
Springer Theses
Recognizing Outstanding Ph.D. Research

   

Quantum Many-
Body Physics of 
Ultracold Molecules 
in Optical Lattices

Michael L. Wall

Models and Simulation Methods

Springer Theses
Recognizing Outstanding Ph.D. Research



Springer Theses

Recognizing Outstanding Ph.D. Research

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated
and endorsed by two recognized specialists, each published volume has been
selected for its scientific excellence and the high impact of its contents for the
pertinent field of research. For greater accessibility to non-specialists, the published
versions include an extended introduction, as well as a foreword by the student’s
supervisor explaining the special relevance of the work for the field. As a whole,
the series will provide a valuable resource both for newcomers to the research fields
described, and for other scientists seeking detailed background information on
special questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the significance

of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.



Michael L. Wall

Quantum Many-Body
Physics of Ultracold
Molecules in Optical Lattices
Models and Simulation Methods

Doctoral Thesis accepted by the Colorado School
of Mines, Golden, CO, USA

123



Michael L. Wall
Colorado School of Mines
Golden, CO, USA

JILA, NIST, and University of Colorado
Boulder, CO, USA

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-3-319-14251-7 ISBN 978-3-319-14252-4 (eBook)
DOI 10.1007/978-3-319-14252-4

Library of Congress Control Number: 2015934925

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


To the memory of my grandfathers,
Richard V. Walker and Richard H. Wall, Sr.

Test everything; retain what is good.
1 Thessalonians 5:21





Foreword

The field of ultracold gases has transformed physics in myriad ways, from advancing
quantum computing to testing the very foundations of quantum mechanics. As
opposed to solid-state systems, in which many-body dynamics often occurs on
extremely short (e.g. femtosecond) timescales, the dynamics in ultracold gas
settings occurs on the order of milliseconds. Hence, the extraordinary impact of
ultracold quantum gases has been especially evident in studies of non-equilibrium
quantum dynamics. For example, in a landmark experiment in 2002, Greiner,
Mandel, Esslinger, Hänsch, and Bloch observed a quantum phase transition in an
ultracold quantum gas trapped in a crystal of light, including dynamical oscillations
between phases in the form of quantum revivals. Such optical lattices have become
standard tools of ultracold experiments, and have opened up quantum lattice physics
in important new ways, with whole swaths of researchers now devoted to the
topic. These initial experiments used atoms, which experience only short-range
interactions and are scalar objects, with at most a simple internal structure given
by hyperfine degrees of freedom. However, in the last 5 years, ultracold molecules
have also reached the ultracold regime. Such compound objects, trapped in crystals
of light and with a hierarchical set of controllable degrees of freedom and long-
range dipole–dipole interactions, present a whole new area of quantum many-body
physics which is only beginning to be explored. We have dubbed this nascent field
quantum complexity. To make progress in such rich systems, one requires significant
new numerical tools as well as totally new models.

Dr. Michael L. Wall’s thesis provides such tools and develops with great care
and attention the necessary models to found quantum complexity in ultracold
molecules. In recognition of the extraordinary impact and quality of his work,
in 2013 he was awarded the Nicholas Metropolis Award for Outstanding Thesis
Work in Computational Physics by the American Physical Society. His thesis,
contained in the following, covers four major topics on the themes of quantum
many-body physics, non-equilibrium quantum dynamics and entanglement, and
ultracold molecules.
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viii Foreword

First, he opens up a new area of quantum many-body physics by deriving,
explaining, and exploring the molecular Hubbard Hamiltonian. This new Hamil-
tonian describes ultracold molecules in a crystal of light formed from an optical
lattice. The ultracold molecules he considers in this initial work, called singlet sigma
molecules, have a tunable number of internal states, from two to about one hundred
and fifty, in addition to the usual spatial degrees of freedom one finds in Hubbard-
like models. One can contrast this model to the well-known Hubbard models for
electrons, with just two internal states (spin-1/2, or a qubit). The molecular Hubbard
Hamiltonian Dr. Wall develops offers highly controllable multi-scale many-body
dynamics.

Second, he solves the problem of how a gas of ultracold fermions pairs into
bosons on the lattice, that is, without taking a long-wavelength continuum limit. As
matter is made of fermions, and yet we observe many effective bosons, such pairing
is a foundational question, and one which many people worked on but no one solved
properly on the lattice until Dr. Wall. In the strongly interacting or unitary regime,
the question of how to describe such strongly correlated fluids in a discrete or lattice
geometry poses a challenge to holographic duality.

Third, he not only created open-source matrix product state (MPS) code used
worldwide, including an implementation in the widely used Algorithms and
Libraries for Physics Simulations (ALPS) package, he developed new algorithms
to deal with dynamics and excited states in systems with long-range interactions.
Such numerical methods are key to the new picture of Hilbert space the quantum
many-body community is presently developing, in which the apparent exponential
difficulty of simulating quantum systems is often illusory when answering practical
questions. The difficulty of simulating quantum systems is key to justifying the
quantum computing effort in the first place, and Dr. Wall’s code helps us refine and
direct our efforts to build effective quantum computers. In older algorithms, like
density matrix renormalization group (DMRG) methods, one has to rewrite code
extensively to deal with each different long-range model. As molecules interact via
a dipole–dipole interaction, one has to treat long-range effects. Dr. Wall created a
new, large-scale, highly functional code used worldwide. This code is over 10,000
lines long and requires only minor modifications to treat different molecules,
field configurations, etc. Without these new algorithmic developments, one would
struggle to treat molecules with DMRG or its time-dependent generalization
(tDMRG). He also implemented proof-of-principle codes of many new MPS
methods, which were proposed during the course of his degree, including minimally
entangled typical thermal states (METTS), which combines DMRG with Monte
Carlo. The thesis covers both the central MPS codes and these other explorations in
detail, and will be very useful to those wanting to understand data compression of a
quantum state on classical computers and quantum many-body entangled methods.



Foreword ix

Finally, Dr. Wall created extensive educational materials I myself use to educate
my students. His impact on my group cannot be overstated. The reader will find
these materials useful to bring undergraduates up to speed rapidly and accomplish
quantum many-body calculations and research without extensive graduate course
work.

Department of Physics Lincoln D. Carr
Colorado School of Mines

February 2015
Golden, CO, USA





Preface

Ultracold atoms have revolutionized the field of quantum many-body physics due to
excellent understanding of their microscopic dynamics and a high degree of control
over these dynamics with external fields. The next revolution in ultracold physics
promises to come with ultracold molecules, whose production lies at the cutting
edge of research. In this thesis, we are concerned with how ultracold molecules
trapped in optical lattices may be used as resources for novel many-body physics.

There are six main parts to this thesis. The first part gives a general introduction to
the topics covered in the thesis, and provides some technical details on the derivation
of many-body lattice models from few-body physics. In the second part, we derive a
low-energy Hamiltonian, the molecular Hubbard Hamiltonian, describing ultracold
heteronuclear bialkali dimer molecules loaded into an optical lattice and elucidate
its many-body properties. These molecules have large permanent electric dipole
moments, which give rise to long-range and anisotropic dipole–dipole interactions
in an electric field and allow access to the rich internal structure of rotational and
hyperfine states in an AC microwave field. Rather than focusing on simulating
models relevant to condensed matter physics, we focus on the many-body physics
available to near-term experimental setups with the minimal tuning of external
fields.

The third part of this thesis studies how fermions pair to make bosons in a discrete
context, via a two-channel model for a Feshbach resonance in the presence of an
optical lattice and possibly strong inter-channel coupling. The two-body problem
is solved numerically using a scaling theory to extract the result for an infinite
number of Bloch bands. The bound states of a partitioned Hamiltonian, which
we call dressed molecules, are identified as the relevant short-range degrees of
freedom at low density, and are chosen so as to reproduce the two-body scattering
length identically. From this two-body solution, we derive a low-energy many-body
Hamiltonian, which takes the form of a multichannel resonance model between
unpaired fermions in the lowest Bloch band and dressed molecules. This approach
is valid for arbitrary two-body scattering length and resonance width, and is
systematically correctible to higher relative scattering energy.
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xii Preface

In the fourth part of this thesis, we discuss matrix product states (MPSs), a class
of entanglement-restricted states which are useful for variational calculations in one
spatial dimension. This part begins with an overview of the theory of MPSs, with
special emphasis on intuitive notions of their use as variational ansätze. Algorithms
for finding eigenstates of 1D Hamiltonians, for time-evolution under a general time-
dependent 1D Hamiltonian, and for equilibrium properties at finite temperature are
presented. Furthermore, it is shown how MPS algorithms may be made generic by
the identification of a class of operators known as a matrix product operators and a
set of rules for constructing such operators.

The fifth part of this thesis deals with open source implementations of variational
MPS algorithms and educational materials designed to facilitate the use and
understanding of these methods. The open source projects include a stand-alone
open source implementation of the time-evolving block decimation algorithm, open
source TEBD, and an implementation of time-evolving block decimation for the
widely used algorithms and libraries for physics simulations (ALPS) package, as
part of the ALPS international collaboration. In the final part of the thesis, we
conclude, give suggestions for future work, and provide appendices.

Golden, CO, USA Michael L. Wall
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Introduction



Chapter 1
General Introduction

According to the postulates of quantum mechanics, a quantum system is completely
specified by the state j .t/i whose evolution is provided by the Schrödinger
equation

i„ @
@t
j .t/i D OH j .t/i: (1.1)

Here, OH is the Hamiltonian describing the interactions of all of the microscopic
degrees of freedom in the system under study. Unfortunately, the dimension of
the Hilbert space in which the state j .t/i lives grows exponentially with the
number of constituents in a many-body system, rendering Eq. (1.1) essentially
useless for extracting physically relevant information from systems with more
than a few particles. Practical concerns aside, there is a more fundamental reason
why Eq. (1.1) does not enable us to answer all relevant questions in many-body
physics. This reason is put succinctly by P.W. Anderson in his now famous article
“More is different” [1] when he says that “The ability to reduce everything to
simple fundamental laws does not imply the ability to start from those laws and
reconstruct the universe.” That is to say, many-body systems can display very
different, emergent, behavior from their microscopic constituents. In particular,
the ground state of a many-body system need not have the same symmetry as its
governing Hamiltonian due to the phenomenon of spontaneous symmetry breaking.

A powerful method for studying weakly interacting1 many-body systems is
provided by the principle of adiabatic continuity [2] which allows the eigenstates
of the interacting system to be connected to the eigenstates of the non-interacting
system. The key assumption of this notion is that levels do not change symmetry as

1The precise sense in which we mean the system is weakly interacting is that it is not strongly
correlated, the latter of which will be defined below. In particular, by weakly interacting we do not
mean that the interactions lie within the radius of convergence of a perturbation series.
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4 1 General Introduction

interactions are introduced, and so levels corresponding to the same symmetry have
no crossings with increasing interactions. Hence, the ordering of quantum numbers
in the interacting and non-interacting systems will be roughly the same. The most
prominent many-body theory resulting from adiabatic continuity is Landau’s Fermi
liquid theory, which applies to weakly interacting fermions in three dimensions.
Here, the elementary excitations of the interacting system are quasiparticles which
stand in one-to-one correspondence with those of a free Fermi gas, albeit with
renormalized physical parameters [3]. Adiabatic continuity clearly fails if the
system changes its symmetry, as it does near a point of non-analyticity known as
a quantum phase transition (QPT) [4]. We define the class of systems which cannot
be adiabatically connected to the non-interacting counterparts of their microscopic
degrees of freedom as being strongly correlated.

The degrees of freedom which are relevant to the low-energy theory of a
strongly correlated system may be difficult to identify, as we have no reference non-
interacting state to which they may be related. An example of this is the fractional
quantum Hall effect, in which the relevant degrees of freedom are quasiparticles
which carry rational fractions of the elementary charge [5] and also obey fractional
exchange statistics [6, 7]. The identification of the relevant macroscopic degrees
of freedom in a many-body system is provided, at least in principle, by the
renormalization group (RG) procedure [8]. An RG analysis involves studying the
behavior of a system under a scaling transformation in which some set of degrees
of freedom are integrated out to yield an effective description of the system in fewer
variables. This procedure is called coarse graining. The main classical focus of
RG was in studying critical systems. Critical systems have no length scales due
to the diverging of the correlation length � describing exponential decay of equal-
time order parameter correlations in the ground state.2 Thus, provided that we have
coarse grained to a scale large compared to the microscopic scales, further coarse
graining should not produce any significant effect on our description of the system.
That is, critical points represent fixed points of the RG iteration. More generally,
the fixed points of the RG iteration correspond to the possible macroscopic states
of the system. Here the remarkable feature of universality naturally arises, in which
microscopic details of the system are not relevant to its macroscopic behavior.

However powerful the RG idea, one still must choose an appropriate coarse
graining procedure. A particularly powerful procedure for one-dimensional (1D)
systems is White’s rule [9], which posits that the states which should be kept
when coarse graining a system in real space are those which have the largest
weight in the reduced density matrix obtained by tracing out all degrees of freedom
not being coarse grained. The real-space RG procedure utilizing White’s rule is
formulated algorithmically as the density-matrix renormalization group (DMRG),
which has been the method of choice for strongly correlated 1D systems for nearly
20 years. Theoretical analysis of DMRG has revealed [10, 11] that it may be

2In the absence of exponential decay, the correlation length may be taken to be a length scale on
which correlations qualitatively shift to a long-distance behavior.
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formulated as a variational method within a class of quantum states known as
matrix product states (MPSs). This realization together with insights from quantum
information theory, particularly from entanglement theory, led to a generalization of
the DMRG procedure to time evolution for short-range interacting systems [12–14]
and to the proper entanglement structure to describe states with periodic boundary
conditions efficiently via DMRG [15]. Also, research along these lines has led
to proposals of real-space RG schemes based on entanglement decimation in
higher dimensions such as projected entangled-pair states (PEPS) [16, 17] and the
multiscale entanglement renormalization algorithm (MERA) [18]; this is still an
area of intense research activity.

Using MPSs as a variational ansatz builds upon a long history of variational
methods for strongly correlated systems. Many of the most successful methods
in many-body theory, for example the Bardeen–Cooper–Schrieffer (BCS) theory
of superconductivity [19], the theory of the quantum Hall effect [5], and density
functional theory (DFT) [20, 21], are all variational in nature. The availability
of open source packages for DFT such as SIESTA [22], ABINIT [23], and
OCTOPUS [24] has allowed for great progress in materials physics. MPSs and
their generalizations provide the best hope of stimulating such progress for strongly
correlated systems. Hence, one of the goals of this thesis is to provide flexible
MPS algorithms which are applicable to a wide array of systems, and open source
implementations of MPS algorithms which are simultaneously high performance
and easily modified to meet user’s needs.

In addition to the theoretical hurdles to studying strongly correlated systems,
it is difficult in a condensed matter setting to predict which systems will be
strongly correlated. Even when a strongly correlated system has been discovered,
often its parameters are difficult to control, and its microscopic dynamics may
be too fast to be reliably studied. The crossover of atomic physics into the field
of strongly correlated condensed matter began circa 1995 when advances in laser
cooling [25] and evaporative cooling [26, 27] led to the creation of Bose–Einstein
condensates (BEC) of the alkali metal species Rb [28], Na [29], and Li [30, 31].
As opposed to liquid Helium, the only other known elemental quantum liquid at
the time, the interactions in these highly dilute gases were weak, enabling more
detailed analysis both theoretically and experimentally. Following the success of
bosonic atoms, fermionic atoms were also brought to quantum degeneracy [32–34].
While Pauli exclusion prevents fermions in the same internal state from interacting
through s-wave interactions and hence drastically slows evaporative cooling at low
temperatures [35], Fermi gases may be cooled either through sympathetic cooling
of the gas with a BEC or through evaporative cooling when multiple species of
fermions are present.

Ultracold3 atomic gases have many advantages over traditional condensed matter
systems for studying many-body physics. For one, the timescales which are relevant
to an atomic many-body system are on the order of milliseconds to minutes,

3By ultracold, we mean temperatures less than 1	K.
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several orders of magnitude longer than typical timescales of condensed matter
experiments. This has enabled for the study of slow many-body dynamics of a
QPT [36] and the collapse and revival of matter wave coherence [37]. Additionally,
ultracold atoms are extremely well isolated from their environment, and sources
of decoherence such as spontaneous emission events can be controlled such that
lifetimes are on the order of seconds to more than a minute. Finally, using tools
such as optically or magnetically tunable Feshbach resonances [38] allows for
precise tunability of the interactions in ultracold gases. We will discuss Feshbach
resonances in more detail in Sect. 1.1.

Another essential tool for strongly correlated many-body physics with ultracold
atoms is provided by optical lattices. An optical lattice [39] is a standing wave array
of light formed by counter-propagating laser beams in three dimensions. The light
couples to the dynamical polarizability of the object, and the resulting AC Stark shift
induces a periodic trapping potential. By altering the geometry or phase of the beams
forming the lattice, one can induce a wide variety of geometries [40], including
confinement to a quasi-1D geometry [41, 42], as well as time-dependence [43].
Such a lattice mimics the effects of the lattices common in solid state systems, but
without the difficulties provided by disorder and phonons which are inevitable in
solid state systems at finite temperature. A major avenue of research stemming
from this capability is in tuning the parameters of an atomic gas trapped in an
optical lattice such that the governing Hamiltonian reproduces a model relevant
to condensed matter physics. Such specialized experimental systems represent
quantum simulators [44], which are essentially single-program quantum computers
first envisioned by Feynman [45]. The first atomic quantum simulator to be both
proposed [46] and built [36] was the Bose–Hubbard model [47]

OH D �t
X

hi;j i

h Ob
i Obj C h:c:
i
C U

2

X

i

Oni . Oni � 1/ : (1.2)

Here i and j label sites in a lattice, hi; j i denotes all pairs which are nearest-
neighbors in the lattice, Obi destroys a bosonic particle at site i , and Oni D Ob
i Obi
counts the number of bosonic particles on site i . The first term represents quantum
mechanical tunneling of bosons between neighboring sites with an associated
tunneling energy t , and the latter term is an energetic penalty for two or more bosons
to occupy the same site due to interactions. While it is remarkable that ultracold
atoms are able to realize a model of great relevance to condensed matter physics,
Eq. (1.2) is also important in that it represents a minimal, natural Hamiltonian
for ultracold atoms in an optical lattice. That is, if one were to load an ultracold
bosonic alkali gas into an optical lattice without fine-tuning of fields, Eq. (1.2)
would govern its properties. A topic which forms much of the bulk of this thesis is
determining the corresponding natural Hamiltonian for molecules, which have more
a complex internal structure than atoms. We will discuss the microscopic derivation
of Hamiltonians such as Eq. (1.2) in further detail in Chap. 2.
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The remainder of the introduction is organized as follows. In Sect. 1.1 we review
Feshbach resonances, an indispensable experimental tool for tuning the interactions
of ultracold atomic gases and the production of ultracold molecules. In Sect. 1.2
we discuss experimental production of ultracold molecules. In Sect. 1.3 we provide
a basic review of the structure and few-body properties of the molecules relevant
to this thesis. In Sect. 1.4 we present a digest of modern numerical techniques for
the quantum many-body problem, with a focus on methods applicable to strongly
correlated systems. In Sect. 1.5 we overview work by other groups which is related
to the results of this thesis. Finally, in Sect. 1.6, we outline the layout of the body of
the thesis.

1.1 Feshbach Resonances

Feshbach resonances [38, 48] are an essential component both of the tunability of
interactions in ultracold atomic gases and of the production of ultracold molecules.
The basic physics of a Feshbach resonance can be explained through a two-
channel model. In this model, we partition our Hilbert space into open and
(energetically) closed channels, with the asymptotic limit of the open channel
potential corresponding to two free atoms. The closed channel potential is assumed
to support a bound molecular state near the threshold of the open channel potential.
In the presence of a phenomenological interchannel coupling g, the bound state of
the closed channel is no longer a true bound state but becomes a resonance due to its
mixing with the open channel.4 Now, a Feshbach resonance occurs when one of the
bound states in the closed channel becomes near degenerate with the scattering state
in the open channel. Even a weak coupling g is sufficient to cause strong mixing
of the two channels when these energies nearly coincide, and this causes a drastic
change in the scattering properties. Expressed in terms of the detuning � between
the open and closed channels, the two-channel scatting amplitude is [49]

f .k/ D � 2�

4�„2
g2

�k � � C �g2

2�„2 ik
; (1.3)

where � is the reduced mass, k the incident momentum, and �k the incident energy.
We may write this scattering amplitude as

f .k/ D � 1

1=as C ikC rbk2 ; (1.4)

by identifying the s-wave scattering length as D �2�g2=4�„2� and the effective
range rB D �„4=�2g2, both of which are experimentally measurable. Although

4This is what differentiates a Feshbach resonance from a shape resonance. In the latter no bound
state exists in the absence of the coupling.



8 1 General Introduction

this is the asymptotic form of the scattering amplitude arising from scattering of
low-momentum particles with k jrB j � 1 [50], this form is exact for the two-
channel model.5 Hence, at higher relative energy the two-channel model breaks
down in its ability to describe the full momentum dependence of the scattering
amplitude.

Feshbach resonances in ultracold gases are most frequently provided by hyper-
fine couplings between atoms whose valence electrons reside in singlet and triplet
configurations.6 The singlet potential is generally much deeper than the triplet
potential, and also generally appears above the threshold of the triplet potential.
Hence, the singlet forms the energetically closed channel. Because of the difference
in magnetic moment between the singlet and triplet states, the energetic difference
between their scattering thresholds may be tuned with a magnetic field. Denoting
the detuning � between a bound state of the closed channel and the scattering
threshold of the open channel in terms of the difference in magnetic moment
ı� � �closed � �open, the magnetic field strength B , and the critical magnetic field
strength Bc where the detuning vanishes,

� .B/ D ı� .B � Bc/ ; (1.5)

we may parameterize the dependence of the s-wave scattering length on B as [38]

as .B/ D abg

�
1 � 


B � B0
�
: (1.6)

Here, 
 D �0=ı� with �0 defining the strength of the resonance, B0 D Bc C ıB
where ıB D ıE=ı� is an interchannel interaction-induced shift, abg is the
background scattering length the open channel would have in the absence of the
closed channel bound state, and we have neglected any inelastic processes.

A common parameterization of the interactions in dilute atomic gases is provided
by the regularized s-wave pseudopotential [51, 52]

U .r/ D 2�„2as
�

ı .r/ @rr: (1.7)

This pseudopotential is exact in the low-energy limit E ! 0, and provides an
excellent approximation provided that k jasj � 1 and krB � 1 [38]. Hence, the
controllability of the scattering length translates quite readily into controllability
of the two-body interactions of the gas. We will return to this parameterization in
Chap. 2, when we discuss Hubbard models.

5Note that the effective range given in the context of scattering of slow particles, r?, is related to
the effective range defined here as r? D �2rB .
6The spin states of real atoms are never purely singlet or triplet, but rather singlet-dominated or
triplet-dominated.
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1.2 Production of Ultracold Molecules

Molecules have a complex internal structure of vibrational and rotational energy
levels which has no counterpart in alkali atoms.7 Transitions between the internal
states of a molecule are not typically governed by strict selection rules as in atoms,
but rather by the square modulus of the wave function overlap between the states in
question. These overlaps are known as Franck–Condon factors. This complicated
internal structure makes direct laser cooling of a molecule challenging, as it is very
difficult to devise a closed pumping cycle. Several laser cooling schemes have been
proposed for specific molecules [53–56], and enhancement of laser cooling has been
predicted when molecules are placed within an optical resonator cavity [57–59],
with laser-cooled ions [60], or with atoms in Rydberg states [61, 62]. Experimental
progress in direct laser cooling of molecules has been made in rare cases, most
notably Strontium Fluoride [63]. Other direct methods of cooling which start from
preformed molecules and attempt to extract energy from them include buffer gas
cooling [64] and deceleration [65] by means of electric [66–68], magnetic [69, 70],
or optical [71–73] fields. In the buffer gas cooling technique, hot molecules of
the desired species are loaded into a chamber containing a cryogenic noble gas,
most commonly Helium or Neon, and allowed to equilibrate. The latter technique
amounts to essentially running a particle accelerator in reverse. That is, translational
energy is extracted by imposing a field gradient on the molecule. The advantage of
direct means such as buffer gas cooling or deceleration is that they are applicable
to a wide array of species. However, direct methods to date have only produced
molecules in the cold regime of temperatures T � 10mK–1 K which does not allow
access to the fully quantum degenerate regime.

The most successful methods for producing ultracold, high-density samples of
molecules have been indirect methods which form molecules from atoms which
have themselves been cooled to ultracold temperatures. Because of the large effort
in cooling alkali atoms [28–30], most of the molecules formed in this fashion are
bialkali molecules. Early attempts at the indirect production of molecules focused
on photo-associating two atoms scattering in S states into a bound state of the
SCP excited potential [74, 75]. Molecules can transition to the ground (electronic)
state by spontaneous decay [76, 77]. However, the most successful method for
creating ultracold molecular samples in very deeply bound levels is by magneto-
association of ultracold atoms into bound Feshbach molecules [38, 78] by sweeping
across a Feshbach resonance. Generally, the magneto-association process creates
molecules which are weakly bound but translationally ultracold, and the process has
been optimized so as to have nearly unit efficiency. Magneto-association has been
achieved for heteronuclear species [79–86] as well as two-component fermionic
species [87–93] and single-component bosons [94, 95]. In the latter two cases,
these molecules have been observed to condense and form a molecular BEC. This

7An overview of molecular degrees of freedom is provided in Sect. 1.3.
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tunability enables the study [91–93, 96–98] of the crossover from a BEC of diatomic
molecules to a Cooper paired dilute Fermi gas, a phenomenon known as the BEC-
BCS crossover [99–103]. Part III of this thesis focuses on solving the crossover
problem in an optical lattice at the two-particle level using numerically exact
techniques, and then using this numerical solution to derive an effective many-body
model for the crossover in the lattice. Although the continuum limit of the BEC-
BCS crossover problem has been solved, the lattice problem has been the subject
of considerable debate. The low-energy effective theory describing a two-channel
model in the lattice takes the form of a multi-channel model between unpaired
atoms in the lowest band and a set of dressed molecules which form an effective
closed channel. However, as with the relevant degrees of freedom of the other
strongly correlated systems mentioned in the introductory paragraphs, the effective
closed channel bears little resemblance to the microscopic closed channel, instead
consisting of an infinite summation over Bloch bands from both the open and closed
microscopic channels.

While the molecules which are produced through Feshbach association are
translationally ultracold, they are often very highly internally excited. For ultracold
atoms, the presence of excitations in the internal degrees of freedom does not cause
concern, as these degrees of freedom are usually hyperfine states which can be
manipulated via optical pumping. For molecules, the presence of a rich internal
structure of rotational and vibrational levels, together with the absence of strict
selection rules for transitions, makes the isolation of a single molecular state a more
daunting task. Remarkable progress has been made in transferring a collection of
Feshbach molecules to a low-lying internal state via the stimulated Raman adiabatic
passage (STIRAP) procedure [82, 86, 95, 104–107]. In this procedure, Feshbach
molecules are transferred coherently to a much more deeply bound state via a two-
photon process chosen such that the Franck–Condon factors of the intermediate
state with both the target deeply bound state and the Feshbach molecular state are
large. This process has been demonstrated to have 90 % one-way efficiency in the
case of KRb [106]. Finally, by using the mixing of hyperfine and rotational states
induced by a nuclear quadrupole coupling, one can transfer the molecules into the
lowest hyperfine state at a given magnetic field, resulting in absolute ground state
molecules [108].

1.3 Classifications and Few-Body Physics of Ultracold
Molecules

STIRAP has been the most successful method for producing ultracold, high phase-
space density samples of molecules. Because STIRAP requires that the constituent
atoms are already ultracold before they are assembled into molecules, ultracold
molecules to date have been mostly alkali metal dimers [82, 85, 86, 109, 110],
with mixed alkali metal-alkaline earth molecules on the horizon. The natural energy
scales governing the various degrees of freedom of an alkali metal dimer molecule
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Fig. 1.1 Intrinsic energy scales of alkali metal dimers. In descending order, the energy scales of
a 1† diatomic molecule are excitations of the electronic state, vibrational modes of the nuclei
about the equilibrium internuclear separation, rotation of the molecule about its center of mass,
and couplings between the nuclear spins and the other angular momenta of the molecule. These
energy scales span nearly twelve orders of magnitude

span nearly twelve orders of magnitude, and can be classified as in Fig. 1.1. The
largest energy scales are set by the electronic degrees of freedom and are of order a
few electron-volts. The electronic degrees of freedom are involved in the coupling of
the molecule to the optical lattice via the polarizability tensor [111], but these fields
are far detuned from any resonances so that the molecule remains in its electronic
ground state. The molecular term symbol denoting the electronic state is of the
form Q2SC1ƒ˙, where S is the total electronic spin, ƒ is the absolute value of
the projection of the total orbital angular momentum along the internuclear axis,
and ˙ denotes the parity under reflections in a plane containing the internuclear
axis [50]. The termQ D X for the ground electronic potential and thenA;B;C; : : :
in energetically ascending order for excited electronic potentials of the same S;ƒ
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multiplicity as the ground state and a; b; c; : : : for excited electronic potentials of
different multiplicity. When convenient, we will leave offQ to discuss the multiplet
structure of a particular level without specifying how it is ordered with respect to
the others. In this thesis we focus on molecules with 1† ground states.

The next largest degrees of freedom are the vibrational degrees of freedom, which
are classified by a quantum number v. The spacings between vibrational energy
levels are of order a few THz, and can be neglected at ultracold temperatures.
The next relevant degrees of freedom are the rotational modes of the molecule
which have spacings on the order of a GHz. The rotational modes will be of
particular interest for us because they are the energetically lowest-lying dipole-
accessible excitations of 1†molecules. We denote the operator of rotational angular
momentum as ON, with eigenkets ON2jNMN i D N.N C 1/jNMN i. Here MN is the
projection of N along the space-fixed z-axis. In the presence of a DC electric fieldN
is no longer a good quantum number, but the eigenstates are adiabatically connected
to states in zero field. Hence, we use the notation NN to represent the eigenstate in a
DC field which is adiabatically connected to rotational stateN in zero field. Finally,
at the bottom of the energy hierarchy are the nuclear spins given by the operators
OI1 and OI2 with projections M1 and M2 along the space-fixed z axis. Here, 1 and 2
refer to the constituents of the molecule in the order that the molecule is named,
e.g. Rb is 1 and Cs 2 for RbCs. The interactions governing the nuclear spins are of
order 100 Hz–1 kHz. In terms of temperature, 1 kHz corresponds to roughly 50 nK,
and so hyperfine structure is typically thermally populated while the other internal
structure is not. While these energies are small compared to the other scales of the
problem, the precise, state-selective nature of the STIRAP process requires us to
take into account the hyperfine structure of the molecules [108].

Explicitly, a 1† alkali dimer molecule may be characterized by the parameters
displayed in Table 1.1 [108, 111–113]. The numerical values of these parameters
for the three most experimentally relevant species at the time of the writing of this
thesis [82, 109, 110] are also collected in Table 1.1.8 The physical origins of these
terms and their role in the microscopic Hamiltonian are given in Chaps. 3 and 4.

What are the new features of ultracold molecules relevant to many-body physics?
The dipole–dipole interaction

OHDD .R/ D
Od � Od � 3

� Od � eR
� �

eR � Od
�

R3
; (1.8)

where R is the vector connecting the two dipoles, is the source of much interest
in polar molecules as it provides interactions which are both long range and
anisotropic. The anisotropy has been observed in studying the stereodynamics
of ultracold collisions [114, 115]. In addition, because of the anisotropy, angular
momentum is not conserved during low-energy scattering. This adds a short-range

8The dynamic polarizability of LiCs has not yet been calculated, to our knowledge. We estimate
that the ratio of the perpendicular and parallel polarizabilities will be similar to that of KRb and
RbCs.
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Table 1.1 Coupling constants defining a 1† molecular species

Description Symbol 87Rb133Cs 40K87Rb 7Li133Cs

Rotational constant BN (GHz) 0.488 1.1139 5.636

Permanent dipole moment d (Debye) 1.25 0.566 5.52

Nuclear spin 1 I1 3/2 4 3/2

Nuclear spin 2 I2 7/2 3/2 7/2

Nuclear g-factor 1 g1 1.834 �0.324 2.171

Nuclear g-factor 2 g2 0.738 1.834 0.738

Nuclear quadrupole coupling
1

.eqQ/1 (MHz) �0.872 0.45 0.0185

Nuclear quadrupole coupling
2

.eqQ/2 (MHz) 0.051 �1.41 0.188

Rotation-nuclear spin
coupling 1

c1 (Hz) 98.4 �24.1 32

Rotation-nuclear spin
coupling 2

c2 (Hz) 194.1 420.1 3014

Tensor nuclear spin–spin
coupling

c3 (Hz) 192.4 �48.2 140

Scalar nuclear spin–spin
coupling

c4 (Hz) 17345.4 �2030.4 1610

Rotational g-factor gr 0.0062 0.014 0.0106

Nuclear shielding factor 1 �1 (ppm) 3531 1321 108.2

Nuclear shielding factor 2 �2 (ppm) 6367 3469 6242.5

Parallel polarizability ˛k (au) 3033.97 2116.77 ?

Perpendicular Polarizability ˛? (au) 675.966 471.61 � 0:2˛k

Most of the values in this table have been obtained by DFT or other ab-initio theoretical
means [111–113] and have not yet been verified by experiment. The exceptions are the
rotational constant, dipole moment, and nuclear quadrupole couplings for KRb [108]

contribution in the s-wave channel [116–118] which gives rise to a weak shape
resonance in all even-` channels. The given form of the dipole–dipole potential
breaks down at short distances where dispersion and chemical effects become
relevant. We account for this by imposing a short distance cutoff b of order rvdW,
the van der Waals length, on the dipole–dipole potential and account for the short-
distance behavior by adding a contribution [119, 120]

4�„2a .d/
m

ı .r/ (1.9)

to the short-range pseudopotential. Here a .d/ is the dipole-dependent scattering
length which is provided by the low-energy limit of the scattering matrix. Such a
pseudopotential has been shown [119] to reproduce the correct physics away from
any shape resonances.

In addition to the dipole–dipole interaction, molecules have a rich internal
state space which can be tunably accessed using AC microwave fields. Thus, in
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addition to the ability to fine-tune fields to produce spin models for quantum
simulation [121, 122], one can also access regimes where a large number of internal
degrees of freedom are interacting over a disparate range of timescales and thus
build a simulator of a quantum complex system [123]. The means by which one can
tune the internal state space using external fields will be covered in Chaps. 3 and 4.

Molecules also display complex short-range physics due to both the large number
of internal states and large energy scales at short-range [124] and the possibility
of chemical reactions [125, 126]. In order to discuss short range physics, we first
clarify the scales which classify processes as being either short or long range.
We define the dipole length rd D

�
md2=„2� as the separation where the dipolar

energy of two-particles is comparable to the relative collision energy of two-
particles with a wavelength of rd . We also define the van der Waals length rvdW Dh
2�=� .1=4/2

i �
2�C6=„2

�1=4
, where C6 is the coefficient of the 1=R6 dispersion

potential with R the intermolecular separation, � D M=2 the reduced mass of
two molecules of mass M , and � .x/ is the Gamma function, as the separation
where the dipolar interaction becomes comparable to the short-range dispersive
interaction [38, 127]. The scale at which chemical reactions become relevant is Re ,
the bond length, which is smaller than 1 nm for the species considered here [128].
The associated energy scale is on the order of 100 THz, the chemical bond scale.
The van der Waals length rvdW is the next relevant length scale, ranging from 6 nm
for KRb to 30 and 50 nm for LiCs and RbCs, respectively. The dipole length is very
large compared to all of these, and increases with increasing dipole moment. The
short-range region where chemical and state-changing collisions become relevant
corresponds to R < rvdW.

A complete picture of low-energy scattering for these molecules is provided
by multichannel quantum defect theory (MCQDT) [129] which uses the large
separation of scales to define dimensionless parameters s and y which characterize
the short range phase shift and chemical reactivity [130]. LiCs and KRb are both
highly reactive [131]; there is unit probability of loss at short range. Thus, the
collision rates, both elastic and inelastic, depend only on the long-range potential
and there can be no scattering resonances. Universal formulae exist for such
species [131–133] and agree well with experimental measurements of molecular
lifetimes [125]. Also, hyperfine spin appears not to be relevant in the scattering
of highly reactive molecules [125, 131]. For non-reactive species such as RbCs
and NaK, the collisions are non-universal, and may have electric field dependent
scattering resonances [134].

Recent work has shown that the short-range physics, both inelastic and elastic,
also depends strongly on an applied electric field [114, 133, 135, 136]. In particular,
it has been well established that the stability of a molecular ensemble increases with
increasing dipole moment in quasi-2D traps [133, 137]. Somewhat surprisingly, the
electric field does not appear to be relevant to the stability of a molecular gas in
a 3D optical lattice [126]. The detailed description of the short-range scattering is
outside the scope of this work. We characterize the short-range physics by a complex
scattering length as describing both elastic and inelastic scattering, which can be
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computed using MCQDT. We note that large real or imaginary parts of as lead to an
effective hard-core condition in an optical lattice where only one molecule can exist
per lattice site due to strong resonant interactions or the continuous quantum Zeno
effect [138], respectively.

1.4 Simulation Methods

Analytical solutions of the many-particle Schrödinger equation are rare, and so often
one resorts to numerical techniques. One of the most successful methods for the
quantum many-body problem is DFT, which relies on the fact that the ground state
energy is a unique functional of the ground state density [20, 21]. However, this
energy functional is only known exactly for a free electron gas, and so approximate
functionals are used for interacting systems. The computational procedure of DFT
consists of minimizing the energy generated from an approximate functional by
changing the density. The density corresponding to the minimum energy is expected
to most closely represent the true ground state density. While in principle the many-
body wave function of the ground state is itself also a functional of the ground state
density, this functional is not known, and so the predictive power of DFT is limited
to observables which depend only on the density. Hence, DFT is not generically
useful for detecting order in strongly correlated systems, which generally requires
two-point correlation functions such as the density–density correlation function
h Oni Onj i. Also, approximate functionals are only available for Coulomb-interacting
electronic systems, and so DFT is not an appropriate starting point for systems
which interact through different potentials such as molecules interacting through
the dipole–dipole potential. Finally, we note that no improvements made to DFT
can turn it into a “black box” method applicable to any interacting electronic
system, even in principle, as the existence of an efficient approximation to the
universal functionals relevant to electronic systems would imply that the hardest
problems for quantum computers to solve would be efficiently solvable by classical
computers [139].9 This is thought to be impossible, although no formal proof has
yet been provided.

The simplest method to solve the many-body Schrödinger equation is to form
a matrix representation of the Hamiltonian operator and numerically diagonalize
it. This method is referred to as exact diagonalization. The fact that the Hilbert
space of a many-body system grows exponentially with the number of constituents
in the system implies that this procedure is only practical for systems with very few
constituents. Some improvement can be made by considering sparse eigensolver
methods such as the Lanczos [140] or Davidson [141] algorithms which use

9Explicitly, it would imply that a Quantum Merlin–Arthur (QMA)-complete problem lies in P,
where P is the class of problems which can be solved in polynomial time by a deterministic Turing
machine. QMA is the quantum analog to the classical complexity class NP.
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only a procedure applying the Hamiltonian to a given vector to find solutions
corresponding to extremal eigenvalues. By carefully accounting for all symmetries
of the system, for example point group symmetries of the lattice, U(1) symmetry
corresponding to conservation of number of particles, or SU(2) spin symmetry,
the nonzero values of the Hamiltonian can be codified and calculated on-the-fly
to optimize performance. Even with all of these optimizations, the cutting edge
of modern exact diagonalization is limited to roughly 40 two-component spins, or
qubits, or a half-filled electronic system on a square lattice with 20 sites.

Another popular class of methods for the many-body problem are Quantum
Monte Carlo (QMC) methods. Path-integral QMC methods use the worldline
mapping from a d dimensional quantum system to a d C 1 dimensional classical
system [4, 142] and then use the classical Metropolis algorithm [143] to generate
the equilibrium expectations of observables by sampling worldline configurations.
The most common path integral QMC methods for strongly correlated systems
are loop QMC [144] and the worm algorithm [145]. Modern implementations of
these algorithms can simulate millions of particles at low temperatures, even when
strongly correlated. However, path integral QMC suffers from the sign problem for
interacting fermionic systems in dimensions greater than one or frustrated systems
which have an extensive classical ground state degeneracy. In these systems, there
exist configuration updates of the worldlines which amount to negative probabilities
in the classical Monte Carlo scheme, and so Monte Carlo can no longer be
applied. If the sign is ignored in the update procedure, an exponentially growing
cancellation in the sign expectation leads to an exponential growth of errors rather
than a statistically limited behavior of errors as in convergent Monte Carlo [146].
A similar phase problem exists when applying QMC to the unitary dynamics of
a many-body system. There also exist variational QMC methods such as diffusion
Monte Carlo [147] or variational Monte Carlo [148] in which a trial wavefunction
is optimized using a Monte Carlo procedure. These algorithms suffer from bias
in the choice of the variational ansatz, and also are not generally applicable to
dynamics. Diagrammatic Monte Carlo [149] samples terms10 in a series rather
than configuration updates. If the series is a perturbation series, the associated
diagrams are Feynman diagrams. Bold-line diagrammatic Monte Carlo [150–152]
uses re-summation techniques [153] over subsets of diagrams to improve the
efficiency, and do not suffer from sign problem in some cases. Such methods may
also be applicable to real-time dynamics [154].

A more recent method for strongly correlated systems is Dynamical mean-field
theory (DMFT) [155–159], in which the full many-body problem is mapped onto
an effective impurity problem for one of the constituents with a self-consistently
defined path describing the coupling of this impurity to the surrounding system.
The sign problem in the associated impurity problem can be better controlled due
to the small size of the impurity, and the mean-field approximation can be assuaged

10Series expansions often employ a diagrammatic notation for the terms in the series, hence the
name diagrammatic Monte Carlo.
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by considering clusters of sites rather than single-site impurities and extrapolating
in the size of the cluster. DMFT is most useful in dimensions D > 2, and
becomes exact in the limit that D ! 1. DMFT requires the analytical mapping
from the original many-body problem to the impurity problem, and so has only
been formulated for specific interaction potentials such as the those appearing in
the Bose–Hubbard [160] and Fermi–Hubbard [156] models or for Bose–Fermi
mixtures [159]. Hence, at present, generic applications in DMFT require new
development on a case-by-case basis. Both DMFT and most flavors of QMC have
the advantage that they incorporate finite temperature naturally.

The simulation methods that we apply for many-body studies in this thesis are
variational methods based on MPSs, which are covered in detail in Part IV of
this thesis. MPSs are a class of states which are generated through the process
of a real-space renormalization group procedure known as the DMRG. The main
convergence parameter � used in an MPS simulation is a cutoff in the entanglement
between any two complementary subsections. One of the greatest advantages of
MPS methods is that, like exact diagonalization, MPS methods produce wave-
functions, and so a vast array of properties may be computed. Furthermore, MPS
methods can be formulated for any microscopic degrees of freedom and for any
interactions, making them suitable for generic implementation. Finally, one can
devise efficient variational MPS algorithms for the dynamics of systems. The
flexibility of MPS algorithms to adapt to different degrees of freedom, a variety
of interactions, and simulation of time evolution makes them best suited for our
purposes. The main drawback of MPS methods is that they work best in 1D and at
zero temperature. Higher dimensional generalizations of MPS algorithms exist, but
their numerical conditioning is much worse than that of MPS algorithms at present.
Additionally, generalizations to finite temperature exist, but they also scale worse
than their zero-temperature counterparts [161–164].

With MPS methods having been used successfully for nearly 20 years, why
do molecules necessitate new code and algorithm development? The first reason
is that Hubbard models for dipolar molecules have long-range interactions as
discussed in Chap. 2. While DMRG-type methods have been devised for long-range
interacting systems [163, 165], these methods are often Hamiltonian-specialized
and inefficient. A relatively new characterization of Hamiltonians based on matrix
product operators [166–168] (MPOs) enables for long-range interactions to be
accommodated efficiently. Furthermore, as discussed in Chap. 7, by using a small set
of finite state automaton rules for the construction of Hamiltonian terms from local
operators, a wide array of Hamiltonians can be provided as input in a consistent
form to an MPS program. This completely eradicates the need for Hamiltonian-
specialized implementation. The need for flexibility in an MPS program is vital
for studying molecules; as more complex molecules become cooled to quantum
degeneracy, a wider array of more complex many-body models are expected. Hence,
flexible code prevents the need to “reinvent the wheel” as new many-body models
become relevant. The MPS algorithms presented in this thesis make no reference to
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the microscopic constituents of the model under study or to the range or nature of
their interactions. Rather, the only requirements are that the system be quasi one-
dimensional and the Hamiltonian be expressed as an MPO.

Long-range interactions allow for more complex translation-breaking orders than
finite-range interactions. An example of this is the “devil’s staircase” of insulating
phases at rational fillings of bosons interacting with 1=r3 interactions [169, 170].
The insulating states can be true long-range ordered crystals in 1D as opposed
to, e.g., superfluids in 1D which are prevented from long range ordering by the
Mermin–Wagner theorem [171, 172]. Broken translational order causes special
difficulties for MPS algorithms, as these algorithms are stated most naturally for
open boundary conditions. For a system with true long-range translational order,
the presence of open boundaries strongly affects the bulk behavior of the system
even several hundreds of sites away from the boundaries. To avoid this difficulty, it
is necessary to work directly in the limit of an infinite lattice, in which we assume
that the many-body state has a periodically repeating unit cell. An algorithm for
variationally finding the unit cell of the ground state of an infinite system is provided
in Chap. 8.

Finally, even for the simplest diatomic molecules with 1† ground states the
internal state space which is accessible can be significant due to a large hyperfine
manifold. A powerful way of breaking a large Hilbert space into its smaller relevant
components is through the explicit conservation of symmetries. In Chap. 6 the
structure of symmetry-adapted MPSs is elucidated for the simplest case of Abelian
symmetries, in which all of the irreducible representations are one-dimensional.
Remarkably, the conservation of Abelian symmetries can be implemented in a
completely generic way, and an arbitrary number of such symmetries may be
simultaneously conserved. The only place in which the particular symmetry group
is relevant is in determining how two quantum numbers transform under the group
operation. Implementation details are provided in Chap. 6.

1.5 Related Work by Other Groups

The strongest connection of our work on polar molecules to other groups is the
dipole–dipole interaction. The most detailed many-body studies of dipole–dipole
interactions in ultracold atomic systems have focused on strongly magnetic atoms
such as Chromium, Erbium, Europium, and Dysprosium. Chromium was the first
of these atoms to be Bose-condensed [173, 174], with Dysprosium [175] and
Erbium [176] only having been Bose-condensed very recently. Fermionic isotopes
of Dysprosium have also been brought to quantum degeneracy [177]. The dipolar
interaction of Chromium is about one-sixth its short-range interaction, and so the
dipolar effects are generally perturbative in nature. Still, clear signatures of the
dipole–dipole interaction have been observed, such as d -wave expansion following
the collapse of a Chromium BEC [178]. For broad reviews on the physics of dipolar
gases, we refer the reader to [179, 180].
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More closely related to our work are studies of dipolar particles in harmonic
traps [119, 120, 181–186] and lattices [170, 187–193]. Most of the work done
in harmonic traps is based on the mean-field Gross–Pitaevskii formalism which
assumes the presence of a condensate. In the lattice commensurability effects can
drive the system out of a condensed phase and into an insulating phase with a
periodicity commensurate with the lattice. Thus, a variety of techniques have been
brought to bear on the lattice problem. The quantum phases of bosonic dipoles
in optical lattices have been investigated for various 2D geometries, including
on the square lattice using mean field techniques [189, 191] and via QMC on
the square [170] and triangular lattices [192]. A wide variety of quantum phases
are possible including checkerboard solid and supersolid phases in addition to the
superfluid and Mott insulator phases present for short-range interacting bosons.
Supersolids are characterized by coexisting translational and phase order, and have
been the subject of intense study [194]. Studies beyond the ground state properties
include the characterization and stability properties of metastable states [187, 188].
The presence of a lattice has also been proposed to enhance the production of
molecules through indirect means [190]. The scattering properties of a dipolar
gas strongly confined in two dimensions but free to move along the third have
been studied [183], paralleling investigations of confinement-induced resonances
appearing in the short-range case [195]. Finally, the parameters of a Luttinger
liquid theory have been postulated for general power-law interactions in 1D [169],
including an analysis of the Berezinskii–Kosterlitz–Thouless transition to pinned
phases in the presence of a weak lattice.

The dipole–dipole interaction is not the only interesting feature of polar
molecules. The presence of a permanent electric dipole moment allows for
transitions between rotational states in an AC microwave field. An early suggestion
based on this observation was provided by Demille [196] who proposed that polar
molecules in a one-dimensional trap could be used for quantum computation.
Many other groups have proposed using the internal structure to build quantum
simulators of spin models [197, 198] or to study other condensed matter phenomena
such as the Holstein model [199], exciton physics [200, 201], the physics of
liquid crystals [202, 203], and string orders related to the Haldane phase of the
antiferromagnetic spin-1 Heisenberg model [204, 205]. The internal structure can
also be tuned through external fields in order to produce a desired interaction
potential for a specific molecular state in a dressed-state picture [206–208]. More
exotic proposals involve loading atoms into self-assembled lattices of dipolar
molecules [209, 210] or tuning three-body interactions via external fields [211, 212].
A great deal of recent interest has been garnered for dipolar molecules in bilayer
geometries where the dipolar interaction within a layer is repulsive, stabilizing the
gases within the layers, but the interaction between molecules in different layers is
attractive. This can induce exotic interlayer pairing [213, 214] and induce soliton
filaments in a stack of such layers [215].

The most closely related works to our own are those which simulate quantum
magnetism, particularly a long-range generalization of the t -J model, using the
internal structure of polar molecules [121, 122, 216]. These works have an approach
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similar to ours, in which the properties of the many-body models are related to those
of the few-body physics through microscopic analysis. The main difference between
these works and ours is motivation. The t -J work specifically fine-tunes the external
fields in order to achieve a quantum simulator of a known model. Our work, on the
other hand, begins from a near-term experimental setup and asks what the naturally
arising many-body Hamiltonian is and what its many-body features are.

There is also a body of work by other authors focusing on the problem addressed
by the Fermi resonance Hamiltonian (FRH) which is the topic of Part III. The FRH
maps a resonance model in the continuum onto a resonance model in the lattice by
identifying a set of dressed molecules which form the effective closed channel in
the lattice. To our knowledge the first time that an effective closed channel was used
for a many-body model in a cold atoms context was in [217], although such terms
had been used phenomenologically in the study of high-Tc superconductivity for
many years prior [218–220]. The analogous high-Tc model, known as the “cooperon
model,” is still a subject of current research [221].

A proper description of the physics of the two-channel model requires a
renormalization of the theory to remove divergences associated with a point-like
boson [222, 223]. The exact solution for two-particles interacting via a Feshbach
resonance in a (possibly anisotropic) harmonic trap was obtained in [224]. The
importance of intra- as well as inter-band coupling terms was stressed, and the
theory was properly renormalized to remove divergences from using a point-like
boson. The authors of [225] consider a lattice two-channel model, and determine
the properties of the dressed molecule by considering deep lattices and replacing
the lattice with a single harmonic well. The harmonic trap approximation both
artificially leads to separability of the center of mass motion from both the relative
motion and internal structure and underestimates the extent of Wannier functions,
often by an order of magnitude. This implies that qualitative properties of the
tunneling, as well as its general order of magnitude, cannot be accounted for
using this approach. Duan has derived effective two-channel models using both a
projection operator formalism [226] and general symmetry considerations [227]. He
considers the dressed molecule to be the exact solution of an on-site Schrödinger
equation, and then couples in many-body physics using atom-molecule couplings
between neighboring sites. He then considers the case where one of the on-site
eigenstates is close to the scattering continuum of two-particles in a specific band
n, and then projects the Hamiltonian onto the Hilbert space of empty sites, singly
occupied sites with a fermion in band n, and doubly occupied sites containing a
dressed molecule. Such a Hamiltonian cannot describe the full BEC-BCS crossover,
as it restricts the dressed molecules to behave as hard-core bosons whereas deep in
the BEC side the molecules are tightly bound, weakly interacting bosons. This work
also does not give a prescription for solving the on-site problem, but references the
exact solution in the harmonic trap. More recent work [228] uses the numerical
solution from a double-well potential to avoid some of the shortcomings of the
harmonic oscillator approximation. While this work captures some of the physics of
the lattice at the nearest-neighbor level, it does not capture the full quasimomentum
dependence of the lattice Hamiltonian.
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Büchler was the first to give the exact solution for two fermions interacting
through a zero-range Feshbach resonance in an optical lattice, properly accounting
for the effects of higher bands and renormalization [229]. He then showed that
when the interaction term U of the single-band Hubbard model was determined
from the scattering properties of this exact two-body solution self-consistently,
the Hubbard model still failed to reproduce the correct physics even for moderate
s-wave scattering length, or very far from the actual pole of the Feshbach resonance.
This has motivated our approach of using a two-channel model instead of a single-
channel model such as the Hubbard model. His discussion of the two-body solution
focused on states with zero total quasimomentum, although the theory encompasses
states with arbitrary total quasimomentum.

Very recent work by von Stecher et al. [230] focuses on an effective two-channel
model near a lattice resonance. Instead of solving the on-site problem exactly
they project the two-body Hamiltonian outside of the scattering continuum of two
fermions in bands n and m which gives rise to the resonance, solve this projected
Hamiltonian exactly, and then use the eigenstates of this projected Hamiltonian as a
dressed closed channel. This is approach is very similar in spirit to ours. In contrast
to our work, low dimensionality is assumed from the outset and so this approach
breaks down when the energy associated with the Feshbach coupling becomes larger
than the energy associated with the transverse confinement. Instead, our model treats
the population in transverse excited state as being fixed by the two-body solution and
thus part of the dressed molecule. This allows any imposed conditions of reduced
dimensionality to be controlled only by the transverse tunneling and coupling rates
of the dressed molecules.

Finally, with regard to the open source work, an open source version of DMRG
exists as a part of the algorithms and libraries for physics simulations project
(ALPS) [231–233]. Open source versions of 1D time dependent DMRG also
exist [234, 235]. To the best of our knowledge, the two open source coding projects
described in this thesis, open source time-evolving block decimation [236] and the
time-evolving block decimation routines included as part of the ALPS package, are
the only open source codes which work directly on MPSs at the time of writing of
this thesis.

1.6 Outline

The present thesis is divided broadly into six parts. Each chapter within a part
represents either a publication, in which case the chapter begins with an abstract,
or material which places the publications in context and provide background
information. Materials relevant to the open source coding projects or educational
development discussed in Part V are placed in appendices to avoid interrupting the
flow of the thesis. Part I is an introduction to the topics of this thesis, and includes
the present chapter. This part continues in Chap. 2, which discusses the general
route from a few-body Hamiltonian to a many-body Hamiltonian appropriate for
describing strongly interacting particles in a lattice.
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Part II of this thesis is devoted to the molecular Hubbard Hamiltonian, a model
for the low-energy physics of 1† alkali dimer molecules loaded into an optical
lattice. Chapter 3 describes the first attempt at deriving such a Hamiltonian by con-
sidering only the rotational degrees of freedom. Special focus was put on describing
the dynamics of molecules following a sudden turning on of a microwave AC field
coupling the lowest rotational level to higher rotational levels. Using time-dependent
MPS methods, it was found that coherent Rabi oscillations between two internal
states driven at a single-molecule resonance were exponentially damped with an
emergent timescale. This effect was termed quantum dephasing. As experiments
began to produce ultracold molecules in the absolute vibrational, rotational, and
hyperfine ground state, this model was revised to include the hyperfine structure
of the molecules. We refer to the resulting Hamiltonian as the hyperfine molecular
Hubbard Hamiltonian, which is discussed in Chap. 4. Chapter 4 studies the strong
static electric and magnetic field limit of this Hamiltonian.

In Part III of this thesis we study the problem of the pairing of two-component
fermionic atoms via a Feshbach resonance in an optical lattice. As the scattering
length for two-particles in the open channel diverges near resonance, the pseu-
dopotential model for interactions, amounting to integrating out the closed channel,
breaks down. Furthermore, as the strength of the pairing interaction g becomes
stronger than the band gap, the restriction of the open channel to the lowest band is
no longer appropriate at short distances. Hence, the Hubbard model [237] involving
tunneling of two-component fermions in the lowest band with on-site s-wave inter-
component interactions fails to correctly describe the system.

In our approach, we project the complete two-channel model into the basis of
Bloch functions appropriate to the lattice problem. A scaling analysis enables us
to extract the bound state properties of two-particles to the limit of an infinite
number of bands. By carefully partitioning the Hilbert space into low-energy and
high-energy sectors and performing this numerically exact two-particle analysis on
the high-energy sector, we derive the FRH, a lattice model which is applicable to
resonances of any width and any scattering length. The FRH takes the form of a
multichannel resonance model between fermions in the lowest band of the open
channel and a closed channel consisting of “dressed molecules.” The use of the full
lattice solution, the extrapolation to an infinite number of bands, and the proper
regularization of the Feshbach coupling are all vital to the proper quantitative and
qualitative description of the physics.

Part IV of the present thesis is devoted to MPSs and variational algorithms
associated with them. Chapter 6 gives an overview of MPSs. While this chapter
is largely conceptual, it also contains details on symmetry adapted MPSs. Chapter 7
provides a thorough overview of algorithms using MPSs as variational ansätze
for the eigenstates of arbitrary 1D Hamiltonians on finite lattices. Furthermore,
it presents algorithms for simulating the dynamics of arbitrary time-dependent
Hamiltonians whose error bounds do not depend on the smoothness properties
of the Hamiltonian in question and do not require any Hamiltonian-specialized
implementation. Chapter 8 discusses a variational algorithm for finding the ground
state of an infinite system variationally using a translationally invariant MPS
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ansatz. Chapter 9 discusses how algorithms for time evolution of MPSs may be
used to simulate MPSs as finite temperature, either through entangling MPSs to
a fictitious reservoir or through sampling the characteristic states which arise at
finite temperature. This chapter also provides information on how to formulate
MPS algorithms for periodic boundary conditions which correctly describe the
entanglement structure of periodic states.

In Part V of the thesis we discuss open source coding projects and educational
materials. The open source coding projects include open source time-evolving block
decimation [236], a stand-alone implementation of time-evolving block decimation,
as well as an implementation of time-evolving block decimation as part of the ALPS
open source package [231–233]. The educational materials include tutorials on the
open source codes which are aimed at the level of graduate students performing
research in strongly correlated physics and documents intended for use within
the Carr theoretical physics research group for students who may have very little
background in quantum mechanics or numerical methods. The educational materials
are reprinted in the appendices.

Finally, the thesis concludes in Chap. 12 with suggestions for future work. This
chapter together with the appendices forms Part VI of the thesis. The MPS codes
which are part of this thesis are all freely available. Open source TEBD and open
source MPS can be obtained from SourceForge repositories [238, 239], the ALPS
code can be obtained from the ALPS website [231], and the MPS code used in the
introduction to MPS algorithms (Appendix C) is reprinted in this thesis.
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055027 (2009), doi:10.1088/1367-2630/11/5/055027. Permission is provided
by the Creative Commons Attribution-Non-Commercial-ShareAlike 3.0 license
according to the New Journal of Physics copyright statement.

2. Chapter 4. Hyperfine molecular Hubbard Hamiltonian, M.L. Wall and L.D.
Carr, Physical Review A 82, 013611 (2010), doi:10.1103/PhysRevA.82.013611.
Copyright (2010) by the American Physical Society. Permission is provided by
the American Physical Society according to the APS copyright policy.

3. Chapter 5. Microscopic Model for Feshbach Interacting Fermions in
an Optical Lattice with Arbitrary Scattering Length and Resonance
Width, M.L. Wall and L.D. Carr, Phys. Rev. Lett. 109, 055302 (2012),
doi:10.1103/PhysRevLett.109.055302. Copyright (2012) by the American
Physical Society. Permission is provided by the American Physical Society
according to the APS copyright policy.

4. Chapter 7. Out of equilibrium dynamics with MPSs, M.L. Wall and L.D.
Carr, New J. Phys. 14, 125015 (2012). Permission is provided by the Creative
Commons Attribution-Non-Commercial-ShareAlike 3.0 license according to the
New Journal of Physics copyright statement.

5. Chapter 9. Finite Temperature MPS Algorithms and Applications, M.L.
Wall and L.D. Carr, Chapter in “Quantum Gases: Finite Temperature and

http://dx.doi.org/10.1088/1367-2630/11/5/055027
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://iopscience.iop.org/1367-2630/page/NJP%20copyright%20statement
http://dx.doi.org/10.1103/PhysRevA.82.013611
http://publish.aps.org/copyrightFAQ.html
http://dx.doi.org/10.1103/PhysRevLett.109.055302
http://publish.aps.org/copyrightFAQ.html
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://iopscience.iop.org/1367-2630/page/NJP%20copyright%20statement
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Non-Equilibrium Dynamics” (Vol. 1 Cold Atoms Series), N.P. Proukakis,
S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. (Imperial College Press,
2012), arXiv:1008.4303v1. Permission is provided by the Creative Commons
Attribution-Non-Commercial-ShareAlike 3.0 license according to the arXiv
copyright statement.

6. Material appearing in Appendix A first appeared on the wiki pages for the ALPS
collaboration hosted at http://alps.comp-phys.org and was written solely by the
author of the present thesis. Permission to reprint these materials is provided by
the ALPS collaboration.
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Chapter 2
Models for Strongly Correlated Lattice Physics

In this chapter we outline the general procedure of deriving an effective low-
energy many-body lattice model appropriate for strong correlations from few-body
physics. The replacement of the full many-body Hamiltonian with an effective
model can be justified as the result of a renormalization group iteration [1]. Using
a renormalization group analysis, a Hamiltonian can be projected into a suitably
chosen low-energy subspace and the high-energy modes integrated out, resulting
in an effective model for only the low-energy modes. Under this renormalization
procedure, certain irrelevant interactions are suppressed relative to those which
grow or stay constant.1 The hope is that the renormalized theory contains fewer
relevant single particle states or simpler interactions. Additionally, rather than
integrating out the high-energy degrees of freedom, one can also dress them with
interactions such that the new dressed high-energy degrees of freedom have a
more easily understood structure or simpler couplings to the relevant low-energy
degrees of freedom. This dressing is the main idea underlying Feynman diagram
re-summation techniques such as the random phase approximation [2], and is
also the key idea in the derivation of the Fermi resonance Hamiltonian discussed
in Part III.

Generally, a renormalization group analysis of an interacting many-body system
is difficult. For particles in deep lattices,2 the presence of a band gap provides an
energy scale which naturally separates the low-energy and high-energy degrees
of freedom. If all other energy scales, e.g., temperature, interactions, etc., are
smaller than this band gap, then the particles will remain in the lowest Bloch
band, drastically simplifying the structure of the theory without the need for a more

1Interactions that grow and remain constant are called relevant and marginal, respectively.
2Deep in this context means that the strength of the lattice is comparable to or larger than the
kinetic energy. For ultracold gases with lattice potential V.x/ D V0 sin2 .�x=a/, a lattice may be
considered deep in typical cases for V0=ER � 2, with ER D „2�2=2ma2 the recoil energy.
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38 2 Models for Strongly Correlated Lattice Physics

complex renormalization group analysis. Lattice Hamiltonians obtained under these
assumptions are known as Hubbard models [3, 4], in analogy with the lattice model
proposed by Hubbard

OH D �t
X

hi;j i

X

�2f";#g

h
Oa
i� Oaj� C h:c:

i
C U

X

i

Oni" Oni#: (2.1)

The first term represents tunneling of fermions with spin projection � between
nearest-neighbor lattice sites i and j with associated energy t . The latter term
represents interactions between spin-up and spin-down fermions which occur only
when two-particles occupy the same lattice site. For electrons in solids which
interact via a screened Coulomb potential, the reduction of the interactions to
a single on-site term is a drastic oversimplification, and so the Hubbard model
represents a toy model which is not expected to capture the microscopic physics.3

Additionally, the restriction to only the lowest Bloch band of the lattice does not
hold for f -electron metals in which the interaction parameters are generally greater
than the band splitting. However, for neutral ultracold gases in optical lattices, the
interactions can be well modeled by a contact pseudopotential in many cases, and
so Eq. (2.1) may represent an accurate microscopic many-body Hamiltonian. The
remaining issue is to identify the parameters t and U from few-body physics.

2.1 The Single-Particle Problem: Bloch States and Wannier
Functions

Let us consider a general many-body Hamiltonian consisting of a single-particle
Hamiltonian OH1 and two-body interactions OH2, written in second quantization as

OH D
Z
dr O 
 .r/ OH1

O .r/C 1

2

Z
dr
Z
dr0 O 
 .r/ O 


�
r0� OH2

O �r0� O .r/ :
(2.2)

For systems which include a lattice potential, we may write OH1 as

OH1 D OHkin C OHlatt C OHinternal; (2.3)

where OHkin is the kinetic energy operator, OHlatt is the coupling of a particle to the
lattice, and OHinternal is the Hamiltonian describing the internal degrees of freedom
in free space. We furthermore assume that all terms appearing in OHinternal have
no spatial dependence on the lattice scale. When this is the case then the basis

3For a detailed exposition of the assumptions leading to the Hubbard model in solid state systems,
see [4].
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diagonalizing this Hamiltonian is spatially independent, depending only on the
internal degrees of freedom of a single particle in free space. We will refer to the
basis diagonalizing this Hamiltonian as j�i: OHinternalj�i D E�

internalj�i.
The coupling to the lattice is provided by the dynamical polarizability tensor Q̨ of

the particle in question [5]. This tensor has nine operator-valued elements which can
be indexed by pairs .p; p0/ with p and p0 running over a space fixed basis fx; y; zg.4
Using the states j�i we can find a representation of Q̨ within the eigenspace of
OHinternal. We assume that the optical lattice consists of three independent retro-

reflected5 laser beams, each monochromatic with linear frequency �, arranged in
a simple cubic structure:

Eopt .r; t / D 2e2�i�t
�
Ex�

x sin .klx/CEy�y sin .kly/CEz�
z sin .klz/

	
: (2.4)

Here kl D �=a with a D �=2 the lattice spacing and � the wavelength of the
optical field. In addition to the intensities Ix D E2

x etc. along each spatial direction,
this optical field is also described by three complex vectors �� , � D x; y; z giving
the polarization of the x, y, and z fields, respectively. If we use the spherical
representation of the polarization vectors �� , we have the Stark shift

V� 0� .r/ � h� 0j OHlatt .r/ j�i D �
X

�Dx;y;z

X

q�q�0

jE� j2 ��?q� h� 0j Q̨q�q0
�
j�i��q0

�
sin2 .klx�/ :

(2.5)

This shift is what provides the lattice potential for ultracold gases.
For anisotropic systems such as rotating molecules, Eq. (2.5) is not generally

diagonal in the internal degrees of freedom. This is discussed for rotational
eigenstates in Chap. 3, and will be discussed in full generality in a forthcoming
paper [6]. In this case, the problem is complicated by the fact that the three
independent beams forming Eopt generally compete for ordering of the internal
state j�i. Thus, the lattice formed from three independent beams becomes non-
separable due to the fact that the beams couple differently to the internal state. For
simplicity, in the remainder of the present discussion we will assume that the matrix
Eq. (2.5) is diagonal. In this case two simplifications occur. The first is that each
j�i obeys a Schrödinger equation which is decoupled from all other internal states.
The second is that the lattice is separable in real space, and so we can solve each
Cartesian direction separately.

As the single-particle Hamiltonian Eq. (2.3) is invariant under translations by
a Bravais lattice vector, its eigenfunctions can be written in Bloch form [7]. We
thus write the solutions of OH1 in the form  �nq .r/. Here, the quasimomentum q
whose components q� lie within the first Brillouin zone (BZ) Œ�kl ; kl / denote how
this eigenfunction transforms under translations, and the band index n distinguishes

4Equivalently, a spherical basis f�1; 0; 1g.
5This accounts for the factors of 2 in front of the field strengths.
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solutions with the same translational symmetry which differ in energy. Due to the
separability of the lattice potential, we may write this solution as a product

 �nq .r/ D
Y

�Dx;y;z
 �n�q� .r�/ ; (2.6)

where the  �n�q� .r�/ satisfy the 1D Schrödinger equations


 Op2�
2m
C V�� .r�/

�
 �n�q� .x�/ D E�q�n� �n�q� .r�/ : (2.7)

Here and throughout, we will use boldface to denote three-component vectors and
ordinary type to denote scalar quantities, e.g. q refers to a 3D quasimomentum and
q a 1D quasimomentum. Also, we will leave off the � subscripts when they are
unnecessary, writing instead e.g.  �nq .x/ for a 1D Bloch function.

We now turn to the solution of the equations governing the 1D Bloch functions
Eq. (2.7). As is well known [7], Bloch functions may be written in the form

 �nq .x/ D 1p
La
eiqxu�nq .x/ ; (2.8)

whereL is the number of (1D) unit cells and u�nq .x/ has the same periodicity as the
potential. Because of this periodicity, these functions may be expanded in a Fourier
series

u�nq .x/ D lim
`!1

X̀

pD�`
cp�nqe

2�pix=a: (2.9)

Here ` is a finite Fourier cutoff used in numerics. A cutoff of a few tens captures
the lowest few bands to machine precision. Inserting this expansion into the 1D
Schrödinger equation yields an eigenvalue equation for the coefficients cp�nq:

lim
`!1

X̀

p0D�`
Hpp0cp

0

�nq D E�nqc
p
�nq; (2.10)

Hpp0 D


.2p C q=kl /2 ER C V

2

�
ıpp0 � V

4

�
ıp;p0C1 C ıp;p0�1

�
;

(2.11)

where we have defined the recoil energy ER � „2k2l =2m and V is the coefficient of
sin2 .kl�/ along the particular 1D direction. Numerically, this amounts to solving a
real symmetric tridiagonal eigenproblem.

Bloch functions represent simultaneous eigenfunctions of translation and the
single-particle Hamiltonian, and are hence delocalized. Typical interactions in
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strongly correlated systems, on the other hand, are spatially local and so Bloch
functions represent an inadequate basis for describing strong interactions. A more
suitable basis is provided by Wannier functions, which are the quasimomentum
Fourier transform conjugates to the Bloch functions

w�n .r � ri / D 1p
L3

X

q2BZ

e�iq�ri  �nq .r/ ; (2.12)

where ri represents the position of site i in the lattice. These functions are highly
localized,6 and represent a more appropriate basis in which to expand strongly
interacting models. As is apparent from the notation of Eq. (2.12), a Wannier
function centered around a particular lattice site ri depends only on the distance
from that site. We will also use the shorthand w�ni .r/ � w�n .r � ri / to simplify
some expressions.

The general route to a Hubbard model is to expand the field operator O .r/ in
terms of the single-particle Wannier basis, resulting in a Hamiltonian of the form

OH D
X

i;j

X

�n

Oa
i�nhi�nj OH1jj�ni Oaj�n

C 1

2

X

i1i2i
0
1i

0
2

X

n1n2n0
1n0
2

X

�1�2�
0
1�

0
2

hi1�1n1I i2�2n2j OH2ji 01� 0
1n

0
1I i 02� 0

2n
0
2i

� Oa
i1�in1 Oa
i2�2n2 Oai 02� 0
2n0
2
Oai 01� 0

1n0
1
; (2.13)

where Oa
i�n creates a particle in Wannier state w�n .r � ri /. The overlap integrals
hi�nj OH1jj�ni and hi1�1n1I i2�2n2j OH2ji 01� 0

1n
0
1I i 02� 0

2n
0
2i are called Hubbard parame-

ters, and are the point of contact between the microscopic, few-body physics and the
many-body physics. In order for this transformation to be useful, we must truncate
the sums appearing in Eq. (2.13) in some form. Often, the sums over the band
indices n and internal states � are set by selection rules and energetics from the few-
body physics. For example, for transitions in an AC microwave field with circular
polarization q, only internal states for which h� 0j Odqj�i is nonzero will contribute,
with dq the projection of the dipole operator along the space-fixed spherical basis
direction q. Similarly, interactions which transfer particles between bands on-site
must preserve the parity of the bands, that is .�1/n1Cn2 D .�1/n0

1Cn0
2 . Additionally,

it is most often assumed that the temperature, interaction scales, and all other scales
of the problem are small compared to the band gap between the lowest two bands.
This restricts all particles to remain in the lowest band, and so the summations

6More precisely, these functions can be made exponentially localized when subject to a one-
dimensional inversion symmetric potential by an appropriate choice of phases on the Bloch
functions [8]. The Wannier functions produced by this procedure are called maximally localized
Wannier functions, and are used exclusively in this thesis unless indicated otherwise.
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over band indices vanish. To avoid overly cumbersome notation, we will leave off
band indices when we discuss the two-particle interactions. We will also discuss the
truncation of spatial sums separately for single-particle and short- and long-ranged
two-particle interactions.

