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Preface

The roots of this book date back to a discussion I had with my colleague Ulrich
Hohenester. Several years ago he gave me an overview of the research topics he was
working on at that time, I chose plasmonics, and Ulrich became my PhD advisor
and friend. I owe sincere thanks to him for the countless discussions we had, for
conveying his passion for physics, and for his subtle way of encouragement. Ulrich
has a great talent to bring clearness into intricate problems (be it physics or anything
else) and with these pages I seek to pass on some of the insights that accompanied
our collaboration. The core of this book is essentially my PhD thesis updated with
a couple of new chapters, some interspersed remarks and explanations, several
new findings, and hot off the press references. It is meant as an introduction to
the fascinating world of physics at the nanoscale with a focus on simulations and
the theoretical aspects of plasmonics. The extensive references at the end of each
chapter should allow a continuation of the search for knowledge whenever the scope
of this book reaches a limit. The mathematical prerequisites probably comprise a
bachelor or master’s degree in physics, but besides the formal parts this book also
contains over 100 figures and schematics where I tried to pin down the actual events
and principles in a graphical way without any equations.

If you look back in history, throughout the centuries the progress in physics has
largely been dominated by experiments. There are some exceptions of course, but at
least the entanglement between theory and experiment has always been essential in
understanding our nature. However ingenious a theory may have been, it remained
a chimera until there was experimental verification. Because of the continuing
specialization in physics also the multidisciplinarity of a research field becomes
more and more important, and as a theoretical physicist I am therefore very positive
about the manifold possibilities for collaborations with experimentalists and other
scientists in my work. This book is also strongly influenced by such collaborations,
and I want to express my gratitude for that. In alphabetical order I sincerely thank
Franz Aussenegg, Martin Belitsch, Harald Ditlbacher, Marija Gaspari¢, Christian
Gruber, Andreas Hohenau, Daniel Koller, Joachim Krenn, Markus Krug, Verena
Leitgeb, Alfred Leitner, Gernot Schaffernak, Franz Schmidt, Jean-Claude Tinguely,
Pamina Winkler and all other (current and several former) members of the Optical
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Nanotechnology/Nano-Optics group in Graz for most helpful discussions and the
fruitful teamwork.

Furthermore and following the thematic order of this book, I want to thank
the research group of Carsten Sonnichsen at the Institute for Physical Chemistry
in Mainz, where Jan Becker and others did a marvelous job in putting the
first versions of our MNPBEM toolbox to the acid test; the group of Ferdinand
Hofer at the Austrian Centre for Electron Microscopy and Nanoanalysis (FELMI)
for their ongoing cooperation on EELS and plasmon tomography; the group of
Alfred Leitenstorfer from the Lehrstuhl fiir Moderne Optik und Quantenelektronik
(especially Tobias Hanke for his collaboration on nonlinear optics) as well as the
group of Rudolf Bratschitsch at the University of Miinster, where I was working
with Johannes Kern on effects of very thin substrate layers, and last but not least
Javier Garcia de Abajo and his group for a very pleasant research stay during which
I started working on nonlocal plasmonics.

Special thanks also go to Polly Cassidy for her marvelous job as lector of my
manuscript as well as to the members of my own research group: Anton Horl, Dario
Knebl, Robert Schiitky, Jiirgen Waxenegger and all others, who contribute to the
pleasant atmosphere at our institute.

Finally I owe my deepest gratitude to all my friends and family, without their
support and encouragement this book would not have been possible.

Graz, Austria Andreas Triigler
2015
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Chapter 1
Prologue

The electron is a theory we use; it is so useful in understanding
the way nature works that we can almost call it real.

RICHARD FEYNMAN

Much has happened since the struggle between the devotees of the undulatory
and corpuscular theory of light. For millennia we have been fascinated by optical
phenomena and the groundbreaking works of many brilliant scientists allowed deep
insights into the question of what holds the world together in its inmost folds. Step
by step we gain more understanding of what light actually is [1]. In particular,
the interaction of light with matter is a treasure trove for new applications and a
demanding criterion for the underlying physical theories.

1.1 The Glamour of Plasmonics

Half a century ago, Richard Feynman' was already aware of the fact that there is

plenty of room at the bottom [2] and he invited his listeners to open up a new field of
physics. In the 1970s the term nanotechnology was formed [3, 4] and remarkable
progress and new discoveries in the “nanoworld” followed—often resulting in a
Nobel Prize for the respective scientists.?

The study of optical phenomena related to the electromagnetic response of
metals, which is the topic of this book, led to the development of an emerging and
fast growing research field called plasmonics [S]-named after the electron density
waves that propagate along the interface of a metal and a dielectric like the ripples
that spread across water after throwing a stone across its surface [6].

In particular, the enormous progress in the fabrication and manipulation methods
of nanometer-sized objects in the last decades have allowed us to enter into the

"Born 11th May 1918 in New York City; 1 15th February 1988 in Los Angeles, California. Nobel
Prize in Physics 1965.

For example the invention of the scanning tunneling microscope, the discovery of fullerenes, the
development of fluorescence microscopy, etc.

© Springer International Publishing Switzerland 2016 3
A. Triigler, Optical Properties of Metallic Nanoparticles, Springer Series
in Materials Science 232, DOI 10.1007/978-3-319-25074-8_1



4 1 Prologue

fascinating world at the length scale of molecules and DNA strands. There are
certain promises of plasmonics [6] that are responsible for the current boom in
this research field, such as the prediction of new superfast computer chips [6], new
possibilities to treat cancer [7-10], ultrasensitive molecular detectors [11-13] or
the ability to make things invisible with negative-refraction materials [14—-16]. All
this is possible because plasmonics builds a bridge between two different length
scales by confining light on sub-wavelength volumes. The building bricks of this
arch are metallic nanoparticles (MNPs) and colloids, or thin metal films in the case
of plasmonic waveguides. The focus of this book lies on the description of metallic
nanoparticles (see Fig. 1.1)—their optical properties, how they influence and interact
with their surroundings, and how we can make these events visible although the
involved structural sizes are much below the wavelength of light. Besides those
already mentioned, the capability to manipulate and control light on the nanometer
scale opens up a plethora of further possible applications [17, 18], as diverse
as data storage [19], optical data processing [20, 21], quantum optics [22-24],
optoelectronics [25, 26], photovoltaics [27], or quantum information processing.

Fig. 1.1 Electric field lines of a gold nanorod (15 X 45 x 8 nm?) at the resonance wavelength of
852 nm. The corresponding surface charge is plotted on the boundary of the nanorod and shows a
dipolar distribution
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1.2 Scope of This Book

This book is divided into four main parts. The first one aims at providing a
general introduction to the topic as well as a detailed description of the underlying
theoretical concepts. At the beginning of Chap.2 a short historical overview of
plasmons is given—from their first observation to their modern perception. This
synopsis is then followed by a discussion of surface plasmon polaritons and the
rest of the chapter is dedicated to different plasmonic properties and how they can
be engineered and exploited. Chapter 3 represents the formal section of this book
where the mathematical description of metallic nanoparticles is formulated.

The second part with Chap. 4 involves an introduction and discussion of different
numerical approaches to solve the previously derivated equations. Although several
simulation methods are briefly discussed, the main focus lies on the boundary
element method.

With these numerical and theoretical tools at hand, we can then dig into various
plasmonic problems and applications in the third part. Chapter 5 is dedicated to the
question of how to picture a plasmon, Chaps. 6 and 7 cover the influence of surface
roughness and nonlinear optical effects of metallic nanoparticles, respectively. In
Chap. 8 the case of very small particles and nonlocal effects that come along with
spatial dependent dielectric functions is discussed. Chapter 9 is devoted to so-called
metamaterials—artificial new materials with bizarre optical properties.

The last part of this book contains supplementary material such as appendices,
a list of figures and tables as well as a cross-reference index. Several important
relations are highlighted by a box throughout this book and collected in the list of
equations. Appendix A contains additional derivations and explanations. Finally, in
Appendix B the MATLAB® source code for the simulation of spherical nanoparticles
is attached.

An extensive list of references and further reading is provided after each chapter
and to make work easier with the cited papers and books, they have been cross-
referenced with online links in the e-book version; the symbol Hin the bibliography
constitutes a direct link to pdf-files whenever possible at the time of writing these

pages.



6 1 Prologue
1.3 Measurement Units

The question of a suitable unit system often comes as little bit of a nuisance, espe-
cially if you ask a theoretical physicist. It is where we have to bring our equations
down to earth, where our mathematical language should cough up actual numbers
and where we have to face the reality of experimental outcomes. In plasmonics it
is quite common to use Gaussian units, at least among theoreticians. They bring
the advantage that the electromagnetic fields obtain the same dimensions, that the
vacuum permittivity £y and the vacuum permeability (o vanish, and they seem to be
a more natural description of classical field theory and relativistic electromagnetism.
The systeme international d’unités® (or abbreviated SI unit system) on the other
hand, is the most common unit system, in science as well as everywhere else. In
the last years many of the excellent books about Maxwell’s equations or plasmonics
have converted to SI units (for example the fabulous standard work of Jackson [28],
see his preface to the third edition) or have a priori been developed in SI units
(e.g. the excellent book of Novotny and Hecht [5] or the comprehensive work of
Chew [29]). With this regard and also because of the multidisciplinarity of plas-
monics [ also decided to use SI units throughout this book. Here is a list of units of
the most important electromagnetic quantities appearing in the following chapters.

Electric field, dielectric displacement and polarization:

A% C C
£ = —. D] = —. P =—.
m m m
Magnetic field and magnetization:
Vs A A
Bl =T =, H] = = M) ==,
m m m
Charge density, current density and unit charge
C ; A
o] = =, == [g] = C = As.
m m
Electromagnetic potentials and nabla operator:
Vs 1
[9] =V, Al =—. [Vl =—.
m m

3As the modern version of the metric system, it is an achievement of the French Revolution and
therefore still retains a French name.
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The SI units in this list are Volt (V), Coulomb (C), meters (m), seconds (s), and
Ampere (A).

The vacuum permittivity, vacuum permeability, and consequently the speed of
light yield

F A
£ = 8.854187817 x 10712 — (: _S)
m Vm

H( VS) [c]z[@} )

=47 x 1077 — (= —
Mo T Am

m

where the derived SI units Henry (H) and Farad (F) have been used. For linear
response we have for the material parameters

e =¢eo(1 + xe), w= ol + xm),

with the dimensionless electric and magnetic susceptibilities y. and y,,, respec-
tively. For nonlinear response (see Chap. 7) the higher order magnetic susceptibility
remains dimensionless, whereas for the electric susceptibility of rank n we get

= (5)"

In the earlier literature usually the electrostatic units (esus) of the susceptibilities
have been tabulated, the conversion to SI values is straight forward:

S 4x

AP fesu] (1074
The surface charge and surface current density are expressed in ¢/m?> and A/m,
respectively. To be consistent with the original derivation of the boundary element
method a redefinition is necessary in Chap.3, which changes their units to V/m
and Vs/m?, respectively. The quantities plotted in the figures are almost exclusively

expressed in femtoseconds (fs), electron Volts (eV), or nanometers (nm)-the
common dimensions in plasmonics.
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Chapter 2
The World of Plasmons

The world is full of magical things patiently waiting for our wits
to grow sharper.

BERTRAND RUSSELL

Many of the fundamental electronic properties of the solid state can be described
by the concept of single electrons moving between an ion lattice. If we ignore the
lattice, in a first approximation, we end up with a different approach where the
free electrons of a metal can be treated as an electron liquid of high density [1, 2].
From this plasma model it follows that longitudinal density fluctuations, so-called
plasma oscillations or Langmuir waves, with an energy of the order of 10eV will
propagate through the volume of the metal. These volume excitations have been
studied in detail with Electron Energy Loss Spectroscopy (EELS)' and have led to
the discovery of surface plasmon polaritons.

2.1 From First Observations to the Modern Concept
of Surface Plasmons

The first documented observation of surface plasmon polaritons dates back to 1902,
when Wood? illuminated a metallic diffraction grating with polychromatic light and
noticed narrow dark bands in the spectrum of the diffracted light, which he referred
to as anomalies [4, 5].

Soon after Wood’s measurements Lord Rayleigh® [6] suggested a physical
interpretation of the phenomenon [7], but nevertheless it took several years until

! A historical overview of electron beam experiments to study surface plasmons can be found in [3],
p- 47.

2Born 2nd May 1868 in Concord, Massachusetts; ¥ 11th August 1955 in Amityville, New York.

3Born 12th November 1842 in Langford Grove, Essex; 1 30th June 1919 in Witham, Essex. Nobel
Prize in Physics 1904.

© Springer International Publishing Switzerland 2016 11
A. Triigler, Optical Properties of Metallic Nanoparticles, Springer Series
in Materials Science 232, DOI 10.1007/978-3-319-25074-8_2
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Fig. 2.1 First observation of surface plasmons, adapted with permission from [10], © 1959 by The
American Physical Society. The surface plasmons were detected in the energy-loss spectrum of an
Aluminum surface, where electrons with a kinetic energy of 2020eV were specularly reflected
under 45° incidence (also see [3])

Fano* [8] associated these anomalies with the excitation of electromagnetic surface
waves on the diffraction grating. In 1957 Ritchie proposed the concept of surface
plasmons in the context of electron energy loss in thin films [9] and the experimental
verification followed 2 years later by Powell and Swan [10, 11], see Fig.2.1.

In 1958 experiments with metal films on a substrate [12] again showed a large
drop in optical reflectivity, and 10 years later the explanation and repeated optical
excitation of surface plasmons were reported almost simultaneously by Otto [13] as
well as Kretschmann and Raether [14]. They established a convenient method for
the excitation of surface plasmons [4]. The principle of the plasmon excitation by
Otto and Kretschmann is shown in Fig. 2.8 and discussed in the caption.

“Born 28th July 1912 in Turin; 1 13th February 2001 in Chicago.
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2.2 Derivation of Surface Plasmon Polaritons

Plasmons are (bosonic) elementary excitations in a metallic® solid. The basic ingre-
dient for a material to allow such an excitation is the ability to form an intrinsic res-
onance, e.g. movable elementary charges that become displaced by an external field,
experience a restoring force and start to oscillate. The question whether we should
treat plasmons in a quantum mechanical or classical way is discussed in Sect. 3.1.

One of the most simple but nevertheless very utile models to describe the
response of a metallic particle exposed to an electromagnetic field was proposed by
Paul Drude® [20, 21] at the beginning of the twentieth century and further extended
by Hendrik Lorentz’ 5 years later (consult [22] for a detailed discussion). In 1933
Arnold Sommerfeld® and Hans Bethe® expanded the classical Lorentz-Drude model
and eliminated some problems in the description of thermal electrons by accounting
for the Pauli principle of quantum mechanics and replacing the Maxwell-Boltzmann
with the Fermi-Dirac distribution (again see [22]).

Drude adopted a microscopic description of the electron dynamics in a metal in
classical terms, and obtained the equation of motion of a damped oscillator where
the electrons are moving between heavier, relatively immobile background ions:

Drude-Sommerfeld model of a free electron gas

O eyalh = —eBge @.1)
Me— + myys— = —eEoe™", )
or Yoy 0

where y 4 describes a phenomenological damping term, m, the effective free electron
mass, e the free electron charge and @ and E, are the frequency and amplitude
of the applied electric field respectively. Note that Eq. (2.1) describes the dynamic
of one single electron, Drude just summed over many electrons later on to end
up with a many-particle description. Equation (2.1) can be solved by the ansatz
r(t) = roe'! [23] which yields

e

- " g, 2.2
o 0 Fiygw 22)

SRecently it has been shown [15-19] that also doped graphene may serve as an unique two-
dimensional plasmonic material with certain advantages compared to metals (lower losses and
much longer plasmon lifetimes).

SBorn 12th July 1863 in Braunschweig; + 5th July 1906 in Berlin.
7Born 18th July 1853 in Arnheim; 1 4th February 1928 in Haarlem. Nobel Prize in Physics 1902.
8Born 5th December 1868 in Konigsberg; 1 26th April 1951 in Miinchen.

“Born 2th July 1906 in StraBburg;  6th March 2005 in Ithaca, New York. Nobel Prize in Physics
1967.



14 2 The World of Plasmons

If we now assume that the macroscopic polarization is given by a sum over charge
times displacement r(, we obtain

wz

D=csE=gE+P=c¢ 1—2—{’ E, (2.3)
W+ 1Y 0

which finally leads to the dielectric function of Drude form

Dielectric function of Drude form for metals

2 2
cqlw w . nee
(@) =g — ——2—, with w, = = (2.4)
2 14
&0 W+ 1Y@ EoMme

where we have additionally accounted for the ionic background e, in a metal
(additional screening introduced by the bound valence electrons of the positive
ion cores). Here w, is the volume or bulk plasma frequency (electron density
ne = 3/4xr3, ry is the electron gas parameter or mean electron distance and takes
the value 0.159 or 0.160nm for gold or silver, respectively [22]), and &g is the
vacuum permittivity.'? If we neglect y ; and &4, for the moment, the Drude dielectric
function simplifies to 1 — @*/»? and we can distinguish two frequency regions: If @
is larger than w,, &4 is positive and the corresponding refractive index n = \/%
is a real quantity."' But if ® is smaller than w),, &, becomes negative and n is
imaginary. An imaginary refractive index implies that an electromagnetic wave
cannot propagate inside the medium. The specific value of %w), for most metals lies
in the ultraviolet region, which is the reason why they are shiny and glittering in the
visible spectrum. A light wave with w < w, is reflected, because the electrons in the
metal screen the light. On the other hand if @ > w, the light wave gets transmitted
(the metal becomes transparent), since the electrons in the metal are too slow and
cannot respond fast enough to screen the field.

This treatment of a free electron gas already gives quite accurate results for the
optical properties of metals in the infrared region, but since higher-energy photons
can also promote bound electrons from lower-lying bands into the conduction
band [23] (see Fig. 2.2) the Drude model becomes inaccurate for the visible regime
as indicated in Fig. 2.3.

19For gold at room temperature we have n, = 3/[47(0.159x107°% = 5.9 X 10?8 electrons/n,3, With
e=1.602x 1071 As, 5y = 8.854 x 10712 A’s'/kgm?, and m, = 9.109 x 103! kg we obtain
w, = 13.75 PHz or hw, = 9.05 eV, respectively.

In general n = 4= /1e/u0e, = F=4/¥/e, for optical frequencies and the positive sign is chosen for
causality reasons in the system. A negative refractive index does not occur in nature but can be
artificially generated with metamaterials (see Sect. 9 or e.g. [24-26]).
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Energy (eV)
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Fig. 2.2 Electronic band structure of gold calculated within a first-principles approach. The
parabolic sp-bands (energy roughly proportional to momentum squared) explain why the free
electron gas description works well for most metals. Above 2eV (i.e. light wavelengths shorter
than 620 nm) electrons can be promoted from the d-bands below the Fermi energy to states above,
which leads to strong plasmon damping and the absorption as well as re-emission of light yielding
the golden color. Adapted figure with permission from [27]. © 2004 by The American Physical
Society

As will be discussed in Sect. 3.1 in more detail, the dielectric function describes
the response of a material and can either be obtained by first principle calculations
or from measurements. In our simulations we will employ the dielectric data'?
obtained from experiments, but unfortunately there are some difficulties. First the
results from different experiments are not always consistent as shown in Fig.2.4.
In particular the data published in [30] shows some additional features compared
to [28] for gold and silver around 1 eV (x~1240 nm),"? see real part in Fig. 2.4a and
zig-zag features in Fig. 2.4b. Second the dielectric function can be determined from
optical experiments on bulk solids, thin solid films or clusters [31] which all differ
from each other. A more detailed comparison as well as spectroscopic ellipsometry
measurements of evaporated, template-stripped, and single-crystal gold can be
found in [32] for example.

121 the literature most of the time the complex refractive indegc is tabulated, the connection to the

dielectric function is given by ¢/e, = & + ie; = n> = (i1 + ik)?. The real and imaginary parts of
2 e

¢/e, then follow as 1 = 72 —k and &, = 2nk.

13The conversion factor between eV and nm is 1239.84 as discussed in Appendix A.1.
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Fig. 2.3 Real and imaginary parts of the dielectric function for gold (a), (b) and silver (c), (d).
The experimental data together with the measuring uncertainty have been taken from Johnson and
Christy [28]. In the inset on the left hand panels we list the corresponding Drude parameters, see
Eq. (2.4). The imaginary part of the Drude dielectric function for gold becomes invalid for energies
above 1.9eV (wavelengths below 650 nm), see (b), because at this energy interband transitions set
in. The line for the d-band contribution in (b) is obtained from a simple comparison between the
Drude dielectric function and the experimental result, also see [29]

2.2.1 Electromagnetic Waves at Interfaces

In Chap. 3 we will see that the wave equation (3.31) in Helmholtz form is the one
relation to rule them all, electromagnetic fields always have to obey

(V?+K)E(r,0) =0,

where the wave number k is given by n%. By following [23] let us investigate a
planar interface between a metal and a dielectric with ¢ = ¢, for the metal at
z < 0, and & = ¢, for the dielectric at z > 0 (at optical frequencies we can set
Hi2 = 1 ~ o). The wave equation now has to be solved separately in each region
of constant ¢ and the corresponding boundary conditions demonstrate how to match
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Fig. 2.4 Comparison of the dielectric data for gold (a) and silver (b) obtained from experiment
and published in [28, 30], also see [32]
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Fig. 2.5 Polarized electromagnetic waves at a planar interface

the two solutions at the interface. In general, Maxwell’s equations allow two sets of
self-consistent solutions with different polarizations—TM or (p)-polarized and TE or
(s)-polarized modes,'* see Fig. 2.5.

Since we do not obtain a plasmonic excitation for the latter (see [33] for
example), we neglect TE modes and write down the solution of Eq. (3.31) as [23]:

E.
] . .

Ei=| 0 |e® etz j=1,2, (2.5)
E,

The component k, of the wave vector parallel to the interface is preserved, thus
the index j indicating the medium is unnecessary here. Applying the Pythagorean

4The abbreviations (s) and (p) come from the German words senkrecht (perpendicular) and
parallel (parallel), respectively.
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theorem to the wave vectors results in

g 2
B+ =K — k=2(2) - j=12 2.6)

o \C

and the boundary conditions (see Sect. 3.2.1) yield

E, —E, =0, (2.7a)
81EZI - 82Ezz = Oa (27b)

i.e. the parallel field component is continuous, whereas the perpendicular compo-
nent is discontinuous. The fields also have to fulfill Gauss’ law V-D = 0 [Eq. (3.3a)]
in both source-free half-spaces which gives us

keEy, + kyyEy, = 0. (2.8)

With Egs. (2.7) and (2.8) we now have a set of four coupled equations, which
yield a solution for the unknown field components if the corresponding determinant
vanishes. We get

1 0-10
0e 0 —e¢ !

det K kzll 0 02 = ke(e1k,, — £2k,) = 0, (2.9)
00 k& ke

ie. for ky#0 we have k,, = %kzz- Together with Eq.(2.6) this directly yields
the dispersion relation between the wave vector components and the angular
frequency w (also see [34])

Plasmon dispersion relation

1/2 ) 1/2
R -
¢ Leo(e1 + &2) c \er+e&
&2 & . Y2
=2 —L — =n,9( & ) , j=1,2,i=2,1.
c | eo(er + &) c \& + &
2.11)

We are looking for solutions that are propagating along the surface, i.e. we require
areal k, and a purely imaginary k.. From the dispersion relation it follows that the
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Fig. 2.6 An evanescent wave corresponds to a TM-mode that propagates along the interface of a
metal and a dielectric, where the z-component of the electric field decays exponentially [35]

plasmon polariton
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Fig. 2.7 Plasmon dispersion relation for a metal/air interface with k() € R. Since the dispersion
line of plasmons (red line, without damping; blue line for free electrons) does not cross the light
cone (yellow line) at any point, it is not possible to excite a surface plasmon at a metal air interface
with a light wave. Yet the light cone can be tilted (dotted yellow line) if we change from free space
to a dielectric medium. For k, — oo the denominator €y(¢; + &,) in Eq. 2.10 should vanish, thus
for ey = g4 =~ g9(1 — @’/w?) and &, = &, = &, we derive the characteristic surface plasmon
frequency @»//2.

conditions for the existence of an interface mode are given by
£18 <0, g1 +e, <0, (2.12)
which results in an electromagnetic wave bound to the interface' as depicted in

Fig.2.6. The resulting imaginary k. corresponds to exponentially decaying (so-
called evanescent) waves.

15See [1] or [23] for a more detailed discussion.
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Fig. 2.8 Two configurations that provide the missing momentum contribution discussed in the
text for the excitation of surface plasmons. (a) Otto configuration: The total reflection at the
prism/air interface generates an evanescent field that excites a surface plasmon polariton at the
dielectric/metal interface. This is an useful method when the metal surface should not be damaged,
but it is difficult to keep the constant distance (usually of the order of 1) between the metal and
the prism. (b) Kretschmann configuration: Here the total reflection at the prism/metal interface
generates an evanescent field that excites a surface plasmon at the opposite metal/air interface. The
thickness of the metal film must be smaller than the skin depth [see Eq. (2.13)] of the evanescent
field

The dispersion relation (2.10) is plotted in Fig. 2.7. Since the red line of the sur-
face plasmon polariton does not cross the light cone at any point, a direct excitation
of surface plasmons with an electromagnetic wave is not possible (the momentum of
light is always too small). Nevertheless surface plasmon polaritons can be excited,
of course, one just has to provide the missing momentum contribution. This can be
done through a tilt of the light line @ = ck; to ¢k+/n in a dielectric medium as shown
in Figs.2.7 and 2.8.

2.2.1.1 Skin Depth and Propagation Length

The imaginary part of the dielectric function is related to the energy dissipation
of the material, i.e. if an electromagnetic wave impinges on a metal surface it can
only penetrate the solid up to a certain material dependent depth. This so-called skin
depth ¢ is defined as the distance, where the exponentially decreasing evanescent
field e %! falls to 1/e [1, 31]:

Skin depth

A{ + /2 . . .
1 &y = — [%] in medium with &,

(2.13)

1/2
|k ln = ﬁ [ﬁmj—sﬁ] in metal with &,,.
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Since the dielectric background constant &;, is usually much smaller than the real part
of &, inside the metal (2.13) can be replaced with the approximation ¢,, ~ */(2xn,),
where n), = /¢u/e, and &,, = €, +1i¢).

If a surface plasmon propagates along a smooth surface, its intensity decreases
as e =2 [1], where k, = K, + ik”. The length § = 1/ after which the intensity
has fallen to !/e can be defined as the propagation length.

In this sense the large real part of &, is responsible for the corresponding small
skin depth.'®

2.2.2 Particle Plasmons

In general, we have seen that plasmons arise from an interplay of electron density
oscillations and the exciting electromagnetic fields. In this sense, we should talk
about surface plasmon polaritons and also distinguish the propagating (evanescent)
modes at the interface of a metal and a dielectric from their localized counterpart
at the surface of metallic particles (so-called particle plasmon polaritons). If an
electromagnetic wave impinges on a metallic nanoparticle (whose spatial dimension
is assumed to be much smaller than the wavelength of light), the electron gas gets
polarized (polarization charges at the surface) and the arising restoring force again
forms a plasmonic oscillation, see Fig. 2.9.

The metallic particle thus acts like an oscillator and the corresponding resonance
behavior determines the optical properties [36]. Such particle plasmons!’ behave

polarized electron
cloud

Fig. 2.9 Excitation of particle plasmons through the polarization of metallic nanoparticles. At
the resonance frequency the plasmons are oscillating with a 90° phase difference (180° above
resonance). In addition, a magnetic polarization occurs, but most of the time it can be neglected
for reasons discussed in Sect. 2.8

16Typically ¢,, is one order of magnitude smaller than ¢, e.g. for gold we obtain ¢,, ~ 30 nm and
{p ~ 280 nm at A= 600 nm.

17Since we solely discuss particle plasmon polaritons in this book, we will henceforth always refer
to them.
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Fig. 2.10 Energy balance in photonic and plasmonic structures, reprinted by permission from
Macmillan Publishers Ltd: Nature Nanotechnology [38], © 2015. (a) In an optical cavity with
dimensions larger than half wavelength %/2. energy alternates between ug (left), the energy of
electric field E, and uy (right), energy of magnetic field H, analogous to energy alternating between
potential and kinetic forms for a mass oscillating on a spring (the energy is conserved). (b) In a
subwavelength cavity with characteristic size a the magnetic energy is too small, hence the cavity
radiates energy out (purple arrows) in agreement with the diffraction limit. (¢) When free carriers
are introduced a current J flows and the energy alternates between ug and the kinetic energy of
carriers ug, where NV, m and v are respectively the carrier density, mass and velocity. The diffraction
limit is beaten, but the motion of carriers is strongly damped with the damping rate y, and the
surface plasmon polariton mode is lossy

as efficient nanosources of light, heat and energetic electrons [37] and provide a
unique playground for a very multidisciplinary research field, ranging from biology
through chemistry to optics, from communication technology to material sciences,
from solar light harvesting to cancer therapy.

Recently Jacob Khurgin published an insightful review about the loss in plas-
monic materials [38], in which he also presented an intuitive picture about the
energy balance in plasmonic structures (reprinted in Fig. 2.10).

In an optical resonator with characteristic dimension a larger than the wavelength
A, see Fig.2.10a, the electromagnetic energy is transferred every half period from
the electric field energy ug ~ 1/2¢E” to the magnetic field energy uy ~ 1/2 uH?
and back, similar to the kinetic and potential energy of an oscillating mass on a


http://www.nature.com/nnano/index.html

Derivation of Surface Plasmon Polaritons 23

spring [38]. If the size of the resonator becomes smaller than */2» as shown in
Fig.2.10b, where n is the refractive index, it follows from Maxwell’s equations that
the magnetic energy is much smaller than the electric counterpart, which makes
self-sustaining oscillations impossible and the cavity radiates energy out. If one
introduces free carriers into the mode as plotted in panel (c), the energy can also
be stored in the form of kinetic energy u; of the carriers and the energy balance
up + ur = ug can be restored at certain frequencies of the surface plasmon. This
kinetic oscillation of the carriers allows us to exceed the diffraction limit of light, as
we will see later on in Chap. 5, but it also comes at a price, since the electrons in a
metal get scattered very quickly and the cavity mode vanishes typically after about
10fs.
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2.3 Tuning the Plasmon Resonance

When a metallic nanoparticle is illuminated by white light, the plasmonic resonance
determines the color we observe, see Fig.2.11. This behavior is nothing new:
Microscopic gold and silver particles incorporated in the stained glass of old church
windows are responsible for their beautiful lustrous colors.'® Another very famous
example dates back to antiquity—a Roman cup made of dichroic glass illustrating
the myth of King Lycurgus'® [41, 42].

Let us discuss this topic more precisely: We can tune the resonance of the surface
plasmon polariton by changing the size or shape of a metallic nanoparticle, as
plotted in Fig.2.12. We recognize that the effect of squeezing a sphere to a rod-
like particle has a significantly greater impact than increasing its diameter and the
upper panel in Fig.2.12b also shows that the resonance intensity has a maximum
for the aspect ratio of somewhere between 0.3 and 0.4 (also see [43]).

The plasmonic resonance is not only sensitive to the shape and size of a
nanostructure, also the dielectric medium surrounding the particle plays a key role,
see [44] for example. In Fig.2.13 the sensitivity of a nanorod to the dielectric
background ¢, is shown.

Even the slightest change in the dielectric surrounding leads to a detectable shift
of the resonance energy. That is the reason why metallic nanoparticles are very

— e

Fig. 2.11 Nanoparticles of various shape and size in solution—the plasmonic resonance determines
the color (Photo with kind permission from Carsten Sonnichsen, http://www.nano-bio-tech.de/)

3The windows of Sainte-Chapelle in Paris are a very good example of this: Light transmission
through the metal ions in the stained glass strongly depends on the incident and viewing angles. At
sunset, the grazing-angle scattering of light by gold particles in the window creates a pronounced
red glow that appears to slowly move downward, while intensities of blue tints from ions of copper
or cobalt remain the same [39, 40].

YLycurgus cup, fourth century AD, British Museum, London.
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Fig. 2.12 Tuning the resonance of a surface plasmon polariton by changing the diameter of a gold
nanosphere (a) or by squeezing its aspect ratio (b). The upper panels show the scattering cross
section, in the lower panels the corresponding density plots are shown

suitable for sensing applications: Placing a molecule in the vicinity of a nanoparticle
effects the dielectric environment and therefore shifts the plasmon peak. As already
mentioned in the introduction, bio-sensing is one of the major applications for
plasmonic nanoparticles. Thus the question naturally arises of the optimal shape and
size of a sensor made of nanoparticles. A comprehensive analysis of this question
can be found in [43, 45] for example.

The influence of the embedding medium on a metallic nanoparticle is a tricky
topic as discussed in Sect.4.6.3. For example, if particles in aqueous solution
are investigated, a constant and homogeneous water temperature must be assured
because the refractive index of water is temperature dependent [46]. Indeed, the
change from 20 to 40 °C leads to a resonance shift of about 1 nm [47], which for
very accurate sensing applications may become important—especially when heat is
generated through an exciting laser field [48] (also see Sect. 2.9).
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Influence of dielectric background constant
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Fig. 2.13 Scattering cross section of a gold nanorod with diameter 10 nm and an arm length of
35 nm. The dielectric constant ¢ of the embedding medium varies from 1.0 to 2.0, the panel on the
right again shows the corresponding density plot

2.3.1 Principle of Plasmonic (Bio-)sensing

One possible route to plasmonic molecular sensors is given by exploiting the
enhancement of the decay rates of fluorophores in the vicinity of MNPs [49, 50].
The molecule uses the nanoparticle as an antenna [51] in order to emit its energy
much faster—the enhancement can be two orders of magnitude or more. In Fig.2.14
an example published in [49] is shown, where fluorophores were deposited onto two
different samples of nanodisk-arrays. The molecules absorb in the ultraviolet and
emit in the visible regime, which allows a separation of the excitation and emission
channel.

