example simulations, for the states that are affected by only one state (i.e.,
in LP1, LP6, LP7, LP9), c(...) is chosen the identity function c(V) = id(V) = V, and
for the other states c(...) is chosen the advanced logistic sum function

1 1
1+676(V1 + 4 Vk—1) - 1+ ect

alogistic,, .(V1,..., Vi) = ( )(1+e7°")

Other types of combination functions might be used as well.

In the text below, for the numerical representation semiformal descriptions are
given, together with a formal specification in differential equation format (one
differential equation per Local Property LP), summarized in Box 8.1.

The first property LP1 describes how sensory representations are generated for
context ¢ and stimulus s, and effect state e (together indicated by variable W).

LP1 Sensory representation for a sensor state
If  the sensor state for W has level X
and the sensory representation of W has level X,
then after duration At the sensory representation of W will have
level X, + 1 [c(0 X)) — X, ] At.
dsrsy(n)/dt = 1 [c(@SsyAt)) — srsud?)]
srsydt + Ar) = stsylt) + M [c(@ssyr)) — srsuAr)] At

The sensory representation of an effect state e as described by property LP2 is not
only affected by a corresponding sensor state for e (which in turn is affected by the
world state), as in LP1, but also by two action-related states:

e via the predictive loop by a preparation state, to predict the effect e of a prepared
action a (see (1) in Sect. 8.2)

e by an inhibiting connection from the prior self-ownership state, to suppress the
sensory representation of the effect e of the action a, once it is initiated [see (2)
in Sect. 8.2].
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This is expressed in dynamic property LP2. Note that for this suppressing effect
the connection weight ®,, from prior ownership state for action a to sensory
representation for effect e is chosen negative, for example m,, = —1.

LP2 Sensory representation for an effect state
If  the preparation state for action a has level X;
and the prior self-ownership of action a for e, self, and s has level X,
and the sensor state for state e has level X5
and the sensory representation of state e has level X,
then after duration At the sensory representation of state e will have
level X, + N [c(02X1, 020X, ®3X3) — X4] At.
dsrs (0)/dt = [c(@2psa(), M20POS4, e, seifs(1)s 388,(1)) — sr8,(7)]
SI'Se(t + At) = Srse(t) +n [C(mZPSa(t)? O*)Zoposu,e,self,s(t)7 (1)3SSe(t)) - Srse(t)] At
Preparation for action « is affected by a sensory representation of stimulus s (trig-
gering the action), and also strengthened by predicted effect e of the action:

LP3 Preparing for an action
If sensory representation of s has level X;
and sensory representation of e has level X,
and the preparation for action a has level X;
then after duration At the preparation state for action a will have
level X5 + n [c(@4X1, 05X5) — X3] At
dps,(0)/dt = 1 [c(@4s154(F), 058TS.(F)) — pSa(?)]
PSalt + A1) = psy(t) + 1 [c(@as15,(1), @s5T,(0)) — psa(1)] At
Prior ownership of an action a is generated by LP4 [see (3) in Sect. 8.2].

LP4 Generating a prior ownership state
If the sensory representation of context ¢ has level X;

and the sensory representation of s has level X;

and sensory representation of e has level X3

and the preparation for action a has level X,

and prior ownership of a for e, ¢, and s has level X5
then after Az prior ownership of a for ¢, s, and e will have
level Xs + n [c(weX1, 07X5, 0gX3, MX4) — Xs] At.
dposa,e,c,s(t)/dt =1 [c(@eSTS(2), W7ST84(F), SIS (1), Wops,(?)) — posa,e,c,x(t)]
posa,e,c,s(t + At) = posa,e,c,s(t)

+1n [C(U)GSrSc(t)’ (D7SI'SS([), (DgSfSe(t), 0)9P5a(t)) - postl,e,c,s(t)] At

In case the context c is self, the prior ownership state strengthens the initiative to
perform a as a self-generated action: executing a prepared action depends on
whether a prior self-ownership state (for the person self) is available for this action
(see (5) in Sect. 8.2). This models control over the actual execution of the action
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(go/mo-go decision) and can, for example, be used to veto the action in a late stage
of preparation. This is modeled by LP5.

LP5 Action execution
If  prior ownership of a for e, self, and s has level X,
and preparation for action a has level X,
and the action execution state for a has level X5
then after duration At the action execution state for a will have
level X3 + n [c(®pX], ®11X2) — X5] At
des,(t)/dt = n [C(O)l()posa,e,self,'s(t)a O11P84(1)) — es4(9)]
esq(t + A1) = es,(t) + M [c(©10P0S4,e,seifs(1), ®11PS(1) — €s,(1)] At

Property LP6 describes in a straightforward manner how execution of action a af-
fects the world state e.

LP6 From action execution to effect state
If  the execution state for action a has level X|,
and world state e has level X,
then after Ar world state e will have level X, + 1 [c(®1.X;) — X5] At.
dws,(0)/dr = 1 [c(w12e8,(1)) — Ws(1)]
wsp(t + Ar) = wsy(f) + M [c(@12e8,(F)) — Ws(F)] At

The following property models how sensor states are updated. It applies to stimulus
s, effect b, and context ¢ (indicated by variable W).

LP7 Generating a sensor state for a world state
If  world state W has level X;
and the sensor state for W has level X,
then after Az the sensor state for W will have level X, + n [c(®(3X;) — X5] At.
dssy(t)/dt = n [c(®3Wsyl?)) — ssud?)]
ssylt + Ar) = ssy(t) + M [c(@3wsylt)) — sspdr)] At

A retrospective ownership state takes into account the prior ownership, the exe-
cution of the action, the context, and the sensory representation of the action’s effect
[see (4) in Sect. 8.2]:

LP8 Generating a retrospective ownership state
If the sensory representation of context ¢ has level X,
and the sensory representation of effect state e has level X,
and prior ownership of a for e, ¢, and s has level X;
and the execution state for action a has level X,
and retrospective ownership of a for e, ¢, and s has level X5
then after Az retrospective ownership of a for e, ¢, and s will have
level X5 + 1 [c(®14X1, 015X2, 016X3, ©17Xy) — Xs5] Ar.
drosu,e,c,x(t)/dt = T] [C(0)14SI'SC(Z‘), (DISSfSe(t)’ 0)16posa,e,c,s(t)’ 0)176Sa(l)) - rosu,e,c,s(t)]
rosa,e,c,s(l + Al) = rosa,e,c,s(t)
+ 1 [c(14515:(0), @1551S.(1), D16POSq,e.c,5(F), ©17€84(F)) ~ T0S4.c.c,
SO] At
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Note that LP8 applies for context self as context, but also to an observed other
person B. For an observed other person as context the connection strength ®,7 in
LP8 is assumed O or negative; in the simulated scenarios discussed in Sect. 8.4 it
was set m7 = —1. The communication to attribute authorship (to any context
¢) depends on the retrospective ownership state as specified in LP9 [see (6) in
Sect. 8.2].

LP9 Communication of ownership awareness
If retrospective ownership of a for e, ¢, and s has level Xj,
and communication of a for e, ¢, and s has level X,
then after duration Az communication of a for e, ¢, and s will have
level X5 + 1 [c(013X7) — X5] At.
desc . (H/dt = 1 [c(01810S, ¢ ¢.5(F) = €SCphecs(D)]
escu,e,c,s(l + Al) = escoa,e,c,s(t) +n [C((DISrOSa,e,c,x(t)) - esca,e,c,s(t)] At

LP1 Sensory representation for a sensor state
dsrsy () /dt = n[c(orssw(t)) — srsw(?)]
stsw (2 + Ar) = stsy (2) +nfc(oissw(?)) — srsw(2)]Az

LP2 Sensory representation for an effect state
dsrs, (1) /dt = n[c(@aps, (1), ®20P0S, 4 sr s (1) D395.(2)) — 15, (1)]
st8, (¢ + At) = sr5,(1) + N [c(02PS, (1), ©20P0S, ¢ eir 5 (1), 0358 (1)) — srs.(1)] At

LP3 Preparing for an action
dps,(¢)/dt = n[c(wasrsg(2), @ssrs, (7)) — ps,(?)]
ps,(t+ At) = ps, (1) + n[c(wasrss(z), ossrs. (1)) — ps,(f)]Ar

LP4 Generating a prior ownership state
dposaﬁm‘;(t)/dt =mn[c(wesrs.(¢), m7srs;(7), wssrs, (¢), @ops,(¢)) — poswe’c’s(t)]
POSy o ¢ (1 + Al) =pos, . . ((?)
+ M [c(weSTsc (1), 075184 (), W8STS, (1), WoPS, (1)) — POS, - 5 (t)] At

LP5 Action execution
desll (t) /dt ="M [C (mloposa,e,self,s (t)a ®11PS, (I)) — €8¢ (t)]
esq(t+ Ar) = esy(1) +M[c(@10p0S, . ey s (1), @118, (1)) — esq(1)] At

LP6 From action execution to effect state
dwsy(2)/dr = n[c(mies, (7)) — wse(7)]
wsp (7 + At) = wsp(2) + nfc(oipes, (7)) — ws.(7)]Ar
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LP7 Generating a sensor state for a world state
dssy (7)/dt = n[c(@izwsw(2)) — ssw(?)]
ssw(t+ At) = ssy(2) +n[c(@iwsw(t)) — ssw(?)]At

LP8 Generating a retrospective ownership state
dros, . c. (1) /dt =n[c(®14515:(2), @15575(1), ®16POS, , (1), ©17€S4(t)) — T0S4,¢.c,5(1)]
10Sg0.c,5(f + Af) =1084,.c4(2)
+ M [c(14518.(£), 015518, (1), D16POS, 0 5 (), ®17€84(1) ) — T0Sg0.c5(1)] AL

LP9 Communication of ownership awareness

descy (1) /dt = n[c(mlgrosaﬁws(t)) — escayeﬁm(t)]
€SCqec,s(t+ A1) = €5C0ge.c,s(f) +N[C(O18708qe (1)) — €8Cqecs(t)]AL

Box 8.1 Numerical representation of the temporal-causal network model in
differential equation format

8.4 Simulation of Example Scenarios

In this section simulations are discussed for a number of example scenarios, which
all involve the occurrence of a preparation state for an action a, triggered by some
stimulus s. These scenarios relate to phenomena in the literature, as discussed in
Sect. 8.2. They have been generated based on the specification in differential
equation format shown in Box 8.1. First a scenario is addressed where the prepared
action has satisfactory predicted effects and therefore is executed; in this case both
prior and retrospective self-ownership states occur. Next, a case is considered where
the prepared action lacks positive predicted effects, and is therefore not executed: a
no-go decision, or vetoing. Only a rather low prior self-ownership state is developed
and no retrospective self-ownership state. In the third case, a poor action prediction
capability is modeled, which leads to a not very high prior self-ownership state, but
sufficient to actually execute the prepared action. In this case no retrospective
self-ownership state occurs, as the sensory representation of the effect stays low. In
the fourth case, the stimulus triggering the action preparation is the observation of
another person performing the action. In this case a low prior self-ownership state is
generated, but high prior and retrospective other-ownership states. This models
mirroring of and attribution to the other person. Note that the parameter values for
the connection strengths used for these different scenarios are not unique. Similar
patterns are obtained when they are in a certain range.
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8.4.1 Normal Execution and Attribution of an Action

The first case considered describes a situation where the context ¢ is the person
itself, and a stimulus s occurs. The action effect e is considered positive for the
person. To make things more specific, imagine the following:

context ¢ is that you are working on your computer

stimulus s is that you need a certain application P

action « is clicking on a specific icon I on the desktop of your computer
effect e of action « is that application P is opened.

The first scenario is as follows:

Scenario 1

external stimulus s occurs and triggers preparation of action a (to click on icon I)
based on the preparation state for a the sensory representation of predicted effect
e (that application P is opened) of a is generated

based on this positive predicted effect and the other states a prior self-ownership
state for action a (to click on icon I) is generated

this prior self-ownership state for action a leads to actual execution of action
a (mouseclick on I)

the execution of a affects e in a positive manner (application P opens) and, via
sensing, also the sensory representation of e (that application P is opened)

at the same time the sensory representation of e is suppressed due to the prior
self-ownership state

based on the generated states, after the execution of action a, the person
develops a retrospective self-ownership state (for opening application P by
clicking on icon I)

finally the person communicates this self-ownership (‘I opened application P by
clicking on icon I’).

The simulation of this scenario is shown in Fig. 8.3. Parameter values used (in

all scenarios set by hand) can be found in Table 8.3. The step size chosen is

1.0 action
prep
0.8 ——a— action exe
0.6 ——o— self own
comm
0.4 effect rep
0.2 prior own
' self
retro own
0.0 self
0 5 10 15 20 25 30 35

Fig. 8.3 Executing an action with ownership states (scenario 1)
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Table 8.3 P arame.ter values Connections Threshold and steepness for T c

for the first scenario state
™3 0.5 Action preparation 0.4 4
[P -1 Effect representation 0.2 4
(0% 0.8 Action execution 1.2 20
my 0.8 Prior self-ownership 3 8
o5 0.8 Retrospective self-ownership 3 20
n 0.6/0.3 Self-ownership 0.8 |40

communication

At = 0.25. All relevant connection strengths not mentioned in this table were
chosen 1. The slow value 0.3 for n was applied for external processes (action
execution, effect generation and effect sensing) modeled by LP5, LP6, and LP7, and
the fast value 0.6 for n for the internal processes modeled by the other LP’s.

In Fig. 8.3 it is shown that (after sensing the stimulus), the preparation for action
a starts around time point 2, and the representation of the predicted effect ¢ around
time point 3. As a result of this, around time point 6 the prior self-ownership state
starts to develop, which leads to the execution of the action, starting around time
point 7. In the meantime the representation of the action effect e is suppressed (e.g.,
Blakemore et al. 1999, 2000a, b; Fourneret et al. 2002), causing a dip in the graph
around time point 10. When the execution of the action a is taking place, the
sensing of its effect e in the world has a positive impact on the representation
of e from time point 10 on, and the retrospective self-ownership state is developed,
starting from around time 15. After this, the communication of the self-ownership
takes place from time point 20.

Note that in this case both the prior and the retrospective self-ownership state
reach levels close to 1 (prior self-ownership approaching 0.95, and retrospective
self-ownership approaching 1). Moreover, note that when the stimulus is taken
away, all activation levels will go down to 0, and will come up again when the
stimulus reoccurs.

8.4.2 Vetoing a Prepared Action Due to Unsatisfactory
Predicted Effect

The second case considered describes a situation similar to the previous one (the
context ¢ is the person itself, and a stimulus s occurs), but where the action
a triggered by stimulus s has an effect e’ which is not particularly positive for the
person; here a hardly has an impact on effect e which would have been positive.
Prediction capabilities are assumed correct in this case, so no high level of e is
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correctly predicted for a. For the imagined application opening context this means
that it is predicted that clicking on icon I does not open application P but a different
application P’. Nevertheless it is assumed that the stimulus triggers preparation for
clicking on icon I (maybe because in the past on the same position the icon for
program P was placed). For this situation the following variation on the previous
scenario is considered:

Scenario 2

e external stimulus s occurs and triggers preparation of action a (to click on icon I)

e based on the preparation state of a only a low level for the sensory represen-
tation of predicted effect e of a is generated (no prediction that application P will
be opened but that different application P’ will be opened)

e based on this low predicted effect e and the other states a low level of a prior
self-ownership state for action a is generated (low prior ownership to click on
icon I)

e the low prior self-ownership state for a does not lead to actual execution of
action a; the action a can be considered vetoed (no click on icon I)

e the person develops no retrospective self-ownership state for a (no retrospective
self-ownership for clicking on icon I)

e the person does not communicate self-ownership for a.

The simulation of this scenario is shown in Fig. 8.4. This scenario was modeled
by making the connection strength for the prediction of effect e for action a low:
o, = 0.3 instead of 0.8. Values for the other parameters were the same as in
Table 8.3.

In Fig. 8.4 it is shown that (after sensing the stimulus), again the preparation for
action a starts around time point 2, and the representation of the predicted effect
e around time point 3. However, the predicted effect is much lower compared to the
previous scenario. As a result of this low prediction, the prior self-ownership state
starting to develop around time point 6, also stays at a low level. Therefore the
execution of the action also stays very low. Due to these circumstances, no retro-
spective self-ownership state and no communication of self-ownership occur.

1.0 action
prep

0.8 —gp— action
exe

0.6 =@ self own
comm

0.4 effect rep

0.2 prior own

' self

retro own

0.0 self

0 5 10 15 20 25 30 35

Fig. 8.4 Vetoing an action with no positive prediction (scenario 2)
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8.4.3 Effects of Poor Prediction; Schizophrenia Case

The third case considered describes a situation where again the context ¢ is the
person itself, and stimulus s occurs. The action effect for action a is e, which in
principle is positive for the person, like in the first situation above. However, due to
poor prediction capabilities this effect is not (fully) internally predicted. This is what
is assumed to happen in patients with schizophrenia, as discussed, for example, in
Synofzik et al. (2010) and Voss et al. (2010). For this situation the following
scenario is considered:

Scenario 3

e stimulus s occurs and triggers preparation of action a (to click on icon I)

e based on the preparation state for a only a relatively low level of the sensory
representation of the predicted effect e of a is generated, due to poor prediction
capabilities (low prediction that application P will be opened)

e based on this relatively low predicted effect and the other states a relatively low
level of a prior self-ownership state for action a is generated (low prior
self-ownership for clicking on icon I)

o this prior self-ownership state level for action « is still sufficient to lead to actual
execution of action a (mouseclick on icon I)

e the execution of a affects e (application P is opened) in a positive manner and
(via sensing) the sensory representation of e

o the sensory representation of e (that application P is opened) is suppressed to a
certain extent due to the (relatively low) prior self-ownership state

e due to the relatively low level for the sensory representation of effect e (and
prior self-ownership state) the person develops no retrospective self-ownership
state for action a (no retrospective self-ownership for clicking on icon I)

e the person does not communicate self-ownership for action a.

The simulation of this scenario is shown in Fig. 8.5. This scenario was modeled
by taking the connection strength for the prediction of effect e for action a mod-
erately low: m, = 0.4. Values for the other parameters were again the same as in

1.0 action
r prep
0.8 ———a— action
exe
0.6 ———— self own
comm
0.4 effect
rep
0.2 ——————— prior
own self
0.0 ——— retro
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 own self

Fig. 8.5 Poor prediction implies no retrospective self-ownership (scenario 3)
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Table 8.3. For this case At = 0.1 was chosen instead of 0.25, and the simulation
was shown up to time point 75.

In Fig. 8.5 it is shown that as in the previous scenarios, the preparation for action
a starts around time point 2, and the representation of the predicted effect ¢ around
time point 3. The predicted effect is substantially lower compared to the first sce-
nario, but higher than in the second scenario. As a result of this moderately low
prediction, the prior self-ownership state, starting to develop around time point 6,
also stays at a moderate level (first around 0.4, later going up to almost 0.7); this is
substantially higher than in the second scenario where the lower level led to a veto
for the action. Therefore, in contrast to the previous scenario, this level turns out high
enough for the execution of the action starting around time point 9. Nevertheless,
only a low level of the retrospective self-ownership state is developed (becoming
approximately 0.15), and no communication of self-ownership takes place.

8.4.4 Satisfactory Predicted Effects but Unsatisfactory
Actual Effects

The fourth case considered describes a situation where again the context c is the
person itself, and stimulus s occurs. The predicted action effect for action a is e,
which in principle is positive for the person, like in the first situation above.
However, after executing the action, it turns out that e is not an actual effect of the
action. This is another way of modeling a mismatch between prediction and actual
outcome. For this situation the following scenario is considered:

Scenario 4

e external stimulus s occurs and triggers preparation of action a (to click on icon I)

e based on the preparation state for a the sensory representation of predicted effect
e of a is generated (that application P will be opened)

e based on this positive predicted effect and the other states a prior self-ownership
state for action a is generated (to click on icon I)

e this prior self-ownership state for action a leads to actual execution of action
a (mouseclick on icon I)

e the execution of a does not affect e in a positive manner (application P is not
opening, but a different application P’) and; therefore e is not sensed, and no
contribution occurs to the sensory representation of e

e at the same time the sensory representation of e is suppressed due to the prior
self-ownership state

e based on the generated states, the person develops no retrospective
self-ownership state (no retrospective self-ownership for clicking on icon I)

e the person does not communicate self-ownership for action a.

The simulation of this scenario is shown in Fig. 8.6. This scenario was modeled
by taking the connection strength for the actual effect e for action a very low:
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o> = 0. Values for the other parameters were again the same as in Table 8.3. For
this case Az = 0.25 was used.

In Fig. 8.6 it is shown that as in the previous scenarios, the preparation for action
a starts around time point 2, and the representation of the predicted effect ¢ around
time point 3. The predicted effect is comparable to the first scenario. As a result of this
prediction, the prior self-ownership state, develops from around time point 6 on
(going up to 0.7). Therefore, this level is high enough for the execution of the action
starting around time point 9. However, the expected effect e of the action does not
actually occur. Moreover due to the prior ownership state the sensory representation
of the effect is suppressed. Therefore immediately after time point 6, the sensory
representation of the effect goes down. As a consequence no retrospective self-
ownership state is developed, and no communication of self-ownership takes place.

8.4.5 Mirroring Another Person

In contrast to the first four scenarios, the fifth case describes a situation where the
context c is another person, and the stimulus s is the observation of the other person
performing action a (person B is clicking on icon I). The action effect for action a is
e (application P is opened) and is predicted in a correct manner, as in the first
scenario. The scenario for this fourth case is as follows:

Scenario 5

e external stimulus s which is an observed action a performed by another person
(by mirroring) triggers preparing action a (to click on icon I)

e based on the preparation state for a the sensory representation of the predicted
effect e of a is generated (that application P will be opened)

e Dbased on this predicted effect and the other states (among which the other person
as context) a high level of a prior other-ownership state for action a is generated,
and a low level of a prior self~ownership state (other-ownership for clicking on
icon I; no self-ownership for clicking on icon I)

1.0 action prep
il

0.8 ——+—— action exe

0.6 ——o— self own
comm

0.4 effect rep

0.2 / prior own
self

0.0 retro own

0 5 10 15 20 25 30 35 self

Fig. 8.6 Deviation of actual effect from predicted effect implies no retrospective self-ownership
(scenario 4)
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e the low prior self-ownership state for action a leads to no actual execution of
action a (vetoing; no own mouseclick on icon I)

e as the prior self-ownership state has a low level, not much suppression of the
representation of effect e takes place

e based on the generated states, the person develops a retrospective other-ownership
state, and no retrospective self-ownership state (retrospective other-ownership for
person B opening application P by clicking on icon I)

e finally the person communicates this other-ownership a (‘you opened applica-
tion P by clicking on icon I’).

The simulation of this scenario is shown in Fig. 8.7. This scenario was modeled
by taking the connection strength ®, for mirroring from the specific stimulus
representation (observed action) to preparation state 0.5. The connection strength
o, for the prediction of effect e for action a is 0.8, as in the first scenario. The
threshold and steepness values for prior and retrospective other-ownership states
were set 3 and 8, resp. 2.4 and 20. For this case Ar = 0.25 was used. Values for the
other parameters were the same as for the first scenario.

In Fig. 8.7 it is shown that after sensing the observed action, as in the first
scenario the preparation for action a starts around time point 2, and the represen-
tation of the predicted effect e around time point 3. As a result of this, around time
point 6 the prior other-ownership state starts to develop, whereas the prior self-
ownership state stays very low. Therefore execution of a is suppressed. After time
point 9 also the retrospective other-ownership state is generated, which leads to
communication of other-ownership after time point 12. All other states stay low.

8.5 Relations to Neurological Findings

In this section the question is addressed how the states and dynamical relations of
the temporal-causal network model described in Sect. 8.3 relate to neurological
states and mechanisms. In particular, this concerns the internal states: sensory
representations, preparations, and the prior and retrospective ownership states (in
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Fig. 8.7 Mirroring another person (scenario 5)
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Fig. 8.2 the states in the box). First of all, for the sensory representations of
stimulus and context and action effect, these are considered to be related to sensory
neurological states. Secondly, the preparation state used is assumed to have a
mirroring function as well, so this state may be related to (a group of) mirror
neurons (in the classical sense); (e.g., Iacoboni 2008a).

The remaining two types of states, the prior and retrospective ownership states are
the most crucial states in the presented model. A prior ownership state has control
over the execution of a (prepared) action as one of its most important functions. This
type of state has roughly the following behaviour in relation to execution:

e it is active if a prepared action is (to be) executed
e it is not active when no execution (is to) take(s) place.

Interestingly, in recent human single cell recording experiments, specific neu-
rons have been found with activation patterns that have some correlation to exe-
cution of an action, in particular, in work reported in Mukamel et al. (2010) and
Fried et al. (2011); see also Keysers and Gazzola (2010), Iacoboni (2008a, b) and
Tacoboni and Dapretto (2006). For example, Iacoboni (2008b) describes these
experiments in patients with epilepsy undergoing pre-surgical evaluation of the foci
of epilepsy as follows; see also Iacoboni (2008a, pp. 201-203).

From a total of 14 patients, we have recorded the activity of approximately 500 neurons
located in three sectors of the mesial frontal cortex: the ventral and dorsal sectors of the
anterior cingulate cortex and the pre-supplementary motor cortex (SMA)/SMA proper
complex (Iacoboni 2008b, p. 30).

Some of the main findings are that neurons with mirror neuron properties were
found in all sites in the mesial frontal cortex were recording took place (approxi-
mately 12 % of all recorded neurons); half of them related to hand-grasping, and the
other half to emotional face expressions. For the relation of their activity to exe-
cution the following was found:

One-third of mirror neurons had excitatory responses during both action execution and
action observation. This is the most typical pattern of firing-rate changes observed in
monkeys. One-third of mirror neurons, however, had inhibitory responses during both
action execution and action observation. This pattern has also been occasionally observed
in monkeys, but much less frequently. The remaining third of mirror neurons in the human
frontal cortex had a pattern of firing-rate changes that has never been observed in monkeys,
at least not so far (Iacoboni 2008b, p. 30).

It is in this group of mirror neurons that neurons can be found that show beha-
viour that is similar to the behaviour of the prior ownership state in the presented
model as indicated above. A substantial subset of these latter set of neurons...:

...have excitatory responses during action execution and inhibitory responses during action
observation. Few of these neurons have the opposite pattern, with decreased firing rate
during execution and increased firing rate during observation (Iacoboni 2008b, p. 30).
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In Tacoboni (2008a, b) and ITacoboni and Dapretto (2006) such types of neurons
are termed super mirror neurons, to indicate the control function they may have
with respect to the execution of an action. Given the similarity in behaviour, it is
this type of neurons that can be considered a suitable candidate as a neurological
counterpart of prior ownership states. One aspect to be addressed is the timing
aspect: are these super mirror neurons active before the execution, or during or
after? In the latter case, they could be considered more suitable as candidates for
retrospective ownership states. To obtain more evidence, it would be interesting to
find out more about temporal dependencies between the respective neural and
execution states, for example, using methods as described in Schippers and Keysers
(2011).

For the remaining type of states to be considered, the retrospective ownership
states, a more complex picture occurs. Retrospective ownership states have a strong
relation to self-monitoring, as also emphasized in Arbib and Mundhenk (2005),
Arbib (2007) and Moore and Taggard (2008). For example, in David et al. (2008), a
number of cortical and subcortical elements are indicated that may relate as neural
correlates to retrospective ownership states:

...several brain areas have been implicated in the sense of agency (...). These include brain
regions known to be involved in the motor system such as the ventral premotor cortex
(vPMC), the supplementary motor area (SMA and pre-SMA) and the cerebellum as well as
regions such as the dorsolateral prefrontal cortex (DLPFC), the posterior parietal cortex
(PPC), the posterior segment of the superior temporal sulcus (pSTS) and the insula (...).
Unfortunately, the current literature does not yet provide a consistent or clear picture with
respect to the exact functions and contributions of these brain regions to the sense of agency
(David et al. 2008, p. 529).

In David et al. (2008) a distinction is made into what are called executive
functions and supervisory functions, and empirical results in the literature are
discussed accordingly.

In a classificatory attempt, the first group of brain regions (e.g., vVPMC, SMA, cerebellum)
constitutes a network of sensorimotor transformations and motor control, whereas the
second group of brain regions rather represents a set of heteromodal association cortices
implicated in various cognitive functions. (...) Accordingly, motor system-related regions
may subserve ‘executive’ functions whereas heteromodal associative regions subserve
‘supervisory’ functions. However, the proposed classificatory, functional distinction
remains speculative requiring further empirical validations. In the following, we summarize
the available evidence on the neuroscience of agency in an attempt to putting the empirical
results into perspective. The presence of different neural correlates might reflect different
agency indicators, sub-processes or levels of agency processing (David et al. 2008,
pp. 529-530).

So, the possibility is left open that in the end different agency indicators may be
distinguished. One of such distinctions may be between unconscious and conscious
ownership states; see, for example, Jeannerod (2009) and Schutz-Bosbach et al.
(2009).



230 8 Am I Going to Do This? Is It Me Who Did This?

8.6 Discussion

The temporal-causal network model presented in this chapter incorporates mech-
anisms for prior and retrospective ownership states, based on principles from recent
neurological theories, in particular from Moore and Haggard (2008), Synofzik et al.
(2010) and Voss et al. (2010). The contents of this chapter are based on Treur
(2011). In the model a prior ownership state is affected by prediction of the effects
of the action. Actual execution of the action and sensing of its effects can lead to a
retrospective ownership state, in particular, when the sensed effects co-occur with
the predicted effects. As a prior ownership state may lead to actual execution of the
action, it plays an important role as control of the execution of prepared actions.
A retrospective ownership state is the basis for acknowledging authorship of an
action, for example, in social context, or in a self-reflection context. Elements of
this ownership model have been used in as an important ingredient in the
temporal-causal network model for joint decision making described in Chap. 10.

In simulated scenarios it was shown how a number of known phenomena can
occur. For example, scenarios were shown for vetoing a prepared action due to
unsatisfactory predicted effects, and for mirroring an observed action performed by
another person, without imitating the action. Moreover, it was shown how poor
action effect prediction capabilities can lead to reduced retrospective ownership
states (as, for example, is shown in persons suffering from schizophrenia), and may
easily lead to attribution of the self-generated action to another real or imaginary
person.

The ownership states are internal cognitive states that are not representations of
currently present external things in the way that, for example, sensory representa-
tion or belief states are. If the question is posed whether they do represent anything,
and if so, what, maybe they can be interpreted as temporal second-order repre-
sentations or representations of the person’s own internal processes, or represen-
tations of past or future behaviour, or a combination of these. This representation
question is not the focus of this chapter. It may be an interesting topic for further
work, for example, in the line of Bosse et al. (2009).

The temporal-causal network model distinguishes itself from existing approaches
such as in Wolpert (1997), Frith (1992) and Frith et al. (2000), among others in that
(1) instead of comparison of predicted and sensed effects, the predicted and sensed
effects are integrated and provide a kind of combined level, as also indicated in, for
example Moore and Haggard (2008), Synofzik et al. (2010) and Voss et al. (2010),
(2) following Moore and Haggard (2008) a distinction was made between prior and
retrospective ownership states, and (3) both self-ownership and other-ownership are
covered. These are also differences with approaches, such as for example Hindriks
et al. (2011), which do not take the neurological angle as a point of departure, as in
the current chapter.

The obtained computational model can be used as a basis for simulation-based
training or in gaming or virtual stories. For the first type of application the idea is to
develop a virtual patient based on the model so that, for example, a psychiatrist or
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psycho-therapist (e.g., during his or her education) can gain insight in the processes
in certain types of patients, or it can be used by a therapist to analyse how a certain
form of therapy can have its effect on these processes. For the second type of
application the idea is to design a system for person-based virtual stories in which,
for example, persons with deviations in ownership states play a role (e.g., persons
suffering from schizophrenia, and due to that attribute their own actions to other real
or imaginary persons), which can be based on the presented model.

Note that the current chapter only addresses the occurrence of ownership states.
It does address how weak self-ownership can occur but does not address how in
some cases imaginary persons can be created to whom actions are attributed; see for
example Collerton et al. (2005) and Samsonovich (2005). In Treur and Umair
(2011) it is shown how so-called inverse mirroring enables a person to attribute an
action to an imaginary person.

The temporal-causal network model for ownership described in this chapter has
been extended to temporal-causal network models also incorporating different
awareness states, attention states, a combination of top-down and bottom-up pro-
cesses, and intentional inhibition of actions in Thilakarathne (2015) and
Thilakarathne and Treur (2014, 2015a, b).
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Chapter 9
How Empathic Are You

Displaying, Regulating, and Learning Adaptive
Social Responses

Abstract Differences in social responses of individuals can often be related to
differences in functioning of certain neurological mechanisms. Based on a
Network-Oriented Modeling approach, a temporal-causal network model has been
developed that is capable of showing different types of social response patterns
according to such mechanisms, adopted from theories on mirror neuron systems,
emotion integration, emotion regulation, and empathy. Within the model also
adaptive capabilities have been incorporated, showing how learning of social
response patterns can take place. The adaptive temporal-causal network model
provides a basis for human-like social response patterns of virtual agents in the
context of simulation-based training (e.g., for training of physicians or therapists),
gaming, or for generation of virtual stories.

9.1 Introduction

Human social interaction often goes beyond verbal exchange of information. For
example, to obtain and display forms of mutual empathic understanding, both
verbal and nonverbal interaction play a role. Such forms of understanding have
been recognized not only to be important to maintain personal relationships, but
also in professional relationships, for example, between a teacher and a student,
between a counselor and a client, or between a physician and a patient. To monitor
such social interactions of professionals, and, when desired, to improve their
capabilities in these interactions, specific means and training facilities have been or
are being developed. Examples from the medical area are Bonvicini et al. (2009),
Hojat (2007, 2009), Suchman et al. (1997), Tulsky et al. (2011), Zimmermann et al.
(2011). As, for example, discussed in Tulskey et al. (2011) computer support
environments for training purposes may provide a useful contribution to this field.
However, to be able to develop environments of good quality, insight in the
mechanisms underlying such social interaction is important.

In recent years neurological mechanisms have been discovered that describe
how, for example, direct nonverbal contagion of emotions (e.g., responding to a
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smile) may take place between persons. Within neuroscience the study of mecha-
nisms behind social interaction has led to a fast developing new discipline called
Social Neuroscience (e.g., Cacioppo and Berntson 2005; Cacioppo et al. 2006;
Decety and Cacioppo 2010; Harmon-Jones and Winkielman 2007). Examples of
processes and mechanisms identified as important for social interaction are mirror
neuron systems, self-other distinction, emotion integration, emotion regulation and
empathy. Such mechanisms provide a useful point of departure to design biologi-
cally plausible computational models that offer a wide human-like social interaction
repertoire. Here the concept of mirror neuron is a central concept relating to the
other mechanisms as well. Mirror neurons are neurons with both a function of
preparing, and of mirroring a similar state of another person; e.g., lacoboni (2008a),
Rizzolatti and Sinigaglia (2008), Pineda (2009).

The collection of mechanisms considered in this paper has resulted from
in-depth neurological investigations of deficits in social interaction. In the neuro-
logical literature these are put forward as the mechanisms that show impairments
for persons with such deficits in social interaction. The contribution of such
mechanisms to social functioning is usually studied by comparing a group persons
that do not show adequate social interaction with a control group of persons with
typical social functioning. Within the natural, human population, substantial dif-
ferences in social behaviour between different persons occur. Some of the specific
types of social interaction are considered to be ‘autistic’ to a certain extent, and the
persons displaying them are sometimes diagnosed as having some form of an
Autism Spectrum Disorder (ASD); e.g., Richer and Coates (2001), Frith (2003).

Based on a Network-Oriented Modeling approach a temporal-causal network
model has been developed that integrates computational formalisations of mecha-
nisms for mirroring, self-other distinction, emotion integration, emotion regulation,
and empathy put forward in the recent neurological literature as crucial for adequate
social interaction. These mechanisms have been incorporated in the model in an
abstracted form; the network model can be considered a computational model
inspired by these neurological mechanisms. Given the use of neurological mech-
anisms as a point of departure, a biologically plausible model results that can be
used as a basis for the development of applications, for example, in the context of
simulation-based training, gaming or virtual stories. Such applications can concern
software environments using virtual agents based on the model presented here with
built-in parameters representing personal characteristics. This does not only allow
settings for human-like agents that model an idealised, perfect form of social
interaction, but also settings that model different forms of imperfection in social
interaction as occurring in the natural human population. In particular, such envi-
ronments can be helpful in training professionals such as physicians in their social
interaction.

It is often claimed that the mirroring mechanism is not (fully) present at birth,
but has to be shaped by experiences during lifetime; for example, Catmur et al.
(2007), TIacoboni (2008a, b), Keysers and Perrett (2004). For persons (in particular
children) with low or no social responses, it is worth while to offer them training
sessions in imitation so that the mirror neuron system and the displayed social
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responses may improve. This indeed turns out to work, at least for the short term, as
has been reported in, for example Field et al. (2001), Ingersoll et al. (2007). Thus
evidence is obtained that the mirror neuron system has a certain extent of plasticity
due to some learning mechanism. In Keysers and Perrett (2004) it is argued that
Hebbian learning (e.g., Gerstner and Kistler 2002; Hebb 1949) is a good candidate
for such a learning mechanism.

In this chapter a Hebbian learning mechanism is adopted to obtain an adaptive
temporal-causal network model showing plasticity of the person’s mirror neuron
system. The model realises learning of social behaviour (in particular, empathic
social responses), depending on a combination of innate personal characteristics
and the person’s experiences over time obtained in social context. A person’s
experiences during lifetime may concern self-generated experiences (the person’s
responses to other persons encountered) or other-generated experiences (other
persons’ responses to the person). By varying the combination of innate charac-
teristics and the social context offering experiences, different patterns of learning
and unlearning of socially responding to other persons are displayed.

In this chapter, after some background in the relevant neurological mechanisms
in the literature is discussed in Sect. 9.2, the design of the temporal-causal network
model is presented in Sect. 9.3. In Sect. 9.4 an exploration is presented illustrated
by a number of simulation results and (emerging) properties shown by the simu-
lated patterns. In Sect. 9.5 the adaptive model for Hebbian learning of the social
behaviour is presented. In Sect. 9.6 some simulation results are discussed, for
different characteristics and social contexts. Finally, Sect. 9.7 is a discussion.

9.2 Neurological Background

In this section a review is presented of theories in the social-neurological literature
about mechanisms relevant to social interaction. Each subsection describes one of
the mechanisms and indicates a different hypothesis about causes of deficits in
social interaction due to malfunctioning of that mechanism.

9.2.1 Mirror Neurons

It has been found that certain preparation states for actions or for expressing body
states (at the neural level related to mirror neurons) have multiple functions, not
only the function of preparing, but also the function of mirroring a similar state of
another person; e.g., lacoboni (2008a), Rizzolatti and Sinigaglia (2008), Pineda
(2009), Fried et al. (2011), Keysers and Gazzola (2010), Mukamel et al. (2010).
Neurological evidence for specific impairments due to reduced activation of mirror
neurons in persons with ASD is reported in, e.g., Dapretto et al. (2006), lacoboni
(2008a), Williams et al. (2001). For example, in Dapretto et al. (2006, p. 30) it is
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reported that children with ASD show reduced mirror neuron activity when
observing emotional expressions, compared to typically developing children, and
the hypothesis is put forward that early dysfunction in the mirror neuron system is
at the core of social deficits observed in persons with ASD. This points at the mirror
neuron system as a first mechanism which is important for social interaction.
Reduced functioning of the mirror neuron system is a first hypothesis about causes
of deficits in social interaction.

The functional meaning of activation of mirror neurons (e.g., preparing or
mirroring or both) may be strongly context-dependent: in which cases is their
activation meant to lead to actual execution of the action, and in which cases it is
not. A specific subset of neurons has been found that seem to be able to provide
such a context; this is discussed next.

9.2.2 Control and Self-other Distinction

Suitable forms of context can be defined at the neurological level based on what
sometimes are called control neurons or super mirror neurons (Ilacoboni 2008a,
pp. 196-203; 2008b; Brass and Spengler 2009). These are neurons which were
suggested to have a function in control (allowing or suppressing) action execution
after preparation has taken place. In single cell recording experiments with epileptic
patients, cells were found that are active when the person prepares an own action
that is executed, but shut down when the action is only observed, which leads to the
hypothesis that these cells may be involved in the functional distinction between
preparation state generated in order to actually perform the action, and a preparation
state generated to interpret an observed action (or both, in case of imitation). More
specifically, this has been shown in work reported in Mukamel et al. (2010), Fried
et al. (2011); see also Keysers and Gazzola (2010), Iacoboni (2008a, b), Iacoboni
and Dapretto (2006). For example, lacoboni (2008b) describes these experiments in
14 patients with epilepsy undergoing pre-surgical evaluation of the foci of epilepsy;
see also lacoboni (2008a, pp. 201-203). Some of the main findings are that neurons
with mirror neuron properties were found in all sites in the mesial frontal cortex
where recording took place (approximately 12 % of all recorded neurons); half of
them related to hand-grasping, and the other half to emotional face expressions.
A subset of neurons was found that show behaviour that relate to execution of the
action: they have excitatory responses during action execution and inhibitory
responses during action observation (Iacoboni 2008b, p. 30). In Iacoboni (2008a,
b), Tacoboni and Dapretto (2006) such types of neurons indicate the control function
with respect to the execution of an action. In Tacoboni (2008a, pp. 201-202) it is
also described that some of such cells are sensitive to a specific person, so that an
observed action can also be attributed to the person that was observed (self-other
distinction). In Brass and Spengler (2009) and Hamilton et al. (2007) it is suggested
that the types of social interaction seen in persons with ASD can be related to
reduced self-other distinction and control of imitation.
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9.2.3 Emotion Integration

The integration of affective processes in cognitive processes (e.g., Pessoa 2008;
Phelps 2006) is another type of mechanism that is assumed to play an important
role in social interaction. According to Damasio (1999) sensory representations of
stimuli usually induce responses with associated emotions in the form of prepara-
tions for modified body states. Activation of such preparation states lead to further
mental processing via an as-if body loop from preparation state to emotions felt
based on sensory representation of body states associated to the prepared action.
Conversely, it is assumed that the preparation for the response is also affected by the
level of feeling the emotion in the form of the sensory representation of the body
state. Thus reciprocal causation relations exist between emotions felt and prepa-
rations for actions, which realises integration of emotion in preparation of actions;
see also Damasio (2003), Bosse et al. (2012). In Grezes and de Gelder (2009),
Grezes et al. (2009) the role of emotion integration is emphasized, referring to brain
areas such as Superior Temporal Sulcus and Amygdala and their connectivity. In
Grezes and de Gelder (2009, pp. 73-74) it is put forward that studies provide
evidence that in autistic subjects this reduced connectivity may result in the mirror
mechanism (although by itself well functioning) being dissociated from
socio-affective capabilities.

9.2.4 Enhanced Sensory Processing Sensitivity and Emotion
Regulation

A fourth mechanism affecting social interaction is regulation to compensate for
enhanced sensory processing sensitivity. For example, in Baker et al. (2008,
pp- 867-868) it is put forward that dysfunction in processing sensory information
results in deviant behaviours to (down)regulate stimulation from the environment;
see also Hofsten and Gredebidck (2009). This hypothesis has a long history, going
back, for example, to Hutt et al. (1964) and Tinbergen et al. (1972), who compared
ASD-related behaviours to stereotyped and avoidance behaviours shown by ani-
mals when placed in stressful circumstances. During this long history not all of the
several claims made in this direction have been confirmed. Specific difficulties are
not only the many different ways and degrees in which ASD-related phenomena
occur in different persons, but also the adaptation by internal emotion regulation
mechanisms employed to compensate for deviations in sensory processing
sensitivity.

In Gross (1998, 2001, 2007), Goldin et al. (2008) a process model of emotion
regulation is described. Emotion regulation is taken as including all of the con-
scious and nonconscious strategies used to increase, maintain, or decrease one or
more components of an emotional response. The considered emotional responses
have experiential (subjective feeling of the emotion), behavioral, and physiological
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components (responses such as heart rate and respiration). Regulation strategies are
used, differentiated as antecedent-focused strategies and response-focused strate-
gies; see also Chap. 3, Sect. 3.3. Antecedent-focused strategies are applied in the
process preparing for responses before they are fully activated. Response-focused
strategies are applied to the actual emotional response, when a response which is
already underway is modulated. Gross distinguishes four different types of
antecedent-focused emotion regulation strategies: situation selection, situation
modification, attentional deployment and cognitive change.

Situation selection occurs when a person chooses for a situation that is expected
to generate the emotional response level the person wants to have for a certain
emotion. For example, a person can go to a party instead of staying home instead,
because at the party someone will be met with a positive effect on feeling happy.
This is an example of up-regulating one’s emotion (happiness). An example of
situation selection to down-regulate one’s emotion (anger) is avoiding some
annoying person. Situation modification means that a person modifies an existing
situation so as to obtain a different level of emotion. For instance, when watching a
thriller on television, one may zap to another channel when the ‘thrill” becomes too
strong. Attentional deployment is shifting attention to a certain aspect, for example,
closing your eyes when watching an exciting penalty shoot-out. Cognitive change
is selecting a specific cognitive meaning to an event. A specific type of cognitive
change, which is aimed at down-regulating emotion, is reappraisal: the individual
reappraises or cognitively re-evaluates a potentially emotion-eliciting situation in
terms that decrease its emotional impact (Gross 2001). An example of reappraisal is
a case when a person performs bad and blames other circumstances, instead of his
own efforts. Response modulation is applied after the emotion response tendencies
have been generated: a person tries to affect the response tendencies becoming a
behavioral response. A specific type of response modulation, aimed at
down-regulating, is suppression which means that an individual inhibits ongoing
expressive behavior (Gross 2001).

In the specific case of enhanced sensitivity for certain types of stimuli, com-
pensation can take place by forms of emotion regulation by avoiding situations or
aspects of situations in which these stimuli occur, or focus attention differently,
and/or by suppressing the own bodily response. Such regulation may not only
diminish or even eliminate or overcompensate phenomena, which makes them hard
to observe in experiments, but as it typically is a cyclic adaptive process it also
makes it difficult to attribute causality.

In recent years the perspective of enhanced sensory processing sensitivity has
become a quite active area of research; see for example, Baker et al. (2008), Crane
et al. (2009), Gepner and Féron (2009), Lane et al. (2010), Smith (2009). Using eye
trackers that have become widely available, much work focuses on gaze fixation or
gaze aversion behaviour in relation to over-arousal due to enhanced sensitivity for
sensory processing of face expressions, in particular in the region of the eyes; e.g.,
Corden et al. (2008), Kirchner et al. (2011), Kyllidinen and Hietanen (2006),
Neumann et al. (2006), Spezio et al. (2007). To get rid of arousal which is expe-
rienced as too strong, as a form of antecedent-focused regulation (in particular,
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attentional deployment) the gaze can be taken away from the observed face or eyes
(gaze aversion). According to this perspective, gaze aversion and showing an
expressionless face and (monotonous) voice, as often occur in persons with ASD,
can be viewed as forms of regulation of the level of arousal, which otherwise would
be experienced as too overwhelming, and disturbing for the other mental processes.

9.2.5 Empathic Responses

Developing empathy is an important process as a basis for social interaction. In De
Vignemont and Singer (2006), Singer and Leiberg (2009) the following four ele-
ments of the process to develop empathy are formulated (see also Chap. 7,
Sect. 7.3.2):

(1) Presence of an affective state in a person

(2) Isomorphism of the person’s own and the other person’s affective state

(3) Elicitation of the person’s affective state upon observation or imagination of
the other person’s affective state

(4) Knowledge of the person that the other person’s affective state is the source of
the person’s own affective state

The neurological mechanisms to obtain empathy involve mirror neurons,
self-other distinction and emotion integration (as described in Sects. 9.2.1-9.2.3
above). Given an affective state in another person (1), mirror neurons (see
Sect. 9.2.1) and emotion integration by as-if body loops (Sect. 9.2.3) form a
mechanism that generates an own affective state isomorphic with the other person’s
affective state (2), thereby using observation or imagination of the other person’s
expressions (3). Moreover, by self-other distinction (see Sect. 9.2.2), knowledge is
obtained that the other person is the source of this affective state (4).

These elements and underlying mechanisms can be considered as a basis of
developing an internal state of ‘having empathy’. However, within social interac-
tion, it is not only important that this occurs as an internal state, but also that this is
displayed to the other person. Such an interaction does not only involve displaying
the emotion felt (‘showing feeling’) but also displaying the fact of knowing that it
concerns the emotion of the other person (‘showing knowing’). Therefore, such a
‘displayed empathy’ or an ‘empathic response’, may involve:

(a) Showing the same emotion as the other person
(b) Telling that the other person has this emotion

Assuming true, faithful bodily and verbal expression, these two criteria (a) and
(b) are entailed by the four criteria of empathy formulated in De Vignemont and
Singer (2006), Singer and Leiberg (2009). For example, if it is assumed that the
affective state in (1) is shown to the other person by expressing it nonverbally
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and/or verbally, then (1) and (2) entail (a). Moreover, if it is assumed that the
knowledge in (4) is communicated, then (4) entails (b).

It is generally acknowledged that showing empathy is important in professional
relations, for example for physicians; e.g., Bonvicini et al. (2009), Hojat (2007,
2009), Suchman et al. (1997), Tulsky et al. (2011), Zimmermann et al. (2011). The
items (a) and (b) will be illustrated for this context. In Suchman et al. (1997, p. 679)
the following is one of the example dialogues discussed:

Example 1

Puysician: How do you feel about the cancer—about the possibility of it coming
back?

PatienT: Well, it bothers me sometimes but I don’t dwell on it. But I’'m not as
cheerful about it as I was when I first had it. I just had very good feelings that
everything was going to be all right, you know. But now I dread another operation.
[empathic opportunity]

PHysiciaN: You seem a little upset; you seem a little teary-eyed talking about it.
[empathic response]

Note that this is only a partial representation of the social interaction: it is only a
linguistic representation of the interaction that does not show the nonverbal ex-
pressions of the physician that may have been there accordingly. Such positive
example dialogues are contrasted to dialogues where the physician misses the
opportunity to show an empathic response, such as the following one (Suchman
et al. 1997, p. 679):

Example 2

PHysician: Does anybody in your family have breast cancer?

PaTiENT: No.

PHysician: No?

PaTiENT: Now I just start [unintelligible] after I had my hysterectomy. I was taking
estrogen, right?

PHysIcIAN: Yeah?

PATEENT: You know how your breast get real hard and everything? You know how
you get sorta scared? [empathic opportunity]

PHysician: How long were you on the estrogen? [empathic opportunity terminator,
missed empathic opportunity]

PaTENT: Oh, maybe about 6 months.

In Example 1 the response at least satisfies (b), and when nonverbal expressions
are assumed accordingly it satisfies both (a) and (b). When in Example 1 it would
be assumed that the physician keeps a nonexpressive pokerface, it does not satisfy
(a). The response in Example 2 does not satisfy (b) and when nonverbal expressions
are assumed absent accordingly also not (a). When in Example 2 it would be
assumed that the physician still expresses the emotion, it would satisfy (a).
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9.3 The Temporal-Causal Network Model

In this section the temporal-causal network model will be described in detail. First
an overview will be given, and subsequently the different parts of the model will be
addressed: sensory representations, preparations, mirroring and control (sometimes
called super mirroring), expressing body states, communication and gaze, main-
taining body state and gaze, and generating sensor states.

9.3.1 Conceptual Representation of the Model

The theories described in Sect. 9.2 above each point at a different mechanism that is
important for social interaction. To obtain adequate social interaction, all of these
mechanisms have to function well in conjunction. More specifically, the following
theories described in Sect. 9.2 were taken into account in designing the
temporal-causal network model:

mirror neuron systems; e.g., Dapretto et al. (2006), Iacoboni (2008a)
control neurons with self-other distinction and control function; e.g., lacoboni
(2008a), Brass and Spengler (2009)

e emotion integration; e.g., Grezes and de Gelder (2009), Grezes et al. (2009)

e regulation of enhanced sensory processing sensitivity, in particular for face
expressions; e.g., Neumann et al. (2006), Spezio et al. (2007), Baker et al.
(2008), Corden et al. (2008)

e empathic responding using mirror neurons, self-other distinction and emotion
integration; e.g., De Vignemont and Singer (2006), Singer and Leiberg (2009)

A reasonable perspective is that all of the mechanisms as put forward play their
role in social interaction in an integrative manner, and if one of them is not
functioning well, this may lead to specific deficits in social functioning. Based on
this view, in the design of the computational model below an integrative approach
has been followed where for each of the mechanisms a computational formalisation
was included in the model, and integrated with the computational formalisations of
the other mechanisms. When all of the mechanisms work well, this results in
adequate social functioning, but when one or more of them do not work well this
easily leads to deficits in social interaction. For each of the computational for-
malisations of the mechanisms such malfunctioning can be specified by specific
parameter settings.

So, the elements described above have been exploited in an integrative manner in
the presented temporal-causal network model. Thus a human-like model is obtained
that, depending on its settings is able to show different types of social response
patterns, for example, the type of responses of the physician discussed in Sect. 9.2.5
for the social interaction between a physician and a patient (see Example 1). More
specifically, the temporal-causal network model designed incorporates mirroring,
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gaze adaptation loop

as-if body loop

body loop

Fig. 9.1 Overview of the temporal-causal network model; see also Table 9.1

self-other distinction and control, emotion integration, gaze adaptation as a form of
emotion regulation to compensate for enhanced sensory processing sensitivity, and
empathic responding; see Fig. 9.1 for an overview. Here the following notations are
used:

ws world states

SS  sensor states

SIS sensory representation states

ps  preparation for a body state

cs  control state

es execution states

esc execution states for (expression of) communication

The connections between the states have weights indicated by o with subscripts.
Furthermore, labels LPi refer to the corresponding detailed dynamic property
specification presented below. States that relate to the physical world such as body
states, sensor states and effector states are modeled in an abstract form. They may
be related to any specific physical mechanisms of choice.

Note that in the causal graph of the model three loops occur: the body loop to
adapt the body, the as-if body loop to adapt the internal body map, and the gaze
adaptation loop to regulate the enhanced arousal. The effect of these loops is that for
any new external situation encountered, in principle, a (numerical) approximation
process may take place until the internal states reach an equilibrium (assuming that
the situation does not change too fast). However, as will be discussed in Sect. 9.4, it
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is also possible that a (static) external situation does not lead to an equilibrium, but
to periodic oscillations.

Modeling causal relations discussed in neurological literature in the manner as
presented here does not take specific neurons into consideration but uses more
abstract cognitive or mental states. In this way abstraction takes place by lifting
neurological knowledge to a mental (cognitive/affective) modeling level. For more
details of the modeling perspective, see Chaps. 1 and 2.

The temporal-causal network model has been numerically represented in dif-
ferential equation format. In the model s denotes a stimulus (e.g., a smiling face of
another person B, or the tears of the patient in Example 1 in Sect. 9.2.5), b a body
state (e.g., a responsive smile or sad face) and B a person (another person or the
person self). A control state can either refer to a person B, or to enhanced sensory
processing sensitivity, indicated by sens. Note that, following Damasio (1999), a
body state b is used as a label to indicate an emotion, and srs,, the feeling (sensory
representation) of the emotion. Communication of » to B means communication
that the person self knows that B feels b; e.g., the last line of Example 1 in
Sect. 9.2.5:

You seem a little upset; you seem a little teary-eyed talking about it.

The gaze adaptation has been modeled using the notion avoiding s for gaze
direction in relation to s; this denotes a specific gaze direction in an area avoiding s.

Connections between states (the arrows in Fig. 9.1) have weights, as indicated in
Table 9.1 and in Fig. 9.1. A weight ®; may depend on a specific stimulus s, and
body state b involved, and on a person B (self or another person), when this is
indicated by an index B. It usually has a value between 0 and 1, but for suppressing
effects it can also be negative. In the column indicated by LP a reference is made to
the (temporally) Local Property (LP) that specifies the update dynamics of the
activation value of the ‘to state’ based on the activation levels of the ‘from states’;
see below.

Table 9.1 Overview of the connections, their weights, and their explanations; see also Fig. 9.1

From To state Weight | Connection name | LP Explanation

states name

SSp SISp W5 Representing B LP1 Representing an person B from
sensing B

SSg SIS O Representing s LP2 | Representing a stimulus s (e.g.,
another person B’s smile or tears)

SSp SISy, 3 Representing b LP3 | Representing a body map for b:

pPs» oy Predicting b emotion b felt (e.g., own smile)

« from sensing own body state b
* via as-if body loop from
preparation for body state b
(continued)
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Table 9.1 (continued)
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From To state Weight | Connection name | LP Explanation
states name
SISy PSh s Responding LP4 | Preparing for body state b:
SISy, 0% Amplifying emotional response b (e.g., own
smile or sad face)
* via mirroring from represented
stimulus s (e.g., smile of B)
* via emotion integration from
emotion b felt
SISp CSB.s.b 7B Monitoring B LP5 | Control state for self-other
SIS gp Monitoring s for distinction
self-other « from represented person B
distinction « from represented stimulus s (e.g.,
smile or tears of B)
SISy CSsens,s.b [ Monitoring s for LP6 | Control state for enhanced
SISy, ®10 sensitivity sensitivity
Monitoring b « from represented stimulus s (e.g.,
smile or tears of B)
* from emotion b felt
SISy, PSB.b» ®118 Communication LP7 Preparing communication to
CSB.s.b M8 response B (e.g., ‘you feel b’)
Controlling * via emotion integration from
communication emotion b felt
* controlled by control state for B
CSelfs,b es, o3 Controlling LP8 | Expressing body state b (e.g., own
CSsens.s.b [ response smile)
PSy O15 Suppressing « controlled by control state for self
response * controlled by control state for
Executing enhanced sensitivity
response « from preparation state for b
cSpp escgp M168 Executing LP9 | Expressing communication (e.g.,
communication ‘you feel sad’)
CSsens,s,b €Savoiding, | D17 Executing LP10 | Expressing gaze, controlled by a
s avoidance control state for enhanced
sensitivity
esp WS, g Effectuating b LP11 | Effectuating actual body state
€Savoiding, | WSavoiding, | ®19 Effectuating LP12 | Effectuating actual gaze
s s avoidance
WS, SSp O3 Sensing b LP13 | Sensing body state b
WSp SSp [O2) Sensing B LP14 | Sensing a person B
WS, SS; ) Sensing s LP15 | Sensing stimulus s
WSavoiding, 53 Suppressing « from world state s

K

sensing of s

« regulated by gaze state avoiding s
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By varying the connection strengths, different possibilities for the social inter-
action repertoire offered by the model can be realised. Emotion integration in other
states takes place by using a connection from srs,, to these other states: in LP4, LP6,
and LP7.

