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Preface

Many biological systems, such as circadian rhythms, calcium signaling in cells, the
beating of the heart and the dynamics of protein folding, are inherently nonlinear and
their study requires interdisciplinary approaches combining theory, experiments and
simulations. Such systems can be described using simple equations, but still exhibit
complex and often chaotic behavior characterized by sensitive dependence on initial
conditions.

The purpose of this book is to bring together the mathematical bases of those
nonlinear equations that govern various important biological processes occurring at
different spatial and temporal scales.

Nonlinearity is first considered in terms of the evolution equations describing
RNA neural networks, with emphasis on analysing population asymptotic states
and their significance in biology. In order to achieve a quantitative characterization
of RNA fitness landscapes, RNA probability distributions are estimated through
stochastic models and a first approach for correction of the experimental biases
is proposed. Nonlinear terms are also present during transcription regulation,
discussed here through the mathematical modeling of biological logic gates, which
opens the possibility of biological computing, with implications for synthetic
biology. The instabilities arising in the different enzymatic kinetics models as
well as their spatial considerations help in understanding the complex dynamics in
protein activation and in developing a generic model. Furthermore, understanding
of the biological problem and knowledge of the mathematical model may lead to
the design of selective drug treatments, as discussed in the case of chimeric ligand—
receptor interaction.

Nonlinear dynamics are also manifested in human muscular organs, such as the
heart. Most of the solutions available in generic excitable systems are also obtained
with mathematical models of cardiac cells which exhibit spatio-temporal dynamics
similar to those of real systems. The spatial propagation of cardiac action potentials
through the heart tissue can be mathematically formulated at the macroscopic level
by considering a monodomain or bidomain system. The final nonlinear phenomenon
discussed in the book is the electromechanical cardiac alternans. Understanding of



vi Preface

the mechanisms underlying the complex dynamics will greatly benefit the study of
this significant biological problem.

The works compiled within this book were discussed by the speakers at the
“First BCAM Workshop on Nonlinear Dynamics in Biological Systems”, held
from 19 to 20 June 2014 at the Basque Center of Applied Mathematics (BCAM)
in Bilbao (Spain). At this international meeting, researchers from different but
complementary backgrounds—including disciplines such as molecular dynamics,
physical chemistry, bio-informatics and biophysics—presented their most recent
results and discussed the future direction of their studies using theoretical, math-
ematical modeling and experimental approaches.

We are grateful to the Spanish Government for their financial support
(MTM201018318 and SEV-2013-0323) and to the Basque Government (Eusko
Jaurlaritza) for help offered through projects BERC.2014-2017 and RC 2014 1
107. We also express gratitude to the Basque Center of Applied Mathematics for
providing valuable assistance in logistics and administrative duties and creating
a good atmosphere for knowledge exchange. JC-L also acknowledges financial
support from FRS-FNRS. Furthermore, we are thankful to Aston University,
Georgia Institute of Technology and Potsdam University for providing financial
support for their scientific representatives.

Brussels, Belgium Jorge Carballido-Landeira
Bilbao, Spain Bruno Escribano
July 2015
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Modeling of Evolving RNA Replicators

Jacobo Aguirre and Michael Stich

Abstract Populations of RNA replicators are a conceptually simple model to study
evolutionary processes. Their prime applications comprise molecular evolution such
as observed in viral populations, SELEX experiments, or the study of the origin
and early evolution of life. Nevertheless, due to their simplicity compared to living
organisms, they represent a paradigmatic model for Darwinian evolution as such.
In this chapter, we review some properties of RNA populations in evolution, and
focus on the structure of the underlying neutral networks, intimately related to the
sequence-structure map for RNA molecules.

1 Introduction: RNA as a Paradigmatic Model for Evolution

RNA molecules are a very well suited model for studying evolution because they
incorporate, in a single molecular entity, both genotype and phenotype. RNA
sequence represents the genotype and the biochemical function of the molecule
represents the phenotype. Since in many cases the spatial structure of the molecule
is crucial for its biochemical function, the structure of an RNA molecule can be
considered as a minimal representation of the phenotype. A population of replicating
RNA molecules serves as a model for evolution because there is a mechanism that
introduces genetic variability (e.g., point mutations) and a selection process that
differentiates the molecules according to their fitness. Based particularly on the
seminal work by Eigen [2], these concepts have been developed over the decades
(for some early work see Refs. [3—-6]) and have been proven to be very successful to
describe evolutionary dynamics (for a more recent review see [7]).
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2 J. Aguirre and M. Stich

For many RNA molecules, it is difficult to obtain with experimental techniques
(like X-ray crystallography) the actual, three-dimensional structure in which a
given single-strand RNA sequence folds. In practice we know to precision only
the structures of a few short RNA sequences, like the tRNA, of typically 76 bases
(nucleotides). However, the secondary structure (in first approximation the set of
Watson-Crick base pairs) of a molecule can be determined experimentally more
easily and can be predicted with computational algorithms to high fidelity [8].
Since furthermore a large part of the total binding energy of a folded structure
is found within the secondary structure, the latter has been widely accepted as a
minimal representation of the phenotype of a molecule. The map from sequences to
structures constitutes a special case of a genotype-phenotype map, lying the basis to
introduce suitable fitness functions [9].

A population of evolving RNA replicators is henceforth described by its set
of molecules, and for each molecule we know the sequence and the secondary
structure and therefore the phenotype. It is important to note that a large number
of different sequences can share the same folded structure, as shown in Fig. 1.
Each color stands for a different secondary structure and each small square for a
different sequence. This is only a schematic view, since we do not show all possible
structures or sequences. We draw a link between two sequences if they differ in
only one nucleotide. In this way, neutral networks are defined. As will be shown in
more detail below, neutral networks differ in size and other properties, and may be
actually disconnected.

In this chapter, we will distinguish and discuss two particular cases: in the first
one all molecules share the same folded secondary structure—and have the same
fitness. Then, the population is constraint to the neutral network and the evolutionary

Fig. 1 Schematic view of RNA sequences and secondary structures. Each square represents a
different RNA sequence of length 35. Squares with the same color fold into the same secondary
structure. The RNA secondary structures are shown as insets (the number in the circles denotes the
number of unpaired bases in that part of the molecule). The formed networks can have different
sizes and may be disconnected. Missing squares do not correspond to missing RNA sequences, but
to other, not displayed structures, including open structures. For a more detailed explanation, see
main text. (Modified from [1])
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dynamics of the population is largely determined by the topological properties of the
network. In the second case, the molecules can be at any point in sequence space and
hence can have different phenotypes—with therefore different fitness. We discuss
the first case in Sect. 2 of this chapter, while Sect. 3 is devoted to the analysis of the
second case. Section 4 concludes the chapter reflecting on the limitations and future
developments in the modelization of evolving RNA replicators.

2 Evolution Constraint to Neutral Networks

2.1 RNA Neutral Networks: Definition and Main Properties

The idea of neutral evolution was first introduced by Kimura [10] in order to account
for the known fact that a large number of mutations observed in proteins, DNA, or
RNA, did not have any effect on fitness.

Neutrality becomes particularly important in the evolution of quasispecies [2],
populations of fast mutating replicators which are formed by a large number of
different phenotypes—and many more genotypes—and where high diversity and
the concomitant steady exploration of the genome space happen to be an adaptive
strategy. Relevant examples of quasispecies of RNA molecules are RNA viruses [11]
(HIV, Ebola, flu, etc.) and error-prone replicators in the context of the prebiotic RNA
world [12].

As it was already mentioned, RNA is a very fruitful model for the study
of molecular evolution, and in fact RNA sequences folding into their minimum
free energy secondary structures are likely the most used model of the genotype-
phenotype relationship [8, 13, 14]. Here we assume that the RNA secondary
structure can be used as a proxy for the phenotype—or biological function—
of the molecule. Most models restrict their studies to the minimum free energy
(MFE) structure. If this is the case, the mapping from sequence to secondary
structure is many-to-one, i.e., there are many sequences that fold into the same
structure. Assuming that all such sequences represent the same phenotype, they
form a neutral network of genotypes. The number of different phenotypes gives
the number of different neutral networks. The sequences that fold into the same
secondary structure are the nodes of the neutral network. The links of the network
connect sequences that are at a Hamming distance of one, i.e., that differ in only one
nucleotide. Therefore, a neutral network may be connected—when all sequences are
related to each other through single-point mutations—or disconnected. In the latter
case, the neutral network is composed of a number of subnetworks. An example can
be found in Fig. 2.

RNA is assembled as a chain of four nucleotides (adenine —A—, guanine —G—,
cytosine —C— and uracil -U-). Therefore, the neutral networks associated to a certain
sequence length / are subnetworks embedded in the macronetwork formed by all the
possible networks of length /. The size of this macronetwork is 4/, its dimension is
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Fig. 2 Neutral network associated to an RNA secondary structure. (a) Sketch of the construction:
the nodes of the network represent all of sequences that fold into the same secondary structure.
They are connected if their Hamming distance is one, that is, if they differ in only one nucleotide.
(b) Neutral network associated to the secondary structure of length 12 (. (....)) ..., shown
in (c). In this case, there are three disconnected subnetworks of size 404, 341 and 55. (Modified
from [15])

[, and it shows a regular topology: each node has degree 3/ because each nucleotide
can suffer three different mutations.

Analytical studies of the number of sequences of length / compatible with a
fixed secondary structure have revealed that the size of most neutral networks is
astronomically large even for moderate values of the sequence length. For example,
there should be about 10%® sequences compatible with the structure of a tRNA
(which has length [ = 76), while the smallest functional RNAs, of length [ ~
14 [16], could in principle be obtained from more than 10°. A rough upper bound to
the number of different secondary structures S; retrieved from sequences of length
1, and valid for sufficiently large sequences and avoiding isolated base pairs, was
derived in [5]: S; = 1.4848 x [73/2(1.8488)". This implies that the average size of
a neutral network grows as 4//S; = 0.673 x [/22.1636/, which is a huge number
even for moderate values of /. Let us note, however, that the actual distribution
of neutral network sizes is a very broad function without a well-defined average
and with a fat tail [5, 17]. In fact, the space of RNA sequences of length [ is
dominated by a relatively small number of common structures which are extremely
abundant and happen to be found as structural motifs of natural, functional RNA
molecules [18, 19]. Neutral networks corresponding to common structures percolate
the space of sequences [20, 21] and thus facilitate the exploration of a large number
of alternative structures. This is possible since different neutral networks are deeply
interwoven: all common structures can be reached within a few mutational steps
starting from any random sequence [21].
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2.2 Dynamical Equations

We start assuming that, from all possible secondary structures into which RNA
sequences of length / can fold, only one is functional (its specific function will
depend on the biological context and is irrelevant now). Therefore, the fitness of
the sequences of one network is maximized, while the fitness of all the sequences
belonging to other neutral networks is zero. With this assumption, the evolution of
a population of RNA through the space of genotypes due to mutations is limited to
the functional neutral network (or to one of its subnetworks if it is not connected), as
we consider that only the progeny that remains within the neutral network survives.
Let’s see how to model this process.

As it was already mentioned, the nodes of the neutral network associated to the
functional secondary structure represent all the sequences that fold into it, while
the links connect sequences that differ in only one nucleotide. Each node i in the
network holds a number #n;(f) of sequences at time ¢. There are i = 1, ..., m nodes
in the network, each with a degree (number of nearest neighbors) k;. The total
population will be maintained constant through evolution, N = ), n;(f), and we
assume N — oo to avoid stochastic effects due to finite population sizes. The initial
distribution of sequences on the network at ¢+ = 0 is n;(0). Sequences of length /
formed by 4 different nucleotides have at most 3/ neighbors. We call {nn}; the set of
actual neighbors of node i, whose cardinal is k;. The vector k has as components the
degree of the i = 1, ..., m nodes of the network. At each time step, the sequences at
each node replicate. Daughter sequences mutate to one of the 3/ nearest neighbors
with probability u, and remain equal to their mother sequence with probability 1—pu.
In our representation 0 < p < 1. The singular case © = 0 is excluded to avoid
trivial dynamics and guarantee evolution towards a unique equilibrium state. With
probability k;/(31), the mutated sequence exists in the neutral network and it adds
to the population of the corresponding neighboring nodes. Otherwise, it falls off the
network and disappears, this being the fate of a fraction (1 — k;/(31)) i of the total
daughter sequences.

The mean-field equations describing the dynamics of the population on the
network read

e+ 1) = 2 — wni(o) +3ﬁl 3 ). (1)

j={nn};

The dynamics can be written in matrix form as

0+ 1) = 2 — 0)In@0) + %Cn(r) , )
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where I is the identity matrix and C is the adjacency matrix of the network, whose
elements are C;; = 1 if nodes i and j are connected and C;; = 0 otherwise. The
transition matrix M is defined as

M:(2—u)I+%C. 3)

2.3 Analysis of the Asymptotic State

Let us call {A;} the set of eigenvalues of M, with A; > A4, and {u;} the
corresponding eigenvectors. Furthermore, its eigenvectors verify w; -u; = 0, Vi # j
and |u;| = 1, Vi.

A matrix is irreducible when the corresponding graph is connected; in our case
any pair of nodes i and j of the network are connected via mutations by definition.
Irreducibility plus the condition M;; > 0, Vi makes matrix M primitive. Since M
is a primitive matrix, the Perron-Frobenius theorem assures that, in the interval of
W values used, the largest eigenvalue of M is positive, A; > |A;|, Vi > 1, and its
associated eigenvector is positive (i.e., (u;); > 0, V i).

The dynamics of the system, Eq. (2) can be thus written as

n(f) = M'n(0) = > Ao, 4)
i=1

where we have defined «; as the projection of the initial condition on the ith
eigenvector of M,

o = n(O) u;. (&)

Furthermore, as A > |A;|, Vi > 1, the asymptotic state of the population is
proportional to the eigenvector that corresponds to the largest eigenvalue, u;:

lim ( n(?) ) =u, (6)

1—00 A’lal

while the largest eigenvalue A; yields the growth rate of the population at equi-
librium. For convenience, in the following, and without any loss of generality, we
normalize the population n(7) such that [n(¢)| = 1 after each generation. With this
normalization, n(f) — u; when t — oo.

Finally, let us remark the biological relevance of these results, as they yield that,
independently of the initial condition, the sequence population evolves asymptoti-
cally towards a constant distribution over the network that can be obtained by the
first eigenvector of the transition matrix.
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2.4 Time to Asymptotic Equilibrium

A dynamical quantity with direct biological implications is the time that the
population takes to reach the mutation-selection equilibrium. To obtain it, we start
from Eq. (4), where we describe the transient dynamics towards equilibrium starting
with an initial condition n(0).

The distance A(¥) to the equilibrium state can be written as

M'n(0)
Athll

At) = (N

—u

In order to estimate how many generations elapse before equilibrium is reached, we
fix a threshold €, and define the time to equilibrium t. as the number of generations
required for A(z.) < €.

When a; # 0, A, # 0 and A, # A3, f. can be approximated to first order by

A~ In|oz/a| —Ine )
T /A

This approximation turns out to be extremely good in most cases thanks to the
exponentially fast suppression of the contributions due to higher-order terms (since
A; > Aig1, Vi). It may lose accuracy, however, when A3 ~ A,, when the initial
condition n(0) is such that o3 > o, or when € is so large that the population is far
from equilibrium and A(7) is still governed by A3 and higher order eigenvalues.

2.5 Influence of the Network Topology

Let us call {y;} the set of eigenvalues of adjacency matrix C, y; > y,+1, and {w;} the
set of corresponding eigenvectors. From Eq. (3),

Mw; = 2 — w)lw; + %Cwi
“le—w+2)]w
=[e-w+n]w. ©)

The eigenvectors of the adjacency matrix are also eigenvectors of the transition
matrix, u; = w;, Vi, demonstrating that the asymptotic state of the population only
depends on the topology of the neutral network. The eigenvalues of both matrices
are thus related through

Ai=Q—p)+ %yi, (10)
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where the set {y;} does not depend on the mutation rate x. The adjacency matrix
contains all the information on the final states, while the transition matrix yields
quantitative information on the dynamics towards equilibrium.

The minimal value of 1, is obtained in the limit of a population evolving at a very
high mutation rate (& — 1) on an extremely diluted matrix (I — 00). In this limit,
all eigenvalues of M become asymptotically independent of the precise topology of
the network and A; — 1, Vi. In this extreme case all daughter sequences fall off the
network, but the population is maintained constant through the parental population.
An extinction catastrophe (due to a net population growth below one [22]) never
holds under this dynamics.

2.6 Evolution Towards Mutational Robustness

The average degree K(t) of the population at time ¢ is defined as

k- n(r)
K1) = . (1D
Zi n;(t)
In the limit # — oo, we obtain the average degree at equilibrium
K-
K(t — 00) = K W (12)

- Zi(ul)i'

We define as Kyin, kmax, and (k) = Y, k;/m the smallest, largest, and average degree
of the network, respectively. The Perron-Frobenius theorem for non-negative,
symmetric, and connected graphs, sets limits on the average degree (k): When
kmin < kmayx, that is, as far as the graph is not homogeneous,

kmin < (k> <Y1 < kmax (13)

holds. A simple calculation yields that the average degree of the population at
equilibrium, K, is equal to the largest eigenvalue y; of the adjacency matrix, also
known as the spectral radius of the network [23]. Therefore, from Eq. (13) we obtain
that the average degree K of the population at equilibrium will be larger than the
average degree (k) of the network, indicating that when all nodes are identical the
population selects regions with connectivity above average. This demonstrates a
natural evolution towards mutational robustness, because the most connected nodes
are those with the lowest probability of suffering a (lethal) mutation that could push
them out of the network. See Fig. 3 for a numerical example of this phenomenon.



Modeling of Evolving RNA Replicators 9

Fig. 3 Evolution towards mutational robustness. A population of replicators that evolves on a
complex network tends to the most connected regions in the mutation-selection equilibrium.
In the figure we show a population that has evolved following Eq.(2) over an artificial RNA
neutral network. The size of each node is proportional to the population in the equilibrium. The
natural tendency to populate the region of the network with the largest average degree is clear;
in consequence, the robustness against mutations is enhanced. (Modified and reproduced with
permission from [24])

3 Evolution Towards a Target Structure

Until now we have considered RNA populations confined to a given neutral network
and hence secondary structure. Molecules that fold into any other secondary
structure were simply discarded. This is of course only an approximation. In this
section we present a theoretical framework that includes all possible RNA secondary
structures and assigns non-zero fitness values to all of them. Such a landscape
was introduced in Fig. 1, and we describe the evolutionary dynamics on it in the
following.
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3.1 Sequence-Structure Map

Above, we have already introduced RNA sequence and structure in the context of
RNA neutral networks, but we have to explain in more depth some properties of
the sequence-structure map. Two fundamental properties of the sequence-structure
map are that (1) the number of different sequences is much higher than the number
of structures and (2) not all possible structures are equally probable [5, 18]. In this
context, common structures are those which have many different sequences folding
into them (having large neutral networks) and rare structures are those which have
only few sequences folding into them (having small neutral networks).

In this section, we are interested in the whole set of neutral networks and its
size distribution. We describe some results of the folding of 103 RNA molecules
of length 35 nt consisting of random sequences, following Ref. [17]. In total,
the sequences folded into 5,163,324 structures, using the fold () routine from
the Vienna RNA Package [25]. A way to visualize the distribution of sequences
into structures is the frequency-rank diagram. In Fig. 4b the structures are ranked
according to the number of sequences folding into them and we focus first on the
thick black curve. One can see that there are around thousand common structures,
each of them obtained from about 10* different sequences. On the other hand,

()

—
(=)

—
(=]
£

—
(=)
()

(=
N

Binned absolute frequency

10
10° 10" 10

2

10° 10" 10° 10° 10’

Rank

Fig. 4 Properties of the RNA sequence-structure map. (a) Distribution of the sequences in
structure families according to their frequency. Higher-order hairpins, HPx, are defined as
(H,LM)=(1,x,0), being x > 2, higher-order double stem-loops, DSLx, as (H,LM)=(2,x-1,0),
and higher-order hammerheads, HHXx, as (2,x-1,1). (b) Frequency-rank diagram according to the
structural family. We have binned in boxes of powers of 2 the total number of structures belonging
to the interval and have determined the absolute frequency of the corresponding sequences for each
family in the bin. The thick black curve denotes the whole set of structures (see text). (Modified
from [17])
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we also find a few million rare structures yielded by only one or two sequences.
Although for smaller pools, this had already been reported before (e.g., [5]).

In order to study the distribution of common vs. rare structures in more detail, we
have proposed a classification where an RNA secondary structure is characterized
in terms of three numbers [17]: (a) the number of hairpin (terminal) loops, H,
(b) the sum of bulges and interior loops, I, and (c) the number of multiloops,
M. For example, a simple stem-loop structure, denoted as SL, is characterized by
(H,I,M)=(1,0,0), and all stem-loop structures found in the pool are grouped into
that structure family. Other important families are the hairpin structure family, HP,
with one interior loop or bulge (1,1,0), the double stem-loop, DSL, represented by
(2,0,0), and the simple hammerhead structure, HH, by (2,0,1). Of course, there exist
more complicated structure families, as detailed in [17]. For the pool that we have
folded, we find that only 21 structure families are enough to cover all the 5.2 million
structures identified.

Our analysis, displayed in Fig. 4a, shows that the vast majority of sequences fold
into simple structure families. For example, 79.0 % of all sequences belong to only
three structure families (HP, HP2, SL, in decreasing abundance), and 92.1 % of all
sequences fold into simple structures with at most three stems (HP, HP2, SL, DSL,
DSL2, HH). Note that 2.1 % of all sequences remain open and do not fold. This
data is in agreement with previous findings on the structural repertoire of RNA
sequence pools where the influence of the sequence length [26, 27], the nucleotide
composition [28, 29], and pool size [27] were studied.

With this classification, we can reconsider the frequency-rank diagram. We sum
up all structures of a given structure family within a rank interval. Through this
binning procedure, for each structure family a curve is obtained which describes
its relative frequency compared to that of the other families. The curves for some
families are shown in Fig. 4b. We immediately see that the most frequent structures
belong to the stem-loop family, followed by the hairpin family. For low ranks, the
SL curve is identical to the curve describing all structures. For ranks between 4 x 10°
and 10%, it is the HP curve which practically coincides with the total curve.

The understanding of the diversity of structures, the (relative) sizes of the neutral
networks, and their distribution in sequence space are relevant properties to take into
account when populations are allowed to move across the whole sequence space, as
considered in the following.

3.2 Evolutionary Algorithm

We assume that an RNA molecule of a given length can have any possible sequence,
i.e., the population can access the whole sequence space. Furthermore, by the
mapping introduced above, all secondary structures can be determined. We now
identify one structure as target structure. Above it has been argued that structure is a
proxy for biochemical function and therefore the target structure represents optimal
biochemical function in a given environment. All molecules have now a fitness that
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depends on their structure distance to the target structure—structure distances are
defined below. Replication according to the fitness function subjected to mutations
enables the population to search for, find, and finally fix the target structure. The
evolution of this population can be expected to be a highly nonlinear process, not
only because of the vast amount of different structures (and fitnesses), but also
because two sequences that are just one mutation apart, may fold into structures
very different from each other. At the same time, in a relatively small neighborhood
of any sequence, almost all common structures can be found [18]. The scheme is as
follows:

1. Set a target structure of length I. Any possible secondary structure can be chosen,
but often biological relevant structures like hairpin or hammerhead ribozymes or
tRNA structures are selected. Sequence space, imprecision of folding algorithms
and computational resources increase strongly with the length of the molecule.
Therefore, most computational studies use short molecules, up to a few hundred
bases. In many examples, we use a 35 nt hairpin ribozyme structure.

2. Construct an initial population of size N. Typical choices are random sequences,
sequences pre-evolved under different conditions, or sequences selected from an
experiment or database.

3. Fold the structures with an appropriate routine, like fold () from the Vienna
Package [25].

4. Determine the distance to the target structure for all molecules. To compare
RNA secondary structures, there exists a range of different distance measures
like base-pair, Hamming, or various kinds of tree-edit, all of which establish a
metric [25]. Consequently, we can use any of these distance measures to define a
fitness function.

5. Replicate the population according to the Wright-Fisher sampling, keeping the
population size constant, and using the normalized probabilities

exp(—pdi)
L1 exp(—pdy)

We discuss the fitness function itself further below, but we already mention here
two possibilities for B: (a) a constant, e.g., 8 = 1/, or (b) a time-dependent
function, e.g., B = 1/d, being d = vazl di/N the average distance of the
population.

6. In the replication event, a source of variability for the genotype must be included,
being the simplest case point mutations with a rate u.

7. Steps (3)—(6) are repeated as long as desired. Most of the evolutionary dynamics
can be seen within 10? — 10* generations.

pd) = (14)

The scheme as presented here can be modified in several ways: for example the
selection function may not be an exponential function, or the comparison between
structures can rely on other distance measures. Nevertheless, many properties
of evolving RNA populations only depend quantitatively, not qualitatively on
these variables. Obviously, the fitness/replication function can be modified to
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include also the Hamming distance to a conserved sequence, or some energetic
constraint [30]. Finally, even the condition of N constant can be relaxed to allow
for bottlenecks [31].

3.3 Characteristic Quantities

In the following, it is assumed that the initial population consists of random
sequences of length / = 35 and that the population size is in the range 10°~10°.
Then, even though a relatively common target structure is chosen, it is not likely
that the initial population contains a molecule that folds into the target structure.
Therefore, the first phase of evolution is a search phase where molecules that fold
into a structure more similar to the target structure are slowly picked up and replicate
with a higher probability. This phase terminates when the population finds the target
structure for the first time (an event that defines the search time). Then, the second
phase starts, in which the number of molecules folding into the target structure
typically increases (we say that the structure is being fixed). However, due to the
probabilistic nature of the system, and in particular for high mutation rates, the
structure can be lost again. Then, no fixation takes place.

After fixation, the population enters the third phase, the time to approach the
asymptotic state, characterized by a minimal average distance and a maximal
number of molecules in the target structure. Due to the non-deterministic features
of the model, the asymptotic state of the system can only be characterized after
ensemble and time averaging. Furthermore, if N is too small, finite size effects can
be observed.

In Fig. 5, we show an example of a typical simulation. We see for three different
mutation rates the evolution of an RNA population, illustrated by the average

O I ——

Qv —n————

16 —  p=0.005 [ 0.8 —  p=0.005 [

—  u=0025 | 4 —  u=0025 | 4

d 12 no fixation u=0.050 | = p 0.6 I 1=0.050 |
0.4}
02

+ no fixation i

0 LA SvricA Moty
0 100 200 300 400 500 0 100 200 300 400 500
generations generations

Fig. 5 Typical evolutionary processes for RNA populations with three different mutation rates. In
(a), we show d, the average base-pair distance to the target structure and in (b), we show p, the
density of correctly folded molecules in the population. Parameters: N = 602, § = 1/d, and the
target structure is a hairpin structure with [ = 35
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Fig. 6 Characteristic quantities for evolving RNA populations. In (a), we show the asymptotic
values for p (the density of correctly folded molecules) in the population and d (the average base-
pair distance to the target structure), in (b), we show the search and search-plus-fixation times g
and gr, and in (c), the search time for different target structures and nucleotide compositions

distance d and the density of correct structures p. If the mutation rate is small,
the population ends up with a lot of correct structures and the average distance is
small. If the mutation rate is higher, less correct structures are found and the distance
increases. If the mutation rate is larger than a certain threshold, the target structure
is not maintained steadily in the population and is not fixed. The fixation (or not)
of target structures can be formulated in terms of the population being below (or
above) the phenotypic error threshold.