If the plasmon frequency of the disk-arrays is in resonance with the molecular
emission (blue dashed line in Fig.2.14), each disk acts as a supplemental antenna
for the molecules. The nonradiative near-field of the fluorophores gets converted
into a radiating far-field, which leads to the dramatic increase of the radiative decay
rate [49] as shown in Fig.2.15.

The decay rate of the molecule can be calculated by Fermi’s golden rule, as
shown in [50]. In the cited work the decay rate of the coupled MNP-fluorophore
system is derived, which is fully determined by the dyadic Green function of
classical electrodynamics. It can be described in terms of a self-interaction, where
the molecular dipole polarizes the MNP, and the total electric field acts, in turn,
back on the dipole (see Fig.2.16b).

It is not only the radiative decay rate which gets enhanced, the nonradiative decay
channel is also strongly increased because of Ohmic power loss inside the nanodisks
as indicated in Fig. 2.16 and discussed in [49].
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Fig. 2.14 (a) Electron-microscopic image of two different quadratic arrays of gold nanodisk
samples on a silicon dioxide substrate, one geometry is chosen resonant and the other off-resonant
to the fluorophore emission. The size parameters and mutual distances are shown in the lower
panel. The large interparticle distance of ~50 nm ensures that coupling effects between the disks
can be neglected. (b) Absorbance spectra (dashed and dotted line) of the two nanodisk samples
as well as the emission spectrum (solid line, maximum at 612 nm) of the fluorophores. Reprinted
figure with permission from [49]. © 2007 by The American Physical Society
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Fig. 2.15 Panel (a) shows the fitted fluorescence curves for the two samples of Fig. 2.14 (dashed
and dotted lines), for a flat gold film (yellow line in lower left corner), and for the bare silicon
substrate (black solid line). (b) Fluorescence intensity results of simulations with the boundary
element method (see Sect. 4.4) for the corresponding setup, for further details see [49]. Reprinted
figure with permission from [49]. © 2007 by The American Physical Society

This example illustrated the cumulative effect of many molecules spread over
an array of nanoparticles, but the crux of the whole sensing problem is given
by the possibility to detect one single molecule. Here once again the near-field
enhancement of metallic nanoparticles is of great importance. In Fig.2.17 the near-



28 2 The World of Plasmons

(a) free molecule (b) molecule & nanopartilce
Internal relaxation |>.<'
ou
— Excited state [ ———
e : | ;
v
>
o
B
o ? _Ground state 0_
Fexe  Mmol r‘f'ud Mmol + Fabs Mrad
l_'_l

Enhancementthrough modified LDOS

Fig. 2.16 Energy levels, radiative (I1,4) and non-radiative (I7,0)) decay rates of a free molecule
(a) and a molecule coupled to a metallic nanoparticle (b). The decay rates for the free fluorophore
are indicated with a 0 in the superscript and the excitation is noted as Ity The plasmon resonance
tuned to the molecular emission enhances both, the radiative as well as the nonradiative decay
channel [49]
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107

Fig. 2.17 (a) Real part of electric field (in the gap region the field is about seven times larger than
the background) and normalized surface charge density, each one at the resonance energy for the
gold bowtie nanoantenna with 5nm gap distance. (b) Near-field enhancement 1E*/|E,? calculated
for the same nanoentenna. The triangle size is 45 nm in x, 40 nm in y and 8 nm in z direction

field enhancement of a bowtie nanoantenna is plotted on a logarithmic scale. For
a gap distance of Snm we obtain a strong intensity enhancement as well as a
localization in the gap region. Placing a single molecule in the hot spot at the
gap leads one way to single molecule sensors, see Fig.7.4. In [52], for example,
single molecule fluorescence enhancements up to a factor of 1340 for gold bowtie
nanoantennas have been reported.

Additional remark }

An interesting review about advances in the field of optical-biosensors can be
found in [53]. A typical example of the working principle of a sensor based on
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r-{ Additional remark }

surface plasmons is shown in Fig.2.18 below, where the binding of analytes
can be measured non-invasively in real time.
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Fig. 2.18 The changes in the refractive index in the immediate vicinity of a surface layer
are detected with a sensor chip. The plasmonic resonance is observed as a sharp shadow
in the reflected light at an angle that depends on the mass of material at the surface—this
angle shifts if biomolecules bind to the surface. Reprinted by permission from Macmillan
Publishers Ltd: Nature Reviews Drug Discovery [53], © 2002

2.3.2 Surface-Enhanced Raman Scattering

Another important technique that allows the detection of single molecules

is

surface-enhanced Raman scattering (SERS) [54, 55]. Through the absorption of a
photon, a molecule can be excited electronically and also vibrationally. For typical
fluorescence the received energy is spontaneously re-emitted after some internal
relaxation (see Fig. 2.16a). In quite rare events also elastic or inelastic scattering may
occur, where the photon frequency can be mixed with the vibrational energy levels
of the molecule, see Fig.2.19. The elastic process, where the photon is absorbed
and emitted with the same frequency, is called Rayleigh scattering. If the electronic
transition also involves the vibrational energy levels of the molecule, we end up with

the inelastic Raman scattering.*°

20A unified treatment of fluorescence and Raman scattering can be found in [56] for example.
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Fig. 2.19 Jablonski diagram of (elastic) Rayleigh and (inelastic) Raman scattering. The electronic
levels Sy 1 (sometimes also called bands) of a molecule may each possess a number of vibrational
sublevels v = 0, 1,.... If the energy difference Aw is subtracted from or added to the original
photon energy w,, we obtain Stokes or Anti-Stokes scattering, respectively

Raman scattering can also simply be understood as the analog of amplitude
modulation used in broadcasting [23]: The frequency of the carrier (laser) is
mixed with the frequencies of the signal (molecular vibrations). Hence the final
Raman signal consists of sums and differences of these frequencies and is a highly
specific fingerprint of the investigated molecule. The problem in this process is
the very low probability for a photon to undergo Raman scattering. A typical
Raman cross section is up to 14 orders of magnitude smaller than the fluorescence
cross section [23], which makes it very difficult to investigate Raman scattering in
microscopy. However, in the late 1970s an enormous increase of the Raman signal
for molecules adsorbed on specially prepared silver surfaces was reported [57-59]
and led to the birth of a new research field [60]. The Raman signal, increased
at least a millionfold, results from the interaction with the strong plasmonic near
fields at the surface of rough metallic films or nanoparticles. The reason for the vast
SERS signal (e.g. in contrast to the previously discussed fluorescence enhancement)
lies in a twofold amplification®': First, the incident light field which excites the
Raman modes is magnified through the plasmonic excitation and then the Raman
signal itself is further enhanced a second time through the same process [55]. Each

21 Also an enhancement in polarizability due to chemical effects such as charge-transfer excited
states can contribute to the huge SERS signal [55], but in the following we will just stick to the
electromagnetic enhancement.
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enhancement step is proportional to E?, which finally yields a E* field dependence
for the SERS signal. Accordingly the enhancement factor Eg can be expressed as

Electromagnetic SERS enhancement

Es ~ |E(w)*|E(@)” ~ |E()[*, (2.14)

where  represents the incident frequency and @’ the corresponding Stokes-shifted
value. Usually the plasmon width is large compared to the Stokes shift and allows
the approximation Es o¢ |E|*(w).?> A more rigorous expression for Es has been
developed in [62], but since numerical values differ only slightly from (2.14),
the simpler expression is almost exclusively used [55]. In conventional SERS, the
enhancement is averaged over the surface area of the particle where molecules can
adsorb to generate the observed enhancement factor (Es), while in single-molecule
SERS it is the maximum enhancement that is of interest [55]. Nowadays SERS
enhancement factors up to 10'! are regularly reported [63] thereby paving the way
for the detection of single molecules [64, 65].

22Some studies on isolated, homogeneous particles have shown that this assumption leads to a
slight overestimate of the enhancement factor [55]. Also see [61] for example.
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2.4 The Energy Transfer of Forster and Dexter

Light-sensitive molecules play a decisive role in our everyday life, be it in
photosynthesis and plant growth or the marvelous diversity of colors and dyes
surrounding us every minute. Such color bearers are called chromophores, their
color arises when the molecule absorbs photons at specific optical wavelengths and
transmits, reflects or re-emits (fluorescence) the absorbed electromagnetic energy.
The involved electronic transitions in the molecular orbitals take place in the visible
spectrum of light and thus are detectable to the human eye.

If two chromophores come close to each other, an initially excited donor can
transfer its energy to an acceptor through nonradiative processes, which are essential
for photosynthesis for example (see [66] for a more detailed discussion). These
energy transfers may occur intermolecularly, i.e. between two different molecules,
or intramolecularly between two different parts of the same molecule, provided that
the emission spectrum of the donor overlaps with the absorption spectrum of the
acceptor, see Fig. 2.20.

This naturally results in fluorescence quenching for the donor, i.e. the fluo-
rescence intensity is decreased, whereas the acceptor’s intensity is increased. If
the mutual spatial separation of donor and acceptor is smaller than approximately
5nm, the nonradiative energy transfer can occur through a classical dipole-dipole
interaction, provided that the molecular dipole moments of both partners are
oriented in similar directions (usually there is a statistical distribution of dipole
moments). If the separation between donor and acceptor becomes smaller than
approximately 0.5 nm, the electronic orbitals start to overlap and the electrons can be
transferred bilaterally between donor and acceptor through a quantum mechanical
process, see Fig.2.21.

The first mechanism is called Forster resonance energy transfer (FRET) [67, 68]
and its efficiency is proportional to the inverse sixth power of the distance between

Donor Acceptor Donor Acceptor

LUMO

photon

bt spectral overlap
excitation

nonradative
energy transfer

HOMO

Fig. 2.20 Nonradiative energy transfer between a donor (red) and an acceptor (green). The donor
initially absorbs a photon and gets excited. If an acceptor in its ground state is in close proximity to
the donor and if the emission of the donor spectrally overlaps with the absorption of the acceptor,
the energy can be transmitted without emission and absorption of an actual photon
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Fig. 2.21 Schematics of the singlet-singlet Forster and Dexter energy transfer mechanisms
between an initially excited donor (green) and an acceptor (red). The Dexter energy transfer can
also occur for a triplet state

donor and acceptor. The second mechanism is called Dexter transfer [69] and
follows an inverse exponential law.

The FRET efficiency is usually defined as the relative change of the donor’s
fluorescence emission [23]

D—A

Eprer = (2.15)

yD + yD—>A ’

where yP is the sum of the radiative and molecular decay rate of the donor in
absence of the acceptor and yP~* is the rate of energy transfer from donor to
acceptor, which also depends on the particular dipole orientations. Usually these
orientations are unknown and a statistical average over many donor-acceptor pairs
is required to determine y°~A. The corresponding equations are derived in detail
in [23], for example, but here we will just present the final result for the averaged

transfer rate

D—A R 6

r - (—F) , (2.16)
y R
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where R = |rp — ra] is the distance between donor and acceptor and the Forster
radius Rr is given by Novotny and Hecht [23]

—1/6

3¢ [ o@os@) , 2.17)

Ry =
F 47 n(w)*w*
0

Here fp is the donor’s normalized emission spectrum in a medium with refractive
index*} n, o, is the acceptor’s absorption cross section, and c is the speed of
light. Thus Eq. (2.17) is basically given by the spectral overlap between donor and
acceptor for averaged dipole orientations. The FRET rate (2.15) then follows as

FRET rate for averaged dipole orientations

D—A 1
= . 2.18
yD 4L yD—>A 1+ (i)é ( )

EpRrer =

Typical values for the Forster radius Rr range between 2 and 9 nm [71]. For short
distances (kR < 1) the transfer rate yP~4 always scales as R°, for long distances
(kR > 1) and aligned dipoles we obtain a (kR)™* dependence, and if the dipoles are
not aligned, yD_’A decays as (kR)™2 [23].

Because of the antenna-like behavior of metallic nanoparticles [51], it doesn’t
come as a surprise that they can be used as mediators for the Forster energy transfer
between separated molecules. The donor then excites a plasmon and the plasmon in
turn passes on its energy to the acceptor through the FRET mechanism, i.e. through
dipole-dipole coupling. In [72], for example, the authors used an europium’*
complex as donor, which emits a narrow line at 612nm when excited by light at
360 £20nm. As acceptor they used a Cy5 dye, which absorbs in a broad band
mainly between 580 and 680 nm. The Forster radius for this donor-acceptor pair
yields 5.6 nm and a result for the FRET probability is shown in Fig. 2.22.

23The usage of the refractive index in Eq. (2.17) is not consistent in the literature, see [70] for more
details.
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Fig. 2.22 Simulated FRET probability where a MNP is used as mediator between donor and
acceptor molecules. On the left fluorescence spectra with (solid lines) and without (dashed lines)
the metallic nanoparticle are shown. The bright, orange line indicates the scattered intensity of
the metallic nanoparticle in absence of donor and acceptor molecules. On the right the surface
discretization of the cylinder-shaped particle (60 nm diameter and 15nm height) as used in the
calculations is depicted. The donor and acceptor molecules are placed on a sheet with a distance
2nm away from the MNP. The color map shows the FRET probability for three selected donor
positions. The solid and dashed lines indicate the effective Forster radii for the donor-acceptor
complex in the presence and absence of the MNP. Reprinted with permission from [72]. © 2008
American Chemical Society

/—1 Additional remark }

The coupling between metallic nanoparticles and dyes or other quantum
emitters can be exploited in several ways. In 2003, David Bergman and
Mark Stockman proposed a coherent and ultrafast source of optical energy
concentrated at the nanoscale and named it in analogy to its light-amplifying
brother spaser (short for surface plasmon amplification by stimulated
emission of radiation) [73], see Fig. 2.23.
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Fig. 2.23 Schematic of a spaser and the corresponding energy levels and transitions. The
spaser is made from a silver nanoshell on a dielectric core (with a radius of 10-20 nm), and
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/—{ Additional remark }

surrounded by two dense monolayers of nanocrystal quantum dots. The external radiation
excites a transition into electron-hole (e-h) pairs (vertical black arrow in the right panel).
The e-h pairs relax to excitonic levels (green arrow). The exciton recombines and its
energy is transferred (without radiation) to the plasmon excitation of the metal nanoparticle
(nanoshell) through resonant coupled transitions (red arrows). Reprinted by permission
from Macmillan Publishers Ltd: Nature Photonics [74], © 2008

In [74] Mark Stockman writes:

A spaser is the nanoplasmonic counterpart of a laser, but it (ideally) does not emit
photons. It is analogous to the conventional laser, but in a spaser photons are replaced
by surface plasmons and the resonant cavity is replaced by a nanoparticle, which
supports the plasmonic modes. Similarly to a laser, the energy source for the spasing
mechanism is an active (gain) medium that is excited externally.

The reason that surface plasmons in a spaser can work analogously to photons in a
laser is that their relevant physical properties are the same. First, surface plasmons
are bosons: they are vector excitations and have spin 1, just as photons do. Second,
surface plasmons are electrically neutral excitations. And third, surface plasmons are
the most collective material oscillations known in nature, which implies they are the
most harmonic (that is, they interact very weakly with one another). As such, surface
plasmons can undergo stimulated emission, accumulating in a single mode in large
numbers, which is the physical foundation of both the laser and the spaser.

Through the combination with metamaterials the concept was further
developed to so-called lasing spasers in [75], also a graphene spaser was pro-
posed recently [76]. Attempts to realize spasers in the laboratory usually have
to face the strong absorption losses in metals particularly at optical frequen-
cies. A first spaser-based nanolaser, consisting of 44-nm-diameter nanoparti-
cles with a gold core and a dye-doped silica shell, was reported in [77].
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2.5 Light Absorption in Solar Cells

Another of the many possible applications that could be revolutionized (or at least
very much improved) by plasmonic structures are photovoltaic devices [78, 79].
The combination of MNPs and semiconductor materials, for example, allows a
considerable reduction in the physical thickness of absorber layers, and yields new
possibilities for the design of solar-cells. We don’t want to go into the details of
this broad research field, but since some of the solar cell aspects are again prime
examples for the tunability of the plasmonic resonance, let us briefly dwell upon
this subject. A review about recent advances at the intersection of plasmonics and
photovoltaics can be found in [79] and a brief overview of three different light-
trapping thin-film geometries is depicted in Fig. 2.24.

Unfortunately for the developing of photovoltaic cells our sun is a black body
source that has nothing to do with the compliant light of a laser. An efficient solar
device must for example have a very broad absorption spectrum for all parts of sun
light (also see [80]). There are two easy ways to broaden the absorption of a metallic
nanoparticle, either by adding an additional coating around the structure or simply
by coupling it to another particle, see Fig. 2.25.
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Fig. 2.24 Three different plasmonic geometries for light-trapping for thin-film solar cells. (a)
Metallic nanoparticles embedded at the solar cell surface scatter light preferentially into the
semiconductor thin film which leads to an increase of the optical path length in the cell. (b) If
the particles are embedded in the semiconductor, the creation of electron-hole pairs is caused by
the particle’s near-field. (¢) Light coupling through a corrugated metal back surface. Reprinted by
permission from Macmillan Publishers Ltd: Nature Materials [79], © 2010
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Fig. 2.25 The blue dashed line shows the absorption spectrum for a 10 nm gold sphere embedded
in glass (n = 1.5). Adding an additional silver layer around the sphere (see inser), yields an
enhanced and broadened absorption (red solid line, normalized to 1). The shaded background
color range was approximated according to Fig. A.1

r-{ Additional remark }

The coupling of two or more metallic nanoparticles leads to a hybridization of
the energy levels. Figure 2.26 shows the example for spherical dimers.
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Fig. 2.26 Energy levels of two coupled spherical nanoparticles (see [81, 82]), note the
occurrence of bonding and antibonding modes
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2.6 Strong Coupling

In the last sections the interaction of molecules and metallic nanoparticles took
center stage several times. Possible applications of such hybrid systems cover a
wide area and recently also quantum-optics found its way into plasmonics [83, 84],
where the key element is given by the strong coupling of a quantum emitter and a
resonator [85]. This allows for a coherent transfer of the excitation energy between
emitter and resonator, which was first observed for single atoms in high-finesse opti-
cal resonators [86, 87]. More recently, strong coupling has been reported for various
solid state systems, such as semiconductor quantum dots [88, 89] or superconductor
circuits [90]. If a metallic nanoparticle interacts with a molecule we usually obtain
an intricate interplay of the molecule-MNP coupling strength with the molecular
relaxation dynamics, which becomes heavily altered in the vicinity of the nanopar-
ticle. This typically results in excitonic splitting (Rabi splitting®*), frequency shifts,
asymmetric line shapes (Fano resonances®), or dips in the scattering spectra [94].

If we assume a generic model, where a quantum emitter couples only to a single
cavity mode (e.g. the dipole mode), we can write down a simple expression for the
onset of strong coupling in terms of the coupling strength g [85]

Strong coupling regime

1
g > Zlyc—yml, (2.19)

where y. and y, are the decay rates of the cavity and quantum emitter, respectively.
In simple terms: We obtain strong coupling if the coupling strength is larger than
the damping in the system. In plasmonic systems a priori this scenario is doubtful,
since we always have to deal with strong losses in the metals. On the other hand
the coupling strength in hybrid structures is also very high (e.g. see [95]) and strong
coupling in plasmonic systems has been observed in several experiments to date.
But in general, Eq. (2.19) is too simple, because if we take a metallic nanoparticle
as cavity and a molecule as emitter, the coupling is not restricted only to the
nanoparticle dipole mode but can also occur to all other modes. Nevertheless (2.19)
allows an estimation of the pertinent parameters for strong coupling. For example

%4The formation of two hybridized modes (cf. bonding and antibonding modes in Fig.2.26)
oscillating at different energies is a typical indicator of strong coupling, if the involved damping is
small. In the time domain the energy then oscillates between atom and cavity (Rabi oscillations,
named after the Nobel laureate Isidor Isaac Rabi) [91]. In the frequency domain we obtain Rabi
splitting and anticrossing, see [88]. Rabi splitting is fundamental for the dynamics of two-state
systems and can be easily modeled using the Jaynes-Cummings model [92] for example.

2Fano interference occurs, when a resonant or discrete state interacts with a continuum of states—

a very general effect that can be found in many different areas of physics and has been derived
originally by Ugo Fano [93].
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for a silver nanoparticle the plasmon decay rate is roughly 30fs, so the critical
coupling strength follows as g ~ 30/4 ~ SmeV [85]. For gold we have y. = 10fs
and therefore g ~ 1.7 meV.

A unified theoretical framework of strong coupling between plasmons and
electronic transitions is discussed in [94]. There the authors show that by modifying
the damping rate of a plasmon resonance (e.g. by changing size, shape, or nature
of the metal), it is possible to transition from one regime of coupling to another
(e.g., from Rabi splitting to Fano interference), see Figs.2.27 and 2.28. A quantum
mechanical approach can be found in [96] for example, also see [97-99].

Rabi splitting Fano resonance
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Fig. 2.27 Illustration of Rabi splitting and a Fano line shape in a hybrid plasmonic/excitonic
system. On the left panel a plasmonic oscillator with a sufficiently narrow line width couples
strongly with an excitonic resonance to produce two hybridized modes split in energy. In the
right panel an oscillator with an extremely broad line width resembles a continuum of states and
undergoes Fano interference with the excitonic resonance. Adapted with permission from [94].
© 2014 American Chemical Society
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Fig. 2.28 Generalized model of plasmonic/excitonic coupling predicting various distinct regimes
of coupling, see [94] for details. (a) A coupled oscillator model shows that as the damping rate
or line width of the plasmonic resonator is increased, there is a transition from a Rabi splitting
regime to a Fano interference regime. Intermediate cases are also shown to demonstrate the gradual
evolution between the two regimes. (b) Decreasing the value of the coupling constant results in a
transition from an antiresonance feature in the Lorentzian spectrum to an asymmetric line shape
superimposed on the Lorentzian spectrum. Intermediate cases demonstrate the gradual transition
between these two Fano regimes. Figure and caption reprinted with permission from [94]. © 2014
American Chemical Society
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2.7 Damping Mechanisms of Surface Plasmons

As discussed at the beginning of this chapter, a plasmon is formed when a coherent
charge density oscillation is induced in the electron gas of a metallic nanoparticle
by an external excitation. This collective motion of the electrons can easily be
disturbed, for example by scattering events that destroy the phase coherence. One
can imagine this dephasing by simply kicking an electron out of the lock-step march,
due to scattering with impurities, phonons, other electrons, and so on. The electron
still has its kinetic energy but the phase coherence gets destroyed. Figure 2.29 gives
an overview about the different decay channels and in Fig. 2.30 the corresponding
time scales are plotted.

The radiative and nonradiative break up and decay processes of plasmons result
in highly excited electron-hole pairs [38, 100], which thermalize by further collision
processes on a sub-ps time scale [101, 102] to a distribution of “hot” electrons® and
holes [36]. Finally through electron-phonon coupling the energy is transferred to the
lattice as heat. Typically after about 10 fs the plasmon oscillation decays and the fur-
ther relaxation can last from femtoseconds up to several nanoseconds, see Fig. 2.30.

The decay time t of a particle plasmon oscillation can be determined from
the homogeneous linewidth I" of the spectral resonance of a plasmon, see
Appendix A.2. I' is defined as the full width at half maximum (FWHM) and is
inversely proportional to the decay time 7: I" o« ™!, see Eq.(A.7). Figure 2.31
shows an example for a nanorod antenna.
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Fig. 2.29 Usually a particle plasmon shares the destiny of a mayfly, albeit on a different time
scale: After a quite short existence it is doomed to decay. It can either decay radiatively (left) and
emit photons or lose its energy non radiatively via intra- and interband transitions (right), also see
Fig. 2.30. Both decay channels contribute to the homogeneous linewidth I”

26Since the heat capacity of the electronic system is much smaller than that of the ion lattice, an
excitation by femtosecond laser pulses can generate extremely high electron temperatures [36].
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Fig. 2.30 Photoexcitation and subsequent relaxation processes following the illumination of a
metal nanoparticle with a laser pulse, and characteristic timescales. Reprinted by permission from
Macmillan Publishers Ltd: Nature Nanotechnology [100], © 2015. (a) First, the excitation of
a localized surface plasmon redirects the flow of light (Poynting vector) toward and into the
nanoparticle. (b—d) Schematic representations of the population of the electronic states (gray)
following plasmon excitation: hot electrons are represented by the red areas above the Fermi
energy Er and hot hole distributions are represented by the blue area below Eg. (b) In the first
1-100 fs Landau damping occurs, where the athermal distribution of electron-hole pairs decays
either through re-emission of photons or through electron-electron interactions. During this very
short time interval, the hot carrier distribution is highly non-thermal. (¢) The hot carriers will
redistribute their energy by electron-electron scattering processes on a timescale ranging from
100fs to 1ps. (d) Finally, heat is transferred to the surroundings of the metallic structure on a
longer timescale ranging from 100 ps to 10 ns, via thermal conduction

Increased damping, for example caused by defects in the nanoparticles’ crystal
structure, thus leads to a broadening of the spectral linewidth. Note that I" can vary
more than a factor of ten for different nanoparticle geometries—defining the quality
of a plasmonic sensor simply over the shift of the resonance may therefore be a little
bit simplistic. In [43] we introduce several ‘figures of merit’ to allow a better quality
comparison of different plasmonic sensors, also see [45]. As discussed in Chap. 7,
for the direct measurement of the temporal evolution of particle plasmons ultrashort
laser pulses are necessary. These pulses have become available in the past decade,
enabling the observation of ultrafast plasmon dynamics directly in the time domain
with fs time-resolution [103].
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Fig. 2.31 Homogeneous linewidth (FWHM) I" and plasmon decay time t for a gold nanorod
antenna (rod length 280 nm, width 60 nm, height 40 nm, and gap distance 65 nm). The resulting
decay time t & 5.5 fs for this geometry has also been verified by autocorrelation measurements

In general, high absorption loss is usually the crux of the matter in plasmonics.
A recent summary of the four main absorption processes in a metal gives a clear
depiction [38], see the simplified band structure scheme in Fig. 2.32. The two states
below and above the Fermi level correspond to an excited electron with wave vector
k, and energy E, = hw, and the remaining hole with wavevector k; and energy E;.
The magnitude difference between these two momenta is typically far too large to
be supplied by a photon (Ak;> ~ 3 nm™') [38], hence in Fig.2.32a the missing
momentum part comes from a phonon or imperfection, where we obtain a hot
electron and hole. The other momentum-conserving absorption process is electron-
electron scattering [panel (b)], which is strongly frequency dependent and where
the energy conservation relation E3 + E4 = E; + E, + ho indicates that we
end up with four ‘lukewarm’ carriers with kinetic energies of the order of %v/4
each. The next process in panel (c) is Landau damping, where the absorption is
associated with the finite size of the surface plasmon mode and leads to an additional
confinement contribution (also see Chap. 8). In panel (d) again the discussed band-
to-band absorption is shown, a mechanism inherent to all metals.?’

27At the beginning of this section we have seen that d-band absorption for gold starts around
620 nm, in silver around 400 nm.
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Fig. 2.32 Absorption of a quantum of electromagnetic energy hw in a metal, reprinted by
permission from Macmillan Publishers Ltd: Nature Nanotechnology [38], © 2015. (a) Absorption
assisted by a phonon with wavevector g, creates hot hole (1) with wavevector k; and hot
electron (2) with wavevector k;, with energy E, above the Fermi level, Eg. (b) Electron-electron
scattering assisted absorption, an Umklapp process involving reciprocal lattice vector G creates
four lukewarm carriers—two holes (1,2) and two electrons (3,4). (¢) Direct absorption (Landau
damping) assisted by the plasmon momentum Ak, creates hot hole (1) and hot electron (2). (d)
Interband absorption from the d to s shell does not create hot carriers because hole (1) in the d
band has low velocity and excited electron (2) is too close to the Fermi level
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2.8 Magnetic Effects

A light wave always consists of an oscillating electric and magnetic field, the one
never occurring without the other. But since at optical frequencies the value of the
magnetic permeability = po(l + ym) & o, the magnetic component of light
generally plays an insignificant role and can often be neglected. This aspect can
be easily understood in a simplified picture with the Lorentz force Fi, [104-107].
As has been highlighted above, the electron cloud of a metallic nanoparticle can
interact with an impinging light wave. In classical electrodynamics the effect of the
electromagnetic field on a moving charge ¢ is described through [106, 107]

Lorentz force

Fi, =qlE+ (v xB)]. (2.20)

The magnitude of the electric force is given by gE, the magnetic equivalent can be
expressed through guB. In an electromagnetic wave we have B/ ~ 1/c [108] (the
fraction is exactly the inverse of ¢ in vacuum, in a dielectric we additionally would
have to account for the corresponding refractive index) and thus the ratio of the
velocity |v| of the moving charge to the speed of light ¢ determines the ratio of the
magnetic contribution to its electric counterpart. This ratio is essentially given by the
fine-structure constant & of atomic physics®® [105]. For atoms we obtain o ~ 1/137,
whereas in solid state physics the norm of the charge velocity is roughly given by
the Fermi velocity?® vg which implies for the ratio that vr/c ~ 1/300 [105]. The
magnetic response of a material is determined by the magnetic susceptibility y,,
which scales as (vr/c)%. Two important conclusions follow from that: The magnetic
response is four orders of magnitude weaker than the ease with which the same
material is polarized [104] and magnetization in non-ferromagnetic materials is a
relativistic effect (also see Sect. 9.2)!

When we try to detect light in experiments, we are most of the time blind to
its magnetic part and can only perceive its electric component [104]. One way
to visualize both the magnetic- and electric-field distribution of propagating light

2This fundamental constant can be interpreted in several ways, e.g. as the electromagnetic
coupling strength for the interaction between electrons and photons, as a ratio of charges, energies,
or characteristic lengths. When Arnold Sommerfeld introduced this dimensionless number in 1916
to explain the splitting or fine structure of the energy levels of the hydrogen atom, which had been
observed, he considered the ratio of the velocity of the electron in the first circular orbit of the Bohr
model to the speed of light in vacuum.

2Numerical value for gold and silver particles vp &~ 1.4 mv/fs = 1400 km/s, Fermi energy Ef
~ 5.53 eV respectively [22]. In contrast, the typical drift velocity of electrons in an electric wire is
of the order of mm/hour.
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Fig. 2.33 (a) Logarithmic plot of the electric field intensity of a gold nanoring at the resonance
frequency. The corresponding surface charge shows a dipolar distribution for a plane wave
excitation polarized along the x-axis. The loop current for this particle design enhances the
magnetic field (see Sect.9.2) plotted in (b), but it is still approximately five times weaker than
the electric field. The particle surface in (b) also shows the magnetic field

has been demonstrated by Burresi et al. in [104] through the combination of
near-field measurements and metamaterials. Sometimes the special geometry of a
nanoparticle also induces a magnetic field, e.g. ring-shaped particles sustaining loop
currents (see Fig. 2.33). Recently attempts have been made to intertwine magnetism
and plasmonics to so-called magnetoplasmonics, where usually noble metals are
combined with ferromagnetic materials to tailor the magneto-optical properties of
nanostructures, see the reviews [109] or [110] for example.
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2.9 Temperature Dependence and Coupling to Lattice
Vibrations

The Boltzmann constant kg (another bridge between macroscopic and microscopic
physics) has the dimension of energy divided by temperature and thus allows to
connect temperature with a thermodynamic energy value. In this sense we are able to
assign an energy of 0.025¢eV to the typical room temperature—a value much smaller
than the plasmonic energies at optical frequencies (1.65-3.26 eV, see Fig. A.l).
Consequently in plasmonic experiments an explicit temperature dependence can
usually be neglected, as long as the excitation does not melt away the metal of
course.*

It has been mentioned above that the refractive index of a medium surrounding
a metallic nanoparticle may be temperature dependent and that, e.g. for water, a
reasonable temperature change of 20 °C already leads to a detectable resonance
shift [46, 47]. Because of the extreme sensitivity of surface plasmons to their direct
surrounding we can exploit such thermal induced changes once again for sensor
applications or very local sensitivity measurements. The latter becomes possible
through the utilization of thermosensitive polymers like PNIPAM [112, 113],
see Fig.2.34. Such stimulable plasmonic systems are very efficient candidates in
active plasmonics,’' since they provide a continuous and reversible modulation of
the plasmonic response [112]. Also the subsequent decay of electron-hole pairs
into phonons finally leads to the decomposition of plasmons into lattice heat.
However, the typical Debye temperature for metals is of the order of the room
temperature [115], thus electron-phonon coupling usually plays an insignificant
role compared to plasmonic interactions. Nevertheless, an increase of the intrinsic
electron-lattice interactions in metal clusters with sizes smaller than 10 nm has been
reported in [116] and similar as for magnetic effects, the expansion to materials
other than plain gold or silver again allows us to overcome certain restraints.
Hence the coupling of plasmons and phonons has been reported for semiconductors
and graphene [117], for example. Phonon-enhanced light matter interaction at
the nanoscale with surface phonon polaritons as infrared counterparts to surface
plasmons has been introduced in [118]. One of the advantages of this approach is
the weaker damping for phonons, which thus allows for stronger and sharper optical
resonances.

390ptical damage of metal nanoparticles usually starts at laser energies around 25 GWem® for
antenna structures. For single particles this intensity might be doubled because of the lower field
enhancement, see e.g. [111].

31In real-life applications some kind of active control over the properties of the corresponding
nanosystem is usually required to achieve signal switching, modulation or amplification, for
example. For a passive device these properties are fixed by the nanostructure parameters, in active
plasmonics typically hybridized systems (see e.g. [114]) are used, where metallic nanostructures
are combined with functional materials.
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Fig. 2.34 Principle of an active polymer-coated plasmonic nanostructure. The PNIPAM polymer
undergoes a reversible phase transition upon going from a hydrophilic swollen conformational
state to a hydrophobic collapsed state around its lower critical solution temperature at 32 °C in
pure water. A set of eight extinction spectra of the PNIPAM-coated nanoparticles arrays going
from 16 to 52 °C are shown. Reprinted with permission from [112]. © 2011 American Chemical
Society

Another case where temperature effects become important will be briefly
discussed in Sect. 6.3, where thermal heating is used to reduce surface roughness of
metallic nanoparticles. Such tempering processes usually also change the crystallite
grain sizes of the metal and lead to a modified dielectric function.