2.1.1 Single-Particle Hubbard Parameters

The Hubbard parameters arising from the single-particle piece take the form

t i;j�n � �
Z
drw?�n .r � ri /

h OHkin C OHinternal C OHlatt .r/
i

w�n
�
r � rj

�
(2.14)

D � 1
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X

qq0

Z
dreiq�ri  ?

�nq .r/
h OHkin C OHinternal C OHlatt .r/

i
eiq

0�rj  �nq0 .r/

(2.15)

D � 1

L3

X

qq0

ei.q�ri�q0�rj /E�nqıqq0 (2.16)

D � 1

L3

X

q

eiq.ri�rj /E�nq: (2.17)

The third line used the fact that the Bloch functions diagonalize the single-particle
Hamiltonian and the orthonormality of the Bloch functions. This orthogonality is
also why the parameters t i;j�n are diagonal in � and n. The parameters t i;j�n with i ¤ j
are called tunneling or hopping parameters, as they are interpreted as a particle
quantum mechanically tunneling through the lattice from site i to site j . These
parameters take the simple form of a quasimomentum Fourier transform of the band
structure in the relative coordinate. Their contribution to the Hamiltonian is

OHtunneling D �
X

�n

X

i¤j
t i;j�n Oa
i�n Oaj�n: (2.18)

The minus sign in this definition is customary and accounts for the minus sign in the
definition of t i;j�n . It arises because the nearest-neighbor tunneling coefficient defined
as such is positive. For i D j , t i;i�n is minus the energy of a particle in band n and
internal state � , and so it is customary to reverse the sign and define

E�n D 1

L3

X

q

E�nq: (2.19)

This parameter is simply the average of the band structure for fixed band number n
and internal state � . The complete single-particle Hubbard Hamiltonian is thus
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Table 2.1 Fit parameters for the tunneling at the nearest, next-
nearest, and third nearest neighbor distances together with their
asymptotic standard errors

Term A B C

ti;iC1 1:363˙ 0:0004 1:057˙ 0:0005 2:117˙ 0:0004

�t i;iC2 2:491˙ 0:0023 1:957˙ 0:0011 4:361˙ 0:0012

t i;iC3 7:294˙ 0:011 2:767˙ 0:0015 6:534˙ 0:0018

OHHsp D
X

�n

E�n

X

i

Oni�n �
X

�n

X

i¤j
t i;j�n Oa
i�n Oaj�n; (2.20)

where Oni�n � Oa
i�n Oai�n is the number operator on site i for band n and internal
state � . Noting that Oa
j�n Oai�n is the Hermitian conjugate of Oa
i�n Oaj�n, we must have

t
j;i
�n D t i;j�n for a Hermitian Hamiltonian.7 This allows us to write

OHHsp D
X

�n

E�n

X

i

Oni�n �
X

�n

X

j>i

t i;j�n

h
Oa
i�n Oaj�n C h:c:

i
: (2.21)

For a 1D lattice of the form V .x/ D V0 sin2 .�x=a/, we can parameterize the
dependence of the lowest band tunneling on the lattice height V0 as [9]

t ij=ER D A
�
V0

ER

�B
exp

�
�C

p
V0=ER

�
; (2.22)

which is motivated by the large V0=ER limit of the tunneling computed using Math-
ieu functions [10]. A fit to numerically generated data is found to be quantitatively
valid in the range V0=ER > 2. The results are summarized in Table 2.1. These
expressions can be used to determine a consistent order of approximation when
truncating long-range interactions.

2.2 Two-Particle Hubbard Parameters

We now turn to determining the Hubbard parameters for the two-particle interaction.
Interactions can be broadly classified into short-range and long-range terms, where
short-range terms are those which are well modeled by a pseudopotential of the
form U .r/ D gı .r/ and long-range terms have nonlocal r dependence. We begin
with an exposition of the short-range terms.

7Strictly speaking, this implies that t j;i�n D t
i;j
�n

?
, but for time-reversal invariant single-particle

Hamiltonians we can always choose the eigenvalues, and thus the tunnelings, to be real.
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2.2.1 Short-Range Interactions

The quantum-mechanical scattering from a spherically symmetric potential can
be codified in terms of partial waves `, where ` is the relative orbital angular
momentum of the scattering particles. At low energies, the dominant partial waves
are the s- and p-waves, corresponding to ` D 0 and ` D 1, respectively. For short-
range potentials, the contributions from these partial waves at low energies can be
captured by pseudopotentials that depend only on a single parameter, the (s- or
p-wave) scattering length. This is a readily calculated and measured quantity. The
regularized s-wave pseudopotential is [11, 12]

U .r/ D 4�„2as
m

ı .r/ @rr; (2.23)

where as is the s-wave scattering length. The term @rr is a regularization operator
which incorporates boundary conditions on the spherically symmetric scattering
problem, but is inconvenient for the lattice problem which is not naturally stated
in spherical coordinates. In Cartesian coordinates, which are most natural for our
simple cubic lattice, we have

U .r/ D 4�„2as
m

ı .x/ ı .y/ ı .z/
��
x@x C y@y C z@z

�C 1	 : (2.24)

Thus, provided that our functions have sufficiently regular derivatives at r ! 0,
the first term in brackets vanishes in this same limit. The regularity of the Wannier
functions is assured by the fact that they are band-limited periodic functions, and so
the pseudopotential becomes

U .r/ D 4�„2as
m

ı .r/ : (2.25)

That is, we can neglect the regularization operator.
Using this pseudopotential in the second-quantized many-body Hamiltonian and

expanding in terms of lowest band Wannier functions, we have
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where a��
0

s is now the s-wave scattering length for particles in internal states �
and � 0. Note that this does not depend on the band or site indices, as it is a
quantity calculated in free 3D space. All of the lattice physics is encapsulated in
the Wannier overlap integral, which is essentially a geometrical factor. Each term
in the summation can be interpreted as a scattering process where particles in states
� 0
1 and � 0

2 at positions i 01 and i 02 scatter via the s-wave pseudopotential into internal
states �1 and �2 at positions i1 and i2, respectively. We will call the primed indices
incoming and the unprimed indices outgoing. Because of the localization of the
Wannier functions, terms with i1 ¤ i2 ¤ i 01 ¤ i 02 are exponentially suppressed, and
so the most common approximation is to keep only the i1 D i2 D i 01 D i 02 term. In
the case of a single internal state, this leads to

OHs-wave D 2�„2as
m

Z
dr jw0 .r/j4

X

i

Oni . Oni � 1/ ; (2.28)

from which we can immediately read off the value of U appearing in the Bose–
Hubbard model Eq. (1.2). It is important to note that the lattice affects the strength
of the interactions through the overlap of the Wannier functions. Hence, for a
fixed scattering length the interactions can be increased by making the lattice
deeper. By replacing a single lattice site with a harmonic oscillator with oscillator
length ah:o: D a=�.V0=ER/

1=4 and thus approximating the Wannier functions with
harmonic oscillator eigenstates,8 we find that these integrals all grow as roughly
.V0=ER/

1=4 with the lattice depth V0. Finally, in the case where the lattice potential
is separable, the Wannier function overlaps also separate into three independent 1D
integrals, and so can be computed numerically with high efficiency.

The situation is similar for p-wave interactions. The regularized p-wave pseu-
dopotential is [12]

U .r/ D �„2a31
�

 �r ı .r/�!r r@rrr r2; (2.29)

where the arrows indicate the action of the gradient operators. Using the Leibnitz
formula we have

@rrr
�
r2f

� D �6@r C 6r@rr C r2@rrr
�
f; (2.30)

and so the only term which possibly doesn’t vanish as r ! 0 for sufficiently regular
functions f is the first. We will denote all such terms which vanish as r ! 0 as
van:terms. We have

8The on-site interaction coefficient for delta-function interactions in the deep lattice limit is the only
place that this approximation has any credence. For off-site interactions or tunneling parameters,
the use of the approximation leads not only to quantitative errors of an order of magnitude or more,
but also qualitative errors in the symmetries of the Hubbard parameters, see Chap. 5.
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�!r r@rrr
�
r2f

� D 6�!r �x@x C y@y C z@z
	
f C van:terms; (2.31)

D 6�!r f C van:terms; (2.32)

and so the regularized potential for our sufficiently regular Wannier functions
becomes

U .r/ D 6�„2a31
�

 �r ı .r/�!r : (2.33)

Expanding the second quantized Hamiltonian as above, we have

OHp-wave D 3�„2
�

Z
dr
Z
dr0 O 
 .r/ O 


�
r0� a31

 �r ı �r � r0��!r O �r0� O .r/ ;

(2.34)
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(2.35)
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Here a��
0

1 is the p-wave scattering length for internal states � and � 0. We note
that the derivatives can be rigorously taken, i.e., without any discretization error,
using the Fourier representation of the Bloch functions, Eq. (2.9). Also, note that this
integral vanishes identically if all of the incoming or outgoing indices are the same.
That is to say, there is no on-site p-wave interaction between identical particles.

2.2.2 Long-Range Interactions

For alkali atoms, the dominant interaction is provided by a 1=R6 dispersive poten-
tial [13] and hence interactions are well modeled by a short-range pseudopotential.
We now turn our attention to long-ranged interactions arising from the dipole–dipole
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interaction Eq. (1.8) which are relevant for molecules. We can recast the interaction
Eq. (1.8) as the contraction of two rank-two spherical tensors as

OHDD .R/ D �
p
6

R3
C .2/ .R/ �

h Od1 ˝ Od2
i.2/

; (2.37)

where

h Od1 ˝ Od2
i.2/
q
D
X

m

h1;m; 1; q �mj2; qi .d1/m .d2/q�m ; (2.38)

hj1m1j2m2jjmi is a Clebsch–Gordan coefficient,
�
dj
�
m

represents the mth com-
ponent of the j th dipole in a space-fixed spherical basis, and C .2/

m .R/ is an
unnormalized spherical harmonic in the polar coordinates defined by the relative
coordinate. We compute Hubbard parameters in the usual way by expanding the
field operators in terms of Wannier functions, which yields the general terms
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In the last line we have defined F �� 0

ij .r/ � w?i� .r/wj� 0 .r/.
Our evaluation of the Hubbard parameters now breaks into two pieces, one

dealing only with the dipole moments’ dependence on the internal state and the
other with the spatial distribution of the Wannier functions. Here we focus only on
the geometrical part of the integral. For convenience, however, we will anticipate
the result that only the q D 0 terms are relevant for molecules, take a single internal
state � and define

Wi1i2i
0
2i

0
1
� W ����

0Ii1i2i 02i 01 ; (2.42)

Fij .r/ � F ��
ij .r/ ; (2.43)

D � D��
0I�� : (2.44)
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The integral in question,

Wi1i2i
0
2i

0
1
D �

Z
drFi1i 01 .r/

Z
dr0C

.2/
0 .r0 � r/

jr0 � rj3 Fi2i 02

�
r0� ; (2.45)

is naively six-dimensional integral. However, noting that

�
Z
dr0C

.2/
0 .r0 � r/

jr0 � rj3 Fi2i 02

�
r0� (2.46)

is the convolution of the dipole–dipole potential with the function Fi2i 02 .r
0/, we can

use the convolution theorem to find
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i
.k/

#
.r/ ;

(2.47)

where F Œg .r/� .k/ is the Fourier transform of g .r/. The integral is now a series of
two 3D Fourier transforms followed by an 3D integral in real space. The Fourier
transform approach to compute dipolar integrals has also been used for dipolar
Gross–Pitaevskii equations [14, 15]. Using the expansion of a plane wave in terms
of spherical harmonics [16]

e�ik�r D 4�
1X

`D0

X̀

mD�`
.�i/` j` .kr/ Y `m

?
.�r ; �r / Y

`
m .�k; �k/ ; (2.48)

with j` .x/ the spherical Bessel function of order ` and .�x; �x/ the spherical angles
in the x coordinate system defined with respect to the quantization axis, we find the
Fourier transform of the dipole–dipole potential to be

F


�2C

2
0 .r/
r3

�
.k/ D F



1 � 3 cos2 �

r3

�
.k/ D 4�

3

�
cos2 �k � 1

�
; (2.49)

with �k the polar angle in k-space. We note that the introduction of a spherical cutoff
b on the lower limit of the r integration results in the function

4�
�
cos2 �k � 1

�
"

sin kb�
kb3
� � cos kb

.kb/2

#
: (2.50)

The corrections to Eq. (2.49) scale as .kb/2, and so are negligible for small b and
k in the range we typically consider. We can thus safely take b ! 0 in computing
these integrals and work with Eq. (2.49).
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Numerically, the Fourier transforms can be performed in O
�
N3 logN

�
time

using the fast Fourier transform (FFT) algorithm, where N is the number of grid
points discretizing each 1D domain. More precisely, consider each 1D domain to
be a symmetric finite interval Œ�L=2;L=2� and then let ng � 1 be even, with ng the
number of grid points. We then introduce the points

xk D �L
2
C .k � 1/L

ng � 1 ; (2.51)

where k runs from 1 to ng and x1 � xng because of the periodicity of the domain.
The discrete Fourier domain of the ng � 1 points x1 : : : xng�1 is represented by the

values 2�
L

h
0; 1; : : : ;

ng�1
2
� 1; ng�1

2
;� ng�1

2
C 1; : : : ;�2;�1

i
. Hence, the spacing

in Fourier space is controlled by L, the length of the domain in real space, and
the extent of the domain in Fourier space is controlled by ng=L, the inverse step
size. Because the Wannier functions w.x/ on a finite domain are periodic and band-
limited, their discrete and continuous Fourier transforms are related by a scaling
constant provided we sample the entire domain at a frequency of at least twice the
largest frequency component of w.x/ [17]. This prevents us from having to consider
the more advanced interpolation schemes required for Fourier integrals of general
functions [18]. Furthermore, as is known for spectral methods, the calculation in
Fourier space converges exponentially fast in L provided that ng=L is large enough
to capture the full support of the function in Fourier space.9 Let us define g to
be the extent of the function in the discrete Fourier space. We can then choose
ng D 2 � g � L C 1 to satisfy all of the above considerations. We find that for
typical g � 5 � 7 which satisfy the Nyquist condition, the real space integration is
of acceptable precision using a high-order Simpson integrator [18].

As the proposed calculation scales as O
�
L3
�
, we would like to determine the

smallest L such that we obtain the value of the Hubbard parameter in the limit as
L ! 1 to within a desired tolerance. Consider computing W0dd0 on a domain of
length L. There is a size-independent contribution to the dipole–dipole parameter
which scales as �1=dp , where p is some power, but there is another contribution
which scales as �1=jL � d jp2 coming from the periodic boundary conditions.
Because of the slow power law decay, this term can be quite sizable, especially
when d itself is large. The solution is to compute the integral for a few L and then
fit to the form

I .L/ D aC b

jL � d jp : (2.52)

9The support of the function in Fourier space can be determined by using Parseval’s theorem on
finite Fourier subintervals to determine that the norm is unity to a desired tolerance.
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a gives the true dipole–dipole parameter in the limit as L ! 1. Practical
experience shows that taking four values of L starting at roughly 4d 10 produces
an excellent fit.

Naively, it may be surprising that the integration over the dipole–dipole potential
with its 1=r3 behavior yields convergent results. The key point is that the dipole–
dipole potential is also proportional to a rank-two spherical harmonic, and so picks
out the components of the Wannier function product with d -wave symmetry. This
component necessarily vanishes at the origin, and so there is no actual divergence
in the integrand. Additionally, because of the strong anisotropy of the spherical
harmonic, this Hubbard parameter is quite sensitive to transverse confinement.
Confinement modifies not only the strength of the potential as in the short-range
case, but also the power p of the potential. This result is explored in greater detail
in [19].

Thus, the result of expanding the dipole–dipole interaction in terms of Wannier
functions is a term

OH D
X

i<j

U i;j Oni Onj ; (2.53)

where U i;j exhibits power-law behavior at large separations ji � j j and is sensitive
to transverse confinement. That is, Hubbard models for molecules involve long-
ranged interactions, as opposed to models for atoms. For molecules with multiple
internal states which have dipole-allowed transitions, the dipole–dipole potential
also gives rise to an “exchange” contribution which describes the long-ranged
propagation of a rotational quantum through the system [20–22].

The general procedure outlined in this chapter is used in Part II to derive
effective models for heteronuclear bialkali molecules in optical lattices. However,
the procedure here is not the only way in which a Hubbard model can be derived.
Part III uses a different technique, in which the relevant Wannier functions are
formed from bound states of a two-particle Hamiltonian. These two-particle bound
states are then coupled to fermions in the lowest Bloch band through a Wannier
function overlap of a pairing Hamiltonian. In this way, higher bands are included
in the Hubbard model, but only in the configurations which are determined to be
physically relevant from few-body physics.

10Four was chosen by assuming that the decay was purely dipolar and then determining the L such
that 1=d3 > x=.L� d/3 for some scaling factor x. Taking x � 100 gives an estimate of L � 4d .
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Part II
The Molecular Hubbard Hamiltonian



Chapter 3
Emergent Timescales in Entangled Quantum
Dynamics of Ultracold Molecules in Optical
Lattices

Abstract We derive a novel lattice Hamiltonian, the molecular Hubbard Hamil-
tonian (MHH), which describes the essential many-body physics of closed-shell
ultracold heteronuclear molecules in their absolute ground state in a quasi-one-
dimensional optical lattice. The MHH is explicitly time dependent, making a
dynamic generalization of the concept of quantum phase transitions necessary.
Using the time-evolving block decimation (TEBD) algorithm to study entangled
dynamics, we demonstrate that, in the case of hard-core bosonic molecules at half-
filling, the MHH exhibits emergent timescales over which spatial entanglement
grows, crystalline order appears and oscillations between rotational states self-damp
into an asymptotic superposition. We show that these timescales are non-monotonic
functions of the physical parameters describing the lattice.

3.1 Introduction

In recent years, ultracold atomic gases have provided near perfect realizations of
condensed matter Hamiltonians, acting as quantum simulators [1, 2] that allow the
study of complex condensed matter phenomena in a clean and highly controllable
environment. Ultracold polar molecular gases, which have recently been brought to
the edge of quantum degeneracy in their absolute ground state [3, 4], offer additional
features over atomic gases, such as a large internal Hilbert space and a greater
susceptibility to external fields via a permanent electric dipole. There have been
a number of proposals on how to use ultracold molecular gases for mimicking
well-known Hamiltonians such as spin-1 lattice models [5]. Ultracold molecules
have also been suggested as a model system for the study of strongly correlated
2D quantum phases [6] or for quantum information processing schemes [7–9].
However, these proposals frequently involve complex and yet-to-be implemented
experimental techniques. In this article, we instead focus on the completely new
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quantum many-body physics which results naturally from the simplest quantum
lattice experiments that can be performed in the immediate future with established
techniques in ultracold molecular quantum gases.

Towards this end we derive a novel lattice Hamiltonian, which we refer to as
the molecular hubbard hamiltonian (MHH). The MHH describes the physics of
an ultracold polar molecular gas in a 1D optical lattice that is oriented using a
DC electric field, giving rise to a resonant dipole–dipole interaction, and is driven
between rotational levels using a microwave AC field. In particular, new aspects
of our derivation include explicit dependence of hopping energy on the molecular
polarizability tensor. This in turn allows a determination of the tensor elements, an
outstanding experimental issue, from the borders of the static phase diagram of the
MHH, which are identical to those of the extended Bose–Hubbard Hamiltonian [10]
when a single molecular rotational level is occupied.

Beyond the statics, the MHH naturally has a dynamical component due to the
AC driving fields, as well as an internal structure in terms of rotational modes
which is inherently different from spinor atomic systems [11, 12]. We study this
dynamical aspect with time-evolving block decimation (TEBD) [13, 14], a newly
developed entangled quantum dynamics algorithm which takes spatial entanglement
(specifically, Schmidt number [15]) as a cut-off. We find two emergent timescales
in the case of half-filling for hard core bosonic molecules. We emphasize that a
quantum lattice model requires low filling (average number of particles per site), in
contrast to a mean field lattice model, for which the filling would typically be quite
high. Thus, although experiments can most easily access the mean field regime of
hundreds of molecules per site with a single pair of counter-propagating laser beams,
we look slightly ahead to the quantum regime, which will require two pairs of such
beams in order to create an array of quasi-1D “tubes.” A third pair is then used to
create the lattice in each tube. This technique is already well established for ultracold
atoms [16].

Dynamical aspects of quantum phase transitions are just beginning to be
considered [17, 18], and have so far been a limited area of study restricted to
mean field considerations, due to lack of numerical tools. With the recent advent
of entangled quantum dynamics algorithms, namely TEBD, dynamical properties
of many-body systems are becoming amenable to numerical study. For example,
TEBD has been used to address key questions such as the dynamics of a quantum
quench [19, 20] or the speed at which correlations propagate in a lattice [21]; these
are not issues which can be studied with other dynamical methods such as dynamical
mean field theory (DMFT).1 We give a brief review of TEBD in Sect. 3.3.1. The
reader interested in computational details can find them in [23].

The first main contribution of this paper is to present a careful derivation of the
MHH. This is done in Sect. 3.2, with some previously known aspects of molecular

1Time-dependent Density Functional Theory (TDFT) may be able to succeed in a partial analysis
of entangled dynamics, which might even be complementary to methods such as TEBD, but this is
not yet at all clear in the literature [22].
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physics relegated to Appendix 1. The second main contribution is to present
emergent timescales for half-filling; although we treat the case of hard-core bosons,
the MHH can also be applied to fermionic molecules. To this end, in Sect. 3.3
we first give a brief explanation of TEBD and the quantum measures we use.
Then, in Sect. 3.4 we present and analyze our simulations, with an accompanying
convergence study in Appendix 2. Finally, in Sect. 3.5 we summarize.

3.2 The MHH

The MHH is
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0 ; (3.1)

where OaiJM destroys a bosonic or fermionic molecule in the jE I JMi state (defined
below) on the i th lattice site, and the bracket notation h: : : i denotes that the sum
is taken over nearest neighbors. The first term in Eq. (3.1) corresponds to hopping
both between sites and molecular rotational states with quantum numbers J ,M . The
second term represents the rotational energy along with rotational state-dependent
energy differences due to a DC electric field. The third term corresponds to an AC
electric field, making this a driven system. The fourth term corresponds to electric
dipole–dipole interactions. In the following subsections and Appendix 1 we justify
Eq. (3.1) with a careful derivation and present the energy scales of each term.

3.2.1 Derivation of the MHH

The full molecular Hamiltonian in second quantization is

OH D
Z
d3r O 
 .r/

h OHkin C OHrot C OHDC C OHAC .t/C OHopt .r/
i O .r/

C
Z
d3rd3r 0 O 
 .r/ O 


�
r0� OHdd

�ˇ̌
r � r0 ˇ̌� O �r0� O .r/ : (3.2)



58 3 Emergent Timescales in Entangled Quantum Dynamics of Ultracold Molecules. . .

The terms on the first line correspond to single-molecule effects: kinetic energy,
rotation, the DC electric field which orients the dipole, the AC microwave field
which drives transitions between rotational levels, and the far off-resonant optical
lattice potential, respectively. The second line is the two-molecule resonant dipolar
energy. The field operators O can be either bosonic or fermionic. We focus on the
bosonic case for brevity. There are five key assumptions underlying our derivation,
as follows. We consider all five assumptions to be reasonable for present and near-
future experiments.

1. We consider ultracold closed-shell polar heteronuclear diatomic molecules,
characterized by permanent dipole moment d and rotational constant B . The
most experimentally relevant bosonic species in this category are SrO, RbCs,
and LiCs [6]. The individual molecules are assumed to be in their electronic
and vibrational ground states, and it is assumed that none of these degrees
of freedom can be excited at the large intermolecular separations and low
temperatures/relative energies that we consider.

2. The molecule is assumed to have a 1† ground state. The characteristic trapping
potential length is chosen large enough compared to the internuclear axis to
assume spherical symmetry, i.e. a locally constant potential.

3. We neglect any intramolecular interactions (e.g., hyperfine structure), as they are
typically very small for 1† molecules [24].

4. We consider only the lowest three rotational levels. All AC fields will be
sufficiently weak to allow this assumption.

5. We work in the hard-core limit where at most one molecule is allowed per
site. This is enforced by strong dipole–dipole interactions on-site. We consider
the lattice spacing large enough to include only nearest-neighbor dipole–dipole
interactions. Other short-range interactions such as exchange or chemical reac-
tions or long-range interactions such as dispersion and quadrupole–quadrupole
interactions are not considered.

We proceed to follow the usual procedure [2] of expanding the field operators
of our second-quantized Hamiltonian in a Wannier basis of single-molecule states
centered at a particular discrete position ri :

O DPi Oaiw .r � ri / ; (3.3)

where i is a site index and the sum is over all lattice sites. For our Wannier Basis we
choose the single-molecule basis that diagonalizes the rotational and DC electric
field Hamiltonians, spanned by kets jE I JMi. In this basis, which we refer to as
the “dressed basis” (the DC field “dresses” the rotational basis) we have the field
operator expansion

O JM DPi OaiJMwJM .r � ri / �Pi OaiJMjE I JMii : (3.4)

We note that such a basis, while highly efficient for the hard-core limit we consider,
becomes progressively worse for higher filling factors, till in the mean field limit
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the single-molecule basis, whether dressed or not, is so poor that many bands must
be considered. Here we do not include a band index for simplicity, although the
generalization of Eq. (3.1) to include multiple bands is straightforward.

This choice of Wannier basis associates the terms in Eq. (3.1) to the terms in
Eq. (3.2) as follows:

tJ;J 0;M ��
Z
dr w?JM .r � ri /

�
Hkin CHopt

	
wJ 0M .r � riC1/ ; (3.5)

EJM �
Z
dr w?JM .r � ri / ŒHrot CHDC�wJM .r � ri / ; (3.6)

���JM sin .!t/ �
Z
dr w?JM .r � ri / ŒHAC�wJC1;M .r � ri / ; (3.7)

U

J1; J
0
1; J2; J

0
2

M;M 0

dd �
Z
drdr0 w?

J 0
1M
.r � ri /w?

J 0
2M

0

�
r0 � riC1

�

�Hdd
�
r � r0�wJ1M .r � ri /wJ2M 0

�
r0 � riC1

�
; (3.8)

where the operatorsHkin,Hopt, etc., are taken to be in position space representation.
For the derivation of the single-molecule terms (rotational, DC electric field, and
AC electric field) and discussion of the properties of our Wannier basis, we refer
the reader to Appendix 1. In the following sections we present the derivation of the
tunneling (hopping) and dipole–dipole terms, which have new aspects not heretofore
appearing in the literature [25].

3.2.2 Tunneling

The tunneling term represents the sum of the molecular kinetic energy with the
potential energy of the lattice. After expanding in the Wannier basis of Eq. (3.4), we
find the effective tunneling Hamiltonian

OH eff
t D �

P
J;J 0;M tJJ0M

P
hi;i 0i

�
Oa

i;J 0M

Oai 0;JM C h.c.
�
; (3.9)

where tJ;J 0;M was defined in Eq. (3.5). To understand why this operator mixes states
of different J , we note that the kinetic energy and (far off-resonant) optical lattice
potential do not mix rotational eigenstates. Because our Wannier basis states are
dressed and therefore superpositions of rotational eigenstates with different J , the
tunneling operator in the dressed basis will mix J . Although the dressed basis makes
the tunneling more complex to analyze, it simplifies other terms in the MHH, such
as the DC term, and is in any case a more standard basis for analysis of the diatomic
molecules we study here. Comparable basis changes are sometimes made in other
quantum many-body systems, where, for instance, particles and holes are mixed,
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or particles are paired. Note that, because we assume z-polarized fields, M is still a
good quantum number. To discuss the actual form of the tunneling energies ftJ;J 0;M g
we must first examine the interaction of a diatomic molecule with the optical lattice.

3.2.3 Interaction with an Optical Lattice

The charge redistribution that occurs when a molecule is subjected to a static,
spatially uniform electric field E is reflected in its dipole moment d via the
polarizability series

dj D d.0/j C ˛jkEk C 1
2Š
ˇjklEkEl C 1

3Š
�jklmEkElEm C � � � ; (3.10)

where the first, second, and third order coefficients ˛jk , ˇjkl, and �jklm are elements
of the polarizability, hyperpolarizability, and second hyperpolarizability tensors,
respectively. The polarizability tensor is a symmetric rank-two tensor with no
more than six independent elements (less if molecular symmetry is greater), and
characterizes the lowest order dipole moment induced by an applied electric field.
From this tensor we can form the scalar invariants

N̨ � 1

3
Tr Q̨ ; (3.11)

.
˛/2 � 1

2

h
3Tr. Q̨ 2/ � .Tr Q̨ /2

i
; (3.12)

referred to as the polarizability and the polarizability anisotropy, respectively. Note
that we use the tilde to clarify that Q̨ with elements ˛jk is a tensor, not a scalar—
we reserve the accent circumflex (the “hat” symbol) for quantum operators. In
linear molecules, such as diatomic molecules, the presence of only two distinct
moments of inertia allows for the classification of Q̨ according to its components
along and perpendicular to the internuclear axis, denoted ˛k and ˛?, respectively.
In the presence of AC electric fields with frequency ! we speak of the dynamic
polarizability tensor Q̨ .!/, with the series of Eq. (3.10) being the zero frequency
limit. The tensor Q̨ .!/ is, in general, complex, with the real part inducing a dipole
moment and the imaginary part accounting for power absorption by the dipole
and out-of-phase dipole oscillation. In the case of † diatomic molecules in their
electronic and vibrational ground states [25]

Q̨ .!/ � ˛k .!/ e0
0 ˝ e0

0 C ˛? .!/
P

ƒD˙1 .�1/ƒ e0
ƒ ˝ e0�ƒ; (3.13)

where the e0
q are molecule-fixed spherical basis vectors. The parallel and perpendic-

ular dynamic polarizabilities are
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˛k D
P

˙
P

�;v

jd�†.v/�X†.0/j2
E�†.v/�EX†.0/�„! ; (3.14)

˛? DP˙
P

�;v

jd�….v/�X†.0/j2
E�….v/�EX†.0/�„! ; (3.15)

respectively. In these expressions d�ƒ.v/�X†.0/ is the transition dipole moment
from the ground state to the �ƒ .v/ state (following the usual diatomic molecular
notation, ƒ 2 f†;…g � f0; 1g is the quantum number associated with the
projection of the total electronic orbital angular momentum along the internuclear
axis, i.e., in the molecule-fixed basis) and the sum over 	 accounts for the near-
resonant and typically far off-resonant terms.

Transforming Q̨ from the molecule-fixed basis to the space-fixed basis using the
transformation discussed in Appendix 1, we find

Q̨ 0 .!L/ D
X

p1p2

X

jD0;2

jX

mD�j
.2j C 1/

�
1 1 j

p1 p2 m

�s
1

.2 � j /Š .3C j /Š

� �˛k .j C 2/ .j � 1/ � 4˛?
	
C .j /
m ep1 ˝ ep2 ; (3.16)

where C .j /
m is an unnormalized spherical harmonic, .: : : / denotes the Wigner 3-j

coefficient,2 and the ep are space-fixed spherical basis vectors.
The interaction of the lattice with the molecule is represented by the Hamiltonian

Hopt .x/ D �E?opt .r/ � Q̨ 0 .!L/ � Eopt .r/ ; (3.17)

where Eopt .r/ is the electric field of the optical lattice. If the electric field has
polarization p in the space-fixed spherical basis, then we find

Hopt .x/ D�
ˇ̌
Eopt .r/

ˇ̌2

3

h �
˛k C 2˛?

�
C
.0/
0

C .�1/p 2

.1 � p/Š .1C p/Š
�
˛k � ˛?

�
C
.2/
0

i
: (3.18)

For light linearly polarized in the Ox-direction we obtain

Hopt D �
ˇ̌
Eopt .r/

ˇ̌2

6

h
2
�
˛k C 2˛?

�
C
.0/
0

C �˛k � ˛?
� �p

6C
.2/
�2 � 2C .2/

0 C
p
6C

.2/
2

� i
; (3.19)

2We use the conventions of Zare [43].
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whereas for light linearly polarized in the Oy-direction we find

Hopt D
ˇ̌
Eopt .r/

ˇ̌2

6

h
� 2 �˛k C 2˛?

�
C
.0/
0

C �˛k � ˛?
� �p

6C
.2/
�2 C 2C .2/

0 C
p
6C

.2/
2

� i
: (3.20)

Since C .0/
0 D 1, these terms give a state-independent energy shift. The C .2/

q terms
produce a tensor shift. Because the depth (in energy) of a typical optical lattice is
much smaller than the energy of transitions between rotational levels (of order B ,
as defined in Appendix 2), we can ignore far off-resonant Raman coupling between
different J manifolds and use only the diagonal matrix elements. The C .2/

2 term

and the C .2/
�2 will both mix M in the J 
 2 manifolds, but do not affect the lowest

two rotational levels, again, because we neglect Raman couplings. Thus x, y, and z
polarizations all have the same Hamiltonian in this approximation. We can calculate
the matrix elements of C .2/

0 in the field free basis using the Wigner–Eckart theorem
to find

hJ 0M 0jHopt .r/ jJMi D �
ˇ̌
Eopt .r/

ˇ̌2

3
ıJJ0ıMM0


 �
˛k C 2˛?

�

C .�1/p 2

.1 � p/Š .1C p/Š
�
˛k � ˛?

� J .J C 1/ � 3M2

.2J � 1/ .2J C 3/
�
: (3.21)

In our effective Hamiltonian we choose right circular polarization for the z lattice, x
polarization for the x lattice, and y polarization for the y lattice, where each lattice
refers to a pair of counter-propagating laser beams used to create a standing wave.
Other choices are of course also possible, and the mathematical derivation leads to a
Hamiltonian similar in form to that of Eq. (3.1). However, it is possible for hopping
to depend on two M indices, e.g. tJJ0MM0 .

We consider the fields making up the optical lattice to have sinusoidal spatial
profiles, resulting in sine-squared intensity profiles. In addition, we assume that the
y and z lattices are tight, meaning that the molecules are strongly confined at the
potential minimum (for a red-detuned trap). This tight confinement allows us to
approximate them via a Taylor series, e.g., sin2 .kzz/ ' k2z z2 in the vicinity of the
molecule. Using the above results, the matrix elements of the Hamiltonian for the
optical lattice can be written

hJ 0M 0jHopt .r/ jJMi

D �
ˇ̌
Eopt .y/

ˇ̌2
k2yy

2 C ˇ̌Eopt .x/
ˇ̌2

sin2 .kxx/

3


N̨ C 2
˛ J .J C 1/ � 3M

2

.2J � 1/ .2J C 3/
�
ıJJ0ıMM0

�
ˇ̌
Eopt .z/

ˇ̌2
k2z z2

3



N̨ �
˛ J .J C 1/ � 3M

2

.2J � 1/ .2J C 3/
�
ıJJ0ıMM0 (3.22)
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or, more compactly, as

hJ 0M 0jHopt .r/ jJMi D
h
�˛.t/JM

ˇ̌
Eopt .y/

ˇ̌2
k2yy

2 � ˛.t/JM

ˇ̌
Eopt .x/

ˇ̌2

� sin2 .kxx/
	
ıJJ0ıMM0 � ˇ̌Eopt .z/

ˇ̌2
˛
.z/
JMk

2
z z2ıJJ0ıMM0 (3.23)

by defining

˛
.t/
JM �

1

3



N̨ C 2
˛ J .J C 1/ � 3M

2

.2J � 1/ .2J C 3/
�
; (3.24)

˛
.z/
JM �

1

3



N̨ �
˛ J .J C 1/ � 3M

2

.2J � 1/ .2J C 3/
�
: (3.25)

We now define, as is customary, the “lattice heights” in the x, y, and z directions,
respectively, as

V .JM/
x � � ˇ̌Eopt .x/

ˇ̌2
˛
.t/
JM; (3.26)

V .JM/
y � � ˇ̌Eopt .y/

ˇ̌2
˛
.t/
JM; (3.27)

V .JM/
z � � ˇ̌Eopt .z/

ˇ̌2
˛
.z/
JM: (3.28)

The tight confinement in the transverse (y and z) directions strongly suppresses
tunneling in these directions, making the overall lattice effectively 1D along x.

From Eqs. (3.24), (3.25), it is apparent that different rotational levels experience
different trapping frequencies and different tunneling energies. To make this clearer,
we parse our full field-free tunneling matrix element as

tJM � �
Z
dr w?JM .r � ri /

�
Hkin CHopt

	
wJM .r � riC1/

D
Z
dr w?JM .r � ri /

h
�Hkin C V .JM/

x sin2
�
kxx

2
�i

wJM .r � riC1/

C
Z
dr w?JM .r � ri /

h
V .JM/
y k2yy

2 C V .JM/
z k2z z2

i
wJM .r � riC1/ :(3.29)

Because we consider tight traps such that the lattice heights in the y- and z-directions
are much greater than the lattice height in the x-direction, V .JM/

y � V .JM/
z � V

.JM/
x ,

the contributions from the V .JM/
y and V .JM/

z terms are exponentially suppressed

compared to the V .JM/
z and Hkin terms, and so we neglect them. This is equivalent

to the array of tubes we discussed in Sect. 3.1, where each tube is isolated from its
neighbors. The matrix element becomes
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tJM �
Z
drw?JM .r � ri /

��Hkin C V .JM/
x sin2

�
kxx

2
�	

wJM .r � riC1/ : (3.30)

In the evaluation of the integral, Eq. (3.30) we assume that the Bloch function of
a molecule in the sinusoidal optical lattice is a Mathieu function along x. This may
seem to contradict our assumption of spherical symmetry in the above derivation.
However, the assumption of spherical symmetry (i.e., a locally constant potential)
need only hold on the order of an internuclear axis (�5Å) near the molecule. In
contrast, on the order of the characteristic lattice length

p„=�!opt the rigid-rotor
molecule is indistinguishable from a point particle (such as an alkali atom), and so
spherical symmetry is not required. With this understanding, we recognize t .0/JM as the
expression for the hopping energy for point particles in optical lattices [26] with the
additional feature that the lattice height along the quasi-1D direction V0 D V .JM/

x is
dependent on J through the polarizability tensor. Thus, altering the expression from
the theory of point particles in optical lattices, we obtain the result

t
.0/
JM

ER
� A

 
V .JM/
x

ER

!B
exp

0

@�C
s
V
.JM/
x

ER

1

A ; (3.31)

where A D 1:397, B D 1:051, C D 2:121, and

ER � „2k2x=2m (3.32)

is the recoil energy.
Using tabulated values of the polarizabilities for LiCs[27] as given in Table 3.1,

we find that, for a reasonable lattice height V .00/
x =ER ' 10, the tunneling term

for the j11i state is only about 20% of that in the j00i state, as shown in
Fig. 3.1. For LiCs in a red-detuned optical lattice of wavelength � D 985 nm,
ER D 2� � 1:46„ kHZ. Typical values of the lattice heights are Vx � 10ER,
Vy; Vz � 25ER [28].

We reiterate that the above matrix elements and tunneling energies ftJMg have
been computed in the field-free basis for simplicity. To transform to the dressed
basis, we use the unitary matrix with dressed eigenvectors as columns, recovering
Eq. (3.9), where the tunneling matrix element is no longer diagonal in J .

Table 3.1 Values of the
polarizabilities for LiCs in
different rotational states
jJMi

jJMi 3˛
.t/
JM= N̨ 3˛

.z/
JM= N̨

j00i 1 1

j10i 1.715 0.642

j1˙ 1i 0.642 1.178

j20i 1.511 0.744

j2˙ 1i 1.255 0.872

j2˙ 2i 0.488 1.255
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t00/ER
t10/ER
t20/ER

Fig. 3.1 Dependence of the field-free tunneling (hopping) coefficient on rotational state and lattice
height

3.2.4 Dipole–Dipole Interactions

The induced dipoles from the DC field give rise to a resonant dipole–dipole
interaction. The Hamiltonian for this interaction in the two-site dressed basis
spanned by jE IJ1M1J2M2i is

OHdd D 1
2

P
J1; J

0
1; J2; J

0
2

M;M 0

U

J1; J
0
1; J2; J

0
2

M;M 0

dd

P
hi;i 0i Oa
iJ1M OaiJ0

1M
Oa

i 0J2M 0 Oai 0J 0

2M
0 ; (3.33)

where we have defined

U

J1; J
0
1; J2; J

0
2

M;M 0

dd �
Z
drdr0 w?

J 0
1M
.r � ri /w?

J 0
2M

0

�
r0 � riC1

�

�Hdd
�
r � r0�wJ1M .r � ri /wJ2M 0

�
r0 � riC1

�
; (3.34)

and for notational simplicity we have suppressed the E subscripts. Note that because
of our choice of polarizations of the optical lattice and AC and DC electric fields,
M1 DM2 �M and M 0

1 DM 0
2 �M 0.

The resonant dipole–dipole interaction between two permanent dipoles d1 and
d2 whose respective centers of mass are separated by a vector R in the space-fixed
frame is

OHdd D Od1� Od2�3.eR � Od1/.Od2�eR/
R3

; (3.35)

where eR is a unit vector in the direction of R. Using standard angular momentum
recoupling we recast this in spherical tensor notation as
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Hdd D �
p
6

R3

X

�

.�1/� C .2/�� .R/
h Od1 ˝ Od2

i.2/
�
; (3.36)

where .T /.k/q denotes the component of the rank-k spherical tensor T that has

projection q along R, C .j /
m .R/ is an unnormalized spherical harmonic in the polar

coordinates defined with respect to R, and we have defined the tensor product of the
vector operators Od1 and Od2 as

h Od1 ˝ Od2
i.k/
q
�
X

m

h1;m; 1; q �mjkqi
� Od1

�.1/
m

� Od2
�.1/
q�m : (3.37)

In the last line, hj1;m1; j2;m2jJ;M i is a Clebsch–Gordan coefficient. We now take
matrix elements of Eq. (3.36) in the two dressed-molecule basis jE IJ1M1; J2M2i,
where molecule 1 is on site i and molecule 2 is on site i C 1, yielding

hE IJ 0
1M

0
1; J

0
2M

0
2j OHddjE IJ1M1; J2M2i

D �
p
6

R3

X

�

.�1/� C .2/�� .R/
X

m

h1;m; 1; � �mj2�i

� hE IJ 0
1M

0
1j
� Od1

�.1/
m
jE IJ1M1ihE IJ 0

2M
0
2j
� Od2

�.1/
��m jE IJ2M2i: (3.38)

Because our DC field is polarized along z, only . Od1/.1/0 and . Od2/.1/0 matrix elements
are nonzero, enforcing � D 0, m D 0. With this in mind, the interaction takes the
particularly simple form

hE IJ 0
1M

0
1; J

0
2M

0
2j OHddjE IJ1M1; J2M2i

D �
p
6

R3
C
.2/
0 .R/

� h1; 0; 1; 0j20ihE IJ 0
1M1j

� Od1
�.1/
0
jE IJ1M1ihE IJ 0

2M2j
� Od2

�.1/
0
jE IJ2M2i

(3.39)

D hE IJ 0
1M1j

� Od1
�.1/
0
jE IJ1M1ihE IJ 0

2M2j
� Od2

�.1/
0
jE IJ2M2i

�
1 � 3 cos2 �

R3

�
:

(3.40)

The intermolecular axis plays a crucial role in the sign of the interaction. Two
molecules oriented along the intermolecular axis attract if their dipoles are parallel
and repel if their dipoles are antiparallel. Two molecules oriented perpendicular to
the intermolecular axis, on the other hand, repel if their dipoles are parallel and
attract if their dipoles are antiparallel. The DC field that orients the molecules in
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our setup is polarized along z, perpendicular to the intermolecular quasi-1D axis x.
This gives rise to repulsive interactions for positive dipole matrix elements. With
this geometry the dipole potential becomes

hE IJ 0
1M

0
1; J

0
2M

0
2j OHddjE IJ1M1; J2M2i

D 1

R3
hE IJ 0

1M1j
� Od1

�.1/
0
jE IJ1M1ihE IJ 0

2M2j
� Od2

�.1/
0
jE IJ2M2i; (3.41)

yielding

U

J1; J
0
1; J2; J

0
2

M;M 0

dd D 8

�3
hE IJ 0

1M1j
� Od1

�.1/
0
jE IJ1M1ihE IJ 0

2M2j
� Od2

�.1/
0
jE IJ2M2i;

(3.42)
where � is the wavelength of the optical lattice.

3.2.5 Energy Scales

We proceed to clarify the energy scales associated with each term in Eq. (3.1).
Between previous discussion in Sect. 3.2 and that of Appendix 1, all terms in
Eq. (3.1) are now clearly defined. The energy scales of the dressed basis are B , the
rotational constant, which is roughly 60„GHz, and dEDC, which is of order 1–10
B . The DC term has no length scale associated with it because the field is uniform,
and the length scale of the rotational term is the internuclear separation, on the order
of angstroms. The relative contribution of the DC electric field and rotational terms
in Eq. (3.1) are expressed through the dimensionless parameter

ˇDC � dEDC=B; (3.43)

the ratio of the DC field energy to the rotational level splitting.
The energy scales of the AC term are „!, where ! is the angular frequency of

the driving field, and dEAC. The scale „! is of order 2B for small ˇDC � 1, and
of order B

p
ˇDC for large ˇDC � 1. The AC field energy dEAC is of order 0:5„!.

The single-molecule timescale associated with dEAC is the Rabi period, the time it
takes for the population of a two-level system to cycle once, as seen in Fig. 3.10a. In
real time, this is on the order of 10 ps for the parameters in the preceding paragraph.
The timescale associated with ! is the timescale on which the small oscillations in
Fig. 3.10a occur, of order 0:5 ps. The length scale of the AC field is on the order
of centimeters, and so we can neglect this in light of the micron length scale of the
trap.

The tunneling term has several scales. The optical lattice near the point of con-
finement has a length scale given by the harmonic oscillator length l .00/ho;x �100 nm
and an energy scale of ER � 1:4„ kHz. The energy scales of the tunneling operator
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Table 3.2 Comparison of energy and length scales for the molecular hubbard hamiltonian
of Eq. (3.1)

Term Length scale Energy scale

Rotation Internuclear distance �1 Å B � 60„ GHz � 2 cm�1

DC field N/A, uniform dEDC � 120„ GHz � 4 cm�1

AC field 2�c=! � 1 cm „! � 30„ GHz � 1 cm�1

Kinetic l
.00/
ho;x � 100 nm ER � 1:46„ kHz

Tunneling Lattice spacing �1	m ftJ 0JMg � 100„ Hz

Resonant Energy comparable to B
ˇ̌hEI 00jOdjEI 00iˇ̌2ı .1	m/3 � 1:2„ kHz

Dipole–dipole at rB ' 348 Bohr radii for nearest neighbors

proper are given by the ftJJ0M g which are of order 10�1–10�2ER � 100„ Hz for the
given recoil energy.

There are also many scales for the dipole term. For the B and d specified in the
first paragraph of this section and ˇDC D 1:9, the characteristic length scale where
the dipole–dipole energy becomes comparable to the rotational energy is

rB �
�ˇ̌
ˇhE I 00j OdjE I 00i

ˇ̌
ˇ
2.

B
� 1
3
; (3.44)

approximately 348 Bohr radii (18.4 nm). Outside this region the Born–Oppenheimer
adiabatic approximation is easily fulfilled [6]. Since the length scale of our optical
lattice is of order 	m, we are justified in working within the Born–Oppenheimer
framework. For the same parameters, the length scale where the off-resonant van
der Waals potentialC6=r6 � �d4=.6Br6/ becomes comparable to the dipole–dipole
interaction is

rvdW �
�
2 jC6j

. ˇ̌
ˇhE I 00j OdjE I 00i

ˇ̌
ˇ
2 � 1

3
: (3.45)

This length is very small, on the order of tens to hundreds of Bohr radii. Outside
of this region the resonant dipole potential dominates and the intermolecular force
is repulsive. This repulsion enforces the hard-core limit. The energy scale of the
dipole–dipole force is

ˇ̌hE I 00j OdjE I 00iˇ̌2ı�3 � 1:2„ kHz, with higher J being an
order of magnitude or so lower for small ˇDC, and of the same order for large ˇDC

(see Fig. 3.8a).
To summarize, the scales of the problem are shown in Table 3.2.

3.2.6 Novel Features of the MHH

The MHH, Eq. (3.1), has a number of novel features which distinguish it from
typical Hubbard and extended Hubbard models [2, 29]. First, the tunneling energies
ftJ;J 0M g not only depend on the rotational level J;M but even change rotational
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states from J to J 0. This is due both to the polarizability tensor’s dependence on
rotational level and to the dressed basis. This differs from other Hubbard models
which consider spin degrees of freedom, as tunneling does not occur between spin
states—hopping does not cause spin transitions. If we consider populating a single
mode (e.g. J D 0,M D 0) in the�! 0 limit, then Eq. (3.1) becomes the extended
Bose–Hubbard Hamiltonian, and the phase diagram is known [10, 30]. This gives
ideas of how to characterize the static phases of the MHH. However, because the
tunneling energy depends on J , the borders of the phase diagram will depend on
the rotational state of the system. We will discuss this property and provide an
application in Sect. 3.4.

Second, the Hamiltonian is fundamentally time-dependent because it is a driven
system. This allows for the study of dynamic quantum phases, requiring the concept
of a quantum phase diagram to be generalized to an inherently time-dependent
picture. In a case study for hard-core bosonic molecules at half-filling presented
in Sect. 3.4, we show that the MHH has emergent timescales.

3.3 Methods

3.3.1 Time-Evolving Block Decimation

The TEBD algorithm is a new method [13, 14] designed to study the dynamics of
entangled quantum systems. The essential idea of TEBD is to provide a moving
“spotlight” in Hilbert space which tracks a dynamical system. The portion of the
Hilbert space so illuminated is an exponentially small fraction of the full Hilbert
space; this is justified by the fact that real, physical quantum many-body systems,
especially in real materials, typically explore only a small, lowly entangled part of
the total Hilbert space.

In fact, TEBD moves the full quantum many-body problem from the NP-
complete complexity class to the P class through an exponential reduction in the
number of parameters needed to represent the many-body state. We can understand
the possibility of this reduction through an analogy to image compression. Present
digital cameras are capable of producing a roughly 3000 � 3000 array of pixels.
Downloading the images from such a camera, one notices that there are far less
than 10 Megapixels worth of data per image. Image compression algorithms such
as JPEG produce images of remarkable quality with only a small fraction of the raw
data. The reason that these algorithms are so effective is that a physical image, as
opposed to a random 2D pixel array, is not the “most common” or most probable
image; it contains a great deal of structure and regularity. In the same way, physical
states in Hilbert space tend to be lowly entangled (by some entanglement measure),
even though a general state in Hilbert space has a much larger probability of being
highly entangled. There is no general proof of this fact, just as there is no guarantee
that an image will come out perfectly crisp after JPEG compression; it is simply a
trend observed in many-body quantum systems.
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To be slightly more specific, TEBD performs a partial trace over a particular
bipartite splitting of the lattice, and then keeps the � largest eigenvalues of the
resulting reduced density matrix. The cut-off parameter � is based on the Schmidt
measure [15], and so it also serves as a measure of the degree of spatial entangle-
ment. This idea is not unique to TEBD. In fact, the density matrix renormalization
group (DMRG) method first proposed by White [31] did something analogous
years before. The innovation of TEBD is that at each time step it re-optimizes
the truncated basis (thus the “moving spotlight”). The Schmidt number is just
the number of nonzero eigenvalues in the reduced density matrix, and so is an
entanglement measure natural to quantum many-body systems. The parameter � is
the number of nonzero eigenvalues in the reduced density matrix that TEBD retains.
It is the principal convergence parameter of the algorithm, both in entanglement and
in time. Although the time-propagation method we use is Trotter–Suzuki [32], it
turns out that, due to a normalization drift, � controls convergence at long times.

With � interpreted as an entanglement measure, we can say that TEBD treats
the system not as a wavefunction in a dL-dimensional Hilbert space (L is the
number of lattice sites), but as a collection of wavefunctions in d2-dimensional
two-site spaces that are weakly entangled with the environment created by the rest
of the system. To facilitate this viewpoint, we replace the dL coefficients of the full
many-body wavefunction with L sets of

�
d�2 C �� coefficients corresponding to

the wavefunctions of each bipartite splitting. The most computationally expensive
portion of the TEBD algorithm is typically the diagonalization of these local
coefficient matrices at a cost of O

�
d3�3

�
. Looping over all L�1 bipartite splittings

and evolving the system for a total time tf in time steps of length ıt , one obtains an

asymptotic scaling of O
�
L
tf
ıt
d 3�3

�
.

This scaling can be greatly improved by the presence of conserved quantities.
When a conserved quantity exists in the system we are able to diagonalize
reduced density matrices corresponding to distinct values of this conserved quantity
independently, which can result in significantly smaller reduced density matrices
to diagonalize. Implementing this idea, scalings of O

�
�2
�

have been reported for
fixed d [33]. In addition, conserved quantities in the presence of selection rules
can reduce the local dimension. For example, in the case of the MHH, z-polarized
electric fields disallow transitions from a particularM to any other. If we begin with
all molecules in a particular M state, this allows us to restrict our attention only to
states with thisM . In our numerics we conserve both the projectionM , and the total
numberN . Furthermore, to match our hard-core requirement, we allow only zero or
one molecules per site, so that the local dimension is d 
 Jmax C 1, Jmax being the
magnitude of the greatest angular momentum that we consider (note that the local
dimension d , mentioned only here in Sect. 3.3.1, bears no relation to the permanent
electric dipole moment d used throughout the rest of our treatment).

A more detailed description of TEBD can be found in [23]. We also recommend
[34], besides Vidal’s original papers [13, 14].
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3.3.2 Quantum Measures

We use a suite of quantum measures to characterize the reduced MHH, Eq. (3.50)
below. The few-body measures we use are h OnJi i, the number in the J th rotational
state on the i th site,E � h OH i, the expectation of the energy, and 1

L
h OnJ i, the average

number in the J th rotational state per site (L is the number of lattice sites). The
latter is a J -dependent filling factor. The many-body measures we use include the
density–density correlation between rotational modes J1 and J2 evaluated at the
middle site

g
.J1J2/
2

��
L

2



; i

�
�
D
On.J1/b L2 c On

.J2/
i

E
�
D
On.J1/b L2 c

E D
On.J2/i

E
; (3.46)

where bqc is the floor function, defined as the greatest integer less than or equal to
q. As an entanglement measure we use the Meyer Q-measure [35–37]

Q � d
d�1

h
1 � 1

L

PL
kD1 Tr

� O�.k/�2
i
; (3.47)

where O�.k/ is the single-site density matrix obtained by tracing over all but the kth
lattice site, and the factor outside of the bracket is a normalization factor (d is the on-
site dimension). This gives an average measure of the entanglement of a single site
with the rest of the system. The Q-measure can also be interpreted as the average
local impurity (recall that the Tr. O�2/ D 1 if and only if O� is a pure state).

To determine what measures we can use to ascertain the static phases of
our model we reason by analogy with the extended Bose–Hubbard Hamiltonian
where we know that the possible static phases are charge density wave, superfluid,
supersolid, and Bose metal [10]. The charge density wave is an insulating phase
appearing at half integer fillings which has a wavelength of two sites. Like the
Mott insulating phase, it has an excitation gap and is incompressible. While the
extended Bose–Hubbard Hamiltonian has only one charge density wave phase due
to the presence of only one species, the MHH has the possibility of admitting several
charge density wave phases due to the presence of multiple rotational states. As
such, we define the structure factor

S.J1J2/� D 1
N

P
ij .�1/ji�j j D On.J1/i On.J2/j

E
; (3.48)

where N is the total number of molecules. We recognize this object as the spatial
Fourier transform of the equal-time density–density correlation function between
rotational states J1 and J2, evaluated at the edge of the Brillouin zone. This
measure is of experimental interest because it is proportional to the intensity in
many scattering experiments, e.g. neutron scattering [38]. Crystalline order between
rotational states J1 and J2 is characterized by a nonzero structure factor S.J1J2/� . The
charge density wave is the phase with crystalline order but no off-diagonal long-
range order as quantified by the superfluid stiffness of rotational state J
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�.J /s D lim
�!0

L
@2E.J / .�; L/

@�2
(3.49)

(note that �s bears no relation to the density matrix O�). If both the structure factor
and the superfluid stiffness are nonzero, the phase is called supersolid. If both the
structure factor and the superfluid stiffness are zero, the phase is called Bose Metal.
Finally, if the structure factor is zero and the superfluid stiffness is nonzero, the
phase is superfluid. In 1D systems with short-range interactions the structure factor
is zero in the thermodynamic limit and the entire superfluid phase is critical, thus
there are formally no order parameters [10]. Superfluidity is instead signaled by a
diverging correlation length and solid order by slow power law decay of the density–
density correlator.

3.4 Case Study: Hard-Core Bosonic Molecules at Half-Filling

In the following, we consider a particular case of Eq. (3.1) for dynamical study.
We choose the hard core case, which can occur naturally due to strong on-site
dipole–dipole interactions, and half-filling, which is an interesting point in a number
of models, including the repulsive Fermi–Hubbard Hamiltonian and the extended
Bose–Hubbard Hamiltonian discussed in Sect. 3.3.2. For example, in the latter case,
the charge-density-wave phase requires a minimum of half-filling [10].

If we assume that our system begins in its ground state (J D 0,M D 0), we need
to only include states which have a dipole coupling to this state. For z-polarized DC
and AC fields, this means we only consider M D 0 states, yielding the reduced
Hamiltonian

OH D�
X

JJ0

tJJ0

X

hi;i 0i

�
Oa

i 0;J 0 OaiJ C h.c.

�
C
X

J

EJ
X

i

OniJ

� � sin .!t/
X

J

�J

X

i

�
Oa
iJ OaiJC1 C h.c.

�

C 1

2

X

J1;J
0
1 ;J2;J

0
2

U
J1;J

0
1 ;J2;J

0
2

dd

X

hi;i 0i
Oa
iJ1 OaiJ0

1
Oa

i 0J2
Oai 0J 0

2
: (3.50)

This is the specific case of the MHH that we study using TEBD.
A matter of practical concern, as apparent in Table 3.2, is the large disparity

between the timescales of the first three (Rotational, DC, and AC) and the last
three (kinetic, tunneling, and Dipole–Dipole) terms. The accumulation of error
resulting from truncating the Hilbert space at each TEBD timestep causes the
algorithm to eventually fail after a certain “runaway time,” making studies over
long times intractable [39]. This invites a multiscale approach in the future [40, 41].
In our current numerics we artificially increase the recoil energy and dipole–dipole
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potential to be of the order of the rotational constant in order to study Eq. (3.50)
using TEBD. In particular, we take

U
J1;J

0
1 ;J2;J

0
2

dd D 10B

d2
hE IJ 0

1j OdjE IJ1ihE IJ 0
2j OdjE IJ2i; (3.51)

tJ D 10B


�

�
1C 2
˛N̨

J .J C 1/
.2J C 1/ .2J C 3/

��1:051

� exp

"
�2:121

s

�

�
1C 2
˛N̨

J .J C 1/
.2J C 1/ .2J C 3/

�#
; (3.52)

where the dimensionless variable � becomes an ersatz “lattice height.” To see the
scaling more explicitly, we compare the above with the actual expressions for the
MHH parameters

U
J1;J

0
1 ;J2;J

0
2

dd D 8

�3
hE IJ 0

1j OdjE IJ1ihE IJ 0
2j OdjE IJ2i (3.53)

D
�
2mERd4=3

„2�2
� 3

2

hE IJ 0
1j OdjE IJ1ihE IJ 0

2j OdjE IJ2i=d2 ; (3.54)

tJM � 1:397ER
 ˇ̌

Eopt

ˇ̌2 N̨
3ER



1C 2
˛N̨

J .J C 1/ � 3M2

.2J � 1/ .2J C 3/
�!1:051

(3.55)

� exp

0

@�2:121
sˇ̌

Eopt

ˇ̌2 N̨
3ER



1C 2
˛N̨

J .J C 1/ � 3M2

.2J � 1/ .2J C 3/
�1

A :

(3.56)

If we now scale ER to be 10B=1:397 and set d such that
�
2mERd4=3=

�„2�2�	 32 D
10B for this ER, we recover Eqs. (3.51) and (3.52) provided we make the definition

� � � ˇ̌Eopt .x/
ˇ̌2 N̨= .3ER/ D V .JM/

x N̨=
�
3ER˛

.t/
JM

�
: (3.57)

Since this dimensionless parameter plays the same role as the quasi-1D lattice height
scaled to the recoil energy did in the actual MHH, we refer to it as the lattice
height. For the polarizability tensor, we choose
˛= N̨ D 165:8=237, corresponding
to LiCs [27]. This rescaling does not change the qualitative static and dynamical
features of Eq. (3.50); it only makes Eq. (3.50) treatable directly by TEBD, without
multiscale methods. In the future, we plan to apply multiscale methods to determine
the emergent timescales for experimentally relevant parameters.
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First, we point out that if we consider populating a single rotational state (e.g.,
J D 0, M D 0) in the � ! 0 limit, then Eq. (3.50) becomes the extended
Bose–Hubbard Hamiltonian, and the phase diagram is known [10, 30]. Because the
tunneling energy is different for different rotational states (see Eq. (3.31)) and this
difference depends only on the properties of the polarizability tensor, we can relate
the borders of the phase diagram for different rotational states to properties of the
polarizability tensor. The MHH thus gives a means to measure the polarizability
tensor, a standing issue in experiments (Jin, 2008, JILA, NIST and University of
Colorado, private communication). Our calculations in Sect. 3.2 can be used to
compare directly to the phase diagram from the literature [10, 30]. In fact, this aspect
of our work, unlike the simulations below, is not restricted to 1D.

However, our main focus at present is on the dynamics of the MHH. In the
following numerical study, we explore dynamics as a function of the physical
characteristics of the lattice, namely, number of sites L and effective lattice height
�. Specifically, we study L D 9, 10, and 21 lattice sites with N D 4, 5, and 10
molecules, respectively, and � ranging from 1 to 10. We fix the dipole–dipole term as
in Eq. (3.51), and fix the DC field parameter to be ˇDC D 1:9. While ˇDC D 1:9may
not correspond to a physically realizable situation, its exploration provides insight
into the MHH.

The Rabi oscillations between the J D 0 and the J D 1 states damp out
exponentially in the rotational time tr � Bt=„ as

h On0i D a0 � b0 e�tr =� cos .c0tr / ; (3.58)

h On1i D a1 � b1 e�tr =� cos .c1tr / ; (3.59)

with some characteristic timescale � , as seen in Fig. 3.2. We note that an exponential
fit has a lower reduced chi-squared than a power-law, or algebraic fit. We also tried
fit functions where the oscillations do not decay to zero, but rather persist with some
asymptotic nonzero amplitude. We find that the fit functions Eqs. (3.58) and (3.59)
above fit the data better as quantified by the convergence properties of the algorithms
used, as discussed in Appendix 2.

The timescale � also describes the decay of physically measurable quantities,
for example the structure factors as defined in Eq. (3.48) and illustrated in Fig. 3.3.
We show the emergent timescale � for various lattice heights and systems sizes in
Table 3.3.

Examining Fig. 3.2, one observes that the driven system approaches a dynamical
equilibrium that is a mixture of rotational levels. The timescale with which the
system relaxes to this equilibrium, � , cannot be determined from the single-molecule
physics, and so we refer to � as an emergent timescale. For the low lattice height
� D 1, the populations of the first two rotational states appear to oscillate around
and asymptotically converge to roughly quarter filling, with J D 1 being lower due
to contributing to population of J D 2 via an off-resonant AC coupling (Fig. 3.2a).
For � D 5, the asymptotic equilibrium is an uneven mixture of rotational states that
favors occupation of the J D 0 state (Fig. 3.4a), and the emergent timescale for
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Fig. 3.2 Dependence of site-averaged number on lattice size L. For this set of parameters, the
site-averaged J D 0 and J D 1 populations appear to asymptotically approach quarter filling.
The J D 2 mode is populated slightly by off resonant AC couplings. The peak near the left side
of the Fourier transform plots is the Rabi frequency �00, denoted by an arrow. (a) Site-averaged
population vs. rotational time for nine sites. Note the general theme; a gradual decrease (increase)
of the maxima (minima) of oscillations. (b) Squared modulus of Fourier transform of site-averaged
J D 0 population vs. rotationally scaled frequency for L D 9 sites. The arrow denotes the
Rabi frequency �00. (c) Site-averaged population vs. rotational time for 10 sites. Note that there
is no significant difference between an odd and even number of sites. (d) Squared modulus of
Fourier transform of site-averaged J D 0 population vs. rotationally scaled frequency for L D 10

sites. (e) Site-averaged population vs. rotational time for 21 sites. Note that there is no significant
difference between this and the smaller system sizes. (f) Squared modulus of Fourier transform of
site-averaged J D 0 population vs. rotationally scaled frequency for L D 21 sites
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Fig. 3.3 Dependence of structure factors within and between rotational states J on the number
of lattice sites. We do not consider the off-resonant J D 2 and higher rotational states because
they have a very small occupation; J D 2 is shown explicitly in Fig. 3.2. (a) Structure factors
vs. rotational time for nine sites. Note the similar asymptotic behavior to the populations in
Fig. 3.2a. (b) Squared modulus of Fourier transform of S.00/� vs. rotationally scaled frequency for
L D 9 sites. Note the similarity with Fig. 3.2b above. (c) Structure factors vs. rotational time
for ten sites. There is no significant difference in the S.00/� and S.11/� between even and odd L.
For the difference in S.01/� , see (f) this figure. (d) Squared modulus of Fourier transform of S.10/�

vs. rotationally scaled frequency for L D 9 sites. Note the absence of the Rabi frequency. (e)
Structure factors vs. rotational time for 21 sites. Note the lack of significant difference with the
smaller odd system size. (f) Comparison of the S.01/� correlation structure factor for odd and even
numbers of sites. Note that the even site (exactly half-filling) structure factor grows faster and
larger than the odd site (slightly less than half-filling) structure factor
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Table 3.3 Emergent timescales � and �Q and their fit asymptotic
standard errors for various lattice heights and system sizes

L � �B=„ Asymp. S.E. (%) �QB=„ Asymp. S.E. (%)

9 1 414.04 0.72 398.4 0.51

9 2 224.32 1.79 149.9 1.36

9 3 117.5 1.86 126.7 1.03

9 10 613.00 1.07 1079.66 14.09

10 1 259.96 0.76 240 0.6454

10 4 140.70 1.19 72.04 0.60

10 10 526.21 0.88 396.46 1.018

21 1 756.18 3.13 110.68 0.96

21 5 177.53 1.62 75.18 0.902

21 10 716.21 2.96 244.09 2.82

reaching this equilibrium is shorter than it was for � D 1 by roughly a factor of four.
As the lattice height is then increased to � D 10, the populations return to the trend
of � D 1, again converging to quarter filling with a timescale comparable to that of
� D 1 (Fig. 3.4c). This illustrates the fact that the emergent timescale � is not, in
general, a monotonic function of the parameters of the lattice.

While the dynamics of the site-averaged rotational state populations are superfi-
cially similar for � D 1 and � D 10, the underlying physics is not identical, as can be
seen by comparing Figs. 3.2f and 3.4b, d. These figures display the squared modulus
of the Fourier transform of the site-averaged number in the J D 0 state. The only
significant frequency observed for � D 1 is the Rabi frequency � � 0:064B=„.
In contrast, the � D 5 case has numerous other characteristic frequencies. As we
raise the lattice height to � D 10, the frequencies that arose for � D 5 remain,
even though the overall visual trend of the site-averaged number reflects that of the
single-frequency � D 1 behavior. While we do not explicitly see the new frequencies
in the site-averaged number, we do see them in the structure factors. An example
is Fig. 3.5b, which clearly displays the 2� frequency behavior of the correlation
structure factor S.01/� for � D 10. This frequency, which we easily pick out in the
site-averaged number’s Fourier transform, can also be seen in the Fourier transform
of S.01/� , see Fig. 3.5d.

We find that the emergent timescale � does not depend strongly on the size of
the system L, even though the distribution of molecules on the lattice is, in general,
quite different for different numbers of sites, as can be seen by comparing Fig. 3.2a,
e. Examining Fig. 3.2c and Table 3.3, the L D 10 case has a smaller � than either of
the odd L cases. We think this has to do with the filling being exactly 1=2 and not,
strictly speaking, with the number of lattice sites, as the L D 9 and L D 21 cases
have fillings less than 1=2. We see this clearly by comparing Fig. 3.6a with Fig. 3.2a,
c, e. Figure 3.6a displays h On00i=N , a quantity which is independent of filling but
dependent, in general, on the number of lattice sites. There is a weak dependence
on the number of lattice sites. On the other hand, Fig. 3.2a, c, e display h On00i=L,
a quantity which is independent of the number of lattice sites but dependent, in
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Fig. 3.4 Dependence of the asymptotic behavior of rotational state populations on the lattice
height �. (a) Site-averaged population vs. rotational time for 21 sites with � D 5. Note that the
J D 0 and J D 1 states now appear to converge to different fillings. (b) Squared modulus of
Fourier transform of h On00i vs. rotationally scaled frequency for L D 21 sites and � D 5. Note the
presence of several new frequencies not observed in the � D 1 case (Fig. 3.2f). In particular, �00,
2�00, and 3�00 are denoted by arrows. (c) Site-averaged population vs. rotational time for 21 sites
with � D 10. Note the similarity to the � D 1 case (Fig. 3.2e) and the difference from the � D 5

case [(a) of this figure]—the asymptotic behavior is not a monotonic function of the lattice height.
(d) Squared modulus of Fourier transform of h On00i vs. rotationally scaled frequency for L D 21

sites and � D 10. Note that the frequencies that emerged during � D 5 have persisted

general, on the filling. There is a marked difference between L D 10, which has
filling of 5=10 D 1=2 and the others, which have fillings <1=2, but there is not a
significant difference between L D 9 and L D 21, which have fillings of 4=9 and
10=21, respectively.

The dependence of � on the filling is also evidenced by the correlation structure
factor S.01/� in Fig. 3.3f, which shows that there is a stronger correlation between
the J D 0 and J D 1 states for exactly half-filling than for fillings less than half,
regardless of the system size. Half-filling is known to be important in the extended
Bose–Hubbard model, where it marks the introduction of the charge density wave
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Fig. 3.5 Dependence of the asymptotic behavior of structure factors on the lattice height �. (a)
Structure factors vs. rotational time for 21 sites with � D 5. (b) Correlation structure factor S.01/�

vs. rotational time for 21 sites with � D 5; 10. (c) Structure factors vs. rotational time for 21 sites
with � D 10. Note the similarity of S.00/� and S.11/� to the � D 1 case (Fig. 3.3e). Note also that
S.01/� is now nonzero, and is periodic with the Rabi frequency �00 at short times and twice the
Rabi frequency at long times (see also (d) and (b) of this figure). (d) Squared modulus of Fourier
transform of S.10/� vs. rotationally scaled frequency for L D 21 sites and � D 10. Many new
frequencies appear, in particular the Rabi frequency and double the Rabi frequency, denoted with
arrows

phase. We thus interpret this greater correlation structure factor as the appearance
of a dynamic charge density wave phase between rotational states at half-filling.

This is in contrast to the usual behavior, where the structure factors S.00/� and
S.11/� are nonzero whenever there is nonzero occupation of the particular rotational
state and the structure factor S.01/� is much smaller—essentially zero, see Fig. 3.3a, e.
These results for the structure factors means that the J D 0 and J D 1 states tend to
lie on top of one another, and not to “checkerboard” with a different rotational state
occupying alternating sites. This is due to the fact that the Rabi flopping timescale is
much shorter than the dipole–dipole timescale, meaning that the population cycles
before there is sufficient time for the molecules to rearrange to a configuration which
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Fig. 3.6 Dependence of emergent timescales on number of lattice sites. (a) Dependence of the
population damping timescale � on the number of lattice sites. When we remove the dependence
on the filling by dividing through by the total number, we see that there is little difference in the
timescales with which systems of different size approach dynamic equilibrium. Contrast Fig. 3.2a,
c, e, which display a profound dependence on filling when the dependence on lattice sites has been
removed. (b) Dependence of spatial entanglement on number of lattice sites. We see that systems
of different size have different spatial entanglement in their static ground state. The timescale of
theQ-measure saturation, �Q, is shorter for L D 10 than it is for the odd L cases. This follows the
general trend of � and �Q responding correspondingly to changes in the Hamiltonian parameters,
and so we associate this shorter timescale partially with the filling, not entirely with the system
size

is energetically favorable with respect to the dipole–dipole term. However, because
the population in each rotational level asymptotically reaches some nonzero value,
we do see a small amount of rearrangement after many Rabi periods for any filling,
corresponding to a nonzero S.01/� . Note that this rearrangement does not affect the
site-averaged numbers, but rather the distribution of rotational states among the
lattice sites. This asymptotic distribution emerges on timescales longer than we have
considered, and is more prone to finite size effects than the site-averaged quantities,
so we do not make a conjecture about it here.

We find that the Q-measure saturates as

Q D Qmax �
Qe�tr =�Q ; (3.60)

with a different timescale �Q, see Fig. 3.7a and Table 3.3. We also find that the
saturation timescale of the Q-measure is not, in general, a monotonic function of
the lattice height �, as shown in Fig. 3.7a.