Figure 6a plots the asymptotic values for p and d as a function of the mutation
rate. In qualitative agreement with Fig.5, the average distance increases and the
average density decreases with p. However, the transition to no-fixation cannot be
seen in this graph and therefore, the search and search-plus-fixation times are plotted
in Fig. 6b. These curves reveal the success of the evolutionary process: while the
search time g is a function that decreases with @ (more mutations make it more
likely to find the target structure), whereas the search-plus-fixation time gr (note
that gr > g) is showing a strong increase for intermediate values of . The case of
no fixation sets in where the graph of gr diverges.

In [32], the dependence of the search time on several parameters of the model was
studied in detail. For example, the search times do not only depend on the mutation
rate, but also on the chosen structure. One particular interesting result is shown
in Fig. 6c where we display the search time for two different target structures and
various nucleotide compositions. The HP2 structure (the most abundant structure
of the HP2 class) is relatively frequent, and we let a population evolve under
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two different nucleotide compositions: one is the standard one (25 % of mutation
probability for all types of bases A,C,G,U), and the other one is a nucleotide
composition of (A,C,G,U)= (0.23,0.26,0.30,0.21), the average composition of
rare structures [32]. Essentially, we do not see differences in the search time.
This shows that for this structure (and for all frequent structures) the nucleotide
composition is not crucial since molecules folding into that structures are found in
all parts of sequence space.

The other structure being used is the most abundant structure of the HH2 class
(short: HH2 structure), a rare structure compared to the HP2 structure. There,
tuning the nucleotide pool into a direction that makes it more likely to find HH2
structures (A,C,G,U)= (0.22,0.26,0.32,0.20) is an efficient way to shorten the
search (and search-plus-fixation) times. This shows that the neutral network of
this HH2 structure is not uniformly distributed in sequence space. Note that we
changed the nucleotide composition on the basis of the average over only seven
found HH2 sequences (among 100 million random sequences), whereas the real
size of the neutral network is much larger (thousands of different sequences are
found by the evolutionary algorithm through the simulations leading to this figure).
Then, the objective becomes to see whether the search process could be less
efficient: we chose “opposite” nucleotide composition values, i.e., (A,C,G,U)=
(0.28,0.24,0.18,0.30). Again, the search times are displaced—this time towards
larger values, thus showing that indeed the neutral network of HH2 molecules is not
distributed in a uniform way over the sequence space.

Discovering shorter search times for nucleotide compositions that are correlated
with certain structures obtained by random folding looks like a circular argument,
but it is not: the evolutionary algorithm finds the neutral network, and detects with
higher probability the dominant parts of it (if there are), whereas the random folding
samples the sequence space with equal probability.

4 Discussion: Limitations and Future Lines
in the Modelization of Evolving RNA Replicators

We devote this last section to sketch some future lines of work related to the
modelization of evolving RNA replicators. In particular, we will pay special
attention to the potentialities and limitations in the applicability of the tools and
results presented throughout the chapter.

Regarding the modelization of RNA neutral networks (i.e., Sect.2), their
extremely large size precludes systematic studies unless we are analysing very
short RNAs, and poses a major computational challenge. Currently, extensive
studies folding all RNA sequences have been done only for lengths below or
around 20 nucleotides, where the number of sequences to be folded does not
exceed ~ 10'? [33-35]. For example, we systematically studied the topological
properties of the RNA neutral networks corresponding to I = 12 in [15]. In this
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work it was shown that the topology of RNA neutral networks is far from being
random, and it was proved that the average degree, and therefore the robustness to
mutations, grows with the size of the network. The latter reinforces the hypothesis
that RNA structures with the largest networks associated seem to be the ones
present in natural, functional RNA molecules. The reasons are two-fold: A sequence
randomly evolving in the space of genomes will find an extensive network more
easily, and once it has been found, the greater robustness to mutations will keep
the sequences in the network with a larger probability [35]. On the other hand,
the results obtained for neutral networks corresponding to short RNAs might not
be directly applicable to longer RNAs such as tRNA (/ = 76), and obviously we
are still far from applying these techniques to RNA viruses, where genetic chains
of several thousands of nucleotides or even more are usual. The computational,
theoretical and experimental challenge is enormous.

We must not forget that in order to develop the calculations shown in Sect. 2, we
have assumed that there is only one functional neutral network. In Nature, several
different—perhaps similar—secondary structures might develop the same function,
with possibly different efficiency depending on environmental factors. Each of the
neutral networks associated with these structures can be connected in a network of
networks, where sequences mutate and jump from one network to another while
they vary their fitness. For instance, it has been recently shown that the probability
that the population leaves a neutral network is smaller the longer the time spent
on it, leading to a phenotypic entrapment [36]. On the other hand, if each of these
networks is represented by a single node, then we get what is known as a phenotype
network [33], a concept to be explored in more detail in the future.

If we lift the constraint of a population living on a single neutral network
completely and allow all sequences and secondary structures (as considered in
Sect. 3), we are a priori more realistic from a biological point of view, since the
limitation on a single structure is a rough approximation. The price paid for this is
the analytical (in the mathematical sense) intractability, since the sequence-structure
map is highly nonlinear, and there is an intrinsic ambiguity in defining a fitness
function. Furthermore, sequence space, imprecision of folding algorithms and
computational resources increase strongly with the length of the molecule and the
size of the population. Therefore, most computational studies use short molecules
and small populations. However, most biologically relevant cases correspond not
only to longer molecules than those considered in in silico studies, but also to larger
populations. Besides, to map a sequence to a single minimum free energy structure
is a strong approximation, since it does not take into account suboptimal structures
(those with a slightly larger free energy) or kinetic folding processes. From this it
follows that molecular evolution experiments can access a much larger part of the
sequence space than simulations and hence that conclusions drawn by numerical
studies have to be interpreted with caution.

On the other hand, the paradigm of RNA populations evolving in silico is
still very useful since many relevant parameters—not only molecule length and
population size—can be tuned individually. The main one is certainly the mutation
rate: above, we have shown how the interplay between mutation rate, target
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structure, or nucleotide content changes the evolutionary dynamics significantly.
Note that we can also impose selection criteria on sequences rather than structures
(e.g., if a certain structure is known to have a conserved sequence as well) or on
the folding energy. The population size need not to be constant either, such that
population bottlenecks can be studied. Other works show the importance of evolving
RNA populations to study phylogenetic trees [37] or to establish a relationship
between microscopic and phenotypic mutation rates [30]. Future work using this
approach will probably see the development of models to study generic features
of evolution and data-driven approaches, aiming at understanding natural RNA
obtained from sequencing experiments or in vitro selected RNA from SELEX
experiments.
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Quantitative Analysis of Synthesized Nucleic
Acid Pools

Ramon Xulvi-Brunet, Gregory W. Campbell, Sudha Rajamani,
José I. Jiménez, and Irene A. Chen

Abstract Experimental evolution of RNA (or DNA) is a powerful method to
isolate sequences with useful function (e.g., catalytic RNA), discover fundamental
features of the sequence-activity relationship (i.e., the fitness landscape), and
map evolutionary pathways or functional optimization strategies. However, the
limitations of current sequencing technology create a significant undersampling
problem which impedes our ability to measure the true distribution of unique
sequences. In addition, synthetic sequence pools contain a non-random distribution
of nucleotides. Here, we present and analyze simple models to approximate the
true sequence distribution. We also provide tools that compensate for sequencing
errors and other biases that occur during sample processing. We describe our
implementation of these algorithms in the Galaxy bioinformatics platform.

1 Introduction

Selection experiments in biochemistry are becoming increasingly important because
they allow us to discover and optimize molecules capable of specific desired
biochemical functions. Nucleic acid based selections are also becoming increasingly
easy for researchers to carry out, as high-throughput sequencing and oligo library
synthesis technologies become ever more reliable and affordable, and as new, novel
methods of selection become available. Additionally, increased computational capa-
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bilities make analyzing the vast amounts of data produced by selection experiments
much more tractable.

There are many examples of useful functional molecules that result from in vitro
selections. New aptamers (short nucleic acid sequences that bind a particular target
with high affinity and specificity) are being discovered at a phenomenal pace, many
of which use their tight and specific binding properties in novel and valuable ways.
For example, the Spinach2 aptamer [1] regulates the fluorescence of a fluorophore
via binding; in many ways, this aptamer/ligand pair is more advantageous than,
and is often used in place of, traditional GFP tagging. It is also becoming clear
that functions other than binding can be selected for, as is the case with catalytic
nucleic acids (such as ribozymes [2], deoxyribozymes [3], and aptazymes [4]), or
structure-switching regulators (such as riboswitches [5]). In any case, we are only
just beginning to tap the massive potential of in vitro selection, especially in terms
of generating powerful and precise molecular tools.

Recently, however, another benefit of such selections has become evident.
Regardless of the type of molecule being selected, the selection data yield an
unprecedented view of how a particular function is distributed across sequence
space. That is, given a large pool of unique sequences, we can investigate which
of those particular sequences are capable of performing the selected function. Not
only that, but often we can also see how minor variations of functional sequences
impact the function, which gives us important insight regarding the optimization
of such molecules. Additionally, we can improve our understanding of potential
evolutionary pathways, as we can look for networks of functional molecules that
can be traversed in small mutational steps. These factors provide the impetus
for creating and analyzing molecular fitness landscapes, which allow functional
information to be mapped directly to sequence information. Fitness landscapes
assign a quantitative measure of fitness (i.e., how well a sequence performs under
particular selection conditions) to individual sequences across sequence space.
These landscapes provide a means to relate genotypes (the nucleic acid sequence)
to phenotypes (the functional activity).

For those interested in molecular fitness landscapes, the main goal of selection
experiments is to compare two populations of molecules, namely, an initial pre-
selection population, and a subsequent post-selection population that exhibits
enrichment for certain sequences. This comparison allows us to infer how selec-
tive pressure affects different particular sequences by looking at the bias in the
sequence distribution that is introduced by the selection process. Thus, the particular
sequences best suited to performing the selected function can be found. A more in-
depth approach to selections involves taking into account fitness values associated
with each individual molecule’s ability to perform the selected function, from which
we can construct molecular fitness landscapes that quantitatively map sequence
to activity [6]. Creating such landscapes provides a means of investigating how
properties of particular sequences give rise to biochemical function, as well as how
different functional sequences are related.

This study is concerned with the proper quantification of selection experiments,
which is crucial for creating accurate molecular fitness landscapes, but can also be
useful if the experimental goal is simply to identify a few functional molecules.
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Our goal is two-fold: first, we aim to show that selection experiments may be
significantly biased in some cases, due to experimental difficulties intrinsic to the
processes required to exhaustively identify and accurately quantify sequences in a
selection pool. These biases become especially important when the objective of the
selection experiment is constructing a fitness landscape. And second, we aim to
offer a primary set of tools, or quantitative procedures, that may help overcome,
or at least reduce, biases inherent to current selection methodologies. Ultimately,
the goal is either to estimate fitness landscapes with a high degree of confidence
and accuracy, or to provide statistical support in determining which molecules in a
selection pool perform best, depending on the goals of the experimentalist.

2 The Undersampling Problem

The first step in quantitatively characterizing in vitro selection experiments is deter-
mining the initial and final experimental population distributions. When the total
number of molecules is small, this can be done by finding the copy number of each
unique sequence in both populations. However, when the total number of molecules
in the selection pool is much larger than the number of molecules that we can
experimentally count (due to limitations in sequencing technology, for example),
which is precisely the case with many complex biochemical selection experiments,
we necessarily need to estimate the initial and final sequence distributions in a
different way.

In DNA or RNA selection experiments, for instance, whether selecting the most
functional sequences or constructing a fitness landscape, we ideally start with an
initial pool of molecules that represents all possible unique sequences approximately
equally. Here, we assume (consistently with most selection experiments) that the
sequence length is constant (or at least similar) across the selection pool. For
example, let us assume that the length of the sequences in a given selection pool
is 40 nucleotides. This means that the number of unique sequences that would
comprise an ideal, initial pool is around 4*° ~ 10%*. Let us further assume that, in
order to extract accurate information from the experiment, we require approximately
10,000 copies of each of the 4** unique sequences in the initial pool. In this case, the
total number of molecules that we would need to count in order to obtain the true
distribution of molecules would be around 10?%. Unfortunately, current sequencing
technology is only able to identify roughly 10%, a number which is many orders of
magnitude smaller than even the number of unique sequences, 10**. Thus, we can
easily see that statistical undersampling creates a significant obstacle in measuring
the true distribution.

To fully appreciate the magnitude of the problem, let’s consider the following,
more intuitive, example. Suppose we want to find the distribution of favorite TV
channels among US TV viewers, assuming that there are only 300 channels in the
US. We want to ask N viewers what their favorite channel is. If we pose this question
to the entire US TV-watching population (very close to 3 - 10% people), we will
recover the exact distribution. If we ask the question to N = 107 people, we will
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likely get a reasonable approximation to the exact distribution (provided that the
survey respondents are randomly selected without repetition). However, if we ask
only N = 1000 people, we can easily imagine that the distribution we will recover
will be quite distorted compared to the true distribution. And finally, if we ask only
N = 10 people, the resulting distribution will almost certainly be meaningless.
(Of course, if there were only a single sharp peak—e.g., if everyone’s favorite TV
station was PBS—then even these low numbers would still provide a reasonable
approximation of the true distribution, but in reality, we do not expect either TV
preference or sequence abundance to be represented by such an extreme case.)

Unfortunately, in real biochemical selection experiments, undersampling poses
a significant problem. Essentially, the number of observations we can make is
infinitesimally smaller than even the number of all possible different outcomes.
Thus, the undersampling problem becomes a very serious issue, especially when the
goal of the experiment is to quantitatively map the corresponding fitness landscape.
All we can do when dealing with this kind of extreme undersampling is to try to
figure out a way to estimate the distributions of molecular populations, other than
just counting the molecules that are reported by a sequencing device.

The approach we propose here is to create a model that quantitatively describes
how an initial pool of sequences is synthesized, so that we can use the model to
estimate the abundance of each unique sequence in the initial pool. The model
must be able to describe the synthesis from a set of just a few parameters, which
themselves must be able to be estimated from general statistical properties of the
sequences present in the pool. Armed with such a model, we will be able to compute
the probability of finding any sequence in the initial pool, and therefore we can
estimate the initial molecular distribution.

3 Modeling the Synthesis of Pools

Today, pools of sequences are typically generated via solid-phase synthesis carried
out by fully automated oligonucleotide synthesizers. Protected nucleoside phospho-
ramidites are coupled to a growing nucleotide chain attached to a solid support,
forming the desired sequence. Modern protocol [7] controls this process sufficiently
well, such that any desired proportion of G, A, C, and U or T (for RNA and DNA
pools, respectively), on average, can be obtained for each position in the sequence.
A protected nucleoside is first attached to a solid support (this will be the 3" end of
the final sequence). That nucleoside is then deprotected and exposed to a solution
containing particular concentrations (depending on the desired final distribution) of
the four bases, G, A, C, U or T, in the form of protected nucleoside phosphoramidites.
(The solution may contain only a single base if the goal is to generate a particular
predetermined sequence). The chemical protecting groups, in conjunction with
controlled deprotection steps and phosphite linkage chemistry, ensure that only one
nucleotide at a time can be attached to the growing chain. The synthesis cycle of
deprotection, exposure to activated monomer, and phosphite linkage is repeated



Quantitative Analysis of Synthesized Nucleic Acid Pools 23

(a) .| _ ' ] (b)

04

s rew
L
true
*hae

04 F I 1

;_4—4 t-v1,+" r:ff{’\d

‘.. -0—‘!—.—0_
o 'I'ﬂ-—t

e g Sy i E

03k :\

site site

Fig. 1 Frequency, f, at which the four nucleotides G, A, C, U are found at each site of synthesized
sequences. Panel (a) corresponds to a pool of synthesized sequences of length 21, while panel
(b) corresponds to a pool of synthesized sequences of length 24. The pools were synthesized by
different companies, and very probably, under slightly different conditions

as necessary, adding one base at a time, until sequences of a given length are
formed. Finally, the oligonucleotide chains are released from the solid supports
into solution, deprotected, and collected. Usually, commercial synthesis companies
will then perform purification as specified by the end user before lyophilizing and
shipping the oligonucleotide pool to the customer.

For some applications, the resulting oligonucleotides can be considered suffi-
ciently random (e.g., if the goal is to identify an aptamer without regard to the fitness
landscape). However, the pool generated by this procedure is not truly random. For
a pool to be considered truly random, the probability that a given nucleotide is
incorporated into the growing oligonucleotide chain must be 1/4 at any step in the
synthesis. Thus, if we compute the frequency at which a given nucleotide appears in
a particular position of a synthesized sequence, the frequency must be 1/4 for each
nucleotide at each site. We measured this frequency for several synthesized pools
and always found something qualitatively similar to what it is depicted in Fig. 1. We
can see that the probability of finding a given nucleotide at a particular site is not
1/4.

Similarly, the probability of finding any of the 16 possible nucleotide dimers
within the pool of synthesized sequences should be 1/16. The probability of finding
any of the 64 trimers, 256 tetramers, 1024 pentamers, 4096 hexamers, and 16384
heptamers, etc., should be 1/64,1/256,1/1024,1/4096, and 1/16384, respectively.
Once again, our investigations contradict the assumption of randomness (data not
shown).

The fact that the synthesis process is not completely random should not be
too surprising. Bearing the synthesis process in mind, the degree of randomness
will depend on the relative concentrations of the nucleotides in solution. It is also
likely to depend on the chemical reactivities among the different nucleotide species.
In addition, the fact that nucleotides are not perfectly stable in water, and can
break down spontaneously, could also play a role in the process by changing the
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concentrations of nucleotides over time. Furthermore, we should not rule out the
possibility that some of the nascent sequences may fold during synthesis, hindering
the intended chemistry, despite the fact that the synthesis process is carried out at
relatively high temperatures in order to avoid this as much as possible. Thus, we
see that a number of factors may contribute to non-random nucleotide incorporation
during synthesis.

Here, we will create quantitative models, based on some of the ideas listed
above, and investigate which of these models is best able to replicate the statistical
properties of synthesized sequences.

For the sake of completeness, we start with a perfectly random model, which we
will call the 0-nucleotide model (so named because none of the nucleotide identities
are differentiated in any way). As explained above, if the synthesis process follows
this model, the probability of finding any monomer, dimer, trimer, etc., at any site
in the synthesized sequences should be the same for all 4 monomers, 16 dimers, 64
trimers, etc.

The next model we investigate is the 1-nucleotide model, in which we only
consider variation in the relative concentrations of the nucleotides in solution, Cg,
Cy, Cc, and Cy (or Cr if working with DNA). The chemical reactivity between any
two given nucleotides, according to this model, should be the same. Therefore, the
probability that nucleotide i is incorporated into any forming sequence during the
synthesis process is (i) = C;/ Y_, Cr, where i,i’ € {G,A,C,U (or T)}. Assuming,
in addition, that the first nucleotide is attached to the platform with probability pg,
pa, pc, pu (or pr), for G, A, C, U (or T), respectively, we can easily calculate the
probability of finding any sequence in the pool. We will not explain this calculation
in detail here, since, as we will show, this 1-nucleotide model does not sufficiently
explain the synthesis of nucleic acids.

‘We now introduce a set of models which consider, in addition to the concentra-
tions Cg, Ca, Cc, and Cy (or Cr), different reactivities among nucleotides. The first
model of this set, which we call the 2-nucleotide model, assumes that the probability
for nucleotide i € {G,A,C.U (or T)} to be incorporated in a forming chain depends on
both nucleotide i and the nucleotide at the end of the forming chain, nucleotide
Jj € {G,A,C,U (or T)}. The probability of incorporation of nucleotide i, conditional to
nucleotide j, is 2(ilj) = r;jCi/ Y, rvjCr, where C; and Cy, i,i’ € {G,A,C,U (or T)},
are again the concentrations of the nucleotides in solution, and r;; are 16 chemical
reactivity parameters that account for the likelihood of dimerization between each
potential pairing of the 4 nucleotides G, A, C, and U (or T).

The second model of this set, the 3-nucleotide model, assumes that
nucleotide i incorporates into a given nascent chain with probability Z(i|j, k) =
riiCi/ > rvikCr, where ry; describes the likelihood that a given nucleotide i
attaches to a chain whose last and second-to-last nucleotides are, respectively, j and
k. Again, Cy, i’ € {G,A,C,U (or T)}, are the nucleotide concentrations. The number
of parameters associated with nucleotide reactivity in this model is 4° = 64.

Similarly, the third model of the set, the 4-nucleotide model, assumes that the
probability for nucleotide i attaching to a nascent sequence depends on nucleotide i
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and the nucleotides in the last three sites of the sequence. The conditional probability
is now given by Z(ilj,k,l) = ruCi/ > i Cr, where j, k, and [ are the last,
second-to-last, and third-to-last nucleotides, respectively, of the forming sequence.
The number of parameters associated with nucleotide reactivity in this model is
4* = 256.

Following the same line of thought, the next models of the set, the 5-nucleotide
model, 6-nucleotide model, etc., are those where we assume that nucleotide i
attaches to a forming sequence depending on nucleotide i and the identity of
nucleotides in the last 4, 5, etc., positions of the forming chain. This nested set
of models can be arbitrarily extended, but selection-model criteria, such as the
Bayesian Information Criterion and the Akaike Information Criterion, indicate
that only the first models of this set are physically relevant. (This result is quite
intuitive. It is clear that the more parameters a model has, the better we can fit
the model to a given set of data. But, from a practical viewpoint, we are more
interested in models with fewer parameters. Statistical Information Criteria allow
us to identify the models that provide the best balance between fitting experimental
data well and using the fewest number of parameters. Since the general k-nucleotide
model requires at least the 4% parameters associated with nucleotide reactivity, these
statistical criteria penalized all k-nucleotide models with a relatively large k.)

In general, the above probabilities (i), Z(ilj), Z(ilj, k), etc., can change at any
step of the synthesis process, either by some external change in conditions (like tem-
perature, for instance, which would directly affect the reactivities among nucleotides
and, therefore, parameters r;;, ik, €tc), or by a change in the concentrations of
nucleotides in solution, either intentionally or unintentionally (for instance, due to
the natural degradation of nucleotides in solution). Here, we will assume that those
probabilities, & (i), Z(ilj), Z(ilj, k), etc., do not significantly change in the actual
synthesis process. In other words, our models will be based on the assumption that
the synthesis conditions remain constant during all stages of the process.

The probabilities (i), Z(ilj), L(i|j,k), ..., themselves can actually be
considered the parameters of our respective models. Indeed, for our goal, computing
the abundance of a given unique sequence in a given pool, these probabilities
are sufficient. Of course, if we are interested in studying the reactivities 7y, 7,
etc., among nucleotides, they can be determined by using the above relationships
between reactivities and probabilities.

Let us consider now, in some detail, the 2-nucleotide model. In order to compute
the abundance of an arbitrary sequence, we need to know probabilities 2 (ilj),
Vi,j € {GACU (orT)}, and p;, j € {G,A,CU (or T)} (the probabilities with which
the first nucleotide is attached to the solid support). Knowing p; and Z(ilj),
the probability that a sequence ijizi3...I,, iy € {G,A,C,U (orT)}, is synthesized
according to the 2-nucleotide model is exactly

Piiiyis...i, = Piy P (02|i) P (i3]i2) . . . P (inlin—1)- (1

In practice, each probabilities p; can be set to an arbitrary value with reasonable
accuracy by manual mixing of resins. These probabilities are typically fixed at
pj = 1/4,V¥j € {G,A,C,U(or T))} when the goal is to build random pools. However,
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probabilities Z(i|j) mainly derive from the chemical reactivities between different
nucleotides pairs and, therefore, cannot be fixed by companies. If we want to
compute P; ;,;, i, , then we need to somehow estimate & (if)).

This is done based on the relative fraction of dinucleotides found during
sequencing of the synthesized pool. (Note that chemical reactivities may change
as a function of temperature and other possible physical conditions, so we want to
estimate Z?(i|j) for each individual pool, rather than estimating those probabilities
once and assuming they will remain constant in future syntheses). In order to
estimate these probabilities, we must first realize that the underlying probability
distribution of unique sequences in a given pool always follows a multinomial
distribution

n! Ng, N s, p,
s1 5 4
Ty @)
Mg Mgy oo nS4L :

which gives the probability that a pool (of length L) with 4- unique sequences, and
ng, copies of each sequence s, can be generated when the total number of molecules
created in the synthesis is n. Here, k is an index that runs from 1 to 4-. Probability
Py, , the probability that sequence sy is created by the synthesis process is, according
to our 2-nucleotide model, given by Eq. (1). (In Eq. (2) above, of course, Y, ny, = n
is satisfied).

Taking into account that in the 2-nucleotide model, all probabilities P;,, for any
sequence s, depend at most on the 4 probabilities p; and the 16 probabilities & (i])),
we can make use of the maximum likelihood estimation technique [8] to estimate
Z(ilj) and p;. Since p; can be obtained from the distribution of nucleotides at the 3’
end of the sequences, we focus here on how £ (i[j) can be estimated. The maximum
likelihood estimation technique consists of maximizing the so-called log-likelihood
function [8]. In our case, the log-likelihood function that needs to be maximized is

4 4
A=ng,InPy +n,InPy + -+ 0, InPy, + Y 4 (Z 2(ilj) — 1) )

j=1 i=1

This expression, after some manipulation, can be represented as

4 4 4 4 4
A=ka+22¢i1n9(iu)+ZA,»<Z§Z(;'U)—1) : )
i=1 j=1

k=1 j=1 i=1

where my, is the number of monomers of type k € {G,A,C,U (or T)} present at the first
site of the sequences of the actual pool, and dj; is the number of dimers present in the
sequences whose first monomer is j and second monomer is i, i, j € {G,A,C,U (or T)}.

In both Egs. (3) and (4), the last term Z?:l Aj (Z?:l P(ilj) — 1) accounts for

the constraints imposed by the fact that Z?=1 2(ilj) = 1. A;, Vi € {G,A,C,U (or T)},
are the Lagrange multipliers that are used to deal with optimization problems
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with constraints. (In addition, we should have added to both Eqgs. (3) and (4), the
term In (n!) — )", In (ny!), if the goal was to take the logarithm of the probability
distribution defined by Eq. (2). We dropped this additional term because it does not
depend on Z(i|j) and, therefore, it does not play any role in the log-likelihood
maximization process [8].)