Recently a set of refractory materials also gained interest amongst the plasmonic
community: Transition metal nitrides [119, 120] such as titanium nitride (TiN) or
zirconium nitride (ZrN) mimic the optical properties of gold and silver but are
chemically stable at temperatures above 2000 °C.
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2.10 Nanoparticle Fabrication Methods

The huge increase of research activities about plasmonic nanoparticles in the last
decades was made possible as a result of the improvement of nanofabrication
methods and the involved advancement of the control of matter at the nanoscale.
Two main techniques are widely used for the fabrication of metallic nanoparticles:
Chemically synthesis and electron beam lithography [121] together with lift-off
based vapor deposition. A discussion of these methods as well as further references
can be found in [122] for example.

2.10.1 Chemical Synthesis

A widely-used seeded-growth technique for chemical synthetisation of gold
nanoparticles was proposed by Nikobaakht et al. in [123], also see [124]. With
their approach, rod-shaped particles are grown in a two step method [125]. First a
gold salt is quickly reduced in an aqueous medium to elementary gold in metallic
form, resulting in nanospheres with an added organic molecule as a shell to prevent
their aggregation. During the second part a small amount of the previous dispersion
is added to a solution containing gold salt in a slower reductive medium, promoting
the reaction to metallic gold in the surface of the gold nanospheres. With the organic
molecule shell presenting the tendency to bind better to specific crystal orientations,
the growth of the particles in a specific direction is favored, leading to rod-like,
single-crystalline structures. Lengths for a nanorod synthesized through this route
vary between a few and 50nm, with 25-30nm breadth and relatively small size
deviations.

Nanoparticles made of silver can be obtained by reducing silver nitrate with
ethylene glycol in the presence of a water-soluble polymer and sodium sulfide as
described in [47, 127]. The particle shape can be controlled by the temperature
and the reaction time (with the original method from [127] silver nanocubes are
fabricated, applying a higher temperature and a longer reaction time gives rod-
shaped particles [47]), see Fig. 2.35. Silver triangles for example can be synthesized
by a photo-induced process, where spherical silver colloids are transformed into
triangular nanoplates [47, 128].

2.10.2 Electron Beam Lithography

In the following Fig. 2.36 the principle process steps of nanoparticle fabrication with
electron beam lithography are shown, see [129] or [121] for example.

1. One starts with a cleaned substrate surface, whose material is chosen accordingly
to the desired application. If the material is non-conductive (like a glass
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Fig. 2.35 Examples of synthesized nanoparticles, reprinted from [126], © 2004, with permission
from Elsevier. Left: Transmission electron micrographs of Au nanospheres and nanorods (a, b)
and Ag nanoprisms (c¢) (mostly truncated triangles) formed using citrate reduction, seeded growth,
and DMF reduction, respectively. Right: Photographs of colloidal dispersions of AuAg alloy
nanoparticles with increasing Au concentration (d), Au nanorods of increasing aspect ratio (e),
and Ag nanoprisms with increasing lateral size (f)

substrate), a conductive layer of indium-tin oxide (ITO) or metal has to be
deposited on the substrate (high vacuum vapor deposition).

. In a spin-coat process a typically 100 nm thick layer of PMMA is put on the

structure. This layer is a positive electron resist and has to be baked on a heating
plate at 170 °C for 8 h [129].

. The PMMA layer is exposed by an electron beam and the desired nanoparticle

structure is written.

. After the electron beam exposure the resist layer is chemically developed.

(Starting with a developer bath for 30s, immediately followed by a chemical
stopper bath for another 30 s and an isopropanol rinsing step [129].)

. After cleaning, the nanoparticle metal (e.g. gold) is deposited in a high vacuum

evaporation process.

. An acetone bath is used to remove the remaining PMMA layer resist.
. To finish the fabrication process, the surface is cleaned with a final isopropanol

rinsing.

The resulting particles are polycrystalline and their surface roughness is higher

than that of chemical synthesized particles (also see Chap.6). Thermal annealing
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Fig. 2.36 Fabrication steps of electron beam lithography as described in the text. (/) Cleaned
substrate surface with ITO, (2) spin coated PMMA layer, (3) writing nanostructure with e-beam,
(4) chemical development, (5) high vacuum metal evaporation (6) lift off and cleaning

could help to reduce the roughness and leads to reduced damping, an increasing
absorption and the FWHM becomes narrower, see [125].

Another similar technique is ion beam lithography, where much heavier charged
particles are used instead of a beam of electrons.
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Chapter 3
Theory

The work of James Clerk Maxwell changed the world forever

ALBERT EINSTEIN

The unification of the theories describing electric and magnetic aspects of our
world was one of the great scientific achievements in the nineteenth century [1-
3] and brought us a very successful part of theoretical physics: classical field
theory. A detailed overview about the historical evolution from René Descartes up
to Maxwell and Lorentz can be found in Whittaker [4]. After the revolution of our
understanding of the basic forces and constituents of matter in the last 100 years,
classical electrodynamics found its place in a sector of the unified description of
particles and interactions known as the standard model [5].

3.1 Quantum Versus Classical Field Theory

Atoms and their corresponding electromagnetic fields fluctuate quite rapidly on
the nanoscale, so usually we need to average over a larger region to obtain a
macroscopic theory. In this sense the concept of the ordinary electromagnetic fields
is a classical notion. It can be thought of as the classical limit (limit of large photon
numbers and small momentum and energy transfers) of quantum electrodynamics
(QED)! [5]. But nanoparticles are situated in the gray zone between the micro-
and macrocosm—they are very small compared to classical objects but they still
consist of several thousands to millions of atoms. Nevertheless surface plasmons are
bosonic quasiparticles and have a true quantum nature that has been demonstrated
by tunneling experiments for example, see [7]. Hence, for the theoretical description
we can either come from the bottom and try to apply a quantum mechanical

I'A good introduction into the topic of QED can be found in [6] for example.
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treatment (a recent review about quantum plasmonics can be found in [8]) or we
can deal with plasmonic structures in terms of classical field theory (and hope that
the particles are not too small).

At what point is it justified that we neglect (or at least gloss over) the discrete
photon aspect of the electromagnetic field and change from QED to Maxwell’s
theory?? In the domain of macroscopic phenomena the answer is virtually always,
as the examples discussed in [5] elucidate: The root mean square electric field one
meter away from a 100 W light bulb is of the order of 50V/m and there are of
the order of 10" visible photons per cm? per second. Similarly, an antenna that
emits isotropically with a power of 100 W at 108 Hz produces a root mean square
electric field of only 0.5 mV/m at a distance of 100km, but this still corresponds
to a flux of 10! photons per cm? per second. Ordinarily an apparatus will not be
sensitive to the individual photons; the cumulative effect of many photons emitted or
absorbed will appear as a continuous, macroscopically observable response. Then
a completely classical description in terms of the Maxwell equations is permitted
and is appropriate. In this sense, a rough estimate for the justification of a classical
treatment is given by a high number of involved photons where at the same time
their momentum has to be small compared to the material system.®> This is true
for metallic nanoparticles and in linear response, one can employ the fluctuation-
dissipation theorem to relate the dielectric response to the dyadic Green tensor
of Maxwell’s theory where all the details of the metal dynamics are embodied in
the dielectric function. This is exactly what we are going to do, we will hide the
quantum-mechanical properties of matter in their dielectric description which is
obtained by experiment (see Fig. 2.3 and [13]). In this way, we are communicating
with the microscopic world via ¢ and p.

Nevertheless, the entire concept of a dielectric function becomes questionable if
the investigated nanoparticles are too small (caution for structures below 5 nm may
be justified, see Chap. 8). Also if coupled particles get very close to each other, the
onset of screening effects and electron tunneling across the gap region significantly
modifies the optical response as reported in [14]. In the cited work, the authors
present a fully quantum mechanical description of nanoparticle dimers in terms of
time-dependent density functional theory and state that quantum effects for dimers
become important for dimer separations below 1 nm.

2Decoherence is the keyword when it comes to the transition from the quantum to the classical
world, an excellent review about that concept can be found in [9], for example (also see [10]). A
very interesting debate about the meaning of quantum mechanics has been published by the same
author in [11], by the way, where seventeen physicists and philosophers, all deeply concerned with
understanding quantum mechanics, share their opinion on what comes next and how to make sense
of the theory’s strangeness.

3Because of energy and momentum conservation at least the time averaged electromagnetic field
can still be treated in a classical way, the same goes for clearly quantum mechanical processes
like spontaneous emission [5]. A detailed discussion of this topic is also given in the introductory
chapters of [12].
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/—1 Additional remark }

If we neglect the quantum mechanical nature of atoms and think of them
as spheres in a crystal lattice (an engrained and handy picture after all), we
can make a rough and simple estimate about the number of atoms that are
contained in an ordinary metallic nanoparticle. Most metals that are typically
used for nanostructures have a face centered cubic (fcc) crystal structure, e.g.
gold, silver or aluminum (Fig. 3.1):

Fig. 3.1 Schematic unit cell of a fcc crystal with lattice constant a. The single cell without
any atoms in neighboring volumes is shown in the middle

In this structure the atoms are most closely packed along the face diagonal,
so we deduce the relation

4r=vV2a = a= ir=2«/§r.
V2
If we count the number of atoms in the unit cell, we obtain for the eight edge
and six face atoms 8 x 1/84 6 x 1/2 = 4 atoms per unit cell. The volume of one
cell is given by Vi = a® = 164/2/° and the volume of the contained atoms
by Vaom = 4 X 4T””3' The final packing density for fcc metals is then given by

Vatom
som _ _® 074 = T4%, G.1)

Ve 342

This number also entered the annals of mathematics in form of the Kepler
conjecture [15, 16], which claims that fcc packing is the best we can do if we
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/—{ Additional remark }

want to pack equally sized spheres* with the highest average density in three-
dimensional Euclidean space.

To finally calculate the number of atoms in a metallic nanocluster we
additionally need to know the size of one atom of the considered material. But
that is a tricky task of course since atoms do not have sharp boundaries—still,
the best way is again to assume an imaginary hard sphere with the so-called
van der Waals radius, which gives 0.166 nm for gold, 0.172 nm for silver or
0.184 nm for aluminum. So we end up with the final estimate for the number
of atoms in a metallic nanoparticle with volume V:

Vv

Vv
074 ~ — - 0.177. (3.2)
r

atom

We have also neglected the symmetry break at the surface of a nanoparticle,
but nevertheless we are able to obtain a rough feeling for the number of atoms
involved: A gold sphere with 25 nm in diameter consists of more than 300,000
atoms, a silver slab with 15 x 40 x 10 nm?> of about 200,000 atoms.

“Without the mathematical disguise the spheres took the less charming form of canon balls on a
war vessel in the original seventeenth-century formulation. C. F. Gauss introduced the first attempts
of a formal proof of this conjecture in 1831, but it was not until 1988 that the mathematician T.
C. Hales was able to finally proof the conjecture by computational methods [17] (it was published
after a 7 year long review process).
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3.2 Maxwell’s Theory of Electromagnetism

We treat the electromagnetic fields as three-dimensional vector fields. Such fields
are fully determined by their divergence and curl-that explains the structure and
appearance of their mathematical description: Maxwell’s equations. In ST units and
in their macroscopic version they read as [5, 18]

Macroscopic Maxwell equations

V-D(r,t) = p(r,1), (Gauss’s Law) (3.3a)

V-B(r,t) =0, (magnetic analogon) (3.3b)
. dD(r, 1) . o

V xH(r,t) =jr, 1) + Y (Ampere’s Circuital Law) (3.3¢)
dB(r, 1) .

V xE(r,t) = — PR (Faraday’s Induction Law) (3.3d)

Here B = pH is the magnetic field (magnetic permeability  ~ o at optical
frequencies, see Sect. 2.8), D = ¢E is the dielectric displacement,5 o the free charge
density, andj the current density. In vacuum we would obtain B = poH and D = goE
with the vacuum permeability 1t( and vacuum permittivity &.

Maxwell’s equations are partial differential equations of the first order. In many
cases they are linear® in the fields E and B. Because of this linearity it is sufficient to
only investigate time harmonic fields, any complex solution of the system can then
be described as a superposition of them. Henceforth we will use

E(@r.t) =E(e ™,  B(r.f) = B(r)e . (3.4)

Additional remark }

The inverse square law of the electrostatic force was shown quantitatively in
experiments by Coulomb and Cavendish [5]. Applying the divergence theorem
together with Gauss’s law allows the derivation of the first of Maxwell’s
equations, Eq. (3.3a). But Coulomb’s inverse square law also leads to another

SThis relation connects the microscopic response with a macroscopic field, a more detailed
discussion follows in Sect. 3.2.3.

%Nonlinear effects may arise at interaction with fiber glass or certain magnetic materials and many
other systems.
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r—{ Additional remark }

remarkable condition: The photon has to be a massless particle [5]. We can
verify this hypothesis solely with experiments, and Maxwell’s equations are
based on this assumption. The consequences of a massive photon are once
again discussed in [5], for example, and the experimental verification of
Coulomb’s law already gives a very good upper limit for the photon mass
m,, see [19]. Very accurate results for m, can be obtained by measuring the
magnetic field of earth [20], viz.

m, < 4x 107" kg, (3.5)

or the cosmic magnetic vector potential, see [21]. Also the Schumann res-
onances [22-25] (stationary electromagnetic waves along the circumference
of the earth) allow for a very simple but surprisingly accurate estimation of
the upper limit of m, . Earth and the ionosphere form a lossy cavity resonator
and lightning discharges are constantly exciting Schumann resonances therein
(thunderstorms around the globe produce approximately 50 lightning events
per second [26]). The lowest Schumann resonance frequency is ~ 8§ Hz and
with Einstein’s relation 7w = 27hv = m,,c* we obtain m, < 6 x 107" kg.”

From Gauss’s law in Maxwell’s equations it follows immediately that the
magnetic field is purely transverse (B” = 0) and the longitudinal part of E is related
to the free charge distribution. By definition, a longitudinal or transverse vector field
is characterized by the following relations (first expression in real space, second in
reciprocal space; for simplicity we use the same symbols in both representations):

longitudinal field: VxV =0, ikx V=0,
transverse field: V.-V, =0, ik-V; =0.
In this sense we obtain a clear geometrical meaning of longitudinal or transverse

fields in the reciprocal space, they are either parallel or perpendicular to all k [6]. If
no sources are present (p = 0,j = 0) Maxwell’s equations reduce to

Maxwell’s equations in vacuum

V.D=0, VxH-—— =0, (3.6a)

71eV = 1.602176565 x 101 kem’/2, see [27].
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B
V.B=0, VXE+— =0. (3.6b)

r-{ Additional remark }

Maxwell’s equations form the backbone of modern communication tech-
nology and have changed our world forever. They represent the rigorous
mathematical abstraction of experimental findings, but they cannot be derived
from any deeper principle of our universe till this day. Although some elegant
attempts exist (e.g. based on the gauge invariance of classical mechanics [28]
or quantum mechanics [29], or an extended Helmholtz theorem [30]), one
always has to postulate certain relations or requirements to allow the deriva-
tion.®

Despite the fact that the wonderful symmetry of Eq. (3.6) permits a glimpse
of the formal and simple beauty of nature and of the stunning mutual entan-
glement of the electromagnetic fields, Maxwell’s equations also presciently
anticipate the constancy of the speed of light as well as the principle of
relativity (for an excellent guided tour through the historical development and
radical concepts of the theory of relativity consult the still superior book of
Max Born [32], for example). Hence, especially based on the work of Lorentz
and Poincaré, special relativity emerged from electromagnetism and Einstein
merely released the ideas from this derivation and put them on fundamental
and philosophical ground.

3.2.1 Boundary Conditions at Interfaces of Different Media

All the interesting phenomena in plasmonics happen at the boundary of different
media, thus the corresponding constraints and boundary conditions are essential.
Fortunately we do not have to introduce additional equations at the boundary,
everything is already contained in Maxwell’s theory. All we have to do is to use

8Also see comments to Feynman’s unpublished attempt in [31], where he mixes classical
and quantum mechanical concepts by starting with Newton’s law of motion and implying the
commutation relation between position and velocity. The discussion of a heuristic derivation based
on symmetry, charge conservation, superposition, the existence of electromagnetic waves and the
Lorentz force can be found in [18], for example.
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Fig. 3.2 Schematic diagram of the interface between two different dielectric media 1 and 2, based
on [5]. The small cylinder of height 4 is given by the volume V. The cylinder’s lower and upper
top surface area is labeled by Aa. The normal vector 7 points in outside direction (from medium 1
to medium 2). The vector £ is tangential to the surface 352. The surface spanned by the rectangular
kink is perpendicular to the interface, i.e., f is perpendicular to the kink. At the interface 92 exists
an idealized surface charge density o

Gauss’ law (3.3a) and to apply Stokes’ theorem’ on Faraday’s law (3.3d). By
following [5], let V be a finite space volume bordered by the surface area 952, and
let 72 be the unit vector in outside direction of the surface element da (see Fig. 3.2).

At first we transform Eqgs. (3.3a) and (3.3b) to their corresponding integral form
and apply them to the volume of the small cylinder in Fig.3.2. In the limit of
infinitesimal height (h — 0) only the lower and upper top surface area are non-
zero. If we assume that this surface has the value Aa and approximately set D; and
D, constant within the surface element, it follows that

9§D-ﬁda=(Dz—D1)-ﬁ Aa, 3.7)
N

SﬁB-ﬁdaz(Bz—Bl)-ﬁ Aa. (3.8)
N

9Stokes’ theorem

/ (v xF)-ﬁds=5£ Fdr,
2 982

relates the curl of a vector field F integrated over a surface to the line integral of the vector field
at the boundary. Written in a more general formulation it also contains the divergence theorem or
Green’s theorem as special cases.
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If the charge density g at the surface 052 is singular and forms an idealized surface
charge density &,'° the right hand side of Eq. (3.3a) yields

/pdV:/(}S(r—s)dV:/ oda = dAa. (3.9
v 14 v

Thus the boundary conditions for the normal components of D and B follow as:

G, (3.10a)
(B, —B)) -7 =0. (3.10b)

Applying a similar procedure to the rectangular kink C with Eqs. (3.3¢) and (3.3d),
using Stokes’ theorem yields the boundary conditions for the tangential field
components:

i x (E;—E;) =0, (3.11a)
i x (H,—H,) =h, (3.11b)

where h is an idealized surface current density. For the quasistatic case the scalar
potential ¢ obeys analogous conditions, which are quickly derived by using the
relations

D, = E, = —&, V¢, D) = &,E, = —&, V. (3.12)

Inserting this in Eq. (3.10) leads to

19|

1
= €&
surf 2¢2

, (3.13)

surf

where the apostrophe’ denotes the normal derivative, i.e. the derivative in a direction
perpendicular to the surface. Equation (3.11) shows that the tangential components
of E are continuous at the interface and therefore the derivation of the potential in
tangential direction is also continuous.

10Since a redefinition of the symbol o and j will become necessary later on, the additional bar over
the symbols has been introduced to avoid confusions.
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Fig. 3.3 Reflection and refraction at a planar interface. The left panel shows a TE- or (s)-polarized
plane wave, the right panel a TM- or (p)-polarized wave

Using spherical coordinates and considering a sphere with radius a and surface
charge density ¢ in a dielectric medium yields

9 Ipa| .

15, a— &2 or a— o, (3.14a)
I do
—| — —| = 0. .14b
30 |~ 90 |, (3-14b)

3.2.2 Fresnel Coefficients

The most simple scenario where boundary conditions come into play is given by
an interface that divides space into two separate regions. Let us assume that a
plane wave is impinging at such a boundary and that medium 1 and medium 2
are two different dielectric materials with refractive indices n; and n,, see Fig. 3.3.
The French physicist Augustin-Jean Fresnel!! solved the problem in the nineteenth
century and deduced reflection and transmission coefficients for the electromagnetic
wave. Here we just briefly depict the summary presented in [33], a more detailed
derivation of Fresnel’s equations can be found in [34] for example. The expression
E e*1"=! describes an arbitrarily polarized plane wave propagating in k, -direction
in medium 1. It can always be written as a superposition of two plane waves
polarized parallel and perpendicular to the plane of incidence

E, =EY +EP. (3.15)

Born 10th May 1788 in Broglie, Eure (Haute-Normandie); f 14th July 1827 in Ville-d’ Avray,
Hauts-de-Seine.
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Now E(ls) is parallel to the interface separating medium 1 and 2 while E(lp) is

perpendicular to the wavevector k and EY, see Fig.3.3. The transmission or
reflection of E; at the interface does not change the polarization, i.e. (s) and (p)
are conserved. The transverse components of the wavevector are also conserved at
the boundary and we get

w
ki = (ke ky k), k| =k = m— = g1, (3.16)
w
k2 = (kx,ky,kzz), |k2| = k2 = n2? = Exlr. (317)
The longitudinal components are given by

by = B =R+ K, k=B~ (2 +R). (3.18)

The expressions for the field amplitudes of the reflected and transmitted waves
finally follow from the boundary conditions and are given by

Eﬁ? = r<s>(kx,ky)E<s>, Eﬁﬁ;) = P (k,, k) EP,
EY = 9k, k)EY, Eg’) = +®(ky, ky) EP,

where the Fresnel coefficients r and ¢ are defined as [33]

Fresnel coefficients

! k,, — ik k., — ek
Pk ky) = B0 B o g = 2R T (39
’ Mokz + ik, ’ &2kz, + €1k,
2ok, 2&7k /
t(S)(kx,ky) — A’ t(P)(kx,ky) _ E2Kyy H2€1 '
,Lszz] + I'lezz Szkzl + Slkzz H1€2
(3.19b)

The coefficients depend on the longitudinal wavenumbers k, and k;, which can
be expressed in terms of the angle of incidence 6.

3.2.3 Linear and Nonlinear Optical Response

If we apply an external electric field to a polarizable (dielectric) medium, the
electrons in the material response with a microscopic shift but still remain bound
to their associated atoms. The cumulative effect of all displaced electrons results in
a macroscopic polarization of the material that can be described by a net charge
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distribution. In terms of Maxwell’s theory it becomes useful if we distinguish
between this bound charge distribution and that of free charges, which we have
introduced as o in Eq. (3.3a). The contribution of the bound charges is incorporated
elsewhere, but let us discuss this in more detail. The electromagnetic fields obey the
following relations

1
D = ¢E + P, H=—B-M, (3.20)
Mo

where P is the dipole moment per unit volume and M refers to the magnetic moment
per unit volume. Since we focus our attention only to nonmagnetic media, we can
set M = 0 (see Sect. 2.8) and combine Maxwell’s equations to

VZE-V(V-E)— —— — — — =0, (3.21)

by taking the curl on Eq.(3.3d) and inserting Eq.(3.3c). The speed of light in
vacuum is given by ¢ = +/1/us. In principle, one now requires a full microscopic
theory of the response of a particular material to relate the macroscopic electric field
E to the polarization P [5, 35]. Making some assumptions about the relationship
between P and E will make our lives much easier.

The change in electrostatic potential over distances of the order of an angstrom
can be several electron volts. In this sense, an electron bound to an atom or molecule,
or moving through a solid or dense liquid, experiences electric fields of the order
of 10° V/em [35]. The laboratory fields of interest are then small compared to the
electric fields experienced by the electrons in the atoms and molecules of the matter
under investigation. In this circumstance, we can expand P(r,f) in a Taylor series
in powers of the macroscopic field'> E(r, ). The ath Cartesian component of the
dipole moment per unit volume is a function of the three Cartesian components of
the electric field Eg = Eg(r, 1), with 8 € {x,y, z}. Therefore we can write the Taylor
series as

P, (r,1) oP, 1 9P,
= PO Ep+ — — ) EgE
£0 o +2ﬂ:(aEﬂ)0 ﬂ+2!§(aEﬁaEy S

+ ! ( i ) E4E, Es +
- ) EEEs+
3! s 0EgdE, 0Es 0

Here we have assumed that the dipole moment P(r, ) depends on the electric field
E at the same point r in space and the same time ¢, which is not really a realistic

12 Another method sometimes discussed in literature models the atomic or molecular structure
explicitly. There one relates the dipole moment per unit volume to that of an atomic or molecular
constituent and writes this as a Taylor series similar to our approach, see [35, 36] and references
therein.
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assumption—we will introduce a more proper treatment in the next section and we
will see that we can incorporate certain nonlocal aspects in the susceptibility tensor.

In plasmonics we are usually interested in dielectric materials within which any
dipole moment is induced by the external excitation. Therefore the electric dipole
moment per unit volume at zero field, P,(XO), vanishes,!? and we will henceforth write

Py(r,t) q 5 X
a«?o =2 XL/;E’S +> thﬂ)yEﬁEy +) Xiﬂ)ygEﬂEyEs +-0, (322
p By pys

where the susceptibilities y are tensors of (i + 1)th rank. ! is the ordinary
susceptibility of dielectric theory (usually a diagonal matrix) and y®, x©® are
referred to as the second and third order susceptibilities, respectively. Now we can
decompose the dipole moment into a part which is linear in the electric field, and
one part which is nonlinear:

Py (r.t) = PP (r,t) + PN (r, 1), (3.23)

where

Linear and nonlinear dipole moment per unit volume

POr.1) =" eoxyEp. (3.24)
B

PND(r.0) =" coxen, EpEy + Y c0xn,sEpEvEs + - . (3.24b)
By Bys

With the electric susceptibility y. (simplified symbol instead of x‘!) we now obtain
the previously discussed relation, where the microscopic response is incorporated in
the dielectric function:

D =¢yE+ P =¢y(1 + y.)E = ¢E. (3.25)

Furthermore we now have a clear distinction between linear and nonlinear optics:

If we insert P&L) (r,1) into Maxwell’s equations we obtain a description of electro-
magnetic wave propagation in (possibly crystalline) media, described by an electric

3The electrical analogs of ferromagnets, which possess a spontaneous magnetization per unit
volume, are the so-called ferroelectrics. In these materials the dipole moment PO in the absence
of an electric field is nonzero and leads to the presence of a static, macroscopic electric field,
EO(r). Such time independent effects may be analyzed by the methods of electrostatics and can
be accounted for by including an effective charge density o, = —V - PO for example.
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susceptibility tensor y.g, in linear response. All nonlinear effects are part of the
higher order susceptibilities.

Since P and E are vectors, and thus are odd under inversion symmetry, X(z) must
vanish in any material that is left invariant in form under inversion.'* But if the
symmetry is broken (at the interface from one medium to another, for example)
or in the case of surface imperfections [37], we also obtain )((2) contributions for
centrosymmetric materials like gold or silver, see Sect. 7 and [38].

3.2.4 Nonlocal in Space and Time

The macroscopic field E(r, f) acts as a driving field that leads to a rearrangement of
the electrons and nuclei in the material. The result is the induced dipole moment P,
which of course will not be built up instantaneously, but is instead the consequence
of the response of the system over some characteristic time interval  — ¢ > 0 in the
recent past. If, on the other hand, we consider an incident electric field well localized
in space, it will lead to an electronic rearrangement in a certain small region of the
material. Because of the interaction with neighboring constituents, the material gets
polarized in the vicinity of the excitation as well. It follows then that the dipole
moment P(r, ) depends not only on the field at time ¢ and position r, but must be
written as a convolution in space and time (exemplified only for linear response)

PO, 1) = Z / a3 df’ so)(f;; (r—r,t—1)Es(r., 7). (3.26)

P rigr

If there are no variations in density or composition, the medium can be treated as
homogeneous in nature. Then the susceptibility tensor y will not depend on r or r/
separately but only on the spatial difference r — r’. A second simplification can be
exploited. If the electric field exhibits only a slow variation in space and time we
may use E(r',t') ~ E(r,t) and recover Eq. (3.24a), where we now have shown the
structure of the susceptibility tensor in more detail:

2o = / & dl popr—r' 1 =1). (3.27)

The physical meaning of nonlinear response of a material becomes clear if analyzed
in Fourier space. Therefore we will briefly list the basic Fourier decompositions,
again exemplified for linear response. For simplicity we will use the same symbols
for functions in Fourier as well as in real space and follow the notation in [35]. The

14This is the case for metals like Au or Ag, for the semiconductors Si and Ge as well as for liquids,
gases, and for a number of other common crystals. The interested reader may find a very useful
compilation of the nonzero elements of x® and x® for crystals of various symmetry in [36].
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Fourier transform operator and its inverse are denoted by the symbols F and F !,
respectively.

Eg(k, 0) = F[Eg(k,w)] = / d*rde Eg(r, t)e " *re’ (3.28a)
3
Eg(r,t) = F '[Eg(k,w)] = izkiffEﬁ(k w)elkreTion (3.28b)

With these definitions the transformation for P((XL) follows directly from Eq. (3.26):

dkdw

PO = | G

——— POk, w)e*reTir, (3.29)

where

PP ke.w) =" eoxly k. o)Ep (k. ),
5

ko) = [ @rar Y netee.

For the rest of this chapter we will stick to the linear response and assume the simple
linear proportionality between P and E. Nonlinear optical responses will again be
discussed in Chap. 7.

3.2.5 Electromagnetic Potentials

We now return to Maxwell’s equations. Let us recall their appearance in a source
free frequency space:

V-D(r,w) =0, VxH(r,w) +iwD(r, o) =0, (3.30a)
V- B(r,w) =0, VxE(r,0w) —iwB(r,0) = 0. (3.30b)

Taking the curl on Ampere’s and Faraday’s law respectively and substituting the
corresponding equations leads us to the wave equation of Helmholtz form:

Wave equation for electromagnetic fields

2
R e B e | T
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where we have used the refractive index n = /1¢/u,¢, to uncover the emergence of
the speed of light ¢ = /1/u¢. This equation is a central result of Maxwell’s theory,
since it postulates the existence of electromagnetic waves.'> Thus as a possible

solution we can write down a plane wave propagating in é,-direction: e'¥"~1¢, with
k=ke andk =n%.

r-{ Additional remark }

The appearance of the speed of light in the electromagnetic theory had an
immense impact and is a noteworthy story. In 1676 the Danish astronomer
Ole Rgmer was the first to prove that the speed of light is finite. By observing
the duration of the eclipses of the moons of Jupiter, he was able to give a
surprisingly accurate first estimate of ¢. In 1820 Hans Cristian @rsted, another
Danish scientist, experimentally showed that magnetic needles are influenced
by electric currents and in the same year Jean-Baptiste Biot and Félix Savart
discovered the underlying quantitative law. In their original formulation
occurred a proportionality constant, which was measured precisely by Weber
and Kohlrausch in 1856 [32] and yielded 300,000 %"/s. For the first time the
deep connection between optics and electromagnetism emerged and finally
Maxwell built the bridge between these two scientific domains [32].

If we change from first to second order equations, we can combine the four
coupled expressions of Eq.(3.30) into two new equations and introduce the vector
potential A and the scalar potential ¢p. The fields can then be expressed as

Electromagnetic fields expressed with potentials

B=VxA, (3.32a)

9A
E=-V¢—— =-V¢+iod. (3.32b)

The differential equations for A and ¢ still form a coupled system, which can be
derived in a heartbeat by inserting Eq. (3.32) into Maxwell’s equations (3.3):

d
Vi + S(v.a) =L,
ot &
3?A A
VA—ps— -V |(V-A — ) = .
Heon ( +M88t) W

151t was Helmholtz’ student Heinrich Hertz who subsequently provided proof for their existence in
the laboratory through his famous experiments with oscillating charges and currents.
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Because of the gauge invariance of the potentials we can choose A and ¢ in such a
way that they fulfill the Lorenz condition [39]

¢ NOJIR
V-A L =V.A—
+M83t ! c?

¢ =0. (3.33)

This condition does not entirely fix the gauge, but it is coordinate independent
(and therefore naturally fits into special relativity) and leads to two decoupled wave
equations for A and ¢ that are completely equivalent to Maxwell’s equations (3.3):

Helmholtz equation for potentials

Vi + K¢ = —g, (3.34a)

VA +IPA = —yj . (3.34b)

. . L L e
The wavenumber in the corresponding medium is again givenby k = n? = |/uew.

/—1 Additional remark }

Maxwell’s equations interweave space and time, electric and magnetic fields
in such a wonderful way that Boltzmann was moved to express his deepest
admiration [1]. Throughout time the equations changed their appearance'® and
hence are a vivid example of the mathematical beauty and the huge amount
of physics that can be contained in one single line (constants set to 1, table
adopted from [1]):

Homogeneous equations Inhomogeneous equations

Original form:

9B, 0B, 0B _ OEx  OE, OE; —
ox dy 0z ' dx ady 0z '
0E, 0E, 0B, 0B, 0B, .  OE,
Ay 0z ot By T

16The most common form as a set of four equations expressed in the language of vector calculus
was independently proposed by Heaviside and Hertz as a concise version of Maxwell’s original set
of equations [18].
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/—{ Additional remark }

divB =0

rotE = —B

o _
* F .a—O

dF =0

0E, OE,
93z ox
0E, OE,
o dy

3B,
o

3B,
T or

End of nineteenth century:

Beginning of twentieth century:

Mid of twentieth century:

0B, 0B, . N OE,
0z P Ty
9B, 0B, . N oE,
x a9y 2 o
divE = p

rotB =j + E

Fﬁ"’a =P

SF=1J
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3.3 Kramers-Kronig Relations

The microscopic Maxwell equations are local in time, i.e. the electromagnetic
fields, currents and charges all depend on the same time 7. To allow a macroscopic
description of nanoscale physics we have integrated over the microscopic degrees of
freedom and introduced the frequency dependent response function &(w). What we
have tacitly ignored thereby is that this leads to temporally nonlocal equations [5]. In
Sect. 3.2.4 we have already addressed nonlocalities in space and time by arguing that
there is no instantaneous response of a system but some characteristic time interval
t — ¢ > 0 is required to build up induced electromagnetic fields. We will now see
that a temporally nonlocal response is also a direct consequence of the frequency
dependence of the dielectric function and that the consideration of causality in the
system (viz. no action before the cause) leads to a very general connection of the
real and imaginary part of ¢.

Let us start with Eq. (3.25), which connects the microscopic response with the
macroscopic dielectric displacement:

D(r,w) = e(w)E(r, w).