This timescale is different from the timescale � at which the populations
approach an asymptotic equilibrium, though both timescales respond similarly to
changes in the Hamiltonian parameter, see Table 3.3. For example, if �Q gets larger
as a parameter is changed, then � also gets larger, as illustrated in Fig. 3.7a, b. The
timescale �Q displays a stronger dependence on the number of lattice sites L than
� , as can be seen in Fig. 3.6b, a. This is because � describes a quantity that has been
averaged over sites, while �Q does not.
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Fig. 3.7 Dependence of emergent timescales on lattice height. (a) Dependence of spatial entan-
glement on lattice height. Note that the spatial entanglement and its associated timescale are not
monotonic functions of the lattice height. Note also that the entanglement of the static ground state
appears to be largely insensitive to the lattice height. (b) Dependence of the site-averaged number
on the lattice height. Note that the emergent timescale � is not a monotonic function of the lattice
height. Note also that � responds in the same way that �Q does to changes in the lattice height

3.5 Conclusions

We have presented and derived a novel lattice Hamiltonian, the MHH. The MHH is
a natural Hamiltonian for connecting theoretical studies of the dynamics of quantum
phase transitions to near-term experimental setups using ultracold molecular gases.
We presented a case study of this new Hamiltonian for hard-core bosonic molecules
at half-filling. Starting from an initial condition of half-filling in the J D 0,
M D 0 state, we found that initial large oscillations in the system self-damp to
an asymptotic equilibrium which consists of a lattice height and filling-dependent
spatially entangled superposition of dressed states. This occurs on an emergent
timescale � which cannot be predicted from the single molecule theory. We showed
that � depends non-monotonically on lattice height, weakly on lattice size, and
strongly on filling (as apparent in simulations with odd and even numbers of sites).
We also discovered a separate emergent timescale �Q which describes how quickly
the many-body spatial entanglement saturates. We demonstrated that �Q and �

respond similarly to changes in the Hamiltonian parameters and that �Q depends on
the filling, the lattice size, and, non-monotonically, on the lattice height. In addition
to these emergent timescales, we studied the time-dependent structure factors and
their frequency-domain Fourier transforms.

In future studies we will consider different filling factors, DC field strength to
rotation ratios ˇDC, and initial conditions, as well as polarized and unpolarized spin-
1/2 fermionic molecules. In addition, we will use multiscale methods to study how
the emergent timescale demonstrated above compares to experimental timescales
for physical systems, and thereby make quantitative predictions for experiments.
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Appendix 1: Single-Molecule Physics

1 Relationship Between Operators in Space-Fixed and
Molecule-Fixed Coordinate Systems

It is well known that the representation of the angular momentum operators in
a molecule-fixed coordinate frame leads to the anomalous commutation relations�
Ji ; Jj

	 D �i„�ijkJk [42]. The simplest way to avoid this trouble is to transform
all expressions into the space-fixed frame where the angular momentum operators
satisfy the normal commutation relations ŒJi ; Jk� D i„�ijkJk [43]. If the molecule-
fixed axes are obtained by rotation of the space-fixed axes through the Euler angles
f�; �; �g (Zare [43]) (which we collectively abbreviate as .R/), then the component
of a kth-rank spherical tensor T that has projection p along the space-fixed z axis,
denoted .T /.k/p , can be expressed in terms of the molecule fixed components as

.T /
.k/
p D

P
q D.k/

pq .R/
? .T /

.k/
q ; (3.61)

where D.k/
pq .R/

? is the complex conjugate of the pq element of the kth-rank
rotation matrix (Wigner D-matrix). To avoid confusion, we will label all space-fixed
components with the letter p and all molecule-fixed components with q. From the
orthogonality of the rotation matrices we have the inverse relationship

.T /
.k/
q D

X

p

D.k/
pq .R/ .T /

.k/
p (3.62)

D
X

p

.�1/p�q D.k/�p;�q .R/
? .T /kp : (3.63)

2 Rotational Hamiltonian

In the rigid rotor approximation the rotational Hamiltonian is simply

OHrot D B OJ2 ; (3.64)
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where we have defined the rotational constant B � 1=2�r2e , with � the molecule’s
reduced mass and re its equilibrium internuclear separation. Typical values of B
are �60„GHz [44]. This Hamiltonian has eigenvalues BJ .J C 1/ and eigenstates
jJMi, with J the total angular momentum and M its projection along the internu-
clear axis.

3 DC Field Term

The dipole moment of a polar molecule in a rotational eigenstate is zero in an
average sense due to the spherical symmetry of the rotational Hamiltonian. We break
this symmetry by introducing a DC electric field along the space-fixed z axis, with
Hamiltonian

OHDC D �Od � EDC; (3.65)

where EDC is the electric field amplitude. The field defines the spherical space-fixed
axis p D 0, and the molecule-fixed internuclear axis defines q D 0. We transform
between them using a first-rank rotation matrix as outlined above:

OHDC D �
� Od
�.1/
0

EDC: (3.66)

The matrix elements of the DC Hamiltonian in the basis which diagonalize the
rotational Hamiltonian Eq. (3.65) are

hJ 0;M 0j OHDCjJ;M i D �dEDC

p
.2J C 1/ .2J 0 C 1/ .�1/M

�
�
J 1 J 0
�M 0 M 0

��
J 1 J 0
0 0 0

�
(3.67)

where we use the notation .: : : / for the Wigner 3-j symbol (Zare [43]). Note that
the symbol d refers to the permanent dipole moment of a molecule, and is not to
be confused with the dipole operator denoted by Od. We refer to the basis which
simultaneously diagonalizes the Rotational and DC Hamiltonians as the “dressed
basis,” and we denote the kets that span this basis by jE I JMi, where the labels J and
M are the zero field values of the corresponding quantum number and the symbol
E is a reminder that these kets are superpositions of field free rotational states and
DC field.

The effects of the DC field can be clearly seen by considering the dressed state
wavefunctions, energies, and dipole moments to lowest order in perturbation theory
in the dimensionless parameter ˇDC � dEDC=B , the ratio of the field energy to the
rotational level splitting:
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jE IJ;M i D jJ;M i � ˇDC

2J

r
J 2 �M2

4J 2 � 1 jJ � 1;M i

C ˇDC

2 .J C 1/

s
.J C 1/2 �M2

4 .J C 1/2 � 1 jJ C 1;M i; (3.68)


E
.2/
JM D

d2E2DC

2B



J .J C 1/ � 3M2

J .J C 1/ .2J � 1/ .2J C 3/
�
; (3.69)

hE I JMj OdjE I JMi=d D �@EJM

@ˇDC
D ˇDC

3M2=J .J C 1/ � 1
.2J � 1/ .2J C 3/ ; (3.70)

where 
E.2/
JM is the lowest nonzero shift in the energy.

The DC field mixes states of different J , breaking the .2J C 1/-fold degeneracy
of the rotational Hamiltonian, and so J is no longer a good quantum number. In the
case of a z-polarized field, M remains a good quantum number, and a degeneracy
persists for all states with the same jM j. This mixing aligns the molecule with the
field, inducing a nonzero dipole moment. This means of orienting polar molecules,
known as “brute force” orientation, works well for molecules that both have a
large dipole moment and can be efficiently rotationally cooled [45]. While more
effective means of orienting molecules using intense laser fields are known [46],
they complicate the theoretical discussion and the experimental setup, and so we do
not consider them here.

In larger fields the rotational levels become deeply mixed, which allows states
that are weak-field seeking in low fields to become high-field seeking in high
fields [47]. The actual mixing of rotational levels vs. ˇDC is depicted in Fig. 3.9
for the lowest three dressed levels. We note that there always exists a field ER such
that the lowestR dressed states’ dipole moments are all positive, as this is important
to ensure the stability of a collection of dipoles. The universal curve of the induced
dipole moments (in units of d ) vs. ˇDC of the first two dressed rotational manifolds
are shown in Fig. 3.8a. The universal curve of the dressed state energies (in units of
B) vs. ˇDC is shown in Fig. 3.8b. For reference, ˇDC D 1 corresponds to a field of

roughly 1.93kV
cm for B � 60„GHz and d � 9 D.

Expanding the field operators in Eq. (3.1) in a Wannier basis of dressed states
centered at a particular discrete position ri as described in Eq. (3.4), we find

OHrot C OHDC DPJ

PJ
MD�J EJ;M OnE;JM; (3.71)

where EJM is the energy of the jE IJ;M i dressed state (see Fig. 3.9a) and OnE;JM is
the number operator associated with this same state.

If the DC field were aligned at a small angle �a to the z field of the trap (say, in
the xz plane), then small dipole moments mixing M 0 D M ˙ 1 states would arise
and the M 0 D M dipoles would decrease slightly (we can view them as being in
an effective field of Eeff D cos �aEDC). Treating the new contribution perturbatively
in the small parameter sin �aˇDC, we find the lowest order couplings to the ground
state
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hE I 00j OHDCjE I 1˙ 1i ' sin �adEp
6

 
1 � 49 sin2 �a

1440
ˇ2DC

!
; (3.72)

and associated timescale ��a for occupation of M ¤ 0 states from the ground state,

��a D
p
6„

sin �adE
�
1 � 49 sin2 �a

1440
ˇ2DC

� �
p
6

ˇDC sin �a

„
B
: (3.73)
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4 AC Field Term

An AC microwave field of frequency ! resonantly drives transitions between two
DC dressed states jE IJ 0M 0i and jE I JMi with energy difference .EJ 0M 0 �EJM/

=„ � ! provided the induced dipole moment hE IJ 0M 0j OdjE I JMi is nonzero. Two
states separated by an energy difference 
E that is off-resonant from the driving
field (i.e., 
E � !) will also be coupled, albeit much more weakly. In our system
we resonantly couple the lowest two dressed rotational levels, jE I 10i and jE I 00i.
We consider the case of z polarization, in which the effective Hamiltonian in the
dressed Wannier basis is

OHAC .t/ D �� sin .!t/
P

JM �JM

�
Oa
EIJ;M OaEIJC1;M C h.c

�
; (3.74)

where

�JM � EAChE IJ;M j OdjE IJ C 1;M i=„: (3.75)

is the Rabi frequency. This is the frequency with which the populations of a two-
level system cycles. In experiments, the AC field has spatial curvature on the order
of cm which is negligible on the 	m system size scale.

In the absence of couplings between sites, the physics of the system is determined
by the on-site, single-molecule physics. The percentage population of each compo-
nent in both the jE IJ;M i dressed and jJMi field-free bases is shown below for one
Rabi period. In these plots only the jE I 10i and jE I 00i dressed states are considered,
which is close to the actual behavior when all other states are far off-resonant. Each
site undergoes Rabi flopping independently of the others. Figure 3.10a, b show this
behavior for ˇDC D 1:900 and ˇAC � dEAC=B D 0:200, giving a Rabi period of
2�=�00 D 36:5„=B .
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Fig. 3.10 Resonant AC field induced population cycling in the dressed and field-free bases. (a)
Populations of the dressed states vs. rotational time. The small amplitude rapid oscillations occur
on the timescale 1=!, and are often averaged away via the rotating wave approximation. The large
amplitude oscillations occurring on the timescale 1=�00 that periodically transfer the population
between jEI 00i and jEI 10i are the characteristic “Rabi oscillations” of a driven two-level system.
(b) Populations of the field-free states vs. rotational time. The j20i state is occupied because both
jEI 00i and jEI 10i have a nonzero projection with this state due to the mixing from the DC field,
see Fig. 3.9. It is apparent from comparison with (a) of this figure that the dressed basis greatly
simplifies the AC term in the Hamiltonian
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Appendix 2: Convergence

1 Single-Molecule Considerations

Each dressed state jE IJ;M i is, in principle, an infinite linear combination of field
free states

jE IJ;M i DP1
J 0D0 cJ 0 jJ 0;M i: (3.76)

Numerically, we must have a finite upper bound to the sum in Eq. (3.76), which
we call Jcut. This does not cause difficulty in practice, as the overlap of a dressed
state jE I JMi with a field-free state jJ 0M i diminishes rapidly as J 0 differs more
greatly from J . We find the coefficients in Eq. (3.76), as well as the dressed state
energies and dipole moments by simultaneously diagonalizing the rotational and DC
field Hamiltonians in a basis consisting of the first Jcut rotational levels. Because
TEBD scales poorly with the on-site dimension, we form as small an on-site basis
as possible by keeping the eigenvectors corresponding to the R lowest dressed
levels. To form a proper basis, we must renormalize these eigenvectors (which, for
z-polarized field, does not change their orthogonality). We now demonstrate the
convergence of these two procedures

To show convergence of the first procedure, we plot the difference between the
energy of the J th rotational state calculated for a particular value of Jcut D i and one
higher value, 
EJ .i/ as a function of i . The results for various field strengths are
shown in Fig. 3.11a, b. We see very fast convergence for the low fields (e.g., ˇDC D
1:9) of interest. In our numerics we use Jcut D 25, which ensures convergence for
any of the ˇDC considered.
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Fig. 3.11 Convergence with respect to DC dressing rotational state cutoff. As few as seven field-
free levels are needed for the weak field ˇDC D 1:9 to have the dressed state energies of interest
converge to machine precision (left panel), and even a large DC field ˇDC D 20 requires only 12
field-free levels for the energy to converge (right panel)
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To determine convergence with respect to the second procedure, examine
Fig. 3.9a, b, which show

P
.Jmax/
J � 1 �PJmax�1

iD0 jhE IJ0ji0ij2 ; (3.77)

the amount of the total dressed wave function norm jhE IJ0jE IJ0ij2 that lies outside
of the first Jmax field-free rotational levels for Jmax D 3 and 4, respectively. For
Jmax D 4 the renormalization of the first three rotational levels is a very small effect
for the ˇDC we consider, and the fourth level is not populated to any appreciable
extent during time evolution for any ˇDC (see Fig. 3.10a), so we expect that keeping
the Jmax D 4 lowest levels will give sufficient accuracy. By direct simulation,
we find six-digit accuracy in the suite of quantum measures defined in Sect. 3.3.2;
specifically, we compare Jmax D 3 and 4 (Fig. 3.12).

2 Many-Body Considerations

There are also convergence issues that are inherent to the TEBD algorithm. The first,
called the Schmidt error, is the error that arises from truncating the Hilbert space at
each time step. We can parameterize the error per step in terms of the entanglement
cutoff parameter � as

�Sl D 1 �
P�

˛lD1
�
�Œl�˛l

�2
(3.78)
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Fig. 3.13 Convergence with respect to entanglement cutoff parameter. The left figure shows the
spatial entanglement measureQ for various values of the TEBD entanglement cutoff parameter �.
As � is increased, Q remains close to its true value for longer. In the right figure we plot the log
of the absolute difference in Q for two values of � divided by its arithmetic mean. We see at least
four-digit accuracy for the largest values of � we consider. Note also that even small values of �
are accurate for short times

where �Œl� is a vector containing the eigenvalues of the reduced density matrix
obtained by tracing over all sites but l , and ˛l is the local index that entangles
the site l with the rest of the system, with smaller ˛l states having greater weight.
We find that, among the measures we use, the one that is most sensitive to �
is the Q-measure, which we plot for four values of � in Fig. 3.13. Increasing �
improves the accuracy over longer times, but there is always a time after which the
measure begins to deviate. This is the normalization drift alluded to in Sect. 3.3.1.
The �-dependent time after which the Schmidt error dominates is referred to as
the runaway time [39]. In the case study of Sect. 3.4, we used � D 50 for all
simulations, which gives the Q-measure accurately to within four decimal places
over the timescales considered.

The second intrinsic source of error in TEBD is due to the Trotter–Suzuki
expansion of the propagator [32]. We parameterize this error in terms of ıt , the
time step. When we halve the time step from that used in the simulations above
(D 2�=.133!/), we find no change in the measures to the ninth digit. It is clear that
the Schmidt error discussed above is the chief source of error in our simulations.

To extract the emergent timescales defined in Eqs. (3.58) and (3.60), we used two
different methods. The first is the nonlinear curve fitting routine “fit” in gnuplot. The
second is the “NonlinearRegression” package in Mathematica 6.0. Both methods
use nonlinear regression, which fits the data to a specified nonlinear function of
the model parameters. The goodness of the fit is quantified by the asymptotic
standard errors of the model parameters, which gives the standard deviation of each
parameter. A low percent asymptotic error means that the model parameters cannot
be adjusted very far without noticeably changing the goodness-of-fit. Both gnuplot
and Mathematica returned the same values for the emergent timescales to within the
stated asymptotic standard error.
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Chapter 4
Hyperfine Molecular Hubbard Hamiltonian

Abstract An ultracold gas of heteronuclear alkali dimer molecules with hyperfine
structure loaded into a one-dimensional optical lattice is investigated. The hyperfine
molecular Hubbard Hamiltonian (HMHH), an effective low-energy lattice Hamilto-
nian, is derived from first principles. The large permanent electric dipole moment
of these molecules gives rise to long-range dipole–dipole forces in a dc electric
field and allows for transitions between rotational states in an ac microwave field.
Additionally, a strong magnetic field can be used to control the hyperfine degrees
of freedom independently of the rotational degrees of freedom. By tuning the angle
between the dc electric and magnetic fields and the strength of the ac field it is
possible to control the number of internal states involved in the dynamics as well as
the degree of correlation between the spatial and internal degrees of freedom. The
HMHH’s unique features have direct experimental consequences such as quantum
dephasing, tunable complexity, and the dependence of the phase diagram on the
molecular state.

4.1 Introduction

Ultracold molecular gases are of interest in many subfields of science ranging
from precision science to quantum simulation of many-body Hamiltonians [1].
Recent success using the stimulated Raman adiabatic passage (STIRAP) method
has allowed experimentalists to produce a gas of KRb molecules close to Fermi
degeneracy, in the ground rovibrational state, and in a specific hyperfine level [2, 3].
Rovibonic ground state molecules have also been formed for polar LiCs [4] as
well as nonpolar Cs2 [5] and Rb2 [6], with studies on other species currently under-
way [7, 8]. To reach the quantum degenerate regime one must have all molecules in
the same quantum state, a task which is complicated by the rich hyperfine structure
of alkali dimer molecules. Thus, a number of recent works [9–11] have investigated
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the single-molecule microwave spectra to find a route by which all molecules are
transferred to the lowest hyperfine state, yielding a gas of absolute ground state
molecules.

From the condensed matter perspective, ultracold gases are enticing in their
capacity to act as quantum simulators [12, 13]. Such specialized quantum computers
allow for the study of complex many-body Hamiltonians in a setting where many
parameters are amenable to experimental control. From this point of view, it is
natural to ask how the various degrees of freedom in the quantum simulator may
be controlled and used as resources. Theoretical proposals for many-body physics
using ultracold molecules have so far focused only on the rotational degrees of
freedom in 1† molecules with external fields [14, 15] or on the hyperfine degree
of freedom in 2† molecules without external fields [16]. In this work we study
1† molecules in strong fields including the effects of hyperfine structure and
discuss how the hyperfine degrees of freedom may be controllably accessed and
manipulated as a resource for generating complex quantum dynamics.

For 1† molecules it has been shown that the interaction of the rotational degrees
of freedom with external electric fields allows for the tuning of the strength and
range of the two-molecule interaction potential [14]. Many of these results also hold
for molecules with hyperfine structure, as the rotational and nuclear spin degrees
are only weakly coupled in strong fields. In particular, the application of a dc
field and an optical trapping potential gives rise to a purely repulsive dipole–dipole
interaction between molecules in reduced geometries. Also, it has been shown that
the combination of a strong uniform magnetic field and a suitably chosen microwave
field allows for transitions between particular hyperfine single-molecule states, and
that this may be used to transfer a collection of molecules that have been cooled
to the rovibrational ground state but an excited hyperfine state to their hyperfine
ground state [9–11]. This idea also works in reverse: one can select the states which
are involved in many-body dynamics with the ground state by judicious choice of
the field strengths and geometries. The hyperfine molecular Hubbard Hamiltonian
(HMHH) reflects this fact; not only the parameters of the Hamiltonian but also the
dimensionality and character of the basis are suited to experimental control.

This article is organized as follows. In Sect. 4.2 we introduce the HMHH, define
its parameters, and discuss its interesting experimental consequences. This section
contains the main results of the paper. In Sect. 4.2.3 we derive the HMHH from
first principles and state the key assumptions underlying its derivation. Finally, in
Sect. 4.4, we conclude. Some details concerning the single molecule physics are
provided in the appendices in the interest of completeness.
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4.2 Statement of the Hamiltonian and Experimental
Consequences

The HMHH is
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; (4.1)

where Oai� destroys a bosonic or fermionic molecule in state j�i on the i th
lattice site, and the bracket notation h: : : i denotes that the sum is taken over
nearest neighbors. The single-molecule basis fj�ig takes into account the hyperfine
interactions (Appendix 1) and static fields (Appendix 2) and the quantum number
� is a composite index referring to both rotational and nuclear spin degrees of
freedom. The properties and dimensionality of this basis can be modified by the
geometry and strength of the external fields, as will be discussed in more detail
below.

The first term in the HMHH represents the energy offset of a molecule in state j�i
from a reference ground state. The second term describes the tunneling of molecules
between lattice sites and depends on the rotational state. The third term describes
resonant dipole–dipole interactions between molecules on neighboring sites. The
final term corresponds to transitions driven between states j�i and j� 0i by an ac
microwave field. Here the transition dipole moment between two states j�i, j� 0i is
d�� 0 � h� j Od1j� 0i, where Od1 � Od � e1 is the projection of the dipole operator along
the space-fixed spherical basis direction e1 D �

�
ex C iey

�
=
p
2.

For 40K87Rb, which is the most experimentally relevant species, the energy scales
of the various terms are summarized in Table 4.1. The detunings
� are determined
chiefly by the linear Zeeman effect, and so are tunable by the dc magnetic field, and
will be similar for other molecular species. The tunneling energy scale t� is set by
the recoil energy, and so will be similar for other alkali dimers. The dipole–dipole
energy scale U�� 0 is fixed by the permanent dipole moment, and so will change with
the molecular species. For example, LiCs have a dipole moment roughly ten times
larger than that of KRb, and soU�� 0 will be of order 25 kHz. The scale of the ac term
is determined by the power of the microwave fieldEac, which is readily tunable. The
range of energies we have quoted represents the most interesting regime where the
basic assumptions of our derivation hold.

In the following sections we will justify the HMHH and list the essential
assumptions underlying its derivation, but we first pause to note some of its unusual
properties.
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Table 4.1 Table of energy
scales of the hyperfine
molecular Hubbard
Hamiltonian

Term Energy scale


� �1–100 kHz (depends on static field strengths)

t� �1 kHz

U�� 0 �250 Hz

d�� 0Eac �1–50 kHz

From top to bottom: energy 
� of internal state j�i, relative
to the ground state; tunneling t� ; dipole–dipole interaction
U�� 0 ; transition dipole moment d�� 0 due to the ac electric
drive Eac

4.2.1 Quantum Dephasing

The first property, which we call quantum dephasing, was investigated previously
for a molecular Hubbard Hamiltonian involving only rotational degrees of free-
dom [15]. The effect, which is purely many-body in nature, may be summarized
in this context as the destruction of coherent Rabi flopping due to the population of
many spatial degrees of freedom in a many-body system driven at a single-molecule
resonance. This effect is also of interest in the more general context of oscillations
in a many-body system that are damped by some intrinsic mechanism following a
quench [17, 18].

Dephasing is strongest when the Rabi frequency is on the order of the tunneling
energies and the difference in tunneling energies for the two internal modes is also
comparable to these two scales. For a system with two single-particle levels 0 and
1 and tunneling energies t0 and t1, respectively, this gives the condition � � t0 �
t1 � jt0 � t1j, which can be achieved with the HMHH for reasonable parameter
values. The Rabi oscillations between the two internal states connected by the single
molecule resonance damp out exponentially in time with an emergent timescale �
which can be measured experimentally, see Fig. 4.1. Dephasing can be observed in
the structure factors

S��
0

� D 1

L

LX

i;jD1
.�1/i�j h Oni� Onj� 0i ; (4.2)

where L is the number of lattice sites; S��
0

� can be measured in scattering
experiments [19].

4.2.2 Internal State Dependence of Phase Diagram

The dependence of the tunneling energy t� on the internal state � makes the borders
of the phase diagram shift strongly (e.g. by a factor of 2). This dependence is
shown explicitly in Fig. 4.2. Thus, by preparing a collection of molecules in multiple
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Fig. 4.1 Quantum dephasing in the HMHH. The plot shows the behavior of the total number
in state 0: h On0i � hPi Oni0i when the system evolves under the Hamiltonian (4.1). Quantum
dephasing produces an emergent exponential envelope on the Rabi oscillation pattern between
states 0 and 1. Only the number of state 0 is shown for clarity. The dashed red curve is an
exponential envelope fit to N exp .�t=�/ with � D 1; 441:17ms. The nonexponential behavior
near t D 200 is due to the finite size of the lattice
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Fig. 4.2 Tunneling matrix elements in a dc electric field. Tunneling energies (in kHz) of the
N D 0 (solid blue line) and N D 1 (dashed green line) rotational states and their difference
divided by their arithmetic mean, 2 .t1 � t0/ = .t1 C t0/, (dash-dotted red line) for KRb in a field

of 10 kV/cm as a function of the effective isotropic lattice height � � N̨ ˇ̌Eopt

ˇ̌2
(in recoil energy

units). The values of the polarizability tensor are taken from [20]

internal states one can study interactions of many-body systems in different quantum
phases and possibly far from equilibrium. Possibilities for quantum statics include
studying the properties of phase equilibria as a function of population imbalance and
effective mass (as determined by the tunneling energy) [21]. Also, as the difference
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in tunneling energy between different modes depends only on the elements of the
molecular polarizability tensor, measuring the borders of the static phase diagram
for different internal states also provides a means to measure this tensor. Possibilities
for quantum dynamics include the study of quench phenomena for interacting many-
body systems in different quantum phases.

4.2.3 Tunable Complexity

A final noteworthy property which was not present in the molecular Hubbard Hamil-
tonians previously studied is the possibility of tunable complexity. By complexity
we mean that the system is comprised of many interacting degrees of freedom
and displays emergent behavior such as the dephasing discussed above. Tunability
refers to the fact that we may alter the number of internal degrees of freedom
that are accessed dynamically as well as the timescale of their relative interactions.
The key point for tunability is that the electric and magnetic fields affect different
degrees of freedom: the electric dipole moment and nuclear spins, respectively. We
illustrate this concept, and the corresponding geometries and polarizations needed
for experiments, in Fig. 4.3.
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Fig. 4.3 Geometry of the HMHH. Counter-propagating laser beams along the y and z directions
create an array of 1D tubes, and an additional pair of laser beams along x creates a lattice potential.
A strong dc field orients the dipoles along the direction perpendicular to motion, and a magnetic
field orients the nuclear spins. An ac field of circular space-fixed polarization drives transitions
between internal levels
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In slightly more detail, tunability is achieved as follows. In the presence of
an electric field aligned along the z direction, dipole moments are induced between
states having the same nuclear spin projection along the field. The introduction
of a strong magnetic field defines an effective axis of quantization for the nuclear
spins while leaving the rotational structure unchanged because of the strong nuclear
Zeeman effect, the weak rotational Zeeman effect, and the presence of only weak
(quadrupole) coupling between the rotational and nuclear spin degrees of freedom.
In the presence of a strong magnetic field that is not collinear with the electric
field it is therefore possible to induce dipole moments between states with different
hyperfine quantum numbers.

Thus, by changing the relative angle between the electric and magnetic fields
one can control the number of states accessible from a particular state. The power of
the applied ac field determines the interaction scale and the Rabi frequency of these
dipole couplings, and the strength of the magnetic field determines the energetic
splittings between states, in turn determining the relative rates of internal state
population. The HMHH may therefore be used as a quantum simulator of a quantum
complex system where the number and timescale of the internal components may
be dynamically altered. Precise measures of complexity and simulations displaying
characteristic behavior in various regimes will be discussed in future work [22].

4.3 Derivation of the HMHH

We consider the experimental setup shown schematically in Fig. 4.3. Counter-
propagating laser beams along the y and z directions create a series of 1D optical
lattice “tubes.” The intensity of these beams is such that the tubes are isolated from
one another, and the lattice spacing is chosen (e.g., by crossed beams) such that the
dipole–dipole interaction along y and z is negligible on experimental timescales.
An additional pair of beams creates a lattice potential along the x-direction. The
experimental techniques required to create this setup have been well established for
ultracold atoms [23–25]. In addition to the lattice potential there is a uniform dc
electric field along the z direction, a uniform magnetic field which lies in the xz
plane, and an ac microwave field propagating in z which is assumed to have circular
polarization q D 1 in the space-fixed spherical basis.

In the lattice is an ultracold quantum degenerate gas of 1† heteronuclear
molecules characterized by permanent electric dipole moment d , rotational constant
BN , rotational angular momentum N,1 and nuclear spins I1 and I2. Both nuclear
spins are taken to be greater than one-half, so that both nuclei have nonzero electric
quadrupole moments. In second quantization the full low-energy Hamiltonian for
this setup is

1We reserve J for future studies involving nonzero orbital or electronic spin angular momentum.
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OH D
Z
dr O 
.r/

h OHin C OHF C OHac C OHkin C OHopt

i O .r/

C 1
2

Z
drdr0 O 
.r/ O 


�
r0� OHDD

�ˇ̌
r � r0 ˇ̌� O �r0� O .r/; (4.3)

where

OHin D OHrot C OHscal C OHtens C OHr�s C OHquad (4.4)

D BN ON2 C c4OI1 � OI2 C c3OI1 � QT � OI2 C
2X

iD1
ci ON � OIi

C
2X

iD1
OQVi � OQQi ;

OHF D � gr�N ON � B �
2X

iD1
gi�N .1 � �i / OIi � B (4.5)

� Edc � Od ;
OHac D � Eac � Od ; (4.6)

OHkin D Op
2

2m
; (4.7)

OHopt D � E?opt � OQ̨
�
!opt

� � Eopt ; (4.8)

OHDD .R/ D
Od1 � Od2 � 3

� Od1 � eR
� �

eR � Od2
�

R3
: (4.9)

The first line of Eq. (4.3) is comprised of single-molecule terms. In order, these are
OHin, the Hamiltonian governing the internal rotational and nuclear spin degrees of

freedom; OHF, the interaction of the molecule with externally applied dc electric and
magnetic fields; OHac, the interaction of the molecule with an ac microwave field;
OHkin, the kinetic energy of the molecule; and OHopt, the interaction of the molecule

with the optical lattice potential. The second line of Eq. (4.3) is the two-molecule
resonant dipole–dipole force. The main assumptions underlying this Hamiltonian
and our subsequent analysis are the following.

First, the individual molecules are assumed to be in their electronic and vibra-
tional ground states, and it is assumed that none of these degrees of freedom can
be excited at the large intermolecular separations and low temperatures/relative
energies that we consider.

Second, the characteristic trapping potential length is chosen large enough
compared to the internuclear axis to assume spherical symmetry, i.e. a locally
constant potential.
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Third, we consider only the lowest two rotational levels. All ac fields will be
sufficiently weak to allow this assumption. We also work in the rotating wave
approximation, which requires that the detuning be small compared to the driving
frequency.

Fourth, we consider all molecules to be in the lowest Bloch band. The ac Rabi
frequencies are chosen to be small (�1–50 kHz) in comparison with the lattice
bandwidth (�10ER �100 kHz) to ensure this assumption.

Fifth, we work in the “hard-core” limit where at most one molecule is allowed
per site. This is enforced by strongly repulsive dipole–dipole interactions on-site,
caused by our z-alignment of the electric field, as sketched in Fig. 4.3. We consider
the lattice spacing large enough to include only nearest-neighbor dipole–dipole
interactions. We neglect the effects of chemical reactions or hyperfine changing
collisions which occur at very short range.

Sixth, we neglect dipole–dipole interactions between molecules in different
1D “tubes.” For a consistent level of approximation this requires the tubes to be
separated by twice the lattice spacing. This can be achieved in principle using
crossed beams to create larger lattice spacings.

Seventh, we consider only pairwise interactions of the molecules, neglecting
three and higher-body interactions. This is valid for KRb because the permanent
dipole moment d D 0:566D is rather small. For molecules such as LiCs with
larger permanent dipole moments, the three-body interaction can play a significant
role [26].

To derive a Hamiltonian of Hubbard type from Eq. (4.3) we follow the standard
prescription [13] of expanding the field operators of our second-quantized Hamil-
tonian in a Wannier basis of single-molecule states centered at a particular discrete
position ri :

O DPi

P
� Oai�w� .r � ri / ; (4.10)

where i is a site index and � an index denoting the internal state of the molecule.
The Wannier basis we use is the basis which diagonalizes the internal plus static field
Hamiltonians OHin C OHF and in which all states with N D 1 rotate with frequency
!, where ! is the frequency of the applied ac electric field. With the field operator
written in this manner, we find the Hubbard parameters

t� � �
Z
dr w?� .r � ri /

h OHkin C OHopt

i
w� .r � riC1/ ; (4.11)


� �
Z
dr w?� .r � ri /

h OHin C OHF

i
w� .r � ri / ; (4.12)

and

�d�� 0Eac �
Z
dr w?� .r � ri / OHacw� 0 .r � ri / ; (4.13)
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U�� 0 �
Z
drdr0 w?� .r � ri /w?� 0

�
r0 � riC1

�
(4.14)

�HDD
�
r � r0�w� .r � ri /w� 0

�
r0 � riC1

�
:

The detunings 
� are determined by the single-molecule spectra, which are
well known [9, 27]. In the interest of the present article’s completeness, we have
included appendices reviewing the basic results and explaining them in the context
of the present problem. In the following sections we discuss the remaining Hubbard
parameters.

4.3.1 Tunneling Energies

A key component of the realization of many-body Hamiltonians using ultracold
molecules is the presence of a far off-resonant optical lattice which confines the
molecules in a reduced geometry. The Hamiltonian of this interaction is

OHopt D �E?opt

�
r; !opt

� � OQ̨ �!opt
� � Eopt

�
r; !opt

�
; (4.15)

where Eopt
�
r; !opt

�
is the optical lattice field and OQ̨ �!opt

�
is the polarizability tensor

operator of the molecule, evaluated at the optical lattice frequency !opt. In our
notation, the circumflex accent (the “hat”) denotes an operator, the tilde denotes a
rank 2 tensor, and boldface denotes a rank 1 tensor, or vector. This optical potential
couples to the electronic degrees of freedom and is detuned from resonance by
an amount several orders of magnitude larger than any hyperfine splittings. Thus
dependence on the hyperfine quantum numbers in negligible. For tight optical traps,
the optical trap potential at each well is close to that of a harmonic trap plus a small
state-dependent tensor shift of the trap frequency affecting levels with N > 0 due
to the polarizability anisotropy [15].

When the optical potential is combined with the kinetic portion of the Hamilto-
nian and evaluated in the Wannier basis one obtains the tunneling energies. As the
tunneling energies are independent of the hyperfine quantum numbers, we can use
results obtained in the case of only rotational degrees of freedom, derived in our
earlier work [15]. Then the tunneling energies in the eigenbasis of OHrot, jNMN i, are
given by

QtNMN

ER
D A

�
VNMN

ER

�B
exp

 
�C

s
VNMN

ER

!
; (4.16)
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whereA D 1:397, B D 1:051, and C D 2:121 are fit parameters [28],ER the recoil
energy, and

VNMN D
ˇ̌
Eopt

ˇ̌2


N̨ C 2
˛

3

N .N C 1/ � 3M2
N

.2N � 1/ .2N C 3/
�

(4.17)

is the effective lattice height for the jNMN i level. Here N̨ is the average polarizability
and 
˛ the polarizability anisotropy.

In the presence of a dc field the rotational levels become mixed, leading to
new effective tunneling energies which we denote as tNMN , with N and MN the
corresponding zero field values. This hybridization of rotational levels in principle
also allows tunneling events which change the rotational state of the molecule, but
we can ignore such events because the rotational level separation is much larger
than the tunneling energies. The effective tunneling for the N D 0 and N D 1,
MN D ˙1 levels is shown in Fig. 4.2. The scale is set by the recoil energy, which is
2� � 1:44 kHz for KRb in a 1,054-nm optical lattice.

4.3.2 Two-Molecule Interactions

Heteronuclear 1† molecules possess permanent dipole moments, and thus interact
via a dipole–dipole interaction

OHDD .R/ D
Od1 � Od2 � 3

� Od1 � eR
� �

eR � Od2
�

R3
; (4.18)

where R � r2 � r1, eR is a unit vector in the direction of R, and Odi is the vector
dipole operator of the i th molecule. In the absence of external fields, this interaction
is off-resonant, leading to a van der Waals interaction OHDD .R/ � R�6, but in the
presence of electric fields resonant dipoles are induced and the interaction displays
a resonant R�3 behavior in addition to the R�6 behavior.

The anisotropic nature of the dipole–dipole force has been experimentally
shown to dominate the rethermalization behavior of a molecular gas via inelastic
collisions [29]. This is because a “head-to-tail” arrangement of molecules leads to
an attractive potential, whereas “side-to-side” interactions are repulsive. To ensure
the stability of an ultracold molecular ensemble and to prevent losses from inelastic
collisions it is crucial therefore not only to orient the dipoles using a dc field, but also
to confine the molecules in a reduced geometry. A thorough discussion of the nature
of the two-molecule spectra for 1† molecules without hyperfine structure and its
implications for stability in two dimensions is presented in [14]. Diagonalization
of the full two-molecule Hamiltonian is impractical when hyperfine structure is
included due to the very large matrices that result. Instead, we argue based on
comparisons of length and energy scales that the hyperfine structure is negligible
during the collisional processes which occur in our proposed setup.
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Our reduced geometry is imposed by the optical lattice described earlier. Namely,
we consider the case where the molecules are confined to move only along the x
direction and a dc field polarized along the z direction orients the dipoles such that
all collisions are side-to-side and repulsive. The dipole–dipole interaction in this
geometry reduces to

OHDD D 1

R3

h Od0 ˝ Od0 C 1

2

� Od�1 ˝ Od1 C Od1 ˝ Od�1
�

� 3
� Od�1 ˝ Od�1 C Od1 ˝ Od1

� i
; (4.19)

where Odq � Od � eq is the component of the dipole operator along the q direction
in the space-fixed spherical basis. For z-polarized electric field, the only diagonal
components are those involving d0. The components of the interaction involving
d˙1 couple states with 
MN D ˙1 that are separated in energy by an amount
of order the rotational constant for the dc fields we consider (see Fig. 4.4).
Contributions from these components are suppressed at distances greater than

rB �
�
d2=B

�1=3
, of order a few nanometers. Thus, at the nearest-neighbor distance

in a 1,054-nm optical lattice we consider only the diagonal elements of the dipole–
dipole interaction. This restriction gives rise to the two-body term

OHDD D 1

2

X

�� 0

U�� 0

X

hi;j i
Oni� Onj� 0 ; (4.20)
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Fig. 4.4 Gigahertz scale view of the Stark effect for KRb. Introduction of a dc field breaks
the degeneracy between all states with the same N but different jMN j. The large electric dipole
moment causes GHz scale energy shifts which completely obscure the hyperfine splittings on the
scale of this plot. Because the dipole moment is the same for any isotope of KRb, the Stark effect
on this scale is the same for all isotopes
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where

U�� 0 D d�d� 0

.�=2/3
: (4.21)

In Eq. (4.21) d� is the resonant dipole moment of state j�i and � is the wavelength
of the optical lattice. We assume that the long-range repulsive diagonal d0 portion of
the dipole–dipole interaction is strong enough to prevent both the occupation of any
one lattice site by more than one molecule and access to the region where hyperfine-
changing collisions involving the d˙1 dipole moments occur.

4.3.3 Interactions with Static External Fields

The spectral properties of 1† molecules in collinear dc electric and magnetic fields
have been elucidated elsewhere in the literature [9, 10, 27], and the basic results of
the analysis are given in Appendix 2 for the reader’s convenience. In this section,
we focus on the properties of such molecules in noncollinear fields, in particular on
the dipole moments.

The behavior of the molecular dipole moments is controlled by an external
dc electric field which mixes rotational levels of opposite parity and thus orients
the molecule. However, a dc field does not couple to the nuclear spins. So for a
z-polarized field the selection rules 
M1 D 0, 
M2 D 0 are enforced, where
M1 and M2 are the nuclear spin projections along the field direction. In contrast, a
magnetic field couples strongly to the nuclear spins but only weakly to the rotational
angular momentum due to the relative sizes of the g factors [27]. The magnetic field
Hamiltonian thus has eigenstates which are energetically distinct nuclear spin states
with a quantization axis given by the field direction. It is in this sense that we say
the magnetic field defines an effective axis of quantization for the nuclear spins.
Thus, in the absence of internal couplings of the rotational and hyperfine degrees of
freedom they may be manipulated independently: the rotational angular momentum
with an electric field and the nuclear spin angular momenta with a magnetic field.

The presence of nuclear quadrupole couplings in alkali dimer molecules couples
states with the same total angular momentum projectionMF but different rotational
and nuclear spin projections. For example, in KRb, the interaction couples j�i D
jN D 1;MN D 0;MK;MRb ˙ 1i to j� 0i D jN D 1;MN D ˙1;MK;MRbi
with the latter accounting for �10% of the state in the absence of fields.2 Clearly,
since the N D 0 state has only one projection MN D 0, the nuclear quadrupole
interaction leaves this level unaffected. In a dc electric field where the rotational
levels become mixed, the states correlating with theN D 0 levels andN D 1 levels

2The interaction also couples the MK ˙ 1 states, but the coupling constant .eqQ/K is significantly
smaller than .eqQ/Rb and so the mixing is negligible in comparison [11].
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Fig. 4.5 Distribution of dipolar character. The colorbar shows the logarithm of the transition
dipole moment with the ground state, loghg:s:j Od1jii, as a function of the angle between the
magnetic and electric fields �B and the state index (ordered by energy). Changing the angle
between the electric and magnetic fields breaks the nuclear spin projection selection rule and allows
for transition dipole moments between many states. Only dipole moments greater than 10�7 are
displayed

both display quadrupole effects, but these effects are still not identical. In strong
fields the Zeeman effect dominates over the quadrupole coupling, allowing control
over the nuclear spins that displays a weak dependence on the rotational level.

Thus, a strong magnetic field defines an effective axis of quantization for the
nuclear spins, resulting in nuclear spin states which are superpositions of states in
the basis with the axis of quantization along the electric field axis. This implies
that by changing the angle of the magnetic field with respect to the electric field, it
is possible to change the number of states which are coupled by transition dipole
moments. This is illustrated in Fig. 4.5, which shows the logarithm of the transition
dipole moment with the ground state as a function of the angle between the dc
and magnetic fields �B and a state index (ordered by energy). The lowest state index
denotes the lowest energy state in theN D 1manifold. When the fields are collinear,
one state dominates the dipole spectrum. As the angle changes the dipolar character
becomes spread over many states. These transition dipole moments allow the states
to couple in an ac microwave field and generate complex dynamics.

4.3.4 Interaction with an ac Microwave Field

The introduction of an ac microwave field contributes to the Hamiltonian in a similar
way to a dc field. In addition, the inherent time dependence allows for circular and
linear polarization as well as the possibility of driving transitions between internal
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states. In the absence of hyperfine structure, an ac field of spherical polarization
q couples the jN D 0;MN D 0i and jN D 1;MN D qi levels, leading
to an effective two-level system in the Floquet picture [14]. In the presence of
hyperfine structure, states with different total angular momentum projections MF

in the N 
 1 manifolds become mixed due to the electric quadrupole interaction.
Thus no rigorous selection rules can be established. This complicates the issue of
addressing single hyperfine states using microwave fields, but it also allows the
hyperfine state to be changed using microwave fields. Addressing a single hyperfine
state can be achieved by the application of a strong magnetic field such as those used
in the STIRAP procedure, which defines the projections sufficiently to suppress
transitions to non-target hyperfine states [9]. In the presence of an electric field,
this last comment holds only in the case where the two fields are collinear. When
the fields are not collinear many states can be accessed from any one state via a
microwave transition due to the behavior of the transition dipole moments in crossed
fields, as was described in Sect. 4.3.3.

We choose the polarization of the ac field to be purely circular, qac D 1.
A component along q D 0 would lead to rapid oscillation of the eigenenergies
because the d0 moments induced by the electric field couple to the ac field, and
this complicates the analysis. Furthermore, we consider Rabi frequencies which are
much less than the bandwidth of the optical lattice so that our approximation of
being in the lowest Bloch band remains valid and we are also justified in using a
rotating wave approximation. The above considerations together with the single-
molecule ac Hamiltonian

OHac D �Od � Eac D � OdqEace
�i!t C h:c: (4.22)

lead directly to the second quantized Hamiltonian

OHac D �1
2

X

�� 0

d�� 0Eac

X

i

h
Oa
i� Oai� 0ei!t C h:c:

i
: (4.23)

In Eq. (4.23) the label � refers to the eigenstate j�i of the internal plus static field
Hamiltonian OHin C OHF, d�� 0 � h� jd1j� 0i, and E� is the energy of state j�i.

Assembling all the many-body terms expressed in this basis, we obtain the time-
dependent Hamiltonian

OH D
X

�

E�
X

i

Oni� �
X

�

t�
X

hi;j i

h
Oa
i� Oaj� C h:c:

i

C 1

2

X

�;� 0

U�� 0

X

hi;j i
Oni� Onj� 0

� 1
2

X

�� 0

d�� 0Eac

X

i

h
Oa
i� Oai� 0ei!t C h:c:

i
: (4.24)
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If we change to a basis where all single-molecule states with N D 1 rotate with
frequency ! we have, finally:

OH D
X

�


�

X

i

Oni� �
X

�

t�
X

hi;j i

h
Oa
i� Oaj� C h:c:

i

C 1

2

X

�;� 0

U�� 0

X

hi;j i
Oni� Onj� 0

� 1
2

X

�� 0

d�� 0Eac

X

i

h
Oa
i� Oai� 0 C h:c:

i
; (4.25)

where 
� D E� for states with N D 0 and E� � ! for states with N D 1.

4.4 Conclusions

We have presented and derived the HMHH. The HMHH is a lattice Hamiltonian
describing the effective low-energy physics of an ultracold gas of heteronuclear
alkali dimer molecules with hyperfine structure loaded into a 1D optical lattice
and interacting with external dc electric, ac microwave, and static magnetic fields.
By tuning the angle between the electric and magnetic fields and the strength of
the magnetic and ac fields it is possible to change the number and timescale of
internal states contributing to many-body dynamics. The Hamiltonian also displays
emergent quantum dephasing, and has a phase diagram which depends strongly on
the initial state. These features make the HMHH an ideal candidate for a model
quantum complex system.

Future work will involve time-evolving block decimation simulations of the
HMHH similar to past studies of molecular Hubbard Hamiltonians [15]. In partic-
ular, we will discuss measures of complexity and how they relate to experimentally
measurable quantities. Future work on the Hamiltonian itself will include realistic
models of molecule loss due to inelastic and chemical processes. Such dissipative
processes are key to dissipative quantum phase transitions, which is a major area of
interest in quantum many-body theory [30–32].

We acknowledge useful discussions with Immanuel Bloch, John Bohn, Silke
Ospelkaus, Luis Santos, and Peter Zoller. This work was supported by the National
Science Foundation under Grant PHY-0903457.

Appendix 1: The Internal Hamiltonian

A 1† molecule in its electronic and vibrational ground states has three angular
momentum degrees of freedom: the rotational angular momentum N and the nuclear



Appendix 1: The Internal Hamiltonian 109

spins I1 and I2. In this work we shall use the coupling schemes j .I1I2/ INFMF i
and jI1M1I2M2NMN i, which we refer to as the coupled and uncoupled bases,
respectively. Explicit expressions for all single-molecule matrix elements in both
bases are provided in Appendix 3. The relevant Hamiltonian for the internal degrees
of freedom OHin may be written as a sum of rotational and hyperfine terms as

OHin D OHrot C OHhf; (4.26)

where

OHrot D BNN2 ; (4.27)

OHhf D
2X

iD1
ciN � Ii C c3I1 � QT � I2 C c4I1 � I2 C

2X

iD1
Vi �Qi : (4.28)

The rotational term Eq. (4.27) corresponds to the Hamiltonian of a rigid spherical
rotor with .2NC1/-fold degenerate eigenstates jNMN i,MN being the projection of
N on a space-fixed quantization axis [33]. The eigenenergies are given by ENMN D
BNN .N C 1/, where BN is the rotational constant of the molecule (we use the
notation BN instead of the more common B to avoid confusion with the magnetic
field magnitude B). In the case of 40K87Rb, BN=1.114 GHz [27]. The rotational
level splitting defines the largest intrinsic energy scale for 1† molecules.

The first term of the hyperfine Hamiltonian,
P2

iD1 ciN � Ii represents the
interaction of the nuclear spins with the magnetic field created by the rotation of
the molecule, and is governed by two coupling constants cK and cRb related to the
nuclear shielding tensor. For 40K87Rb, these have been determined from density
functional calculations to be �20 Hz and �100 Hz, respectively [27]. Because of
the smallness of these constants and the fact that this term does not couple states
with different N , this term plays a very small role in the spectra.

The two nuclear spins have nuclear magnetic moments which interact via a
resonant dipole–dipole interaction

OHhf�dd D g2H�2N .�0=4�/



I1 � I2
R3
� 3 .I1 � R/ .R � I2/

R5

�
; (4.29)

where gH is the proton g factor and R the vector joining the two nuclei [33]. This
may be written as the contraction of two rank-2 spherical tensors as

OHhf�dd D �g2H�2N .�0=4�/ hR�3ip6 .C/.2/ � .T .I1; I2//.2/ ; (4.30)

where .C/.2/ is an unnormalized spherical harmonic in the relative degrees of
freedom. The nuclear spins can also interact indirectly through the electron spins,
and do so even for 1† configurations [33]. This indirect interaction is represented by
a tensor QJ which may be decomposed into its isotropic part Jiso and its anisotropy
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J D Jk � J?. The combination of direct and indirect nuclear spin-nuclear spin
interaction may thus be written as the sum of a scalar interaction and a tensor
interaction as

OHhf�dd C OHindirect D c4I1 � I2 C c3I1 � QT � I2; (4.31)

where c4 � Jiso, c3 � g2H�
2
N .�0=4�/ hR�3i � 
J=3, and the tensor QT contains

the angular dependence of the tensor interaction. c3 is of order 10 Hz for the various
isotopes of KRb, and so plays a very small role in the spectra. c4 splits the various
levels according to their total nuclear spin I as

h.I1I2/ INFMF jc4I1 � I2j .I1I2/ I 0N 0F 0M 0
F i

D ıI;I 0ıN;N 0ıF;F 0ıMF ;M
0
F

� c4
2
ŒI .I C 1/ � I1 .I1 C 1/ � I2 .I2 C 1/� : (4.32)

c4 is of order 100 Hz–10 kHz for isotopes of KRb, and so is the dominant hyperfine
contribution for N D 0 in the absence of external fields, see Fig. 4.6. Note that c4
may be either positive or negative. For 40K87Rb, c4 D �20:304 kHz [27], and so
the lowest energy states for N D 0 in zero field are the highest nuclear spin states
I D 11=2.

The final term in the hyperfine Hamiltonian is the interaction of the quadrupole
moment of the nuclei with the gradient of the electric field produced by the

-200

-100

0

100

200

0 10 20 30 40 50

E
ne

rg
y 

(k
H

z)

Electric Field (kV/cm)

Fig. 4.6 Kilohertz scale view of the Stark effect for 40K87Rb, N D 0. All energies are shown
relative to the GHz scale field-dependent average energy for N D 0, see Fig. 4.4. The inset
shows the weak field region where the scalar spin–spin interaction has split the levels according
to I (equivalently, F ), with larger I having lower energy. As the field is increased the nuclear
quadrupole couplings split according to MI , and in large fields MRb and MK also become well
defined. See text for details
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electrons. We may represent this interaction by the sum
P2

iD1 Vi � Qi where Vi

is a second rank spherical tensor describing the electric field gradient at the i th
nucleus and Qi is a second rank spherical tensor describing the nuclear quadrupole
of the i th nucleus. The pertinent coupling constants .eqQ/i which arise in the matrix
elements of this Hamiltonian are of order 100–1,000 kHz, making it the largest term
in the hyperfine Hamiltonian. The quadrupole term doesn’t affect the N D 0 level,
however, and so the scalar spin–spin coupling dominates there. In a strong dc field
the rotational levels become deeply mixed and the nuclear quadrupole thus becomes
the dominant hyperfine contribution for all states.

Appendix 2: Interactions with Static External Fields

Polar molecules such as heteronuclear dimers can couple to external fields either
through their permanent electric dipole moment, through magnetic moments gen-
erated from their rotation or nuclear spin, or through their polarizability tensor.
The Hamiltonian representing interaction of the molecule with a static dc electric
field Edc and a static magnetic field B may be written

OHF D� d � Edc � gr�NN � B �
2X

iD1
gi�N Ii � B .1 � �i / : (4.33)

For 1† molecules the permanent dipole moment d lies along the internuclear axis
which defines the p D 0 axis in a spherical coordinate system rotating with the
molecule. Because this basis leads to anomalous commutation relations ŒJi ; Jk� D
�i„�ijkJk [34] we find it convenient to transform to the space-fixed frame where the
angular momentum operators satisfy the normal commutation relations ŒJi ; Jk� D
i„�ijkJk , giving d�eq � dq D dC .1/

q .�; �/, where eq is a unit vector along the space

fixed spherical q direction and C .1/
q .�; �/ is an unnormalized spherical harmonic

whose arguments � and � are the polar and azimuthal angles of the internuclear
axis in the space fixed frame. Taking matrix elements of dq in our two basis sets
yields

hI1M1I2M2NMN jdqjI1M 0
1I2M

0
2N

0M 0
N i

D ıM1;M
0
1
ıM2;M

0
2
d
p
.2N C 1/ .2N 0 C 1/ .�1/MN

�
�
N 1 N 0
0 0 0

��
N 1 N 0
�MN q M

0
N

�
; (4.34)
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h.I1I2/ INFMF jdqj .I1I2/ I 0N 0F 0M 0
F i

D ıI;I 0d .�1/2F�MFCICN 0CNC1
�
N 1 N 0
0 0 0

�

�
p
.2N C 1/ .2N 0 C 1/ .2F C 1/ .2F 0 C 1/

�
�

N 1 N 0
�MN q M

0
N

��
N F I

F 0 N 0 1

�
; (4.35)

where

�
j1 j2 j3
m1 m2 m3

�
is a Wigner 3-j coefficient and

�
j1 j2 j3
j4 j5 j6

�
is a Wigner 6-j

coefficient [35]. We see that the rotational eigenstates have no net dipole moment,
but that the dipole operator couples the state jN;F;MF iwith the states jN˙1; F ˙
1;MF C qi. The introduction of a dc electric field Edc with Hamiltonian �d � Edc

couples these levels and induces dipole moments, breaking the rotational symmetry
and removing the .2N C 1/-fold degeneracy. Typical molecular dipole moments
are measured in Debye (D), where 1DD503.4 MHz/(kV/cm), and so the dc field
becomes the dominant contribution to the Hamiltonian for modest fields of a few
kV/cm. The permanent dipole moment of KRb has been experimentally determined
to be 0.566 D [3].

On the scale of the rotational constant, the effect of a dc field on the single-
molecule energy spectrum is as in Fig. 4.4. It is quadratic for field energies small
compared to the rotational energy but becomes linear in stronger fields because the
field strongly mixes states of opposite parity [36]. We consider the quantization axis
to lie along the field direction, and so states with the same value of jMN j remain
degenerate. A universal plot for all 1† molecules results on this scale if the energy
and field strength dEdc are both scaled to the rotational constant.

The average orientation of the molecule with the electric field can be obtained
with the Feynman–Hellman theorem as

hcos �i D � @E

@ .dEdc/
; (4.36)

where E is the energy eigenvalue. The energy eigenvalue is dominated by the GHz
scale structure, thus the degree of alignment with the field is essentially independent
of the hyperfine structure. From the degree of orientation we can also determine the
effective space-fixed dipole moment as d hcos �i. Figure 4.7 shows the behavior
of the induced dipoles as the field strength is increased. For all field strengths
the N D 0 and N D 1, MN D ˙1 states align with the field and so have a positive
induced dipole moment. In contrast, the N D 1, MN D 0 state antialigns with the
field for weak fields and aligns with the field for stronger fields.

The magnitude of the field energy completely obscures the hyperfine splittings,
and so to see the effects of hyperfine structure we subtract from each state with
a given N the field-dependent average energy of all hyperfine states with the
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Fig. 4.7 Induced dipoles for KRb in an electric field. The N D 0 and N D 1, MN D ˙1 levels
orient along the field, giving rise to positive dipole moments. TheN D 1,MN D 0 state antialigns
with the field for small fields, but aligns in stronger fields. All resonant dipole moments approach
the “permanent” value 0.566 D as the field strength increases

same N . For N D 0 the results are shown in Fig. 4.6. For low fields the hyperfine
splittings are dominated by the scalar spin–spin coupling and are of order c4,
a few kHz. As the field is increased the various hyperfine states split according
to jMI j. For large fields M1 and M2 also become well defined, which occurs
because the energetic differences between states with 
MN D ˙1 become larger
than the quadrupole coupling constants [see Eq. (4.45)]. Pairs of M1 and M2 which
have the same jM1 CM2j are degenerate, and the state with jM1 CM2j D 0 is
degenerate due to reflection symmetry in the plane of the electric field vector.

Because of the signs of the quadrupole couplings for 40K87Rb, the lowest energy
states are those with MRb the largest and MK the smallest. Because the kHz
scale Stark effect depends on several molecular parameters it cannot be put into
a universal form for all 1† molecules like the GHz scale Stark effect. However,
the qualitative structure will be similar for all 1†molecules with nuclear quadrupole
couplings; key differences being the number of nondegenerate levels and the
energetic ordering of the magnetic quantum numbers [27]. The hyperfine Stark
effect for N D 1 and other molecular species as well as the effects of electric
fields on microwave spectra may be found in [10].

Magnetic fields couple to the magnetic moments generated by the rotation of the
molecule and by the nuclear spins. The former interaction is given by �gr�NN � B,
where gr is the rotational g factor of the molecule and �N is the nuclear magneton
e„=2mpD762.259 Hz/G [37]. The latter interaction is given by �P2

iD1 gi�N Ii �
B .1 � �i /, where g1 and g2 are the g-factors of nucleus 1 and 2, respectively, and
�i is the isotropic part of the nuclear shielding tensor for nucleus i . The rotational
contribution is typically much smaller than the contributions from the nuclei, due
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Fig. 4.8 Zeeman effect for 40K87Rb, N=0. The magnetic field splits the hyperfine levels
according to their projections MK and MRb with splittings between adjacent levels of order kHz
for the experimentally relevant range B � 550 G. The lowest (highest) energy state corresponds
to mF D �4 C 3=2 D �5=2 (5=2). The zero field splitting is set by c4 and is not visible on the
scale of this plot

to smaller g-factors and the fact that the isotropic parts of the nuclear shielding
tensors are typically only a few parts per thousand. For example, in 40K87Rb gr D
0:0140, gK D �0:324, gRb D 1:834, �K D 1;321 ppm, and �Rb D 3;469 ppm [27].
We neglect diamagnetic contributions to the Zeeman effect, as these contributions
are small for the fields we consider.

Typical experimental magnetic fields are �550G because of the Feshbach
association stage of the STIRAP procedure [2]. In Fig. 4.8 we show the Zeeman
effect for the N D 0 level of 40K87Rb for fields up to this range. We see that the
magnetic field splits the spectrum according to the nuclear spin projections MK and
MRb, with larger (smaller) MK (MRb) having lower energy due to the signs of the
g factors for 40K87Rb. Because the nuclear quadrupole interaction doesn’t affect
the N D 0 level, the zero field splittings are determined by the small scalar spin–
spin coupling parameter c4. The Zeeman term dominates over the scalar spin–spin
coupling at very low fields and so the effects of the scalar spin–spin coupling are not
discernible on the scale of this plot. Additionally, the Zeeman contribution at these
fields is larger than the hyperfine Stark splittings from the largest electric fields
accessible in current experiments, see Fig. 4.6.

The spectrum for the N D 1 level of 40K87Rb is shown in Fig. 4.9. It is greatly
complicated by the fact that there are three times as many states as the N D 0

case (corresponding to the allowed MN ). Also, the nuclear quadrupole interaction
affects theN D 1 level, causing the large zero field splittings. These larger zero field
splittings delay the separation of the levels into well-defined M1 and M2, and also
causes a complicated series of avoided crossings between states with the same MF .
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Fig. 4.9 Zeeman effect for 40K87Rb,N=1. The zero field splitting is caused mainly by the nuclear
quadrupole interaction and separates the levels into groups of well-defined F . The much larger zero
field splitting causes avoided crossings between states with the same MF to occur at much higher
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Appendix 3: Explicit Values for the Single-Molecule Matrix
Elements

Here we present the matrix elements of the single-molecule terms of the Hamilto-
nian (4.26) in the coupled and uncoupled basis sets. We adopt the conventions of
Zare [35].

The matrix elements of the rotational Hamiltonian are given by

hI1M1I2M2NMN jBNN2jI1M 0
1I2M

0
2N

0M 0
N i

D ıM1;M
0
1
ıM2;M

0
2
ıN;N 0ıMN ;M

0
N
BNN .N C 1/ ; (4.37)

h.I1I2/ INFMF jBNN2j .I1I2/ I 0N 0F 0M 0
F i

D ıI;I 0ıN;N 0ıF;F 0ıMF ;M
0
F
BNN .N C 1/ : (4.38)

The matrix elements of the rotation–spin Hamiltonian are given by

*
I1M1I2M2NMN

ˇ̌
ˇ̌
ˇ

2X

iD1
ciN � Ii

ˇ̌
ˇ̌
ˇ I1M

0
1I2M

0
2N

0M 0
N

+

D ıN;N 0

X

q

.�1/qCN�MN

�
N 1 N

�MN q M
0
N

�
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�
X

i

ci .�1/Ii�Mi

�
Ii 1 Ii
�Mi �q M 0

i

�

�
p
N .2N C 1/ .N C 1/ Ii .2Ii C 1/ .Ii C 1/ ; (4.39)

*
.I1I2/ INFMF

ˇ̌
ˇ̌
ˇ

2X

iD1
ciN � Ii

ˇ̌
ˇ̌
ˇ .I1I2/ I

0N 0F 0M 0
F

+

D ıN;N 0 .�1/ICNCFCI1CI2C1
�
I N F

N I 0 1

�

�
p
N .2N C 1/ .N C 1/ .I C 1/ .2I C 1/ .2I 0 C 1/

�
"
ıM2;M

0
2
.�1/I 0

c1

�
I1 I I2
I 0 I1 1

� p
I1 .2I1 C 1/ .I1 C 1/

C ıM1;M
0
1
.�1/I c2

�
I2 I I1
I 0 I2 1

� p
I2 .2I2 C 1/ .I2 C 1/

#
: (4.40)

The matrix elements of the scalar spin–spin coupling are

hI1M1I2M2NMN jc4I1 � I2jI1M 0
1I2M

0
2N

0M 0
N i

D ıN;N 0ıF;F 0ıMF ;M
0
F
c4 .�1/I1�M1CI2�M2

�
p
.2I1 C 1/ I1 .I1 C 1/ .2I2 C 1/ I2 .I2 C 1/

�
X

q

.�1/q
�

I1 1 I1
�M1 q M

0
1

��
I2 1 I2
�M2 �q M 0

2

�
; (4.41)

h.I1I2/ INFMF jc4I1 � I2j .I1I2/ I 0N 0F 0M 0
F i

D ıI;I 0ıN;N 0ıF;F 0ıMF ;M
0
F

� c4
2
ŒI .I C 1/ � I1 .I1 C 1/ � I2 .I2 C 1/� : (4.42)

The matrix elements of the tensor spin–spin coupling are

hI1M1I2M2NMN jc3I1 � QT � I2jI1M 0
1I2M

0
2N

0M 0
N i

D �c3
p
6

�
N 2 N 0
0 0 0

�p
.2N C 1/ .2N 0 C 1/
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�
p
I1I2 .2I1 C 1/ .2I2 C 1/ .I1 C 1/ .I2 C 1/

�
X

q

.�1/q�MNCI1�M1CI2�M2

�
N 2 N 0
�MN q M

0
N

�

�
X

m

h1;mI 1;�q �mj2;�qi
�

I1 1 I1
�M1 m M 0

1

�

�
�

I2 1 I2
�M2 �q �m M 0

2

�
; (4.43)

h.I1I2/ INFMF jc3I1 � QT � I2j .I1I2/ I 0N 0F 0M 0
F i

D �c3ıF;F 0ıMF ;M
0
F
.�1/I 0CF

�
I N F

N 0 I 0 2

�

�
p
.2N C 1/ .2N 0 C 1/

�
N 2 N 0
0 0 0

�8<

:

I1 I1 1

I2 I2 1

I I 0 2

9
=

;

�
p
30 .2I C 1/ .2I 0 C 1/ I1I2

�
p
.I1 C 1/ .I2 C 1/ .2I1 C 1/ .2I2 C 1/ : (4.44)

The matrix elements of the nuclear quadrupole Hamiltonian are given by

*
I1M1I2M2NMN

ˇ̌
ˇ̌
ˇ

2X

iD1
Vi �Qi

ˇ̌
ˇ̌
ˇ I1M

0
1I2M

0
2N

0M 0
N

+

D
2X

iD1

.eqQ/i
4

X

q

.�1/q�MNCIi�Mi
p
.2N C 1/ .2N 0 C 1/

�
�

N 2 N 0
�MN q M

0
N

��
Ii 2 Ii
�Mi �q M 0

i

�

�
�
N 2 N 0
0 0 0

��
Ii 2 Ii
�Ii 0 Ii

��1
; (4.45)

*
.I1I2/ INFMF

ˇ̌
ˇ̌
ˇ

2X

iD1
Vi �Qi

ˇ̌
ˇ̌
ˇ .I1I2/ I

0N 0F 0M 0
F

+

D ıF;F 0ıMF ;M
0
F

1

4
.�1/I 0CFCI1CI2
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�
p
.2N C 1/ .2N 0 C 1/ .2I 0 C 1/ .2I C 1/

�
�
N 2 N 0
0 0 0

��
I N F

N 0 I 0 2

�

�
"
ıI2;I 0

2
.eqQ/1 .�1/I

0

�
I1 I I2
I 0 I1 2

� �
I1 2 I1
�I1 0 I1

��1

C ıI1;I 0
1
.eqQ/2 .�1/I

�
I2 I I1
I 0 I2 2
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I2 2 I2
�I2 0 I2

��1 #
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The Fermi Resonance Hamiltonian



Chapter 5
Microscopic Model for Feshbach Interacting
Fermions in an Optical Lattice with Arbitrary
Scattering Length and Resonance Width

Abstract We numerically study the problem of two fermions in a three dimensional
optical lattice interacting via a zero-range Feshbach resonance, and display the
dispersions of the bound states as a two-particle band structure with unique features
compared to typical single-particle band structures. We show that the exact two-
particle solutions of a projected Hamiltonian may be used to define an effective
two-channel, few-band model for the low energy, low density physics of many
fermions at arbitrary s-wave scattering length. Our method applies to resonances
of any width, and can be adapted to multichannel situations or higher-` pairing. In
strong contrast to usual Hubbard physics, we find that pair hopping is significantly
altered by strong interactions and the presence of the lattice, and the lattice induces
multiple molecular bound states.

The crossover of a system of attractive two-component fermions from a condensate
of loosely bound Cooper pairs to a condensate of tightly bound bosonic molecules
has a long history [1], and appears in many contexts, including high-temperature
superconductivity [2] and ultracold atoms [3]. Furthermore, near the crossover such
a system enters the unitary regime where the scattering length is larger than any
other length scale in the problem. The physics of this regime is relevant to many
different fields, bringing together quantum chromodynamics, holographic duality,
and ultracold quantum gases [4]. Theoretical study of the unitary regime is generally
difficult due to the absence of any small parameter.

Theoretical analysis becomes even more difficult in a lattice, as the center
of mass, relative, and internal degrees of freedom become coupled, leading to
composite particles whose properties depend on their center of mass motion [5].
Furthermore, strong interactions require the inclusion of a large number of Bloch
bands for an accurate description, and this cannot be handled efficiently by modern
analytical or numerical many-body techniques. In addition to general theoretical
interest in how fermions pair to form bosons in a discrete lattice setting, the study of
pairing in lattices is of significant practical importance. For example, an accurate,

Published previously as Microscopic Model for Feshbach Interacting Fermions in an Optical
Lattice with Arbitrary Scattering Length and Resonance Width, M.L. Wall and L.D. Carr,
Phys. Rev. Lett. 109, 055302 (2012).
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systematically correctable, and computationally feasible many-body Hamiltonian
is necessary for calibrating fermionic quantum simulators as has been done in the
bosonic case [6].

In this Letter, we describe a general method to derive an effective few-band
low-energy Hamiltonian for Feshbach interacting fermions in a lattice from the
numerical solution of the two-body problem. We call this Hamiltonian the Fermi
Resonance Hamiltonian (FRH). This method applies to Feshbach resonances of
any width and for arbitrary scattering length, and all parameters appearing in the
effective model can be computed microscopically from the properties of the two-
body solution. The difference between the bare model and the FRH is sketched in
Fig. 5.1.

The simplest approach to describing Feshbach interacting fermions is to replace
the interaction with a pseudo-potential chosen to reproduce the correct scattering
length. When restricted to a single Bloch band, this leads to the popular Hubbard
model [7] which has been shown to break down for scattering lengths which
are far from being resonant, even when the parameters appearing in the model
are determined self-consistently from few-body physics [8]. Our work instead
defines a “dressed” closed channel whose properties are chosen to reproduce
both the scattering and bound states correctly. In contrast to past two-channel
approaches [9], we construct the dressed fields using the full lattice solution and not
an approximation where the center of mass and relative coordinates separate, such
as the harmonic oscillator potential. The use of any separable approximation leads
to qualitative errors, such as the lack of tunneling along non-principal axes, and
quantitative errors, such as the underestimation of principal axis tunneling matrix
elements, often by an order of magnitude.

K

a b

K

Open Channel Closed Channel

K

Open
Channel

Dressed
molecules

Fig. 5.1 Schematic of the FRH transformation. (a) In a broad Feshbach resonance, all two-particle
scattering continua (gray shading) are strongly coupled to bare molecular bands (solid lines). Thus
all scattering continua are virtually strongly coupled. (b) By correctly dressing the molecular
bands, one obtains a single scattering continuum (gray) plus well-separated dressed molecular
bands (green), with much simpler couplings. This is our efficient, numerically tractable, FRH
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5.1 Exact Solution for Two-Particles

The basic concept of a two-channel model is for an open channel to describe
scattering between two atoms and a separate closed channel to describe bound pairs.
While each channel represents a single scattering or bound state in the continuum,
in the lattice it also acquires a band index. Because of an inter-channel coupling, the
actual molecule is a superposition of bands from both channels.

To treat this problem, we begin with the nonlinear eigenvalue problem developed
by Büchler [8] for EK, the bound state energy at total quasimomentum K, and RK

s ,
the coefficients of the closed channel portion of the wavefunction. As shown in [8],
for the bound states of two fermions in an optical lattice interacting via a zero-range
Feshbach resonance in a two-channel model:

�
EK � � �EM

sK

	
RK

s D g2

a3

P
t�

K
st .EK/R

K
t ; (5.1)

�K
st .EK/ �

R
dq
v0

P
mn

hnm
sK .q/h

nm
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EK�EK

nm.q/Ci� � N�
K
st ; (5.2)

N�K
st � �

R
dq
v0

P
mn
Nhnm

sK .q/ Nhnm?
tK .q/ = NEK

nm .q/ : (5.3)

Here � is the renormalized detuning between the open and closed channels, g is the
inter-channel coupling, a is the lattice spacing, v0 is the volume of the Brillouin zone
(BZ), and the bars in Eqs. (5.2) and (5.3) denote quantities computed in the absence
of an optical lattice. We assume that spin–spin interactions which change the orbital
angular momentum are negligible so that the scattering is purely s-wave. The optical
lattice is assumed to be simple cubic with lattice spacing a and potential V .x/ D
V
P

j2fx;y;zg sin2 .�j=a/. The overlaps of the dimensionless coupling between the
open and closed channels are

hnm
sK .q/p
N3a3

D R dxdy
�
 nq .x/  m;K�q .y/

	?
˛ .r/ �sK .R/ ;

where N3 is the number of unit cells, the  nq .x/ are Bloch functions with energies
Enq for particles with mass m spanning the open channel, and �sK .z/ are Bloch
functions with energies EM

sK for particles with mass 2m in a lattice potential 2V
spanning the closed channel. We have also defined relative r � x � y and center
of mass 2R D xC y coordinates, and ˛ .r/ is a regularization of the inter-channel
coupling. The sum of the noninteracting energies of the open channel is denoted
EK

nm .q/ D Enq C Em;K�q and the zero of energy is E0
11 .0/. Here and throughout

the rest of this work n and m are band indices for the open channel, s and t are band
indices for the closed channel, q is a single-particle quasimomentum, and K is the
total quasimomentum.