Once the log-likelihood function has been found, we can obtain Z(i|j) by
computing the following partial derivatives [8]:

N dy o
7@ wap T ©
Y/ -
872233(1‘[1‘)—1:0. (6)
b=t

From these last equations we can easily obtain what we need, an estimation of the
probabilities & (i|j) based on statistical properties of the actual sequences, in this
case, based on dj;:

dji
22=1 djk

Let us now consider the 3-nucleotide model. We use it to estimate the abundance
of each unique sequence in a synthesized pool by following a line of reasoning
analogous to the 2-nucleotide model. We start with the multinomial distribution
Eq. (2), and use the maximum likelihood estimation technique to estimate the 64
probabilities & (i|j, k). For the sake of brevity, we will not derive the log-likelihood
formula used to estimate probabilities A (i}, k); it is done exactly as described
above for the 2-nucleotide model. It suffices to say that probabilities 2 (i|j, k) can be
obtained by observing the frequency of trimers in the synthesized pool of sequences.
(In this case, however, the 3-nucleotide model can be used to describe the synthesis
only after the nascent chains contain two nucleotides. Thus, we should avoid
counting those trimers containing the first or second monomers of each sequence
when computing Z(ilj, k). To compute the probability of incorporating the second
nucleotide into a forming chain, we should necessarily use the 2-nucleotide model).

Following this logic further, we can estimate P;;;, ;, for each sequence
i1i2i3 . .. iy, provided that the best model to describe the synthesis is a k-nucleotide
model, whatever the value of k may be.

Next, we will investigate which model best fits the statistical properties of a
given pool. To do so, we use each of the different models (after estimating the
corresponding probabilities & (ilj), Z(ilj, k), etc., from an experimental sequence
pool) to generate a large pool of sequences, in silico. Then, we count how often
each monomer, dimer, trimer, tetramer, pentamer, etc., is found within the generated
sequences; this allows us to compute the relative abundance of each n-mer in
the theoretical pool. Next, we repeat the process for the actual, synthesized pool.
We count the number of each n-mer present in the synthesized experimental pool

2(il)j) = (M
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and calculate their relative abundances. Finally, we compare the theoretical and
experimental results. The model that best matches the data is the most appropriate
choice for subsequent data analysis.

We adopted the following specific procedure to validate the models. We divided
the experimental sequences into two groups. One group was used to estimate, by
counting the relevant n-mers, probabilities & (ilj), Z(ilj, k), etc. In other words,
the first group was used to infer the parameters from which the models are built.
From the second group of sequences, we obtained the experimental n-mer (n €
{1,2,3,4,5, 6}) abundances, in order to compare them to the abundances computed
from the respective models. In other words, the second group was used to assess
how well the models fit the actual data.

As a final remark, when counting n-mers, whether for building or assessing
the models, we always avoided including the first and last six nucleotides of the
synthesized sequences. We will discuss this in more detail later.

Figure 2 depicts this comparison. In all panels of the figure, the x-axis represents
the relative abundance of each of the 4 monomers, 16 dimers, 64 trimers, 256
tetramers, 1024 pentamer, and 4096 hexamers, all obtained from sequences in
the actual, synthesized pool. The y-axis represents the same data, but obtained
from computationally generated sequences according to the respective theoretical
model. That is, each panel illustrates the correlation between the experimental and
theoretical relative abundances of each of the n-mers, n € {1,2,3,4,5,6}. In the
figure, we show the results for four of our models: the random model (panel a), the
I-nucleotide model (panel ), the 2-nucleotide model (panel c), and the 3-nucleotide
model (panel d).

In such a graphical representation, a model is considered good if most of its
points lie on, or near, the x = y diagonal. Conversely, models displaying points far
away from the diagonal line should be excluded from consideration. Figure 2 shows
that both the random and the 1-nucleotide models do not explain with sufficient
accuracy what really happens during synthesis. Thus, any final probabilities P;, i, ..,
computed based on these two models will be quite inaccurate. Better results are
obtained with the 2-nucleotide model, and the reason is clear: This is the first of
the n-nucleotide models that considers the different chemical reactivities of the
nucleotides. Finally, panel d of the figure shows that the 3-nucleotide model best
describes the data.

We analyzed the modeling power of the four models described above using
several synthesized pools, and always found that the 3-nucleotide model was
the best of the first four k-nucleotide models. We also fit the 4-, 5-, 6-, and 7-
nucleotide models to each of the synthesized pools, and observed that none of
them significantly improved the fit to the data. Moreover, when we used statistical
information criteria, such as the Bayesian Information Criterion and the Akaike
Information Criterion, to select the best n-nucleotide model, n € {1,2,3,4,5,6,7},
we found that the 3- and 4- nucleotide models were best (depending on the particular
synthesized pool), and that there was very little difference between them.
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Fig. 2 Validation of models. The x-axis of all four panels represents the probability of finding
each of the 4 monomers, 16 dimers, 64 trimers, 256 tetramers, 1024 pentamer, and 4096 hexamers,
within the sequences of the actual, synthesized pool. The y-axis of the panels represents the
probability of finding each of the 4 monomers, 16 dimers, 64 trimers, 256 tetramers, 1024
pentamer, and 4096 hexamers, within sequences computationally generated according to the
respective theoretical model. Panel (a): random model. Panel (b): 1-nucleotide model. Panel (c):
2-nucleotide model. Panel (d): 3-nucleotide model

Our results therefore suggest that during sequence synthesis, the incorporation
of a nucleotide depends on its species, as well as the species of the last two or three
nucleotides that were previously incorporated.

Despite the fact that the 3- and 4- nucleotide models have been proven to model
data better than the random and 1-nucleotide models (which, incidentally, are still
commonly used in literature), it is important to remember that these models are still
only approximations, and there is room for improvement with respect to their ability
to perfectly describe the synthesis of sequences. In order to achieve an even more
accurate description of how pools are synthesized, we contend that further research
is necessary, specifically research that investigates aspects of synthesis that we have
not included in our models here.

Before closing this section, we feel it is prudent to ask how the probabilities
Pi,iyis..i, predicted by the different models compare to one another. Figure 3
illuminates this issue. The figure reproduces the sequence probability distributions
estimated for an experimental pool according to our first seven k-nucleotide models.
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Fig. 3 Fraction of sequences .# (computed according to different models) that are present in
a synthesized pool with a certain abundance <. The models considered are the seven first k-
nucleotide models

The x-axis represents the abundance of each sequence in the pool; the y-axis
describes the fraction of sequences in the pool that are present at a given abundance.

In the figure, the sequence probability distribution corresponding to the random
model is only a single point. Obviously, if the correct synthesis model is the random
one, then all sequences must have the same probability of appearing in the pool;
that is, the number of copies of each unique sequence will be (approximately) the
same. In this random case, the number of copies of each sequence is (approximately)
n/4%, where n is the total number of molecules in the pool and L the length of the
sequences. Also, the probability that a unique sequence has (approximately) n/4*
copies will be 1, since all sequences have the same abundance.

The probability distributions corresponding to the other models show that not all
unique sequences are predicted to have the same abundance in the pool. In particular,
for those n-nucleotide models with n > 2 (the more realistic ones), we see that some
sequences appear hundreds of thousands of times in the pool, while others appear
just a few times. It is true that the abundance of the vast majority of sequences is not
that dissimilar, but the difference in the number of copies between the most and least
abundant sequences can span several orders of magnitude. Note that this behavior
strongly differs from the random model’s predictions, namely that all sequences
have (approximately) the same abundance n/4".

This significant difference between the frequencies of the most and least abun-
dant sequences in a pool also plays an important role in determining when we can
reasonably assume that all possible 4" unique sequences are present. Assuming there
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is no mutagenesis (for example, via PCR amplification), then if some sequences are
initially absent, they cannot be selected upon by any selection experiment, even if
they happen to be the best (most functional or selectable) sequences. Our results
indicate that, when 7 is larger than 4 by several orders of magnitude, all sequences
tend to appear in the synthesized pool (despite the fact that some of them may appear
just a few times and other hundreds of thousand of times). However, when n is larger
than 4% by just one or two orders of magnitude (or when n < 4%), then the starting
pool tends to contain only a fraction of all unique sequences; that is, a significant
number of unique sequences may be missing.

Most experimentalists accept that synthetic pools are sufficiently random for their
purpose, and therefore tend to assume that the number of copies of any sequence in
the pool is approximately n/4-. We have seen, however, that synthetic pools are
often not completely random; the abundance of the different sequences in the pool
may differ by as much as several orders of magnitude. To assume that a pool is
truly random when, actually, it is not, may potentially lead to incorrect conclusions,
depending on the goals of the experiment.

We created a suite of computational tools that, among other things, estimates
the conditional probability parameters needed by our models, based on sequencing
data for an initial, pre-selection experimental pool. These tools are based on the
3-nucleotide model, given that it is the simplest model to describe experimental
pools with reasonable accuracy, and based on this model, they can also compute
the predicted abundances for any arbitrary sequence that may appear in the pool.
These tools were incorporated into the Galaxy bioinformatics platform (see http://
galaxyproject.org for general information about Galaxy), in order to facilitate ease
of access, program automation, and an intuitive user-friendly interface. Researchers
interested in using these tools are free to visit http://galaxy-chen.cnsi.ucsb.edu:
8080/ or contact us for more information.

4 Sequencing Biases

In the preceding section, we discussed the problem of estimating the initial
frequency of specific sequences and offered a practical solution. Now we address
a second issue, that of biases introduced by the process of sequencing itself.

In any selection experiment, we need to observe the sequences that are present
in a pool both before and after the selection process. But, how exactly can we
observe the sequences accurately, given their nanoscopic nature? In order to see
them, selection experiments make use of various high-throughput sequencing (HTS)
protocols, but all of them, in essence, follow the general theme outlined below.

1) 5 and3’ adaptor ligation: If needed, small segments of RNA or DNA (depending
on the type of nucleic acid comprising the pool) with a particular known
sequence are attached to the 5" and 3" ends of the sequences in the pool. These
segments are needed as constant regions, designed to be complementary to PCR
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primers, or to couple the sequences to a slide for sequencing. This step may not
be necessary in all protocols, such as those in which the constant regions were
already incorporated into the selection library.

Reverse transcription: When the nucleic acid is RNA, reverse transcription is
carried out to convert the RNA sequence into DNA. This is done because DNA
sequences are inherently more stable, and therefore degrade less easily during
analysis. Also, DNA is required for currently used high-throughput sequencing
methods.

3) PCR amplification: The total number of molecules that can be experimentally
manipulated is often somewhat limited, so it is sometimes necessary to amplify
each of the molecules we want to observe. In addition, PCR is often used to
introduce additional constant regions required for sequencing, if they are not
already present in the selection library. Ideally, all molecules would be increased
by the same factor, such that the initial sequence distribution is not artificially
distorted. However, several investigations that we carried out to investigate this
issue show that, despite the fact that most sequences are indeed multiplied
by approximately the same factor, a small percentage tend to be multiplied
much more or much less than expected (even by an order of magnitude). We
do not show the results of these investigations here since other groups have
already shown the existence of PCR artifacts and bias [9]. Therefore, our
recommendation is to avoid amplification as much as possible.

Sequencing: Finally, DNA sequences consisting of known constant regions
flanking the initially randomized region are sequenced. There are several
mechanisms by which this takes place, depending on the type of sequencing,
but ultimately, each nucleotide of every sequence submitted to the sequencer is
identified, and a list of all sequences in the sample is reported.

2

~

4

~

We will deal with steps 1 and 2 in the next section. Step 3 will not be considered
here, because it is sometimes avoidable [6, 10], and the biases of PCR can be
minimized by reducing the number of cycles. In practice, the bias itself is difficult
to disentangle from bias and selection introduced at other steps; thus, we effectively
consider the PCR amplification biases to be a component of the fitness of a sequence
during selection. Here, we will focus on the quantitative issues that arise from
the inaccuracies in the sequencing process. The specific sequencing protocol we
investigated is the widely used Illumina protocol [11].

The Illumina reading mechanism infrequently, but occasionally, misreads
nucleotides in different positions of a given sequence. Several studies indicate
that the probability of a nucleotide being misread mostly depends on both its
position in the sequence and the identity of its neighbors (please see references [12—
15] for advanced studies on this topic). But, as a first approximation, it seems to be
reasonably accurate to assume that the probability of misreading is roughly constant.
This constant probability is gradually being reduced as sequencing technologies
improve, but as of yet, it is not zero. For instance, current Illumina technology has
an accuracy of about 99.5 % (up from 98-99 % a few years ago).
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The fact that the reading process is not completely accurate tends to distort mea-
surements. For some types of biostatistical studies, those distortions are irrelevant or
easy to overcome. For example, the accuracy can be improved (squared) by reading
the same segment in opposite directions (paired-end reading). For others, such as
mutation studies or measuring fitness landscapes, these distortions may significantly
affect the results; in mutations studies, by masking the probabilities of mutation, and
in selection experiments, by reducing the resolution of fitness peaks in a landscape.

In order to quantitatively understand how this distortion affects our observations,
let us first consider a simple example. Assume that the distribution of sequences
that we want to measure consists of one unique sequence of length L that appears
in a pool N times. Let us assume that the probability of reading a nucleotide
correctly, p, is constant. If p < 1, then there is a non-zero probability that the
sequence we think we are observing differs from the sequence that is actually in
the pool. Smaller values of p, lead to larger numbers of erroneous unique sequences
generated by misreadings (or mutations). To quantify the distortion introduced
by the sequencing device, we need to answer the two following questions: (1)
What is the probability of misreading » nucleotides in a sequence of length L?
And (2) What is the probability of finding a particular sequence containing n
misreads?

To answer the first question, we must remember that, under our assumptions,
the probability of misreading a nucleotide at a certain position is independent
of the success or failure in reading nucleotides at other positions. This condition
naturally leads us to the binomial probability distribution. Therefore, the probability
of misreading n nucleotides is given by

L!
P(n) = mPL_n(l -p)". (8

To answer the second question, we first need to know the probability that each
of the other three possible nucleotides is reported when an erroneous read occurs.
Again, as a first approximation, we can make the additional assumption that the
probability is 1/3; that is, any of the other three nucleotides are equally likely to be
falsely reported. Under this extra assumption, any possible sequence containing n
mutations has the same probability of occurring. Therefore, to answer the second
question above, we just need to know how many different, unique sequences
containing n mutations are possible. The number of different, unique sequences
that are one mutation off from the original sequence is 3L. The number of unique
sequences containing two mutations is 9L(L—1)/2; the number with three mutations
is 27L(L—1)(L—2)/6. The total number of unique sequences containing » mutations
is given by

3L

©))



34 R. Xulvi-Brunet et al.

Therefore, the probability of finding a particular sequence at distance n from the
original is

_ZPm) _ . (1-p "
POy = 0 = ( . ) . (10)

Once we understand the quantitative effects of sequencing failures, we can ask
how to overcome them. Several algorithms may be devised by which these unwanted
sequencing effects might be reverted. Here we present one such algorithm, which,
despite not being the most rigorous, is very easy to implement, relatively fast, and
capable of yielding reasonable results.

The algorithm is based on the simple fact that, if p < 1, the output of any
sequencing process—the distribution of sequences that we observe—will always
differ from the input—the real distribution of sequences. That is, the observed
abundance of a given sequence i will, in general, differ from its true abundance. The
relationship between these contrasting abundance values is given by the following
formula:

< nf® >=n*P(0) + Y _ nl*P(dy). (11)
J

where n?% is the observed abundance of sequence i, n/ is the true abundance
of i, and P(dj) is the probability given by Eq.(10), where d;; is the distance
between sequences i and j. Equation (11) says that, for any sequence i, the
expected number of copies we are likely to observe is equal to the true number
of copies multiplied by the probability that it is correctly read, plus the number
of erroneous variants of other sequences that are identified as sequence i. Note
that it is possible to (1) observe a sequence that was not present in the input
distribution—because it is a mutational variant of an initial sequence—and (2)
miss a sequence that was actually present—which could happen if the number
of copies of an initially present sequence was very low and every copy was
misread. In the latter case, we cannot tell, just by looking at the output distribution,
whether or not the sequence was present in the true distribution. Fortunately,
that situation is highly improbable unless the sequence appears just one or two
of times, in which case it is probably not very relevant for the selection pro-
cess.
The algorithm has two main stages:

1) First, we sort the sequences according to their observed abundance. This results
in a list of sequences such that the first sequence is the most abundant, the second
is the next most abundant, and so on.

2) The second stage of the algorithm is an iterative procedure that performs the
following steps on each item in the sorted list described above. At each iteration
i, the algorithm estimates the true abundance of the ith sequence in the list as
described below:
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2.1) For each sequence j, j # i, the quantity

nob 1— djj
¢ji = int (p’—L(T”) pr (12)

is computed. nj‘.’b /P(0) = nj‘?b /pt can be seen as the expected true

abundance, n}, of sequence j, provided that it is sufficiently different

from other sequences. This is certainly an approximation, since sequence

j might actually have some real neighboring sequences. However, this

approximation, nj* =~ nj‘.’b /p*, is actually the key assumption in this

heuristic algorithm. ((1—p)/3)%ipt=4i) gives the probability that sequence

j mutates into sequence i. Finally, int(x) is just the nearest integer function,

which converts any real number x into its nearest integer. Thus, the quantity

¢ji is an approximation to the expected fraction of the observed abundance

of sequence i that arises due to misreads of sequence j.

The quantity ¢; = > ; Cji 1s computed. To a first approximation, c; gives the

expected increase in abundance of sequence i due to erroneous readings of

the rest of the sequences.

2.3) The observed abundance n;’b is corrected by subtracting ¢; from it; thus,
we can write n{ = n;’b — ¢;. Effectively, this step simply reduces the
abundance of n;’b by the expected contribution from all other sequences
of the distribution.

2.4) If the corrected abundance n{ satisfies n{ > 0, then n{ is updated by the
next formula: n% = int(n¢/p"). Note that the effect of this final correction
simply converts the copies of sequence i that were lost due to misreading
back into sequence i. If n{ < 0, then final updated n{ is simply set to zero,
n{ = 0. The role of function int(x) is to yield a final integer number of
copies for each sequence.

2.2

~

Now, we proceed with some tests to assess the quality of this algorithm.

In our first example, let us assume that the output of a given experiment
consists of exactly 200,000 copies of a unique sequence, for example,
TAAGGCTATGAAGAGATACTG. We can simulate the effect of misreading nucleotides
by imposing that nucleotides in each position of any sequence can be replaced
with any of the other three nucleotides with probability ¢ = 0.01. Such a
simulation will show results like the ones we describe next (corresponding to a
particular simulation): 1833 different, unique sequences were generated. Sequence
TAAGGCTATGAAGAGATACTG has 162,056 copies (instead of the original 200,000);
63 = 321 = 3- (length of TAAGGCTATGAAGAGATACTG) unique first neighbors
to the original sequence have about 540 copies each; and 1769 unique sequences
will have only a few copies each, most of which differ from the original by two
nucleotides; and the rest, sequences that differ by three or more nucleotides. From
those 1769 new, unique sequences, 752 appear only once, 520 appear twice, 283
appear three times, 132, four times, 55, five times, 20, six times, and 5, seven times.
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The goal of our algorithm is to use this new distribution of sequences to
recover the original distribution, containing 200,000 copies of the original sequence
TAAGGCTATGAAGAGATACTG. Of course, we do not expect the algorithm to recover
exactly one sequence with 200,000 copies (because of the stochasticity of the
process), but we do expect something close to that. For the particular simu-
lation described in the paragraph above, this is the output of our algorithm:
there are now 701 different, unique sequences. Our original sequence, sequence
TAAGGCTATGAAGAGATACTG, has 199,981 copies (very close to 200,000), and the
rest of the unique sequences appear just a few times. Concretely, 487 sequences
appear just once, 133 appear twice, 55 appear three times, 20 appear five times,
and 5 appear six times. All 63 sequences that appeared around 500 times before
the correction now have significantly reduced copy numbers (6 copies or less). The
total number of molecules is 201,084, only slightly larger than 200,000. This degree
of recovery is typical for the algorithm. It is capable of closely approximating the
correct number of copies of the original sequences, and it removes practically all
the significantly abundant, erroneous sequences. It also reduces the total number of
unique erroneous sequences (in this case, from 1833 to 701), and slightly increases
the total number of copies (from 200,000 to 201,084, in this case).

For our second example, suppose that our experimental output consists of the fol-
lowing seven sequences: TAAGGCTATGAAGAGATACTG, AAACTGCAGACAGGCCTGG
TC, CACCCATGCCTCGACCATCCT, CACGGCACTGTACATTGGTTT, TCGCACCTTTTCC
GGCCATTG, AAATCGTTCGAAAGCGCCGAT, and AATTCGAGCCGTGAGCGTATG. And
let us suppose that there are 200,000, 185,794, 180,592, 175,872, 163,603, 95,617,
and 1042 copies, respectively. The total number of molecules, in this case, is
1,002,520. Now, we simulate the “sequencing bias effect”, again with ¢ = 0.01,
and get the following: the number of copies of each real sequence is 162,102,
150,470, 146,304, 142,570, 132,241, 77,543, and 819, respectively. In addition,
378 unique artifactual sequences appear, whose abundances range from 227 to
592 copies, together with 9997 other unique sequences that appear a only few
times (most of them, just once or twice). After applying our algorithm to this new,
false distribution, we obtain: for the seven original sequences, copy numbers of
200,038, 185,672, 180,527, 175,922, 163,192, 95,686, and 1011, respectively. All
378 fictitious sequences whose abundances were between 227 and 592 copies have
been removed. We still have a number of unique sequences that appear a few times,
most of them just once or twice, but the number has been reduced to 3878. In
total, we now have 1,007,650 molecules, instead of the original 1,002,520 (again,
slightly higher than the actual starting number of molecules, but only around a 0.5 %
increase). Taken together, (1) we have recovered decent copy numbers for the seven
real, original sequences, (2) all the erroneous unique sequences with relatively large
abundances are gone, and (3) the number of the erroneous unique sequences that
still remain appear only a few times.

After this discussion on sequencing bias, it should be clear that the resolution
with which we can observe any experimental distribution of sequences is finite, and
that caution must be employed when drawing conclusions about sequences with
very low copy numbers. If those sequences that (apparently) appear only a few times
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in the sequencing output happen to be neighbors of highly abundant sequences,
there is a strong probability that they may be artifacts of the sequencing process,
sequences that were not actually present in the experimental pool. We should only
assume that they may be real when they are many mutations away from the most
abundant sequences. Despite its minor inaccuracy, our algorithm makes great strides
toward improving the resolution with which we observe experimental pools.

Since we will never be able to make observations with infinite resolution due to
the inherent stochasticity of sequencing biases, it seems reasonable to ignore those
sequences that are output by the sequencer only a few times. (Indeed, even if some
of those sequences happen to be real sequences from the experimental pool, they are
likely sequences of lower selective significance than those that appear many times,
especially during later rounds of selection). Applying the correcting algorithm and
ignoring sequences of very low abundance, aside from being relatively harmless to
the analysis of a selection experiment, has the important consequence of eliminating
many of the minor sequences output from the sequencing device, which notably
reduces experimental noise and the computational time required for subsequent data
analysis.

S5 Sequence Ligation and Reverse Transcription

We now address the other noteworthy feature seen in Fig. 1. The figure shows that
the distribution of unique sequences is not random; it also displays peculiar behavior
at both terminal regions of the displayed curves, indicating an exceptional distortion
of monomer frequency at the first and last approximately five sequence positions.
Additionally, the qualitative features of this remarkable distortion are the same in
any synthesized pool, regardless of the length of synthesized sequences or which
company has performed the synthesis.

This errant behavior should not be too surprising. Biochemists have known for
several decades that the efficiency of ligating adaptors to RNA or DNA sequences
strongly depends on the nucleotides at the terminal regions of the sequence to which
the adaptor is ligated. For instance, England and Uhlenbeck [16] and Middleton et
al. [17], in the 1970s and 1980s, respectively, showed that sequences containing GC,
AC, and GA at the 3’ end, and TT, TA, and AT at the 5’ end were observed more
frequently after ligation, while sequences with UU at the 3’ end and GG at the 5" end
were observed less frequently.

Therefore, the distortion found at ends of the curves in Fig.1 seems to be
consistent with the idea that adaptors ligate onto different unique sequences with
different probabilities. Also, we must keep in mind that the reverse transcription
process, which is initiated by a primer annealing to the 3’ end of a sequence, may
also play a role in these distortions. In fact, we do not know the exact mechanism
that makes sequences which begin and end with a particular nucleotide combination
more or less likely to be selected after adaptor ligation and reverse transcription. All
we can claim, according to Fig. 1 (and other pools that we have analyzed), is that
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(1) the effect is real and quantitatively important, and (2) it seems to depend on the
particular terminal pentamers found in the sequences.

This ligation/reverse transcription effect may significantly hinder the estimation
of the true sequence distribution in a given synthesized pool. This effect is
not important when estimating the distribution of an initial (pre-selection) pool,
because, in this case, the distribution can be estimated using the models developed
in Sect.2. However, the effect becomes important when we want to estimate the
distribution of a pool that has already undergone selection, since, in this case, we
have no way of estimating the probability distribution without knowing how the
selection works, which is precisely what we aim to uncover.

So, how can we correct for the inaccuracies that result from this ligation/reverse
transcription effect in post-selection pools, such that we might recover the real
distribution?

The approach we propose here is as follows:

1) First, examine the relative abundance of all pre-selection sequences reported by
the sequencing device and correct the observed abundance for sequencing errors
(e.g., using the method described in the previous section).

2) Classify the sequences of the initial pool according to the first and last 5
nucleotides located at the terminal regions of each sequence. That is, arrange
the sequences into the 1024 - 1024 = 1,048,576 potential sequence classes, such
that all sequences in each class have the same first and last 5 nucleotides. (In
view of the adaptor ligation and reverse transcription effects, it should now be
clear why, in previous sections, we excluded the first and last six nucleotides of
each sequence when estimating the various probabilities/parameters used by our
models). Then, for each class /, compute the total abundance of that class; that is,
sum the abundances (already corrected for sequencing in step 1) of all sequences
that belong to the class. Finally, divide the total abundance of each class [ by the
total number of observed molecules in order to get the observed probability p7®
that a pre-selection sequence belongs to class /.

3) Making use of our previously developed models (section 3) and the sequenc-
ing corrected abundances (from step 1), compute the true abundance of the
sequences in the initial pool. Next, sort them into the same 1,048,576 sequence
classes described above and sum the true abundances of all pre-selection
sequences that belong to each class /. Divide the total abundance of each class
[ by the total number of molecules to obtain the probability p™ that a pre-
selection sequence belongs to class I.

4) For each sequence class /, determine the correcting factor f; = pi™/ p;”’ .

5) Examine the relative abundance of all post-selection sequences reported by the
sequencing device, and correct the observed abundance of each sequence for
sequencing errors.

6) Adapter ligation and reverse transcription biases of post-selection data can be
corrected as follows: Identify the class to which a post-selection sequence
belongs; this determines which correcting factor f; should be used. Then,
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multiply the observed abundance of the sequence by the appropriate f;. This
product yields the corrected abundance of the sequence.

Another issue we should discuss here is the size of the correcting factors, f;. Most
studies ignore these types of corrections, which is tantamount to assuming that all
fi values are 1, or very close to 1. Our results indicate that most of these factors do
indeed have values that are close to 1; however, they also indicate that some factors
may differ from 1 by more than an order of magnitude. We saw some factors with
values close to 10, and others close to 0.1. This means that, for some fraction of
sequences, we might expect inaccuracy in abundance values of up to two orders of
magnitude, if these correction techniques are not applied.