By following the notation in [5], we treat the spatial coordinate as a parameter and
write down the Fourier integrals with symmetric prefactors as

o0 o0
1 . 1 .
D(r,1) = T / D(r.w)e " dw, D(r.w) = WL /D(", e dr'.
00 —00

If we now use Eq. (3.25) and substitute the Fourier representation of E(r,w) we get

o o0

1 : o
D@, 1) = > / dw e(w)e ™" / dr e“"E(r, 7). (3.35)

—00 —00
With e(w) = &o[1+ ()] and the Fourier representation of the Dirac delta function

1 o0
St—1)= — / dw e @), (3.36)
27

—0o0
we can rewrite Eq. (3.35) as

o0

o0 o
1 o
D(r.1) = & / dr §(t — 7 )E(r, /)+2— / dr / dw ye(w)e " E®r, ) |,
T
—00 —00

—0Q



78 3 Theory

where we have assumed that the orders of integration can be interchanged. After
the substitution T = (¢ — ) we end up with a connection between D and E that is
nonlocal in time'”

Causality relation between D and E in the time domain

D(r,t) = ¢y | E(r,t) + / dtG(r)E(r,t—r1) |, (3.37)
0

with G(7) being the Fourier transform of y,

G(r) = %/dw [8 ) _ 1i|e_i"”. (3.38)

€o
0

The lower limit of the integration has been changed from —oo to 0 since we have
G = 0 for t < 0 (see discussion in [5] for example). If the dielectric function is
independent of the frequency w, the integral in Eq. (3.38) is proportional to the Dirac
delta function again and Eq. (3.37) recovers the original instantaneous expression
D = ¢E. If on the other hand ¢ varies with w, the dielectric displacement D at
time ¢ depends on the electric field E prior to that time, which of course stands for
causality in the system (the system cannot squeal before it is hurt). In a nutshell we
can summarize that even though Maxwell’s equations are local in time, integrating
over the microscopic degrees of freedom leads to nonlocal material equations (in
Chap. 8 we will also discuss spatial nonlocality).

We can also use the susceptibility kernel (3.38) to express the dielectric
function as

Siw) —1+ / dz G(r)er, (3.39)
0
0

which allows to draw several interesting conclusions on the nature of &, especially
if we change into the complex plane. Provided that G is finite for all ¢ we see for

17Equations (3.25) and (3.37) are examples of the convolution theorem of Fourier integrals [5]:

c(w) = a(w)b(w) <«— C(t)= di' A(')B(t — ).

o0

«/1 /
2

—00

A convolution in the time domain is translated to a product in the frequency domain and vice

versa. The nonlocal connection between D and E therefore is only visible for the time dependent
representation.
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example that ¢ is an analytic (holomorphic) function of w in the upper half-plane
(i.e. it is complex differentiable in a neighborhood of every point in this domain).
This, in turn, sets the stage for a central and very beautiful statement of complex
analysis named after the French mathematician Augustin-Louis Cauchy'® [40]:

Cauchy’s integral formula

_ 1 f@
fl) = 5— 95 P (3.40)
C=082

If we integrate a complex-valued and analytic function f along the border C of a
closed area §2, we can immediately calculate its value at any point zy inside of 2.
Thus the function f is completely determined by its values on the boundary C. If we
apply Cauchy’s theorem to the susceptibility y, we get

8(60) — 14 L% S(Z)/so —1

&0 2mi Z—w
c

dz, (3.41)

where the integration contour consists of the real w axis and a great semicircle with
radius R — oo in the upper half-plane. If we assume that y.(r) does not grow
faster than a polynomial, the integration over the semicircle vanishes at infinity and
the Cauchy integral reduces to an integration along the real axis, where we have to
make an infinitesimal semicircular detour around each pole situated at the axis (e.g.
at z = ). This detour formally introduces a delta function and with the principal
value P we finally get

oo

1 &(@)feg — 1
@ 41y / oLy, (3.42)
€0 i o —w
—00
Taking the real and imaginary part yields the dispersion relations
Kramers-Kronig relations
&9 / O ’
Yre e(w) _ l'p/ Sm [e@)/e] do' — E'P/ ®'Im [£@)/g] o',
€0 T o —w T w? — w?
—00 0
(3.43a)

8Born 21st August 1789 in Paris; 1 23rd May 1857 in Sceaux.
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o0 o0
Sm &(w) :—l P / 3—te [£@)/eo — 1] da)’:_z_w P/ Rl Ve __1] do'.
€0 T o —w T w? — w?
—00 0
(3.43b)

Each pole of XT(;) contributes to a certain residue, e.g. for a conductor y, has an
additional simple pole at z = 0 and the corresponding residue needs to be added to
the equations. With the residue theorem we can rewrite our calculations as

95 Xe@ g _ “in Y Res(z) + P / Xe(2) dz. (3.44)
k —00

I—w I—w
C

where z; accounts for the different poles of the integrand and the minus sign before
the residue comes from the counter-clockwise circular direction.

We have deduced these very general connections between the real and imaginary
part of the dielectric function simply form the causality relation (3.37) and they show
another of the major consequences of a frequency dependent dielectric function: The
real part of ¢ is always connected with a corresponding imaginary part and thus a
frequency dependent ¢ is always linked to losses in the medium.

3.3.1 Kramers-Kronig Relations for the Drude Dielectric
Function

Let us test the entanglement of the real and imaginary part of the dielectric response
for the Drude function (2.4). For the sake of convenience we set £o, = 1 and use

gd(a)) =1 w[%

£0 w? iy’

which yields the corresponding susceptibility

2
eq(w) 1 w;,

= 3.45
&0 w? +iy o (3.45)

Ya(w) =



Kramers-Kronig Relations 81

Splitting &, into its real and imaginary part gives

. ea(w) wg

ﬂie{ 2 } = 81(60) =1- a)z—ﬁ—j’ (3463)
N ) } )’dw,%
R = = — 3.46b
sm{ o &2(w) @+ 70 ( )

Again we change into the complex plane and the poles of “_—(w) now occur at z = 0,

7z = —iy, and z = w, thus the associated residues yield
2 2
—w »
Res(z = 0) = limz 4@ _ r_
=0 z—w 0 (z—w)(z+ i) Y4
xa@ o o . 0o}

Res(z = —iy,;)= lim (z+i = = +1
( va) z—>—iyd( yd)z —w pP—ipw 0 +y: oy +y2)

Res(z = w) = yq(w)

Hence within the Drude model we finally get

2 2 e /
W w 1
Xa(@) = —— F— +i y;’ L — / —X‘,’(w) dw'. (3.47)
w?> +y; w(? +y;) im o' —w
—00
The Krames-Kronig relations with the included new poles now read
o? 1T )
gl(w)—1=—-—+—5+ =P / 227 4o, (3.48a)
wrty; W o —w
—00
Ya 02 1 T e (o)
s2(@) = ———L— ——p / S P (3.48b)
ww?+y;) T« w —w

If we alternately insert Eq.(3.46) into the above expressions the principal value
integrals vanish in both cases and we immediately recover the previous result for
the Drude dielectric function.
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3.4 Rayleigh Scattering: The Quasistatic Approximation

Now we have all the tools at hand to finally solve Maxwell’s equations for metallic
nanoparticles. Before we discuss the solution of the full wave equations in the next
section, let us elucidate the main argument for a more simplified case. In the limit
of small particles (compared to the wavelength A, e.g. particles < 50nm) we can
put k &~ 0 and neglect all retardation effects. The wave equation (3.34a) for the
scalar potential ¢ and a non vanishing external charge distribution p transforms to
the Poisson equation

G

V() = (3.49)

If there are again no external charges present, this equation reduces to the Laplace
equation

V() =0. (3.50)
As aresult to a work [41] now almost 200 years old, by the extraordinary autodidact
George Green,'” we know that we can solve this kind of differential equation
through the introduction of the Green function G

V2G(@r—r) = —4nd(r—r). (3.51)

With the Dirac delta distribution on the right hand side, we already obtain a first hint
about the singularity of G. In the quasistatic regime the solution of Eq. (3.51) is

Quasistatic Green function

1
Gor—r) = P = G(r,r) (3.52)

plus an arbitrary function which has to obey the Laplace equation. With this static
Green function G we are now prepared to solve the Poisson equation within an
unbounded region, simply by applying Green’s theorem together with appropriate
Dirichlet or Neumann boundary conditions, see [5] or [18] for more details. If
we multiply Eq. (3.51) with the right hand side of the general Poisson equation

Born 14th July 1793 in Sneinton, Nottingham; + 31st May 1841 in Nottingham. See e.g. [42]
or [43] for more details on his life.
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V2¢(r) = f(r) and integrate over the region £2 we get

/ V2G(r,r)f(r)dV' = —4x / S(r—r)f(r)dV' = —4Anf(r) = —4n V3¢ (r),
2

2

2 _ _i 2 ’
Vi) =~ /V G(r,P)f (') dV'.
2

Because the Laplace operator V2 (sometimes also denoted with the symbol A) is
linear and acts only on r, we can interchange derivative and integral and finally write
down the solution for Eq. (3.49) as

1 4
o(r) = e / G(r—r')@ av’. (3.53)
2

Let us assume a given external excitation ¢ex, Which, for example, corresponds to
plane waves impinging on a nanoparticle. The only possible sources are bound to the
nanoparticle surface 952, therefore the charge density o reduces to a surface charge
density 6. The actual surface charge of a nanoparticle’ can always be determined
through the boundary condition Eq. (3.10) as

Surface charge of a metallic nanoparticle

/ft (D, —Dy)da = —/(szqs; — &1¢)) da. (3.54)
a2

982

To be consistent with the approach presented in [44] (which will be discussed in the
next section), we have to define a new kind of surface charge density as

o

= —. 3.55

7 4re ( )

Note that with this redefinition the units also change from [6] = ¢/m? to [0] = V/m.

The scalar potential as a solution of Eq. (3.49) and an external excitation ¢y can
now be expressed as’! [44, 45]

20Remember that within Maxwell’s theory we deal with abrupt interfaces and we additionally
assume homogeneous media where ¢ only depends on the frequency w.

2IThe redefinition of & does not change the unit of the potential, since we still follow Eq. (3.53).
Therefore the units of the electromagnetic fields or other quantities also remain unchanged.
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o) = /a.o G(r—s")o(s")dd’ + Pexi(r), (3.56)

with o being the artificial surface charge density situated at the interface 952
between the two media. Note that this equation fulfills the Poisson equation
everywhere except at the boundaries.

We make an important step here, which highlights the main idea of our approach
in the quasistatic regime: For an unbounded region we can write down the
solutions of the Poisson or Laplace equation quite easily. For a bounded region the
corresponding boundary conditions come into play and we add artificially a surface
charge density that will be chosen such that the boundary constraints are fulfilled.

We already discussed the electromagnetic boundary conditions in Sect.3.2.1:
The tangential electric field and the normal component of the dielectric displace-
ment have to be continuous at the boundary between two media. The first constraint
implies that the scalar potential is continuous ¢ |y = ¢2|se, which is guaranteed
when the surface charge density is the same on each side of the boundary: o1 = 0.

For the second constraint 81¢’1 lae = 82¢’2|ag we have to evaluate the surface
derivative of ¢

0 ex: (r)
on

limf - Vg (r) = lim

0 ad
0 _iml 2 / G(r—s")o(s') dd’ +
n r—s n
a2
Because of the singularity of G we have to be careful about the limit r — s in the

integral. Let us consider

lima -V / G(r,s')o(s") dd’ (3.57)

r—>s

for a coordinate system where i = é.,r = (0,0,z)7, and s’ = p(cosg, sing, 0)7 is
given in polar coordinates p and ¢, see [46]. We compute the boundary integral
within a small circle with radius R, within which the surface charge o can be
approximated by a constant. The integral then becomes

r—s' K 3
limAa- | ———dd — lim 2 do (> + 7272 = £2x. 3.58
" /|r—s/|3 @7 2 ﬂZ/O pdp (p™+2) g (3.58)

The positive or negative sign depends on the direction from which we approach the
surface, whether from inside or outside of the particle boundary (i.e. positive sign
inside the particle, negative sign outside of it). With the abbreviation F(s, s’) =
(n-V)G(s, s") we finally obtain

8¢(s) _ /F(S,S/)U(s/) da/ + 27‘[0(3) ol
on

82

dex:(s)
o (3.59)

i
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3.4.1 From Boundary Integrals to Boundary Elements

The calculation of an analytical solution of Eq.(3.59) is only possible for very
restricted geometries, for example if 052 is a sphere boundary. In Chap. 4 different
numerical methods and approaches will be discussed, to obtain solutions for more
general shapes of d£2. The method that has been used throughout this work is the
so-called Boundary Element Method (BEM). In this approach one approximates
the surface charge as a discrete number of points located at the centroids of small
surface elements (see Sect. 4.4 for details). Equation (3.59) then becomes

a¢ _ a¢exl
(E)[ = Zj:F,]o] + 270; + ( - ) (3.60)

or in a compact matrix notation

99
on

= Fo £ 270 + (3.61)

¢ext
on ’

where F is the matrix with elements F(s;, §;).
So far so good, but we still have to account for Maxwell’s boundary conditions.
The continuity of the normal component of the dielectric displacement leads to

(Fa+2:m+ ¢m)=£1 (Fa—27m+ ¢ex{)
on

¢ext

2no(ea +€1) + Fo(ea —e1) = —(e2—€1)

where ¢, is the (frequency dependent) dielectric function of the corresponding
medium, see Fig. 2.3. From the last expression it follows that

-1
a €XI
o=l 2ty gl Mo (3.62)
€) — €] on

With the abbreviation A= 27 %]l we obtain our final result

Quasistatic surface charge density

—1 3(lsext
on

—(A +F) (3.63)
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Note the elegance of this expression, where material parameters (incorporated by the
frequency dependent A) and structural properties (established by F) of the problem
are fully decoupled.

3.4.2 Eigenmode Expansion

To compute the surface charge density o according to Eq.(3.63) we have to
perform a matrix inversion. The size of the matrix (i.e. the refinement of our
surface discretization) is the limiting parameter for the required computation time.
In the quasistatic regime we can significantly speed up the simulation if we expand
Eq. (3.63) to plasmon eigenmodes and reduce the inversion of the fully populated
matrix to a much faster inversion of a diagonal matrix. Additionally, it turns out
that we do not require a complete set of eigenmodes to obtain very accurate results,
see [47].

At first we define left and right eigenvectors o and of of the surface derivative
of the Green function through [48, 49]

(F.of) = Mof. (of.F)= Ao, (3.64)

which form a biorthogonal set with (o}, 65) = (0, 0)5) = 8. The inner product
is defined through a surface integration:

(A,B) = / A(s) B(s) ds. (3.65)

a2

Note that F is a non-Hermitian matrix, but with real eigenvalues, consult [48, 50]
for further details.

The functions 6 can be interpreted as the surface plasmon eigenmodes, and the
response to any external perturbation can be decomposed into these modes viz.

(of. (A +F))o = (A + W)olo = —<o,f, %> (3.66)

which leads to

Quasistatic surface charge eigenmode expansion

_ Ok L 0Pext
o= ZA(a))+/\k <0k, = > (3.67)

k
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Scattering spectra of equilateral triangle
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Fig. 3.4 Scattering spectra of an equilateral (left hand side) and an isosceles (right hand side)
gold nanotriangle with three different polarization angles. The basis edge length of each triangle
is 50 nm and the isosceles triangle has an altitude of 55 nm. The dielectric surrounding is modeled
with an effective refraction index n, = 1.33

Itis apparent that a given mode k gives a noticeable contribution only if the coupling
(crkL , %) to the external potential is sufficiently strong and if the denominator
becomes small-this second requirement brings us directly to the plasmon resonance
condition that connects our calculated eigenenergy A, with the actual photonic
energy :

Ne [A(w) + Ax] = 0. (3.68)

We have to be careful here, because A is a complex quantity and we assume that the
spectral variation of the imaginary part is sufficiently small. For gold particles, this
is only true if w is far away from the d-band absorption. For small gold nanospheres
Eq. (3.68) will therefore not give the proper resonance frequency!

Nevertheless the eigenmode expansion is very useful for the physical interpreta-
tion of optical phenomena of nanoparticles and allows new insight into the behavior
of plasmons. A very revealing illustration of the convenience of eigenmodes is the
optical spectrum of an equilateral triangle (also see [51]). If we illuminate such a
triangle with polarized light, at first it is a little bit surprising that we do not find any
polarization dependence at all in contrast to spectra of other triangles, see Fig. 3.4.
Plotting the surface charge at the resonance energy of 700 nm of the equilateral
triangle in Fig. 3.4 gives us no hint about its polarization independence, instead we
see the expected behavior plotted in Fig. 3.5.

The calculation of the eigenmodes on the other hand shows us very quickly that
for an equilateral triangle several eigenmodes are degenerate, whereas (because of
the broken symmetry) there is no degeneracy for an isosceles triangle, see Figs. 3.6
and 3.8.
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45
Light polarization: 0° Light polarization: 45° Light polarization: 90° H
0
—r
-5

Fig. 3.5 Surface charge in arbitrary units at the resonance energy of 688.8 nm for an equilateral
triangle with 50 nm edge length and a height of 10 nm. The particle is illuminated from the top

-~ -

/ mode 1 mode 2
Fig. 3.6 The first two (degenerate) dipolar eigenmodes of an equilateral triangle with edge length
50 nm and a height of 10 nm

Thus, for equilateral triangles the surface charge distribution in Fig.3.5 can
be generated through a linear combination of the first two optical active and
degenerated eigenmodes plotted in Fig. 3.6, yielding always the same peak position
independent of the polarization angle. In Fig. 3.7 we show an example for the surface
charge distribution with polarization along the x-axis.

The corresponding coefficients of the linear combination can be calculated from
cx = (oF,0) and show again that the first two eigenmodes are dominating the
surface charge distribution.

3.4.2.1 Identifying Dark Modes with a Hammer

Light usually only couples to those plasmon modes of a nanoparticle, which have a
net dipole moment, thus a separation into bright (i.e. radiating) and dark (optically
forbidden) modes is common. However, if you want to identify all eigenmodes of
your nanosystem, high energetic electrons are a much more suitable excitation than
plane light waves. In [52], for example, it has been shown that even for a well studied
and simple system like a silver nanodisk there are still new modes to discover which
do not couple to light and have thus eluded observation in optical experiments
so far. In analogy to corresponding molecular vibrations the new mode is called
dark breathing mode, since it oscillates with radial symmetry and has no net dipole
moment (the dispersion relations follows that of a confined film mode, see [53]).
EELS will be discussed later on in Sect. 5.2.2, but a rough and simplified image for
the investigation of plasmon eigenmodes with high energetic electrons is given if
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you think of hitting a drum with a stick or a church bell with a hammer. If you start
to swing the bell with the right frequency you will obtain a resonance similar as for
plasmons excited by plane waves.?? If you hit the resting bell with a hammer on
the other hand, it will vibrate with the corresponding eigenmodes. In this sense an
impinging high energetic electron beam corresponds to hitting a nanoparticle at a
very localized spot.?

Once the dark breathing mode has been observed with EELS, we were also
able to show that retardation effects induced by oblique optical illumination relax

-2

Degenerate energy levels for

-4.5 equilateral triangles

Eigenvalue

-5

5.5 |

—e— equilateral triangle

&l ~-a- isoscele triangle

_6‘5 1 L 1 1 1 1 1 - 1 1
1 2 3 4 5 6 7 8 9 10
Number of eigenmode

Fig. 3.7 The eigenenergies A of the first ten eigenmodes for an for an equilateral and isosceles
triangle with horizontal light polarization, see Eqgs. (3.67) and (3.68)

mode 1 + mode 2 - o (pol: 0°)

Fig. 3.8 The linear combination of the first two (degenerate) dipolar eigenmodes of an equilateral
triangle generates the surface charge distribution plotted in Fig. 3.5

22By the way, as for all forced oscillations you will require a phase shift of 90° between excitation
and the swinging to build up a resonance (also see Fig.2.9).

23Essentially the interaction with the electron beam is a much more complicated process (see
Sect. 5.2.2), but the analogy is handy after all.
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Fig. 3.9 Optical excitation of a breathing mode with oblique illumination of a nanodisk, see [54].
The left panel shows a common dipole resonance for a plane wave excitation with normal
incidence. For a tilted wave vector, as depicted in the right panel, the electric field is no longer
constant for opposing sides of the disk. Electrons are pushed into the corners of the particle,
allowing the excitation of modes with no net dipole moment. Figure reproduced with friendly
permission of Michael Reisecker

the dark character and allow the detection of the breathing mode with optical
spectroscopy, see [54] and Fig. 3.9.

Tilting the wave vector fits more of a wavelength into the particle, and the electric
field is not constant for opposing sides of the disc.

/—1 Additional remark }

When it comes to visualizing eigenmodes (especially for stringed instruments
like guitars, violins or cellos, see e.g. [55]), the so-called Chladni figures are
another noteworthy discovery. Over 200 years ago the German physicist Ernst
Florens Friedrich Chladni** showed how the various vibration modes of a
metal plate can be observed by drawing a violin bow along the edge of the
plate covered with sand [56]. Once the plate vibration reaches resonance, the
sand concentrates along the nodal lines where no oscillation occurs and forms
the Chladni patterns.

Nowadays usually a loudspeaker is placed under the plate or membrane
to achieve a more accurate vibration, but the Chladni figures remain quite
useful and, on a totally different length scale, their equivalent may even serve
as distinguishing feature for film and edge modes of particle plasmons, see

2Born 30th November 1756 in Wittenberg, Electorate of Saxony; f 3rd April 1827 in Breslau,
Prussia.
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/—1 Additional remark }

Fig. 3.10 and discussion in [52, 53].

Fig. 3.10 Edge and film eigenmodes with radial and circular node lines, respectively, of
a silver nanodisk with a diameter of 200 and 30 nm thickness. The dipole, quadrupole,
breathing, and a hybrid mode are shown from left to right. Figure reproduced with friendly
permission of Michael Reisecker




92 3 Theory
3.5 Solving the Full Maxwell Equations

In the last section we made the assumption that the characteristic length of the
investigated system is much smaller than the wavelength of light. For bigger
particles or structures this approximation becomes questionable and we have to
solve Maxwell equations in their full glory.

Let us first note the main impacts of k% 0: The vector potential A does not vanish
anymore and the electromagnetic fields remain in the form of Eq. (3.32)

E = iwA — V¢, B=VxA.
As already discussed in Sect. 3.2 we will apply the Lorenz gauge Eq. (3.33)
V-A—-iwpep =0.

This allows us in principle to consider only the vector potential>> and to express
the scalar one through Eq.(3.33). Nevertheless, in the following we keep both
potentials and exploit a scheme where we only require the Green function and its
surface derivative (in the interest of readability we use the same symbol G as in the
quasistatic approach). The retarded Green function now has to obey

[V + K] Gj(r) = —478(r). (3.69)

The solution to this equation is given by

Retarded Green function and surface derivative

ikj|lr—r"
@ = g, Fy =i V,Gi(|s — '), (3.70)
Ir—r'| -

where the subscript j indicates the medium. Accordingly the wavenumber &;
follows as

ki = w /s, (3.71)

21t is also possible to establish a numerical approach based on the electromagnetic fields instead of
the potentials. But in contrast to our simple collocation scheme, see Sect. 4.4, this usually requires
more complex numerical implementations. In the potential-based BEM approach we have to invert
matrices of the order N X N, whereas in the field-based BEM approach the matrices are of the order
3N x 3N.
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medium 2 SOLICE
02 01 J/
{ medium 3 GsJ J"
medium 1

Fig. 3.11 A source in medium 1 can only excite the outer boundary of medium 2, but neither the
inner boundary of medium 2 nor the boundaries of medium 3. Also o] # 0, # 03

where the square root is understood to yield positive imaginary parts (this sign
choice ensures that the potentials vanish at infinity, while at the same time, it is
consistent with the retarded response formalism) [44]. In general the Green function
of a wave equation is the solution of the wave equation for a point source and once
it is known, the solution for a general source can be obtained by the principle of
superposition [57].

Armed with G and its surface derivative F' we are now well prepared to solve
Eq. (3.34) inside each medium j analogous to the quasistatic case:

601 = [ Go=5)05)dd + gl (3.720)
j
A(r) =/ Gi(r—s)hj(s") da' + Aexi(r), (3.72b)
j
where a corresponding redefinition of the surface current density A = %1_1

was necessary ([h] = Vs/m?). Up to now everything has been very similar to the
quasistatic approach and the solutions above automatically fulfill the Helmholtz
equations within the different media again. But there are two major differences
compared to the quasistatic regime: Identical surface charge and current densities
at different boundary sides are in general no longer possible (see discussion in [44])
and we have to choose the external potentials inside the different regions j such that
they are only induced by sources neighboring the particle boundaries directly (and
are sitting on the correct boundary side), see Fig.3.11.
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3.5.1 Boundary Conditions

Similar to Eq.(3.56) we once again wrote down a solution for the potentials in
terms of auxiliary surface charges and currents [Eq. (3.72)], which can be calculated
from Maxwell’s boundary conditions. Since the expressions are a little bit more
laborious than in the quasistatic case, it is useful to introduce shorthand notations.
By following [47] we will use the notation hereafter for the scalar potentials inside
and outside the particle boundaries:

¢ = Gio1 + G0z + ¢, (3.73a)
¢ = G101 + Gnoy + @5 (3.73b)
The following expressions Eqgs.(3.74)—(3.77) are the central part of the fully

retarded BEM approach. Let us now exploit the boundary conditions discussed in
Sect. 3.2.1. The continuity of the potential can be expressed as

G101 = G202 + Adext, Gihy = Gohy + AAcy, (3.74)

01 = G (G202 + Aext), hy = G (Gahy + AAey), (3.75)

where we have used

G = G — Gy, Adexe = 5 — 97,
G, = Gn — G, AAgy = A5 — AT
Note that Eq. (3.75) shows us one of the differences to the quasistatic expression

mentioned above—the surface charge (and current) on the inside and outside is not
identical but rather related through this equation.

3.5.2 Surface Charge and Current Densities

In the next step we have to account for the boundary conditions. Since the
calculation is somewhat bulky, we refer to Appendix A.3 and present the surface
charge and current densities for the fully retarded regime without further ado:

Retarded surface charge and current densities

0, = G, ' 27 [De +iwh(L) — L)AT'd]. 01 = G7'(G202 + Aex).
(3.76)
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(c)

(a)

Fig. 3.12 (a) Surface charge density o, of a gold nanotriangle (55 x 50 X 8nm?, background
refractive index n;, = 1.34) at the resonance energy of 792 nm, also see Fig. 4.9. (b) Surface current
density &, again at the resonance and (c) surface charge density at 1200 nm

hy = Gy' A7 [iwA(L) — L2)Goos + @], ki = G (Goha + AAeyy).
3.77)

The corresponding abbreviations used in Egs. (3.76) and (3.77) can again be found
in Appendix A.3. In Fig.3.12 the surface charge and current density for a gold
nanotriangle is exemplified.



96 3 Theory
References
1. W. Thirring, Lehrbuch der Mathematischen Physik — Band 2 Klassische Feldtheorie (Springer,

Wien, New York, 1989). ISBN 978-3211821695 [

2. S. Schaffer, The laird of physics. Nature 471(7338), 289-291 (2011). ﬂ

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. B. Mahon, How Maxwell’s equations came to light. Nat. Photonics 9(1), 2—4 (2015). ﬂ
. E.T. Whittaker, A History of the Theories of Aether and Electricity: From the Age of Descartes

to the Close of the Nineteenth Century (University of California Libraries, La Jolla, 2011
(1910)). ISBN 978-1125241103 d

. 1.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962). ISBN 978-0-471-30932-1

. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms — Introduction to

Quantum Electrodynamics (Wiley-VCH, New York, 1997). ISBN 978-0-471-18433-1 g

. E. Altewischer, W.P. van Exter, J.P. Woerdman, Plasmon-assisted transmission of entangled

photons. Nature 418, 304-306 (2002). G

. M.S. Tame, K.R. McEnery, S.K. Ozdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics.

Nat Phys. 9(6), 329-340 (2013). {

. M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition. The Frontiers

Collection (Springer, Berlin/Heidelberg, 2007). ISBN 978-3-540-35773-5

M. Schlosshauer, The quantum-to-classical transition and decoherence. arXiv:1404.2635v1,
1-22 2014). [

M. Schlosshauer (ed.), Elegance and Enigma: The Quantum Interviews. The Frontiers
Collection (Springer, Berlin/Heidelberg, 2011).

M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
ISBN 978-0521435956 [

P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 12 (1972).

J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a
nanoparticle dimer. Nano Lett. 9, 887-891 (2009). ﬂ

G.G. Szpiro, Kepler’s Conjecture: How Some of the Greatest Minds in History Helped Solve
One of the Oldest Math Problems in the World (Wiley, New York, 2003). ISBN 978-
0471086017 [

P. Ball, In retrospect: on the six-cornered snowflake. Nature 480, 455 (2011). ﬂ

T.C. Hales, A proof of the Kepler conjecture. Ann. Math. 162, 1065-1185 (2005). a

A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2012). ISBN
9780521896979 1

S.J. Plimpton, W.E. Lawton, A very accurate test of coulomb’s law of force between charges.
Phys. Rev. 50, 1066-1071 (1936). a

A.S. Goldhaber, M.M. Nieto, Terrestrial and extraterrestrial limits on the photon mass. Rev.
Mod. Phys. 43, 277 (1971).

R. Lakes, Experimental limits on the photon mass and cosmic magnetic vector potential. Phys.
Rev. Lett. 80, 1826-1829 (1998). |

W.O. Schumann, Uber die strahlungslosen Eigenschwingungen einer leitenden Kugel die von
einer Luftschicht und einer Ionosphirenhiille umgeben ist. Z. Naturforsch. A 7, 149 (1952)
W.O. Schumann, Uber die Dimpfung der elektromagnetischen Eigenschwingungen des Sys-
tems Erde-Luft-Ionosphére. Z. Naturforsch. A 7, 250 (1952)

M. Balser, C.A. Wagner, Observations of earth-ionosphere cavity resonances. Nature 188, 638
(1960).

P.V. Bliokh, A.P. Nicholaenko, L.F. Filippov, Schumann Resonances in the Earth-lonosphere
Cavity. 1EE Electromagnetic Waves Series, vol. 9 (1980) Peter Peregrinus, New York. ISBN
978-0906048337 (]


http://openlibrary.org/books/OL12678064M/Lehrbuch_der_Mathematischen_Physik_Band_2
http://dx.doi.org/10.1038/471289a
http://www.nature.com/nature/journal/v471/n7338/pdf/471289a.pdf
http://dx.doi.org/10.1038/nphoton.2014.306
http://www.nature.com/nphoton/journal/v9/n1/pdf/nphoton.2014.306.pdf
http://www.archive.org/download/historyoftheorie00whitrich/historyoftheorie00whitrich.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.html
http://books.google.at/books?id=Ow3FiqmKrocC&dq=inauthor%3A%22Claude%20Cohen-Tannoudji%22&source=gbs_book_other_versions
http://dx.doi.org/10.1038/nature00869
http://www.nature.com/nature/journal/v418/n6895/pdf/nature00869.pdf
http://dx.doi.org/10.1038/nphys2615
http://www.nature.com/nphys/journal/v9/n6/pdf/nphys2615.pdf
http://dx.doi.org/10.1007/978-3-540-35775-9
http://www.springer.com/us/book/9783540357735
http://arxiv.org/pdf/1404.2635v1
http://books.google.at/books?id=YV1CIauzQ6YC&printsec=frontcover&dq=Elegance+and+Enigma&hl=en&ei=HwyNTtXdJ-PisQKX77iyBA&sa=X&oi=book_result&ct=result&redir_esc=y#v=onepage&q&f=false
http://books.google.at/books?id=20ISsQCKKmQC&printsec=frontcover&dq=Scully+%22Quantum+Optics%22&hl=de&ei=bi3rTZOCMMfSsgaH1tTnCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCoQ6AEwAA#v=onepage&q&f=false
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://prb.aps.org/pdf/PRB/v6/i12/p4370_1
http://dx.doi.org/10.1021/nl803811g
http://pubs.acs.org/doi/pdf/10.1021/nl803811g
http://www.georgeszpiro.com/index.asp?page=kepler.htm
http://dx.doi.org/10.1038/480455a
http://www.nature.com/nature/journal/v480/n7378/pdf/480455a.pdf
http://dx.doi.org/10.4007/annals.2005.162.1065
http://annals.math.princeton.edu/wp-content/uploads/annals-v162-n3-p01.pdf
http://www.cambridge.org/us/academic/subjects/physics/general-and-classical-physics/modern-electrodynamics?format=HB
http://dx.doi.org/10.1103/PhysRev.50.1066
http://prola.aps.org/pdf/PR/v50/i11/p1066_1
http://dx.doi.org/10.1103/RevModPhys.43.277
http://journals.aps.org/rmp/pdf/10.1103/RevModPhys.43.277
http://dx.doi.org/10.1103/PhysRevLett.80.1826
http://link.aps.org/doi/10.1103/PhysRevLett.80.1826
http://dx.doi.org/10.1038/188638a0
http://www.nature.com/nature/journal/v188/n4751/pdf/188638a0.pdf
http://books.google.at/books/about/Schumann_Resonances_in_the_Earth_Ionosph.html?id=ZdIJAQAAIAAJ&redir_esc=y

References 97

26

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48

. H.J. Christian, R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll,
S.J. Goodman, J. M. Hall, W.J. Koshak, D.M. Mach, M.EF. Stewart, Global frequency and
distribution of lightning as observed from space by the optical transient detector. J. Geophys.
Res. 108, 4005 (2003). (]

PJ. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental
physical constants: 2010. Rev. Mod. Phys. 84, 1527 (2012). |

D.H. Kobe, Derivation of Maxwell’s equations from the gauge invariance of classical mechan-
ics. Am. I. Phys. 48(5), 348 (1980). (]

D.H. Kobe, Derivation of Maxwell’s equations from the local gauge invariance of quantum
mechanics. Am. J. Phys. 46(4), 342 (1978). |

E. Kapuscik, Generalized Helmholtz theorem and gauge invariance of classical field theories.
Lett. Nuovo Cimento Ser. 2 42(6), 263-266 (1985). |

. EJ. Dyson, Feyman’s proof of the Maxwell equations. Am. J. Phys. 58, 209-211 (1990). |
M. Born, Die Relativitiitstheorie Einsteins, 7th edn. (Springer, Berlin, 2003). ISBN 978-
3540004707 (]

L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press,
Cambridge, 2012). ISBN 978-1107005464 a

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference
and Diffraction of Light, Tth expanded edn. (Cambridge University Press, Cambridge/
New York, 1999). ISBN 0521642221 |

D.L. Mills, Nonlinear Optics: Basic Concepts (Springer, Heidelberg, 1998). ISBN 978-
3540541929

Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). ISBN 978-0-471-
430803 (]

M.L Stockman, D.J. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic
generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization,
and correlations. Phys. Rev. Lett. 92, 057402 (2004). |

T. Hanke, G. Krauss, D. Triutlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Efficient
nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared
pulses. Phys. Rev. Lett. 103, 257404 (2009). a

L.V. Lorenz, On the identity of the vibrations of light with electrical currents. Philos. Mag. 34,
287-301 (1867).