While Eqs. (5.1)–(5.3) apply to resonances of any width, we focus on the
experimentally relevant limit of a broad resonance. Narrow resonances are treated
in the supplementary material. A broad resonance in the few-body sense is the limit
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of effective range much smaller than the lattice spacing, rB � a, and so we can take
the limits g=ERa3=2 D 4

p
a=rB�3 !1, �=ER !1, as=a D ��g2=8a3ER� D

const:, to obtain .8asER=�a/�K .EK/RK � RK D 0; where ER D „2�2=2ma2 is
the recoil energy and as is the s-wave scattering length. How can we then obtain the
dispersion relation EK for fixed as , �, etc.? First, fix the energy eigenvalue EK and
solve the resulting linear eigenproblem for 1=as . This provides exact eigentuples�
EK; as;RK

�
of the nonlinear eigenproblem, though it may not be the as we seek.

Second, fix as and use the exact tuple nearest this value as initialization for a
Newton–Raphson iteration [10]. This two-stage approach converges to a relative
accuracy of 0.01 % in a few tens of iterations [11].

Because the eigenequation (5.1) is invariant under translation by any Bravais
lattice vector, its eigenvalues can be classified according to the total quasimomentum
and shown as a two-particle band structure. A complete classification of the
solutions is given in the supplemental material. In Fig. 5.2 we show only the energy
of the low-energy bound states with completely even parity under inversion as a
function of K for several as=a in a lattice with V=ER D 12. We see the appearance
of several bound states for a fixed s-wave scattering length, in contrast to the
continuum. These additional bound states arise from the coupling of quasimomenta
modulo a reciprocal lattice vector induced by the reduced translational symmetry.
One salient feature is the emergence of universality, which is the independence of
the dispersion from the sign of as when jas=aj becomes large. For non-resonant and
negative as=a, picturing the bound states as Fermi pairs with twice the mass and
twice the polarizability captures the relative spacings between energy levels quite
accurately, but generally overestimates the effective mass of the bound states. This
effective mass difference is an indication of the coupling between the center of mass
and relative motion which leads to important properties of the FRH.

Γ X M R Γ

E
K

/E
R

Fig. 5.2 Exact two-particle band structures for various as in a strong optical lattice. The bound
state energies for as=a D �5 (purple boxes), �0:1 (red pluses), 0:1 (green crosses), and 5 (blue
asterisks) as a function of the total quasimomentum K along a path connecting the high-symmetry
points in the irreducible BZ � D .0; 0; 0/, X D .��=a; 0; 0/, M D .��=a;��=a; 0/, R D
.��=a;��=a;��=a/ for a lattice with V=ER D 12. The near-resonant points as=a D ˙5 lie
nearly on top of one another, demonstrating universality



5.2 Fermi Resonance Hamiltonian 127

5.2 Fermi Resonance Hamiltonian

A promising route to describing Feshbach interacting ultracold gases is by a lattice
projection of a two-channel model in which the closed channel appears explicitly in
the Hamiltonian. However, for a typical broad resonance such models require a large
number of both open and closed channel bands to solve accurately, and so cannot be
treated efficiently. Because the modern context of this problem involves extremely
low temperatures and densities, we can look for an effective model valid in these
limits which still reproduces the correct physics. This is done by replacing the model
containing couplings between all open channel bands with all closed channel bands
with a model describing an effective resonance between the lowest open channel
band with a suitable set of effective closed channel bands whose properties are set
by the two-body solution for low densities. This process is displayed schematically
in Fig. 5.1. The purpose of this section is to derive such an effective Hamiltonian
using our two-particle theory.

We begin by separating our two-particle Hamiltonian using projectors L into the
lowest open channel band and D D 1 � L into all excited open channel bands
and all closed channel bands. A similar approach was taken in [12] for the 1D
case. An analysis analogous to that leading to Eqs. (5.1) and (5.2) gives a nonlinear
eigenequation for the closed channel components of Dj i as
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?.q/
EK�EK

nm.q/Ci� � N�
K
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where the prime on the sum indicates .m;n/ ¤ .1; 1/. Here Q� differs from � in
Eqs. (5.1) and (5.2) in that the summation excludes the lowest band. We emphasize
that the renormalization N� includes all bands and so the detuning and scattering
length used in this projected model are those of the full (non-projected) and
properly renormalized two-body problem. We call the eigenstates of this projected
system dressed molecules. Here we label distinct eigenstates of Eq. (5.4) by the
parameter ˛. These solutions share many features of the full solution presented
above. However, the divergence of the s-wave scattering length for the lowest
energy completely even parity state occurs near EK D 0, indicating that scattering
resonances in the lowest open channel band are generated by coupling to this state.

We now assume that, at low temperatures and low densities, two-particles which
are separated by a distance large compared to the effective range of the potential
will remain in the lowest band to minimize their energy. When two-particles come
together they interact strongly and populate many of the excited open channel bands
as well as the closed channel bands. Because it is rare for more than two-particles to
come together, the particular populations of the excited states are fixed by the two-
particle solution. The dressed molecules encapsulate the short distance, high energy
physics and couple it to the long wavelength, low energy physics of the lowest
band fermions through the Feshbach coupling. The point of connection between the
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few- and many-body physics is the two-particle scattering length (equivalently g
and � for narrow resonances), which appears as a parameter in Eq. (5.4) defining the
dressed molecules.

The FRH is

OHeff D � tfP�2f";#g
P

hi;j i Oa
i� Oaj� CE0
P

�2f";#g
P

i On.f /i�

�P˛2M
P

i;j t
˛
i;j
Od
i;˛ Odj;˛ C

P
˛2M N�˛

P
i On.b/i˛

CP˛2M
P

ijkg
˛
i�k;k�j

h Od
i;˛ Oaj;" Oak;# C h:c:
i
; (5.6)

where Oa
i� creates a particle with spin � in the lowest open channel band Wannier
state centered at lattice site i , wi .x/; Od
i;˛ creates a particle in the ˛th dressed

molecule Wannier state centered at site i , Wi;˛ .x; y/; On.f /i� is the number operator

for fermions in the lowest Bloch band; and On.b/i˛ is the number operator for the
˛th dressed molecule state. The set of dressed molecules M which are included
dynamically can be determined on energetic and symmetry grounds from the two-
particle solution. At low energies, only the completely even parity dressed molecule
in the lowest sheet is relevant to the set M, as all others either have vanishing on-
site couplings from parity considerations or are very far off-resonance. In order, the
terms in Eq. (5.6) represent tunneling of atoms in the lowest Bloch band between
neighboring lattice sites i and j ; the energy E0 DP

qE1;q=N
3 of a fermion in the

lowest band with respect to the zero of energy; tunneling of the dressed molecular
center of mass between two lattice sites i and j , not necessarily nearest-neighbors;
detunings of the dressed molecules from the lowest band two-particle scattering
continuum; and resonant coupling between the lowest band fermions at sites j
and k in different internal states and a dressed molecule at site i . The FRH is a
two-channel resonance model, between unpaired fermions in the lowest band, and
dressed molecules nearby in energy.

We now describe how to calculate the Hubbard parameters appearing in
Eq. (5.6). The first term is well known from single-band Hubbard models [13]
and we do not discuss it here. Due to the fact that the solutions of the projected
nonlinear eigenequation (5.4) are also eigenstates of the total quasimomentum,
the second and third terms may be written as N�˛ D R

dKE˛
K=v0 and

t˛i;j D �
R
dKeiK�.Ri�Rj /E˛

K=v0. Because the band structure is not separable,
EK ¤PiDfx;y;zgEKi , dressed molecules can tunnel along directions which are
not the principal axes of the lattice. This is in stark contrast to single-particle
tunneling in Bravais lattices which always occurs along the principal axes. Thus
diagonal hopping is a key feature neglected in previous approaches. In Fig. 5.3a
we show that diagonal hopping is often of the same order of magnitude as the
tunneling of open channel fermions in the lowest band. The signs and magnitudes
of the tunnelings and particularly the dressed-molecule atom couplings are crucially
affected by the parities of the dressed molecular Wannier functions. We stress that



5.2 Fermi Resonance Hamiltonian 129

 0.001

 0.01

 0.1

 1

 10

-4 -2 0 2 4

0.01

0.1

1

10

-4 -2  0  2  4

as/a as/a

|ν̄|/ER

|t000,100|/ER

t000,200/ER |t000,110|/ER

|t000,111|/ER

|g000,000|/ER

|g100,000|/ER |g200,000|/ER

|g000,100|/ER

↑↓
g000,000

↑↓
g100,000

↑↓
g200,000

↑ ↓
g000,100

a b

Fig. 5.3 Hubbard parameters for the FRH. (a) The detunings and tunnelings of the completely
even parity dressed molecule in the lowest sheet as a function of as=a. The detuning is negative
for as < 0 and positive otherwise. The solid black horizontal line is the tunneling of a single
open channel fermion in the lowest band. The nearest-neighbor dressed molecular tunneling is
nearly two orders of magnitude larger than the open channel tunneling near resonance. (b) The
effective atom-dressed molecule couplings of the completely even parity dressed molecule in the
lowest sheet as a function of as=a. Schematics of the spatial dependence of the various coupling
processes are shown in the boxes

only a full lattice solution can reproduce these important properties of the Hubbard
parameters; the frequently used harmonic oscillator approximation will fail even
qualitatively to do so.

The remaining Hubbard parameter is the dressed molecule-atom coupling, which
becomes in the limit of a broad resonance g=ERa3=2 !1

g˛i�k;k�j D
P

s

R
dK
v0
RK
˛sg˛K

R
dq
v0
ei.K�RikCq�Rkj /h11

sK.q/; (5.7)

where the renormalized coupling is g˛K D ER=
q
�RK

˛ �
�
@ Q�K=@E

˛
K

� � RK
˛ and

Rij D Ri � Rj . We emphasize that g˛j;k has only implicit dependence on the

divergent parameter g=ERa3=2 through g˛K and so remains finite, see Fig. 5.3b.
As g˛K � g=a3=2, the transformation to the FRH has the effect of narrowing the
resonance. In Fig. 5.3b we also see that the on-site coupling g000;000 is the dominant
energy scale of the problem for large as=a, and that off-site couplings can also be
large compared to other Hubbard parameters such as the open channel tunneling.
Atoms which do not lie along a principal axis can pair to form a molecule, but
this effect is much weaker than diagonal tunneling for the completely even parity
dressed molecule.

In the derivation of the FRH we use only the bound states of the projected
problem and neglect scattering states in higher bands. This captures the scattering
states in the lowest band and nearby bound states, but will fail to capture the physics
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at higher two-particle relative energy where scattering states in higher bands can
play a role. In order to accommodate these scattering states, one can project out
higher bands from � as was done for the lowest band, and then include these bands
dynamically in the many-body Hamiltonian with renormalized couplings. In this
way, the energetic domain of application of the FRH can be extended arbitrarily
at the expense of more dynamical fields. Within the confines of the two-channel
model and the constraint of low energies, the FRH is an accurate representation
of the many-body Hamiltonian. However, intrinsic three-body processes which are
not captured by the two-channel model play a role at higher density and lead to
corrections to the FRH. A discussion of these three-body processes is outside the
scope of this paper.

In summary, we have studied the bound state properties of two Feshbach
interacting fermions in an optical lattice at a range of scattering lengths and
quasimomenta. The bound states of a projected Hamiltonian were used to identify a
numerically tractable, efficient Hamiltonian for a low density many-body collection
of lattice fermions at arbitrary scattering length and low energies, the FRH. Our
results provide the appropriate starting point for future investigations of strongly
interacting lattice fermions.

We acknowledge useful discussions with J.L. Bohn, H.P.Büchler, C.W. Clark,
D.E. Schirmer, D.M. Wood, and Zhigang Wu. We also thank H.P. Büchler for pro-
viding computer code for comparison. This work was supported by the Alexander
von Humboldt Foundation, AFOSR, NSF, and GECO.

5.3 Supplemental Material: Derivation of the Nonlinear
Eigenequation

Here we review the derivation of Eq. (5.2) of the main text for the bound states of
two fermions in an optical lattice interacting via a zero-range Feshbach resonance.
All quantities have their same meaning as in the main text. The starting point of
our analysis is a two-channel model with the open channel spanned by states of
two fermions in different internal states with equal mass m and the closed channel
spanned by molecular states with twice the fermionic mass and twice the fermionic
polarizability. We describe their interaction via an inter-channel coupling g which
couples the pair of open channel fermions to a closed channel molecule at the center
of mass and a detuning � between the two channels. This gives rise to the scattering
amplitude

f .k/ D � 1

1=as C ikC rbk2 ; (5.8)

with s-wave scattering length as D �2�g2=4�„2� and effective range rB D
�„4=�2g2. Here � is the reduced mass and k the incident wavevector.
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Denoting the wave function of the two fermions in the open channel as  .x; y/
and the wave function of the closed channel molecules as �.z/, the two-channel
Schrödinger equation in position representation is

ŒE � OH0.x/ � OH0.y/� .x; y/ D g
R
dz˛.r/�.z/ı.z � R/ ;

ŒE � �0 � OHM
0 .z/��.z/ D g

R
dxdy˛.r/ .x; y/ı.z � R/ :

In this expression OH0.x/ D � „2
2m
r2xCV.x/ is the single particle Hamiltonian for the

open channel and OHM
0 .z/ D � „2

4m
r2z C 2V.z/ is the single particle Hamiltonian for

the closed channel. The subscript 0 in �0 denotes that this is a bare detuning entering
the microscopic theory which is related to the physically observable detuning �
in the limit as the regularization cutoff ƒ ! 1. Additionally, we note that the
Feshbach regularization ˛.r/ ! ı.r/ in the limit ƒ ! 1, where ı.r/ is the Dirac
delta function.

The open channel solution with total quasimomentum K may be parameterized as

 K.x; y/ D 1p
N3

X

nm

X

q

'Kq
nm n;q.x/ m;K�q.y/ ; (5.9)

where N3 is the total number of unit cells in a 3D lattice with periodic boundary
conditions and  nq.x/ is a Bloch eigenfunction of the single-particle Hamiltonian.
As in the main text, quantities denoted in bold represent three-component vectors,
e.g. n D .nx; ny; nz/. Similarly, we parameterize the closed channel wave function
as a sum over Bloch states computed for twice the mass and twice the polarizability
�sK.z/ as
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RK
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Inserting these expansions into the two-channel Schrödinger equation yields
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Formally solving the first of the two equations with a Green’s function and inserting
into the second equation gives
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where � is a positive infinitesimal. This expression diverges in the limitƒ!1, as
is well known for two-channel theories involving a pointlike boson [14]. We remove
this divergence through renormalization, replacing the bare detuning �0 with the
physical detuning � by subtracting the infinite constant N�K, yielding Eq. (5.2) of the
main text. The divergent parts of Eq. (5.3) in the main text cancel and we may safely
take the limit ƒ!1.

Following [15], we use the regularization

˛.r/ D
Z

v.ƒ/

dk
.2�/3

eik�r ; (5.11)

where the cubical volume v.ƒ/ D v0ƒ
3 is centered around k D 0 with v0 the

volume of the BZ. We also define a shell summation over bands with shell parameter
S ,
P

nmIS , as the summation over all band indices n and m less than or equal to S
with at least one of the band indices being S . The correct limiting procedure to
obtain �K

st.K/ in the limit of an infinite summation over bands and vanishing short-
distance cutoff is

lim
ƒ!1



lim
S!1�K

st.EK/

�
: (5.12)

The ƒ limit is taken using the asymptotic scaling relation

�
�K

st.EK/
	
.ƒ/ D ast=ƒC �K

st.EK/ : (5.13)

On the right-hand side, ast the slope defining the scaling with ƒ and �K
st.EK/ is the

value as ƒ!1.
One may be concerned that the scaling relation Eq. (5.13) only holds for �K of the

full model and not for Q�K in the projected model. To show that this is not the case,
we note that in the limit of an infinite number of unit cells N ! 1 the overlaps
hnm

sK .q/ may be written as products of 1D overlaps hnm
sK .q/ of the form

hnm
sK .q/ D lim
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rCr 0Cf=2�
M IsK

� rect.
2q �K � f C 2�.r � r 0/

2�ƒ
/ ; (5.14)

where f is an integer multiple of 2� which shiftsK�q into the BZ, rect.x/ denotes
the rectangle function, and the vectors cnq denote the Fourier expansion of the open
channel Bloch functions as

 nq.x/ D eiqx lim
`!1

X̀

rD�`
crnqe

�2� irx=a=
p

Na : (5.15)
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` represents a finite Fourier cutoff used in numerics. Similarly, cM IsK denote the
Fourier coefficients of the closed channel Bloch functions. Q�K differs from �K in the
exclusion of all terms with n D m D 1. However, provided that ƒ is large enough
to capture the support of the vectors cnq with n D 1, Eq. (5.14) demonstrates that
these terms are no longer functions of ƒ. Thus, the scaling relation Eq. (5.13) also
holds for Q�K. Similar arguments show that the same scaling holds for Q�K when any
finite number of open channel bands have been projected out.

5.4 Supplemental Material: Classification
of the Two-Particle Bound States

For the simple cubic lattice we consider the Hamiltonian is invariant under reflection
in any Cartesian direction: H.�Rx/ D H.x0/ D H.x/ where x0 � �Rx is related
to x by changing the sign of all coordinates in some set R: xj ! �xj , j 2 R.
Because the generators of reflection and translation do not commute we cannot find
simultaneous eigenfunctions except at high-symmetry points of the BZ. However,
the fact that the Hamiltonian commutes with both operators implies that parity
transformations yield relationships between degenerate sets of Bloch functions.
In particular, for the given lattice potential, the invariance under the reflection
symmetry generated by �R implies that the Bloch functions transform as

 nq.x0/ D
Y

j2R
.�1/njC1 n;q0.x/ ; (5.16)

where we begin indexing the bands from 1. We can thus characterize the bands
according to whether they are even or odd under inversions by the triple p D
.px; py; pz/, where p� D .�1/n�C1. This inversion relationship implies that the
inter-channel overlaps transform as

hnm
sK0.q0/ D

Y

j2R
.�1/njCmjCsjC1hnm

sK .q/ ; (5.17)

and �K transforms as

�K0

st .EK/ D
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j2R
.�1/sjCtj �K

st.EK/ : (5.18)

It can be proven that this transformation leaves the eigenvalues invariant, but the
eigenvectors RK

˛ transform according to

RK0

s˛ D
Y

j2R
.�1/sjC1RK

s˛ : (5.19)
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For a total quasimomentum K all of whose components consist of either 0 or
��=a, this implies that only molecular bands which transform identically under
complete inversions mix. Hence, at these exceptional points of the BZ, we can
unambiguously determine the parity of the two-particle state  K˛.x; y/ by the
components of its associated eigenvector RK

˛ . The parity is then chosen to depend
only on the eigenstate index ˛ by requiring that RK

˛ is a smooth function of K.
This construction follows that of the 1D case studied by Kohn [16], which leads to
maximally localized Wannier functions.

With this construction, there is still an undefined global phase under inversion
that we can fix in the following way. The complete two-particle bound state
solution is

‰K˛.x; y/ D 1

NK˛

"
X

s

RK
s˛�sK.x/ Qr.x � y/

C gp
N3a3

X

nmsIq

RK
s˛h

nm
sK .q/ nq.x/ mK�q.y/
E˛

K �EK
nm.q/

#
; (5.20)

where NK˛ is a normalizing factor and Qr.x � y/ denotes a relative wavefunction
for the closed channel which has characteristic width a=ƒ. As the theory has
already been regularized, we may take ƒ ! 1 with the understanding that this
relative wavefunction has a probability density of 1, and forces the closed channel
to contribute only at the center of mass. Because of the partitioning of Hilbert space
into open and closed channels, the normalization coefficient is

N 2
K˛ D 1 �

�
g

ERa3=2

�2
RK
˛ � �0.E˛

K=ER/ � RK
˛ : (5.21)

Here �0.E/ is the derivative of � with respect to E. Using the transformation
properties under �R, we find

‰K0˛.x; y/ D P˛‰K˛.x0; y0/ : (5.22)

Accordingly, we set P˛ D Q
j2R p� . This implies that the dressed molecular

Wannier functions transform as Wi˛.x0; y0/ D P˛Wi˛.x; y/.
In Fig. 5.4 we display the bound state energies at K D 0 for a lattice of

depth V=ER D 12 classified according to their parity. The red points correspond
to p D .1; 1; 1/, the green points to p D .1; 1;�1/ et cyc, the blue points to
p D .1;�1;�1/ et cyc, and the magenta points to p D .�1;�1;�1/. In contrast to
the continuum where there exists at most one bound state for fixed scattering length
as , there is the possibility of several bound states for fixed as in the lattice due to
the reduced translational symmetry. Thus, the parity and the quasimomentum are
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Fig. 5.4 Classification of two-particle bound states. The bound state energies at K D 0 for
a lattice of depth V=ER D 12 are classified according to their parity and sheet indices. Red
corresponds to p D .1; 1; 1/, green to p D .1; 1;�1/, blue to p D .1;�1;�1/, and magenta
to p D .�1;�1;�1/. In addition, higher molecular bands for the p D .1; 1; 1/ level are shown.
These give rise to weak scattering resonances with the lowest open channel band for as=a > 0 and
avoided crossings in the higher sheets for as=a < 0

not sufficient to completely describe the states. For a fixed s-wave scattering length
as , we provide two other indices which we call the sheet index � 2 f1; 2; : : : ;1g
and the molecular band index s 2 f1; 2; : : : ;1g. The sheet index labels the open
channel two-particle scattering bands, with the convention that the first sheet lies
below the first band, the second sheet lies between the first and second bands, etc.
as indicated in the figure. The open channel scattering bands are denoted by solid
grey stripes. The molecular band index labels eigenstates which have the same parity
and sheet indices but differ in energy. The number of molecular bands obtained is
restricted by the number of closed channel bands used to construct �K. Let us define
m to be the maximum value of the closed channel band index along any Cartesian
direction. In Fig. 5.4, the solid red line corresponds to the completely even parity
state computed with m D 2 and the red points correspond to the complete even
parity states computed with m D 3. The choice m D 2 captures the physics well
near the lowest open channel scattering band. For as=a > 0, the higher molecular
bands cross the lowest open channel scattering continuum at narrow ranges of as=a,
leading to weak scattering resonances. For as=a < 0, the higher molecular bands are
present at extended ranges of as=a, and avoided crossings between these molecular
bands can lead to differences with lower m computations, see, e.g., the third sheet
near as=a D �0:2.
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5.5 Supplemental Material: Finite Width Resonances

We now turn our attention briefly to the case where g=ERa3=2 and �=ER are finite.
In this case we rearrange Eq. (5.2) of the main text to read

X

t



.EK �EM

sK/ıst � g
2

a3
�K

st.EK/

�
RK

t D �RK
s (5.23)

which is an ordinary eigenvalue equation for the detuning � when EK and g are
treated as fixed. We note that g cannot be scaled out of this equation as the molecular
band energies EM

sK depend only on the lattice strengths and masses and not on the
resonance width. The solution of this equation for various rB and K D 0 is shown
in Fig. 5.5.

We characterize the width of the resonance in terms of the experimentally mea-
surable effective range rB which defines the width as g=ERa3=2 D

p
16a=�3rB . For

narrow resonances with large rB only the lowest resonance can be seen, and as=a
is greater than 1, corresponding to strong interactions, only in a very narrow energy
range. As the resonance becomes broader the energy range over which the system
is strongly interacting widens, and we begin to see resonant behavior near higher
scattering continua. Additionally, the positions of the narrow resonances are shifted
downwards in energy with respect to the broad resonances, eventually becoming
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Fig. 5.5 Bound state energies for finite width resonances. Shown are the lowest energy bound
state energies for p D .1; 1; 1/ at K D 0 in a strong optical lattice with V=ER D 12. The red solid
line is rB=a D 0:01, the green dashed line is rB=a D 0:1, the blue dotted line is rB=a D 1, and
the magenta short-dashed line is rB=a D 10. For narrow resonances (large rB ) the divergence of
as is sharply pronounced around a narrow energy range, and is shifted downwards from the broad
resonance value, compare Fig. 5.4
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the free molecular band energies. We note that the broadest resonance shown is in
fact narrower than typical broad resonances found in the experimentally relevant
ultracold atomic systems, but differs from the infinitely broad resonance results by
at most a few percent. This justifies our use of the infinitely broad resonance limit
in the main text.
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Part IV
Matrix Product States



Chapter 6
Matrix Product States: Foundations

The bulk of the numerical results for many-body systems contained in this thesis
are obtained by variational algorithms on a class of states known as matrix product
states (MPSs). The theory of MPSs as a variational ansatz for eigenstates and
dynamics of general finite-sized one-dimensional (1D) systems is expounded at
length in Chap. 7. In addition, the definitive review of MPSs at the time of the writing
of this thesis is [1]. In this chapter, we aim instead to give intuitive notions of what
MPSs are and why they are useful as variational ansätze.

6.1 Bird’s Eye View of MPSs

The quantum many-body problem is in principle completely solved given the
microscopic degrees of freedom and their interactions, as the relevant Schrödinger
equation is known once the Hamiltonian has been specified. However, in practice,
the Hilbert space of a typical many-body ensemble grows exponentially with the
number of constituents of the system, and so an algorithm which explicitly forms
a matrix representation of the Hamiltonian and diagonalizes it to find eigenstates
is limited to very small systems. Even when all symmetries of the Hamiltonian
have been carefully accounted for and sparse diagonalization routines such as the
Lanczos [2] or Davidson [3] algorithms are used to find only extremal eigenstates,
cutting-edge exact diagonalization is limited to approximately 40 two-component
spins or a 20-site fermionic Hubbard model on the square lattice at half filling.

The full Hilbert space of a many-body system is in fact too big for physical
discussions, as can be shown by the following argument [4]. Consider a time-
dependent Hamiltonian acting on N particles

OH .t/ D
X

X2f1;2;:::;N g
OHX .t/ ; (6.1)
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where X labels subsets of the N particles. We restrict each term in the summation
to have bounded norm k OHX .t/k 
 E and to act on no more than k particles at a
time, where k is independent of the number of particles. An operator acting on k
particles simultaneously is said to be k-local. Note that we make no assumptions
about the range of the Hamiltonian, and so our arguments apply to the long-ranged
Hamiltonians relevant for molecules. We now wish to expand the full time-ordered
propagator of this Hamiltonian in terms of a series of at most k-local unitary
operators. This can be accomplished by using the time-ordered Trotter expansion
for two non-commuting terms OH1 .t/ and OH2 .t/ [5]

OU .t; t C ıt/ D T exp

"
�i
Z tCıt

t

dt0
� OH1

�
t 0
�C OH2

�
t 0
��
#
; (6.2)

� OUTrotter .t; t C ıt/

D T exp

"
�i
Z tCıt

t

dt0 OH1

�
t 0
�
#
T exp

"
�i
Z tCıt

t

dt0 OH2

�
t 0
�
#
;

(6.3)

which is accurate in the operator norm as

k OU .t; t C ıt/ � OUTrotter .t; t C ıt/k 
 cTrotter .ıt/
2 ; (6.4)

cTrotter D 1

.ıt/2

Z tCıt

t

dt0
Z t 0

t

dt00
���
h OH1

�
t 00
�
; OH2

�
t 0
�i ���: (6.5)

Here T exp Œ�� is the time-ordered exponential [6]. We note that these bounds do
not depend on the smoothness of the Hamiltonian, and so are also valid for non-
analytic time dependence. Iterating this expansion for two operators log2 .L/ times,
where L 2 poly .N / is the number of k-particle terms in Eq. (6.1), we may write
our full propagator as a product of time-ordered k-local unitaries with the total error
bounded by

1

2

ˇ̌
ˇ̌
ˇmax
X

sup
0	t 0	t

k OHX

�
t 0
�k
ˇ̌
ˇ̌
ˇ

2

L2 .ıt/2 : (6.6)

The notation L 2 poly .N / denotes that L is a polynomial function ofN . This error
may be made as small as desired by taking .ıt/�1 2 poly .N /. The number of k-
body unitaries which is required to bound this error by � is inversely proportional
to � and polynomial in both t , the final time desired, and L. One can replace these
polynomially many k-body unitaries with a discrete set of fixed one and two-body
operators which is also polynomial in L due to the Solovay–Kitaev theorem [7–9].

From the above, we conclude that any state which can be produced from a given
state j0i under evolution by an arbitrary time-dependent Hamiltonian can be well
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approximated by the state j0i acted on by a polynomial-size quantum circuit with a
fixed set of discrete operations. It is known [8] that such circuits can only reach
an exponentially small subset of states, and so we come to the conclusion that
physically relevant states, those that can be reached from a reference state to a
desired accuracy from any time-dependent Hamiltonian in a time polynomial in
the size of the system, form an exponentially small subset of the complete Hilbert
space. We note that this general argument is independent of dimension, and can be
extended from pure states to open quantum systems described by a k-local time-
dependent Liouvillian [10]. Hence, the argument also applies at finite temperature.
The emphasis of the many-body problem now shifts from, “How do we deal with the
largeness of Hilbert space?” to, “How do we parameterize the set of states relevant
to our particular many-body model?”

The answer to this latter question can be provided assuming that our Hamiltonian
has finite-range interactions and a gap to excitations1 and we consider our system
at zero temperature. The ground states of such systems obey an area law [11–15],
which is to say that the von Neumann entropy of entanglement of the ground state
in a region A,

SvN .A/ D �Tr Œ O�A log O�A� ; (6.7)

where O�A is the reduced density operator describing region A, scales only with the
border of region A and not with its volume. For 1D systems, the presence of an
area law implies that the entanglement between any two complementary subregions
is independent of their size. This is in contrast to a random state in Hilbert space,
for which the entropy of entanglement is extensive. The existence of area laws has
been proven rigorously in 1D for spin-1/2 systems obeying the above constraints by
Hastings [16], and has been observed to hold for the vast majority of other known
systems satisfying our hypotheses regardless of dimension.2 At finite temperature
a condition similar to the area law can be made rigorous in any dimension as the
mutual information between a regionA and its complement NA in a system at thermal
equilibrium,

M
�
AI NA� D SvN .A/C SvN

� NA� � SvN
�
AC NA� ; (6.8)

1By which we mean a spectral gap in the thermodynamic limit, E1 � E0 > 0 where E1 is the
energy of the first excited state andE0 is the energy of the ground state. Finite-sized systems whose
infinite counterparts are gapless typically have a gap which vanishes as an inverse polynomial in
the system volume.
2For a counterexample in a non-translationally invariant 1D chain, see [17]. Here, a variant of the
Dasgupta–Ma–Fisher renormalization group procedure for random spin chains is used to explicitly
construct a spin chain satisfying a volume law. Additionally, as this system is not translationally
invariant, the volume law depends crucially on how the system is divided. In fact, there exist
divisions for which the entropy of entanglement is identically zero.
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satisfies an area law whose bound is inversely proportional to the temperature [18].
Here the density matrix used to obtain SvN .X/, O�X , is the reduced density matrix
describing region X in a system at thermal equilibrium.

A related concept in physics which gives an enlightening alternative perspective
on area laws for entanglement entropy is the notion of area laws for black holes [19].
Here, it is the thermodynamic entropy of a black hole that scales with the area
enclosing the black hole rather than its volume [20]. As the entropy of any volume
of spacetime is bounded by the entropy of a black hole that fits inside of that vol-
ume [21], we have that entropy in gravity is always sub-extensive. This fact coupled
with holographic dualities [19] mapping the properties of D C 1-dimensional bulk
spacetime to a D-dimensional quantum field theory on its boundary, which are
being proved on a case-by-case basis, provide strong evidence that area laws are
ubiquitous in strongly correlated quantum systems. A similar holographic principle
applies for MPSs and their generalizations, as expectation values of operators may
be determined in terms of the dynamics of a dissipative boundary theory [22, 23].

A notable class of exceptions to our hypotheses are systems at the critical point
of a quantum phase transition in which the gap vanishes. For systems of free
fermions in D dimensions, the corrections to the area law are logarithmic in the
linear dimension of region A, LA, [24, 25]

SvN .A/ � LD�1
A logLA; (6.9)

while area laws in bosonic systems in dimensions D 
 2 appear to be insensitive to
criticality [11, 26–28]. For 1D systems whose universal critical theory is a conformal
field theory [29] the logarithmic corrections to the area law are made precise by the
Calabrese–Cardy formula [12, 14, 30]

SvN .A/ � c

6
logLA: (6.10)

Here c is the central charge of the conformal field theory [29] which, in an intuitive
picture, counts the number of universal bosonic degrees of freedom.3 For example,
the central charge of a free bosonic system is 1 and a free fermionic system has c D
1=2, corresponding to “half a boson.” The above results suggest that a reasonable
class of states to be used for variational studies of 1D systems should satisfy an area
law, and possibly be able to handle weak logarithmic violations efficiently.

A construction of a 1D state which obeys an area law is to take a chain of sites and
replace each site with a pair of �-level systems which are maximally entangled with
their neighbors [32]. This construction is shown in Fig. 6.1. If we are now to isolate
any region A such as that enclosed by the red box in Fig. 6.1b, the entanglement of
this region with the remainder of the system is generated only by the entanglement

3Rigorously, the central charge is determined by the coefficient of the anomalous term in the
commutator of the energy-momentum tensor at two different positions [31]. Hence, c describes
the behavior of a conformally invariant system when a macroscopic length scale is introduced.
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Fig. 6.1 Schematic of the MPS construction. (a) A 1D system comprised of local Hilbert spaces
(spheres) arranged in a regular pattern. (b) Each Hilbert space is replaced by two fictitious
maximally entangled �-level systems, where the wiggly lines indicate which pairs are maximally
entangled. Partitioning the system as with the red box, entanglement of the boxed region with
its complement occurs only at the boundary. (c) The maximally entangled fictitious systems are
projected to produce an entangled state in the physical degrees of freedom satisfying an area law

between the pairs of �-level systems at the boundaries. This boundary entanglement
scales as log�. These �-level subsystems thus provide a fictitious set of states
which can be manipulated such as to produce the desired entanglement structure
in the physical degrees of freedom. We manipulate these fictitious systems by
projecting from this fictitious Hilbert space onto the physical Hilbert space via a
set of isometric tensors. These tensors form the parameters of an MPS. Finally, we
note that the relationship SvN � log� implies that �, the Hilbert space dimension of
the fictitious system, is exponential in the entanglement entropy SvN.4 For systems
with weak logarithmic violations of the area law obeying Eq. (6.10), this gives that
� is polynomially related to the system size, with polynomial degree depending on
the central charge [33]. Hence, any algorithm which is polynomial in � represents a
method which is at most polynomial in the system size, an exponential improvement
over exact diagonalization!5

An enlightening alternative view of MPSs is that they are states which are the
result of a real-space renormalization group (RG) iteration [35]. The essential
idea of the renormalization group is to coarse-grain a system by integrating out
the irrelevant degrees of freedom. As coarse graining is iteratively applied, only
the degrees of freedom which describe the macroscopic behavior of the system
emerge, and we can characterize these macroscopic degrees of freedom by the
universality classes which represent fixed points of the RG iteration. Models whose
microscopic details differ greatly may fall into the same universality class, and
hence have the same macroscopic behavior. The renormalization group provides

4That is to say, the � that is required to accurately reflect the entanglement structure grows
exponentially with the von Neumann entropy.
5Strictly speaking, this is true only for fixed error. If we require that the error be bounded by an
inverse polynomial in the system size, finding a ground state with the given representation is still
very difficult [34].
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a quantitative means to sort systems according to their universal degrees of freedom
via determining which RG fixed point they move towards as irrelevant degrees of
freedom are removed.

The procedure of the original numerical renormalization group algorithm of
Wilson is to coarse-grain a system by iterative exact diagonalization. In one
dimension, we begin by assuming that our system is comprised of blocksB.0/, where
each block may represent a single site or multiple sites and are taken to be identical
for simplicity. Each block is indexed by some set of �many-body states which span
its Hilbert space. We now group two contiguous blocks together, diagonalize the
Hamiltonian of this two-block system, and keep only the � states which are lowest
in energy. The transformation to the new configuration where two of the blocks
B.0/ are combined into a single superblock B.1/ D B.0/ ˝ B.0/ may be represented
by an isometric matrix A6 mapping from B.0/ ˝ B.0/ ! B.1/. We now combine
B.1/ and one of its neighboring blocks B.0/ together, diagonalize the Hamiltonian
in this space, and keep only the low energy states again, resulting in an isometric
tensor mapping from B.1/ ˝B.0/ ! B.2/. This outlines the general structure of the
iteration.

Let us now assume that out initial blocks are the two leftmost sites of a 1D lattice,
and denote the isometric tensors constructed at iteration n as AŒn�in˛ˇ j˛ijiihˇj, where

j˛i are the states spanning B.n�1/, jii are the states spanning B.0/, and jˇi are the
states spanning B.n/. Furthermore, let us take open boundaries on a chain of L sites,
which amounts to the left basis of AŒ1�i1 and the right basis of AŒL�iL being one-
dimensional.7 Then, the many-body state resulting at iteration L may be written as

j i D
X

i1:::iL

AŒ1�i1 : : : AŒL�iL ji1 : : : iLi ; (6.11)

which, as we shall see, is the form of an MPS.
This procedure produced excellent results for the Kondo problem [35], but fails

miserably for the toy model of a single particle on a 1D chain! The reasons for
this failure were investigated by White [36], and led him to the density-matrix
renormalization group (DMRG) algorithm, in which the relevant states which are
kept after diagonalization of the superblock Hamiltonian are not those with the
lowest energy, but those which have the largest eigenvalues in the block reduced
density matrix. Examining Eq. (6.7), we can see that this corresponds intuitively to
the states which are most strongly entangled to the “environment” formed by all

6By isometric, we mean that this matrix has orthonormal rows. If it were square, it would be
unitary, but we are transforming from a �2 dimensional space to a � dimensional space, and so
only the rows are orthonormal.
7That is, at the first iteration we map from the product of the vacuum and a block B.0/ to a new
set of states which is of course identical to the block B.0/. A similar comment applies to the last
iteration.
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previous iterations.8 The more precise statement we can make is that by keeping the
states which have largest eigenvalues in the reduced density matrix we minimize
the 2-norm distance between the system in the truncated Hilbert space and the
true ground state with the given environment, which is borne out in the Schmidt
decomposition [8, 38]

j i D
X

˛

�˛jA˛ijB˛i: (6.12)

The Schmidt decomposition represents a general quantum state j i in terms
of orthonormal bases jAi and jBi for two complementary subsystems and the
eigenvalues of the reduced density matrix O�A,

˚
�2˛
�
. With this change to the

original numerical renormalization group procedure, DMRG not only overcomes
the failure for the single-particle case, but turns this real-space renormalization
group procedure into a method of unparalleled power for strongly-correlated 1D
systems.

After the development of DMRG, it was realized that DMRG can be formulated
as a variational method in terms of MPSs [39, 40]. While this does not lead to
any significant numerical improvement in the algorithm to find the ground state
of 1D Hamiltonians [1], other variational algorithms, for example to find excited
states or perform generic time evolution, benefit greatly from this observation. The
reason is that in DMRG all states involved in a calculation are represented as a
single MPS, which requires that they share common bases in the matrix product.
Hence, representing states together as an MPS often requires vastly more resources
than representing each state separately as an MPS for a fixed error. These issues
are discussed at length in Chap. 7. Hence, in this thesis, we focus on the explicit
formulation of variational algorithms within the class of MPSs rather than the
implicit MPS representation used in DMRG.

6.2 Definitions

We now move to explicit definitions of the mathematical objects which are used
when discussing MPSs. We define a tensor as a map from a product of Hilbert
spaces to the complex numbers

T W H1 ˝H2 ˝ � � � ˝Hr ! C: (6.13)

8Note that, strictly speaking, DMRG does not maximize entanglement due to a renormalization
of the density-matrix spectra induced by truncation [37]. However, for most physical systems this
intuition does not cause any pitfalls.
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Here r is the rank9 of the tensor. If we evaluate the elements of the tensor T in a
fixed basis

˚jij i
�

for each Hilbert space Hj , then equivalent information is carried
in the multidimensional array Ti1:::ir . We will also refer to this multidimensional
array as a tensor. The information carried in a tensor does not change if we change
the order in which its indices appear. We will call such a generalized transposition
a permutation of the tensor. As an example, the permutations of the rank-3 tensor
T are

Tijk D
�
T 0	

kij D
�
T 00	

jki D
�
T 000	

jik D
�
T 0000	

kji D
�
T 00000	

ikj : (6.14)

Here, the primes indicate that the tensor differs from its unprimed counterpart only
by a permutation of indices. Similarly, by combining two such indices together using
the Kronecker product we can define an equivalent tensor of lower rank, a process
we call index fusion. We denote the Kronecker product of two indices a and b using
parentheses as .ab/, and a representation is provided by

.ab/ D .a � 1/ db C b; (6.15)

where db is the dimension of Hb and a and b are both indexed starting from 1. An
example of fusion is

Tijk D
�
T 0	

i.jk/ : (6.16)

Here, T is a rank-3 tensor of dimension di �dj �dk and T 0 is a matrix of dimension
di�dj dk . The inverse operation of fusion, which involves creating a tensor of higher
rank by splitting a composite index, we refer to as index splitting.

Just as permutations generalize the notion of matrix transposition, tensor con-
traction generalizes the notion of matrix multiplication. In a contraction of two
tensors A and B some set of indices cA and cB which describe a common Hilbert
space are summed, and the resulting tensor C consists of products of the elements
of A and B as

CNcANcB D
X

c

ANcAcBcNcB : (6.17)

Here NcB denotes the indices of A which are not contracted and likewise for NcB . The
rank of C is rA C rB � 2nc , where nc is the number of indices contracted (i.e.,
the number of indices in c) and rA and rB are the ranks of A and B , respectively. In
writing expression Eq. (6.17) we have permuted all of the indices cA to be contracted

9This should not be confused with the rank of a matrix, which is the number of nonzero singular
values. We shall avoid confusion in this text by referring to the number of nonzero singular values
as the matrix rank or rank of a matrix and referring to the definition given here as the tensor rank,
the rank of a tensor, or a rank-r tensor.
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to the furthest right position in A and the indices cB to the furthest leftmost position
in B for notational simplicity. If we were also to fuse the elements in NcA, c, and NcB
together, then we would recognize Eq. (6.17) as a matrix–matrix multiplication. This
is a valuable insight, as matrix–matrix multiplication routines such as DGEMM10

in BLAS11 [41] have been highly optimized and this lends efficiency to tensor
contraction algorithms.

At this stage, it is advantageous to develop a graphical notation for tensors and
their operations [42]. A tensor is represented graphically by a point with lines
extending upwards from it. The number of lines is equal to the rank of the tensor.
The order of the indices from left to right is the same as the ordering of lines from
left to right. A contraction of two tensors is represented by a line connecting two
points. Finally, the complex conjugate of a tensor is denoted by a point with lines
extending downwards. Some basic tensor operations are shown in graphical notation
in Fig. 6.2.

Following a similar line of reasoning as for contractions above, we may also
decompose tensors into contractions of tensors using permutation, fusion, and any
of the well-known matrix decompositions such as the singular value decomposition
(SVD) or the QR decomposition. For example, a rank-3 tensor T can be factor-
ized as

Tijk D
X

l

U.ij/lSlVlk; (6.18)

where U and V are unitary and S is a positive semidefinite real vector. Such
decompositions are of great use in enforcing canonical forms on MPSs, see Sect. 6.3.

A tensor network is now defined as a set of tensors whose indices are connected
in a network pattern, see Fig. 6.3. Let us consider that some set of the network’s
indices c are contracted over, and the complement Nc remain uncontracted. Then, this
network is a decomposition of some tensor TNc. The basic idea of tensor network

Ai
αβ Ai

αβ Cij
αβ = γ Ai

αγBj
γβ

a b c

Fig. 6.2 Examples of basic tensor operations in diagrammatic notation. (a) A rank-3 tensor. (b)
The conjugate of a rank-3 tensor. (c) The contraction of two rank-3 tensors over a single index
produces a rank-4 tensor

10Double precision General Matrix Multiply.
11Basic Linear Algebra Subprograms, a large collection of numerical routines which were designed
to take advantage of the cache structure of modern computers. Using BLAS routines versus
naive loops for contractions leads to speedups often of a factor of 4 or more, even when using
aggressively optimizing compilers.
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...

a

b

c

...
...

Fig. 6.3 Examples of tensor networks. (a) An MPS with seven sites and open boundary conditions
(OBC). (b) A square lattice PEPS with 25 sites and OBC. (c) Two-levels of a 1D MERA with
periodic boundary conditions. This network consists of alternating rows of rank-3 and rank-4
tensors

algorithms utilizing MPSs and their higher-dimensional generalizations such as
projected entangled-pair states (PEPS) [43, 44] and the multiscale entanglement
renormalization algorithm (MERA) [45, 46] are to represent the high-rank tensor
ci1:::iL encoding a many-body wavefunction in a Fock basis,

j i D
X

i1:::iL

ci1:::iL ji1 : : : iLi; (6.19)

as a tensor network with tensors of small rank. We set the convention in the
remainder of this chapter that indices which are contracted over in the tensor
network decomposition will be denoted by Greek indices, and indices which are
left uncontracted will be denoted by Roman indices. The former type of index will
be referred to as a bond index, and the latter as a physical index.

In particular, an MPS imposes a one-dimensional topology on the tensor network
such that all the tensors appearing in the decomposition are rank-3. The resulting
decomposition has the structure shown in Fig. 6.3a. Explicitly, an MPS may be
written in the form

j MPSi D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒL�iL

�
ji1 : : : iLi: (6.20)

Here, i1 : : : iL label the L distinct sites, each of which contains a d -dimensional
Hilbert space. We will call d the local dimension. The superscript index in brackets
Œj � denotes that this is the tensor of the j th site, as these tensors are not all
the same in general. Finally, the trace effectively sums over the first and last
dimensions of AŒ1�i1 and AŒL�iL concurrently, and is necessary only for periodic
boundary conditions (PBC) where these dimensions are greater than 1. Obscured
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within the matrix product of Eq. (6.20) is the size of the matrix AŒj �ij formed from
the tensor AŒj � with its physical index held constant. We will refer to the left and
right dimensions of this matrix as �j and �jC1, and the maximum value of �j
for any tensor, the bond dimension, will be denoted as �. The bond dimension
is the parameter which determines the efficiency of an MPS simulation, and also
its dominant computational scaling. From the relation SvN 
 log�, we also have
that � represents an entanglement cutoff for MPSs. The scaling of variational MPS
algorithms is discussed in Chap. 7.

In what follows, we consider MPSs with open boundary conditions (OBC)
unless explicitly indicated otherwise. Details on algorithms for PBC are provided
in Chap. 9. The reasoning for using OBC is twofold. First, finding the normalized
eigenvector corresponding to the minimum eigenvalue of a Hermitian operator OQ
may be expressed as the minimization of the Rayleigh quotient [2]

min
j i
h j OQj i=h j i: (6.21)

In variational MPS algorithms this quotient is minimized locally by holding all
tensors except for some subnetwork A fixed and minimizing the Rayleigh quotient
with respect to the parameters of A. The minimization problem for the subnetwork
A becomes a generalized eigenvalue problem

QeffA D �NA; (6.22)

where Qeff is the action of the operator OQ on the subnetwork to be optimized
with the rest of the network held fixed, and N is the action of the identity on the
subnetwork to be optimized with the rest of the network held fixed. There exists a
canonical form for MPSs with OBC such that N is the identity, and the generalized
eigenvalue problem becomes an eigenvalue problem. For PBC this operator cannot
generally be made the identity, and may be singular or poorly conditioned, leading
to numerical instabilities and a reduction in accuracy.

The second reason for avoiding PBC is deeper. When we divide a system with
PBC into two contiguous regions, one of length L and one of length `, generally the
two ends of subsystem L which surround that of subsystem ` are correlated. This
is to be contrasted with OBC, where an arbitrary partition creates an environment
for ` which is uncorrelated. This idea is demonstrated in Fig. 6.4. A consequence of
this is that the entanglement entropy of a critical system with PBC grows twice as
fast as one with OBC, that is

SPBC .A/ � c

3
logLA: (6.23)

This should be compared with Eq. (6.10) for OBC. Hence, the corresponding bond
dimension for PBC grows as the square of the bond dimension for OBC. This is
sometimes referred to as O

�
�6
�

scaling, as introducing a fictitious OBC system with
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ξa b ξ

Fig. 6.4 Correlation structure of PBC states. (a) For a state with a correlation length � 
 L, the
two ends of subregion L are weakly correlated and the entanglement of L with ` is constant, as in
the OBC case. (b) As the correlation length grows comparable to L, the two ends of subregion L
are strongly correlated and give rise to twice as much entanglement between L and ` as in the case
of OBC

a long-range interaction between the first and last sites will require a bond dimension
�PBC that scales as the square of the bond dimension �OBC in the absence of the long-
range interaction to represent the system with the same level of accuracy. That is, the
system with the long-range interaction will require O

�
�3PBC

� D O
�
�6OBC

�
time for a

fixed accuracy. This scaling can be brought down to O
�
�5
�

by introducing an MPS
which has the correct entanglement structure [32],12 and recent efforts [47, 48] have
shown how to reduce this scaling to O

�
p�3

�
, where p is the number of relevant

correlation lengths of the transfer operator, see Sect. 6.5.

6.3 Canonical Forms for MPSs

The matrix product structure of an MPS implies that we can insert any invertible
matrix X and its inverse between any two matrices appearing in Eq. (6.20) without
affecting the state j MPSi. Hence, the MPS decomposition is highly non-unique. We
shall now describe canonical forms for MPSs which remove this non-uniqueness.

The first canonical form requires that a given tensor A satisfies

X

i

Ai


Ai D I: (6.24)

We say that a tensor satisfying Eq. (6.24) is in left-canonical form, or it is left-
canonical for succinctness. We can enforce left-canonical form on a particular tensor
via fusing the leftmost two indices and performing a SVD

12That is, the algorithm scales as O
�
�5
�

but �PBC D �OBC for a fixed error in the improved ansatz.
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A.˛i/ˇ D AŒ`�i˛ˇ ; (6.25)
X

�

U.˛i/�S�V



�ˇ D A.˛i/ˇ: (6.26)

Because the matrix U returned from the SVD is unitary, Eq. (6.24) is satisfied by
making the replacement

AŒ`�i˛� D U.˛i/� : (6.27)

In order for the total state to remain unchanged, we must contract the remaining
information returned from the SVD into the neighboring tensor as

AŒ`C1�i�� D
X

ˇ

S�V



�ˇA
Œ`C1�i
ˇ� : (6.28)

Hence, the procedure of bringing a tensor into canonical form affects two tensors at
a time. By carrying out this recursion all the way from the left (open) boundary to
the right boundary, we end up with an MPS in which each tensor satisfies Eq. (6.24)
and a 1 � 1 matrix whose trace is the norm of the MPS. Such an MPS is said to be
in left-canonical form.

One can imagine performing the recursion Eqs. (6.25)–(6.28) in the opposite
direction, instead replacing A with the unitary matrix V as

A˛.iˇ/ D AŒ`�i˛ˇ ; (6.29)
X

�

U˛�S�V



�.iˇ/
D A˛.iˇ/; (6.30)

A
Œ`�i

�.iˇ/
D V 


�.iˇ/
; (6.31)

AŒ`�1�i�� D
X

˛

AŒ`�1�i�˛ U˛�S� : (6.32)

The resulting tensor A D AŒ`� satisfies the right-canonical condition

X

i

AiAi

 D I: (6.33)

As with the left-canonical form, one can perform the recursions Eqs. (6.29)–(6.32)
from the right boundary to the left boundary to obtain a representation in which
all tensors satisfy Eq. (6.33) together with a 1 � 1 matrix whose trace is the norm
of the MPS. In the remainder of this chapter, we will reserve the notation A for
a left-canonical tensor and B for a right-canonical tensor. The left-canonical and
right-canonical MPS forms thus read
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j left-canonicali D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒL�iL

�
ji1 : : : iLi; (6.34)

j right-canonicali D
dX

i1;:::iLD1
Tr
�
BŒ1�i1 : : : BŒL�iL

�
ji1 : : : iLi: (6.35)

The consequences of left- and right-canonical form in graphical notation are
provided as part of the publication in Chap. 7.

We now consider taking a state j i and performing Eqs. (6.25)–(6.28) to put all
tensorsAŒj � from j D 1; : : : ; k into left-canonical form and performing Eqs. (6.29)–
(6.32) such that all tensors BŒj � from j D kC1; : : : ; L are right-canonical. In order
for the state to be consistent, we must insert a matrix M between AŒk� and BŒkC1�
which represents SŒk�V Œk�
 from the right-moving contraction Eq. (6.28) multiplied
by U ŒkC1�S ŒkC1� from the left-moving contraction Eq. (6.32). That is, the state is

j i D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒk�ikMBŒkC1�ikC1 : : : BŒL�iL

�
ji1 : : : iLi; (6.36)

where M D SŒk�V Œk�
U ŒkC1�S ŒkC1�. Performing a SVD M D UƒV and absorbing
U into AŒk� and V into BŒkC1�,13 we may write this as

j i D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒk�ikƒBŒkC1�ikC1 : : : BŒL�iL

�
ji1 : : : iLi; (6.37)

where now ƒ is a diagonal matrix. This form of the state corresponds identically
with the Schmidt decomposition mentioned in Sect. 6.1. As the matrix ƒ lies at the
boundary between the left-orthogonal and right-orthogonal parts of the state, we
will call it the orthogonality center. To be more precise, we call it the bond-centered
orthogonality center as it resides on the bond between two-sites. The state Eq. (6.37)
is said to be in bond-centered mixed canonical form. We may absorb ƒ into AŒk� to
give a tensor which is no longer left-canonical, but does carry all the information
that was contained in the orthogonality center. We will denote this tensor with a tilde
to indicate its lack of left-canonical form:

j i D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : QAŒk�ikBŒkC1�ikC1 : : : BŒL�iL

�
ji1 : : : iLi: (6.38)

13Note that this does not affect the canonical form of these two tensors.
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We now say that QAŒk� is the orthogonality center of the MPS, more precisely the
site-centered orthogonality center, and we call this particular canonical form site-
centered mixed canonical form. When there is no chance of confusion, we will refer
to both Eqs. (6.37) and (6.38) as mixed canonical form. The most important feature
of the orthogonality center is that it expresses the wavefunction in terms of a tensor
whose indices run over orthonormal bases.

The final canonical form we consider takes the mixed canonical form to its
logical conclusion by ensuring that a bipartite splitting at any bond within the
lattice results in the Schmidt decomposition, and we shall call it the Vidal canonical
form [49, 50]:

j VCFi D
X

˛1:::˛LC1

X

i1:::iL

�Œ1�˛1�
Œ1�i1
˛1˛2

�Œ2�˛2 : : : �
ŒL�
˛L
�ŒL�iL˛L˛LC1

�ŒLC1�
˛LC1

: (6.39)

The � tensors and � tensors are chosen such that a bipartite splitting of our system
at the bond between sites l and l C 1 is exactly the Schmidt decomposition

j i D
�SX

˛lD1
�ŒlC1�˛l

j�Œ1:::l �˛l
ij�ŒlC1:::n�˛l

i; (6.40)

with the Schmidt vectors

j�Œ1:::l �˛l
i D

�SX

˛0;:::;˛l�1

�Œ1�˛0�
Œ1�i1
˛0˛1

�Œ2�˛1�
Œ2�i2
˛1˛2

�Œ3�˛2�
Œ3�i3
˛2˛3

: : : �Œl�il˛l�1˛l
ji1i : : : jili (6.41)

and

j�ŒlC1:::L�˛l
i D

�SX

˛lC1;:::;˛L

�
ŒlC1�ilC1
˛l ˛lC1

�ŒlC1�˛lC2
�
ŒlC2�ilC2
˛lC1˛lC2

: : : �ŒL�iL˛L�1˛L
�ŒL�˛L jilC1i : : : jiLi;

(6.42)

and the Schmidt coefficients �ŒlC1�˛l
. We can translate between the left, right, and

Vidal canonical forms by using the translation formulae

A
Œj �ij
˛ˇ D �Œj �˛ �

Œj �ij
˛ˇ ; (6.43)

B
Œj �ij
˛ˇ D �Œj �ij˛ˇ �

ŒjC1�
ˇ : (6.44)

These will be useful in Chap. 8, when we discuss translationally invariant MPSs.
As an example of why the various MPS canonical forms are useful, we now

consider finding the expectation value of an observable OOk which acts only on a
single lattice site k. Assuming that site k is the orthogonality center, this expectation
value is
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h j OOk j i D X

i1:::ik :::iL

X

i 0k

O
ik i

0
k

k Tr
�
AŒ1�i1 : : : QA Œj �i 0k : : : BŒL�iLBŒL�iL



: : : QA Œk�ik



: : : AŒ1�i1



�
;

D X

i1:::ik :::iL

X

i 0k

O
ik i

0
k

k Tr
�
AŒ1�i1



AŒ1�i1 : : : QA Œk�i 0k : : : BŒL�iLBŒL�iL



: : : QA Œk�ik



: : :
�
;

D X

i2:::ik :::iL�1

X

i 0k

O
ik i

0
k

k

Tr
�
AŒ2�i2



AŒ2�i2 : : : QA Œk�i 0k : : : BŒL�1�iL�1BŒL�1�iL�1



: : : QA Œk�ik



: : :
�
;

D X

ik i
0
k

O
ik i

0
k

k Tr
� QA Œk�i 0k QA Œk�ik



�
: (6.45)

Here, the second line used the cyclic nature of the trace and the third and fourth
lines used the left- and right-canonical conditions Eqs. (6.24) and (6.33) for the
tensors to the left and right of k, respectively. Thus, mixed canonical form projects
many operations involving the entire wavefunction into operations involving only
the orthogonality center.

6.4 Examples of MPSs

Several important and well-known states can be cast exactly as MPSs with constant
bond dimension. The purpose of this section is to provide some examples of states
with exact MPS representations.

6.4.1 Product State

The simplest MPS is a product state jk1k2 : : : kLi, which is a product of 1 � 1
matrices AŒj �ij D �

ıij kj
�
. For the Vidal canonical form, all of the � tensors are

.1/ and the � tensors are represented by the A tensors here. In this case, � D 1 for
any subsystem. This is the only class of states in which all of the canonical forms
above have identical MPS representations.

6.4.2 GHZ State

A nontrivial MPS with bond dimension two is the (unnormalized) Greenberger–
Horne–Zeilinger (GHZ) state

jGHZi D j00 : : : 0i C j11 : : : 1i: (6.46)
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This state represents a realization of Schrödinger’s famous cat paradox [51] in which
a quantum system exists in two very different macroscopic states simultaneously.
Also, the GHZ state is closely related to NOON states in which N particles
exist in a superposition of all particles in state a and all particles in state b
simultaneously. The GHZ state garnered interest because of its very strong non-
classical correlations [52]. The state is given in left- or right-canonical form by the
matrices

Ai D
�
ıi;0 0

0 ıi;1

�
: (6.47)

Here we have neglected the boundary conditions. For PBC all matrices are
equivalent, and for OBC the first and last sites are 1 � 2 and 2 � 1 matrices whose
elements are the diagonal elements of Ai , respectively. The normalized GHZ state
can be represented in mixed canonical form by introducing the orthogonality center

Ai D
�
ıi;0=
p
2 0

0 ıi;1=
p
2

�
: (6.48)

In the Vidal canonical form, the normalized GHZ state takes the form

�Œj � D
 

1p
2
1p
2

!
; �Œj �i D

�
ıi;0
p
2 0

0 ıi;1
p
2

�
; (6.49)

for 2 
 j 
 L � 1 together with the boundaries

�Œ1� D �ŒLC1� D .1/ ; �Œ1�i D � ıi;0 ıi;1
�
; �ŒL�i D

�
ıi;0
ıi;1

�
: (6.50)

As this is a state with � D 2, it has minimally nontrivial spatial entanglement.

6.4.3 W State

The W state is the equal superposition of all translates of j10 : : : 0i,

jW i D 1p
L

LX

iD1
j0i˝i�1j1ij0i˝L�i ; (6.51)

and can also be represented as an MPS with bond dimension 2. If we interpret j0i
as being spin down and j1i as being spin up, the W state with L D 2 constituents
is the spin triplet. If j0i and j1i are interpreted as lattice sites containing 0 and 1
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particles, respectively, the W state represents the state of a single particle on a ring
with quasimomentum q D 0. The Vidal canonical form is

�Œj � D
0

@

q
L�jC1

Lq
j�1
L

1

A ; �Œj �i D
0

@
ıi;0

q
L

L�jC1 ıi;1
q

L
j .L�jC1/

ıi;1

q
L
j

0

1

A ; (6.52)

for 2 
 j 
 L � 1 together with the same boundary tensors as the GHZ state. In
the MPS representation we can choose

AŒ1�i D
�
ıi;0=
p
L

ıi;1=
p
L

�
; AŒj �i D

�
ıi;0 0

ıi;1 ıi;0

�
; AŒL�i D � ıi;0 ıi;1

�
; (6.53)

which amounts to mixed canonical form with the first site being the orthogonality
center.

6.4.4 AKLT State

Affleck, Kennedy, Lieb, and Tasaki (AKLT) considered the following Hamilto-
nian [53]

OHAKLT D
X

i

OSi � OSiC1 C 1

3

� OSi � OSiC1
�2
: (6.54)

Here, OSi is the vector of three-component spin operators at site i . We will call a
three-component quantum system, isomorphic to the internal space of a particle with
a spin of 1, a qutrit. Similarly, a two-component quantum system will be referred
to as a qubit. By defining a projector onto the Hilbert space of total spin equal to
two as

OP D 1

6 � 4
� OS2total � 2

� OS2total; (6.55)

and setting OStotal D OSi C OSiC1, we find that the projector of the spin on bond i onto
the spin-2 subspace is

OPi D 1

6 � 4
� OS2i C OS2iC1 C 2 OSi � OSiC1 � 2

� � OS2i C OS2iC1 C 2 OSi � OSiC1
�

(6.56)

D 1

2



2

3
C OSi � OSiC1 C 1

3

� OSi � OSiC1
�2�

: (6.57)
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Thus,

OHAKLT D
X

i

�
2 OPi � 2

3
OI
�
: (6.58)

Let us now consider each qutrit to be comprised of two qubits with internal states
fj "i; j #ig. For this to be consistent, we must require these two qubits to be
completely symmetrized so as to lie in the subspace with total spin equal to 1. Now,
consider the many-body state where adjacent pairs of these qubits not forming a
qutrit are joined in a singlet state such that the bonds have spin zero. The projector OPi
acting on this state gives zero, and from h OPi i 
 0we have that the given construction
produces a ground state of the AKLT Hamiltonian. It can also be shown that this
state is unique [53]. We will call the state formed from the above construction the
AKLT state.

We can write the AKLT state as an MPS by considering the chain of qubits
which has length 2L, with L being the length of the original qutrit chain. We define
the qubit sites ai and bi , i D 1; : : : L, such that the bonds aibi are connected in
a symmetric fashion and biaiC1 are connected in an antisymmetric fashion. We
will also consider periodic boundaries so as to easily facilitate taking the limit of
an infinite chain. A matrix encapsulating the state of the singlet bonds, .j "#i�
j #"i/=p2, is

S D
 

0 1p
2

� 1p
2
0

!
: (6.59)

Similarly, matrices representing the three triplet bonds j1i D j ""i, j0i D
.j "#i C j #"i/=p2, and j � 1i D j ##i, are

T i D
 

ıi;1
1p
2
ıi;0

1p
2
ıi;0 ıi;�1

!
: (6.60)

Hence, the state of the qutrit chain may be parameterized as

j i D
X

i1a1b1:::iLaLbL

T
i1
a1b1

Sb1a2T
i2
a2b2

Sb2a3 : : : SbL�1aLT
iL
aLbL

SbLa1 ji1 : : : iLi; (6.61)

D
X

i1:::iL

Tr
�
AŒ1�i : : : AŒL�iL

�
ji1 : : : iLi; (6.62)

where

Ai D T iS D
 � 1

2
ıi;0

1p
2
ıi;1

� 1p
2
ıi;�1 1

2
ıi;0

!
: (6.63)
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Noting that
P

i A
i 
Ai D 3

4
I , we can normalize the state in the thermodynamic

limit14 by scaling by 2=
p
3 to obtain

Ai D
0

@ �
1p
3
ıi;0

q
2
3
ıi;1

�
q

2
3
ıi;�1 1p

3
ıi;0

1

A : (6.64)

We close this section by expressly pointing out the similarity between the AKLT
construction and the general construction of MPSs as projections from maximally
entangled pairs of �-level subsystems onto physical states mentioned in Sect. 6.1.
In fact, the similarity extends from the state construction to the Hamiltonian, as
every MPS is the ground state of a parent Hamiltonian built of projectors which is
gapped, is frustration-free in the sense that each term in the Hamiltonian minimizes
the energy locally, is k-local with k � 2 log�= log d , and allows for a detailed
analysis of the ground state degeneracy [54, 55].

6.5 Correlations Within MPSs and the Transfer Operator

Let us now turn to the structure of correlations within MPSs. By a correlation, we
mean a two-point correlation function, for example the density–density correlation
function h Onp Onqi. Assuming that the state is in mixed canonical form with the
orthogonality center k satisfying p 
 k 
 q, the correlation becomes a finite tensor
network contraction between sites p and q. Written out explicitly, we have

h OOp OOqi (6.65)

D Tr

0

@
X

ipi 0p

OOipi 0pAŒp�ip
? ˝ AŒp�i 0p

q�1Y

jDpC1

0

@
X

ij

AŒj �ij
? ˝ AŒj �ij

1

A

X

iq i 0q

OOiqi 0qAŒq�iq
? ˝ AŒq�i 0q

1

A ;

D Tr

0

@EŒp�

OO

q�1Y

jDpC1
E
Œj �

OI E
Œq�

OO

1

A ; (6.66)

14See Eq. (6.69) for the condition that a left-canonical MPS on an infinite lattice is normalized.
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where we have defined the transfer operator

E OO D
X

ii0

OOii0A
i? ˝ Ai 0 : (6.67)

We will also use the alternate notation

E OO ŒM� D
X

ii0

Ai

 OOii0MA

i 0 ; (6.68)

which expresses the action of the transfer operator on a matrixM [1]. The difference
in notation is demonstrated by comparing the expectation Eqs. (6.65)–(6.45). The
transfer operator E OO either acts upon length �2 vectors or takes � � � matrices to
� � � matrices,15 depending on which interpretation we use.

While the transfer operator is not generally symmetric, we can still venture to
find its eigenvalues and (left and right) eigenvectors/eigenmatrices. It can be shown
that the transfer operator of a normalized state has a spectral radius of 1 [1]. For
matrices which are left-canonical, we have that

E OI
h OI
i
D
X

i

Ai


Ai D OI ; (6.69)

and so the left eigenmatrix of E OI with eigenvalue 1 is the identity matrix. Similarly,
an appropriately defined transfer operator of right-canonical MPS matrices has the
identity matrix as a right eigenmatrix with eigenvalue 1. For simplicity, let us now
consider a state which is translationally invariant such that all matrices appearing in
the contraction Eq. (6.65) are identical, and let E OI have a non-degenerate maximal

eigenvalue 1. Expanding the product of transfer operators
Qq�1
jDpC1 E

Œj �

OI in terms of
its eigenspectrum, we have that

h OOp OOqi D
X

k

h1jEŒp�

OO jki�
q�p�1
k hkjEŒq�

OO j1i; (6.70)

where jki and hkj are the right and left eigenvectors corresponding to eigenvalue
�k . There are now two possibilities. The first is that this correlation function is
long-ranged, which occurs when h1jEŒp�

OO j1ih1jE
Œq�

OO j1i is nonzero, and the second is
a superposition of exponential decays with decay lengths �k D �1= log�k . This
may be written compactly as

15Strictly speaking, the transfer operator using the MPS tensors at site j take �j � �j matrices to
�j�1 � �j�1 matrices with the given order of operations, but the great numerical use is in infinite
systems where � is uniform across all bonds.
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h j OOp OOqj i
h j i D h1jEŒp�

OO j1ih1jE
Œq�

OO j1i C
�2X

kD2
h1jEŒp�

OO jkihkjE
Œq�

OO j1ie
�jq�p�1j=�k :

(6.71)

To illustrate these ideas, we can use the AKLT state Eq. (6.64) from above. The
transfer operator is

E OI D
X

i

Ai ˝ Ai D

0

BB@

1
3
0 0 2

3

0 � 1
3
0 0

0 0 � 1
3
0

2
3
0 0 1

3

1

CCA ; (6.72)

which has eigenvalues 1 and �1=3, the latter being triply degenerate. The dom-
inant eigenmatrix is OI , as discussed for left-canonical matrices above. The other
eigenspace is spanned by O�z, O�C, and O��, the spin-1/2 Pauli matrices. Using the
transfer operators

E OSz
D

0

BB@

0 0 0 2
3

0 0 0 0

0 0 0 0

� 2
3
0 0 0

1

CCA ; (6.73)

Eexp.i� OSz/ D

0

BB@

1
3

0 0 � 2
3

0 � 1
3
0 0

0 0 � 1
3
0

� 2
3
0 0 1

3

1

CCA ; (6.74)

we find exponential decay of antiferromagnetic correlations, h OSiz OSjz i � .�1=3/i�j ,

but long-range order in the string order parameter h OSiz
Qj�1
kDiC1 exp

�
i� OSkz

� OSjz i D
�4=9. Here string order refers to the fact that, although true long-range antiferro-
magnetic order of the classical Néel type j : : : 1;�1; 1;�1 : : : i is absent, any site
with S z D ˙1 is followed by a site with the opposite spin projection S z D 	1, and
these two-sites are connected by a string of S z D 0 sites which can have arbitrarily
long length.

Given that an MPS has correlations which decay exponentially asymptotically,
how can they accurately represent a critical state which displays power-law decay
of some correlator? The answer is that the general correlation structure of MPSs is
a sum of exponentials, and so on length scales short compared to the dominant
correlation length this sum can approximate an algebraic decay. This idea is
demonstrated in Fig. 6.5, where approximations to the function 1=r3 are provided
by fitting a sum of exponentials to this function. The accuracy of the fit extends
to longer distances as more exponentials are included. The minimization procedure
used to fit the exponentials is precisely that used to define matrix product operators
with long-range interactions, see Sect. 7.2.2.
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Fig. 6.5 Approximating algebraic decay by sums of exponentials. The solid red line represents
the function 1=r3, and the other lines represent approximations to 1=r3 obtained by a least squares
minimization of a sum of exponentials with the indicated number of terms

Given that the accuracy of an MPS representation of a state monotonically
increases with the bond dimension and the correlation length of a critical state
diverges, we find that the correlation length must increase with �. In fact, � obeys a
scaling relationship with the correlation length [56]

� � ��; (6.75)

where

� D 6p
12c C c : (6.76)

Here c is the central charge of the conformal field theory describing criticality, see
Eq. (6.10) and the surrounding discussion. Results such as Eq. (6.75) fall under the
heading of finite-entanglement scaling, as contrasted with finite-size scaling [57].
A nice feature of finite-entanglement scaling is that scaling relationships depend
only on truly universal quantities such as the central charge rather than scaling
dimensions as in finite-size scaling. Provided we are in the finite-entanglement
scaling regime rather than the finite-size scaling regime [58], for example because
we have taken the size of the system much larger than the correlation length,16 finite-
entanglement scaling provides us with a powerful means of extracting universal
quantities for relatively small amounts of computational effort, see Sect. 8.4.

16For critical systems, the diverging of the correlation length requires us to consider systems with
an infinite number of sites. For an MPS algorithm which operates in this limit, see Chap. 8.



164 6 Matrix Product States: Foundations

6.6 Symmetry-Adapted MPSs

A particularly important numerical optimization for finite size MPS algorithms
is the explicit conservation of symmetries [59–65]. The theory developed below
extends readily to compact, completely reducible groups G, which includes finite
groups such as the cyclic groups Zq and Lie groups such as SO(n), U(n), and SU(n).
To keep the notation simple, we develop the theory only for Abelian groups, taking
U(1) as a particular example.