Finally, we want to point out that the precise value of these correction factors,
/i, depend on the particular conditions (temperature, etc.) in which adaptor ligation
and reverse transcription are carried out. Therefore, since f; are, to some extent,
dependent on a particular experiment, we recommend that the f; factors are
recalculated every time adaptor ligation and reverse transcription are done. In our
suite of tools on the Galaxy platform, the reader can find programs that compute
the true abundances after calculating f;. These tools are fully automated, and require
minimal user input, aside from setting relevant run-time parameters (such as the
minimum and maximum allowed sequence lengths). They have been extensively
tested and shown to apply reasonable and realistic corrections to sequencing data.
They also create and analyze fitness landscapes based on the corrected sequencing
data (which, although we have not discussed it in detail here, is a major feature of
the software).

6 Conclusions

We can conclude that observing the true distributions of sequences from selection
experiments, both before and after selection occurs, is an important, non-trivial task
that is necessary for deriving quantitative insights about the evolution of sequences
during selection experiments.

The first thing to remember is that purportedly random sequence pools, on which
selection experiments are based, are not completely random. It is true that they may
be nearly random, but this is not sufficient if the goal is to accurately quantify the
evolution of a sequence pool over the course of a selection experiment. To this end,
we provide rigorous evidence that most synthesized pools tend to contain sequences
that appear several orders of magnitude more or less often than others. This may be
a serious issue if the goal of the study is to draw quantitative conclusions about the
relative fitness of sequences during selection.

The second thing to consider is that selection experiments are not free from bias.
In order to make observations, we may need to attach adaptors and reverse transcribe
sequences before submitting them for sequencing. We have seen that adaptor
ligation and reverse transcription do not affect all sequences equally, but rather, in
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some cases, affect different sequences very differently. Also, sequencing errors tend
to blur the real distribution of sequences. Both bias types may significantly distort
the quantitative results of a selection experiment.

These issues can be overcome by better characterizing our observations, quan-
titatively speaking. To do that, it is crucial to realize that biochemical selection
experiments aimed at constructing global fitness landscapes suffer from significant
undersampling problems. Here, we propose avoiding such problems by constructing
reliable models that describe how sequence pools are synthesized, which can then be
used to estimate the abundance of any arbitrary sequence in any initial, pre-selection
pool. These initial abundance calculations are crucial to rigorously assigning a
fitness value to a given sequence. These models, as shown in Sect. 5, can also be
used to correct biases which result from adaptor ligation and reverse transcription,
improving the precision of our observations. Similarly, the construction of a reliable
model that quantitatively describes the biases associated with sequencing errors,
helps to design algorithms aimed at correcting those biases, again furthering our
observational precision.

Here, we have proposed some simple models to describe relevant biochemical
processes, models that we consider first attempts in quantitatively describing those
processes. As researchers perform more selection experiments, we hope that more
accurate models will be developed, such that we may increasingly trust the analysis
of those experiments to reflect reality.
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Non-linear Dynamics in Transcriptional
Regulation: Biological Logic Gates

Till D. Frank, Miguel A.S. Cavadas, Lan K. Nguyen, and Alex Cheong

Abstract Gene expression relies on the interaction of numerous transcriptional
signals at the promoter to elicit a response—to read or not to read the genomic
code, and if read, the strength of the read. The interplay of transcription factors
can be viewed as nonlinear dynamics underlying the biological complexity. Here
we analyse the regulation of the cyclooxygenase 2 promoter by NF-«B using
thermostatistical and quantitative kinetic modelling and propose the presence
of a genetic Boolean AND logic gate controlling the differential expression of
cyclooxygenase 2 among species.

1 Introduction

The unravelling of the DNA sequence of the human genome [1, 2] has been a
remarkable milestone in the scientific world, and has provided us with a book of
knowledge from which we are still only deciphering the contents of. However,
knowing the sequence of genes is only the beginning. The cell appears to know
how to read the genome and crucially what to read and when to read portions of
it, through integration of signals coming from both inside and outside the cell. This
complexity of signal inputs is mirrored by the multitude of potential outputs from
reading the genetic code. In the light of these input/output signalling processes,
we can view DNA sequences and its regulation as electronic operations based
on Boolean logic gates [3]. Through mathematical modelling of Boolean circuits
and logic gates at molecular level using either thermostatistical or ODE-based
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approaches, it is possible to gain insights into the rules and mechanisms by which a
subset of the genes is selectively expressed in each cell—for example, how does a
signalling event trigger a specific gene to be active? Furthermore, our understanding
of Boolean logic gates can applied for other uses, namely the encoding and archiving
of digital information into synthetic DNA [4] and the construction of fuzzy logic
biological computer [5]. Soon, there will be equivalences between electronic and
biochemical operations.

1.1 The Genome

An organism’s DNA encodes the necessary information required to construct its
cell. Knowing the DNA sequencing of a bacterium (a mere few million nucleotide
[6]) or human (a few billion nucleotides [1, 2]) does not mean that we can rebuild a
bacterial or human cell, although attempts are in progress to construct synthetic cell
[7]. However understanding the intricacies of the base pairs forming the genome
can be akin to the discovery of the Rosetta stone: it is only the first steps towards
learning how to read and write the genetic code. Here we will review the basics of
gene regulation.

1.2 Transcription Factors Promoter, Activators and Repressors

Transcription factors (TF) are important proteins involved in the control of gene
networks. They are generally described as either activators which increase transcrip-
tional activity or as repressors which decrease the activity. The interaction between
transcription factors and DNA is integral to the regulation of transcription. Thus the
ability to predict and identify their binding sites in the promoter region of the gene
of interest is crucial to understanding the details of gene regulation and for inferring
regulatory networks. From experimental data, a set of validated transcription factor
binding sites (TFBSs) for a given TF can be constructed to explore the binding
preference of the TF. These DNA sequences are aligned and the occurrence of each
nucleotide at each position is noted and scored to produce a consensus TF binding
sequence. For example, the consensus binding motif of the ubiquitous transcription
factor Nuclear factor kappa B (NF«B) is described as GGG RNN YYC C, where G
is guanine, R is a purine (i.e. either adenine or guanine) and Y is a pyrimidine (i.e.
either uracil, cytosine or thymine) and N is any of the bases [8]. The different DNA
sequences which can be bound by NFkB probably arose from evolutionary changes
and provides differential binding strength leading to differential transcriptional
activities [9]. Duplicate consensus sequences can also be present on the promoter,
synergising to produce a stronger activity as more TFBS are occupied or they
could be spare TFBS leftover from evolution. Furthermore, the interaction among
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transcription factors can also include both activators and repressors binding to the
promoter, leading to an increasing complexity in transcriptional regulation.

1.3 The Transcriptome: Alternative Splicing
and Transcriptomics

There may be more than one type of protein arising from a specific mRNA. The
reason for this lies in a process called splicing, which occurs between transcription
and translation. There exists, within the sequence of a gene, parts that will be present
in the final translated mRINA (the exons) and parts that will not (the introns). The
excision of the introns and the ligation of the exons to form a continuous strand
of mRNA is the basic definition of splicing [10]. Splicing is not thought to always
occur in the same way for a specific gene. Sometimes, introns appear to be included
in a final mRNA, while in other mRNAs, one or more exons may have been spliced
out [11, 12]. This variation leads to variations in the mRNA pool, and subsequently
in the protein population of the cell. Moreover, alternative splicing is proposed to be
a significant process in the cell, with 40-60 % of human genes displaying alternative
splice forms [13]. Thus there is not always a correlation between the expression
level of the gene (the abundance of its mRNA) and the number of proteins present
in the sample of cells one is measuring. Investigating the proteins gives, for all these
reasons, a wealth of important information that cannot be inferred from a study of
mRNA alone. And lastly, working with proteins has the additional advantage that
proteins are generally more stable than mRNA, which greatly facilitates the analysis.

1.4 Transcriptional Assays

Knowing the sequence of the genes is only the beginning. What we strive to decipher
is to understand what these genes do and how they do it. In other words, when
are they active and how active are they under any specific set of conditions? The
simplest answer to that kind of question is given by the study of the abundance and
variety of mRNA molecules in a cell. Typically, the more active a gene is, the more
copies of the corresponding mRNA are produced.

Using microarray, one of the most reliable and widely used workhorses of
transcriptomics, it is possible to follow the expression patterns of all identified genes
in an organism simultaneously. However, despite its power, years of experimentation
have revealed major drawbacks, including the availability of gene microarrays for
only a few of the better studied organisms (e.g. human, mice, rat) and the inability
to detect splicing events, i.e. to distinguish differentially spliced mRNA binding to
a probe. The latter can be overcome by the use of tilling arrays, which unfortunately
substantially increases the operational cost [14]. Furthermore, recent developments
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in deep sequencing technology, stimulated by the world-wide effort to sequence
the human genome, has allowed the development of RNA-sequencing technology,
a revolutionary platform that allows the quantification of mRNA expression, non-
coding RNA and splicing events in non-annotated genomes [15].

While microarrays provide a global picture of the epigenetic differences, they
are limited in their ability to explore differences in specific genes. At the individual
levels, other methods exist, such as chromatin immunoprecipitation—which can
reveal the interaction of transcription factors to their binding sites—and luciferase
assays—which can show function of specific DNA sequences in activating gene
transcription [16]. The ability to mutate DNA base pairs makes these methods
particularly suitable to investigate nonlinear dynamics at the individual sequence.

2 Mechanisms for Nonlinear Gene Expression

Gene expression is tightly regulated in a stimuli-dependent and cell dependent way.
Genes can be expressed in response to specific stimuli in a linear, graded way, or
in a switch-like, binary manner. Notable examples of mechanisms that can impart a
switch-like or binary behaviour to the expression of a particular gene, include, but
are not limited to: transcription factor synergism [17, 18], competition between an
activator and a repressor [19], Boolean-logic within promoter regulatory elements
[20] and chromatin remodelling surrounding genetic-regulatory elements [21, 22].
Further details are provided in Fig. 1. Emerging data from transcriptomics has
revealed that gene expression is also largely bimodal across different tissues within
the same organism [23, 24]. In addition, during evolution, different species seem to
have chosen opposing regulatory mechanism (linear vs nonlinear) for the regulation
of the same gene, and species-specific regulatory mechanism can contribute to
physiological differences [25].

2.1 Examples of Regulatory Mechanism of Nonlinear
Mammalian Gene Expression

A single gene can be expressed with very different dynamics in response to the same
graded stimuli in different cell types. The mechanisms allowing for these differences
are only now emerging. Work from our labs [20] has revealed that cyclooxygenase
2 (COX2), a key enzyme of the prostaglandin/eicosanoid pathway, is expressed
in a linear dose dependent manner in response to a gradient of tumour necrosis
factor alpha (TNF«) stimulation in mouse embryonic fibroblasts (MEF), while in
human colorectal cancer cells (HT29) it follows a switch-like expression pattern
with low levels being expressed under low grade concentrations of the inflammatory
stimuli (TNFa), dramatically increasing at a defined threshold concentration to a
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Fig. 1 Notable examples of regulatory mechanism of nonlinear gene expression. Multiple mech-
anisms have been shown to biologically regulate gene expression transition from an ON to OFF
state, or from a linear to a nonlinear response (a). These include TF synergism, whereby gene
transcription is maximally induced under the presence of two activators (b). TF competition,
whereby in the presence of the activator or repressor alone, linear gene responses are observed,
while in the presence of both the activator and repressor a nonlinear dose-response of gene
activation arises in response to a particular stimuli. (¢) Epigenetic mechanisms can silence (OFF)
transcription, and when removed, or in the presence of epigenetic marks of active gene transcription
(ON), transcription is induced. (d) Boolean logic within regulatory promoter elements, whereby

occupancy of both DNA-regulatory elements by their cognate transcription factor is necessary for
maximal gene induction

final plateau of expression (Fig. 2). In our study, we have shown that the switch like
behaviour could be explained by the presence of regulatory NFxB DNA sequences
within the COX2 promoter that function according to the rules of Boolean logic,
allowing on and off gene expression (see Sect. 2).

NF«B is a ubiquitous transcription factor and a prime example where the
complexity of the DNA regulatory sequences in the promoter can lead to a
switch like behaviour [26]. Genes shown to have a NFxB switch-like behaviour
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Fig. 2 Linear and switch like expression of COX2 in mouse and human cells. Expression of COX2
protein in mouse MEF cells and human HT29 cells stimulated with TNFw, representative western
blots are shown in (a), (b) and their densitometry in (c), (d). TNFa-induced luciferase activity
under the control of mouse (d) and human (e) COX2 promoters expressed in HEK293 cells (e), ().
(Reproduced with permission from [20])

include the COX2 gene in response to TNFo (see above), but also the RAGE (for
receptor for advanced glycation end products) which requires 2 kB binding sites
for lipopolysaccharide (LPS) induction [27] and the C-X-C motif chemokine 10
(CXCL10), which requires 2 «B binding sites for LPS or interferon-y induction
[28].

NFkB is not the only transcription factor reported to generate a switch-like
or a linear gene activation dependent on the gene promoter structure, for exam-
ple, Joers and colleagues have shown that depending on the promoter structure
of the target gene, using transfected plasmids containing different parts of the
endogenous promoter, p53—dependent transcription can be binary or graded [22].
The transcription factor nuclear factor of activated T-cells (NF-AT) has also been
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shown to provide a tightly regulated threshold controlled activation of artificial gene
promoters exhibiting a switch like behaviour in response to T cell activation [29].

Binary changes in mammalian gene expression can also result from transcrip-
tional activator synergism, with minimal or no expression when one factor binds
to the promoter, but with an unexpectedly high expression level when multiple
transcription factors bind to the promoter [17, 21, 30]. Another mechanism for
binary gene expression involving transcription factors is the competition for a
binding site between an activator and a repressor. Rossi and colleagues infected
mammalian cells with the repressor TetR and the activator protein TetR-VP16
fusion protein [19]. They found that cells expressing the activator only (TetR-VP16)
produce a graded change in gene expression, while cells infected with both the
activator and the repressor (TetR) generate binary patterns of expression [19].

Promoters in a repressive, condensed chromatin environment are unresponsive
to the transcriptional machinery [31], and the change between the repressed and
open chromatin states may confer the properties of a switch like gene expression
profile [21]. For example, Ertel and colleagues have shown that genes with a
bimodal gene expression profile in different tissues have an association with
histone methylation (H3K4me3) [23], a marker for transcriptionally active genes
[32]. Histone methylation, along with DNA methylation, is a key player in cell
differentiation during development [33] and aberrant histone methylation patterns
are among the epigenetic modifications that give rise to cancer [34]. Integrated
experimental and model-based analysis also revealed that gene expression mediated
by H2A may follow bistable, switch-like dynamics under specific conditions due
to bistable H2A ubiquitination controlled by the master gene silencer Polycomb
complex 1 [35]. Thus epigenetic mechanisms such as histone methylation are
important determinants of tissue specific switch-like expression of different genes,
and deregulation of this mechanism of gene regulation may have pathological
consequences.

2.2 Species-Specific Differential Regulatory Mechanism and
Their Implications in Comparative Physiology

Interestingly, during evolution, several homologue genes seem to have selected
to diverge in the linear or nonlinear gene expression patterns. Species-specific
differential regulatory mechanisms of gene expression, as demonstrated in our
work for the COX2 promoter [20], may contribute to the recently reported dis-
cordance observed between human and mouse models of inflammatory diseases
[36]. Species-difference has also been observed for other genes, such as for ETS1
[37] and Waf1/p21 [22]. The transcription factor ETS1 is responsible for the mouse
specific expression of the T cell factor Thy-1 in the thymus. ETS1 is found to be
preferentially to the proximal promoter of human genes but not mice genes and has
been suggested to contribute to the immune system differences between mice and
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human [37]. A comparison of the expression in response to DNA damaging agents
of the Wafl/p21 protein, a p53 target gene revealed a graded response in mouse
NIH 3T3 cells, but a binary, switch like response in human MCF7 cells [22]. In
this example, the underlying molecular mechanism was not studied in detail, but the
authors suggest, having in consideration their analysis of recombinant versions of
the Wafl promoter, that different regulatory elements within the promoter might be
masked by epigenetic regulation in different cell types [22].

Epigenetic regulation, as evidenced by differential patterns of histone methyla-
tion and acetylation, is also a key mechanism leading to differential gene expression
in mice and human tissues [38]. In addition to epigenetic marks and differential
binding of transcription factors, differences in the cis-regulatory elements (CRE,
i.e. TF binding sites and associated sequences required for transcription) can
also contribute to species-specific expression pattern of a particular gene [39].
Novel CRE, but also mutations in pre-existing CRE including insertions, deletions,
duplications and changes in the DNA strand of the TF binding site can lead to
species-specific differences in gene expression [39].

Thus species-specific gene expression can be achieved by several mechanisms,
as outlined above, and the linear or switch-like behaviour of a particular gene
can be an important contribution to differences in animal physiology, that can be
easily overlooked and impair the translational application of biomedical research. A
better understanding of these mechanisms will allow a better prediction of when the
findings from biomedical research in mouse models are relevant to human disease
[37].

2.3 Tissue Specific Binary Gene Regulation

One of the most exciting questions in biology is to understand how, within a given
individual, cells with the same genetic code can give rise to different tissues, with
diverse physiological properties. It is clear that gene expression varies between
graded and switch like, binary expression pattern across different tissues, being
highly expressed in one tissue type, and with low expression in other. Genome-wide
identification and annotation of genes with switch-like expression at the transcript
level in mouse and human using large transcriptomics datasets for several different
healthy tissue (e.g. brain, heart, and skeletal muscle) have been used to study
the cellular pathways and regulatory mechanisms involving this class of genes
[23, 24]. Genes with binary expression across different tissues seem to have higher
than average number of transcription start sites per gene, differentially methylated
histones, enriched TATA box regulatory motifs and alternative promoters [23, 24].
What is lacking here is a systematic modelling of the complex nonlinear dynamics
to unravel the transcriptional signalling cascades.
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2.4 Mathematical Modelling of Transcription Factor-Promoter
Interaction

2.4.1 Thermostatistical Modelling

Transcriptional activity is in general a nonlinear function of transcription factor
abundance. There are several approaches to understand the nonlinear impact of
transcription factors on transcriptional activity, one of which uses thermostatistical
principles [40—45] and was introduced by Shea and Ackers [46]. In what follows, a
recent study on the thermostatistical mathematical modelling of transcription-factor
induced promoter activity will be reviewed [20] and emphasis will be put on the
nonlinear aspects.

The thermostatistical modelling makes two a priori assumptions. The first
assumption is that the rate of transcription is proportional to the probability of
transcription initiation. The probability of transcription initiation in turn is assumed
to be equal with the probability that RNAP binds at the promoter. Consequently, this
first assumption may be regarded as an assumption involving two sub-assumptions.
Mathematically speaking, let » denote the rate of transcription of a gene and P
denote the probability of RNAP binding. Let x denote a positive constant. Then,
the first assumption state that

r=«P. (1

In order to determine the probability P, a second assumption is made. Accord-
ingly, it is assumed that the principles of statistical physics hold and determine the
value of P. In more detail, P can be derived by looking at three levels: macro,
meso, and micro [47]. On a macro level, there are only two possibilities: there is
a transcription initiation or not. In line with the aforementioned first assumption,
this is phrased like RNAP can be bound to the promoter or not. Let P(on) and P(off)
denote the probabilities that RNAP is bound or not bound at the promoter. Then we
have P = P(on) and

P(on) + P(off) = 1. 2

In order to determine P(on) all so-called microstates or possibilities that RNAP
can be bound at the promoter must be considered. P(on) is the sum of the
probabilities of these microstates. Let p(j,on,micro) denote the probability that
RNAP is bound at the promoter in a particular way described by the index j. Let us
assume there are N different ways that RNAP can be bound. Then, P(on) is defined
by

P(on) = Zp(j, on, micro). 3)
j
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Statistical physics claims that the probability of a state is determined by its
energy. On the microlevel, the so-called Boltzmann distribution holds. Accordingly,
the probability is an exponential function of the energy such that high energetic
states have low probability, while states with low energy have high probability. Let
E(j,on) denote the energy of a microstate j. Then, we have

p(j, on, micro) = exp(—E(j,on)/RT)/Z, @)

where R is the gas constant, T is the temperature and Z is a normalization factor.
The energy values must be determined from a priori knowledge or can be fitted
from data. In contrast, the normalization factor Z can be determined by theoretical
reasoning. An equation similar to Eq. (2) also holds on the microlevel and can be
used to determine Z. To this end, the microstates k for which RNAP is not bound
at the promoter are considered. Let p(k,off,micro) denote the probabilities of these
states. Then, we have

p(k, off ,micro) = exp(—E(k, off)/RT)/Z, 5)

where E(k,off) is the energy of the microstate k. All probabilities taken together
must sum up to unity like

Zp(j, on, micro) + Zp(k, off , micro) = 1, (6)
j k

which can be used to determine Z.

Having discussed the microstate picture, we note that there is typically a large
number of microstates, which makes the counting of the states a tedious task. The
thermo-statistical approach can be applied more effectively in the mesoscale picture.
To this end, all microstates that exhibit exactly the same energy are group together
into classes. The number of microstates that have a particular energy level E(j,on or
off) in common is the degeneracy of that energy level. The degeneracy is expressed
as a positive number and typically denoted by g. On the mesolevel, we are concerned
with the possibilities that RNAP is bound at the promoter with certain energies
E(j,on). The number of different possibilities for a given energy level E(j,on) is the
degeneracy of that energy level j. Likewise, we are concerned with energetically
different possibilities that the promoter is not occupied by RNAP. Again, for each
energy level E(k,off) the number of different ways to achieve this corresponds to
the degeneracy of that energy level k. In statistical physics, the probabilities are
calculated as Boltzmann probabilities involving degeneracy factors like

p(j. on, meso) = g(j.on) exp(=E(j,on)/RT)/Z (7

and

p(k, off ,meso) = g(k,off) exp(=E(k, off)/RT)/Z )]
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The normalization constant Z is the same as before. Therefore, it could be
determined from Eq.(6). However, usually, Z is determined from the mesoscale
picture using the fact that all probabilities on the mesolevel must sum up to unity.
That is, Z can be determined from

Zp(j, on, meso) + Zp(k, off , meso) = 1. 9)
J k

By analogy to Eq.(3), P(on) can be determined from the mesoscale RNAP
binding probabilities like

P(on) = Zp(j, on, meso). (10)
J

The degeneracy factors are functions of the RNAP and transcription factor
numbers that are available for binding. They also depend on the number of binding
sites for the transcription factors. In order to discuss the explicit rules for the
degeneracy factors, we present the simplest non-trivial example and then discuss
generalization. This example is a promoter that is regulated by a single transcription
factor and involves a single binding site for the transcription factor.

Case 1: Nonlinear Regulation of Transcriptional Activity of a Promoter with a
Single Transcription Factor and Single Binding Site

Let TF1 denote the transcription factor. There are four mesoscale states. RNAP is
or is not bound at the promoter. For each of these two cases, TF1 is or is not bound
at its binding site. Let ng and n; denote the molecule numbers of RNAP and TF1
available for binding at the promoter. Then, the degeneracy factors of the four states
listed in Table 1.

According to Table 1, the degeneracy is proportional to the number of available
molecules. For example, let us consider the case in which RNAP is not bound at the
promoter but a transcription factor is bound at the promoter. Let us assume there
are ten transcription factor molecules labelled with A, B, C, D, E, F, G, H, J, K,
L available for binding at the transcription factor binding site. Then the binding of
molecule A involves the same energy as the binding of any other molecule B, ...,

Table 1 Mesoscale characterization and degeneracy factors of a promoter regulated by a single
transcription factor

RNAP binding TF1 binding
Transcriptional activity (On = Yes, Off = No) (On = Yes, Off = No) Degeneracy g
Yes On On g(1,on) = ng*m;
On Off g(2,0n) =ng
No Off On g(1,off) =y

off off g(2.0ff) = 1
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Table 2 Mesoscale RNAP | TF1

L. Energy E | Probabilities p
probabilities of a promoter

regulated by a single On O“‘ Eri ng*n *wR1)/Z
transcription factor On Off | Eg ng*w(R)/Z

Off On |E; n*w(l)/Z

off |Off |E, w(0)/Z

Table 3 Mesoscale probabilities defined on an appropriately shifted energy scale

RNAP TF1 Relative energy E(rel) Probabilities p

On On ERri-Ey p(l,on) = ng * n; * Q(R1)/Z*
On Off Er-Ey p(2,0n) = ng * Q(R)/Z*

Off On Ei-Eg p(,off) = ni * 2(1)/Z*

Off Off 0 pQ2,off) = 1/Zx%

L. Therefore, all ten possibilities (all ten microstates) have the same energy. The
degeneracy equals 10. Similarly, the other cases in Table 1 can be derived.

Taking the energy levels of four different mesostates into account, formally, the
probabilities of the mesostates can be written down. This is shown in Table 2, with

w(R1) = exp(—Egi/RT), w(R) = exp(—Eg/RT),

w(l) = exp(—Eg/RT), w(0) = exp(—Ey/RT). (i

A detailed calculation shows that Boltzmann probabilities in statistical physics
such as those listed in Table 2 only depend on relative energy levels. Therefore, we
may shift all energy levels by EQ. Table 2 then becomes Table 3, with

R2(R1) = exp(—(Er1 — Eo)/RT), $2(R) = exp(—(Er — Eo)/RT),

2(1) = exp(—(Eg — Eo)/RT) (12)

and Z*=Z/exp(-Eo/RT).
The sum of the four probabilities equals unity. This implies that Z* reads like

Zx =14+n 2(1) +ng 2(R) + nyng 2(R1). (13)
P(on) is given by the sum of p(1,0n) and p(2,0on). Consequently, we have
P(on) = (ng 2(R) + nnr 2(R1)/Z * . 14)

We are interested in the nonlinear regulation of transcriptional activity via the
abundance of TF1. Therefore, P(on) may be expressed like

A+Bn1

P(on) = —C+Dn1’

15)
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where A,B,C,D can be determined from Eq. (14). For sake of completeness let us
write down the equation for the rate of transcription. From Eq. (1) it follows that

_ A+Bn1

=K. 16
KC+D}11 ( )

We see that the probability P(on) of RNAP binding and the rate of transcription r
are nonlinear function of nl. For n; = 0 we have the baseline binding probability
A/C < 1 related to the baseline rate of transcription r = kA/C. In contrast, for n;
to infinity we have the saturation binding probability P(on) = B/D<1 related to the
saturation rate of transcription r = ¥ B/D. Note that since the transcription factor is
assumed to be an activator it lowers the binding energy of RNAP at the promoter.
This implies that the saturation binding probability B/D is larger than the baseline
binding probability A/C. Likewise, we have r(0) < r(n; 78 ). Moreover, one can
show that P(on) and consequently » are monotonically increasing functions of the
transcription factor molecule number n;. Having discussed the nonlinear regulation
of the transcriptional activity by means of a single transcription factor, we can
easily generalize the approach to account for several transcription factors. Again,
let us assume that each transcription factor only exhibits a single binding site in the
promoter region.