C.B. Lang, N. Pucker, Mathematische Methoden in der Physik (Spektrum Akademischer
Verlag, Heidelberg/Berlin, 2010). ISBN 978-3-8274-1558-5 a

G. Green, An Essay on the Application of Mathematical Analysis to the theories of Electricity
and Magnetism (G. Green, Nottingham, 1828). | Reprinted in J. Math. in three parts,
digitized version available by Google Books

D.M. Cannell, N.J. Lord, George green, mathematician and physicist 1793-1841. Math. Gaz.
77(478), 26-51 (1993). [J

L. Challis, The green of green functions. Phys. Today 56(12), 41-46 (2003). |

FJ. Garcia de Abajo, A. Howie, Retarded field calculation of electron energy loss in
inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002). |

U. Hohenester, J. Krenn, Surface plasmon resonances of single and coupled metallic nanopar-
ticles: a boundary integral method approach. Phys. Rev. B 72, 195429 (2005). a

U. Hohenester, A. Triigler, Interaction of single molecules with metallic nanoparticles. IEEE J.
Sel. Top. Quantum Electron. 14, 1430 (2008).

U. Hohenester, A. Triigler, MNPBEM — A Matlab toolbox for the simulation of plasmonic
nanoparticles. Comput. Phys. Commun. 183, 370 (2012). a

. R. Fuchs, Theory of the optical properties of ionic crystal cubes. Phys. Rev. B 11, 1732 (1975).


http://dx.doi.org/10.1029/2002JD002347
http://onlinelibrary.wiley.com/doi/10.1029/2002JD002347/pdf
http://dx.doi.org/10.1103/RevModPhys.84.1527
http://journals.aps.org/rmp/pdf/10.1103/RevModPhys.84.1527
http://dx.doi.org/10.1119/1.12094
http://link.aip.org/link/?AJP/48/348/1&Agg=doi
http://dx.doi.org/10.1119/1.11327
http://link.aip.org/link/?AJP/46/342/1&Agg=doi
http://dx.doi.org/10.1007/BF02722449
http://link.springer.com/10.1007/BF02722449
http://signallake.com/innovation/DysonMaxwell041989.pdf
https://archive.org/details/einsteinstheoryo00born
http://www.cambridge.org/at/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition?format=HB
https://archive.org/details/PrinciplesOfOptics
http://www.springer.com/physics/optics+%26+lasers/book/978-3-540-64182-7?changeHeader
http://www.wiley-vch.de/publish/en/AreaOfInterestPH00/bySubjectPH40/availableTitles/0-471-43080-3/?sID=tcn1b5yrefe9g72guirukwezav
http://dx.doi.org/10.1103/PhysRevLett.92.057402
http://prl.aps.org/pdf/PRL/v92/i5/e057402
http://dx.doi.org/10.1103/PhysRevLett.103.257404
http://prl.aps.org/pdf/PRL/v103/i25/e257404
http://dx.doi.org/10.1080/14786446708639882
http://www.informaworld.com/smpp/ftinterface~content=a911146873~fulltext=713240930~frm=content
http://physik.uni-graz.at/~cbl/mm/
http://arxiv.org/pdf/0807.0088v1
http://dx.doi.org/10.2307/3619259
http://www.jstor.org/stable/3619259
http://dx.doi.org/10.1063/1.1650227
http://efetedc.ac.uk/physics/documents/historical/greenphystoday1203.pdf
http://dx.doi.org/10.1103/PhysRevB.65.115418
http://prb.aps.org/pdf/PRB/v65/i11/e115418
http://dx.doi.org/10.1103/PhysRevB.72.195429
http://prb.aps.org/pdf/PRB/v72/i19/e195429
http://dx.doi.org/10.1109/JSTQE.2008.2007918
http://arxiv.org/PS_cache/arxiv/pdf/0801/0801.3900v1.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2011.09.009
http://physik.uni-graz.at/~uxh/Publications/mnpbem11.pdf
http://dx.doi.org/10.1103/PhysRevB.11.1732
http://prb.aps.org/pdf/PRB/v11/i4/p1732_1

98

49.

50.

SI.

52.

53.

54.

55

57.

3 Theory

I.D. Mayergoyz, Z. Zhang, G. Miano, Analysis of dynamics of excitation and dephasing of
plasmon resonance modes in nanoparticles. Phys. Rev. Lett. 98, 147401 (2007).

ﬁ. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1965). ISBN 978-0486409245
F.P. Schmidt, H. Ditlbacher, F. Hofer, J.R. Krenn, U. Hohenester, Morphing a Plasmonic
Nanodisk into a Nanotriangle. Nano Lett. 14(8), 4810—4815 (2014). a

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Dark plasmonic
breathing modes in silver nanodisks. Nano Lett. 12(11), 5780-5783 (2012). g

F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Universal
dispersion of surface plasmons in flat nanostructures. Nat. Commun. 5, 3604 (2014).

M.K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Triigler, U. Hohenester, J.R. Krenn,
Probing plasmonic breathing modes optically. App. Phys. Lett. 105(17), 171103 (2014). |

. C.M. Hutchins, The acoustics of violin plates. Sci. Am. 245, 170 (1981).
56.

E.FF. Chladni, Entdeckungen tiber die Theorie des Klanges (Breitkopf und Hirtel, Leipzig,

1787). O
W.C. Chew, Waves and Fields in Inhomogeneous Media IEEE Press Series on Electromagnetic

Waves (Wiley, New York, 1995). ISBN 0-7803-4749-8 g


http://dx.doi.org/10.1103/PhysRevLett.98.147401
http://prl.aps.org/pdf/PRL/v98/i14/e147401
http://books.google.at/books?id=mwssSDXzkNcC&printsec=frontcover&dq=Messiah+Quantum+Mechanics&source=bl&ots=zXgcsE_j5O&sig=t3fjeL_34XeHTeb76sJYRjNxQws&hl=de&ei=Sku5Tcv5CMTKswbGwITrAw&sa=X&oi=book_result&ct=result&resnum=4&ved=0CEEQ6AEwAw#v=onepage&q&f=false
http://dx.doi.org/10.1021/nl502027r
http://pubs.acs.org/doi/pdf/10.1021/nl502027r
http://dx.doi.org/10.1021/nl3030938
http://pubs.acs.org/doi/pdf/10.1021/nl3030938
http://dx.doi.org/10.1038/ncomms4604
http://www.nature.com/ncomms/2014/140410/ncomms4604/pdf/ncomms4604.pdf
http://dx.doi.org/10.1063/1.4900615
http://physik.uni-graz.at/~uxh/Publications/krug-apl14.pdf
http://www.scientificamerican.com/article/the-acoustics-of-violin-plates/
https://books.google.at/books?id=fNtZAAAAcAAJ&lpg=PP11&ots=WV4WpxCvV2&dq=Entdeckungen%20%C3%BCber%20die%20Theorie%20des%20Klanges&hl=de&pg=PP1#v=onepage&q&f=false
http://dx.doi.org/10.1109/9780470547052
http://xplorebcpaz.ieee.org/xpl/bkabstractplus.jsp?bkn=5270998

Part 11
Simulation



Chapter 4
Modeling the Optical Response of Metallic
Nanoparticles

Prediction is very difficult, especially if it’s about the future.

NIELS BOHR

A formal solution of rigorous scattering theory for nanoparticles is unfortunately
only possible for restricted geometries. There exist analytical solutions for light
scattering problems if we expand the electromagnetic potentials and fields to
spherical harmonics and limit ourselves to spherical or spheroidal particle shapes.
In reality, however, we want to work with arbitrary shaped nanostructures and take
advantage of certain structure dependent qualities like the hot spots in the gap
regions of bowtie antennas or the magnetic response of split-ring resonators. So
in general a more sophisticated numerical method for solving Maxwell’s equations
is essential and inevitable. Several different techniques are available and some of
them will be discussed in the next sections.

A critical comparison of the capabilities of the most popular and efficient
approaches can be found in [1, 2], for example, an overview is also presented at the
end of this chapter. One approximation that all of these methods have in common
is the locality of the dielectric description of the material, i.e. the dielectric function
depends only on the frequency of light ¢(r,r’, w) ~ &(w) and bodies with abrupt
interfaces are assumed. This is a valid assumption as long as the studied structures
are sufficiently large and finite size effects can be neglected, see Sect.4.6.3 for more
details.

The optical theorem' relates the forward scattering amplitude to the total cross
section of the scatterer, and thus allows us to determine the optical response of
metallic nanoparticles.

Consult [3] for a derivation and discussion of the theorem, also see [4].
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4.1 Analytic Solutions

4.1.1 Quasistatic Approximation: Rayleigh Theory

Let us start with the quasistatic regime, a topic that has already been discussed in
Sect. 3.4. If the investigated structures have spatial dimensions below say 50 nm, we
can connect the macroscopic dielectric function with the microscopic polarizability
a. The elastic scattering of light can then be described in terms of Rayleigh
scattering >

For a microscopic derivation of « consult [5] or [6], for example. Expressing
the dipole moment P through the /ocal microscopic electric field on one hand, and
connecting it with the dielectric function ¢ [through D = ¢E = &o(E + P)] on the
other hand, leads to the Clausius-Mossotti relation for spherical particles [6]:

Clausius-Mossotti relation

4.1)

where V is the volume and &, = €1/, is the relative dielectric function between
medium 1 at the inside of the nanoparticle and medium 2 at the outside, respectively.
The expressions for the scattering and absorption cross section then simply follow as

Cross sections within the quasistatic approximation

4

k
Csca = a |05|2 s Caps = kSm {05} s Cext = Csca + Cips. 4.2)

The quasistatic polarizability of a nanoparticle can also be expressed as the ratio
of the induced dipole moment (surface charge times distance) to the electric field
of the excitation, which yields the same cross section. The unit of a cross section is
generally an area, here and in the following we therefore obtain [Cscy] = [Caps] =

2When the light from our sun reaches earth, the electromagnetic waves get scattered, mostly
elastically, by the molecules and suspensoids in our atmosphere which causes the diffuse sky
radiation (the characteristic Fraunhofer lines provoked by spectral absorption also occur in a
blue sky spectrum of course). Such atmospheric particles are usually much smaller than the light
wavelength and thus are a typical example of Rayleigh scattering. Since the short-wavelength
part of the radiation becomes more strongly scattered than the longer wavelengths, the bluish part
dominates and yields the color of our sky.
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[Cexi] = m?2. Since the typical length scales in plasmonics are given by nanometers,

it is of course much more convenient to express the cross sections in nm?.

4.1.2 Mie Theory

The solution of Maxwell’s equations for spherical particles (or infinitely long
cylinders) is named after the physicist Gustav Mie® and the expansion for elliptical
particles became known as Gans or Mie-Gans theory,* see Sect. 4.1.3. An interesting
overview about Mie’s theory annotated with historical remarks can be found in [7],
which was written in 2008 at the occasion of the centenary anniversary of Mie’s
original publication [8].

A rigorous derivation of Mie’s formal solution can be found in [6, 8-10] for
example, we will only present the basic steps here. We are going to calculate the
time-harmonic electromagnetic field of a sphere of arbitrary size embedded in a
linear, isotropic, homogeneous medium. Because of the spherical symmetry of the
problem, the use of spherical harmonic functions and a multipole extension of the
fields is clearly an advantage. As shown in Appendix A.4.1, we can introduce vector
harmonics M and N that satisfy the wave Eq.(3.31) and have all the required
properties of an electromagnetic field. The scalar function ¥ is called the generating
function for these vector harmonics, see Eq. (A.30). With ¢ the problem of finding
solutions for the electromagnetic fields reduces to the comparatively simpler task of
finding solutions to the scalar wave equation, see Eq. (A.34). The symmetry of the
investigated problem dictates the choice of generating functions, i.e. in our case ¥
is a function of spherical coordinates:

Scalar wave equation in spherical coordinates

10,0 19 9 1@
S (P ) o= (sinb )+ ————— + |y =0
|:r2 8r( ar) + r2sin 6 060 (Sm 89) * 72 sin? 0 0¢? * :Il/f ’

(4.3)

where k = n?. This equation can be solved by the usual product ansatz for
w(r, 0, @), as discussed Appendix A.4 for example. This leads to three decoupled
differential equations and after some algebra [6] we can construct the solution

3Born 29th September 1868 in Rostock; T 13th February 1957 in Freiburg im Breisgau.

4 At this point usually a little pedantry sets in and we should not speak of it as a theory but rather
call it Mie oder Mie-Gans solution, since it is just a result of Maxwell’s equations under certain
circumstances. Nevertheless the name “Mie theory” has become established.
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of (4.3) as a linear combination of even and odd generating functions [9]:

" cos(me)P}*(cos 8)z(kr), even solution @.4)
Im = .
sin(me)P}'(cos 8)z;(kr), odd solution

where PJ"(cos 0) are the associated Legendre functions of the first kind of degree
! and order m. The symbol z; is a substitute for any of the four spherical Bessel
functionsj,, y,, h;l), or h}z) . Because of the completeness of each individual function
on the right hand side of Eq. (4.4), ¥;,, may serve as a basis and any quantity that
fulfills Eq. (4.3) may be expanded as an infinite series in these generating functions.
But since we are interested in solutions of the field equations, it is more convenient
to go one step backwards and use the vector spherical harmonics as basis:

1
My =V X (rvm) , Nim = p (VxMy). 4.5)

If u and v are two solutions of Eq. (4.3), we can derive Maxwell’s electromagnetic
fields in terms of M, N,, M, and N, (see [6] for the proof)

E=M,—iN,, (4.62)

H = _k (M, +iNy). (4.6b)
nw

Before we are able to calculate Mie’s solution for the scattering of a plane wave,
we still have to express the incident plane wave in the same basis functions. This
derivation can again be found in many textbooks and the interested reader may once
again be referred to Bohren and Huffman’s excellent book [6]—and thereby “acquire
virtue through suffering”, in the words of Bohren and Huffman [6]: ... this is
undoubtedly the result of the unwillingness of a plane wave to wear a guise in
which it feels uncomfortable; expanding a plane wave in spherical wave functions
is somewhat like trying to force a square peg into a round hole.”

It can be proven that the following two choices of # and v together with Eq. (4.6)
generate an adequate expression for the incident plane wave:

y = e it cos(¢p) Z( )l l([ — 1) Pl (cos 0)j (kour), (4.7a)
_ Lot s - Y 20+1
v = e sin(gp) l;( i) T 1)P, (cos 0)ji (kouwr). (4.7b)

The field outside the sphere is then given by a superposition of the incident plane
wave plus the scattered wave. If we exploit Maxwell’s boundary conditions and the
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conditions to be satisfied at infinity we find the following general expressions:

Outside Mie solution, scattered wave

TP oS O () (430

= e cos(p) Z( )'a

v = e it sin(g) Z(l) bl Zl(COS 9)]152) (kout?). (4.8b)

Kz )

Similarly, the field inside the sphere is given by

Inside Mie solution

u=-e " cos(p) Z( 1)Zcz P, (cos 0)j;(kinr), (4.9a)

IU+D

v =e"sin(¢) Z( i di ot Pl (cos 8)jiar). (4.9b)

l(l 1)

The different appearance of the Bessel functions h;z) and j; is due to the asymptotic
behavior of the scattered wave and the finite field at the origin, respectively. The
expressions of the undetermined coefficients a;, by, ¢;, and d; follow once more from
the boundary conditions. After some algebra (that once again can be found in [6, 9])
we derive the Mie coefficients for the outside field with the relative refractive index

n, = %, the relative susceptibility p, = 5 i"l, and the abbreviation x = ko7

Mie scattering coefficients

n.Yy (nrx) 1/’1/ (x) — wYy (x) ‘Wz/ (nrx)
n (e x)E (x) — &)Y (npx)

— Mr‘lﬁl(nrx)w[/(x) - nr‘ﬁl(x)w;(nrx)
MrWz(an)SZ(x) - ”rgl(x)wll (n,x) '

a = (4.10a)

(4.10b)
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where we have introduced the Riccati-Bessel functions’

Riccati-Bessel functions

Vi(2) = 7i(2), £(2) = 2h (). (4.11)

Note that a; and b; vanish as n, and p, approach unity: When the particle disappears,
so does the scattered field. Likewise we can derive the Mie coefficients for the inside

field:

Mie coefficients for inside field

e Y& (x) — pen,E1(x) Y (x)
€= W (nx)E (x) — nE X)W (n,x) (4.12a)

et ()& (x) — pen,E1(x) Y] (x)
d; = . 4.12b
' ) () — mE OV (1) €12,

SWe follow the notation of Debye here, otherwise the first Riccati-Bessel function is usually
denoted as S;(z) = zj(z).
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Fig. 4.1 Extinction cross sections of a sphere with 150 nm diameter made of different materials:
(a) gold, (b) silver and (c) aluminum [measured values for (w) from [11] and the dielectric
function database of F. J. Garcia de Abajo]. The spectra can be decomposed into contributions
from absorption (A,) and scattering modes (S,) with n = 1,2,3,... for the dipole, quadrupole,
octopole mode, ... respectively (see also [7]). To simplify matters magnetic modes have been
omitted here but also give important contributions

4.1.2.1 Cross Sections with Mie Theory

Once the Mie coefficients are determined, we can calculate the extinction, absorp-
tion and scattering cross sections (see Fig.4.1) or the electromagnetic fields inside
and outside of the spherical particle.

The cross sections follow from the net rate at which electromagnetic energy
crosses the surface of an imaginary and sufficiently large sphere surrounding our
particle [6]. They yield

Cross sections with Mie theory
27—
Ca = 17— > @i+ 1) (|af| +|p7]). (4.13)
out ;_—1
py,
Cou = 5= Y Q1+ Dt (a+ b)) . (4.14)
out j—1
Cabs = Cext — Cyca- (4.15)

A MATLAB® code example for Mie scattering can be found in Appendix B (a
dielectric table containing the photon energy in eV and the corresponding real and
imaginary part of the refractive index has to be provided, cf. [11]). An analogue
example for MATHEMATICA™ can be found in [12] and in [13] a recent test of Mie’s
predictions for the scattering and absorption of single plasmonic particles has been
published.


http://nanophotonics.csic.es/static/widgets/eps/index.html
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/—{ Additional remark }

The optical phenomena in our atmosphere have fascinated their beholders for
millennia and one of the most prominent examples are rainbows. They are
deeply rooted in arts, culture and mythology, as a symbol of hope and social
change, or in the tales of the Irish leprechaun or the burning rainbow bridge
Bifrost in Scandinavian myths. Moreover, after a rain shower, the scattering
of sunlight in the remaining water droplets may serve as a beacon of science;
if we follow the attempts to explain the origin of rainbows from antiquity to
modernity we basically follow the evolution of the theories of light and we
meet many brilliant minds from Aristotle and Persian mathematicians [14]
through to Descartes and Maxwell along this path. Although the explanation
of a rainbow in its full glory remains a hard nut to crack, the basic principles
can be quickly explained. With the help of geometrical optics and Snell’s law
of diffraction, Isaac Newton was one of the first to identify the dispersion of
light as one of the main processes behind the colored bows [15], see Fig. 4.2.

i 6y — 6,
sunlight f, f,

n =1 92.

62
6;
n =133

&

Fig. 4.2 Basic principle of the primary rainbow. The dispersion of light inside a water
droplet leads to a splitting into its primary colors, where red light (n &~ 1.331) is refracted
less than the bluish part (n ~ 1.343). A double reflection of the light causes a secondary
bow, where the colors become inverted (blue on the outside and red on the inside). With
each reflection some of the light intensity is lost.

From the smaller isosceles triangle in the right panel of Fig. 4.2 we obtain
for the two angles opposite the equal sides 180 — 26,. The sum of the angles
in the bigger triangle then yields

180 = & + 2(6; — 6,) + (180 — 26). (4.16)

With Snell’s law n; sin 81 = n; sin 6, and n; = 1 we derive the final scattering
angle as

0 7
o = 48, — 26, = 4arcsin (Sm 1) —26,. 4.17)

ns
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r-{ Additional remark }

If we plot this angle dependence with an averaged n, ~ 1.33 we will obtain a
maximum at o« & 42°, as can be quickly proved by calculating the extremum

0 1
X0 = 6 = arccos Vsm—-D| = a=42°
26, 3

(4.18)
In Fig.4.2 the most simple scenario is plotted, but the light of the sun can
also be reflected twice within the droplet yielding a secondary, fainter rainbow
appearing approximately 10° outside the primary bow, see Fig.4.3. Rainbows
of order higher than the second are not observed in the atmosphere, they fade
into the background illumination [6]. In the laboratory, however, rainbows up
to 17th-order have been observed [16]. Between the primary and secondary
bow destructive interference of the scattered light leads to a considerably
darker region. This dark space is called Alexander’s band, named after the
Greek philosopher Alexander of Aphrodisias who first described it.

sunlight

, droplets

secondary bow

primary bow

Alexander‘s band

Fig. 4.3 Primary and secondary rainbow caused by the scattering of light in small water
droplets. The angular widths of the primary and secondary bow are approximately 1.7° and
3.1°, respectively [6]

The fraction of the total rainbow that can be seen depends on the solar
elevation—when the sun is greater than 51° above the horizon, no rainbow can
be seen even though conditions are otherwise favorable [6]. From an airplane,
on the other hand, it is possible to observe a complete circle rainbow.

The small water droplets in our atmosphere have usual diameters from
around 10 um (e.g. in clouds or fog) up to several mm. For small drops
the surface tension of water overtakes the force of air resistance yielding
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/—{ Additional remark }

spherical particles. Therefore Mie theory is well suited to calculate the
atmospheric scattering of sunlight for such particles and we can derive an
analytical solution for the rainbow. But unfortunately the final result still
consists of an incredible huge sum of partial waves. In fact, the precise
understanding of a rainbow with all its distinct features still remains a hard
piece of work (see e.g. [15, 16] for a review). A comprehensive summary
about the mathematical physics of rainbows ranging from geometrical optics,
the so-called Airy approximation and Mie scattering over complex angular
momentum to catastrophe theory, can be found in [17].

In his poem Lamia John Keats accused Newton of destroying all the poetry
of the rainbow by reducing it to the prismatic colors. The title of Richard
Dawkins book Unweaving the rainbow [18] is related to this poem and his
“...aim s to guide all who are tempted by a similar view, towards the opposite
conclusion.” A similar viewpoint is shown by Richard Feynman writing about
the beauty of stars, where he notes that “... it does not do harm to the mystery
to know a little about it. For far more marvelous is the truth than any artists
of the past imagined!”

4.1.3 Mie-Gans Solution

An additional analytical solution for elliptical, spheroidal particles is also possible
and is called Mie-Gans solution [6, 9]. Scattering characteristics for oblate and
prolate spheroidal particles can be calculated, as long as a quasistatic approximation
is adopted.

The three main values o, o2, @3 of the polarizability tensor can be computed
with [9]

Polarizations for Mie-Gans solution

1 —1
o =9V (L[ + —1) . (4.19)

¥

The geometrical factors L; are related to the particle shape and always fulfill the
sum rule L; + L, + L3 = 1. Thus for a sphere we obtain L; = 1/3 for all i and we
immediately recover the Clausius-Mossotti relation (4.1).
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Fig. 4.4 Prolate (left, a > b = c) and oblate (right, a < b = c) ellipsoids

For an arbitrary ratio of the particle’s semiaxis a, b, and ¢ the factor L; can be

calculated from [9]

o0

bed
avees (4.20)

L= :
! 0/ 2(s + a2 (s + b2) (s + ) /2

with cyclical changes for L, and Ls. For the special case of spheroidal particles
(b = c, see Fig.4.4), we obtain the solutions [9]

1 —e? 1 1 b?
prolate (a > b) : L} = ¢ —14+ —1In te , e=1—-|—=],
2 2¢ 1—e a?

e
142 1 b?

oblate (a < b) : L= +f 1 — - arctanf |, f=1=]—-1
r? f a’

The corresponding cross sections again follow from Eq.(4.2), with o = ), a;é;,
where é is the light polarization.
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4.2 Discrete Dipole Approximation

The Discrete Dipole Approximation (DDA) is a numerical technique for computing
electromagnetic scattering and absorption by targets of arbitrary shape [19], where
the continuum target is approximated by a finite point array. In response to the local
electric field, each point acquires a dipole moment and the scattering problem can
then be solved in a self-consistent way, see Fig. 4.5. Thus, in principle this method is
completely flexible regarding the geometry of the target, the only limitation is given
by the need to use an interdipole separation that is small compared to any structural
lengths in the target and to the wavelength A [20]. The theoretical basis for the DDA
is summarized in [21].

The basic idea of the DDA was already known in 1964, but it was limited to
structures that were small compared to the wavelength. This limitation disappeared,
when Purcell and Pennypacker introduced the DDA to study interstellar dust grains
in 1973 [22]. Fortunately the method is not restricted to astrophysics and Draine and
Flatau published a free FORTRAN software package (DDSCAT, current version 7.3)
that can be applied to plasmonic scattering problems.

By following [21] very closely (for consistency reasons the Gaussian units from
this paper shall also be temporary adopted here), we will shortly show that with the
DDA the problem of electromagnetic scattering of an incident light wave can then
be cast to the following simple matrix equation

Discrete Dipole Approximation

A-P=E,. 4.21)

where E‘inc is a 3N-dimensional (complex) vector of the incident electric field at
the N lattice sites, P is a 3N-dimensional (complex) vector of the (unknown) dipole
polarizations, and A is a 3Nx3N complex matrix.

Let us imagine a point lattice with N occupied sites and an index j = 1,...,
N running over these elements. Each dipole j is characterized by a polarizability
tensor o, which is diagonal with equal components if the material is isotropic (i.e.,
a; may be treated as a scalar quantity in this case). We will restrict our attention to
instances where all individual dipole polarizability tensors can be simultaneously
diagonalized, although it is straightforward to generalize the problem to non
diagonal tensors (see [21] for more details). It is nontrivial to choose an adequate «;
for the individual dipoles—Purcell and Pennypacker for example used the Clausius-
Mossotti relation (4.1) to obtain an estimate for the polarizability. This assumption
is exact in the zero-frequency limit, but it fails at finite & [21].

Let P; be the instantaneous complex dipole moment of dipole j, and Ecy; the
instantaneous complex electric field at position j due to the incident radiation plus


http://www.ddscat.org/
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Fig. 4.5 Principle of DDA: the complete volume of a nanoparticle is discretized into a finite set
of polarizable points that interact with each other. The total polarization is then calculated in a
self-consistent way through an iterative matrix inversion

the other N—1 oscillating dipoles. Then we get

Pj = ajEextJ. (422)

As noted in [22], this expression can now be recast as N simultaneous vector
equations of the form

Pj= | Eincj— ) Au-Pc|, (4.23)
ket

where Ej,. ; corresponds to the electric field of the incident plane wave at position j,
EincJ =E CXp(ik r— ia)t), 4.24)

and —Aj; - Py is the contribution to the electric field at position j due to the dipole at
position k. The matrices Aj; are defined for j # k through

1k rjk 1 —ikry
Ajk P = — kzrjk X (rjk x Py) + T]
ik k
where rjy = rj — r¢ and rjy = |rji|. By defining the matrix elements for j = k as
Aj = ocj_l, the scattering problem can be compactly formulated as

X [r]szk — 3rjk(rjk . Pk)] .

N
> A -Pi=En; (=1....N). (4.25)
k=1
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If we now introduce the two 3N-dimensional vectors P = (Pl,Pz, ..., Py) and
Eipe = (Einc.1,Einc.2, - - -, Eincv) and the 3Nx3N symmetric matrix A, we recover
the single matrix Eq. (4.21) from the beginning of this section:

A-P=Ei,..

The most simple (and brute) method to solve this system for the unknown vector
P is a direct inversion of A. But since 3N is a large number (For a typical
nanoparticle the number of dipoles is of the order of 10* to 10°!), such a direct
method is quite impractical. Many different techniques for solving such equation
systems are available and DDSCAT uses an iterative method [20]. It begins with
a guess (typically P = 0) for the unknown polarization vector, and then iteratively
improves the estimate for P until Eq. (4.21) is solved to some error criterion (usually
the error tolerance is user-defined and smaller than 107>, see [20]). Under some
circumstances there may be problems with the convergence of this iterative method
(see [22], for example), so in general convergence tests are necessary to choose the
right grid size.

Once Eq.(4.21) has been solved, the extinction Cgy, absorption C,,s, and
scattering Csc, cross sections can be computed from the optical theorem. The results
can again be found in [21] and are given by

Cross sections with DDA
N
4k
Cont = |E1nc|2 Z mCJ ’ (4‘26)
Ak & et 240
Caps = |E1nc|2 Z P (05 ) P ] - gk P; 'Pj R 4.27)
Csca = Cext — Cabw (428)

with the wavenumber k = 27/1. When absorption is dominant, it may become
difficult to calculate C,., with the above subtraction, because then Cey and Cyp
have to be computed with high accuracy. It is also possible to compute the scattering
cross section directly by calculating the power radiated by the array of oscillating
dipoles [21]:

2

K - . ki
G = 52 f d2 |y [P —aG - P)le | (4.29)
mc ,/=1

where 71 is an unit vector in the direction of the scattering, and d$2 is the element of
solid angle.
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4.3 Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) method is another volume approach
to calculate solutions of Maxwell’s equations in a straight forward way. Here the
equations in their differential form are discretized in space and time and the time
evolution of the electromagnetic near fields is calculated directly (a more elaborate
introduction can be found in [23] or [24], for example).

At first, one has to establish the physical region where the fields should be com-
puted, i.e. the nanoparticle structure itself as well as the surrounding volume (see
scheme in Figs. 4.6 and 4.7). Usually, absorbing boundary conditions are employed
on the edges of this region to ensure that the simulation result is not affected by
unwanted back-reflections from these boundaries. The entire computational domain
is then discretized and the material property of each grid cell has to be specified.
This allows for linear and nonlinear dielectric materials to be implemented quite
easily, but a dielectric description in tabulated form, which is the usual outcome
of experimental measurements, cannot be used directly. Instead the measured data
points have to be approximated by some fit function, again see e.g. [23]. Once
the system is implemented, the complete structure can be excited through initial
conditions for the fields, be it an exciting localized emitter, an arbitrary incident
field or a simple plane wave.

Maxwell’s differential equations are then solved directly for every time step, i.e.
besides the spatial grid the time variable also has to be discretized. In fact, in the
end two shifted temporal and two shifted spatial grids are necessary to compute
the desired solution—let’s follow the short introduction in [25] and have a look at
Faraday’s Induction Law Eq. (3.3d) to elucidate this circumstance:

3 daB(r, 1)

V x E(r,t) = T

Fig. 4.6 Principle of FDTD: The complete volume of the simulation region is discretized in
space and time and at the edges absorbing boundary conditions are implemented. In the region
where the scatterer is situated usually a finer override mesh is used. The excitation of the
system is realized through initial conditions for the electromagnetic fields, which subsequently
are propagated forward in time
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Fig. 4.7 3D view of the FDTD scheme plotted in Fig. 4.6

By approximating the time derivative through a central difference expression

0B(r,1) _ B(r,t+ 8t) — B(r,t — §1)
o 2(81)

we can rewrite Eq. (3.3d) into
B(r,t + 8t) = B(r,t — 6t) — 2(6t)V x E(r, 1). (4.30)

Now the magnetic field B at time (7 4 §¢) can be determined if B at time (f — 6¢) and
E at time ¢ are known. With a similar procedure we can use Ampere’s law (3.3c) to
calculate the time propagation for E. Consequently the fields E and B are defined
on two different time grids, each with a time step of 247, but shifted by &z [25]. The
spatial discretization follows from the curl operator, which can also be expanded
in a sum of central differences. Likewise, in the end we obtain two shifted spatial
grids for E and B as well, which are sometimes depicted in a so-called Yee-cell [26].
The initial conditions are given by the excitation of the system (e.g. an impinging
plane wave) and from there we could start with the forward propagation and directly
calculate the temporal evolution of the electromagnetic near-fields. Afterward the
Poynting vector S = E x H = 1E x B gives the directional energy flux and
the corresponding far-field spectra can be obtained via some appropriate integral
transformations, see e.g. [27].

/—1 Additional remark }

The formulation of difference quotients is essential for numerical solutions of
differential equations and there are different ways to approximate any given
differential, see e.g. [28].