Reduced emotion integration can be expressed by low weights ®g, ®;¢, ®;;5 for
these connections. Similarly, low values for ws in LP4, resp. m5, ®gp in LP5 can be
used to achieve reduced mirroring, resp. control, and higher values for wg, ®¢ in
LP6 indicate enhanced sensory processing sensitivity. Below, each of the local
dynamic properties is described in more detail as a semiformal description and as a
differential equation, summarized in Box 9.1.

9.3.2 Numerical Representation of the Temporal-Causal
Network Model

During processing, each state has an activation level represented by a real number
between 0 and 1. Parameter 1) is a speed factor, which determines how fast a state is
changing, based on impact received from other states connecting to it, and c(...)
denotes a combination function used to aggregate different impacts on the same
state.

The properties LP1-LP3 describe how sensory representations are generated for
a person B, stimulus, and body state.

LP1 Sensory representation of an external person B
If a person B is sensed with level X,
and the sensory representation of person B has level X,.
then after duration Ar the sensory representation of person B will have
level X5 + 1 [c(015X7) — X5] At.
d srsp(f)/dt = [c(wp ssp(F)) — srsp(f)]

Here c(..) is a combination function for which different choices can be made, for
example, the identity function id(V) = V, or an advanced logistic sum function of
the form

Py 1 1 —0ot1
alOngtlcc,‘c(Vh SR Vk) = (1 + e oWVt + V1) o 1+ ecr)(l te )

with ¢ a steepness and T a threshold value. In the simulations for the sake of
simplicity for properties LP1, LP2, and LP11-LP14 the identity combination
function c(V) = id(V) = V was chosen for c(..). For properties LP3-LP10 the
logistic sum combination function was used. Property LP2 is similar to LP1 but
applied to stimulus s instead of person B (for example, a face expression).

LP2 Sensory representation of stimulus s
If a stimulus s is sensed with level Xj,
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and the sensory representation of s has level X,.
then after duration Ar the sensory representation of s will have
level X, + 1 [c(m2X) — X5] At.
d srsy(1)/df = n [c(®; ss4(F)) — strs4(?)]

The sensory representation of a body state as described by property LP3 is not only
affected by a corresponding sensor state (which in turn is affected by the body
loop), but also via the as-if body loop by the preparation for this body state. Note
that the as-if body loop provides effects on the sensory representation in a shorter
time than via the body loop: bodily change usually is a factor slower than neuro-
logical change (e.g., 1 or 2 s vs. 300-500 ms).

LP3 Sensory representation of a body state
If the sensor state for body state b has level X;
and the preparation state for body state b has level X,
and the sensory representation of body state b has level X3
then after Ar the sensory representation of body state b will have
level X3 + n [c(m3X], 04X5) — X5] At
d srs;(0)/dt = n [c(@3 ssp(2), W4 PSp(?)) — srs5(D)]

Generating preparation, mirroring and control states
Preparation for a bodily change triggered by s (e.g., an observed face expression
leading to preparation for a similar expression) is modeled as follows.

LP4 Preparing for or mirroring a body state
If the sensory representation of s has level Xj,
and the sensory representation of b has level X5,
and the preparation for body state b has level X3
then after duration Ar the preparation state for body state b will have
level X3 + 1 [c(0sX1, 0eX>) — X3] At.
d psp(0)/dt = m [c(ws srs,(f), wg st8,(F)) — Ppsp(P)]

Control for a person B generates a state indicating on which person (self-other
distinction for B another person) the focus is, and whether or not to act (the case of
self); this is modeled in LP5.

LPS Control for another person or self
If the sensory representation of person B (another person or self) has level X,
and the sensory representation of s has level X5,
and the control state for B, s and b has level X3
then after duration Ar the control state for B, s and b will have
level X3 + n [c(w7X], mgpX5) — X3] JAVA
d cspp(D)/df = n [c(w7p st8p(t), Wgp ST84(F)) — CSp 5 p(1)]

Control for sensory processing sensitivity, modeled in LP6, generates a state
indicating in how far the stimulus induces an inadequately high sensory body
representation level. This state is the basis for two possible regulations (modeled in
LP8 and LP10 below): of the expressed body state, and of the gaze.
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LP6 Control for enhanced sensitivity
If the sensory representation of s has level X,
and the sensory representation of b has level X,
and the sensitivity control state for s and b has level X;
then after duration Ar the sensitivity control state for s and » will have
level X3 + 1 [c(0oX], ®10X>) — X3] At.
d Csgens s, p(D)/dE = M [c(0g sT84(7), 010 STSH(F)) — CSsens,s,6(1)]

The preparation of a verbal empathic reaction to another person depends on feeling
a similar emotion, and on adequate self-other distinction, as modeled in LP7.

LP7 Preparing for communication
If the sensory representation of body state b has level X,
and the control for person B # self, s and b has level X,
and the preparation of communication of b to B has level X3
then after Ar the preparation of communication of b to B will have
level X5 + n [c(my15X1, ®125X5) — X;3] At
d pspp(0)/dt = [c(®11p sT8,(2), ®125 CSp (1)) — PSpp(1)]

Expressing Prepared States

Expressing a (prepared) body state depends on whether a control state for self is
available. However, to cover regulative behaviour to compensate for enhanced
sensory processing sensitivity, also the sensitivity control state is involved, with an
inhibiting effect on expressing the prepared body state (w14 is taken to be negative).
Such an effect can achieve that although the person feels the same as the other
person, the face remains expressionless. In this way LP8 models a mechanism for
response-focused regulation (suppression of the own response) to compensate for
an undesired level of arousal; e.g., Gross (1998), Goldin et al. (2008).

LP8 Expressing a body state
If the control state for self, s and b has level X,
and the control state for sensitivity, s and b has level X5,
and the preparation for body state b has level X;
and expressing body state b has level X4
then after duration Ar body state b will be expressed with
level X, + n [c(m13X], ®14Xo, ®15X3) — X4] At.
d esy()/dr = [c(®13 PSserfs,p()s O14 CSsens,s,6(F)s W15 PSp()) — esp(P)]

Note that expression states es are the person’s execution states (e.g., the muscle
states); body and gaze states result from these expression states (via LP11 and LP12
below). A preparation for a verbal empathic reaction leads to expressing this
communication in a straightforward manner.

LP9 Expressing communication
If the preparation of communication of b to B has level X|,
and the expressed communication for b to B has level X,
then after Ar the person will express communication of b to B with
level X5 + 1 [c(0165X1) — X5] At.
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d escp ,(1)/dt = M [c(®i6s PSs,H(1) — escp p(1)]

Dynamic property LP10 models antecedent-focused regulation (attentional
deployment) as described in Gross (1998), Goldin et al. (2008): directing the own
gaze away from the stimulus that feels too overwhelming. Note that the gaze
direction avoiding s is chosen to be 1 for total avoidance of stimulus s, and O for no
avoidance (it indicates the extent of avoidance).

LP10 Expressing gaze for avoidance of s
If the control state for sensitivity, s and b has level X|,
and the expressed gaze for avoidance of s has level X,
then after Ar the expressed gaze for avoidance of s will have
level X, + n [c(w7X)) — X5] At
d esavoiding,s(t)/dt = T] [C(O)l7 CSsens s,b(t)) - esavoiding,s(t)]

Maintaining body and gaze states
Properties LP11 and LP12 describe how the expression states affect the body and
gaze in a straightforward manner.

LP11 From body expression to body state
If the expression state for body state b has level X,
and the body state b has level X,
then after Az body state b will have level X; + 1 [c(0;3X1) — X5] At
d wsy()/dr = [c(wg esp(?)) — wWsp(D)]

LP12 is similar to LP11 with gaze instead of body.

LP12 From gaze avoidance expression to gaze avoidance state
If the expression state for gaze avoidance for s has level X|,
and the gaze avoidance for s has level X,
then after Az the gaze avoidance for s will have level X, + 1 [c(®19X]) — X5] At
d Wsavoiding,s(t)/dt =M [C(wl9 esavoiding,s(t)) - Wsavoiding,s(t)]

Generating sensor states
Sensing a body state and person B also happen in a straightforward manner, as
described by LP13 and LP14.

LP13 Generating a sensor state for a body state
If the body state b has level X,
and the sensor state for body state b has level X,
then after Ar the sensor state for body state b will have
level X5 + n [c(m20X7) — X5] At
d ss(0)/dr = M [c(w0 Wsp(1) — ssp(1)]

LP14 is similar to LP13 with person B instead of body.

LP14 Generating a sensor state for person B
If person B is present with level X,
and the sensor state for person B has level X,
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then after At the sensor state for person B will have level X, + 1 [c(®51X;) — X5] At
d ssp()/dr = [c(w21 Wsp(?)) — ssp(0)]

Within the external world, to generate a sensor state for a stimulus s, the gaze state
with respect to s is taken into account. As the gaze state indicates the extent of
avoidance of s, it has an inhibiting effect on sensing s (®,3 is chosen negative); here
the combination function c(..) has been modeled by c(V,, V,) = V(1 + V,) with —1
< V, < 0. Note that this is an example of a combination function which is not
symmetric. Here the first argument V| refers to the impact from the connection from
ws,, and the second argument V, refers to the impact by the connection from
WSayoiding,s- Lhis makes that for V, = —1 it results in ¢(V), V») = 0, and for V, = 0 it
results in c(Vy, V) = V.

LP15 Generating a sensor state for a stimulus
If stimulus s is present with level X|,
and gaze avoidance state for s has level X5,
and the sensor state for s has level X3,
then after At the sensor state for s will have level X3 + 1 [c(@22X], ®23X5) — X3] At
d SSS(Z)/dt =M [C((DZZ WSS(Z), 023 Wsavoiding,s(t)) - Sss(t)]

LP1 Sensory representation of an external agent B

d srsp(?) /dt = [c(wp ssp(f) — srsp()]

LP2 Sensory representation of a stimulus s

d srsy(7) /dt = m [c(oy ss4(7)) — srsy(7)]

LP3 Sensory representation of a body state

d sts,(2) /dt = m [c(@3 $85(7), @4 PSp(2)) — sT85(D)]

LP4 Preparing for or mirroring a body state

d psy(®) /dt = n [c(os

st84(1), Wg Sr8p(7)) — pSp(9)]

LP5 Control for another agent or self

d csp (1) /At = [c(®7p st8p(1), Wgp STS,(F)) — CSp 5 ,(1)]
LP6 Control for enhanced sensitivity

d Cssens,s,h(t) /dt = n [C((D9 SI'SS(Z‘), ®10 Ser(f)) - Cssens,s,b(t)]
LP7 Preparing for communication

d psp () /At = [c(®115 STSp(F), O128 CSp.s5,p() — PSB, »(1)]
LP8 Expressing a body state

d CSb(l) /dt =M [C((DIB psselj,'s,b(t)’ ®14 Cssens,s,b(l)s ®15 Psb(t)) - esb(t)]
LP9 Expressing communication

d escp (1) /dt = 1 [c(®168 PSB.L(1) — escp, ,(1)]
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LP10 Expressing gaze for avoidance of s
d esavoiding,s(t) /dt = 1”| [C((DU CSsens s,b(l)) - esavoiding,s(t)]

LP11 From body expression to body state
d ws,(1) /dr =1 [c(oys esp(1) — ws,(1)]

LP12 From gaze expression to gaze state
d Wsavoiding,s(t) /dt = T] [C((Dl9 esavoiding,s(t)) - Wsavoiding,s(t)]

LP13 Generating a sensor state for a body state b
d ss,(1) /dr = m [c(mz0 Wsp(1)) — s8(1)]

LP14 Generating a sensor state for an agent B
d ssp(7) /dr = m [c(@21 Wsp(1) — ssp(1)]

LP15 Generating a sensor state for a stimulus
d Sss(t) /dt = T] [C((D22 Wss(t)’ W23 Wsavoiding,s(t)) - Sss(t)]

Box 9.1 Overview of the numerical representation of the temporal-causal network
model

9.4 Types of Social Response Patterns Shown

To analyse the different types of response patterns shown by the temporal-causal
network model, some dynamic properties were identified. By automated verification
(see Chap. 13) they have been checked for generated simulation traces, allowing to
evaluate easily the patterns for a variety of parameter values. Below the dynamic
properties are introduced in an informally expressed in a conceptual manner; their
formalisations by numerical-logical expressions are shown in Chap. 13.

9.4.1 Overview of Basic Patterns

The simulations discussed first, have been performed with n =1, At = 0.5, and
settings for threshold and steepness values as shown in Table 9.2. In the graphs in
Figs. 9.2 and 9.3, and further, time is at the horizontal axis and activation levels are
at the vertical axis.

Table 9.2 Setting for threshold and steepness values used
LP3 LP4 LP5self LP5sens LP6 LP7 LP8 LP9 LP10

T 0.8 1 1 1 2.5 1.5 1.5 0.5 0.5
c 8 8 40 40 40 8 40 40 40
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The first property expresses that when a person B is met, showing a certain
emotion, then within a certain time a response occurs, which can consist of:

(1) person self feels the same as person B,
(2) this feeling is bodily expressed by self, and
(3) itis communicated by person self to person B that B feels this.

An example of this is the response described for Example 1 in Sect. 9.2.5.

SBP1 Response occurrence

When person B # self is present expressing a certain feeling b from some point in
time on, then after some time person self will have a response R (generating the
feeling of b, resp. bodily expression, resp. communication).

By combination 8 different types of response are possible; see Table 9.3. Some of
them are not likely to occur (types 5, 6, and 7): when the person self does not feel the
emotion, it is probably hard to communicate or show it. The way in which different
connections relate to different types of processes, as depicted in Table 9.1, provides
an indication of which deviant connection strengths may lead to which phenomena.
For example, when o5 (connecting srs; to ps; see Fig. 9.1 and Table 9.1) is low,
mirroring is reduced, and as a consequence a low social response (type 8) occurs,
which is in accordance with what is reported, for example, in Dapretto et al. (2006).
This may correspond to the missed empathic response in Sect. 9.2.5, Example 2.

An example of type 1 is shown in Fig. 9.2 displaying the feeling state srs;, (rep
body), preparation due to mirroring ps; (prep body), expression of body by
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Table 9.3 Different types of possible social responses: + means that the response occurs, —
means that it does not occur (or is very weak)

1 2 3 4 516 |7 |8
Feeling + + + + - == |-
Body + + - - + |+ [- |-
Communication | + - + - + (- [+ |-
Type of Full Feeling and Feeling and Feeling No feeling, no
response empathic body communication | without body body
response expression without body expression and expression, no
without expression communication communication
communication
Example Fully Inadequate Inadequate Both Inadequate
conditions adequate self-other emotion inadequate mirroring
conditions | distinction integration emotion
integration and
self-other
distinction
Example None of ®75, Ogp low ®75elfs Ogselr IOW | W 011 low o5 low
parameter y low or 15, Mi2p
settings low

execution state es, (expr body), and communication state escog, (expr comm).
Here, my = 1 for all &, except for the suppressing connections (from C€Sys,5,5 tO €Sp,
and from WSg,piding s tO SS;, respectively): w4 = wp3 = —1. The pattern shows an
increase of mirroring, followed by bodily expression and feeling, and communi-
cation. This corresponds to a type of response as shown by the physician in
Sect. 9.2.5, Example 1.

Response type 4 in Table 9.3 only concerns the feeling (not externally
observable). For response type 2, the feeling is expressed: it is externally observ-
able, but no verbal communication takes place. Response type 2 with low w75 or
mgp (from srsg, resp. srs; to csp ;) displays that no adequate self-other distinction is
made (reduced control); e.g., lacoboni (2008a), Brass and Spengler (2009).

Response type 4 with low wg (from srs, to ps,) can be viewed as a form of
emotion contagion without integrating the emotion in responses; e.g., Grézes and de
Gelder (2009), Grezes et al. (2009). In contrast, in response type 3 the emotion felt
is attributed to the other person, but no bodily expression is shown. Figure 9.3
shows an example of response type 4. The level of emotion felt is becoming high,
but due to lack of emotion integration (0 = ®;;3 = 0 and the other wy the same as
for the graph in Fig. 9.2), the bodily and verbal expression are reduced.

In case of regulation due to enhanced sensory sensitivity (e.g., Baker et al. 2008;
Corden et al. 2008), patterns occur when a response only lasts for a short time,
expressed as:

SBP2 Response withdrawal

When person B # self is present expressing a certain feeling b from some point in
time on, and the person self has response R, then within time duration D this
response will disappear.
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9.4.2 Oscillatory Patterns: Limit Cycle Behaviour

The combination SBP1 and not SBP2 expresses a persistent response, whereas
SBP1 and SBP2 specifies only a short occurrence of a response. However, after
withdrawal of the response due to regulation, also the arousal level for b will
become low, which brings the person in practically the same state as initially. An
oscillatory pattern results, while the environment is fully static. Such oscillatory
social response patterns indeed can be observed in persons with some forms of
ASD, who let their gaze go back and forth to another person’s eyes during a
contact, as a way of regulation of enhanced sensitivity. Figure 9.4 shows an
example of such a response pattern, specified as follows.

SBP3 Response oscillation
When a person B bodily expressing a certain feeling is present from some point in
time on, then:

(1) for every time point there is a later time point for which response R occurs
(2) forevery time point there is a later time point for which response R does not occur

The model shows this type of social response when the threshold for sensory
sensitivity is set between 1 and 2; for example, for Fig. 9.4, it was set to 1.2.
Moreover, as for the upper graph wy = 1 for all k, except for the suppressing

connections: @4 = M3 = —1. It is shown that body expression and communication
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last only for short time periods, but recur. If the threshold value is set 1 or lower, no
response occurs (type 8); if it is 2 or higher a persistent response occurs (type 1).

Note that instead of varying the threshold for sensory sensitivity, similar patterns
are generated when the connection strength ®;7 (from CSyensp 1O €Savoidings) 18
varied. The oscillatory patterns due to regulation for enhanced sensitivity occur for
all response types in Table 9.3.

Note that the oscillatory patterns shown by the model have an inherent regular
periodicity, even without any alternating world events offered to the model: the
environment is kept constant. For example, in Fig. 9.4 the pattern repeats itself
about every 18 time units. This period reflects the time needed to calm down the too
high arousal. This type of behaviour of the model is an example of a reaching a
limit cycle; for more details about this type of behaviour, see Chap. 12, Sect. 12.7.

9.4.3 Comparison to Empirical Gaze Data

From human experiments empirical data of gaze patterns are known. These can be
used to have a (quite modest) validation of the model. For example, in Neumann
et al. (2006) it was found that for a group of persons with ASD the average fixation
time of the gaze was about 85 ms at the eyes and 215 ms at the mouth (for the
control group this was 190 ms at the eyes vs. 50 ms at the mouth); e.g., Neumann
et al. (2006, p. 198, Fig. 4), see also Fig. 9.5.

Fig. 9.5 Fixations made in 3

an experiment, adopted from 288
Neumann et al. (2006, Fig. 4) 263
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This gives an estimated average period of 300 ms for the ASD group in that
experiment. It was possible to mimic this average period quite accurately by
choosing n = 0.06 and keeping all other parameter value the same as for the case
depicted in Fig. 9.4. So, for these settings the model describes an average of this
group of persons with ASD. Note, however, that individuals will deviate from this
average, and one individual will also show differences over time. In realistic situ-
ations eye movements do not only depend on the regulation mechanism, but also on
other events that may happen, for example, a gesture or an eye-blink of the other
person, or some interpunction in the talking of the other person.

9.4.4 Interaction of Two Persons Displaying Regulation
of Enhanced Sensory Sensitivity

In the scenarios discussed above and shown in Figs. 9.2, 9.3 and 9.4 the other
person B and the stimulus were assumed static. However, the model can be applied
to person B as well. In this case it is assumed that the eyes of one person are the
stimulus for the other person, so that in a mutual manner an avoiding gaze regu-
lation of one person affects the stimulus for the other person as well. This might
describe a situation when a physician with reduced social interaction capabilities
(due to enhanced sensory processing sensitivity) has an interaction with a patient
who also has such reduced capabilities. For this situation, it turns out that the
interaction often starts in an asynchronous and irregular way, as shown in Fig. 9.6.
This is an example where the values for one parameter, namely the update speed
parameter n were taken different. This can be considered as expressing an indi-
vidual difference in neurological response time: for person A it is 1 as for self
before, and for person B it is 0.7, which means that person B responds 30 % slower
than person A. Also when differences in values of other parameters or in initial
values are made, the pattern starts in an asynchronous and irregular manner. In
Fig. 9.6 the upper half of the figure shows activation levels of person A over time,
the lower half the same for person B. For example, in Fig. 9.6, first both gazes are
on the eyes, but after time point 10 person a takes the gaze way from the eyes (until
time point 17). Person B also starts to take away the gaze from the eyes at time 15,
but soon comes back again (around time 20), since in the meantime the other
person’s gaze has gone elsewhere. But after time 20 person A’s gaze comes on the
eyes again and then person B takes the gaze from the eyes for a longer time (until
time 30). Such social interaction patterns may occur as a bit chaotic and weird (the
pattern shown will in fact later on end up in a periodic oscillating pattern: a limit
cycle), but the introduced temporal-causal network model shows the logic and
rationality behind such patterns.
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9.5 Learning Social Responses by an Adaptive
Temporal-Causal Network Model

The model as described above has no adaptive mechanisms built in to change its own
characteristics such as connection strengths. It is only adaptive with respect to the
environment, for example, by the avoidance behaviour. However, as put forward, for
example, in Catmur et al. (2007), lacoboni (2008a, b), Keysers and Perrett (2004)
learning plays an important role in shaping the mirror neuron system. From a
Hebbian perspective (e.g., Gerstner and Kistler 2002; Hebb 1949), strengthening of
a connection over time may take place when both nodes are often active simulta-
neously (‘neurons that fire together wire together’). The principle goes back to Hebb
(1949), but over time has gained enhanced interest by more extensive empirical
support (e.g., Bi and Poo 2001), and more advanced mathematical formulations
(e.g., Gerstner and Kistler 2002). In the adaptive temporal-causal network model the
connections that play a role in the mirror neuron system (i.e., the dotted arrows in
Fig. 9.7) are adapted based on a Hebbian learning mechanism. More specifically,
such a connection strength o is adapted using the following Hebbian learning rule,
taking into account a maximal connection strength 1, a learning rate 7, and an
extinction rate C (usually small); see also Chap. 2, Sect. 2.10:

gaze adaptation loop

Q)
WSavoiding,s CSsens,s,b \

€Savoiding,s
WSp
WSy

€SCap
WSy

esy

as-if body loop
[T

body loop

Fig. 9.7 Overview of the adaptive connections in the temporal-causal network model
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da,;(t)
dt

0 (t+ A1) = (1) + [Xi(0)X; () (1 — (1)) — Coy(2)] At (9.1)

=nX;(1)X;(1)(1 — 0;(t)) — Loi(t)

A similar Hebbian learning rule can be found in Gerstner and Kistler (2002,
p. 406). By the factor 1 — o, ;(r) the learning rule keeps the level of o, ;(r) bounded
by 1 (which could be replaced by any other positive number); Hebbian learning
without such a bound usually provides instability. When the extinction rate is
relatively low, the upward changes during learning are proportional to both
Xi(?) and X(7) and maximal learning takes place when both are 1. Whenever one of
them is O (or close to 0) extinction takes over, and ® slowly decreases (unlearning).
This learning principle has been applied (simultaneously) to all six connections
indicated by dotted arrows in Fig. 9.1; for the sake of transparency, the 12 arrows to
the connection weights have been left out. In principle, the learning rate n and
extinction rate {, could be taken differently for the different dynamical relationships.
In the example simulations discussed in Sect. 9.6 uniform values have been used:
n = 0.16 and £ = 0.0032.

Most of the connections have been given strength 1 or —1, but six of them
(indicated by dotted arrows) have a dynamical strength, adapted over time
according to Hebbian learning.

9.6 Example Simulations of Learning Processes

A number of simulation experiments have been conducted for different types of
scenarios, using numerical software. For the examples discussed here the values for
the threshold and steepness parameters are as shown in Table 9.4. Note that first the
value 3 for sensitivity control threshold was chosen so high that no enhanced
sensitivity occurs. The learning rate was set to 1 =0.16 and extinction rate

Table 9.4 Settings for threshold and steepness parameters

T c
Representing body state SIS}, 1 3
Control B CSBsb 0.7 30
Control sensitivity CSsens.s.b 3 30
Mirroring/preparing body state PSh 1 3
Preparing communication PSb,B 0.8 3
Expressing body state esp 1.2 30
Expressing communication esCyp 0.8 30
Expressing gaze avoidance state €Savoiding.s 0.6 30
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£ = 0.0032. The step size At was set to 1. All nonadapted connection strengths have
been given value 1, except those for suppressing connections

OcS0ns DS+ Desiens s sy AN Ows i, 55,

which have been given the value —1. The scenario was chosen in such a way that
after every 100 time units another person is encountered for a time duration of 25
units with a body expression that serves as stimulus. Initial values for activation
levels of the internal states were set at 0. A first pattern, displayed in Fig. 9.8, is that
in normal circumstances, assuming initial strengths of the learned connections of
0.3, the model is indeed able to learn the empathic responses as expected. Here (and
also in Fig. 9.9) time is on the horizontal axis and activation levels at the vertical
axis.

The upper graph shows levels for body representation, body preparation,
expressed body states and communication. The lower graph shows the learning

1.0

08 P

0.6 ’ ’ — €S}

0.4 ) I l ’ ——€SCB

0.2 —

waa A /X =
0 100 200 300 400 500 600 700

(1):: f\f\‘f\f\% T Oursery

0.6 \//\// N/ - ms"sh PsB b

o "/\/j\j/I:_/jl\/ = Osrsy, psy, = Opsysrsy
0.2 —

0.0

— wsrsB eSgsh = (Dsrss CSB b

0 100 200 300 400 500 600 700
Fig. 9.8 Example scenario of the Hebbian learning process
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Fig. 9.9 Learning under enhanced sensory processing sensitivity
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patterns for the connections (the dotted arrows in Fig. 9.7). Note that the two
connections

Oyrs,,ps, (for emotion integration) and @pg, s, (as-if body loop)

turn out to have the same values, as they connect the same states srs; and ps,, and
have been given the same initial values. Moreover, also the connections

Osrsy csp,p AN Ogrs, ey,

have the same values, as in the considered scenario the input states for srsgz and srs;
have been given the same values, and also the initial values for the connections.
This can easily be varied. In Fig. 9.8 it is shown that when regular social encounters
take place, the connections involved in responding empathically are strengthened to
values that approximate 1. Notice that due to the relatively low initial values of the
connections chosen, for some of them first extinction dominates, but later on this
downward trend is changing into an upward trend. Accordingly the empathic
responses become much stronger, which is in line with the literature; e.g., Field
et al. (2001), Ingersoll et al. (2007).

How long the learned patterns will last will depend on the social context. When
after learning the person is isolated from any social contact, the learned social
behaviours may vanish due to extinction. However, if a certain extent of social
contact is offered from time to time, the learned behaviour is maintained well. This
illustrates the importance of the social context. When zero or very low initial levels
for the connections are given, this natural learning process does not work. However,
as other simulations show, in such a case (simulated) imitation training sessions
(starting with the therapist imitating the person) still have a positive effect, which is
also lasting when an appropriate social context is available. This is confirmed by
reports that imitation training sessions are successful; e.g., Field et al. (2001),
Ingersoll et al. (2007).

In addition to variations in social environment, circumstances may differ in other
respects as well. From many persons with some form of autistic spectrum disorder it
is known that they show enhanced sensory processing sensitivity; e.g., Baker et al.
(2008), Corden et al. (2008); this was also incorporated in the model. Due to this,
their regulation mechanisms to avoid a too high level of arousal may interfere with
the social behaviour and the learning processes. Indeed, in simulation scenarios for
this case it is shown that the adaptive model shows an unlearning process: con-
nection levels become lower instead of higher. This pattern is shown in Fig. 9.9.
Here the same settings are used as in Table 9.1, except the sensitivity control
threshold which was set at 1 in this case, and the initial values for the connection
weights, which were taken 0.7. It is shown that the connections

O, ps, (for mirror activation) and O, ps, and @y, s, (for emotion integration)

are decreasing, so that the responses become lower over time.

This is due to the downregulation which, for example, leads to a gaze that after a
short time is taken away from the stimulus, and returns after the arousal has
decreased, after which the same pattern is repeated; this is shown in the upper graph
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(the two or three peaks per encounter). Note that the values related to control of and
communication to another person stay high: the downregulation as modeled does
not have a direct effect on these processes. When downregulation is also applied to
communication, also these connections will extinguish. When for such a case
imitation training sessions are offered in a simulation, still the connection levels
may be strengthened. However, these effects may not last in the natural context: as
soon as these sessions finish, the natural processes may start to undo the learned
effects. To maintain the learned effects for this case such training sessions may have
to be repeated regularly.

9.7 Discussion

The presented temporal-causal network model for regulated social response patterns
uses theories from Social Neuroscience as a point of departure: theories on mirror
neuron systems, self-other distinction, emotion integration, emotion regulation, and
empathy. The contents of this chapter are based on Treur (2011a, b, 2014). It was
shown how a wide variety of realistic social response patterns can be obtained by
varying the person’s makeup of mental structures, inspired by relevant literature on
autism spectrum disorders. In contrast to work as discussed in Hendriks and Treur
(2010), Laan and Treur (2011), Bosse et al. (2012), the presented temporal-causal
network model addresses regulation of enhanced sensory processing sensitivity by
control of body, face expression and gaze, based on the emotion regulation theory
presented in Gross (1998, 2007), Goldin et al. (2008). This model was extended by
Hebbian learning, thus obtaining an adaptive temporal-causal network model. It
was shown how in this adaptive network model learning of empathic social
interaction takes place and also how enhanced sensory processing sensitivity
reduces these learning effects. A modest step towards validation that has been taken
has been discussed. The model has been used as a point of departure to model
internalizing and externalizing behavior for persons with ASD; see Lubbe et al.
(2016).

The temporal-causal network model provides a basis for human-like behaviour
of virtual agents in the context of simulation-based training or gaming. For
example, it may provide a basis for the implementation of virtual agents for training
of professionals such as teachers, psychotherapists or physicians, or in applications
of human-like virtual characters with realistic body and face expression and gaze.
For example, in Suchman (1997), Tulsky (2011) the need for such training of
physicians and computer assistance for such training is emphasized. The presented
model provides a basis to easily generate different types of example interaction
scenarios varying from prefect ones to instances with some aspect(s) of imper-
fection, and use these to deepen insight in such responses and their possible
imperfections. For example, an environment can be developed offering a virtual
agent which is able to show face expressions and communication, which is driven
by the temporal-causal network model presented here. Interaction with a second
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virtual agent can be shown within this environment. Such an environment can have
possibilities to easily adapt parameters (e.g., the ®’s) and see what the effect is on
the social interaction between the two virtual agents. This environment can be used
as a tool during the education of psychotherapists, to obtain (virtual) experiences
with different forms and deviations in social interaction in relation to these
parameter settings.

In a wide literature, the role of emotions in virtual agents in general is addressed;
e.g., Bates et al. (1994), Yang et al. (2008), Gratch et al. (2009). Usually these
approaches are not specifically related to empathic responses, and often use body or
face expressions as a way of presentation, and not as a more biologically grounded
basis for the emotion as in the neurological perspective of Damasio (1999), which
was adopted in the current paper. The importance of computational models for
‘caring’ agents in a virtual context showing empathy has also been recognized in
the literature; see, for example Klein et al. (2002), Bickmore and Picard (2004),
McQuiggan et al. (2008), Bickmore et al. (2010). Moreover, in Ochs et al. (2008),
Rodrigues et al. (2009), Boukricha and Wachsmuth (2011), Paiva (2011), Leite
et al. (2012) virtual agents are developed that have or show empathy. In this
literature the aim is to realize perfect empathy. The basis is usually chosen in
appraisal theories for emotion generation. The temporal-causal network model
presented in the current paper differs from such existing models in that it is
grounded in recent insights from neuroscience and emotion regulation, and reflects
these theories. Moreover, the presented model is able to display social responses in
a realistic human-like manner, not only of ideal empathic humans, but also of
socially less perfect humans. Therefore using the current model it is possible, for
example, in simulation-based training to generate example scenarios showing
certain forms of imperfection in social interaction which are realistic in the sense
that they directly relate to differences in the human population as described by the
neurological theories used as a basis.

In McQuiggan et al. (2008) the CARE framework for experiments with humans
and empathic virtual agents is described. A possibility for future research is to
integrate the presented model in an environment such as, for example the CARE
environment, and conduct experiments with different types of (imperfect) empathic
agents. As another example, based on the presented model a social interaction
pattern between two persons as shown in Fig. 9.3 can be easily implemented within
a displayed virtual story context. The expressed emotions can be displayed on the
faces of the two agents, and gaze regulation can be displayed as eyes or faces
turning away from each other. When the model described is used as an engine to
generate the states and behaviour for each of the two virtual agents, the interactive
pattern will automatically be generated.

Modeling causal relations discussed in neurological literature in the manner as
presented here does not need to take specific neurons into consideration but can use
more abstract mental states, relating, for example, to groups of neurons. This is a
way to exploit within the modeling area results from the large and more and more
growing amount of neurological literature. This can be considered as lifting neu-
rological knowledge to a mental (cognitive/affective) level; see also Chap. 2.
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Within Social Neuroscience it is often suggested that innate factors may play a
role, but also that a mirror neuron system can only function after a learning process
has taken place (e.g., Catmur et al. 2007; Iacoboni 2008a, b; Keysers and Perrett
2004): the strength of a mirror neuron system may change over time within one
person. In this chapter, in Sect. 9.5 and further an adaptive temporal-causal network
model was presented addressing this aspect of adaptation over time, again based on
knowledge from Social Neuroscience. The learning mechanism used is based on
Hebbian learning, as also suggested by Keysers and Perrett (2004). It is shown how
under normal conditions by learning the empathic responses become better over
time, provided that a certain amount of social encounters occur. The model also
shows how imitation training (e.g., Field et al. 2001; Ingersoll et al. 2007) can
strengthen the empathic responses. Moreover, it shows that when enhanced sensory
processing sensitivity (Baker et al. 2008) occurs (e.g., as an innate factor), the
natural learning process is obstructed by avoidance behaviour to downregulate the
dysproportional arousal (Gross 1998).

In Oztop and Arbib (2002) a computational model for a mirror neuron system for
grasp actions is presented; learning is also incorporated, but in a biologically
implausible manner, as also remarked in Keysers and Perrett (2004). In contrast, the
presented model is based on a biologically plausible Hebbian learning model, as
also suggested by Keysers and Perrett (2004).
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Chapter 10
Are You with Me? Am I with You?

Joint Decision Making Processes Involving
Emotion-Related Valuing and Mutual Empathic
Understanding

Abstract In this chapter, based on a Network-Oriented Modeling approach a
temporal-causal network model for joint decision making is presented addressing
the role of mutually acknowledge empathic understanding in the decision making.
The model is based on principles from recent neurological theories on mirror
neurons, internal simulation, and emotion-related valuing. Emotion-related valuing
of decision options and mutual contagion of intentions and emotions between
persons are used as a basis for mutual empathic understanding and convergence of
decisions and their associated emotions.

10.1 Introduction

An important aspect in group functioning is the ability for joint decision making. In
recent years developments in neuroscience have clarified some of the mechanisms
underlying such processes (e.g., Cacioppo and Berntson 2005; Decety and
Cacioppo 2010; Harmon-Jones and Winkielman 2007). Two interrelated core
concepts in this discipline are mirror neurons and internal simulation. Mirror
neurons are neurons that not only have the function to prepare for a certain action or
body change, but are also activated upon observing somebody else who is per-
forming or tending to perform this action or body change (e.g., Iacoboni 2008a;
Pineda 2009; Rizzolatti and Sinigaglia 2008). Internal simulation is mental pro-
cessing that copies processes that may take place externally, for example, in another
individual (e.g., Damasio 1994, 2003; Gallese and Goldman 1998; Goldman 2006;
Hesslow 1994, 2002, 2012). On the one hand, mirror neurons and internal simu-
lation have been put forward as a basic mechanism for imitation and contagion of
actions and emotions; on the other hand, they have been related to empathy; e.g.,
(Iacoboni 2008a). In this way mirror neurons and internal simulation provide a
basis both to mutually tune individual intentions and emotions and to develop
mutual empathic understanding between persons (e.g., Gallese and Goldman 1998;
Goldman 2006; Preston and de Waal 2002; Singer and Leiberg 2009). Usually
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these two aspects are addressed separately, but in joint decision making processes
they both play their roles in order to achieve solidly grounded joint decisions.

Empathic understanding can concern both cognitive (e.g., knowing or believing)
and affective (e.g., feeling) aspects (see also Chap. 7, Sect. 7.3.2). Affective and
cognitive understanding are often related to each other, as any cognitive state triggers
an associated emotional response which is the basis of the related feeling (e.g.,
Damasio 1994, 1999, 2003, 2010). Usually in an individual decision making process,
before a decision option is chosen an internal simulation takes place to predict the
expected effects of the option (e.g., Becker and Fuchs 1985; Damasio 1994, 1999,
2003, 2010; Moore and Haggard 2008). Based on these predicted effects a valuation
of the option takes place, which may involve or even be mainly based on the affective
state associated to this effect (e.g., Bechara et al. 2003; Damasio 1994, 1996, 1999;
Morrison and Salzman 2010; Murray 2007; Jenison et al. 2011; Ho et al. 2012; Ruff
and Fehr 2014; Janak and Tye 2015; Chang et al. 2015). To achieve a solid joint
decision, a shared feeling and valuation for the chosen option are important, and also
mutual recognition of this sharedness. When this is achieved, a common decision has
a strong shared emotional grounding as the group members do not only intend to
follow that option, but they also share a good feeling about it, and they have (mutually
acknowledged) empathic understanding of how other persons feel about the options.
The latter may be important as well for acceptance of non-joint decisions.

The process of joint decision making was modeled using a Network-Oriented
Modeling approach based on temporal-causal networks. The obtained
temporal-causal network model can be used as a basis for the design of human-like
virtual agents for simulation-based training or in gaming, or for virtual stories. For
the first type of application the idea is to develop a number of virtual agents
cooperating with a human trainee as a team in an decision making task. For the
second type of application the idea is to design a system for virtual stories in which,
for example, persons play a role which can be based on the presented model.

In this chapter, first in Sect. 10.2 some core concepts used are briefly reviewed.
Next, in Sect. 10.3 the temporal-causal network model is presented. In Sect. 10.4
some of the explored simulation scenarios are discussed. Finally, Sect. 10.5 is a
discussion.

10.2 Mirroring, Internal Simulation and Emotion-Related
Valuing

Two concepts used here as a basis are mirror neurons and internal simulation; in
combination they provide an individual’s mental function of mirroring mental
processes of another individual (see also Chap. 7). Mirror neurons are not only
firing when a subject is preparing for an action, but also when somebody else is
performing or preparing for this action and the subject just observes that. They have
first been found in monkeys (e.g., Gallese et al. 1996; Rizzolatti et al. 1996), and
after that it has been assumed that similar types of neurons also occur in humans,
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with empirical support, for example, in (Iacoboni et al. 2005) based on fMRI, and
(Fried et al. 2011; Mukamel et al. 2010) based on single cell experiments with
epilepsy patients; see also (Keysers and Gazzola 2010). For reviews, see
(Molenberghs et al. 2012; Kilner and Lemon 2013). The effect of activation of
mirror neurons is context-dependent. A specific type of neurons has been suggested
to be able to indicate such a context. They are assumed to indicate self-other
distinction and exert control by allowing or suppressing action execution; e.g.,
Brass and Spengler 2009; Iacoboni 2008b), and (Iacoboni 2008a, pp. 196-203).
Activation states of mirror neurons play an important role in mirroring mental
processes of other persons, which is based on mirror neuron activation in com-
bination with internal simulation. A body loop is the following causal chain for
generation of felt emotions; see (James 1884; Damasio 2010, pp. 114-116):

sensory representation — preparation for bodily changes — expressed bodily changes —
sensory representation of (sensed) bodily changes

In an internally simulated form an as-if body loops is bypassing actually
expressed bodily changes; e.g., (Damasio 1994, pp. 155-158, 1999, pp. 79-80):

sensory representation — preparation for bodily changes —
sensory representation of (simulated) bodily changes

So, an as-if body loop describes an internal simulation of the bodily processes,
without actually affecting the body, comparable to simulation in order to perform,
for example, prediction, mindreading or imagination; e.g., (Becker and Fuchs 1985;
Gallese and Goldman 1998; Goldman 2006; Hesslow 2002; Moore and Haggard
2008). The feelings generated in this way play an important role in valuing pre-
dicted or imagined effects of actions, in relation to amygdala activations; see, e.g.,
(Morrison and Salzman 2010; Murray 2007). The emotional response and feeling
mutually affect each other in a bidirectional manner: an as-if body loop usually has
a cyclic form by a connection back; see, for example, (Damasio 2003, pp. 91-92,
2010, pp. 119-122):

sensory representation of (simulated) bodily changes — preparation for bodily changes

As mirror neurons make that some specific sensory input (an observed action of
another person) directly links to related preparation states, they combine well with
internal simulation in the form of as-if body loops; see also (Damasio 2010,
pp. 102—-104). In this way states of other persons lead to activation of some of a
person’s corresponding own states that at the same time play a role in the person’s
own feelings and decisions for actions. This provides an effective mechanism for
how observed actions and feelings and own actions and feelings are tuned to each
other. Thus a mechanism is obtained which explains how in a social context persons
fundamentally affect each other’s individual decisions and states, including feel-
ings. Moreover, it is also the basis for empathic understanding of other persons’
preferences and feelings. Both the tuning and convergence of action tendencies and
the mutual empathic understanding (even when finally no common option is
decided for) play a crucial role in joint decision making processes.
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10.3 The Temporal-Causal Network Model

The issues and perspectives briefly reviewed in the introduction and Sect. 10.2 have
been used as a basis for the neurologically inspired temporal-causal network model
presented below (for a conceptual representation, see Fig. 10.1). First, the following
criteria for a solid joint decision have been taken as a point of departure:

Solid joint decision
The outcome of a joint decision process is a solid joint decision if the following
criteria are fulfilled:

® a common action option choice
e a shared positive feeling and valuation for the effect of this action option
e mutually acknowledged empathic understanding for both the action and feeling

The idea is that decisions that do not satisfy these criteria have a higher chance
of being revised as soon as a slight opportunity occurs for that. A second point of
departure is emotion-related valuing:

WSpa S8 4} SIS 4 i eSCpiae

Oo—0
WS, SSe SIS,
—O—0
WS3g» SSB.p . SISp €8Cpe.h
Oo—0
WSy ssp i SIS},
>

body loop

action execution loop

Fig. 10.1 Graphical conceptual representation of the temporal-causal network model
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Emotion-related valuing of options
The choice for a specific action option is based on emotion-related valuing of the
predicted effects of the action options; see also Chap. 6, Sect. 6.2.

As a third point of departure it is assumed that mirroring takes place both for the
action options and for the emotions:

Mirroring both of actions and emotions

Both the tendency to go for an action option and the associated emotion are
transferred between persons via mirroring processes using a mirror neuron func-
tion and internal simulation

These mirroring processes at the same time induce a gradual process of mutually
tuning the considered actions and their emotion-related valuations, and the devel-
opment of mutual empathic understanding. So, finally, a fourth notion that has been
used as a point of departure is mutually acknowledged empathic understanding:

Mutually acknowledged empathic understanding
Mutually acknowledged empathic understanding is based on the following criteria:

(a) Showing the same state as the other person (nonverbal part of the empathic
response)

(b) Telling that the other person has this state (verbal part of the empathic
response)

Assuming true, faithful nonverbal and verbal expression, these criteria are in line
with the criteria of empathy for affective states formulated in (Singer and Leiberg
2009).

10.3.1 Conceptual Representation of the Temporal-Causal
Network Model

In the model s denotes a stimulus, a an option for an action to be decided about, and
e a world state which is an effect of the action. The effect state e is valued by
associating a feeling state b to it, which is considered to be positive for the person
(e.g., in accordance with a goal). The states used in the model are summarized in
Table 10.1.

The temporal-causal network model uses ownership states for actions a and their
effects e, both for self and other persons, specified by osg ;. With B another person
or self, respectively (see Fig. 10.1). Similarly, ownership states are used for emotions
indicated by body state b, both for self and other persons, specified by osg_; with
B another person or self. As an example, the four arrows to osp 5 . in Fig. 10.1 show
that an ownership state osp . is affected by the preparation state ps, for the action a,
the sensory representation srs,, of the emotion-related value b for the predicted effect
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Table 10.1 States used

Notation | Description

WSy World state W: for an action a of person B, a feeling b of person B, a stimulus s,
effect e, or an emotion indicated by body state b

SSw Sensor state for W

SISy Sensory representation of W

psx Preparation state for X: action a or expressing emotion by body state b

esy Execution state for X: action a or expressing emotion by body state b

0SB.s.ae Ownership state for B of action a with effect e and stimulus s

0SB.e.b Ownership state for B of emotion indicated by body state b and effect e

€SCh s.ae Communication to B of ownership for B of action a with effect e and stimulus s

€sCp.e.p Communication to B of ownership for B of emotion indicated by b and effect e

e, the sensory representation srs; of the stimulus s, and the sensory representation srsp
of the person B. Note that s, a, e, b, and B are parameters for stimuli, actions, effects,
body states, and persons. In a given model multiple instances of each of them can
occur.

Prediction of effects of prepared actions is modeled using the connection from
the preparation ps, of the action a to the sensory representation srs, of the effect
e. Suppression of the sensory representation of a predicted effect (according to, e.g.,
Blakemore et al. 1999, 2000; Moore and Haggard 2008) is modeled by the (in-
hibiting) connection from the ownership state osp  , . t0 sensory representation srs,.
The control exerted by the ownership state for action a is modeled by the con-
nection from osg;, . to es,. Communicating ownership for an action (a way of
expressing recognition of the other person’s states, as a verbal part of showing
empathic understanding) is modeled by the connection from the ownership state
0Sp 5., t0 the communication execution state escg  , .. Similarly, communicating of
ownership for an emotion for effect e indicated by b is modeled by the connection
from the ownership state osp.;, to the communication execution state escg.,p.
Connections between states (the arrows in Fig. 10.1) have weights, as indicated in
Table 10.2.

In this table the column LP refers to the (temporally) Local Properties LP1 to
LP9 presented as a numerical representation in difference equation format below.
A connection weight usually has a value between —1 and 1 and may depend on the
specific instance for person B, stimulus s, action a and/or effect state b involved.
Note that in general weights are assumed non-negative, except for inhibiting con-
nections, such as 5, which models suppression of the sensory representation of
effect e, and m,,;, which models suppression of the sensory representation of body
state b.
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Table 10.2 Overview of the connections and their weights

From states To state Weight name Connection name LP
SSy SISy ™ x Representing LP1
PSa SIS, 21,6 Predicting e LP2
0SB s.a.e [V Controlling

SS, W33, Representing e

PS» SISy, W21 Predicting b

0Sg e 225 Suppressing

SSy, W23 Representing b

SIS PSa 314 Responding to s LP3
SIS}, W32, Amplifying a

SISp 4 W33, Responding to a of B

SIS, PS» W31 Responding to e

SIS;, W32 Amplifying b

SISg 33 Responding to b of B

SISp 4 0SB sa.e 414 Owning a for B and a LP4
SIS, [OYEW Owning a for s

PS4 43,4 Owning a for a

SIS, W44, Owning a for e

SISp ) 0Sg.ep 415 Owning b for B and b

SIS, [OYERS Owning b for e

psp W43 Owning b for b preparation

SIS;, W44p Owning b for b representation

0S5 es, W51 4 Controlling a LP5
PSa Ws24 Executing a

0SB.eb esy, s 15 Controlling b

P Ws2p Executing b

es, WS, Wg.e Effectuating e LP6
es, WSy, We Effectuating b

WSy SSy W7.x Sensing X LP7
0SB sa.e eSCp sae g, Executing communication of a to B LP8
0Sg.ep €SCp.e.b g ) Executing communication of b to B

10.3.2 Numerical Representation of the Temporal-Causal
Network Model

Below, the dynamics following the connections between the states in Fig. 10.1 are
described in more detail. This is done for each state by a dynamic property spec-
ifying how the activation value for this state is updated based on the activation
values of the states connected to it (the incoming arrows in Fig. 10.1). Note that in
these property specifications s, a, e, b, and B are parameters for stimuli, actions,
effects, body states, and persons, respectively; multiple instances for each of them
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can be used in a given model. Parameter n indicates the speed by which an acti-
vation level is updated based on received input from other states.

In the example simulations, in LP1, LP6, and LP7, the combination function ¢
(V) is the identity function

For the other states the combination function c(V1, ..., Vj) is the advanced logistic
sum function:

c(Vi,..., V) = alogistic, .(V1, . . ., Vk)
1

= (

1+e-c°M Tt Vi) 1 +ecr)(l +e*6‘t)

Other types of combination functions might be used as well. For example values
for T and o, see in Sect. 10.4.

The first property LP1 describes how sensory representations are generated for
any state X, indicating a stimulus s, an action a of an person B, or a feeling b of a
person B.

LP1 Sensory representation of X based on a sensor state for X
sty (t + At) = srsx () + Ny, [Corsy (01, x55x (7)) — srsx(¢)] At

The sensory representation of an effect state e is not only affected by a corre-
sponding sensor state for e (affected by the world state), but also by two
action-related states:

e via the predictive loop by a preparation state, as a way of internal simulation to
predict the effect e of a prepared action a

e by an inhibiting connection from the self-ownership state, to suppress the
sensory representation of the effect e of the action a, once it is going to be
initiated; e.g., Blakemore et al. (1999, 2000)

This is expressed in dynamic property LP2. Note that for this suppressing effect
the connection weight @,,, from ownership state for action a to sensory repre-
sentation for effect e is chosen negative, for example ®,,, = —0.2. Dynamic
property LP2b specifies a similar temporal relationship for update of the sensory
representation of a body state, and thus models internal simulation by an as-if body
loop.

LP2e Sensory representation for an effect state ¢
st8 (1 + Ar) = s18.(1) + Mgy, [Cors, (02,1,6P8,(1), 022,00885.4.6(1), 02,3055, (1)) — srs.(¢)] At

LP2b Sensory representation for a body state b
st8p (¢ + At) = s185(1) 4 Ny, [Csrsy (02,1608, (2), @2,2,0088,¢,5 (1), D23 5585 (2)) — st (2)] At
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Preparation for action a is affected by

e the sensory representation of stimulus s
e the body state b associated to the predicted effect e of the action,
e observation of the action (tendency) in another person

The first bullet is an external trigger for the action. The second bullet models the
impact of the result b of the emotion-related valuing of the action effect e. The third
bullet models the mirroring effect for the action as observed as a tendency in
another person. Similarly for the preparation for a body state b; here the sensory
representation of the effect e serves as a trigger, and the emotion state of another
person is mirrored.

LP3a Preparing for an action a
ps,(t+ At) = ps,(¢) + MNps, [Cps, (©93,1,45184(), 32,4555 (1), @33 B.aSTSB4 (1)) — Ps,(1)] At

LP3b Preparing for a body state b
ps (7 -+ At) = psy (£) + Nps, [Cps, (0315515 (2), 03255185 (2), @33 BSTSB K (1)) — PS, ()] At

Ownership states for an action a or body state b are generated by LP4a and
LP4b. They keep track of the person’s context with respect to the action or body
state. This context concerns both the person self and the other persons and their
extent of ownership of the action or body change; in this sense it is a basis for
attribution to a person, and includes self-other distinction. Moreover, a
self-ownership is used to control execution of prepared actions or body states, like
super mirror neurons are assumed to do. For example, in case the person B is self,
the ownership state for action a strengthens the initiative to perform a as a
self-generated action: executing a prepared action depends on whether a certain
activation level of the ownership state for the person self is available for this action.
This is how control over the execution of the action (go/no-go decision) is exerted,
and can, for example, be used to veto the action in a stage of preparation.

LP4a Generating an ownership state for B and «
OSB.s.a.e (t =+ At) = OSB;Sﬁaye(t) + MNosp,s.ae [COSB“\‘.LLP ((D4~,lyuerBA,a (t)v
042,585 (1), 04.34PS, (1), 04 42818, (F)) — 0Sp 5.4 (1) At

LP4b Generating an ownership state for B and b
08pe (1 + A1) = 08¢ (1) + Mgy, [Coss,, (0a,155788,5(7), 0425875 (1), 4358, (1),
0)414’},51‘5})(1‘)) — OSB’e_’],(l)]Al

Note that in case that B is the person self, the first condition in LP4a and LP4b
indicates how far the person has a certain willingness to come to an action or
expression. For example, when no other person is present the willingness to
explicitly express emotions may be less, or when the person is in a passive mood,
willingness to come to an action may be low. The use of ownership states in control
of execution is modeled by LP5:

LP5a Execution of action a
esy(f+ Ar) = esy(t) + Mes, [Ces, (©05,1.4088 0.0 (), ©52.4PS, (1)) — €s4(1)] At
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LP5b Execution of body change b
CS},(Z‘ + Al) = CSb(l) + Nes, [Ccsb (035,1’[,081;}631,(1‘), 035,2‘bpsb(l‘)) — esb(t)]At

Note that these executions also function as the nonverbal part of the empathic
response; e.g., showing a face expression with the same emotion as the other
person.

Property LP6 describes in a straightforward manner how execution of action a or
body change b affects the world state for effect e or body state b.

LP6e From action execution to effect state
WS, (1 + At) = Wso(1) + Nys, [Cws, (W6.084(2)) — Ws, ()] At

LP6b From body change execution to resulting body state
wsp (1 + At) = Wsp (1) + Nys, [Cws, (06,5885 (2)) — Wsp(£)] A2

The following property models how sensor states are updated. It applies to an
action a of person B, a feeling b of person B, a stimulus s, effect e, or emotion
indicated by body state b (covered by variable X).

LP7 Generating a sensor state for a world or body state X
ssx (1 + At) = ssx (1) + Ny, [Cosy (07xWsx (1)) — ssx(r)]At

Communication of ownership of the other person to the other person represents
acknowledgement of an person that it has noticed the state of the other person: a
verbal part of the empathic response. These communications depend on the
ownership states as specified in LP8.

LP8a Communication of the other person B’s intention for a and e for s
eSCB‘A\,a.E(t"' At) = €8CBs.a.e (t) + Nesc e [CeSCB..uLe (m&flOSBv&,ayf(t)) - eSCB»YA,fo(I)}At

LP8» Communication of the other person B’s emotion b for e
esCBe (14 At) = esCep (1) + Nesey., [Coscae, (M8.505B.e5 (1)) — €5Cp 1 (1)] AL

10.4 Simulation Results

In this section simulation results are discussed for one of the scenarios that have been
explored. Note that in this section for the sake of simplicity two persons A and B are
considered and for each of s, a, e, b, just one instance is used, which is the same for
both persons. In the scenario all connection strengths were set at 1, except the
inhibiting connections, which were set at —0.2, and the connection to the action
effect in the world which was taken O as the focus here is on the process of decision
making prior to the actual execution of the decision. The speed factor n was set to 0.5
and Az = 0.2. In the scenario shown in Fig. 10.2 both persons get stimulus s as input
with level 1. Here time is on the horizontal axis and activation levels as indicated are
on the vertical axis. The upper graph shows person A and the lower graph person B.
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Fig. 10.2 Reaching a joint decision and mutual understanding for different self-contexts

The threshold and steepness values used are as follows: LP2e (0.2, 4), LP2b (0.7, 4),
LP3a(1,4), LP3b (0.7, 4), LP4 (3.2, 8), LP5a (1.6, 20), LP5b (1, 20), LP8 (0.6, 20).

The only difference between the two persons is that person A has level 1 for the
self-context factor which indicates willingness to come to action and for person B
this is 0.5. In Fig. 10.2 it is shown that triggered by the stimulus s, from time point
3 on both persons develop a preparation for action option a, which is immediately
followed by activation of predicted effect e. Next, around time point 6 both persons
start to develop an emotional response preparation for b on the predicted effect e,
and as a consequence (by the as-if body loop) the feeling of this emotion from time
point 9 on. Around time point 10 person A starts to activate the self ownership state
for action option a, whereas for person B this only happens later, after time point
16, due to its lower self-context value. Due to this, person A expresses (the ten-
dency for) action option a from time point 20 on. From time point 22 on person A
expresses the emotion felt, after an ownership state for this was activated from time
point 20 on. Note that at this point in time point person B does not show such
reactions, due to the lower self-context for person B.

However, by B’s mirroring of the two types of expression from person A (action
tendency and body state for ), person B is affected in its preparation levels for both
the action option and the bodily response. Due to this, person B also expresses the
feeling from time point 21 and the tendency for action option a from time point 26
on. This actually creates a joint decision for action option a, accompanied by a good
feeling b for it. Moreover, this also provides the nonverbal part of B’s empathic
response on person A’s action tendency and feeling. Furthermore, person B shows a
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verbal empathic response to A for both the action and the feeling starting at time
points 28 and 30, respectively. The verbal empathic response from person A comes
later, at time points 32 and 33 respectively, which reflects the fact that some time
was needed to get person B in the proper state (due to mirroring) to show support
for action option a and feeling b. So, finally they reach a solid joint decision.