Case 2: Nonlinear Regulation of Transcriptional Activity of a Promoter with
Multiple Transcription Factors Each Having a Single Binding Site

Let us rewrite the four mesostate probabilities p(j,on/off) listed in Table 3 like

p(j,on/off) = nZ’R nT’l 2(j,on/off)]Z * . (17

The parameters mR and m/ are integer that can assume only the values 0 and 1.
Then in the case of a promoter regulated by L activators, we have

p(j,on/oﬁ‘):n’,’gR n'l"1 ---n'L”L.Q(j,on/oﬁ)/ZL, (18)

with £(j, on/off) = exp(—(E(j, on/off) — Eo)/RT).
The variables ny, ..., ny denote the number of transcription factors TF1, ..., TFL
available for binding. The parameters m1, ..., mL are 0 or 1 depending whether the

respective transcription factor is not bound (0) or bound (1) at the transcription-
factor specific binding site. The parameter Z; is a normalization constant that can
be determined from the requirement that all mesostate probabilities must add up to
unity. From Egs. (1), (17), (20), we then obtain the rate of transcription as a nonlinear
function f(. . .) of the transcription factor abundances ny, ..., ng:

r=f(ny, - .n.). 19)

It is important to note that Eq. (18) may exhibit nonlinear terms of the form
ny*ny, ny*ny*ns, ete. This can lead to synergy effects of the transcription factor con-
centrations. Note that alternatively to the number of transcription factor molecules,
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molar units or other measures of concentration can be used. Let [TFj] denote the
concentration of the transcription factor j measured in a suitable unit. Then, Eq. (18)
is replaced by

r=h([TF1,TF2, --- ,TFL), (20)

where A(...) is a nonlinear function of the concentrations. Again, the function may
involve products of the form [TF1]*[TF2], [TF1]*[TF2]*[TF3], etc.

Case 3: Transcription Factors with More Than 1 Binding Site

In the considerations made above, it was assumed that each transcription factor
exhibits only one binding site. More complicated promoters can be addressed with
the thermostatistical approach. In order to illustrate this issue, let us return to
a promoter regulated by a single transcription factor called TF. The abundance
is measured by n. If there are two binding sites for the transcription factor
under consideration, then the degeneracy increases quadratic with the number of
transcription factor molecules competing for binding. In general, if there are s
binding sites then the degeneracy is given by

g=n'. 21

Note that this rule holds for not too small numbers of transcription factors.
If there are only a few transcription factors available for binding, then a more
precise counting scheme should be used [48, 49]. In analogy to Eq. (16), the rate
of transcription for a promoter with s binding sites for its activator reads

= Kﬂ. (22)
C+Dnj

In general, increasing the number of binding sites makes the sigmoid character
of Eq.(22) more pronounced. That is, the function increases more rapidly. This
property of s becomes obvious in the special case when the baseline transcription
rate is negligible. That is, let us assume that the RNAP binding energy is relatively
high such that the binding probability of RNAP without the interaction of the
transcription factor is almost zero. That is, £2(R) is approximately equal to zero
which implies that we can put A = 0. In this case, Eq. (22) reduces to

S
n

r=kB———.
C+Dnj

(23)

This is the standard Hill function used in systems biology. The Hill function has
its 50 percent point at n° = C/D. For the Hill function it is well known that around this
50 percent point, the function increases more sharply when increasing the exponent
s.

Let us summarize this section by pointing out some key aspects of the thermo-
statistical approach for understanding the nonlinear regulation of transcriptional
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activity by means of transcription factors. First, the nonlinearity is related to
the degeneracy of energetically equivalent states. That is, for understanding the
nonlinear properties the pivotal element is the degeneracy of states, whereas the
binding energies “only” show up as parameters (in our notation: the omega param-
eters). Second, the thermostatistical approach naturally explains that transcriptional
activity is regulated by products of transcription factor concentrations. Since such
products under suitable circumstances are the mathematical expressions of synergy
expressions, some synergy effects arising on the transcriptional level may be
identified as a consequence of the thermostatistical nature of the transcriptional
machinery. In other words, when in asking the question, why the transcription of a
gene in a particular cell line is regulated synergistically by two transcription factors,
then we may answer that this is due to the fact that the transcriptional machinery
obeys the laws of thermostatistics. Third, the thermostatistical approach reveals that
the number of binding sites for a given transcription factor has a crucial impact on
the nature of the nonlinear regulation by means of this transcription factor. Roughly
speaking, the degree of nonlinearity becomes stronger when the number of binding
sites is increased.

2.4.2 Quantitative Kinetic Modelling of Promoter Activity Mediated
by Transcriptional Factors

There have been considerable efforts to construct models for transcriptional reg-
ulation, which result in different modelling formulations [50-52]. Beside the
thermostatistical approach discussed in the above Sect.2.4.1, quantitative models
of transcriptional regulation based on ordinary differential equations (ODEs) have
been a major focus [53]. In a recent publication, we have employed ODE-based
modelling to investigate the dynamical properties of the COX2 gene’s promoter
structure consisting of multiple binding sites and its interaction with the cognate
transcriptional factor NFk B across different species [20].

Instead of assuming or estimating transcriptional activity as a lumped, nonlinear
function of the transcriptional factor, our model formulation were based on the
law of elementary mass-action kinetics that explicitly accounts for the association
and dissociation of the transcriptional factor and its binding sites. The total
transcriptional activity is then calculated as a weighted aggregated sum of the
active promoter-TF complexes formed, which may possess different levels of
transcriptional activation potential. For example, a fully bound complex where all
the promoter’s binding sites are occupied by a TF molecule may elicit a substantially
stronger gene activation capacity than partially occupied promoters where only one
or a subset of the binding sites are TF-bound. Depending on the kinetics between the
TF and different binding sites, the rate of which could be experimentally measured,
we may have different distribution of the promoter-TF complexes. Furthermore,
such formulation allowed us to make assumptions as to how the binding sites
could interplay (e.g. independent or cooperative) in mediating the transcriptional
activity, thereby embedding different assumptions of modes of regulation such
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Fig. 3 Mathematical models of promoter activity. (a)—(c) Simplified schemes showing binding of
TFs on promoters with one transcription binding site (TFBS) (a), or 2 TFBS arranged as OR (b) or
AND gates (c¢). Promoter is either activated (1) or not (0). (d)—(f) Mathematical predictions of the
transcriptional activity for each scheme, at a fixed concentration of TF but varying concentration
of promoters. Model association/dissociation rates used for plotting panel (f) are 0.001 and 0.2
respectively. (g)—(i) Experimental validation of predictions using artificial promoters (g), (h) or
the human COX2 promoter (i) expressed in HEK293 cells in response to TNFo (1 ng/ml). Data is
shown as fold activation over unstimulated (n = 4 — 5). (Reproduced with permission from [20])

as OR and AND logics between the sites [20]. The differential transcriptional
activation capacity of the formed promoter-TF complexes, possible to obtain from
experiments, will serve to guide the choice of the weigh coefficients that make up
the overall total transcriptional activity.

Following such approach, we developed three kinetic models to quantitatively
analyze and predict steady-state dynamics of the COX2 gene expression under
different modes of regulation by NF«B. These models, schematically shown in
Fig.3 are referred to as the “l-site”, “2-site OR-gate” and ‘2-site AND-gate”
models, describe: (1) a promoter that is regulated by a transcriptional factor through
a single TF-Promoter binding site; (2) a promoter regulated by a transcriptional
factor through two TF-Promoter binding sites following an OR gate and (3) a
promoter regulated by a transcriptional factor through two TF-Promoter binding
sites following an AND gate regulation. Although the models were kept to the
minimal level of complexity, they were able to generate important predictions and
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insights that guided useful experiments and distinguish the model that best match
experimental data. Interestingly, the models suggested an unintuitive experiment
where a graded increase of the promoter concentration led to distinct responses of
transcriptional activity between the three models [20]. While the 1-site and 2-site
OR-gate models showed a nonlinear monotonic response, only the 2-site AND-gate
model showed a biphasic response where either too low or too high abundance of
the promoter would suppress transcriptional activity. Our followed up experiment
indeed showed a biphasic response, which suggest the AND-gate effect between
the NF«B binding sites. It is worth noting here that although varying the promoter
concentration may be considered as an unintuitive experiment from an experimental
perspective, such data allowed us to gain crucial insights into the dynamic behaviour
of the system, suggesting model-led experiments may not need to answer a specific
biological question but still are useful.

3 Conclusions

In this review, we discussed two main modelling approaches for constructing
models of transcriptional regulation and the consequent nonlinearity arising from
interactions between the transcriptional factors and binding sites. We have demon-
strated the application of thermostatistical approach using a number of case-study
scenarios, and showed how ordinary differential equations based approach may
complement the former method in generating experimentally testable hypotheses.
Choosing which modelling framework for a specific study would largely depend
on the questions asked and the data available at hand. It should be noted that these
approaches are complementary rather than competitive, and thus one could see their
combined usage in examining the same biological questions.

While transcriptional networks can be observed to behave as logic circuits, and
can be more or less described mathematically, they are likely to be very different
from a neatly constructed electronic logic circuit designed for maximal efficiency.
Herein lies the problem when attempting to reverse-engineer biological networks.
Real-life transcriptional networks arose from evolution, with sequences and design
which may seem inefficient or redundant, but which are/were important for certain
situation [54]. It could well be that the nonlinearity of the transcriptional network
have other undetermined functions to cope with the unknown.
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Pattern Formation at Cellular Membranes
by Phosphorylation and Dephosphorylation
of Proteins

Sergio Alonso

Abstract We consider a classical model on activation of proteins, based in two
reciprocal enzymatic biochemical reactions. The combination of phosphorylation
and dephosphorylation reactions of proteins is a well established mechanism for
protein activation in cell signalling. We introduce different affinity of the two
versions of the proteins to the membrane and to the cytoplasm. The difference in the
diffusion coefficient at the membrane and in the cytoplasm together with the high
density of proteins at the membrane which reduces the accessible area produces
domain formation of protein concentration at the membrane. We differentiate two
mechanisms responsible for the pattern formation inside of living cells and discuss
the consequences of these models for cell biology.

1 Introduction

Cascades of biochemical reactions and interactions regulate multiple processes
inside living cells [1]. Proteins, enzymes and small molecules strongly interact and
participate in genetic and metabolic networks.

Biochemical processes inside cells are highly nonlinear and their dynamics
complex. Two characteristics examples of such complexity in the cell are genetic
regulatory networks and cell signalling [2]. Regulatory pathways involve different
types of proteins, which control the transcription of the genes. They form the
genetic networks in cell biology and governs processes at large times scales (hours).
A protein that represses the transcription of its own gene is a simple example of a
regulatory network. The repression produces a negative feedback and under certain
conditions it induces a periodic synthesis of the protein [3].
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On the other hand, interactions among different proteins can also produce com-
plex biochemical oscillations of protein concentration inside signalling pathways
[4]. Cell signalling controls the rapid response of the cell to external variations of the
environment, and corresponds to fast processes at small time scales (minutes). One
of the simplest components of such pathways are enzymatic reactions. An enzyme,
is a protein which catalyzes and accelerates a particular biochemical reaction, which
under other circumstances would be much slower [5]. An important characteristics
of the enzyme is that it takes part in the reaction, however, after the reaction occurs,
the enzyme is completely recovered and can catalyze again another reaction.

A phosphorylation reaction consists in the incorporation of a phosphate group
to a certain protein, producing a phosphorylated version of the protein. Such type
of biochemical reactions are catalyzed by kinases. Protein kinases are enzymes
and the phosphorylation reaction is an enzymatic reaction. The opposite reaction
is also possible. The dephosphorylation reaction removes the phosphate group
from the phosphorylated protein, and it is catalyzed by the enzyme phosphatase.
Protein kinases and phosphatases are particularly active in signalling processes.
Important parts of biochemical pathways consist on multiple phosphorylations and
dephosphorylations of diverse proteins [6].

When both processes occurs simultaneously, phosphorylation and dephosphory-
lation may control the activity of a particular protein in a pathway. Activation and
deactivation are important mechanisms in the regulation of many cellular processes.
Both reactions are usually described in well-mixed environments by the Goldbeter-
Koshland model of reciprocal covalent modifications [7]. The stiff response of the
system to small changes in the kinase or the phosphatase concentrations makes
the Goldbeter-Koshland mechanism a good model for activation of proteins in
signalling pathways. The response of the model to the change of the enzyme
concentration is stiff but monotonous and, therefore, no bistability or another kind
of pattern formation mechanisms are accessible from this model. The complexity
necessary for a non-monotonous behaviour can be incorporated by positive and
negative interactions among the two versions of the proteins and the enzymes [8].

An alternative strategy for the formation of complex dynamics is the incorpo-
ration of spatial restrictions. Living cells are not always well-mixed environments
and active or passive transport is crucial for the organization of some metabolic and
genetic processes [9]. Furthermore, there is a high degree of compartmentalization
in the cell and different types of proteins are located in different parts of the
cell. Thus, the spatial aspects of the interior of the cells become relevant in
intracellular communication [10] and self-organization may rule many processes
in cell biology [11]. In particular, kinases and phosphatases may locate in opposite
positions inside the cell, e.g. membrane/cytoplasm [12, 13], nucleus/cytoplasm [14]
or anterior/posterior [15, 16]. It may produce the formation of spatial gradients
in metabolic reactions. The formation of biochemical gradients may induce the
polarization of the cell [17], and the definition of a preference direction for a
posterior motion [18] or division [19] of a living cell.
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The equations employed for the mathematical modeling of cell polarity typically
consist in two components, a membrane protein with very slow diffusion in
comparison with a second protein which diffuses faster through the cytoplasm. The
interactions between these two components, which are highly nonlinear, produce
a Turing-like instability of the homogeneous solution [20-22] or a wave-pinning
dynamics due to the frustration under bistable conditions of the wave between both
stable solution due to a mass-conservation condition [19, 23-25].

Here, we derive from the basis dynamics of enzymatic reactions a reaction-
diffusion system of three equations representing the concentrations of the same
protein at the membrane, phosphorylated and dephosphorylated in the cytoplasm.
A similar set of equations have been previously successfully employed for the
modeling of experimental observations on protein translocation results in an insulin-
secreting cell [26, 27].

This chapter is organized as follows, first we review in Sect.2 the derivation
of the simplest model on reciprocal covalent modification composed by the phos-
phorylation and dephosphorylation processes. Second, we introduce in Sect. 3 the
effects of compartemization and the effects of saturation at the membrane where the
large amount of membrane proteins restricts the accessible area. Finally, in Sect. 4
the transport by diffusion is incorporated to the model of the biochemical reactions
to generate the final reaction-diffusion model. The different mechanisms of pattern
formation are described and analyzed.

2 Modelling Enzymatic Kinetics

The basis of any enzymatic reaction is the fast conversion of a substrate S into a
product P. One is tempt to consider the next linear conversion

S+E—P+E; (1)

for the modeling of an enzymatic reaction, see the simple sketch in Fig. la of
the reaction in Eq. (1). The velocity of reaction, which corresponds to the rate of
production of [P], has a simple linear relation with the concentration of the substrate
and it is linearly proportional to the concentration of the enzyme:

S = HENS) @

J[P]

t
where k is the rate of the reaction in Eq. (1). This simple dynamics holds when the
number of substrate molecules is small in comparison with the capacity of enzymes
to induce the reactions. If the number of substrate molecules is large, there is a delay
due to the lack of available enzymes to perform the reaction. In this case the linear
approximation shown in Eq. (1) is not correct.
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Fig. 1 (a) Sketch of the conversion of a substract into a product through a linear reaction.
(b) Sketch of the conversion of a substract into a product through an enzymatic reaction. (c)
Dependence of the velocity of reaction in the concentration of the substract for the two types
of reactions

2.1 Michaelis-Menten Model

Although the number of enzymes is the same before and after a reaction event, it
participates in the reaction. Enzymes change the structure of the substrate to enhance
the affinity to generate the product. We consider an intermediate step: the enzyme
reacts with the substrate giving rise to a complex molecule C. This complex state
may react and give rise to the product together with the original enzyme, however,
there is a small probability than the complex C reacts in the opposite direction giving
rise to the substrate and the enzyme. The three reactions together read:

S+E<= C—P+E; 3)

and a schematic description of the reaction is shown in Fig. 1b. If we apply the law
of mass action to the three reactions we obtain that the four concentrations follow

[5]:

% = k. [C] — ki [S)[E,

9

% = (k-1 + k2)[C] = k[S][E],

% — —(key + k2)[C] + ki [S]IEL,

Pl )

W = kZ[C]v (4)

where ki, k—; and k; are the reaction rates for the three reactions shown in Eq. (3).
Note that the total number of enzymes [C] + [E] = [Eo] is conserved and that the
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product is removed immediately from the system and, therefore, the reverse reaction
C < P + E is not considered.

Assuming a quasi-steady approximation d[C]/dt = 0, the steady concentration
of the complex C is derived from the equation of its evolution:

[S][Eo] |

Cl=——; 5
= )
where we have defined

k_ k

K = g; (©6)

ki

which can be used in Eq. (4) to obtain the velocity of reaction as function of the
concentration of the substrate:
d[P] [S]

W =k [Eo]m; (7)

within the condition [S] < K we recover the prediction of the linear model, compare
with Eq.(2) using k = k[Ey]/K. For large values of the substrate concentration,
[S] > K, the velocity of the reaction saturates to a maximum velocity V., =
kz[Eo]. For a comparison between the linear and the Michaelis-Menten models see
Fig. 1c. While both types of dynamics coincide for small concentrations of the
substrate, they differ for intermediate and large values.

2.2 Goldbeter-Koshland Model

There are multiple examples of enzymatic reactions in cell biology, but two of
the most characteristics are the phosphorylation and dephosphorylation of proteins.
They are close related because the product of the first is the substrate for the second
reaction and the product of the second is the substrate for the first reaction. The
protein develops a reciprocal covalent modification [7].

The Goldbeter-Koshland model incorporates the enzymatic dynamics to the
mechanism of phosphorylation and dephosphorylation. Therefore, assuming
Michaelis-Menten dynamics for both enzymes we arrive to the next set of
biochemical reactions:

M + Kin = C; — M, + Kin; 8)

for the phosphorylation by an enzyme Kinase Kin of a protein M into a phosphory-
lated protein M), and

M, + Phos == C; — M + Phos; ©)]
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Fig. 2 Sketch of the reciprocal phosphorylation-dephosphorylation process of proteins. An
enzyme kinase binds to the unphosphorylated protein to add a phosphate group. An enzyme
phosphatase binds to the phosphorylated protein to remove the phosphate group

for the dephosphorylation by an enzyme phosphatase Phos of a protein M,. An
sketch of both reactions is shown in Fig. 2.

Finally, the evolution of the concentrations of the two types of proteins M and M,
can be expressed with two nonlinear equations after the assumption of quasi-static
conditions for both complex d[C;]/d, = 0 and 9[C;]/9d; = O:

MM M,

o - 9%+ K 1w
M ()

o K+ M K+ (M) {10

with G; = k;[Kin] and G, = k4[Phos] for the kinase and phosphatase controlled
reaction rates, and K| = (k—; + k) /k; and K, = (k—3 + k4)/k3 for the equilibrium
reactions. Furthermore, the total number of proteins is conserved: [T] = [M] 4 [M,].

The steady state condition is obtained when d[M]/dr = O or equivalently
d[M,]/0t = 0. For a given set of parameter values only a single combination of
values [M] and [M,] is possible. It means that there is only a single solution.

With the tuning of a control parameter we may obtain large changes in the
response. It permits the definition of two activation states. In this case, we consider
G as control parameter (equivalent analysis is possible with G,), see for example
Fig.3. Two different states are obtained corresponding to high concentration of
[M] or to high concentration of [M,]. Depending on the relative activity between
the kinase and the phosphatase, see Fig. 3a, b, the solution of the steady state can
be very different, see Fig. 3c—d. More important, the transition between these two
states is not gradual but abrupt, a small change on the control parameter G implies
a big change in the response. This particular dynamics is employed to explain the
activation of certain proteins in cell biology. For example, in the case of Fig. 3, if we
assume that the active form of the protein is M,, for a value of G; = 9 (low values
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Fig. 3 (a) Sketch of a high rate of phosphorylation of a protein (large value of G). (b) Sketch of a
low rate of phosphorylation of a protein (low value of G). (¢), (d) Dependence of the equilibrium
concentration of the inactive (c) and the active (d) version of the protein in the value of the rate G,
for different values of the total concentration of protein (I’ = [M] + [M,])

of [kin]) the concentration of M), is small, however, if there is a slightly increase of
[kin] the parameter G; changes (G; = 11) and the concentrations of M), strongly
increases, which is the activate state in this example.

2.3 Bistability and Complex Dynamics in Protein Activation

The Goldbeter-Koshland mechanism produces a monotonic dependence on the
response. Although the abrupt change in this dependence can be use as activation
mechanism in cell signalling, more complex dynamics are needed for the explana-
tion of some other observations in cell biology [2].

Interactions among enzymes, substrates and products may induce a bistable
switch [13]. For example, a positive feedback of the phosphorylated protein M,
in the enzyme kinase, modifies the Michaelis-Menten kinetics into a system with
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higher order terms:

oy M) M) M)
o - 9% 1 (1 AT [Mp]) M TAL
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- 0% (”AKBHMA) “trmg MY

which induces bistability for a wide parameter range.

Although this interaction are observed in some experimental cases, equivalent
terms are also obtained due to a saturation at the different compartments of the cell,
as we discuss in the following sections.

3 Spatial Aspects of Enzymatic Kinetics

The interior of living cells is outside of the well-mixed approach because the
cytoplasm is heterogeneous. Therefore, the concentrations of enzymes and proteins
are not be homogeneous. Proteins may have tendency to accumulate in some parts
of the cell. A typical example of this heterogeneous distributions is the effect of
membranes. Enzymes can interact with the membranes and accumulate, for example
in opposite regions of a bacteria [16], see Fig. 4a. A different case corresponds to the
accumulation at the membrane of only one type of enzyme, for example the kinases
in Fig. 4b, such inhomogeneous distribution induces a gradient between the interior
and the exterior of the cytoplasm [13].

On the other hand, the spatial location of the protein implies important limitations
in the protein distribution. For example, the space at the membrane is limited
because of the high density of proteins and structures.

Fig. 4 Inhomogeneous affinity of enzymes. (a) Location of kinases and phosphatases at opposite
poles in bacteria. (b) Location of kinases at cellular membrane and of phosphatases in the cytosol
in Eukaryote
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To model the effects of the compartments in the Goldbeter-Koshland mechanism,
first, we introduce a constrain related with the accessible space at the membrane
in the reaction equations for the protein concentrations. Second, we consider the
intermediate concentration to account for the time of the unphosphorylated protein
to diffuse to the membrane.

3.1 Saturation at the Membrane

The cellular membrane is a busy environment where the addition of large quantity of
a new protein may occupy an extended region of the available area at the inner part
of the membrane. It incorporates an extra constrain in the modeling of the dynamics
of the protein concentration because the saturation of the membrane prevents the
binding of new proteins from the cytoplasm.

3.1.1 Membrane-Controlled Binding

If the concentration of protein at the membrane approaches the saturation concentra-
tion, the binding rate decreases to zero. Assuming that the concentration of kinases
is low, we renormalized the binding rate G, with a factor which accounts for the
available space.

I[M] [M] ( [M] ) [M,]
=-G Gll-—= ) —"—,
o ke T ) Ko+ )
oM, p ( M ) ]
TR a7 S S 7R ) b 7A M
where My is the saturation concentration at the membrane. If [M] = [Mj] the

membrane is full, the prefactor (1 — [M]/[Ms]) is zero, and new proteins cannot
bind to the membrane.

The linear stability analysis of Eqgs. (12) shows the existence of three different
solutions. However, for a give value of the control parameter G; only one of the
three solutions is stable. Therefore, there is a monotonous behaviour on the control
parameter, see Fig.5a. In the limit G; — O the concentration of proteins at the
membrane approaches to [M] = T for T < [Ms], e.g. all the proteins are at the
membrane, or to [M] = [Ms] for T > [Ms], because not all proteins can bind to
the membrane. In the opposite limit, large values of G;, the membrane is empty
M] = 0.
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Fig. 5 Dependence of the physically relevant solution ([M]y) of Egs.(12) (a) and of the two
physically relevant solutions ([M]; and [M],) of Egs. (13) (b) of the inactive version of the protein
in the value of the rate G, for different values of the total concentration of protein (T = [M]+[M,]).
Dashed lines correspond to unphysical or unstable solutions

3.1.2 Membrane-Controlled Reaction

A saturated membrane precludes the binding of all types of proteins including
the enzymes. The high concentration of membrane-bound proteins incorporates an
additional constrain to the binding of the kinase at the membrane. In such case,
the unbinding rate of M, related with the enzymatic reaction leaded by the kinase,
incorporates an equivalent constrain term than the binding rate, see the following
set of nonlinear equations for the concentrations:

W (1 By D (1 )

ot Ms] ) K1 + [M] Ms] ) K, + [M,]’
oM, M\ [M] M\ M,
TR (1 B m) K+ (1 B m) Sty

where Mj is the saturation concentration at the membrane. The high concentration
of proteins at the membrane inhibits both binding and unbinding by phosphorylation
of proteins.

The linear stability analysis of Eqgs. (13) reveals the existence of two physical
solutions. One of the solutions corresponds to the complete saturation of the
membrane with [M], = Mjs. Increasing the control parameter G, the complete
saturation condition becomes unstable and the new stable solution with [M]; < Mg
decreases to [M]; = O at large values of G;. The combination of the two stable
solutions produces a monotonous response and no bistability is obtained.
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In Fig. 5b three cases are studied for different values of T, keeping My = 1. If
T < 1 there is a unique solutions [M]; for all the values of Gj. In this case, for
G < 10 the value of [M]; saturates to M = T. Such saturation is unphysical for
T > 1 and the solution M = T is not possible. In this case, the second solution
[M], = Mg = 1 is stable for G; < 10 and exchanges stability with the solution
[M], at G; = 10. For large values of G, the solutions [M], = Mg is not stable, see
Fig. 5b.

3.2 Cytosolic Diffusion

The models previously discussed relate unphosphorylated proteins to the membrane
and phosphorylated proteins to the cytoplasm. With these assumptions we neglect
the concentration of phosphorylated proteins at the membrane and unphosphory-
lated proteins in the cytosol. The first assumption seems adequate because there is
an immediate lose of affinity of the proteins to the membrane after phosphorylation.
However, after the dephosphorylation reaction the resulting protein needs to diffuse
to the membrane and the binding to the membrane is not immediate. A third
concentration of unphosphorylated cytosolic protein [M,] can be considered.