Let us start with a differentiable function f and assume that its values can
be computed in an area +8x around x. The second degree Taylor expansion




Finite Difference Time Domain

/—{ Additional remark }

117

for f(x + 6x) and f(x — 8x) gives
flx 4+ 8x) = f(x) +f (x)8x + 2l'f”(x)8x2 + ...
flx—8x) = f(x) —f (x)8x + 2l!f”(x)8x2 = coc

Subtracting these two equations leads to

Fx + 8x) —f(x — 8x) = 2f'(x)8x + O(8x%)

flx 4+ 6x) —f(x —dx)
26x

) = + 061

For very small 8x values, the error of the order of §x*> can become annoying,
so a better approximation with some higher order error term is sometimes
quite instrumental. A Taylor expansion for a doubled step size f(x £ 28x) with
a corresponding subtraction of the last formula cancels the expansion term
of O(8x) and gives the central difference for O(8x*). With the shorthand
notation f,, = f(x + n dx) we get

_ —f2+8fi — 81 +f

4
126x + O(6x")

[

Analog procedures also allow us to approximate higher order derivatives:

h =20 +/

(x) = = + O(8x%)
X
f”(x) — _f2 + 16fl — 3OfO + 16f—l _f—2 + O(8x4)
1262

The expansion of this approach to forward or backward differences, i.e.
to problems, where f is known only for values higher or smaller than x
respectively, is also straightforward.
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4.4 Boundary Element Method

The Boundary Element Method (BEM) has emerged as a powerful numerical
technique for solving a wide variety of computational engineering and science
problems.® The method has deep and complex roots in the history of mechanics’ and
its mathematical foundations include the theorems of Gauss, Green and Stokes; they
allow the basic reduction from volume differential equations to boundary integral
equations [29] as we have already seen in Chap. 3.

The first step in developing the BEM involves the transformation of the con-
sidered set of differential equations [viz. Maxwell’s equations, see Eq.(3.34)]
into integral equations [we did this in Egs. (3.56) and (3.72)]. The new integral
expressions are valid everywhere—inside and outside the domain as well as on its
boundary. Now the structure of the considered problem comes into play: Usually
we can solve the equations inside and outside the domain, the only non-trivial part
comes from the boundary (note that this approach is based upon a mathematically
rigorous definition of the integrals as limits to the boundary [29]). As mentioned
in Sect.3.4.1, the BEM is based on an approximation of a continuous surface to
a discrete number of points located at the centroids of small surface elements, see
Fig.4.8—this is the so-called collocation method, in contrast to the more complex
Galerkin approach [29], for example, where a linear interpolation within the surface
elements is used.

Once the surface charges and currents have been derived as discussed in Chap. 3
[see Egs.(3.63) and (3.76)], we can determine the electromagnetic fields (see
Fig.4.9) and simply compute the scattering, absorption and extinction cross sections
again from the Poynting vector [3, 30]:

o(s). h(s)

from boundary conditions.

Fig. 4.8 After discretizing the particle surface the corresponding continuous surface charges and
currents are approximated as points in the centroids of the small surface elements. The Green
function connects these different points with each other, see Eq. (3.70)

SExamples of application cover the fields of elasticity, geomechanics, structural mechanics,
electromagnetics, acoustics, hydraulics, biomechanics, and much more.

7 A short overview about the historical development of the BEM can be found in [29] for example.



Boundary Element Method 119

g

n-polarization

-

§

§

g

Scattering cross section (nm’)

W e 1000 1200
Photon wavelength (nm)

Fig. 4.9 (a) Scattering cross section of a gold nanotriangle (55 50X 8 nm?, background refractive

index n, = 1.34). The panels (b) and (c) show the electric field at the resonance energy of 792 nm

at the particle surface and on the outside, respectively (also see Fig. 3.12)

Cross sections for retarded simulation

Cuoa = — @ e (- (E x B)} da, 31)
n
bB.Q
c W (A
Coxt = T Ne {n - (E x By + E;;. x B)} da, (4.32)
02
Cabs = Cext — Csca- (4.33)

Here we have used that the scattered power can be derived from the time-
averaged Poynting vector

(S) = L e (E xB). (4.34)
21

The unit of the Poynting vector is power per area ([S] = W/m2 = AV/m?) and we have
to integrate the outwardly directed component of the scattered Poynting vector to
obtain the scattered power [3]

Pyq = L foe {fi- (E x B*)} da. (4.35)
2#;;39

The energy flux density of an incoming plane wave with magnitude Ej is given by

1 1 1
(So) = ~ b g2 = g2~ [Ebp2 (4.36)
2 MpC 2 ny 2 Mb

The scattering cross section then finally follows from the radiated scattered power
normalized to the incoming energy flux of the plane wave Cyy, = Psa/(so). For the
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sake of convenience we set £y = 1V/m and hence end up with Eq.(4.31). The
extinction cross section yields analogously from the total power taken from the
incident wave (scattered plus absorbed part) or, as already mentioned, it can also be
calculated from the optical theorem, which relates Cex; with the forward scattering
amplitude [3].

My colleague Ulrich Hohenester and I have developed a MATLAB® toolbox
called MNPBEM for the simulation of metallic nanoparticles based on the boundary
element method. The toolbox is distributed as free software under the terms of the
GNU General Public License, further details can be found in [30, 31]. An update for
the inclusion of substrate and layer structure effects has been published in [32].

An open-source Galerkin boundary element library is currently developed at the
University College London under the name BEM++ [43-45].


http://physik.uni-graz.at/mnpbem
http://www.bempp.org/index.html
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4.5 Other Methods

There exists a huge variety of other methods for the calculation of light scattering
and absorption of plasmonic structures. The majority of them are based on a
discretization of space (and time). For example some of these approaches are the
dyadic Green tensor technique [33, 34], where the dyadic tensor mediates the
response between small volume elements of the scatterer, the multiple multipole
method [35], the Method of Moments (MoM) [36], or the multiple scattering
method [37].
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4.6 Comparison Between Different Approaches

In this section we will compare some of the different methods discussed before and
highlight the pros and cons of the individual approaches. There exist several papers
in the literature where a more extensive comparison is performed, for example
see [1, 2] or [37—41] and references therein.

4.6.1 Accuracy

It is possible to generate very accurate results with all the different methods, as long
as the discretization is chosen appropriately. In Fig.4.10 the simulation results of
BEM, DDA, and FDTD are compared to the analytical Mie solution.

The agreement between BEM, DDA and FDTD simulations is very good, also if
we change to other particle shapes, see Fig.4.11.

4.6.2 Performance

A performance comparison for the different methods is a challenging task since
all of them have their own assets and drawbacks. In this subsection we will only
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Fig. 4.10 Normalized scattering cross section of a gold sphere with 80 nm diameter in water with
g, = 1.34%, calculated for plane wave illumination with x-polarization with different methods.
Whereas the BEM result followed almost instantaneously, the DDA simulation took more than
one day, see Table 4.2. The FDTD calculation was performed by Johannes Kern (University of
Miinster)



Comparison Between Different Approaches 123

1
—o— BEM Tx15 nm 08 —=—DDSCAT

o— BEM 7421 Am —h—BEN
—o— BEM Tx28 nm
- DDA Tx18 nen
4-- DDA 7x21 nm
4-- DDA Tx28 nm

Scattering cross section (norm.)
o

dbo so0 eo0 7oo mo0  s00 1000 1100 1200 1300 1400 500 600 700 800 800 1000 1100 1200
Photon energy (nm) Photon energy (nm)

Fig. 4.11 Comparison of the normalized scattering cross section calculated with MNPBEM and
DDSCAT for gold rods with changing aspect ratio (left) and a 15 x 15 X 8 nm* gold cube (right),
ey = 1.347

Table 4.1 CPU time elapsed for a 10 nm sphere with changing discretization for different kinds
of BEM simulations, see [30]

Eigenmode Full retarded
No. of vertices Nr. of faces Quasistatic (s) expansion (s) solution (s)
144 284 2.26 0.23 8.81
256 508 4.83 0.43 32.85
400 796 16.05 0.94 103.96
676 1348 71.82 2.82 446.38

The calculations were performed on a standard office PC running on Windows XP with MAT-
LAB® R2013b 32-bit

discuss scattering results for different particle geometries obtained from BEM, DDA
and FDTD simulations. For the DDA simulation we used the previously discussed
DDSCAT program. The BEM simulations were carried out with the MNPBEM
toolbox. The FDTD simulations have been performed by Johannes Kern (University
of Miinster) with the commercial software LUMERICAL.

In Table 4.1 a computing time comparison for the quasistatic and the full retarded
solution of Maxwell’s equations as discussed in Chap.3 is shown. Table 4.2 is
adopted in part from [1] with permission of The Royal Society of Chemistry, for
details see table caption.

4.6.3 Limits and Inaccuracies

The BEM approach is suited for homogeneous and isotropic dielectric environ-
ments, where the embedded bodies are separated by sharp boundaries. Besides
the computational limitations, there are some other points that are responsible for
inaccuracies or difficult (or impossible) to implement. Nevertheless the BEM works


http://physik.uni-graz.at/mnpbem
http://www.ddscat.org/
http://www.ddscat.org/
http://physik.uni-graz.at/mnpbem
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Table 4.2 Critical comparison of the performance of BEM, DDA, and FDTD adapted from [1]
with permission of The Royal Society of Chemistry

Computational
demand

Storage demand

Average CPU time
for 80 nm sphere

Advantages

Disadvantages

BEM
V2N,

v
1 min

Low computational
and storage demand,
only surface is
discretized

Complex
parametrization

DDA
V3N,

V2
26 h (~2 days)

Simple
parametrization, only
particle volume is
discretized

Time consuming,

particle size a and &
limited to level/x < 5

FDTD

V/’U/Aa)

V/
15 min (4h)

Simple
implementation, full
spectrum in single run

Time consuming,
difficult to apply to
arb. e(w), parametr. of

outside volume and
ABCs

N,, is the number of calculated frequencies and V is the particle volume measured in units of the
cube of the skin depth [see Eq. (2.13), { & 15nm in the visible near-infrared (see Appendix A.1
for the frequency range of the visible spectrum)]. V’ is the discretized volume for the FDTD
simulation and it extends considerably outside the particle in order to account for light propagation
in the surrounding medium [also absorbing boundary conditions (ABCs) have to be applied, see
Sect.4.3]. In this table for the BEM and DDA approach a direct inversion of the secular linear
equations is assumed (DDSCAT uses conjugate gradient algorithms to solve the corresponding
equations in an iterative approach—three different algorithms can be chosen in the current version
of DDSCAT [20]. DDA scales as V log VN,, when using the iterative method, whereas BEM scales
as V*2N,, in this case, see [1]). The factor »/A» in FDTD is proportional to the number of time
steps needed to describe a component of frequency w with frequency resolution Aw. For the
comparison of a typical average computing time the optical spectrum of a gold sphere with a
diameter of 80 nm and N,, = 150 has been calculated (particle symmetry has not been exploited).
The DDA simulation ran on 32 nodes of a SUN Fire V20z cluster with 2 X AMD Opteron 248
2 (2 GHz) processors each (the number in brackets corresponds to the simulation time on only
4 nodes to allow a better comparison), whereas the BEM simulation was started on a transtec
CALLEO 431L server with four AMD six-core Opteron F 2431 (2.4 GHz) processors and 64 GB
DDR2-667 memory. On a standard PC the same BEM simulation takes about 2 min, see Table 4.1

remarkably well and the agreement with experimental data is striking. Here is a
short list of possible problems that are inherent to all the discussed simulation
methods (fortunately they mostly become important only if the nanoparticles are
very small):

e The sharp and abrupt two dimensional Maxwell boundary conditions become
questionable for very small particles because of the spill-out effect [7]: The
surfaces boundary changes to a three dimensional inhomogeneous interface (see
Fig. 8.2).

» The surface and interface gets charged because of the different chemical potential
of the particle and dielectric background (chemical interface damping [42]).


http://www.ddscat.org/
http://www.ddscat.org/
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» The dielectric function of a nanoparticle is different from the dielectric function
of bulk material.

e As already mentioned, the dielectric function e(w) is not homogeneous, it is
a local spatial dependent function e(r,/,w) and changes continuously while
approaching the surface or defects in the material [7], see Chap. 8.

» The idea of a surface charge density or a surface current density is an idealization
of macroscopic electromagnetism. In reality the charge or current is confined to
the immediate neighborhood of the surface [3]. (Nevertheless this idealization
works quite well and is an essential part of classical field theory.)
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Implementations and Applications



Chapter 5
Imaging of Surface Plasmons

What we observe is not nature itself, but nature exposed to our
method of questioning.

WERNER HEISENBERG

Maxwell’s equations are about 150 years old, so why (without any intention to be
blasphemous) can we still do interesting physics with them? The answer lies in the
interplay with sources: Electromagnetic interactions down at the nanoscale open up
the fascinating field of nanooptics, interactions with quantum objects allow us to
enter the prosperous world of quantum optics (see Table 5.1).

5.1 Principles of Near-Field Optics

What do we require to produce an optical image of a certain object? Basically
there is just one essential thing: A pinhole. One of the most rudimentary imaging
systems, the camera obscura, is a very good example of that and has fascinated
people throughout the centuries. An optical lens is required to focus more light
on the image and in this sense to reduce the exposure time, but the imaging itself
comes from diffraction at the aperture. In optical microscopy, the light emitted from
an object is diffracted at the boundary of a lens and focused to an image plane by
virtue of the refractive index contrast, where usually an intensity profile is detected.
If we want to distinguish two small objects close two each other, the resolution
depends on the overlap of the two intensity profiles (see Fig.5.1).

In free space, the propagation of light is determined by the dispersion relation

hw = cp = chk, which connects the wave vector k = /k> + kf +k2 = 2/x

of a photon (for a real lens the wavelength A must be corrected by the numerical
aperture NA) with its angular frequency @ [1]. Heisenberg’s uncertainty principle
now already predicts a fundamental resolution limit for optical microscopes: The
product of the uncertainty of the momentum of a microscopic particle Ak, and the
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Table 5.1 Characteristic

- Coherent (classical) optics |L (3>) > A

length scales L of different Diffracti - 3 3
parts of optics compared to iifraction grating >

the wavelength A Photonic crystals L (K)< A

Metamaterials L < A

diffraction at

object plane image plane

Fig. 5.1 Basic principle of spatial resolution in optical microscopy. Two small sources separated
by a distance d emit light which is collected by a lens far away (compared to the size of the sources)
from the object plane. The numerical aperture NA = nsin 0 is a characteristic number for the range
of angles over which the lens can collect light. In a good approximation the light wave impinging
at the lens behaves as a plane wave which is diffracted at the boundary of the lens. In the focal or
image plane we can than detect the overlapping intensity profiles

uncertainty in the spatial position Ax in the same direction cannot become smaller
than %/2:

hAkyAx >

N | S+

(5.1)

Since the maximal possible value of k, is the total length of the free-space wave
vector 27/x, we can rewrite the uncertainty equation to

Ars LA (52)
=04k A :

This states that the accomplishable spatial confinement for photons is inversely pro-
portional to the spread! in the magnitude of the associated wave vector component
Ak,.

!'Such a spread in wave vector components occurs for instance in a light field that converges toward
a focus, e.g. behind a lens [1].
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Fig. 5.2 (a) The intensity profile or so-called Airy disk of a circular aperture (like the human eye)
is proportional to the spherical Bessel function squared divided by mx squared. (b) Resolution
limit of two distinguishable maxima defined by the Rayleigh criterion, where the second intensity
maximum directly falls into the first zero of the first intensity maximum at xo = 0.6098. If the
separation between the two maxima is smaller, the individual peak can no longer be resolved. The
value of x( also enters Eq. (5.3). (c) If the separation Ax > xj, two separate peaks can be detected

The expression (5.2) is very similar to the diffraction-limited resolution derived
by Lord Rayleigh [2] (also see Fig.5.2) or Ernst Abbe® [3] in the late nineteenth
century:

2
Ax = 0.6098 —. (5.3)
NA

We see that there is some arbitrariness in the definition of a resolution limit: We
have started with the uncertainty principle of Quantum mechanics, Lord Rayleigh
investigated a grating spectrometer [1], while Abbe based his formulation on the
distinguishability of the image pattern of two point dipoles. A simple Fourier
transformation from position to momentum space also leads us to a similar result:

A A
Ak Ax>1. =  Ax> 2 ~ 031832, 54
t= Y= INA NA >4

see [1] for more details. This last expression is almost two times less pessimistic than
Eq. (5.3), but it seems that we cannot obtain a better resolution than approximately

2Born 23rd January 1840 in Eisenach; 1 14th January 1905 in Jena.
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half of the wavelength. Does this predict that there is no reasonable chance to
investigate objects on the nanoscale without violating fundamental laws of nature?
Fortunately the answer is no, there are several ways to elude this limitation. On
one hand we can apply some tricks based on the exploitation of distinctive features
of the investigated objects. For example we can increase the resolution trough
selective excitation of two close-by molecules, if they are distinguishable in energy,
orientation or something else.’

But on the other hand if we look at Eq. (5.2) once again, we see that in theory
there is no limit to optical resolution if the bandwidth of Ak, is arbitrarily large.
In this sense if we include evanescent fields in optical microscopy we are able
to increase the resolution limit and to investigate near fields and structures at the
nanoscale [5]. We can exploit and detect the high spatial information contained in
the evanescent modes (see Fig.5.3) by probing the electromagnetic field in close
proximity of the sources—this is the main principle of near-field nanooptics.

distance from object e_l’{‘-'- |z +ik-z
. e ]
==
==
nano object near-field image far-field image

nano [Nano —— .

Fig. 5.3 Near-field versus far-field optics: The electric field of an object is given by a Fourier
transform and thus connected to the wave vector k. High spatial information about the specimen
at the nanoscale is contained in the evanescent modes that decay exponentially with the distance
from the object. The conversion to propagating modes which can be detected in the far-field leads
to a certain loss of information, since the evanescent contribution is effectively removed from the
image

3The Nobel Prize in chemistry in 2014 was awarded to Eric Betzing, Stefan Hell and William
Moerner for the development of super-resolved fluorescence microscopy, a fascinating technique
based on the selective deactivation of fluorophores by stimulated emission. A review worth reading
about far-field optical nanoscopy can be found in [4]. These methods allowed the direct observation
of biological molecules, viruses, cellular protein movements in a living cell, DNA-strands and
many other nanoscale objects that would have been destroyed by other microscopes with atomic
resolution.
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5.2 How to Picture a Plasmon

The previously discussed increase of the resolution limit is neatly realized in
scanning near-field optical microscopy (SNOM) experiments for example, where we
are able to map the photonic local density of states (LDOS).* Another method that
allows us to directly picture surface plasmon polaritons of a metallic nanoparticle is
Electron Energy Loss Spectroscopy (EELS) [7, 32-35]. In this approach a beam of
electrons with high kinetic energy (of the order of 100keV) passing by (or through)
a metallic nanoparticle excites a plasmon and therefore loses a small fraction of its
energy. By detecting this energy loss and raster scanning the electron beam across
the particle, we obtain a spectral mapping of the plasmon oscillation. We can also
combine this technique with EFTEM, where an energy-selecting slit is placed before
the detector. Only electrons with a fixed energy range can pass through and we
obtain a picture of the plasmon mode at a certain energy. The measurement data can
be visualized in a 3D data cube, see Fig.5.4.

electron beam

EEL maps

EEL spectrum

e data cube

Fig. 5.4 Demonstration of the three-dimensional data cube obtained by EELS measurements. The
energy loss spectra are contained in the z-direction (AE-axis), whereas the EFTEM maps are stored
in the (x, y)-plane. Figure reproduced with friendly permission of Franz Schmidt (University of
Graz)

4The LDOS is a measure of how good a quantum emitter can couple to a nanostructure and it
is connected to the imaginary part of the system’s dyadic Green function [1, 6]. An increased
LDOS through the presence of a nanoparticle allows the emitter to dissipate its energy much more
efficient, for example.
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5.2.1 Mapping the Plasmonic LDOS

The principal idea for scanning near-field optical microscopy (SNOM) is to bring
a detector very close to the surface of the investigated structure—so close that it
can detect the evanescent fields. Such an detector can be realized by a fluorophore
for example, since its spontaneous emission rate serves as a direct probe of the
photonic LDOS at the fluorophore position. In [8] we exploit this capability for
mapping the plasmonic modes of gold nanoparticles. We use combined regular
arrays of identical gold and fluorophore-doped polymer nanoparticles with a slightly
different grating constant. This setup enables the generation of an optical Moiré
pattern corresponding to a 200x magnified map of the plasmonic mode, which can
be directly imaged with an optical microscope, see Fig. 5.5 and [8].

5.2.2 Electron Energy Loss Spectroscopy

As mentioned above another approach for imaging a plasmon is energy-filtered
transmission electron microscopy in the low-energy-loss region of EELS experi-
ments. By varying the position of the high energetic electron beam one can once
again map out the evanescent fields. This was first demonstrated by Bosman et al. [9]
and Nelayah et al. [10] in 2007, see Fig.5.6.
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Fig. 5.5 Principal scheme of optical Moiré effect and the discussed MNP and fluorophore arrays
lying upon another. The equation depicts the ensemble average of the luminescence intensity,
which is governed by the plasmonic LDOS and describes the probability that an excited molecule
emits a photon into the direction of the photodetector. The electromagnetic decay rate is given by
Vem(d,r,®), Ymol i the intra-molecular decay rate and yﬁd’[ is the differential cross section for light
emission into a sphere segment £2. For a detailed discussion see [8]
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Fig. 5.6 First reported plasmon mapping with EELS experiments. Figure (a) reprinted with
permission from [9] (© IOP Publishing. Reproduced by permission of IOP Publishing. All rights
reserved.), (b) reprinted by permission from Macmillan Publishers Ltd: Nature Physics [10],
© 2007.
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Fig. 5.7 Principle of EELS interaction: the electron beam excites a surface plasmon which in turn
acts back on the electrons at a later position. The expression of the electron charge o.y corresponds
to a charged wire

The dispersion relation of a free electron does not cross the light cone at any
point [11], so at first it is not obvious how to couple an electron with light.’
Besides nonlinear processes or electrons with less momentum than their free
counterpart (e.g. from photoemission) it is primarily the interaction with light of
higher momentum (evanescent fields) that allows the interaction.

The high-energetic electrons move with 70-80 % of the speed of light and thus
relativistic effects come into play. During one plasmon oscillation the swift electrons
are able to move about 100 nm—this is sufficient for the plasmon-electron interaction,
a process reminiscent of a self energy schematically shown in Fig. 5.7. In a quantum
picture, the electron loses energy through the excitation of a surface plasmon. In the

5 An excellent review about optical excitations in electron microscopy can be found in [11] or
in [12] with a focus on EELS and cathodoluminescence.
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classical picture the electron has to perform work against the field of the excited
plasmon and thus loses a little bit of its energy. In [13] it is shown that a quantum
mechanical description of EELS yields the same results as a semiclassical formalism
if all the inelastic signal is collected [11]. This allows us to simply incorporate the
relativistic motion of the electrons to our BEM approach® in terms of the Li¢nard-
Wiechert potentials. We calculate the induced electric field Ejnq[r.(t), w] at the
positions of the electron beam r, and can express the energy-loss probability through
the work against this field according to [12, 15] as

I'w) = % / Ne {e™'v - Einglr(t), 0]} dr. (5.5)

In the time domain the electron beam interacts with a surface plasmon oscillating in
time, whereas in the frequency domain the plasmon oscillation becomes frozen and
the electrons interact with a periodically modulated charge distribution as indicated
in the expressions for the electron charge in Fig. 5.7. It is important to notice that we
obtain a nonlocal interaction here, the electron at position r, induces the plasmonic
field which acts back on the electron at a later time at position ). In this sense the
energy loss probability can be expressed through the integral over the imaginary
part of the induced Green tensor [16, 17] at the beam position ry = (xo, yo)

Electron energy loss probability in terms of Green function

I (ro, w) / drd? Sm {ei“’(’/_’)Gind[re(t),re(t’); a)]} : (5.6)

which directly follows from Eq.(5.5). As discussed in [7] we calculated the
energy loss for a rod-shaped particle in comparison to STEM EELS and EFTEM
measurements performed by the FELMI group at the Graz University of Technology.
In Fig. 5.8 we show the results of experiment and theory, which once again show
intriguing correlations.

%An implementation of an electron-driven discrete-dipole approximation (e-DDA) can be found
in [14].
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@ 2.4 eV

Fig. 5.8 Comparison of measured (fop) and simulated (bottom) EFTEM maps as described in [7].
On the left we see the plasmon dipole mode with an energy of about 1eV, in the middle the
quadrupole mode at around 1.5 eV and the octupole mode at 2.4 eV on the right

/—1 Additional remark }

Why is the kinetic energy of the electrons in EELS experiments so high?

=]
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Fig. 5.9 Excitation of surface plasmons through the transmission of swift electrons in thin
films [18, 19]. The incoming wave vector k. transfers the component k, to the thin film.
The energy of the surface plasmon is determined by the projection k, to the surface and the
dispersion relation (2.10)
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r-{ Additional remark }

In fact, surface plasmons can also be excited by electron beams with lower
energies (for example reflection EELS experiments with energies of 1000-
2000eV7). But in transmission EELS the electron has to pass through the
material and the smaller the electron wavelength the better the resolution, see
Fig.5.9.

Note that for particle plasmons there is no momentum conservation, see
Chap. 2.

Most of the time it is quite useful in understanding plasmonic spectra or
nanoscale processes if the eigenmodes of the corresponding nanoparticle are known.
As we have seen in Sect.3.4.2, we can perform an eigenmode expansion to
mathematically obtain these modes. When it comes to mode mapping from the
experimental side, EELS turned out to be a very beneficial method since the swift
electrons also couple to optically dark modes and thus the full range of plasmon
modes can be depicted, see Fig. 5.10.
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Fig. 5.10 Mode mapping with EELS for a silver nanotriangle, with friendly permission of Ulrich
Hohenester. The three beam positions (blue circle, green rectangle, and red triangle) indicated at
the inset generate the three spectral lines. The eigenmodes and eigenenergies of the nanotriangle
correspond to the peak positions a—d and are shown in the upper part of the figure. Panel d
corresponds to the optically dark breathing mode, see Sect.3.4.2.1

"In 1956 Powell [20] investigated inconsistencies in the EELS spectra of transmission and
reflection EELS experiments which lead to the experimental verification of surface plasmons (also
see Fig.2.1).
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{a) Bonding mode

Fig. 5.11 The lower panels show EELS and LDOS maps for the bonding (a) and antibonding
modes (b) of coupled nanoparticles. In the upper panels the corresponding scalar potential and
electric field is plotted. As discussed in [16], the EELS signal is connected to the scalar potential
whereas the photonic LDOS measures the electric field

There has also been some discussion about whether the EELS signal directly
renders the photonic LDOS [16, 17]. It turns out that—although intimately related—
there is no direct link between EELS and LDOS maps, and that EELS can even be
blind to hot spots in the gap between coupled nanoparticles [16].

For the bonding plasmon mode plotted on the left side of Fig. 5.11 the fields in the
gap region are very strong, resulting in a very high LDOS. The EELS signal on the
contrary is completely blind to the hot spot. For the antibonding mode on the right
hand side the behavior changes to the opposite: Because of the vanishing fields the
LDOS drops in the gap, whereas the EELS rate has a pronounced maximum [16].

From Eq. (5.5) we also directly see that EELS is efficient only if the induced
electric field is oriented along the electron beam path. The optical property of
a dipole lying in a plane perpendicular to the electron beam can nevertheless be
measured of course, since the induced field lines also point outwards of the dipole
plane [12]. But we should keep in mind that certain modes, having part of their
induced field lines perpendicular to the electron beam trajectory, may not be easy to
map directly.
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/—1 Additional remark }

In this section we have discussed the interaction of high energetic electrons
with metallic nanoparticles, where the impinging charges excite the plasmonic
fields. However, the high and concentrated plasmonic near-fields can also be
used for a reversed process, where photo-emitted electrons are accelerated
away from the nanoparticle surface (further details and discussion see [21]).

¥
L
v

Fig. 5.12 (a) Scheme of hot electron emission from metallic nanoparticles. A femtosecond
laser pulse excites a regular array of nanoantennas from below. In the strong plasmonic
fields, electrons become photoemitted and ponderomotively accelerated and are finally
analyzed by time-of-flight spectrometry. (b)—(e) SEM images of nanoparticle arrays which
are blue-shifted, in resonance, and red-shifted with respect to the excitation bandwidth (see
dashed lines in the spectra). (f) Measured extinction spectra for the corresponding particles.
Figure adapted with permission from [21], © 2013 American Chemical Society

The electrons become photoexcited either through multi-photon absorption
or quantum-mechanical tunneling and since the electric field varies strongly
along the surface of the nanoparticle, both mechanisms need to be taken
into account (see Fig. 5.12). The simulation of the electron trajectories can
then be accomplished within the so-called simple-man model, where the
emitted electrons become ponderomotively accelerated in the total field of the
nanoparticle. This photoacceleration process is governed by the evanescent
surface plasmon field of the nanoparticle, which allows for a high-level control
of electron emission by tailoring the geometry and thereby the plasmonic
particle resonances. This offers unique prospects for the generation and all-
optical control of plasmonic electron sources as well as other applications in
lightwave electronics.
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5.2.3 Plasmon Tomography

A detailed comparison between the photonic LDOS and EELS was given recently
in [22], where the authors provided an intuitive interpretation of different
measurement schemes in terms of an eigenmode expansion. We have recently
shown [23] that for sufficiently small nanoparticles, where the quasistatic
approximation can be employed, an expansion of the particle fields in terms of
these plasmonic eigenmodes also allows a different approach for the interpretation
of EELS data: The EELS signal can be considered as a spatial average of the
eigenmode potential along the electron propagation direction, and the extraction of
plasmon fields from EELS data can be reduced to an inverse Radon transformation,
which is at the heart of most modern computer tomography algorithms [25-30]. The
Shepp-Logan phantom [31] plotted in Fig.5.13 serves as a standard model image
of a human head in testing various image reconstruction algorithms. The Radon
transform of the original image Fig. 5.13a is called sinogram’ and shown in panel
(b). In (c) the reconstructed image after the inverse transform is drawn.

The basic principle of the Radon transform R is explained in Fig. 5.14 again for
the Shepp-Logan phantom. The intensity profile for a certain angle 6, in Fig.5.14a
is generated by integrating along each projection line (dashed arrows). If we hold
certain positions indicated as red, blue, purple, and orange dots in (a) and vary
the angle 6 we obtain the corresponding colored lines in panel (b). A complete
projection set for —90° < 6 < 90° is plotted in panel (c) and represents the
Radon transform of the Shepp-Logan phantom. It is extraordinary that we can apply
the same reconstruction to EELS measurements and extract abstract mathematical
quantities from experimental data. The projection line is then represented by the

[l (]

Fig. 5.13 Principle of the Radon reconstruction for the Shepp-Logan phantom test image. Panel
(a) shows the original image, (b) the sinogram of the corresponding Radon transform, and panel
(c) the reconstruction of (b) after applying the inverse transform

8The method was introduced by the Austrian mathematician Johann Radon in 1917 [24].

9The name comes from the fact that the Radon transform of a Dirac delta function is linked to
sinusoidal curves.
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Fig. 5.14 Principle of the Radon transformation as described in the text. (a) Intensity profiles are
produced by integrating along each projection line for a certain tilting angle 6. Holding several
positions indicated as colored dots in (a) and varying 6 generates the corresponding lines in (b).
The green horizontal line corresponds to the intensity image for 0, in (a). The complete Radon
transform for —90° < 6 < 90° in steps of 2° is plotted in the sinogram (c). The inset above shows
the reconstruction by applying the inverse Radon transform R ™!

electron beam and the intensity profile by the averaged eigenmode potential. In
Eq. (5.6) we have seen that the loss probability for a certain impact parameter ry
can be expressed in terms of the quasistatic Green function G as

I'(rg, w) x /dt d/ Sm {ei“’('/_t)Gi“d[re(t),re(t’); a)]} .

The Green function is a quantity of central interest in the BEM approach and by
following [23] the decomposition in quasistatic eigenmodes with corresponding
eigenvalues A leads to [22]

- Ay £2
S == e B s (57

where ¢, = f da Goy (assumed to be real-valued) is the potential of the kth
eigenmode. The dielectric functions inside and outside the particle are &, and &5,
respectively, and also the matrix A= 27 %]l from Sect. 3.4.1 has been used once
more. The plus and minus signs in Eq. (5.7) correspond to the situations where
lies outside or inside the particle. If we insert Eq. (5.7) into the expression of I,
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Reconstruction plane

Fig. 5.15 Schematics of EELS tomography, reprinted with permission from [23], © 2013 by The
American Physical Society. An electron beam is raster scanned over a metallic nanoparticle, and
EELS maps are recorded for different rotation angles. The main panel shows the isosurface and
contour lines for the modulus of the dipolar surface plasmon potential, and the insets report the
different EELS maps. From the complete collection of maps one can reconstruct the plasmon fields

we end up with the quasistatic eigenmode expansion of the loss probability. At a
plasmon resonance the EELS probability then reduces to [23]

Iy o [Rolge(m)]], (5.8)

where Ry is the Radon transform for a certain rotation angle 6 that performs a
line integration of ¢ along the z direction. The projection-slice theorem states
that one can uniquely reconstruct the original function from a collection of Radon
transformations for a complete set of rotation angles, see Fig. 5.15.

This reconstruction method for the quasistatic regime has been demonstrated
in [23] and [30]. To expand the formalism to larger nanostructures too, where
retardation effects become important and the quasistatic approximation fails, a clear
concept for retarded eigenmodes is essential. The development of such a framework
is part of our current work, see for example [36].