Not all joint decision making processes will achieve an outcome in the form of a
solid joint decision, as in the above scenario. There are many ways in which a joint
decision process can end up in a less perfect outcome. A more extensive analysis of
the different possible outcomes of the joint decision making processes described by
the model can be found in (Duell and Treur 2012), thereby distinguishing 16
possible outcomes for each of the persons as shown in Table 10.3.

Based on this, in principle 16* = 256 possible outcomes for a joint decision
making process between two persons can be distinguished. Only one of these 256
possible outcomes concerns a solid joint decision. The other 255 possible outcomes
show in how many ways a joint decision process can be poor, or at least less
perfect. Part of these 255 possibilities still concern a joint option choice and part of
them does not. Moreover, part of the outcomes with joint option choice have a solid
emotional grounding and part of them have not. Finally, some of the outcomes will
lack mutual acknowledgements. For more details, see (Duell and Treur 2012). In
addition, in (Duell and Treur 2012) it is analysed how the process to reach a certain
outcome can differ; for example, one the persons develops a decision first and
affects the other person who then follows, or both persons develop their decision
simultaneously while they both mutually affect each other.

10.5 Discussion

In this chapter, a temporal-causal network model was presented which was developed
based on a Network-Oriented Modeling approach, thereby using mechanisms from
Social Neuroscience. The contents of this chapter are mainly based on (Treur 2011d).
The model addresses the emergence of joint decisions, accompanied by shared
emotions and mutually acknowledged empathic understanding. To this end it covers
both cognitive and affective processes and their interaction in decision making, and
social contagion. Core mechanisms adopted are mirror neurons (e.g., lacoboni 2008a;
Pineda 2009; Rizzolatti and Sinigaglia 2008), internal simulation (e.g., Damasio
1994, 2003; Gallese and Goldman 1998; Goldman 2006; Hesslow 1994, 2002, 2012),
and emotion-related valuing of predicted effects of action options (e.g., Bechara et al.
2003; Damasio 1994, 1996, 2003; Morrison and Salzman 2010; Murray 2007,
Jenison et al. 2011; Ho et al. 2012; Janak and Tye 2015).

It was shown how such temporal-causal network models can be used to perform
simulation and analysis of the emergence of joint decisions grounded in shared
emotion-related valuing, and together with mutual empathic understanding of
persons.
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The model uses elements from the model presented in (Treur 2011a, 2014) for
the empathic understanding, but in contrast to (Treur 2011a, 2014) where the
empathic understanding was limited to emotions, in the current model it is applied
to both (tendencies for) actions and emotions. Furthermore, the current model uses
the idea of ownership states as in the model presented in (Treur 2011b, 2012).
However, in (Treur 2011b, 2012) ownership states are differentiated into prior and
retrospective ownership states, which was not done in the current model. Moreover,
in the current model the ownership states were used both for actions and for
expressing emotions, whereas in (Treur 2011b, 2012) they were only focused on
actions, and emotions were not addressed. Another difference to both (Treur 2011a)
and (Treur 2011b, 2012) is the use in the current model of social contagion to affect
both action tendencies and associated feelings in order to come to joint decisions
accompanied by shared associated emotions.

In (Duell and Treur 2014) an extension of the model is described obtained by
including a mediator model who contributes some process focusing and timing
guidance. In (Duell 2014) an extension of the model is described where the persons
are adaptive and a mediator guides the persons in changing their valuing of the
options by some form of (Hebbian) learning in an attempt to get rid of prejustices or
effects of exceptional experiences. Finally, in (Ments et al. 2015) another extension
of the joint decision making model is discussed which incorporates cognitive
metaphors within the persons, and how they affect the decision making process by
connecting to certain states within this process; this is particularly focusing on
competitive metaphors, such as war, and more cooperative metaphors.
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Chapter 11
Changing Yourself, Changing the Other,
or Changing Your Connection

Integrative Dynamics of States and Interactions
in a Social Context

11.1 Introduction

When persons function in a social context they interact with a number of other
persons they know. These persons themselves also interact with a number of per-
sons. And so on and on. When each person is modeled by a node and for each of
these interactions arcs between the nodes are drawn, this results in a social network
model, sometimes also called a social network; for example, as shown in Fig. 11.1.
Note that as such arcs indicate that interaction takes place, and interaction in
principle means that persons affect each other, from a dynamical perspective they
can also be considered relations that represent mutual causal effects on certain
mental states of persons.

The area of network models to describe social interactions has already a longer
tradition (see also Chap. 1, Sect. 1.4). It has gradually developed stronger and at the
same time a similar development concerning the concept ‘network’ took place in
other disciplines as well, such as Biology, Neuroscience, Mathematics, Physics,
Economics, Informatics, Artificial Intelligence, and Web Science; see, for example
Boccalettia et al. (2006), Valente (2010), Giles (2012). A unified perspective on
networks as a generic modeling concept was developed which forms the basis of
the Network-Oriented Modeling perspective used here.

To characterize different types of network models, over the years some criteria
have been identified:

e The length of the shortest path between two given nodes in the network

e The number of connections of a given node (called the degree), and how that
varies over the network

e The occurrence of clusters of tightly connected groups of nodes (sub-
communities)

e The variation of strengths of the connections over the network
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In this chapter dynamics in relation to social interactions will be addressed. Two
main types of dynamics are distinguished: dynamics based on a given structure of
interactions (modeled by a non-adaptive network), and dynamics of the social inter-
actions (modeled by an adaptive network). In the former case the network model stays
the same, but states (nodes) in the network may change their activation level over time.
In the latter case the connections within the network model may change, for example,
connections can be added or removed, or their weights may increase or decrease.

In this chapter it will be discussed how adaptive network models can be made for
social interaction processes. Persons will simply be modeled as nodes in a network
indicating for each person just one state concerning, for example, an emotion, a
belief, an opinion, or a behaviour. For a network modeling social interaction pro-
cesses again conceptual representations of two types are possible, as shown in
Chap. 2: a graphical representation or a matrix representation, and numerical rep-
resentations that can be used to perform simulation experiments (see Chap. 2).

In this chapter, first an overview of different types of network models is presented:
small world networks and random networks (Sect. 11.2), scale-free networks
(Sect. 11.3), and weighted networks with variation in connection strengths
(Sect. 11.4). After this in Sect. 11.5 a brief overview is given of the different types of
dynamics for networks modeling social interaction processes. In Sect. 11.6 the case of
dynamics based on social contagion is discussed, modeled by a non-adaptive
temporal-causal network. After that in a number of sections different types of dynamics
of a social interaction structure are addressed, modeled by adaptive temporal-causal
networks: based on the ‘birds of a feather flock together’ (homophily) principle
(Sect. 11.7), based on the ‘more becomes more’ principle (Sect. 11.8), and based on
the ‘interaction connects’ principle (Sect. 11.9). Finally Sect. 11.10 is a discussion.

11.2 Small World Networks and Random Networks

The first characteristic of a network considered concerns paths in the network.
Examples of the paths in a network are the following. In the World Wide Web
consider a Web page is connected to another one when a link to this other Webpage
occurs. Then a path from one Webpage to another one is based on a number of
mouse clicks bringing you there. The shortest path from one Webpage to another
one is the minimal number of mouse clicks needed to get from the one to the other.
For another example, consider the connections between persons for which are
considered connected when they know each other: they are acquaintances or more
(e.g., at least once they have spoken with each other). Suppose a k-th order contact
is a contact with shortest path of length k. You can wonder, for example, which
order of contact you have with Barack Obama. In general it may be expected that
the shortest paths between two arbitrary nodes in a larger network may still be very
long, unless the nodes in the network have many connections. For example, it may
be expected that the number of steps needed to connect you to an arbitrary person
anywhere in the world can be very large, as every person knows only a limited
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THE ECONOMIC LINK

British telephone records show that England’s
communication diversity (white links) correlates
strongly with higher economic prosperity (light blue). &

Fig. 11.1 Example social network based on telephone calls, adopted from Giles (2012)

number of other persons. However, in the real world shortest paths seem much
shorter than one would expect. The notion ‘small world’ is sometimes used in
relation to the experience when you find out that a person you meet for the first time
knows somebody you know as well; this would make k& = 2. Usually this is felt as a
surprise and not seldom expressed by something like “What a small world!’.
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11.2.1 Small World Networks

The term small world network has been adopted to indicate a network in which

e the average number of (direct) connections per node is low
e but still the shortest paths are short

Of course, when practically all nodes in a network are directly connected, and
therefore the number of connections per node is high, then automatically the
shortest paths will be very short, and even 1 for a fully connected network (ev-
erybody knows everybody). It has been found that many networks in the real world
that have been analyzed fall in the class of small world networks. This does not only
concern networks describing social interactions, but also, for example, in Biology
networks describing chains of metabolic reactions, in Neuroscience networks
describing processes in the brain, and in Web Science networks describing the
World Wide Web. For the human society the conjecture has even been put forward
that any two persons on earth are in a k-th order contact with k at most 6.

11.2.2 Random Networks

Random networks satisfy the criterion that there is a fixed number p in the interval
[0, 1] such that for every pair of nodes they are connected with probability
p. Figure 11.2 shows examples of random networks for p = 0.1, 0.25, and 0.5,
respectively.

In the case of a random network with n nodes the number of connections per
node, also called degree, has a Poisson distribution with top around p(rn — 1) and
going to zero on both sides: around 1 and around n. More precisely, suppose the
fraction of nodes with degree k is denoted as P(k). The graph of P(k) as a function
of k showing the (frequency or probability) distribution of the degrees over a
network has its top at p (n — 1). For example, for a random network of n = 20 nodes
with p = 0.5, this top is at p (n — 1) = 9.5. Note that for p = 1 (fully connected
network) there are no nodes with degree lower than n — 1: in that case all nodes
have the maximal degree n — 1.

p=01 p=025

Fig. 11.2 Examples of random networks for different link probabilities; adopted from Perseguers
et al. (2010)
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11.3 Distribution of Node Degrees and Scale-Free
Networks

Networks describing processes in the real world usually have different shapes of
distributions of degrees, with more nodes in the lower degrees and less in the higher
degrees, as is the case for the small world networks. So, the notion of a random
network does not describe at all any arbitrary network describing processes that
occur in the real world. Instead, the study of networks describing real world pro-
cesses has led to the notion of scale-free networks.

11.3.1 Scale-Free Networks

A scale-free network is defined as a network that satisfies a distribution of node
degrees according to a power law: the number or fraction of nodes with degree k, is
approximated by a function

flk) =ck™

for some exponent v which typically (but not always) may be between 2 and 4, and
¢ a constant. Three patterns for such a distribution with different exponents are
shown in Fig. 11.3. This clearly is totally different from the distribution for a
random network.

The name ‘scale-free’ was derived from a property of the function f representing
the power law. This function f satisfies the property that for any o a f§ exists such
that for all x it holds: flox) = f fix). Therefore scaling up the degree k by any factor
o still provides the same shape of distribution. The conjecture is that many networks

100

exponent 2
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 11.3 Power law distribution of node degrees for a scale-free network for ¢ = 100 and
exponent y = 2, 2.5 and 3, respectively
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describing processes in the real world are scale-free, for example, networks based
on World Wide Web links, networks based on chemical reaction chains in bio-
logical networks, and networks based on social interaction.

In Barabasi and Albert (1999, p. 510) the results shown in Table 11.1 are put
forward. For a large network based on WWW pages it turned out that it satisfies a
power law with y about 2.1. Also a network based on actors with connections when
they were playing at least once in the same movies had a power law structure, with
v about 2.3. Similarly it was found that the network based on citations between
scientific papers satisfies a power law with y about 3 and an electrical power grid (in
the western US) with y about 4. Such empirical results have led to the hypothesis
that networks in practice usually are scale-free with a distribution of degrees
according to a power law with y between 2 and 4. Further empirical evidence for
this hypothesis is still being acquired.

11.3.2 Identifying a Power Law

As a simple example, suppose the network shown in Fig. 11.4 is given. The
question may be posed whether this network is scale-free, and if so, which exponent
v applies.

By counting, or by the matrix representation, the degree distribution can be
found as shown in the middle column of Table 11.2.

This distribution has been approximated by a power law distribution function
fik) = ¢ k 7Y by choosing y = 2 and ¢ = 18; see the column at the right hand side in
Table 11.2. In Fig. 11.5 for both (empirical and power law) distributions the graph

Table 11.1 Some empirical results showing for which exponent y the power law holds for
networks in practice

Network WWW Actors Citations Power grid
Y 2.1 23 3 4

Fig. 11.4 Small example of a
scale-free network (adopted
from https://en.wikipedia.org/
wiki/Scale-free_network)
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Table 11.2 Empirical data
on degrees for the network in
Fig. 11.4 compared to a
power function with y = 2
and c = 18

Fig. 11.5 Graph for
empirical degree data and
power law for the network in
Fig. 11.10
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Degree Empirical Power law
1 18 18.00
2 5 4.50
3 2 2.00
4 2 1.13
5 0 0.72
6 1 0.50
7 2 0.37

20 —@i— empirical == power law

18

16

14
12

10

o N B~ O 0

is shown. This shows that the network depicted in Fig. 11.4 is scale-free with y

around 2.

A useful approach to estimate which exponent vy fits well to a set of empirical
data is by applying the natural logarithm log to the power law, thus obtaining:

logf (k) =logc — ylogk

This is a linear relation between log f(k) and log k, which will show as a straight
line in a graph. When this logarithm is also applied to the empirical data, the data
shown Table 11.3 are obtained by applying the logarithm to the cells of Table 11.2.

Table 11.3 Logarithm of
empirical data on degrees for
the network in Fig. 11.10
compared with a logarithm of
a power function (with y =2
and ¢ = 18)

Log degree Log empirical Log power law
2.89037176 2.890372
0.693147 1.60943791 1.088189
1.098612 0.69314718 0.03398
1.386294 0.69314718 —0.71399
1.609438 —co —1.29417
1.791759 0 —1.7682
1.94591 0.69314718 —2.16899
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Fig. 11.6 Double —— |og empirical log power law
logarithmic graph for 3.5
empirical degree data and 3
power law for the network in 25
Fig. 114 2
1.5
1
0.5
0
05 0 0.5 1 1.5 2 2.5
-1
-1.5

This can be depicted in a (double logarithmic) graph as shown in Fig. 11.6. Note
that the value —00 resulting from applying log to O is depicted here as O.

In this form for any given set of empirical data the parameters c and y can be
estimated by minimizing the sum of the squares of the distances, as is done by a
linear least square approximation method; see also Clauset et al. (2009).

11.3.3 Clusters and Bridges

In scale-free networks, often a form of clustering structure can be found; see, for
example, Figs. 11.1 and 11.4. Sometimes also clusters themselves again have their
own clustering structure, which gives the network a repetitive structure. The
clusters are identified as subgroups of nodes that have a relatively high number of
mutual connections but practically no connection with nodes outside the cluster. If
there are no such connections between a cluster and other clusters at all, the whole
cluster would be isolated. However, usually there are at least some connections
from one cluster to another; they are called bridge connections or simply bridges.
A special case is when all nodes within a cluster are mutually connected, in which
case the cluster sometimes is called a clique.

11.4 Weak Ties, Strong Ties and Weighted Connections

Above it was assumed that nodes in a network are connected or not connected.
However, it has since long been recognized that connections can have different
gradual strengths and types. Some can be very weak, like being acquaintances,
others can be very strong like between best friends or in a partner or family relation.
Weak connections are often called weak ties, and strong connections strong ties;
e.g., see Fig. 11.7. In general, a weighted network is a network in which for each
pair of nodes a connection or tie weight (or strength) is defined as a number in the
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interval [0, 1]. The weak ties are those with lower weight and strong ties those with
higher weight.

A claim made by Rapoport (1957) is the weak tie hypothesis: if A has strong ties
to both B and C, then there is a high probability that B and C at least have a weak
tie. As an example, your two best friends probably at least know each other, or, as
another example, your parents and partner probably know each other (e.g.,
Fig. 11.8).

The idea is (Granovetter 1973, 1983) that strong ties usually occur within the
clusters and lead to weak ties making the cluster more tightly connected. Moreover,
the bridges between clusters are usually formed by weak ties, and are essential for
contagion from one cluster to another; this principle is sometimes indicated by the
power of weak ties.

THE POWER
OF WEAK TIES

Mobile-phane records affirm
the idea that occasional
contacts between casual
acquaintances are crucial to
the spread of information.

ENEES
::7
Vi 124
ot

o=
X

WEAK TIES

Connections with low total talk

time (thin blue lines) tend 1o link

the clusters, allowing informa-
tion to move between them.

STRONG TIES

Connections with high total
talk time (thick red lines) tend
to define tight. potentially
msolated, clusters.

Fig. 11.7 Weak and strong ties based on telephone calls; adopted from Giles (2012)

Fig. 11.8 Weak tie

B
hypothesis (adopted from weak ties —\ @D

http://en.wikipedia.org/wiki/
c / ¥— strong ties
H z —

Interpersonal_ties)
A
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By Krackhardt (1992) the strong tie hypothesis was formulated. This hypothesis
claims that sometimes for more fundamental types of contagion weak ties are not
sufficient. Especially for contagion that comes with uncertainty a connection is
needed that makes a person feel secure, which usually is a characteristic of a strong
tie but not of a weak tie. Such more fundamental types of contagion would not
make it over bridges when they are only weak ties.

For weighted networks the matrix representation contains nonnegative real
numbers as (weight) values, usually taken from the interval [0, 1]. An example of
this is shown in Table 11.4 (the 0’s have been left out), which is a matrix repre-
sentation of the network depicted in graphical representation in Fig. 11.9.

Note that the connections in this example network are not bidirectional.

Based on these weights as an approximation the influence of a given node on the
network can be estimated, and also conversely, the influence of the network on this
node. For example, node E has 7 outgoing connections, so this node has probably
much influence on the network. In the other direction, for example, node K has 5
incoming connections; this is an indication that this node receives much direct
influence from the network. These exerted and received influences can be estimated
numerically in a more precise manner by taking the sums of the weights of the
outgoing and the incoming connections, respectively. In Table 11.5 these sums
have been added to the matrix from Table 11.4. In Table 11.5 the rightmost column
depicts for each node the overall influence exerted in the network directly. It can be
seen that node E indeed has one of the highest numbers in this column, but node A
and J still have higher numbers, so they have more direct influence. Similarly, in
Table 11.5 in the bottom row the numbers of overall received direct influence are
depicted. It can be seen here that node K has a high number, but in this row node E
has the highest number, so that node will be influenced most in the network.

The question can be posed whether this approximation obtained by adding up
the connection weights is adequate. It may be the case that a node has much
influence on a number of connected nodes, but these nodes in turn have not much
influence. Such a situation would limit the value of the calculations made in
Table 11.5. In fact, the approach shown in Table 11.5 can be considered a
first-order approximation of the influence from and the influence on a node in a
network. Also higher order approximations are possible, for example, taking into

Fig. 11.9 Example network
represented by the matrix in
Table 11.4
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Table 11.4 Matrix representation of a weighted network
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From To
A B C D E F G H 1 J K L

A 0.6 |08 1 0.5

B 0.7 04 |08

C 0.5 1 0.9

D 0.6 04 |08 0.7

E 0.3 0.5 0.4 0.3 0.1 0.7 0.3

F 0.6 0.3 0.7 0.2
G 1 0.2 0.3 0.1 0.2

H 0.5 0.4 0.8 0.5

I 0.9 1

J 04 |07 0.9 0.7
K 0.3 02 |03 0.1 0.2
L 0.9 0.8 0.9
Table 11.5 Overall exerted and received direct influence in a network

From To

A |B |C |D |E |F G |H |I J K |L | Directly
exerted
influence

A 0.6 0.8 |1 0.5 29

B 0.7 04 0.8 1.9

C 0.5 1 0.9 24

D 0.6 04 (0.8 |0.7 2.5

E 03 |05 (04 0.3 |0.1 0.7 103 2.6

F 0.6 0.3 0.7 0.2 | 1.8

G 1 0.2 |03 0.1 0.2 1.8

H 0.5 0.4 0.8 0.5 2.2

I 0.9 1 1.9

J 04 0.7 0.9 0.7 [2.7

K 0.3 02 |03 0.1 0.2 | 1.1

L 0.9 0.8 109 2.6
Directly 2.1 [1.7 |22 |26 |32 |27 |2 22 |15 (23 |28 |1.1

received

influence

account the influence of the influenced nodes. For example, for node E a second
order approximation can be calculated as follows. Take the nodes influenced by
node E and multiply for each X of them the weight of the connection from E to
node X by the first-order influence number of node X, and the add all these products
(Table 11.6):
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Table 11.6 Estimating second-order influence

A B C D |E |F G H [T |J K L |2nd order
influence
of E

E’s 03 |05 |04 0.3 |0.1 0.7 |03
outgoing
weights
1st order 29 |19 (24 1.8 1.8 2.7 |11
influences
of nodes
connected
from E
Products of [0.87 |0.95 |0.96 0.54 [0.18 1.89 [0.33 5.72
the above
two

numbers

This results in a number of 5.72 for node E’s second-order influence. Similarly,
third or higher order influences can be calculated; all these numbers will provide
better approximations. It can be useful to compare such estimations with outcomes
of simulation experiments with (social) contagion in such a network.

11.5 Different Types of Dynamics in Networks Based
on Social Interaction

In this section a number of types of dynamics in relation to networks based on
social interaction are discussed. Given any network, two main types of dynamics
can be addressed: dynamics within the given network, and dynamics of the network.
In the former case the network stays the same, but states (nodes) in the network
may change their activation level over time. In the latter case the network con-
nections change, for example their weights may increase or decrease, which makes
it an adaptive network. Both types of dynamics often also occur together.

The first type of dynamics is usually indicated by words such as diffusion, spread
or contagion. The node states that are spread can be of different types varying from
communicating by body language, oral verbal communication, and written verbal
communication to communication by transferring chemicals (e.g., Groot et al.
2012). For example:

e [Information, beliefs, opinions or valuations
Examples:

Did you know that A is dating B?
— There is a new restaurant nearby
— Do you also like this movie?
This phone is not good
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o  FEmotions
Examples:

— Showing a happy face, talking with a sad voice,

— Saying or writing that you feel bad

— Spreading your sweat and pheromones (e.g., for fear or disgust, or for sexual
arousal)

e Diseases
Examples:

— Contagion of your flu to somebody else, or even to your whole network
— Tuberculosis epidemic

e Behaviour, habits or lifestyle
Examples:

— Contagion of sport activities among friends
— Smoking behaviour
— Use of alcohol or drugs

The second type of dynamics concerns changes in the connectivity structure of
the network: it becomes an adaptive network. Also such changes can be of different
types, such as:

o Link addition
Examples:

— Meeting somebody,
— Becoming friends with somebody
— Citing a paper

o Link removal
Examples:

— Unfriend somebody
— Breaking up a relationship

o Strengthening a link
Examples:

— After more and more activities together a weak tie becomes a strong tie
— Discovering that you have much in common with somebody

o Weakening a link
Examples:

— Weakening of a friendship due to moving to an area far away
— Neglecting the contact with somebody during a very busy period
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A number of general principles are used in networks in order to conduct sim-

ulation experiments and mathematical analysis. Examples of such principles are
(e.g., Newman 2003):

Random link addition

When it is assumed that persons meet each other by chance, this can be modeled
by link addition in a network between randomly chosen pairs of nodes.
Triadic closure

Examples of this principle are transitive addition (if A is connected to B and B
to C, then A will get a connection with C: ‘your friends are my friends’), and the
weak tie hypothesis discussed in Sect. 11.4.

For these adaptive networks three different examples will be addressed: based on

the homophily principle, the more becomes more principle, and the interaction
connects principle describing the effect of the frequency and intensity of actual
interaction on connections.

Homophily

This principle indicates that the more similar the states of two connected nodes
are, the stronger their connection will become: ‘birds of a feather flock toge-
ther’; see, for example, Byrne (1986), McPherson et al. (2001), Mislove et al.
(2010). When also the states are assumed dynamic, this principle can be com-
bined with contagion of states into a circular causal relation:

state = link

When in a practical situation a network is found in which similar states and
strong connections occur together, due to such a circular causal relation it is
difficult to tell which of the two principles (or both?) was causing this situation;
see also, for example Aral et al. (2009), Shalizi and Thomas (2011), Steglich
et al. (2010), Mundt et al. (2012).

More becomes more

This principle expresses that nodes that already have more connections get more
extra connections than nodes with less connections (the rich become more rich
and the poor remain poor). Analyses have been made showing that applying this
principle usually leads to scale-free networks; e.g., Price (1976), Barabasi and
Albert (1999), Newman (2003).

Interaction connects

The third approach to adaptive networks addresses how the weights of con-
nections are affected by the actual interaction taking place. This is based on the
assumption that the more frequent and the more intense the interaction between
two persons, the stronger they will become related; see, e.g., Hove and Risen
(2009), Pearce et al. (2015).
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In Sect. 11.6 a basic temporal-causal network model is discussed for social
contagion within a given, non-adaptive network. Sections 11.7-11.9 address dif-
ferent types of adaptive networks, based on different principles. In Sect. 11.7 an
adaptive temporal-causal network model based on the homophily principle is dis-
cussed. According to this principle connections strengthen more when the persons
are more similar in their state (the more you are alike, the more you like each other).
In Sect. 11.8 an adaptive network based on the more becomes more principle is 17
discussed. This principle assumes that persons that already have more and stronger
connections also attract more and stronger (new) connections, more than persons
with less and weaker connections (more popular becomes still more popular).
Finally, in Sect. 11.9 it is discussed how dynamics of network connections can be
modeled based on information about actual interaction between persons, both in the
sense of frequency and of intensity: interaction connects principle.

11.6 Social Contagion

In a social context often persons affect each other in a number of ways. These
mutual influences can concern emotions, but also opinions and beliefs, and different
types of behaviour. Such processes are usually called social contagion, and specific
types of it such as social contagion of emotions are called emotion contagion. From
a behavioural perspective social contagion processes can be modeled as shown by a
conceptual representation in Fig. 11.10 (in this case for two persons only). Here the
(executed) behaviour b (for example, showing a face expression with a specific
emotion) of one person is sensed by another person and vice versa. Within a given
person this behaviour can be affected by some stimulus s, but also by sensing the
same behaviour shown by another person.

Here the weights of the connections between the persons are assumed constant,
thus defining the given network. However, the network itself can be adaptive in the

person A sensing b of person B

1

| person B’s

\ sensor state
for person A,
showing b A

\
person A’s\
sensor state

A responding B responding

for person B { ]
pe tobofB i a"i tobof A i
showing b i - i
pirspWB'sens1ng b e
-~ “of person A -7
person A’s T 0T person B's Y7105
sensor state person A sensor state person B
for stimulus s showing b for stimulus s showing b
person A person B

Fig. 11.10 Graphical conceptual representation of a temporal-causal network model for a
behavioural view on social contagion
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sense that the connections between the persons are dynamic too. In Sects. 11.7—
11.9 this is discussed in some more detail.

The graphical conceptual representation for this temporal-causal network
model for this behavioural view on social contagion can be transformed into a
numerical representation as shown in Box 11.1. Here execution states for b of
a person Y are named by esy,, and sensor states of a person Y for sensing the
execution state esx;, of person X are denoted by ssy.,,. The connection
weight Oy gensing »_of x Tepresents the aspects of the interaction and relation
between person X and Y that determine how well b of X is observed by Y. For
example, when b is a face expression of X and this is not observed at all by
Y, because they have contact with a very low frequency and often only by text
messages, this weight value is (close to) 0. However, when the connection is
through social media, often certain expression means can be used to reflect
one’s face expression (emoticons); this enables the connection weight being
higher.

The connection weight ®y responding to_b_of_x T€Presents how responsive Y is for
b of X, after Y has sensed b of X. Persons and connections may show strong
differences in this. Note that the connections Oy responding_to_b_of x aNd My respond-
ing_to_s determine some balance between the effect of the stimulus s in the response
in comparison to the effect of the observed behaviour from others. Persons Y with
high ®y responding_to_b_of_x compared t0 Oy responding_to_s Will €asily adapt to other
persons, whereas persons Y with high Oy responding to_s cOmpared to oy,
responding_to_b_of_x Will be more difficult to affect by others.

Be aware that in this model the overall contagion effect of the execution state esy,
» of person Y on the execution state esy, of person X is achieved in two steps: first
sensing with weight Oy sensing » or x and then responding with weight @y,
responding_to_b_of_x- logether these weights determine how strong this contagion
effect is.

For persons X and Y with X = A and Y=B,or X=B and ¥ = A:

LP1 Person Y sensing b of person X
dssy esy, /dt = T]ssz.b[ CsSyesy (®y sensing_b_of_X€Sxp) — SSY,esX,,,]

Sy esy, (£ 4 A1) =SSy esy, (1) + nssm%[ Cosy esy (©y sensing_b_of_X€SX 5(1)) — Sy esy, (1)] At

LP2 Person Y responding to stimulus s and to b of person X
deSY,b/dt = nesyyh [ CeSy,,,((DY,responding_to_sSSY,s7 0~)Y,r&',sponding to_b_of XSSY,esx,;,) - esY,b}

€Sy b (t + At) = PSyp (t) + Tlpsyyb [Cpsyyb (U)Y,responding_to_sssY,s (t),

Oy responding__to__b_of XSSY,esxA;,(I)) - eSY,b(t)}At
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The symbols are explained as follows:

s external stimulus

b behavioural response, for example, an emotion

esy, execution state: person Y shows response b

SSyz  sensor state: person Y senses Z with Z = s or Z = esy,
Ns update speed parameter for state S

cs (..) combination function for state S

Box 11.1 Numerical representation of a temporal-causal network model for a
behavioural view on social contagion between two persons

Note that the above model covers only the interaction between two persons. In a
network model for social interaction, the effect of multiple persons on a given person
has to be aggregated, so this is still to be addressed. Moreover, in the abstract beha-
vioural perspective shown above, each person is characterised by three states: one
behaviour execution state and two sensor states. In the area of networks models for
social interaction and social media, often a simplified and still more abstract view is
used, in which only one state per person is modeled, which can be considered as the
behaviour shown to others. This simplification makes it easier to handle large numbers
of persons in such a network, up to hundreds, or thousands, or even millions.

As an illustration, a more abstract temporal-causal network model is described
with contagion effects of multiple persons on each person and based on each person
Y’s state esyp. First a conceptual model is shown in Fig. 11.11. Note that more
connections may occur than the ones drawn. For example, for every connection
from an person X to an person Y there may also exist a connection back from Y to X.

This conceptual representation can be transformed into a numerical representation
of the model as follows; for all Y in the network the differential and difference equation

B responding CSB.6

tobhof A

C responding
to b of B

€SAb

A responding . escy

D responding to b of E

tobof A

C responding
to b of D

F responding
tobof C

espp
Db . €S
E responding
to b of D F responding
to b of E

CSEp

Fig. 11.11 Conceptual representation for simple temporal-causal network model for social
contagion
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are shown in Box 11.2. Here for each connection from an person X to a person Y there
is a direct connection from the execution state esy , of person X to the execution state
esy,, of person Y, with weight indicated by ®y responding_to_x,5- Note that this is dif-
ferent from the model shown in Box 11.1 above, where there is a two step process, first
from execution state of person X to sensor state of person Y, and then from sensor state
of person Y to execution state of person Y. In that model Wy, esponding_to_b_of_x 1S
indicating only the weight of the internal connection from sensor state to execution
state of person Y, whereas Wy sensing »_or x indicates the weight of the external con-
nection from execution state of person X to sensor state of person Y. So, the connection
weight parameter ®y responding_o_x,» i the model in Box 11.2 relates to the two
parameters ®Y,sensing_b_of_X and oY ,responding_to_b_of X

in the model in Box 11.1. In a simple case with two persons and identity
combination functions it holds that the former weight can be set as the product of
the latter two weights:

Oy _responding_to_X,b = @Y sensing_b_of_X » WY responding_to_b_of _X

For all persons X; and Y in {A, ..., F} with X; the persons connected toward
Y:
LP1 Person Y responding by b
desyp/dt = N, [Cesy , (O _responding_to_x, 5€SX, b5 - - -
Oy _responding__to_ X,,,h€SX, ,b) —CSY,b]
esyp(t + Atr) = esy p(t) + Nes,, [Cesy, (O _responding_to_x1,6€5%, 5(2); - - -,

Oy _responding__to_X,,,b€8X,, b (t) ) —CSyp (t)] At
The symbols are explained as follows:

b behavioural response, for example, an expressed emotion
esy.p execution state: person Y shows response b

Mesy, update speed parameter for state esy,,

ezl combination function for state esy,

Oy responding_to_x,» Weight of connection from esy ; to esy,

Box 11.2 Numerical representation of a simple temporal-causal network model for
a behavioural view on social contagion of multiple persons

An often used combination function for aggregation of contagion effects of
multiple persons is the scaled sum function:

CeSy_b(Vly .. .Vn) = ssummy_b(Vl, e Vn) = (Vl =+ o+ V,,)/O)Y’b

where the scaling factor my, is the sum of the weights of connections from all
others X; fori=1, ..., nto Y:
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Qyp = (DY_responding_m_X,'.b + -+ (DY_responding_to_X,,,b

This combination makes that the aggregated impact from other persons is a
weighted average of the individual impacts with weights ®y_responding_ro_X,,5/ @y,
proportional to the connection weights ®y _responding_r0_x;,» and with sum of them 1:

mY_responding_to_Xlﬁb/(DY,b + -+ (DY_responding_to_X,,,b/(’)Yﬁb =1

and

Cesyp (mY_responding_lo_X| b €8x, b (t)a LS mY_responding_lo_X” b €8x, b (t))
= ssumy,, , (mY_responding_to_)ﬁ b CSx, b (t)a «++y Wy_responding__to_X,,b €8X,.b (t))
= (®y_responding_to_X, b €%, 5() + * ++ + Oy _responding_to_x,.6 €5x, 5(1)) /Oy p

= (mY_responding_to_)q ,b/U)Y,b) €Sx, b (t) + -+ (wY_rcsponding_to_X,i ,b/my‘b) €Sx,.b (t)

The interpretation of this combination function is that a person Y adapts the level
of his or her state esy, to what is observed by Y as the average level of the state esx ;
in the network; this can result in adapting to the majority in the network. However, if
the connections only relate to a small and relatively isolated part of the network, the
average over this part can deviate from the average of the network as a whole.

For modeling dynamics within networks models for social interaction the sim-
plest idea is that one state X for each person is considered, and denoted by X, for
person A. This state X can be any type of state, either internal or externally
observable, for example, an internal state of feeling an emotion, or an expressed
emotion state, or an (internal) intention, or an action performed, or a belief or
opinion. The connection weights are denoted as m, g for the connection from person
A to person B. The model from Box 11.2 reformulated in this more abstract form is
shown in Box 11.3. For some further variants of temporal-causal network models for
social contagion, see Bosse et al. (2015).

LP1 Social contagion of state X in a social network

dXp/dt = npleg(@a, 5Xa,, - O 5Xa,)—X5]

Xp(t+Ar) = Xp(1) +nples(0a,5Xa, (1), - 045X, (1) —Xp(1)] AL
The symbols are explained as follows:

Xp person B’s state X

Nz update speed parameter for state Xz
cp(..) combination function for state Xp
wsp Weight of connection fro A to B

Box 11.3 Numerical representation of a model for a simple network view on social
contagion
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11.7 Adaptive Network Dynamics and the Homophily
Principle

In a simple model the network characteristics are specified by the connection
strengths 4 5. When a simple model for an adaptive network is to be designed, a
first question to answer is how these connection strengths are changing, and, in
particular, the other states affecting them have to be identified. The simple model
with adaptive network connections discussed here is obtained as a refinement of the
simple temporal-causal network model discussed in Sect. 11.6, Box 11.3. A first
choice made is to assume that the connection strengths w4 5 are affected by the
activation levels of the connected states of A and B. Such a dependency is depicted
in Fig. 11.12. Note that by adding these effects on the connection strengths cyclic
relationships occur; for example:

Xpaffectswyp  andinturn g p affects Xp

Also note that at a conceptual graphical level there is similarity with modeling
Hebbian learning for connections between states within a person (see Chap. 2,
Sect. 2.10, Fig. 2.24). However, the two types of models differ, due to different
types of combination functions used to describe the impacts of the different states
on the connections.

A next step is to determine how exactly the connection strengths are affected by
the activation levels. This is needed to obtain a dynamic equation for w4 . For the
current model the dynamic ®, p are assumed to change over time based on a
principle similar to the one from Parunak et al. (2011): the closer the activation
levels of the states of the interacting persons, the stronger the mutual connections
between the persons will become, and the higher the difference between the acti-
vation levels, the weaker they will become. In other words:

e activation levels close to each other imply a strong upward change in ®4 g
e activation levels far apart imply a downward change of ®, g

Sometimes this is called a homophily principle: the more you are alike, the more
you like (each other); for example, see Byrne (1986), McPherson et al. (2001),

Fig. 11.12 Conceptual
representation of an adaptive
temporal-causal network
model for the homophily
principle
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Mislove et al. (2010). Another way of formulating this principle is: birds of a
feather flock together.

As an example of this principle in practical use, if you wonder whether there is a
chance to become connected with somebody, you might consider whether you often
like and agree on the same things. Some may even consider to fake such a similarity
(but of course this is a doubtful strategy as it may seriously harm how your unique
identity is perceived). It can often be observed that persons that have close rela-
tionships or friendships are alike in some respects. For example, they go to the same
clubs, take the same drinks, have the same opinions, vote for the same or similar
parties. Such observations might be considered support for the homophily principle:
in the past they were attracted to each other due to being alike. However, also a
different explanation is possible: they were together and due to that they affected
each other’s states by social contagion, and therefore they became alike. So, the
cyclic relation between Xz and ®, z mentioned above leads to two possible causal
explanations of a state of being alike and being connected:

being connected —  being alike
being alike —  being connected

Such circular causal relations make it difficult to determine what came first. It
may be a state just emerging from a cyclic process without a single cause. For more
discussion on this issue, for example, see Aral et al. (2009), Shalizi and Thomas
(2011), Steglich et al. (2010), Mundt et al. (2012).

The homophily principle may be formalised numerically using the following
general format and a combination function c4 5(Vy, Vo, W) that still has to be
determined:

wa5(t+ At) = 0a (1) + Ny pleas(Xa(t), Xp(t), 0ap(1)) — 0ap(t)|At

doy p/dt = ny plcap(Xa, Xp, 04 8) — 04 ]

Here it is assumed that the values of w, g stay within the interval [0, 1] and in
particular the conditions

cap(Vi, V2,0) >0 and cup(Vi, Vo, 1)<1

are fulfilled. The combination function c, g(...) is assumed to depend on the one
hand on W and on the other hand on the difference |V; — V,| (which always is
between 0 and 1) in such a way that lower values of |V| — V| relate to higher values
of ¢4 p(Vy, V2, W), and higher values of |V| — V,| relate to lower values of c4 5(V1,
V,, W); in particular:

|V1—V2| high = 0AB decreasing = d(DA,B(Z‘)/dI <0= CA7B(V1, Vs, W)

<w
|[Vi—V,|low = o4 pincreasing = dwy p(¢)/dt >0 = csp5(V1, Vo, W) > W
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In particular this holds for the extreme values 0 and 1 of |V; — V|:

‘V] — V2| =1 = CA,B(Vla V27 W) S w
‘V] —V2| =0 = CA.B(V17V27W)ZW

Moreover, to model the homophily principle discussed above, a reasonable
assumption is that there is a monotonically decreasing relation:

the higher |V, — V3|, thelowercy g(V1, V2, W)

Furthermore, it can be assumed that it only depends on this difference |V, — V|
and not on the values of V| and V, themselves. Then as a simplification the
combination function c4pg(...) can be expressed as a function hy g(D, W) of
D = |V1 - Vzl and W:

CA,B(Vla V27 W) = hA,B(D7 W)

As discussed above, the function hy g is assumed to be monotonically decreasing
in D:

D <D, = hup(Di,W)>hyp(Dy, W)
Dhigh = hys(D, W)<W
Dlow = hap(D, W)>W

and in particular for the extreme values 0 and 1 of D it holds h, 5(1, W) < W and
h, 5(0, W) > W. Moreover,

hA7B(D70) Z 0 and hA,B(D, 1) S 1

Somewhere between low values of D = |V} — V,| (with hy g(D, W) > W) and
high values of D (with hy z(D, W) < W) there can be assumed a value for D for
which hy (D, W) = W. This is called the threshold value, indicated by t,4 g; so

hapg(D, W)>W when D<14p
hA,B(Da W) =W when D= TA,B
hA_’B(D, W) S W  when D 2 TA,B

So, for this threshold value 14 p it holds:

e an upward change of connection weight w4 5 occurs when |V} — Vo| < 145
e 1o change of connection weight w4 g occurs when |V, — V,| = T4 5
e a downward change of connection weight @4 p occurs when |V; — V5| > 145

A very simple example of a continuous function hy, z(D, W) satisfying the above
conditions for a given value of W is obtained when the threshold value t4 p is
assumed to be fixed; then a simple decreasing linear function in D through the point
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with coordinates (t4,5 W) can be used (i.e., through the point with D = 14 5 and

hag(D, W) = W):
hAyg(D, W) =W+ O((’CAJ; — D)

for some o, that still can be chosen. This example may have the disadvantage that
when W = 0 it may be negative (when D > 14 ) or when W = 1 it may be higher
than 1 (when D < 1,4 p): then it does not fulfil the conditions

has(D,0)>0 and hyz(D,1)<1

and this may make the weight value w4 p go outside the interval [0, 1]. This can be
remedied by choosing o as a function o(W) of W which can suppress the term 14 g —
D when W comes closer to 0 or 1:

hyg(D, W) =W +a(W)(ta — D)

When this function o(W) is assumed to be always >0 and close to 0 when W is
close to 0 or 1, then this can keep the value of w4 g within the interval [0, 1]. This
can be satisfied by the function

a(W) = W(l — W)

which is 0 for W =0 and for W = 1, and positive between these values with a
maximum 0.25 for W = 0.5. This makes that ® is changing slowly in the neigh-
bourhood of 0 or 1, thus achieving that ® does not cross these boundaries. Then the
following example function fulfilling the above conditions is obtained:

hag(D,W)=W+W( — W) (145 — D)

As a variant of this, the following function can be obtained as a quadratic
function of D:

has(D, W) =W+W(1—W)(t, — D)
Yet another variant can be defined using a logistic function:
has(D,W) =W+ W(1 — W) (0.5-1/(1 +e oD a)))
In Fig. 11.13 these linear, quadratic and logistic functions are depicted, with
D on the horizontal axis and h, (D, W) on the vertical axis for 14 g = 0.2 and three

fixed values for W (0.1, 0.5, 0.9); the depicted logistic variant has steepness
OCaB = 6.
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Fig. 11.13 Linear, quadratic and logistic form of the function hy z(D, W) for the change of w, g

for values 0.1,

For the combination function c, g(Vy, V>, W) the above choices for hy g(D, W)

0.5 and 0.9 for W, respectively, and 14 5 = 0.2; steepness is 6

translate into:

CA,B(V17 Vs, W) =W+ W(l — W) (TA,B — |V1 — V2|)
can(Vi, Vo, W) = W+ W(1 = W) (1,5 — (Vi = Va)?)
can(Vi,Va, W) = W+ W(1 — W) (0.5-1/(1 e aeVi=Val=mas)y)
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Using these functions, the dynamic relations for m, g are, respectively, as shown
in Box 11.4.

For all persons A and B in the social network:
doy p/dt = Mg 04 (1 = ©ap) (tas = |Xa — Xg)
wap(t+ Ar) = wa p(2)

+Nap0as(t)(1 — 0a5(t) (tas — [Xa(r) — Xp(1)]) At
doas/dr =, goas(l — 015) (1 5 — (X4 — Xp)*)
o4 5(t+ At) = @ 5(1)

+ 4505 (1)(1 = 0a5(1)) (3G 5 — (Xa(r) — Xa(1)*) At
dwsp/dt = My goap(1 — 045)(0.5 — 1/(1 4 e~ CaslXa=Xal—tan)y)
o 5(t+ Ar) = 4 5(2)

+ nA,B(’)A,B(t)(I —wap(t) (0.5—1/(1 +e*GAAB“xA(t)fxﬂ(t)‘f‘rA,B)))At

The symbols are explained as follows:

X4, Xp state of person A resp. B
MA B weight of the connection from person A to person B

N4,B update speed parameter for the connection from person A to person
B
TaB threshold for connection adaptation

Box 11.4 Numerical representation of an adaptive temporal-causal network model
for social dynamics based on the homophily principle: linear, quadratic and logistic
variant

In simulations it turns out that in principle all w4 g converge to either O or 1, and
the levels of the states may converge in different emerging clusters of persons,
where the connections between persons within one cluster converge to 1 and the
connections between persons in different clusters converge to 0; for example, see
Fig. 11.14

Three similar but slightly more complex variants can be made, of which the
quadratic variant is described in Sharpanskykh and Treur (2014):

has(D, W) = W+ Pos(n, 5(tap — D)) (1 = W) — Pos(—n, p(tap — D))W
ha(D, W) = W +Pos(My (T3 5 — D)) (1 = W) — Pos(—m 5(t4 5 — D)W
has(D, W) = W+ Pos(n, 5(0.5 — 1/(1 +e o 7ms)))) (1 — W)

— Pos(—, 5(0.5—1/(1 + e P wa))y)w



310 11 Changing Yourself, Changing the Other, or Changing ...

50 100 150 200

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

50 0 50

Fig. 11.14 Emergence of different clusters in an adaptive temporal-causal network model based
on the homophily principle (model depicted in Box 11.4) (upper state levels, lower left
connections within clusters; lower right connections between nodes in different clusters)

Here Pos(x) = (Jx| + x)/2, which returns x when x is positive and 0 when x is
negative. These models make that the approaching of the boundaries 0 and 1 of the
interval [0, 1] of ® is slow, thus making ® not crossing these boundaries, but ®
departing from the neighbourhood of these boundaries is not slow. In Sharpanskykh
and Treur (2014) example simulations can be found using the second, quadratic
model.
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11.8 Adaptive Networks and the More Becomes More
Principle

Another type of model for a dynamic connection from a person B to A takes into
account to which extent other persons C connect to person A. The idea behind this
is that somebody who is very popular seems worth connecting to. Sometimes this is
called the ‘more becomes more’ principle. For example, if B is followed by many
others C on Twitter, then B seems to be interesting to follow for A as well. As the
connections of others to B may change over time, this will imply that also A will
have a dynamic connection to B, and in turn this connection will affect the con-
nection of others to B over time as well. This can be modeled taking into account
the weights w¢, g for i = 1,.., k of all connections from others C; to B as shown in
Box 11.5 and Fig. 11.15. Here c4 g(...) is a combination function for the values
¢, B, ---» Oc, B, for example, a logistic sum function, or a scaled sum function with
scale factor the number of other persons. Note that the latter combination function
only takes into account the average strengths of the connections, not the total
number of them.

LP1 Network connections affected by other connections

d(x)A_’B/dl‘ = nA,B[CA,B((DCI,Bv 50 o O)Ck,B) = (J)A7B]AI

oa,5(f+ At) = 04 p(t) + Ny gleas(oc, 5(1), - - -, 0c, 5(t) — ©a5(1)]AL
The symbols are explained as follows:

Ma B weight of connection from A to B
Na,B update speed parameter for ®, g
cap(...) combination function for w, g

Box 11.5 Numerical representation of an adaptive temporal-causal network model
for dynamics of connections based on the more becomes more principle

Note that a network modeling the initiation of connections is not automatically a
network indicating social contagion; this will depend on the application considered.
For example, a network modeling a connection from A to B when A is following

Fig. 11.15 Conceptual % Xp
representation of an adaptive @
( J—ocs
temporal-causal network
model for the more becomes
more principle

Xcy
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B on Twitter will not play a role in social contagion from A to B. For social
contagion the opposite network plays a role where a connection from A to B occurs
when A is followed by B, which is not initiated by A but by B: on Twitter and most
other social media you cannot appoint your own followers. As another example,
when A often contacts B for advice, and this advice is often taken over by A, then
the initiation connection is from A to B but the contagion connection is from B to
A. In other cases it may be different. For example, if A wants to announce an event
or new product, he or she can choose an occasion where many others will see the
message, for example, posting it on a suitable forum; in such a case both the
initiation and the social contagion are directed from A to the others.

The ‘more becomes more’ principle has also been used to provide an explanation
for the empirical evidence that most real-world networks are scale-free. The idea is
that the typical distribution of degrees according to a power law emerges from an
evolving network when it is assumed that the network dynamics is based on a ‘more
become more’ principle; see, for example, Barabasi and Albert (1999), Krapivsky
et al. (2000), Krapivsky and Redner (2001, 2003). An indication of the type of
argument followed is illustrated in Fig. 11.16. Here the distribution of nodes
(vertical axis) over degrees (horizontal axis) is depicted; this distribution is assumed
stable over time. Some time point ¢ is considered and the focus is at the nodes with
some degree d, at ¢ (see at the horizontal axis). There is a (relative) number or
density n, of them (vertical axis). Moreover, the nodes with degree between d; and a
bit higher d; + Ad, are considered, an interval of length Ad, at the horizontal axis.
The (relative) number of nodes with degree within this interval is represented in
Fig. 11.16 by the area of the (left) rectangle above that interval. This area is
approximated by n, Ad,.

Now consider a time step from ¢ to ¢ + At. Due to growth of the number of
connections, the nodes with degree d, at time ¢ will have a higher degree d,,,, at
t + At, and the nodes with degree d, + Ad, at time ¢ will have a higher degree
diyar + Adia; at t+ At. Due to the ‘more becomes more’ principle, from d, <
d; + Ad, it follows that from 7 to ¢ + Ar the nodes with degree d; + Ad, at time ¢ will

Fig. 11.16 Emerging 0.8
scale-free network from an
adaptive network

0.4

Neiar

I

dt dr+At

Ady  Ady,y > Ad,
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get more new connections than the nodes with degree d, at time ¢. Therefore the
increase in degree of these nodes with degree d, + Ad, at time ¢ will be higher:

Adyy p > Ady

The numbers of nodes previously represented at ¢ by the left rectangle are
represented at ¢ + Ar by the right rectangle. Moreover, because they describe the
same nodes, the areas indicated as shaded are the same:

mAd, = ng 4 AtAdt+ At

Given this equality, from Adj,a; > Ad, (more becomes more principle) it follows
that n,,a, < n,. Therefore the distribution is monotonically decreasing. By a more
complex argument it has been derived that based on some more precise assumptions
on the formalisation of the more becomes more principle, a distribution is obtained
according to a power law; for example, see Barabasi and Albert (1999), Krapivsky
et al. (2000), Krapivsky and Redner (2001, 2003) for more details.

11.9 Adaptive Networks and Actual Interaction
Over Time

In the next variant of a model with adaptive network characteristics, a different
assumption is taken as a point of departure for how the connection weights w, p are
changing. In contrast to the previous models in which the change of connection
weights was assumed dependent on the activation levels of the connected states or
of the weights of other connections, here they are assumed to be affected by the
actual interaction taking place. The idea behind this is the principle that the more
interaction (or joint activities) you actually have with somebody, the stronger you
will become related; e.g., Hove and Risen (2009), Pearce et al. (2015). An example
of this interaction connects principle in practical use is: if you want to become
connected with somebody, consider to follow the strategy to often undertake
activities with this person. The dependencies according to this general principle are
depicted in Fig. 11.9. Here the actual amount of interaction from person X to person
Y concerning state S is indicated by aiyy.

Studies discuss how connection (‘tie’) strength in network models for both
online and offline social interaction relates to (i) interaction frequency, (ii) emo-
tional intensity of content, and (iii) emotional support and closeness (Gilbert and
Karahalios 2009; Granovetter 1983; Marsden and Campbell 1990). The number of
questions asked in a message also relates to connection strength. For example, in
Morris et al. (2010) it was found that many participants’ questions in online social
interaction were answered by friends they rated as close and that closeness of a
friendship was a motivator to answer questions. At least part of this literature uses
this relation between connection strength and actual interaction to formulate an
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operational, measurable definition of connection strength. In that case it concerns a
definitional relationship between connection strength and interaction, in contrast to,
for example, literature such as Hove and Risen (2009), Pearce et al. (2015) in which
a causal relationship is assumed. In the model described below some relationship
between connection strength and interaction is assumed, but it is not necessarily
assumed to be definitional. Given the network shown in Fig. 11.17, a numerical
representation for the model of the dynamics of the connection strength is modeled
as shown in Box 11.4.

LP1 Network connections affected by actual interaction
dO\)AVB/dl‘ = nm/w [CKUA,B (aiA,B) = 0)A7B]Al

O)A_’B(l-i- At) = (DA,B(I) aF nmA'B [C(DA.B (aiA7B(t)) = (J)A’B(l)]Al‘
The symbols are explained as follows:

A B any two persons

®A B weight of connection from A to B

iy g strength of actual interaction from A to B
Ml update speed parameter for w, g

Cayy(-.) combination function for w, p

Box 11.6 Numerical representation of an adaptive temporal-causal network model
for dynamics of a social interaction affected by actual interaction

Here c, ,(...) is some combination function which, for example, may be the
identity function or multiplication by a fixed number or a logistic function. For a
similar model, see van Breda et al. (2012).

Using quantity and quality of actual interaction

In the model described in Fig. 11.17, it is assumed that the actual amounts of
interaction can be obtained in an independent manner, for example, by monitoring
the different occurrences of interaction in a social medium such as Twitter. Such
monitoring can follow a differentiated approach by taking into account two different
(both measurable) aspects of interaction: quantity of the interaction (measurable as

Fig. 11.17 Conceptual
representation of an adaptive
temporal-causal network
model with dynamic
connection strengths based on
actual interaction

aipc
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Fig. 11.18 Conceptual representation of a model of dynamic connection weights based on quality
and quantity of actual interaction

frequency and duration), but also the quality or intensity of the interaction, which,
for example, may relate to the (measurable) level of emotion and number of
questions in the interaction. A graphical conceptual representation for such a model
is shown in Fig. 11.18.

The next step is to determine a numerical representation of this model for the
dynamics of the connection strengths. For the amount of interaction aiy y the pro-
duct of the quantity and quality measures is taken:

aiyy = quantaiy y * qualaiy y
Moreover, for the quantity a frequency measure is defined as a function g of the
frequency (number of messages per time unit, which is a day) with values in the
interval [0, 1]:
quantai, , = g(frequency)

for example, with 4 considered as maximal frequency:

g(V) = V/4 whenV <4
1 whenV > 4

Quality is defined as a weighted average of the emotion levels expressed in the
messages and a value in [0, 1] for the average number of questions in the messages
during one time unit:
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qualaiy , = w; * average emotion level +w, * average question level

So the connection impact becomes

aiy y = g(frequency) (w; * average emotion level + w, * average question level)

Using mutual effects between connection strength and actual interaction
Another variant of the model described above can be made if it is taken into account
that as an opposite influence the weight of a connection also affects the quality and
quantity of the interaction. This is shown in Fig. 11.19 as an extension of what is
depicted in Fig. 11.18. Such a model expresses that as soon as a connection of a
certain strength exists, this is confirming and maintaining itself as due to the
existence of this connection interaction takes place through this connection. This
can be modeled in a detailed manner by putting

dquantaiy p/df =, [Cq, ,(®a,5) — quantaiy ;]
dqualai,_ B/dt Nyl » [Cqry s (0a8) — qualaiy 5]Az
quantai, p(t + At) = quantai, y(t) + My, , [Cqr s (Wa (7)) — quantai, »(2)]At

B

qualaiy p(t + Ar) = qualaiy 5() + Ny, , [Cqris (0a,5(7)) — qualaiy 5(2)] At

Here ¢y, ,(...) is some combination function, for example, multiplication by
some factor, or a logistic function.

qualais g quantais g

N
ﬁlA B
qualaig ¢
(DA B

Xa

—
. u) g, ~ )
Quantal/\,p AD \—) quantaig c
aizp
Wp,c
qualal AD T
alD,c
quantalg,c

qualaip ¢

Fig. 11.19 Mutually affecting dynamic connection strengths and actual interaction
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11.10 Discussion

In this chapter, an overview of different types of networks describing social
interaction was presented, varying from small world networks, random networks,
scale-free networks to weighted networks in which connections have different
weights. Moreover, different types of dynamics for network models for social
interaction have been addressed in some detail, covering both dynamics within a
given network based on social contagion and dynamics of an adaptive network, for
which the network structure changes. For the latter type of (adaptive) dynamics
three different principles were addressed: the homophily principle, the more
becomes more principle, and the interaction connects principle. The model for the
homophily principle is based on Sharpanskykh and Treur (2014); the model for the
interaction connects principle was inspired by van Breda et al. (2012). It has been
shown how the Network-Oriented Modeling approach based on temporal-causal
network models as described in Chap. 2 applies well to the domain of social
interaction.

As an extension of the work described in this chapter, an integrative adaptive
temporal-causal network model has been designed by integrating models for social
contagion and both the adaptive network models for the homophily principle and
the more becomes more principle as discussed above; see Blankendaal et al. (2016).
This integrative model has been validated for an empirical data set involving
development of relations between teenagers.