In summary, the protein is translocated from the membrane when it is phospho-
rylated by a kinase. Back in the cytoplasm, the translocated proteins are dephospho-
rylated by a phosphatase. The resulting unphosphorylated proteins diffuse and bind
again at the membrane. These three processes give rise to a cyclic dynamics, see
Fig. 6. We derive the next set of equations for the three concentrations:

M) _ _ My M) _ My
- O (1 [Ms]) Kt O (1 [Ms]) e,

W)y (- ) B, )

ot Mgl ) K+ M] K, + [M,]’
ol (M )
TR (1 [Ms]) M+ G ) (1

where G3 is the binding rate to the membrane of the cytosolic proteins. We assume
that the affinity to the membrane is linear on [M,] and it is penalized by a possible
saturation of the membrane. Note also that the total number of proteins is conserved
[M] + [M.] + [M,] = T, giving rise to a mass-conserved model [25].

The linear stability analysis of Eqgs. (14) shows the simultaneous existence of
three different physically relevant steady solutions for a window of values of the
control parameter. There is non-monotonous dependence on the parameter G; and
bistability appears, see Fig.7.



T4 S. Alonso

Cytosol Phos

Fig. 6 Cyclic dynamics of the protein, from the membrane to the cytoplasm, phosphorylation, and
from the cytoplasm back to the membrane
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Fig. 7 Dependence of the physically relevant solutions of the inactive version of the protein in the
value of the rate G; for different values of the total concentration of protein (I' = [M] + [M,] +
M.]):T=0.8(), T=1.2(b),and T = 1.4 (c). Solid and dashed lines correspond, respectively,
to stable and unstable solutions. Gray areas mark region of bistability where two possible values
of [M] are stable

For a total number of proteins below the saturation value 7 < [M;] there is only
one solution and its dependence on G| is monotonous, see Fig. 7a. The concentration
at the membrane decreases to zero for large values of G;.

For T > [Mj] a new solution is possible. It consists in a completely saturated
membrane, full of proteins [M] = [M;], and the excess of proteins are located in the
cytoplasm, see Fig. 7b, c. It produces a bistable condition for a window of values of
the parameter G,. The saturation condition for the membrane is not stable for large
values of Gy, see Fig.7b, c.
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4 Reaction-Diffusion Model of Phosphorylation
and Dephosphorylation of Proteins

Now, we explicitly consider the spatial distribution of the proteins with the use of
spatio-temporal equations for the three concentrations. We take into account the
diffusion (D,) of the unphosphorylated (M.) and phosphorylated (M),) proteins at
the cytoplasm and the diffusion of the unphosphorylated bound proteins at the
membrane (D,,). The set of reaction-diffusion equations read:

A[M) [M] [M] [M]
o =0 (1= gy 7 i O (1 g )+ 92w

oM, _jM) M )
ot Ms]) K+ M] K, + [M,]

oM. [M]
at—‘@@‘@a

— 61 + V- DY)

[M,]
K2 + [Mp]

) M.] + G, + V-D.V[M]; (15)

where the diffusion of the proteins in the cytosol is higher than at the membrane
(D), << D.). The characteristic values of the diffusion coefficient in the cytosol are
around two orders of magnitude larger than the value of a equivalent molecule at the
membrane [28].

For the integration of Egs. (15) we have to define adequate boundary conditions.
One possibility is the use of non-flux boundaries in a one-dimensional approach of
the cell, see Fig. 8a. This type of models are commonly used for the description of
cell polarity [19, 20, 23, 25]. We employ this model for the calculation of the linear
stability analysis in Sect.4.1. On the other hand, we can employ the cell membrane

a)
| I - TR - Y < . ! - 5, O —
% ) Y e o ® o O
One dimensional model
b) Living cell

Living cell Two dimensional

model

Fig. 8 Geometry reduction for the implementation of the model on Pattern formation inside
living cells. (a) Reduction to a simple one dimensional geometry using to different values for the
concentration at the membrane and in the cytoplasm. (b) Simplification of the cell to symmetric
two-dimensional geometry with no-flux boundary conditions and binding to the membrane
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as boundary conditions in a two-dimensional domain, see Fig.8b. Such type of
models has been employed to simulate insulin-secreting cells [27] and in polarity
of yeast cell [21]. We use such approach to perform the numerical simulations
appearing in Sects. 4.2 and 4.3.

4.1 Linear Stability Analysis

The number of homogeneous solutions depends on the parameter values. Changing
the parameters 7 and G, two different zones appear: a region where a single solution
is possible and a region where three solutions appear. To study its stability we
calculate the linear stability analysis of Eqs.(15). For a particular homogeneous
steady state, composed by the concentrations [M]o, [M.]o, and [M)]y, we introduce
a perturbation:

[M] = [M]o + (M)e” 1,

M.] = [M.]o + ((SMC)ewt—i_ikxv

[M,] = [Mplo + (My)e” ™, (16)
and evaluate if the perturbations grow or decrease with time using Eqgs. (15). The
variable w is the growing rate and indicates the stability of the solution to small
perturbations.

The results of the linear stability analysis of Eqgs.(15) is plotted in Fig.9. It
shows a region where only two of the three solutions are stable (bistability),

Bistability

I Long wave instability with D =2D |

0,5 [ Long wave instability with D =10D = —
I [ ong wave instability with D=50D
0 1 L 1 L 1 L 1 L 1 L
0 10 20 30 40 50 60

G,

Fig. 9 Analytic phase diagram of the reaction-diffusion system, see Eqs. (15). The linear stability
problem of the homogeneous solutions is solved in the parameter space defined by G; and T for
three different ratios D,, /D,
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corresponding to the situation described in the previous Sect. 3.2, and a region
where the unique physically relevant solution is unstable due to a long-wave
instability. This instability produces spontaneous domain formation and, because of
the conserved protein concentration, the posterior coarsening into a reduced number
of domains.

While bistability is independent of the diffusion coefficients, the long wave
instability appears initially at a given value of wavenumber which will depend on
the quotient D,,/D,.. The area of the phase diagram where the solution is unstable
changes with the diffusion as it is shown in Fig. 9 for three values of the quotient
D,/ D.

Two different types of pattern formation, with different dynamics, are expected
depending on the parameter values. Next we analyze separately both mechanisms.

4.2 Long-Wave Instability

For the parameter values inside the region of long-wave instability, a one-
dimensional system, see Sketch in Fig. 8a, spontaneously develops the formation of
domains as predicted by the linear stability analysis. If we change the symmetry of
the integration domain, see Sketch in Fig. 8b, the linear stability analysis shown in
the previous section cannot be applied directly. However, it is known [26] that the
parameter values can be renormalized considering the size of the two-dimensional
cytoplasm in comparison with the one-dimensional membrane.

Numerical simulations for a convenient choice of the parameter values are
shown in Fig. 10. First, the spatio-temporal plot in Fig. 10a shows the evolution
of the concentration of membrane-bound proteins. From an initially homogeneous
condition with a small spatially distributed random perturbation, two evolving
maxima appear. While one of the domains grows the other one decreases, and
finally, only one single large domain survives. Such competition among the domains
is a typical signature of coarsening.

In panel (b) of Fig. 10 the initial condition is plotted, an homogeneous concentra-
tion with a small random perturbation around the unstable value. Two-dimensional
panels with the distribution of free protein concentration and phosphorylated
concentration at the membrane and in the cytosol are also shown.

In the other two panels (c) and (d) of Fig. 10 the spatial distributions of the
concentrations are shown at two different times. Note that the concentrations of
[M]. and [M],, are complementary: large (small) values of [M]. coincide with small
(large) [M],. Furthermore, [M], accumulates in the region of the cytoplasm close to
regions of the membrane where no proteins are bound.
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a) b) Profile [MIm [M]c [(Mlp

Fig. 10 Pattern formation by the a long wave instability mechanism. A circular domain is
employed, representing the interior and the membrane of a living cell. (a) Spatio-temporal plot of
the concentration of membrane-bound protein. (b)—(d) Profiles of the membrane protein and spatial
distribution of the membrane-bound, cytosolic unphosphorylated and phosphorylated protein at
times: t = 0 (b), t = f;5,/2 (¢), and 1 = 1, (d), where f,,, is the total time of the numerical
simulation
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4.3 Bistability-Induced Instability

Numerical simulations in the bistable region of the parameter space produce
similar final domains than numerical results shown in the previous section, see a
representative example in Fig. 1 1. However, the mechanism and the conditions are
different. Under bistability the two homogeneous solution are stable, and, therefore,
an small perturbation of the homogeneous solution decreases, and eventually, the
homogeneous condition is recovered.

However, if the two solutions are connected by a front, see Fig. 11b, it moves as
it is shown in the spatio-temporal plot in Fig. 11a. In contrast to a classical bistable
system, here there is a mass-conserved condition which precludes the complete
translocation to the membrane of the proteins in the cytoplasm. Finally, the two
solutions are separated by an pinned wave [23], see Fig. l1c, d.
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Fig. 11 Pattern formation by the bistable-induced mechanism. A circular domain is employed,
representing the interior and the membrane of a living cell. (a) Spatio-temporal plot of the
concentration of membrane-bound protein. (b)—(d) Profiles of the membrane protein and spatial
distribution of the membrane-bound, cytosolic unphosphorylated and phosphorylated protein at
times: t = 0 (b), t = f;5,/2 (¢), and 1 = t,,, (d), where f,,, is the total time of the numerical
simulation

5 Conclusions

We employ an extended version of the classical Goldbeter-Koshland model on
covalent modification in biological systems for phosphorylation and dephosphory-
lation of proteins. From a simple activation model based in two opposite enzymatic
reactions following Michaelis-Menten kinetics, we have generated a scenario for
pattern formation in the interior of a living cell. The mechanism is based on
the different localization inside the cell of the two enzymatic reactions: while
phosphorylation only occurs at the membrane of the cell, the opposite reaction
occurs in the cytoplasm. After dephosphorylation the resulting proteins diffuse to
the membrane where they bind and the cycle can start again.

We analyze two different mechanisms of pattern formation for protein at
membranes: A long wave instability and a bistability-related mechanism, previously
described in models of cell polarization [20] and [23] respectively. The conditions of
the model to fulfill the requirements for pattern formation are simple and generic:

* Difference on the diffusion coefficients. The first important condition is the large
diffusion in the cytoplasm in comparison with the diffusion in the membrane
D, > D, [28]. This constrain is naturally achieved by living cells where
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diffusion of proteins in the cytoplasm is estimated to be around D, ~ 1 —
10 wm?/s [29], while membrane diffusion coefficient of proteins in mammalian
cells has been estimated to be D,, ~ 0.1 wm?/s [30].

» Compartmentalization of the reaction. The separation of the two enzymatic
processes in two different compartments of the cell (phosphorylation at the
membrane and dephosphorylation in the cytoplasm) introduces a delay between
dephosphorylation and the re-binding of the protein to the membrane. This
temporal delay accounts for the diffusion time of the proteins in the cytoplasm.

* Mass-conservation. The conservation of the total number of proteins is an
important condition for the bistability-related mechanism, this constrain stops
the bistable front going from the metastable to a stable solution [23].

Similar extensions of the Goldbeter-Koshland mechanism may be applicable to
a large variety of biological systems. Phosphorylation by kinases regulates multiple
processes in living cells, e.g. the formation of polarity of cells induced by PAR
proteins [19], the cyclic dynamics of Rho GTPases [20] or the regulation of the cell
division of E. Coli controlled by the Min proteins [31].

The approach described here has been employed in the modeling of the
myristoyl-electrostatic switch [32] composed by a cyclic binding and unbinding
dynamics of the myristoylated alanine-rich C kinase substrate proteins (MARCKS).
After phosphorylation of MARCKS proteins by protein kinase C (PKC), MARCKS
proteins lose their affinity to membranes. The phosphates reduce the positive charge
of the protein and cause the unbinding from the membrane. In the cytoplasm,
phosphatases remove the phosphates from the protein and, consequently, MARCKS
can bind again at the membrane. This system has been recently described in terms
of mass-conserved reaction-diffusion equations [26, 27] and the resulting equations
have been employed for the calibration of the binding of the MARCKS at lipid
monolayers [33, 34].

In our approach stochastic effects due to a low number of proteins have been
neglected. The typical large concentration of proteins in cells permits the use
of deterministic dynamics, however, the concentration of enzymes is smaller and
stochastic effects may become relevant. The use of a stochastic model may enhance
domain formation [35, 36].

Living cells are three-dimensional and future models will take this condition
into account. The mechanisms are, however, equivalent at different levels of spatial
complexity. One-dimensional approximation is employed to calculate linear stabil-
ity analysis and identify the instabilities. The two-dimensional view is, however,
sufficient to perform numerical simulations and describe proteins concentrations
at the membrane and in the different regions of the cytoplasm, see Figs. 10
and 11. Such two-dimensional modeling considers the cytoplasm volume and
diffusion orthogonal to the membrane. The proteins can diffuse from the membrane
and are, hence, diluted near the membrane. As the cytosolic volume increases,
the concentration of proteins close to the membrane decreases and the binding
process is affected. However, the change of the cytosolic volume is equivalent to
a renormalization of some of the reaction rates in the model [26].
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In summary, we have developed a simple model of binding, phosphorylation

and desphosphorylation for membrane proteins, which predicts the spontaneous
appearance of domains of high protein concentration at the membrane of living
cells.
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An Introduction to Mathematical and Numerical
Modeling of Heart Electrophysiology

Luca Gerardo-Giorda

Abstract The electrical activation of the heart is the biological process that
regulates the contraction of the cardiac muscle, allowing it to pump blood to the
whole body. In physiological conditions, the pacemaker cells of the sinoatrial node
generate an action potential (a sudden variation of the cell transmembrane potential)
which, following preferential conduction pathways, propagates throughout the heart
walls and triggers the contraction of the heart chambers.

The action potential propagation can be mathematically described by coupling a
model for the ionic currents, flowing through the membrane of a single cell, with
a macroscopical model that describes the propagation of the electrical signal in the
cardiac tissue. The most accurate model available in the literature for the description
of the macroscopic propagation in the muscle is the Bidomain model, a degenerate
parabolic system composed of two nonlinear partial differential equations for the
intracellular and extracellular potential. In this paper, we present an introduction
to the fundamental aspects of mathematical modeling and numerical simulation in
cardiac electrophysiology.

1 Introduction

Cardiac-specific diseases account for 700,000 deaths each year in Europe, half of
this mortality being due to heart failure (ineffective contraction, principally due
to ventricular dyssynchrony). The other half of cardiac mortality occurs suddenly,
essentially due to ventricular tachyarrhythmias. Although the vast majority of these
cases is associated with chronic cardiac disease, sudden cardiac death can also
occur in seemingly healthy and sometimes very young people. Knowledge about
the underlying causes and options for diagnosis and prevention is still very limited.
Still, with six million individuals suffering from atrial fibrillation, nine million
people affected by heart failure, and 350,000 sudden deaths every year, the human
and economic burden of cardiac electrical diseases skyrocketed in Europe. The
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estimated annual direct costs for the health care system in Europe is topping 1100
billion Euros.

The contraction of the heart is orchestrated by a complex mechanism of electrical
activation. As a consequence, an important part of heart failure occurrences is
caused or aggravated by electrical dysfunctions, and heart electrophysiology has
become in the recent years the subject of a vast interdisciplinary literature, from
medical sciences through bio-engineering, physiology, chemistry and physics.

The electrical activity of the heart as a whole is characterized by a complex
multiscale structure, ranging from the microscopic activity of ion channels in the
cellular membrane to the macroscopic properties of the anisotropic propagation
of the excitation and recovery fronts in the whole heart. Cardiac arrhythmias are
complex disruptions of this organisation.

Cardiac cells, called myocytes, are a particular type of excitable cells. At resting
condition, they feature a negative transmembrane potential, resulting from the
difference between internal and external concentrations of charged ions ([Na]™t,
[K]T, [Ca]™™). A small change of the cell’s environment from its rest state
produces a very fast depolarization, followed by a slower repolarization process
towards the resting state. This cellular activity is called Action Potential (AP),
and is mathematically described by an ionic ODE model which is the basis of
dynamic behaviour in the model. Modern detailed ionic models take into account
transmembrane current flows, intracellular calcium handling, and can include
energetics and force production [8, 41].

Higher levels of complexity govern the propagation of the electrical impulse for
optimal contraction at the tissue and organ levels. The global activation sequence
of the heart follows from the physical organization of a special conduction network
that is essential for the synchronization of the whole heart. In healthy conditions,
atria and ventricles are electrically insulated from each other and are connected
only through the atrioventricular node (AV). The AP originates in the sinoatrial
node (SA), propagates in the atria through Bachmann’s bundle, it is modulated in
frequency by the AV, and proceeds to the ventricles, where the His-Purkinje system
(PS) provides a preferential pathway for the AP to propagate through the lower
chambers.

The difficulty in having access to direct measures on real patients fueled the
interest in mathematical modeling and numerical simulations, which have been
supporting cardiovascular science for more than 20 years. In this respect, cardiac
modeling in medicine has significantly evolved in the recent decades, providing the
best and highly detailed mathematical description of any organ system in the body.
Many fundamental insights have been gained from in-silico experiments [65], even
ahead of experimental evidence [55]. Numerical models and fast dedicated solvers
already exist and allow in-silico exploration of the mechanisms underlying these
pathologies at the cost of large-scale simulations.

If on the one hand, modern imaging techniques, such as high-resolution magnetic
resonance imaging (MRI), allows high level of accuracy in the description of both
the microstructure of the tissue and the global anatomy of the organ, current mathe-
matical models are based on a formalism (the Bidomain equations, [16, 38]) whose
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derivation is based on a very simplified geometry with respect to the nowadays
available structural data. The heart is, in fact, a collection of interconnected excitable
tissues, each of which has specific modelling requirements.

Each of these tissues is a complex network of cardiomyocytes connected to each
other by gap-junctions, together with other types of cells (fibroblasts) and collagen.
APs propagate from cell to cell, resulting in AP waves at the macroscopic tissue
scale. From a mathematical standpoint, a multiscale technique allows to model the
tissue, at the macroscopic level, as a continuum where the intra- and extra-cellular
media are superimposed and the corresponding potentials are the solutions to a
system of degenerate partial differential equation of reaction-diffusion type coupled
over space with the system of ODEs (the ionic model). Such model is known as
the Bidomain system of equations. In this model, the anisotropies of the intra-
and extra-cellular conductivities differ. In case of an insulated tissue and under the
so-called equal anisotropy ratio assumption, the system reduces to a single reaction-
diffusion equation: the Monodomain equation. The Monodomain equation is no
longer degenerate, thus far cheaper to solve numerically [34].

The numerical approximation of the Bidomain model is often based on a finite
element discretization in space and on implicit-explicit time advancing schemes
(IMEX): the ionic variables are advanced to the current time step, and inserted in
the nonlinear term, while the latter one is then linearized around the value of the
membrane potential at the previous time step. The degenerate parabolic nature of
the Bidomain system, however, entails a very ill conditioning for the linear system
associated to its discretization. From the mathematical and numerical standpoint,
many efforts have been devoted in the recent years to set up efficient solvers and
preconditioners to reduce the high computational costs associated to its numerical
solution [4, 15, 44, 47, 62, 63]. Many proposed preconditioning strategies have
been based on multigrid approaches [45, 54, 64] or suitable approximations of the
equations [22, 24]. Among these works, most are based on a proper decomposition
of the computational domain in order to set up parallel preconditioners, or on
suitable multigrid schemes still coupled with parallel architectures [42, 60]. In
particular, a Classical Schwarz Method coupled with a multigrid approach has been
proposed in [43], while an Optimized Schwarz method has been introduced in [23].
The stiffness of the problem, due to the presence of a steep propagation front, led
to the introduction of adaptive schemes, in both time [46], and time and space
[7]. Another approach has been aiming at a simplification of the original problem,
by using a somehow optimized Monodomain model [39], and by developing
model adaptive techniques, where the costly Bidomain model is replaced by the
Monodomain one (or an extended version of it) far from the depolarization front
and the recovery tail of the action potential [23, 25, 26]. In the rest of the paper we
provide a general survey of the mathematical and numerical aspects of the cardiac
electrophysiology modeling. Section 2 is devoted to the modeling of an excitable
myocardial cell, and some ionic models are presented: a phenomenological one, a
model for atrial myocytes and a model for ventricular ones. In Sect. 3 we present a
derivation of the macroscopic Bidomain model for propagation and its simplified
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version, the Monodomain. Section 4 provides an introduction to the numerical
approximation of both Bidomain and Monodomain models.

2 Mathematical Modeling of an Excitable Myocardial Cell

The basic property of neural cells to produce signals is called Action Potential
(AP). It consists of a sudden variation in the transmembrane potential, called
upstroke, followed by a recovering of the resting condition. It shows different shapes
and amplitudes according to the different kind of excitable media to which the
cells belong to, and in the large muscle cells makes it possible the simultaneous
contraction of the whole cell. An action potential propagates keeping the same shape
and amplitude all along an entire neural or muscular fiber. The Action Potential
propagates across the heart in an heterogeneous way. The pulse moves from the
Sinoatrial Nodus (SA), and propagates through the ordinary myocardic fibers of the
right atrium, while the Buchmann’s bundle drives the pulse towards the left atrium.
Some action potentials propagate downwards and reach the Atrioventricular Nodus
(AV), which is, under normal conditions, the only gate for the pulse to propagate
from atria to ventricles, where the conduction is quicker (4 ms™! versus 1 ms™").

Cardiac cells are characterized by a transmembrane potential that is negative at
rest, owing to the fact that the concentration of potassium ions [K™]; inside the
cardiac cell is remarkably higher than the outside concentration [K™],, and show
two kinds of action potentials: the quick and the slow response.

The quick response is typical in the myocardium fibers (both atrial and ventric-
ular) and in the Purkinje fibers, which are fibers specialized in the conduction. The
quick response cells are characterized by a negative transmembrane potential at rest
(around —90mV), and by a rapid depolarization (positive overshoot), where the
potential difference changes sign and the internal potential overtakes the external
one of around 20 mV: such phase is called Phase 0. Immediately after that (Phase 1)
a short period of partial repolarization takes place, followed by a plateau (Phase 2)
which lasts for around 0.2 s. The potential gets progressively more negative (Phase
3) until it reaches again the resting value. The repolarization procedure is far slower
than the depolarization one, and the interval between the end of the repolarization
and the next action potential is called Phase 4.

The slow response is the one taking place in the Sinoatrial Nodus (SA), the
natural pacemaker of the heart, and in the Atrioventricular Nodus (AV), the tissue
meant to transfer the pulse from atria to ventricles. The slow response cells are
characterized by a resting potential less negative (around —50mV), by a smaller
slope and amplitude in the overshoot of the action potential, by the absence of the
Phase 1, and by a relative refractory period that continues during Phase 4.

From the modeling standpoint, the electrical activity in myocytes is characterised
by transmembrane ionic currents and voltage changes, whose temporal dynamics are
governed by the presence of various players at the molecular level (ion channels,
pumps, concentrations), as well as many different proteins (such as transporters)
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that are spatially organized at the cellular scale to generate action potentials (AP).
The cell membrane is modeled as a capacitor separating the intra- and extra-
cellular media, two ionic solutions. In the framework of Hodgkin-Huxley (HH)
formalism [28], state variables are associated with the membrane potential, ionic
concentrations, and molecular actors such as gating variables, which handle opening
and closing of ionic channels. The system dynamics is thus described by a set
of differential equations which depend on time, voltage, ion concentrations and
the gating variables. Some recent models include additional differential equations
to describe calcium regulation within the cell and possibly mitochondrial activity
or force generation. Ionic models consist generally of 10-50 ODEs [57], but if
molecular actors are modelled by Markov processes, such number can grow up to
100 ODEzs, [29]. These systems are highly nonlinear and extremely stiff because
of the large range of time-scales necessary to represent the various phenomena
involved (from 100 ms to 1 s).

The earliest model for AP appeared in the work on nerve action potential by
Hodgkin and Huxley [28], which earned them the Nobel prize in Medicine in
1963. Models of this type have successively been developed for the cardiac action
potential, where the variation in time of the membrane potential # (under the
assumption of an equipotential cell) is given by

du
Cm E = _Iion(uv W) + ISl‘a (1)
where I;,, and I, are the total ionic current and stimulus current across the
membrane, respectively, and C,, is the total membrane capacitance. In (1) the
ionic current through the channels in the membrane depends on the transmembrane
potential u and on M gating and concentration variables w € RY:

N M
Tion(u, w) = Y~ Ge(w) [ [w™ (u — Ex(w)),

k=1 j=1

Gi(u) being the membrane conductance, Ej; being the reversal potential for the
kth current and pj being integers, and where the dynamics of the gating and
concentration variables is described by a system of ODE’s

C;_v: = R(u,w), w(x, 0) = wo(x). )

In such models, if w; is a gating variable, the right hand side R;(u, w) has a special
structure and the corresponding ODE is given by

dw:
L = Ryuw) = Ri(uw) = ) (1 = w)) = B (w)w. 3
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with oj(u), B;(1) > 0,0 < w; < 1. Within this formalism, the temporal variation of
a gating variable y equals the difference between the opening rate of closed gates and
the closing rate of open gates, with rates that are voltage-dependent. If we introduce
the steady state of the gating variable with the cell at rest, y*°, and the time constant
associated with the gating variable 7, defined as

1

¥ = oy (1) Ty (u) o) = oy () + By ()’
y Y

we observe that the generic gating variable y satisfies the equivalent ordinary
differential equation
dy _y* -y
dr 7,

“

Concerning the modeling of ventricular cells, the fitting of improved experimen-
tal data with more complex models led to the development of many refinements of
the original Hodgkin-Huxley model: among them, we recall the model by Beeler
and Reuter (1977, with four ionic currents and seven gating and concentrations
variables), and the phase-I Luo-Rudy (1991, with N = 6 and M = 7). In this
direction, the most used model of mammalian ventricular cells is the phase-II Luo-
Rudy (1994, [35]), which is based on measurements from guinea pig. Simpler
models of reduced complexity have also been proposed, where only 1 or 2 gating
variables are considered. In the remainder of this section we present, as an example
three ionic models: a 2 variables, phenomenological, model, a detailed model for
atrial cells, and a detailed model for ventricular cells.

2.1 The FitzHugh-Nagumo Cell Model and Its
Rogers-McCulloch Variant

The simplest ionic model for an excitable cell is the phenomenological FitzHugh-
Nagumo (FHN, [13]) model, consisting of one ionic current and one gating variable.
The latter is a simplified version of the Hodgkin-Huxley model. Assuming the
potential v to be zero at rest, the ionic current uses only one recovery variable:

3

u
Iion(M,W)ZM—?—W-FI,

where [ is a stimulus current, and w satisfies

0
—W=u+a—bw,

ot

witha,b > 0.
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0 100 200 300 400

Fig. 1 Time evolution of the membrane potential u (solid line) and the recovery variable w (dashed
line) in the FHN model (/eft) and its Rogers-McCulloch variant (right)

If the stimulus current / exceeds a given threshold, the system exhibits a spike and
recovery dynamics. In Fig. 1 (left) we plot the temporal evolution of the membrane
potential u (solid) and the recovery variable w (dashed).

An improvement of this model is given by the variant introduced in [49]
by Rogers and McCulloch, where the ionic current and the recovery variable w
dynamics are given by

u u
Lion(u, w) = Gu (1 - —) (1 - —) + niuw,
Uth Up

ow u
—_— = _— w .
5 2 " n3

where G, 11,12, 73 are positive coefficients, ug is a threshold potential, and u,
is the peak potential. If the membrane potential does not exceed the threshold
up, the AP is not triggered and the system gets back to the resting state. In
Fig. 1 (right) we report the time evolution of the potential u (solid line) and of
the gating variable w (dashed line) for the Rogers-McCulloch variant of the FHN
model.