For compact, completely reducible symmetry groups G, there exists a unitary
representation OU W G ! H of G on the space H of a single site such that for each
element g 2 G, we have that OUg is unitary, OUg OU 


g D I and OUgg0 D OUg OUg0 [66]. For
U(1) the elements of the group can be labeled by an angle � 2 Œ0; 2�/ such that the
unitary representations OU� satisfy

OU 

�
OU� D OU� OU 


� D OI ; (6.77)

OU�1 OU�2 D OU�2 OU�1 D OU�3 ; (6.78)

where �3 D �1 C �2 mod 2� . H now decomposes into possibly degenerate one-
dimensional17 irreducible representations (irreps) of G as

Hj D ˚qHq; (6.79)

where the dq-dimensional subspaces Hq are labeled by an integer q which we call
the charge of the irrep. Here dq , the degeneracy dimension, denotes the number of
copies of the irrep of charge q which are present in H. Because the irreps of Abelian
groups are one-dimensional, these are in fact copies and not higher-dimensional
irreps. We will refer to the spaces Hq as degeneracy spaces. We can construct the
unitary representations of U(1) appearing in Eq. (6.77) by using a local Hermitian
operator OQ whose expectation over all sites gives the total conserved charge as

OU� D exp
�
�i OQ�

�
: (6.80)

The eigenstates of OQ with eigenvalue q form a basis for Hq . We will index the states
in the degeneracy space Hq by the degeneracy index tq which runs from 1; : : : ; dq
such that

OQjqtqi D qjqtqi; (6.81)

OU� jqtqi D e�iq� jqtqi; (6.82)

hqtqjq0t 0qi D ıq;q0ıtq t 0q : (6.83)

17These irreps are only one-dimensional in the Abelian case. In the non-Abelian case it is still
true that the space decomposes into degeneracy spaces and irreps; however, the irreps can have
dimensions larger than one.
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Hence, any state j i which is an eigenstate of OQ transforms symmetrically as

OU� j i D exp .�iq�/ j i; (6.84)

and so can be expanded in the basis states jqtqiwhich span the degeneracy space Hq :

j i D
X

tq

hqtqj ijqtqi: (6.85)

Similarly, a linear operator OT which is covariant in the sense that

OU� OT OU 

� D e�i
q� OT (6.86)

decomposes as

OT D ˚q OTq;q�
q; (6.87)

where the OTq;q�
q are dq �dq�
q operators mapping Hq�
q ! Hq . We will denote
the matrix elements of Tq;q0 in the basis jqtqihq0t 0qj as

�
Tqq0

	
tq t 0q

. A linear operator

which is covariant with
q D 0 is said to be invariant, and commutes with the group
operation. This is Schur’s lemma [67]. Symmetric states and covariant operators are
strongly constrained by the fact that they act only in the smaller subspaces Hq rather
than the entire space H.

To make these ideas more concrete, let us consider some explicit examples. First,
let us consider a single lattice site which can accommodate up to two bosons. The
charge in this case is the number of bosons, and so the operator OQ is On, the boson
number operator. In the basis fj0i; j1i; j2ig where jN i is the Fock state with N
bosons, this operator is

On D
0

@
0 0 0

0 1 0

0 0 2

1

A : (6.88)

The Fock states j0i, j1i, and j2i span the spaces H0, H1, and H2 with charges 0, 1,
and 2, respectively. Hence, all degeneracy spaces are one-dimensional, dq D 1 8q.
The operator On is invariant, as it does not connect states with different charges. It
may be written in the basis jqtqi 2 fj01i; j11i; j21ig as

On D On00 ˚ On11 ˚ On22 D
0

@
.0/ 0 0

0 .1/ 0

0 0 .2/

1

A : (6.89)
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The fact that this operator is invariant has constrained that only the elements in
the blocks denoted by parentheses may be nonzero. As the blocks Onqq are 1 � 1
matrices, the operator On is in fact specified by three numbers. An example of an
operator which is covariant but not invariant is the bosonic destruction operator

Ob D
0

@
0 1 0

0 0
p
2

0 0 0

1

A : (6.90)

This operator reduces the particle number by 1, and so 
q D �1. It may be written
in the basis jqtqi 2 fj01i; j11i; j21ig as

Ob D Ob01 ˚ Ob12 D

0

B@
0 .1/ 0

0 0
�p

2
�

0 0 0

1

CA : (6.91)

As a second example, consider a single lattice site in a system comprised of
spin-1/2 fermions. The charge is now the total number of fermions. In the basis˚j00i; j1 � 1

2
i; j11

2
i; j20i�, where jNSzi is the state with N particles and a total spin

projection of Sz along the z direction, the total fermion number operator is

On D

0

BB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

1

CCA : (6.92)

Hence, the degeneracy space H1 spanned by j1˙ 1
2
i is two-dimensional due to the

spin degree of freedom. In the basis jqtqi 2 fj01i; j11i; j12i; j21ig we may write
this invariant operator as

On D On00 ˚ On11 ˚ On22 D

0

BB@

.0/ 0 0 0

0

0

�
1 0

0 1

�
0

0

0 0 0 .2/

1

CCA : (6.93)

It is specified by the 1�1matrices On00 and On22 and the 2�2matrix On11. An example
of an invariant operator with off-diagonal matrix elements in the degeneracy space
is OSx D Oa
" Oa# C Oa
# Oa
", where a" destroys a fermion with Sz D 1

2
and a# destroys a

fermion with Sz D � 12 . This operator may be written in invariant form as

OSx D

0

BB@

.0/ 0 0 0

0

0

�
0 1

1 0

�
0

0

0 0 0 .0/

1

CCA : (6.94)
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These examples illustrate the general utility of symmetry conservation in tensor net-
work algorithms. Conservation of a symmetry breaks a covariant operator into two
pieces. The first piece is the structure of nonzero elements of the operator, specified
by a direct sum of operators appropriately transforming between degeneracy spaces.
This piece is completely determined by the symmetry. The remaining piece, which
distinguishes a particular operator from all others which transform under the group
operation in the same way, is the matrix elements of the operators acting on the
degeneracy spaces.

Let us now consider the product of two spaces H
A and H

B which admit
representations of U(1). The action of U(1) on the coupled system H

AB D H
A˝H

B

is generated by the total charge operator OQAB D OQA ˝ O1B C O1A ˝ OQB , and so
the space H

AB decomposes into irreps with total charge qAB and degeneracy dqAB .
This coupled basis carries the same information as the decoupled basis indexed by
the charges of the subsystems qA and qB , and so a one-to-one correspondence must
exist between the two. We define

C
qABtAB
qAtAIqB tB � hqABtABjqAtAqBtBi (6.95)

as the elements of the unitary matrix which encapsulate this one-to-one correspon-
dence. For the Abelian case at hand, each element of this transformation is either
zero or one, but for non-Abelian groups these elements represent the corresponding
Clebsch–Gordan coefficients.18

As an example of the transformation to the coupled system, consider two lattice
sites which can contain up to two bosons. Using Eq. (6.89), we can write the total
charge operator in the uncoupled basis jq1tq1q2tq2i D fj0101i , j0111i, j0121i,
j1101i, j1111i, j1121i, j2101i, j2111i, j2121ig as

On D On1 ˝ OI C OI ˝ On2 D

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 0 4

1

CCCCCCCCCCCCCA

: (6.96)

Ordering the vectors in terms of their total charges, we can identify the invariant
form of the total charge operator

18In the physics literature, the Clebsch–Gordan coefficients typically refer to this unitary transfor-
mation for the case of SU(2). Here we use it in the more general mathematical sense as the unitary
matrix connecting the tensor product of the representation spaces of two irreps of a group to a
direct sum of irreducible representation spaces [68].
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On D On00 ˚ On11 ˚ On22 ˚ On33 ˚ On44 (6.97)

D

0

BBBBBBBBBBBBB@

.0/ 0 0 0 0 0 0 0 0

0

0

�
1 0

0 1

�
0 0 0

0 0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0

@
2 0 0

0 2 0

0 0 2

1

A
0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0 0

0 0 0

�
3 0

0 3

�
0

0

0 0 0 0 0 0 0 0 .4/

1

CCCCCCCCCCCCCA

; (6.98)

and the corresponding nonzero Clebsch–Gordan coefficients C01
01I01 D C11

01I11 D
C12
11I01 D C21

01I21 D C22
11I11 D C23

21I01 D C31
11I21 D C32

21I11 D C41
21I21 D 1. This

construction also demonstrates that even if the irreps of a single lattice site are non-
degenerate, a combinatoric degeneracy in the space of fixed total charge arises when
multiple lattice sites are considered.

If we now consider the general case of an L-fold tensor product of a space
admitting a representation of U(1), then the total charge operator is

OQ D
LX

iD1
OQi; (6.99)

where OQi is the local charge operator at site i . The total charge operator generates
the unitary transformations

OU�IL D exp
�
�i OQ�

�
D
� OU�

�˝L
: (6.100)

The total tensor product space thus decomposes into spaces of fixed total charge.
From Schur’s lemma [67], an invariant Hamiltonian has no matrix elements between
states that have differing total charge, and so we can diagonalize the Hamiltonian
in subspaces of fixed total charge. Thus, all eigenstates of an invariant Hamiltonian
can be chosen to be symmetric in the sense of Eq. (6.84). This makes rigorous the
intuitive notion that the eigenvectors of a Hamiltonian which conserves the number
of particles can be chosen to have a definite number of particles.19

We can generalize the commutation relation Eq. (6.86) for linear operators
to tensors by introducing the notion of incoming and outgoing indices which
encapsulate the overall charge flow described by the tensor. The distinction is

19Here we say only that the eigenvectors can be chosen in this way to account for possible
energetic degeneracies of two states with differing total particle number. In the presence of such a
degeneracy, any linear combination of the degenerate states is also an eigenstate.
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that incoming indices transform as OU� under group action while outgoing indices

transform as OU 

� . Intuitively, incoming indices denote charge flowing into the tensor

and outgoing indices describe charge flow out from the tensor. With this definition,
we have that a tensor T is invariant under the group action if

X

i02I

h OU� ˝ � � � ˝ OU�
i

ii0

X

j02O

h OU 

� ˝ � � � ˝ OU 


�

i

jj0
Ti0j0 D Tij: (6.101)

Here I denotes all incoming indices and O all outgoing indices, we have permuted
the indices of T such that all incoming indices lie to the left and all outgoing
indices to the right, and the notation ŒA˝ B�ij denotes the ijth component of the
tensor product. Now, we consider decomposing each on-site state jij i into its local
degeneracy spaces spanned by jqj tqj i using Eq. (6.84). This implies that the tensor
decomposes as

Ti1:::iL ji1 : : : iLi D
�
Tq1:::qL

	
tq1 :::tqL

jq1tq1 : : : qLtqLi; (6.102)

and the condition that the tensor be invariant becomes that the total incoming and
outgoing charge be the same, where the incoming and outgoing charges are defined
as Qincoming D P

i2I qi and Qoutgoing D P
i2O qi , respectively. This implies that

any invariant tensor takes the form

Ti1:::iL D
�
Tq1:::qL

	
tq1 :::tqL

ıQincomingQoutgoing : (6.103)

This canonical form is the key result of our analysis. Using the symmetry, we have
broken each invariant tensor into a part determined by the symmetry (the delta
function) and a part which is not (indexed by the tj ). This canonical form may
be viewed as a conservation of charge by invariant tensors, as the amount of charge
flowing in is equal to the amount of charge flowing out.

For MPS tensors Ai˛ˇ , we define ˛ and i to be incoming and ˇ to be outgoing
such that q� with a Greek index denotes the total charge to the left of a given bond
and qi with a Roman index denotes the charge of the particular on-site irrep. The
tensors A then become arrays of tensors

�
A
qi
q˛qˇ

	tqi
tq˛ tqˇ

. This convention of incoming

and outgoing indices can be displayed in a modified tensor network diagram as in
Fig. 6.6, compare Fig. 6.3c.20 The arrows indicate the flow of charge through an

Fig. 6.6 Structure of charge
flow through an MPS in
diagrammatic notation

20This construction can also be compared with circuit diagrams demonstrating conservation of
charge as specified by Kirchoff’s laws.
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MPS tensor, with the local states jqj tqj i acting as sources of charge. We shall refer
to the canonical form of a tensor which is covariant under the action of U(1) as a q-
tensor. All of the results discussed above extend immediately to products of Abelian
groups by considering the charge q to be a vector q whose entries are the charges
of the individual Abelian symmetries under consideration. Multiple symmetries are
relevant in models whose constituents are particles with spin, as the total number
and the total magnetization are often independently conserved, for example.

To perform index fusion on a q-tensor we use Eq. (6.95) in the form

h
T 0
q.˛i/qˇ

i

tq.˛i/ tqˇ

D
X

q˛qi tq˛ tqi

C
q.˛i/tq.˛i/
q˛tq˛ Iqi tqi

h
T qiq˛qˇ

itqi
tq˛ tqˇ

; (6.104)

where q.˛i/ is the charge of j˛ijii. The transformation tensor C does not change
the total charge, and so it is an invariant tensor. Taking ˛ and i to be incoming
indices and .˛i/ to be an outgoing index hence requires that q˛i D q˛ � qi ,
where � is the group operation and we can characterize the degeneracy index of
the composite system as the Kronecker product of the degeneracy indices from the
constituent systems, tq.˛i/ D

�
tq˛ tqi

�
. That is, the symmetry determines which irreps

can combine and then the degeneracy indices are combined under ordinary index
fusion.21 Writing this out explicitly, we have

h
T 0
q˛�qi ;qˇ

i

.tq˛ tqi /tqˇ
D
h
T qiq˛qˇ

itqi
tq˛ tqˇ

: (6.105)

Splitting is performed by reading this expression in reverse. Using these fusion and
splitting rules we can also apply the matrix decompositions discussed earlier to
develop canonical forms for q-tensors.

It is remarkable that the only place where the specific form of the Abelian group
arises is in the charge fusion rule q˛i D q˛ � qi . For U(1) � is ordinary addition
while for Zp � is addition mod p. In general, we can use the Cayley table [69] of
the group under consideration to construct the fusion rule.

The contraction of two q-tensors is restricted by the fact that incoming indices
in one covariant tensor can only be contracted with outgoing indices of another
covariant tensor in order for the result to also be a covariant tensor. Furthermore,
as can be gleaned from the fusion rule above, the charges of each index which are
contracted have to agree between the two tensors in order to yield a nonzero result.
Hence, the procedure to contract the sets of indices A and B of two q-tensors U
and V together is to find all matching charges within the two sets qA and qB , and

21This is the most significant difference between the Abelian and non-Abelian cases. In the latter,
the allowed irreps are enumerated by the Clebsch–Gordan series, and the elements of the unitary
matrix relating tq.˛i/ to tq˛ and tqi are nontrivial.
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then contract the degeneracy tensors using ordinary tensor contraction, Eq. (6.17),
resulting in

�
Tq NAq NB

	
t NAt NB
D
X

q

X

tq

�
Uq NAq

	
t NAtq

�
Vqq NB

	
tq t NB

: (6.106)

Hence, essentially all expressions using MPSs can be translated directly for their
(Abelian) symmetry-adapted counterparts by replacing summations over indices
with simultaneous summations over the charges and degeneracy dimensions.

When written naively, Eq. (6.106) implies an algorithm which scales as
O .NUNV /, where NT is the number of irreps in T . This scaling can be improved
by sorting the quantum numbers and using a binary search to find matches. We
note that, because the charges can be put into one-to-one correspondence with some
subset of the integers, we can always define the vacuum charge to be zero for our
finite Hilbert spaces. Rather than working directly with the charges themselves, it
is useful to define a hash function [70] which takes unique arrays of nonnegative
integers to unique values.22 That is, the function is injective. A hash function
satisfying this criterion, which has a number of other useful properties for our
purposes, is the square-root of primes hash

H .q/ D
X

i

qi
p
pi : (6.107)

Here pi is the i th prime, and the injectivity of H follows from the fact that the
numbers

p
pi are incommensurable. A nice feature ofH .q/ is that it is linear in the

elements of q, and so given the values of
p
pi the hash function can be obtained for

arbitrary combinations of charges very quickly. In practice one never needs more
than a few primes, and these may be generated once using a sieve and stored for
later use. With hashing, the procedure for contracting two q-tensors becomes

1. Hash U and V according to A and B in O .NU CNV / time.
2. Sort the smaller of the two sets A and B according to its hashes in

O .NM logNM/ time, where NM D min .NU ;NV /.
3. Loop through the elements of the larger list and perform a binary search to

find matching hashes in the smaller list in O .NX logNM/ time, where NX D
max .NU ;NV /.

4. Contract all matching hashes using the contraction algorithm for ordinary tensors
on the degeneracy spaces.

Using the square-root of primes hash makes the process of contracting tensors
efficient even when permutations, large numbers of indices, or multiple Abelian
symmetries are involved.

22This is in fact the definition of a perfect hash function, which is harder to find than a hash function
in general but can be explicitly found for our purposes.
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As an example of a symmetric MPS, let us again consider the W state from
Sect. 6.4.3

jW i D 1p
L

LX

iD1
j0i˝i�1j1ij0i˝L�i : (6.108)

If we interpret j0i as a state with no particles and j1i as a state with 1 particle, then
the W state is an eigenstate of the total particle number operator with eigenvalue 1.
We will use charge interchangeably with the number of particles in what follows.
We can write the W state as

jW i D 1p
L

�j0i˝j�1j1ij0i˝L�j C jW I j � 1ij0ij0i˝L�j

Cj0i˝j�1j0ijW IL � j i	 ; (6.109)

where

jW I `i D
X̀

iD1
j0i˝i�1j1ij0i˝`�i (6.110)

is an unnormalized W state on ` sites. Hence, if site j is in state j1i, then it follows
that the state to the left of site j is j0i˝j�1 and the state to the right of site j
is j0i˝L�j . The state j1i is the unique on-site state with charge q D 1, and so
j1i D j11i in the jqj tqj i basis. Furthermore, j00 : : : 0i is the unique state with charge
0, and so j00 : : : 0i D j01i in the jq˛tq˛ i basis. This implies that the contribution to
the MPS at site j with quantum numbers

�
q˛qiqˇ

� D .010/ is

h
A
Œj �1
00

i1
11
D 1: (6.111)

If site j is in state j0i, then either the state to the left is jW I j � 1i and the state to
the right is j00 : : : 0i or the state to the left is j00 : : : 0i and the state to the right is
jW I ` � j i. Because the W state on any number of sites has charge 1 and the W
state is the only state with charge 1 relevant to any subsystem, we have the elements

h
A
Œj �0
01

i1
11
D 1;

h
A
Œj �0
10

i1
11
D 1: (6.112)

Hence, the complete MPS q-tensor at site j is the direct sum of the elements

h
A
Œj �0
01

i1
11
D 1;

h
A
Œj �0
10

i1
11
D 1;

h
A
Œj �1
00

i1
11
D 1; (6.113)

compare Eq. (6.53). Both the MPS tensor Eq. (6.53) and the MPS q-tensor
Eq. (6.113) have three independent elements. The difference is that Eq. (6.113)
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writes these three elements as a direct sum with the topology of index contraction
determined by the charges of the subsystems. The utility of the q-tensor
decomposition is that contractions over tensors become direct sums of contractions
over tensors with smaller linear dimensions, see Eq. (6.106). Because of the
polynomial scaling of contractions with the bond dimension, this leads to a
significant speedup when symmetries are explicitly utilized. In the present case
the reduction of the bond dimension is complete, as the tensors in Eq. (6.113) are
all 1 � 1 � 1 dimensional.

The present chapter gives an intuition for why MPSs are useful as variational
ansätze for strongly correlated 1D systems, demonstrates how to extract physical
information from MPSs, and explains how to express MPSs in terms of irreducible
tensors such that Abelian symmetries are explicitly conserved. In Chap. 7, we
discuss how to generate MPS representations of eigenstates of 1D systems through
variational means. Additionally, it is shown how to time-evolve the MPS form of a
wavefunction in a generic way. These algorithms all apply to lattice systems of finite
extent. In Chap. 8 we present an algorithm for variationally finding the ground state
of a homogenous 1D system which has infinite extent. This is done by introducing
an MPS decomposition of a unit cell which, when infinitely repeated, generates
the full state. This unit cell is then optimized using variations of the finite-size
algorithms. Finally, in Chap. 9, we discuss how algorithms for time evolution of
MPSs may be adapted to extract finite-temperature properties of 1D systems. This
chapter also discusses the form of MPSs and the structure of their algorithms for
systems with PBC.
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Chapter 7
Out-of-Equilibrium Dynamics with Matrix
Product States

Abstract Theoretical understanding of strongly correlated systems in one spatial
dimension (1D) has been greatly advanced by the density-matrix renormaliza-
tion group (DMRG) algorithm, which is a variational approach using a class
of entanglement-restricted states called matrix product states (MPSs). However,
DMRG suffers from inherent accuracy restrictions when multiple states are involved
due to multi-state targeting and also the approximate representation of the Hamil-
tonian and other operators. By formulating the variational approach of DMRG
explicitly for MPSs one can avoid errors inherent in the multi-state targeting
approach. Furthermore, by using the matrix product operator (MPO) formalism,
one can exactly represent the Hamiltonian and other operators relevant for the
calculation. The MPO approach allows 1D Hamiltonians to be templated using a
small set of finite state automaton (FSA) rules without reference to the particular
microscopic degrees of freedom. We present two algorithms which take advantage
of these properties: eMPS to find excited states of 1D Hamiltonians and tMPS
for the time evolution of a generic time-dependent 1D Hamiltonian. We properly
account for time-ordering of the propagator such that the error does not depend
on the rate of change of the Hamiltonian. Our algorithms use only the MPO form
of the Hamiltonian, and so are applicable to microscopic degrees of freedom of any
variety, and do not require Hamiltonian-specialized implementation. We benchmark
our algorithms with a case study of the Ising model, where the critical point is
located using entanglement measures. We then study the dynamics of this model
under a time-dependent quench of the transverse field through the critical point.
Finally, we present studies of a dipolar, or long-range Ising model, again using
entanglement measures to find the critical point and study the dynamics of a time-
dependent quench through the critical point.

Published previously as Out-of-Equilibrium Dynamics with Matrix Product States, M.L. Wall and
L.D. Carr, New J. Phys. 14, 125015 (2012).
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7.1 Introduction

The great success of experimental ultracold atomic physics has made the study
of strongly correlated one-dimensional (1D) quantum systems a major avenue of
current physics research. Examples of novel condensed matter physics realized
with 1D atomic systems include the role of integrability in thermalization [1] and
static [2] and dynamic [3] quantum simulators of Hubbard models. Furthermore,
as ultracold molecules approach quantum degeneracy [4–6], lattice models with
complex internal degrees of freedom, and long-range interactions become rele-
vant [7–9]. As more and more complex models become amenable to study, the need
for numerical methods which can adapt to different degrees of freedom, different
Hamiltonians, and different dynamical processes thus becomes essential.

In addition to practical interest in understanding and benchmarking atomic
and molecular quantum simulators, the ability to simulate the dynamics of 1D
systems also provides insight into fundamental questions such as the universality
of dynamics approach quantum critical points and the effects of integrability on the
thermalization process [10]. The natural setting for studying dynamics near critical
points is a quantum quench where one of the parameters of the Hamiltonian is driven
through a quantum critical point following a time-dependent protocol, for example

g .t/ D g0 C v .t � t0/r
rŠ

� .t � t0/ ; (7.1)

with � .t/ the step function. Such quenches pose a special difficulty for numerical
studies as by definition they involve evolution with a time-dependent Hamiltonian
which does not commute with itself at different times. The propagator is then
generally a time-ordered exponential whose precise form may be difficult to
ascertain. Standard methods such as the Suzuki–Trotter expansion which ignore the
time dependence of the Hamiltonian require [11] that the infinitesimal time step used
be much less than the fluctuation time-scale of H .t/ to be valid, ıt � j@H=@t j�1.
This can cause simulations with rapid quench rates to become numerically very
costly, and invalidates the approach altogether for non-analytic time dependence.

Currently the only unbiased method available for the dynamics of quantum
systems is exact diagonalization (ED). By unbiased, we refer to the fact that the
other methods available for dynamics are generally variational, and so have a bias
towards a particular ansatz. ED is limited in an essential way by the exponential
growth of the size of the Hilbert space with the physical size of the system. The
current state of the art is�40 spins for spin-1=2 models and 20 sites for a fermionic
Hubbard model at half filling. These sizes are often too small for accurate finite-
size scaling. An extremely powerful method for the low-energy properties of 1D
systems is White’s density matrix renormalization group (DMRG) algorithm, which
uses a variational ansatz based on a class of states known as matrix product states
(MPSs). MPSs will be reviewed in Sect. 7.2.1. DMRG uses an iterative procedure
to develop a set of reduced bases that the full many-body problem is projected
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into, and then variationally minimizes an energy functional in this reduced space,
enlarging it if necessary. DMRG uses an implicit MPS representation, which is to
say that the state is not stored explicitly. This also means that the Hamiltonian and
other operators in the calculation are stored in an approximate way, as they are
represented within the reduced basis describing the variational state. This does not
cause problems in practice when a single state is sought using the DMRG process.
In fact, one can show that the algorithm to variationally find the ground state is
identical when phrased in the implicit formulation of DMRG and when using an
explicit MPS representation for the variational state, other than the representation
of the Hamiltonian [12]. However, because of the exact representation of operators
independent of the state, MPSs can put rigorous bounds on distances from exact
quantum states such as eigenstates by considering quantities like the variance

h j
� OH �E

�2 j i with OH the Hamiltonian operator and E the energy expectation

of the MPS j i. In contrast, DMRG can only return the distance of the variational
state from an eigenstate of the approximate operator OH in the given variational
basis, and is unable to determine how well the given variational basis represents the
true operator. A particularly clear indication of the failures this can cause is given
in [13] where time evolution of a particular initial state in DMRG fails because the
Hamiltonian has no nonzero matrix elements in the initial DMRG basis.

The situation becomes much different when multiple states are sought using the
DMRG procedure. In this case the reduced density matrix used to determine the
optimal reduced bases for the algorithm is a convex sum of the reduced density
matrices for the desired states. This is called multi-state targeting. In contrast,
an explicit MPS representation stores each of the desired states separately as an
MPS. In multi-state targeting, none of the states can be represented with the same
accuracy available if DMRG targeted that state alone. The MPS representation also
deals automatically with the fact that each state has its own optimal bases for
representation, whereas in DMRG these bases are all tied together by the multi-
state targeting. In this work we present two algorithms which take advantage of
MPSs’ ability to deal with multiple states, eMPS to find excited states of 1D
Hamiltonians and tMPS to simulate the dynamics of a generic time-dependent
Hamiltonian. In the first algorithm a projector orthogonal to a set of lower-lying
eigenstates is constructed from their MPS representations and used to orthogonalize
a variational state against this set. In the second algorithm Krylov vectors in a
Lanczos approximation to the matrix exponential are stored separately as MPSs
and combined in an optimal way only at the end of the calculation. While Krylov-
based MPS approaches have been used [13, 14] to study time-dependent processes,
the errors in these approaches were set by time derivative of the Hamiltonian. In
contrast, by taking explicit account of the time ordering of the propagator, the errors
in our approach are set only by commutators of the Hamiltonian at different times,
and hence allow for larger time steps. Because of the explicit MPS representation,
we are able to put bounds on the errors in each step of the calculations.

Finally, MPSs have a natural operator-valued extension known as matrix product
operators (MPOs) which allow for the exact representation of all operators used in
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the calculation. We present a general framework for constructing MPOs from a set
of rules which is independent of the nature of the microscopic degrees of freedom.
This allows for the templating of 1D Hamiltonians for general purpose software.
In addition, the ability to perform arithmetic operations on MPOs exactly enables
us to perform time-evolution using our tMPS algorithm with knowledge only of
the MPO form of the Hamiltonian and the time-dependent functional form of its
parameters. To emphasize the general nature of our algorithms, we include a generic
simulation protocol for the out-of-equilibrium dynamics of strongly correlated 1D
systems using the algorithms presented in this paper.

The remainder of this paper is organized as follows. In Sect. 7.2 we review
the theory of MPSs, MPOs, and their canonical forms. In addition to providing a
canonical form for operators within the matrix product formalism, we define finite
state automaton (FSA) rules for MPOs and demonstrate how 1D Hamiltonians can
be constructed from a small set of such rules. In Sect. 7.3 we review the algorithm
for finding ground states using MPSs as variational ansätze, and in Sect. 7.4 we
present the eMPS algorithm which extends the ground state search to general excited
states. Section 7.5 discusses how to extract observable quantities from MPSs. In
Sect. 7.6 we discuss methods for time evolution with MPS. In particular, we provide
the tMPS algorithm to time evolve an MPS using only the MPO representation
of a Hamiltonian and the functional form of its time-dependent parameters. We
contrast our approach with other Krylov subspace approaches and identify the
possible sources of error. In Sect. 7.10 we present two case studies. The first is of the
Ising model in a transverse field, where we study both the statics and the dynamics
of a linear quench of the transverse field through the quantum critical point. The
second is of a dipolar, or long-range Ising model in a transverse field, where we
also determine the critical point from the statics and study a linear quench of the
transverse field. Finally, in Sect. 7.11, we conclude. Details concerning numerically
exact solutions for the Ising model which are used to benchmark our algorithms are
given in Appendix.

7.2 Brief Review of Matrix Product Formalism

7.2.1 Matrix Product States

The Hilbert space of a quantum mechanical many-body system is exponentially
large in the physical size of the system, for example the number of unit cells in
a lattice or the number of particles. Stated another way, a state picked at random
from the Hilbert space of a quantum many-body system will have entanglement
(as quantified by the Schmidt measure [15]) which grows exponentially with the
system size. Here and throughout this paper, when we say entanglement we mean
the spatial entanglement between two spatially separated parts of the system which
are comprised of well-defined local Hilbert spaces. In contrast to this random state,
it has been shown that the class of states which are physically relevant in the sense
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that they can be prepared from some reference state by generic time evolution in
polynomial time [11] or are useful for quantum computation [16] is much smaller
than the full Hilbert space. In 1D, the physically relevant class of states appears to be
those which have entanglement which is either constant or polynomially growing as
a function of system size. A convenient representation of states with entanglement
restricted in this manner is known as MPSs [12, 17, 18].

We consider our physical system to be comprised of a 1D lattice of sites, where
each site i is a d -dimensional Hilbert space Hi spanned by the vectors fjiig. We
will refer to d as the local dimension, and take all sites to be identical for simplicity.
We define an MPS on a lattice with L sites as

j MPSi D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒL�iL

�
ji1 : : : iLi; (7.2)

where the object AŒk�ik is a �k � �kC1 matrix (with �1 D �LC1) and Tr denotes the
matrix trace. We will refer to the maximum linear dimension of any of the matrices
AŒk�ik , maxk �k , as the bond dimension of the MPS, and denote this quantity by �.
� may be used as a measure of the entanglement of the state [12]. In this work
we will focus on systems with open boundary conditions (OBC). MPS algorithms
can also be devised for systems with periodic boundary conditions, as discussed in
[7, 19–21], but these algorithms have worse scaling and are generally less numeri-
cally stable than their OBC counterparts. For OBC, �1 D �LC1 D 1, and arguments
using the Schmidt decomposition demonstrate that �k 
 min.dk�1; dL�k/ [22].

MPSs have been used for many years to represent exact ground states of parent
Hamiltonians [23] which are formed from projectors onto local high-symmetry
subspaces [24, 25]. However, it was not until the great success of the DMRG
algorithm pioneered by White [26] that MPSs became valuable as variational
ansätze in their own right [19]. Why are MPSs useful as variational ansätze? It
has been shown [27] that the ground states of gapped 1D systems have bipartite
entanglement which does not depend on the system size. Such states can be
represented exactly as MPSs with a fixed bond dimension [28]. This is an example
of an area law [29]; the entanglement between two disjoint subsystems depends
only on the boundary of the two regions and not on their volume. For systems near
a quantum critical point which is described by a conformal field theory (CFT),
this area law is subject to weak logarithmic violations such that the entropy of
entanglement between two subsystems of size L is given by the Calabrese–Cardy
formula [30, 31]

SL � aC c

6
logL; (7.3)

where a is a constant and c is the central charge of the underlying CFT. Here �
denotes scaling equivalence in the bulk of an infinite system. In finite systems there
are often oscillating boundary and finite size contributions [32, 33]. Hence, the bond
dimension of an MPS describing a conformally invariant critical system is given as



182 7 Out-of-Equilibrium Dynamics with Matrix Product States

�L � expSL � eaLc=6, which grows only polynomially in the system size. Typical
values of c range from 1/2 for the Ising model [34] and 1 for the Bose–Hubbard
model [35] to 2 for more exotic phases like the gapless Mott insulator of the JK
model [36]. We note that, strictly speaking, finding an MPS which approximates
the ground state of an arbitrary 1D Hamiltonian to an accuracy which is an inverse
polynomial in the system size is still NP-complete [37], but practical experience
demonstrates that this method is extremely useful and robust for physical systems
of interest.

We adopt the following conventions for the representation of tensors: We use
Roman indices for indices which correspond to physical states and Greek indices
for indices which are summed over in the matrix-product ansatz. Explicitly writing
out Eq. (7.2) with these indices, we have

j MPSi D
X

˛1:::˛L

dX

i1;:::iLD1
AŒ1�i1˛1˛2

: : : AŒL�iL˛L˛1
ji1 : : : iLi: (7.4)

A superscript index in square brackets Œ� denotes the lattice site that the physical
indices of the tensor describe. A superscript index in curly braces fg denotes
association with a particular many-body state. For example, the MPS tensors at

site j of the MPSs j�ki, k D 1; : : : ; n would be denoted A
Œj �fkgij
˛ˇ . Finally, indices

which appear together in parentheses, e.g. .˛ˇ/, represent a composite index which
runs over the Cartesian product of the indices in the parentheses. As an example, if
˛ D 1; : : : ; �˛ and ˇ D 1; : : : �ˇ , .˛ˇ/ D .˛ � 1/�ˇ C ˇ. To lighten the notation,
we will leave off indices when they are unnecessary.

A particularly useful means to visualize MPSs and manipulations with them
is provided by tensor network diagrams like those shown in Fig. 7.1 [38]. Here a
rank-k tensor is represented by a circle with k lines extending from it. Each line
represents one of the indices of the tensor. Whenever a line connects two tensors,
that index is summed over, and disconnected lines represent free indices. Hence,
an MPS can be represented as a chain of rank-3 tensors as in Fig. 7.1c. Note that
the first and last MPS tensors are rank two because we have assumed OBC and so
�1 D �LC1 D 1.

A

a b c

i
αβ C ij

αβ =
γ

Ai
αγBj

γβ
|ψMPS

Fig. 7.1 Diagrammatic notation for tensor networks. (a) A rank-three tensor is represented as a
circle with three lines extending from it. (b) Contraction of two rank-three tensors is accomplished
by connecting the contracted index, and produces a tensor of rank four. (c) An MPS on five sites
with open boundary conditions is represented as a contraction over rank-three tensors with two
rank-two boundary tensors
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We note that the MPS definition Eq. (7.2) does not uniquely specify the tensors
A. That is, we can insert an invertible matrix X and its inverse X�1 between any
two MPS matrices without altering the physical content of the state:

j MPSi D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : AŒL�iL

�
ji1 : : : iLi; (7.5)

QAŒj �ij D AŒj �ij X; QAŒjC1�ijC1 D X�1AŒjC1�ijC1 ; (7.6)

j Q MPSi D
dX

i1;:::iLD1
Tr
�
AŒ1�i1 : : : QAŒj �ij QAŒjC1�ijC1 : : : AŒL�iL

�
ji1 : : : iLi D j MPSi:

(7.7)

This is referred to as gauge freedom in the literature [22]. For OBC, we can specify
the state uniquely1 by choosing a site k, which we call the orthogonality center of
the MPS, and requiring that all sites i to the left and right of k satisfy the left

X

i

Ai


Ai D I (7.8)

and right

X

i

AiAi

 D I (7.9)

gauge conditions, respectively. In these expressions, I is the appropriately dimen-
sioned identity matrix. These conditions are shown in graphical notation in Fig. 7.2a,
b, respectively.2 Graphically it is clear that the norm squared of the state is

h j i D
X

i

Tr
�
AŒk�i



AŒk�i

�
; (7.10)

=
a b c

= =

Fig. 7.2 Gauge conditions for MPSs. (a) Left gauge condition Eq. (7.8). (b) Right gauge condition
Eq. (7.9). (c) Using (a) and (b), the norm squared of an MPS reduces to the trace of its orthogonality
center squared, here chosen to be the third site

1The state is unique up to possible degeneracies in the Schmidt decomposition.
2Here we also establish the graphical convention that downwards pointing lines correspond to
Hermitian conjugates of tensors.
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as shown in Fig. 7.2c, and so this site carries all information about the norm of the
state. This particular canonical form for an MPS is called mixed canonical form [12].
The mixed canonical form is crucial for improving the speed and numerical stability
of variational algorithms with MPSs.

We can impose the left gauge conditions via the following recursion:

QA.˛i/ˇ D AŒ`�i˛ˇ ; (7.11)
X

�

U.˛i/�†�V



�ˇ D QA.˛i/ˇ; (7.12)

AŒ`�i˛� D U.˛i/� ; (7.13)

AŒ`C1�i�� D
X

ˇ

†�V



�ˇA
Œ`C1�i
ˇ� ; (7.14)

where Eq. (7.12) represents the singular value decomposition (SVD) of QAwith† the
vector of singular values and U and V unitary matrices.3 Because U returned from
the SVD is unitary, Eq. (7.8) is satisfied by construction. Similarly, the recursion for
the right gauge conditions is

QA˛.iˇ/ D AŒ`�i˛ˇ ; (7.15)
X

�

U˛�†�V



�.iˇ/
D QA˛.iˇ/; (7.16)

A
Œ`�i

�.iˇ/
D V 


�.iˇ/
; (7.17)

AŒ`�1�i�� D
X

˛

AŒ`�1�i�˛ U˛�†� : (7.18)

To put a general state into mixed canonical form with orthogonality center k we
begin at site 1 and iterate Eqs. (7.11)–(7.14) until we reach site k, then start at site
L and iterate Eqs. (7.15)–(7.18) until we again reach site k.

Finally, we note that the set of all MPSs with a fixed bond dimension � is not a
vector space, as the sum of two MPSs with bond dimensions �A and �B has a bond
dimension �which is bounded by the sum of the two bond dimensions � 
 �AC�B .
This can be seen from considering the sum of the two states j0 : : : 0i and j1 : : : 1i,
with MPS representations

3Note that any matrix decomposition of QA which returns a unitary matrix as part of the
decomposition will suffice in place of the SVD. In particular, the QR decomposition [39] is
particularly efficient when the rank of QA is not required.
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j0 : : : 0i D
X

i1:::iL

Ai1 : : : AiL ji1 : : : iLi; Ai D .ıi;0/ ; (7.19)

j1 : : : 1i D
X

i1:::iL

Bi1 : : : BiL ji1 : : : iLi ; Bi D .ıi;1/ : (7.20)

The matrices Ai and Bi have a bond dimension of 1, as these are product states.
Their sum is

j0 : : : 0i C j1 : : : 1i D
X

i1:::iL

C Œ1�i1C Œ2�i2 : : : C ŒL�1�iL�1C ŒL�iL ji1 : : : iLi; (7.21)

C Œ1�i D �
ıi0 ıi1

� I

C Œj �i D
�
ıi0 0

0 ıi1

�
; 2 
 j 
 L � 1I C ŒL�i D

�
ıi0
ıi1

�
I

(7.22)

which has a bond dimension of 2.

7.2.2 Matrix Product Operators

The natural operator generalization of MPSs is a MPO, defined as

OOMPO D
dX

i1;:::iLD1

dX

i 01;:::i
0
LD1

Tr
�
W Œ1�i1i

0
1 : : : W ŒL�iLi

0
L

�
ji1 : : : iLihi 01 : : : i 0Lj: (7.23)

Here W Œk�ii0 is a �Ok � �OkC1 dimensional matrix, and we will again refer to the
maximum value of �O as the bond dimension of the operator. Note that this bond
dimension �O need not be the same as the bond dimension � appearing in the MPS
representation, Eq. (7.2). That an MPO takes MPSs to MPSs can be seen clearly
from the graphical representation of Fig. 7.3. We also see from this representation

=

a b

Fig. 7.3 MPO in diagrammatic notation. (a) A MPO consists of a contraction of rank-four tensors.
We adopt the graphical convention that the line below the horizontal corresponds to i 0 and the line
above the horizontal to i for an operator Oii 0 which takes the local state from ji 0i to jii. (b) The
product of an MPO and an MPS produces another MPS whose bond dimension is the product of
the bond dimensions of the original MPS and the MPO, here denoted by thicker lines
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that the bond dimension of the MPS representing the product of an MPO and an
MPS is the product of the bond dimensions of the MPO and the MPS. Because the
states ji1 : : : iLi are tensor products, we can also use the notation

OOMPO D
dX

i1;:::iLD1

dX

i 01;:::i
0
LD1

Tr
�
W Œ1�i1i

0
1 : : :W ŒL�iLi

0
L

�
; (7.24)

where each one of the objects W Œj �ij i
0
j � W

Œj �ij i
0
j jij ihi 0j j. That is to say, we can

consider the matrices which appear in the matrix-product ansatz of an MPO to be
operator-valued.

It is tempting to look for canonical forms for MPOs just as we did for MPSs, but
the relevant norm for MPOs is the Frobenius norm h OO1; OO2i D Tr. OO


1
OO2/ which

scales exponentially in the local dimension with the number of lattice sites. Thus, for
a typical many-body system with an exponentially large Hilbert space, the elements
of the orthogonality center can differ in magnitude greatly, causing a catastrophic
loss of precision during orthogonalization. However, most physically relevant MPOs
such as one-dimensional Hamiltonians can be written down exactly in terms of an
MPO canonical form which is analogous to an LU decomposition [40]. To discuss
this canonical form, it is useful to recast an MPO as an FSA [41, 42].

To recast an MPO as a FSA, we first enumerate all of the physical operators we
use to define our local Hilbert space, O D f OO˛g, where ˛ labels distinct operators.
We will call this set our operator alphabet (OA). As examples, the OA for the Ising

model would be
n OI ; O�x; O� z

o
with OI the identity operator and O�� the Pauli operator

along the �th Cartesian direction. The OA for the Bose–Hubbard model [43, 44]

would be
n OI ; Ob
; Ob; On

o
, where Ob is a bosonic destruction operator and On D Ob
 Ob the

number operator. The particular matrix representation of the OA fixes the local basis
states fjiig.

Using the OA, we now introduce a set of FSA rules
˚
Rp

�f OOp1; : : : ; OOpng;
fhpg ;wp��which generate strings of the n operators f OOp1; : : : ; OOpng 2 O weighted
by scalar wp and variables fhpg. We will call the variables fhpg Hamiltonian
parameters and the scalars wp weights. Each rule consists of three operator-valued
matrices in the case where the fhpg do not depend on position. The first matrix is
the rightmost matrix in the MPO representation, W ŒL�, and represents the initial
configuration. Next, we have the MPO matrix of the bulk of the chain W Œj �,
2 
 j 
 L � 1, which takes an input vector of operators on k sites and produces a
vector of operators on k C 1 sites according to some deterministic pattern. Finally,
we have the leftmost matrix in the MPO representation, W Œ1�, which extends the
operators according to the patten of W Œj � and returns a 1 � 1 operator-valued
matrix. The trace of this matrix as in Eq. (7.23) is the desired Hamiltonian term.
The generalization to position-dependent Hamiltonian parameters requires L � 2
matrices in place of the bulk matrix W Œj �, 2 
 j 
 L� 1, but the only modification
is that hp becomes hp .j /.
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As a concrete example, consider the Ising model

OH D �J
X

hi;j i
O� z
i O� z
j � h

X

i

O�xi : (7.25)

The Hamiltonian consists of two rules. The first is a site rule Rsite. O�x; h;�1/ which
generates the string �hPi O�xi . The three matrices which provide this rule are

W Œ1�
site D

��h O�x OI � ; W Œ2	j	L�1�
site D

� OI 0

�h O�x OI
�
;

W ŒL�
site D

� OI
�h O�x

�
: (7.26)

As can be verified,

kY

jDL�1
W Œj �

siteW
ŒL�
site D

� OI : : : OI
�hPL

iDk O�xi

�
; (7.27)

and so this rule produces the desired operator. Similarly, there is a bond rule
Rbond.f O� z; O� zg; J;�1/ given by

W Œ1�
bond D

�
0 �J O� z OI � ; W Œ2	j	L�1�

bond D
0

@
OI 0 0

O� z 0 0

0 �J O� z OI

1

A ;

W ŒL�
bond D

0

@
OI
O� z

0

1

A ; (7.28)

which produces �J Phi;j i O� z
i O� z
j , with hi; j i denoting a sum over nearest-neighbors

i and j . The full Hamiltonian is given by the direct sum of the matrices. Collecting
rows of the direct sum which are exactly parallel, we have the MPO representation
of the full operator

W Œ1�
Ising D

��h O�x �J O� z OI � ; W Œ2	j	L�1�
Ising D

0

@
OI 0 0

O� z 0 0

�h O�x �J O� z OI

1

A ;

W ŒL�
Ising D

0

@
OI
O� z

�h O�x

1

A : (7.29)
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This construction can be readily extended to general sums of nearest-neighbor and
on-site interactions with Hamiltonian

OH D �
nbX

˛D1
J˛
X

hi;j i
OOb1I˛
i
OOb2I˛
j �

nsX

ˇD1
hˇ
X

i

OOsˇ
i (7.30)

by summing up the individual rules:

W Œ1� D
�
�Pns

ˇD1 hˇ OOsˇ �J1 OOb1I1 : : : �Jnb OOb1Inb OI
�

W Œ2	j	L�1� D

0

BBBBBB@

OI 0 : : : 0 0
OOb2I1 0 : : : 0 0
:::

:::
: : :

:::
:::

OOb2Inb 0 : : : 0 0

�Pns
ˇD1 hˇ OOsˇ �J1 OOb1I1 : : : �Jnb OOb1Inb OI

1

CCCCCCA
; (7.31)

W ŒL� D

0

BBBBBB@

OI
OOb2I1

:::
OOb2Inb

�Pns
ˇD1 hˇ OOsˇ

1

CCCCCCA
:

The bond dimension of the MPO representation of this Hamiltonian is 2CnB . MPO
representations are not restricted to nearest-neighbor terms. Exponentially decaying
terms of the form4

OH D �J
X

i<j

e��.j�i�1/ OO1
i
OO2
j (7.32)

can also be accommodated with the rule Rexp.f OO1; OO2g; fJ; �g;�1/

W Œ1�
exp D

�
0 �J OO1 OI � ; W Œ2	j	L�1�

exp D
0

@
OI 0 0
OO2 e�� OI 0

0 �J OO1 OI

1

A ;

W ŒL�
exp D

0

@
OI
OO2

0

1

A : (7.33)

4Note in this form that the nearest-neighbor coupling is J and only longer-ranged couplings
contain �.
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We can also produce a general monotonically decaying term

OH D J
X

i<j

f .j � i/ OO1
i
OO2
j (7.34)

by approximating the term as a sum of exponentials to a desired distance rcutoff. That
is, we minimize the functional

F .a;b/ D
nexpX

iD1

rcutoffX

xD1

ˇ̌
f .x/ � aibx�1

i

ˇ̌2
(7.35)

with respect to the exponential weights ai and decay parameters bi , where a
and b are the elements ai and bi , respectively, arranged as vectors and nexp

is a convergence parameter controlling the number of exponentials used in
the expansion [45–47]. Note that the fit is only guaranteed to be accurate
to rcutoff while the term has infinite range. This does not cause difficulties
in practice for decaying functions, as the resulting fit is also guaranteed to
be monotonically decaying. The decaying function rule is then just a sum
of these nexp exponential rules, Rdf.f OO1; OO2g; fJ; f .x/; nexp; rcutoffg; 1/ DPnexp

iD1Rexp.f OO1; OO2g; fJai ;� log big; 1/. In contrast to the other rules presented
above this rule is not exact, but the number of exponentials can be increased to any
desired accuracy.5 This procedure is surprisingly accurate even for small numbers of
exponentials; 5 exponentials suffice to accurately represent a 1=r3 interaction out to
distances of 1,000 sites to an error of 10�9 [47]. While the bond dimension increases
linearly with the number of exponentials, the number of nonzero terms in the MPO
also grows only linearly with the number of exponentials, and so operations with
the MPO scale well as nexp increases. However, the eigenstate of a Hamiltonian
with larger nexp may be more highly entangled than with smaller nexp, leading to
an increase in � and longer runtimes. That is to say, the relationship between the
bond dimension of an MPO and the bond dimension of an MPS representing an
eigenstate of the MPO is difficult to predict.

While the pure functional interaction Eq. (7.34) is appealing from a theoretical
point of view, in practical applications infinite-range interactions do not represent a
consistent level of approximation. That is to say, at some distance interactions are
screened, where the screening length is set by energetics or lifetime constraints in
the case of ultracold atoms or molecules [48]. Hence, we provide the finite-ranged
rule RFiniteFunction.f OO1; OO2g; fh; f; rcutoffg;w/ which generates the Hamiltonian

OH D wh
X

i

iCrcutoffX

jDiC1
f .j � i/ OO1

i
OO2
j (7.36)

5By accuracy we mean that the functional Eq. (7.35) is smaller than a given tolerance.
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and is given by

W Œ1� D �
0 0 : : : 0 : : : 0 whf .1/ OO1 OI �

W Œ2	j	L�1� D

0

BBBBBBBBBBBBBB@

OI 0 : : : 0 : : : 0 0 0
OO2 0 : : : 0 : : : 0 0 0
OO2 f .rcutoff/

f .rcutoff�1/ OI : : : 0 : : : 0 0 0

:::
:::

: : :
:::

: : :
:::

:::
:::

OO2 0 : : :
f .k/

f .k�1/ : : : 0 0 0
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:::
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:::
OO2

0

1

CCCCCCCCCCCCCA

: (7.37)

For a vector f which contains zero elements a small modification must be made,
but the bond dimension remains the same.

A small set of rules like those presented above allow us to template operators for
MPS simulations. That is, given a method to produce a Hamiltonian from a set of
basic rules, we can generate a wide variety of different Hamiltonians by specifying
different OAs, weights, and Hamiltonian parameters as inputs to a program. The
resulting MPOs are lower triangular and usually very sparse, and so sparse matrix
structures can be used for efficiency. Beyond the flexibility that MPOs provide to
MPS algorithms, they also allow for arithmetic operations such as addition and
multiplication to be performed exactly, albeit at the expense of a growing bond
dimension. The sum of two operators expressed as MPOs has MPO matrices which
are the direct sums of the constituent matrices, and the product of two MPOs has
MPO matrices which are the direct product of the constituent MPO matrices. Both
of these operations preserve the sparse lower triangular structure of the MPOs.



7.3 Variational Ground State Search 191

7.3 Variational Ground State Search

We now turn to using MPSs as variational ansätze for the eigenstates of a
Hamiltonian expressed as an MPO. The ground state is found by minimizing the
functional

E Œj i� D h j OH j i �Eh j i (7.38)

with respect to the parameters of j i, where E is a Lagrange multiplier enforcing
normalization. The general minimization of this functional is an NP-hard problem,
so we instead adopt a local search heuristic that has proven to work well in practice.
Let us consider fixing all parameters in the MPS except for a contiguous block
of s MPS tensors AŒj � : : : AŒjCs�1�. The single-site (s D 1) and two-site (s D 2)
algorithms are the most commonly used variants. We then find the extremum as

@

@AŒj �
?
: : : AŒjCs�1�?

�
h j OH j i �Eh j i

�
D 0 (7.39)

which corresponds to the diagrammatic equation shown in Fig. 7.4. Here, the partial
derivative with respect to a tensor is defined to be a tensor whose elements are the
partial derivatives with respect to the elements of the tensor. If we assume that the
block of tensors to be optimized contains the orthogonality center, then the rightmost
diagram reduces to the block of tensors being optimized and the leftmost diagram
is the action of the effective Hamiltonian on this same block. Thus, minimization
consists of finding the eigenvector corresponding to the smallest eigenvalue of the
effective Hamiltonian eigenvalue problem

OHŒj �

eff A
Œj � : : : AŒjCs�1� D EAŒj � : : : AŒjCs�1�; (7.40)

where the effective Hamiltonian is

OHŒj �ij :::ijCs�1i
0
j :::i

0
jCs�1

eff ˛ˇ˛0ˇ0 D
X

��0

X

�1:::�s

L
Œj �

�˛˛0W
Œj �ij i

0
j

��1 : : : W
ŒjCs�1�ijCs�1i

0
jCs�1

�s�0 R
ŒjCs�
�0ˇ0ˇ

;

(7.41)

L and R are the partial overlaps of the Hamiltonian MPO with the state as in
Fig. 7.4, and W Œj � is the MPO tensor at site j of the Hamiltonian. OHŒj �

eff represents
the Hamiltonian for the variational degrees of freedom in the block to be optimized
with the rest of the state held fixed. This justifies our use of E as the eigenvalue,
as E obtained from the solution of this equation is the current best estimate for
the energy. We can view Eq. (7.40) as a linear eigenvalue problem by combining
indices as
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Fig. 7.4 Variational ground state search in diagrammatic notation. Here we display the single
site (s D 1) effective Hamiltonian eigenvalue problem for simplicity. The contractions between
the block of tensors to be optimized, the MPO, and the rest of the diagram have been omitted
to accentuate the structure of the effective Hamiltonian. The rightmost equality follows from
assuming that the variational site is the orthogonality center
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0
jCs�1

ˇ0
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D E
h
AŒj � : : : AŒjCs�1�i

.˛ij :::ijCs�1ˇ/
: (7.42)

The linear dimension of this matrix representation of OHŒj �

eff is �j d s�jCs , and so
a solution of this problem with dense methods would require O.�3j d3s�3jCs�1/
basic operations, leading to a very slow algorithm of order O.�6/. In contrast,
by taking advantage of the separable form of the effective Hamiltonian Eq. (7.41)
multiplication of our block of tensors by the effective Hamiltonian can be done
in O.�3/ time [12]. Thus, sparse eigensolvers such as the Lanczos [39] or
Davidson [49] algorithms, which require only matrix–vector multiplies, should be
employed to solve this eigenvalue problem.

The general algorithm for ground state search is thus as follows. We begin with
an initial state with orthogonality center at site k. We choose a block of tensors
containing k and optimize them by solving the effective Hamiltonian eigenvalue
problem. We then shift the orthogonality center and the block of tensors one site to
the right and again optimize. We continue shifting to the right until we reach the
right boundary. We then reverse direction, shifting the orthogonality center and the
block of tensors to be optimized to the left and solving the effective Hamiltonian
eigenvalue problem until we reach the left boundary, at which point we reverse
direction again. A single iteration of this optimization cycle which affects each
tensor twice is called a sweep, and sweeping is continued until convergence. In
addition, using the MPO form of the Hamiltonian, it is possible to develop a caching
algorithm for the overlaps L and R such that the solution of this problem requires
O .L/ scaling in the number of lattice sites [42].6 To do so, we begin the iteration

6This scaling does not account for possible L dependence of the bond dimension � such as exists
for conformal critical points.
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with a guess for the ground state j i assumed to have orthogonality center k. We
then use the left recursion

L
Œ1�

�˛˛0 D ı˛;1ı˛0;1ı�;1; (7.43)

L
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� 0i 0
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�0�� 0

#
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�0�

#
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Œ`�i 0

� 0˛0

3

5 ; (7.44)

to generate the L overlaps up to k and the right recursion

R
ŒLC1�
�ˇ0ˇ

D ıˇ;1ıˇ0;1ı�;1; (7.45)

R
Œ`�

�ˇ0ˇ
D
2

4
X

� 0i 0

A
Œ`�i 0

ˇ0� 0

"
X

�0i

W
Œ`�ii0

��0

"
X

�

R
Œ`C1�
�0� 0�
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ˇ�

?

##3

5 ; (7.46)

to generate the R overlaps down to k C s. Here the square braces indicate the order
in which the contraction should be performed to achieve ideal scaling. Once the
eigenvalue problem has been solved and the orthogonality center shifted, we use the
recurrence Eq. (7.44) to update the overlaps when we are sweeping to the right and
the recurrence Eq. (7.46) to update the overlaps when we are sweeping to the left.

Convergence is achieved when the variance


 �
D�cH2 �E2

�E
; (7.47)

with E the energy eigenvalue, drops below a user-specified tolerance �. Given

the MPO form of the Hamiltonian, the variance operator O
 � cH2 � E2 can be
constructed by constructing an MPO whose matrices QW Œi� consist of the direct
product of the corresponding matrices from OH , QW Œi� D W Œi� ˝ W Œi�, and then
subtracting � OIE2=L from the lower leftmost element of each QW Œi�, where OI is
the identity operator. This representation is exact, in contrast to DMRG-based
approaches where the basis of the Hamiltonian is tied together with the basis of
the state. The variance is a much better measure of convergence of the state than the
so-called discarded weight which is used to measure convergence of the two-site
DMRG algorithm. This is because it is a property of the actual MPS state and not
of the eigenvalue. As a note of caution, the variance only guarantees that the state
found is an eigenstate to the given tolerance, it does not specify that it is the ground
state. This has not proven to cause problems in practice for non-disordered systems.

In summary, the complete algorithm for variational ground state search is:

1. Input: Input a Hamiltonian OH in MPO form, an initial guess j i for the ground
state in MPS form, and a tolerance � for the variance.

2. Initialization: Construct the LR overlaps using the recursions Eqs. (7.44)
and (7.46).
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3. Sweeping:

(a) Solve the effective Hamiltonian eigenvalue problem Eq. (7.40) and replace
the variational block of tensors with the eigenvector corresponding to the
lowest eigenvalue.

(b) Shift the orthogonality center to the right and update the LR overlaps using
the recursion Eq. (7.44).

(c) Continue to iterate (a) and (b) (right sweeping) until the right boundary is
reached.

(d) Solve the effective Hamiltonian eigenvalue problem Eq. (7.40) and replace
the variational block of tensors with the eigenvector corresponding to the
lowest eigenvalue.

(e) Shift the orthogonality center to the left and update the LR overlaps using
the recursion Eq. (7.46).

(f) Continue to iterate (d) and (e) (left sweeping) until the left boundary is
reached.

(g) Iterate (a) and (b) until k is reached.

4. Check convergence: Using the most recent estimate of the energy eigenvalue QE
from the last effective Hamiltonian solution, construct the variance operator O

and find the variance. If 
 < �, exit, otherwise return to (a).

7.4 Variational Excited State Search

We now turn to finding excited states. We find the nth excited state by minimizing
the functional

E Œj i� D h j OH j i �Eh j i �
n�1X

kD0
�kh j�ki (7.48)

where fj�kig are the n � 1 lower-lying eigenstates of OH and the f�kg are Lagrange
multipliers enforcing the orthogonality constraints h j�ki D 0. Again fixing a block
of s tensors, the minimization of this functional with respect to this block is given
by the projected effective Hamiltonian eigenvalue problem

OP Œj � 
 OHŒj �

eff
OP Œj �AŒj � : : : AŒjCs�1� D EAŒj � : : : AŒjCs�1�; (7.49)

where OP Œj � is a projector into the space orthogonal to the fj�kig. Given the
states fj�kig as MPSs, we construct these projectors as follows. The diagram
corresponding to the overlap h j�ki is shown in Fig. 7.5a, with the bold lines and
black circles corresponding to j�ki and the thin lines and red circles to h j. This
is a linear form in all of the MPS tensors of h j, and so the condition that j i
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La b [j]{k} R[j+s]{k}

F [j]{k}

Fig. 7.5 Linear forms enforcing orthogonality. (a) The overlap h j�ki in diagrammatic notation.
The red circles and thin lines correspond to h j and the black circles and thick lines to j�ki. (b)
The linear form F Œj �fkg in diagrammatic notation for the single-site case. As before, we leave the
bottom tensor uncontracted to accentuate the definitions of the LR overlaps

be orthogonal to this state for the given block of tensors with all others held fixed
may thus be stated as

h j�ki D 0)
�

@

@AŒj �
?
: : : AŒjCs�1�? h j�ki

�
AŒj �

?
: : : AŒjCs�1�? D 0 (7.50)

� F Œj �fkgAŒj �? : : : AŒjCs�1�? D 0: (7.51)

Here the linear form enforcing orthogonality F Œj �fkg is shown diagrammatically in
Fig. 7.5b. This object is a rank-.s C 2/ tensor whose first and last dimensions are
respectively �j , the left bond dimension ofAŒj �, and �jCs , the right bond dimension
of AŒjCs�1�. All other dimensions are d . Hence, F Œj �fkg has the same shape as
AŒj � : : : AŒjCs�1�, as implied by Eq. (7.50). We can construct the projector OP Œj � as

OP Œj � D O1 �Pkk0 F Œj �fkg �N�1�
kk0 F

Œj �fk0g 
; (7.52)

where .N�1/kk0 is the kk0th element of the inverse of the Gram matrix

Nkk0 D Tr
�
F Œj �fkg 
F Œj �fk0g� : (7.53)

The projector OP Œj � is a rank-.2s C 4/ tensor which takes a tensor with the same
shape as AŒj � : : : AŒjCs�1� into another tensor of the same shape. The Gram matrix
inverse is important to ensure that the projector is idempotent. As before, direct
construction of the projected effective Hamiltonian leads to an algorithm which
scales poorly as O.�6/. Hence, it is important to use sparse methods which require
only the application of OP and OH on some block of tensors AŒj � : : : AŒjCs�1�.
Direct application of OP Œj � as written requires O.�4/ operations and also scales
quadratically in the number of eigenstates desired NE due to the double sum in
Eq. (7.52). To find a total of NE eigenstates by this method thus requires O.N 3

E�
4/

operations, which is unacceptably slow. A simple idea to reduce this scaling would
be to find the eigenvectors of the inverse Gram matrix and re-express the projectors
F Œj �fkg in terms of them, rendering the double sum a single sum. However, while
the Gram matrix N is Hermitian and positive semidefinite it may also be badly
conditioned and singular. A numerically stable alternative to this idea is to construct
the Moore–Penrose pseudoinverse [39] of the Gram matrix
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�
NC�

kk0 DPnp
�D1 Vk� 1

��
V ?
k0�
; (7.54)

where V is the matrix with the eigenvectors of N as columns and � are the np
eigenvalues of N which are greater than n�max�, where n is the linear dimension
of N , �max its largest eigenvalue, and � the machine precision. We use this
pseudoinverse to transform to a new set of linear forms

GŒj �f�g D 1p
��

P
k Vk�F

Œj �fkg (7.55)

such that

OP Œj � D O1 �P� G
Œj �f�gGŒj �f�g 
: (7.56)

Often, the dimension of the set
˚
GŒj �f�g� is much smaller than NE . The diagonal-

ization of the Gram matrix requires O.N 3
E/ operations, independent of �, and its

construction and the construction of G in Eq. (7.55) both require O.�2/ operations.
The operation of OP Œj � on the variational block of tensors is now

OP Œj �AŒj � : : : AŒjCs�1� D AŒj � : : : AŒjCs�1�

�
X

�

Tr
�
GŒj �f�g 
AŒj � : : : AŒjCs�1��GŒj �f�g (7.57)

which is linear in NE and scales only as O.�2/. Thus, the dominant scaling for
typical parameters � � NE is still the O.�3/ scaling of the effective Hamiltonian
multiply, and the algorithm to find NE excited states scales as O.NE�3/. A
sweeping approach is used as in the ground state search algorithm, and the iteration
is stopped when the variance drops below a user-specified tolerance. As before, the
variance does not guarantee that the state found is the next lowest-lying eigenstate,
but this does not usually cause problems in practice.

As with the LR overlaps used in the variational ground state search, one can also
cache the overlaps LR used to construct the linear forms F using the recursions

LŒ1�fkg
˛˛0 D ı˛;1ı˛0;1; (7.58)

LŒ`C1�fkg D
X

i

AŒ`�i

LŒ`�kBŒ`�fkgi (7.59)

and

RŒLC1�k
ˇ0ˇ

D ıˇ;1ıˇ0;1ık;1; (7.60)

RŒ`�fkg D
X

i

BŒ`�fkgiRŒ`C1�fkgAŒ`�i 
; (7.61)
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where BŒ`�fkg is the MPS tensor of j�ki at site `. The linear forms are constructed
using these overlaps as

F
Œj �fkgij :::ijCs�1

˛ˇ D
X

�1:::�sC1

LŒj �fkgij
˛�1 B

Œj �fkgij
�1�2 : : : B

ŒjCs�1�fkgijCs�1
�s�sC1

RŒjCs�fkg
�sC1ˇ

;

(7.62)

see Fig. 7.5b.
The variational ground state algorithm presented above is essentially equivalent

to standard DMRG, aside from the calculation of the variance [12]. When finding
excited states, however, DMRG-based approaches target multiple excited states in
a single MPS, which causes the bond dimensions to grow and the quality of each
individual eigenstate to degrade. Furthermore, as the ground state and all excited
states are solved together in that approach, the sparse eigensolver must be able
to converge interior eigenvalues, which is known to be troublesome [39, 40]. We
call the present algorithm, which is a sparse and numerically stable variant of that
proposed in [50] for PBC, eMPS to accentuate the difference.

In our experience, there are two main limitations of eMPS. The first is that it is
difficult to construct good variational guesses for the excited states in contrast to the
ground state where the infinite size MPS algorithm [26, 51] is applicable. Here, the
usefulness of the variance becomes readily apparent, as the discarded weight can
be 10�12 or less while the variance is of order 10�2 in early sweeps. The second
is that the area law considerations which make MPS algorithms so practical for
ground states do not in general apply to bulk eigenstates, and so the bond dimension
required to accurately represent a general eigenstate may be exponential in the
system size, rendering eMPS inapplicable.

The ability to find excited states is useful in many contexts. It provides access to
the dynamical gap for determining the location of second order quantum phase tran-
sitions [52] and Kibble–Zurek scalings, even when the gap is not between different
symmetry sectors. It can help in understanding the structure of CFTs by providing
access to the primary scaling fields [53]. Excited states yield the structure function
and other dynamic response functions of low-lying excitations. Such response
functions are of great use for comparing to experimental measurements. For the case
of periodic boundaries, MPS variants of the single-mode approximation [50, 54–56]
together with a modified version of eMPS suitable for periodic boundary conditions
could be used to variationally search for excited states of a definite momentum.
Finally, by considering more complex functionals such as h j. OH��/2j i��h j i
for minimization, one can determine level spacing statistics in a desired energy
range for systems much larger than are amenable to exact diagonalization. Such
studies are immensely useful in discussions of integrability and quantum chaos, as
well as investigations of the thermalization hypothesis [57–59].
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7.5 Calculation of Observables

We now turn to how we can extract information from a state expressed as an MPS.
We do so by the expectation values of Hermitian operators, or observables. We will
demonstrate how to compute observables of three different types: local observables,
two-point correlation functions, and general MPOs.

We define a local observable as an operator which acts only on the Hilbert space
of a single site: OOŒk� DPi;i 0 O

Œk�

ii0 jiihi 0j. If this site corresponds to the orthogonality
center of j i, then the expectation value reduces to

h j OOŒk�j i DPik i
0
k

Tr
�
AŒk�ik



O
Œk�

ik i
0
k

AŒk�i
0
k

�
: (7.63)

The overall scaling for fixed site index k is O
�
�2d2

�
.

A two-point correlation function is an expectation value of the form h OOŒq�
 OOŒr�i
where we take q < r without loss of generality. If the orthogonality center of the
MPS, k, lies within the range q 
 k 
 r , then we can evaluate the expectation
value using only the tensors in this range. The most efficient way to proceed is first
to form the matrix

RŒr� DPir i 0r
AŒr�i

0
rO

Œr�

ir i 0r
AŒr�ir



; (7.64)

recursively generate

RŒr�`� DPi A
Œr�`�iRŒr�`C1�AŒr�`�i 
 (7.65)

for ` D 1; : : : ; r � q C 1, and then evaluate

h OOŒq�
 OOŒr�i DPiq ;i 0q
Tr
�
O
Œq�

iq i 0q
AŒq�i

0
qRŒqC1�AŒq�iq 


�
: (7.66)

For fixed q and r , the algorithm scales as O
�
�3d C �2d2�.

To compute the expectation of a general many-body observable OO expressed as
an MPO we start from the right (left) boundary and follow the recursion Eq. (7.44)
(Eq. (7.46)) all the way to the opposite boundary, at which point the remaining 1�1�
1 tensor is the expectation value. The overall scaling is O

�
�3d�O C �2d2M .�O/

�

where �O is the bond dimension of the MPO and M .�O/ is the number of nonzero
elements in the MPO, which usually scales as �O .

Entanglement measures such as the bond entropy

Sj � �Tr O�j log O�j ; (7.67)

O�j � Tri<jC1j ih j; (7.68)
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can be calculated from the singular values † of the MPS tensor AŒj �i˛ˇ as

Sj D �P� †
2
� log†2� (7.69)

when this tensor is the orthogonality center. These singular values are com-
puted automatically as part of the algorithm to shift the orthogonality center, see
Sect. 7.2.1.

7.6 Time Evolution with MPSs

We now turn our attention to a variational solution of the time-dependent
Schrödinger equation

i„ @
@t
j .t/i D OH .t/ j .t/i (7.70)

using MPSs. The general strategy is to find some representation of the propagator
over some time interval Œt; t C ıt �, OU.t; t C ıt/, and variationally optimize the
functional

ˇ̌
ˇj .t C ıt/i � OU .t; t C ıt/ j .t/i

ˇ̌
ˇ
2

(7.71)

with respect to the MPS tensors of j .t C ıt/i. Several complications arise in
this case which were not present in the earlier algorithms. The first practical
consideration is that the MPO form of the propagator may be difficult and very
expensive to calculate. The second difficulty is more physical; the time-dependent
state following a global quench of a Hamiltonian parameter has entanglement
which generally grows linearly in time [60]. This causes the bond dimension �
to grow exponentially in time, and so there is some finite time where an MPS
simulation will exhaust the available computational resources. However, many
important questions regarding non-equilibrium dynamics can still be answered by
considering moderately sized systems and short times. In addition, consideration of
a situation in which the Hamiltonian changes only locally can greatly increase the
accessible system sizes and simulation times [61–63].

The most common approach to time evolution for MPSs is to use the Suzuki–
Trotter expansion

exp
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(7.72)
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or its higher order variants to construct a series of two-site propagators which
can be constructed and applied easily. This is the basis of the equivalent [12]
TEBD [64] and tDMRG [65, 66] algorithms. Here OHn is the nearest-neighbor bond
Hamiltonian acting on-sites n and nC1. This approach is no longer viable when the
Hamiltonian has longer-ranged terms, and attempts to accommodate such longer-
ranged terms often exhibit poor scaling [67, 68] and require Hamiltonian-specialized
implementation, resulting in inefficient, sometimes prohibitively inefficient code.
Krylov-based time evolution, which will form the basis for our approach, has been
considered in both DMRG [69] and MPS [13, 70] variants for the time-independent
case. We note that the latter approach has been used [13, 14] to study time-dependent
systems, but this necessitated very small time steps set by the rate of change of the
Hamiltonian in order to provide accurate results. Our approach generalizes the latter
method to the time-dependent case where the error is independent of the rate of
change of the Hamiltonian and demonstrates how the algorithm can be formulated
entirely in terms of FSA rules for MPOs.

Finally, we would like to mention one other recent development for time
evolution of MPSs using MPOs, which is the transverse folding method proposed
in [71, 72]. In these works, it is shown that contracting the tensor network which
represents some time-evolved expectation value along the spatial direction rather
than the time direction can lead to greater efficiency and hence extrapolations of
results to longer times. However, this method requires that the propagator of the
Hamiltonian have a known MPO representation in order to contract the network.
The representation of the propagator as an MPO is possible for nearest-neighbor
Hamiltonians using the Suzuki–Trotter expansion and exact MPO representations
of the propagator are known in some specific cases such as the Ising model [45],
which was the focus of the above works. At present, we know of no method for
representing a unitary approximation to the propagator of a general Hamiltonian as
an MPO. Our approach does not require the MPO form of the propagator. Rather, the
action of the propagator on a given state represented as an MPS is determined using
only the MPO form of the Hamiltonian. Hence, our method applies to any system
whose Hamiltonian is represented as an MPO, including long-range interacting
systems.

7.7 Commutator-Free Magnus Expansions

The propagator of a general time-dependent Hamiltonian which does not commute
with itself at different times is given as a time-ordered exponential

OU .t; t C ıt/ � T
"

exp

 
�i
Z tCıt

t

dt0 OH �
t 0
�
!#

(7.73)
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whose most well-known form is the Dyson series

OU .t; t C ıt/ D O1 � i
Z tCıt

t

dt1 OH .t1/ �
Z tCıt

t

dt1

Z tCıt

t

dt2 OH .t1/ OH .t2/C : : :

(7.74)

This formulation of the propagator is not convenient numerically, as the Dyson
series is an asymptotic series and so it can be difficult to determine an appropriate
criteria for termination of the series. Furthermore, keeping only a finite number
of terms in the Dyson series does not preserve the Lie group structure of the
propagator; that is, the finite approximation is not unitary. An alternative approach
which produces unitary approximations to the propagator was given by Magnus [73]
who used the ansatz

OU .0; t/ D exp
� O�.t/

�
(7.75)

to define the Magnus series

O�.t/ D
1X

nD1
O�n .t/ ; (7.76)

where the nth term is of order tn in the sense that its power series in t starts with
tn. The term O�n .t/ involves n nested integrations over n � 1 nested commutators
of OH .t/ at different times. Explicitly, the first few terms are:

O�1 .t/ D �i
Z t

0

dt1 OH .t1/ ; (7.77)

O�2 .t/ D �1
2

Z t

0

dt1

Z t1

0

dt2
h OH .t1/ ; OH .t2/

i
; (7.78)

O�3 .t/ D i 1
6

Z t

0

dt1

Z t1

0

dt2

Z t2

0

dt3
� h OH .t1/ ;

h OH .t2/ ; OH .t3/
ii

C
hh OH .t1/ ; OH .t2/

i
; OH .t3/

i �
: (7.79)

While approximations obtained from truncating the series yield unitary propagators,
these expressions are still formidable numerically, involving nested commutators
and multidimensional integrals. The commutators pose a special difficulty for
MPOs, as exact multiplication of MPOs involves multiplication of the bond
dimensions of the MPOs and hence the algorithm scales exponentially in the number
of terms kept in the series. Optimization algorithms which attempt to variationally
shrink the bond dimension of an MPO sum or product such as those proposed in
[47] may also be used, but these become numerically unstable for large systems,
and when MPOs are subtracted as in commutators large cancellations can cause
these algorithms to become stuck far from the variational optimum.
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Hence, rather than work directly with the Magnus series, Eq. (7.76), we start from
ansätze of the form

OU .t; t C ıt/ D
sY

iD1
exp

�
�iıt O�i

�
(7.80)

where each one of the O�i is a linear combination of OH at different times in the
interval Œt; t C ıt �, and require that our ansatz matches the Magnus expansion
(equivalently, the full propagator) up to order ıtNC1. We will call such an ansatz
a commutator-free Magnus expansion (CFME) [74, 75]. This ansatz has a number
of features which make it desirable for our purposes. It is exactly unitary and so
the norm is conserved. Also, provided that we consider the case where only the
Hamiltonian parameters change in time and the operators are time-independent, the
sums of the Hamiltonian at different times can be represented exactly as an MPO
using the rules of Sect. 7.2.2. Thus, the need for complex operations with MPOs
vanishes. Finally, because the ansatz takes into account the time dependence of the
Hamiltonian explicitly, the time step is not necessarily fixed by the rate of variation
of the Hamiltonian, allowing for more coarse stepping in time with fixed error.