An important role of social interaction is that they form a basis for diffusion or
contagion processes for various matters, for example, diseases, information, inno-
vations, opinions, emotions, behaviours, lifestyles. Monitoring and analysing the
dynamics of given diffusion or contagion processes is one thing. Many dynamic
models have been put forward to support such analysis, varying from agent-based
to population-based models. However, having such analysis means available, they
can be used for prediction as well, and also for what-if simulation: predicting what
will happen if some action is undertaken. More generally, methods can be devel-
oped to determine what types of network intervention actions can be undertaken
under which conditions in order to achieve some specific goal. Examples of such
goals are:

avoiding that an epidemic will develop

achieving that many persons will know about a new product that you bring out
achieving that more people will adopt a healthy lifestyle

achieving that elderly persons are not in a situation in which they have almost no
social contacts

As an example, persons with large numbers of connections may be identified
(for example, with thousands or even millions of followers on Twitter), as they may
play a crucial role to reach many nodes. As another example, in a strongly clustered
kind of network mutual influence or contagion can take place according to a kind of
repeated sequence of waterfalls, where at each step some time is passing to get a
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cluster affected, after which a next cluster is affected. In such a process the bridge
connections play an important role, so network interventions may focus on them. In
Valente (2010, 2012) more can be found on this area of network interventions.
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Part IV
Analysis Methods for Temporal-Causal
Network Models



Chapter 12
Where Is This Going

Verification by Mathematical Analysis

Abstract Within Network-Oriented Modeling based on temporal-causal network
models mathematical analysis of the dynamics of the behavior of the network
models can be performed. This chapter addresses the analysis of some types of
dynamic properties of a temporal-causal network model in an analytical mathe-
matical manner. Properties addressed describe whether some values for the states
exist for which no change occurs (equilibria), whether the values for these states
converge to such a value as a limit value (attracting equilibria), whether states will
show monotonically increasing or decreasing values over time (monotonicity), and
whether situations occur in which no convergence takes place but in the end a
specific sequence of values is repeated all the time (limit cycle). It is discussed how
such analyses can be used for verification of the (implemented) model. Any dis-
crepancies found, suggest there is something wrong in the implementation of the
model. In this chapter some methods to analyse such properties of adaptive
temporal-causal network models will be described and illustrated for a simple
example model, for Hebbian learning, and for adaptive network models for
evolving social interaction.

12.1 Introduction

Network-Oriented Modeling based on temporal-causal network models results in
dynamical models. Usually emerging dynamic properties of dynamical models can
be analysed by conducting simulation experiments. But some specific types of
properties can also be found by calculations in a mathematical manner, without
performing simulations. Examples of properties that can be analyzed in such a
manner are:

e Properties describing whether for some values for the states no change occurs
(stationary points or equilibria), and how such values may depend on the values
of the parameters of the model and/or the initial values for the states

© Springer International Publishing Switzerland 2016 323
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e Properties describing whether certain states in the model converge to some limit
value (equilibria) and how this may depend on the values of the parameters of
the model and/or the initial values for the states

e Properties describing whether some state will show monotonically increasing or
decreasing values over time (monotonicity)

e Properties describing situations in which no convergence takes place but in the
end a specific sequence of values is repeated all the time (limit cycle)

Such properties found in an analytic mathematical manner can be used for
verification of the model by checking them for the values observed in simulation
experiments. Typically such properties take the form of equations or inequalities for
values of one state in relation to values of connected states. If one of these prop-
erties is not fulfilled (and the mathematical analysis was done in a correct manner),
then there will be some error in the implementation of the model. In some cases, but
certainly not always, such equations or inequalities can also be solved in an ana-
Iytical manner in the sense that the value of one state is expressed in terms of or
compared to an arithmetical expression of the parameter values. However, for the
purpose of verification solving the equations or inequalities is not required. In this
chapter some methods to analyse such properties of models will be described in
particular in the setting of adaptive temporal-causal network models. They will be
illustrated for the example temporal-causal network model also used in Chap. 2 and
for two types of adaptive temporal-causal network models: one based on Hebbian
learning, and one based on the homophily principle for dynamic connection
strengths in adaptive networks modeling evolving social interaction.

To get the idea, first the general set up is discussed in Sect. 12.2. This is
illustrated in Sect. 12.3 by an analysis of a simple example (as discussed in Chap. 2,
Sect. 2.4.2), using sum and identity combination functions. In simulations it is
observed for this example model that when a constant stimulus level occurs in the
world, for each state its activation value increases from 0 to some value that is then
kept forever, until the stimulus disappears: an equilibrium state. In subsequent
sections three more general examples of this type of analysis for which equilibrium
states occur are addressed: for a scaled sum combination function (Sect. 12.4), for
Hebbian learning (Sect. 12.5), and for an adaptive network for social interaction
based on the homophily principle (Sect. 12.6). In Sect. 12.7 an analysis is discussed
for a case in which no equilibrium state occurs, but instead a limit cycle pattern
emerges.

12.2 Verifying a Temporal-Causal Network Model
by Mathematical Analysis

A stationary point of a state occurs at some point in time if for this time point no
change occurs: the graph is horizontal at that point. Stationary points are usually
maxima or minima (peaks or dips) but sometimes also other stationary points may
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occur. An equilibrium occurs when for all states no change occurs. From the
difference or differential equations describing the dynamics for a model it can be
analysed when stationary points or equilibria occur. Moreover, it can be found
when a certain state is increasing or decreasing when a state is not in a stationary
point or equilibrium. First a definition for these notions.

Definition (stationary point, increase, decrease, and equilibrium) Let Y be a state

e Y has a stationary point at t if dY()/dt = 0
e Yis increasing at t if dY(¢)/ds > 0
e Yis decreasing at t if dY(¢)/dt < O

The model is in equilibrium a t if every state Y of the model has a stationary point at
t. This equilibrium is attracting when for any state Y for all values of Y in some
neighbourhood of the equilibrium value, they increase when the value is below the
equilibrium value and decrease when the value is above the equilibrium value.

To illustrate these notions, recall the example from Chap. 2, with conceptual
representation depicted here in Fig. 12.1, and an example simulation shown in Fig.
12.2. Combination functions are the scaled sum function and the identity function,
and all connections have weight 1, except the connections to ps,, which have
weight 0.5.

In Fig. 12.2 it can be seen that as a result of the stimulus all states are increasing
until time point 35, after which they start to decrease as the stimulus disappears.
Just before time point 35 all states are almost stationary. If the stimulus is not taken
away after this time point this trend is continued, and an equilibrium state is
approximated. The question then is whether these observations based on one or
more simulation experiments are in agreement with a mathematical analysis. If it is
found out that they are in agreement with the mathematical analysis, then this
provides some extent of evidence that the implemented model is correct. If they turn
out not to be in agreement with the mathematical analysis, then this indicates that
probably there is something wrong, and further inspection and correction has to be
initiated.

Wss sensing S8s representing ~ STSs responding PSa executing €Sa
. - - ;r)
> S TN

amplifying
SIS, T
predicting

Fig. 12.1 Conceptual representation of an example model
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Fig. 12.2 Simulation example for the model depicted in Fig. 12.1 using identity and sum
combination functions for all states

Considering the differential equation for a temporal-causal network model more
specific criteria can be found:

dY(r)/dt = ny[aggimpact, (1) — Y(7)]

with
aggimpacty (1) = cy(ox, yX1(?), ..., 0x, yXi(?))

and X, ..., X; the states with connections to Y. For example, it can be concluded
that

dY(r)/dt > 0 < nylaggimpact, (1) — Y ()] > 0 &
aggimpact, (1) > Y(t) < cy(ox, yXi (1), ..., 0x, vy Xk (t)) > Y (2)

In this manner the following criteria can be found.

Criteria for a temporal-causal network model: increase, decrease, stationary
point and equilibrium

Let Y be a state and X1, ..., X the states connected toward Y . Then the following
hold

Y has a stationary point at ¢ < aggimpacty(r) = Y(r)

< Cy(()\)xhyxl([), ...,(kaﬁka(t)) Y(t)
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Y is increasing at t < aggimpact,(7) > Y(¢)

= Cy((DXlﬁyxl (t), . (ka’ka(t)) > Y([)

Y is decreasing at ¢t < aggimpacty(r) < Y(¢)

= cY((nthXl (l), . (ka‘yxk(l‘)) < Y([)

The model is in equilibrium at ¢ < aggimpact,(7) = Y(¢) for every state ¥
< cy(ox, yX1(2), ..., ox, yXi(1)) = Y(¢) forevery state Y

These criteria can be used to verify (the implementation of) the model based on
inspection of stationary points or equilibria in the following two different manners.
Note that in a given simulation the stationary points that are identified are usually
approximately stationary; how closely they are approximated depends on different
aspects, for example on the step size, or on how long the simulation is done.

Verification by checking the criteria through substitution values from a
simulation in the criteria

1. Generate a simulation

2. For a number of states Y identify stationary points with their time points ¢ and
state values Y(¢)

3. For each of these stationary points for a state Y at time ¢ identify the values X;(¢),
..., X(¢t) at that time of the states X, ..., X; connected toward Y

4. Substitute all these values Y(r) and X;(¢), ....Xi(r) in the criterion
Cy(O)thxl (f), . (’JXk,YXk(t)) = Y(I)

5. If the equation holds (for example, with an accuracy < 10~ %), then this test
succeeds, otherwise it fails

6. If this test fails, then it has to be explored were the error can be found

This verification method can be illustrated for the example of Figs. 12.1 and
12.2 as follows. For example, consider state ps, with numerical representation

pSa(t+ At) = pSa([) + npS,, [(Dresp()ndingsrss(t) + (Damplifyingsrse(t) - psa(t) ]At
The equation expressing that a state of ps, is stationary at time ¢ is
(Drespondingsrss(t) + O)amplifying SIS, (t) = Psa(l)

At time point ¢ = 35 (where all states are close to stationary) the following values
occur: ps,(35) = 0.99903, srsy(35) = 1.00000 and srs.(35) = 0.99863; moreover
Oresponding = Oamplifying = 0.5. All these values can be substituted in the above
equation:
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0.5 * 1.00000 + 0.5 % 0.99863 = 0.99903
0.999315 = 0.99903

It turns out that the equation is fulfilled with accuracy < 10>, This gives evidence
that the model as implemented indeed does what it was meant to do. If this is done
for all other states, similar outcomes are found. This gives still more evidence. The
step size At for the simulation here was 0.5, which is even not so small. For still
more accurate results it is advisable to choose a smaller step size. So, having the
equations for stationary points for all states provides a means to verify the imple-
mented model in comparison to the model description. The equations for stationary
points themselves can easily be obtained from the model description in a systematic
manner.

Note that this method works without having to solve the equations, only sub-
stitution takes place; therefore it works for any choice of combination function.
Moreover, note that the method also works when there is no equilibrium but the
values of the states fluctuate all the time, according to a recurring pattern (a limit
cycle). In such cases for each state there are maxima (peaks) and minima (dips)
which also are stationary. The method can be applied to such a type of stationary
points as well; here it is still more important to choose a small step size as each
stationary point occurs at just one time point. In Sect. 12.7 it will be discussed how
the analysis approach can be applied to such limit cycles.

There is still another method possible that is sometimes proposed; this method is
applied for the case of an equilibrium (where all states have a stationary point
simultaneously), and is based on solving the equations for the equilibrium values
first. This can provide explicit expressions for equilibrium values in terms of the
parameters of the model. Such expressions can be used to predict equilibrium
values for specific simulations, based on the choice of parameter values. This
method provides more than the previous method, but a major drawback is that it
cannot be applied in all situations. For example, when logistic combination func-
tions are used it cannot be applied. However, in some cases it still can be useful.
The method goes as follows.

Verification by solving the equilibrium equations and comparing predicted
equilibrium values to equilibrium values in a simulation

1. Consider the equilibrium equations for all states Y:
Cy((!)xlﬁyxl (l‘)7 . (,Ox/”ka(l‘)) = Y(l‘)
2. Leave the 7 out and denote the values as constants X; and Y

cy(ox, vX;, ..., 05 yX;) =Y
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An equilibrium is a solution Xy, ..., X; of the following set of n equilibrium
equations in the n states Xi, ..., X,, of the model:

Cx, ((DXI 1X1X1’ ceey (DX,,,XIXn) = Xl

cx, (Wx, x, Xy, - .., 0x,x,X,) =X,

3. Solve these equations mathematically in an explicit analytical form: for each
state X; a mathematical formula X; = ... in terms of the parameters of the model
(connection weights and parameters in the combination function ey, (..) , such as
the scaling factor in a scaled sum combination function); more than one solution
is possible

4. Generate a simulation

. Identify equilibrium values in this simulation

6. If for all states Y the predicted value Y from a solution of the equilibrium
equations equals the value for Y obtained from the simulation (for example, with
an accuracy < 1072), then this test succeeds, otherwise it fails

7. 1If this test fails, then it has to be explored were the error can be found

9]

In Sect. 12.3 it will be illustrated how this method works for the example
depicted in Figs. 12.1 and 12.2. In general, whether or not the equilibrium equa-
tions can be solved in an explicit analytical manner strongly depends on the form of
the combination functions cy(...). In a number of specific cases explicit analytical
solutions can be found. Three examples of this are addressed in subsequent
sections:

e for a (scaled) sum combination function (Sects. 12.3 and 12.4)
e for adaptive network models based on Hebbian learning (Sect. 12.5)
e for adaptive network models based on the homophily principle (Sect. 12.6)

However, there are also many cases in which an explicit analytical solution
cannot be determined, for example, when logistic combination functions are used.
In such cases equilibria can only be determined either by numerically solving the
equations by some numerical approximation method, or by observing the behaviour
of the model in simulation experiments. But in the latter case verification is not
possible, as then only simulation results are available. An additional drawback is
that in such cases specific values for the parameters of the model have to be chosen,
whereas in the case of an explicit analytical solution a more generic expression can
be obtained which depends, as a function, on the parameter values. For example, for
the cases described in Sects. 12.3—12.6 expressions can be found for the equilib-
rium values in terms of the connection weights (for which no specific values are
needed at forehand).
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12.3 Mathematical Analysis for Equilibrium States:
An Example

Are there cases in which the types of behaviour considered above can be predicted
without running a simulation? In particular, can equilibrium values be predicted,
and how they depend on the specific values of the parameters of the model (e.g.,
connection weights, speed factors)? Below, these questions will be answered for a
relatively simple example. Indeed it will turn out that in this case it is possible to
predict the equilibrium values from the connection weights (the equilibrium values
turn out to be independent of the speed factors, as long as these are nonzero).
As a first step, consider the sensor state ss;.

LPg, Sensing a stimulus: determining values for state ss;
dss(7)/dt = N [OgensingWSs (1) — 58,(7) ]

Having an equilibrium value means that no change occurs at #: dssy(7)/dt = 0. As it
is assumed that both 1 is nonzero, this is equivalent to the following equilibrium
equation for state ss;, with ws, and ss, the equilibrium values for the two states
ws, and ss;.

®sensing WS = SS¢

In a similar manner this can be done for the other states, resulting in the fol-
lowing equations:

equilibrium equilibrium

of state criterion

SS¢ (Dsensing W_Ss = gs

SISy mrepreseming gs = &s

PSa (Dresponding ﬁs + (Damplifying ﬁe = Ea
SIS, mpredicting PSq = SIS,

€54 0~)f:xeculing Ea = §a

These are five equations with 6 unknowns wsy, SS,, SI'Sg, PS,, SIS, €S,; however, the
state ws, can be considered given as it indicates the external stimulus. So the five
equations can be used to find expressions for the equilibrium values for the five
other states in terms of the connection weights my and ws,. Note that for the sake of
simplicity here it is assumed that W,mpiitying ANd Opreqiciing are not both 1. Then this
can be solved in an explicit analytical manner as follows. First two of them (the first
two equations) are expressed in the externally given value ws:
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gs - (Dﬂensmg WS,

SI'S; = representingSSy = representing Dsensing WS

Moreover, the third and fourth equation can be solved as follows:

®responding SIS + WamplifyingSIS, = PS a

(Dpredicting ps = Srs,

Substitute ®prediciing PSe fOr srs, in the third equation, resulting in the following
equation in ps, and srsq:

®responding SI'S¢ +wamphfymgmpredlctmgps - ps
This can be used to express ps, in srs,, and subsequently in wsq:
MrespondingSISy = (1 - wamplifyingwpredicling)ps

ps = respondingSI'Sg / (1 - (’)amplifyingmpredicting)

= Oresponding Prepresenting Dsensing WS / (1 — Mamplifying (Dpredlctmg)

Moreover, by the fourth equation it is found

SIS, = MpredictingPS

(Dpredlclmg(Drespondmg(’)representmg(Dsensmg ws / ( (Damplifying(»')predicling)

Based on these, the fifth equation can be used to get an expression for es,:

€S, = executing psu
= executing Dresponding Orepresenting Dsensing WS¢ / ( — Mamplifying Dpredicting )

Summarizing, all equilibrium values have been expressed in terms of the
external state ws, and the connection weights:

gs - (Dsensmgws

SIS, = O)representmgmqemmgws

Ea = (Drespondingwrepresenlingwsensingﬂs/ (1 - wamplifyingmpredicling)

SIS, = Mpredicting Presponding Orepresenting Msensing WS¢ / (1 - wampllfymgmpredlcnng)

€S, = Wexecuting Dresponding Prepresenting Dsensing WS / ( — Mamplifying (’Jpredicting)
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For example, if the external stimulus ws has level 1 this becomes:

4

= sensing

SIS = Mrepresenting Dsensing

p—sa = wrespondingQ)represenling@sensing/ (1 - 0)amplifying(»Opredicling)

SI'S, = Opredicting Presponding Orepresenting Dsensing / (1 - mamplifyingwpredicting)

€S, = Mexecuting Dresponding Drepresenting (Dsensing/ ( 1 - ®amplifying (Dpredicting)

Moreover if all connection weights are 1, except that Oyespondging = 0.5 and
Oamplifying = 0.5, as in the example simulation shown in Chap. 2, Sect. 2.4.2, the
values become:

D29
ps, =05/05=1
srs, =0.5/0.5=1
es, =0.5/05=1

Indeed in the example simulation in Chap. 2, Sect. 2.8, Fig. 2.21 it can be seen that
all values go to 1. The solution of the equilibrium equations in terms of the con-
nection weights can be used to predict that when the connection weights have
different values, also these equilibrium values will turn out different. Recall that the
CaS€ Wamplifying = 1 and Wpregiciing = 1 Was excluded. In that case the combined third
and fourth equation becomes trivial, as ps, is lost from the equation:

Oresponding IS¢ + (Damplifyingmprediclingpsu = psu
OrespondingSI'Sg 1 PSI = psu

OrespondingSISy = 0
srs, = 0

Here in the last step it is assumed that ®responding > 0. As a consequence by the first
two equations also ss; and wsg are 0, and by the fourth and fifth equation also the
values for the other states. It turns out that in this case there can only be an equi-
librium if there is no stimulus at all. As soon as there is a nonzero stimulus in this
case that Wamplifying = 1 and Wpregicing = 1, the values of ps,, srs, and es, increase
indefinitely to larger and larger values (and in particular do not stay within the
interval [0, 1]), as can be seen from simulations. Note that there was an additional
assumption made that ®esponding > 0. If, in contrast, Oresponding = 0, then still more
possibilities for equilibria are available. For example, in that case ps, and srs, can
have any value, but they have to be equal due to the fourth equation, but this value is
independent of the values of ws;, ss; and srsg, as there is no nonzero connection
between these parts of the graph. So, this would not be a very relevant case.


http://dx.doi.org/10.1007/978-3-319-45213-5_2
http://dx.doi.org/10.1007/978-3-319-45213-5_2
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The analysis above can also be done to find out whether or not the activation
level of a state is increasing. As a first step, again consider the sensor state ss;.

LPg, Sensing a stimulus: determining values for state ss,

dss, (1) /dt = Mg [OensingWss(£) — s84(2)]
SSS(I+AI) = SSS(Z) +nssl\- [msensingwsx(t) - SSX(t)]At

The activation value increases means
dss,(¢)/dt > 0 or ssy(t+ Ar) > ss(r)

This is equivalent to:
(Dsensingwss(t) - SSS(I) >0

This in turn is equivalent to the criterion that the impact on ss; is higher than the
current activation value:

OsensingWSs (1) > 584(7)

For example, when wsy(?) =1 and ®gensing = 1, then the criterion ®genging
ws,(f) > ss,(f) indicates the activation of state ss, will increase as long as it did not
reach the value 1 yet. This gives as additional information that the equilibrium value
1 of sensor state ss; is attracting: the value goes in that direction as long as it was
not reached.

In a similar manner this can be done for the other states, thus obtaining the
following criteria:

state is increasing if and only if

SSg Wgensing WSs(Z) > 884(f)

SIS Orepresenting SS5(f) > SI8(f)

PSa Oresponding STSs(f) + Wampifying STSe(f) > PSq(?)
SIS, Opredictiing PSa(t) > S18.(7)

€8y Ocxecuting PSall) > €8,(1)

12.4 Mathematical Analysis for Equilibrium States:
Scaled Sum Combination Function

The approach described above can be applied easily for the case of a scaled sum
combination function ci...) for each state X;; such a scaled sum function
ssumy, (. ..) with scaling factor %, is defined as
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ssumh(Vl, . Vk) = (V1+ «~~+Vk)/>\'i

Suppose the differential equation for some state X; connected to states X is given
by

dX;/dt = n,[aggimpact;(Xy, ..., X;) — X|]
where

aggimpact;(Xi, ..., Xi) = c;(01,X1, ..., 0 Xx) = ssumy;(01;X1, - . ., 0 Xk)
= ((Dl‘in + -+ (Dk,iXk)/ki

with ®;; the specific weights for the connections from X; to X;. In this case the
following holds:

IncreasingXi : Xi(t+ Al) > Xl'(l’) = ((Dl,in ([) + -+ (Dk,iXk(t))/ki > X,'([)
Equ111br1um of X; : Xi([ + Al) = X,'([) ~ ((Dl,iXI ([) + -+ (Dk,,-Xk(t))/Xi = Xi(l)
Decreasing X; : Xi(t+An)<Xi(t) < (00:X1(0)+ - + o Xe(2) /M <Xi(2)

In particular, the equilibrium equations for the states X; are

(X + - o Xy) /M =X

(01 Xy + - - +o0X) /A = Xy

This means that in an equilibrium state the value X; for a state X; may be a weighted
average of the equilibrium values X; for the states Xj, in particular when

M=+ o
Note that always at least one solution exists: when all are 0. But it is usually more
interesting to know whether nonzero solutions exist.
The equilibrium equations are equivalent to

01X+ - F o X =MX,

01Xy + - o Xy = M Xy
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or

(@11 —A)X + 01 X5+ - + 0 X =0

0, X + L +oi1X g+ (0 = )X + o X g+ F o X =0

01Xy + o+ o Xy g+ (orx — M) Xy =0

In general these linear equilibrium equations can be solved analytically, which in
principle can provide symbolic expressions for the equilibrium values of X; in terms
of the connection weights ;; and the scaling factor A,. However, for more than two
states (k > 2) such expressions may tend to become more and more complex, but
this depends on the number of these w;; which are nonzero, i.e., how many con-
nections between the states exist. For example, if all states have only one incoming
and one outgoing connection (a cascade or loop), then these equations can easily be
solved. In some cases no nonzero solution exists. This happens, for example, when
the values of the parameters are such that two of the equations in a sense contradict
each other, as in the equations X; — 2X; = 0 and X;-3X, = 0.

In some cases some properties of equilibrium values can be derived. For
well-connected temporal-causal network models based on scaled sum functions
with as scaling factor the sum of the weights of the incoming connections it can be
derived that all states have the same equilibrium value.

Definition 1 A network is called strongly connected if for every two nodes A and
B there is a directed path from A to B and vice versa.

Lemma 1 Let a temporal-causal network model be given based on scaled sum
functions:

dY/dl = nY[ZX,(}Jx_y > O(DX’YX /ZXA,UJX_Y > OO)X’Y - Y]

Then the following hold.

(a) Iffor some state Y at time t for all states X connected toward Y it holds X(t) > Y
(), then Y(¢) is increasing at t: dY(¢2)/dt > O; iffor all states X connected toward Y it
holds X(t) < Y(¢), then Y(¢) is decreasing at t: dY(¢r)/dr < O.

(b) If for some state Y at time t for all states X connected toward Y it holds X(t) > Y
(7), and at least one state X connected toward Y exists with X(t) > Y(t) then Y(¢) is
strictly increasing at t: dY(t)/dt > 0. If for some state Y at time t for all states X
connected toward Y it holds X(t) < Y(t), and at least one state X connected toward
Y exists with X(¢) < Y(¢) then Y(¢) is strictly decreasing at t: dY(t)/dt < 0.
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Proof of Lemma 1 (a) From the differential equation for Y(7)

dY/dt - nY[ZX.,O)X‘y > O(DX‘YX /ZX‘mxyy > O(DX‘Y o Y}
= nY[ZX.,oJXAy > omX’yX_Zx,mx_y > owaY]/Zx‘m” S oOXY
- nY[Zxﬁway > ovaY(X _Y)]/Zxﬁwx_y > oPX.¥

it follows that dY(r)/dr > 0, so Y(¢) is increasing at ¢. Similar for decreasing.
(b) In this case it follows that dY(#)/ds > 0, so Y(#) is strictly increasing. Similar
for decreasing. U

Theorem 1 (convergence to one value) Let a strongly connected temporal-causal
network model be given based on scaled sum functions:

dY/dt = T]Y[ZX,Q)X‘Y > O(DX’YX /ZX,(UX.Y > O(DX’Y_Y]

Then for all states X and Y the equilibrium values X and Y are equal:
X =Y. Moreover, this equilibrium state is attracting.

Proof of Theorem 1 Take a state Y with highest value Y. Then for all states X it
holds X < Y. Suppose for some state X connected toward Y it holds X < Y. Take a
time point ¢ and assume Z(¢) = Z for all states Z. Now apply Lemma 1b) to state
Y. It follows that dY(r)/dr < 0, so Y(¢) is not in equilibrium for this value Y. This
contradicts that this Y is an equilibrium value for state Y. Therefore the assumption
that for some state X connected toward Y it holds X < Y cannot be true. This shows
that X = Y for all states connected toward Y. Now this argument can be repeated for
all states connected toward Y instead of X. By iteration every other state in the
network is reached, due to the strong connectivity assumption; it follows that all
other states X in the temporal causal network model have the same equilibrium
value X as Y. From Lemma 1b) it follows that such an equilibrium state is
attracting: if for any state the value is deviating it will move to the equilibrium
value. O

12.5 Mathematical Analysis for Equilibrium States:
Hebbian Learning

It can also be analysed from the difference or differential equation when a Hebbian
adaptation process has an equilibrium and when it increases or decreases. More
specifically, assume the following dynamic model for Hebbian learning (e.g., Hebb
1949) for the strength ® of a connection from a state X; to a state X, with maximal
connection strength 1, learning rate 1 > 0, and extinction rate { > 0 (here X;(¢) and
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X,(t) denote the activation levels of the states X; and X at time #; sometimes the ¢ is
left out of X(¢) and simply X; is written). Also see Chap. 2, Sect. 2.10.

o(t+Ar) = o(t) + MX1(0)X2(1)(1 — (7)) — Co(r)]Ar
dw(r)/dr = nX1X2(1 — o(r)) — Co(r)

Note that also for the states X; and X, equations may be given, but here the focus is
on ®. From the expressions for ® it can be analysed when each of the following
cases occurs:

Increasing o : do()/dr> 0 < nNXiX(1-o))—CLo() >0
Stationary pointof @ : do(¢)/dt=0 < nX;Xz(1— o)) —Lw() =0
Decreasing o : do(t)/dt<0 & nX;X(1—-o0()) —Lo()<0

12.5.1 Analysis of Increase, Decrease or Equilibrium
Jor Hebbian Learning Without Extinction

To keep things a bit simple for a first analysis, for the special case that there is no
extinction (£ = 0), this easily leads to the following criteria
Increasing o:

nX1Xo(l —o(f)) >0 < o(r)<land both X; > 0 and X, > 0
Stationary point of :
X Xo(l-o(1)=0 & oif=1 oX =00X,=0
Decreasing o:
NX1X2(1 — o(r)) < Othis is never the case, asalways X; > 0 and o(z) < 1

So, in case that there is no extinction, the only stationary point is when ® = 1,
and as long as this value was not reached yet and both X; > 0 and X; > 0, the value
of o increases: the stationary point is attracting. Note that when X; = 0 or X, = 0,
also a stationary point for @ can be found: no (further) learning takes place; the
value of o stays the same independent of which value it has, so in this case any
value is a stationary point value. In simulations this indeed can be observed: as long
as both X; > 0 and X, > 0 the value of ® keeps on increasing until it reaches 1, but
if X; = 0 or X, = 0 then ® always stays the same.


http://dx.doi.org/10.1007/978-3-319-45213-5_2
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12.5.2 Analysis of Increase, Decrease or Equilibrium
Jor Hebbian Learning with Extinction

As a next step this analysis is extended to the case with extinction { > 0. In this case
the analysis requires slightly more work; here for convenience the ¢ is left out of the
expressions.

Increasing o:

nX1 X (1l — o) — (o

S NXiX; —nXiXo—{o> 0
S XX — ((+nXiXo)o > 0
< ((+ X1 Xo)o<nX X,

X1 X
PINPRL o o
L+ nXi1 Xz
1
) (whenbothX; > 0 and X, > 0)

ST+

Note that when X; = 0 or X, = 0, the value of ® is never increasing. Similarly
the following criteria can be found.

Stationary point of m:

X1 X
n XX (1l — 0) — o= Oﬁm:ﬁ
1
S ow=————— (when bothX; > 0O andX; > 0
1+C/(T]X1X2) ( : : )

NXiX(l-o) —{o=0<0=0 (whenX; =0o0rX, =0, and { > 0)

Decreasing o:

nXi1X;
X X%(1—0) —lo<0s 0> ——-
X1 Xa( ) —¢ e
1
&S o> -—————— (whenbothX; > 0 andX, > 0
) ! 2> 0)

nNXiXz(1 — o) —{o< 0 & always (whenX; = OorX, = 0, and { > 0,0 > 0)

In this more general case with extinction, depending on the values of X; and X,
there may be a positive stationary point value (when both X; > 0 and X, > 0) but
when { > 0 this value is < 1. Also 0 is a stationary point value (when X; = 0 or
X, = 0). This looks similar to the case without extinction. Moreover, as before, the
value of ® increases when it is under the positive stationary point value and it
decreases when it is above this value (it is attracting); for example patterns, see
Figs. 12.3 and 12.4.
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Fig. 12.3 Hebbian learning for n = 0.4, £ = 0.08, Ar = 0.1, and activation levels X; = 1 and
X, = 1. Equilibrium value 0.83 (dotted line)
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Fig. 12.4 Hebbian learning for n = 0.4, { = 0.08, Az = 0.1, and activation levels X; = 0.6 and
X, = 0.6. Equilibrium value 0.64 (dotted line)
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Fig. 12.5 Pure extinction for n = 0.4, { =0.08, Ar = 0.1, and activation levels X; = X, = 0;
equilibrium value 0

Note that this time this positive stationary point value (indicated by the dotted
line) is lower than 1. It may be close to 1, but when { > 0 it never will be equal to 1.
In fact the maximal value of this stationary point is when both X; = 1 and X; = 1,
in which case the value is

L
1+&/n

For example, for = 0.4, { =0.02, and X; = 1 and X, = 1, the positive sta-
tionary point value for @ is about 0.95. Another example is 1 = 0.4, { = 0.08, and
X, =1 and X, = 1, in which case the stationary point value is 0.83. The graphs in
Fig. 12.2 show what happens below this stationary point and above it. If for the
same settings for 1 and £, the activation levels are lower (X; = 0.6 and X, = 0.6),
then the stationary point value is lower too (0.64), and the learning is much slower,
as is shown in Fig. 12.3.

So, it is found that the positive stationary point value occurs for X; > 0 and
X, > 0, and in that case this stationary point is attracting. In contrast, the stationary
point value 0 does not occur for X; > 0 and X, > 0, but it does occur for X; = 0 or
X, =0, in which case no positive stationary point value occurs. In this case pure
extinction occurs: o is attracted by the stationary point value 0; this pattern is
different from the case without extinction. For an example of such a pure extinction
process, see Fig. 12.5. Note that, given the lower value of the extinction rate C, the
extinction process takes a much longer time than the learning process.

12.5.3 How Much Activation Is Needed to Let o Increase?

From a different angle, another question that can be addressed is for a given value
of ®, how high the value X; X, should be in order to let ® become higher. This can
be determined in a similar manner as follows:
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Increasing o: © < e (14 0/nXiX)o<]

1
1+¢/n(X1X>

<:>C/<T]X1X2)<1/(x)— 1= (1 —CO)/(D

= 1/(x1x2)<g(1 —0)/o

s XX, > %(&)/(1 — (D)

So, for activation levels X; and X, with X; X, > % /(1 — ), further learning takes

place, and below this value extinction dominates and will decrease the level of o.

12.6 Mathematical Analysis for Equilibrium States:
Homophily Principle

The connections between persons in a network describing social interaction may
change over time based on the homophily principle: the closer the states of the
interacting persons, the stronger the connections of the persons will become. In
Chap. 11, Sect. 11.7 it is shown how this principle may be formalized with as a
general template

doy p/dt = Ny plcas(Xa, Xp, 0ap) — 04 8]
for some combination function c,4 g(V;, V,, W) for which it is assumed that c, g

Vi, V2,0) > 0and cyg(Vy, Vo, 1) < 1.
The example used in this section is

cas(Vi, Vo, W) = W (G5 — (Vi — V)HW(1 — W)
In this case

do, p/dt = nA,B(TAz,B — (Xa — XB>2)03A,B(1 — 048)

In this section it is analysed which equilibrium values @, can occur for
4 p(?) and when m4 p(?) is increasing or decreasing.

The standard approach is to derive an inequality or equation from the differential
equation by putting dw, p(r)/dt = 0, dows g(r)/dt > 0 or dwa p(t)/dr < 0. For this
case this provides


http://dx.doi.org/10.1007/978-3-319-45213-5_11
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Increasing w4 p

d(,l)A’B( )/dt >0 < Na B(TAB (XA 7XB) )(DA‘B(l — wA,B) >0

Equilibrium of w, g

doas(t)/dt =0 < (12— (X4 — Xp) )oas(l — 045) =0

Decreasing w4

dosp(2)/dt <0 < nA"B(rAZ,B — (X4 —XB)z)(DA,B(l —wap) <0

For @4 g = 0 or 4 p = 1 the middle condition is fulfilled. This means that @, 5 = 0
and @, 5 = 1 are equilibrium values. Now assume 0 < w45 < 1. Then @y 5 (1 —
™A B) > 0, and therefore this factor can be left out, and the same applies to ny g > 0;
this results in:

Increasing w4 p

1 — (X4 —Xg)? >0 & |X4—Xp|<tus
Equilibrium of w4 p
— (XA —Xp)’=0 & |Xi—Xp|="Tap
Decreasing w4
— (X4 —X5)'<0 & Xy~ Xp| > as

This shows that for cases that | X4 — Xp | < T4 p the connection keeps on becoming
stronger until w4 3 becomes in equilibrium at 1. Similarly for cases that | X4 — Xp |
> 14 p the connection keeps on becomes weaker until m4 g becomes in equilibrium
at 0. This implies that the equilibria @, =0 and @,z =1 can both become
attracting, but under different circumstances concerning the values of X, and Xjp.

In exceptional situations it could be the case that | X, — Xz | = 14 p in which case
g4 p is also in equilibrium, with o4 5 having any value. So in principle the equi-
librium equation has three solutions

@, =0 or @,p=1 or [X4—Xp|=145and ©, hasany value

In Chap. 11, Sect. 11.7, Fig. 11.14 for such an adaptive network model an
example simulation is shown (for a network with nonzero initial weights for the
connections between all pairs of persons) where the connection weights all con-
verge to 0 or 1, and during this process clusters are formed of persons with equal
levels of their state. For more details, see Sharpanskykh and Treur (2014).


http://dx.doi.org/10.1007/978-3-319-45213-5_11
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The analysis above can also be done for similar but slightly more complex
variants of the model, of which the quadratic variant is described in Sharpanskykh
and Treur (2014):

cap(Vi, Vo, W) = W+Pos(ny g(tap — [Vi — V2l)) (1 = W) — Pos(—my 5(ta — [Vi — V2|))W
cas(Vi, Va, W) = W+ Pos(n, (v, 55— (Vi = V2)%)) (1 = W) = Pos(—n, (1,5~ (Vi = V2)*))W
cap(Vi, Va, W) = W+ Pos(n, 5(0.5—1/(1 +e °48M"2l=as)))) (1 — W)

— Pos(—m, 5(0.5—1/(1 + e 4eM-valran ) )W

where Pos(x) = (|x| + x)/2, which returns x when x is positive and 0 when x is
negative. As discussed in Chap. 11 these models make that the approaching of the
boundaries 0 and 1 of the interval [0, 1] of ® is slow, thus making ® not crossing
these boundaries, but ® departing from the neighbourhood of these boundaries is
not slow. In Sharpanskykh and Treur (2014) an analysis and example simulations
can be found using the second, quadratic model. As part of the analysis, there it is
also shown that different equilibrium values X, and Xz have a distance of at least
Ta.p, Which implies that at most 1/14 5 clusters can emerge.

12.7 Mathematical Analysis for Behaviour Ending
up in a Limit Cycle Pattern

Sometimes the values of the states of a model do not end up in an equilibrium
value, but instead keep on fluctuating all the time, and after some time they do this
according to a repeated pattern, called a limit cycle. The example model shown in
Figs. 12.1 and 12.2 can be extended to show such behaviour; see Fig. 12.6. In this
case it is assumed that action a directs the person (e.g., his or her gaze) away from
the stimulus s, so that after (full) execution of a stimulus s is not sensed anymore.
This type of behaviour can occur as a form of emotion regulation in order to
down-regulate a stressful emotion triggered by s (this is sometimes called atten-
tional deployment; e.g., Gross 1998). The effect of this is as follows. The presence
of stimulus s leads to high activation levels of sensor state and sensory represen-
tation for s, and subsequently for the preparation state and execution state of action
a. But then the action leads to its effect in the world which is suppression of the
sensor state for s. As a consequence the sensor state and sensory representation for
s, and also the preparation state and execution state of action a get low activation
levels. The effect is that there is no suppression of sensing the stimulus anymore
and therefore all activation levels become high again. And so it goes on and on,
forever (see also Fig. 12.8). At a longer time scale this type of pattern may also
occur in so-called on-again-off-again relationships. Note that this type of pattern is
also an element of the model discussed in Chap. 9. This type of behaviour can be
achieved by the following additions to the example model (see Fig. 12.7):


http://dx.doi.org/10.1007/978-3-319-45213-5_11
http://dx.doi.org/10.1007/978-3-319-45213-5_9
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Fig. 12.7 Example simulation showing a limit cycle

e a connection from the execution state es, of a to the world state ws, for effect
e of action a

e a connection from this world state ws, for e to the sensor state ss; of s

e a combination function for the sensor state ss,; of s that models that ws, makes
that s is not sensed

The aggregation used for ss, is modeled by the following combination function
¢, (V1, V), where V, refers to the impact @y, ¢, WS,(f) from ws, on ss, and V; to
the impact Oy, ss, WS((f) from ws, on ssg:

Cssx(Vla V2) = V](l + V2)

Since the connection weight mys, s, 1S chosen negative (it is a suppressing link),
for example —1, this function makes the sensing of stimulus s inverse proportional
to the extent ws,(#) of avoidance; e.g., sensing s becomes 0 when avoidance e is 1,
and V| when avoidance e is 0. According to this combination function the differ-
ence and differential equation for ss; are as follows:
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Fig. 12.8 Limit cycle for d; = 5 (learning), dy = 15 (pure extinction), and n = 0.2, { = 0.04.
Equilibrium value 0.83, ®.x = 0.72, @y, = 0.39 (dotted lines)

$S5( + At) = 88(1) + Mg, [Ows, 55, WSs (1) (1 — Ous, 55, WS () ) =584 (2) | At
dss,/dr = Mg [Ows, 55, WS () (1 — Ouys, 5, WSe (£)) —58(1)]

The combination functions for all states with only one connection toward it are
the identity function, except for es, in which case the advanced logistic function
alogistic, .(...) is used. The combination function for ps,, is the sum function or the
advanced logistic function alogistics .(...).

In Fig. 12.8 an example simulation with the model depicted in Fig. 12.7 clearly
shows how a limit cycle pattern emerges, with period 18.5.

Here all connection weights are 1, except the weight of the suppressing con-
nection from ws, to ssy, which is —1. Moreover, the steepness ¢ and threshold t for
ps, are 4 and 0.9, respectively, and for es, they are 40 and 0.7. The step size At was
0.1 and the speed factors 1 for es, and ws, were 0.4, and for the other (internal)
states m was 1.

For this simulation an analysis of the stationary points has been performed for
the maxima and minima in the final stage for all states. Recall from Sect. 12.2 the
equation expressing that a state Y is stationary at time ¢ is

aggimpact, (1) = Y(¢)
which is equivalent to

cY(le,yXl (t), R, (nXk’ka(t)) = Y(l‘)
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Table 12.1 Overview of the outcomes of a mathematical analysis for stationary points in a limit
cycle

WS, SSg SIS, SIS, PSa esy
Maxima

Time point 69.9 61.4 62.2 65.8 64.6 68.3
State value 0.86700 0.85401 0.83455 0.93859 0.94754 0.93975
Aggregated 0.86105 0.85001 0.83325 0.93713 0.94703 0.94012
impact

Absolute 0.00595 0.00400 0.00131 0.00146 0.00051 0.00037
deviation

Minima

Time point 60.6 52.2 53.0 57.1 56.1 59.4
State value 0.12553 0.14993 0.16699 0.29153 0.27012 0.04400
Aggregated 0.13033 0.15168 0.16689 0.29480 0.27159 0.04317
impact

Absolute 0.00480 0.00175 0.00009 0.00327 0.00147 0.00083
deviation

For example, for state ps, if the combination function chosen is the sum func-
tion, the aggregated impact is

aggimpaCtY(t) = mrespondingsrss(t) + O)amplifyingsrse (t)
Then the stationary point equation expressing that state ps,, is stationary at time ¢ is
mrespondingsrss(l) + O)amplifyingsrse (t) = psa(l)

It is such an equation that can be checked for the minima and maxima for each of
the states in the final stage of the simulation. Such results are shown in Table 12.1.
Here both for the maxima and for the minima the first rows show the time points at
which the stationary point occurs. The next row (state value) shows the values of
the right hand side of the above equation, followed by rows (aggregated impact)
showing the left hand sides of this equation, and then a row with the absolute
deviation between the values in the two rows above it.

It turns out that the stationary point equations are fulfilled with an average
accuracy over all states and stationary points of 0.002 and a maximal accuracy of
0.006, which both is <1072, This provides evidence that the implemented model is
correct in comparison to the model description. In Table 12.1 the more specific
numbers are shown for the different states. For the maxima the average deviation is
0.00226, and the maximal absolute deviation is 0.00595 (which occurs for state
ws,). For the minima the average absolute deviation is 0.00204, and the maximal
absolute deviation is 0.00480 (which again is for state ws,). Taken minima and
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maxima together, the overall average absolute deviation is 0.00215, and the max-
imal absolute deviation is 0.00595 (for the maxima of state ws,).

As another type example of the emergence of limit cycle behaviour, consider
that in a realistic context stimuli can be present for some time, but also may be
absent for certain periods according to fixed periods, for example, day/night
rhythms. As an example, for Hebbian learning, for activations based on stimuli that
return from time to time an analysis can be made about when there is enough
stimulation over time to achieve or maintain a value for the weight ® of some
connection. As an example, see the pattern in Fig. 12.7, where the upper graph
shows the levels of both X; and X, (alternating between O and 1) and the lower
graph shows how due to these activation periods, the periods of learning (d; = 5
time units) and pure extinction (dp = 15 time units) alternate. It turns out that there
is a form of convergence not to one specific value of w, but to a recurring pattern
that repeats itself; this is a specific case of a limit cycle, in this case induced by
environmental fluctuations. Note that for such cases the verification method
described above has problems with the minima or maxima due to the abrupt
transition from decrease to increase or conversely.

12.8 Discussion

In this chapter it was discussed how mathematical analysis can be used to find out
some properties of the behaviour dynamics of a network model designed according
to a Network-Oriented Modeling approach based on temporal-causal networks. The
content is based on Treur (2016). An advantage is that it can be used as an addi-
tional source of knowledge, independent of a specific implementation of the model.
By comparing properties found by mathematical analysis and properties observed
in simulation experiments some form of verification can be done. If a discrepancy is
found, for example in the sense that the mathematical analysis predicts a certain
property but some simulation does not satisfy this property, this can be a reason to
inspect the implementation of the model carefully (and/or check whether the
mathematical analysis is correct). Having such an option can be fruitful during a
development process of a model, as to acquire empirical data for validation of a
model may be more difficult or may take a longer time.

The techniques used for such mathematical analysis were adopted from Brauer
and Nohel (1969), Lotka (1956), Picard (1891, 1893), Poincaré (1882-1892). In
this literature many more techniques can be found than those covered in the current
chapter, for example, for the convergence speed for attracting equilibria (e.g.,
Mathunjwa and Temple 2006), but also for other types of properties. For example,
there is underlying theory that proves the existence of certain patterns, for example
theorems from Poincaré (1881-1882) that state that under certain circumstances for
two-dimensional systems (described by only two differential equations) limit cycles
will occur. These are beyond the scope of the current chapter. As some related work
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with a different perspective, in Mooij et al. (2013) it is addressed how equilibria of
first-order differential equations for the deterministic case can be related to
(non-dynamic) Structural Causal Models.
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Chapter 13
What Is Happening

Identifying and Verifying Emergent Patterns

Abstract In this chapter different types of dynamic properties that can emerge in
the behavior dynamics of a temporal-causal network are discussed. It is discussed
how they can be expressed both by conceptual and numerical-logical representa-
tions, and how they can be checked in a systematic manner for a given behavior
trace describing the states of a process over time. Moreover, it is discussed how
such checking can be automated by using a dedicated software environment. This
can be applied both in the context of monitoring and analysis of a real world
process (either off line or on the fly) and in the context of extensive testing, focusing
and analysis of a temporal-causal network model and imposed requirements during
its development.

13.1 Introduction

When applying Network-Oriented Modeling based on temporal-causal networks
such as discussed in Chap. 2, the temporal-causal relations in the network describe
the local mechanisms of a process considered from a local perspective. They can be
considered as local dynamic properties driving the emerging behaviour dynamics of
the overall process. For example, in (Ashby 1960; Port and van Gelder 1995) the
emphasis of the numerical representations is on the specification of such local
dynamic properties. However, the dynamic patterns as generated in a process over
time, can be described in a more global manner, by expressing temporal relations
over longer time periods. Such patterns of behaviour dynamics can be considered as
emergent phenomena, emerging from the (local) mechanisms that are represented
by the causal relations used to describe the model. Descriptions of such dynamic
patterns are called dynamic properties. As an illustration, some examples of such
dynamic properties are:

e eventually action a will be performed
as long as there is a bad feeling, no action a will be performed
if action a is performed, then at an earlier point in time stimulus s has been
sensed.
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Dynamic property expressions are used to describe such patterns; they basically
describe a temporal structure: references occur to different time points and order
relations between time points, and logical relations such as implications and
quantifiers over time are used.

A modeler may work from different viewpoints. One viewpoint is that the local
mechanisms are known and incorporated in the model, but the types of patterns that
may emerge from them are not known. Then by simulation experiments for dif-
ferent characteristics, as represented by settings for initial values, input from the
environment, and/or parameter values, such emergent patterns can be discovered.
Subsequently it can be investigated whether such patterns also occur in the real
world. If they actually do occur, this contributes to validation of the model: some
evidence has been obtained that the model describes the real world processes well.

Another viewpoint is that at forehand not only the local mechanisms are known
and can be incorporated in the model, but also at least some expected global
patterns are considered, for which it is assumed that they sometimes occur in the
real world. In this case dynamic properties describing such patterns can serve as a
kind of requirements for the model. The model will not be considered satisfactory
when it cannot generate these patterns for at least some of the characteristics
(settings for initial values, input from the environment, and/or parameter values).
Such dynamic properties can play a role in a modeling process similar to the role of
requirements within a software, knowledge or agent system engineering process, as
a way of focussing the process on what the system being developed is expected to
provide; e.g., (Pohl 2010; Pohl and Rupp 2011; van Lamsweerde 2009; Herlea et al.
1999, 2005; Ferber et al. 2001).

When the model does generate the patterns of dynamics described by the
requirements for certain settings, this can be considered a verification of the model
with respect to the requirements. When these requirements themselves are found to
correspond to patterns observed in the real world, this results in validation of the
requirements and when the model in turn was verified and found out to satisfy the
requirements, via them validation of the model is obtained.

In both cases a more detailed analysis of dynamic properties describing such
patterns is worthwhile, for example to find out for which characteristics exactly they
do occur: it is often an interesting challenge to analyse how their emergence relates
to local descriptions of underlying mechanisms together with initial values, input
from the environment, and their characteristics as expressed by the values of the
parameters.

Dynamic properties can be expressed in the form of a conceptual representation
or in the form of a numerical-logical representation. A conceptual representation is
informal (or semiformal), usually a (structured) natural language expression.
A numerical-logical representation is a formal expression. Expressing dynamic
properties in a formal format makes it possible to verify whether they hold in some
given empirical or simulated scenario in an automated manner. This can be helpful
in particular if the properties are complex or if many of such checks have to be
done, for example, by analysing the effects of a systematic variation of initial
values, environmental input and/or parameter values in a simulation experiment.
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In this chapter, first in Sect. 13.2 dynamic properties will be discussed and their
relation with temporal-causal network descriptions. Next, in Sect. 13.3 it is dis-
cussed how dynamic properties can be related to real world processes, either as a
way of validating these properties or as a way of monitoring these real world
processes. In Sect. 13.4 it is discussed how dynamic properties can be related to a
model descriptions, to obtain verification and/or personalisation of a model. In
Sect. 13.5 the way of expressing dynamic properties in the form of a conceptual
representation using (structured) natural language is discussed. In Sect. 13.6 it will
be discussed how numerical-logical representations for dynamic properties can be
expressed. These representations will be illustrated by various types of examples in
Sects. 13.7 and 13.8. Finally, in Sect. 13.9 it is discussed how numerical-logical
representations of dynamic properties can be checked in an automated manner.
Section 13.10 is a brief discussion.

13.2 Dynamic Properties and Temporal-Causal
Network Models

In this section it is discussed how dynamic properties can be used to describe
processes from an overall perspective, in contrast to temporal-causal network
models that describe the underlying local mechanisms of a process. First, in
Sect. 13.2.1 the idea of dynamic properties to describe dynamic patterns in the
overall dynamics is introduced, and the entailment relation between a model
description and dynamic properties is briefly discussed. In Sect. 13.2.2 it is dis-
cussed how dynamic properties can be identified and formulated based on emerging
dynamic patterns from a given temporal-causal network model, and in Sect. 13.2.3
it is discussed how dynamic properties can play a role as requirements for the
design of a model. In Sect. 13.7 different types of dynamic properties are distin-
guished and illustrated, together with their conceptual and numerical-logical
representations.

13.2.1 A Temporal-Causal Network Model Describing Local
Dynamics and Dynamic Properties Describing
Patterns Emerging in Overall Dynamics

A temporal-causal network model consists of a description of the states, and con-
nections of the network defining the local dynamic of the interactions between
states. During simulations using the model an overall process is generated from the
local dynamics based on these interactions. In this way a model reflects the way in
which overall processes in the real world can be analysed by looking at the
underlying local mechanisms. The emerging dynamic patterns shown in such an
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overall process cannot be found in the model description itself, but they can be
described in a different manner, by dynamic properties of the types as discussed in
this chapter. For example, consider a process of gossiping in which local interac-
tions are that each person knowing some rumour tells it to at all other persons he or
she knows. A dynamic property of the overall process in a strongly connected
network (see also Chap. 12, Sect. 12.4) is that eventually everybody knows the
rumour. This dynamic property is not described in the local interaction between two
persons, but in some sense results from these local interactions. This provides two
different, non-equivalent types of descriptions of the same process.

However, being different descriptions of the same process, the two types of
descriptions at least have some relation. This relation can be viewed as an entail-
ment relation: the dynamic properties describing a process from an overall per-
spective are entailed by the description of the temporal-causal network model
generating the process, plus initial values for states, environmental input and values
for parameters representing specific characteristics. For the gossiping example the
fact that every person who knows the rumour will tell it to all other persons who he
or she knows, together with an initial state that at least one person knows the
rumour, entails the dynamic property that eventually everybody in the network
knows the rumour, assuming that the network is strongly connected.

13.2.2 Identifying Emergent Dynamic Properties
Jor a Given Model

Although the emerging dynamic patterns shown in an overall process cannot be
found in the model description itself, still in some way they are entailed by the local
dynamics and some additional information concerning initial values of the states and
values of parameters. This entailment relation between model description and
emerging patterns is usually not known. Therefore, the emerging patterns are not
always predictable. In different simulation scenarios they can be observed, identified,
and described in the form of dynamic properties as addressed in this chapter. When
such dynamic properties have been described, by systematic simulation experiments
it can be explored whether and under which circumstances (initial values, envi-
ronment, parameter values) they emerge, thus getting some (often only partial)
knowledge about the entailment relation between model and overall process.

As an example, one type of dynamic pattern indicates that a process reaches a
state in which something has been achieved. Recall the example model from Chap. 2
. Recall that this model describes a number of local interactions between states:

a stimulus s in the world occurs (e.g., a place where they sell ice-cream)

a stimulus occurring in the world is sensed by the person

sensing a stimulus connects to a sensory representation of this stimulus

this sensory representation affects a preparation state for an action a (go there to
buy the ice-cream),
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e a feeling state is affecting this preparation state as well.

o this feeling state in turn is affected by the preparation state

e when the preparation state has a high activation level, it will make that the action
is performed.

Considering these local interactions, there may be reason to identify the fol-
lowing dynamic property for the overall process dynamics:

DP1 Always when stimulus s occurs in the world, at some point in time after this
execution of action a will occur

Note that for a state by ‘occur’ here it is meant that the activation level of the
state will be above some (high) value, for example, above 0.8.

Is this dynamic property DP1 entailed by the model description? The answer on
this question is not straightforward: it is not always the case, it depends. It can be
explored by simulation experiments whether and when this dynamic property DP1
occurs, depending on circumstances defined by parameter values used, such as
connection weights. For example, if the connection weights from sensory repre-
sentation of s to the preparation state for a, and from this preparation state to the
feeling state are relatively low, the preparation state will never reach a high level,
and the action will not occur. This illustrates how the entailment relation usually
depends on specific circumstances. Often only systematic simulation experiments
are a way to acquire some knowledge about this entailment relation.

13.2.3 Identifying Dynamic Properties Initially
as Requirements for a Model

In Sect. 13.2.2 a viewpoint was discussed based on an already given model. In the
current section a different viewpoint is addressed: the viewpoint for a model that is
still to be designed. Also in such a situation dynamic properties of an overall
process can be important. Suppose in the real world it was observed that somebody
sees the ice cream and goes there to get it, and the aim is to design a temporal-
causal network model that describes this based on internal mechanisms involving a
representation of the stimulus and a feeling about getting the ice cream. For this
situation dynamic property DP1 described above can be considered a requirement
for the model. So, this dynamic property can be identified and expressed at fore-
hand, before there is any model. During the design process this requirement can be
kept in mind to focus the design process on obtaining a type of model that is aimed
for. Here again the entailment relation discussed in Sects. 13.2.1 and 13.2.2 plays a
role, but now from a reverse viewpoint: given the required dynamic property how
can a model be designed that entails this requirement (under certain circumstances
concerning initial values, environmental input and parameter values).
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For this case also some intermediate states within the longer lasting process are
reached. These can also be expressed by required dynamic properties. Such prop-
erties can be used, for example, to analyse the overall process as a number of
sub-processes that, each result in the achievement of some milestone. For the above
example the sensory representation of s and feeling b could be considered mile-
stones, first from the occurrence of s to sensory representation of s (DP2), then from
sensory representation of s to feeling b (DP3), and finally, from feeling b to per-
forming action a (DP4), expressed by the following three dynamic properties:

DP2 Always, when stimulus s occurs in the world, at some point in time after this
a sensory representation of s will occur

DP3 Always, when a sensory representation of s occurs, at some point in time
after this feeling b will occur

DP4 Always, when feeling b occurs, at some point in time after this execution of
action a will occur

These more specific or refined requirements can provide still more focus for the
design process: try to design the model so that the refined requirements DP2, DP3
and DP4 are fulfilled. This suggests to focus on designing specific parts of the
model that realize a way to obtain a sensory representation of stimulus s, a way to
generate feeling b, and a way to initiate action a after this feeling, respectively.

Note that properties of the type discussed above are usually not the only relevant
type of requirements for a model. For example, satisfying the following dynamic
properties may be considered as required as well (for example, to prevent the
occurrence of the undesirable situation that the action is performed for no good
reason):

DPS Always, when execution of action a occurs, at some point in time before this,
feeling b occurred

DP6 Always, when a feeling b occurs, at some point in time before this, the
sensory representation of s occurred

DP7 The feeling level for b is always at most 1

DP8 When always the stimulus s in the world has level 1, for any two time points
the level for feeling b at the earlier time point is at most the level for feeling
b at the later time point (monotonically increasing feeling level)

For another example of the use of requirements or constraints in the design and
fine-tuning of a temporal-causal network model, see (Thilakarathne 2015).

13.3 Dynamic Properties Versus Real World Dynamics:
Validation, Monitoring, and Analysis

Expressing dynamic properties for an overall process can be based on different
sources. Not all sources lead to realistic dynamic properties, in the sense that in the
real world such properties hold. For example, one possible source is imagination.
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Using this as a source may lead to adequate dynamic properties, but it may equally
well lead to dynamic properties that may be interesting for artificially engineered
processes, but do not apply to real world processes. If real world processes are
meant to be modeled, for example, human mental processes, or social processes,
more care is needed to achieve some indication or guarantee that the dynamic
properties are realistic. This issue concerns validation of dynamic properties and is
discussed in Sects. 13.3.1 and 13.3.2.

Often realistic dynamic properties only occur in the real world under certain
circumstances. Sometimes it is useful to detect when they occur, for example,
because such circumstances need some specific interventions. In such cases
dynamic properties can be used for monitoring real world processes. Such usages of
dynamic properties are discussed in Sect. 13.3.3.