The recovery variable w ensures that, once an AP is triggered, the system
cannot be excited again, unless a refractory period has passed. When a stimulus is
introduced, the response of the system depends on the elapsed time since its spiking:
if the recovery variable is small enough (or, equivalently, enough time has elapsed)
another AP is created, with the same shape and amplitude of the first one. If the
elapsed time does not outlast the refractory period, the generated AP can be shorter
in duration, and smaller in amplitude, or just not being triggered, in the case too
little time since spiking has elapsed.

Other all-or-nothing response models have been introduced in the literature,
among which we recall the one proposed by Panfilov, Ten-Tusscher, and col-

and
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laborators in [57]. The great simplicity of such model, and yet its ability in
capturing significant aspects of the electrocardiac dynamics, is behind its wide use
in literature. However, if on the one hand, such model is well suited to describe the
positive overshoot in the quick depolarization phase, on the other hand it provides
only a coarse approximation in the plateau and repolarization phases of the action
potential, and behaves too poorly when accuracy in the description of the action
potential is needed.

2.2 The Courtemanche, Ramirez and Nattel Atrial Cell Model

One of the most accurate models for atrial cells is the one proposed by Courte-
manche, Ramirez and Nattel, (CRN, [11]). The total ionic current for the CRN
model is given by the sum

Lion :INa+IK+ICa+Ib+Ip. (®)]

The above expression takes into account several aspects of the action potential
generation. In (5), Iy, is the fast depolarizing Na* current, while the quantity Ix
is the total rectifier K current, given by

Ix = Ix1 + Lo + Ixur + Ixr + Ixs,

where Ix; is the inward rectifier K+ current, playing a major role in the late
repolarization phase of the AP and in determining resting membrane potential and
resistance, Iy, is the transient outward KT current, Ixyr, Ik, and Ik are the ultrarapid,
rapid, and slow rectifier currents. The quantity Ic, = Ic,1 is the L-type Ca?t
current, while I, is the background current for sodium Na™ and calcium Ca?*

Iy = Iy Na + v ca-

Finally, I, collects the actions of pumps and ion exchangers, designed to put back
into balance the ion concentrations at rest:

Ip = INaca + Inak + Ip,Cav

where Inyca 18 the sodium-calcium pump, Ingk is the sodium-potassium pump, and
I, ca is the calcium exchanger.

The model handles the intracellular concentrations [Na*];, [K*];, and [Ca®T];.
The intracellular calcium buffering by the sarcoplasmic reticulum system (SR) is
described by the calcium concentrations in the uptake (NSR), and release (JSR)
compartments of the sarcoplasmic reticulum, denoted by [Ca”]up and [Ca’T ],
respectively.
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In the model, no extracellular cleft space is included, the membrane capacitance
is ¢, = 100pF, the length and diameter of the cells are set to 100 and 16 wm,
respectively, and the cell compartment volumes are the same ones used in the phase-
II Luo-Rudy model (LR2, [35]). Denoting by Ex the equilibrium potential for ion
X, and with gy its maximal conductance, from Nerst equation, Ey is given by

o _ KT [Xl
= —— 10 s
X=F %

where R is the gas constant, 7 is the absolute temperature, F is the Faraday constant,
z = 1forNa™ and KT, z = 2 for Ca®>*, and [X], and [X]; denote the external and
internal concentration of ion X.

The dynamics of the concentration variables is governed by the following
equations

dNa™];  —3Ink — 3INaca — ToNa — Ina ©)
d FV;
d[KT]; _ 2k = Ik = ho = Ixur — Ixe — Ik ™

dt FV;

d[Ca2+]i _ 2INaca — p.Ca — Icar — Ivca + Vup(lup,leak - Iup) + L1 Viel «
dt 2FV; V;

y |:1 n ;B n Vibi i|_1
([Ca®"); + B2 ([Ca*T]; + 6:)2

2+ (8)
d[Ca ]up Vel
———— = Ly — Lipjeak — Iyt 9
dt p p.leak t Vup ( )
d[Ca2+ ]rel [ arel,Brel :| !
— = Iy — 1, 1+ , 10
dr ( tr rel) ([Ca2+]r61 + ,Brel)z ( )

where V; is the intracellular volume, Vy, and Vi are the volumes of the uptake
(NSR) and release (JSR) compartments of the sarcoplasmic reticulum, ¢;, y;, and
oy depend on the total concentrations of troponin and calmodulin in myoplasm,
and of calsequestrin in JSR, while B;, §;, and B depend on their half saturation
constants, respectively. All these three proteins are responsible of the contraction of
the cell.

In (8) and (9), Lup jcax is the Ca®T leak current by the JSR, I, is the Ca’t uptake
current by the JSR, while I, is the Ca’®T release current from the JSR. Finally, in (9)
and (10), I, is the transfer current from NSR to JSR.

The model consists globally of five concentration variables and 15 gating
variables. In Figs.2 and 3 we plot the time evolution of the potential and of the
gating and concentration variables. For a more detailed description of the model we
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Fig. 2 CRN model: time evolution of the membrane potential and the concentration variables

refer the interested reader to the original paper by Courtemanche et al. [11]. Among
other popular human atrial models, we recall the ones proposed by Earm and Noble
in [12], and the one proposed by Nygren and his collaborators in [40].

2.3 The Luo-Rudy 1 Ventricular Cell Model

The Luo-Rudy Phase 1 model is among the most popular ionic model used in
literature to model ventricular myocites. It consists of six ionic currents, seven
gating variables, and one concentration variable for the intracellular calcium, whose
dynamics plays a pivotal role in the heart contraction. The total current is given by
lion = Ina + Isi + Ig + Ix, + Igp + I, (11)

where the ionic currents are given by

INa = 8Na m3 h](“ - ENa) Ixi = &si df(u - Exi)

Ix = gk ([K]e) X(u — Ex) Ik, = fi, ([Kle, u) (u — Ex1) (12)

Ixy = fx,(u) K, (u — Exp) Iy = bi(u + by).
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Fig. 3 CRN model: time evolution of the gating variables
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The calcium concentration satisfies the differential equation

d[CCl]i

i —c3lyi + ¢ (c3 — [Caly) (13)

while the gating variables are described, within the HH formalism, as

d
FV: =a,(l —w)—B,w, withw € {m,h,j,d,f,X}. (14)

In (12)-(14), I K, is the plateau current, I, is the background current, fx, and pr
are rational exponentials of the membrane potential, gx([K].) is a function of the
extracellular potassium concentration [K],, Ej; is linearly dependent on the natural
logarithm of the intracellular calcium concentration [Ca);, while gya, gsi» P1, b2, €2,
and c3 are constants determined by fitting with experimental data. In the LR1 model,
an, Bn, @j, Bj and X depend on the membrane potential u through functions that
show different behavior with respect to a threshold. In Fig. 4 we plot the temporal
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Fig. 4 Time evolution of the membrane potential, the gating variables and the [Ca]; concentration
in the LR1 model
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dynamics of the membrane potential, the calcium concentration, and the gating
variables for the LR1 model.

The LR1 model was extended, in 1994, to the Luo-Rudy phase 2 model, that
includes six ionic currents, and five ionic concentrations, which allow (as in the
CRN model for atrial cells) the calcium handling by the sarcoplasmic reticulum
in the interior of the cell. The LR2 model was further extended by Winslow in
1999, by including experimental data from a canine heart and a more detailed
modeling of the calcium dynamics, to a model featuring 25 ionic currents and six
ionic concentrations.

3 The Macroscopic Bidomain Model for Electrophysiological
Propagation

The Bidomain model is commonly considered one of the most complete and
accurate models to describe the propagation of the electrical potential in the
myocardium tissue (see e.g. [27, 50, 52]). Such model has been derived, by an
homogenization technique, starting from a periodic assembling of elongated cells
surrounded by extracellular space and connected by end-to-end or side-to-side
junctions (for the mathematical details we refer to [16, 32]). The mathematical
problem in naturally set in a bounded region £2 C R?, which represents a portion of
the heart tissue.

3.1 Tissue and Conductivities Modeling

The Bidomain model relies on representing the cardiac tissue as the superposition
of two media which are both continuous and anisotropic. The intra-cellular and
the extra-cellular media coexist at each point x € {2 and are separated by a cell
membrane. In a natural manner, the intracellular and extracellular potential are
denoted by u; and u,, respectively, while their difference u = u; — u, expresses
the membrane potential.

The conductivity of the cardiac cells depends upon their orientation, featuring
preferential pathway along gap junctions (see Fig.5, left), and in the most general
case the conductivity tensor is anisotropic. The structure of the cardiac cells can
be modeled, following Le Grice et al. [33] as a sequence of muscular layers going
from endocardium to epicardium (see also [56]). Anatomical studies show that the
fibers direction rotates counterclockwise from epicardium to endocardium and that
they are arranged in sheets, running across the myocardial wall [5, 52]. In any point
X it is then possible to identify an orthonormal triplet of directions, a;(x) along
the fiber, a,(x) orthogonal to the fiber direction and in the fiber sheet and a,(x)
orthogonal to the sheet (see Fig. 5, right, for a schematic representation). The intra
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Gap junctions

Extracellular matrix |

Fig. 5 Left: schematic representation of the fibers structure. Right: the cell reference frame

and extracellular media present different conductivity values in each direction. At
point x € £, we denote by o!(x), 6"(x), and o’ (x) with T = i, e the intra and
extracellular conductivities in the a;(x), a,(x) and a, (x) direction, respectively.

The intra and extracellular local anisotropic conductivity tensors read, for t =
i e,

D, (x) = o, (Na(x)a/ (x) + 0} (X)a,(x)a/ (x) + 0] (X)a,(x)a, (X). 15)

We assume that D, fulfills in 2 a uniform elliptic condition.

A common practical hypothesis, followed by many authors (see, e.g. [18]) is
axial isotropy: the myocardium tissue is assumed to feature the same conductivity
in both the tangential and normal direction (o/, = 07',). Under this hypothesis, the
conductivity tensors, for T = i, e, simplify in

D, (x) = o'l + (¢! — o))ay(x)a] (x). (16)

3.2 Quasi-Static Electromagnetic Field

The propagation of an action potential across the myocardium generates, at the
macroscopic level, an electrical signal that can be measured, and whose temporal
dynamics is described by Maxwell’s equations.

In a conducting body, the electrical current density is governed by Ohm’s Law,

J =DE, (17)

where D is the conductivity of the medium, and E is the electrical field.
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Faraday’s law relates the time derivative of the magnetic field with the rotational
of the electrical field:

oB
— +VXE=0.
ot

Given the temporal scale of the AP and the spatial scale of the heart, variations of
the magnetic field can be neglected, leading to the guasi-static assumption

JB
ENO == VxE=0. (18)

Since the electric field E can be assumed irrotational, there exists some potential u
such that £ = Vu, and the current in the conducting medium can then be expressed
in terms of such potential, as

J =DVu.

3.3 The Bidomain Model

The assumption of coexistence of intra- and extracellular media entails that in each
point of the domain x € £2, two currents exist and are given by

J,' = D,-Vu,- and Je = Devuev (19)
where D; and D, represent the conductivities of the intra- and extra-cellular medium,
respectively. For any given small volume V, the charge conservation principle entails
that the total current entering the volume must equal the total current leaving

it. Within our framework, this principle amounts to balance the current flowing
between the intracellular and extracellular space, as

/ n-(Ji+J.) ds=0. (20)
av

By a straightforward application of the divergence theorem, we have, for any given
small volume V, that

V-Ji+1J.) =0, 1)
and, from (19), the current balance is given by

V.-D;Vu;) + V- D;eVu,) = 0. (22)
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The current flowing from one domain to the other must equal the cell membrane
current, that is given in (1). We thus obtain

V. (D,'VM,') =-V. (Devue) =X (Cm% + Iion) (23)

where y is the surface to volume ratio of the cell.
Depending on the way the three terms in system (23) are grouped, two different
formulation of the Bidomain model emerge.

3.3.1 Parabolic-Parabolic Formulation of the Bidomain Model

By equaling the first and second terms to the third one in (23), the Bidomain model
results in a system of two nonlinear parabolic reaction-diffusion equations:

0
ACone = V- (D10) + flin = 0
(24)
0
- Xcma_l: -V (Devue) - Xlion =0.

This formulation is known in literature as Parabolic-Parabolic (PP). The problem is
completed by suitable initial conditions, and by homogeneous Neumann boundary
conditions on d£2, modeling an insulated myocardium.

The complete PP formulation of the Bidomain model reads:

0

XC’”a_L; — V- (DY) + ylion = [ in 2 % (0,T)

au ap, 3
—)(CW,E -V D.Vu,) — ylion = IJ? in 2 x(0,7)
u=u; —u, in 2 x(0,7)

(25)

ow .
E = R(u,w) in 2 x(0,7)
n’D;Vu; =0, n’D,Vu, =0 on 982 x (0,T)
ui(x,0) = u;p, u(x,0) = w9, w(x,0)=wyin £2.
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In (25), n is the unit normal outward-pointing vector on the surface. As a
consequence of the Gauss theorem, the applied external stimuli must fulfill the
compatibility condition

/ I dx = / 197 dx. (26)
2 2

System (24) consists of two parabolic reaction diffusion equations for u; and
u, where the vector of time derivatives is multiplied by a singular matrix.
The system is thus said to be degenerate. The transmembrane potential u is
uniquely determined, while the intra and extracellular potentials u; and u, are
determined up to the same function of time, whose value is usually obtained by
imposing that the extracellular potential u, has zero mean on £2 ( fg uodx =
0).

The PP formulation has been commonly used by several scientists. In particular,
this formulation has been particularly popular in theoretical studies for well-
posedeness analysis of the problem. Little is known on degenerate reaction-diffusion
systems such as the Bidomain model. We refer the reader to [16] for existence,
uniqueness and regularity results, both at the continuous and the semi-discrete level,
and to [53] for a convergence analysis of finite elements approximations. Both
papers deal with the FitzHugh-Nagumo (FHN) model of the gating system. For
well-posedeness analysis of the Bidomain problem associated with different ionic
models see [2, 3], and [61].

More results are known on the related eikonal approximation describing the
propagation of excitation front (see for instance [14, 17, 30]), and a mathematical
analysis of the Bidomain model using I"-convergence theory can be found in [1].

3.3.2 Parabolic-Elliptic Formulation of the Bidomain Model

By equaling the first term to both the second and the third one in (23), and using
the fact that u; = u + u,, the Bidomain model results in a system of one nonlinear
parabolic reaction-diffusion equation, and a linear elliptic equation:

du

ot -V (Dlvul) -V (Divue) + XIion =0

XCm
27)

V- (D;Vu) + V- ((D; + D.)Vu,) = 0.
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This formulation is known in literature as Parabolic-Elliptic (PE). As for the PP
formulation, the problem is completed by suitable initial and boundary conditions,
and the complete PE formulation of the Bidomain model reads:

)(Cm% —V-D:Vuw) + ylion = L' in 2 x(0,7)

V. (D;Vu) + V - (D; + D,) Vi) = 0 in 2

aal: — R(u, w) in 2 x(0,7) (28)
n’D;Vu; =0, n’D,Vu, =0 on 982 x (0, T)

ui(x,0) = uip, u(x,0) =uo0, w(x,0)=wpin 2.

Differently from the PP formulation, system (27) does not consist of two parabolic
equations for u; and u, where the vector of time derivatives is multiplied by a
singular matrix. Nevertheless, also system (27) is degenerate, since the elliptic
equation in (27) is in practice a Laplacian with homogeneous Neumann boundary
conditions, whose solution is known only up to a constant. Also in this formulation,
thus, the transmembrane potential u is uniquely determined, while the intra and
extracellular potentials u; and u, are determined up to the same function of time,
whose value is again obtained by imposing zero mean to the extracellular potential
on 2 (f,, u.dx = 0).

By letting A, = min{o!/o},0!/o!} and Ay = max{a!/o!, o!/a}},
an alternative PE formulation can be obtained by linear combinations of

the equations in (24), with coefficients (ﬁ,—ﬁ), Anm < A < Ay, and
(1,1):

BM ADl ADi_De
Cn_v. Vu| =V | 222V | 4 o) = 1977
XEm st [1+/\ “] [1+/\ “}” &)

(29)
—V - [D;Vu + (D; + D,)Vu,] =T,
where we have set [? = # and T = [P — [P,
The (PE) formulation of the Bidomain problem has been widely used for
p y

numerical simulations, in particular among the Bioengineering community, serving
as the basis for the development of efficient preconditioners.
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3.4 A Simplified Model: The Monodomain

If we assume the anisotropy ratio to be the same in the two media, the Bidomain
model reduces to a simpler one, called Monodomain. Its derivation can be obtained
in different ways, the common underlying hypothesis being a proportionality
assumption between the intracellular and the extracellular conductivity tensors,
namely D, = AD;, where A is a constant to be properly chosen. For instance, under
assumption (16), A can be devised through a minimization procedure, as

, ol — rch\? ol — Ao\’
A = argminJ (1), J(A) = (H——X) +2 (ﬁ)

for given values of the conductivities. A time dependent choice of the parameter A
has been proposed in [39].

After defining D := D; +D, and Dy, := D, D! D;, the first equation in (29) can
be rearranged as

Ju

Cn
A ot

A
—V-DMVM+V.[(D6D—1 — ml) (D;Vu + DVue):| + xLion (u, W) = 1P
(30)

and, since the proportionality assumption D, = AD; entails D.D™! — ﬁl =0,a

formulation of the Monodomain model (see [6, 31]) is then obtained from (30) as

du
XCn— —

% V -DyVu + ylipn(u, w) = I7. (€20

The problem is completed by suitable initial conditions, and by homogeneous
Neumann boundary conditions on 942, and reads:

0
cma—b; —div(DyVu) + Lipp(u, w) = IP? in 2 x (0, T)
aw .
& —Ru,w)=0 in 2 x (0, T
o — R(u,w) 0,7) 32)
n"DVu =0 in 32 x (0, 7)
u(x,0) = up(x), w(x,0) =wp(x), in$2.

Such model consists of a single parabolic reaction-diffusion equation for the
transmembrane potential u coupled with and ODE system for the gating and
concentration variables. Differently from the Bidomain, several theoretical results
on reaction-diffusion equations can be applied to the Monodomain model, which
features a unique solution (u,w), resulting in a much easier to solve problem
after numerical discretization. In many applications the Monodomain model is
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Fig. 6 Difference in the propagation of the membrane potential between Bidomain and Mon-
odomain simulation with fibers oriented along the x axis. (Reproduced with permission from [25])

accurate enough to capture the desired dynamics and effects of the action potential
propagation. In [47], Potse and his collaborators compare the action potential propa-
gation velocities using Monodomain and Bidomain, observing that the Monodomain
solution propagates a bit slower (2 %) than the Bidomain one, and conclude that “in
absence of applied currents, propagating of action potentials on the scale of a human
heart can be studied with a Monodomain model”. However, the Bidomain model
becomes necessary when current stimuli are applied in the extracellular space. As
a consequence, the Monodomain has been long considered inadequate to simulate
defibrillation [59]. In recent works by Y. Coudiere and his collaborators, [9, 10], a
proper generalisation of the boundary conditions has been introduced, that allows
an external stimuli to be applied directly at the Monodomain model.

In Fig.6 we plot the difference in the propagation between Bidomain and
Monodomain on a slab with the principal fibers axis oriented horizontally from left
to right. The difference in the propagation speed between the two models can be
clearly appreciated. In addition, it is evident that the Monodomain error, although
globally significant, is minimal in both directions along and across the fibers. An
accurate knowledge of the fibers arrangements would strongly reduce the error when
the Monodomain model is used for patient-specific simulation. Still, such arrange-
ment, although having common features, is highly individual, and, unfortunately, a
definitive knowledge of the fibers distribution is not available yet. Modern advanced
medical imaging techniques, such as DTI (Diffusion Tensor Imaging) allow an
accurate mapping of the fibers direction, making the Monodomain a viable and
cheaper alternative to heavy Bidomain simulations.

4 Numerical Approximation

We give here a brief introduction to the numerical approximation of the models
presented in the previous Section. In what follows we do not rely on a specific choice
for the ionic model describing the cell membrane currents. Thus, from now on, we
will simply denote by I;,,(, w) the ionic current. For more detailed description, we
refer the interested reader to [15, 19, 63].
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4.1 Time Marching Scheme

For the sake of simplicity in presentation, we consider a fixed time step At, even
if effective time adaptive scheme have been developed in the literature (see e.g. [7,
46]), and we denote with superscript » the variables computed at time * = nAt. The
Bidomain and Monodomain systems can be advanced in time by an implicit-explicit
(IMEX) scheme: moving from time step ' to #**!, the gating and concentration
variables w are updated first, and used to compute the new values for the electric
potentials.

Let the ionic variables vector w € R™ be arranged as w = (g, c)”, where g € R?
represent the gating variables, while ¢ € R? represent the concentration variables
(p + g = m). Owing to the Hodgkin-Huxley formalism (3)—(4), the components of
g are first integrated exactly in time on (0, A¢), upon an appropriate linearisation
around the membrane potential at the previous time step

At
n+1 _ . n n_ 5. n —
& = gjoo(U") + (87 — gjoo (")) exp( ng(u")) ’

then the concentration variables c are integrated by a backward Euler scheme, taking

into account the updated values g"*!,

Cn+1 —c"

—R. un’ n+l,cn ,
i ' g )

where R, are the rows in (2) associated with c. The time step is selected to guarantee
stability to the time advancing scheme.

The electric potentials are then updated by solving on §2 a semi-implicit problem,
where the linear diffusion term is discretized implicitly, while the nonlinear reaction
term (the ionic current I;,, (u, w)) is treated explicitly with respect to the membrane
potential u#. While taking into account the updated values of the gating and
concentration variables w"*!, this allows to skip the computationally expensive
solution of nonlinear systems.

Within this framework, the semi-discrete version of the Bidomain PP formula-
tion (24), solves for0 <n < N = T/ At,

un+1 —u"
Xcm At -V. (DiVu;‘Jrl) = I;zpp - XIion(“n, Wn+1)
Wt —u +1 +1
—xCn -Vv-(DV “ =1 Lion n’ g
X At ( u, ) A Hion (W', W) (33)
u)(x) = uio(x)  ud(X) = u0(x)
n’D;Vutl;o =0 n'D.VulTl|jo = 0.
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Similarly, the semi-discrete version of PE formulation, solves for (27)

-V. (Divun+l + Devuz-l—l) = JP _ XIion(un,Wn+1)

-V . n+1 . n+1 :’Vapp
\Y [DLVM + D; +D,)Vul ] I (34)

w0(x) = up(x)  u(X) = tteo(X)

n'D;(Vu' ! + Vit po = 0 n'D, Vit =0
and, for (29)

)(C u"'H —u" _vVv. ( A,D,' v n+1 AD,‘ —De

o Vun-l—l) . XIian(anWn—’_l)

T+ 1+24 ¢
—V - [DVut! + (D; + D) Va1 =T

w®) = up(x)  u(x) = eo(x)

n'D; (V' T + V't 0 = 0 n'D,Vu' e = 0.
(35)

In a similar manner, the semi-discrete formulation of the Monodomain model
updates the membrane potential by solving, at each time step:

un+1 —u"
XCmT - V . DMVMH_H = Iapp - Xlion(“na Wn+l)
(%) = uo(x) G0

n'Dy Vu't ;o = 0.

4.2 Spatial Discretization

The most common approach in the literature is to look for approximate solutions to
the Bidomain and Monodomain models in a finite element space. The computational
domain £ C R? is discretized in space with a regular triangulation 7,, namely
2= UJN=1 T;, where each T; € 7}, is obtained through an invertible affine map from
a reference element E, a simplex (namely the tetrahedron with vertices (0, 0, 0),
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(1,0,0), (0,1,0),and (0,0, 1)) or the unit cube [0, 1]*. The associated finite element
spaces Xj; and Y, (see e.g. [48] for an introduction to finite element methods) are
defined as

Xo={ 01 € @) lgus e BT} Yi= g1 €@ lguy € T},

where Py (7)) is the space of polynomials of degree at most k on T, whereas Q(7})
is the space of polynomials of degree at most k with respect to each variable on T;.

A fully discrete problem for (33)—(36) is then obtained by applying a Galerkm
procedure on their variational formulations, using as finite d1mens10nal space Vj, =
Xj, or V), = Y}, and choosing a basis for Vj,. Let then @ = {qoj | be a basis for V;,.
We denote by M the mass matrix, and and by K, (t = i,e, M) the stiffness matrices
with entries

MY = Z / gigidx, KV = Z / (Vo) D, (x) Vi dx.

p=1 p=1

Numerical evaluation of such integrals is obtained by means of suitable quadrature
rules.

4.3 Algebraic Formulation

The unknowns of the fully discrete problem are represented by vectors u, u;, u,, and
w, storing the nodal values of u, u;, u., and w, respectively.

Advancing the potentials from time #* to #**! amount eventually to solve, at each
step, a linear system. Since the Bidomain system is degenerate, the matrix associated
to its discrete formulation is singular, with a one dimensional kernel spanned by
(1,1)7, independently from its formulation. As a consequence, the transmembrane
potential u"*! is uniquely determined, as in the continuous model, while u”"’l nd
u"*! are determined up to the same additive time-dependent constant with respect
to a reference potential. Such constant can be determined by imposing the condition
1"Mu"+t! = 0. On the other hand, the matrix associated with the full discrete
version of the Monodomain system is positive definite, due to the uniform ellipticity
assumption on the conductivity tensors. As a consequence, the transmembrane
potential u"*! is uniquely determined for the discrete Monodomain system.
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4.3.1 Parabolic-Parabolic Bidomain Formulation

The full discretization of the PP Bidomain system (24) reads:

1 n+1
XCm XCom
M+ K —aM u;
XCm XCom
T At At M+ K; U |
o | MM Rk ML (', wrthy 4 M1
m
il +
At " +1
-M M u, —xM I (", W' + M I[P

The above linear system features a symmetric positive semidefinite matrix, Due
to its symmetry, the system can be solved by a Preconditioned Conjugate Gradient
algorithm (PCG, see e.g. [51]), using as initial guess the solution at the previous
time step.

4.3.2 Parabolic-Elliptic Bidomain Formulation

The full discretization of the PE Bidomain system (28) reads:

Cp n+1
LoM + K; K; u

Ki Ki + Ke u,
%Mu” + M I (0", Wt + M P
M — M [P

while the full discretization of the (29) reads:

n+1

XCIN A,
TM + H'_/\Ki Kl' — Ke u

A 1
7% 7%
= (37)

K; K + K, U,
Lomu' + yMIL, @ w ) + ZoM I + M

ion 1+2

MI™" — M [Pr
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While the fully discrete formulation of (28) is symmetric, and can be solved
by PCG, the fully discrete formulation of (29) system results naturally in a non-
symmetric matrix at the discrete level. The resulting linear system can then be solved
with an iterative method such GMRES or Bi-CGSTAB (see [51]), using as initial
guess the solution at the previous time step.