Following [76], the procedure for generating an N th-order CFME is to expand
the function H .t/ in terms of (shifted) Legendre polynomials Pn,

OHn D .2n � 1/ ıt
R 1
0

dx OH .t C xıt/ Pn�1 .x/ : (7.81)

The orthogonality properties of the Legendre polynomials allow the nested integra-
tion to be done exactly, leaving a series of nested commutators of the OHn. Working
in a Hall basis [77], this series of commutators is matched with the original Magnus
expansion to yield the order conditions fi;n such that

O�i D
NX

nD1
fi;n OHn: (7.82)

We note that these order conditions are independent of OH .t/ by construction, and
so are set by the choice of CFME alone. As we only require the result to be valid
to order ıtNC1, the integration required for the coefficients OHn may be performed
using Gauss–Legendre quadrature of order N=2C 1. The end result of the analysis
is that an N th order expansion with s exponentials may be written as

OU .t C ıt; t/ D e�iıt O�1 : : : e�iıt O�s (7.83)

O�i D
N=2C1X

mD1
gi;m OH .t C xmıt/ (7.84)

gi;m D wm

N=2C1X

nD1
.2n � 1/Pn�1 .xm/ fi;n; (7.85)
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where xm and wm are the points and weights for Gauss–Legendre quadrature [78]. In
this work we use a fourth order expansion with three exponentials (N D 4, s D 3).
The optimal order conditions for this case, obtained in [76], are

f1;1 D 11=40; f1;2 D 20=87; f1;3 D 7=50; f2;1 D 9=20; f2;3 D �7=25;
(7.86)

with fs�iC1;n D .�1/nC1 fi;n. Order conditions for higher order expansions may
also be found in [76].

We now consider that our time-dependent Hamiltonian MPO is constructed

from a set of FSA rules
n
Rp

�n OOp1; : : : ; OOpn

o
; fhp .t/g ;wp

�o
in which

the OA and the weights are chosen without loss of generality to be time-
independent. In this case, the expansion Eq. (7.81) is applied individually to
each Hamiltonian parameter hp .t/, resulting in the parameters

˚
h
p
n

�
. Now,

because of the canonical decomposition of Sect. 7.2.2, the MPO forms of O�i

from Eq. (7.84) at time t can be constructed exactly using the FSA rule setn
Rp

�n OOp1; : : : ; OOpn

o
;
nPN=2C1

mD1 gi;mh
p .t C xmıt/

o
;wp

�o
. We note that each

one of these operators has the same bond dimensions as the original Hamiltonian,
and the updates of operators O�i at each time step can be done in O .L�O/ time,
which is essentially negligible.

The fact that we can construct the O�i from the same FSA rules as the Hamiltonian
implies that our CFME ansatz is equivalent to evolving our system according to
piecewise constant Hamiltonians of the same form but with differing Hamiltonian
parameters. Additionally, as also occurs in high-order Suzuki–Trotter expansions,
evolution backwards in time may occur. Finally, we note that even terms in the
Hamiltonian whose parameters do not vary in time have their magnitude altered by
Eq. (7.84), as

P
m gi;m ¤ 1 in general.

7.8 Krylov Subspace Propagation

Using the CFME Eq. (7.83) we never need to explicitly form an MPO representation
of the propagator provided we can find an MPS representation of the exponential
of an MPO applied to an MPS. We find such a representation from minimizing
functionals of the form

ˇ̌
ˇj�i � exp

�
�iıt O�

�
j i

ˇ̌
ˇ
2

; (7.87)

where, importantly, O� has a known MPO representation. We do so by forming a
Krylov subspace approximation to the exponential [79] in which the Krylov vectors
are represented as MPSs. Specifically, we do so via the Lanczos algorithm for the
matrix exponential, which can be stated as
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1. Input: Input O� in MPO form, j i in MPS form, and a tolerance � for truncating
the recursion.

2. Initialize: Set ˇ0 D h j i D 1 and jri D j i.
3. Iterate: For j D 1; 2; : : : until convergence

(a) jvj i D jri=ˇj�1.
(b) jri D O�jvj i.
(c) ˛j D hvj jri.
(d) Orthogonalize jri against jvj i and jvj�1i.
(e) Re-orthogonalize jri against all vk , k 
 j if necessary.
(f) ˇj D hr jri
(g) Form the matrix exponential of T .j /, U .j /, and obtain c.j / D U .j /

1Wj;1:
(h) Test for convergence.

4. Finalize: Set j�i DPj
iD1 c

.j /

i jvi i
Here T .j / is the symmetric tridiagonal matrix with the ˛i , 1 
 i 
 j on the

diagonal and ˇi , 1 
 i 
 j �1 on the super-diagonal. It is important to use a matrix
exponentiation method which produces a unitary matrix to machine precision in
order to not lose the Lie group structure. Because of the small linear dimensions
of the matrix T .j /, exponentiation by direct diagonalization is practical. An a

posteriori estimate for convergence of the Lanczos recursion is that
ˇ̌
ˇ2ˇj�1c.j /j

ˇ̌
ˇ < �,

where � is the tolerance [79]. This can be compared with residual estimates in
the ordinary Lanczos algorithm for finding eigenvalues. A rigorous bound on the

approximation
ˇ̌j ikrylov � j i

ˇ̌ 
 12 exp
n
� .�ıt/2

16n

o �
e�ıt

4n

�n
can be established [80]

when n 
 �ıt=2 with n the number of Lanczos vectors and � D jEmax �Eminj the
spectral width of O�. This estimate shows that for typical tolerances � D 10�6 to
10�10, 6–20 Lanczos vectors suffice.

As stated before, MPSs do not form a vector space and so the multiplication
by O�, the orthogonalization, and the final summation cannot be done exactly while
keeping the bond dimension of our MPS fixed. However, just as with the eigenstate
search, we can devise variational algorithms for these three operations which are
iteratively performed until a desired tolerance is reached and use this tolerance to
bound the bond dimension of our time-evolved MPS. We begin by briefly reviewing
the standard algorithm [12] for finding the optimal MPS j�i representing a sum of
MPSs

PN
kD1 ckj ki to a given tolerance, as the other algorithms are similar but more

complex. In this case we have a set of LR overlaps defined between our variational
state h�j and the states j ki as in Eqs. (7.59) and (7.61). We now sweep through the
lattice and make the replacement

AŒj � : : : AŒjCs�1� DPk ckF
Œj �fkg; (7.88)

where the F Œj �fkg are formed as in Eq. (7.62), see also Fig. 7.5b. The orthogonality
center of j�i is then shifted, the LR overlaps updated, and sweeping continued.
Convergence can be monitored via
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ˇ̌
ˇ̌
ˇj�i �

X

k

ckj ki
ˇ̌
ˇ̌
ˇ

2

D Tr


�
AŒj � : : : AŒjCs�1��
 AŒj � : : : AŒjCs�1�

�
C 1 (7.89)

�2
X

k

Re Tr



ck

�
AŒj � : : : AŒjCs�1��
 F Œj �fkg

�
< � ;

with Re denoting the real part. Because we do not have to solve an eigenvalue
problem at each iteration, this algorithm is often much less costly than the iterative
eigenstate search. Also, when we have that the coefficient vector c and all of the
fj kig have length 1, we can normalize the state j�i at the end of the calculation if
required.

The algorithm to variationally fit an MPS to O�j i is similar. In this case we have
a set of LR overlaps defined via the recursions

L
Œ1�

�˛˛0 D ı˛;1ı˛0;1ı�;1; (7.90)

L
Œ`C1�
�˛˛0 D

2

4
X

� 0i 0

"
X

i�0

"
X

�

AŒ`�i�˛
?
L
Œ`�

�0�� 0

#
W

Œ`�ii0

�0�

#
B
Œ`�i 0

� 0˛0

3

5 ; (7.91)

R
ŒLC1�
�ˇ0ˇ

D ıˇ;1ıˇ0;1ı�;1; (7.92)

R
Œ`�

�ˇ0ˇ
D
2

4
X

� 0i 0

B
Œ`�i 0

ˇ0� 0

"
X

�0i

W
Œ`�ii0

��0

"
X

�

R
Œ`C1�
�0� 0�

A
Œ`�i
ˇ�

?

##3

5 ; (7.93)

where the MPS tensors of j�i are denoted by A and those of j i denoted by B . We
now sweep through the lattice and make the replacement

AŒj � : : : AŒjCs�1� D OHŒj �

eff B
Œj � : : : BŒjCs�1� (7.94)

where the effective Hamiltonian is formed from the LR overlaps as in Eq. (7.41).
Convergence can be monitored via

ˇ̌
ˇj�i � OH j i

ˇ̌
ˇ
2 D Tr


�
AŒj � : : : AŒjCs�1��
 AŒj � : : : AŒjCs�1�

�
C h j OH2j i (7.95)

�2Re Tr


�
AŒj � : : : AŒjCs�1��
 OHeffB

Œj � : : : BŒjCs�1�
�
< �;

Here, h j OH2j i can be computed in a manner similar to the variance, and need
only be computed once at the beginning of the calculation. We have also assumed
that the block of tensors in Eq. (7.95) contains the orthogonality center. Again, this
algorithm is often much less costly than the iterative eigenstate search.
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We now turn to steps (iii)(d) and (iii)(e) of our algorithm. Step (iii)(d) is usually
stated for ordinary vector spaces as

jri D jri � ˛j jvj i � ˇj�1jvj�1i; (7.96)

as ˛j D hvj jri and ˇj�1 D hvj�1jri and so this is equivalent to classical Gram–
Schmidt orthogonalization. Hence, we could implement step (iii)(d) by using the
fitting algorithm Eq. (7.88) to find the MPS closest to jri � ˛j jvj i � ˇj�1jvj�1i.
However, we have found that the following algorithm, which is closely related to
eMPS, often converges more quickly and also is applicable to step (iii)(e). In our
method we look for the optimal MPS j�i representing j i but also subject to the
constraints that h�j ki D 0 for some set fj kig. We start by copying the state j i
to a variational ansatz j�i. We then construct overlaps between the state h�j and
j i, which we call LR7 and a set of overlaps between h�j and j ki, which we call
LR. We then sweep through the lattice and make the replacement

AŒj � : : : AŒjCs�1� DP�1:::�sC1
L
Œj �ij
˛�1 B

Œj �ij
�1�2 : : : B

ŒjCs�1�ij
�s�sC1

R
ŒjCs�
�sC1ˇ

; (7.97)

with B the MPS tensors of j i and A the MPS tensors of j�i. We then apply the
projector into the space orthogonal to the j ki by constructing the set

˚
GŒj �f�g�,

� D 1; : : : ; p, as in Eq. (7.55) and performing

AŒj � : : : AŒjCs�1� DAŒj � : : : AŒjCs�1��Tr
�
GŒj �f�g
AŒj � : : : AŒjCs�1�

�
GŒj �f�g; (7.98)

for � D 1; : : : ; p. Using the fitting algorithm of Eq. (7.88) corresponds to replacing
the LR overlaps, which are between the variational state h�j and the set fj�kig, with
a set of LR overlaps between the state h j and the set fj�kig. Our algorithm, which
amounts to fitting followed by modified Gram–Schmidt, uses information about
the distance between the variational state and those to be orthogonalized against to
determine operations, and hence often converges more quickly and is more stable.
Convergence can be monitored by ensuring that h�j ki are orthogonal to a precision
� via

ˇ̌
ˇTr

�
AŒ`�



F Œ`�fkg�

ˇ̌
ˇ 
 �: (7.99)

If one requires additional truncation of the bond dimension, one can switch to the
ordinary fitting algorithm Eq. (7.88) at this point, using a new variational state j�i to
fit to j�i.

We now pause to consider the sources of error in the time-propagation routine.
First, because the CFME expansion Eq. (7.83) is only of order ıtNC1, the error

7In this initialization all of the LR are Kronecker deltas provided that j i has an orthogonality
center.
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incurred in using this form of the propagator is �CFME D ctfinalıt
N , where tfinal

is the final time reached. Thus, as the final time desired becomes longer, smaller
time steps should be taken in order to keep the error fixed. The coefficient c can be
determined by using this known scaling and decreasing the time step by a constant
factor. Factors in the range 21=N to 31=N are practical. This strategy can also be
used to devise adaptive time step applications such as those used widely in ordinary
differential equation solvers. Next, there is the error �Krylov incurred in the Krylov
subspace approximation to the exponential. As discussed above, this error can be
minimized by adding more and more Lanczos vectors. This error also involves
the time step ıt , and so when determining the CFME expansion error constant
c one should be careful that �Krylov < �CFME. Finally, there are errors resulting
from the variational fitting of MPSs in steps (iii)(b), (iii)(d), and (iii)(e) of the
Lanczos algorithm for the matrix exponential. These can be reduced by lowering
the variational tolerances, but this is done typically at the expense of a larger bond
dimension � and hence a slower algorithm and more memory usage.

7.9 Simulation Protocol

We are now in a position to devise a complete, generic protocol for the time
evolution of a 1D quantum system.

1. Input: Input an operator alphabet and a set of FSA rules defining the Hamiltonian
MPO. Input the functional forms fhp .t/g of its Hamiltonian parameters, a final
time desired tfinal and a time step ıt . Input tolerances f�g for variational ground
state search and time evolution.

2. Initial state preparation: Find the ground state of the Hamiltonian using varia-
tional ground state search from Sect. 7.3. Alternatively, if a different initial state
is desired, read in its MPS representation. Set j .t D 0/i to be this state.

3. Measure: Measure local observables and two-point correlation functions con-
structed from the OA as well as MPO observables constructed from their own
FSA rule sets.

4. eMPS: Use eMPS (Sect. 7.4) to find excited states of the Hamiltonian, if desired.
Measure properties of the excited states.

5. tMPS: Set t D 0.

(a) For i D s; : : : 1, construct O�i from Eq. (7.84) using the FSA rules and use
the Krylov algorithm to apply the matrix exponentials of these operators in
succession to j .t/i. Set t D t C ıt .

(b) Measure j .t/i if desired.
(c) Continue (a) and (b) until tfinal is reached.

Starting from a base set of rules such as the site, bond, exponential, decaying
function, and finite function rules of Sect. 7.2.2, a single implementation can
accommodate a vast range of systems based on the particular OA, rules, and quench
protocols fhp .t/g used.
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7.10 Case Studies

7.10.1 Case Study: Ising Model in a Transverse Field

For our first case study we choose the paradigmatic Ising model in a transverse field,
with Hamiltonian

OH D �J
X

hi;j i
O� z
i O� z
iC1 � h

X

i

O�xi : (7.100)

Here J is the coupling energy, h is a transverse magnetic field, and the f O�ig are
the Pauli spin operators on-site i . We choose this model because its dynamics
are amenable to numerically exact study using the time-dependent Bogoliubov–de
Gennes formalism (see Appendix for a review) and so we were able to carefully
check convergence of our results. The statics have all been converged to eight digits,
and the dynamics at all times to at least four digits. Here we refer to convergence of
local quantities such as the energy or density of defects. Nonlocal quantities such as
the bond entropy will not have this same accuracy, but numerical tests show that the
qualitative behavior is unaffected. We begin with a discussion of the statics.

In Fig. 7.6a we demonstrate the gaps from the ground state to the two lowest
eigenstates, computed via eMPS. The variances are smaller than the point size in
this case. The upper (lower) curve corresponds to even (odd) parity, while the ground
state has even parity, where parity is defined as simultaneous inversion of all spins
P D hQi O�xi i. Hence, the relevant gap for discussing the quantum phase transition
is in fact the gap to the second excited state, shown in green.8 Both gaps close at
criticality, and this can cause the first excited state returned by eMPS to be a mixture
of these two states. This will not affect the energies so long as the variance remains
small, but it can affect other observable properties of the states. There are two ways
to remove this nuisance. The first, most complex, and most preferable is to use an
MPS representation in which the state is explicitly Z2 invariant [40]. The second
is to add a field coupling to the parity �hpQi O�xi to cause the relevant even-parity
subspace to become lower in energy than the odd-parity subspace. This operator
is an MPO with bond dimension 1, the MPO equivalent of a product state. The
closing of the gap at the known critical point h D 1 is linear in 1=L, indicating a
conformally invariant critical theory with dynamical critical exponent z D 1.

We venture to determine the central charge of the critical theory by fitting to the
Calabrese–Cardy formula in two ways. In the first, we fit to the finite-size formula

Si D c
6

log
�
2L
�

sin
�
�i
L

�	C a (7.101)

8The even parity gap for h > 1 is in fact twice the demonstrated gap in green, but the essential
piece is the closing of the gap at criticality.



7.10 Case Studies 209

(E
i
−

E
0
)/

J

h/J L

i = 2

a b

dc

i = 1

Si

S
L

/
2

h/J

i
h/J

a + (c/6) log L
(a = 0.191, c = 0.512)

Fig. 7.6 Statics of the Ising model. (a) The gaps to the two-lowest-lying eigenstates, computed
using eMPS. (b) The bond entropy Si vs. the site index i and magnetic field h for L D 100 sites.
Note the increased curvature near the critical point h D 1. (c) The central charge c (blue line)
and bulk entanglement a (red line) extracted from a fit to Eq. (7.101) vs. h for L D 100 sites,
neglecting 30 sites at both boundaries. The inset is a close-up of the critical region. (d) The bond
entropy of the central site SL=2 vs. L at h D 1:0 together with a fit extracting the central charge

for fixed L and variable i , and in the second we fix i at L=2 and fit SL=2 to
this formula for various L. Near criticality, the presence of nonzero c indicates a
curvature of Si , while in the gapped phases Si obeys an area law and is hence a
constant apart from finite-size effects. The bond entropy in the bulk approaches the
correct limiting values of log 2 as h ! 0 and 0 as h ! 1. The first fit, shown in
Fig. 7.6a, provides us with a clear indicator of the critical region by the spike in the
central charge c. However, the precise determination of c for a finite size system in
this case is noisy, likely due to strong finite-size effects. Once we have narrowed
down where the critical region is, the second fit, shown in Fig. 7.6b, allows us to
extract the anticipated value c D 1=2 much more precisely. If the same scaling
analysis is attempted at a point which is not the critical point, the bond entropy
saturates and c ! 0 as L ! 1. We can understand this as a large but finite
correlation length � . For L=2 < � , the system appears to be conformal and we
see scaling of the bond entropy with L. For L > � the bond entropy saturates and
this scaling breaks down, indicating that the given region is not critical. We note
that in this analysis we have used no properties which are specific to this system,
e.g. correlation functions of an order parameter to extract the critical behavior.
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We now turn to the dynamics. The Ising model has also been a subject of
interest for dynamics as a testbed for the Kibble–Zurek hypothesis (KZH) that
equilibrium properties determine nonequilibrium properties following a quench
across a quantum critical point. This was studied in [81–83] using the quench
protocol

h .t/ =J D 5 �1 � t
�

�
; 0 
 t 
 �: (7.102)

A useful quantity for determining how non-adiabatic a particular quench is in this
case is the density of defects

� D 1

2L

X

i

�
1 � O� z

i O� z
iC1
�

(7.103)

which is the density of Bogoliubov quasiparticles at zero magnetic field. In addition
to the density of defects, universal scaling has also been predicted in the heat, or
non-adiabatic part of the energy,

Q .t/ D h .t/ j OH .t/ j .t/i � h g:s: .t / j OH .t/ j g:s: .t /i; (7.104)

where j g:s:.t /i represents the instantaneous ground state of OH.t/. In addition to
these quantities, which are amenable to Bogoliubov–de Gennes analysis, we also
compute the time-dependent bond entropy. Our results are shown in Fig. 7.7.

We first discuss the heat, as shown in panels (a) and (d). Panel (a) displays the
heat as a function of time, and demonstrates a sharp change in the behavior of the
system as we pass through the critical point. This is especially true of the longest
quenches. In panel (d) we investigate the heat as a function of the quench rate both
at the time when h takes on its critical value, tc D 4�=5, and at the final time
when h D 0. The large difference indicates that non-adiabatic processes continue
after we have passed from the critical region back into the gapped ferromagnetic
region. Thus, the universal scaling of the heat may be difficult to determine if the
critical point itself is not known sufficiently well. We now move on to the density of
defects as shown in panels (b) and (e). In panel (b) we see that the density of defects
at the final time decreases slowly to zero as � ! 1; that is, when the quench
becomes perfectly adiabatic. This is in accordance with the KZH prediction. Panel
(e) demonstrates the large disparity between the density of defects at the critical
time and the final time for all but the most rapid of quenches. Finally, in panels (c)
and (f) we investigate the bond entropy. In panel (c) we see the bond entropy of
the central bond as a function of time. As the quench becomes more adiabatic, the
entropy increases more towards the ferromagnetic limiting value of log 2. However,
for very slow quenches, the bond entropy reaches this value before the end of the
quench and then begins to oscillate. In panel (f) we show the bond entropy as a
function of the bond index at the critical time. Bulk curvature such as that seen at
criticality in Fig. 7.6d is absent, indicating that the time-evolved state is still quite
far from the conformal ground state.
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Fig. 7.7 Dynamics of the Ising model. (a) The heat as a function of time shows a marked change
in behavior as we transition past the critical time t=� D 4=5. The numbers indicate the value of
�J=„. �J=„ D 0:1 and 0:01 are indistinguishable on the scale of this plot. Both may be considered
to be instantaneous. (b) The density of defects as a function of time scales to zero as �J=„ !
1, in accordance with the KZH. (c) The bond entropy of the central bond as a function of time
approaches the limiting value log 2 as the quench becomes more adiabatic. For nearly adiabatic
quenches, the bond entropy oscillates after the critical point. (d) Scaling of the heat in the final and
critical stages with the inverse quench time shows marked non-adiabatic processes occurring after
passing the critical point. (e) Scaling of the density of defects in the final and critical stages with
the inverse quench time shows non-adiabatic processes after passing the critical point only for slow
quenches. (f) Snapshots of the bond entropy at the critical time demonstrate that the system is not
generally close to its conformal ground state
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7.10.2 Case Study: Dipolar Ising Chain

In this section we go beyond exactly solvable models and study a dipolar Ising chain

OHdip D �J
X

i<j Ijj�i j	6

O� z
i O� z
j

.j � i/3 � h
X

i

O�xi : (7.105)

Such models are relevant to the study of ultracold molecules in optical lattices,
where the dipole–dipole interaction falls away as 1=r3 with r the distance between
dipoles [7–9, 48, 84]. Here the cutoff jj � i j 
 6 represents a consistent order of
approximation in going from a Hubbard-type model with dipolar interactions to a
spin model. We stress that all results obtained in this section were obtained using
the same implementation as the last section.

We first turn to the statics of this model, shown in Fig. 7.8. Many of the features
are similar to those of the nearest-neighbor Ising model. The most important

h/J

(E
i
−

E
0
)/

J

i = 1

i = 2
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c d
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i
h/J

h/J
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/
2

L

a + (c/6) log L
(a = 0.151, c = 0.529)

Fig. 7.8 Statics of the dipolar Ising model. (a) The gaps to the two-lowest-lying eigenstates,
computed using eMPS. Here we see a breakdown of the linear dispersion at small h, indicating
interactions between quasiparticles. (b) The bond entropy Si vs. the site index i and magnetic field
h for L D 80 sites. The point of greatest curvature is shifted towards larger h with respect to the
Ising model. (c) The central charge c (blue line) and bulk entanglement a (red line) extracted from
a fit to Eq. (7.101) vs. h for L D 80 sites, neglecting 30 sites at both boundaries. The inset is a
close-up of the critical region. (d) The bond entropy of the central site SL=2 vs. L at h D 1:362

together with a fit extracting the central charge
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differences are that the critical region is shifted towards larger h with respect to the
nearest-neighbor Ising model as seen in panels (b) and (c). This indicates increased
stability of the ferromagnetic phase, in accordance with expectations. Using these
points as a guide, we determine the critical point to be hc D 1:362˙0:01, as shown
by the scaling in panel (d). Additionally, the energy of the first even parity excited
state deviates from pure z D 1 linear behavior near h D 0, indicating interactions
between quasiparticles which were noninteracting in the nearest-neighbor Ising
model.

We now turn to dynamics, following the same quenching protocol Eq. (7.102) as
above. The results are shown in Fig. 7.9. We reiterate that the dynamics of this model
cannot be handled by Bogoliubov–de Gennes methods, nor straightforwardly with
standard tDMRG/TEBD. The density of defects no longer represents the density of
quasiparticles at the critical point, but we compute it for comparison with the results
of the nearest-neighbor Ising model. Because of the larger MPO bond dimensions
and the more rapid growth of bond dimension for this model, we restrict our analysis

t/τt/τ

ρQ
/J

0.1

a b

c

1.0

t/τ

S
L

/
2

1.0

5.0

1.0

0.1

5.0

5.0

0.1

Fig. 7.9 Dynamics of the dipolar Ising model. (a) The heat as a function of time displays a slower
buildup in post-critical non-adiabatic effects for longer quenches, as in the nearest-neighbor case.
(b) The density of domain walls as a function of time is comparable to that for the nearest-neighbor
case, but no longer has the same interpretation in terms of quasiparticles. (c) The bond entropy of
the central bond oscillates for the shorter quench time J�=„ D 5 due to the quench passing the
critical point sooner than in the nearest-neighbor case
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to short times J�=„ 
 5, though an optimized implementation could reach longer
times. The basic features are similar to the dynamics of the nearest-neighbor Ising
model. One quantitative difference is that, because the critical point is reached at
an earlier time than in the nearest-neighbor Ising model, oscillations in the central
bond entropy occur for shorter quench times.

7.11 Conclusions

The power of MPS algorithms over DMRG-based algorithms is most readily
apparent when multiple states are involved, as each state may be represented as a
separate MPS in the former approach. Because MPSs with a fixed bond dimension
do not form a vector space, a set of MPSs carries more information at smaller
numerical cost than the same set represented as a multi-state targeted basis in
DMRG. We have presented two algorithms, eMPS and tMPS, which use this
property to find eigenstates and perform time evolution of strongly correlated 1D
quantum systems.

eMPS uses a set of eigenstates stored as separate MPSs to define a projector into
the space orthogonal to this set. We use this projector to explicitly orthogonalize
a variational state against previously determined eigenvectors in order to find
excited states. The explicit MPS representation allows us to store the excited states
much more accurately than with standard DMRG, and allows us to ensure global
orthogonality between the eigenstates to a desired tolerance. The variance, which
is computed exactly using the MPO representation of the Hamiltonian, gives strict
error bars on the energies obtained with this procedure.

tMPS avoids the need for an explicit representation of the propagator by using a
CFME and then building successive Krylov subspace approximations to the matrix
exponentials which appear in the expansion. Each vector in the Krylov subspace is
stored as a separate MPS to maximize efficiency. Furthermore, the operators O�i have
exact representations as MPO with the same bond dimension as the Hamiltonian.
Our algorithm eliminates the need for Hamiltonian-specialized implementation of
dynamics. Additionally, by carefully accounting for the time dependence of the
Hamiltonian with a CFME, the error in our algorithm depends only on commutators
of the Hamiltonian with itself at different times and not on its derivatives. As with
eMPS, the errors are rigorously accounted for by considering distance functionals
with the variational state.

The MPO forms of 1D Hamiltonians can be obtained using a small set of FSA
rules such as the site, bond, and finite function rules. Using MPO arithmetic,
we can add together the various terms in a Hamiltonian from these rules to
form a complete canonical MPO representation. This representation allows for
templating of Hamiltonians which depend only on the type of interactions and not
on the microscopic constituents of the lattice model. Furthermore, given the time-
dependent form of the Hamiltonian parameters, one can use the same template to
form the operators O�i which appear in tMPS at negligible numerical cost.
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We used our algorithms to study both the nearest-neighbor Ising model in a
transverse field and a long-range Ising model in a transverse field. By the closing
of the gap obtained with eMPS we determined that the critical points of these
models were conformal, and so we used the Calabrese–Cardy formula for the bond
entropy of conformal systems to locate the critical point and its associated central
charge. The known result hc D 1 was verified for the nearest-neighbor case, and the
critical point was shifted deeper into the paramagnetic region hc D 1:362 ˙ 0:01
for the long-range case, indicating a stabilization of the ferromagnetic phase. We
used tMPS to study the dynamics of these models following a linear quench of
the transverse field from the paramagnetic phase through the critical point into the
ferromagnetic phase. We saw strong non-adiabatic effects in the heat as quenching
continued into the ferromagnetic region, scaling of the density of defects consistent
with the KZH, and the oscillation of the bond entropy near its limiting ferromagnetic
phase value for nearly adiabatic quenches.
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the Alexander von Humboldt Foundation and the National Science Foundation
under Grant PHY-0903457. We also acknowledge the Golden Energy Computing
Organization at the Colorado School of Mines for the use of resources acquired
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Appendix: Time Evolution of Exact Solution of 1D
Transverse-Field Quantum Ising Model for Comparison
with tMPS

The solution of the statics of the transverse-field quantum Ising model is covered in
standard texts [52]. However, for comparison with tMPS we require a description of
the dynamics, and so we present the dynamical case here. To find the exact solution
of the Ising model,

OH D �J
X

hi;j i
O� z
i O� z
j � h

LX

iD1
O�xi ; (7.106)

we affect the Jordan–Wigner transformation

O�xi D 1 � 2 Oc
i Oci ; (7.107)

O� z
i D �

�
Oci C Oc
i

�Y

j<i

�
1 � 2 Oc
j Ocj

�
; (7.108)
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where the fermionic operators Oci satisfy the anti-commutation relations f Oci ; Oc
j g D
ıij, f Oci ; Ocj g D f Oc
i ; Oc
j g D 0. This transforms the Ising model into the fermion
Hamiltonian

OH D �J
L�1X

iD1

�
Oc
i Oc
iC1 C Oc
i OciC1 C h:c:

�
C 2h

LX

iD1
Oc
i Oci � Lh: (7.109)

As this is a quadratic form in fermion operators, it may be diagonalized by a
canonical (Bogoliubov) transformation [85, 86]

Oci D
LX

kD1

�
uik O�k C v?ik O�
k

�
(7.110)

which provides the set of Bogoliubov–de Gennes equations

�kuk D Auk C Bvk (7.111)

�kvk D �Buk � Avk; (7.112)

where uk are the elements of fuik; i D 1; : : : ; Lg arranged as a vector and likewise
for vk . The matrices A and B are real and tridiagonal, with the nonzero matrix
elements Ai;i D 2h, Ai;j D �J , ji � j j D 1 and Bi;iC1 D �BiC1;i D �J . The
pairs .uik; vik/ with positive energy �k , �1 
 �2 
 � � � 
 �L, and the normalization
jukj2 C jvkj2 D 1 define quasiparticle operators

O�k D u?ik Oci C vik Oc
i (7.113)

which bring the Hamiltonian into the diagonal form

OH D
NX

kD1
�k

�
O�
k O�k �

1

2

�
: (7.114)

Corresponding to every such pair is another pair .Quik; Qvik/ D .vik; uik/with Q�k D ��k
which defines the conjugate operator O�
k . Writing uk and vk together as a composite
vector, the Bogoliubov–de Gennes equations take the form of a real symmetric
eigenvalue problem of dimension 2L:

�k

�
uk
vk

�
D
�
A B

�B �A
��

uk
vk

�
(7.115)

which can be readily solved using standard eigenvalue methods [87].
Evolution under the fermion Hamiltonian Eq. (7.109) does not preserve the

number of fermions NF but it does preserve the fermionic parity .�1/NF . Because
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the ground state is the Bogoliubov vacuum it contains no fermions, and so the first
accessible excited state consists of two Bogoliubov excitations, one in each of the
lowest two modes. The gap between the ground and first excited states is thus �1C�2.

We now consider the Heisenberg equations of motion for the fermi operators

i„d Oc .t/
dt
D A .t/ Oc .t/C B .t/ Oc
 .t/ ; (7.116)

where A.t/ and B.t/ are the time-dependent generalizations of A and B above
and Oc.t/ and Oc
.t/ are the elements of f Oci .t/g and f Oc
i .t/g, respectively, arranged as
vectors. Because this equation is linear in the Fermi operators it may be diagonalized
with a time-dependent Bogoliubov transformation

Oci .t/ D
LX

kD1

�
uik .t/ �k C v?ik .t/ O�
k

�
; (7.117)

where ui .t / and vi .t / subject to the time-dependent Bogoliubov–de Gennes equa-
tions

i„ d
dt

�
uk .t/
vk .t/

�
D
�
A .t/ B .t/

�B .t/ �A .t/
��

uk .t/
vk .t/

�
� H .t/

�
uk .t/
vk .t/

�
; (7.118)

and O�k and O�
k diagonalize the Hamiltonian at the initial time. Equivalently, u and v
define time-dependent Bogoliubov operators

O�k .t/ D u?ik .t/ Oci C vik .t/ Oc
i (7.119)

such that the time-evolved state j .t/i is the Bogoliubov vacuum of this set,
i.e. O�k.t/j .t/i D 0. To compare with the MPS simulations, we note that the energy
at time t is

� 1
2

X

k

�k .t/ D �1
2

X

k

.uk .t/ vk .t//H .t/

�
uk .t/
vk .t/

�
: (7.120)

Similarly, the density of defects is

� .t/ D 1

2L

L�1X

iD1
h .t/ j �1 � O� z

i O� z
iC1
� j .t/i; (7.121)

D 1
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#
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(7.122)
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Fig. 7.10 Demonstration of
Bogoliubov–de Gennes
method convergence. The
errors in the energy computed
with a given time step ıt , Eıt ,
are shown as a function of
time. The ratio of the errors as
a function of time is roughly
.0:01=0:1/4 D 0:0001, as
should be expected for our
fourth-order CFME. Errors in
the density of defects behave
similarly tJ/

(E0.1 (t) − E0.001 (t))/J

E0.01 (t) − E0.001 (t) /J

Time evolution thus reduces to the solution of a 2L� 2L time-dependent matrix
differential equation which we solve using a CFME as in Sect. 7.7. Because the
dimensions of the system are much smaller than those of the associated MPS
problem we are able to take very small time steps, and so the results obtained
in the method may be considered to be numerically exact, see Fig. 7.10. Here we
demonstrate that the error incurred in the energy as a function of time scales with the
infinitesimal time step ıt as ıt4 using our fourth-order CMFE. Hence, by decreasing
ıt , any desired degree of accuracy may be met.
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Chapter 8
The Infinite Size Variational Matrix Product
State Algorithm

Chapter 7 discusses algorithms using matrix product states (MPSs) as variational
ansätze for finding eigenstates and time evolution of 1D quantum systems with a
finite number of sites. In this chapter we instead focus on a system which has an
infinite number of lattice sites1 and whose Hamiltonian is spatially homogenous.
Because of the translational invariance of the Hamiltonian, the eigenstates may
also be chosen to be translationally invariant. However, in a many-body system
invariance under translations of a single site may be spontaneously broken, resulting
in a system which is only translationally invariant under shifts by q sites. Examples
of this type of translational symmetry breaking arise in long-range interacting
systems at strong coupling [1, 2], where crystalline states of any rational filling
occupy finite regions of the phase diagram. As the broken symmetry is associated
with a discrete group, the Mermin–Wagner theorem [3, 4] does not apply and
so the system can display true long-range order. This has the unfortunate side
effect of inducing very strong finite size effects in simulations with open boundary
conditions, where MPS algorithms are most efficient. The algorithm presented
in this chapter assumes that the system is invariant under translation by a user-
specified number of sites q, and then optimizes this unit cell of q sites directly
in the limit of an infinite system size. Performing the optimization in this limit
removes spurious boundary effects which can completely obscure the properties
of the system otherwise. A full set of examples are provided in Sect. 8.4 after the
theory of the algorithm has been developed.

An algorithm for optimizing an infinite MPS was present already in the very
first DMRG paper [5]. This algorithm, which is known as iDMRG,2 begins by

1Because we are considering spatially discrete systems, the infinities we encounter are always
countable.
2Many MPS algorithms have infinite counterparts which are denoted by attaching an “i” to the
beginning of the name, e.g. iTEBD. This naming scheme was developed well before Apple made
it trendy to do so.
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considering a two-site system. The energy is minimized in this configuration,
resulting in the MPS3

j i D
X

i1j1

AŒ1�i1ƒŒ1�BŒ1�j1 ji1j1i: (8.1)

This minimization, and those that follow, can be performed using the ground state
search method presented in Chap. 7. These two-sites now form an environment into
which two new sites are embedded. In order to maintain a consistent canonical form
for the resulting four-site MPS, the environment is formed fromAŒ1� andBŒ1� and the
two new sites replace ƒŒ1� as the orthogonality center. These two interior sites are
optimized by minimizing the energy with the outer two-sites held fixed, resulting in
the four-site MPS

j i D
X

i1i2j1j2

AŒ1�i1AŒ2�i2ƒŒ2�BŒ2�j2BŒ1�j1 ji1i2j2j1i: (8.2)

The procedure of inserting two new sites and optimizing them with the others held
fixed is repeated, leading at the nth iteration to an MPS of the form

j i D
X

i1:::inj1:::jn

AŒ1�i1AŒ2�i2 : : : AŒn�inƒŒn�BŒn�jn : : : BŒ2�j2BŒ1�j1 ji1 : : : injn : : : j1i :

(8.3)

Using this method, White and Huse [6] found many of the properties of the spin-
1 antiferromagnetic Heisenberg chain an unprecedented precision of 12 digits. In
particular, they verified Haldane’s conjecture [7] that this model has a finite gap
to excitations, and demonstrated the presence of long-range string order of the
correlator

g .`/ D
*
OS z
0

`�1Y

kD1
.�1/ OS z

k OS z
`

+
; (8.4)

corresponding to a hidden Z2 � Z2 order [8].4

While iDMRG produced very good results for this case, it is rarely used to study
infinite systems because of strong setbacks in the general case. One of the main
setbacks is that iDMRG does not produce a translationally invariant wavefunction.
That is to say, after a large number of iterations the resulting state Eq. (8.3) is

3Here and throughout this section the superscript index in brackets denotes from which iteration of
iDMRG the particular tensor was obtained rather than its position in space.
4For a physical interpretation of string order and the order parameter g .`/, see the discussion
following Eq. (6.74). While the results given there are for the AKLT state, the AKLT state and the
ground state of the spin-1 antiferromagnetic Heisenberg model are in the same quantum phase.
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still an open boundary MPS with the central tensors being increasingly accurate
representations of the bulk tensors which would be embedded in the center of an
infinite chain. This makes it useful as a means to generate an initial ansatz for a
finite-size simulation, but not to study the translationally invariant infinite system.
As first realized by McCulloch [9], we can identify a translationally invariant unit
cell from the tensors obtained by iDMRG by writing the infinite wavefunction in
Vidal canonical form as

j i D
X

:::ik ikC1ikC2ikC3;:::

: : :
�
ƒŒA��ŒA�ikƒŒB��ŒB�ikC1

� �
ƒŒA��ŒA�ikC2ƒŒB��ŒB�ikC3

�
: : :

� j : : : ikikC1ikC2ikC3 : : : i ; (8.5)

where the repeat unit has been bracketed out. Translating this result into the A and
B language using Eqs. (6.43) and (6.44), we have that the current best guess at the
unit cell is

AŒn�iƒŒn�BŒn�j
�
ƒŒn�1���1

: (8.6)

With the realization of this repeat unit, we find that the algorithm can produce
approximations to an infinite many-body state which is exactly translationally
invariant. Explicitly, the infinite state is

j i D
X

:::ikjk ikC1jkC1:::

: : :

�
AŒn�ikƒŒn�BŒn�jk

�
ƒŒn�1���1�

�
AŒn�ikC1ƒŒn�BŒn�jkC1

�
ƒŒn�1���1�

: : :

� j : : : ikjkikC1jkC1 : : : i : (8.7)

So far we have considered only unit cells which are two-sites in length, as
this is the configuration considered in the original iDMRG work. However, the
procedure can be applied to unit cells of any length, as required for systems
which spontaneously break single-site translational invariance. In order to keep
the notation light, we will continue to use the two-site notation for the unit cell.
Expressions for larger unit cells may be derived from these by treating i and j
as multi-component site indices i D ˚

i1; : : : ; ibq=2c
�
,5 j D ˚

jbq=2cC1; : : : ; jq
�

and
then decomposing AŒn�i as a product of left-canonical matrices AŒn�i1 : : : AŒn�ibq=2c

and likewise for BŒn�. We will use the symbol q to denote the length of the unit cell
in what follows. We also note that the computation time scales linearly in the length
of the unit cell.

5Here bnc represents the smallest integer less than or equal to n.
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An important practical consequence of McCulloch’s unit cell identification is
that we can use the optimal tensors from the .n � 1/ st and nth iteration cycles to
construct a guess at the optimal wavefunction of the .nC 1/ st iteration. The optimal
tensor at the nth iteration Eq. (8.3) may be written as

AŒ1�i1 : : : AŒn�inƒŒn�BŒn�jn : : : BŒ1�j1

D AŒ1�i1 : : :
�
AŒn�inƒŒn�BŒn�jn

�
ƒŒn�1���1�

ƒŒn�1� : : : BŒ1�j1 : (8.8)

Identifying the unit cell, and recognizing that in the limit of an infinite system the
presence of one additional unit cell is inconsequential, we can insert our best guess
at the unit cell Eq. (8.6) to obtain a guess at the optimal tensor of the nC1th iteration

AŒ1�i1 : : :

�
AŒn�inƒŒn�BŒn�jnC1

�
ƒŒn�1���1�

�
AŒn�inC1ƒŒn�BŒn�jn

�
ƒŒn�1���1�

ƒŒn�1� : : : BŒ1�j1

D AŒ1�i1 : : : AŒn�in
�
ƒŒn�BŒn�jnC1

�
ƒŒn�1���1

AŒn�inC1ƒŒn�

�
BŒn�jn : : : BŒ1�j1 ;

(8.9)

where the last line has bracketed out the guess. In this form it is also clear that, for a
two-site unit cell, the optimization procedure optimizes the first site and the second
site in the unit cell in alternate iterations. That is, the position of the beginning of the
unit cell shifts each iteration. For unit cells of larger than two-sites there is greater
freedom in how to split the tensor for absorbing into the environment, but practical
experience shows that cutting the unit cell in half as in the two-site case works best.6

This is because this decomposition maintains that the two environments are equally
valid representations of their infinite counterparts, avoiding “one-sided” errors.

With these notations, we may now state the infinite-size variational ground state
search with MPS (iMPS) algorithm as formulated by McCulloch.

1. Input
Input the matrix product operator (MPO) representation of the Hamiltonian7

and a sequence of bond dimensions f�ig, i D 1; 2; : : : . Set � D �1.

6For a unit cell with an odd number of sites q, we alternately absorb dq=2e and bq=2c into the left
environment.
7See Chap. 7 for a discussion of MPOs.
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2. Initialization

(a) Construct a finite-size, open boundary simulation on q sites and find the
optimal state for the given �. Bring into mixed canonical form AŒ1�ƒŒ1�BŒ1�.

(b) Absorb AŒ1� and BŒ1� into the environment using the caching recursions
Eqs. (7.44)–(7.46) discussed in Sect. 7.3. Solve for the ground state of a
new q-site cell with this environment, and bring into mixed canonical form
AŒ2�ƒŒ2�BŒ2�. Set n D 2.

3. Iteration

(a) Absorb AŒn� and BŒn� into the environment.
(b) Initialize a trial guess at the ground state with the new environment�

ƒŒn�BŒn�jnC1
�
ƒŒn�1���1 AŒn�inC1ƒŒn�

�
.

(c) Using the trial guess, find the ground state, and bring into mixed canonical
form AŒnC1�ƒŒnC1�BŒnC1�.

(d) Check for convergence. If converged, measure desired properties and incre-
ment to the next bond dimension �. If the last � was computed, exit,
otherwise return to 3(a). If convergence is not reached, increment n by one
and return to 3(a).

8.1 The Orthogonality Fidelity

If the ground state of the given Hamiltonian has the translational symmetry assumed
by the iMPS unit cell ansatz, then it is expected that the iMPS iteration above
converges to a fixed point in which the unit cells obtained from concurrent iterations
are close in some sense. We can make this intuition precise by introducing the
orthogonality fidelity

Fortho D Tr

rq
�
Œn�
R �

Œn�1�
q
�
Œn�
R ; (8.10)

where the reduced density matrices �Œn�R and �Œn�1� are obtained by tracing over
everything to the right of the current unit cell at the nth iteration and to the right
of the orthogonality center at the .n � 1/ st iteration, respectively. For a mixed-

canonical state, �Œn� D ƒŒn�
ƒŒn�. We can compute �Œn�R by performing a singular

value decomposition ƒŒn�BŒn� D USV . ƒŒn�
R is SV , and �Œn�R D ƒŒn�

R



ƒ
Œn�
R . Now, using

the cyclic properties of the trace for finite matrices, Fortho is the sum of the singular

values of ƒŒn�
R ƒ

Œn�1�
, which is straightforwardly calculated.
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8.2 Orthogonalization of MPSs in the Thermodynamic Limit

Let us now turn to measurements using our fixed point MPS. First, we recall that the
translationally invariant unit cell is represented most accurately at the nth iteration as

AŒn�iƒnB
Œn�j

�
ƒŒn�1���1

; (8.11)

or, shifting the position of the beginning of the unit cell, as

�
ƒŒn�1���1

AŒn�iƒŒn�BŒn�j : (8.12)

Considering Eq. (8.11) and shifting the orthogonality center to the edge of the unit
cell, we find

AŒn�iAŒn�jƒ
Œn�
R

�
ƒŒn�1���1

: (8.13)

Here, the tensor describing the right half of the unit cell, ƒŒn�BŒn�j , has been
converted to AŒn�jƒŒn�

R , where AŒn�j is left-canonical and different from the tensor
AŒn�i describing the left half of the unit cell. In order to keep the notation light, we
will use A for both of these tensors, and they will be distinguished by the indices
and the order in which they appear within the unit cell. The appearance of the

matrix P � ƒ
Œn�
R

�
ƒŒn�1���1 indicates a deviation from orthonormality for finite

Fortho, which is always the case in numerics.8 By a deviation from orthonormality,
we mean that the right basis of AŒn�j is not orthogonal, and also that the transfer
matrix has a spectral radius different than 1. Similarly, by extracting ƒŒn�

L from the
SVD of AŒn�iƒŒn� in Eq. (8.12), one can show that the left basis of AŒn�i is also not
orthogonal. A means to measure the amount of (non)orthogonality in the bases of
these MPS tensors is to measure the expectation of the unit operator between these
states. This is readily done within the transfer operator formalism introduced in
Sect. 6.5.

We define the transfer operator of a left-canonical unit cell, TL .E/ as

TL .E/ D
X

ij

P 
Aj


Ai



EAiAjP ; (8.14)

where P was defined in the last paragraph. Here E is a � � � matrix, and the
transfer operator TL is an operator which takes � � � matrices to � � � matrices.
Also, we note that TL operates on the right of E. Hence, we use the notation TL .E/

8Except in extreme cases, for example if the ground state is a product state.
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=

TL(I) = I TR(I) = I

=

a b

Fig. 8.1 Normalization conditions for infinite MPSs. (a) For a left-canonical unit cell, the transfer
operator of the unit cell admits the identity as a left eigenmatrix with eigenvalue 1. (b) For a right-
canonical unit cell, the transfer operator of the unit cell admits the identity as a right eigenmatrix
with eigenvalue 1

to avoid confusion with the direction of operation. Also, while naively the operation
of the transfer operator would require O

�
�4
�

operations, it can be done in O
�
�3
�

by exploiting its tensor network structure.
The usefulness of the transfer operator is best seen by considering the norm of

the translationally invariant wavefunction, which is the contraction of an infinite
tensor network. If we assume that we have contracted this network from �1 to
0 and the result is stored in E, then TL .E/ gives the result of this contraction
being carried through one more unit cell. Hence, for an orthonormal state, we would
have that TL .I / D I , see Fig. 8.1. Stated equivalently, the identity matrix is a left
eigenmatrix of the transfer operator with eigenvalue 1. However, in the present case,
TL .I / D P 
P . We can remedy this [10] by solving for the largest eigenmatrix of
TL .I /, call it VL. Here it should be noted that TL .I / is not symmetric in general.
Also, because of the tensor network structure of TL .E/, a sparse eigensolver
should be used to find the eigenmatrix corresponding to the largest eigenvalue.
In practice we use the routine dnaupd from the Arnoldi-based ARPACK [11]
package for non-symmetric sparse matrices. Because of the “quadratic” form of
TL .I /, VL is Hermitian and positive definite when the largest eigenvalue is non-
degenerate, and hence we can decompose it into VL D X
X where X is invertible.
While this is suggestive of a Cholesky decomposition [12], Cholesky decomposition
becomes unstable when the matrix is nearly singular [13] and so it is advisable to
rather perform an eigenvalue decomposition VL D UƒU
 with U the matrix with
eigenvectors of VL as columns and then X D pƒU
. We then transform the unit
cell via a similarity transformation XAiAjPX�1 whence TL .I / D I , as desired.
The case of degenerate maximal eigenvalue will be discussed at the end of this
subsection.

Shifting the starting point of the unit cell as in Eq. (8.12) and moving the
orthogonality center to the left, we have that the right-canonical unit cell is

QBiBj ; (8.15)

where Q � �
ƒŒn�1���1 ƒŒn�

L . The interpretations of Bi and ƒL are parallel to that
of Aj and ƒR above. We stress that this unit cell is independent of X , and so all
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operations here are compatible with the change of basis of the unit cell such that the
right basis is orthogonal. For the transfer operator of a right-canonical unit cell

TR .E/ D
X

ij

QBiBjEBj 
Bi 
Q
; (8.16)

we hence have that TR .I / D QQ
. Proceeding as before, we find the (right)
eigenmatrix VR associated with the largest eigenvalue and decompose it as VR D
YY
 via an eigenvalue decomposition, VR D UƒU
, Y D U

p
ƒ. We then

transform the unit cell as Y �1QBiBj Y . If we reinsert all definitions, we find that
the properly orthogonalized unit cell may be written as

XAŒn�iƒŒn�BŒn�jYY�1 �ƒŒn�1���1
X�1 : (8.17)

This may be brought into the original form of the unit cell

AŒn�iƒŒn�BŒn�j
�
ƒŒn�1���1

; (8.18)

by identifying the new set of tensors

AŒn�i D XAŒn�i ; (8.19)

BŒn�j D BŒn�j Y ; (8.20)

ƒŒn�1� D XƒŒn�1�Y : (8.21)

The identification of the tensors Eqs. (8.19)–(8.21) has the benefit of not requiring
the inverses of X and Y , but only of XƒŒn�1�Y . This set of transformations gives
us a translationally invariant unit cell with proper left and right orthonormalization
ensured. In what follows, when we write, e.g., Ain we refer to the orthonormalized
tensor and not the raw output from the iMPS iteration.

We can now discuss canonical forms for the translationally invariant MPS state.
By writing down a product of several unit cells

: : : AŒn�iƒŒn�BŒn�j
�
ƒŒn�1�

��1

AŒn�iƒŒn�BŒn�j
�
ƒŒn�1�

��1

AŒn�iƒŒn�BŒn�j
�
ƒŒn�1�

��1

: : : ;

(8.22)

we can identify three different canonical forms paralleling the canonical forms
for finite MPSs. The first is fully left-canonical, and is obtained by Aj D
ƒŒn�BŒn�j

�
ƒŒn�1���1:

: : :
�
Ai1Aj1

� �
Ai2Aj2

�
: : : : (8.23)
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Here, the parentheses denote unit cells, and the ordering of the indices now denotes
position in the lattice from left to right rather than the optimization cycle index,
compare Eq. (8.3). By the properties of our orthonormalization procedure above,
these tensors are truly left-canonical in the sense of Eq. (6.24). The second is fully

right-canonical, and is obtained by Bi D �ƒŒn�1���1 AŒn�iƒŒn�:

: : :
�
Bi1Bj1

� �
Bi2Bj2

�
: : : : (8.24)

Again, these matrices are all right-canonical in the sense of Eq. (6.33). The mixed-

canonical state is obtained by inserting the identity I D ƒŒn�1� �ƒŒn�1���1 after one

of the
�
ƒŒn�1���1 and using the identifications of Aj and Bi to find

: : :
�
Ai1Aj1

�
ƒŒn�1� �Bi2Bj2

�
: : : : (8.25)

This is the form most useful for expectation values. Here, the parentheses denote
the left-canonical and right-canonical unit cells from Eqs. (8.23) and (8.24). The
left-canonical unit cell repeats infinitely to the left ofƒŒn�1�, and the right-canonical
unit cell repeats infinitely to the right of ƒŒn�1�. We note that the compatibility of

Eqs. (8.23)–(8.25) implies that TR admits ƒŒn�1�
ƒŒn�1� as a left eigenmatrix with

eigenvalue 1 and similarly TL admits ƒŒn�1�ƒŒn�1�
 as a right eigenmatrix with
eigenvalue 1. This can also be verified directly.

In the case of a degenerate maximal eigenvalue, the left and right eigenmatrices
corresponding to the maximal eigenvalue we find are not unique, but form a basis
for the degenerate eigenspace. Hence, the ordering of the numerically obtained
eigenmatrices may be such that hkjki is very close to zero, where hkj is the
kth left eigenmatrix, jki is the kth right eigenmatrix, and we use the Frobenius
inner product. This can cause severe instability in the formation of the properly
orthogonalized tensors given in Eqs. (8.19)–(8.21). To avoid this difficulty, we form
the Gram matrix of the left and right eigenmatrices

Mkk0 D hkjk0i ; (8.26)

and perform a singular value decompositionM D USV . We now unitarily transform
the left-and right eigenmatrices as

jki D Vkk0 jk0i ; (8.27)

hkj D Uk0khk0j ; (8.28)

such that their Gram matrix is now the positive diagonal matrix of singular values S .
This is effectively a transformation of the left and right eigenmatrices to the well-
conditioned subspace. In practice we perform this procedure on any set of Hermitian
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and positive definite eigenmatrices whose eigenvalues differ in a relative sense by
10�4,9 as a quasi-degeneracy resulting in a large correlation length may be indicative
of a true degeneracy that is not converged in �.

8.3 Expectation Values

We now turn to expectation values. Here we will use the mixed-canonical form
Eq. (8.25). Without loss of generality, we assume that the support10 of our observ-
able operator contains the orthogonality center. On the right of the rightmost
operator is an infinite product of right-canonical matrices B . Due to the nor-
malization of the state and the right-canonical condition shown graphically in
Fig. 8.1, the result of the infinite contraction of right-canonical matrices becomes
limN!1 T NR .I / D I . Similarly, on the left of the leftmost operator we have an
infinite product of left-canonical matrices A, yielding limN!1 T NL .I / D I . Thus,
the calculation of expectation values of operators with finite support is obtained by
contracting the finite network on which our expectation operators have support and
tracing the boundaries, see Fig. 8.2. We will turn to the question of operators with
infinite support,11 whose expectation values diverge for the infinite state, in the next
paragraph. When computing two-point correlation functions, e.g., h On0 Onri, we find
that best results are obtained when the result is averaged over all possible separations
r consistent with translation invariance. Namely, we compute

h On0 Onri D 1

q

q�1X

iD0
h Oni OniCri ; (8.29)

. . . . . .

=

Fig. 8.2 Expectation of a finitely-supported operator within an infinite MPS. Due to the left- and
right-canonical conditions shown graphically in Fig. 8.1, the expectation of an operator whose finite
support contains the orthogonality center may be evaluated as a finite tensor network contraction
using the methods of Sect. 7.5

9This value corresponds to a correlation length of roughly 104 lattice sites. The reason for
this choice is practical; current experimental setups using ultracold gases would have difficulty
distinguishing a state with a correlation length this large from a state which is truly long-range
ordered. Hence, explicitly breaking symmetries by mixing near-degenerate eigenstates for the
benefit of numerical stability will not affect our ability to predict experimental outcomes.
10The support of an operator is the region of the lattice on which the operator is nonzero.
11That is, expectations of operators which act on all sites in the infinite lattice.



8.3 Expectation Values 233

where q is the number of sites in the unit cell and the summation runs over all sites
in the unit cell. This accounts for possible breaking of the translational symmetry
within the unit cell itself.

We now turn our attention to finding the expectation value of an operator
representing an extensive observable, taking the Hamiltonian as a paradigmatic
example [14]. This amounts to finding the energy density of the infinite state.
We make the assumption that the expectation of the observable grows at most
extensively such that it has a finite density in the thermodynamic limit. This
holds for all reasonable Hamiltonians, but not, for example, for the square of the
Hamiltonian.12 The Hamiltonian is assumed to be spatially homogenous, and so its
MPO representation is specified by a single MPO matrix W . To be concrete, let us
consider the MPO representation of the Ising model in a transverse field

OHIsing D �J
X

hi;j i
O� z
i O� z
j � h

X

i

O�xi ; (8.30)

which is given by

W D
0

@
OI 0 0

O� z 0 0

�h O�x �J O� z OI

1

A : (8.31)

Here O�� denotes the Pauli matrix along the �th Cartesian direction. This MPO has
a bond dimension �O D 3.

Assuming the state to be in right-canonical form as in Eq. (8.24), the expectation
h OH i becomes an infinitely large contraction of the form

h OH i D Tr

2

4: : :
 
X

ii0

Bi? ˝W ii0 ˝ Bi 0

!0

@
X

jj0

Bj ? ˝W jj0 ˝ Bj 0

1

A : : :

3

5 :

(8.32)

Comparing with Eq. (6.65) suggests defining a generalized unit cell transfer opera-
tor as

TRIX .E/ D
X

iji0j 0

X ii0Ijj0Bi 0Bj 0

EBj 
Bi 
 ; (8.33)

where X ii0Ijj0 is an operator acting on the local indices of the unit cell. Defining the
elements of the MPO representation of our operator acting on the unit cell as

12This can be seen by considering the expectation of OH2 in the ground state, which is e0L2 with e0
the energy density and L ! 1 the number of lattice sites.
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Ĥ =Tr

Tr

(

(

. . . . . . )

)
Nlim

N→∞

Fig. 8.3 Expectation of an infinitely-supported operator within an infinite MPS. Because of the
repeating structure of the unit cell and the homogenous MPO representation, we can identify
a repeating tensor network structure which is the generalized transfer operator TRIW��0 . The
uncontracted bonds in the center of the expectation correspond to the bond indices of the MPO

W ii0jj0

��0 D
X

�00

W ii0
��00W

jj0

�00�0 ; (8.34)

we can write the infinite contraction in terms of the generalized transfer operator
Eq. (8.33) as shown graphically in Fig. 8.3.

The general procedure of evaluating the infinite product of transfer operators
is similar to the procedure used to normalize infinite MPSs. In the normalization
procedure, the restriction that the state have a norm of one implied that the transfer
operator had a dominant eigenmatrix with eigenvalue 1. The left- or right-canonical
form of the unit cell then allowed us to identify that this dominant eigenmatrix
was in fact the identity operator. In the present case, the dominant matrix will have
�O components,

�
E1; : : : ; E�O

�
, where �O is the bond dimension of the MPO. To

outline the general structure of the dominant matrices, let us consider multiplying13

the matrix W in Eq. (8.31) by itself L times to find

W L D
0

@
OI˝L 0 0

OI˝.L�1/ ˝ O� z 0 0
OHIsing �J O� z ˝ OI˝.L�1/ OI˝L

1

A : (8.35)

This is indicative of the general structure of an MPO. In particular, the two halves
of the bond term O� z O� z have a string of identities appended to them to become
OI˝.L�1/ ˝ O� z and O� z ˝ OI˝.L�1/. In DMRG, these operator strings are referred to
as connection operators, as they specify how the Hamiltonian connects the L sites
acted on by this MPO product to the rest of the system. Furthermore, the lower left
element of the MPO is the Hamiltonian onL sites, and the upper left and lower right
components are the identity on L sites. Because the only term in the first row is the
identity, E1 is an eigenmatrix of TR with eigenvalue 1 provided that the unit cell is
in right-canonical form. Hence, the first component of the dominant eigenmatrix is
the identity matrix.

To find the other components of the dominant matrix, let us consider that we have
performed the expectation Eq. (8.32) over n unit cells starting with some boundary

13By multiplication, we mean contraction over the bond indices with the matrix-valued elements
combined by tensor products, see Sect. 7.2.2.
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matrices fE� .0/g and have stored the result in the matrices fE� .n/g. Here n denotes
over how many unit cells the contraction has been performed. Carrying out the
contraction over one further unit cell produces the matrix

E� .nC 1/ D
X

�0

TRIW��0 .E�0 .n// : (8.36)

We now focus on the case where all infinite-ranged terms in the Hamiltonian are
free of Fermi phases.14 In these cases any operator appearing on the diagonal of the
MPO matrix W is proportional to the identity. Separating out this part of the MPO
explicitly, we have the fixed point relations

.I � xTR/ .E�/ D
X

�0<�

TRIW��0 .E�0/ : (8.37)

In Eq. (8.37) we have dropped the arguments n with the understanding that the
dominant matrices are fixed points of Eq. (8.37) and are hence independent of n.

The crucial component in solving Eq. (8.37) is that, because of the lower
triangular structure and the fact that E1 is known a priori, the right-hand side of
Eq. (8.37) is a known matrix, and hence Eq. (8.37) represents a non-symmetric
system of linear equations for E� , see Fig. 8.4. For � ¤ �O , there are two
possibilities. The first is that there are no long-range terms, and so x D 0. In this
case there is no linear system of equations, but rather an equality for the unknown
matrix E� . The second is that there is a long-range interaction with x < 1.15 In this
case we do have to solve a linear system of equations, but the matrix on the left-
hand side is nonsingular due to the fact that the spectral radius of TR is 1. We solve
these using the GMRES method [15], a Krylov-subspace based sparse linear solver
for non-symmetric matrices. This allows us to take advantage of the tensor network
structure when applying TR so that the solution is O

�
�3
�
. In the case of the Ising

model with MPO given by Eq. (8.31), all elements with 1 < � < �O have x D 0,
and so the associated fE� .n/g can be solved for explicitly. These matrices do not
depend on the initial values E� .0/ provided that E1 .0/ D I , and so are the fixed
points fE�g of Eq. (8.37).

=−x

Fig. 8.4 Fixed point relations for the dominant matrices of the Hamiltonian MPO transfer matrix,
Eq. (8.37)

14This assumption does not hold for long-range tunneling of fermions, for example. Such cases
can be dealt with, but are not relevant for this thesis.
15x D 1 corresponds to uniform long-range interactions, and we know of no physical real-space
Hamiltonians involving such terms.
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Finally, we turn to � D �O . Here we have x D 1, and so the left-hand matrix
in Eq. (8.37) is right-singular for components of E�O along the identity. However,
the lower-left element of a product of L MPO matrices is the Hamiltonian on L
sites, see Eq. (8.35), and so E�O .nC 1/ represents the overlap of the Hamiltonian
on n unit cells in the basis states of the unit cell MPS decomposition. Hence, the
singularity arises from the fact that this expectation can take on any value e0qn,
where e0 is the energy density, q is the number of lattice sites, and n is a positive
integer. That is to say, the result of carrying the contraction through one more unit
cell is

E� .nC 1/ D �qe0I ı�;�O C
X

�0

TRIW��0 .E�0 .n// ; (8.38)

where the constant piece is the energy expectation of the unit cell. We can remove

this ambiguity by using the fact that ƒŒn�1�
ƒŒn�1� spans the left null space of the
matrix .I � TR/ to find

qe0 D Tr

2

4ƒŒn�1�
ƒŒn�1� X

�0<�O

TRIW��0 .E�0/

3

5 : (8.39)

This provides us with the energy density. Hence, the relevant fixed-point condition
for the dominant matrices is not Eq. (8.37) but

.I � xTR/ .E�/ D �qe0I ı�;�O C
X

�0<�

TRIW��0 .E�0/ ; (8.40)

which differs from Eq. (8.37) only for � D �O . The fact that the energy density takes
the form Eq. (8.39) also implies that the right-hand side of Eq. (8.40) is orthogonal to
the left null space of the left-hand side matrix. By the fundamental theorem of linear
algebra [16], the right-hand side lies completely within the image of the operator on
the left-hand side, and so this equation has a consistent solution and not merely
a least-squares or pseudo-inverse solution in spite of the fact that the operator on
the left-hand side is singular. This construction contrasts with the method taken in
[14], in which the extensive part of the observable is not included in Eq. (8.40) and
a projection procedure within the GMRES method is used instead. The fact that
we can add any multiple of the identity matrix to the dominant matrix E�O which
solves Eq. (8.40) and still have a solution to Eq. (8.40) corresponds to the freedom
in choosing a zero of energy for the infinite system. Using Eq. (8.39) we get the
energy per site several orders of magnitude more accurately than we obtain from
raw output of the effective Hamiltonian eigenequation used to optimize the iMPS.
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8.4 Examples

To demonstrate the iMPS method, we will study the spin-1/2 and spin-1 antifer-
romagnetic Heisenberg models. Antiferromagnetic Heisenberg models have long
been of interest in studies of quantum magnetism, where they represent a minimal
Hamiltonian describing particles whose spins wish to be anti-aligned with their
neighbors [17]. The spin-1/2 model is exactly solvable via Bethe ansatz [18, 19],
and is known to be critical with central charge 1 and z–z correlations decaying
asymptotically as

h OS z
0
OS z
r i � .�1/r

p
ln jr j
jr j : (8.41)

The z-z correlation function describes how strongly the z-component of a spin at
position 0 is correlated with the z-component of a spin r sites away. Experimentally,
this information is probed via the dynamical structure factor

S .q; !/ D L�1
Z 1

�1
dtei!t

LX

i;jD1
eiq�.ri�rj /h OS z

i .t /
OS z
j .0/i ; (8.42)

where OS z
i .t / is a Heisenberg picture operator and L is the number of sites [17].

In one dimension, true long-range ferromagnetic order where h OS z
0
OS z
r i approaches a

constant as r ! 1 is destroyed by strong fluctuations according to the Mermin–
Wagner theorem [3, 4], and so power-law decay represents the strongest allowed
degree of correlation. Furthermore, its nearest-neighbor and next-nearest neighbor
z-z correlations are known from the Bethe ansatz solution to be 1

12
.1 � 4 log 2/ �

�0:14771573 [19] and 1
12
.1 � 16 log 2C 9 � .3// � 0:06067977 [20]. The spin-1

model has no properties which are amenable to exact computation. However, its
properties were of great interest after Haldane [7] conjectured a major difference
between integer-spin and half integer-spin antiferromagnetic Heisenberg models.
In particular, as opposed to the half-integer case where the system is critical and
correlations decay algebraically, integer-spin chains are gapped and non-critical,
and z-z correlations decay exponentially as

h OS z
0
OS z
r i � .�1/r

exp .� jr j =�/
jr j : (8.43)

DMRG found one of its important early applications for this system in which
Haldane’s conjecture was verified, and the gap and correlation length � were both
calculated to high precision [6].

In Fig. 8.5, we show the z-z correlation function of these two models computed
from converged iMPS simulations with a range of bond dimensions �. In the upper
plot for the spin-1/2 model, we also plot the nearest-neighbor and next-nearest-
neighbor correlations as horizontal lines to accentuate that even MPSs with small
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Fig. 8.5 Correlation functions for the spin-1/2 and spin-1 Heisenberg models computed with
iMPS. Top panel: The z-z correlation functions for the spin-1/2 antiferromagnetic Heisenberg
model is compared with exactly known results. As the bond dimension is increased, the range over
which this function follows the true algebraic decay increases, compare Fig. 6.5. Bottom panel:
The z-z correlation function for the spin-1 antiferromagnetic Heisenberg model is shown together
with a fit demonstrating its exponential decay

bond dimension � D 10 capture the short-distance physics well. The tilted dashed
line is a function with the same scaling as the Bethe ansatz result Eq. (8.41). As
the bond dimension increases, the power-law behavior of the correlator persists to
further distances. Hence, what is more important than the value of the correlator for
a single � is the scaling behavior of the correlator as � is increased. Plotted in yellow,
which lies on top of the light blue line, is the h OSC

0
OS�
r i=2 correlator to demonstrate

that spin-rotational symmetry is preserved by the simulation. As is always the case
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Fig. 8.6 Scaling of the
correlation length with the
bond dimension � in iMPS.
The spin-1/2 chain obeys the
scaling relation Eq. (6.75)
between the correlation
length and the bond
dimension, yielding a central
charge in agreement with the
analytical prediction. The
spin-1 chain shows a
saturation of the correlation
length with the entanglement
cutoff, and is hence
non-critical 0
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for MPSs with a finite bond dimension that do not have long-range order, at large
enough distances the behavior of the correlator always becomes exponential with
a correlation length equal to the largest correlation length of the transfer operator.
This behavior may also be compared with the approximation of a power-law by a
sum of exponentials shown in Fig. 6.5. In the bottom panel of Fig. 8.5 we show the
analogous plot for the spin-1 chain. Here the correlator is exponential, as shown via
the fit through the correlator with the largest bond dimension.

In Fig. 8.6, we display the scaling of the largest correlation length obtained
from the sub-leading eigenvalue of the transfer operator with the bond dimension.
The critical spin-1/2 state shows an increase in the correlation length as the bond
dimension increases, and a fit to the prediction Eq. (6.75) yields a central charge in
good agreement with the known value. Also shown in this plot is the behavior of
the spin-1 chain, in which the saturation of the correlation length to a finite value
implies the absence of criticality. Typical values of � for MPS/DMRG studies on
finite lattices are a few hundreds to a few thousands, with values of tens of thousands
being reported for quasi-2D systems [21, 22]. In finite-size MPS studies one must
first extrapolate �!1 before one can perform reliable finite-size scalingL!1.
By instead taking the limitL!1 first and performing finite-entanglement scaling,
we can obtain very good results using comparatively rather modest values of the
bond dimension �.
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Chapter 9
Finite Temperature Matrix Product State
Algorithms and Applications

Abstract We review the basic theory of matrix product states (MPS) as a numerical
variational ansatz for time evolution, and present two methods to simulate finite
temperature systems with MPS: the ancilla method and the minimally entangled typ-
ical thermal state (METTS) method. A sample calculation with the Bose–Hubbard
model is provided.

9.1 Introduction

The dimension of the Hilbert space for a general many-body system increases
exponentially with the system size, severely restricting the system sizes amenable
to straightforward numerical study. Several techniques have been developed to deal
with this fact, such as the stochastic sampling of the Hilbert space in quantum Monte
Carlo techniques and the judicious use of symmetries and sparse matrix structures in
exact diagonalizations. The most successful approximate method for 1d systems is
the density matrix renormalization group (DMRG) method first pioneered by White
[1] (see Chap. 24 for a methodology tailored towards higher-dimensional lattice
configurations). Soon after, the theory of matrix product states (MPS) [2, 3] was
used to shed light on the amazing success of DMRG [4, 5]. Ideas from quantum
information theory, most notably the idea of bipartite entanglement, have led to the
development of MPS algorithms which generalize DMRG to time evolution [6, 7],
periodic boundary conditions [8], and finite temperature [9, 10]. In this chapter we
review algorithms based on MPS for finite temperature simulations and discuss their
relevance to studying finite temperature superfluid systems.

Published previously as Finite Temperature Matrix Product State Algorithms and Applications,
M.L. Wall and L.D. Carr, Chapter in “Quantum Gases: Finite Temperature and Non-Equilibrium
Dynamics” (Vol. 1 Cold Atoms Series), N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szy-
manska, eds. (Imperial College Press, 2012).