A software environment is available with an editor to express dynamic properties
and with a checker to automatically check such dynamic properties against given
traces (or sets of traces) describing a particular process over time by representing
what happens exactly at which points in time. Such an environment can be used for
different types of applications; in particular, it can be used in the types of work
described in Sects. 13.3.1 and 13.3.3 to automate the checking. The TTL envi-
ronment is such an environment; it is briefly described in Sect. 13.9.

13.3.1 Validating Dynamic Properties Against Actual Real
World Processes

Different methods can be used to validate dynamic properties against information
about real world processes. When primary sources of information are available, in
the form of recorded empirical traces over time representing what happens exactly
at which points in time, such validation may take place in an automated manner;
this is addressed in the current section. In other cases, there only may be secondary
sources, for example publications in empirically based literature in which patterns
over time are reported. This will be addressed in Sect. 13.3.2.

Suppose information on real world processes is available, in the form of
recorded empirical traces over time representing what happens exactly at which
points in time. These traces can be represented in a formal manner, for example for
a given trace tr by describing a relation trace(sr, X, 7, V) between states X, time
points ¢ and values V. These formal data about the trace and a considered dynamic
property can be used as input for a software environment that automatically checks
whether the dynamic property holds for the trace; see Sect. 13.9.
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13.3.2 Validating Dynamic Properties Against Patterns
Reported in Literature

In many cases, there only may be secondary sources of information about real
world processes, for example, in the form of publications in empirical literature in
which patterns over time are reported, but without giving exact time points and time
durations. Or, in such literature theories or hypotheses are described which them-
selves have a grounding in empirical research. In such cases of secondary sources
still validation is possible, but more linguistically and not automatically supported:
the dynamic property is linguistically compared to what is described in this liter-
ature. This literature can also be used to find inspiration to express the dynamic

property.

13.3.3 Monitoring and Analysis of Real World Processes
Using Dynamic Properties

When certain dynamic properties are realistic, but only occur in the real world
under certain circumstances, some other application can be made. To detect when
they do or don’t occur, dynamic properties can be used for automatic monitoring.
For example, a driver may be monitored, and if a number of imperfections in the
driving occur over a relative short time period, this can be detected automatically.
This application is similar to the one described in Sect. 13.2.1, but in this case the
trace is not given at forehand, but is generated on the fly, at runtime of the real
world processes. Using an automated software environment, as a form of analysis
of these monitoring data it can be checked on the fly whether at some point in time
some complex dynamic properties hold for these ongoing processes. A similar
analysis can also be made off line. In this way the dynamic properties and the
environment can be a basis for an application that addresses monitoring and
analysis of complex dynamic patterns in real world contexts.

13.4 Dynamic Properties Versus Model Dynamics:
Verification and Personalization

In Sect. 13.3 it was discussed how dynamic properties can be applied in relation to
real world processes. Another application of dynamic properties is by relating them
to a more in depth analysis of a computational model; this is addressed in the
current section. In Sect. 13.2 it was already discussed how dynamic properties can
be identified at forehand, before or while a model is being designed, or after a
model has been designed. The current section discusses more in detail how dynamic
properties can be applied in the latter situation, when a model is already given.
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First, in Sect. 13.4.1 it is discussed how extensive testing of the model can be done
using dynamic properties; in Sect. 13.4.2 it is discussed how characteristics of a
model, represented by values of its parameters, can be personalized for a given real
world situation.

13.4.1 Testing, Focusing and Analysis of a Model
by Verifying It Against Dynamic Properties

Using a simulation model a large variety of traces can be generated, for example, to
explore different initial values and input from the environment by systematically or
randomly varying them. If these generated traces are fed into the software envi-
ronment it will automatically be determined which of these traces have some
specified dynamic properties. As all of this can be automated, this can support
extensive forms of testing, focusing and analysis of a model, and, for example, be
used to find out how the emergence of some dynamic property depends on the
initial values, and external input from the environment over time, which can be used
to obtain some form of predictability of emergent properties depending on such
settings. Doing this, (partial) knowledge on the entailment relation between model
and dynamic properties is obtained.

13.4.2 Personalizing Characteristics of a Model Based
on Dynamic Properties

While generating different simulation traces, not only variations can be made for
initial values and input from the environment, but also variations for the charac-
teristics of the represented by the model’s parameters (for example, connection
weights, speed factors, steepness and threshold values). In this way different types
of persons can be represented by the model: the model is tuned to specific situa-
tions. Partly this can be done by hand, for example by assuming that certain types of
persons have strong or weak connections between some states, or higher or lower
thresholds for certain states. However, it can be difficult to find appropriate values
more precisely, especially when a model has many parameters. Addressing this
problem can also be automated using dynamic properties that characterize a person
that is to be modeled. The idea is then to generate large numbers of simulation
traces for different settings of the parameter values, thereby exploring as much as
possible the whole space of parameter values. This larger set of traces can be fed
into the checking environment, together with the dynamic properties that are
considered characteristic. The software environment will show as output which
parameter settings make that the dynamic properties are satisfied and which do not
make them satisfied.
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13.4.3 Validation of a Model Based on Validated Dynamic
Properties

The approaches discussed in Sects. 13.4.1 and 13.4.2 also provide a possibility to
validate a model indirectly via dynamic properties. Then it is assumed that the
dynamic properties themselves have been validated, for example as discussed in
Sects. 13.3.1 or 13.3.2. Due to this assumption, the dynamic properties can be
considered a valid representation of the real world’s properties. Then as a second
step the model can be verified and tuned so that the dynamic properties are satisfied
by the model. This provides another way to validate a model by a two-step process:

e verification of the model with respect to dynamic properties
e validation of the dynamic properties.

13.5 Conceptual Representations of Dynamic Properties

Dynamic properties can be expressed in different manners and types of represen-
tation, from conceptual representations to more formal representations. In the
current section conceptual representations are discussed. In Sect. 13.6 (formal)
numerical-logical representations are discussed.

Conceptual representations make use of natural language expressions. Such
natural language expressions could be of any form, or of a more structured form,
according to some standard structure. As natural language in general can be rather
ambiguous, it is better to use a structured natural language format that allows
excluding ambiguity as much as possible. Such a structured natural language format
for conceptual representations of dynamic properties will be introduced in this
section.

The expressions for dynamic properties describing dynamic patterns have in
common that they refer to states (or variables) and time points. More specifically,
within these expressions references (either explicitly or implicitly) occur to:

states

time points

relations between states and time points

state relations or state properties

temporal order relations between time points such as ‘before’ and ‘after’, ‘later’
logical relations such as ‘when .., ..’, ‘and’, ‘or’, ‘not’, ‘eventually’, ‘always’,
‘never’, ‘during’, ‘for some time point’, or ‘for all time points’

For example, consider a dynamic property

When state X occurs, at some later point in time state Y occurs
This dynamic property concerns the following elements (either implicitly or
explicitly expressed):
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. states Xand Y

. time points

. relations between states and time points

. temporal relation between two time points later

. state relations or state properties occurs

. implication when .., ..

. existential time quantifier some .. point in time
. universal time quantifier

Sometimes some elements are left implicit in natural language expressions, such
as time points, relations between states and time points, or quantifiers. In the above
example, indeed these four elements do not occur explicitly in the expression; they
are implicitly implied by the following expressions:

. time points when ..., ...

at ... point in time ...
. state relations or state properties X occurs, Y occurs
. relations between states and time points when state X ..

point in time state Y ...

. universal time quantifier when ..

’

Making the time points explicit by indicating them by some names, such as , ¢
or ty, 1, .. provides an expression that is more clear and less ambiguous. Similarly
the state properties ‘state X occurs’, and ‘state Y occurs’ can be made less
ambiguous by expressing them more explicitly as ‘state X has level > 0.8’, and
‘state Y has level > 0.7’. These two reformulations provide a much more explicit
expression for the dynamic property:

At any point in time ¢, when at ¢ state X has level > 0.8,
at some later point in time ¢’ state Y has level > 0.7

Or, using the notation ¢' > ¢ for ‘¢’ later than #’:

At any point in time ¢, when at ¢ state X has level > 0.8,
at some point in time ¢' > ¢ state Y has level > 0.7

In this reformulation also the relation between states and time points has become
more explicit. Finally, also the time quantifiers can be made more explicit and
expressed in a standardized manner, thus making also them less ambiguous. For
example, the expression ‘at any point in time ¢’ can be expressed in a standardized
manner by ‘for all time points #’, and ‘at some ¢” can be expressed by ‘there exists a
t”:
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Table 13.1 Elements used in conceptual representations

Element Conceptual representation
State X, Y, ...
Time points Lt t, t, ...

Relations between states and time points

at time ¢ state X ...

Temporal relations between time points

t'>tt'<t,t' >t < t+d

State relations or state properties > .= .<

Implication when ..., ...; implies ..., ...; ... implies ...
Conjunction ..and ...

Disjunction .. or ...

Negation not ...

Universal time quantifier

for all time points 7 ...

Existential time quantifier

there exists a time point 7 ...

Universal value quantifier

for all values V ...

Existential value quantifier

there exists a value V ...

Universal state quantifier

for all states X ...

Existential state quantifier

there exists a state X...

Universal trace quantifier

for all traces tr ...

there exists a trace tr ...

Existential trace quantifier

For all time points ¢, when at ¢ state X has level > 0.8,
there exists a point in time ¢’ > ¢ such that at ¢’ state Y has level > 0.7

More in general, the standard elements used for conceptual representations of
dynamic properties are as shown in Table 13.1.

A state relation relates states and their values to each other and to other values.
Examples of state relations are:

e The level of state X at time ¢ is at least the level of state Y at time ¢
e The level of state X at time ¢' is at most 0.05 higher than the level of state Y at
time ¢

A state relation is instantaneous, when it refers to only one time point. The first
state relation listed above is instantaneous, while the second one is not. A state
relation involving only one state X is called a state property for state X; examples of
state properties are (here the first one is an instantaneous state property and the
second one is not instantaneous):

e The level of state X at time ¢ is at least 0.6
e The level of state X at time ¢’ is at least 0.1 higher than the level of state X at
time ¢

The above listed elements can be used to express a dynamic property in a more
standard and less ambiguous way. This textual format can be structured in the
following form:
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For all
time points ¢,
when
at ¢ state X has level > 0.8,
there exists
a point in time ¢' > ¢ such that
at ¢' state Y has level > 0.7

Instead of the (prefix) expression ‘when .., ..., also the synonymous expression
‘... implies ...” (infix form), or ‘implies ..., ...” (prefix form) can be used:
For all

time points ¢,
at ¢ state X has level > 0.8
implies
there exists
a point in time ¢’ > ¢ such that
at ¢’ state Y has level > 0.7

For all
time points ¢,
implies
at ¢ state X has level > 0.8,
there exists
a point in time ¢’ > ¢ such that
at ¢' state Y has level > 0.7

This format makes more clear what the different parts of the expression are, and
in particular in which part of the property expression a time variable occurs (the
scope of the variable). It can also be depicted as a box-in-box structure as shown in
Fig. 13.1.

For all

time points ¢

implies

at  state X has level > 0.8
there exists

a time point ¢’ > ¢ such that
at ¢’ state Y has level > 0.7

Fig. 13.1 Graphical conceptual representation of an example dynamic property as a box-in-box
structure
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at time ¢’ state Y has level > 0.7

for all
|: time point ¢
implies
|: at time ¢ state X' has level > 0.8

there exists

|: time point ¢’ > ¢
at time ¢’ state Y has level > 0.7

Fig. 13.2 Graphical conceptual representations of an example dynamic property as two variants

of a tree-structure

These box-in-box structures are called the nesting of the expression. For
example, the last line about state property is three levels deep in the nesting. This
structure can also be depicted graphically in different variations of a tree structure,

as shown in Fig. 13.2.

To illustrate this for some other examples, using these standard elements
dynamic properties DP4 to DP7 from Sect. 13.2 can be expressed by a conceptual

representation as follows:

DP4 Forall
time point ¢,
when
at ¢ execution of action a has level > 0.8,
there exists
a time point ¢'<¢ such that
at ¢’ feeling b has level > 0.8

DP5 For all
time point ¢,
when
at ¢ feeling b has level > 0.8,
there exists
a time point ¢'<¢ such that
at ¢’ the sensory representation of s has level > 0.8
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DP6 Forall
time point ¢,
at ¢ the feeling for b has level < 1

DP7 When
for all
time points ¢
at ¢ stimulus s in the world has level 1,
for all
time points ¢, &, with ,>#,
the level for feeling b at 7, is at most the level for feeling b at #,

The properties as discussed above are of different types. In Sect. 13.7 such types
will be distinguished and discussed in more detail.

By expressing dynamic properties using the different elements in a standard
form, conceptual representations of them are obtained, that are less ambiguous
compared to arbitrary natural language expressions. Moreover, it becomes easier to
transform these conceptual representations into numerical-logical representations,
as is discussed in Sect. 13.6.

13.6 Numerical-Logical Representations of Dynamic
Properties

In Sect. 13.5 it already became clear that expressing dynamic properties involves
referring to state relations and time points. Conceptual representations have been
introduced taking these into account. In the current section more formal repre-
sentations are introduced: numerical-logical. Here the term ‘numerical’ concerns the
way in which state relations and time points are represented based on (real) num-
bers. The term ‘logical’ refers to the logical structure that can be identified in a
dynamic property. A numerical-logical representation provides a formalisation of
both aspects, and makes it possible to use computational methods to analyse or
verify dynamic properties.
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13.6.1 Numerical Representations of State Relations

A state relation relates states and their values to each other and to other values. In
Sect. 13.5 conceptual representations of state relations were expressed using
phrases such as ‘at time ¢ state X has level ...’. In the numerical representation of
temporal-causal network models, already a numerical notation for the level of state
X at time ¢ was used, namely X(z). This will also be adopted for the state relations
within numerical-logical representations of dynamic properties. Using this, exam-
ples of numerical representations for state relations are:

X(tz) < Y(l]) +0.05
X(t)—Y(t)>0.5

Similarly, examples of numerical representations for state properties are

X(r)<0.3
X(12) <X(1;) + 0.02

State relations can involve more complex arithmetical expressions and multiple
states and time points; for example, a numerical representation of the dynamic
property that the values of states X and Y are always close to each other can be
expressed as

For all time points ¢ it holds ABS(X(r)—Y(z)) <0.05

A numerical representation of the dynamic property that the values of states
X and Y are close to each other for multiple time points #; and f, can be expressed
using, for example,

(@012 + K(e)-vw))/2) <005

In more detail, time expressions, numerical term expressions and state relations
are defined as follows

Sorts

The different types of elements can be made more explicit by assuming a sorted
predicate logic, for example with a sort TIME for time points. Then the variables
indicated by ¢, t', t1, t», .... are of sort TIME. Similarly sorts such as REAL, STATE
and TRACE can be used, each with the variable notation (possibly with subscripts
or primes’) shown and with equality relation = , and TIME and REAL also with an
ordering relation <:
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variable sort contains

t TIME time points
Vv REAL real numbers
X, Y STATE states

tr TRACE traces

To be able to check a dynamic property against a trace, each sort needs to
contain only a finite number of instances (constants for names). For the sort TIME,
this finite number of time points can be derived from the trace that is used, which
itself only contains a finite number of time points. For the sort REAL this has to be
specified, for example, by using the real numbers within the interval [0, 1] in three
decimals. For the sort STATE the instances are the states (names) actually used in
the model that is considered, and for the sort TRACE the finite number of traces
(names) considered.

Time representations
Time representations are numerical expressions of sort TIME and can be of the
following types:

1. tis a time expression for each constant or variable ¢ for a time point; time points
are real numbers

2. t+ D and ¢t — D are time expressions where 7 is a constant or variable for a time
point and D a constant or variable for a real number (sort VALUE)

In this definition, time expressions are kept simple. If more complex time
expressions are required, item 2. easily can be extended to more complex numerical
expressions.

Numerical term representations
Numerical term representations are expressions of sort VALUE built inductively as
follows:

1. Vis a numerical term representation, for each constant or variable V for a real
number

2. te is a numerical term representation for each time expression te

3. X(t) is a numerical term representation for any state name X, and time expression
t

4. V(tr, X, ) is a numerical term representation for any constant or variable for
state X, trace fr, and any time expression ¢

5. f{nte,, nte,) and g(nte,) are numerical term representation for any numerical
term representations nte; and nte, and any binary arithmetical functions f :
VALUE x VALUE — VALUE and unitary arithmetical functions g: VALUE
— VALUE.

Note that here in 3. and 4. alternative notations are used for the value of a state
X at time ¢; here for each state X a function X: TIME—VALUE is assumed, and as
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an alternative one more generic function V: TRACE x STATE x TIME —
VALUE is assumed. They indicate the same values, but the numerical term
expressions V(tr, X, t) in 4. enables to refer explicitly to state X and/or trace tr and
to use quantifiers over states and traces (this is sometimes called reification). The
expression V(zr, X, t) has to be used when variables and quantifiers over multiple
traces and/or states are involved; see Sect. 13.7.3 for types of dynamic properties in
which this happens. In all other cases also just the representations described in 3.
can be used for the value of a state X at time . In 5. the standard arithmetical
functions can be used, such as +, -, *, /, 2, VA By 5. in combination with 2. and 3.
it is possible to express, for example, the speed of change (X(t,) — X(t;))/(t, —t;) of a
state X from time ¢, to t,.

Numerical state relation representations

State relation representations are expressions of the form R(nte;, nte,) where nte;
and nte, are numerical term representations and R is a binary relation, taken
from=,<,>, <, >.

Examples of state relations are a; < ap, a; = az, a; < az, a; > a, a; > a
where a;, a, denote state terms such as V(tr,, X, t), or X,(t), variables or constants
such as € or an arithmetical expression using such elements, such as ABS(X(z,) -
ey), also denoted as |X(1,) - ex].

13.6.2 Using Numerical Representations Within a Dynamic
Property Expression

Using the numerical representations X(z) and Y(t') for the relation between states
and time points, the dynamic property considered conceptually in Sect. 13.5 can
also be written as follows:

For all
time points ¢,
when
X1)=0.8,
there exists
a point in time ¢’ > ¢ such that

Y(t)>0.7
Instead of the prefix expression ‘when ..., ...”, also the synonymous infix
expression ‘... implies ...’, or prefix expression ‘implies ..., ...” can be used:
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For all
time points ¢,
X(1)=0.8
implies
there exists
a point in time ¢' > ¢ such that
Y(t)=0.7
Or
For all
time points ¢,
implies
X(1)=>0.8,
there exists
a point in time ¢' > ¢ such that
Y()=0.7

Moreover, the properties DP4 to DP7 from Sects. 13.2 and 13.5 can also be
expressed as:

DP4 Forall
time point ¢,
es,(?) > 0.8,
implies
there exists
a time point #<t such that
fsy(t) > 0.8

DP5 Forall
time point ¢,
fsy(1) > 0.8,
implies
there exists
a time point ¢'<t such that
srsg(t)>0.8
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DP6 Forall
time point ¢,
fS},(Z) <1

DP7 For all
time points ¢
ws(0) =1,
implies
for all
time points ¢, t, with £,> ¢
f8y(t1) < fsp(82)

13.6.3 Numerical-Logical Representation of a Dynamic
Property Expression

Usually a dynamic property involves a number of state relations, but these are
embedded in a structure of temporal and logical relations between them. For
example, consider a conditional achievement property:

For all
time points ¢,
when
X()>0.8,
there exists
a point in time ¢’ > ¢ such that
Y(t)>0.7

At the basic level this dynamic property involves the two state relations
X(t) > 0.8 and Y(¢') > 0.7. But in addition it involves the following logical
relations between these state relations; these can be represented by a formal logical
representation as shown in the third column:

. universal time quantifier relation for all time points ¢ vt

. implication relation when ..., ... —

. existential time quantifier relation there exists a time point ¢’ 3¢
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Table 13.2 Conceptual and formal representations for logical relations
Logical relation Conceptual representation Formal logical
representation
Implication when ..., ...; implies ..., ...; ... L=
implies ...

Conjunction ..and ... LA
Disjunction .. or ... Vo
Negation not ... I
Universal time quantifier | for all time points 7 ... V...
Existential time quantifier | there exists a time point 7 ... Jr ...
Universal value quantifier | for all values V ... vV ...
Existential value there exists a value V ... Jv...
quantifier
Universal state quantifier | for all states X ... vX...
Existential state quantifier | there exists a state X ... 3X...
Universal trace quantifier | for all traces #r ... Vir ...
Existential trace quantifier | there exists a trace #r ... dtr...

So, a logical implication relation ‘when .., .., J, ¢ implies ..., ...7 is

expressed formally as —, and universal and existential quantifiers by V and 4,
respectively. Then, the (formal) numerical-logical representation for the above
dynamic property is

Vv [X(ll) >0.8 — ﬂl‘z[lg >H A Y(lg) 207]]

This is a formal expression in temporal predicate logic, using ordering relations
such as > for time points and values, and function symbols X(?) from time points
to values for each state X. Notice the use of [ and ], or ( and ), to indicate what
belongs together, and in particular what falls within the scope of a quantifier. In
Table 13.2 an overview is shown of different logical relations and their conceptual
and formal representations.

Numerical-logical dynamic property representations
Numerical-logical dynamic property representations are defined inductively on top
of the numerical state relation representations as follows

1. Each numerical state relation representation is a numerical-logical dynamic
property representation
2. If DP and DP’ are numerical-logical dynamic property representations then

DP ADP',DP\ DP',DP — DP',~DP

are numerical-logical dynamic property representations
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3. If DP is a numerical-logical dynamic property representation, then

V¢ DP,3t DP,vV DP,3V DP

are numerical-logical dynamic property representations, where ¢ is a variable
over time points, and V over values.

. If DP is a numerical-logical dynamic property representation in which no
numerical expression Y(z) occurs for any Y and ¢, but only numerical expressions
of the form V(tr, Y, 1), then

VX DP,3X DP,Ntr DP,3tr DP

are numerical-logical dynamic property representations, where X is a variable
over states, and #r over traces. Note that, when one of VX, 3X, V¢r, or 3¢r is to be
applied, and in DP there still are occurrences of Y(#) for Y and ¢, these
occurrences can be replaced by V(tr, X, ) after which a quantifier X or #r can be

applied.

Usually some abbreviations are used:

d>H A

abbreviates dt, [ 1 HANA]

Vi, >t A

\A1\%

abbreviates Vi, [ 1 Hh —A]

for any property A, and similarly for other ordering relations and quantifiers. For
multiple occurrences of a universal or an existential quantifier usually the following

abbreviation is used:

Vi, 1, A abbreviates Vt,Vt, A
dt, 1 A abbreviates dn 3, A
Vi, X A abbreviates Vi VX A

Both abbreviations can be combined, for example

dt,t, >4 A

abbreviates

dt, [>t & A

Vitt, > 1 A

abbreviates

th,tz [tz > tl H14]

In this way the dynamic properties DP4 to DP7 from Sects. 13.2 and 13.5 can be
expressed by numerical-logical representations as follows:

DP4 Vi [es,(f) > 0.8 — ' <1t fsy(t) > 0.8 ]
DP5 V[ fs,(r) > 0.8 — 3" < 1srs,(t") > 0.8]
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DP6 Vi fs,(1) < 1
DP7 [Viwsy) =1]— [V, o > 1, fsp(t1) < f54(82) |

13.7 Types of Dynamic Properties and Their
Representations

In this section a number of specific types of dynamic properties are discussed. Note
that not every possible dynamic property is of one of these types, and the different
types of properties are not assumed to be disjoint. In Tables 13.1, 13.2 and 13.3 it is
shown how they can be expressed in conceptual and formal logical representations.

13.7.1 Basic State Relation, Achievement, Grounding,
Representation, Ordering and Monotonicity
Properties

The first types of dynamic properties discussed relate the occurrence of states at
different time points with longer time periods between them: achievement prop-
erties, grounding properties, representation properties, ordering properties, and
monotonicity properties.

Basic state relation properties

A first type of dynamic properties considered concerns basic state relations. They
express direct relations for levels of specific states at specific instances of time
points. For example:

e At time point 20 the level of state Y is higher than the level of state X at time
point10

Basic state relation properties are expressed in terms of ground state relations; no
variables or quantifiers are used. In that sense they are rather simple. But they can
be quite relevant when a model is compared to a real world pattern for which
empirical data on specific state levels at specific time points are given. For example,
suppose empirical data are available for state instances X, ..., Xjs and instances of
time points t;, ..., ty, by values V;; for these states X; at these time points t;. In
general such empirical data can be represented as a set of triples (X, t;, V,;) for
i=1,2,..,Mandj=1,2, ..., N, where X;, t;, V;; refer to ..specific instances of
states, time points and values:

(X4, V)5 -0 (X tys V),

(XM7E17XM,1)7 ey (XM?IN?XMﬁN)
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Then the dynamic property

DP V(trvxhh)ZYI,IA"'AV(”‘)XDEN):21,N/\
V(tr, Xy t) = Vg Ao AV, Xy, ty) = Vi

is a basic state relation property expressing that in trace #r (for example generated
by simulation) for each i and j the value of state X; at time point t; is equal to V.
This can also be expressed in a short notation

NijV(tr, X, 4) =V,

i.f
where A;; denotes the conjunction for all i and j.

Such a dynamic property DP may not hold in a strict sense for a given simulation
trace tr, but it may be found out that it is fulfilled approximately in the sense that the
values of states X; at these time points t; in the simulation trace # may not be
exactly the same as the empirical values, but are also not that different from them.
This can be covered by expressing (slightly) less strict variants of dynamic property
DP. For example, the following less strict variant of this basic state relation property
DP may hold, in which case it asserts that DP holds approximately, with accuracy
D; it expresses that the absolute values of the differences are at most a given small
positive number D:

DP(D) [V(tr, X 1) = Vil <SDA A V(@ X, ty) — Yuv| < DA
[V(er, Xy t1) = Viara| SDA AV (tr, Xy, ty) — Vg n| <D

or in short notation

/\i,ilv(tr7 X, Ij) _yi,jl <D
In Chap. 14 it will be pointed out how this can be exploited by heuristic search
methods to find appropriate parameter values to approximate the empirical data.

Achievement properties

Next, properties are considered that indicate that eventually a process reaches a kind
of final or intermediate state in which something has been achieved. In contrast to
basic state relation properties as described above, here the time point at which it is
achieved is not prescribed. An achievement property for the simple example model
from Chap. 2 is:

DP1 When stimulus s occurs, action a will occur

Other properties are

e After a good feeling about its predicted effect the action will occur
e After the stimulus and a good feeling about its predicted effect the action will occur
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In a conditional form an achievement property can be expressed as ‘always if
state X occurs, then at some later time state Y occurs’. For the case that some
intermediate state within a longer lasting process is reached, this type of property
can also be considered a milestone property. Such properties can be used, for
example, to analyse the overall process as a number of sub-processes that, maybe
depending on other milestones already achieved, each result in the achievement of
some milestone. Here Y is a milestone and X can be a preceding milestone.

A time-constrained achievement property has a built-in limitation on the timing
of the action:

e When stimulus s occurs, action a will occur within 10 s

When intermediate states within a longer lasting process are reached, that can
also be expressed as achievement properties. As discussed in Sect. 13.2 for the
example model the sensory representation of s and feeling b could be considered
milestones, first from the occurrence of s to sensory representation of s (DP2), then
from sensory representation of s to feeling b (DP3), and finally, from feeling b to
performing action a (DP4), expressed by the following three milestone properties:

DP2 Always, when stimulus s occurs in the world, at some point in time after this
a sensory representation of s will occur

DP3 Always, when a sensory representation of s occurs, at some point in time
after this feeling b will occur

DP4 Always, when feeling b occurs, at some point in time after this execution of
action a will occur

These three dynamic properties DP2, DP3, DP4 can be considered a refinement
of the overall achievement property DP1; e.g., (Herlea et al. 1999, 2005; Ferber
et al. 2001). A conceptual representation of such a refinement can be graphically
depicted as shown in Fig. 13.3.

A refinement can also be expressed by the following logical relation:

DP2 & DP3 & DP4 = DP1

This refinement relation and the associated logical relation show that the re-
quirement for the model as a whole can be satisfied when the model is designed in
such a manner that it satisfies refined requirements DP2, DP3 and DP4. As

Fig. 13.3 Refinement DP1
relation for a dynamic

property

DP2 DP3 DP4
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discussed in Sect. 13.2 in this way such a refinement can provide a focus for the
design process by designing the model so that the refined requirements DP2, DP3
and DP4 are fulfilled.

Grounding properties

Grounding properties point at a necessary condition for some achieved state at some
point in time #, which should have occurred before that time point. Some grounding
properties for the simple example model from Chap. 2 are:

e No action without a good feeling about it
if an action occurs, then earlier there was a good feeling about its predicted
effect

e No feeling before a partial response:
a feeling does not occur before a partial preparation occurs

e No full preparation without a good feeling:
a full preparation does not occur before a feeling occurs about its predicted
effect

Representation properties

Another type of properties considered is formed by representation properties.
These are properties that express how an internal (mental) state relates to external
states (or sensor and/or execution states) in past and/or future times; e.g., (Kim
1996, pp. 184-185, 191-194, 200-202). In particular, the notion of representation
based on relational specification as discussed in (Kim 1996, pp. 200-202) is
adopted here. This considers the representational content of a mental state as being
based on the specification of a representation relation between this mental state and
certain states of affairs in the world distant in space and/or time. Such states of
affairs can be described and formalised as a state property or a dynamic property,
which is used as a component of a dynamic property describing the (temporal)
relationship of this state of affairs to the mental state. For example, a state of affairs
can be an observed running horse in a field, which disappears in the fog. After this,
the belief that there is a horse in the field is a mental state that relates to the
occurrence of this pattern of a running horse in the recent past. Two specific types
can be distinguished, looking backward in time, or looking forward in time:

Backward representation properties

These are properties that relate an internal state backward in time to external world
states or sensor or execution states in the past; for example, some mental state (e.g.,
a representation state or a preparation state) has a high activation level when a
stimulus occurred before or has been sensed before.

Forward representation relations

These are properties that relate an internal state forward in time to external world
states or sensor or execution states in the future; for example, if a preparation state
has a high activation level, then later on the effect of the corresponding action will
be found in the world.
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Examples of representation properties for the simple example model from
Chap. 2 are:

e Action a always has effect e
If a preparation state for action a occurs, then later the effect e will occur in the
world.

o Always after the occurrence of a stimulus a sensory representation occurs
If a sensory representation of a stimulus s occurs, then earlier this stimulus
s occurred in the world, and if a stimulus s in the world occurs, then later a
sensory representation of this stimulus s will occur.

Ordering properties

Ordering properties express and ordering relation between the occurrence of one

state property and another one: state property p occurs before state property g.
An example for the simple example model from Chap. 2 is:

e The order of occurrence of states is: stimulus in world state —sensor state—
sensory representation state—partial preparation state—feeling state—high level
preparation state—execution state.

Monotonicity properties

These are properties expressing, for example, that under certain conditions (e.g.,
after some time point) the value of a variable is monotonically increasing or de-
creasing over time. They indicate that the activation level of a state X increases over
time, or the activation level of state X decreases over time. Such properties can be
expressed as ‘if # < #' then X(z7) < X(t')’, perhaps preceded by some conditions. They
also have been addressed in Chap. 12. Examples for the simple example model
from Chap. 2 are:

e Constant stimulus level 1 makes that all states will have increasing levels:
If from some time point on a constant stimulus with level 1 occurs, then from
some later time point on all states will have monotonically increasing levels

o Constant stimulus level O makes that all states will have decreasing levels:
If from some time point on a constant stimulus with level 0 occurs, from some
later time point on all states will have monotonically decreasing levels

In Table 13.3 temporal predicate logic formalisations are shown for a number of
types of dynamic properties: achievement, grounding, ordering, and monotonicity
properties.

13.7.2 Maintenance, Peak, Speed, Equilibrium and Limit
Cycle Properties

Other types of properties addressed in this section concern ongoing trends over
longer time intervals: maintenance properties, peak properties, speed properties,
stationary point properties, and limit cycle properties.
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Table 13.3 Temporal predicate logic formalisations for dynamic properties: achievement,
grounding, ordering, and monotonicity properties

Example conceptual representations | Example numerical-logical representations

Basic state relation property A property expressing state relations for specific state instances
and specific instances of time points

In trace #r for each i and j the value of state Vr, Xi, t) = Vii A AV X, ty) = Vi
X at time point t; is equal to V;; Ao A
V(tr, KM’EI) = XMJ A.. ~/\V([r»XM, EN) = XM,N
In trace tr for each i and j the value of state | [V(rr, X, t1) - V4| < D A ...
X; at time point t; differs from V, ; by at most N IV@r, Xi, ty) - Vi |
a given (small) positive number D | ...
[V(@r, X t) - Varal < DA L.
NV (r, Xar, t)~Vaun] < D
Achievement property Given no or some conditions, eventually a certain state is reached in
which some state property holds
There exists a time point ¢ such that at ¢ state Jt X(t) > a
Y(t) has level > a
For all time points #; when at #; state X has | V¢ [X(t;) > a; — Jt, > 11 V() > ay]
level > ay, there exists a time point #, > #;
such that at r, state Y has level > a,

IN

D A

Grounding property When a state property g occurs, state property p has occurred before this
For all time points #,, when at t, state Y has |V, [Y(t,) > a, — 36, < 1, X(t) > aq]
level > a,, there exists a time point #; <1,
such that at 7; state X has level > a;

Representation property Backward: relating an internal state backward in time to external
world states or sensor or execution states in the past. Forward: relating an internal state forward
in time to external world states or sensor or execution states in the future

For all time points #;, when at #; stimulus Yt [S(t) > ap — 3, > t R(ty) > as)
state S has level > aj, then there exists a Vt, [R(ty) > ar — 3ty < 1, 8(ty) > ay]
time point , > #; such that at #, internal
state R has level > a,, and conversely

For all time points 71, when at #; preparation vty [P(ty)
state P has level > a;, there exists a time Vt, [E(t,)
point , > t; such that at 7, execution state
E for the action has level > a,, and
conversely

a, — le
a, — 31‘1

ty E(y) > as]
i P(t;) > ajl

IV IV
IN IV

Ordering property State X occurs before state Y

There exist time points #; and 7, with #; < t, dt,t > 4 [X(t) > a) & Y(h) > ap)
such that at 7, state X has level > «a; and at
t, state Y has level > a»

Monotonicity property The activation level of state X increases over time; the activation level
of state X decreases over time

For all time points #; and , > t;, the level of | V#,,1, > t; X(1,) > X(t,)
state X at #, is higher than the level of state
X at 151

For all time points #; and #, > t;, the level of | V1, > t; X(1,) < X(t;)
state X at t, is lower than the level of state
X at 121
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Maintenance properties

These are properties expressing that during a process (or part thereof) a state is always
satisfying a certain state criterion. For example, specifying that a form of home-
ostasis is maintained: a state in which variables stay within certain fixed bounds.
A specific type of maintenance properties express that a certain state level of a model
always remains within a certain interval. These dynamic properties can be expressed
as ‘for all time points ¢ state property p holds’, perhaps preceded by some condition.
Some maintenance properties for the simple example model from Chap. 2 are:

o Stimulus levels between 0 and 1 will imply sensor and sensory representation
state levels between 0 and 1:
When the stimulus always stays within the interval from O to 1, then the acti-
vation levels of the sensor state and the sensory representation state of the
stimulus also always stay within the interval from O to 1.

e Sensory representation state levels between 0 and 1 will imply preparation state
levels between 0 and 1:
When the sensory representation of the stimulus always stays within the interval
from O to 1 (and the sum of the weights of the connections to the preparation
state is at most 1), then the activation levels of the preparation state and the
execution state of the action also always stay within the interval from O to 1.

In Table 13.4 some other types of maintenance are addressed. An upward bound
(by a number a,) property can be expressed by a universal quantifier: for all time
points ¢ it holds X(#) < a,. In a formal temporal predicate logic format this is
expressed as V¢ X(¢) < a,. Similarly for a downward bound: V¢ X(z) > a;. These
can easily be used to express maintenance properties. In Table 13.4 it is also shown
how peak properties, stationary point properties and attracting equilibrium prop-
erties can be expressed.

Peak properties

Peak properties indicate the maximal values of activation level of a state that is
reached: state X reaches a maximal value of at least V, state X reaches a maximal
value of at most V, the maximal value of state X is V. A special case is a single peak
property: the activation level of state X increases to some maximum value and
decreases after that time point. An example single peak property for the simple
example model from Chap. 2 is:

o The feeling level has one peak:
The feeling level increases until some value after which it decreases

Speed properties

Speed properties indicate the speed by which a state changes over a certain time
interval. For the speed of state X from time #, to #, a calculation can be used of the
difference quotient (X(#,) — X(t))/(t> — t1).

e The speed of generating a feeling over some time interval:
The feeling level increases from time #,to ¢, with speed at least v
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Table 13.4 Temporal predicate logic formalisations for dynamic properties: bound, maintenance,
peak, stationary point and attracting stationary point properties

Example conceptual representations

| Example numerical-logical representations

Bound property State X is upward bounded by

a,; its maximal value is at most a,.

State X is downward bounded by a;; its minimal value is at least a;

For all time points #, at ¢ state X has
level < a,
For all time points 7, at ¢ state X has
level > a;

vt X(1)
Vit X(t)

a
ap

VIA

Maintenance property During a process a state
bounds

level always stays within certain fixed

For all time points ¢ the level of state value
X at ¢ is at least @; and at most a,. For all
time points ¢ the levels of state X are within
the interval [0, 1]

Vi X(1) > a; & X(1) < ao]
VE[X(1) > 0 & X(1) < 1]

Peak property The activation level of state X increases to some maximum value and

decreases after that time point

There exists a time point ¢ such that for all
time points #; and 7, with #; < 7, <1 the
level of state X at ¢, is lower than the level
of state X at #,, and for all time points #; and
t, with t < 1, < t, the level of state X at 7, is
higher than the level of state X at #,

[V, < 1 <t X(t) < X(tr)
AV > tt > 1 X(t) > X(1,)]

Speed property The feeling level increases from time #to #, with speed at least v

The difference quotient for the feeling state
from time #;to ¢, is at least v

The difference quotient for the feeling state
from time ¢ to ¢ + € is at least v

(X(ry) = X(t )Mty —11) > v
(X(t+¢)-X(t)fe > v

Stationary point property A state in which values of variables do not change over time

An stationary point property can be expressed as

a kind of conditional maintenance property

For all time points #;, when at #; state X has
level ey, for all time points ¢, > ¢, at ¢, state
X has level ey

v [X(1) = ex — Vi, >t X(t,) = SX]
for all states X

Attracting stationary point property Such a property expresses that eventually an

(attracting) stationary point is approximated

There exists a point in time #, such that for
all time points #, > 1, at t, the difference

between the level of state X and ey is less

than some small positive number € (e.g.,

€ = 0.0001)

dn Vi, > 1 |X(l’2)-gx|<8
for all states X

Limit cycle property All variables follow a fixed periodically recurring pattern over time

There is a time duration D such that for all
states X and all time points 7 the level of
state X at ¢ + D is the same as the level of
state X at ¢

dD vVt X(t + D) = X(t)
for all states X
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Note that also the instantaneous speed at one time point ¢ can be considered. This
can be done to choose a small ¢ > 0 (for example, the step size of a simulation trace
or data set) and consider the speed from 7 to 7 + «.

o The instantaneous speed of generating a feeling at some point in time:
The feeling level increases at time ¢ with instantaneous speed at least v

Note that when a dynamic model is given, also from the differential equation for
the state that is considered, an expression for the instantaneous speed can be
obtained.

Stationary point properties

A stationary point property with stationary point value e for state X can be expressed as
a kind of conditional maintenance property: ‘if for some time point ¢ state property X
(t) = e, then X(¢') = eholds for all time points ¢’ > #’. Note that usually such a property
only holds for a collection of states, not for single states: ‘if for some time point 7 state
properties X,(t) = e; for all i, then X,(¢') = e; holds for all i and all time points ¢' > ¢’.
Some stationary point state properties for the simple example model from Chap. 2 are:

o Stimulus constant 1 implies value 1 for all states
If a constant stimulus 1 occurs in the world, then the values 1 for all states are an
equilibrium state

o Stimulus constant 0 implies value O for all states
If a constant stimulus O occurs in the world, then the values O for all states are an
equilibrium state

Attracting properties

These properties express that eventually an (attracting) equilibrium is approxi-
mated. That the equilibrium is attracting can be expressed as a kind of achievement
property: ‘there is a point in time ¢ such that at 7 it holds X(#) is very close to ’. Note
that here very close can be expressed as X(#) having a difference with e less than
some very small number such as some small positive number ¢, for example, 0.001.
Some attracting properties for the simple example model from Chap. 2 are:

e Stimulus constant 1 implies for all states the levels are attracted to 1
If from some time point on a constant stimulus with level 1 occurs, then from
some later time point on all states will have a level very close to 1

o Stimulus constant 0 implies for all states the levels are attracted to 0
If from some time point on a constant stimulus with level O occurs, then from
some later time point on all states will have a level very close to 0

Limit cycle properties

Sometimes a process does not end up in an equilibrium state but in a fixed peri-
odically recurring pattern, called a limit cycle. Such a limit cycle is defined by the
time duration D of this period, and is expressesed by:


http://dx.doi.org/10.1007/978-3-319-45213-5_2
http://dx.doi.org/10.1007/978-3-319-45213-5_2

380 13 What Is Happening

e Limit cycle with period D:
for each state X and each time point ¢ the value of X at ¢ + D is the same as the
value of X at 7.

13.7.3 State Comparison, Trace Comparison and Trace
Selection Properties

In this section dynamic properties are discussed in which multiple states or multiple
traces play a role and quantifiers over traces and states can be used. In such cases
the names of states X and traces #r have to be made explicit in a form that variables
can be used for them. This means that numerical expressions of the type X() are not
used, but instead expressions of the form V(¢r, X, 1). Types of properties discussed
are state comparison properties, trace comparison properties and trace selection
properties.

State comparison properties

State comparison properties are properties in which states are compared to a set of
or all other states using quantifiers over states. One simple example is the type of
dynamic property that expresses that all states satisfy a same type of property, for
example monotonicity:

e All states X are monotonically increasing from all time points # to all time points
">t

This can be expressed as the following conceptual representation:

e For all states X and all times points ¢, t' > ¢ it holds V(ir, X, 1) < V(tr, X, t)

Another type of state comparison property is to identify the state that reaches the
highest value, compared to other states:

e State X has a value at some time ¢ such that for all ¢ all states Y have at most that
value at ¢’

Another example is a dynamic property that expresses that control states are
mutually exclusive; only one of them can have a higher level:

e For all control states X, Y and all time points ¢, if X # Y and X has level > 0.6 at
t, then Y has level < 0.4 at ¢

Yet another example expresses that no preparation state can occur unless at least
one sensory representation has occurred:

e For all preparation states X and all time points ¢, if X has level > 0.6 at 7, then
there exists a sensory representation state ¥ and a time point ¢’ < ¢ such that
Y has level >0.6 at ¢’
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Trace comparison properties
Trace comparison properties are properties in which whole traces (trajectories,
scenarios) over time are compared. These properties express, for example, that if in
one trace the values of certain states are lower than in a second trace, then the value
of some other state will also be lower than in that second trace. A specific example
is the property that when experiences with someone in one trace are better than in a
second trace, then trust in that person will be higher in that trace than in the second
trace. Another example is that when in one trace more exercising takes place than in
another trace, then in this former trace the skill level will be higher. Such trace
comparison properties are relevant in particular for cases of adaptive or learning
processes, for example, involving Hebbian learning, or dynamic network connec-
tions describing evolving social interaction.

Within such properties not only references to time points occur but also to traces.
A simple trace comparison property expresses that some property holds for all
traces in a given set of traces:

e For all traces #r state X increases monotonically from all time points 7 to all time
points t' > ¢

This can be expressed by the following conceptual representation:
e For all traces #r and all times points ¢, ' > t it holds V(zr, X, 1) < V(tr, X, t')
This can also be expressed not for one specific state X but for all states X:

e For all traces #r all states X increase monotonically from all time points 7 to all
time points ¢' > ¢

This can be expressed by the following conceptual representation:

e For all traces tr, all states X and all times points 7, ¢' > ¢ it holds V(tr, X, 1) < V
(tr, X, t")

Another example trace comparison property, for the simple example model from
Chap. 2 is:

o Higher stimulus levels imply higher mental state levels:
If in one trace the stimulus level in the world is always at least as high as in
another trace, then for each state the level will always be at least as high in the
former trace as in the latter trace

Such properties can be expressed, for example by ‘for any two traces 7, and tr if at
all time points 7 in trace tr, it holds V(try, X, t) < V(tr,, X, t) (e.g., more exercising
X occurs than in trace #r;), then at all time points # it holds V(try, Y, t) < V(try, ¥, t)
(e.g., in trp a higher skill level Y will occur than in trace #ry)’. Also the inverse
variation is possible, for example,

e More support leads to less stress
When always more support is given to a person then this person will always
have a lower level of stress
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Table 13.5 Temporal predicate logic formalisations for dynamic properties: state and trace
comparison properties

Example conceptual representations Example numerical-logical representations

State comparison property These properties compare different states and for this use
quantifiers over states, for example, the state that reaches the highest level of all states

For all states X and all times points ¢, ' > ¢ it VX, t, t'>tV(ir, X, 1) < V(r, X, t')
holds V(tr, X, ©) < V(tr, X, t))
There exists a time point 7 such that for all states VY, ' Vir, Y, ) < V@r, X, 1)
Y and all time points ¢’ the level of Y at ¢' is at
most the level of X at ¢

For all control states X, Y and all time points ¢, if VX:CS, Y:CS, r [[X#Y A
X # Y and X has level > 0.6 at ¢, then Y has V(tr, X, 1) > 0.6] — V(r, Y, 1) < 04]
level < 0.4 at ¢

For all preparation states X and all time points ?, VX:PS, t [V(tr, X, ) > 0.6 —

if X has level > 0.6 at 7, then there exists a JY:SRS, ' <t V(tr, Y, t') > 0.6]
sensory representation state Y and a time point
t' < t such that Y has level > 0.6 at ¢’

Trace comparison property These properties express, for example, that if in one trace the
values of certain states are lower than in a second trace, then the value of some other state will
also be lower in that trace. Such trace comparison properties are relevant, for example, for cases
of adaptive processes, such as for Hebbian learning or dynamic connections in a network
describing evolving social interaction

For all traces tr; and tr,, when for all time Vitry,try
points ¢ in trace 1, the level of state X at 7 is at [Vt V(tr, X, t) < V(try, X, 1) —
least the level of state X at ¢ in trace tr;, then for Vi V(try, Y, 1) < V(tr,, Y, 1)]

all time points ¢ in tr, the level of Y at 7 is at
least the level of state Y at ¢ in trace try

For all traces #r; and #r, when in trace tr| the Vtry,try

levels of state X and Y are always at most as [Vt [V(try, X, 1) < V(trs, X, 1)

high as the levels of state X and Y in trace tr, AV(@r, Y, 1) < V(try, Y, 1] —
for all time points ¢ the value of weight wy y of YVt ox try, 1) < Oxftrs, t)]

the connection from X to Y at ¢ in trace tr; is at
most the value of weight my y at ¢ in trace tr,

Trace selection property These properties express, for example, that for a given trace the value
of a certain state at some time point is at least (or at most) equal to the corresponding value in all
other traces. Such trace selection properties are relevant, for example, to find settings of the
model that fulfil some property most optimally, for example, the trace with the most significant
activation level for a certain state

For a given trace tr, for all traces tr, and all Vitry, t V(try, X, t) > V(try, X, 1)

time points ¢ the level of state X at ¢ in trace 17
is at least the level of X at 7 in trace tr,

This can be expressed, for example by: ‘for any two traces #r; and tr, if at all time
points ¢ in trace tr, it holds V(tr;, X, t) < V(tr,, X, t) (in trace tr, more support
X occurs than in trace try), then at all time points ¢ it holds V(try, Y, t) > V(tr,, Y, t)
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(in trace tr, less stress Y occurs than in trace tr;)’. For Hebbian learning the
following trace comparison property can be formulated:

e Higher mental state levels imply higher strengths of their connections:
If in one trace the levels of two connected state are always at least as high as in
another trace, then the strength of their connection will always be at least as high
in the former trace as in the latter trace.

Trace selection properties

Trace selection properties express that one given trace is special in that it satisfies
some property the best within a set of traces. For example, in the sports context, the
race in which somebody realised a distance that is a world record has the property:

e Identifying a record
For all athletes the distance in all other trace up to now, is at most as far as the
distance in this race.

Such a property can be expressed, for example, for the given trace tr; and some
(end) time point ¢ by (where X represents the distance):

for any trace fr, at time point ¢ in trace tr; it holds V(try, X, 1) < V(try, X, t).

A trace selection property is useful, for example, to find settings (i.e., initial
values and parameter values) of the model that fulfil some property most optimally,
for example, the settings for a trace with the most significant (highest) activation
level for a certain state. The property can be checked successively for different
choices of trace tr; until a (or the) specific trace tr; is found satisfying this property.
The property to be optimised can be of different types, and also involve, for
example, multiple states and time points, as long as some value occurs in it.
Multiple states can be optimised simultaneously, by considering a combined value,
for example, the sums of the activation levels of a given set of states for a given set
of time points, or the sum of squares of the differences (deviations) of the activation
levels of a set of states in comparison to empirically known values for a number of
time points. In the latter case, this can be used as a method for parameter tuning
based on exhaustive search. For a summary of state comparison and trace com-
parison properties, see Table 13.5.

13.8 Examples of Dynamic Properties in Some Case
Studies

In this section some more examples of dynamic properties are discussed.

Dynamic properties for social response patterns

The first types of dynamic properties addressed are those in relation to the model for
social response patterns addressed in Chap. 9. By automated verification they have
been checked for generated simulation traces, allowing evaluation of the patterns
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for a variety of parameter values. Below the dynamic properties are first introduced

in an informally expressed manner, after which their formalisations are shown.
The first property expresses that when another B is met, showing a certain

emotion, then within a certain time a response occurs, which can consist of:

(1) self feels the same as person B
(2) this feeling is bodily expressed by self
(3) it is communicated b self to B that B feels this

Social response occurrence

For all time points #;, when for all time points , > #; person B # self is present
and expresses a certain feeling b at #,, there exists a time point #; > #; such that at 5
self will have a response 1, (generating the feeling of b, resp. bodily expression,
resp. communication with at least a certain level).

Vit [Vt >ty [wsp(t2) > My A wspy(ty) > M| — 33 > 1115(13) > My]
with 1,(73) one of srsy(#3), esy(t3), escgp(3)

In case of regulation due to enhanced sensory sensitivity (see Chap. 9), patterns
occur when a response only lasts for a short time. This means that the response is
withdrawn, which is expressed as follows:

Social response withdrawal
For all time points #; and ;= 1,

when
at t; the person self has response r, with level > M,

and
for all
time points #, > t
at 1, person B#self is present with level > M,
and
at r, expresses a certain feeling b with level 2 M,
there exists
a time point 7, > t3 such that
t; < t3+D
and
at 7, the response 1, has level < M.
Vi, 1 [15(t3) 2 Mo AV [Wsg(ty) = My A Wsp () 2M; 1] =
1,24 [4< +D & 1,(fy) <M ] |

with r,(#;) one of srsy(#3), esy(?3), escp(t3)
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The combination of the above two properties specifies a short occurrence of a
response. However, after withdrawal of the response due to regulation, also the
arousal level for b will become low, which brings back practically the same state as
initially. The whole process of responding can start again. An oscillatory pattern
results, while the environment is fully static. This is an example of a limit cycle
pattern. Such oscillatory social responsesocially aware patterns indeed can be
observed in persons with some forms of ASD, who let their gaze go back and forth
to another person’s eyes during a contact, as a way of regulation of enhanced
sensitivity. Such a response pattern can be expressed as follows.

Social response oscillation
When B bodily expressing a certain feeling is present from some point in time on,
then:

(1) for every time point there is a later time point for which response r;, occurs
(2) for every time point there is a later time point for which response 1, does not
occur

vt [[vtz >t [WSB(tz) >M; A WSBﬁb(tz) > Ml] —
Vlg, >t [3[4 > [3[ I'],(l‘4) > Mz} & 31‘5 > t3[1‘),(t5) < M3H]

with 1,(f3)one of srs,(23), esy(13), escpp(t3)

Note that more than these three states are fluctuating. In a more strict quantitative
form, a pattern of response oscillation can also be described by the following limit
cycle property.

Social response limit cycle
There is a time duration D such that for each of the states r;, from srs,, es;, and escg ,
for each time point ¢ the value of 1, at # + D is the same as the value of 1, at 7.

3D Vi srsy(t + D) = srsp(1) Aesy(t+ D) = esp(t) Aescy(t+ D) = escy(r)

Dynamic properties for desires and their representation relations
The second types of dynamic properties discussed relate to desires. Desires are
assumed to drive behavior in order to achieve ‘something that is desired’.
A well-known agent model is the BDI model in which desires and beliefs together
determine the intentions and actions of an agent. This suggests forward representation
relations to the actions that are performed. But what is not addressed in the BDI model
is how desires occur. In general this is considered a hard question, maybe partly due to
the fact that different types of desire exist, with different types of triggers, for example,
a detected unbalance in body state (e.g., hungriness) or observed food as a stimulus.
As in general can be done for cognitive states, desires can be considered not only
to represent certain states in the past (backward representation property), but also
states in the future (forward representation property). Looking backward in time,
for some cases a desire can be viewed as a mental state representing a certain
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unbalance that has developed in a person. For at least some types of desires it is
believed that they relate to body states and unbalances in it such as a low blood
sugar level. A person needs to generate desires based on represented information
about the current body state. The desires generated based on such a body repre-
sentation tune behaviour to the actual situation of the body. The idea is that the
levels of certain body states have to be maintained between certain boundaries
(homeostasis), for example, the level of the blood sugar state indicated by wsy. If
such a level becomes too low a desire is generated for an action to remedy this, for
example, a desire state ds., to eat something. Then a backward representation
relation can be defined based on this.

How a desire represents a (past) body state: backward representation relation
If at some point in time #; in a person’s body state has a low level of blood sugar,
then at a later time point ¢, within time duration D after #, this person will have a
desire for eating.

If at some point in time #, in a person has a desire for eating, then at an earlier time
point #; within time duration D before #, this person’s body state had a low level of
blood sugar

thwsbs(tl) <04 —dh>n [l2 <ti+ DA dSea[(Z‘Q) > 07}
Virdsex () > 0.7 — 3ty <i[t1 >t — D A wsps(t1) <0.4]

This property formulation shows how desires emerge from (unbalances in) body
states. Note that D gives a time constraint for the time points. The precise value of
this parameter can be set to get a realistic property.

However, as desires drive and focus behaviour, a given desire or combination of
desires can also be considered while looking forward in time. From that perspective
the occurrence of a desire at some point in time can be considered to represent the
future performance of a certain action.

The following dynamic property can be considered such a forward representa-
tion property for a desire. It expresses that when desires for a certain type of action
occurs, then this type of action will be performed.

How a desire represents a (future) action: forward representation relation

If at some point in time #; a person desires an action of some type, then at a time
point #, within time duration D after #, this person will perform an action of that
type (and conversely).

Viidsea(t1) > 0.7 — I > 11[ta <t; + D Aesen(t2) >0.7]
Vl‘zeseat(l‘z) >07 —-dn < tz[ll >t —D A dseat(tl) < 07]

In this formulation the property shows that the indicated desire drives the person
to a specific type of action, and such an action is grounded in a desire preceding it.
A forward representation property for desire describes, for example, the beha-
viours or actions that are driven or motivated by these desires. For the behaviour of
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a person to make sense, these actions are not arbitrary, but are usually assumed to
achieve fulfillment of the desires. So, looking forward in time some steps further,
desires can be viewed as indicating a future state in which they are fulfilled. As after
a desire has been fulfilled, in principle it is not there anymore, such a forward
relation may sound a bit circular and paradoxal: desires that exist in the present
indicate their own future nonexistence. The following example of a dynamic
property for fulfillment of a desire; it can be viewed as a specific achievement

property:

Relating a desire to its fulfilment
If at some point in time #; a person desires a certain action a, then at a time point z,
within time duration D after ¢, the person will not desire this anymore.

Vvt dSa(ll) >0.7—>3dh>1 [t2 <ti+D A dSa(ZQ) §03]

13.9 Automatic Checking of Dynamic Properties

A software environment has been developed to automate the checking process for
dynamic properties, based on the Temporal Trace Language TTL; see (Bosse et al.
2009a; Sharpanskykh and Treur 2010). Such a software environment takes as input
a dynamic property specification and a trace (or set of traces) and returns as an
outcome whether this property is true or not in this trace (or set of traces). For an
implementation it is convenient to use a logical language such as PROLOG. But as
logical languages often require a slightly different format, first some transforma-
tions have to be applied to the dynamic property, in particular, to eliminate the use
of functional expressions such as V(ir, X, 1).