146 5 Imaging of Surface Plasmons

References

1. L. Novotny, B. Hecht, Principles of Nano-Optics, 2nd edn. (Cambridge University Press,
Cambridge, 2012). ISBN 978-1107005464 a

2. L. Rayleigh, On the theory of optical images, with special reference to the microscope. Philos.
Mag. 42, 167-195 (1896). a

3. E. Abbe, Beitrige zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch.
Mikrosk. Anat. 9(1), 413-418 (1873). |

4. S.W. Hell, Far-field optical nanoscopy. Science 316(5828), 1153—-1158 (2007). |

5. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics
4(2), 83-91 (2010). |

6. U. Hohenester, A. Triigler, Interaction of single molecules with metallic nanoparticles. IEEE J.
Sel. Top. Quantum Electron. 14, 1430 (2008). |

7. B. Schaffer, U. Hohenester, A. Triigler, F. Hofer, High-resolution surface plasmon imaging
of gold nanoparticles by energy-filtered transmission electron microscopy. Phys. Rev. B 79,
041401(R) (2009). [

8. D. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. Aussenegg,
A. Leitner, A. Triigler, J. Krenn, Superresolution Moire mapping of particle plasmon modes.
Phys. Rev. Lett. 104, 143901 (2010). [J

9. M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons
at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007). |

10. J. Nelayah, M. Kociak, O. Stephan, F.J. Garcia de Abajo, M. Tence, L. Henrard, D. Taverna,
I. Pastoriza-Santos, L.M. Liz-Martin, C. Colliex, Mapping surface plasmons on a single
metallic nanoparticle. Nat. Phys. 3, 348 (2007). |

11. FJ. Garcia de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209
010). (]

12. M. Kociak, O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope.
Chem. Soc. Rev. 43, 3865-3883 (2014). |

13. R.H. Ritchie, A. Howie, Inelastic scattering probabilities in scanning transmission electron
microscopy. Philos. Mag. A 58(5), 753-767 (1988). |

14. N.W. Bigelow, A. Vaschillo, V. Iberi, J.P. Camden, D.J. Masiello, Characterization of the
electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano 6(8),
7497-7504 (2012). |

15. FJ. Garcia de Abajo, A. Howie, Retarded field calculation of electron energy loss in
inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002). |

16. U. Hohenester, H. Ditlbacher, J.R. Krenn, Electron-energy-loss spectra of plasmonic nanopar-
ticles. Phys. Rev. Lett. 103, 106801 (2009).

17. EJ. Garcia de Abajo, M. Kociak, Probing the photonic local density of states with electron
energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008). |

18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts
in Modern Physics, vol. 111 (Springer, Berlin, 1988). ISBN 978-0387173634 |

19. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in
Modern Physics, vol. 88 (Springer, Berlin, 1980). ISBN 978-3540096771 G

20. C.J. Powell, J.B. Swan, Origin of the characteristic electron energy losses in aluminum. Phys.
Rev. 115, 869 (1959). [

21. P. Dombi, A. Horl, P. Récz, 1. Marton, A. Triigler, J.R. Krenn, U. Hohenester, Ultrafast strong-
field photoemission from plasmonic nanoparticles. Nano Lett. 13(2), 674—678 (2013). |

22. G. Boudarham, M. Kociak, Modal decompositions of the local electromagnetic density of
states and spatially resolved electron energy loss probability in terms of geometric modes.
Phys. Rev. B 85, 245447 (2012). |


http://www.cambridge.org/at/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition?format=HB
http://books.google.at/books?id=AUY9AAAAIAAJ&lpg=PA235&ots=QxecCkkCFx&dq=%22On%20the%20theory%20of%20optical%20images%2C%20with%20special%20reference%20to%20the%20microscope%22&pg=PA235#v=onepage&q&f=false
http://dx.doi.org/10.1007/BF02956173
http://www.springerlink.com/content/k7154700k345404p/
http://dx.doi.org/10.1126/science.1137395
http://www.sciencemag.org/content/316/5828/1153.full.pdf
http://dx.doi.org/10.1038/nphoton.2009.282
http://www.nature.com/nphoton/journal/v4/n2/pdf/nphoton.2009.282.pdf
http://dx.doi.org/10.1109/JSTQE.2008.2007918
http://arxiv.org/PS_cache/arxiv/pdf/0801/0801.3900v1.pdf
http://dx.doi.org/10.1103/PhysRevB.79.041401
http://prb.aps.org/pdf/PRB/v79/i4/e041401
http://dx.doi.org/10.1103/PhysRevLett.104.143901
http://prl.aps.org/pdf/PRL/v104/i14/e143901
http://dx.doi.org/10.1088/0957-4484/18/16/165505
http://iopscience.iop.org/0957-4484/18/16/165505/pdf/0957-4484_18_16_165505.pdf
http://dx.doi.org/10.1038/nphys575
http://stem-pc7.lps.u-psud.fr/whew/publications/nelayah_naturephysics_2007.pdf
http://dx.doi.org/10.1103/RevModPhys.82.209
http://rmp.aps.org/pdf/RMP/v82/i1/p209_1
http://dx.doi.org/10.1039/c3cs60478k
http://pubs.rsc.org/en/content/articlepdf/2014/cs/c3cs60478k
http://dx.doi.org/10.1080/01418618808209951
http://www.informaworld.com/smpp/ftinterface~content=a752606386~fulltext=713240930~frm=content
http://dx.doi.org/10.1021/nn302980u
http://arxiv.org/abs/http://dx.doi.org/10.1021/nn302980u
http://dx.doi.org/10.1021/nn302980u
http://pubs.acs.org/doi/pdf/10.1021/nn302980u
http://dx.doi.org/10.1103/PhysRevB.65.115418
http://prb.aps.org/pdf/PRB/v65/i11/e115418
http://dx.doi.org/10.1103/PhysRevLett.103.106801
http://prl.aps.org/pdf/PRL/v103/i10/e106801
http://dx.doi.org/10.1103/PhysRevLett.100.106804
http://prl.aps.org/pdf/PRL/v100/i10/e106804
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387173633
http://openlibrary.org/books/OL4418011M/Excitation_of_plasmons_and_interband_transitions_by_electrons
http://dx.doi.org/10.1103/PhysRev.115.869
http://journals.aps.org/pr/pdf/10.1103/PhysRev.115.869
http://dx.doi.org/10.1021/nl304365e
http://pubs.acs.org/doi/pdf/10.1021/nl304365e
http://dx.doi.org/10.1103/PhysRevB.85.245447
http://prb.aps.org/pdf/PRB/v85/i24/e245447

References 147

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. Horl, A. Triigler, U. Hohenester, Tomography of particle plasmon fields from electron
energy loss spectroscopy. Phys. Rev. Lett. 111, 076801 (2013).

J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte lings gewisser
Mannigfaltigkeiten. Akad. Wiss. 69, 262-277 (1917)

G.T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized
Tomography (Academic, New York/London, 1980). ISBN 978-1-84628-723-7

A.C. Twitchett-Harrison, T.J.V. Yatesa, R.E. Dunin-Borkowski, P.A. Midgleya, Quantitative
electron holographic tomography for the 3D characterisation of semiconductor device struc-
tures. Ultramicroscopy 108, 1401-1407 (2008). a

N. Jin-Phillipp, C. Koch, P. van Aken, Toward quantitative core-loss EFTEM tomography.
Ultramicroscopy 111, 1255-1261 (2011). a

R. Leary, Z. Saghi, P.A. Midgley, D.J. Holland, Compressed sensing electron tomography.
Ultramicroscopy 131, 70-91 (2013).

J.M. Thomas, R. Leary, P.A. Midgley, D.J. Holland, A new approach to the investigation of
nanoparticles: electron tomography with compressed sensing. J. Colloid Interface Sci. 392,
7-14 (2013). (]

O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, PA. Midgley, Three-
dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature
502, 80-84 (2013). (I

L.A. Shepp, B.F. Logan, The fourier reconstruction of a head section. IEEETrans. Nucl. Sci.
21(3), 21-43 (1974).

X. Zhou, A. Horl, A. Triigler, U. Hohenester, T.B. Norris, A.A. Herzing, Effect of multipole
excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires.
J. Appl. Phys. 116, 233101 (2014). a

F.P. Schmidt, H. Ditlbacher, A. Triigler, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn,
Plasmon modes of a silver thin film taper probed with STEM-EELS. Opt. Lett. 40, 5670-5673
015). @

G. Haberfehlner, A. Triigler, EP. Schmidt, A. Horl, F. Hofer, U. Hohenester, G. Kothleitner,
Correlated 3D nanoscale mapping and simulation of coupled plasmonic nanoparticles. Nano
Lett. 15, 77267730 (2015). [

C. Cherqui, N. Thakkar, G. Li, J.P. Camden, D.J. Masiello, Characterizing localized surface
plasmons using electron energy-loss spectroscopy. Annu. Rev. Phys. Chem. 67(1) (2016). a
A. Horl, A. Triigler, U. Hohenester, Full three-dimensional reconstruction of the dyadic Green
tensor from electron energy loss spectroscopy of plasmonic nanoparticles. ACS Photonics 2,
1429 (2015). (1


http://dx.doi.org/10.1103/PhysRevLett.111.076801
http://prl.aps.org/pdf/PRL/v111/i7/e076801
http://dx.doi.org/10.1016/j.ultramic.2008.05.014
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6TW1-4SV5V98-3-N&_cdi=5549&_user=100557&_pii=S0304399108001745&_origin=&_coverDate=10%2F31%2F2008&_sk=998919988&view=c&wchp=dGLzVlz-zSkzS&md5=737073ed5f74036d37b69e008afe64ad&ie=/sdarticle.pdf
http://dx.doi.org/10.1016/j.ultramic.2011.02.006
http://www.sciencedirect.com/science/article/pii/S030439911100074X
http://dx.doi.org/10.1016/j.ultramic.2013.03.019
http://dx.doi.org/10.1016/j.ultramic.2013.03.019
http://dx.doi.org/10.1016/j.jcis.2012.09.068
http://dx.doi.org/10.1016/j.jcis.2012.09.068
http://dx.doi.org/10.1038/nature12469
http://www.nature.com/nature/journal/v502/n7469/full/nature12469.html
http://dx.doi.org/10.1109/TNS.1974.6499235
http://stat.wharton.upenn.edu/~shepp/publications/33.pdf
doi:{10.1063/1.4903535}
http://scitation.aip.org/content/aip/journal/jap/116/22/10.1063/1.4903535
doi:{10.1364/OL.40.005670}
https://www.osapublishing.org/ol/viewmedia.cfm?uri=ol-40-23-5670&seq=0
doi:{10.1021/acs.nanolett.5b03780}
http://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b03780
doi:{10.1146/annurev-physchem-040214-121612}
http://arxiv.org/pdf/1509.08430v2
doi:{10.1021/acsphotonics.5b00256}
http://pubs.acs.org/doi/pdf/10.1021/acsphotonics.5b00256

Chapter 6
Influence of Surface Roughness

God made the bulk; surfaces were invented by the devil.
WOLFGANG PAULI

It is nearly impossible to fabricate perfectly smooth nanoparticles, therefore it is
important to discuss the influence of surface roughness on the optical properties of
MNPs [1, 34]. Especially if e-beam lithography (see Sect. 2.10.2) is used to produce
the particles, the resulting metal structures are polycrystalline and the surfaces are
quite rough [2, 3]. Contrary to what one might anticipate, initial indications are that
a moderate amount of surface roughness has no significant impact on the optical
properties of MNP, at least in the far-field region. In [4] we show that this behavior
can be interpreted as some kind of plasmonic averaging over the random height
fluctuations of the rough metal surface (motional narrowing).

If the properties of MNPs are investigated in the near-field region, however,
the influence of roughness features or lift-off artifacts can become important.
Local variations or exceptional hot-spots of the electromagnetic near-field may
lead to detectable deviations compared to smooth particles, especially when surface
sensitive methods like SERS come into play. Usually the surface roughness of a
nanoparticle can be reduced by thermal annealing,' but this also influences the
dielectric response of the metal. In general after such a heating process a complex
interplay of the reduced nanoscopic roughness, average crystallite grain sizes,
dielectric and morphological changes can be observed, see [5] and Sect. 6.3.

6.1 Generation of a Rough Particle in the Simulation

To allow systematic investigations of surface roughness on metallic nanoparticles,
we need to control and quantify the “amount” of roughness on a surface. One
possibility to do this is to add (controllable) stochastic height variations to the
smooth surface of an ideal nanoparticle. Let us exemplify the idea for the 2D case:
We assume that the height of each vertex of a triangulated plate is given by a function

ITypically the particle is tempered for a couple of minutes at temperatures around 200°C on a hot
plate.
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h(x,y). The mean value should vanish (A(x,y)) = 0 and the value of & at (¥, y’)
should be correlated to the value at position (x,y) through a distance dependent
function: (h(x, y)h(x',y)) = f(x — X',y — ¥). These requirements are all fulfilled if
we introduce a Gaussian autocorrelation function and attach arbitrary phase factors
to all Fourier coefficients. In this way we are able to average the z-coordinate of
each vertex corresponding to this random potential and we have two parameters to
control the roughness, the standard deviation of the Gaussian function ¢ (determines
the amount of roughness) and a height scaling parameter A/ (assigns the deepness
of the asperity).

Wrapping the resulting roughness around the surface of a nanorod, we obtain the
structure shown in Fig. 6.1.

Unfortunately very sharp features in the triangulated mesh may lead to inaccura-
cies in the simulation and may cause diverging surface charge densities. Luckily we
obtain an even better result without sharp peaks, if we do not directly interpolate the
height of each vertex with the Gaussian autocorrelation, but rather generate a box
around the particle and interpolate the stochastic vertex height with respect to this
box, see Fig.6.2.

Again we use a normal probability density function multiplied with N random
phases e'?m (for each spatial direction)

Fig. 6.1 Triangulated nanorod with smooth surface and stochastic height variations generated with
a random Gaussian potential. Problems in the simulation may arise if sharp features are present

Fig. 6.2 Generating a box around the smooth particle and interpolating stochastic vertex heights
with respect to this box gives a much better result without sharp features as in Fig. 6.1. The random
height variations are again controllable by parameters of the Gaussian autocorrelation, see Eq. (6.1)
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Generation of surface roughness

1 ) 1
h(x,y,2) = i Re {]_-—1 [e—%g2(1&+k§+k§) e@m] _ 5} , (6.1)

where F~! denotes the inverse Fourier transform, N is a normalization factor and
¢? is the variance of the height fluctuations. For the arbitrary phase factors ¢p,q the
MATLAB® built-in function rand(n) to create uniformly distributed pseudorandom
numbers has been used.

We next interpolate the scaled stochastic height variations Ak - h(x, y, z) to the
nanoparticle surface and displace the vertices of the nanoparticle along the surface
normal directions. The influence of Ak and ¢ is shown in Fig. 6.3.

Another possibility for the simulation of “realistic” particles is to be found in
the extraction of their contour out of scanning electron microscope (SEM) images.
The triangulated particle is generated by assigning a certain height profile (with a
rounded transition to the top and bottom area) to the extracted contour-polyline and
wrapping a mesh around the structure. A SEM image together with the extracted
contour and the final BEM particle is shown in Fig. 6.4.

Constant height scaling Ah, varying variance ¢

Constant variance ¢, varying height scaling Ah
—

Fig. 6.3 Surface roughness generated with Eq. (6.1) for changing parameters
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Fig. 6.4 (a) SEM image of a rod-shaped nanoparticle fabricated by e-beam lithography. (b) Con-
tour extraction and (c) creation of the corresponding triangulated particle for a BEM simulation

If certain lift-off features or other local surface irregularities should be modeled
as well, it is rarely possible to avoid a manual adjustment of the involved vertex
positions.
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6.2 Theoretical Analysis of Surface Roughness

Let us for one moment take only the mean value of the height difference of bumps
or hollows at a rough surface as an indicator for the degree of roughness. For a
medium sized nanoparticle this mean value is of the order of nanometers. One
possibility to describe the optical properties of structures with such small features? is
presented in [7], for example. By writing the dielectric constant e(k,w) as a function
of both the wave vector k and the angular frequency w, the authors incorporate the
effect of small features via the spatially nonlocal response of materials to Maxwell’s
equations® (see Chap. 8).

On the other hand we can also understand the influence of rough surfaces if
we once again consider the eigenmode expansion discussed in Sect. 3.4.2. We can
model the rough surface as a distortion of the surface 02 from its ideal shape,
see [4]. The surface derivative of the Green function F then changes to F+4F.

We want to determine, how the peak position of the plasmons is affected in case
of surface roughness and since this peak position is assigned by the plasmon energy,
we need to investigate the modification of the Eigenvalue A;. For sufficiently small
SF we can employ a perturbation analysis, where we treat F' as the unperturbed part
and §F as the “perturbation”. This calculation is carried out in [4].

In the end we obtain a surprisingly small effect for the influence of surface
roughness on the position and width of the plasmon peaks of metallic nanoparticles.
The reason for this is motional narrowing,* where the plasmon averages over the
random height fluctuations 4.

2So-called finite size effects have been phenomenologically accounted for by increasing the
damping rate of the conduction electrons contribution to the permittivity, see [6].

3Their implementation is based on the self-consistently solved hydrodynamic Drude model.

“This behavior is known from electron-hole pairs in semiconductor quantum wells [8], where the
propagating excitons “average” over the random potential of local monolayer fluctuations, which
results in a narrowing of the exciton lineshape.
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6.3 Near-Field Consequences of Rough Nanoparticles

The situation changes if we are interested in the near-field regime, especially for
SERS, where the quality of the nanoparticle surface is known to play a crucial role.
The SERS enhancement is proportional to the fourth power of the field intensity [9],
see Eq.(2.14), thus lithographic lift-off artifacts or other nanoscopic roughness
features can lead to strong local variations.

In [5] we show that a major contribution to the optical near-field and SERS
enhancement results from typical edge-roughness features (local protrusion of
20nm extension), provided that they are situated at regions of large plasmonic
mode density. Although they only occupy a small surface region of the nanoparticle,
the contribution can dominate even the average SERS signal. In contrast, surface
roughness on the top side of a nanoparticle gives only small contributions to the
SERS enhancement and has almost no impact on the averaged SERS signal. As
mentioned at the beginning of this chapter, a possibility to reduce the surface
roughness of a lithographic particle is thermal annealing, see Fig.6.5. Besides
the morphological changes of the lithographic, polycrystalline particle this also
modifies the average crystallite grain size and the corresponding dielectric function.
On one hand the reduction of surface roughness reduces the accompanying SERS
enhancement but on the other it also enhances the SERS signals due to lower Ohmic
damping of the plasmon resonance. Depending on the relative importance of these
various effects on an actual sample under investigation, annealing can either lead
to a reduction of the average SERS signal (as usually observed experimentally) or

55.0 nm
40.0
300
20.0
10.0

00
55.0 nm

400
300
200
100

0.0

Fig. 6.5 (a) AFM image of a lithographic nanoparticle. (b) Reconstructed particle geometry with
surface mesh for simulation. (¢) Same particle as in (a), but after a 200°C annealing process.
The thermal curing yields reduced surface roughness but also affects the crystallite grain size and
dielectric function (details see [5]). This causes a spectral shift with respect to the original particle
and modifies the near field enhancement. (d) Reconstruction of the annealed particle



Near-Field Consequences of Rough Nanoparticles 155

lead to an enhancement (to be expected in the red spectral range, on lithographic
arrays with little or no edge-roughness features). Hence in the end, the SERS signal
of an array of lithographic particles critically depends on the exact location and total
number of roughness features, as well as the particles’ dielectric function.
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Chapter 7
Nonlinear Optical Effects of Plasmonic
Nanoparticles

But the speed was power; and the speed was joy, and the speed
was pure beauty

RICHARD BACH, Jonathan Livingston Seagull

The light-matter interaction between metallic nanoparticles and an electromagnetic
wave happens on a very fast time scale and, as we have discussed in Sect.2.7,
already after a few femtoseconds the plasmonic excitations start to vanish again.
The temporal evolution and this ultrafast relaxation of surface plasmon polaritons
is of central importance for many kinds of plasmonic applications. It is amazing
that we can explore such rapid dynamic processes with experiments nowadays.
One way to enter the ultrafast world of plasmon dephasing is given by nonlinear
autocorrelation measurements, which allow us to determine sub-10fs decay times.
Usually a bandwidth-limited laser pulse working in the few-cycle regime is used
to excite nonlinear effects which serve as a non-invasive monitor for the plasmon
dynamics [1].

The simplest nonlinear effect is second-harmonic generation (SHG), where a
nonlinear material absorbs two photons of frequency @ and emits a new photon of
frequency 2w. But because of the inversion symmetry in the atomic arrangement
of metals, SHG is forbidden in the bulk [1-3]. However the symmetry is broken at
the surface and so a second order dipole response can exist in the surface region.
There can be electric dipolar surface contributions due to the broken symmetry or
also higher order bulk signals can contribute to the second-order nonlinearity [1],
but the latter are known to be much weaker and can therefore be neglected.

Breaking the symmetry of centrosymmetric media also allows a second-order
signal for a perfectly symmetric nanosphere. For example, it will strongly depend
on defects, facets and other small deviations from the spherical shape [4]. This
defect dependence will give a huge varying signal for different particles of the same
shape. Another example of SHG measurements for systems with a broken symmetry
has been reported by [5], where they investigated arrays of noncentrosymmetric T-
shaped gold nanodimers.

On the other hand third-harmonic generation (THG), the next higher nonlinear
process where a mixing of four fields (E o y®E?) occurs, is allowed in all media
and not restricted to symmetry considerations, see Fig.7.1. Supported by the above
mentioned reasons the y @ nonlinearity for gold nanoparticles is also much stronger
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(b)

height = 300 nm

Fig. 7.1 (a) SEM image of a gold bowtie nanoantenna. (b) and (c) measured THG intensity
(kcts/s) for linear polarization along long and short axes respectively. The lower insets show
the corresponding simulation results, for further details see [6]. (Measurements by Tobias Hanke,
University of Konstanz)

than the corresponding SHG signal [7], which makes THG a perfect candidate to
investigate the femtosecond dynamics of particle plasmons.

The first observation of third-harmonic signals from individual gold colloids
down to 40 nm diameter can be found in [4] and a phenomenological macroscopic
theory of optical second- and third-harmonic generation from cubic centrosymmet-
ric crystals has been discussed by [8].
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7.1 Autocorrelation

To measure the autocorrelation a sample is excited by two sequenced laser pulses
with a varying time delay ' between the pulses. The collected intensity is given by
the interfering electric fields to the power of four (second order autocorrelation G»)
or to the power of six (third order autocorrelation G3) and averaged over the detector
response time 7 [1]:

Second and third order autocorrelation function

+7

SHG: Gy(?) = % / [E() + E(t — t’)]4 dr, (7.1)
-T
+T

THG: Gs3(?) = % / [E@) + E(t — t’)]6 dr. (7.2)
-T

This pulse interference can also be described by a simple harmonic oscillator model
(see [1]). By inserting harmonic fields in the above expressions for G, or G; the
characteristic peak ratio of 1:8 for SHG or 1:32 for THG follows directly from the
in and out of phase expression of the electric fields. In Fig.7.2 the measured and
simulated result of G5 for three different nanoantennas is shown.

Fig. 7.2 Third order experiment simulation
autocorrelation for three 32 1[

different nanoantenna a) = rod b)
geometries, see [6] for spatial — ellipse 11
dimensions and further "l—disc T
details. (a) Experimental and — substrate

(b) simulation result. (Figure
with friendly permission by
Tobias Hanke, University of
Konstanz)

THG intensity (norm)

L

0
-20-10 0 10 20 -20-10 0 10 20
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7.2 Third Harmonic Imaging

In [6] we discuss the third harmonic emission of five different antenna structures.
The THG intensity differs significantly for the different structures and we show
that the knowledge of the plasmon damping time (obtained from autocorrelation
measurements) suffices to explain the differences. The principal scheme for this
experiment is depicted in Fig.7.3. An array of nanoantennas (varying in size with
different gap distances) is illuminated by a laser pulse and the nonlinear emission
intensity is collected.

The dielectric environment of the metallic particles can also contribute to the
nonlinear emission, but the susceptibility of air or fused silica is at least several
orders of magnitude weaker than that of gold (see Sect. 1.3 for the unit conversion):

1% ~ 107" [esu] = 1.4 x 107" [*/v2] for gold [9],
¥ ~ 107" [esu] = 1.4 x 10722 [w*/v2] for fused silica [10],
1% ~ 107" [esu] = 1.4 x 10726 [m*/v2] for air [11].

Substrate

THG intensity
~ | EllE

Choose resonant
geometry

s 3%

Pump laser pulse :
0.97 eV, 24 fs Array of different b
nanoantennas ™

Fig. 7.3 Principle of third harmonic imaging as described in [6]. The few-fs pulse of a pump laser
excites a nanoantenna and the nonlinear emission gets collected. By raster scanning the laser pulse
over a sample of varying antenna geometries the most resonant structure for this excitation can be
picked, see [6]
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Fig. 7.4 Schematic representation of a bowtie nanoantenna used as one of five different antenna
geometries in [6]. One half of the antenna shows the surface charge distribution at the resonance
energy (the bonding mode is clearly visible), whereas the other half depicts the surface discretiza-
tion needed for the simulation with the BEM

Nonlinear emission spectroscopy emerges as a new powerful tool for the
spatiotemporal characterization of nanoantennas. As described in [6], it is not
the shape but the volume of the nanoantennas that plays a crucial role for the
determination of the nonlinear emission intensity. Due to radiative damping the
structure with the lowest active volume generates by far the strongest THG emission.

In [4] it has been stated that THG signals also serve as label for bio-sensors and
may be used for the tracking of single molecules. Placing an emitter in the gap
region of the nanoantennas (see Fig. 7.4) may also be one of the next steps to reach
this goal (also see [12]).

A recently published review about nonlinear plasmonics can be found in [13].
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Chapter 8
Nonlocal Response

I don’t demand that a theory correspond to reality because 1
don’t know what it is. Reality is not a quality you can test with
litmus paper. All I'm concerned with is that the theory should
predict the results of measurements

STEPHEN HAWKING

The response of metallic nanostructures to an external excitation has been intro-
duced in this book through a semiclassical top-down approach, where the micro-
scopic dynamic of the electrons has been lumped into the macroscopic dielectric
function. We have discussed the classical concept of this function and in Sect. 3.3 we
have seen that a simple frequency dependence of ¢ has far-reaching consequences
like temporal nonlocal equations and the mandatory accompaniment of electro-
magnetic losses. In this formalism based on Maxwell’s equations we also assume
sharp boundary conditions and abrupt interfaces, which of course in the quantum
world becomes a questionable approximation. We call this entire approach spatially
local, since the dielectric function is assumed to be isotropic and only depends
on the frequency w. But as the control over size and morphology of fabricated
nanostructures is pushed to the nanometer scale, the validity of this local description
becomes more and more strained.

Although the quantum approach is more fundamental, the semiclassical descrip-
tion in terms of electromagnetic fields and a local dielectric response function works
extremely well and has been successfully applied to a vast number of plasmonic
applications and problems. Also the quantization of dissipative modes cannot be
done in the usual straight forward textbook-like way, and the huge amount of
electrons in a typical sized nanoparticle renders a quantum mechanical description
often cumbersome, such that from the start additional approximations are required.
In fact, the collective excitation of only 500—1000 conduction electrons is sufficient,
to still form a classical plasmon resonance [1]. If the particles get even smaller than
that, the broad spectral resonance peak splits into a band of discrete modes, with
some having the collective character of the classical surface plasmon and others
being more strongly localized in the core of the particle [1, 2]. In Fig. 8.1 such a
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Classical Surface Plasmon

Quantum Core Plasmons

Response (arbitrary units)

02 04 06 08 10 12 14 16 18
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Fig. 8.1 Optical spectrum of a single 100 electron Au-jellium sphere with a radius of 0.74 nm.
The x-axis indicates frequency in units of the classical surface plasmon frequency, ws,. The bulk
plasmon frequency, w), is also indicated. Reprinted with permission from [2]. © 2012 American
Chemical Society

spectrum is plotted for a jellium' sphere with » = 0.74 nm (= 100 electrons). If we
end up with just a few metal atoms and change from nanoparticles to a molecular
cluster, we finally obtain transitions between discrete states, very similar to the
transitions in isolated atoms or molecules.

The spatial dimension examined in this chapter is still a little bit larger than
such molecular clusters, but we are going to enter a regime where quantum
size effects already start to kick in and where the local response approximation
begins to fail [4-6]. A possible bridge between quantum and classical plasmonics
has been introduced in [7], for example, where a quantum-corrected model is
used to incorporate quantum-mechanical effects within a classical electrodynamic
framework (also see the discussion in [8]). In this approach the junction between
adjacent nanoparticles is modeled by means of a local dielectric response that
additionally includes electron tunnelling and tunnelling resistivity at the gap. A
variant of this method is discussed in [9], where nonlocal boundary conditions are
employed within the MNPBEM toolbox. An improved and more advanced dielectric
description that usually manifests itself in an additional spatial dependence seems
to be a good starting point to overcome the difficulties for small particles and

"Within the jellium model one assumes a homogeneous electron gas, where the electrons interact
with each other in presence of an uniform background of positive charges (“positive jelly”, e.g.
atomic cores in a solid). It is a simple model for the delocalized electrons in a metal, cf. Sect. 2.2.
A more elaborate approach would be to incorporate also the influence of the atomic configuration
in the plasmonic response, e.g. with ab initio calculations as presented in [3].
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gap distances, without giving up the functionality and convenience of a classical
field theory [10]. The appearance of such spatial dispersion effects on length
scales comparable to the Thomas-Fermi screening length [11] establishes the term
nonlocal response, in the sense that the dielectric function is not isotropic anymore
and depends on the spatial position or the wave vector in Fourier space, respectively.

Within the local description, field enhancement and confinement are found to
increase with decreasing gap distance between coupled nanoparticles, or when the
radius of curvature becomes increasingly small at sharp tips and corners. Here the
concept of a local response breaks down because of Landau damping, associated
with the excitation of electron-hole pairs and corresponding processes involving
wave vectors greater than @/v:, where w as usual is the light frequency and v is
again the Fermi velocity. The critical distance v/« is then of the order of nanometers
for visible and near-infrared light.

The spill-out of the valence electron density outside the metal also takes place
over sub-nanometer distances (see Fig.8.2), and gives rise to further nonlocal
effects. In general, nonlocality leads to plasmon blueshifts, in comparison to a local
description in these materials, as well as to plasmon broadening and significant
reduction in the local field enhancement. These phenomena are thus detrimental for
plasmonic applications in which confinement and field enhancement are critical.
First experimental observations of nonlocal effects for small nanoparticles have
recently been published [14, 15] (also see the discussion in [16, 17]), and the method
of choice for these experiments was EELS. In particular, the resolution improvement
of electron microscopes should allow systematic experimental studies of small gap
regions and tiny particles.

/ electron density
Friedel oscillations
o sharp particle boundary
(jellium edge)
: electron spill-out
uniform background /

Fig. 8.2 Schematic representation of the electron charge density near a metal surface. Within
Maxwell’s theory we assume sharp and abrupt boundary conditions, but in reality there is a
certain electron spill-out in close proximity to the surface. For further details and a self-consistent
calculation of the electron density see e.g. [12] or [13]
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8.1 Spatial Dependent Dielectric Function

One way to include spatial dispersion effects in the simulation of plasmonic
nanoparticles is the modeling of a more sophisticated dielectric function [7, 18-25].
An approach that has already frequently been used in literature is the hydrodynamic
model: The conduction band of the metal is treated as a classical electron plasma and
an additional pressure term coming from the Pauli exclusion principle is introduced
accounting for nonlocal effects. This leads to a wave vector dependent dielectric
function of Drude form

Hydrodynamic model
sao) _ . . <) (8.1)
g O B-o@+iy) '

where &4 is again the ionic background for the corresponding material, w), is the
bulk plasmon frequency, f = \/% vr is the nonlocal parameter and y, is the phe-
nomenological damping constant. For alkali metals this approach already recovers
the expected blue shift and plasmon quenching (see Fig. 8.3), but nevertheless the
results have to be treated with care since the hydrodynamical model describes the
metal just as a compressed electron gas [20].

A more complex ansatz is to use a dielectric function derived by first principle
calculations [26]. Based on first-order perturbation theory and the random-phase
approximation, Lindhard showed that delocalized valence electron excitations pro-
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Fig. 8.3 Spectrum of a small gold sphere (r = 2.5nm). The nonlocal result based on the
hydrodynamical model shows a clear blue shift and plasmon quenching with respect to the local
calculation



Spatial Dependent Dielectric Function 167

duce significant spatial dispersion. Later David Mermin self-consistently included
electron-motion damping [27] and derived the final expression for a spatial depen-
dent dielectric function [19].
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Chapter 9
Metamaterials

I was invisible, and I was only just beginning to realise the
extraordinary advantage my invisibility gave me. My head was
already teeming with plans of all the wild and wonderful things
I had now impunity to do.

H. G. WELLS, The Invisible Man

The refractive index n corresponds to the factor by which the speed and wavelength
of any radiation is reduced, when it propagates in an optical medium rather than
in vacuum. Hence it describes a ratio and is therefore a dimensionless number. A
value of n = 1.5, for example, states that a light wave travels 1.5 times faster in
vacuum than it does in the corresponding medium (glass in this case). Since we also
know the laws of relativity and its keystone, the absolute value and constancy of the
speed of light, it is only reasonable that n has to be a positive number greater than
unity for all optical materials in our universe. If we investigate an absorbing medium
like a metal for example, we have seen that the absorption can be described by an
imaginary refractive index which results from

no) = S = [EOM@) . ©.1)

Cmed EoMo

So now we obtain a complex number where the imaginary part accounts for
absorption, but still, we would assume that the real part of n has to be greater
than 1. If we now lock the door, draw the curtains and forget about relativity just
for a very brief moment—nothing forbids the square root to give a positive and a
negative result. What does this mean? Are values of n less than 1 or even negative
refractive indices possible? First of all there is of course no conflict with relativity
(the caution with door and curtains was uncalled-for): The refractive index only
measures the corresponding phase velocity of the radiation, which does not carry
information and it can be shown [1], that signals with a phase velocity greater than
c still move with a group velocity less than (or equal to) c. That’s that, but what
does a negative sign in Eq. (9.1) imply? It means that we could shed the limitations
of conventional optics and do extraordinary things, it allows the composition of
so-called superlenses [2, 3] or the formation of exotic new materials that behave
very different from what we know in real life. We call this new kind of negative

© Springer International Publishing Switzerland 2016 171
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Fig. 9.1 Ray tracing picture of a glass of water with a negative refractive index by E.
Schrempp [10], also see [11] and [12]. The difference in the optical density of air and “normal”
water (left) causes a straw in the glass to seem to be shifted at the interface and slightly enlarged
inside the liquid. In “negative-index water” (right), the straw would seem to continue in “the wrong
direction”. Figure reprinted by permission from Macmillan Publishers Ltd: Nature [10], © 2008

refraction materials metamaterials [4-9, 41] and once we are able to control € and
w in Eq. (9.1) we can manipulate electromagnetic waves in very unusual ways (see
Fig.9.1) and even make things invisible with so-called cloaking devices.