© Springer International Publishing Switzerland 2015
M.L. Wall, Quantum Many-Body Physics of Ultracold Molecules in Optical
Lattices, Springer Theses, DOI 10.1007/978-3-319-14252-4_9
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9.2 Methodology

9.2.1 Matrix Product States

A MPS1 on a lattice with periodic boundary conditions is defined as

j‰mpsi D
dX

i1;i2;:::iLD1
Tr
�

AŒ1�i1 � � �AŒL�iL
�
ji1; : : : ; iLi; (9.1)

where the AŒk�ik are square matrices2 of dimension � (the bond dimension), d is
the dimension of the Hilbert space spanned by the fjikig, and L is the number of
lattice sites. Let us refer to the set of all MPSs with bond dimension � as M�.
An MPS in M� contains Ld�2 parameters, and so it is clear that any state on a
finite lattice can be written as an MPS provided we take the bond dimension to
be �max D d bL=2c. However, the great utility of MPSs is that an MPS with bond
dimension � � �max often provides an excellent approximation to the true state
[12] and allows for exponentially more efficient manipulation and calculation of
observables than an exact representation.

To visualize MPSs and operations with them, it is useful to introduce the notion
of a tensor network diagram as in Fig. 9.1. In such a diagram a box represents a
tensor, free lines are uncontracted indices, and closed lines are contracted indices.
Figure 9.1a shows the state of a many-body system expressed in the basis of the full
Hilbert space as an L-index tensor, and Fig. 9.1b shows the same state written as an
MPS. The advantage of the MPS representation becomes clear when we compute
scalar products such as h j OOj�i.

Fig. 9.1 (a) Tensor network
representation of full four-site
wavefunction. (b) Tensor
network representation of an
MPS on four sites. (c) Tensor
network representation of an
MPO on four sites

Ψ
a

b

c

A[1] A[2] A[3] A[4]

M [1] M [2] M [3] M [4]

1An MPS is a vector in Hilbert space. The qualifier matrix product refers to the fact that the
expansion coefficients in the Fock basis are expressed as products of matrices.
2These matrices can be taken to have the same symmetry as the state they represent, e.g., if the
state has real coefficients in some basis, then the MPS matrices can be taken to be real. See [11]
and the references therein for more details.
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Before we discuss how scalar products are efficiently computed, it is advanta-
geous to introduce a matrix product operator (MPO) as

OO D
dX

i1;:::;iLD1

dX

i 01;:::;i
0
LD1

Tr
�

MŒ1�i1i
0
1 � � �MŒL�iLi

0
L

�
ji1; : : : ; iLihi 01; : : : ; i 0Lj; (9.2)

where each of the MŒk�ik i
0
k is a matrix, the dimensions of which are bounded by a

fixed number (bond dimension) �O . The tensor network representation of an MPO
is similar to that of an MPS, but there are two uncontracted indices per tensor
corresponding to the bra and ket indices; see Fig. 9.1c. Equivalently, one can think
of each element of the matrix MŒk� as being operator-valued, where the operator acts
on the space spanned by fjikig.

Let us now see how to evaluate the scalar product of an operator OO represented
as an MPO between two states j i and j�i represented as MPSs. Let us denote
the MPO matrices of OO as M and the MPS matrices of j i and j�i as A and B,
respectively. Then, we have

h j OOj�i D
dX

i1;:::;iLD1

dX

i 01;:::;i
0
LD1

Tr
�

AŒ1�i1
? � � �AŒL�iL

?
�

� Tr
�

MŒ1�i1i
0
1 � � �MŒL�iLi

0
L

�
Tr
�

BŒ1�i1 � � �BŒL�iL
�

(9.3)

D Tr

0

@

2

4
dX

i1;i
0
1D1

AŒ1�i1
? ˝MŒ1�i1i

0
1 ˝ BŒ1�i

0
1

3

5

� � � � �
2

4
dX

iL;i
0
LD1

AŒL�iL
? ˝MŒL�iLi

0
L ˝ BŒL�i

0
L

3

5

1

A (9.4)

� Tr
�

EŒ1�M .A;B/ � � �EŒL�M .A;B/
�
;

where the last line defines the generalized transfer matrix EŒk�M .A;B/ �Pd
ik ;i

0
kD1 AŒk�ik

? ˝ MŒk�ik i
0
k ˝ BŒk�i

0
k , which is a �2�O � �2�O matrix. Naively

we would expect that the multiplication of two transfer matrices would require
O.�6�3O/ operations, but the special structure of the transfer matrices allows us to
perform such a multiplication in O.�5�2Od2/3 as

3The fact that the boundary matrices of MPSs with open boundary conditions have bond dimension
1 allows us to perform this contraction in O.�3�2Od2/, and recent developments for periodic
boundary conditions have reduced the scaling to O.�3�2Od2/ for large systems with only a few
relevant correlation lengths [13, 14].
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h
EŒk�M .A;B/EŒkC1�

M .A;B/
i

Œ˛�ˇ�;Œ˛0� 0ˇ0�

D
dX

i 0D1

�X

ˇD1

0

@
dX

iD1

�OX

� 00D1

�h
GŒk�

M .A;B/
i

Œ˛�ˇ�;Œ˛0� 00ˇ0�

�
MŒkC1�ii0
� 00� 0

1

ABŒkC1�i 0
ˇ00ˇ0 ; (9.5)

where

h
GŒk�

M .A;B/
i

Œ˛�ˇ�;Œ˛0� 00ˇ0�
�

�X

˛00D1

h
EŒk�M .A;B/

i

Œ˛�ˇ�;Œ˛00� 00ˇ00�
AŒkC1�i
˛00˛0

?
: (9.6)

Here the square brackets around indices denote a composite index in the Kronecker
representation and parentheses give the order in which the contraction should be
performed to ensure the best scaling. In particular, it is essential not to sum over the
˛00 and ˇ00 indices simultaneously.4 The tensor network representation of the scalar
product procedure is given in Fig. 9.2.

Many operators of interest, such as translationally invariant 1d Hamiltonians,
can be easily represented as MPOs with small bond dimension �O � 4–10 [14, 15],
and the MPO representations of more complex operators can be constructed using
simple MPO arithmetic [15, 16]. That the MPO form of an operator is optimal
for MPS algorithms can be straightforwardly deduced using the tensor network
formalism, as the scalar product of an MPO between two MPSs is the most general
1d tensor network that can be efficiently contracted; see Fig. 9.2.

M
[1]

M
[4]

M
[3]

M
[2]

B
[1]

B
[4]

B
[3]

B
[2]

A
[1]

A
[2]

A
[4]

A
[3]

E
[1]

E
[2]

E
[3]

E
[4]

ψ|Ô|φ

E
[1]

E
[2]

E
[3]

E
[4]

E
[2]

EE
[3]

E
[4]

Fig. 9.2 Tensor network representation of the scalar product procedure of Eq. (9.4). The transfer
matrices EŒk�M .A;B/ have been abbreviated as EŒk� for succinctness

4Here and throughout we use Greek indices to denote bond indices and Roman indices to denote
physical indices.
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Fig. 9.3 Tensor network
representation of the
quadratic form representing
h j OU j�i in Eq. (9.7)

Q
[3]
Û

B[3]

A[3]†

B[1] B[4]B[3]B[2]

M[1] M[2] M[3] M[4]

A[1] A[4]A[3]A[2]

Q
[3]
Û

We now turn to the simulation of time evolution using MPSs. The main difficulty
of using MPSs is that M� is not a vector space.5 Thus, when operators such as the
propagator are applied to an MPS we must find the optimal6 projection into M�

to keep the algorithm efficient. We denote this projection as P�. The optimal MPS
j i 2M� representing the MPS OU j�i is

P�
h OU j�i

i
D min

j i2M�

ˇ̌
ˇj i � OU j�i

ˇ̌
ˇ
2

D min
j i2M�

h
h j i C h�j OU 
 OU j�i � 2R

�
h j OU j�i

�i
;

(9.7)

where R.�/ denotes the real part. Each of the scalar products in Eq. (9.7) may be
written as a quadratic form in each of the matrices AŒk�ik , as is demonstrated in the
tensor network diagram Fig. 9.3.

Again denoting the matrices in the MPS representation of j i by A and those of
j�i by B, the quadratic form of the kth site may be written as

QŒk� D AŒk�
QŒk�

O1 AŒk� C BŒk�


QŒk�

OU
 OUBŒk� � 2R
�

AŒk�
QŒk�

OU BŒk�
�
; (9.8)

where AŒk� represents the d�2 elements of the fAŒk�ik g, arranged as a vector, and the
matrices Q OO are defined as

h
QŒk�

OO
i

Œ˛ik˛0�Œˇi 0kˇ0�
D

�OX

�;� 0D1
M
Œk�ik i

0
k

�� 0

2

4
Y

j¤k
EŒj �M .C;D/

3

5

Œ˛�ˇ�;Œ˛0� 0ˇ0�

; (9.9)

5This can be seen from the fact that the addition of two MPSs is given by the direct sum of their
matrices: j C i D j AiCj Bi ) CŒk� D AŒk�˚BŒk�. If the matrices AŒk� and BŒk� have orthogonal
bases, then dim.CŒk�/ D dim.AŒk�/C dim.BŒk�/.
6By optimal we mean that the overlap is maximal in the two-norm. Although MPSs do not form a
vector space, they are embedded in a larger Hilbert space and so this norm is well defined.
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where C and D are either A or B depending on the quadratic form. The Mik i
0
k in this

final expression are the matrices in the MPO representation of OO . The stationary
points of the quadratic form Eq. (9.8) are given by the solution of the linear
system7 [8]

QO1A
Œk� D Q OUBŒk�: (9.10)

The algorithmic procedure for time evolution is to sweep back and forth through
the lattice, solving Eq. (9.10) at each site until convergence is reached. In practice,
it is essential for efficiency not to explicitly form the matrices Q
, but rather to use
iterative methods which require only multiplication by the Q
 to solve Eq. (9.10).
Details on the form of the propagator OU can be found in [16, 17].

9.2.2 The Ancilla Method

At finite temperature, the state of a quantum system is given by the thermal density
matrix O� D e�ˇ OH=Z. The ancilla method [9, 18] relies on the notion of purification
[19] to represent the thermal density matrix as a pure state in an enlarged Hilbert
space. Each physical site is augmented with an ancilla which has the same Hilbert
space dimension as the physical site. The MPS representation of such a system is

j i D
dX

i1;:::;iLD1

dX

a1;:::;aLD1
Tr
�

AŒ1�i1a1 � � �AŒL�iLaL
�
ji1a1 � � � iLaLi: (9.11)

One can think of the combined system as a two-legged ladder, with the physical
sites on the lower leg and the ancillae on the upper leg. The purpose of the ancillae
is to act as a perfect heat bath which, when traced out, provides the proper thermal
density matrix for the physical system. The choice of ancilla for infinite temperature
(ˇ D 0) is simply the normalized purification of the identity

j .0/i D 1p
dL

LY

kD1

dX

ik ;akD1
ıikak jikaki; (9.12)

which represents a product of maximally entangled site-ancilla pairs. This state has
an MPS representation with bond dimension 1 generated by taking all matrices to

7It is important to note that while QO1 is the quadratic form representing the scalar product h j i
it cannot in general be made equal to the identity. The numerical conditioning of this matrix and
of the linear system Eq. (9.10) can be improved by suitable choice of “gauge conditions” on the
matrices A; see [8].
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be AŒk�ikak
˛ˇ D ı˛;1ıˇ;1ıikak =

p
d . The extension to finite inverse temperature ˇ is

provided by evolving only the physical sites8 in imaginary time up to ˇ=2,

j .ˇ/i D e�ˇ OH=2j .0/i : (9.13)

This time evolution can be efficiently performed using the methods of Sect. 9.2.1.
Observables are calculated using transfer matrices as above with the additional
requirement that the ancilla degrees of freedom are traced over.

The ancilla method is conceptually very simple, and becomes numerically exact
for large enough bond dimension. However, because the MPS [Eq. (9.11)] must
encode the information of both the system and the bath, it requires a bond dimension
� �2gs at low temperatures, where �gs is the bond dimension required to accurately
represent the ground state. Typical values of �gs range from 50 to 5,000, making the
ancilla method impractical for many systems at very low temperatures.

We conclude this section by remarking that the ancilla method represents a highly
idealized heat bath chosen to reproduce the exact thermal density matrix. Many of
the current examples of strongly correlated many-body systems, e.g. cold atoms,
are very mesoscopic and are in contact with thermal reservoirs which are also
mesoscopic. A modification of the ancilla method where the perfect entanglement
at infinite temperature is replaced with ancilla–ancilla and ancilla–system couplings
in the Hamiltonian can be devised. Alternatively, one can directly simulate master
equations by considering matrix product density operators with optimal projections
based on the Hilbert–Schmidt distance [8] or matrix product decompositions of
superkets with local projections [10].

9.2.3 Minimally Entangled Typical Thermal States

A new method for finite temperature MPS simulations has recently been proposed
by White [20]. The idea stems from the question “What is a typical wave function
of a quantum system at finite temperature?” That is, if we are to measure a quantum
system at finite temperature, what “typical” pure states would we find, and with
what probabilities? It is clear from the basic tenets of statistical mechanics that any
set of typical states fj� .i/ig must satisfy

X

i

P .i/ j� .i/ih� .i/ j D e�ˇ OH ; (9.14)

8That is, the Hamiltonian only couples physical sites to physical sites, and not ancillae to ancillae
or physical sites to ancillae.
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where P.i/ is the probability of measuring the system to be in state j�.i/i, and so
the expectation of an operator OA at finite temperature may be written as

h OAi D
X

i

P.i/

Z
h�.i/j OAj�.i/i; (9.15)

with Z the partition function. From Eq. (9.15), we see that we can calculate
observables using an unweighted average of h�.i/j OAj�.i/i, if we choose the j�.i/i
at random according to their probabilities of being measured P.i/=Z. It is easy to
generate states satisfying the typicality condition [Eq. (9.14)] simply by taking any
orthonormal basis fjiig and defining

j� .i/i D ŒP .i/��1=2 exp
�
�ˇ OH=2

�
jii; P .i/ D hi j exp

�
�ˇ OH

�
jii: (9.16)

We now use the freedom in the choice of the orthonormal basis fjiig to generate
typical states with the least amount of spatial entanglement, as these are the states
which can be most efficiently represented as MPSs [6, 21]. This amounts to taking
the fjiig to be classical product states (CPSs), jii D QL

kD1 jiki, where ik labels
the state of site k. The set of j�.i/i obtained from this choice of fjiig are called
minimally entangled typical thermal states (METTS).

The most efficient algorithmic procedure for generating thermal averages using
METTS is as follows:

1. Choose a CPS jii at random.
2. Evolve in imaginary time using the methods of Sect. 9.2.1 to generate the

METTS j�.i/i D ŒP.i/t ��1=2 exp.�ˇ OH=2/jii.
3. Compute observables of interest using this METTS and add to the running

averages.
4. Randomly select a new CPS ji 0i according to the probability jhi 0j�.i/ij2.
5. Repeat from step 2 until converged.

We see that the main loop of this algorithm closely resembles a Monte Carlo
iteration with measurement taking the place of the usual configuration updates.
However, it does not rely on a rejection method to perform sampling, and so each
METTS that is generated can be used to generate statistics. In practice very few
(�100) METTS suffice to obtain the total energy to a relative accuracy of 10�5. For
algorithmic details on how to perform the CPS selection to minimize correlations
between successive METTS we refer the reader to [16].

This METTS algorithm has many advantages over the ancilla method of the
previous section. As we do not have to encode the bath degrees of freedom in our
MPS, the bond dimension required to accurately represent each METTS ranges
from 1 at infinite temperature to �gs at very low temperatures. This makes the
METTS method more efficient than the ancilla method by a factor of 103–1010

for typical systems at very low temperatures. Additionally, if the Hamiltonian of
interest has a global symmetry, then we can use the fact that the MPS matrices must
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transform irreducibly to speed up the calculation [15] or find the thermal ensemble
corresponding to a fixed quantum number (canonical ensemble). This latter point is
relevant to cold atom systems where the total number of atoms is held fixed.9

9.3 Validity Issues

It has been shown that MPSs can faithfully represent ground states of 1d gapped
Hamiltonians with at most nearest-neighbor interactions with a bond dimension
which grows only polynomially in the system size [12]. In higher dimensions
this polynomial scaling gives way to an exponential scaling [23], but calculations
on 2D systems of width 8–12 are still feasible [24]. Generalizations of MPSs to
higher dimensions exist, but are so far limited by poor polynomial scaling of
tensor contractions [25–27]. Perhaps the most important quality of MPS methods
as compared to other efficient many-body methods, such as quantum Monte Carlo,
is that MPS methods work equally well for fermionic or frustrated systems. All of
the methods presented here will work equally well for any 1d or quasi-1d physical
system.

9.4 Application: Specific Heat of the Hard-Core Extended
Bose–Hubbard Model

As an example of how the above methods may be applied to study the behavior
of a finite temperature superfluid system, we study the properties of the hard-core
extended Bose–Hubbard model

OH D �J
X

hi;j i

� Ob
i Obj C H:c:
�
C V

X

hi;j i
Oni Onj (9.17)

at half filling. This model is known to have a superfluid phase in the XY universality
class for V < 2J . In Fig. 9.4 we show a typical thermodynamic quantity, the specific
heat CV D ˇ2.h OH2i � h OH i2/=L, as a function of temperature and the nearest-
neighbor repulsion. Note that computation of h OH2i is easily performed when the
MPO representation of OH is known.

9The ancilla method can also be used to simulate systems in the canonical ensemble, but the process
is complicated by the fact that we need the purification of the constrained infinite temperature
density matrix. This purification can be generated using a ground state DMRG-type calculation
with a suitably chosen Hamiltonian [22]. The Hamiltonian will contain artificial ancilla–ancilla
and ancilla–physical site couplings which are typically highly nonlocal.
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Fig. 9.4 Specific heat of the hard-core extended Bose–Hubbard model on 34 sites for repulsive
nearest-neighbor interaction V=J D 0; 0:5; 1:0; 1:5; 2:0; 3:0; 4:0. The qualitative behavior of the
low temperature specific heat changes as V becomes larger than 2J because the system transitions
from a gapless superfluid phase into a gapped insulating phase
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Materials



Chapter 10
Open Source Code Development

The purpose of this chapter is to describe two open source code projects in which
the author has been involved. The first, open source time-evolving block decimation
(OSTEBD) [1], is a package which was maintained by the Carr theoretical physics
research group and heavily modified for flexibility and efficiency by the author.
OSTEBD had two releases, one in February of 2009 and the other in October
of 2009. The OSTEBD dedicated blog has been viewed uniquely over 2,100
times to date, and OSTEBD has been used in eight publications within the Carr
research group [2–9] and six known publications outside of this group [10–15].
The most recent blog statistics, as gathered by http://wordpress.com, are shown
in Fig. 10.1. An extensive user’s guide was distributed with OSTEBD describing
the background of time-evolving block decimation (TEBD), providing exercises to
acquaint the user with the package, and manual pages for all routines in the code.
The most recent release of OSTEBD, v2.0, may be obtained from the repository at
http://sourceforge.net/projects/opentebd/.

In 2010, the code used for the OSTEBD project was significantly altered
for stability and speed and merged into the algorithms and libraries for physics
simulations (ALPS) package [16], the premier resource for numerical methods for
strongly correlated many-body problems. This code was formally included in the
v2.0 release of the ALPS package in November 2010. ALPS contains open source
implementations of nearly all widely used numerical methods for strongly corre-
lated many-body systems, including exact diagonalization; worm, stochastic series
expansion, and quantum Wang–Landau quantum Monte Carlo; dynamical mean
field theory; and a static density-matrix renormalization group code. The TEBD
software described in this thesis was the first component of the ALPS package to
enable the study of dynamics. The ALPS software package is maintained by the
ALPS international collaboration presently consisting of 28 researchers. In addition
to being used for cutting-edge research world-wide with nearly 250 citations for
the first two versions of ALPS at the time of writing [8, 17], ALPS is also used as
a pedagogical tool for summer schools. The ALPS collaboration maintains other
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Fig. 10.1 Open source time-evolving block decimation blog statistics. The red lines indicate
releases of ALPS code and documentation

pedagogical resources such as tutorials and a user’s forum. The most recent major
release of ALPS at the time of writing of this thesis, ALPS 2.1, is included with
the source code CD. Additionally, all documentation for the ALPS TEBD routines
which were written solely by the present author, including tutorial exercises, are
reprinted in Appendix A.

The OSTEBD manual, which is obtained as part of the code repository, covers
the vast majority of that project. Hence, in Sect. 10.1 we provide a brief overview
of the package and its capabilities, referring the reader to the manual for more
detail. Section 10.1.1 contains information about parallel extensions to OSTEBD
which were in alpha version at the time of the v2.0 release. The documentation
for the ALPS code is given in Appendix A. It is much less detailed than the
documentation for the OSTEBD project. Hence, in Sect. 10.2 we discuss the
differences in the ALPS and OSTEBD codes, as well as other parts of the ALPS
project which required development by the present author including a Python (http://
www.python.org/) front end and integration with the VisTrails workflow provenance
system (http://www.vistrails.org/).

10.1 OSTEBD Overview

OSTEBD [1] is a software package, written in Fortran 90, implementing the TEBD
algorithm for one-dimensional systems with nearest-neighbor interactions [18, 19].
In addition to real-time propagation, ground states may be found using imaginary
time propagation. OSTEBD supports systems of bosons with or without spins,
fermions with or without spins, spin systems, and open or periodic boundary
conditions [20]. The resulting matrix product state (MPS) representations of the
wavefunction are explicitly stored, allowing for checkpointing of long simulations
as well as wavefunction-based techniques for detecting quantum phase transitions
such as fidelity analysis [6]. Arbitrary one- and two-point correlation functions can
be specified by the user, and routines to obtain one and two-body density matrices
are included for more complex or quantum-information based measures. Number
conservation for particle models or magnetization conservation for spin models is
supported [21, 22]. The irreps of the associated on-site Hilbert space are allowed to

http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:Overview
http://lists.phys.ethz.ch/listinfo/comp-phys-alps-users
http://www.python.org/
http://www.python.org/
http://www.vistrails.org/
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be degenerate. Both data parallelism and intrinsic parallelism are included in alpha
version with the 2.0 release of the code, and are discussed in Sect. 10.1.1. OSTEBD
v2.0 contains 21;822 lines of code in its core, i.e., code which does not comprise
main files or inputs.

Inputs are provided using the Fortran NAMELIST syntax, which allows for input
files to be generated using scripts. For example, the inputs for the
BoseHubbard_ITP.f90 case study are given in the file BH_ITP.nml as

&S y s t e m S e t t i n g s
s y s t e m S i z e =30 , m a x F i l l i n g =5 , totNum =30 ,

BoundaryCond = ’O’ , T r o t t e r O r d e r =5
&end

&BHParams
jTunn = 1 . 0 , U0= 2 0 . 0 , V0 = 0 . 0 , mu0=0 .0

&end

&ITPParams
chiMin =15 , chiMax =20 , c o n v C r i t e r i o n 1 =0 .00001 ,

c o n v C r i t e r i o n 2 =0 .0000001 , s t e p s F o r J u d g e =100 ,
d t ITP = 0 . 0 5 , maxITPs teps =4000 , i t p D i r = ’ITPDATA / ’

&end

The top line gives Hilbert space metadata, including the number of lattice sites,
the maximum number of particles allowed on any site, the number of particles, the
boundary conditions, and the order of Trotter expansion used for the propagator.
The second line gives the parameters of the Bose–Hubbard model. Finally, the
last line gives convergence criteria for imaginary time propagation, such as the
maximum number of iterations, the imaginary time step, and the maximal bond
dimensions. In addition to supporting a wide array of models, the package was
designed to be easily modified to suit users’ individual needs. The comprehensive
manual pages of the OSTEBD manual were part of this approach, as were exercises
using the OSTEBD routines which require users to write their own code. For more
detail on the educational component of the manual, we refer the reader to Chap. 11.

10.1.1 Parallel Extensions in OSTEBD

Data-parallelism is supported in alpha version in OSTEBD v2.0 via the
PD_Extension. Here a phase diagram is defined by a range of chemical potentials
�min 
 � 
 �max with �res points or total numbers Nmin 
 N 
 Nmax with Nres

points and a range of tunnelings Jmin 
 J 
 Jmax with Jres points. A master node
sends points in this phase diagram to worker nodes one at a time, and the worker
nodes send observables to the master node when the computation has finished. This
automatically scheduled data-parallel paradigm is more efficient than assigning the
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tasks evenly between all nodes, as points in more highly entangled regions of the
phase diagram take more time to compute than less entangled regions, and so nodes
which are given only lowly entangled regions may sit idle while others compute
highly entangled regions. The code in this extension was used in [6]. For large
numbers of tasks, i.e., large �resJres or NresJres, the code is P � 1 times faster than
a single core within a few percent, where P is the number of processors.

Sites_Parallel_Extension, also included in alpha version with
OSTEBD, is an intrinsically parallel TEBD code using MPI [23]. In the sense
of balancing the load evenly and having large granularity, the most naturally
parallelizable portion of the TEBD algorithm is the loop over spatial positions
during time evolution. The ability to intrinsically parallelize the time evolution
sweep in TEBD stems from the fact that in the Vidal canonical form Eq. (6.39), any
bipartite splitting can be chosen to be the orthogonality center. Hence, when we use
Vidal’s suggested Trotterization of the propagator:

e�i OHıt D e�i OHoddıt=2„e�i OHevenıt=„e�i OHoddıt=2„ CO
�
ıt3
�
; (10.1)

e�i OHoddıt=2„ D
Y

odd l

e�i OHlıt=2„;

e�i OHevenıt=„ D
Y

even l

e�i OHlıt=„;

we can apply the propagation over even bonds and odd bonds simultaneously at all
bipartite splittings. A slab decomposition of the application of propagators across
all similar parity bonds would ideally reduce the scaling of the most expensive step
by a factor of P , where P is the number of processors.

A two-site operation performed on the two sites l and l C 1 involves �Œl�, �Œl�,
�ŒlC1�, �ŒlC1�, and �ŒlC2�. Thus, for a given processor to time evolve site l it needs
to also own1 the local tensors of site l C 1. This means that, in a distributed
memory paradigm, the last site that can be time evolved by a given processor
is the penultimate one. In order for all processors to possess a current2 copy of
all owned local tensors, they must receive at least one and possibly two sets of
local tensors from neighboring sites. Thus, each processor overlaps one � tensor
and two � tensors with each of its neighbors. To evenly divide the memory load
among all processors, we give each processor the same number of sites to optimize.
When the number of processors does not evenly divide the number of sites, we
give the first and last processors more sites, as the sites at the end of the chain
are more weakly entangled and hence we expect to have better load balancing in
this configuration. In addition to the number of � tensors, which we denote in the

1In this section we use the word own to denote that a processor holds this object in its memory.
2By current, we mean time-evolved to the most recent time.
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code as my_local_dim, we also give each processor a two-component array
my_bounds which contains the absolute site indices of the first and last � tensor
that the processor owns.

Initialization of the tensors in the absence of conserved quantities may be
done without communication. Similarly, the Hamiltonian, propagators, and all
other operators may be initialized independently. In the presence of conserved
quantities, the LabelLeft and LabelRight structures depend on the state of the
wavefunction to the left of the given site. Hence, we initialize the state sequentially
in processor rank, with each processor sending its penultimate value of cumulative
conserved quantity to the next processor.

The parity of the local site indices may not be the same as the parity of the global
site indices. That is to say, the first site a processor owns might be the sixth site in the
actual chain, and so one must be careful when applying propagators over even or odd
bonds to apply them to globally even or globally odd sites. Because updating a local
tensor at site l requires owning the local tensors of site l C 1 and the processors
do not own all of the local tensors, after each Trotter sweep we must pass local
tensors between processors in order that all processors are properly updated. If the
last site that a given processor � updates is one less than the total number of sites
that the processor owns, then the next processor will not have updated its first tensor
in the same Trotter sweep due to the parity difference. Thus, processor � should
send its last updated local tensors to processor .� C 1/, where they will become the
first local tensors. In a similar manner, if processor � begins on a site with the same
parity as the current Trotter sweep,3 it should send its first local tensors to processor
.� � 1/where they will become the new last local tensors. Identical analysis applies
to the even time step, which completes a Trotter sweep.

We now pause to consider the asymptotic scaling of our algorithm’s com-
putation time and communication time. The computational scaling of TEBD is

O
h
L
tf
ıt

max
�
d3�3; d4�2

�i
, where � is the bond dimension, d the local dimension,

ıt the infinitesimal time step, L the number of sites, and tf the final time.
The communication time is proportional to the size of the sent data, which is
O
�
d�2 C �� per time step. In essentially all cases of interest, � � d , and

so we will assume that the O
�
�3
�

scaling dominates. If we now divide the
computation time among P processors and have all P processors communicate,

we have a computational scaling of O
h
L
P

tf
ıt
d 3�3

i
and a communication scaling

of O
h
tf
ıt
d�2

i
. We thus expect the best performance when L � P , � �

P , or both, as the computation time is larger than the communication time in
these instances. Additionally, parallelization is more efficient for increasing d .
The L � P condition states that each processor should update several local
tensors before communicating, and the conditions involving � and d state that it
is less computationally intensive to send a copy of a tensor than to perform a tensor

3Equivalently, processor .� � 1/ ends with parity opposite to the Trotter sweep.
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operation such as contraction or decomposition. For large L, the first condition is
naturally enforced by the condition P 
 bL

2
c, for if P is larger than this some

processors will own less than two local tensors and so two-site operations cannot be
performed.

Not all of the expensive operations in TEBD can be parallelized using the above
decomposition. The two most expensive non-parallel operations are restoration
of canonical form and the computation of two-point correlation functions. The
restoration of canonical form must be done in a sweeping fashion for neighboring
sites. If canonical form is not restored after every time step but only before
measuring observables, then this does not slow down the execution considerably.
However, not using a strict canonical form at every time step degrades the quality
of a TEBD simulation, as will be discussed in Sect. 10.2.1. Two-point correlation
functions h OOi OOj i require communication of a partial overlap between processors
when i and j are not both owned by the same processor. However, the amount of
information which must be sent is less than in a typical Trotter sweep, and so these
operations do not slow down parallel execution considerably.

We quantify the performance of our parallel implementation by three quantities:
the speedup, defined as

SP � T1

TP
; (10.2)

where TP denotes the time it takes the code to run on P processors, the efficiency

EP � T1

PTP
; (10.3)

and the experimentally determined serial fraction

expf D
1
SP
� 1

P

1 � 1
P

: (10.4)

The speedup is said to be ideal if SP � P . Likewise, optimal efficiency is E D 1.
The experimentally determined serial fraction, in an ideal case, should be as small as
possible, as its inverse limits the speedup for fixed data as the number of processors
increases (by Amdahl’s law [24]).

We show these measures for a variety of system sizes L and bond dimensions �
in Fig. 10.2. As expected from the above scaling arguments, simulations with larger
L and larger � perform better in all three measures.
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Fig. 10.2 Performance of intrinsically parallel OSTEBD routines. The parallel performance as
determined by all three measures increases as L, �, and d increase, in accordance with the scaling
expectations given in the text

10.2 The ALPS TEBD Routines

The ALPS TEBD routines perform similar functions to the OSTEBD routines,
performing real or imaginary time evolution of systems of bosons, fermions, or
spins. Rather than using different main files or the NAMELIST system of input as
in OSTEBD, the ALPS routines instead rely on a Python interface which writes
appropriate input files, calls the Fortran routines, and post-processes the output
from the Fortran routines. The parts of this front end which are relevant to TEBD
are covered in Sect. 10.2.2. The ALPS code is less easily modified to suit user
needs than the OSTEBD code due to the requirement of compatibility with the
front end, but the author attempted to counteract this by including a wide array of
models, measures, and time evolution protocols accessible by the Python interface.
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In addition to the different interface, several improvements of the core routines
of OSTEBD regarding speed and efficiency were implemented, and are discussed
in Sect. 10.2.1. The ALPS TEBD routines can also be utilized via the integration
of ALPS with the VisTrails workflow provenance system in part due to Python
ports written by the author. Discussions of scientific workflows, provenance, and
the ALPS VisTrails interface are relegated to Sect. 10.2.3.

The ALPS TEBD code consists of 10,610 lines of Fortran and on the order of 700
lines of Python written by the author, not including tutorials and other main files.

10.2.1 Numerical Optimizations of the ALPS Code

In two-site operations with TEBD, it is always assumed that the MPS is in the Vidal

canonical form, in particular that the Schmidt vectors
˚j�Œ1:::l�1�˛ i� and

n
j�ŒlC2:::L�ˇ i

o

are orthonormal bases. When this is true, then the tensors on which TEBD operates
contain the orthogonality center, and any truncation which occurs represents an
optimal truncation of the wavefunction in that it minimizes the 2-norm distance
between the truncated state and the true state at that bipartite splitting. When
these bases are not orthogonal, the truncation represents an optimal truncation of
the particular tensor, but there is not generally any relation between the tensor and

the actual wavefunction. After a two-site operation, the Schmidt vectors
n
j�Œ1:::l �� i

o

and
n
j�ŒlC1:::L�� i

o
will be orthogonal by construction, but the same cannot be said of

other sets of vectors which change under the course of the operation, for example the

set
n
j�Œ1:::lC1�� i

o
. This destruction of canonical form always arises from non-unitary

operations such as application of an imaginary time propagator, but it also arises
from truncation of the bond dimension of a state following application of a unitary
operator. The way that OSTEBD accounted for these errors was to explicitly return
the state to its canonical form periodically during real and imaginary time evolution.
Additionally, in the case that the time step is small, imaginary time propagation is
close to unitary, and when truncation is also small the effects of being away from
canonical form are not extreme and can be accounted for by extrapolating the time
step to zero [25].

A better way to account for the loss of canonical form is to re-order the
application of the propagator such that all of the bases which we assume to be
orthonormal throughout the course of an update sweep have been made orthonormal
by the last operation on them. This can be done by applying operations to
successive sites in a directed sweeping motion, e.g. .l; l C 1/, .l C 1; l C 2/, etc.
or .l C 1; l C 2/, .l; l C 1/, etc. Before computing observables, in which all sites
are assumed to be in canonical form, we can return the state to a fully canonical
representation by applying the identity operator to two sites at a time in the same
forwards and backwards sweeping motion.
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In order to apply the propagators in the sweeping fashion as just described, we
abandon the use of the Trotter expansions discussed in the OSTEBD manual, and
instead use the expansion [26]

exp
�
�i OHıt=„

�
D

L�1Y

iD1
exp

�
�i OHi;iC1ıt=2„

� 1Y

iDL�1
exp

�
�i OHi;iC1ıt=2„

�

CO
�
ıt3
�
; (10.5)

where OHi;iC1 is the two-site Hamiltonian acting on sites i and i C 1. The use of
this decomposition to explicitly maintain local canonical form is the first of the
optimizations implemented in the ALPS code for stability.

Another source of possible numerical error in TEBD as implemented in the
OSTEBD package is in the decomposition of the object ‚ij

˛ˇ representing the two-
site wavefunction following application of some operation into the � tensors and �
tensors as

‚.˛i/.jˇ/
�!
SVD USV; (10.6)

Q�ŒlC1�˛l
D S˛lqP�

˛D1 .S˛/
2
; (10.7)

Q�Œl�il˛l�1˛l
D U.il�1/�C˛l�1;˛l =�

Œl�
˛l�1

; (10.8)

Q�ŒlC1�ilC1
˛l ˛lC1

D V˛l ;.ilC1�1/�C˛lC1
=�ŒlC2�˛lC1

: (10.9)

Here �!SVD indicates performing a singular value decomposition on the left-hand side
to yield the right-hand side. In particular, the elements of the tensor � appearing in
Eqs. (10.8) and (10.9) can be very small, of order the machine precision, resulting
in loss of precision in the elements of the � tensors. To remedy this, we do not store
the tensors � explicitly, but rather only store products such as �� or �� to create
left- and right-canonical MPS tensors according to the translation rules Eqs. (6.43)
and (6.44). If a single � tensor is left uncontracted from the remainder of the tensors
of the MPS at any time, the resulting MPS decomposition is in mixed canonical
form rather than the Vidal canonical form,4 with the uncontracted � tensor being
the orthogonality center. The splitting of ‚ now becomes

‚.˛i/.jˇ/
�!
SVD USV; (10.10)

Q�ŒlC1�˛l
D S˛lqP�

˛D1 .S˛/
2
; (10.11)

4See Sect. 6.3 for a discussion of canonical forms for MPSs.
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.��/
Œl�il
˛l�1˛l

D U.il�1/�C˛l�1;˛l ; (10.12)

.��/
ŒlC1�ilC1
˛l ˛lC1

D V˛l ;.ilC1�1/�C˛lC1
: (10.13)

The bond-centered orthogonality center can now be shifted in the direction of the
propagator sweep as discussed in Sect. 6.3. It is remarkable that the mixed canonical
form arises naturally when repairing numerical instabilities that arise from the more
theoretically appealing Vidal canonical form. This demonstrates the general fact that
the theoretically most appealing methods are often not the most numerically stable
in practice.

A third optimization is an improved implementation of symmetry-adapted MPSs
(see Sect. 6.6) over OSTEBD in the case that all of the on-site irreps are non-
degenerate. In this case, the � tensors may be written as

�i˛ˇ D �˛ˇıi;qˇ�q˛C1�qi;min ; (10.14)

where qi is the quantum number on site i , q� is the cumulative quantum number
to the left of bond � , and qi;min is the minimum allowed value of qi . Thus, we
can store only the matrices �˛ˇ rather than the full tensors. In addition to a reduction
in storage requirements, this also avoids sums over the local dimension which leads
to significant speedup.

Fourth, OpenMP threading [27] over computationally expensive portions of the
code is implemented. In particular, the greatest speedup occurs by threading over
the SVD of‚ when Abelian symmetries are used. Here the threading is over blocks
corresponding to a fixed total charge to the left of the bond on which ‚ is centered.
This threading displays nearly perfect parallel efficiency because threads operate on
blocks independently. Threading is also performed over the formation of �s from
the SVD matrices, the formation of‚, and propagation of the partial overlapG used
for two-point correlation functions, see the OSTEBD manual.

Fifth, in OSTEBD the bond dimension is used as the main truncation parameter,
and is fixed by the user without any input from the simulation. A better means to
control the entanglement cutoff is to define a tolerance � on the percentage of the
singular value norm which can be discarded at a particular two-site operation, and
then let this tolerance dynamically define the bond dimension. That is, � is taken to
be the smallest integer satisfying

1 �
P�

˛D1 S2˛P
˛ S

2
˛


 �: (10.15)

Here, the sum in the denominator runs over all the singular values. The parameter
� is represented by TRUNC_LIMIT and a safeguard bond dimension is provided
by CHI_LIMIT. The parameter ITP_CHIS is also able to be specified separately
for imaginary time propagation. The value of � now represents a safeguard value to
avoid running out of memory, and may be set very large. Provided that this safeguard
value of � is not reached, the simulation remains quasi-exact in the sense that the
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distance between the state returned by TEBD and the true time evolution obtained
from the given initial state is bounded by a known constant.

Finally, it is described in the OSTEBD manual how computing expectations
of nonlocal observables expressed as tensor products can be performed more
efficiently than a general two-site operator due to the tensor network structure of the
contraction. The one place where this was not taken advantage of in OSTEBD was
in computing the energy, as the expansions of the two-site Hamiltonians in terms
of a separable basis are not generally known. The ALPS routines account for the
non-separability of the Hamiltonian OH which acts on two neighboring sites jiijj i
via the following transformation

h OH
i

.ij/;.i 0j 0/
D
h OHi;iC1

i

.ii0/;.j;j 0/
; (10.16)

h OH
i

.ii0/;.j;j 0/

�!
SVD

X

�

U.i;i 0/�†�V�.j;j 0/; (10.17)

which implies that we may write the operator as a sum of separable operators as

)
h OH

i

.ij/;.i 0j 0/
D
X

�

HL
.i;i 0/�H

R
�;.j;j 0/; (10.18)

where

HL
.i;i 0/� D U.i;i 0/�†� ; (10.19)

HR
�;.j;j 0/ D V�.j;j 0/: (10.20)

Using this decomposition, we can convert any two-site operator into a sum of tensor
products of local operators, where the number of terms in the sum is equal to the
number of nonzero singular values. The speedup of using this method together with
the routines for computing expectations of tensor products versus using the two-site
density matrix is striking. This is especially true in systems of bosons with large
local dimension where the computation of the energy using the non-tensor-product
methods can be the dominant scaling operation. It should also be noted that what we
have affected is a decomposition of a rank-4 tensor into a matrix product operator.
This same basic decomposition can be applied to turn an operator of any rank into a
matrix product operator, see Sect. 7.2.2.

10.2.2 The Python Front End

To discuss the Python front end for the ALPS TEBD code, called PyALPS,
it is simplest to start with an example, here provided by the TEBD tutorial
tutorial1a.py. The file begins by loading the required Python modules, here
PyALPS and routines for plotting output.
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import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t

30 import p y a l p s . p l o t

We now proceed to prepare all of the metadata defining our simulations using an
array of Python dictionaries called parms

parms = [ ]
c o u n t =0

35 f o r A in [ 5 . 0 , 1 0 . 0 , 1 5 . 0 , 2 5 . 0 , 5 0 . 0 ] :
c o u n t +=1
parms . append ( {

’L ’ : 10 ,
’MODEL’ : ’ h a r d c o r e boson ’ ,

40 ’CONSERVED_QUANTUMNUMBERS’ : ’N’ ,
’N’ : 5 ,
’ t ’ : 1 . 0 ,
’V’ : 1 0 . 0 ,
’ ITP_CHIS ’ : [ 2 0 , 30 , 3 5 ] ,

45 ’ ITP_DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP_CONVS ’ : [1E�8, 1E�8, 1E�9] ,
’ INITIAL_STATE ’ : ’ ground ’ ,
’ CHI_LIMIT ’ : 40 ,
’TRUNC_LIMIT ’ : 1E�12 ,

50 ’NUM_THREADS’ : 1 ,
’TAUS ’ : [A, A] ,
’POWS’ : [ 1 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V’ , ’V’ ] ,
’ GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,

55 ’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 , 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 5 , 3 ] ,
’SIMID ’ : c o u n t

} )

The parameters which are included in parms are discussed in detail in the ALPS
documentation, see Appendices A.1 and A.2. Here we only note that what results
from these lines is a length-5 array parms. Each element of parms is a Python
dictionary, which is an unordered set of key:value pairs. The keys in this instance
are the strings on the left column, e.g. “L” and “MODEL”, and the values form the
right column. Thus, parms[0][’L’] would return 10. Each element of parms
defines a TEBD simulation.

We now write Fortran-readable files from this simulation metadata with
writeTEBDfiles and run simulations using this input with runTEBD via

baseName= ’ t u t o r i a l _ 1 a ’
# w r i t e o u t p u t f i l e s
nmlnameLis t= p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )

65 # run t h e a p p l i c a t i o n
r e s = p y a l p s . runTEBD ( nmlnameLis t )
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We extract information from the outputs of the Fortran code using loadTime
Evolution as

LEdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s . g e t R e s u l t
F i l e s ( p r e f i x = ’ t u t o r i a l _ 1 a ’ ) , measurements =
[ ’ Loschmidt Echo ’ , ’V’ ] )

The measurements tag specifies which outputs to load. LEdata is an array
with the same number of elements as parms, and contains all of the same
simulation metadata together with the specified measurements. This allows for
complex evaluations to be performed involving parameters in the Hamiltonian, the
system size, or any other input parameters. In the present case, we are interested only
in plotting the Loschmidt echo and the parameter V vs. time. We do so by turning
these values into ordered .x; y/ pairs suitable for a 2D plot with collectXY, and
then passing these pairs to a plotting front end

LE= p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ ,
y= ’ Loschmidt Echo ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in LE :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’TAUS ’ ] [ 0 ] )

75

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( LE )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ Loschmidt Echo $ | < \ p s i ( 0 ) | \ p s i ( t ) > | ^ 2 $ ’ )

80 p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )

Uf ig = p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’V’ , f o r e a c h =
[ ’SIMID ’ ] )

85 f o r q in Ufig :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’TAUS ’ ] [ 0 ] )

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( Uf ig )

90 p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’V’ )
p l t . t i t l e ( ’ I n t e r a c t i o n p a r a m e t e r $V$ vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )
p l t . show ( )

The resulting plots are shown as Fig. 11.2 in Chap. 11, where the physical content
of these tutorials is discussed in greater detail.
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While the actual NAMELIST files which are passed to the Fortran routines are
similar to those of OSTEBD above, the Python front end provides a powerful way
to automate the writing of these inputs, allows for much easier post-processing of
outputs, and also unifies the preparation, execution, and analysis of simulations.

The contributions of the present author to the Python front end were to write the
Python routines to write Fortran-readable files for TEBD, run TEBD simulations,
and process the outputs of TEBD as a function of time. Since TEBD was the first of
the ALPS applications to simulate dynamics, the author also modified several of the
other existing ALPS processing routines to accept data which depends on time.

10.2.3 Integration with the VisTrails Workflow
Provenance System

The Python front end for ALPS provides a unified way of defining, executing,
and analyzing simulations. ALPS v2.0 is also integrated with VisTrails (http://
www.vistrails.org/), which is an open-source scientific workflow and provenance
management system written in Python. By provenance, we refer to both the steps
that need to be followed to produce a specific result (Prospective provenance) as
well as the steps which were actually taken (Retrospective provenance) [28, 29].
Hence, the simulation metadata above, which user ran the simulation, at what time,
etc. are all data relevant to the provenance of a particular result. VisTrails caches all
of these data in persistent storage such that results are always reproducible without
the need to repeat the calculation.

The same tutorial which was used to exemplify the Python front end is shown
using VisTrails in Fig. 10.3. In panel (a), the three parts to tutorial 1 are shown as
three different workflows, the beige ovals. Under tebd1a, the blue boxes capture
provenance information about changes made to the workflow itself. The actual
workflow contents of tebd1a are shown in panel (b). Here the large boxes, called
modules represent subtasks to be performed, with the small boxes on the top corre-
sponding to inputs for a particular task and the boxes on the bottom corresponding
to outputs from the task. The overall simulation flow is similar to that using the
Python front end: parameters are specified or looped over, Fortran-readable files are
written, the simulation is performed, data is extracted and post-processed, and plots
are made. With VisTrails, the full provenance information of both how a simulation
is to be performed and what the actual values used to achieve a particular result
are permanently captured. The contributions of the present author to the VisTrails
functionality of ALPS were modules to write files for and run TEBD simulations as
well as the post-processing of time series.

http://www.vistrails.org/
http://www.vistrails.org/
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a

b

Fig. 10.3 Example VisTrail for ALPS TEBD tutorial 1. (a) The workflows for tutorial 1 are
represented as the beige circles. Changes to the workflow of tebd1a are represented as blue ovals
below the beige one. (b) The contents of the workflow tebd1a. Here each large box represents a
task performed by PyALPS or an internal VisTrails task
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Chapter 11
Educational Materials

Chapter 10 discusses the author’s involvement in the development of open
source code implementing variational matrix product state (MPS) algorithms.
The present chapter covers educational materials which were distributed with
these codes, either as part of the open source packages or within the Carr
theoretical physics research group (CTPRG). The educational materials which
were disseminated with the open source code are aimed at the level of graduate
students performing research in strongly correlated physics, and are designed to
enable users to modify the open source codes to meet their own research goals.
The materials designed for use by the CTPRG are aimed more to the level of
undergraduates who may not have completed a quantum mechanics course and
may have no coding experience. Hence, they must strike a balance between being
conveying the important ideas of the algorithms without being too technical, and not
require coding experience while still enabling the student to perform calculations
which are meaningful and exciting. Within the CTPRG several undergraduates at
the senior level were able to use these educational materials successfully towards
modifying and using the open source codes as part of their senior thesis projects.

11.1 Materials Distributed with the Open Source Packages

The open source time-evolving block decimation (OSTEBD) [1] package includes
a manual written by the present author which provides background on the time-
evolving block decimation (TEBD) algorithm [2, 3], manual pages for all routines
contained in the package, and case studies. Provided with each case study is a main
file from which a user can reproduce the figures given in the manual in order to
understand how to run the code and post-process its output. The case studies, in
order, are a study of the ground state properties of the Bose–Hubbard Hamiltonian,
the dynamics of the Bose–Hubbard Hamiltonian following a linear ramp of the
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on-site interaction from the Mott insulator to the superfluid phase and back [4, 5],
the ground state properties of spinless fermions, and the dynamics of a domain wall
defect in the XX model [6]. At the end of each case study are exercises which require
the user to modify the case study base code to extract other observables or perform
other tasks. For example, in the Bose–Hubbard case study, the user is required to
add a harmonic trap in one of the exercises and study the physics of the trapped
system. Several of the exercises, in particular those dealing with dynamics, have the
user study the behavior of the simulation as the bond dimension �, the time step ıt ,
the system size, and the boundary conditions are changed. These exercises help the
user gain an intuition for the convergence behavior of typical simulations.

The educational materials distributed with the algorithms and libraries for
physics simulations (ALPS) [7–9] TEBD routines take the form of case studies
which were posted on the ALPS wiki pages at http://alps.comp-phys.org. These case
studies and other ALPS TEBD documentation from the ALPS wiki are included
as Appendix A with this thesis. The second tutorial is the more pedagogical, as it
uses comparisons with analytically known results to demonstrate the convergence
of TEBD simulations. In particular, this tutorial uses the same system as the last
case study for OSTEBD in which a single domain wall defect is initialized at the
center of a long chain:

j i D j ## : : : #" : : : ""i : (11.1)

At time t D 0, this wavefunction is evolved according to the XX model

OHXX D �
X

i

� OSxi OSxiC1 C OSyi OSyiC1
�
; (11.2)

where OS�i is the spin-1/2 operator along the �th Cartesian direction at lattice site i .
This Hamiltonian is equivalent to a system of free fermions via a Jordan–Wigner
transformation, and so we can solve exactly for the magnetization a distance n
from the initial defect position at time t , M .n; t/, as [10]

M .n; t/ D �1
2

n�1X

iD1�n
j 2l .t/ ; (11.3)

where jl .x/ is the Bessel function of order l . This result also implies that in the limit
as n ! 1 and t ! 1, this function approaches as scaling form which depends
only on the variable n=t as

lim
n!1 lim

t!1M .n; t/ D �
�n
t

�
� � 1

�
arcsin

�n
t

�
: (11.4)

The results comparing these predictions with the outputs of the ALPS TEBD
tutorial tutorial2a.py are shown in Fig. 11.1. We see very good visual agree-
ment between the numerical results and the predictions for the magnetization in

http://alps.comp-phys.org


11.1 Materials Distributed with the Open Source Packages 275

Exact; n=2

a c

b d

Exact; n=1
Numerical; n=2
Numerical; n=1

δt=0.08
δt=0.02
δt=0.04
δt=0.2
δt=0.027

Numerical; n=2
Numerical; n=1
Numerical; n=4
Numerical; n=3
Exact

χ = 20
χ = 30
χ = 10
χ = 40

M
ag

ne
ti

za
ti

on
E

rr
or

M
ag

ne
ti

za
ti

on
E

rr
or

Time t Time t

Time tScaling variable n/t

M
ag

ne
ti

za
ti

on
(n

,t
)

M
ag

ne
ti

za
ti

on

Fig. 11.1 Results of ALPS TEBD tutorial 2. (a) The magnetization computed by TEBD for the
given situation compared to the prediction Eq. (11.3). (b) The scaling limit of the magnetization
compared to the scaling function predicted in Eq. (11.4). (c) The error in the magnetization as a
function of time and the time step ıt . (d) The error in the magnetization as a function of time and
the bond dimension �

Fig. 11.1a. Figure 11.1b demonstrates that the magnetization does indeed approach
the scaling limit Eq. (11.4), with agreement improving for large n and t , as expected.
This part of the tutorial also demonstrates the power of the Python front end for
performing complex post-processing such as the extraction of scaling forms from
the numerical data, see Sect. 10.2.2.

In the next two parts of this tutorial, we examine the deviations of the magneti-
zation with these exact results as we change the two main convergence parameters
in TEBD: the time step ıt and the bond dimension �. In Fig. 11.1c we see the
deviation of the magnetization as a function of time and the time step ıt . At short
times, the smallest ıt has the smallest error in accordance with our expectations
given by the error bounds on the Trotterization of the propagator. However, at long
times, we begin to see an exponential growth in the errors for the smallest ıt , and
this simulation eventually has the largest error of all the simulations. The reason
for this is that at each time step we perform a truncation of the bond dimension, and
this truncation involves a renormalization of the wavefunction. Hence, in contrast
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to the error due to the Trotterization of the propagator which grows linearly in
time, the error due to this renormalization grows approximately exponentially in
time. The timescale on which this exponentially growing error overtakes the linearly
growing error can be pushed to later times by increasing �, as shown in Fig. 11.1d.
Hence, the errors incurred by the time step and the bond dimension have a subtle
interplay in which larger time steps make better use of the available bond dimension
to reach a certain fixed time, but introduce a larger linearly growing error. This
causes special difficulty for systems which are required to have a small time step
when using non-time-ordered Trotterization schemes due to a fast rate of change
of the Hamiltonian. This observation was part of the motivation for the general
use time-ordered time evolution scheme proposed in Chap. 7. The final part of this
tutorial introduces interactions1 Jz OS z

i
OS z
iC1 to the spin chain, and investigates how

the behavior of the time-evolved magnetization changes [11].
The other tutorial provided for the ALPS routines is simpler, and so was included

first in spite of the fact that the second tutorial is more pedagogical. This tutorial
studies the behavior of a model of hardcore bosons with nearest-neighbor hopping
and nearest-neighbor density–density interactions,

OH D �t
X

hi;j i

h Ob
i Obj C h:c:
i
C V

X

hi;j i
Oni Onj ; (11.5)

as the strength of the interactions V=t2 is changed in time. The measure of
adiabaticity we use is the Loschmidt echo

L .t I �/ D jh .t/ j .0/ij2 ; (11.6)

which is the squared overlap of the time-evolved wavefunction with the initial
wavefunction. This quantity depends on general on the way in which the parameters
are changed in time; this dependence is denoted by the symbol � .

The first part of the tutorial focuses on quenches from the gapped charge-
density wave (CDW) phase to the superfluid phase and back. The exercises explore
how difficult it is for such a quench to be adiabatic in the sense that the system
returns to its initial configuration, and how this depends on the system size [12–16].
An exercise which represents a possible research project is to extend the simulation
to the soft-core boson model with nearest-neighbor interactions in which there exist
Mott insulating, CDW, and superfluid phases at unit filling. One can then explore
how difficult it is to be adiabatic when quenching between two gapped phases,
here the Mott insulator and the CDW. In the next part of the tutorial, the system
is held in the superfluid phase for a time �hold before quenching back to the CDW.

1These are interactions in that they provide terms which are quartic in the fermion field operators
following a Jordan–Wigner transformation.
2In the expression V=t , t denotes the nearest-neighbor tunneling and not the time.
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The final part of the tutorial utilizes the capability of the ALPS TEBD routines
to also simulate time evolutions described by nonlinear power-law behavior of
Hamiltonian parameters. The outputs of the simulations in this tutorial are shown
in Fig. 11.2.

11.2 Materials Intended for CTPRG Use

In addition to the OSTEBD manual, which contains a great amount of detail, a
smaller work “A gentle introduction to Time Evolving Block Decimation (TEBD)”
(henceforth, the TEBD intro) was developed for use by advanced undergraduate and
beginning graduate students within the CTPRG. The purpose of this document is to
acquaint the student with the basic idea of how MPS algorithms make the many-
body problem tractable through restricting entanglement, to provide experience
in running and post-processing MPS code, to develop familiarity with the high-
performance and parallel computing environments available to CTPRG members,
and to enable the student to perform an exciting, cutting-edge calculation regarding
quantum phase transitions. This document is included as Appendix B.

The TEBD intro builds upon an earlier set of exercises “Introduction to the
Bose–Hubbard Model and Fock State Basis” which provides a basic introduction
to strongly correlated lattice models, Fock space, and second quantization. The final
exercise in this latter problem set is to write an exact diagonalization program to
compute the spectrum of the Bose–Hubbard model onM sites with N particles and
at most d�1 particles per site. The introductory TEBD exercises begin by having the
student explore for what size systems exact diagonalization is numerically practical.
For most of the implementations that the author has seen, this is usually 8–10
sites. Then, the notion of the singular value decomposition (SVD) and reduced rank
approximations are introduced. Rather than discuss tensor networks in general, it is
demonstrated how a matrix represented as its SVD may be applied to vectors much
more cheaply than the full matrix representation when the rank of the matrix is
small compared to its dimension. Mathematical and programming exercises on the
SVD acquaint the user with its properties, and also demonstrate that the rank of a
matrix may be difficult to ascertain from its other properties. A physical connection
between quantum mechanical states and the SVD is provided by the Schmidt
decomposition [17, 18], and the matrices in the mathematical SVD exercises are
related to quantum states. Finally, the ideas are put together noting that TEBD
performs a truncated Schmidt decomposition at every bipartite splitting, hence
restricting the amount of entanglement in the state and allowing for more efficient
operations.

At the end of the introductory TEBD materials, some exercises are provided to
orient the user with running the OSTEBD code and to introduce quantum phase
transitions [6, 19]. The first few exercises consist of comparing the results of
small Bose–Hubbard systems with exact diagonalization with and without number
conservation. The next exercise requires the student to diagonalize the bosonic
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Fig. 11.2 Results of ALPS TEBD tutorial 1. The color scheme in a panel in the left column is the
same as the neighboring panel in the right column. (a) The Loschmidt echo for a process which
quenches V=t from the CDW phase to the superfluid and back as a function of the linear timescale
of the quench � . (b) The form of V=t as a function of time for the simulation in (a). (c) The
Loschmidt echo for a process which quenches V=t from the CDW phase to the superfluid, holds
the parameters constant for a time �hold, and then quenches back as a function of the hold time
�hold. (d) The form of V=t as a function of time for the simulation in (c). (e) The Loschmidt echo
for a process which quenches V=t linearly from the CDW phase to the superfluid and nonlinearly
quenches back as a function of the power of the return quench. (f) The form of V=t as a function
of time for the simulation in (e)
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tight-binding chain via a Fourier transform for both open and periodic boundary
conditions and compute the spectrum, the on-site number, and the single-particle
density matrix. These results are compared with the open source code. The exercise
also acquaints the student with other useful many-body tools such as canonical
transformations. The final exercise makes use of the data-parallel capability of
OSTEBD (see Sect. 10.1.1) to explore the Mott insulator-superfluid transition in
the Bose–Hubbard model. As such, this exercise also serves to introduce students to
high-performance and parallel computing environments. The exercise begins with a
qualitative treatment of why the ground state must be non-analytic based on strong
and weak coupling limits of the depletion, relying on the student’s intuition for
the single-particle density matrix developed by the tight-binding chain. The critical
point is then located numerically via the maximum of the fidelity susceptibility,
which gives a system-independent measure of changes in the ground state as a
system passes through a quantum critical point [20]. An algebraic scaling function
for the position of the fidelity susceptibility maximum as a function of the system
size is provided [21], and the student is asked to find the critical point using a
scaling analysis for a series of system sizes. Estimates for the appropriate range
of parameters are provided by fidelity susceptibility data on small system sizes.

The final educational document to be discussed is “Introduction to MPS Algo-
rithms,” (henceforth, the MPS intro) which is included in its most recent version
as Appendix C. The MPS intro was developed for future code developers in the
CTPRG to write their own small working variational MPS code for the Ising model.
This process is guided by introducing a theoretical concept, for example canonical
forms for MPSs, and then having the student write code with a specific interface to
perform the procedure outlined in theory. A highly stripped-down and de-optimized
version of the author’s code was provided along with this document. In the present
work, this code is reproduced at the end of Appendix C. Each of the procedures of
the author’s code has the same interface as the procedures outlined in the document,
and so students can consult the author’s code for implementation hints if they are
stuck. The author’s code can also be used as a black box to obtain observables for
the Ising model for varying system parameters, and so the student can verify his
or her own code for correctness. The topics covered are canonical forms, matrix
product operators including a section on long-range operators [22–24], caching of
effective Hamiltonian overlaps [25], and the formation of the effective Hamiltonian
from them, the sparse solution of the effective Hamiltonian eigenproblem using the
Lanczos recursion [26, 27], computation of observables, calculation of excited states
using eMPS,3 and TEBD-style time evolution.

3See Chap. 7 for a discussion of eMPS.
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Chapter 12
Conclusions and Suggestions
for Future Research

This thesis presents models for the low-energy physics of molecules trapped in
optical lattices and simulation methods to elucidate the many-body physics of these
models in one dimension. Part II focused on the molecular Hubbard Hamiltonian
(MHH), a model for the low-energy physics of 1† heteronuclear bialkali molecules
in an optical lattice [1, 2]. A strong DC electric field applied to these molecules gives
rise to resonant dipole–dipole interactions which are long-range, and also allows for
tunable access to rotational states other than the lowest rotational level via an AC
microwave field. The nuclear spin degrees of freedom couple most strongly to a DC
magnetic field, but the coupling of rotational and nuclear spin degrees of freedom
provided by nuclear quadrupole interactions implies that the interplay between the
rotational and nuclear spin degrees of freedom may be tuned by changing the
angle between the electric and magnetic fields. Thus, not only the magnitudes of
the parameters of the MHH, but also the number of states involved in the dynamics
are amenable to experimental control. Hence, the MHH may be used as a simulator
of a quantum complex system, one in which are large number of degrees of freedom
are interacting quantum mechanically on a multitude of timescales.

For nearest-neighbor interactions and a single internal state, the MHH admits
only superfluid and charge-density wave (CDW) phases [3]. The CDW is character-
ized by a “checkerboard” pattern in the density which arises as a peak in the structure
factor at a wavevector of �=a. For convex long-range interactions, insulating phases
appear at every rational filling [4, 5], and so the phase diagram is much richer. While
theoretically appealing, these phases may exist only in a very narrow parameter
range, and may be destroyed by terms such as tunneling between sites which are
not nearest-neighbors and thermal fluctuations. Hence, a consistent analysis would
involve carefully enumerating all terms appearing in the many-body Hamiltonian in
order of decreasing energy and then performing a self-consistent truncation down
to an energy scale set by experimental constraints on timescale. The microscopic
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M.L. Wall, Quantum Many-Body Physics of Ultracold Molecules in Optical
Lattices, Springer Theses, DOI 10.1007/978-3-319-14252-4_12

285



286 12 Conclusions and Suggestions for Future Research

connections between the few-body physics and the many-body physics presented in
this thesis are crucial for this kind of analysis, and hence also for practical guidance
of experiments.

When more than one internal state is populated the possibilities for statics
become even greater. As discussed in Chaps. 3 and 4, both the tunneling and the
interactions depend on the rotational state. This allows for the study of many-body
systems in mixtures different quantum phases and possibly far from equilibrium.
Furthermore, away from the strong DC field regime studied in Chap. 4, there is a
long-ranged interaction term which represents the exchange of a rotational quantum
between two molecules in different rotational states [6, 7]. For two internal states
� D f1; 2g, this term has the form

X

i<j

Ei;j Oa
i1 Oa
j2 Oaj1 Oai2 ; (12.1)

where i and j are lattice sites, Oai� destroys a particle in internal molecular state �
at site i , and Ei;j obeys a power-law form for large distances ji � j j. The exchange
contribution Ei;j has a comparable power-law form to U i;j , the direct part of the
dipole–dipole interaction, but its magnitude can be tuned independently. The action
of this term in the internal degrees of freedom of a molecule is similar to that of ring-
exchange terms in real space [8]. Such terms have been shown to induce novel Bose
metal and gapless Mott insulator phases in ladder systems of hard-core bosons [8, 9]
and also drive electronic systems into a non-Fermi liquid phase [10]. The exchange
term frustrates the system, and so studies of the MHH with the exchange term must
be performed with either exact diagonalization or tensor network methods due to a
sign problem in quantum Monte Carlo. Studies of the MHH with all terms accounted
for to a self-consistent energetic cutoff, across a wide range of static and dynamical
field regimes, and for different molecular species are currently underway [11].

In addition to the statics, the dynamics of the MHH were investigated in this
thesis. The particular quench process studied initializes the system in the ground
state of the MHH in the absence of an AC field. An AC field is suddenly turned
on at a frequency corresponding to a single-molecule rotational resonance. In the
absence of couplings between sites, each molecule would undergo coherent Rabi
flopping independently of the others. However, when averaged over the many-
body wavefunction, the Rabi oscillations of transitions between the single-molecule
levels driven on resonance were seen to damp out exponentially with an emergent
timescale. This effect was studied for a variety of Hamiltonian parameters near half
filling, but a more thorough study of how the emergent timescale depends on the
experimental parameters is lacking. Such a study may also shed light on the true
microscopic mechanism of quantum dephasing. Is it governed only by equilibrium
properties, as suggested by the Kibble–Zurek hypothesis [12–16]? What is the
nature of the state as t ! 1? A final interesting avenue for further research is
to study the interplay between the complex many-molecule behavior of quantum
dephasing with the complex behavior of a single molecule in the presence of non-
collinear electric and magnetic fields.
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MHHs may also be derived and studied for more complex molecules using
the procedures outlined in this thesis. Near-term extensions include 2† molecules
formed from alkali metals and alkaline earths. These molecules have an unpaired
spin giving rise to magnetic dipole moments in addition to electric dipole moments,
which may lead to a rich interplay of crystalline and magnetic phases. Longer-
term extensions can include molecules in … or 
 states which have orbital angular
momenta. Essentially nothing is known about the possibilities for many-body
physics with such molecules.

Part III of this thesis laid the foundations for the Fermi resonance Hamiltonian
(FRH) [17]. The FRH is a lattice projection of a two-channel model for a Feshbach
resonance between two-component fermions and a bound molecular state. The two-
body bound states in the lattice are nontrivial combinations of all Bloch bands
from both the open and closed channels. Using a projection method to separate
the two-particle Hilbert space into a low energy piece spanned by open channel
fermions in the lowest band and a high energy piece spanned by open channel
fermions in excited bands and all bands of the closed channel, the relevant high-
energy degrees of freedom at low density are identified. The derivation of the FRH
consists of re-coupling the low-energy and high energy sectors of Hilbert space at
the many-body level, resulting in a multichannel resonance model between fermions
in the lowest open channel band and dressed molecules which are nontrivial linear
combinations of an infinite number of bands chosen to reproduce the two-body
scattering length exactly. The use of the numerically exact lattice solution of the two-
body problem leads to novel features of the Hamiltonian, such as diagonal hopping
of dressed molecules.

The physics related to the FRH is very much in its infancy. The most immediate
question is, what are the many-body features of the FRH? How is the phase diagram
affected by diagonal hopping and other features arising from the lattice solution?
How do the Hubbard parameters for the FRH behave in confined geometries or
geometries which are not separable for a single particle? Furthermore, one can
imagine extending the FRH analysis to pairing in higher relative orbital angular
momentum, multichannel situations, mass-imbalanced systems, or more realistic
inter-channel potentials. A final practical application of the FRH would be to
optimize production of Feshbach molecules directly in an optical lattice using the
many-body properties of the FRH.

In Parts IV and V of this thesis we devised variational matrix product state (MPS)
algorithms for eigenstates and dynamics of generic time-dependent 1D Hamiltoni-
ans [18, 19], discussed open source software efforts for MPS algorithms [20], and
presented educational materials to aid in the use of the open source implementations
to study strongly correlated physics. Our stand-alone implementation of time-
evolving block decimation (TEBD), open source TEBD [21], and the TEBD code
written for the algorithms and libraries for physics simulations (ALPS) [20, 22, 23]
package are both in use by many groups across the world [20, 24–36]. ALPS
is also regularly used as a pedagogical tool for learning many-body physics at
summer schools. At present, open source implementations of the generic algorithms
presented in this thesis are being prepared for merger into the ALPS open source
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software package in its next release. This will greatly extend the capability of
the ALPS package to study the statics and dynamics of a wider range of models,
including long-range interactions and general time-dependence. In order to make
these tools useful, we also are writing new educational materials to demonstrate the
use of these algorithms and their enhanced capabilities over other MPS algorithms
for time evolution.

MPS algorithms are very powerful in that they do not depend on the nature of
the microscopic constituents of the model under study. Also, MPS methods produce
wavefunctions, allowing for the simulation of dynamics and access to a broad range
of quantum measures. The flexibility of MPS algorithms makes them especially
well suited both to open source implementation and studies of many-body physics
with ultracold molecules. Speaking broadly, as more complex molecules approach
quantum degeneracy, the number of many-body models and their complexity will
also dramatically increase. Searching for emergent phenomena such as quantum
order in strongly correlated systems requires exploration of large parameter regimes
and careful finite-size or finite-entanglement scaling. Open source tools for modern
strongly correlated physics must be adaptable to different physical degrees of
freedom, interactions, and dynamical processes. Furthermore, they should support
massive parallelization over parameter regimes, and be efficient enough to handle
large-scale parameter exploration. Finally, they must be able to calculate a broad
range of quantum measures, and contain powerful post-processing tools to extract
and manipulate data from large simulations. Many open questions remain regarding
MPSs in general. Is it possible to simulate the dynamics of a generic time-dependent
infinite system using Krylov methods as outlined for finite systems? How do
we improve the numerical conditioning of the higher-dimensional tensor network
algorithms so as to make them practical? What is the relevant operator structure,
analogous to MPOs in 1D, for higher dimensions? The answer to these questions
would provide a “holy grail” of strongly correlated physics: a black box numerical
method applicable to any many-body system.
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Appendix A
Documentation for ALPS v2.0 TEBD Code

This appendix contains the documentation for the TEBD code included
in the v2.0 release of the ALPS code, see Chap. 10. At the time of the
writing of this thesis, this information was hosted on the ALPS wiki at
http://alps.comp-phys.org. Section A.1 is documentation about the code in
general, the background of the TEBD algorithm, and explanations of the
parameters used as input to the code. The original website for this section is
http://alps.comp-phys.org/mediawiki/index.php/Documentation:TEBD. Sections
A.2 and A.3 are tutorials on using the ALPS routines. The original websites
are http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:TEBD-01
_bhquench and http://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:
TEBD-02_kink, respectively.

A.1 Documentation: TEBD

A.1.1 Time-Evolving Block Decimation

The time-evolving block decimation (TEBD) algorithm is a method for simulating
the time evolution of one-dimensional quantum lattice systems governed by a
Hamiltonian with at most nearest-neighbor interactions. It is closely related to the
density matrix renormalization group (DMRG) method in that both methods operate
on a class of states known as matrix product states (MPSs). In addition to real
time evolution, imaginary time evolution can also be used to find ground states.
Essentially, TEBD consists of two parts: a canonical MPS representation of a many-
body state, and a protocol for finding the MPS closest to a state which is acted upon
by a two-site operator.
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The particular implementation of TEBD used in ALPS simulates a series of
global parameter quenches of the form g.t/ D g.ti / C ..t � ti /=�/p.g.tf / �
g.ti //. The timescale � , power p, initial and final values g.tf / and g.ti /, and
Hamiltonian parameters g of each quench are all amenable to specification by the
user. Additionally, because the TEBD method produces wavefunctions, a wide range
of observables are available, including entropies, correlation functions, and overlaps
between the state at different times.

A.1.2 References

Vidal, G.: Efficient classical simulation of slightly entangled quantum computations.
Phys. Rev. Lett. 91, 147902 (2003)

Vidal, G.: Efficient simulation of one-dimensional quantum many-body systems.
Phys. Rev. Lett. 93, 040502 (2004)

Daley, A.J., Kollath, C., Schollwöck, U., Vidal, G.: Time-dependent density-matrix
renormalization-group using adaptive effective Hilbert spaces. J. Stat. Mech. 2004,
P04005 (2004)

A.1.3 TEBD-Specific Parameters

CHI_LIMIT
The maximum bond dimension of the MPS allowed during real time propagation.
The default value is 50.

TRUNC_LIMIT
The maximum truncation error allowed for a specific two-site evolution. If the
bond dimension corresponding to this truncation is greater than CHI_LIMIT, then
CHI_LIMIT is chosen instead. The default value is 10�12.

TAUS
The elements of this vector are the timescales � of the global quenches.

GS
The elements of this vector are the Hamiltonian parameters g of the global quenches,
given as character variables. Note that the elements of this vector may themselves
be vectors, which corresponds to quenching several parameters at the same time.
If this is so, the corresponding elements of POWS, GIS, and GFS must also be
vectors of the same length. Note that TAUS, NUMSTEPS, and STEPSFORSTORE

http://link.aps.org/doi/10.1103/PhysRevLett.91.147902
http://link.aps.org/doi/10.1103/PhysRevLett.93.040502
http://iopscience.iop.org/1742-5468/2004/04/P04005
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will not be vectors, as the timescale, number of time steps, and number of steps
between outputs are the same for each parameter being quenched.

POWS
The elements of this vector are the powers p of the global quenches.

GIS
The elements of this vector are the initial values of the Hamiltonian parameters g
of the global quenches.

GFS
The elements of this vector are the final values of the Hamiltonian parameters g of
the global quenches.

CONSERVED_QUANTUMNUMBERS
Quantum numbers conserved by the model of interest. For spin models “Sz” can be
conserved, and for particle models “N” can be conserved.

NUMSTEPS
The elements of this vector are the number of time-steps of the global quenches.
This implicitly defines the time steps dt of the quenches.

STEPSFORSTORE
The elements of this vector are the number of time-steps between the calculation
and output of observables.