4.3.3 Monodomain

The full discretization of the Monodomain system (32) reads:

I:XTC;"M+KM:| [u]™ = [£]"".

The associated matrix is naturally symmetric, and the linear system can be solved
by a PCG, using as initial guess the solution at the previous time step.

4.3.4 Computational Aspects

The numerical solution of the Bidomain system is an expensive computational
task. if, on the one hand, the IMEX approach describe above allows to avoid
the costly solution of nonlinear systems, the degenerate nature of the Bidomain
itself entails a very ill conditioning for the linear system associated to its full
discretization. To cope with such computational complexity, several scientists
have developed in the recent years effective preconditioning strategies to reduce
the high computational costs associated to its numerical solution [15, 37, 43—
45, 54, 62, 63]. Among these works, most are based on a proper decomposition of
the computational domain in order to set up parallel preconditioners, or on suitable
multigrid schemes still coupled with parallel architectures. The PE formulation is
a popular choice in the Bioengineering community, as it is computationally more
stable and allows for decoupled approaches in the solution. In fact, performing
the space discretization first, results in a Differential-Algebraic system in time. It
can then be natural to decouple the differential part from the algebraic one, and
use the elliptic equation of the PE formulation as a corrector step in a two-level
scheme (see, e.g. [20]). An efficient serial preconditioner for the PE formulation has
been proposed in [22, 24] stemming from a suitable extension of the Monodomain
model, and resulting in a lower block-triangular preconditioner for (29). Adaptive
techniques have been proposed as well, to better capture the front propagation of
the electrical excitation. An efficient adaptive strategy, reshaping the computational
grid according to some suitable a posteriori error estimate has been introduced
for instance in [7]. However, since the problem is time dependent, such approach
requires to frequently recompute the mesh and interpolate between the old and the
new grid, a feature that can become a serious bottleneck when simulating reentrant
waves or fibrillation. Stemming from the observation that the Monodomain provides
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an accurate approximation of the potential in most of the region of interest, a model
adaptive strategy has been proposed as well, which aims at reducing computational
costs and to maintain the accuracy by solving the Bidomain problem only in
(hopefully) small, critical (in physiopathological terms) regions of the domain,
while the Monodomain equation is solved in the remaining regions, where the
potential propagation dynamics does not require the most sophisticated model. A
first version of this approach was presented in [36], where a suitable a posteriori
model estimator was introduced, and an hybrid model called Hybridomain was
advocated. The latter assembles the block (1,2) in (37) only in correspondence with
the nodes identified as Bidomain ones by the model estimator, while the second
equation stays untouched, and a problem the same size of the original Bidomain
model has to be solved. If the constant A in (29) is properly chosen, the block
(1,1) of (37) is actually the discretization of the Monodomain model. Following
this consideration, an improved version of the model adaptive strategy has been
introduced in [26], where only the block (1,1) of (37) is solved in the Monodomain
regions. The coupling between regions was based on Optimized Schwarz Methods
[23, 25], a popular technique in the field of Domain Decomposition algorithms
(see e.g. [21, 58]), which relies on Robin transmission conditions on the interface
between subdomains.
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Mechanisms Underlying Electro-Mechanical
Cardiac Alternans

Blas Echebarria, Enric Alvarez-Lacalle, Inma R. Cantalapiedra,
and Angelina Pefiaranda

Abstract Electro-mechanical cardiac alternans consists in beat-to-beat changes in
the strength of cardiac contraction. Despite its important role in cardiac arrhyth-
mogenesis, its molecular origin is not well understood. The appearance of calcium
alternans has often been associated to fluctuations in the sarcoplasmic reticulum
calcium level (SR Ca load). However, cytosolic calcium alternans observed without
concurrent oscillations in the SR Ca content suggests an alternative mechanism
related to a dysfunction in the dynamics of the ryanodine receptor (RyR2). In
this chapter we review recent results regarding the relative role of SR Ca content
fluctuations and SR refractoriness for the appearance of alternans in both ventricular
and atrial cells.

1 Introduction

Calcium is the cellular messenger that drives the contraction of cardiac cells [1].
Problems in the regulation of intracellular calcium underlie a large number of
cardiac dysfunctions [2].

For example, a variety of cardiac arrhythmias are initiated by a focal excitation
whose origin is a large release of calcium from the sarcoplasmic reticulum (SR). If
this excitation is not timed with the external signaling provided by the depolarization
of the tissue, then it generates either delayed (DAD) or early afterdepolarizations
(EAD) that may provide a proarrhythmogenic substrate and lead to reentry and
conduction blocks [3—6]. There is also increasing evidence that problems in calcium
handling dynamics are the main origin of cardiac alternans [7], a well known
proarrhythmic condition in which there is a beat-to-beat alternation in the strength
of cardiac contraction [8]. Calcium alternans has been linked to the appearance
and break-up of spiral waves, giving rise to tachycardia and ventricular fibrillation
[9, 10]. This has prompted both modeling and experimental work on the dynamics
of intracellular calcium, with the aim to unveil the molecular and dynamical
mechanisms behind the arrhythmic pathways.
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2 Electromechanical Alternans

Cardiac alternans has long been recognized as an important proarrhythmic factor
[9]. It typically occurs at fast pacing rates, and is characterized by a change in
the duration of the action potential (APD) from beat to beat, that becomes more
pronounced the faster the pacing rate is. For very short stimulation periods the
amplitude of the oscillations of APD may become so large that the cells are not
able to recover their electrical properties before the next stimulation, making them
unable to elicit a new action potential.

If the distribution of APDs in tissue is heterogeneous (that may occur because
of gradients of electrophysiological properties, or it can be dynamically generated
[11]), then when an action potential wave propagates, it may encounter a region that
is still refractory, due to a previous large action potential duration. This results in
localized conduction block that can, in turn, induce the formation of reentry, with the
initiation of rotors that impose a rhythm of contraction much faster that the typical
sinus frequency. The resulting state is that of ventricular tachycardia (VT) or atrial
flutter (AFL), depending on the location of the rotors. If the rotors are unstable, then
multiple wavelets are created, giving rise to a state of ventricular (VF) or atrial (AF)
fibrillation, in which different parts of tissue are not able to contract synchronously.
When this happens in the ventricles, the pumping of blood to the body is impeded,
resulting in death in a few minutes unless a successful defibrillatory shock is
provided. Atrial fibrillation, on the other hand, despite not being mortal, results in
an important decrease in life quality. Due to its big prevalence, specially in people
over 65 year old, it has become a big health concern.

The origin of alternans has been linked to problems in the transmembrane
currents, that give rise to a steep restitution curve (relation between the duration of
the action potential and the time elapsed since the end of the previous excitation, or
diastolic interval (DI)). When the restitution curve is shallow, a cell (or tissue) is able
to adapt the duration of its action potential to a decrease in the pacing period. If the
curve is steep, though, any small change in the DI produces a big change in the APD,
resulting in an unstable situation that gives rise to a 2:2 response, with an alternating
sequence of long and short action potential durations, i.e., alternans [8]. In the
simplest models this occurs when the slope of the restitution curve is larger than one.

Due to the coupling of transmembrane potential and intracellular calcium con-
centration through the action of the L-type calcium current and the sodium-calcium
exchanger, a change in the duration of the action potential results in a change in the
calcium transient, originating thus calcium alternans. In this view, calcium alternans
would just be a consequence of action potential alternans. Experiments with action
potential clamps, though, have shown that often calcium alternans is the origin and
not the consequence of action potential alternans [12]. This agrees with experiments
on intact heart [13], where transmembrane potential and intracellular calcium were
simultaneously measured, and it was shown that calcium alternans occurs at slower
pacing rates than APD alternans and always precedes it. Also, in situations where
alternans has been observed to precede the transition to atrial fibrillation (AF),
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the slope of the restitution curve was measured to be smaller than one [14]. This
does not completely preclude AP alternans as the primary mechanism (there could
be effects of memory, etc.), but all in all, there is a strong evidence that calcium
alternans are the main alternans mechanism in many situations.

3 Mechanisms Explaining the Appearance of Calcium
Alternans

Under sinus stimulation, a change in the transmembrane potential of cardiac
myocytes opens the L-type calcium channels (LCC) of the cell membrane producing
an influx of calcium ions. Within the cell, most of the calcium is sequestered in a bag
known as the sarcoplasmic reticulum (SR). At rest, the concentration of calcium in
the cytosol is around a hundred nanomolar, while in the SR, it is of the order of the
millimolar (in the extracellular medium it is also typically of the order of 2 mM). The
membrane of the sarcoplasmic reticulum is spotted by calcium sensitive channels,
the ryanodine receptors (RyR2). Both LCCs and RyR?2 appear grouped in clusters,
of 1-5 LCCs and 50-100 RyRs in each. In ventricular cells, the cellular membrane
has intubulations (t-tubules), with the consequence that LCC and RyR2 are always
confronted (Fig. 1). In atrial myocytes, the presence of t-tubules is controversial
[15]. In their absence, only RyR2s that are close to the cell membrane will be next

3Na

Sarcolemma _

T-tubule

Fig. 1 Electrical excitation opens the voltage-gated Ca>t channels (LCC), resulting in Ca?T
entry that induces Ca>t release from the sarcoplasmic reticulum (SR) through the opening of
the ryanodine receptors (RyRs), giving rise to cell contraction. Inset shows the time evolution of
the transmembrane potential, the Ca?T transient and contraction. (Reproduced with permission
from Bers, Nature, 2002 [1])
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to LCCs. This distinction between the geometry of ventricular and atrial cells has in
fact a significant relevance for the dynamics of calcium inside the cell.

Once the RyR2s open due to the binding of the calcium ions that enter the cell
through the LCC, the calcium of the SR is released, in a process known as calcium
induced calcium release (CICR), resulting in an elevation of the concentration of
calcium in the cytosol, up to ~ 50 — 200 wM in the dyadic space corresponding to
the LCC-RyR?2 junction, and to ~ 1 WM in the bulk cytosol. Then, calcium binds to
several buffer proteins, including Troponin C, that drives the tropomyosin complex
off the actin binding site allowing the binding of myosin and producing a shortening
in the actin filaments and the contraction of the cardiomyocyte. Calcium in the
cytosol is finally pumped out of the cell and into the SR by the sodium calcium
exchanger (NCX) and the SERCA pump, respectively. Besides driving contraction,
the calcium transient also has an influence in the form and duration of the action
potential, both due to the NCX pump and to the L-type calcium current, since the
LCC are also inactivated by high calcium concentrations.

For calcium alternans to develop there must be some effect that reduces the
amount of calcium released from the SR in alternate beats. Two possible expla-
nations for this are that either the SR is not completely full (because of a slow
SERCA, for instance) or, if it is full, the RyR2s do not open completely (because
of a long refractory time). Alternans then appears when two conditions are met:
there exists a nonlinear dependence of release on either RyR2 recovery or SR load
[16] together with a slow release recovery time scale (Fig.2). Alternations in the
strength of the calcium current ICaL has also been cited as a possible cause, but
calcium alternans has been detected without L-type calcium alternations [17, 18],
suggesting that ICalL modulations are the result of calcium alternans and not its
cause. Still, a stronger ICaL current, as well as a higher rate of spontaneous calcium
release (related probably to fast activation kinetics of the RyR2) have also been
related to the appearance of alternans in atrial cells [19].

3.1 SR Calcium Fluctuations

The relevance of a partial refill of the SR was supported by experiments by Diaz et
al. [20], where they observed fluctuations in the content of the SR during calcium
alternans. This mechanism needs a strong nonlinear dependence of calcium release
with SR calcium load and a stimulation period that is fast compared with the
typical refilling times given by SERCA (Fig.2). Then, when the SR is filled, a
large release is produced so SERCA is not able to completely refill the SR by the
time the next stimulation is given. This results in a small depletion in SR calcium
concentration, that is now able to recover the original concentration before the
following stimulation (see Fig. 2).

Theoretical work [21, 22] has explained the appearance of alternans under
this mechanism with the help of a map relating calcium release and calcium
load, showing that alternans appears when the slope of this map is larger than
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Fig. 2 Mechanisms for the appearance of calcium alternans. It is necessary a nonlinear depen-
dence of calcium release (either on calcium load or in the number of recovered RyR2s) and a slow
time scale (related to SR refilling in one case, to RyR2 recovery, in the other)

one, denoting the onset of a period doubling bifurcation. Alternatively, the strong
dependence of calcium released from the SR with SR calcium load has also been
linked to the binding of calcium to the buffer calsequestrin [22].

Although this mechanism can underlie calcium alternans in some situations,
observation by Pitch et al. [23] of cytosolic calcium alternans without concurrent
SR fluctuations suggests that in some cases the mechanism must be linked to
refractoriness in the release.

3.2 RyR Refractoriness

A possible explanation for the occurrence of alternans at constant diastolic SR
calcium load is the presence of a long refractory time of the RyR2, such that, after
a large release, it takes a long time to recover and be able to open. Thus, even if
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the SR is completely refilled, release is weak since most of the RyR2s have not
recovered [17, 18, 22, 24]. For this mechanism to work there must exist a nonlinear
dependence between calcium released from the SR and the number of recovered
RyR2s. This is provided by the cooperativity in RyR2 opening by calcium [25].

Recently, techniques have been developed that allow the simultaneous measure-
ment of transmembrane voltage and intracellular or SR calcium concentrations
in an ex vivo heart [13]. From these experiments one can conclude that calcium
release alternans appears with or without diastolic sarcoplasmic reticulum calcium
alternans [13]. In the first case, SR release alternans occurs at slower rates than
diastolic SR calcium alternans. Sensitization of RyR2 with low doses of caffeine
decreases the magnitude and the threshold for induction of alternans, suggesting
RyR2 refractoriness as the underlying mechanism. Interestingly, minimum release is
produced in VF apparently due to continuous RyR2 refractoriness. This agree with
in silico analysis of alternans preceding AF [26], that showed inactivation kinetics
of RyR2 as the only parameter able to reproduce experimental results.

3.3 Relevance of Each Mechanism

Depending on the working state of the RyR2, SR calcium load, strength of SERCA,
etc., SR calcium load or RyR refractoriness can be the molecular mechanism giving
rise to alternans. This is important to know, because a drug that suppresses alternans
in one case may not work necessarily for the other mechanism, and could even
have negative consequences. Using mathematical models of calcium handling, a
possible way to elucidate which is the responsible mechanism to perform clamps
of the appropriate factors. To this end, in [27] clamps were performed on either the
prediastolic SR content or the number of recovered RyR2s, using a rabbit ventricular
model [28]. The former was achieved increasing the strength of SERCA during a
few milliseconds previous to an excitation, so it reached the same level in all beats
(Fig. 3a). In the latter, the kinetics of the RyR2 was modified, again during the last
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Fig. 3 Example of (a) SR and (b) RyR clamps. The clamp is always performed during the
recovery period, not to affect release from the SR (from [27])
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milliseconds previous to the stimulation, until the same number of recovered RyR2
was obtained as in the previous beat (Fig. 3b).

If alternans persists when the SR is clamped, then one can conclude that the
instability is due to RyR2 refractoriness. On the contrary, if it persists when the
RyR2 is clamped, then we conclude that it is due to SR calcium fluctuations.
There are some cases where alternans persists with either clamp. In this case either
mechanism can give rise to alternans. In some other cases, both clamping protocols
make alternans disappear. Then, both have to collaborate to be able to sustain
alternans (Fig. 4).

Depending on the conditions of the RyR2, it was obtained that at low activation
of the RyR2, typically the responsible mechanism was RyR2 refractoriness (specifi-
cally, a slow recovery from inactivation), while at low inactivation, the predominant
mechanism was related to fluctuations in SR load (Fig. 4, for more details see [27]).
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Fig. 4 Colormaps showing the difference in peak intracellular calcium in two consecutive beats
as a function of RyR activation and inactivation rates, using a rabbit ventricular cell model [28].
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denoting the transition to alternans in each case delimitates the regions where each mechanism is
relevant (d) [27]
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4 Nature of the Instability

Besides the molecular mechanism responsible for the transition, it is important to
understand the nature of the transition to alternans. Using whole cell models, that
consider average concentrations, the transition to alternans typically appears as a
period doubling bifurcation of the original periodic solution. This can be understood
constructing a map. In the case where alternans is due to a slow recovery of the
RyRs from inactivation, one can, for instance, draw a map with the relation between
the number of recovered RyR2s at two consecutive stimulations (Fig.5). As the
stimulation period is decreased, this map develops a region with a negative slope
larger than -1, denoting the onset of the period doubling instability [27].

In deterministic calcium models, the transition to alternans is sharp (Fig.5) and
corresponds to a period doubling (PD) bifurcation [27]. An example of alternans
appearing in an atrial model is shown in Fig.6, together with the bifurcation
diagram, showing that alternans appears through a supercritical period doubling
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Fig. 5 Maps giving the relation between the number of recovered RyR2s at consecutive beats, as
well as time traces of the number of recovered RyR2s
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Fig. 6 Alternans appearing in a human atrial model [29, 32]. Top: Time traces of intracellular
calcium, SR Ca concentration and transmembrane potential. Botfom: Bifurcation diagrams for the
peak intracellular and SR calcium concentrations. During alternans peak SR concentration does
not vary from beat to beat (reproduced with permission from C.A. Lugo et al., Am j Physiol 306,
H1540, 2014 [29])

(PD) bifurcation. In this case, SR fluctuations are absent, so the mechanism is linked
to RyR refractoriness [29].

In reality, the situation is a bit more complex. In the cell, the RyR2s are
distributed in clusters of 50-100 elements and their dynamics is stochastic. So
it is for the opening of the LCC channels. The distance among RyR2 clusters
(or calcium release units, CaRUs) is of the order of the micrometer, so a typical
cardiac cell is composed of ~ 20,000 CaRUs. In ventricular cells each CaRU
is composed of a cluster of 50-100 RyR confronted to 1-5 LCC, with calcium
diffusing between different CaRUs. Thus, there are thousands of stochastic elements
diffusively coupled. Locally the dynamics is dominated by random calcium releases
(sparks). Globally, this gives rise to a well defined alternating state and bifurcation
diagrams (Fig. 7). In the limit of very strong coupling or large clusters (many RyR2s
in any CaRU) one recovers the deterministic limit and the PD bifurcation. The
relevance of stochastic effects has been stressed by Rovetti et al. [30], that propose
that the onset of whole cell alternans from random calcium release events (sparks) is
due to the interplay of three effects: randomness, recruitment and refractoriness. Ion
channel stochasticity at the level of single calcium release units has also been shown
to influence the whole-cell alternans dynamics by causing phase reversals over many
beats during fixed frequency pacing close to the alternans bifurcation [31].
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Fig. 8 Beat-to-beat difference in peak calcium concentration. From left to right, snapshots with
characteristic spatial distribution of alternans as the pacing period approaches the critical point

Considering in more detail the transition, one observes that alternans first appears
at a local level, but with a very short persistence both in space and time (Fig. 8).
When one measures the average calcium concentration over the entire cell, these
local alternations thus disappear. The appearance of global alternans needs the
synchronization among different clusters with calcium oscillating in opposite phase
[33]. To study this synchronization behavior, one can define an order parameter,
that takes values 1 or —1, depending on the phase of oscillation of calcium at a
given point. Then:

my(n) = sgn[(=1)"(cf;,(n) — ¢, (n = 1)] (1

and thus define the degree of synchronization over the entire cell as (m) = >_,, my.
The first thing to notice is that the global order parameter ﬂuctuates in time close
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Fig. 9 Left: Time evolution of the average synchronization (m) at different pacing periods. Right:
correlation length, showing a divergence at a critical pacing period (Adapted with permission from
Alvarez-Lacalle et al., PRL 2015 [33])

Table 1 Exponents of the transition to alternans [33]

y/v B/v v
Ventricular model 1.75 £ 0.08 0.18 £ 0.11 0.91 +0.14
Ising model 1.75 0.125 1

to the transition point and presents a diverging correlation length (Fig.9). This
resembles a second order phase transition in equilibrium systems. To ascertain
the nature of the transition, one can study the critical exponents as the system
approaches the critical point (the critical stimulation period, in this case). From
the theory of critical phenomena, it is known that (m) ~ (T — T.)™#/*, and the
susceptibility y ~ (T — T,)"/*. These exponents have been obtained performing a
finite size scaling [33]. Remarkably, it was found that they are consistent with an
order-disorder second order transition within the Ising universality class (Table 1).
This is all the more remarkable since it occurs in a nonequilibrium system. Similar
behavior has been also observed in nonequilibrium coupled maps [34].

5 Differences Between Atrial and Ventricular Cells

The main structural difference between atrial and ventricular cells is that the latter
present t-tubules while the former do not. This has an important effect for the
dynamics of calcium inside the cell. In ventricular myocytes, LCC and RyR2 are
always confronted and the rise in calcium occurs in the bulk of the cell. In atrial cells,
on the contrary, calcium concentration increases first close to the cell membrane and
then propagates into the cell as a wave. As we have discussed in the previous section,
in ventricular myocytes global alternans appears as a synchronization effect among
local alternans in different microdomains. In atrial myocytes, calcium alternans may
have fundamentally the same origin as in ventricle, with a coordination in the CaRU
units close to the membrane then propagated through calcium waves of higher or
lower amplitude. However, a new scenario is also possible: CaRUs close to the mem-
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brane might not present alternans but the wave propagation towards the center might
be completely or partially blocked in alternative beats. This new mechanism for
alternans, not possible in ventricles, requires the analysis of wave-like calcium prop-
agation in the cell. Particularly, the presence or absence of t-tubules has effects on
the total exchanger strength and the homeostatic balance in the cell. This, together
with buffering, might produce different loading of the SR in alternative beats leading
to different wave propagation properties in the atrial cell at consecutive beats.

Even if this new mechanism can not be ruled out, models seem to indicate that
some type of coordination at the surface level will always be, at least partially,
responsible for alternans in atria. In whole-cell models, where wave-like events can
not be studied, one can test whether important differences in loading of SR appear
whenever there are large differences in the calcium transient. If after any given beat
the total content of calcium in the cell is roughly the same, the SERCA pump will
generate basically a constant calcium load at each beat. Under the same calcium
load it seems unlikely to have very different wave-propagation dynamics. On the
other hand, if the balance of the NaCa exchanger and the ICaL current is extremely
sensitive to the calcium transient, consecutive beats may have very different calcium
loads. This could lead to different wave-propagation, producing a different calcium
transient which results in a different SR calcium load.

In a model of human atrial cell without t-tubules it was observed that the total
number of calcium ions transported across the membrane was roughly the same
every beat [29] for very different calcium transients (Fig.10). In this case the
transients were different because RyR?2 refractoriness was behind the presence of
coordinated global alternans. It was also found that SR Ca content oscillations
during alternans, even if SR Ca fluctuations are not an essential ingredient for
it, seemed more common in a ventricle model [28] than in the atrial model.
For instance, in Fig. 10c the alternans shown in ventricle is caused by RyR2
refractoriness but, nevertheless, results in a strong SR Ca content fluctuation. On
the contrary, in the atrial model alternans appears first in the intracellular calcium
transient, whereas the junctional SR Ca release presents very small beat-to-beat
oscillations. Hence, at the subsarcolemmal space the oscillations are typically
smaller than those found in ventricular cells and mostly due to the beat-to-beat
change in concentration gradient with the interior of the cell. In this situation, the
calcium transport across the cell membrane (Fig. 10a) seem to suggest that wave-like
scenario in atria should be difficult to observe when alternans is due to changes in
presystolic calcium load, although we cannot discard the presence of wave alternans
due to alternations in presystolic RyR availability.

It is important to notice that the beat-to-beat difference in the amount of available
calcium within the cell is not only dependent on the general structure of the
compartments but also on the properties of the exchanger and LCC currents, not
to mention that SERCA must be fast enough to refill the SR. Therefore, one can not
rule out that different species with different characteristics in the transmembrane
proteins might present very different behavior. In any case, our results clearly hint
at a very important role of transmembrane currents, and homeostasis more generally,
in determining the possibility of alternans in atrial cells due to wave-like alternation.
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Fig. 10 Comparison between alternans in atrial, ventricular, and atrial cells with t-tubules, using
(a) and (b) a human atrial model [29] and (c) a rabbit ventricular cell model [28]. (Reproduced
with permission from C.A. Lugo et al, Am j Physiol 306, H1540, 2014 [29])

6 Conclusions

Dysfunctions in calcium handling are behind a whole range of cardiac arrhyth-
mogenic behaviors. A good understanding of calcium dynamics is thus of crucial
importance to develop ways to prevent these arrhythmias. In this chapter we have
presented recent modeling efforts on this line, with the study of the mechanisms
behind electromechanical alternans, both in atrial and ventricular myocytes. Even
if much has been learned about the origin of alternans, many aspects of calcium
dynamics are still not completely understood.

The main open problem, in our understanding, is how different species present
different characteristic calcium dynamics under fast beating. Some species, like
rabbits, have a strong tendency to generate alternans as the first instability as the
heart-beat rate is increased, while others present wave-like phenomena. We have
seen that currents which regulate calcium homeostasis are very important in fixing
the response of SR load to different calcium transients. It seems that understanding
homeostasis must be a key future line of work, not only on the effect of the Na-
Ca exchanger and the ICaL, but also how different RyR2 models interact with the
homeostatic function of membrane currents. In this regard, understanding whether
it is possible to generate an in-silico myocyte model where both calcium alternans
and wave-like arrhythmias appear at different heart beat rates will clarify strongly
the main driving forces behind one behavior or the other. If this is possible, it will
indicate that regulatory mechanisms and species specific properties produce the
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different outcomes. If not, it can point to fundamental structural differences in the
RyR2 functioning.

In any case, one can not disregard the possibility that the different prevalence
of calcium dysfunction, alternans or wave-like off-beat responses, might be due
to the different properties of RyR2 clustering together with the influence of beta-
adrenergic stimulation. Models with large differences in intracellular clustering size
and rate probabilities should be investigated. In this line of work, analyzing the
interaction of RyR2 clusters in different network configuration can shed light on
its relevance in the origin and maintenance of calcium waves; this is particularly
relevant for the case of wave initiation in species where it appears as the main
calcium dysfunction. Regarding this point, we have already addressed in this review
whether atrial and ventricular myocytes might present different mechanisms for cal-
cium alternans in case atria cells presents wave-blockage as an alternate mechanism.

Finally, although two possible mechanisms, SR load and RyR2 refractoriness,
have been uncovered for the onset of calcium alternans, recent experiments [13]
have shown a hierarchic tendency in their appearance in healthy heart, beginning by
RyR2 refractoriness, following or not by SR load mechanism and finally showing
as APD alternans. Pathological conditions can provide proarrhythmic substrates that
could sustain or alter this hierarchy. Besides that, the two different local nonlinear
mechanism at the CaRU presented here (calcium SR load or RyR2 refractoriness)
can be present in different degrees in different species. So, future experimental work
can clarify the relevance of the different mechanisms under different scenarios and
circumstances. Our believe is that mathematical models of calcium dynamics will
play a very important role in understanding the relevances and differences of these
mechanisms and their physiological and clinical implications. Hopefully, it will
allow new targets for pharmacological treatment of arrhythmias.
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