Usual matter is formed by crystal lattices and structured arrangements of atoms.
A metamaterial follows this requirement, it is a structured arrangement of artificial
elements, designed to achieve a certain dielectric behavior and consequently advan-
tageous and unusual electromagnetic properties (see e.g. [6]). The light effectively
averages over these periodically structured “photonic atoms” [1], which of course is
very similar to our discussion of the dielectric response of a metal in Chap. 2. Since
we want to avoid diffraction, these artificial atoms have to be small compared to the
wavelength of the impinging radiation. Figure 9.2 shows a ¢,-t, diagram [13] that
divides space into four separate regions. Until now we have moved solely along the
dotted horizontal line: For optical frequencies we have j, = #/;, ~ 1, the negative
¢ for metals on the left hand side allows the formation of evanescent waves and
common transparent dielectrics with &, = ¢/, > 1 are situated on the right upper
quarter. Only if both, ¢ and  become negative, we end up with a negative refractive
index. This can be easily seen if we recast Eq. (9.1) into

n = e ] 2 @rton), 9.2)
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Fig. 9.2 ¢&,-u, diagram for different materials, see discussion in the main text

where the angles ¢ are the arguments of the corresponding complex variable and
have to be determined in the correct sector of the complex plane,

. Jm(e,) . Sm(u,)
. = arctan | ——— |, = arctan | ——— | .
Per Ne(e,) P Ne ()

For Ye(e) < 0, RNe(un) > O (electric plasma) or Re(e) > 0, Re(n) < 0 (magnetic
plasma) we still obtain a positive n, only if both material parameters become
negative, we obtain negative refraction.! It should also be noted here that with this
regard the term metamaterial does not automatically implicate a negative n. The
artificial magnetic structures in the lower right quarter of Fig.9.2 are also called
metamaterials and especially when it comes to cloaking devices usually a positive
but spatially varying refractive index is required.

One of the first strange characteristics of negative refraction is also shown in the
vector plot inset of Fig.9.2: The negative sign reverses the direction of the energy
flux S = E x H. For common dielectrics the Poynting vector S points into the

(9.3)

'Any negative-index material must be strongly dispersive, i.e. there must also exist frequency
ranges with a positive refractive index, because otherwise the energy density integrated over all
frequencies would be negative [14].
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propagation direction k and we obtain so-called right-handed materials, whereas
for negative index materials the energy flux and k point in opposite directions. In
this case k and the electromagnetic fields form a left-handed material. This can be
quickly verified [13] if we have a look at Ampere’s and Faraday’s law (3.3). For a
plane monochromatic wave e'¥”~1¢" and the absence of any sources we get

kx H = —weE, kxE = wuH. 9.4)

If we change from positive to negative ¢ and p we switch from right- to left-handed
materials.

Before we discuss some selected topics out of this vast research field, let us get
a quick impression of what three dimensional metamaterials actually look like. We
already know that we require small and periodically structured elements—a more
explicit overview over several 3D photonic metamaterials is plotted in Fig. 9.3.

Gold ’:: Silver \ Dielectric

Fig. 9.3 3D photonic-metamaterial structures reprinted by permission from Macmillan Publishers
Ltd: Nature Photonics [15], © 2011. References to the corresponding structures and further
information can be also found in [15]. (a) Double-fishnet negative-index metamaterial. (b) ‘Stereo’
or chiral metamaterial fabricated through stacked e-beam lithography. (¢) Chiral metamaterial
made using direct-laser writing. (d) Hyperbolic metamaterial. (e) Metal-dielectric layered meta-
material composed of coupled plasmonic waveguides. (f) Split-ring resonators oriented in all three
dimensions, fabricated using membrane projection lithography. (g) Wide-angle visible negative-
index metamaterial based on a coaxial design. (h) Connected cubic-symmetry negative-index
metamaterial. (i) Metal cluster-of-clusters visible-frequency magnetic metamaterial made using
self-assembly. (j) All-dielectric negative-index metamaterial
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9.1 The Veselago Lens and Superresolution

In Chap.5 we briefly discussed the limits of conventional optics—no matter how
perfectly we polish a lens, the achievable resolution in the far-field region will
always be of the order of the wavelength. By probing the electromagnetic field
very close to the investigated specimen (e.g. through SNOM experiments) we have
seen that we can bypass the limitations and extract information beyond the classical
diffraction limit. But in such near-field measurements we have to bring a probe, a
certain antenna in very close proximity to the nanoobject and the final resolution is
determined by the size of this probe.

In 1967 the Russian physicist Victor Veselago proposed a new type of lens
based on metamaterials [13] and in 2000 John Pendry showed that these new lenses
allow (almost?) perfect reconstruction of an image beyond practical limitations of
apertures or lenses [18], since they cancel the decay of evanescent waves. With this
new superlenses both propagating and evanescent waves contribute to the resolution
of the image [18]. Pendry discussed the reconstruction of an image in the near-field
zone, but such a lens also builds a perfect image of a three-dimensional nanoobject
in the far-field region [2].

A Veselago lens is quite different from a typical optical lens; there is no curvature,
no optical axis, no magnification and parallel light beams cannot be focused
(see Fig.9.4). Basically it is just a vertical, parallel-sided slab, but with the very
important feature of a negative refractive index. This has very strange consequences

source ~~_ T . image

Fig. 9.4 With negative refraction, the light waves from an external source are bent beyond the
normal to the interface (dotted arrows) at both interfaces of a Veselago lens and produce a perfect
image of the object [19]

’In [16] the authors discovered a fundamental limitation on the ultimate spatial resolution of
the perfect lens as a result from spatial dispersion (nonlocality) of the dielectric response. The
resolution of the lens will also generally be reduced if the slab material is lossy, see e.g. [17] for a
summary to this topic.
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source plane
image plane

%" left-handed
material

Fig. 9.5 A slab of an ideal left-handed material represents two coupled plasmon-polariton
resonators. It is transparent for propagating fields (green wavy line) and plasmon polaritons are
always in resonance with evanescent fields from the source. The two coupled surface modes at
each side of the slab (dashed red lines) [21] then resonantly enhance the evanescent field from the
source (solid red line) and as a result, both propagating and evanescent fields form an exact copy
of the source field in the focal point. Reprinted with permission from [3]. © 2008 by the American
Physical Society

like the reversal of equivalents of Snell’s law, the Doppler shift, or Cherenkov
radiation [2, 13]. A conventional lens applies a phase correction to each of the
impinging Fourier components of the electromagnetic field so that at some distance
beyond the lens the fields reassemble to a focus. Since the evanescent fields only
decay in amplitude but not in phase, the requirement for a corresponding focus is to
amplify them rather than to correct their phase [18]. This is exactly what happens
inside the Veselago lens, through the resonant excitation of surface modes at the
boundary of the slab [4, 20], the evanescent fields become amplified as depicted in
Fig.9.5.

Because the evanescent waves do not carry any net energy flux, the energy can
never be amplified; only the distribution of the energy or field will be modified
across space [2].
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9.2 Artificial Magnetic Atoms

Let us now briefly explore the lower right quarter of Fig.9.2. We know from
magnetostatics that a circulating ring current of a microscopic coil yields a certain
magnetic-dipole moment given by the product of current and area of the coil [1].
This dipole moment can be increased if we combine the coil with a plate capacitor
which leads to a magnetic resonance. Thus, a popular design for magnetic atoms is
to mimic an ordinary LC-circuit, consisting of a plate capacitor with capacitance C
and a magnetic coil with inductance L, on a scale much smaller than the relevant
wavelength of light [1], see Fig.9.6. The LC-circuit in this sense is an analogue of
a tuning fork, where the oscillation of the fork corresponds to the energy oscillating
at the circuit’s resonance frequency wy ¢ = 1/VIc.

In Sect. 2.2 we have seen that the dielectric response of a metal (upper left quarter
in Fig. 9.2) can be approximated by the relation

2
()

PN P 9.5)
&0 w

The effective magnetic permeability for an array of split-ring resonators can be
brought into an analogue form

Magnetic permeability of split-ring resonators

2
w
% ~ -2, (9.6)

3
| (c) (d)
! . | |1
. 0
100 nm
— -1

Fig. 9.6 Principle of magnetic atoms as LC-circuits. The panels show the magnetic field for each
geometry for a plane wave excitation polarized along the x-axis. (a) The magnetic response for a
regular gold nanodisk is negligible. (b) If we change from a disk to a ring design, the loop current
induces a magnetic field (or vice versa) and the magnetic response becomes somewhat enhanced.
(c) Cutting the geometry into a split-ring [22-24] introduces a magnetic resonance analogous to an
LC-circuit. (d) The magnetic resonance can be enhanced if the split-ring is doubled
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with a corresponding magnetic plasma frequency w,,,. The derivation for this
equation can be found in [24], for example, also see the discussion in [1]. Based on
the resonance behavior the split-ring design is essential to obtain fe(u) < 0 [25],
but as plotted in Fig. 9.7 several variants of the base design are possible.

H '
Fig. 9.7 Typical designs of magnetic atoms for photonics (a-h). Reprinted from [1], © 2007, with
permission from Elsevier

c
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9.3 Making Things Invisible

The basic principle behind metamaterials is to mold the flow of light with the help
of resonant periodic structures that are considerably smaller than the corresponding
photon wavelength. Although with negative refraction several principles of optics
are turned upside down, in the end everything still comes out of Maxwell’s
equations. When you think about molding the propagation of electromagnetic waves
a question that will arise sooner or later is how do Maxwell’s equations look like
in curved space? Will the laws of Gauss, Ampere and Faraday still be the same
if we leave the safe harbor of Euclidean space where they have been developed?
John Pendry and coworkers gave an answer to this interesting problem [26, 27]
and thereby built the foundation of transformation optics [28-32]. If we perform
a coordinate transformation and change from Cartesian coordinates x, y, z to an
arbitrary coordinate system u, v, w (see Fig. 9.8), Maxwell’s equations have exactly
the same form, only the permittivity & and permeability x have to be scaled by a
common factor

Transformation optics

R T r o QuQuQw
&€ &

. uTa w = M1¢7, etc., 9.7

with the Jacobian transformation

> v\ ()
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du u du
ax\? E ay\?
2
(= bl =1, 9.8b
(@) (@) +(3) 5
ax\> ay 2 ay 2
2
= =— = = . 9.8
o= () + () + (%) 80
The consequences are remarkable, instead of bending space we only need to adjust
the response functions ¢ and p to obtain the same effect. Using the possibilities
that the design of metamaterials provide, we are able to redirect electromagnetic
fields at will [26], to steer light around objects and hence make them seem
invisible. In Fig.9.9 different types of invisibility cloaks that use materials with
a spatially changing refractive index are shown. The first practical realization of
such a cloak has been reported in [34], where artificially structured metamaterials
operating over a band of microwave frequencies have been used to conceal a

copper cylinder. Over the last few years the operating frequencies of metamaterials
successively approached toward the visible spectrum, see the summary in Fig. 9.10.
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Fig. 9.8 Schematic representation of the transformation from a flat Euclidean space to a distorted
mesh with curvilinear coordinates. A straight light line (yellow) in the left panel is bent in the new
system, likewise the electric field vector E

(a) (b)

(d)
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Fig. 9.9 Light propagates in a straight line in free space (a). By carrying out so-called push-
forward mapping [26] to expand a point (red dot in a) into a spherical hole (red circle in b), light
will be guided smoothly around the hole if the material inside the compressed region is prescribed
according to Eq.(9.7). Parts (c) and (d) illustrate conformal-mapping [28] (based on ray optics).
Using non-Euclidean geometry, conformal mapping can be devised so that the light rays (yellow
lines) from any direction will never reach a line (or an infinitesimally thin plate, red line in ¢) or
a closed region (red eye in d). The basic idea of a carpet cloak is shown in (e) and (f). Further
discussion see [33] and [29]. Reprinted by permission from Macmillan Publishers Ltd: Nature
Materials [33], © 2010

The dream of a cloak of invisibility is as old as mankind and with the development
of metamaterials we are one step closer to the concept moving from fiction to
reality, see Fig.9.11. Unfortunately the fans of H. G. Wells, Harry Potter, or the
Nibelungs will still have to be patient, because with this approach we achieve perfect
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Xy XV XVl

Magnetic resonance frequency (THz)
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Fig. 9.10 Progress in metamaterial operating frequency over the past decade. The operating
frequency of metamaterials with negative magnetic permeability p (empty triangles) and negative
index of refraction n (solid triangles) is shown on a logarithmic scale ranging from microwave
to visible wavelengths. Orange: structures based on double split-ring resonators; green: U-shaped
split-ring resonators; blue: metallic cut-wire pairs; red: negative-index double-fishnet structures.
The four insets show optical or electron micrographs of the four types of structure. Reprinted by
permission from Macmillan Publishers Ltd: Nature Photonics [15], © 2011. Also see [35]

Radiation
source

A

o

Metamaterial
cloak

Fig. 9.11 An invisibility cloak made of a negative index metamaterial bends radiation around an
object inside it. Reprinted by permission from Macmillan Publishers Ltd: Nature [36], © 2013
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invisibility only in one single frequency of light.® This is inevitable because the
required effective permittivity and permeability can only be realized by resonances
in the building blocks of the metamaterials, and causality requirements dictate that
perfect invisibility cannot have wide bandwidth [33]. The fictional invisibility cloaks
also allow their possessors to see the outside world while they themselves are
concealed behind the cloak. By contrast if a metamaterial cloaking device encircles
an object, electromagnetic waves are guided around it and no light can reach the
object making it impossible to see the outside world. Nevertheless the possibility
to create materials with a spatially varying index has impressive potentials and
transformation optics has evolved into a powerful tool for designing a wide
variety of new optical effects and devices [33]. Computational metamaterials [37],
applications beyond optics [38] or again the combination with graphene [39] are
currently being explored, along with more curious aspects of metamaterials like
electromagnetic wormholes [40].

3Recently some strategies have been developed to overcome this narrow bandwidth constraint,
mostly by sacrificing some degree of invisibility in return for a broader bandwidth [33].
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Chapter 10
Outlook

The world is a thing of utter inordinate complexity and richness
and strangeness that is absolutely awesome.

DOUGLAS ADAMS

We have discussed many aspects of the optical properties of metallic nanoparticles,
ranging from the tunability of the plasmonic resonance to the ultrafast dynamics of
the light-matter interaction, from the possibility to map the plasmonic fields with
EELS and tomography methods to nonlocal plasmonics, from negative refraction
to invisibility cloaks. There is one conspicuous thing about all these applications in
plasmonics: On one hand we require metals to obtain the desired concentration of
electromagnetic fields at the nanoscale, but on the other hand it is these metals that
limit the possibilities because of their lossy nature. It has been mentioned several
times in this book that the combination with other materials often allows us to
overcome some of the drawbacks of metals and hence the search for novel materials
with lower loss in plasmonics is on the agenda of many research groups all over the
world. In [1] Jacob Khurgin provokingly states that

This search, however, should not follow today’s pattern of rapid-fire testing of all the well-
known conductors, doped semiconductors, or popular materials du jour (graphene, MoS,,
and whatever comes next), in hope of a miracle, but instead should be a well thought-
out and concerted effort by condensed-matter theorists, chemists and growth specialists to
synthesize man-made negative permittivity materials with reduced loss.

It is truly amazing what has already been achieved in plasmonics and I’m sure
that such joint efforts hold great promise for the future direction of the research field.
This book started with a vision of Richard Feynman about the fantastic possibilities
down at the bottom [2] and he was absolutely right about it:

As soon as I mention [manipulating and controlling things on a small scale], people tell
me about miniaturization, and how far it has progressed today. They tell me about electric
motors that are the size of the nail on your small finger. And there is a device on the market,
they tell me, by which you can write the Lord’s Prayer on the head of a pin. But that’s
nothing; that’s the most primitive, halting step in the direction I intend to discuss. It is a
staggeringly small world that is below. In the year 2000, when they look back at this age,
they will wonder why it was not until the year 1960 that anybody began seriously to move
in this direction. [... ]I am not inventing anti-gravity, which is possible someday only if the
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laws are not what we think. I am telling you what could be done if the laws are what we
think.

In the end the key to success in any kind of fundamental research is to find the
unexpected and forcing science into the corset of forecasted directions will not work.
Thus the prediction of future perspectives in any kind of research field is inherently
risky. Nevertheless because of the highly diverse nature of plasmonics we can
assume an exciting future and high activity in this field as discussed in [3, 4], where,
for example, the merging of plasmonics with quantum systems, active plasmonic
devices, biochemical applications or electronic transport are named as future trends.

There are still many open questions to explore and I hope that you, gentle reader,
are now at the end of this book more enthusiastic than ever to contribute something
to the scientific progress of this fascinating field of research.
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Appendix A
Utilities

A.1 Conversion Between nm and eV

The energy of a photon is given by

E:hw:thv:h%t%. (A1)

The SI-values for the involved constants can be found in [1], for example, and are
given by

h=6.58211928 x 1071 [eV ], (A.2)
¢ =2.99792458 x 10'7  [nm/q]. (A.3)

From Eq. (A.1) then follows'

Conversion from eV to nm

[eV] = 1239.84/jomy (A4)

The values of the visible spectrum of light in eV and nm are shown in Fig. A.1.

'In [2] also the value 8065.48 [em™'/ev] is published.
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3.26eV 2.76eV 250eV 2,18 210 2.00eV 165eV

380 nm 450 nm 495 nm 570 580 620nm 750 nm

Fig. A.1 Energy values of the visible spectrum in nm and eV, the approximated color ranges have
been adopted from [3]. The range from 750 to 3000 nm (1.65-0.41 eV) is called near-infrared, the
region from 10 to 380 nm (123.98-3.26 eV) ultraviolet [3]
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A.2 Conversion Between FWHM and Decay Time

By following [4], let us investigate the damped oscillation of an electric field E(?).
The exponential decay shall be described by a time constant 7, the eigenfrequency
by w¢. From the Fourier transform of E()

E(t) = Ege ' ™'e™", (A.5)
Eo 1z
V27 (@ — wo)? + (V/)?

follows a so called Lorentz-lineshape (see Fig. A.2), which is characterized by its
center position wg and the full width at half maximum (FWHM) Aw. In units of
energy the FWHM is given by I = /i Aw. By determining the extrema it follows that
half of the maximum for Eq. (A.6) is reached at (w —wg) = /=, which directly leads
to the connection of the FWHM with the decay time: I" = 24/;. With Egs. (A.2) and
(A.4) we finally obtain

FRE(@)} = (A.6)

Conversion between FWHM and decay time

1.316424
T[fs] = ——~— or t[fs]=«-1.061767 x 1073, (A7)
I [eV]

where we have used the abbreviation

| IS U N Y B
Kk=|\——— = .
Moo A Ay — Ay
Here A; and A, correspond to the left and right limits of the FWHM (see Fig.2.31),
respectively.
The same relation also holds for a driven harmonic oscillator, see [4] for further

details. Note that the oscillator energy (amplitude squared) decays twice as fast as
the oscillation amplitude!
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Fig. A.2 Lorentzian curve [right panel, Eq. (A.6)] obtained by the Fourier transform of a damped
oscillator in the time domain [left panel, Eq. (A.5)] [4]. Chosen parameters: Damping time t = 4,
frequency @y = 2.5. The FWHM is Aw = 0.5, which reproduces the damping time: 2/a0 = 4
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A.3 Derivation of Retarded Surface Charges and Currents

The continuity of the tangential magnetic field follows as

Hihy — Hyhy — i0i(Giju16101 — Gajia202) =
AA/exl + ikit (g1 — poga¢), (A.8)

where H;» = F £ 2x1. The continuity of the normal electric displacement gives

H1€10'1 —H2€20'2 —iwn - (G181h1 — G181h2) =

e1(ion - AT — @) — e2(ion - A5 — ¢)). (A.9)
We now insert Eq. (3.74) into Egs. (A.8) and (A.9) and use

Hihy = H, G (Gohy + AAexi) = Z1(Gahy + AAoy), (A.10)
H>hy, = H, G,'(Gah, ) = 2(Grhy), (A.11)
where Y, = H, Gl_é. Furthermore we obtain Hyu16101 = X1G1L;01, where
L, = G1,2“1,281,2G1_,é- After some more algebra we obtain
(X1 =2y )Gohy —iwi(Ly — Ly)Gr0y =
AAL - ioi(pie1¢1 — Hoergn) — X1 Aoy + 10RL Adpey,

(1L — 25Ly)Gr07 — iwi (L) — Ly)Gohy =
D/ — 21L1A¢ex[ + la)fl . LIAAex[.

e

For a compact notation and in agreement with [5] we introduce the following
abbreviations?:

D, = D), — X\ L Apex; + iwht - Ly Ay,
D, = gi(ioi - AT — ¢)) — e2(iwh - AS — @),
0 =0 — X AAexe + i0AL Aexs,
a' = AAL +iwn(pnieidr — pagae),
Y =XL — %Ly + o’ (L — L)AL, — L), and A=X —%.

Note the different unit system in [5].
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A.4 Spherical Harmonics

Many problems in physics lead to equations containing the Laplace operator A, e.g.
the wave or the Poisson equation. Depending on the symmetry of the considered
problem one will try to solve the equations with a suitable set of variables. If
spherical symmetry is present, one will choose the spherical coordinates (r,6,¢).
For example the Laplace equation

Af(r,0,9) =0 (A.12)

can be solved by the ansatz f(r,0,90) = R(r)S(0)T(¢) (see e.g. [6]). The Laplace
operator in this coordinate system reads

[1a(,0 1. 9 1
A = I:r_ZE (V 5) + —r2 Sin9 8_9 (SlIl 98_9) + —rz Sinz 9 3_(pzi| 5 (A13)

and the above product ansatz allows us to separate Eq. (A.12) into three parts. The
expression for ¢ yields a wave equation with the solutions {e"¢, e}, and the
one for the variable 0 has the form of an associated Legendre differential equation
with the associated Legendre polynomials P}"(cos 0) [7] as solution. Therefore the
angular part of the complete solution is given by

T(9)S(0) = eX™ P"(cos 6). (A.14)

This leads to the definition of an orthogonal system of functions, and together with
a normalization factor? the spherical harmonics Y}, [7] are derived*:

[@I+1) (1= m)! .
Yin(0,0) = 1/ 4:; )((l+nr;;'P;”(cos9)e‘m‘p. (A.15)

A detailed explanation and rigorous definition of these functions can be found in the
book of Varshalovich et al. [8], which we will follow from here on.

In Eq.(A.15) we see that a spherical harmonic Y}, (6,9) is a single-valued,
continuous, bounded complex function of two real arguments 0,9 with0 < 0 < &
and 0 < ¢ < 2m. For a given [ there exist (2/ + 1) functions corresponding to
different m’s.

3Unfortunately also different normalization factors and signs can be found in the literature. We will
stick to the definition (A.15).

“ Another less obvious but more elegant way is the definition of spherical harmonics as com-
ponents of some irreducible tensor of rank / with the commutation relations [L,, Y;,(6, ¢)] =

VI + I)C;:,,"i_,’jY,mJW (0, ¢) where L, (8, ¢) is a spherical component of the operator L. See [8]
for further details.
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These functions are eigenfunctions of the orbital angular momentum operator in
quantum mechanics which is defined as (A = 1) [9]

1
L=rxp=-(rxV). (A.16)
i

The eigenvalue equations read

L*Y},(60,9) = (I + 1) Y,,(6. 9), (A.17)
LY (0,9) = mY,(0, ), (A.18)
or in expanded form
I 9 '93 + L7 + 10+ 1) | Ym(8,90) =0 (A.19)
Sin 0 90 sin 9 Sin2 0 992 m(0,¢) =0, .
|:ii + mi| Y (6,¢9) = 0. (A.20)
de

In Eq.(A.17) one can see that [ specifies the absolute value of orbital angular
momentum [because [(I 4+ 1) is the eigenvalue of L2] and m in Eq. (A.18) is the
eigenvalue of L, which is the projection of the orbital angular momentum operator
on the quantization axis.

Equation (A.19) has two linearly independent solutions for fixed / and m, but
only one of them is regular (i.e. satisfies the condition ‘Y,m(e, ®) ‘2 < oo) while the
other is singular at § = 0 and 6 = x. In quantum mechanics and electrodynamics
the regular solution is of major interest. The homogeneous boundary conditions

Yin(0, ¢ £ 27n) = Yiu(0, 9). (A.21)
d
@Yzm(e, O)|g_o, =0, (A22)

lead to integer values of / and m (with |m| < ). Since the differential equa-
tions (A.19) and (A.20) together with the boundary conditions determine the
spherical harmonics only up to some arbitrary complex factor, a normalisation of
the functions is required. With these tools at hand, we are able to expand an arbitrary
functionf(6,¢) in series of spherical harmonics, provided that the function is defined
in the interval 0 < 6 < 7, 0 < ¢ < 27 and satisfies the condition

2 b4
/d(p /de sin6 |f(6,9)|” < oc. (A.23)
0 0

The expansion then yields as
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[e9) l
f(ev (P) = Z Z alelm(ea (,0), (A24)

=0 m=—I

with the expansion coefficients a;,, given by

2 b4
A = /d(p /d9 sinf Y5 (0, 0)f (0, ). (A.25)
0 0

This last relation may be considered as an integral transformation of f(6,¢) from the
continuous variables 0,¢ to the discrete variables [, m. The transformation matrix in
this case is given by Y,,,(0,0) = (0, ¢|im)>:

(Im|f) = (Im|0., ¢)(6. ¢|f). (A.26)

where

(Imlf) = apm, (Iml|6.¢) = Y}, (0. 0), (0.0lf) =1(0.9). (A.27)

The expansion (A.24) is widely used in different branches of physics. It is called
the multipole expansion and ay, are the multipole moments (e.g. see [10]). The
transformations (A.25) and (A.26), respectively, are unitary

(flim)(imlf) = (f16, p)(0. oIf). (A.28)

and the expansion coefficients ay, satisfy the Parseval condition (see [6] or [7])

oo +I 2 T
SN aw]* = /d(p /d@ sin6 £ (6, ¢)|". (A.29)
=0 m=—I 0 0

A.4.1 Generating Functions for the Vector Harmonics

In Sect. 3.2 and Eq. (3.31) we see, that the time-harmonic electromagnetic field in a
linear, isotropic, homogeneous medium fulfills a wave equation:

E(r,
(% +8) i) =0

SSummation or integration is assumed over all variables which are repeated twice.
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By following [11] let us now construct a vector M with a given scalar function ¥
and an arbitrary constant vector c:

M =V x (c). (A.30)

Note that this vector is always perpendicular to ¢: M = —c¢ x V. Since the
divergence of the curl of any vector function vanishes, we immediately get

V-M=0. (A.31)
If we insert M into the wave equation and use the following identities

Vx(AxB)=A(V-B)—B(V-A)+ (B-V)A—(A-V)B,
VA-B)=Ax(VxB)+Bx(VxA)+ (B-V)A+ (A-V)B,

we see that
VM + KM =V x [e(V2Y + ). (A.33)
If now v is a solution to the scalar wave equation
V2 + kY =0, (A.34)

M automatically fulfills the vector wave equation.
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Appendix B
MATLAB Script for Mie Solution

With the following code example the scattering, absorption and extinction cross
section for a spherical particle of arbitrary size can be calculated (the MATLAB®
files are also contained in the MNPBEM toolbox [1-3]). The dielectric data for the
sphere has to be provided in an ASCII table containing three columns of the form w

i k, viz. [4, 5].

o°

MATLAB code for Mie solution of Maxwell's equations.

o°

o°

written by U. Hohenester and A. Truegler
Karl-Franzens-University Graz, Austria
contact: ulrich.hohenester@uni-graz.at

o°

% diameter of sphere in nm
diameter = 50;

% energy range in nm

10 enei = linspace( 300, 800, 201 );

© ® N, A W N -
o°

2 % Dbackground dielectric function and refractive index
b = 1.34; epsb = nb * 2;

B

=
o°

& Christy)

16 epsin = epstab( enei, 'gold.dat' );
17 % vratio of dielectric functions

18 epsz = epsin / epsb;

7
o°

20 % wavevector of light
210k = 2 % pi ./ enei % nb;

23 % preallocate memory for cross sections
2% scac = zeros( size( enei ) ); extc = zeros( size( enei

&
N}
o°

degrees
28 1ltab = []; 1lmax = 50;

© Springer International Publishing Switzerland 2016
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dielectric function of particle (e.g. data from Johnson

)

2% % table of spherical harmonic degrees, lmax = max. number of]

)i
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2 for j =1 : lmax

30 ltab = [ 1ltab; j = ones( 3, 1) 1;

31 end

22 [ 1, ind ] = unique( 1ltab ); % find unique values
33

34 % calculate scattering and extinction cross section
35 for i = 1 : length( enei )

36 % Mie coefficients

37 [ a, b ] = miecoefficients( k( i ), diameter,

38 epsz( i ), 1, ltab );

39 % scattering cross section

40 scac( 1) =2 xpi / k(i) " 2 %

a1 (2% 1" +1) % (abs(a( ind ) ) .~ 2 +

@ abs( b( ind ) ) .* 2 );

43 % extinction cross section

m extc( i) =2 %pi/ k(i) * 2 %

45 (2% 1" +1) x real( a( ind ) + b( ind ) );
46 end

47

4 % absorption cross section

49 absc = extc - scac;

50

si % plot results

2 plot( enei, extc, 'r.-', enei, absc, 'b.-', enei, scac,
53 'm.-")

s4 % annotate plot

ss title( 'Mie solution for spherical particle',

56 'FontSize', 18, 'FontWeight', 'b' );

57 xlabel ( 'Photon wavelength (nm)', ...

58 'FontSize', 16, 'FontWeight', 'b' );

59 ylabel ( 'Cross sections', .

60 'FontSize', 16, 'FontWeight', 'b' );

61

&2 set( gca, 'FontSize',K 14 );

63 legend( 'extinction', 'absorption', 'scattering' );

The function epstab.m reads in the tabulated data from an ASCII file and
interpolates for missing wavelengths.

1 function eps = epstab( w, fdata )
EPSTAB interpolate dielectric function for
tabulated values.
Written by U. Hohenester and A. Truegler,
Karl-Franzens-University Graz, Austria

woE W R

7 INPUT
8 w ... photon wavelength
9 fdata ... file that stores dielectric function in

the form ene n k, with energy ENE in eV,
real and imaginary parts N and K of the
refractive index

o° o° o o o° o° o o o o° o° o
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o°

OUTPUT
eps ... 1interpolated wvalues of dielectric function

o°

read in tabulated data
ene, n, k ] = textread( fdata, '%f %f
'commentstyle', 'matlab' );

—_—

o°

£,

°

% change energies from eV to nm
enei = (1 / 8.0655477e-4) ./ ene;

% spline for interpolation

ni = spline( enei, n );

ki = spline( enei, k );

% calculate dielectric function for wavelength w

eps = ( ppval( ni, w) + 1i » ppval( ki, w ) ) .” 2;

The function miecoefficients.m calculates the Mie coefficients of Eq. (4.10).

function [ a, b, ¢, d ] = miecoefficients( k, diameter,
epsr, mur, 1 )

MIECOEFFICIENTS - Mie coeff. according to Bohren and
Huffman (1983).

o o°

o°

% Input

% k :  wavevector of light outside of sphere
% diameter : diameter of sphere

% epsr : dielectric constant of sphere

% mur : magnetic permeability of sphere

% 1 :  angular momentum components

% Output

o°

Mie coefficients a, b, ¢, d

o°

refractive index

nr = sgrt( epsr x mur );

% compute Riccati-Bessel functions

[ 31, hl, zjpl, zhpl ] = riccatibessel( nr » k =
diameter / 2, 1 );

[ 32, h2, zjp2, zhp2 ] = riccatibessel ( k %
diameter / 2, 1 );

$ Mie coefficients for outside field

a=(nr 2% 3j1 .% zjp2 - mur * j2 .% zjpl ) ./
(nr * 2 % §j1 .% zhp2 - mur %= h2 .% zjpl );

b= (mur » j1 .x zjp2 - j2 .% zjpl ) ./
( mur * j1 .% zhp2 - h2 .% zjpl );

% Mie coefficients for inside field

¢ = (mur * j2 .* zhpl - mur * h2 .*x zjp2 ) ./
( mur * j1 .+ zhp2 - h2 .+ zjpl );

d = (mur * nr * j2 .x zhp2 - mur * nr * h2 . zjpl ) ./
( A

mur 2 * jl .x zhpl - mur =* h2 .+ zjpl );




200

B MATLAB Script for Mie Solution

The function riccatibessel.m provides the spherical Bessel functions, see
Eq.(4.11).

function [ j, h, zjp, zhp ] = riccatibessel ( z, ltab )
RICCATIBESSEL Riccati-Bessel functions.
Abramowitz and Stegun, Handbook of Math. Functions,

o°

o°

% Chap. 10.

% INPUT

% b4 ... argument

% ltab ... angular momentum components

% OUTPUT

% 3j ... spherical Bessel function of order 1
% h ... spherical Bessel function of order 2
$ zjp oo Lzjlz) 1

% zhp ... [zh(z) 1"

o°

unique angular component vector

1 =1 : max( ltab );

% spherical Bessel functions of first and second kind,

% see equations (10.1.1) , (10.1.11) , (10.1.12)

jO0= sin( z )/z; j=sqgrt( pi/( 2%z ) )xbesselj( 1(:)+0.5, z );
yO0=-cos( z )/z; y=sqrt( pi/( 2%z ) )xbessely( 1(:)+0.5, z );

% spherical Bessel function of third kind (10.1.1)
hO = jO + 1i % y0; h = 3 + 1i * y;

27 % derivatives (10.1.23), (10.1.24)

% zjp =2z * [ jo; J(1 length( 1 ) - 1) 1 - 1( ) % J;
2 zhp =z * [ ho; h(1 length( 1) - 1) 1 - 1( ) .* h;
30

31 % table assignement

2 Jj = j( ltab ); zjp = zjp( ltab );

33 h = h( 1ltab ); zhp = zhp( ltab );
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