Transformations of dynamic properties

To express dynamic properties in implemented logical languages such as TTL, or
PROLOG, they may need some standard transformations. Often in such logical
languages basic, functional expressions involving numbers such as V(tr, X, #;) have
to be represented in a different, relational manner. A standard way is to replace them
by variables V; for the indicated values, relate this value to the name of the state and
use a quantifier for this value; for example using existential quantifiers:

V(r,X, ) <V(ir,X, ) :
3V, Vahas_value_at(tr, X, t;, V1) Ahas_value_at(tr, X, 12, V2) A Vi <V3]
Another option using universal quantifiers:

V(tr, X, 1) <V(tr, X, 1) :
VVi, Va[has_value_at(tr, X, 11, Vi) A has_value_at(tr, X, tp, Vo) — Vi < V3]
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The reified temporal predicate logical language TTL

The language TTL (Jonker and Treur 2002; Bosse et al. 2009b; Sharpanskykh and
Treur 2010) is an example of a reified temporal predicate logic language; e.g., (Ma
and Knight 2001; Galton 2006). This means in particular that states X and state
properties P can be represented as individuals which can also be indicated by
variables over which quantifiers can be used, and the same holds for traces tr. Here
state properties P are specific properties of an overall state such as

has_value(X, V)
expressing that state X has value V, or
has_value(X;, V;) A has_value(X5, V,) A V; <V,

expressing that state X; has value V; and state X, has value V, and V| < V,.
Within TTL the predicate

holds(S, P, TV)

relates an overall state S to a state property P in such a manner that truth value 7V is
true indicates that P holds in overall state S and TV is false indicates that it does not
hold in overall state S. Moreover, for a given trace ¢ to indicate the overall state in a
trace tr at some time point ¢ the expression

state(zr, )
is used. So, for example,
holds(state(zr, t), P, false)

indicates that within the overall state of trace tr at time ¢ state property P is false.
To obtain expressions in TTL the following substitutions can be done:

V(tr, X, 1) <V(r, X, 1) :
E) AR
[holds(state(sr, ¢;), has_value(X, V), true) A
holds(state(tr, ), has_value(Y, V3), true) AV <V;]

Or using universal quantifiers:

V(tr, X, 1) <V(ir)X, 1) :
VAR A
[holds(state(rr, t; ), has_value(X, V1), true) A
holds(state(tr, ), has_value(Y, V,), true) —
Vi<V,
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In this way the reified temporal predicate logic language TTL can be used to
express the wide variety of dynamic properties in a formal format, including
properties in which states and traces are explicitly represented and compared. This
makes TTL a more expressive language than most other temporal languages; e.g.,
see (Bosse et al. 2009a; Sharpanskykh and Treur 2010). In particular, all example
properties discussed in this chapter can be expressed in TTL.

Using the TTL environment

A TTL software environment is available with an editor to specify dynamic
properties but also with a checker to automatically check such dynamic properties
against given traces (or sets of traces). This can be used for the different types of
applications described in Sects. 13.3 and 13.4.

Monitoring and analysis of dynamic properties in real world processes

The traces used as input for the TTL software environment can be based on real
world data, for example, obtained by monitoring an ongoing process. Within the
TTL environment, as a form of analysis of these monitoring data it can be checked
on the fly whether some complex dynamic properties hold for these ongoing pro-
cesses. In this way that the TTL environment can play a role in monitoring and
analysis of complex dynamic patterns in real world contexts.

Extensive testing, analysis and personalisation of a model

Using a simulation model a large variety of traces can be generated, for example, to
explore initial values, input from the environment and parameter values by sys-
tematically or randomly varying them. If these generated traces are fed into the TTL
environment it will automatically be determined which of these traces have some
specified dynamic properties. As all of this can be automated, this can support
extensive forms of testing, analysis and tuning of a model, and, for example, be
used to find of how the emergence of some dynamic property depends on the
settings (initial values, external input from the environment over time, and
parameter values), which can be used to obtain some extent of predictability of
emergent properties depending on such settings.

13.10 Discussion

In this chapter different types of dynamic properties describing patterns in beha-
viour dynamics that can emerge from the local mechanisms described by the
connections in a temporal-causal network have been discussed. It has been shown
how these patterns can be expressed both by a conceptual representation and a
(formal) numerical-logical representation, and how they can be systematically
checked for a given trace describing the states of a process over time. Moreover, it
has been discussed how such checking can be automated by using a dedicated
software environment such as the TTL environment described in (Bosse et al.
2009b; Sharpanskykh and Treur 2010), and how in particular the dynamic
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properties can be validated in an automated manner when real world data on
process traces are available.

It has been discussed how dynamic properties can be useful when they are
applied, both in the context of monitoring and analysis of a real world process either
off-line or on the fly, and in the context of extensive testing and analysis of a
network model as a form of focusing and verification of the model during
Network-Oriented Modeling. In the latter case, large numbers of traces generated
by the model can be analyzed automatically. It has been discussed how as a result of
this analysis, emergent properties of such a model can become predictable (to a
certain extent) from the model and its settings (initial values, external input from the
environment, parameter values). Finally, it was pointed out how the perspective
discussed here can be used to validate a dynamical model in an automated manner,
and to find values of parameters to satisfy required properties of the model and in
this way personalize the model.

Temporal perspectives on properties of the dynamics of processes are addressed
in a wide variety of literature, from different disciplines, including Cognitive
Science, Artificial Intelligence and Computer Science. Literature on dynamics and
temporal property specification and verification from an AI or Computer Science
perspective can be found in, for example, (Barringer et al. 1996; Bosse et al. 2009b;
Clarke et al. 2000; Goldblatt 1992; Juan and Tsai 2002; Manna and Pnueli 1990,
1995; Stirling 2001). In this literature different types of properties are distinguished,
of the types which were also discussed in this chapter. However, usually in these
approaches it is not possible to express state comparison, trace comparison and
trace selection properties, as the languages used do not support the reification that is
needed in order to use quantifiers over states and traces for these types of properties.
Moreover, most of these languages are purely logical and have less adequate
numerical expression possibilities.
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Chapter 14
Who are You

Identifying Characteristics of Persons, Their
Networks and Other Contextual Aspects by
Parameter Estimation and Validation

Abstract In this chapter it is discussed how a personalised temporal-causal net-
work model can be obtained that fits well to specific characteristics of a person, and
his or her connections and further context. A model is a close approximation, but
always a form of abstraction of a real world phenomenon. Its accuracy and cor-
rectness mainly depend on the chosen abstracting assumptions and the values of the
parameters in the model representing contextual characteristics. Depending on the
complexity of the model, the number of its parameters can vary from just a couple
to thousands. These parameters usually represent specific characteristics of the
modeled phenomenon, for example, for modeling human processes personality
characteristics or social interaction characteristics. No values for such parameters
are given at forehand. Estimation of parameters for a given model is a nontrivial
task. There are many parameter estimation methods available in the literature. In
this chapter a number of these methods are briefly discussed.

14.1 Introduction

Dynamical models such as temporal-causal network models usually have to take
into account a number of characteristics of the situation that is modeled. Such
characteristics can involve, for example, the mental or neurological structures of a
person, or a person’s connections to others, or contextual elements of the external
world. Usually in a model description parameters are used to represent such
characteristics. The advantage of having such parameters in a model description is
that they enable to use and tune the model for different situations: for example,
persons with different mental or neurological structures, for different social con-
nections, or for different contextual elements in the external world. In fact the model
represents a large (and in theory infinite) space of possibilities indicated by all
combinations of values of the parameters. For example, suppose 10 parameters are
involved and all parameters are in the interval [0, 1]. If only parameter values in one
digit are considered (i.e., 0, 0.1, ..., 0.9, 1.0), then the number of combinations
already is 11'°, which is more than 25 billion or 2.5 x 10'°. If the parameter values
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are considered in two digits, this number will be more than 10010, which is 10%°.
So, a model with a number of parameters is very generic in the sense that the space
of situations that can be represented by the model can be huge, with many
variations.

For one given specific situation at hand the parameters have to be assigned
values that represent that situation in particular; the parameter values have to be
found that fit to the situation: by finding such values, knowledge of the specific
characteristics of the situation is acquired. However, such a tuning to specific
characteristics is not always easy, as often a situation that is modeled does not
simply show these characteristics. They have to be acquired or estimated by some
process in one way of the other, and this may turn out not so easy. In Fig. 14.1 such
an estimation process is sketched. The observed behaviour from the actual phe-
nomenon is compared to the predicted behaviour from the dynamical model at some
time points. If there is a significant difference (the objective should be to make this
difference minimal), the model’s behaviour has to be made closer to the observed
behaviour by changing the values of the parameters. More specifically, the various
parameter estimation methods specify how to quantify the difference and based on
that in what way the values of the parameters should be adjusted.

In the current chapter this issue is discussed in some detail. In Sect. 14.2 it is
discussed how in the many cases that direct measuring is hard or impossible, via
requirements the values of parameters can be determined. In Sect. 14.3 an example
of a temporal-causal network model is shown that is used in this chapter to illustrate
the different methods. In Sects. 14.4—14.7 four different approaches are discussed:
exhaustive search, gradient descent, random gradient descent, and simulated
annealing, respectively.

Actual system

;E Observed behavior | ks

EE——

=
T

)

v

- Dynamic model Predicted behavior .

Fig. 14.1 Parameter estimation for a dynamical model
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14.2 Determining Characteristics and the Use
of Requirements

Without having precise knowledge of the specific characteristics of a situation that
is modeled, it will be difficult to obtain a model that really fits to the situation. In a
model usually a number of parameters are used to represent such characteristics. In
Sect. 14.2.1 the specific parameters in a temporal-causal network model are dis-
cussed. The problem to find proper values for such parameters representing char-
acteristics for a given situation basically can be addressed in two manners: by direct
measuring of the characteristics in the situation that is modeled, or via requirements.
These will be discussed in some more detail in Sects. 14.2.2 and 14.2.3.

14.2.1 The Parameters in a Temporal-Causal Network
Model

Within a temporal-causal network model, in particular the following types of
parameters occur:

e Connection weights oy y for states X and Y
e Speed factors ny for each state X
e Parameters within specific combination functions, such as:

— in a scaled sum combination function the scaling factor A
— in a logistic sum combination function the parameters ¢ and T

e For models with adaptive connections, for example:

— for Hebbian learning the learning rate n and the extinction rate
— for adaptive networks based on the homophily principle the threshold ty y
and speed factor 1y y for states X and Y

Here, for example, in a specific situation the connection weights may relate to
the strengths of certain connections in someone’s brain or to the strengths of certain
connections in social interaction, and speed factors may relate to actual speed of
processing the states. For a given situation it is not clear at forehand how values of
such parameters have to be chosen. There are some indications or heuristics that can
be kept in mind, to manage them during modeling:

e Connection weights 1 for maximal effect and lower between O and 1 for a
smaller effect

e Connection weights between —1 and 0 for suppressing effects

e Speed factors can be chosen higher for internal, mental processes, and lower for
body changes and execution of actions in the world

e For scaled sum combination function: choose the scaling factor A equal to or at
most the sum of the weights of the incoming connections
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e For logistic sum combination functions

— Choose steepness ¢ low (from 2 to 8) for gradual effects and high (10-20 or
higher) for more all or nothing types of effects

— The threshold t usually has a relation with the number of incoming con-
nections and their weights. For example, the aggregated impact can never be
more than the sum of these weights, so a threshold higher than that will not
lead to substantial activation of a state; it usually is higher if there are more
incoming connections

Such heuristics still will not make it easy to find values that adequately represent
the specific characteristics of a given situation. This basically can be addressed in
two manners: by direct measuring of the characteristics in the situation that is
modeled, or via requirements. These will be discussed in some more detail in
Sects. 14.2.2 and 14.2.3.

14.2.2 Direct Measuring of Characteristics of a Situation

From a naive point of view, the possibility to directly measure values of parameters
is the most attractive option. For example, if some physical process is to be
modeled, according to some physical laws in which certain quantities (such as mass
or volume) occur as parameters, then the values of these quantities can be measured
and used for these parameters. This may work in an idealised physical domain, but
for human and social domains this may be less straightforward. Suppose a con-
nection from one mental state X to another mental state Y is involved in the model,
then according to the current state of the art measuring the strength of this con-
nection is quite difficult, if not impossible.

As another example, suppose in a network that models social interaction, a
connection from person X to person Y occurs. How could the strength of this
connection be measured? By the number of Whatsapp messages per minute? By the
time duration of telephone calls? By the time duration of being at the same loca-
tion? As discussed in Chap. 11, Sect. 11.9, in the literature it is discussed how
connection strength in networks describing social interaction relates to aspects such
as interaction frequency, emotional intensity of content, and emotional support and
closeness (Gilbert and Karahalios 2009; Granovetter 1983; Marsden and Campbell
1990). In part of this literature the relation between connection strength and aspects
of actual interaction is used to formulate a measurable definition of connection
strength. However, in other literature not a definitional but a causal relationship
between such measurable aspects and connection strength is assumed; e.g., Hove
and Risen (2009), Pearce et al. (2015). So also direct measuring of connection
strength in a network describing social interaction is not without problems.

As another alternative, sometimes questionnaires are used for measurements of
characteristics in human or social domains, where persons can score their
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characteristics. At first sight this may seem practical and adequate, as such a scoring
process generates numbers, and for parameters numbers are needed. But this also
has some problems. First of all, persons do not necessarily know their own char-
acteristics, and if they believe they do know, there is no guarantee that these beliefs
are correct. And secondly, a score from a questionnaire, or an aggregation of such
scores, may provide a number, but this number is supposed to be measured
according to some scale, and it may not be clear how this scale relates to the scale of
a relevant parameter. There may be a nontrivial, unknown relation between such
scales, perhaps at least a monotonic relation, but maybe not proportional or linear.
So to adequately translate such scores into values for parameters can be a problem
by itself.

14.2.3 Using Requirements to Find Characteristics
of a Situation

Another way to tune parameters is to identify and explicate what the model is
expected to do: expressed as requirements for the model; see also Chap. 13.
Suppose such requirements have been identified, and it has been found that they
indeed describe what is expected from the model. Then a number of values of
parameters can be tried alternatively until values are found such that the model
shows the behaviour fulfilling the requirements. Usually this is already done
intuitively by a modeler. However, for larger numbers of parameters the huge space
of possibilities for a model now turns into a huge search space. For models with
many parameters it is easy to get lost in the large search space of all combinations
of parameter values. So, eventually the question how to find proper values for the
parameters may get an answer in the form of a search problem that is to be solved.
The requirements used for this search problem can be of different types. In general
the requirements can take the form of any temporal patterns expressed as dynamic
properties as addressed in Chap. 13. Different combinations of parameter values
can be tried in order to find those combinations of parameter values that lead to
fulfilment of the requirements. This process can be performed in a systematic
manner, as exhaustive search, or some form of heuristic search. An example of such
a heuristic process for a temporal-causal network model can be found in
Thilakarathne (2015).

For heuristic search usually some measure is used to indicate how far from
fulfilment the requirement is; this is often called an error measure or error function.
The requirements can be of a very specific form when for some states of the model
empirical values are available for some of the time points, and it is considered that
the model is required to generate values at these time points equal or close to the
empirical values.
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14.2.4 Using Error Measures for Requirements

The heuristic methods discussed below in Sects. 14.5-14.7 assume an error mea-
sure. In many cases parameter estimation methods are applied when a data set is
available for a given (empirical) trace represented by values for certain states and
time points, so basically a set of triples (state, time, value). The requirement con-
sidered is that a trace generated by the model shows values for the states at these
time points that are equal to the values indicated by the given empirical trace, or at
least close to these values. As being equal is usually not feasible, the question
becomes how to define this ‘being close to’ for multiple states and time points.

An error function expresses in one way or the other in an aggregated manner the
deviation of the simulation values for the considered states and time points in
comparison to the empirically given values. When there is no deviation for any of
the states and time points, the error function will give the value O, and if the
deviation is small, the value of the error function will be close to 0. For a parameter
estimation method the aim is to get the value of the error function below some small
value (accuracy) or as close to 0 as possible.

Error functions usually take the differences between simulated values and
empirical values for all given data points (state, time, value) as a point of departure.
Suppose for some (but usually not all) states X;, i = 1, 2, ..., for some (but maybe
not all) time points t;;, j = 1, 2, ... empirical values V;;, j = 1, 2, ... are given. This
forms an empirical data set (X, t,J, Vi) i=1,2,...,j=1,2, ... For these time
points t;; the simulated values for a specific simulation trace tr (according to some
scenario) are indicated by V(tr, X;, t;;). Then the relevant differences (also called
deviations or residuals) are

Di,j = V(tl’ Xn tz,}) V;

iy
The strict way of expressing such a requirement is to state that these differences
are all 0:

V(tr Xntu) v

i

for all states X; and time points t; ;. Sometimes this may be relevant and feasible, but
often this is difficult to achleve. A less strict and more often applicable way of
expressing the requirement, for example, that all the absolute values of the differ-
ences should be at most a given small positive number D:

IDij| <D

for all states X; and time points t; ;. Here D is a small positive number, for example
0.05. Yet another way is to aggregate the deviations D;; into one number, which is
called an error value or error function. One possible Way of aggregation is to take
the average deviation for all triples in the data set, but this is not satisfactory as the
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positive and negative differences cancel each other out. A better option is to take the
average absolute deviation:

error = (|Dy |+ Dia|+ -+ +
ID21| + [Dapf+ -+ +

or in short notation: X;; |D; //N. Here N is the total number of data points used.
However, an often used form of aggregation for an error function makes use of the
sum of squares of the differences D;; (for a visualisation, see Fig. 14.2): ¥;; ij.

The sum of squares of residuals as a basis for an error function is a generic
concept that is used in applications in many disciplines to measure the deviation of
a set of data points relative to a reference; the reference can be a (partial) curve
described or generated by a mathematical model or some set of known data values.
The word residual refers to the difference between observed vs predicted values for
the considered variable. Minimizing the sum of squares of residual values is
referred as a least square method (Moler 2004). The history of the least square
method goes back to 1795, when Karl Friedrich Gauss has formulated it as a basic
concept and found out that when it is assumed that measurements deviate from an
ideal pattern according to a normal probability distribution, then a least square
method provides an optimal approximation of the ideal pattern; see, for example,
Strejc (1980).

To make the values obtained by calculating the sum of squares comparable with
the actual differences E;; it is useful to apply the square root of the average of the

squares:
error = 4/ ZiJDin./N

Fig. 14.2 Sum of squares: A

. : i
graphical representation of the
areas of the squares

v~
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This makes it much easier and intuitive to verify whether the error makes sense
in comparison to interpreting the overall areas of the squares in terms of vertical
distances between points in the plane. The values of such an error function directly
relate to the (linear) vertical differences that can be seen in the graph. For example,
when N = 4 and all deviations D;; are the same D, then this results in error D and
not in 4D2, as the sum of the squares would do, and what is difficult to relate to the
vertical distances in a graph as shown in Fig. 14.2.

In this way an error function based on the sum of squares of residuals can be
used in a practical manner to evaluate the quality of the selected values of the
parameters in a given model in comparison to empirical data. Using any error
function there are different ways how to formulate a requirement. One most strict
requirement would be that the error is 0. Although sometimes this may be relevant,
in many practical situations such a requirement is too strict. Another option is to
express in a requirement that the error is at most a given small value D, for example,

0.05:
\/Zi;D;;/N <D

This can be used in a generate-and-test method that works by generating traces
under systematic variations of the settings of a model one by one and for each trace
testing whether this requirement is fulfilled, until one is found that fulfills the
requirement.

When a model has many parameters it may be difficult to generate a set of traces
tr; for the many relevant variations of settings for the parameters. In such cases
within the process of generation of traces often heuristic search methods are
applied, based on what has been found up to some point in time. Such methods will
be discussed in Sects. 14.4 and further.

14.3 Description of an Example Model

In each section below a method for parameter estimation is discussed. In these
sections, to demonstrate the method a common example of a temporal-causal
network model will be used for illustration. This model was inspired by the idea of
Damasio’s as-if body loop (Damasio 1999; Damasio et al. 2000; Parvizi et al.
2006). This computational model describes the generation of feelings. A conceptual
representation of the model is shown in Fig. 14.3 below; the states used in the
model are summarized in Table 14.1.

The model uses two inputs: stimulus s, and body state b, which may occur as a
response to the stimulus. The stimulus s is associated to an emotional response
b leading to a detectable body state ws,, (e.g., a face expression). In turn the effect
ws;, serves as input by sensing it.
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as-if body loop

body loop

Fig. 14.3 Example model for modeling of feeling

Table 14.1 States in the example model shown in Fig. 14.3

Notation Description

WSw World state for W (W is a stimulus s, or body state b)
SSw Sensor state for W

SISy Sensory representation state for W

Psp Preparation state for response b

fsy, Feeling state for b

esp Execution state for response b

World states ws,, (e.g., ws,, and ws;) affect sensor states ss,, (e.g., ssy, and ss,,
respectively). The sensor states lead to further internal processes according to the
following causal sequence (the body loop in Fig. 14.3):

sensing a stimulus ss; — sensory representation of stimulus srs; —

preparation for bodily response ps, — execution of action es;, —

sensing the bodily response ss;, — sensory representation of the bodily response
srs;, — feeling the emotion fs,,

The effect prediction loop or as-if body loop goes from preparation for bodily
response to sensory representation of the bodily response to feeling the associated
emotion (Damasio 1999; Damasio et al. 2000). In the effect prediction loop, the
preparation for action ps, is affected by the sensory representation of stimulus srsy,
and the feeling of effect prediction fs,, of action a. The sensory representation srs;, of
effect b gets effects from the preparation for action ps;, and the sensory state ss;, is
affected by the execution of response b. The feeling fs,, is affected by the sensory
representation srs,, of b.

The connections between state properties (the arrows in Fig. 14.3) have weights
oy, as indicated in Table 14.2. In this model it is assumed that all weights are
non-negative and between O and 1.

In the example simulations, for the states Y that are affected by only one state,
the combination function cy(...) is taken as the identity function c((V) = id(V) =V,
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Table 1,4'2 Overv1e;w Of. the  prom state To state Weight

connections and their weights
WSy SS T
€Sy WSy ()
WSy, SSp 03
SSg SIS 0y
SIS Psa o5
be (07
SSp, SISy, w7
PSp g
SISp fsy ®9
Ps» €Sy @10

and for the other states ps; and srs,, the function cy(...) is a combination function is
the advanced logistic sum function alogistic, -(...).

. . 1 1
cy(Vi, V) = alogistic,, .(V1, V2) = (1 g R e

whenV;+V, > 0

)(1 +e ")

Cy(Vl7 Vz) =0 when Vl + V2 SO

In the latter combination function t is the threshold and © is the steepness; for
ps, and srs;, the respective parameters are Tps,, Ops,» Tsrs, and ogs,. For the speed
factor ny two values are used: 14y (slower) for external states X and ng,g, (faster)
for internal states X. As sensor states and execution states need more time to change
physically, the speed factor for external states should be low compared to the ones
for internal states. In the model the states ws;, ws;, ss,, and ss;, are considered to be
external.

Given these the dynamics of the model can be described as follows:

885 (1 + Ar) = $85(f) 4+ Ngow @1 WS, (F) —ss4(2)] At

wsp (2 + At) = wsp(t) + Ngow (02 55 (1) —Wsy (1)] At

559 (1 + A) = 555(1) + Mg (0355 (1) 555 (1)] A

518y (1 -+ Ar) = 5154(1) + T 00855, (1) 515, (1)] A

psy (14 Ar) = ps, (1) + Npuq[alogistic, . (s srsg(r), 06 fs (1)) —ps, ()] At
stsp (1 + At) = srsp(1) + nfasl[aloglstlccm T (@5 ssp(2), w6 ps, (1)) —srsp(F)] At
fsp(r 4+ At) = fs5,(2) + Ngaer[09 ST, () — fsb( )] At

esp(t+ At) = esp(t) + Ngow @10 Ps, (1) —esy (2)] At

For the expected feeling when the stimulus has level 1, the data was chosen as
shown in Fig. 14.3. For this case study these were generated by the model, after
which according to a normal distribution some noise was added to make them look
like empirical data. The parameters of the model are 10 connection weight values
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Fig. 14.4 The required behaviour of fs, when the world state for stimulus ws; is 1

(m1—wy¢ in Table 14.2), 2 threshold values (tps, and Ty, ), 2 steepness values (ops,
and 04s,), 2 speed factors (Mgow and Meg). It is assumed that mgew = 0.5 and
Nease = 0.9, and that the time step size is At = 0.25. The remaining 14 parameter
values are to be determined by parameter estimation.

As an illustration to this example different parameter estimation methods will be
applied in subsequent sections. By applying some (relative) noise to the values of
an example simulation according to a normal distribution, the data shown in
Fig. 14.4 were obtained. By parameter estimation values of parameters will be
determined that make that the simulated feeling level approximates these values
shown in Fig. 14.4. As error function the square root of the average of the squares
of deviations has been used, and as a stop criterion for the estimation process an
error of 0.03.

Note that no unique solution can be expected. There may be different types of
persons with different characteristics that still generate similar feeling levels.
Different parameter estimation methods and different settings and initial values of
them in principle will generate different solutions. Parameter estimation can be used
to explore the different possibilities.

14.4 Parameter Tuning by Exhaustive Search

Exhaustive search (also called brute-force search) is a quite elementary method for
parameter tuning. It consists of

e Systematically enumerating all possible assignments of values to the parameters
for the model, with a certain grain size or accuracy, for example in two or three
decimals
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e For each of these assignments run the model to generate a simulation trace
e For each generated simulation trace check whether (and to which extent) the
generated simulation trace fulfils the requirements.

The option(s) that fulfill the requirements (or fulfill them best) are selected as
suitable options for values of the parameters. If requirements are not fulfilled in a
strict sense but only in an approximate sense, it is assumed that an error function is
used, and the parameter values which show the lowest value for this error function
can be chosen as the best outcome; here as error function, for example, the square
root of the average of the squares of residuals may be used. For this case, example
pseudo-code is shown in Box 14.1.

AP = first candidate assignment of values % Initialization

least error = 10"-10 % Tnitialization
while (no terminate while) % For all possible parameter assignments
run the model for AP % generate a simulation trace
if (error(AP) < least-error ) % if this assignment is better than the best one found yet
best-set-of-parameter-values = AP % the new set of parameters is the best until now
least-error = error(AP) % the error of the new set is the least one
end if
if assignment left
AP = next-assignment(AP) % go to the next value assignment
else

terminate-while
end if
end while

Box 14.1 Pseudo-code for exhaustive search

Usually dynamical models have continuous parameters. To use exhaustive search
for such models, the parameter values have to be to be assigned discrete values. The
simplest way to do this is according to a uniform grain size, for example of 0.01; this
grain size is a measure for the accuracy by which the search is performed. For
example, suppose that the model has just one parameter Py, which is continuous and
it varies between 0 and 1. The aim is to find a value for P; which minimizes the
difference between empirical data (observation) and model prediction. For example,
for accuracy 0.1, parameter P can be assigned discrete values 0.0, 0.1, 0.2, 0.3, ...,
0.9, 1.0, respectively. According to the exhaustive search method, the error (dif-
ference between empirical data and model prediction) for each of these values has to
be determined, and the one which leads to the lowest error can be chosen.

As it is clear in Table 14.3, in this example, the error is minimal when P; is
equal to 0.1. Thus, for this fictitious example, the exhaustive search method sug-
gests to choose the value 0.1 for parameter P.
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Table 14.3 Example error values for different parameter values

Py 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error |0.443 |0.170 | 1.084 |2.010 |2.731 |3.265 |3.665 |3.972 |4.218 [4.421 |0.443

Table 14.4 Error of the prediction of the model with different set of parameters

P, |0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P,
0.0 |0.114 |0.083 |0.064 |0.056 |0.061 0.077 | 0.105 0.145 | 0.197 | 0.261 0.337
0.1 |0.058 |0.022 |0.003 |0.022 |0.02 0.058 | 0.116 | 0.193 | 0.292 | 0412 | 0.553
02 [0.12 |0.086 |0.077 |[0.096 |0.144 | 0.223 | 0.333 0.476 | 0.655 | 0.87 1.124
0.3 [0.299 |0.278 |0.294 |0.35 0.449 | 0.594 | 0.789 1.037 1.342 1.708 | 2.139
0.4 [0.596 |0.603 |0.661 |0.776 |0.953 1.199 1.52 1.923 2416 | 3.008 3.706
05 |[1.011 |1.062 |1.184 |1.385 |1.675 2.065 | 2.566 | 3.191 3954 | 4.871 5.958
0.6 |1.543 |1.659 |1.871 |2.192 |2.638 3.226 | 3975 | 4907 | 6.045 | 7417 | 9.052
0.7 |2.192 | 2398 |2.731 |3.212 |3.865 | 4.717 | 5.798 | 7.143 8.792 | 10.788 | 13.181
0.8 [296 |3.282 |3.772 |4.46 |5.382 | 6.578 8.095 9.987 | 12.316 |15.152 |18.574
09 |[3.845 |4.314 |5.002 |5952 |7.216 | 8.853 |10.933 |13.537 |16.759 |20.707 |25.508
1.0 |4.847 5498 |6.431 |7.707 |9.399 |11.592 |14.387 |17.904 |22.284 |27.688 |34.309

As another fictitious example, suppose that the model has two continuous
parameters Py, P,, and values of both of them can be between 0 and 1. If the
required accuracy for each of the parameters is taken 0.1, then for each one the
values 0.0, 0.1, 0.2, 0.3, ..., 0.9, 1.0 can be used, thus 112 =121 assignments of
parameter values have to be evaluated for P; and P,:

{(0.0,0.0), (0.0,0.1), (0.0,0.2) ...,
(0.1,0.0), (0.1,0.1), (0.1,02), ...,
...(1.0,0.8), (1.0,0.9), (1.0,1.0) }.

So, for each of these assignments the error has to be determined (see Table 14.4)
and then the set with least error chosen.

The for each of these assignments the error has to be determined (see
Table 14.4) and then the set with least error chosen.

The above table illustrates the error for each of these 121 assignments of
parameter values. The error is minimal when (P1, P2) is assigned values (0.3, 0.1).
Thus, the exhaustive search method suggests 0.3 and 0.1 as values for P; and P,.

A problem with exhaustive search is that for more parameters and smaller grain
size it becomes computationally infeasible. For instance, for the simple example
described in Sect. 14.3 with 14 parameters it is practically impossible to get a result
for grain size 0.1, which even is not a very good accuracy.

Advantages of exhaustive search

e Exhaustive search is very simple to implement.
e It will always find the best set of parameters (global optimum) if all the possible
parameter value combinations are explored.
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e Exhaustive search is useful as ‘baseline’ method when benchmarking other
algorithms.

Disadvantages of exhaustive search

e The main disadvantage of the exhaustive search is that for many real-world
problems the set of candidate value assignments is prohibitively large. Its
computational cost is proportional to the number of value assignments, which in
many practical problems tends to grow very quickly as the size of the problem
increases, in particular when the number of parameters is large and/or a high
accuracy is needed.

Therefore, exhaustive search is typically used as the best method when the
problem size (e.g., the number of parameters and required accuracy) is limited; in
other cases this method may easily become too inefficient.

14.5 Parameter Estimation by Gradient Descent

Since exhaustive search is not feasible when the search space of value assignments
to parameters becomes too large, other, heuristic methods have been developed for
which only part of the search space is explored, where the heuristic used takes into
account the error for the given value assignment and the error for alternative choices
for this value assignment. The idea of such a heuristic method is that after one point
of the search space has been explored and some error value has been found, the
neighbourhood of this point is explored to find out in which direction a next point in
the search space should be considered. Usually this is the point for which most
decrease in error is expected. One of these methods is gradient descent (also called
steepest descent or hill climbing). It takes into account how sensitive the error is for
the different parameters; in each step the parameters with highest sensitivity are
changed most. The sensitivity Sp of the error for a parameter P is based on the
difference between the error error(P) for a value for P and the error error
(P + AP) for a slightly different value P + AP for P. Figure 14.5 shows the basic
idea of the sensitivity of a parameter for the error. Here AP is a small change of the
value of a parameter P.
The sensitivity Sp is defined as

Sp = (error(P + AP) — error(P)) /AP

where the values of the other parameters are kept constant; note that this sensitivity
depends on these values of the other parameters.

The idea is that sensitivities can be used to determine from a given value
assignment an improved value assignment to the parameters, thus making a
specific, informed step in the space of value assignments by which the error is
decreased. An analogy of gradient descent is a hiker trying to descend in thick fog
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Fig. 14.5 Sensitivity of a parameter

from a mountain to the bottom of a valley by taking at each point the steepest
descending path. Gradient descent starts from a random set of parameter values, and
at each step, changes the set of parameter values a little, in the direction that
decreases the error most. Here each parameter P has to be changed in relation to the
sensitivity Sp of the error to the value of P. In this method, all parameters are
changed in parallel; parameters with higher sensitivity will change more. In more
detail the process goes as follows. By determining the sensitivity of the parameters
with respect to the error, the parameters can be identified that are most suitable for
adjustment in such a step: if the sensitivity of a given parameter is high, and the
error is not small, the current value of that parameter is a good candidate to be
changed, and not the value of a parameter of which the sensitivity is low. The aim is
to use sensitivities to decrease the value of the error. Therefore, if the sensitivity of a
parameter is positive, the value of that parameter needs to be decreased, and if the
sensitivity is negative the value of that parameter needs to be increased. Because
sensitivities depend on the given value assignment, in the gradient descent pa-
rameter estimation method, the sensitivities for each parameter are determined over
and over again, in each iteration. When a point is reached in which the error is
minimal, all sensitivities will be O or very close to 0, as then the differences error
(P + AP) — error(P) will be very small. Therefore during the process the sensi-
tivities will converge to 0; this means that if the sensitivity is a bit high for a given
parameter the value for this parameter is not yet optimal, and therefore it should be
changed. In summary, the gradient descent method proceeds according to the fol-
lowing steps:

e First an initial assignment AP of parameter values is selected. This can be
chosen either totally in random or based on some heuristic knowledge. The time
needed to find the most suitable parameter values will also depend on the quality
of the selected initial values.

e The model is used to generate a simulation trace for the parameter values from
AP
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For the generated trace the error value error(AP) is determined.
For any parameter from the parameters set its value is changed for a very small
amount AP, thus obtaining value P + AP

e The model is used to generate a simulation trace for the parameter values from
AP with P adjusted to P + AP
The new error value is recalculated; say error(AP, P, P + AP)
From the difference between the two obtained error values values error(AP, P,
P + AP) and error(AP) the sensitivity Sp of parameter P in that situation (and
relative to the values of the other parameters) is determined as:

Sp = (error(AP, P, P—|—AP) — error(AP))/AP.

In this way the sensitivity of each parameter with respect to the error is deter-
mined separately. If a small change in parameter value leads to a large difference in
error, that means the sensitivity of that parameter for the error is very high.

e A new assignment AP of values to the parameters is obtained by changing the
value of each parameter P in proportion to its sensitivity, with 1) as rate of change:

new P = P—n*Sp.

Here n is the adjustment rate, which defines the size of the changes in each
step. If 1 is too small, convergence is needlessly slow, whereas if 1 is too large, the
adjustment process will overshoot and can even diverge. Here, it is supposed that
the adjustment rate 1) is a fixed constant. However, it can also change in each step,
as shown in Chong and Zak (2013).

Choose initial assignment of parameter values AP %Arbitrary starting point

Set adjustment rate n 9% Adjustment rate choice

Set a small A for parameter value difference

Run the model for AP to generate a trace % Generate simulation trace for AP

Calculate error(AP) 9% Determine error for AP

While (any significant change has occurred in AP in the last step)

For each of the parameters P in AP 9%Determine the sensitivity of the error

Run the model for AP(P, A) where the value V of P in AP is replaced by V+A
Calculate error(AP(P, A)) % Determine error for AP(P, A)

Calculate sensitivity Sp = (error(AP(P, A)) - error(AP))/A
For each of the parameters P in AP
Set new value P = P—n*Sp % Adjust AP
End for
End while

Box 14.2 Pseudo-code for gradient descent
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The gradient descent method has been implemented for the example described in
Sect. 14.3 above and performed for different initial values of the parameters. In
Fig. 14.6 the solution found is shown for one case (upper graph) and the lower
graph shows the error for the different iterations for this case.

Advantages of gradient descent

e Gradient descent is relatively simple.
e ]t is a fast method; in a few iterations, it can find a local minimum.
e With certain assumptions, convergence to a local minimum can be guaranteed.

Disadvantages of gradient descent

e The outcome of gradient descent may depend on the initial point
e This method can get stuck in local minima
e Many calculations have to be done in each iteration
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Fig. 14.6 A solution found by gradient descent for the example, and the error at each point during
gradient descent against number of iterations
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e There are situations in which gradient descent can be slow and inefficient. To
overcome such problems, a number of variations on gradient descent have been
developed, such as conjugate gradient descent (Chong and Zak 2013).

14.6 Parameter Estimation by Random Gradient Descent

In gradient descent (or hill climbing), in each step the parameter values are changed
a little, in a way that this small change causes the largest possible decrease in error.
Therefore, the sensitivity of the error to each of the parameters has to be computed
again and again, which in some cases is a time consuming process. There are a
number of other descent methods that do not necessarily follow the line of steepest
descent. Random gradient descent (or stochastic hill climbing) is one of these
methods, which can be useful when the gradient is too time consuming to compute
all the time. In random gradient descent, a slight random change of the current
assignment of parameters values is applied and the result is accepted only if the new
value of the error lies below the current value. Otherwise, a new change to the
parameter values is tried (Baldi and Brunak 2001). In fact, in this method any
change that causes a decrease in error is accepted (not necessary the largest one). In
the hiker metaphor, in this case the hiker will choose any path that goes downward,
not necessarily the steepest one. So, in each step the gradient descent method moves
in the best way (steepest descent, gradient), but, the random gradient descent
method just moves in a good way (not necessary the best one).

Set oo = neighbourhood limitation % A value like 0.1

Choose any initial assignment of parameter values AP %Arbitrary starting point
Run the model for AP to generate a trace %Generate simulation trace for AP
Set E = error(AP) for this trace %Determine error for AP

While E > maxerror
Generate AP' from AP by for each parameter value P in AP

Set P'=P+ o * (rand() - 0.5) % Choose AP' in the neighbourhood of AP
Run the model for AP' to generate a trace ~ %Generate simulation trace for AP'
Set E' = error(AP") for this trace %Determine_error for AP’
If (E'<E) %lIf error for AP'is smaller
Set AP = AP' %Choose AP' as new AP
SetE =E'
End if
End while

Box 14.3 Pseudocode for random gradient descent
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Fig. 14.7 The error at each point during random gradient descent

The random gradient descent method has been implemented for the example
which is described in Sect. 14.3. Figure 14.7 shows the error for the different
iterations. Compared to what is shown in Fig. 14.6 for gradient descent the number
of iterations to reach a low error level can be 10 times more.

Advantages of random gradient descent

¢ Random gradient descent is relatively simple

e Not many calculations have to be done in each iteration; no sensitivities have to
be determined

e With certain assumptions, convergence to a local minimum can be guaranteed.
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Disadvantages of random gradient descent

e Many iterations may be needed before it reaches a small error
e The outcome of gradient descent may depend on the initial point
e This method can get stuck in local minima

14.7 Parameter Estimation by Simulated Annealing

A gradient descent method never makes moves toward states with a higher error
value; therefore it is guaranteed to at least find a locally optimal parameter value
assignment, with a local minimum of the error function. In contrast, in a purely
random walk, the parameter values are randomly changed. Like exhaustive search
such a random method is complete, in the sense that it will always find a global
minimum in the end, but is extremely inefficient. Therefore, it may be reasonable to
try to combine gradient descent with a random walk in some way in order to
achieve both acceptable efficiency and completeness. Simulated Annealing is such a
method. Actually, the most important advantage of this method (in comparison to
gradient descent) is that the simulated annealing method can pull the search process
out of local minima.

Simulated annealing is inspired by physical annealing in metallurgy, where
physical substances are heated and melted, and then gradually cooled down until
some solid state is reached. In this process, the goal is reaching a state in which the
substance has a minimum of energy. In metallurgy, this goal will be attained if the
substance is cooled down in a sufficiently slow manner.

The notion of slow cooling down in physical annealing is implemented in the
simulated annealing method as a slow decrease in the probability of accepting
worse solutions while it explores the search space. This property is controlled by a
variable called Temperature (T). Accepting a worse assignment of parameter values
(which leads to higher value of error) is a fundamental property of simulated
annealing because it allows for a more extensive search for the optimal solution.

Simulated annealing starts from a random assignment of parameter values
AP. At each step, the method considers a neighbouring assignment of parameter
values AP’ of the current set AP, and probabilistically decides between moving to
set AP’ or staying in AP. These probabilities ultimately lead the system to move to
better sets of parameter values (with lower error).

Inspired from physical annealing, in this method there is a variable called
temperature (indicated by T), which has a value decreasing (cooling) during the
process. Actually, the parameter temperature controls the probability of doing
‘downhill” actions during the process. When the value of this parameter is high (at
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the beginning) the probability of accepting a new set of parameter which leads to
higher error is high. During the progress of the method, this value will decrease, and
when the value of this variable is very low (at the end), the probability of accepting
such a new set is almost zero. Because of that, simulated annealing can pull out of
local minima and find the globally most optimal point. If the temperature is cooled
down in a sufficiently slow manner, it will find the global minimum (the best
possible assignment of parameter values).

It starts from a random set of parameter values AP° and generates a succession of
parameter values APl, APZ, ... 1n order to decrease the error. New candidate sets
are generated around the current set of parameter values by slightly changing these
values in a random way for each parameter. For each iteration i the new values are
uniformly distributed in intervals centered around AP'. If the new assignment of
parameter values has a decreased the error level error(AP™"), in comparison to the
error level error(AP’) of the previous assignment, it will be accepted (i.e., when
AE = error(AP™!) — error(APY) < 0). Otherwise, the new set will be accepted
with probability e *¥T_ which depends on the temperature and the difference
between previous error and the new one.

IfAE <0

accept the new point: take AP'T!

else

accept the new point with probability e AE/T

end if

Here T is the temperature and AE = error(AP”') - error(APi).

So, a new assignment of parameter values which generates a higher level of
error, will be accepted with probability of e 2T This probability is only dependent
on AE and T. If AE is very small (the new assignment of parameter values increases
the error level only a bit), or if the temperature is very high, then the new
assignment of parameter values will be accepted with a high probability. This
probability will decrease by decreasing the temperature or increasing AE.

Figure 14.8 shows e F'T a5 a function of AE when T = 1. Figure 14.9 shows
e F'T a5 a function of T when AE = 2.

As can be seen, the value of the function e is close to 1 when AE is very
small or T is large. On the other hand, it is less when AE is large and T is small.

The simulated annealing method starts at a user defined temperature T, and the
temperature will be decreased in each iteration. The process is terminated when the
temperature is so low that no more significant improvement can be reached.

Actually, the core of the simulated-annealing method is quite similar to the
gradient descent method. But, instead of picking the best move it picks a random
move. If the move improves the situation (decreases the error), it is always accepted
(like the random gradient descent). Otherwise, the algorithm accepts the move to a

AE/T
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higher error with some probability less than 1. The probability decreases expo-
nentially with how bad the move is: the amount AE by which the error is increased.
The probability also decreases as the temperature T goes down: bad moves are more
likely to be allowed at the start when T is high, and they become more unlikely as T
decreases. If the temperature T decreases slowly enough, the method will find the
best set of parameters with probability approximating 1.
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Set A= cooling rate of temperature % a value between 0.9 and 1.0, like 0.995
Set oo = neighbourhood limitation % a value like 0.1

Set initial T % Initialization

Set initial AP randomly % Initialization

Run the model for AP to generate a trace % Generate simulation trace for AP

Set E= error (AP) for this trace % Calculate the error for assignment AP

While (T = Tpin)
Generate AP' from AP by for each parameter value P in AP

set P'=P+ o * (rand() - 0.5) % Choose a neighbouring assignment AP'
Run the model for AP' to obtain a trace% Generate simulation trace for AP'
Set E' = error(AP") for this trace % Calculate the error for assignment AP'
AE=E'-E
If (AE< 0) % If the new assignment AP' reduces the error
AP = AP' % change assignment to one with lower error
g =1g % update the error value
else % if the assignment AP' does not reduce the error
if random() > exp(-AE / T) % do the next step with the probability exp(-AE/ T )
AP = AP’ % change assignment to one with higher error
E=E' % Update the error value
end if
end if
T=T*A % Decrease the temperature
end while

random() = a function that generates a random value between 0 and 1

Box 14.4 Pseudo-code for simulated annealing

As mentioned, the temperature T is decreased during the progress; the cooling
schedule defined by parameter A is of paramount importance for the performance of
simulated annealing. There is a trade-off between the quality of the final solution and
the execution time, the latter being sensitive to the speed of the temperature decrease.
Here, it is done by multiplying T in each iteration with A which is a number <1 (and
usually >0.95). If a very high initial temperature T is chosen, there will be a waste of
computational resources. In the contrary case of low initial T, the process could get
caught in assignments of parameter values which are not the best ones. It is very hard
to establish a general rule for determining the ideal initial temperature.

The simulated annealing method has been implemented for the example
described in Sect. 14.3. Figure 14.10 shows the error for the different iterations.

Advantages of simulated annealing

e Simulated annealing is effective in finding a good assignment of parameter
values for models with a huge numbers of parameters.

e Although the final point is not deterministically guaranteed to be the best one, if
the temperature decreases in an appropriate pace, it will find a very good answer.
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Disadvantages of simulated annealing

e In comparison to gradient descent or random gradient descent, it is slow. This

method needs more iterations to converge to an optimal answer.
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14.8 Discussion

This chapter is based on work with Amin Tabatabaei and Dilhan Thilakarathne. For
example, all data and figures used were generated by them. In this chapter only
some of the most often used parameter estimation methods have been discussed.
Sometimes variants of these methods or other methods are used; for example, see
van den Bos (2007), Chong and Zak (2013), Thilakarathne (2015). As can be
expected the different parameter estimation methods and settings found different
solutions for the example model. In Table 14.5 the parameter values are shown as
found by the processes displayed in Figs. 14.5, 14.6, and 14.9; recall that all of
these solutions had error 0.03 or just below that value.

This illustrates that usually there is not one unique best solution (related to a
global optimum) that is the only relevant solution, but multiple solutions (related to
local optima) are possible and relevant. It may depend on the context which of these
solutions are most relevant. In practice, to simply go for some unique solution
related to a global optimum, as sometimes may be suggested, will often not be
recommendable. Instead, better insight will be obtained when an overview is found
of different solutions relating to local optima with their respective errors, especially
when these errors are not that different, as in the above case.

In recent work an approach is introduced in which an error function is defined
for any requirement expressed as a dynamic property as discussed in Chap. 13. This
error function is based on approximate satisfaction, which provides a measure for
how close to satisfaction a requirement is. It generalises the error function based on
least squares of residuals when simulated values are compared to empirical values
as described in Sect. 14.2.4 to the case of arbitrary requirements.

Table 14.5 Different solutions found for error 0.03

Gradient decent Random gradient decent Simulated annealing
es, ws, 0.64 0.92 0.59
Oys, 5 0.82 1.00 0.52
Oys, 555 0.71 0.90 0.97
Oss, srs, 0.85 1.00 0.55
Oisrs, 2.84 2.79 6.94
Tors, 0.01 0.10 0.01
Oss, 51, 0.69 0.78 0.73
Ops, srs, 1.00 1.00 1.00
Gps, 6.58 6.59 5.00
Tps, 0.10 0.24 0.10
Of;, s, 0.89 1.00 0.97
Ogrs, ps, 0.88 1.00 1.00
Ogrs, fs, 1.00 1.00 0.90
Ops, cs, 0.66 0.62 0.50
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Chapter 15
We Don’t Believe in Ghosts, Do We?

What Is It that Drives Dynamics

Abstract In this chapter it is discussed how dynamics has been a challenging issue
in different disciplines since long ago. This issue has been addressed for different
domains, in Physics but also in Mathematics, Cognitive Science and Philosophy of
Mind. In the development of Physics it has led to notions such as velocity,
momentum, kinetic energy and force that drive motion in mechanics. The issue of
dynamics is still out there today, for example, in the domain of Cognitive Science
and Philosophy of Mind concerning the physical realism of assumed but not
directly physically observable mental states such as desires and intentions that are
supposed to drive (physically observable) behaviour. Four cases of dynamics within
different traditional disciplines are discussed in this chapter. Similarly, it is shown
how causal graphs and transition systems (often used in Al and Computer Science)
can be interpreted from a perspective of dynamics. The chapter provides a unified
view on the explanation of dynamics across different disciplines. This view is
related to the basic assumptions underlying the Network-Oriented Modeling
approach based on temporal-causal networks.

15.1 Introduction

The Network-Oriented Modeling approach based on temporal-causal networks
discussed in this book involves an important continuous-time temporal dimension.
This temporal dimension makes it a dynamic modeling approach; as discussed in
Chap. 2, Sect. 2.9 it covers all smooth continuous dynamical systems. Dynamics
has puzzled researchers since long ago. Among them are Greek philosophers such
as Zeno of Elea (about 490—425 BC) and Aristotle (384-322 BC). They pointed at
the phenomenon that the world occurs to us in different states at different points in
time. However, for the transition from a given physical state to another physical
state, it is not always clear from the given physical state what will be different in the
next state. For example, Zeno and Aristotle argue that at one specific instant in the
physical world (a snapshot) a moving arrow cannot be distinguished from an
arrow in rest, yet the next state for a moving arrow is different (e.g., Heath 1931).

© Springer International Publishing Switzerland 2016 421
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What is it in this given state that is driving the change to a next state in one case but
which apparently is absent in the other case? When no physical property can be
found in the given original physical state that can explain this change, what other
entity can be there to explain the change? Usually an entity that is not part of
physical reality, and therefore cannot be sensed in any way, but still may bring
about changes in the physical world, is called a ghost. If for a transition from a
given physical state nothing physical can be found in this state that can explain
what will be different in the next state, then it may seem that this change has to be
attributed to a ghost or ghost-like entity or property in the original state.

So, to explain dynamics that clearly occurs in the world, do we have to believe in
ghosts or ghost-like state properties? This issue has been discussed since the time of
Zeno and Aristotle for different domains. In fact the issue is still out there today, for
example, in the domain of Cognitive Science and Philosophy of Mind (e.g., Kim
1996) concerning the physical realism of assumed but not directly physically
observable mental states such as desires and intentions, that are supposed to drive
(physically observable) behaviour. But also in de development of Physics this issue
has played an important role and has led to notions such as velocity, momentum,
kinetic energy and force that drive motion in mechanics, notions which just as a
property like ‘being moving’ of an arrow cannot be observed in a snapshot at one
specific instant; e.g., René Descartes (1596-1650), Christiaan Huygens (1629-
1695), Isaac Newton (1643—-1727) and Gottfried Wilhelm Leibniz (1646-1716).
Similarly, in Mathematics abstract notions such as derivatives, differential equations
and Taylor series for mathematical functions have been introduced addressing the
question what drives dynamics.

To address the issue discussed above, during history often solutions have been
proposed by assuming hypothetical state properties called potentialities or antici-
patory state properties. These are state properties p that, when they occur in a state,
indicate that a specific property a will be different in the next state. As they are
hypothetical, a next question then is if and how they can be related to other, more
genuine state properties. Assuming potentialities, it is possible to explain from a
given state why and how a next state is different from this given state. But
potentialities themselves can still be ghost-like properties that are not part of the
physical world. Being ghost-like is not a very satisfactory status, and certainly it is
not when the occurrence of such a ghost is unpredictable.

There are two ways out of this. The first option is to find a physical state property
¢ (a realiser) that within a state always co-occurs with a given potentiality p, so that
the potentiality is at least equivalent to a physical state property. This is one way in
which in some cases a certain extent of realism (and through this predictability) can
be attributed to a potentiality. However, this is not always an option; for example, in
the case of a moving arrow such a physical state property ¢ simply does not exist.
Then the other option is that a potentiality is not equivalent to any physical state
property in the state in which it occurs, but it still has (temporal) relations to
physical state properties in previous states. Such temporal relations may also pro-
vide a possibility to predict the occurrence of a potentiality. So, whereas in the
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given state the potentiality might still be considered as ghost-like, at least the
occurrence of this ghost is predictable from previous states.

The second option is usually applied within Physics for notions such as velocity,
momentum and kinetic energy. For the notion of force, in general it is possible to
apply the first option, although a drawback is that in this case the realising state
property ¢ is not unique but depends on context: a given force f can be realised in
different ways. A realiser ¢ for f may be related to a context of either electricity,
magnetism, elasticity, gravitation, or ..., or even to a combination of such contexts.

Within Philosophy of Mind the first option is applied in the context of reduction
relations for mental states based on physical realisers (e.g., Kim 1996, 1998); also
here the issue of context dependency may occur, as different organisms may use
different realisations for similar mental states. The second option is also considered
within Philosophy of Mind to be relevant for a certain type of mental states (see
Kim 1996, pp. 193-207); the second option is sometimes described in that context
by a (temporal) relational specification of a mental state (e.g., see Kim 1996,
pp- 200-202). Such a temporal relational specification is in fact exactly how in
Physics the second option is used: by a temporal relational specification of state
properties such as velocity, momentum and kinetic energy.

In recent years, within Cognitive Science, dynamics has been recognized and
emphasized as a central issue in describing cognitive processes; for example, Port
and Gelder (1995); see also Chap. 1. As has been discussed in more detail there, the
notion that lies at the heart of this dynamical perspective is the notion of a
state-determined system. This type of system is based on the assumption that
(properties of) a given state fully determine (the properties of) future states. This
explicitly puts the focus on the properties of the previous state to explain why some
change has occurred in a next state. Therefore state-determined systems can be
explained well in terms of potentialities.

Four cases within different disciplines (Cognitive Science, Physics,
Mathematics, Computer Science) are analysed in this chapter and show how in
history the notion of potentiality has led to a number of often used concepts within
these disciplines. Among them are concepts like desire and intention in Cognitive
Science, momentum, kinetic energy, and force in Physics, and derivatives of a
function and Taylor approximations in Mathematics. Similarly, causal graphs and
transition systems (often used in Computer Science) can be interpreted from the
perspective of potentialities. This unified view on the explanation of dynamics
across different disciplines is also one of the contributions of the chapter.

The chapter is structured as follows. Section 15.2 discusses the perspectives of
Zeno and Aristotle, thereby illustrating the problem of explaining changed states for
nonliving entities in more detail. Section 15.3 does the same for living entities such
as animals, and humans in particular. In Sect. 15.4 the notion of potentiality and its
actualisation is discussed in some more detail. In Sect. 15.5 this fundamental notion
is addressed for a case study on potentialities for (loco)motion in Physics. More
specifically, it is discussed how in classical mechanics as developed by Descartes,
Huygens, Newton and Leibniz, among others, a potentiality for ‘quantity of motion’
and one for ‘moving force’ were developed; in modern physics known as
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momentum and kinetic energy. Both can be related to the concept of velocity. In
Sect. 15.6 it is shown that the mathematical formalisation of this concept velocity
(based on the mathematical notion derivative) is inherently based on properties of
states at different points in time. Section 15.7 describes how potentialities are
involved in models described by causal relations and transition systems, which is a
well known representation within Artificial Intelligence and Computer Science to
specify change in systems.

An issue considered within Cognitive Science and Philosophy of Mind is
whether mental state properties are genuine state properties. For example, as a
desideratum it might be posed that they should be identifiable with ‘real’ and
perhaps even directly observable state properties. This issue of realism also applies
to potentialities; this is discussed in Sect. 15.8. Assuming that potentialities exist as
anticipatory state properties that can explain properties of subsequent, changed
states, a next question is how the occurrence or change of a potentiality itself can be
explained. In Sect. 15.9 it is discussed how a changed potentiality can be explained
by a higher order potentiality (i.e., a potentiality to get a potentiality). In Sect. 15.10
it is discussed how interaction between objects can be interpreted as a transfer of
potentialities. It is argued that, if higher-order potentialities are generally assumed
to explain changed potentialities, changes due to interaction between objects have
to be attributed to higher-order potentialities as well, i.e., such an interaction is
characterised by the higher-order potentialities that co-occur with it. Historically,
the second-order potentiality for motion was formalised by the notion of ‘force’ in
classical mechanics; interactions between objects are characterised by the forces
they impress on each other. Section 15.11 addresses the issue of realism in more
detail, in particular for cases in which multiple relations to reality are involved.
Section 15.12 discusses how the notion of potentiality is a basic notion underlying
state-determined systems. Finally, Sect. 15.13 is a discussion.

15.2 Is Motion of Nonliving Entities Driven by Ghosts?

Following Zeno of Elea (about 490-425 BC), this section first discusses in
Sect. 15.2.1 why changed states cannot always be explained on the basis of given
‘real’ state properties, and, hence, thus providing an argument for why dynamics
does not exist in reality. Next, in Sect. 15.2.2 to solve this problem the option to
add anticipatory state properties called potentialities to obtain an explanation of
changed states are discussed.

15.2.1 Zeno About Arrows that Are Moving and Unmoving

An arrow moving from A to B traverses a number of positions between A and B at
different time points. Zeno asked himself what the difference in state is between a
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moving arrow in a certain position P at some time point ¢ and an arrow at rest in 7 at
the same position P. He came to the answer that there is not any state property that
differs for the two states, so there is no difference in ¢ between a moving arrow and
an arrow at rest. From this he concluded that in reality motion does not exist: it is
just an illusion, made up by human perception and processing. Zeno summarised
his view in the following paradoxal formulation:

If everything is either at rest or moving when it occupies a space equal to itself, while the
object moved is in the instant, the moving arrow is unmoved.

This formulation was taken from Aristotle (translated by Heath 1931) who incor-
porated some of Zeno’s work in his writings; a book written by Zeno himself
unfortunately disappeared (it is said to be stolen from Zeno). Also Aristotle (384—
322 BC) claimed that motion and change do not refer to anything existing in reality:

Again, there is no such thing as motion over and above the things. It is always with respect
to substance or to quantity or to quality or to place that what changes changes. But it is
impossible, as we assert, to find anything common to these which is neither ‘this’ nor
quantum nor quale nor any of the other predicates. Hence neither will motion and change
have reference to something over and above the things mentioned, for there is nothing over
and above them. [from Aristotle, 350 BC a, Physics, Book III, Part 1]

In the 19th and 20th century a number of technological developments made it
possible to do further experiments. For example, the concept of movie was
developed and the technical equipment to implement this concept; a movie is
created just by successively displaying a large number of static pictures (e.g., 24/s);
see, for example, Burns (2000). Nevertheless humans watching a movie get the
impression of motion just like in reality, from which the word ‘movie’ stems. But
nothing really moves in a movie, which is a paradox in words in the same spirit as
Zeno’s ‘the moving arrow is unmoved’. Other examples of 20th century techno-
logical developments that support Zeno’s view are television, computer animation
and virtual reality. All of these experiences support Zeno’s view in the sense that
having an impression of motion is not an indication that in reality anything like
motion exists at all (Fig. 15.1).

These observations suggest the following view on reality. Instead of motion or
change, which are human illusions that do not exist in reality, what does exist is the
concept of reality as different states that are related by a succession relation (and
can be labeled by time points). Each of these states can be described by the state
properties it has; properties make use of language elements for basic state concepts
that together form a state ontology.

So, for example, to create a virtual reality, i.e., something artificial similar to
reality, it is sufficient to display a succession of states at a frequency of, e.g., 20
pictures per second; nothing at all needs to be moved. Indeed, the more recent
development of movies has proven that this works: nothing actually moves in a
movie, but we perceive movement. However, for a range of lower frequencies
stroboscopic effects occur, that for viewers lead to disorientation, and for a still
lower frequency range the pictures are perceived one-by-one as separate pictures.
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Fig. 15.1 Zeno’s two arrows at three different points in time " < ¢ < ¢": the moving arrow (left
hand side) and the arrow at rest (right hand side); at time point ¢ there is no difference in state

If motion or change itself was considered part of reality, properties of successive
states could be explained by referring to this change. For example:

Why is the arrow at ¢' at position P'?
The arrow is at position P’ at t' because
at ¢ it was at position P, and
it was moving in the same direction P’ has from P, and

nothing was in its way.
This is almost tautological:
A changed position P’ occurs because the position P is changed

If motion as such does not exist in the state ontology to conceptualise reality,
such an explanation is unsatisfactory: this explanation makes use of a concept (for
‘motion’) that is not ‘real’, i.e., it does not belong to the ontology that conceptu-
alises physical reality. Still the different properties of the states in succession at
different points in time exist in reality; they are based on the ontology used to
conceptualise reality and they ask for an explanation that uses such real properties
in preceding states.

More specifically, how to explain for a given state, that for one case, for example
with an arrow at rest, a next state has the same property (same position of the
arrow), whereas in another case, for example a snapshot of a moving arrow, a next
state has a different property (the arrow at a different position)? How can a new
property occurring in a next state be explained without involving an unreal concept
such as motion? Only taking the usual state properties into account will not suffice
to explain differences in properties of subsequent states, because according to
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Zeno’s analysis the state of an object at rest at time ¢ has exactly the same physical
state properties as the state obtained as a snapshot of a moving object at time ¢. No
distinction can be made on the basis of these state properties, and therefore it is
inexplicable by physical properties why in one case a subsequent state has a
property different from the properties of such a subsequent state in the other case.
This seems to contradict the assumption of determinism: given the state at ¢ with its
physical properties, the state at ¢’ is not determined, as the position of the arrow can
either be still at P or it can be at another position. So, in particular this process
cannot be described as a state-determined system, when only the available state
properties are used. In how far would it be possible to add state properties beyond
these existing ones in order to obtain a state-determined system? This question is
addressed in the subsequent sections.

15.2.2 Adding Anticipatory State Properties to Describe
a State: Potentialities

In order to achieve that the assumption of determinism is satisfied, an additional
state property p is needed for the state at ¢, that makes a difference: if this state
property p occurs at ¢, then the position of the arrow will be different at #, and if this
state property p does not occur it still will be in P at #. So, assume that to con-
ceptualise a state, in the state ontology more ontological elements can be included
for state properties than only the apparent physical ontology and state properties. In
particular, a hypothetical or imaginary additional type of anticipatory state property
or potentiality can be assumed in the state ontology: the potentiality p to subse-
quently get a different state property at a next instant, i.e., the potentiality for the
state to become changed. This is a step that may seem rather artificial, but it has
been made in the history of science, not only once, but many times. Then the
following explanation can be made:

Why is the arrow at ¢ at position P'?
The arrow is at position P’ at ' because
at ¢ it was at position P, and
at ¢ it had the potentiality p to be at P’, and

at ¢ nothing in the world excluded it from being at P’

So, what is the situation? The arrow can be in two states at time ¢, which in the
physical world cannot be distinguished; these states are exactly identical. But there
still is a difference in the state at 7 that will become observable only at instant ¢’ after #:
either at ¢’ the arrow is still in the same position or it is in another position. The
difference in state 7 is whether or not an additional potentiality indicated by state
property p occurs at ¢: in the former case at ¢ no state property p occurs, and in the latter
case a state property p does occur at z. This potentiality p is not a normal physical state
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property; it cannot be physically observed in the state. But it still makes that the arrow
will have a different position at time #'. Typically, such a nonphysical entity showing
its presence only by moving an object is called a ghost. Therefore, assuming deter-
minism and state-determined systems, the conclusion can be drawn that
state-determined dynamics or motion in the physical world is driven by ghosts.
During the development of the scientific discipline of Physics in history a
number of such ghost-like state properties have been added to the physical ontol-
ogy, so that nowadays they are treated as more or less normal physical entities, and,
for example, people can now say that they believe in science, not in ghosts. This
development within Physics is discussed in more detail in Sect. 15.5. Maybe
needless to say is that in general the idea that nonphysical ghost-like entities affect
the physical world is not appreciated much, as in the physical domain it is preferred
that physical effects always have physical causes, which seems to be contradicted
by ghost-like state properties causing physical state properties. Moreover, by what
kind of mechanism could nonphysical entities affect the physical world?
Furthermore, from a practical angle, if a next state becomes predictable from the
given state only through such a ghost-like state property, in order for human beings
to actually determine such a prediction, it has to be known exactly what ghost-like
property is present. So, for practical purposes, if one has to deal with ghost-like
state properties an important question becomes: how can these ghost-like properties
themselves be predicted? Having to live with such ghost-like entities is one thing,
but let them at least be predictable then! Within Physics such predictability has been
achieved. This problem of ghost-like causation will be addressed in subsequent
sections. But first in Sect. 15.3 the idea of motion in living entities is discussed.

15.3 Is Motion of Living Entities Driven by Ghosts?

For motion of living entities such as animals an analysis has been made that has
some similarity to the analysis for nonliving entities discussed in Sect. 15.2.1.

15.3.1 Mental States Driving Motion

Often used explanations of animal (or human) actions refer to internal mental states.
For example, for a creature B which has the capability to move:

Why is B at ¢’ at position P'?
B is at position P’ at ¢’ because
at t B was at position P, and
at ¢t B had the desire to be at P’, and
at ¢ nothing in the world excluded B from being at P’
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In the example, the desire (which is usually considered as a kind of future-directed
mental state) plays a role similar to that of a potentiality p for being at P’ and the
explanation for a moving arrow as discussed in Sect. 15.2.2. Indeed this similarity
can be traced back in history, for example, to Aristotle:

Now we see that the living creature is moved by intellect, imagination, purpose, wish, and
appetite. And all these are reducible to mind and desire (Aristotle, 350 BC b, De Motu
Animalium, Part 6).

And so what we do without reflection, we do quickly. For when a man actualizes himself in
relation to his object either by perceiving, or imagining or conceiving it, what he desires he
does at once. For the actualizing of desire is a substitute for inquiry or reflection. I want to
drink, says appetite; this is drink, says sense or imagination or mind: straightway I drink. In
this way living creatures are impelled to move and to act, and desire is the last or immediate
cause of movement, and desire arises after perception or after imagination and conception.
And things that desire to act now create and now act under the influence of appetite or
impulse or of desire or wish (Aristotle, 350 BC b, De Motu Animalium, Part 7).

As an extension of the idea of potentiality he also describes what today is often
called means-end reasoning. He explicitly summarizes that ‘things in the soul’
control action:

Now there are three things in the soul which control action and truth - sensation, reason,
desire. Of these sensation originates no action; this is plain from the fact that the lower
animals have sensation but no share in action (Aristotle, 350 BC ¢, Nicomachean Ethics,
Book VI, Part 2).

15.3.2 Can ‘Things of the Soul’ Move Objects?

In the analysis in Sect. 15.3.1 properties of ‘mind and desire’ are mentioned as the
source of motion of a living being. Aristotle (350 BC b) shows how the occurrence
of certain internal (mental) state (desires) within the living being entail or cause the
occurrence of an action in the external world; see also Nussbaum (1978). Such
internal state are sometimes called by him ‘things in the soul’, ‘states of character’,
or ‘moral states’. In that time such ‘things’ were not considered part of the physical
world but of the ghost-like world indicated in this case by ‘soul’, similar to what
happened for the case of nonliving entities. So, in this context the explanation that
such a creature’s position gets changed is that there is a (ghost-like) state of the soul
driving it. How such nonphysical ghost-like states can affect physical states remains
unanswered, also for this case of living entities. Over time within Philosophy of
Mind this has been felt as a more and more pressing problem. Within Philosophy of
Mind nowadays a well known manner to characterise mental state is based on the
notion of functional or causal role; e.g., Kim (1996, 1998); see also Chap. 1,
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Sect. 1.2. The analysis above illustrates how mental states may have a causal role
with respect to future states or behaviour in the physical world, which makes that
they can be viewed as specific cases of potentialities for the states or behaviour they
cause. The idea that mental states can cause behaviour is called mental causation
(e.g., Kim 1996). But the problem with this is how exactly can nonphysical mental
states cause effects in the physical world? Mental causation can be seen as similar to
the idea of ghost-like causation discussed in Sect. 15.2.2 for nonliving entities. It
has the same problem of physical effects caused by nonphysical states, without any
mechanism known for such an effect.

15.4 Explaining Changed States by Introducing
Potentialities

The assumptions discussed in Sects. 15.2 and 15.3 focus on motion of living and
nonliving objects and the possibility to include concepts (potentialities) in the
ontology to conceptualise states that describe properties of (changed) future states
concerning motion. The current section addresses this idea from a more generic
perspective addressing any change, and provides some more detail.

15.4.1 Potentialities and Their Actualisation as a General
Perspective on Dynamics

Aristotle did introduce such a concept; he called it potentiality (to move), or mov-
able. The difference between the arrow at rest at time # at position P and the snapshot
of the moving arrow at ¢ at position P is that at time ¢ the former has no potentiality
p to be at P', whereas the latter has. This explains why at a next instant ¢’ the former
arrow is still where it was, at P, while the latter arrow is at a different position P'.
Aristotle did not only consider changes of positions (due to locomotion), but also
other types of change, for example, a young man becoming an old man, and a cold
object becoming hot. For each of these types of changes a specific type of poten-
tiality is considered; e.g., the potentiality to be at position P’, the potentiality (of a
young man) to be an old man, the potentiality (of a cold object) to be hot.

In general, if the potentiality p (occurring in a state S) to have state property
X has led to a state S where indeed X holds, then this state property X of state S’ is
called the fulfilment or actualisation of the potentiality p for X occurring in state
S. He expresses his view on potentialities and their actualisation as follows:

‘We have now before us the distinctions in the various classes of being between what is full
real and what is potential.
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Def. The fulfilment of what exists potentially, in so far as it exists potentially, is motion -
namely, of what is alterable qua alterable, alteration: of what can be increased and its
opposite what can be decreased (there is no common name), increase and decrease: of what
can come to be and can pass away, coming to be and passing away: of what can be carried
along, locomotion.

The same thing, if it is of a certain kind, can be both potential and fully real, not indeed at
the same time or not in the same respect, but e.g. potentially hot and actually cold [from
(Aristotle, 350 BC a, Physics), Book III, Part 1].

15.4.2 Derivatives as Potentialities for Variables
in Dynamical Systems

Consider a jump from the time of Aristotle to now. As discussed in Chap. 2
dynamics of continuous process is often described by dynamical systems that
involve a number of states or variables X; with different values X;(¢) for different
points in time 7. These values X,(r) for different time points together describe the
succession of overall states S for the different time points (for example, see Chap. 2).
Changed state properties of a state S’ at some time point #' compared to a state S at an
earlier time point # have the form that at least one of the values X;(#') at ¢’ is different
from the value X;(¢) at #: at least one of the X; has changed its value from ¢ to #'.

Now focus on such a change of any continuous variable X, from a time point 7 to
a time point ¢, with Ar the time difference ' — ¢. During this A the value of
X changes from X(¢) to X(z'). The derivative dX/dr of this variable is usually con-
sidered the ‘rate of change’ for X. What exactly does this mean? Together with the
value X(7) at time point ¢, the derivative dX(7)/dr at ¢ determines the state of X(#') at
t'=t+ At in the following manner. For small Ar as an approximation with
AX(r) = X(t + Ar) — X(¢) it holds

AX(1)/Ar = dX () /ds
AX(r) = dX(z)/dt At

This shows how the change AX(¢) of the state of X from ¢ to ¢’ is fully determined by
the derivative dX(z)/dr and Ar. So, the derivative dX(7)/d¢ can be considered a
potentiality for this change with the new value X(f) + AX(¢) as its actualisation.
Note that this can be rewritten into the following format:

(X(t4+ A1) — X(1))/Ar = dX(z)/d¢
X(t+ Ar) = X(¢) +dX(z)/dr At
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This again shows how the value X(z + Af) in the next state at t + Az is deter-
mined by the values for X(7) and dX(¢)/d¢ at #; in Chap. 2, Sect. 2.8 it was discussed
how this basic format can be used for simulation.

The case of Zeno (who did not have the machinery of derivatives as available
nowadays) can also be rephrased in these terms. The difference between the moving
and non moving arrow can be defined as a difference in speed, which is the
derivative of the arrow’s position X(f) over time. But the question how this
derivative dX(f)/d¢ at ¢ can be considered a state property at ¢ in general still may not
be easy. Is this not a sneaky manner to let a notion of motion enter again through
the back door, while Zeno’s analysis (see Sect. 15.2.1) made it clear that there is not
such a thing as a state property? This will be discussed below in Sect. 15.6.1.

15.4.3 What Kind of State Properties Are Potentialities?

The similarity in explanatory pattern for different cases of dynamics in different
domains leads to the question what potentialities actually are in these different cases
and domains. For example, Zeno claimed that a moving arrow at ¢ does not differ in
state from an arrow at rest at the same position. Even relating this to a concept as
velocity which does make a difference at # does not fully solve this issue, as will be
shown in more detail in Sect. 15.6.1 below. It may seem strange to attribute such
invisible ghost-like state properties to certain (living or nonliving) objects.
Wouldn’t the use of such vague concepts stand in the way of a genuine physical
description of the world? Recall, however, that adding the concept potentiality to
the state ontology was done to solve an explanatory problem that otherwise was
hard to solve: how to explain that two given arrows in exactly the same position,
one arrow is in another position in a next state, whereas the other arrow still is in the
same position. So, simply banning such an unclear concept leaves us with this
problem, which actually can be viewed as a problem of non-determinism: without
such an additional property the state at ¢ does not fully determine the state at #' > .

There is a longstanding discussion in Philosophy of Mind on the existence and
place of mental state, and the problem of mental causation: how can ghost-like
mental state (‘things of the soul’) make physical things (an organism) move; also
see Kim (1996) and Sect. 15.3.2. Considered at a more general and abstract level,
this has much in common with the discussion in Sect. 15.2 on the existence and
place of potentialities for nonliving entities: in how far are such potentialities real?
Assuming potentialities as additional state properties, just to make this difference
and in this way guarantee determinism would be a cheap and artificial solution (just
defining the problem away) if it is not shown how potentialities can obtain a solid
place as genuine state properties. Moreover, their presence is not very useful for
actual predictions if there is no manner by which it is possible to find out or predict
whether and in which form they are there. This issue will be discussed in more
detail in Sect. 15.6, after some further discussion about potentialities in Physics in
Sect. 15.5.
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15.4.4 Summary of Assumptions Underlying
Potentialities

As a unifying perspective the following criteria will be considered as characteristic
for a perspective based on anticipatory state properties or potentialities:

e succession of states
The world occurs in successive states at different points in time.

e state-based ontology
Within an explanation or description only states and their properties are used,
based on a state ontology. In particular, no concepts for actions, events, tran-
sitions between states, or processes are used.

e necessity of anticipatory state properties
For each specific state property a that occurs in a given state there exists a specific
anticipatory state property p related to property a that occurs in a preceding state,
in conjunction with some additional conditions on specific circumstances in this
state (i.e., no obstruction occurs of the actualisation of a by p).

o sufficiency of anticipatory state properties
If p is a specific anticipatory state property related to the occurrence of a specific
state property a, and property p occurs in a state, then, given suitable further
circumstances (i.e., no circumstances obstructing the actualisation of p), in a
subsequent state property a will actually occur.

e state-based or temporal grounding of anticipatory state properties
For each anticipatory state property p there is a specific characteristic either in
the past and/or in the current states that guarantees the occurrence of p.

15.5 Potentialities in Physics

In later times successors of Aristotle, such as René Descartes (1596-1650),
Christiaan Huygens (1629-1695), Isaac Newton (1643—1727) and Gottfried Wilhelm
Leibniz (1646-1716), among others, have addressed the question how to further
develop the phenomenon of change or dynamics and, in particular, the concept
potentiality within Physics. Some contributions of these will be discussed in this
section. Indeed they succeeded in giving certain types of potentialities a
well-respected place in modern physics (actually in (1644, 1998) more than one way).

To obtain a better understanding of the concept of potentiality (which he called
quantity of motion, or tendency to motion), Descartes (1644, 1998) did some
reflection on objects of different sizes.

Now, although this motion in moved matter is nothing other than its mode, nevertheless it
has a certain and determinate quantity, which we easily understand to be able to be always
the same in the whole universe of things, even though it be changed in its individual parts. So
it is evident, as we think, that when one part of matter is moved twice as fast as another, and
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this second [part of matter] is twice as large as the first, there is as much motion in the smaller
as in the larger ... (Descartes 1644, Principles of Philosophy, Part II, Paragraph 36).

Descartes took the product mv of mass m and velocity v of an object as an
appropriate foundation for its potentiality to be in a changed position, or quantity of
motion. Thus he related the vague concept potentiality to other, better known
concepts. Notice that this anticipatory state property ‘quantity of motion’ is a
relative potentiality: the actualisation of a given quantity of motion entails being at
another position as specified by this quantity relative to the current position, and not
as being at some absolutely specified position. In modern physics this ‘quantity of
motion’ concept is called linear momentum, or just momentum, and the conserva-
tion, for example, during elastic collisions, is called the ‘law of momentum con-
servation’. Newton incorporated this notion in his approach to motion; actually the
law of momentum conservation as formulated by Descartes has a strong relation-
ship to Newton’s second and third law. This is one way in which a concept
‘potentiality’ was given a well-respected place in Physics, in particular in classical
mechanics.

Huygens (1629-1695), and later his student Leibniz (1686a, 1686b, 1989, 1956,
1991), used a different way to give a concept ‘potentiality’ a place in Physics.
Leibniz called this concept vis viva (living force), or motive force, or moving force,
or force of motion, or power. By incorporating results from experimental work of
Galileo, Leibniz has shown that his notion motive force and Descartes’ notion
quantity of motion are different concepts:

Thus, through the resolution of bodies into parts, the speed, or space and time, being
conserved, we had inferred, demonstrated, that given the same speeds the powers were
proportional to the bodies. Similarly, we have demonstrated, which is paradoxical, but
absolutely true, that, the body being conserved, time and space being resolved jointly (for
otherwise the case given could not be divided in several cases congruent with each other
while different), given the same bodies, the powers are proportional to the square of speeds
(Leibniz 1991, 11, §E, p. 816).

So Leibniz claimed that the potentiality ‘motive force’ was proportional not with
the velocity v as in the case of ‘quantity of motion’, but with the square of the
velocity. In this way Leibniz put the foundation for the law of conservation of
energy, in this case involving kinetic energy (which actually was later taken Yamv?)
and potential energy, and exchange between the two. So, within the development of
Physics, the potentiality of an object to be at a different position was differentiated
in two forms: linear momentum (Descartes’ quantity of motion) and kinetic energy
(Leibniz’s motive force). Today both still are part of Physics; both were expressed
in terms of mass m and velocity v of the object (mv resp. Yamv?).

In a broader sense Leibniz aimed at developing what he called a science of
power and action, or a science of dynamics; in the Specimen preliminare of the
Dynamica he states:

I judged that it was worth the trouble to muster the force of my reasonings through
demonstrations of the greatest evidence, so that, little by little, I might lay the foundations
for the true elements of the new science of power and action, which one might call
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dynamics. I have gathered certain preliminaries of this science for special treatment, and I
wanted to select a ready specimen from these in order to excite clever minds to seek truth
and to receive the genuine laws of nature, in place of imaginary ones (GM VI, p. 187;
Leibniz 1989, p. 107).

Note that to relate a notion of potentiality to other state properties, both
Descartes and Leibniz made use of mass and velocity as state properties. This
provides a more operational and practically useful type of potentialities: they can be
calculated by the formulae mv and % mv* as soon as mass and velocity can be
determined. However, in how far velocity, and more in general any derivative of a
state property, can be considered a genuine state property is a not so easy question,
which will be discussed in Sect. 15.6. It might be the case that the formulae
discussed above just express some potentialities in another potentiality, namely
velocity. At least an advantage is that the focus of the analysis can be directed to
velocity, which will be addressed in particular in Sect. 15.6.1.

15.6 What Kind of Property Is a Potentiality:
Getting Rid of Ghosts?

Within Philosophy of Mind it has been described how mental states such as desires
can play a causal role, thus functioning as potentialities for behaviour. Playing a
causal role means that they are caused by some other states which may include
other mental states and states involved in sensing the world, and in turn they cause
other states which may include other mental states and actions or behaviour of the
organism in the physical world. However, especially the latter type of causation,
also called mental causation was felt as a difficult problem: how can mental states
make things move in the physical world, if they are nonphysical, ghost-like state
properties? Such interaction from ‘things of the soul’ to the physical world is
considered problematic, as usually it is assumed that physical effects have physical
causes, and no mechanism is known for interaction from nonphysical entities to
physical entities. Given the role of potentialities in Physics as described in the
previous section, could something be learned from that?

Within Physics, potentialities have found their place in different manners. Basic
concepts such as momentum, kinetic energy, and also force can be considered
variants of potentialities. In Sect. 15.5 momentum and kinetic energy were dis-
cussed; the concept force will be discussed in Sect. 15.10 in the context of
higher-order potentialities and the exchange of potentialities by interaction. Both for
momentum and kinetic energy a conservation law has been found, and both con-
cepts have been expressed in terms of mass and velocity (see Sect. 15.5). Does this
mean that in these two forms, potentialities have become genuine state properties,
because they are definable in terms of other genuine state properties? Even leaving
relativity theory aside, this is not a simple question. A straightforward answer
would be: indeed, potentialities are genuine state properties because they are
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defined in terms of mass and velocity which are assumed to be genuine state
properties. For the sake of simplicity accepting this claim for mass, a question,
however, remains what kind of state property velocity V() at time ¢ is.

15.6.1 Why Velocities and Derivatives by Themselves Are
not Genuine State Properties

What type of state property is velocity? Could it be the case that velocities, and
more in general derivatives of continuous variables, are having a ghost-like status?
This question will be addressed first, by focussing on velocity V(f); but the same
analysis applies to the derivative dX(¢)/ds of any variable X.

A first approach is to take velocity V(#) to be distance traversed divided by time
passed over some chosen time interval from ¢ to #; i.e.:

V() = (X()=X("))/ (t—1")

with X(7) distance traversed at ¢ and X(¢") distance traversed at #”. This definition
involves states at different points in time ¢ and ", so it is not based on one state at
one time point. This notion of velocity actually is velocity over the given time
interval from ¢ to ¢, so a property of a sequence of states indexed by the time points
of the interval, or, to simplify it a bit, a property of a pair of states for the starting
point and the end point of the time interval. This is not what one would call a
genuine state property for the state at time .

For a second trial, consider a modern variant of the moving arrow discussed in
Sect. 15.2. Suppose there are two snapshots of a car at time #: one was driving (with
50 km/h) at 7 and one is in rest. In this snapshot of the driving car everything is
frozen in the position at 7. So everything looks the same as the car in rest, the car
itself, and its wheels, for example. But wait, within the interior of the driving car
there is one visible difference! The speedometer of the frozen car indicates 50 km/h,
whereas in the car in rest it indicates O km/h. So does this finally provide a real and
observable difference between the physical states of the two cars? Should velocity
at some point in time be identified with what this speedometer displays? Indeed, at a
point in time ¢ the position of the pointer of a speedometer, or the number displayed
is a genuine state property. Would this offer an appropriate solution to get rid of the
ghost status of velocity? A first general objection may be that this state property is
just the position of the pointer, not velocity. For every type of object and
speedometer a different state concept would arise: think of speedometers for cars
compared to those of airplanes, ships, rockets; and what about the velocity of a bird
or an approaching meteor, should they also have speedometers? Even if for a certain
class of objects, such as cars, a standardisation would be reached for a speedometer,
then still the position of the pointer of the speedometer is itself not velocity; at most
it has a relation to velocity. What kind of relation is this?
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Looked at it in some more detail, the position of the pointer of a speedometer
results from or is affected by the actual motion, so there is a small time delay between
having some velocity and what the pointer displays. Therefore the pointer actually
indicates speed at time points " < ¢, which, although close to ¢ are not exactly equal
to t. Thus the pointer position, which is a state property of the state at ¢, actually
relates to velocity in states at #” < ¢, not to a state property of the state at . This makes
clear that the speedometer concept will not help much to make velocity a genuine
state property of the state at time ¢. Finally, also from another angle it is quite difficult
to imagine that this pointer position can be seen as a potentiality, as a potentiality is
supposed to cause the changed position after 7. And certainly the pointer position is
not moving the car: the pointer position itself does not affect anything but the image
in our eyes and certainly not the (changed) position of the car at the next instant;
velocity does affect this position. Apparently the problem is not solved by consid-
ering the pointer position as a candidate for potentiality.

A third possible approach is what is sometimes called the notion of instanta-
neous velocity. In modern physics and mathematics, for continuous processes that
satisfy sufficiently strong conditions of smoothness, this is usually defined as a
limit:

V() =lim(X(¢") — X))/ (" — 1)

1 —st

Note that this limit is defined in terms of the whole family or sequence of states
around ¢, i.e., in terms of the state properties x(z") for all " in a neighbourhood of
t. In mathematical terms this limit can be defined as

Ve>030>0 VI'[0<|" —t|<d=|(X({")—X 1)/ —1)— V()| <é]

It is clear that this statement refers to a whole sequence of states for time points #”
around ¢. In this sense also the notion of instantaneous velocity does not provide a
good solution for a foundation of the potentiality velocity as a genuine state
property.

Note that the approaches discussed above at least provide some practically useful
methods to determine an approximate value for the velocity as a potentiality. The
first approach can be used by just taking some #” just before ¢ and then make the
calculation of the velocity over the interval from ¢” to ¢. This may not be the best
approximation for velocity at #, but at least gives some value. The second approach
is just by using a measuring device (speedometer). This also gives an approximate
value, due to possible inaccuracies in the measuring device. The third method could
provide the best approximation, but also not a perfect value, as such a limit can only
be approximated by a numerical method up to a certain accuracy.

The analysis of the notion of velocity shown above can also be done in a similar
manner for the derivative dX/d¢ of any variable X. Recall from Sect. 15.4.2 that
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together with the value X(#) at time point #, the derivative dX(¢)/dz at ¢ determines
the state of X(¢') at ' = ¢ + Ar. For small Az as an approximation it holds

X(t+Ar) =X(1) +dX(r)/dt At

This shows how the value X(z + Af) in the next state at ¢ + At is fully determined by
the values for X(r) and dX(¢)/dz at . The issue that has been discussed above for the
case of velocity in principle applies to any derivative dX(z)/d¢ at ¢, so it may not be
easy to find out how this dX(#)/dt can be considered to be a genuine state property at ¢.

15.6.2 Ghost-like Properties or Temporal Relations
Involving Genuine Properties?

In summary, it turns out that to define a potentiality p for a state at a time point ¢,
states at different time points may have to be taken into account, not only the one
state at £. So, do we have to admit that addressing motion and change by extending
the state ontology by some form of additional state properties for potentialities is
failing? The answer on this question seems to be: yes and no. The answer is ‘yes’ in
the sense that in the three possibilities considered here, there has not been found
anything physically real in the state as a basis for a potentiality p as a genuine state
property. The answer is ‘no’ in the sense that the historical developments as dis-
cussed in this section have provided quite powerful mathematical means (calculus,
differential equations) to model all kinds of problems in diverse application areas.
In our daily life we all rely on artefacts constructed using classical mechanics; e.g.,
bridges, buildings, transportation means. Given that this conceptual machinery
works quite well in predictions, makes that the question is still there: what is it that
makes this machinery so successful? You would not like to answer this question by:
ghosts!

From a general perspective, avoiding the use of a concept for motion itself as
being too ghost-like, the basic ontology for state properties apparently is insufficient
for explanations of dynamics. Given this problem, in principle two ways out are
possible: either (1) extend the assumed state ontology and state properties
expressed in terms of them by additional anticipatory state properties or poten-
tialities p, to be able to discriminate states that are at rest and states that are going to
change, or (2) keep the basic state ontology and state properties the same but extend
the states that can be used in such an explanation from the current state to states in
the past in addition. So, more specifically, the following two ways can be pursued
to solve the problem:
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(1) Extending the state ontology by introducing anticipatory state properties
Assume that to conceptualise a state, the state ontology has more ontological
elements and state properties than only the apparent ontology and state
properties. In particular, a state can be conceptualised using an additional type
of anticipatory state property p in the state ontology: the potentiality to
subsequently get different state properties, i.e., the potentiality for the state to
become changed.

(2) Exploiting temporal relationships: involving states over different time points
Explaining why a state at time ¢ has a different state property is not possible
on the basis of one state at ¢ < ¢, but needs to take into account a history of
different previous states at times t" before t'. In Kim (1996, pp. 200-202) a
notion of (temporal) relational specification for mental states is discussed that
could play a role in this perspective. Also the three methods discussed above
to determine velocity make use of such a history of states before 7.

Above it was discussed that option (1) does not provide a satisfactory solution
for the case of velocity, and derivatives more in general. Choosing for this option
makes that one still is left with ghost-like state properties that cannot be related to
physical reality. So, better go for the second option? The different trials for velocity
above all ended up in relations with states at other time points than ¢, so that would
suggest that option (2) is the option to choose. However, also option (2) has some
problems. One severe problem is that if velocity or derivative is defined in terms of
states at 1" before ¢, option (2) violates the state-determined system assumption. The
state at ¢’ does not only depend on the state at ¢, but via the temporal relations also
on states at 7" before 7. As state-determined systems are the focus here, this is an
unforgivable shortcoming of option (2).

So for a good foundation of state-determined systems only option (1) remains,
with its problems. One possible solution for (1) is the predictable ghost option:
accept that a potentiality is not a genuine state property, so it is still ghost-like, but
by using the temporal relations as in (2) (see also Sect. 15.6.1), at least it can be
predicted from previous states before ¢ when it will occur. This is how the poten-
tialities momentum and kinetic energy and the notion velocity are handled in
Physics, with success. Adding these potentialities as artificial state properties at
time ¢ is not that harmful, as they are fully determined by genuine state properties in
previous states before 7: they may occur like ghosts, but at least they are predictable
ghosts. In this way still a state-determined system is obtained, although this was
achieved in an artificial manner.

To address the problems of option (1) there is still some other possibility that
may be considered as a sort of solution for these problems: the realisation option;
this will be discussed in Sect. 15.8. As a next step, to get some inspiration for this
type of solution, in Sect. 15.7 first the role of potentialities in some approaches in
Artificial Intelligence and Computer Science is discussed: modeling based on causal
relations or transition systems.
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15.7 Potentialities for Causal Relations and Transition
Systems

An often used method (in Artificial Intelligence, Computer Science and related
areas) to specify how a state in a system may change is known as transition
systems; causal relations can also be described in this setting.

15.7.1 Transition Systems and Causal Relations

Transition systems are collections of specifications that each consist of a pair (¢, \r),
also denoted as ¢ — \ and sometimes called a transition rule with antecedent ¢
and consequent \. In this specification:

o the first description ¢ indicates a combination of state properties for the current
state (for example a conjunction of basic state properties, or a disjunction, or a
disjunction of conjunctions)

e the second description s indicates a state property for the next state.

The idea is that if the combination of properties specified in the first description
holds in a (current) state, then in a next state the properties specified by the second
description will hold. In fact causal relations can be considered a specific case of
this, in which ¢ causes V.

This approach is illustrated by a simplified model of traffic lights at a crossing of
two roads A and B, where traffic on A has priority over traffic on B. For example, if
no approaching traffic is sensed on road A, then the traffic light for road B is set
green, and for road A red. Such a simple scenario can be described in transition
system format as follows:

traffic_on_road_A — green_light_for_road _A
traffic_on_road_A — red_light_for_road_B
no_traffic_on_road_A — red_light_for_road_A

no_traffic_on_road_A — green_light_for_road_B

These relations can be interpreted as well as a set of causal relations. For example,
the presence of traffic on road A causes the light for road B to be red.

Based on such a specification a trace of subsequent states is made (in an iterated
parallel fashion) as follows:

e Given a current state S, take the transition rules for which the antecedent holds
in the current state. This is the set of applicable rules.

e Collect the consequents of all applicable rules and obtain the next state S’ by
modifying S so that all these consequents hold in S’ (and the rest of S is
persisting).
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15.7.2 Potentialities for Transition Systems and Causal
Relations

How can such a dynamical system model be interpreted in terms of potentialities?
For example, consider a state S with no traffic on road A. Then by transition rule

no_traffic_on_road_A — green_light_for_road_B

in the next state S’ the property green_light_for_road_B holds. Therefore in state
S the potentiality for green_light_for road_B has to be present, i.e., the state
property p(green_light_for_road_B) occurs in state S. Similarly the other transition
rules can be interpreted as indications of which potentialities occur in a given state.
In general, according to this interpretation a transition system specifies for each
state which potentialities occur: for each transition rule ¢ — Vs, if in a state S its
antecedent ¢ holds, then in this state S also the potentiality p(\r) for \ occurs. Thus
a transition rule ¢ — \J can be interpreted as an implication

¢ — p(\¥) within any state S

describing a relationship between state properties in the given state S. If in the
transition rule ¢ — \ the antecedent ¢ incorporates all antecedents that lead to
consequent s (for example, ¢ is the disjunction of all of them) it is even possible to
have a bidirectional implication:

¢ < p(V) within any state S

In a more general setting, suppose in a temporal-causal network states X; for
i=1, ..., k have impact wy,y X;(f) on state Y, and cy(...) is the combination
function for these impacts. Then the combined impact on Y is
cy(ox, yXi(2), ..., ox, yXk(¢)). This combined impact as an aggregation of the
single impacts can be considered an aggregated state X with value V =
cy(ox, yXi(2), . .., ox, yXk(¢)) which is expressed in terms of the states X;. This
state X with its value V can be related to the potentiality p(\s) by ¢ < p(\), where
\r stands for Y(f) = V and ¢ stands for X(r) = V.

This relation ¢ < p({) between ¢ and p({) within any state S suggests a
solution of the problem how to get rid of the ghost-like status of potentialities: by
relating them to other state properties in the same state. By directly relating the (by
itself ghost-like) state property p(\) to a state property ¢, this gives p(\y) a more
genuine status in the state. Moreover, the effect of p(\s) on {r can now be explained
as a causal effect of ¢ on \, which is no ghost-effect anymore, and is practically
useful to actually determine the next state S’ (as long as causal effects are assumed
real). This type of solution for the status problem of potentialities will be discussed
in more detail and in a more general setting in Sect. 15.8.
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15.8 Realisers for Potentialities and the Role
of Differential Equations

A not yet fully considered possibility to get rid of the ghost-like character of
potentialities is by embedding them better in the states in which they occur. This
can be done by trying to identify relationships between a potentiality and other,
more real properties of the states in which they occur. Such a state property, making
the potentiality more real, is called a realiser of the potentiality. First it is discussed
how this idea was developed within Philosophy of Mind.

15.8.1 Realisers of Mental States in Philosophy of Mind

For mental states this is an approach that has been studied extensively in the
literature on Philosophy of Mind, in order to get rid of the ghost-like character of
the mind, and in particular of mental state; e.g., see Kim (1996). For example, this
provides a solution for the well-known problem of mental causation: how can
mental states have effect on the physical world?

In this solution a mental state M is related to a neurological or physical state R,
called a realiser of M, that always co-occurs with M; for every point in time mental
state M occurs in the state at ¢ if and only if R occurs in the state at #:

at each rfor any state atzit holds M < R

Given such a realisation relation, a solution for the problem of mental causation
can be obtained as follows. Suppose M is a mental state that is assumed to cause a
physical action effect A. A causal relation M — A would be seen as a ghost-like
state property (‘thing of the soul’) causally affecting a physical property, which is
considered problematic. However, now there is a way out of this. When an effect of
M on A is considered, in reality this can be considered an effect of the physical
realiser R of M on A: a physical causal relation R — A. The latter relation is just a
relation between two properties in the physical domain, so there is nothing
ghost-like remaining. A lot more can be said about this notion of reduction or
realisation relation (e.g., for more details see Kim 1996), for example, about
whether for the human or animal mind such realisers always exist and if so, if there
may exist more of them (multi-realisability). This will not be discussed further at
this point, but the idea itself is adopted here for potentialities, beyond the ‘mind’
context, thereby for the sake of simplicity not considering multi-realisability for
now; however, see Sect. 15.11 for some more details on multiple realisation.
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15.8.2 Realisers of Potentialities from a More General
Perspective

Now compare the analysis in Sect. 15.8.1 to the analysis of causal relations and
transition systems in Sect. 15.7.2. There a causal relation ¢ — \y was considered,
and this was related to a potentiality p(\) for \ by a relation ¢ < p(\) within a
state. This has a clear similarity with a realisation relation M <« R within
Philosophy of Mind, where mental state property M corresponds to potentiality p
(V) and the physical realiser R corresponds to ¢.

For the general case, inspired by these cases considered above, if in all states a
potentiality p always co-occurs with a certain genuine state property ¢ (which can
also be a combination of more basic state properties), such a co-occurring property
c is called a realiser for p: for every point in time ¢, state property p occurs in the
state at ¢ if and only if ¢ occurs in the state at #:

at each ¢ for any state Sit holdsp < ¢

See also Fig. 15.2; the vertical bidirectional arrow indicates the realisation relation
between p and c.

If such a realiser exists, it is possible to get rid of the problem that a ghost-like
potentiality given by state property p has a causal effect on its actualisation a, in a
similar manner as the solution of the problem of mental causation in Philosophy of
Mind. The idea is that it is not p itself which has this causal effect, but it is its
realiser ¢, via the horizontal arrow in Fig. 15.2. This relation ¢ — a can be just a
causal relation between genuine state properties, so nothing ghost-like there.

However, there are cases in which it no realiser exists at all. For example, this
happens for a freely moving object in space, where a potentiality (momentum or
velocity) occurs that is independent of the other properties of the present state. In
this case the potentiality at time 7 depends on the history before ¢ and is independent
of properties of the world state at ¢. To be able to cover such motion effects, it seems
that the only way to relate potentialities to other state properties is by relating them
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to properties of states at time points different from ¢ (i.e., by using temporal rela-
tionships). But there are many other cases for which this approach based on real-
isation relations in the same state at ¢ still can work.

15.8.3 Realisers for Derivatives: First-Order Differential
Equations

As a next step it is shown how smooth continuous state-determined systems can be
described by realisation relations. In Sect. 15.6 it was discussed how the derivative
dX/dr of a continuous variable X at a certain time point can be viewed as a
potentiality which determines the next state at time ¢ + At of that variable. In this
section it is discussed in which form a realisation relation of such a potentiality
occurs, and more in particular, how differential equations play a role in this. Let px
be such a potentiality (i.e., change rate) for variable X, i.e., py = dX/dz. How can
this potentiality be related to other state properties? As a special case, the rela-
tionship of (the value of) py to other state properties can focus on properties that can
be expressed in terms of (the value of) X. A plain case of this idea is when a value
V of px in a state is considered always to co-occur with this value V for some
expression for a function F in the value of X in the same state:

palt) =V = FX(1)) = V

This shows a bi-conditional form for the co-occurrence of the two properties in a
state at f, where the right hand side of the ‘if and only if’ is the realiser of the
potentiality at the left hand side. An alternative way to express the same bicondi-
tional relationship is:

Keeping in mind that the potentiality py is the derivative dX/d¢ of X, the latter way
of expressing can be also written as

dX(r)/dt = F(X(1))

This expression is the usual notation for a first-order differential equation. So, this
differential equation allows to relate the potentiality px(f) = dX(¢)/d¢ at time ¢ to
other state properties of the state at 7. As an example, take the function F' defined by:

F(X) = aX(1 —X)
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For this example, potentiality px(?) is related to another state property at time ¢ as
follows:

px(1) = aX(2) (1 -X(2))
In the usual notation for a differential equation this is also formulated as
dX/dr = aX(2) (1 -X(2))

It turns out that first-order differential equations can be understood from the
conceptual framework based on potentialities as realisation relations for potential-
ities. The differential equation format

dx/dr = F(X(t))

expresses in a variety of cases how a potentiality py relates to another state property.
Moreover, this can easily be extended to a system of multiple differential equations
for multiple states, such as

py(t) =dY/dr = G(X(2), Y(1))
where each of the potentialities py = dX/dt and py = dY/dt has a realisation relation

to a combination of the state properties X and Y, defined by F and G, respectively:
In a discretised form a (first-order) difference equation can be considered:

AX/At =F(X(1)) with AX = X(¢)—X(¢t)andAr = ¢ — ¢
(X(¢) — X(1)/At = F(X(1))
X(#')—X(r) = F(X(2))At

X(t+ Ar) —XTr) = F(X(#))At with At =7 —1t
X(t+Ar) =X(t)+ F(X(2)) At

Given that F(X(f)) is a realizer for potentiality px(f), the last line can be
re-interpreted as the standard pattern for a potentiality for a continuous state X,
describing how the next state at ¢ + Az is determined by the current state at :

X(t+ Ar) = X(1) + px (1) At

So, consider the question: why do (first-order) differential equations or difference
equations exist? In principle, this is a difficult question, but in the light of the above
it could be answered by: in order to get rid of ghosts! Of course, this answer does
only indicate a purpose of differential equations once they are available (what is
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their use), not the fundamental question why it is possible to find them in so many
disciplines and application domains. That question is more difficult to answer.
Maybe their availability should be considered as just a fortunate opportunity or gift
offered by the world as a kind of miracle, revealed initially by Newton and Leibniz
and developed further by many followers.

Recall from Chap. 2, Sect. 2.9 that a smooth continuous dynamical system is
state-determined if and only if it can be described by a set of first-order differential
equations. This means that the above mentioned miracle concerning the existence of
first differential equations realising potentialities for the dynamics of some part of
the world is equivalent to the existence of a state-determined system to describe the
dynamics of that part of the world. In other words, the state-determined system
assumption for the dynamics of some part of the world is equivalent to the existence
of realisers of the potentialities involved in the dynamics of that part of the world,
and as they are equivalent to state-determined systems (see Chap. 2, Sect. 2.9.3),
this applies as well to the temporal-causal networks considered in this book.

Note that there are cases for which first-order differential equations do not exist,
one example being moving objects such as Zeno’s arrows. However, for such cases
it often turns out that still higher-order differential equations can be found that
provide realisers of higher order potentialities. This will be explained in Sects. 15.9
and 15.10. For example, for the case of moving objects it turns out that although
first-order potentialities have no realisers, still second-order potentialities do have
realisers. So, the more general form of the mentioned miracle concerns the exis-
tence of differential equations of arbitrary orders.

15.9 How to Explain Changed Potentialities

The effect of a potentiality on a future state can be described by relating the present
state to the future state. This specification can be viewed as the definition of what it
is a potentiality for. A further question is how to specify when (under which past
and present circumstances) a potentiality occurs. Could a potentiality be a really
ghost-like property for which nobody knows when it will occur? Such unpre-
dictable ghost-like state properties would be the worst. In that case it is not possible
to predict changes. How can this be avoided? If some ghost-like state property has
to occur, at least let it be predictable.

For the case of empty space, where an object is assumed to have no interaction
with other objects, a potentiality may be present because it was present at an earlier
point in time and persisted until . However, it still remains a question how this
potentiality was generated in the past: if the potentiality in a new state is different
from the earlier one, a question becomes why this is so. This leads to the question
addressed in this section of how a changed potentiality can be explained.
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15.9.1 Introducing Higher-Order Potentialities:
Potentialities for Potentialities

The use of higher-order potentialities is one answer to the question where changed
potentialities come from. The idea behind higher-order potentialities is simple. To
obtain an explanation of changed state properties over time, potentialities were
introduced. Potentialities are also changing over time. If they are genuine state
properties themselves, it would be reasonable to treat them just like any other state
property that changes over time, so why not use this as a general principle? This
means that for a potentiality p'" a socalled second-order potentiality p® is intro-
duced to explain why p‘" may become changed over time. And of course this
process can be repeated for p'®, and so on. This leads to an infinite sequence of
higher-order potentialities,

n

(3) p,@

P PP D

where for each natural number n the potentiality p is called an n-th-order
potentiality. The idea is the following:

e for a certain point in time 7, the occurrence of a state property can be determined
on the basis of the state at a previous time point #; < #, and, in particular, the
first-order potentiality at that time point #;.

e the first-order potentiality at #; can be determined by the state at a time point
t, < t; and, in particular the second-order potentiality at #,.

e and so on.

This process can be visualised as depicted in Fig. 15.3.
This shows how the concept of potentiality to explain change of a certain basic
state property a can take the form of a single entity, for example one number, to
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Fig. 15.3 Dynamics based on higher order potentialities
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indicate what a changed property in an immediate subsequent state will be, but this
can be extended by a large or even infinite number of other (higher-order) entities
that can explain changed basic state properties a in further future states. Some more
details of higher order potentialities can be found in Bosse and Treur (2007, 2008).

15.9.2 Higher-Order Potentialities in Cognitive Models

In Sect. 15.3.1 the concept of desire was interpreted as a (first-order) potentiality.
For example, a desire for healthy food makes one eat such food. But where does
such a desire itself come from? The general pattern described above is that it comes
from a second-order potentiality, that can be described as the desire to have a desire,
in the literature sometimes called a second-order desire (e.g., Frankfurt 1971). For
example, not having a desire for healthy food, someone can still have the desire to
have this desire for healthy food. In the literature an interesting discussion can be
found about such second-order desires, and the question in how far someone is able
and free to have or to choose for a certain desire, or is able to intentionally change a
desire (e.g., Frankfurt 1971). Or are second-order desires destined to only stay
desires forever and never be actualised? There seems to be no general answer to the
question where desires come from and how they can be changed. There may indeed
be some form of (ghost-like?) second-order potentiality involved, which maybe
itself could be related to observations or beliefs, or in a temporal sense could be
based on a history of experiences.

15.9.3 Mathematical Formalisation of Higher-Order
Potentialities in Calculus

Strange as the idea of a possibly infinite number of higher-order potentialities may
seem at first sight, in a mathematical context (in particular in calculus) this has been
worked out quite well. For the discrete case, the idea of difference tables for
functions has been developed; see Table 15.1. These differences play the role of

Table 15.1 Dynamics based on a higher-order difference table

Time f Ist-order 2nd-order 3rd-order 4th order
point value difference difference difference difference
0 3 1 1 -3 1

4 2 -2 -2
2 6 0 —4
3 6 -4
4 2
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relative potentialities: they indicate the next value not in an absolute sense, but in
comparison to the current value.

Such a discrete table may still be finite. However, for the continuous approach
higher-order potentialities have been formalised within Mathematics in the form of
an infinite number of higher-order derivatives j(k)(t) fork =1, 2,3, ... of a function
f(f). The well-known Taylor approximation and Taylor series for sufficiently
smooth functions (infinitely often differentiable) show how changes of the value
from ¢ to ¢ (within some given neighbourhood of #) depend on all higher-order
derivatives in the form of a convergent infinite summation:

o0

F)y=£@0)+ > P -0 k!
k=1
or
e+ A =)+ 3 90 (A0
k=1

This expression shows how the combination of all (infinitely many) higher-order
potentialities, all at ¢, determines the changed state at the future time points #'.

15.9.4 How to Get Rid of an Infinite Chain of Higher Order
Potentialities by Realisers

The analysis above places the question of how to interpret a potentiality as a
genuine state property in a different light. Apparently, in the continuous case a
potentiality may take the form of a kind of infinitary property, an infinite-
dimensional vector of higher-order potentialities; such infinitary properties are far
remote from what usually are understood as genuine state properties. In some cases
maybe only changes that involve a finite number of higher-order potentialities have
to be considered. For example, within a constant gravitation field, the second-order
potentiality (the acceleration, which is the second-order derivative of the distance)
is constant (9.8 m/s?), and hence no third- or higher-order potentiality is needed:
they are all zero; this will be discussed in some more detail in Sect. 15.10. Note,
however, that further away in the solar system or the universe, if an object is
approaching the earth, gravitation will increase over time, so this assumption of
constancy will not always be fulfilled.

In general a possibility to get rid of the infinite chain is obtained when for some
n the n-th order potentiality p has a realiser ¢:

at eachfor any state atzit holdsp™ « ¢
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See Fig. 15.3 for a case in which n = 4. In the continuous case of derivatives
such a realisation relation can have the form of an n-th order differential equation,
expressing the n-th derivative of a state in the terms of other states (where also
derivatives up to order < n could occur). So, the question about the existence and
purpose of first-order differential equations discussed at the end of Sect. 15.8.3 can
be generalized to higher order differential equations.

15.10 Changed Potentialities Due to Interaction

Potentiality can lead to what Aristotle calls ‘the actuality of the potentiality’, e.g.,
the actual being at position P’, but there may be cases where potentialities are not
actualised, but disappear without having their effect. For example, some heavy
object can be positioned in such a way that the arrow cannot be at P’, due to its
interaction with the object. This section addresses how potentialities can be
exchanged between objects by interaction. Some examples are used to show that an
interaction can lead to changed potentialities (Sect. 15.10.1). Since changed
potentialities can be explained using higher-order potentialities, an interaction can
be characterised by the higher-order potentialities it invokes (Sect. 15.10.2). In
Sect. 15.10.3 Newton’s laws of mechanics are considered from this perspective.
The notion ‘force’ plays the role of a potentiality for the potentiality ‘quantity of
motion’ or momentum which itself is a first-order potentiality for distance, so this
makes force a second-order potentiality. Within classical mechanics interactions
between physical objects are characterised by the forces invoked by the interaction.

15.10.1 Exchange of Potentialities by Interaction

An intensively studied example is one (white) billiard ball A at #/ moving to P, while
another, equal billiard ball B (red) is positioned at rest in P (see Fig. 15.4). If ball
A reaches P at time ¢, it has the potentiality to be at a next position P’ at a next point
in time . However, what actually occurs is that ball A is still at P at time ¢/, at rest,
and ball B is at P’ at time ?'.

How can this be explained? A first part of the explanation is that apparently at
time ¢ ball B had a potentiality to be at P'; assuming the presence of this potentiality,
the explanation runs as above:

Why is ball B at ¢ at position P'?
Ball B is at position P’ at t' because
at ¢ it was at position P, and
at ¢ it had the potentiality to be at P', and
at ¢ nothing in the world excluded it to be at P’
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Fig. 15.4 Breaking the chain of higher order potentialities

But how can the presence of the potentiality for ball B at time 7 be explained?
Apparently potentialities can be transferred from one object to another one: it seems
that the potentiality of ball A was carried over to a same potentiality of ball B, as if a
ghost jumps from one body into another body (Fig. 15.5).

A next question is: how can the presence of a potentiality p (e.g., of ball B at
1) be explained? Assuming that the billiard ball experiment takes place in isolation
of other possible interactions, the only reasonable candidate for the origin of this
potentiality p is ball A, because of its intense interaction (collision) with B; a

Fig. 15.5 Transfer of
potentiality at time ¢ from ball
A (white) to ball B (red)
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reasonable explanation is that during this interaction the potentiality p that ball
A had before ¢ was transferred to a potentiality p of ball B at ¢, and thereby ball
A lost this potentiality. According to Sect. 15.9 such a change in potentiality p can
be explained by a second-order potentiality, say indicated by f:

Why has ball B at ¢ the potentiality to be at position P'?
At t ball B has the potentiality to be at position P’ because
before 7 ball A had the potentiality to be at position P’, and

at ¢ (due to an interaction) a second-order potentiality ffor ball B occurred

Note that a similar pattern can be used to explain that at 7 the potentiality of ball
A was changed to 0, by assuming an opposite second-order potentiality-f. So the
interaction at ¢ co-occurs with two opposite second-order potentialities on ball
A and ball B.

15.10.2 The Role of Higher-Order Potentialities
in the Exchange of Potentialities

In Sect. 15.9 higher-order potentialities were introduced to explain changed
potentialities. The change of first-order potentialities due to interaction between
objects was discussed in Sect. 15.10.1. This suggests how interactions can be
characterised using second-order potentialities; see Fig. 15.6. Actually, the inter-
action as described in Sect. 15.10.1 abstracts from the interaction process itself. It
only considers the two states at a time point 7 just before the interaction and ¢ just
after the interaction and makes up what has changed in the meantime. To be able to
explain the first-order potentiality of ball B at ¢ it has to be assumed that at
t second-order potentialities have occurred within both balls. This leads to the
assumption that a collision between such (elastic) objects generates second-order
potentialities during their contact. How is that possible? Again ghost-like states?
Close observation of the physical process of the collision reveals that within the
time interval of the interaction at ¢ both balls have some elastic deformation. The
idea is that such deformations co-occurs with second-order potentialities: these

second-order

potentialities
4 ™ S~ ~
v A
potentialities interaction changed
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Fig. 15.6 Physical interaction characterised by second-order potentialities; or: second-order
potentialities realised by physical interaction
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deformations are realisers of the second-order potentialities in the two balls. Such
hypothetical second-order potentialities have been called forces within Physics.

15.10.3 Higher-Order Potentialities to Characterise
Interaction in Physics

One of the implications of the conservation law for potentialities in the form of
quantity of motion as formulated by Descartes, is that an object in motion and not
interacting with other objects remains in (the same quantity of) motion (inertia of
motion). This law, already known by Descartes and Galileo, is adopted by Newton
(1729) in his Principia as the first law. This law states that the absence of impressed
forces entails unchanged (quantity of) motion, which suggests that ‘impressed
forces’ relate to ‘change of motion’, which makes them second-order potentialities.
It is assumed that observations like the colliding balls led Newton (1729) in his
Principia to reformulate what in principle was already available from, among
others, Descartes and Galileo, in the form of what has become known as his third
and second law.

Newton’s third law expresses the mutual influence of two objects in interaction
by opposite but equal forces (action is reaction). He uses words such as ‘action’,
‘pressing’, ‘drawing’, and ‘equal change of the two motions’. In the case of the
colliding balls these are the second-order potentialities indicated above by f and
—f. In his second law he uses the term ‘impressed motive force’ to express the
change of motion. This law expresses that the concept of force used by Newton
directly relates to change of motion. Terms like (im)pressing, drawing and action
are not further explained. However, for quantity of motion he gives the same
definition as Descartes. For an impressed force a definition is given that refers to
‘exerted action’, which itself is not further defined, and to the corresponding change
of the object’s state of motion. Furthermore, he shows how this notion applies in the
particular case of centripetal (i.e., directed to one point) force.

Newton’s descriptions show that the concept ‘force’ used by him as an addition
to the state ontology can be given a definitional relationship to ‘motion generated in
a given time’. This ‘motion generated in a given time’ can be considered a
second-order potentiality for the first-order potentiality ‘motion’. So, within clas-
sical mechanics, after the concepts ‘momentum’ and ‘kinetic energy’ which were
added to the state ontology as specific types of (first-order) potentiality, the concept
‘force’ can be considered a third anticipatory state property added to the state
ontology, this time as a second-order potentiality. For Newton, initially a force was
a discrete event, something that, if repeated, comes in ‘blows’. However, studying
the orbits of planets and attempting to explain the circular motion, he had to assume
that such blows come all the time with very small time distances between them. To
incorporate this and similar phenomena, Newton and also Leibniz developed
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mathematical techniques of calculus, such as differentiation and integration. Using
these techniques, Newton’s second law is formulated as

F=dp/dt or F=d(mv)/d¢
For a mass m which is constant over time this is equivalent to
F =ma

with a the acceleration dv/d¢, which is the second-order derivative d’x/d¢*. In this—
most known form—the law was formulated by Euler 65 years after the Principia
appeared. In 20th century text books such as (Mach 1942) the concept ‘moving
force’ is defined in terms of second order potentialities in the following form:

Definition.

Moving force is the product of the mass value of a body with the acceleration induced in
that body (Mach 1942), p. 304.

This again shows the second-order potentiality character of a force, defined in terms
of acceleration, which is a second-order potentiality for the first-order potentiality
velocity.

Analysing the motion of planets around the sun, Newton found out that they can
only follow their orbit if a second-order potentiality in them is assumed, in the
direction of the sun. So, although there is a very large distance between them, the
planets have some mysterious interaction with the sun. Newton calculated (using
his calculus under development) in detail that this motive force was proportional to
1 divided by the square of the distance X. For example, for an object in space with
mass m at distance X of the earth (with mass M), Newton’s law of gravitation for the
motive force on the object is as follows (here ¢ is a constant):

F=cmM/X?

This can be interpreted as a realisation relation for the second-order potentiality F,
taking into account properties of the interaction, such as their distance. It is also
possible to rewrite this in the form of a second-order differential equation by
substituting m d*X/ds* for F:

md*X/de* = cmM /X>
&’x/di* = cM/X?

This shows how the second-order derivative d’X/d7* for distance X has realiser
c MIX®.

But here, the objects being at a large distance, the occurrence of such a
second-order potentiality based on some form of interaction is even much more
surprising than in the case of the billiard balls, as Nagel states and cites from
Newton:
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Although it was Newton who propounded the theory of gravitation, he did not regard it as
ultimately satisfactory because it involved the notion of ‘action at a distance’ - a notion he
regarded as ‘so great an absurdity that I believe no man, who has in philosophical matters a
competent faculty in thinking, can ever fall into it’. For he maintained that ‘it is incon-
ceivable that inanimate brute matter should, without the mediation of something else which
is not material, operate upon and affect other matter without mutual contact (Newton 1958,
pp. 302-303; Nagel 1961 p. 171).

Newton even suggests the option that ‘something else which is not material’, so
again some ghost-like entity, could be needed to make such a distant interaction
work. This shows that from the perspective of explanation, second-order poten-
tialities realised by a form of interaction between objects still can generate difficult
questions, although in this case the physical realisation relation is available.

15.11 Multiple Realisation of Potentialities

A complicating issue for realisation of potentialities is that there may sometimes be
a co-occurrence with one other state property and sometimes with another one:
multi-realisability. Mental state properties can have a large variety of realisers, for
example in different animal species. Relating a mental state property in a bicon-
ditional manner to all of these mutually distinct (non-equivalent) realisers will lead
to a contradiction. If p is equivalent to each of two realisers c¢; and c,, then it
follows that c; is equivalent to ¢, and thus they always co-occur. In a multiple
realisation case where in different states sometimes one, sometimes another realiser
co-occurs with p, this is a contradiction.

A solution could be to differentiate the potentiality into a (possibly large) number
of distinct variants, thus creating a number of biconditional relationships. However,
then the unifying and generic aspect of this potentiality may be lost; (e.g., Kim
1996, pp. 233-236). Therefore, for the case of multi-realisability a broader defi-
nition of the notion of realiser is desirable.

In the case of multiple realisers, the relation between potentiality p and its
realisers can be described by a supervenience relation (e.g., Kim 1998).

Mental properties supervene over physical properties in that for every mental property M that
occurs at some point in time ¢, there exists some physical property P that also occurs at ¢,
such that always if P occurs at some point in time #, also M occurs at #' (Kim 1998, p. 9).

This notion can be formulated for potentialities as follows
Multirealisability of a potentiality p by a set of realisers C

At any point in time f,

p occurs in the state at ¢ < there exists a ¢ in C such that ¢ occurs in the state at ¢

The relation between p and the elements of C is called multiple realisation relation.
Note that this definition can also be applied to higher-order potentialities. The set of
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realisers C can be any specific set of state properties. If this set C can be indicated
by a finite number of elements cy, ..., ¢,, then multirealisability can be defined as a
bi-implication using a disjunction of the c¢;:

poccurs in the state atz < ¢; V...V ¢, holds in the state at?

If this set C just contains one realiser, the standard form of (single) realisation is
obtained. Notice that in general the set C, from which multiple realisers come, is a
not defined itself by the above definitions. Indeed, in practice this set may be hard to
define in a precise manner.

Multiple realisation applied to potentialities, expresses that potentialities are
always realised in one way or the other. However, this can happen in a
non-systematic, ad hoc manner: for every context a different realiser. This may
entail a branching of the potentiality into a multitude of variants, thus loosing the
unifying and generic aspect of the potentiality. Sometimes, this situation is avoided
by introducing for each context strong, context characterising assumptions
excluding all but one of the realisers.

As an example, for a qualitative dynamic modeling approach, multiple realisa-
tion can be incorporated easily. Suppose two transitions

Cl—>d

C2—>d

are given. Then, the set of state properties C = {c;, ¢,} can be considered a set of
realisers of the potentiality p(d) leading to d.

In Nagel (1961, pp. 186-192), the multiple realization of the notion of force
(which can be considered a second-order potentiality; see also Sect. 15.10) is
discussed. In line with what was stated above, his analysis asserts that for various
different situations specific force-functions, specifying how force relates to other
properties of the state are needed. Forces can occur due to state properties
involving, for example:

the presence of an object pushing or pulling

deformation such as caused by collisions (e.g., billiard balls)
the presence of objects with electrical charge

the presence of magnetic objects

the presence of other masses (gravitation)

atmospheric pressures.

For each of these circumstances, a different expression in terms of the world state
ontology (a force-function) describes a realiser for the force that occurs. Only if for
a given situation such a force-function has been identified, something practical can
be done using the laws of classical mechanics. In this sense, this case shows a
heterogeneous situation, where a force potentiality is described by some hetero-
geneous disjunctive form with at least, say, up to 5—-10 essentially different contexts
of the origin of the force. If one aggregated disjunctive realiser would be used this
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could lead to weird situations. For example, in such a case to make calculations for
the orbit of a satellite around the earth, formulas are to be used not only for
gravitation forces but also for collisions, electrical attraction, and so on, all of which
do not play a role or are neglectable. For this reason it is more practical to identify
the context in which a single realiser is relevant, and only use that realiser in the
given context.

If in this heterogeneous situation, in different contexts different force-functions
(and hence realisers) are identified, this still allows successful use of the notion of
force in applications. This shows an example of a specific approach to multiple
realisation, comparable to the notion of local or context-dependent reduction as
described by Kim (1996, pp. 211-240).

Notice that also an additive property for this second-order potentiality force
holds in the following sense: the combined effect of any number of different con-
tributions to the second-order potentiality can be obtained by adding their values.
So, any value w for this second-order potentiality can be obtained as the combined
effect from, for example, gravitation, electrical charge, and deformation by colli-
sion. For example, considering one dimension where all effects work along the
same axis, this can occur in the form of an infinite number of possible sums
w = wy + wy + w3 with the same outcome w, where the terms are the contribution
of one of the three effects (e.g., w; by gravitation, w, by electrical charge, w; by
collision). This shows that for a given force the complete set of realisers C can be
infinite, and also that in reality contexts may occur in complex combinations.

15.12 State-Determined Systems and Potentialities

In this section the main implications of the findings from the previous sections for
state-determined systems and temporal-causal networks are briefly summarized. Van
Gelder and Port (1995) briefly explain what a dynamical system is in the following
manner. A system is a set of changing aspects (or state properties) of the world. An
(overall) state at a given point in time is the way these aspects or state properties are
at that time; so an overall state is characterised by the state properties that hold. The
set of all possible overall states is the state space. A behaviour of the system is the
change of these state properties over time, or, in other words, a succession or
sequence of states within the state space. Such a sequence in the state space can be
indexed, for example, by natural numbers (discrete case) or real numbers (contin-
uous case), and is also called a trace or trajectory. Given these notions, the notion of
state-determined system, adopted from Ashby (1960) is taken as the basis to describe
what a dynamical system is. In such a system at each point in time the (overall) state
fully determines all future states. For more details of state-determined systems and
their assumptions, see Chap. 1, Sect. 1.5 and Chap. 2, Sect. 2.9.

Given a particular overall world state that just changed with respect to some of
its specific state properties, it is natural to ask for an explanation of why these new
state properties occurred. In a not necessarily state-determined system, as a source
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for such an explanation, state properties found in the previous state may form a first
candidate, with states further back in the past possibly as additional candidates.

For dynamical systems considered as state-determined systems the properties of
the previous state are assumed to form the only candidate source, since in such a
system the previous state fully determines the next state, so there is no need to look
further back in the past, as such past states only have their effect through the
previous state. Thus, a main question becomes how to determine on the basis of
some of the specific state properties in the given overall state, the specific state
properties in the new state. More specifically, can particular state properties (or
combinations of state properties) occurring in a given state be identified that in
some way or the other indicate the (changed) state properties occurring in a sub-
sequent state. By having these particular properties the overall state anticipates on
the next state: as briefly discussed above, these properties have been considered
historically as anticipatory state properties or potentialities. Due to them, antici-
pation to change is somehow encoded in a state. The existence of such properties is
a crucial factor for the validity of the assumptions underlying the Dynamical
Systems Theory.

Recall from Chap. 2, Sect. 2.9 that a continuous system with states X; is a
state-determined system if and only if it can be described by a set of first-order
differential equations

dX;(¢)/dt = f:(X1 (1), ..., X(1))

Through this the analysis above shows that any state-determined system is basically
a specification of realisation relations for all potentialities dX,(¢)/d¢ in terms of the
states X;(¢). If these states themselves are genuine state properties, then this solves
the ghost-like causation problem. For example, what is the cause that X (¢) has a
changed value at ¢ + Ar? The answer now is that although the potentiality dX;(r)/
dr indicates this changed value in a generic manner by

Xi(t+ Ar) = X;(1) + dX;(r) /dr At
by the realisation relation dX;(#)/d¢ = f(X,(¢), ..., Xx(?)) this can be replaced by
Xi(t+ Ar) = Xi(1) + fi(X1 (1), - .., Xi(1)) At

so then it is in fact fi(X;(?), ..., Xi(f), which is a state property for the state at time ¢,
that is causing the change of X;(r). This means that the causality driving the
dynamics in the system is from f(X,(f), ..., Xi(t)) and X;(¢) to X;(t + Ar). A similar
analysis applies to the temporal-causal format introduced in Chap. 2:

dXi(l)/dl = T]i[C,'<Q)1",'X1(l), .. -70)k,iXk(t>) — X,'(l‘)]

Based on this, it is, more specifically, the state property n,; [c(w; Xi(2), ..., O,
Xi(H)) — Xi(r)] which indicates the change of X;(¢). This ‘indication of change’
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corresponds to the aggregated impact by the assumed causal relations from X;(7) to
Xi(?) with strengths ®;;, and combination function c...).

Such an interpretation based on causal relationships is indeed how in Chap. 2 it
was described how state-determined systems can be modeled both by a conceptual
and a numerical representation. This provides a solid basis for any state-determined
system as long as either all states concern genuine state properties or they have
realisers, i.e., they are equivalent to genuine state properties.

It may still be the case that in a state-determined system one or more of the
variables X; is not a genuine state property, nor can be related to a realiser. A simple
example of this is the following system describing a falling object:

Xm(I)/dl :Xz([) SO fl(Xl(t),Xz(t)) =X,
W)/di =10 so (X1 (1).Xs(1)) = 10

Here X (7) is the vertical distance at time ¢ and X,(f) can be interpreted as the
velocity at time ¢, which is linearly increasing over time, due to gravitation. The
latter property can be considered a potentiality for distance and not a genuine state
property, as it has no realizer. But it still has another type of relation to the world
describing how it changes over time, by the second equation, which expresses that
the potentiality dX,/ds for this first-order potentiality X, has a realizer, namely the
constant 10. This potentiality dX,/d¢ for potentiality X, for X; is a second-order
potentiality for X;. The differential equations can also be rewritten into a
second-order differential equation for the second-order derivative d&*X, (7 of
X 1([):

d*X,(1)/d* = 10

These higher-order potentialities and their role in Physics have been discussed in
more detail in Sects. 15.9 and 15.10.

15.13 Discussion

In this chapter the focus was on a philosophical and historical reflection on
dynamics, in relation to the basic assumptions underlying state-determined systems
(Ashby 1960). The text mainly follows (Treur 2016); part of this content was
adopted from Treur (2005). The notion of a state-determined system is central for
the Network-Oriented Modeling approach based on temporal-causal networks that
forms the core approach of this book. The basic assumption of a state-determined
system is that each state of the system fully determines the system’s next states, or
formulated from a different angle, each state of such a system is fully determined by
the system’s previous state. Some of the state properties of this previous state in a
sense anticipate on the changed state properties in the current state: the changed
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properties can be predicted from them. This idea plays an important role in the
analysis of dynamics in history; such anticipatory state properties are often called
potentialities.

In this chapter this perspective on dynamics was discussed and illustrated for
different contexts varying from moving physical objects (e.g., Zeno, Aristotle,
Newton) to animal or human action (e.g., Aristotle) and computer systems. It was
shown how in history the perspective based on potentialities has led to a number of
often used concepts within classical mechanics, a branch of Physics frequently used
by engineers today: momentum, energy, and force. Also it was discussed how
within mathematics, more specifically in calculus, a number of concepts have been
developed to formalise notions of potentiality: in particular derivatives (of different
orders) of a function and Taylor approximations. Furthermore, it was shown how
causal relations and transition systems, a currently (within Artificial Intelligence,
Computer Science and related areas) popular format for specification of dynamic
systems can be interpreted from the perspective of potentialities.

Within Cognitive Science one of the problems identified is the problem of
realism, i.e., how do internal mental states relate to the real world in a natural
manner. This issue also applies to potentialities as assumed state properties. If there
is no relation to the physical world they seem to have a ghost-like character, which
is not desirable, especially when it would make their occurrence unpredictable. The
question in how far such assumed state properties are genuine or ‘real’ state
properties was shown to be a hard question that is not simple to answer in general,
even not in Physics. Nevertheless, the fruitfulness of having such added state
properties is uncontroversial; for example we all trust artefacts in our environment
that were constructed based on Physics and Mathematics using such state
properties.

More specifically, potentialities as postulated state properties may have rela-
tionships to other state properties of the state in which they occur; they can be said
to be realised by these other state properties. But such realisers do not always exist,
which may leave potentialities with a ghost-like character. However, there is a
second way in which potentialities can relate to other state properties, although not
in the same state. They often can be related, in a temporal manner, to state prop-
erties in other (past and future) states; this corresponds to Kim (1996)’s notion of
(temporal) relational specification of mental state properties. These realisation
relationships within one state and temporal relationships between states can be
exploited to obtain predictability of potentialities. So, in cases that these state
properties are felt as ghost-like, at least they are predictable ghosts. This pre-
dictability makes them still useful in many types of applications.

One often used way in which it can be specified how potentialities indicating the
change of a state relate to other state properties in the same state is by first-order
differential equations. A first-order differential equation for a state X is an expres-
sion that postulates that at each point in time ¢ the value of the derivative of X at 7 is
equal to a mathematical expression (function) in terms of values of the other states
at . When these states are genuine, this addresses the realism problem for
dynamical systems, namely by specifying them by first-order differential equations.
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Or, conversely, the abundantly used way of modeling by first-order differential
equations can be (re)interpreted as a way of creating dynamics without allowing
ghost-like states. Recall from Chap. 2 that a smooth dynamical system is a
state-determined system if and only if it can be described by a set of first-order
differential equations if and only if it can be described by a temporal-causal net-
work. So, the above analysis applies to any smooth state-determined system and
any temporal-causal network, with genuine states: their dynamics can be described
without having to rely on ghost-like properties.
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Chapter 16
Making Smart Applications Smarter

Societal Applicability of Computational Models

Abstract This chapter briefly outlines how dynamic computational models, and in
particular temporal-causal network models, can contribute to smarter applications.
The scientific area that addresses Ambient Intelligence (also called Pervasive
Computing) applications is discussed in which both sensor data and knowledge
from the human-directed sciences such as health sciences, neurosciences, and
psychological and social sciences are incorporated. This knowledge enables the
environment to perform more in-depth, human-like analyses of the functioning of
observed humans, and to come up with better informed actions. It is discussed
which ingredients are important to realise this view, and how frameworks can be
developed to combine them to obtain the intended type of systems: coupled
reflective human-environment systems. Such systems include computational mod-
els by which they are able to model and simulate (parts of) their own behavior.
Finally, further perspectives are discussed for Ambient Intelligence applications
based on these coupled reflective systems.

16.1 Introduction

For societal applicability of computational models and in particular those designed
by Network-Oriented Modeling as discussed in this book, the area of Ambient
Intelligence (also called Pervasive Computing) is a relevant area. Within this area
smart applications are developed in which both sensor data and knowledge from the
human-directed sciences such as health sciences, neuroscience, and psychological
and social sciences are incorporated. Often the smartness is mainly based on the
availability of sensor data, and the knowledge used is limited, and often simplified
(or compiled) to direct functional associations or (heuristic) rules of thumb. In other
words, often only shallow knowledge models are used and not deep models that
involve the underlying causal relations of the human-related domain that is
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concerned; for this distinction, see, e.g. (Chandrasekaran and Mittal 1982; Dhar and
Pople 1987; Davis 1983).

Ambient Intelligence is important for society in that it provides possibilities to
contribute to more personal care; e.g., (Aarts et al. 2001, 2003; Riva et al. 2005;
Sadri 2011; Acampora et al. 2013). Acquisition of sensor information about
humans and their functioning is an important factor, but without adequate knowl-
edge for analysis of this information, the scope of such applications is limited.
However, devices in the environment possessing such knowledge can show a more
human-like understanding and are more socially aware, and base personal care on
this understanding and awareness. For example, this may concern elderly people,
patients depending on regular medicine usage, surveillance, penitentiary care,
psychotherapeutical/selfhelp communities, but also, for example, humans in highly
demanding tasks such as warfare officers, air traffic controllers, crisis and disaster
managers, and humans in space missions; e.g., (Green 2005; Itti and Koch 2001).

Within human-directed scientific areas, such as cognitive science, psychology,
neuroscience and health sciences, causal knowledge has been and is being devel-
oped for a variety of aspects of human functioning. If such causal knowledge of
human processes is represented as causal models in a formal and computational
format, and incorporated in the human environment in devices that monitor the
physical and mental state of the human, then such devices are able to perform a
more in-depth analysis of the human’s functioning. This can result in an environ-
ment that may more effectively affect the state of humans by undertaking in a
knowledgeable manner actions that improve their wellbeing and performance. For
example, the workspaces of naval officers may include systems that, among others,
track their eye movements and characteristics of incoming stimuli (e.g., airplanes
on a radar screen), and use this information in a computational model that is able to
estimate where their attention is focussed at. When it turns out that an officer
neglects parts of a radar screen, such a system can either indicate this to the person,
or arrange on the background that another person or computer system takes care of
this neglected part. In applications of this type, an ambience is created that has a
better understanding of humans, based on computationally formalised knowledge
from the human-directed disciplines.

In this chapter, in Sect. 16.2 it is discussed how multiple disciplines have to play
a role as ingredients, and in Sect. 16.3 it is discussed how these ingredients are
integrated in order to obtain an ambient intelligent application with human-like
understanding which is socially aware of its social environment. Section 16.4
zooms in at the underlying coupled reflective system architecture to describe such
systems. In Sect. 16.5 it is addressed in more detail how different types of models
can be integrated to fill such a coupled reflective architecture. Finally, Sect. 16.6 is
a discussion.
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16.2 Multidisciplinarity: The Ingredients

The area as sketched is essentially multidisciplinary. It combines aspects of
Ambient Intelligence with knowledge from human-directed disciplines such as
psychology, social science, neuroscience and biomedical sciences. Further devel-
opment will depend on cooperation between researchers from these disciplines or
working on cross connections of Ambient Intelligence with the human-directed
disciplines. The focus is on the use of knowledge from these disciplines in Ambient
Intelligence applications, in order to take care in a more sophisticated manner of
humans in their daily living in medical, psychological and social respects. For
example, modelers in the psychological, neurological, social or biomedical disci-
plines interested in Ambient Intelligence as a high-potential application area for
their models, can get inspiration for problem areas to be addressed for further
developments in their disciplines. From the other side, researchers in Computer
Science, and Artificial and Ambient Intelligence may become more aware of the
possibilities to incorporate more substantial knowledge from the psychological,
neurological, social and biomedical disciplines in Ambient Intelligence architec-
tures and applications, and may offer problem specifications that can be addressed
by the human-directed sciences.

In more detail, content from the domain of human-directed sciences, among
others, can be taken from areas such as medical physiology, health sciences, neu-
roscience, cognitive psychology, clinical psychology, psychopathology, sociology,
criminology, and exercise and sport sciences. From the domain of Artificial
Intelligence, useful contributions can be found in areas such as knowledge and task
modeling, and cognitive and social modeling and simulation. Finally, from the
Computer Science domain, relevant areas are distributed systems, sensor systems,
human-centred software engineering, user modeling, and human-computer
interaction.

16.3 Combining the Ingredients

One of the challenges is to provide frameworks that cover the class of Ambient
Intelligence applications being socially aware and showing human-like under-
standing and supporting behaviour. Here human-like understanding is defined as
understanding in the sense of being able to analyse and estimate what is going on in
the human’s mind (a form of mindreading) and in his or her body (a form of
bodyreading). Input for these processes are observed information about the human’s
state over time, and dynamic models for the human’s physical and mental pro-
cesses. For the mental side such a dynamic model is sometimes called a Theory of
Mind (e.g., Baron-Cohen 1995; Dennett 1987; Gérdenfors 2003; Goldman 2006)
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Fig. 16.1 Framework to combine the ingredients

and may cover, for example, emotion, attention, intention, and belief. Similarly for
the human’s physical processes, such a model relates, for example, to skin condi-
tions, heart rates, and levels of blood sugar, insulin, adrenalin, testosterone, sero-
tonin, and specific medicines taken. Note that different types of models are needed:
physiological, neurological, cognitive, emotional, social, as well as models of the
physical and artificial environment.

A framework can be used as a template for the specific class of Ambient
Intelligence applications as described. The structure of such an ambient software
and hardware design can be described at a conceptual design level and can be given
generic facilities built into represent the following (see also Fig. 16.1):

human state and history models

environment state and history models

profiles and characteristics models of humans

ontologies and knowledge from biomedical, neurological, psychological and/or
social disciplines

dynamic process models about human functioning

dynamic environment process models

methods for analysis on the basis of such models and for support by
interventions

Examples of such analysis methods are voice and skin analysis with respect to
emotional states, gesture analysis, heart rate analysis. The template can include slots
where the application-specific content can be filled to get an executable design for a
working system. This specific content together with the generic methods to operate
on it, provides an overall system, based on a tight cooperation between a human and
an ambient system which is socially aware and has human-like understanding of its
social environment and reacts from this understanding and awareness in a knowl-
edgeable manner.
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16.4 Coupled Reflective Systems

Ambient Intelligence applications in general can be viewed as coupled reflective
(human-environment) systems, where ‘coupled’ means mutually interacting. For
the specific type of applications considered here, however, the coupling takes two
different forms; see also Fig. 16.2.

e On the one hand the coupling takes place as interaction between human and
environment, as in any Ambient Intelligence application:

— the environment gets information generated by the human as input, and
— the human gets information generated by the environment as input.

e In addition, coupling at a more deep, reflective level takes place due to the fact
that

— the environment has and maintains knowledge about the functioning of the
human, the environment and their interaction, and

— the human has and maintains knowledge about functioning of him or herself,
the environment, and their interaction

So, in such a more specific human-environment system, being coupled does not
only mean that the human and its environment interact, but also that they have
knowledge, understanding and awareness of each other, themselves and their
interaction. This entails two types of awareness:

e Human awareness: awareness by the human about the human and environ-
mental processes and their interaction

e Technological awareness: awareness by the environment about the human and
environmental processes and their interaction

Human

C)

Environment

C Human
Environment

Fig. 16.2 Coupled reflective system architecture
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By (human and technological) learning, adaptation and development processes for
both the human and the environment, these types of awareness can also grow over
time.

Such a coupled reflective system can have a positive impact at different
aggregation levels, from individual via an organisation within society to the society
as a whole:

o Individual level

— more effective functioning
— stimulating healthy functioning and preventing health problems to occur
— support of learning and development

e Organisation level

— efficient functioning organisation by wellfunctioning members
— learning and adaptation of the organisation

e Society level

— limiting costs for illness and inability to work
— efficient management of environment

In Sect. 16.5 it will be discussed how this global architecture of a coupled reflective
system can be filled with integrated computational models in order to obtain an
ambient intelligence application.

16.5 Integrative Modeling

A coupled reflective architecture is a blueprint of a system at a very global level. In
this section different types of computational models are distinguished that can be
integrated within this coupled reflective architecture to get an actual design for such
a system.

Domain and human models are used to describe phenomena in the natural and
human world such as for example:

e the physical and biological environment

e physiological and cognitive processes within humans

e behavioural processes of a human in interaction with his or her environment
e social and organisational processes based on interaction between humans

Models for software applications can be used to describe artificially created
(engineered) processes such as, for example:

e smartphone apps
¢ intelligent cars
e smart homes



16.5 Integrative Modeling 469

e search bots and recommender systems
e robots

To model human functioning, models can be designed, for example, for humans
with behaviour motivated by desires, and humans generating emotions and feelings.
Moreover, domain models can be integrated within ambient application models in
order to give these ambient applications some understanding of the part of reality
they are dealing with. Such understanding enables them to perform actions in a more
informed, knowledgeable manner, and to show more human-like behaviour in
interaction with humans. For more a extensive exposition, see (Bosse et al. 2011a, b,
2012, 2013).

The required integration takes place by embedding domain models in certain
ways within application models. By incorporating domain models within an
application model, the application gets an understanding of the processes of its
surrounding environment, which is a solid basis for knowledgeable intelligent
behaviour. Four different ways to integrate domain models within application
models are considered here. A most simple way is to use a domain model that
specifically models human behaviour in the following manner:

e domain model referring to or simulating the human process
A domain model describes human processes and behaviour and as such refers to
them. The domain model can also be used to simulate human behaviour.

Such a model can be used in interaction with other models, in particular with
models for smart applications to obtain a test environment for simulations. For this
last type of models, domain models can be integrated in three different ways, in
order to obtain the following (sub)models; see Fig. 16.3. Here the solid arrows
indicate information exchange between processes (data flow) and the dotted arrows
the integration process.

ambient application
adaptation
model

analysis \ support
model model

domain
process

domain
model

Fig. 16.3 Integrative model
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e analysis model
To perform analysis of the human’s states and processes by simulation (of the
human-environment interaction) and reasoning based on observations (possibly
using specific sensors) and the domain model.

e support model
To generate support for the human by (what-if) simulation (of the human-
environment interaction) and reasoning based on the domain model.

® adaptation model
To tune parameters in the domain model better to the specific characteristics of
the humans by reasoning based on the domain model.

Some more specific examples of today’s societal challenges, to which coupled
reflective human-environment systems can contribute, are elderly care, health
management, crime and security.

16.6 Discussion

Parts of the content of this chapter are based on: (Treur 2008). The scientific area
that addresses Ambient Intelligence applications in which knowledge from the
human-directed sciences is incorporated, has a high potential to provide nontrivial
Ambient Intelligence applications based on human-like understanding. Such
understanding can result in better informed actions and will feel more natural for
humans. Important additional ingredients to realise this view are provided by areas
in Computer Science, Artificial Intelligence and Cognitive Science; among others:
knowledge and task modeling, user modeling, and cognitive and social modeling.
Furthermore integrative frameworks can be developed to combine the ingredients.
The resulting human-environment systems are coupled not only by their mutual
interaction, but also in a reflective manner in the sense that both the human and the
ambient system have and/or develop a model of the interactive processes of the
human and the environment.

These coupled reflective human-environment systems are an interesting type of
systems to be studied scientifically, and provide a solid foundation for human-like,
socially aware Ambient Intelligence applications. It has been pointed out how such
applications can be designed in a principled manner based on integrative modeling
of an ambient applications involving a computational domain model embedded in
an analysis model, a support model and an adaptation model as components; see
also (Bosse et al. 2011a, b, 2012, 2013). These elements facilitate development of
human-like Ambient Intelligence applications with significant benefits for indi-
viduals, organisations, and the society as a whole. Dynamic computational models
such as temporal-causal network models play a crucial role in this development.
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Chapter 17
Multidisciplinary Education

Computational Modeling as the Core of a
Multidisciplinary Curriculum

Abstract This chapter discusses the design of a curriculum with main focus on
human-oriented scientific knowledge and how this can be exploited to develop
support for humans by means of advanced smart devices in the daily environment.
The aim for this curriculum was to offer a study path for those students with exact
talents but with an interest mainly in human processes and society. The curriculum
was designed from a problem-oriented perspective in relation to societal problem
areas. From human-oriented disciplines scientific knowledge for human processes
in such problem areas was obtained. Computational modeling for such human
processes plays a central role as an integrating factor in the curriculum. Elements
from Ambient Intelligence, Artificial Intelligence, and Informatics are included for
design of smart support systems.

17.1 Introduction

As discussed in Chap. 16, computational modeling is an important ingredient to
make smart applications smarter than they often are currently. To develop such
smart applications requires knowledge and skills from a number of domains and
their integration, for example, on the one hand health sciences, psychology and
neurosciences and social sciences, and on the other hand more engineering-directed
sciences such as Computer Science and Al. These types of expertise could be
brought together in multidisciplinary teams where each member represents a single
discipline. However, communication in such teams often is difficult. Therefore it
makes sense to also educate persons in a multidisciplinary manner, so that they
know different disciplines and know how to integrate them, and how to commu-
nicate with experts from such disciplines. This chapter discusses how a curriculum
for such multidisciplinary education can be designed. In particular, such a cur-
riculum has to bring together subjects from human-directed sciences and more
technical engineering-directed sciences.

In general a challenging issue in academic education is how to interest candidate
students in the further development of their talents in more technical, engineering
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sciences. The numbers of students choosing such a exact study are usually very
small compared to the numbers welcomed for studies, for example, in Health
Sciences, Psychology or Social Sciences, and this trend is even still much stronger
for female students in particular. Among this large group of students a substantial
subgroup is made up of students whose talents are not in the first place in exact,
more formal and technical subjects. However, there exists also a substantial sub-
group consisting of students with good talents for more exact scientific work, but
whose interest is simply not in these topics, but rather in human processes and
society. Currently, individuals from the latter subgroup do not further develop their
talents for exact sciences, which is a pity both for them and for society in general.
Actions taken in the past to create more advertising for exact sciences have not
brought much change to this situation. The curriculum design presented in this
chapter took as a point of departure the hypothesis that the available curricula in
exact sciences are not satisfactory for students whose main interest is in humans and
society. Therefore the question was addressed as to how an academic curriculum
can be designed which is attractive for students with both exact talents and an
intrinsic interest in humans and their functioning in society.

The aim was to develop a 5-year curriculum [Bachelor (3 years) and Master
(2 years)] in which the main focus is on human-directed scientific knowledge (from
health, psychological and social sciences, indicated here as human sciences) and on
how—using elements from exact sciences—this can be exploited to develop
scientifically-justified support for humans by means of advanced smart devices
(such as smartphones) in the day-to-day environment. The idea was that this would
provide a study path which is attractive for those students with an interest in human
functioning and society who also have exact talents, and for female students in
particular.

The curriculum was meant to provide a new, broad, multidisciplinary study
focusing on human functioning in physical, mental and social respects. Human
wellbeing and functioning depends on many factors in the environment. This
environment can contribute positively (e.g. a workplace avoiding RSI, a nice living
room), but it can also have negative effects (e.g. too-high work demands, distur-
bances during sleep). Insight into interaction between humans and their environ-
ment makes it possible to stimulate the positive aspects and limit the negative ones.
In this curriculum, insights into human functioning are acquired. Moreover, it is
learnt how these insights can be applied to various practical problems, how such
problems can be analysed, and how solutions can be designed by making use of
supporting devices so that a more understanding environment is created. This may
concern, for example, microphones that can determine whether fear or aggression is
present during an encounter, a wrist belt for elderly people that can detect medical
early warning signs, or a car that notices when a driver is drunk or may fall
asleep. After this study students may be employed by the R&D departments of
companies that develop such modern technological devices and focus on the
knowledge and models applied in such devices.



17.1 Introduction 475

The choice was made to design the curriculum from a problem-oriented per-
spective. Examples of societal problem areas chosen include supporting patients
with chronic diseases (e.g. diabetes) or mental problems (e.g. mood disorders), care
for elderly persons in their living environment, support for persons in demanding
circumstances (e.g. sportspersons, air traffic controllers). Subjects in human-
directed disciplines that provide scientific knowledge for human functioning in such
areas, such as those offered by other faculties in biomedical, psychological and
social sciences, were identified. To create a bridge from these informal, nontech-
nical bodies of knowledge to the exact domain, specific subjects were developed
addressing the computational modeling of such human processes, thereby using
formal, computational modeling techniques from Computational Science, Artificial
Intelligence and Informatics. Moreover, from the areas of Ambient Intelligence,
Artificial Intelligence, and Informatics, subjects were developed that demonstrated
how to integrate computational models, based on scientific knowledge of human
processes, with sensor systems and intervention methods to obtain support in a
knowledgeable, human-aware manner, for example through a smartphone.

In a few years, a problem-oriented, multidisciplinary curriculum (3-year Bachelor
and 2-year Master) was successfully developed along these lines, integrating human
sciences with exact sciences, which seemed to be unique. For practical reasons the
new curriculum was developed to replace an existing curriculum in Artificial
Intelligence. The results of this so far are that the newly-developed curriculum has to
date attracted substantially more (up to a factor 2) students than the original Artificial
Intelligence curriculum. Moreover, an investigation was carried out in a large
number of high schools as to how many students (in their penultimate year) would be
interested in choosing for such a curriculum in the future. The outcome of this was
that 66 % had some or much interest in choosing such a curriculum (boys 60 %, girls
75 %). It was shown to attract much more interest from students than the more
traditional curriculum it was replacing.

In this chapter, Sect. 17.2 describes the overall structure of the designed cur-
riculum. In the subsequent Sects. 17.3—17.5 the four main streams in the curriculum
are discussed in more detail. Section 17.6 addresses evaluation and discussion.

17.2 Overall Structure of the Curriculum

The aim to design a problem-oriented, multidisciplinary curriculum does not only
entail that ingredients from different disciplines are to be incorporated along with
different social problem areas, but also that these ingredients have to be integrated
in a certain way made to contribute to these societal problem areas. It will be clear
that it does not suffice just to include different subjects from a number of disciplines
in the curriculum with the idea that students will integrate and use these subjects by
themselves in the application areas at hand. To obtain an effective curriculum is
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Fig. 17.1 The four main streams in the curriculum and their main interactions

quite challenging, and requires much attention to integration, analysis and appli-
cation with respect to the problem areas.

The four main streams and their interactions are depicted in Fig. 17.1. The
following gives an impression of their approximate relative size in the design of the
curriculum: Human Sciences stream (30-35 %), Exact Sciences stream (25 %),
Computational Modeling stream (20-25 %), and Integration and Projects stream
(20 %).

The Human Sciences stream and the Exact Sciences stream cover relevant topics
from biomedical, psychological and social sciences, and from ambient intelligence,
artificial intelligence, and informatics, respectively. As integration is a crucial
element in all this, and the different scientific disciplines used as ingredients differ
enormously, first of all a stream on Computational Modeling was included which
focuses on the integration of human sciences and exact sciences. This stream serves
as a strong integration factor as it is here that students learn to take (informally
described) topics from the Human Sciences stream on the one hand and methods
and techniques from the Exact Sciences stream on the other and glue them together
in a formalised computational (domain) model that is suitable for formal analysis,
both by simulation and by mathematical analysis. Moreover, within the Integration
and Projects stream students learn how such domain models can be built in soft-
ware systems in order to make them human-aware, so that they can provide support
in a knowledgeable manner. In the Integration and Projects stream, students
involve themselves with the analysis of questions and problems in areas of societal
application and integrate the other ingredients of the curriculum into the design and
implementation of solutions. These streams and their interactions are discussed in
more detail in subsequent sections.
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17.3 Computational Modeling Stream

Within the designed curriculum, the computational modeling stream plays a crucial
role in integrating the ingredients from the exact and human sciences. As the
curriculum is problem-oriented, specific societal problem areas are a point of
departure, as discussed above. These are not just any areas, but are chosen within a
specific scope or viewpoint, which indicates what they have in common. As dis-
cussed above, this demarcation relates to the possibility of providing support to
humans by using devices in their environment with scientific knowledge from
human sciences built in so that these devices have a justified understanding of the
human processes considered. At the modeling level this view can be translated into
a generic, unified type of overall system model, which Treur (2008) called a
reflective coupled human-environment system.

Firstly, a brief sketch is given of this overall modeling perspective. Many
applications of support systems in general can be viewed as coupled human-
environment systems, where ‘coupled’ means mutually interacting. For the specific
type of systems considered here, however, the coupling also occurs in a reflective
form; see also Chap. 16.

e On the one hand, coupling takes place as interaction between human and
environment:

— the environment receives information generated by the human, and
— the human receives information generated by the environment.

e On the other hand, coupling at a reflective level takes place due to the fact that

— in specific computational devices the environment has and maintains
knowledge about the functioning of the human, the environment and their
interaction, and

— the human has and maintains knowledge about his or her own functioning,
the environment, and their interaction

In order to realise applications according to the overall unified modeling per-
spective displayed in Fig. 17.2, a number of more specific ingredients for modeling
both natural and artificial processes and their combinations are needed:

(1) Computational domain models for human processes at the physiological,
neurological, cognitive, affective and social levels;

(2) Integrative computational agent models for software agents to support humans
in their functioning, incorporating domain models with knowledge about
human processes and methods for reasoning about them;

(3) Interaction models for the interaction between software agent models and the
environment, including sensor systems which can acquire information without
having to bother the humans.

These ingredients can be obtained from areas such as Computational Science,
Artificial Intelligence, Ambient Intelligence, and Informatics. In the curriculum,
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such ingredients are included in the Exact Sciences stream, and in the
Computational Modeling stream students learn how to use and integrate these
elements with domain knowledge as included in the Human Sciences stream (see
Sect. 17.4). Examples of methods and techniques covered include: qualitative,
logical, quantitative, numerical, and hybrid dynamical modeling; recursive mod-
eling and model-based reasoning in software agent models using domain models;
methods of analysis, assessment and intervention action generation. Given the
specific motivations and backgrounds of the students at which this curriculum was
to be aimed, much work was needed to develop course material in such a way that it
fits well with these motivations and backgrounds. For example, much of the
available literature on computational modeling is presented in a rather technical
form, with examples often taken from engineering and physical sciences (Shiflet
and Shiflet 2006). Such methods and techniques have been adapted to focus more
on the human perspective. Moreover, the integration of domain models within
(software) agent models is an area which is still under development, and developing
course material for this has gone hand in hand with research. The same applies to
the topic of model abstraction. More specifically, the following courses have been
developed and are included in the computational modeling stream:

e [Introduction to Modeling and Simulation
This course addresses the dynamical (domain) modeling of human processes,
using elements of numerical, logical and hybrid computational modeling as
described, for example, in Ashby (1952), Beer (1995a), Port and van Gelder
(1995), Busemeyer and Diederich (2010), Shiflet and Shiflet (2006), Bosse et al.
(2007) and Miller and Page (2007).

o [Integrative Modeling
This course addresses the integration of domain models into models for sup-
porting software applications. Here, elements from computational modeling,
knowledge model and agent modeling are combined; see, for example, Bosse
et al. 2011b, c.
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e Comparative modeling
In this course, relationships between models are addressed, according to three
dimensions of abstraction and inter-level relations as discussed in Bosse et al.
(2010), Treur (2011a, b). The three abstraction dimensions addressed are the
process abstraction dimension (see, for example, Sharpanskykh and Treur
2012a, b; Treur 2011a, b), the temporal abstraction dimension (e.g. Bosse et al.
2009) and the agent cluster abstraction dimension (e.g. Bosse et al. 2011, 2012;
Sharpanskykh and Treur 2011).

e Behaviour Dynamics in Social Networks
This course addresses in more depth, and from a Network-Oriented Modeling
perspective, the dynamics of cognitive, affective and social processes and the
interaction between these processes. It also addresses analysis and validation of
the network models. Much of the material of this book has been developed or
used in this course.

e Model-Based Intelligent Environments
This course develops integrative modeling to more realistic overall intelligent
environments.

17.4 The Human Sciences and Exact Sciences Streams

As mentioned in Sect. 17.3 above, in the curriculum ingredients are used from the
Exact Sciences stream and in particular from areas such as Artificial Intelligence
(e.g. modeling knowledge and reasoning), Ambient Intelligence (e.g. interaction
with humans using sensor systems), and Informatics (e.g. human-computer inter-
action). More specifically, the Exact Sciences stream contributes courses such as:

e Logic and Sets, Intelligent Systems, Machine Learning, Evolutionary
Computing (Artificial Intelligence)
Pervasive Computing, Lab Human Ambience (Ambient Intelligence)
Problem Solving, Introduction to Programming, Databases, Human-Computer
Interaction, Multimedia authoring, Web Technology (Informatics)

For the Human Sciences stream, a large number of options is available from the
existing curricula in human sciences such as Biomedical and Health Sciences,
Psychology, and Social Sciences. Such courses may address more fundamental
aspects of human processes, but also focus on limitations or shortcomings in
functioning, for example due to specific disorders. Examples of courses for this
stream are:

Medical Physiology, Behaviour and Health (e.g. Widmaier et al. 2004)
Introduction to Psychology and its Methods, Anxiety and mood disorders,
Empirical methods (e.g. Gleitman et al. 2004; Ashcraft 2005; Nolen-Hoeksema
2005)

e Social Psychology, Text Analysis (e.g. Smith and Mackie 1999)
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Within the curriculum, in a number of cases choices can be made by students for
subjects or profiles they prefer. In this way they can create a specialisation, in
themes such as mental health, sports, crime, and the elderly.

17.5 Integration and Projects

The Integration and Projects stream aims at integrating the different elements and
streams in the curriculum, mostly in the form of project activities. A starting point
for this stream is the integrative first year course Introduction Lifestyle Informatics,
in which students design their first application. Later in the first year and in the
second year there are integrative projects in which the knowledge obtained from the
other streams thus far is integrated. In the third year, the Bachelor study ends with a
larger integrative project. Similarly, in the fifth year the 2-year Master study ends
with a larger integrative project which takes about half a year fulltime.

In the fourth year, the first year of the 2-year Master programme, the integrative
course Human Ambience Innovation aims at getting an overview of the field, on the
basis of the following three dimensions (see also Fig. 17.2):

e The modeling and implementation methods and techniques used;
e The domain knowledge from human sciences used;
e The societal application area in which a problem is addressed.

Each application can be mapped or projected on each of these axes, thus pro-
viding a triple-fold characterising of it. As a simple example, an application to
support a depressed person through the Internet and their mobile phone, exploiting
a causal model of how depression can develop, can be characterised as the fol-
lowing triple

<causal modeling and mobile Internet; psychological knowledge about depression; mental
healthcare>

As another example, if a person’s social environment is addressed by an
application to avoid becoming socially isolated, for which a dynamical system
model and Twitter are used, then the application can be characterised as:

<numerical dynamical system modeling and Twitter; knowledge about social interaction;
mental healthcare>

17.6 Evaluation and Discussion

The contents of this chapter are mainly based on Treur (2013). In Treur (2007) a
description is included of the designed curriculum in much more detail, including,
for example, how it relates to the Dublin descriptors (e.g., Joint Quality Initiative
Group 2004).
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Higher education curriculum design is not a well-developed area of research; for
an impression of different perspectives and meanings, see Fraser and Bosanquet
(2006), Mikinen and Annala (2010). Curricula can be developed for existing sci-
entific disciplines; specific case studies have been reported in different domains, for
example in automotive engineering and history (Shay 2011; Mears et al. 2011).
However, curricula can also be designed for newly-developing disciplines or
multidisciplinary areas, such as sustainability science (e.g. Michelcic et al. 2003).
As both the scientific area and the curriculum are developing, these provide an extra
level of challenge. The current chapter reports a curriculum design for such a
multidisciplinary area. The curriculum as presented above was designed in a
coherent manner according to a well-defined viewpoint, and was meant to con-
tribute a serious innovation to the landscape of academic curricula. It does not look
like many more common or traditional curricula.

A question raised by such a curriculum is whether it actually has an academic
character. It seems clear that, when compared to any of its mono-disciplinary
ingredients, it has less depth. However, the academic value is in the integration of
the different scientific ingredients. It that sense, more depth is achieved, even in
terms of the different mono-disciplinary ingredients. For example, software systems
are designed in a manner that is justified by knowledge from human sciences, which
has more depth than software systems that are only tested by users in relation to
whether they appreciate the system. As another example, knowledge from human
sciences is not only acquired in informal ways, but also in more formalized,
in-depth forms based on computational models. In that sense, students in this
curriculum achieve more depth than, say, psychology students who do not cover
computational modeling.

Given the way in which it deviates substantially from known curricula, the
process for implementing a curriculum as described above is certainly not
straightforward. Although a first aim was to add this as a completely new cur-
riculum to the spectrum of already-available curricula, after some time it turned out
that the chances to get such a curriculum realised were considered politically much
higher when it was to replace an existing curriculum. At this point the decision was
made to implement this curriculum for the first 3 years as a replacement for the
existing Bachelor course Artificial Intelligence (including adopting a new name for
this Bachelor: Lifestyle Informatics), and for the fourth and fifth year as a specific
profile (called Human Ambience) within the existing Master course Artificial
Intelligence. Both are organised by the Department of Computer Science of the
Faculty of Exact Sciences in cooperation with different faculties for human
sciences.

In the initial phase of this whole process, in spring 2007 an investigation was
conducted by a professional organisation to estimate the appreciation of such a
course by candidate students. This study focused on penultimate-year high school
students from several schools in the Netherlands, and had 1104 respondents
(Hamstra 2007). This group of students could, after their next year choose to follow
this curriculum. After a brief description of the curriculum (which was a Dutch
variant of the text of the third paragraph included in Sect. 17.1 above), they gave an
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Fig. 17.3 Interests in the curriculum of 1104 students in the penultimate year of high school

answer to the question: How far do you find this bachelor interesting, after reading
the description? Some of the results are depicted in Fig. 17.3. It turned out that a
majority (63 %) of these students found such a study interesting, varying from a bit
interesting (34 %) to interesting (24 %) and very interesting (5 %). Only 31 % of
respondents found the study not interesting. One of the more specific positive
outcomes was that, to a significant extent, the female students were the most
positive ones. Only 25 % of these found the course not interesting, whereas 39 %
of male students said the same.

In the meanwhile, the curriculum is functional for more than 5 years. In these
years the number of students attracted by the new Lifestyle Informatics Bachelor
course (up to 40 new students per year) was about double the number that were
attracted by the Artificial Intelligence Bachelor it was replacing. Half of these
students is female, whereas for the original Al bachelor this was less than 10 %.
The percentages of students who successfully continue the course after the first and
second year are high.

Regarding the question ‘Should I try this at home?’, the following can be said.
On the one hand, be aware of some of the difficulties in implementing this, both in
terms of content and politics. In this chapter they have been pointed out from time
to time. On the other hand, be aware of the great opportunities such a curriculum
offers in attracting new types of students; for example, it becomes possible to form
groups of students that have an even balance of males and females, which is quite
exceptional in an exact academic context. As highlighted in this chapter, integration
through computational modeling is considered a crucial factor in order to obtain
coherency in the curriculum. Drawing on the experiences described above, an
important piece of advice would be to address that area very seriously. In contact
with the author it may be possible to obtain dedicated course materials that have
already been developed.
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Network-Oriented Modeling: Discussion



Chapter 18
On the Use of Network-Oriented Modeling

A Discussion

Abstract This chapter is a discussion in which some of the main issues addressed
in the book are briefly reviewed. In particular, Network-Oriented Modeling based
on adaptive temporal-causal networks is discussed and how generic and applicable
it is as a modeling approach and as a computational paradigm.

18.1 Introduction

This book started in Chap. 1 by a review of traditionally used means to address the
complexity of individual and social human processes. These means often concern
assumptions on separation and isolation of parts of processes. Due to the short-
comings of these assumptions, over time they have often led to strong debates.
Many human processes involve sub-processes running simultaneously in parallel,
thereby intensely interacting in cyclic manners. This offers an important challenge
to be addressed, and it was recognized that a modeling perspective is needed that
addresses such intense cyclic interactions and their dynamics. A Network-Oriented
Modeling perspective was proposed here as an alternative way to address com-
plexity. Using this perspective, different elements of a process can be distinguished,
but it does not separate or isolate them. Instead it emphasizes and explicitly models
how they run and interact simultaneously. By incorporating a temporal dimension,
it is modeled how they can have intense and circular causal interaction, and the
timing of such processes can be modeled.

18.2 Network-Oriented Modeling

Although the notion of network itself and its use in different contexts can be traced
back to the years 1930-1960 (see Chap. 1, Sect. 1.4), the notion of Network-Oriented
Modeling as a modeling approach (also indicated by NOM) can be found only in more
recent literature, and only for specific domains. More specifically, this notion is used
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in different forms in the context of modeling organisations and social systems (e.g.,
Elzas 1985; Chung et al. 2003; Naudé et al. 2008), of modeling metabolic processes
(e.g., Cottret and Jourdan 2010), and of modeling electromagnetic systems (e.g.,
Russer and Cangellaris 2001; Felsen et al. 2002, 2009). The Network-Oriented
Modeling approaches put forward in this literature are specific for the domains
addressed, respectively social systems, metabolic processes and electromagnetic
systems. An interesting challenge is to achieve unification of such Network-Oriented
Modeling methods. The Network-Oriented Modeling approach described in this book
was developed with the domain of mental and social human processes in mind (but
also with inspiration from modeling metabolic processes within bacteria; e.g., Jonker
etal. (2002, 2008)), thus unifying at least both individual human processes and social
processes, as has been illustrated by many example models in this book. However, the
scope of applicability is much wider, as discussed in some more detail in Sect. 18.3.

The Network-Oriented Modeling approach presented in this book uses adaptive
temporal-causal networks as a vehicle. The temporal perspective allows to model
the dynamics of the interaction processes within networks and of networks well.
A conceptual representation of a model represents in a declarative manner states
and connections between them. States have (activation) levels that vary over time.
The connections stand for (causal) impacts of states on each other. Furthermore, the
notion of weight of a connection is used to be able to express differences in
strengths of impact. Moreover, combination functions are used to express how to
aggregate multiple causal impacts on a state. Within adaptive networks also these
weights can vary over time. Finally, the notion of speed factor expresses the speed
of change of a state and is used to model timing of processes.

18.3 Genericity of a Network-Oriented Modeling
Approach

In this section it is discussed how generic the presented Network-Oriented
Modeling approach is. More specifically, it is discussed how temporal-causal net-
works subsume smooth continuous dynamical systems, discrete dynamical systems
and computational processes more in general.

Network-Oriented Modeling and Continuous Dynamical Systems

In Chap. 2, Sect. 2.9 it has been discussed that any smooth continuous dynamical
system (which by definition is a state-determined system) can be modeled as a
temporal-causal network model, by choosing suitable parameters such as connection
weights, speed factors and combination functions. In this sense this
Network-Oriented Modeling approach is as general as dynamic modeling approa-
ches put forward, for example, in Ashby (1960), Forrester (1973, 1987), Thelen and
Smith (1994), Port and van Gelder (1995), van Gelder and Port (1995), Beer (2000),
Kelso (1995), van Gelder (1998), and neural network approaches such as described,
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for example in Grossberg (1969), Hopfield (1982, 1984), Hirsch (1989) and
Funahashi and Nakamura (1993). This indicates that using this Network-Oriented
Modeling approach does not limit the scope of the modeling.

Network-Oriented Modeling and Discrete Dynamical Systems

The numerical representations of temporal-causal network models can be used to
model continuous dynamical systems. But they can also be used to model discrete
binary processes based on values O or 1 for the states. To this end, set time step
At = 1, speed factor ny = 1 for all states Y, connection weight my y = 1 for all states
X and Y with a connection from X to Y, and assume that all combination functions
cy(...) only generate values O or 1, when applied to values O or 1. Then the
difference equation for a state Y becomes

Y(t+1) =Y(0)+ [ey(Xa(2), ..., Xu(2)) =Y (2)]
which simply can be rewritten as:

Y(t+1) =cy(Xi(1), ..., Xu(1))
This takes the form of a general evolution or transition rule for a discrete
dynamical system of which the (overall) states are defined as vectors (X;(?), ...,
X(®)) with values 0 or 1, and transitions of overall states are defined as

X (t+1), .. Xt + 1)) = (cx, (X1 (1), .., Xk(1), -y ex, (X1 (2), ..., Xk(2)))
or in vector notation X with X(7) = (X,(¢), ..., X(2)):
X(t+1) =¢(X(1))

where for V = (Vy, ..., V}) it is defined ¢(V) = (cx, (V), ...,cx (V)).

This shows how the Network-Oriented Modeling approach based on
temporal-causal networks subsumes modeling by discrete dynamical systems. Note
that the above approach abstracts from the temporal aspect by setting At and all
speed factors 1. However, also timed variants of discrete dynamical systems can be
covered.

Network-Oriented Modeling and Computational Processes

Any real implemented computational process in principle is a deterministic smooth
continuous process of a state-determined system in the physical world. Therefore it
could be claimed that the temporal-causal network modeling approach in theory
covers all computational processes. Within theoretical analyses often variants of
transition systems or finite state machines are used as universal ways to specify
computational processes. Conceptually such types of representations of (state)
transitions can easily be related to causal relations as considered in the
temporal-causal network modeling approach. In more detail, the format for discrete
dynamical systems described above as a special case can be used to model tran-
sition systems or finite state machines within the temporal-causal network modeling
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approach: by defining ¢(X) =Y if and only if within a finite state machine or
transition system there is a transition from the overall state represented as X to the
overall state represented as Y. This also provides support for the theoretical claim
that computational processes can be covered by the temporal-causal network
modeling approach. However, to support such a general claim for any specific
practical computational paradigm could be a nontrivial challenge. For example,
although perhaps theoretically possible, to obtain a temporal-causal network rep-
resentation for a computational process described in some procedural (parallel)
programming language, in practice may require some effort. This may be similar to
transformations of procedural specifications into other types of declarative repre-
sentations, for example, into (temporal) logical or functional formats.

18.4 Applicability of Network-Oriented Modeling

The Network-Oriented Modeling approach has turned out useful in particular for
computational modeling in a multidisciplinary context. Moreover, network models
as obtained can form a solid basis to develop smart applications.

Applicability for Modeling in a Multidisciplinary Context

As discussed in Chaps. 1 and 2 the temporal-causal network modeling approach
used here makes it easy to take into account theories and findings about dynamics
of processes from any scientific discipline, as commonly such processes are
described in terms of causal relations.

In particular, this applies to complex brain processes known from Cognitive,
Affective and Social Neuroscience, which, for example, often involve dynamics
based on interrelating cycles. Also recall the quotation of Phelps in Chap. 1, Sect. 1.
2: ‘Adding the complexity of emotion to the study of cognition can be daunting, but
investigations of the neural mechanisms underlying these behaviours can help
clarify the structure and mechanisms’ (Phelps 2006, pp. 46-47).
A Network-Oriented Modeling approach enables to address in an integrative
manner complex cognitive, affective and social phenomena such as dynamics by or
of social interaction, the integration of emotions within cognitive processes, internal
simulation of external processes, mirroring of mental processes of others, and
Hebbian learning; e.g., Hebb (1949), Gerstner and Kistler (2002), Keysers and
Perrett (2004) and Keysers and Gazzola (2014). It also has been discussed in Chap.
1 how a Network-Oriented Modeling approach relates to perspectives in Philosophy
of Mind (e.g., Kim 1996), in particular to (causal) networks of mental states.
Furthermore, it has been discussed in Chap. 1 how the approach relates to the
philosophical perspective on dynamics in the physical world that is indicated as the
clockwork universe; e.g., Descartes (1634) and Laplace (1825). In an abstract sense
this perspective relates to the notion of state-determined system; e.g., Ashby (1960).
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For processes in a social context, social phenomena such as shared under-
standing and collective power show how bridges between individual persons are
constructed. The behaviour of each person is based on internal states such as goals,
emotions and beliefs. Therefore from a naive viewpoint such sharedness and col-
lectiveness would be considered as very improbable. But specific mechanisms do
their work in tuning the individual mental processes to each other, mostly in an
unconscious manner, and lead to the emergence of shared mental states and col-
lective behaviour. Knowledge about these mechanisms from Social Neuroscience
can be exploited to model corresponding computational mechanisms. It has been
discussed in Chap. 7 how from a neuroscientific perspective, mirror neurons and
internal simulation are core mechanisms for this.

From the applications to model complex phenomena by a Network-Oriented
Modeling approach, within the book models for the following complex phenomena
in a multidisciplinary context have been discussed:

Embodiment, as-if body loops, mindfulness (Chap. 3)

Imagination, visualisation and dreaming as internal simulation (Chap. 4)
Mirroring of other minds (Chap. 7)

Integration of affective and cognitive processes (Chaps. 3, 6, 7, 10)
Fear extinction learning (Chap. 5)

Emotions as a basis for rationality (Chap. 6)

Empathic understanding (Chaps. 7, 9)

Emergence of shared understanding and collective action (Chap. 7)
Group processes and crowd behavior (Chap. 7)

Prior and retrospective ownership of actions (Chap. 8)

Social contagion (Chaps. 7, 11)

Social responsiveness (Chap. 9)

Joint decisions (Chap. 10)

Social network evolution (Chap. 11).

Applicability for the development of Smart Applications

The topics addressed have a number of possible applications. An example of such
an application is to analyse the spread of a healthy or unhealthy lifestyle in society.
Another example is to analyse crowd behaviour in emergency situations. A wider
area of application, as discussed in Chap. 16, addresses smart applications in the
context of Ambient Intelligence or socio-technical systems that consist of humans
and devices, such as smartphones, and use of social media. For such applications, in
addition to analysis of the relevant processes, also for the support side the design of
these devices and media can be an important aim. This may concern, for example,
safe evacuation in an emergency situation or strengthening development of a
healthy lifestyle. Other application areas may address, for example, support and
mediation in collective decision making and avoiding or resolving conflicts that
may develop. The Network-Oriented Modeling approach as presented makes
modeling complex human and social processes more manageable, and extends the
range of what is possible. To facilitate applications, dedicated software is available
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supporting the design of network models in a conceptual manner, automatically
transforming them into an executable format and performing simulation
experiments.

18.5 Finally

Summarizing, the Network-Oriented Modeling approach based on temporal-causal
networks as described here, provides a complex systems modeling approach that
enables a modeler to design high level conceptual model representations in the form
of cyclic graphs (or connection matrices), which can be systematically transformed
in an automated manner into executable numerical representations that can be used
to perform simulation experiments. The modeling approach makes it easy to take
into account on the one hand theories and findings from any domain from, for
example, biological, psychological, neurological or social sciences, as such theories
and findings are often formulated in terms of causal relations. This applies, among
others, to mental processes based on complex brain networks, which, for example,
often involve dynamics based on interrelating and adaptive cycles, but equally well
it applies to social networks and their adaptive dynamics. This enables to address
complex adaptive phenomena such as the integration of emotions within all kinds
of cognitive processes, of internal simulation and mirroring of mental processes of
others, and dynamic social interaction patterns. By using temporal-causal relations
from those domains as a main vehicle and structure for network models, the
obtained network models get a strong relation to the large body of empirically
founded knowledge from the Neurosciences and Social Sciences. This makes them
scientifically justifiable to an extent that is not attainable for black box models
which lack such a relation.
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