INITIAL_STATE
The state used at t D 0, before real time propagation begins. Currently, only two
values are supported: “kink,” which produces a specific initial state to be discussed
further in tutorial 2a, and “ground,” which calculates the ground state of a specified
initial hamiltonian via imaginary time propagation. The default value is “ground”.
See the tutorials for examples.

ITP_CHIS
The elements of this vector are the maximum bond dimensions used in iterations
of imaginary time propagation to find the group state. It is only referenced if
INITIAL_STATE is “ground.”

ITP_DTS
The elements of this vector are the time steps used in iterations of imaginary time
propagation to find the group state. It is only referenced if INITIAL_STATE is
“ground.”
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ITP_CONVS
The elements of this vector are the convergence parameters used in iterations of
imaginary time propagation to find the group state. An iteration of imaginary
time propagation exits if the maximal difference between singular values at
some time interval is less than the convergence parameter. It is only referenced
if INITIAL_STATE is “ground.”

SIMID
An optional integer input which differentiates a series of simulations and can
simplify plotting commands.

NUM_THREADS
The number of OpenMP threads used.

VERBOSE
If set to “true,” then the code will output, time values, truncation errors, and other
running messages. The default value is “false.”

A.2 Tutorials: TEBD-01 bhquench

A.2.1 The Hardcore Boson Model

In this first tutorial we investigate the behavior of the hardcore boson model

H D �t
L�1X

iD1
.b


i biC1 C bib
iC1/C V

L�1X

iD1
niniC1 (A.1)

as the parameter V is changed in time. It is well known that for large V=t the ground
state of the hardcore boson model at half filling is a charge-density wave (CDW)
insulator while for small V=t the ground state is a superfluid (SF). It is interesting to
consider what happens to the system if we begin in one phase and then dynamically
change, or “quench,” one of the Hamiltonian parameters t or V such that we are
in the other phase. As a simple first foray into the rich physics of quenches, we
will consider quenching from one phase to the other and then back into the original
phase. A particularly stringent criterion for adiabaticity of such a quench is how
close the final state is to the initial state, i.e.

L.t I �/ � jh .t/ j .0/ij2 (A.2)

which we call the Loschmidt Echo. Note that the t in this expression is the time and
not the hopping parameter t . The parameter � is meant to convey that this quantity
in general depends on the manner in which the system is quenched.
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The general structure of a quench in the ALPS TEBD routines is given by the
parameterization

g.t/ D g.ti /C ..t � ti /=�/ p.g.tf / � g.ti //; (A.3)

where g is some Hamiltonian parameter. In the present case we will take g to be
the interaction parameter V . We will begin our system in the CDW regime with
V=t D 10, quench to the SF regime where V=t D 0, and then quench back to the
CDW regime with V=t D 10. In the three parts of this tutorial we will investigate (a)
the effects of the timescale � on the Loschmidt echo during a linear quench, (b) the
effects of “holding” the system in the SF phase for a time �hold before returning to
the CDW phase, and (c) the effects of changing the power p of the quench function.

A.2.2 Linear Quench

First, we will investigate the effects of the quench rate � on the adiabaticity of a
linear quench from the CDW to the SF phase and back.

A.2.2.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial1a.py. The first
parts of this script import the required modules and then prepare the input files as a
list of Python dictionaries:

import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t

parms = [ ]
c o u n t =0
f o r A in [ 5 . 0 , 1 0 . 0 , 1 5 . 0 , 2 5 . 0 , 5 0 . 0 ] :

c o u n t +=1
parms . append ( {

’L ’ : 10 ,
’MODEL’ : ’

h a r d c o r e boson ’ ,
’CONSERVED_QUANTUMNUMBERS’ : ’N’ ,
’N’ : 5 ,
’ t ’ : 1 . 0 ,
’V’ : 1 0 . 0 ,
’ ITP_CHIS ’ : [ 2 0 , 30 , 3 5 ] ,
’ ITP_DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
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’ITP_CONVS ’ : [1E�8 , 1E�8 , 1E�9] ,
’ INITIAL_STATE ’ : ’ ground ’ ,
’ CHI_LIMIT ’ : 40 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [A, A] ,
’POWS’ : [ 1 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V’ , ’V’ ] ,
’ GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 , 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 5 , 3 ] ,
’SIMID ’ : c o u n t

} )

Let’s go through the TEBD-specific parameters in more detail (see the TEBD
documentation, Sect. A.1, for a list of all such parameters). The parameter
INITIAL_STATE is set to ground, which means that we begin from the ground
state of our Hamiltonian with user-specified parameters. The parameters t and V
specify that the initial Hamiltonian parameters t D 1 and V D 10 are used to
find the ground state. In order to find the ground state, TEBD performs evolution
in imaginary time. We refer to this step as ITP, and so all parameters containing
ITP deal with the ground state properties. The vectors ITP_CHIS, ITP_DTS, and
ITP_CONVS are the entanglement cutoff parameters, time steps, and convergence
criteria for successive applications of imaginary time propagation. These constitute
the main convergence parameters for TEBD, and convergence should always
be carefully checked in each parameter. For now, don’t worry too much about
their actual values, we’ll see how errors are controlled in the next set of tutorials.

Now we turn to the real-time propagation parameters. We wish to perform
a series of two quenches. First we want to quench the parameter V linearly in
time from its initial value 10 to 0. Comparing with the general form of a quench
g.t/ D g.ti /C ..t � ti /=�/ p.g.tf /� g.ti // we see that this corresponds to g D V ,
g.ti / D 10, g.tf / D 0, p D 1, and � is the free parameter whose effects are to
be investigated. Looking at the parameter list, we see that the first elements of the
vectors GS, GIS, GFS, and POWS correspond to g, g.ti /, g.tf /, and p, respectively.
The first element of the vector TAUS is looped over using the variable A, which
means that we will perform a series of simulations with � D 5, 10, 15, 25, and 50.
The second quench is essentially the reverse of the first, with g D V , g.ti / D 0,
g.tf / D 10, p D 1, and � the same as the first. Comparing with the parameters list,
we see that this corresponds to the second elements of the vectors GS, GIS, etc. as
above.

Time evolution is simulated by breaking the full propagator approximately into
a series of operations which act only on two neighboring sites at a time. The error
in using this approximate propagator is second order in the “infinitesimal” time-
step dt. TEBD gives a protocol for updating the canonical form of our state after
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such a two-site operation has been applied. The error in this procedure is controlled
by CHI_LIMIT, which is directly related to the amount of spatial entanglement,
and TRUNC_LIMIT, which is akin to the TRUNCATION_ERROR in the DMRG
routines. The parameter vector NUMSTEPS specifies how many time-steps are
taken in performing each quench, which together with � implicitly defines the time-
step dt. The overall error is a nontrivial function of CHI_LIMIT, TRUNC_LIMIT,
and NUMSTEPS which will be investigated in the next set of tutorials, so we
won’t worry about the choice of these much for now. Finally, STEPSFORSTORE
determines how many time steps are taken before observables are computed and
stored and SIMID is an integer differentiating the simulations with different � .

We now move on to the actual computation. The lines:

baseName= ’ t u t o r i a l _ 1 a ’
# w r i t e o u t p u t f i l e s
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
# run t h e a p p l i c a t i o n
r e s = p y a l p s . runTEBD ( nmlnameLis t )

prepare the input files for the TEBD routines and run the simulations for the range
of � specified in the parameters. We now load the Loschmidt Echo and interaction
parameter U as functions of time via:

#Load t h e l o s c h m i d t echo and V
LEdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s . g e t R e s u l t

F i l e s ( p r e f i x = ’ t u t o r i a l _ 1 a ’ ) , measurements =
[ ’ Loschmidt Echo ’ , ’V’ ] )

Finally, we plot the collected data using:

LE= p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’ Loschmidt
Echo ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in LE :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’TAUS ’

] [ 0 ] )

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( LE )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ Loschmidt Echo $ | < \ p s i ( 0 ) | \ p s i ( t ) > | ^ 2 $ ’

)
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )

Uf ig = p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’V’ , f o r e a c h
=[ ’SIMID ’ ] )

f o r q in Ufig :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’TAUS ’

] [ 0 ] )



298 A Documentation for ALPS v2.0 TEBD Code

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( Uf ig )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’V’ )
p l t . t i t l e ( ’ I n t e r a c t i o n p a r a m e t e r $V$ vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )
p l t . show ( )

A.2.2.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial1a.vt and look at the workflow
labeled “tutorial1a.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.2.2.3 Questions

• How does the behavior of the overlap change as the quench rate decreases?
• Roughly how slowly do you have to perform the quench in order for it to be

adiabatic?
• Is it easier or harder for a larger system to be adiabatic? Why?
• Are these properties changed depending on whether the intermediate phase is

gapped or not? One can test this by changing from the hardcore boson model
to the (softcore) boson Hubbard model, and then quenching from the Mott-
Insulating (MI) phase at large U=t and unit filling to the CDW phase with
large V . As you quench from the Mott insulating to the CDW phase and back,
how difficult is it to be adiabatic?

A.2.3 Linear Quench with Hold

In this section we will investigate the effects of “holding” the system in the SF phase
for a time �hold before quenching back to the CDW phase.

A.2.3.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial1b.py. The first
parts of this script import the required modules and then prepare the input files as a
list of Python dictionaries:
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import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ ]
c o u n t =0
f o r A in [ 5 . 0 , 1 0 . 0 , 1 5 . 0 , 2 5 . 0 , 5 0 . 0 ] :

c o u n t +=1
parms . append ( {

’L ’ : 10 ,
’MODEL’ : ’ h a r d c o r e boson ’ ,
’CONSERVED_QUANTUMNUMBERS’ : ’N’ ,
’N’ : 5 ,
’ t ’ : 1 . 0 ,
’V’ : 1 0 . 0 ,
’ ITP_CHIS ’ : [ 2 0 , 30 , 3 5 ] ,
’ ITP_DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP_CONVS ’ : [1E�8, 1E�8, 1E�9] ,
’ INITIAL_STATE ’ : ’ ground ’ ,
’ CHI_LIMIT ’ : 80 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 1 0 . 0 , A, 1 0 . 0 ] ,
’POWS’ : [ 1 . 0 , 0 . 0 , 1 . 0 ] ,
’GS ’ : [ ’V’ , ’V’ , ’V’ ] ,
’ GIS ’ : [ 1 0 . 0 , 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 , i n t (A/ 0 . 0 5 ) , 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 5 , 5 , 3 ] ,
’SIMID ’ : c o u n t

} )

Note that in this case we have three quenches as GS, GIS, etc. are all vectors of
length three. The second quench keeps the Hamiltonian parameters fixed at t D 1,
V D 0 for a time �hold before quenching back. We write the input files, run the
simulations, get outputs, and plot as above:

baseName= ’ t u t o r i a l _ 1 b ’
# w r i t e o u t p u t f i l e s
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
# run t h e a p p l i c a t i o n
r e s = p y a l p s . runTEBD ( nmlnameLis t )

#Load t h e l o s c h m i d t echo and U
LEdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .

g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 1 b ’ ) , measurements
=[ ’ Loschmidt Echo ’ , ’V’ ] )
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LE= p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’ Loschmidt
Echo ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in LE :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u _ { \ mathrm { ho ld }}=$ ’+ s t r

( q . p r o p s [ ’TAUS ’ ] [ 1 ] )
p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( LE )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ Loschmidt Echo $ | < \ p s i ( 0 ) | \ p s i ( t ) > | ^ 2 $ ’

)
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )

Uf ig = p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’V’ , f o r e a c h
=[ ’SIMID ’ ] )

f o r q in Ufig :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u _ { \ mathrm { ho ld }}=$ ’+ s t r

( q . p r o p s [ ’TAUS ’ ] [ 1 ] )
p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( Uf ig )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’V’ )
p l t . t i t l e ( ’ I n t e r a c t i o n p a r a m e t e r $V$ vs . Time ’ )
p l t . l e g e n d ( )
p l t . show ( )

A.2.3.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial1b.vt and look at the workflow
labeled “tutorial1b.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.2.3.3 Questions

• How does the behavior of the overlap change as the hold time increases?
• Is this behavior monotonic in the hold time? Why or why not?

A.2.4 Nonlinear Quenches

In this section we will investigate the effects of varying the power of the quench
away from being linear.
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A.2.4.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial1c.py. The first
parts of this script imports the required modules and then prepares the input files as
a list of Python dictionaries:

import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ ]
c o u n t =0
f o r A in [ 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 ] :

c o u n t +=1
parms . append ( {

’L ’ : 10 ,
’MODEL’ : ’ h a r d c o r e boson ’ ,
’CONSERVED_QUANTUMNUMBERS’ : ’N’ ,
’N’ : 5 ,
’ t ’ : 1 . 0 ,
’V’ : 1 0 . 0 ,
’ ITP_CHIS ’ : [ 2 0 , 30 , 3 5 ] ,
’ ITP_DTS ’ : [ 0 . 0 5 , 0 . 0 5 , 0 . 0 2 5 ] ,
’ITP_CONVS ’ : [1E�8, 1E�8, 1E�9] ,
’ INITIAL_STATE ’ : ’ ground ’ ,
’ CHI_LIMIT ’ : 40 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 1 0 . 0 , 1 0 . 0 ] ,
’POWS’ : [ 1 . 0 , A] ,
’GS ’ : [ ’V’ , ’V’ ] ,
’ GIS ’ : [ 1 0 . 0 , 0 . 0 ] ,
’GFS ’ : [ 0 . 0 , 1 0 . 0 ] ,
’NUMSTEPS ’ : [ 1 0 0 0 , 1 0 0 0 ] ,
’STEPSFORSTORE ’ : [ 1 0 , 5 ] ,
’SIMID ’ : c o u n t

} )

We then write the input files, run the simulations, get outputs, and plot as above:

baseName= ’ t u t o r i a l _ 1 c ’
# w r i t e o u t p u t f i l e s
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
# run t h e a p p l i c a t i o n
r e s = p y a l p s . runTEBD ( nmlnameLis t )

#Load t h e l o s c h m i d t echo and U



302 A Documentation for ALPS v2.0 TEBD Code

LEdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .
g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 1 c ’ ) , measurements
=[ ’V’ , ’ Loschmidt Echo ’ ] )

LE= p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’ Loschmidt
Echo ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in LE :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’POWS’

] [ 1 ] )
p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( LE )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ Loschmidt Echo $ | < \ p s i ( 0 ) | \ p s i ( t ) > | ^ 2 $ ’

)
p l t . t i t l e ( ’ Loschmidt Echo vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower l e f t ’ )

Uf ig = p y a l p s . c o l l e c t X Y ( LEdata , x= ’ Time ’ , y= ’V’ , f o r e a c h
=[ ’SIMID ’ ] )

f o r q in Ufig :
q . p r o p s [ ’ l a b e l ’ ]= r ’ $ \ t a u =$ ’+ s t r ( q . p r o p s [ ’POWS’

] [ 1 ] )
p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( Uf ig )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’U’ )
p l t . t i t l e ( ’ I n t e r a c t i o n p a r a m e t e r $V$ vs . Time ’ )
p l t . l e g e n d ( l o c = ’ lower l e f t ’ )
p l t . show ( )

A.2.4.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial1c.vt and look at the workflow
labeled “tutorial1c”. Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.2.4.3 Questions

• How does the behavior of the overlap change as the power changes?
• Again change from the hardcore boson model to the boson Hubbard model and

investigate the dynamics of the MI-CDW transition, this time with a nonlinear
quench. Is the behavior different from that of a linear quench?
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• The present example uses an asymmetric quench which is linear one side and
nonlinear on the other. How is the behavior changed if you make both quenches
nonlinear?

A.3 Tutorials: TEBD-02 kink

A.3.1 Evolution of a Domain Wall

In this tutorial we will study the time evolution of an S D 1=2 spin chain prepared
in a nonequilibrium state. The particular state that we choose is that with all spins
to the left of the chain center “down” and all of those to the right of the center
“up,” j ## : : : #" : : : ""i. This state can be chosen as the initial state by
setting INITIAL_STATE to be “kink”. Some exact results are known regarding the
evolution of this state under the 1D XX model, which allows for a detailed study of
the errors present in TEBD.

A.3.2 Exact Solution for the Case of the XX Model

The time evolution of the kink initial state under the XX model was solved exactly in
Phys. Rev. E 59, 4912 (1999) by a Jordan–Wigner transformation to free fermions.
It was found that the expectation value of the magnetization at any site as a function
of time can be represented as a sum of Bessel functions, and the magnetization in
the limit of long times and large distances from the initial domain wall approaches
a scaling form in the variable n=t , where n is the distance from the center and t the
time. Explicitly, we have

M.n; t/ D �1
2

n�1X

iD1�n
j 2i .t/ ; (A.4)

lim
n!1 lim

t!1M.n; t/! � .n=t/ D � 1
�

arcsin .n=t/ ; (A.5)

where M.n; t/ is the magnetization a distance n from the center and ji .t/ is the
Bessel function of order i . In the first part of this tutorial we demonstrate these two
results.

http://link.aps.org/doi/10.1103/PhysRevE.59.4912
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A.3.2.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial2a.py. The first
parts of this script import the required modules and prepare the input files as a list
of Python dictionaries:

import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t
import numpy as np
import copy
import math
import s c i p y . s p e c i a l

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ {

’L ’ : 50 ,
’MODEL’ : ’ s p i n ’ ,
’ l o c a l _ S ’ : 0 . 5 ,
’CONSERVED_QUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL_STATE ’ : ’ k ink ’ ,
’ CHI_LIMIT ’ : 40 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H’ ] ,
’ GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 2 ]

} ]

The math and scipy.special modules are required to generate the special functions
needed to compare with the exact solution. Note that we have chosen POWS to be
zero, which corresponds to no quenching at all. Thus, the values of GS, GIS, and
GFS are arbitrary, and TAUS and NUMSTEPS give us the total simulation time and
the number of time steps, respectively. We write the input files, run the simulation,
and get the output as usual:

baseName= ’ t u t o r i a l _ 2 a ’
nmlname= p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
r e s = p y a l p s . runTEBD ( nmlname )

# Get t h e r e s u l t s o f t h e s i m u l a t i o n
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Data= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .
g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 2 a ’ ) , measurements
=[ ’ Loca l M a g n e t i z a t i o n ’ ] )

We now must postprocess the raw output to compare with the exact solution. To
do this we first define empty arrays to hold the postprocessed data

# d e f i n e a d a t a s e t n u m e r i c a l S o l u t i o n t o c o n t a i n t h e n u m e r i c a l
r e s u l t
n u m e r i c a l R e s u l t = [ ]
# d e f i n e a d a t a s e t e x a c t S o l u t i o n t o c o n t a i n t h e e x a c t

s o l u t i o n
e x a c t R e s u l t = [ ]
# d e f i n e a d a t a s e t s ca l i ngForm t o c o n t a i n t h e s c a l i n g form
s c a l i n g F o r m = [ ]

we then calculate the exact result from the time data, and use the computed values
of the magnetization at each site to compare with the exact solution.

#Compute t h e e x a c t r e s u l t M( n , t )=<S_n ^ z >=�(1/2)�sum_ {
i =1�n } ^ { n�1} j _ i ( t ) ^ 2 , where

# j _ i ( t ) i s t h e B e s s e l f u n c t i o n o f o r d e r i and compare
t o t h e n u m e r i c a l l y o b t a i n e d r e s u l t

f o r q in Data :
s y s s i z e =q [ 0 ] . p r o p s [ ’L ’ ]
# A s s i g n a l a b e l ’ D i s t a n c e ’ d e n o t i n g t h e

d i s t a n c e from t h e c e n t e r n ( o n l y do t h e
f i r s t two s i t e s

# t o a v o i d c l u t t e r i n g t h e p l o t )
f o r n in r a n g e ( 1 , 3 ) :

# C r e a t e c o p i e s o f t h e da ta f o r
p o s t p r o c e s s i n g

numer ica lCopy =copy . deepcopy ( q )
exac tCopy =copy . deepcopy ( q )

numer ica lCopy [ 0 ] . p r o p s [ ’ D i s t a n c e ’ ]= n
numer ica lCopy [ 0 ] . p r o p s [ ’SIMID ’ ]= ’

Numer ica l a t n= ’+ s t r ( n )
exac tCopy [ 0 ] . p r o p s [ ’ D i s t a n c e ’ ]= n
exac tCopy [ 0 ] . p r o p s [ ’SIMID ’ ]= ’ Exac t a t

n= ’+ s t r ( n )

# compute t h e e x a c t r e s u l t o f t h e
m a n e t i z a t i o n n s i t e s from t h e
c e n t e r

l o c =0 .0
f o r i in r a n g e (1�n , n ) :
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loc �=0.5� s c i p y . s p e c i a l . j n ( i , q
[ 0 ] . p r o p s [ ’ Time ’ ] ) � s c i p y .
s p e c i a l . j n ( i , q [ 0 ] . p r o p s [ ’
Time ’ ] )

exac tCopy [ 0 ] . y =[ l o c ]
# add t o t h e e x a c t d a t a s e t
e x a c t R e s u l t . e x t e n d ( exac tCopy )

# g e t t h e n u m e r i c a l r e s u l t o f t h e
m a g n e t i z a t i o n n s i t e s from t h e
c e n t e r

numer ica lCopy [ 0 ] . y =[ q [ 0 ] . y [ s y s s i z e /2+ n
�1]]

# add t o t h e n u m e r i c a l d a t a s e t
n u m e r i c a l R e s u l t . e x t e n d ( numer ica lCopy )

Next, we calculate the exact scaling function, and then compute magnetization
as a function of the scaling variable n=t to compare with the exact solution

# compute t h e s c a l i n g form
# \ p h i ( n / t ) =�(1/ p i )� a r c s i n ( n / t ) t h a t M( n , t ) approaches

as n�> i n f i n i t y and t�> i n f i n i t y
# and compare i t w i t h t h e n u m e r i c a l l y computed v a l u e s

o f M( n / t )
f o r q in Data :

s y s s i z e =q [ 0 ] . p r o p s [ ’L ’ ]
# A s s i g n a l a b e l ’ D i s t a n c e ’ d e n o t i n g t h e

d i s t a n c e from t h e c e n t e r n ( o n l y do t h e
f i r s t few s i t e s

# t o a v o i d c l u t t e r i n g t h e p l o t )
f o r n in r a n g e ( 0 , 5 ) :

# C rea t e a copy o f t h e da ta f o r
p o s t p r o c e s s i n g

s c a l i n g C o p y =copy . deepcopy ( q )
s c a l i n g C o p y [ 0 ] . p r o p s [ ’ D i s t a n c e ’ ]= n

# The f i r s t d i s t a n c e c o n t a i n s t h e e x a c t
s c a l i n g form \ p h i ( n / t ) =�(1/ p i )�

a r c s i n ( n / t )
i f n ==0:

s c a l i n g C o p y [ 0 ] . p r o p s [ ’ Time ’
] = 1 . 0 / s c a l i n g C o p y [ 0 ] . p r o p s [
’ Time ’ ]

s c a l i n g C o p y [ 0 ] . y
= [ � ( 1 . 0 / 3 . 1 4 1 5 9 2 6 )�math .
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a s i n ( min ( s c a l i n g C o p y [ 0 ] .
p r o p s [ ’ Time ’ ] , 1 . 0 ) ) ]

s c a l i n g C o p y [ 0 ] . p r o p s [ ’SIMID ’ ]= ’
Exac t ’

# The o t h e r d i s t a n c e s c o n t a i n t h e
n u m e r i c a l da ta as a f u n c t i o n o f t h e

s c a l i n g v a r i a b l e M( n / t )
e l s e :

s c a l i n g C o p y [ 0 ] . p r o p s [ ’ Time ’ ]= n
/ s c a l i n g C o p y [ 0 ] . p r o p s [ ’ Time
’ ]

s c a l i n g C o p y [ 0 ] . y =[ s c a l i n g C o p y
[ 0 ] . y [ s y s s i z e /2+ n�1] ]

s c a l i n g C o p y [ 0 ] . p r o p s [ ’SIMID ’ ]= ’
Numer ica l a t n= ’+ s t r ( n )

# add t o t h e s c a l i n g d a t a s e t
s c a l i n g F o r m . e x t e n d ( s c a l i n g C o p y )

Finally, we plot the exact and numerical results for comparison.

# P l o t t h e n u m e r i c a l and e x a c t m a g n e t i z a t i o n f o r
compar i son

exactMag= p y a l p s . c o l l e c t X Y ( e x a c t R e s u l t , x= ’ Time ’ , y= ’
Loca l M a g n e t i z a t i o n ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in exactMag :
q . p r o p s [ ’ l a b e l ’ ]= q . p r o p s [ ’SIMID ’ ]

numericalMag = p y a l p s . c o l l e c t X Y ( n u m e r i c a l R e s u l t , x= ’ Time
’ , y= ’ Loca l M a g n e t i z a t i o n ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in numericalMag :
q . p r o p s [ ’ l a b e l ’ ]= q . p r o p s [ ’SIMID ’ ]

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( [ exactMag , numericalMag ] )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ M a g n e t i z a t i o n ’ )
p l t . l e g e n d ( l o c = ’ lower r i g h t ’ )
p l t . t i t l e ( ’ M a g n e t i z a t i o n vs . t ime ’ )

# P l o t t h e s c a l i n g form w i t h t h e n u m e r i c a l da ta f o r
compar i son

S c a l = p y a l p s . c o l l e c t X Y ( sca l i ngForm , x= ’ Time ’ , y= ’ Loca l
M a g n e t i z a t i o n ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in S c a l :
q . p r o p s [ ’ l a b e l ’ ]= q . p r o p s [ ’SIMID ’ ]
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p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t ( S c a l )
p l t . x l a b e l ( ’ S c a l i n g v a r i a b l e $n / t $ ’ )
p l t . y l a b e l ( ’ M a g n e t i z a t i o n $ ( n , t ) $ ’ )
p l t . l e g e n d ( )
p l t . x l im ( 0 , 1 . 5 )
p l t . t i t l e ( ’ M a g n e t i z a t i o n s c a l i n g f u n c t i o n ; n u m e r i c a l

and e x a c t r e s u l t s ’ )
p l t . show ( )

We see that the magnetization agrees very well to visual accuracy, and
approaches the exact scaling form in the relevant limit.

A.3.2.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial2a.vt and look at the workflow
labeled “tutorial2a.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.3.3 Error Analysis of TEBD 1: Time Step Error

We now use the exact solution to compute the error in a TEBD simulation as a
function of time. We first investigate the effects of changing the “infinitesimal” time
step dt.

A.3.3.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial2b.py. The first
parts of this script import the required modules and prepare the input files as a list
of Python dictionaries:

import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t
import numpy as np
import math
import s c i p y . s p e c i a l

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ ]
c o u n t =0
f o r n s t e p s in [ 1 0 0 , 250 , 500 , 750 , 1 0 0 0 ] :

c o u n t +=1
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parms . append ( {
’L ’ : 50 ,
’MODEL’ : ’ s p i n ’ ,
’ l o c a l _ S ’ : 0 . 5 ,
’CONSERVED_QUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL_STATE ’ : ’ k ink ’ ,
’ CHI_LIMIT ’ : 20 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H’ ] ,
’ GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS ’ : [ n s t e p s ] ,
’STEPSFORSTORE ’ : [ i n t ( math . f l o o r ( n s t e p s / 1 0 0 ) ) ] ,
’SIMID ’ : c o u n t

} )

By changing the parameter NUMSTEPS we implicitly change the time step,
since the total evolution time TAU is fixed. We now write the input files, run the
simulations, and collect data:

baseName= ’ t u t o r i a l _ 2 b _ ’
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
r e s = p y a l p s . runTEBD ( nmlnameLis t )

# Get m a g n e t i z a t i o n da ta
Magdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .

g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 2 b ’ ) , measurements
=[ ’ Loca l M a g n e t i z a t i o n ’ ] )

We now calculate the exact result from the time data, and then calculate the
difference between the numerical and the exact result for the magnetization

# P o s t p r o c e s s i n g �g e t t h e e x a c t r e s u l t f o r compar i son
f o r q in Magdata :

s y s s i z e =q [ 0 ] . p r o p s [ ’L ’ ]
# Get t h e e x a c t r e s u l t o f M( 1 , t ) =�(1/2) �( j _ 0 ( t )

^ 2 ) , where j _ 0 ( t ) i s t h e 0^{ t h } o r d e r
# b e s s e l f u n c t i o n and M( 1 , t ) i s t h e

m a g n e t i z a t i o n one s i t e t o t h e r i g h t o f t h e
c h a i n c e n t e r

l o c =�0.5� s c i p y . s p e c i a l . j n ( 0 , q [ 0 ] . p r o p s [ ’ Time ’
] ) � s c i p y . s p e c i a l . j n ( 0 , q [ 0 ] . p r o p s [ ’ Time ’ ] )

# Get t h e d i f f e r e n c e be tween t h e computed and
e x a c t r e s u l t s

q [ 0 ] . y =[ abs ( q [ 0 ] . y [ s y s s i z e /2+1�1]� l o c ) ]
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Finally, we plot this magnetization error:

# P l o t t h e Error i n t h e m a g n e t i z a t i o n one s i t e t o t h e
r i g h t o f t h e c h a i n c e n t e r

Mag= p y a l p s . c o l l e c t X Y ( Magdata , x= ’ Time ’ , y= ’ Loca l
M a g n e t i z a t i o n ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in Mag :
d t = round ( q . p r o p s [ ’TAUS ’ ] / q . p r o p s [ ’NUMSTEPS ’ ] , 3 )
q . p r o p s [ ’ l a b e l ’ ]= ’ d t = ’+ s t r ( d t )

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t (Mag )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y s c a l e ( ’ l o g ’ )
p l t . y l a b e l ( ’ M a g n e t i z a t i o n E r r o r ’ )
p l t . t i t l e ( ’ E r r o r i n t h e m a g n e t i z a t i o n vs . t ime ’ )
p l t . l e g e n d ( l o c = ’ lower l e f t ’ )
p l t . show ( )

We see that, for short times, the errors are roughly proportional to dt2, reflecting
the contribution to the error from the trotter breakup of our exponential. At long
times, however, the simulations with the smallest dt have errors which become larger
than those with larger dt, and eventually the errors blow up! We will have more to
say about this behavior in the next section.

A.3.3.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial2b.vt and look at the workflow
labeled “tutorial2b.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.3.4 Error Analysis of TEBD 2: Entanglement Cutoff Error

We now investigate the effects of changing the entanglement cutoff parameter � on
the errors in the magnetization.

A.3.4.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial2c.py. The first
parts of this script import the required modules and prepare the input files as a list
of Python dictionaries:
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import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t
import math
import s c i p y . s p e c i a l

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ ]
c o u n t =0
f o r c h i in [ 1 0 , 20 , 30 , 4 0 ] :

c o u n t +=1
parms . append ( {

’L ’ : 50 ,
’MODEL’ : ’ s p i n ’ ,
’ l o c a l _ S ’ : 0 . 5 ,
’CONSERVED_QUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ INITIAL_STATE ’ : ’ k ink ’ ,
’ CHI_LIMIT ’ : ch i ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H’ ] ,
’ GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 5 ] ,
’SIMID ’ : c o u n t

} )

We now write the input files, run the simulations, collect data, and compute the
errors as above

baseName= ’ t u t o r i a l _ 2 c _ ’
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
r e s = p y a l p s . runTEBD ( nmlnameLis t )

# Get m a g n e t i z a t i o n da ta
Magdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .

g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 2 c ’ ) , measurements
=[ ’ Loca l M a g n e t i z a t i o n ’ ] )

# P o s t p r o c e s s i n g �g e t t h e e x a c t r e s u l t f o r compar i son
f o r q in Magdata :

s y s s i z e =q [ 0 ] . p r o p s [ ’L ’ ]
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# Get t h e e x a c t r e s u l t o f M( 1 , t ) =�(1/2) �( j _ 0 ( t )
^ 2 ) , where j _ 0 ( t ) i s t h e 0^{ t h } o r d e r

# b e s s e l f u n c t i o n and M( 1 , t ) i s t h e
m a g n e t i z a t i o n one s i t e t o t h e r i g h t o f t h e
c h a i n c e n t e r

l o c =�0.5� s c i p y . s p e c i a l . j n ( 0 , q [ 0 ] . p r o p s [ ’ Time ’
] ) � s c i p y . s p e c i a l . j n ( 0 , q [ 0 ] . p r o p s [ ’ Time ’ ] )

# Get t h e d i f f e r e n c e be tween t h e computed and
e x a c t r e s u l t s

q [ 0 ] . y =[ abs ( q [ 0 ] . y [ s y s s i z e /2+1�1]� l o c ) ]

Finally, we plot the magnetization error

# P l o t t h e Error i n t h e m a g n e t i z a t i o n one s i t e t o t h e
r i g h t o f t h e c h a i n c e n t e r

Mag= p y a l p s . c o l l e c t X Y ( Magdata , x= ’ Time ’ , y= ’ Loca l
M a g n e t i z a t i o n ’ , f o r e a c h =[ ’SIMID ’ ] )

f o r q in Mag :
q . p r o p s [ ’ l a b e l ’ ]= ’ $ \ c h i $ = ’+ s t r ( q . p r o p s [ ’

CHI_LIMIT ’ ] )
p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t (Mag )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y s c a l e ( ’ l o g ’ )
p l t . y l a b e l ( ’ M a g n e t i z a t i o n E r r o r ’ )
p l t . t i t l e ( ’ E r r o r i n t h e m a g n e t i z a t i o n vs . t ime ’ )
p l t . l e g e n d ( l o c = ’ lower l e f t ’ )
p l t . show ( )

We see that, for short times, the errors are roughly proportional to dt2, again
reflecting the contribution to the error from the trotter breakup of our exponential.
As time increases, however, a cascade of diverging errors ensues. First the sim-
ulation with � D 10 diverges around t D 5, then the simulation with � D 20

diverges around t D 9 and so on. This breakdown is due to the fact that the
protocol for finding the MPS which best approximates the time-evolved state is
approximate when the state becomes highly entangled. This approximation involves
a renormalization of the wavefunction, and so the errors accumulate roughly
exponentially in time.

This exponential growth of errors also accounts for the failure of the simulations
with smaller dt. As dt becomes smaller we must apply the approximate propagation
scheme more to reach the same fixed final time, and this means more accumulation
of the exponentially growing truncation error. Thus, we must strike a delicate
balance between the error incurred by increasing the time step and the error incurred
by taking more time steps. All results should be carefully checked for convergence
in both dt and �.
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A.3.4.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial2c.vt and look at the workflow
labeled “tutorial2c.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.3.5 Solution in the Case of the XXZ Model

We saw from the exact solution that the magnetization profile had a well-defined
front which expanded ballistically with velocity v D 1. The XX model has many
special properties and so it is natural to ask if this same magnetization behavior
holds under more general conditions. In this part of the tutorial we investigate
the effects of adding a JzS

z
i S

z
iC1 term to the Hamiltonian, corresponding to the

XXZ model. In the limit as this term dominates the spins become frozen in a
parallel configuration, and so the initial state becomes an exact eigenstate of the
Hamiltonian. The XX terms in the Hamiltonian try to flip the spins, and are
responsible for the propagating magnetization wavefront we saw in the pure XX
model. As a quantitative measure of the ability of the system to transport spin,
we consider the integrated flow of magnetization through the center defined in
Phys. Rev. E 71, 036102 (2005) as


M.t/ D
LX

n>L=2

.hS z
n.t/i C 1=2/:

A.3.5.1 Preparing and Running the Simulation Using Python

To set up and run the simulation in Python we use the script tutorial2d.py. The first
parts of this script import the required modules and prepare the input files as a list
of Python dictionaries:

import p y a l p s
import m a t p l o t l i b . p y p l o t a s p l t
import p y a l p s . p l o t
import math
import s c i p y . s p e c i a l

# p r e p a r e t h e i n p u t p a r a m e t e r s
parms = [ ]
c o u n t =0
f o r z in [ 0 . 0 , 0 . 3 , 0 . 9 , 1 . 0 , 1 . 1 , 1 . 5 ] :

c o u n t +=1
parms . append ( {

http://pre.aps.org/abstract/PRE/v71/i3/e036102
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’L ’ : 50 ,
’MODEL’ : ’ s p i n ’ ,
’ l o c a l _ S ’ : 0 . 5 ,
’CONSERVED_QUANTUMNUMBERS’ : ’ Sz ’ ,
’ Jxy ’ : 1 ,
’ J z ’ : z ,
’ INITIAL_STATE ’ : ’ k ink ’ ,
’ CHI_LIMIT ’ : 40 ,
’TRUNC_LIMIT ’ : 1E�12 ,
’NUM_THREADS’ : 1 ,
’TAUS ’ : [ 2 0 . 0 ] ,
’POWS’ : [ 0 . 0 ] ,
’GS ’ : [ ’H’ ] ,
’ GIS ’ : [ 0 . 0 ] ,
’GFS ’ : [ 0 . 0 ] ,
’NUMSTEPS ’ : [ 5 0 0 ] ,
’STEPSFORSTORE ’ : [ 5 ] ,
’SIMID ’ : c o u n t

} )

Note that we are simulating a range of Jz-couplings. We then write the input files,
run the simulation, and get the output as usual:

baseName= ’ t u t o r i a l _ 2 d ’
nmlnameLis t = p y a l p s . w r i t e T E B D f i l e s ( parms , baseName )
r e s = p y a l p s . runTEBD ( nmlnameLis t )

# Get m a g n e t i z a t i o n da ta
Magdata= p y a l p s . l o a d . l o a d T i m e E v o l u t i o n ( p y a l p s .

g e t R e s u l t F i l e s ( p r e f i x = ’ t u t o r i a l _ 2 d ’ ) , measurements
=[ ’ Loca l M a g n e t i z a t i o n ’ ] )

From the computed magnetization data we calculate the integrated magnetization as
defined above:

#Compute t h e i n t e g r a t e d m a g n e t i z a t i o n a c r o s s t h e
c e n t e r

f o r q in Magdata :
s y s s i z e =q [ 0 ] . p r o p s [ ’L ’ ]
#Compute t h e i n t e g r a t e d f l o w o f m a g n e t i z a t i o n

t h r o u g h t h e c e n t e r \ D e l t a M=\ sum_ { n>L / 2 } ^ { L}
(<S_n ^ z ( t ) >+1/2)

# \ D e l t a M= L / 4
l o c = 0 . 5� ( s y s s i z e / 2 )
# \ D e l t a M�=<S_n ^ z ( t )> from n=L / 2 t o L
q [ 0 ] . y = [ 0 . 5� ( s y s s i z e / 2 ) +sum ( q [ 0 ] . y [ s y s s i z e / 2 :

s y s s i z e ] ) ]
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Finally, we plot the integrated magnetization for the range of Jz couplings
simulated.

# P l o t t h e i n t e g r a t e d m a g n e t i z a t i o n
Mag= p y a l p s . c o l l e c t X Y ( Magdata , x= ’ Time ’ , y= ’ Loca l

M a g n e t i z a t i o n ’ , f o r e a c h =[ ’ Jz ’ ] )

p l t . f i g u r e ( )
p y a l p s . p l o t . p l o t (Mag )
p l t . x l a b e l ( ’ Time $ t $ ’ )
p l t . y l a b e l ( ’ I n t e g r a t e d M a g n e t i z a t i o n $ \ D e l t a M( t ) $ ’ )
p l t . t i t l e ( ’ I n t e g r a t e d M a g n e t i z a t i o n vs . Time ’ )
p l t . l e g e n d ( l o c = ’ upper l e f t ’ )
p l t . show ( )

We see that for Jz < 1 the integrated magnetization increases roughly linearly
in time, and so the magnetization transport is ballistic as in the XX case. For Jz
around 1, we see a change in the qualitative behavior to one in which the integrated
magnetization eventually saturates.

A.3.5.2 Preparing and Running the Simulation Using Vistrails

To run the simulation in Vistrails open the file tutorial2d.vt and look at the workflow
labeled “tutorial2d.” Click on “Execute” to prepare the input file, run the simulation
and create the output figure.

A.3.5.3 Questions

• The point Jz D 1 where the behavior of the integrated magnetization undergoes a
distinct qualitative change is the point at which the XXZ model transitions from
a critical phase to the Antiferromagnetic phase. However, this phase transition is
a priori a low-energy phenomenon, affecting the ground state. Can you deduce
how this low energy change affects the dynamical properties of our high-energy
initial state?



Appendix B
Educational Materials: A Gentle Introduction
to Time Evolving Block Decimation

B.1 Pre-test

Before we begin, I’m assuming that you have finished the “Introduction to the
Bose–Hubbard Model and Fock State Basis” problem set.1 In particular, it is
important that you have finished Problem 6 and have a working code which will
compute the ground state of an N particle, L site Bose–Hubbard system with local
dimension d . The below exercises will test your familiarity with the Bose–Hubbard
Hamiltonian and the Fock state basis. If you can’t complete them with relative ease,
you may want to review the material presented in the other problem set before
proceeding.

B.1.1 Exercise 1

Consider a system with three sites occupied by bosons. The Fock space is spanned
by the states jn1n2n3i. What is the overlap of the states j110i and j010i (that is,
what is h110j010i)? What are h110j Ob1j010i and h110j Ob
1 j010i?

B.1.2 Exercise 2

Now consider the total number operator defined by ON � P3
iD1 Oni , where Oni D

Ob
i Obi . What is the action of ON on the states j 1i D j231i, j 2i D 1p
5
j022i C

1Note added for thesis version: The only preliminary assumed here is an exact diagonalization
code for the Bose-Hubbard model and familiarity with second quantization.

© Springer International Publishing Switzerland 2015
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Lattices, Springer Theses, DOI 10.1007/978-3-319-14252-4
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q
4
5
j101i, and j 3i D

q
1
3
j112i C

q
2
3
j022i. Which of these states (if any) are total

number eigenstates such that ON j i D N j i?

B.1.3 Exercise 3

In the Bose–Hubbard Hamiltonian, the tunneling term is

�t
X

hi;j i

� Ob
i Obj C Obi Ob
j
�
: (B.1)

What does the second term in parentheses represent physically? Why is it important
mathematically?

B.2 The Limitations of Exact Diagonalization

In the previous problem set you wrote a code to explicitly construct the Bose–
Hubbard Hamiltonian, diagonalize it, and thus find the ground state energy and
eigenvector. The process of finding the ground state of a many-body hamiltonian
in terms of a fixed Fock basis is referred to as exact diagonalization (ED). ED is
very powerful in that it gives us maximal information about the energy spectrum
and eigenstates of the Hamiltonian, and also has the benefit of being very simple to
understand and to program. As we shall see, ED is also very limited in the sizes of
the systems it can handle.

B.2.1 Exercise 4: The Limitations of Exact Diagonalization

Using your ED code, find the largest Bose–Hubbard system your computer can
handle for non-number conserving code before running out of memory. Repeat for
the number conserving case.

From this previous exercise, we gather two things. The first is that ED is not
going to be of much use in studying systems of more than a few sites. The second
is that judicious exploitation of symmetries and their associated conservation laws,
such as the conservation of total number in the Bose Hubbard model, drastically
improves the performance of many-body simulations.

Time-evolving block decimation (TEBD) is a powerful method to simulate
many-body systems such as the Bose–Hubbard model whose computation time and
memory usage scale polynomially in the system size (as opposed to exponentially in
the system size, as in ED). It is also, however, much more difficult to conceptually
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understand and to program. In the next few subsections I will provide a crash course
in what TEBD is and how it works. Those interested in learning only how to use the
open source TEBD package should skip to Sect. B.6.

B.3 Preliminaries

B.3.1 Mathematical Preliminaries

As is often the case, before we get to the physics we have to learn some math.
In this subsection I present two theorems, the singular value decomposition and the
Schmidt decomposition.

Theorem (Singular Value Decomposition). Let A be anm� n matrix. Then there
exists anm�m unitary matrix �A, an n�n unitary matrix �B , and anm�n positive
diagonal (as defined for rectangular matrices) matrix � such that

A D �A��TB ; (B.2)

or, stated element-wise,

Aij D
min.m;n/X

kD1
Œ�A�ik �kk

�
�TB
	

kj : (B.3)

This is referred to as the singular value decomposition of A, and the diagonal
elements of � are referred to as the singular values of A. Note that the form of
the decomposition implies that A has at least one and at most min .m; n/ distinct
singular values. The number of nonzero singular values of a matrix is its rank.

The most important property of the SVD for our purposes is that the matrix A.l/

defined by the matrix elements

A
.l/
ij D

lX

kD1
Œ�A�ik �kk

�
�TB
	

kj (B.4)

is the closest rank-l matrix to A, meaning that A.l/ minimizes the Frobenius norm:
the sum of the absolute squares of the element-wise difference between the rank-l

approximation and the full matrix,
P

ij

ˇ̌
ˇAij � A.l/ij

ˇ̌
ˇ
2

. Thus, the SVD gives us a

means to find the best lower-rank approximation to a matrix. The reduction in rank
is important because matrices of lower rank require much less storage and allow for
more efficient operations. Explicitly, a rank-l approximation to an m � n matrix is
comprised of ml C nl C l numbers whereas the full rank matrix is comprised of
mn numbers. For matrices with ranks small compared to their size, l � m; n, the
reduction in storage is enormous.
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We saw in the previous paragraph that a reduced rank approximation to a
matrix requires less storage than the full rank matrix. Here we also explore how
reducing the rank of a matrix improves the efficiency of operations performed with
it. Consider multiplying an n�nmatrix A to a vector v. The resulting vector Av can
be written in indicial notation as

ŒAv�i D
nX

kD1
Aikvk : (B.5)

The formation of each element of Av requires n multiplications, and there are n
elements of Av, so the formation of the full vector Av requires O

�
n2
�

operations,2

where O .a/ is read “of order a.”3 Now consider taking the singular value
decomposition of A, and forming a rank-l approximation A.l/:

A
.l/
ij D

lX

kD1
Œ�A�ik �kk

�
�TB
	

kj : (B.6)

How many operations are required to form A.l/v? Naively, we would write

h
A.l/v

i

ij
D

lX

kD1

nX

jD1
Œ�A�ik �kk

�
�TB
	

kj vj ; (B.7)

which seems to involve O
�
n2l
�

operations, increasing the number of operations by
a factor of l! We can be more clever, however, and first multiply v by �TB to get a
vector q

qi D
nX

kD1

�
�TB
	

ik vk : (B.8)

Note that q has l elements and this multiplication involves O .nl/ operations. We
now multiply each element of q by an element of � to get

qi D �iqi (B.9)

which involves O .l/ operations. Finally, we multiply q by �A to get

h
A.l/v

i

i
D

lX

jD1
Œ�A�ij qj ; (B.10)

2By operation we mean an elementary operation such as an addition, multiplication, subtraction,
or division. In computer science language, where we deal with floating point representations of
numbers, such an operation is called a floating-point operation, or FLOP.
3For more information on this notation, see the wikipedia page for Big-O notation.
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which again involves O .nl/ operations. Thus, our total operation count is nlClCnl,
which is O .nl/! For l � n, the reduction in the number of operations is again
enormous.

B.3.1.1 Exercise 5: General Matrix–Vector Multiply Using the SVD

How many operations does it take to multiply anm�nmatrixA to an n dimensional
vector v both with and without the singular value decomposition?

B.3.1.2 Exercise 6: Simple Examples of the SVD

Compute the singular value decompositions of the matrices

c1 D
�
1 0

0 0

�
; c2 D

�
0 1=

p
2

�1=p2 0

�
; c3 D

�
1=2 1=2

1=2 1=2

�
(B.11)

numerically. The simplest way to do so is using Matlab or Mathematica, where the
commands are [U,S,V]=svd(A) and
{U,S,V}=SingularValueDecomposition[A],4 respectively. Those who
wish to use Fortran or C++ can use the lapack routine dgesvd. What are the ranks
of these matrices? Could you have guessed their ranks simply by looking at them?

The singular value decomposition is a general mathematical statement about a
way to rewrite any arbitrary matrix. The next theorem, the Schmidt decomposition,
gives a more physical understanding of what the singular value decomposition
means in the context of a tensor product space.

Theorem (Schmidt Decomposition). Let j i be a state vector in the dAdB
dimensional Hilbert space HA ˝HB .5 Then there exist vectors

˚j�A˛ i
�

and
˚j�B˛ i

�

and scalars �S and f�˛g such that

j i D
�SX

˛D1
�˛j�A˛ i ˝ j�B˛ i ; (B.12)

1 
 �S 
 min .dA; dB/ ; (B.13)

�1 
 �2 
 � � � 
 ��S > 0 ; (B.14)
X

˛

�2˛ D 1 : (B.15)

4Note in Mathematica that it returns U , S , and V such that A D USVT

5To be concrete, you could consider HA to be the Hilbert space of the first site and HB to be the
Hilbert space of the second site of a two-site system. Or you could consider HA to represent the
internal states of some particle and HB to represent the internal states of another particle.
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This is referred to as the Schmidt decomposition of j i. �S is referred to as the
Schmidt rank, and the f�˛g are referred to as the Schmidt coefficients. We shall prove
this theorem to elucidate the connection between the Schmidt rank and the singular
value decomposition.

Proof. Let fjjAig and fjnBig be two orthonormal bases of HA and HB of dimension
dA and dB , respectively. The most general decomposition of j i in this basis is

j i D
dAX

jD1

dBX

nD1
cjnjjAi ˝ jnBi : (B.16)

Applying the singular value decomposition to the coefficient matrix C such that

cjn D
min.dA;dB /X

iD1
Œ�A�ji �ii

�
�TB
	

in ; (B.17)

we have

j i D
dAX

jD1

min.dA;dB/X

iD1

dBX

nD1
Œ�A�ji �ii

�
�TB
	

in jjAi ˝ jnBi : (B.18)

If we now define

j�Ai i �
dAX

jD1
Œ�A�ji jjAi ; j�Bi i �

dBX

nD1

�
�TB
	

in jnBi ; �i � �ii ; (B.19)

we have

j i D
�SX

iD1
�i j�Ai i ˝ j�Bi i ; (B.20)

as was to be proven. We can identify �S generally as the number of nonzero singular
values of the decomposition matrix, with 1 
 �S 
min.dA; dB/. We also note that
the Schmidt decomposition may be easily performed numerically using the singular
value decomposition of the coefficient matrix C .

What has the Schmidt decomposition done for us? The Schmidt decomposition
of j i provides us with unique orthonormal bases for the two subsystems A and
B such that j i can be written as a superposition of tensor products with the least
possible number of terms. In addition, the sizes of the Schmidt coefficients �i give
the “importance” of the particular state j�Ai i˝j�Bi i in the representation of j i, and
the Schmidt rank tells us how difficult it is to write j i as a tensor product, loosely
speaking.
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These statements can be made more precise and physically meaningful by
introducing the quantum mechanical idea of entanglement, as is done in the next
subsection.

B.3.2 Entanglement

We again consider a system with two parts, which we refer to as a bipartite system.
A general ket j i in this system can be written as

j i D
X

n;m

cnmjni ˝ jmi; (B.21)

where the fjnig and fjmig form complete orthonormal bases for the first and second
parts, respectively. We see that this is not, in general, a tensor product j�1i˝ j�2i of
kets in the subspaces. States in the composite space which are not tensor products
of kets from the subspaces are said to be entangled. For example, if we examine a
two-qubit6 system, a general ket can be written

j i D c11jCi ˝ jCi C c12jCi ˝ j�i C c21j�i ˝ jCi C c22j�i ˝ j�i (B.22)

whereas general normalized kets of the subsystems can be written

j�1i D a1jCi C b11j�i (B.23)

j�2i D a2jCi C b2j�i (B.24)

) j�1i ˝ j�2i D a1a2jCi ˝ jCi C a1b2jCi ˝ j�i C b1a2j�i ˝ jCi C b1b2j�i ˝ j�i
(B.25)

j i D j�1i ˝ j�2i iff c11c22 D c12c21, which is certainly not the general case.
We saw above that the Schmidt rank gave us a measure of how difficult it was

to accurately represent our state as a tensor product. From the above considerations,
we see that states with a higher Schmidt rank are more entangled. By truncating at
a fixed Schmidt rank, we find the best approximation to our state in a Hilbert space
that truncates the amount of entanglement allowed. This statement is very key, so
I’m going to write it out in bold so that you remember it:

By performing the Schmidt decomposition on the state of a bipartite system and truncating
the Schmidt rank, we find the best approximation to the state in a Hilbert space with
restricted entanglement.

The efficient approximation of a state in a space with restricted entanglement
is the key idea of TEBD. In the next subsection we will compare the above
mathematical ideas with the more tangible idea of image compression.

6A qubit is a general two-state system, for example the internal states of a spin-1/2 particle. Here
jCi represents one of the two states and j�i the other.
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B.3.2.1 Exercise 7: Studying Entanglement via the Schmidt
Decomposition

We can now give a physical interpretation to the purely mathematical Exercise 6.
Write down the coefficient matrices of the states

j 1i D jCi ˝ jCi (B.26)

j 2i D 1p
2
.jCi ˝ j�i � j�i ˝ jCi/ (B.27)

j 3i D 1

2
ŒjCi ˝ jCi C jCi ˝ j�i C j�i ˝ jCi C j�i ˝ j�i� (B.28)

(B.29)

in the form

C D
�
c11 c12
c21 c22

�
; (B.30)

where cij is given as in Eq. (B.22). You should recover the matrices of Exercise 6.
Using their singular value decompositions, find the Schmidt ranks. Which of these
states are entangled according to the Schmidt rank? For those states that are not
entangled, can you find a way to write them as a tensor product? How might you
use the singular value decomposition to accomplish this?

B.4 Conceptual Basis of TEBD

The essential fact that allows for the efficiency and success of TEBD is that the
singular values of reduced density matrices,7 when arranged in non-increasing
fashion, have an approximately exponential decay. This means that a rank-�
approximation to the reduced density matrix, O�.�/, formed from the singular value
decomposition as in Eq. (B.4) with �� �S will provide an excellent approximation
to the true reduced density matrix. We can understand this fact using an analogy to
image compression.

Consider the JPEG image shown in Fig. B.1a. We can represent this picture as
a 300 � 416 array of pixels, requiring 124,800 words of storage. If we look at
the singular values of this pixel array, we find the distribution shown in Fig. B.1b,
namely that the singular values decay roughly exponentially. This implies that the

7The reduced density matrix is a general way of dealing with subsystems of quantum mechanical
systems. For our purposes, it takes the place of the coefficient tensor when the system has more
than two parts (e.g., more than two lattice sites).



B Educational Materials: A Gentle Introduction to Time Evolving Block Decimation 325

50 100 150 200 250 300

0.001

0.01

0.1

1

50 100 150 200 250 300

0.001

0.01

0.1

1

a b

c d

e f

Fig. B.1 SVD representation of an image. (a) Original image; (b) log plot of singular values; (c)
10 singular values; (d) 50 singular values; (e) 100 singular values; (f) log plot of singular values:
general pixel array (pink), physical pixel array (blue)

best approximation to the image given by the SVD will be excellent even if we
keep only a fraction of the total singular values. To see this in action, examine
Fig. B.1c–e, which show the best approximation to the image for various numbers of
singular values. Keeping 100 singular values gives an excellent approximation to the
original image with only a quarter of the data storage. If we consider that the original
image was a JPEG which itself was compressed down from a �3000 � 3000 pixel
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(10 Megapixel) raw array, we have benefitted enormously by carefully sampling the
parts of “image space” that are the most important via the SVD.

Why were we able to represent the image with so little data? The reason is that
a physical images are a very special subset of all 2D pixel arrays; they have a great
deal of structure and regularity. If we consider instead the most probable image of
the same size as our original image—one consisting of random pixel values—we get
the singular value scaling shown in Fig. B.1f. In this case the singular values are all
roughly the same, and our SVD compression would yield a miserable approximation
to the original image if we were to use only a quarter of the singular values. In
the same manner typical physical states in Hilbert space, including the ground
state, have limited entanglement as quantified by some entanglement measure. This
limited entanglement means the singular value spectra of physical states decay
exponentially more quickly than a general state, enabling them to be “entanglement
compressed” by algorithms such as TEBD.

B.5 TEBD in Summary

Before going on to use TEBD, let’s pause to reiterate what TEBD is and why it
works where ED fails. TEBD is a method which gives the best approximation to the
state of a many-body system by truncating the amount of entanglement allowed in
the state. This is done by the singular value decomposition, which reduces the rank
of the matrices carrying the state information. We have seen that reducing the rank
of a matrix allows it to be stored more compactly, and operations to be done more
efficiently. In the case of TEBD, the rank of the matrices we keep is exponentially
smaller than the size of the matrices they approximate. The exponential decrease
in storage and exponential increase in efficiency of operations are what allow us to
use TEBD where ED fails. For all of the gory details on TEBD, you can consult the
User’s guide for the open source package, located on the downloads page.

B.6 Using OSTEBD

To begin, download the most recent version of the open source TEBD package from
the downloads page (unless you have a more recent version from another place).
After decompressing the .tar.gz file, go into the Case_Studies directory,
and then into Bose_Hubbard_Wrapper. Open a terminal in this directory. Type
make ITP. If you see Execute_ITP in this folder after a while, the case study
has compiled. Otherwise, it didn’t compile for some reason. You should be sure that
you have gfortran as well as lapack installed and try again.

Once you have compiled successfully, open the file BoseHubbard_ITP.nml
This is the input file, which sets the parameters for a specific TEBD job. You will

http://physics.mines.edu/downloads/software/tebd/
http://physics.mines.edu/downloads/software/tebd/
http://gcc.gnu.org/fortran/
http://www.netlib.org/lapack/
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see three lines, denoted by SystemSettings, BHParams, and ITPParams.
The parameters in SystemSettings define the properties of the system as a
whole. Specifically, they are

1. systemSize, the number of lattice sites.
2. maxFilling, the maximum number of bosons allowed per lattice site.
3. totNum, the total number of bosons for number conserving code. If totNum=0,

the non-number conserving code is used.
4. BoundaryCond, the boundary conditions used. It can be either “O” for open

boundary conditions or “P” for periodic boundary conditions.
5. trotterOrder, the order of the trotter expansion of the propagator. It can be

either 2 or 5.

In very recent versions you may also have numThr, which specifies the number
of threads used for OpenMP parallelization. Unless you know what you are doing,
set this to be 1. The parameters in BHParams represent the parameters in the Bose–
Hubbard model. Specifically they are

1. jTunn, the tunneling energy t .
2. U0, the on-site interaction energy U .
3. V0, the nearest-neighbor interaction energy V .
4. mu0, the chemical potential �. Note that the chemical potential sets the total

number when the non-number conserving code is used, but only gives an overall
(unimportant) energy shift when the number conserving code is used.

The parameters contained in ITPParams determine the convergence and output
properties of the TEBD run. Specifically, they are

1. chiMin, the minimum value of the entanglement cutoff parameter � used to
calculate the ground state.

2. chiMax, the maximum value of the entanglement cutoff parameter � used to
calculate the ground state.

3. convCriterion1, the convergence criterion for the first ITP.8 attempt.
4. convCriterion2, the convergence criterion for the first ITP attempt.
5. stepsForJudge determines how many ITP steps occur before convergence is

checked for.
6. dtITP, the “infinitesimal” time-step used for ITP.
7. maxITPsteps, the maximum number of ITP steps allowed.
8. itpDir, the directory where the output will be written. Note that this directory

must exist when you run the program or it will exit!

After setting the parameters you want in the BoseHubbard_ITP.nml file,
type ./Exectute_ITP to run the TEBD program.

8ITP is short for imaginary time propagation. Imaginary time propagation replaces t D �it in
the Schrödinger equation, which turns it into a diffusion equation. The highest energy eigenmodes
decay the most quickly during imaginary time evolution, and so in the limit of long times imaginary
time propagation gives us the ground state.
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B.6.1 Exercise 8: Using TEBD: Non-number
Conserving Version

Set SystemSize=4, totNum=0, BoundaryCond=’O’, trotterOrder=2,
chiMin=chiMax=10, and maxFilling to 3. Then set jTunn=1.12, U0=0.72,
V0=0.0, and mu0=0.5. Run the code as described above, and note the total number
and total energy. Using your ED code, calculate the ground state energy and total
number of particles for the same parameters and without number conservation and
compare them to the TEBD predictions.

B.6.2 Exercise 9: Using TEBD: Number Conserving Version

Set SystemSize=4, totNum=4, BoundaryCond=’O’, trotterOrder=2,
chiMin=chiMax=10, and maxFilling to 3. Then set jTunn=1.12, U0=0.72,
V0=0.0, and mu0=0.0. Run the code as described above, and note the total energy.
Using your ED code, calculate the ground state energy with number conservation
and compare it to the TEBD prediction. Also note the large increase in efficiency of
the number conserving codes vs. non-number conserving codes.

I hope the last two exercises give you some confidence that the OSTEBD package
works. However, TEBD is hardly useful for four sites where ED still works and is
likely faster. In the next exercise we will study the analytically solvable tight-binding
limit of the Bose–Hubbard model using TEBD for large numbers of sites where ED
fails.

B.6.3 Exercise 10: The Tight-Binding Chain

Consider the Bose–Hubbard model in the limit U ! 0, V ! 0 and a fixed number
of particles:

OH D �t
X

i

� Ob
i ObiC1 C Obi Ob
iC1
�
: (B.31)

This Hamiltonian, known as the tight-binding Hamiltonian, represents noninteract-
ing bosons which are free to hop between sites on a lattice. It is the many-body
generalization of the particle in an infinite well problem from single-particle
quantum mechanics, and can be solved similarly. We can write the kth eigenstate
for a single particle as
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j ki D
LX

iD1
 ik
Ob
i j0 : : : 0i; (B.32)

where the  ik are complex scalars to be determined and j0 : : : 0i is the Fock state
with no particles in any site (the Fock vacuum). Inserting this solution into the
Schrödinger equation OH j i D Ej i, we have the recursion relation

�t . i�1;k C  iC1;k/ D Ek ik (B.33)

together with appropriate boundary conditions. For open boundary conditions, we
have

 0k D 0 ;  LC1;k D 0 (B.34)

and for periodic boundary conditions we have

 1k D  LC1;k : (B.35)

Let us now define the ansatz

 jk D
�

Aeikj C Be�ikj OBC
Aeikj PBC

: (B.36)

Inserting this ansatz into the above recursion relation gives a set of algebraic
equations for the  ik and the energy Ek . Solve these equations and determine the
single-particle eigenfunctions and energies for both open and periodic boundary
conditions. Then, normalize these solutions such that h kj ki D 1.

We note that the operator

Os
k D
LX

iD1
 ik
Ob
i (B.37)

creates an eigenstate of the tight-binding Hamiltonian with quantum number k.
Since the particles do not interact, the solution for N particles with quantum
numbers k1; k2 : : : kN is simply

j i D N Os
kN : : : Os



k2
Os
k1 j0 : : : 0i ; (B.38)

where j0 : : : 0i is again the Fock vacuum and

N D 1
pQ

k nkŠ
(B.39)
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is a normalization factor accounting for the indistinguishability of bosons. The
energy of this state is E D Ek1 C Ek2 C � � � C EkN . This completes the solution of
the N -particle tight-binding Hamiltonian. For bosons, the lowest energy state is the
one where all particles are in the lowest energy single-particle eigenstate. Using the
above results, find what the expectation value of the number operator in the ground
state is at each site for both open and periodic boundary conditions.9 As a slight
generalization, also compute the single-particle density matrix (SPDM) defined by

�ij D hg:s:j Ob
i Obj jg:s:i : (B.40)

Using some system size which is much too large for ED (say, 25), study the
tight-binding Hamiltonian using TEBD for both open and periodic boundary
conditions. In particular, compare the results for the energy and the on-site
number expectation values. To compare with your predictions for the on-
site number expectation values, look in the directory ITPDATA for the file
ending in localmeasures.dat. The full filename will be in the form
BH_L$N@ChiXjTunnP.PPUQQ.QQ*BClocalmeasures, where $ is the
number of lattice sites, @ the number of particles, X the chi value and so on.
On the first line of this file are the on-site number expectation values, listed in order
of increasing site index.

B.6.4 Exercise 11: Fidelity Susceptibility and the
Superfluid-Mott Insulator Quantum Phase Transition

The previous exercise allowed us to go beyond where ED could, but the results were
still amenable to analytic computation. Here we go beyond the reach of analytic
techniques to study a strongly interacting Bose–Hubbard system, and investigate
its quantum phase transition. By a quantum phase transition we mean a transition
between two different states of matter (characterized by different symmetries) which
is driven by quantum fluctuations at zero temperature.10 Specifically, in the Bose–
Hubbard model the quantum phase transition occurs because of fluctuations in the
on-site number as we change the ratio t=U of the hopping strength to the interaction.

9There’s an easy way and a hard way to do this. The easy way involves representing the number
operator Oni D Ob
i Obi in terms of the Osk using Eq. (B.37) and then taking the expectation value

using Eq. (B.38). The hard (but fun) way is to expand the solution Eq. (B.38) in terms of Obi using
Eq. (B.37) and then take the expectation value of Oni D Ob
i Obi .
10This is in contrast to classical phase transitions, which are driven by thermal fluctuations, and
thus necessarily occur at nonzero temperatures.
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Fig. B.2 Single particle
density matrix, noninteracting
system of L D 50 lattice sites
and N D 50 particles
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To discover where the quantum phase transition is in the Bose–Hubbard model,
let us return to the SPDM from the last exercise, and focus on the case of OBC and
N D L (as many particles as lattice sites).11 You should have found that the SPDM
in the non-interacting OBC case had the form

�ij D 2N

LC 1 sin

�
�i

LC 1
�

sin

�
�j

LC 1
�

(B.41)

which is plotted in Fig. B.2. What does this quantity tell us? Notice that the elements
of the SPDM can be interpreted as the overlap of the two wavefunctions Obj jg:s:i
and Obi jg:s:i Thus, we can interpret the elements of the SPDM as the probability
amplitude that if we remove a particle from the ground state at site i we will find it
missing at site j , averaged over all the other N � 1 particles (with the “diagonal”
elements i D j just being the number on-site i , of course). For this to be nonzero
with i ¤ j implies that the particles must be delocalized. In the present case the
particles are highly delocalized, and this gives rise to mostly nonzero SPDM matrix
elements. Secondly, because this matrix is Hermitian it may be diagonalized and
written in terms of its eigenvalues N� and eigenvectors �� .i/ as

�ij D
X

�

N��� .i/
? �� .j / : (B.42)

The eigenfunctions �� .i/ behave in many respects like single-particle wavefunc-
tions (although they do not, in general, diagonalize the single-particle part of the full
many-body Hamiltonian) and we can interpret the eigenvalues N� as the number of

11For good reason, as this quantum phase transition happens to occur only for integer filling
N=L D 1; 2; : : : .
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particles in the “single-particle state” ��.12 For our noninteracting case there is one
eigenvalue N1 D N , with all others being zero. The corresponding eigenfunction �1
is an actual single-particle wavefunction in this case, and corresponds to the k D 1

mode (or the k D 0 mode for PBC). Thus we have that all of the particles occupy
one particular single-particle mode, which is a hallmark of the phase of the Bose–
Hubbard model known as the superfluid phase. We can express this result in terms
of another quantity, called the depletion, as

D D 1 �N1=N : (B.43)

The depletion in this case is 0, meaning that all the particles are condensed into
one single-particle mode (the condensate is not at all depleted). When we add
small interactions N1 will shrink somewhat, giving rise to nonzero depletion, and
the eigenfunction �1 will no longer be a true single-particle wavefunction, but the
overall behavior will be qualitatively the same (most of the elements of �ij will be
nonzero, there will be one SPDM eigenvalue that is O .N /, etc.).

Let us now focus on the opposite limit of the Bose–Hubbard model, where we let
the hopping t ! 0 and have U nonzero. The only surviving term for a fixed number
of particles is

OH D U

2

X

i

Oni . Oni � 1/ : (B.44)

This Hamiltonian does not couple the different sites together, and so its ground state
is a Fock state. In particular, for N D L, the ground state is the Fock state with one
particle at each lattice site j11 : : : 1i.13 What does the SPDM look like in this case?
A trivial calculation gives

�ij D ıij ; (B.45)

where ıij is the Kronecker delta. Loosely speaking, there is no probability of finding
a removed particle missing from anywhere besides the exact spot it was removed
from, and so we see that the particles are now highly localized! Also, we see that all
of the eigenvalues of the SPDM are 1, giving the depletion

D D 1 � 1=N : (B.46)

12For more information on the physical content of the eigenvalues/vectors of the SPDM and their
connection with Bose-Einstein condensation, I recommend A.J. Leggett’s highly readable book
“Quantum Liquids,” which is available in the library.
13We arrive at this conclusion by noting that occupation of any site by two-particles costs an energy
U more than if those two-particles occupied separate sites.
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In the limit as L ! 1 and N ! 1 with N=L fixed (the thermodynamic limit)
where a true quantum phase transition occurs, the depletion becomes 1, meaning
that there are no particles in a condensed state (the condensate is fully depleted). The
resulting phase is known as the Mott Insulator. If the transition from the superfluid
to Mott insulator occurs at a finite value of t=U , then we expect the depletion to be
zero below this value and nonzero above it. It is clear that the depletion is thus not
a smooth (meaning infinitely continuously differentiable) function of t=U , and it is
this singularity in the depletion (or one of its derivatives) that signals the quantum
phase transition.

To “see” the quantum phase transition using TEBD, we could calculate the
ground state for a series of lattices with increasing L D N and a range of t=U ,
compute the depletion for each case, and try to find the point where it goes to zero
asL!1. However, this would require us to know ahead of time that the depletion
is the quantity signaling the quantum phase transition. In TEBD we have the option
of taking a more general approach, which I will outline here.

The ground states on either side of a quantum phase transition are very different
from one another, and the non-analyticity at the transition point disallows us from
smoothly “connecting” one type of ground state to another. Thus, we expect that
the overlap of the ground state on one side of the critical point with the ground
state on the other side should go to zero in the thermodynamic limit. This motivates
the definition of the fidelity

f

�
t

U
; ı
t

U

�
�
ˇ̌
ˇ̌hg:s:

�
t

U

�
jg:s:

�
t

U
C ı t

U

�
i
ˇ̌
ˇ̌ (B.47)

which is the overlap of the ground state at t=U with the ground state at t=UCıt=U .
For small ıt=U this quantity should drop sharply only right near a quantum critical
point, and does not require us to know anything about the system at hand. To remove
the dependence on the step size ıt=U it is actually better to work with the fidelity
susceptibility

�f

�
t

U

�
D 2

L
�
ı t
U

�2

�
1 � f

�
t

U
; ı
t

U

��
(B.48)

which can be shown to be independent of ı t
U

. This quantity diverges at the quantum
critical point, and will be the basis of our TEBD study.

In order to be able to properly extrapolate finite size results to the infinite size
limit, we will need to run TEBD for several numbers of sites L. In addition, because
the prediction of where the quantum critical point is will change as L changes,
we will need to simulate several t=U for each L. This amounts to running many
simulations, and you will run out of time and/or patience if you try and do it
sequentially on a desktop computer! Thus, in this exercise we will use the high
performance resources available here at Mines to run TEBD simulations in parallel.
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The TEBD code we will use distributes a group of tasks (here computation of the
ground state for a range of t=U ) among a group of processors, and then compiles
the results into a single file.

Log in either to Ra or Mio (Mio is preferred) and go to the carr group directory.14

Go to the Case studies folder and then enter the MPI_BH_Wrapper directory. Type
make FS, which compiles the main program BoseHubbard_FS_MPI.f90.
This program calculates the ground state of the Bose–Hubbard model for N D L

and a user-specified range of t=U in parallel, and saves the states to disk as
they are generated. Once all states have been generated, the routine reads them
in and computes the fidelity susceptibility. We can use this routine to study
the behavior of the fidelity susceptibility as L gets progressively larger. Also,
because we save the states we generate, we can progressively refine our result
for the fidelity susceptibility by gradually increasing the amount of entanglement
allowed (controlled by �) or by making the imaginary time step smaller.

The NAMELIST parameter file is BH_FS.nml. The parameters are:

1. systemSize, same meaning as before.
2. maxFilling, same meaning as before.
3. BoundaryCond, same meaning as before.
4. Jmin, the minimum value of t=U considered.
5. jMax, the maximum value of t=U considered.
6. jres, the number of t=U points from Jmin to jMax, inclusive.
7. chiOld, the old value of �, used when reading in previously generated states.
8. chiIn, the value of � for which you want to generate the fidelity susceptibility.
9. convCriterion, the convergence criterion for ITP.

10. stepsForJudge, same meaning as before.
11. dtOld, the old value of ıt , used when reading in previously generated states.
12. dtIn, the value of ıt for which you want to generate the fidelity susceptibility.
13. maxITPsteps, same meaning as before.
14. FSDir, the directory where the fidelity susceptibility data is stored.
15. statesDir, the directory where the state information is stored.

For the first run at a given systemSize, chiOld and chiIn should be the
same. If more accuracy is desired after this first run, chiOld should be set to the
value of � you previously generated and chiIn should be set to the value you
want to output at the end of the calculation. Identical reasoning applies to dt*. The
output file in the directory FSDir ending in FS.dat has as its columns the values
of t=U and �f . These can be plotted using your favorite program (e.g., gnuplot,
Matlab, or Mathematica). See Fig. B.3 for example fidelity susceptibility curves to
get you started on appropriate parameters.

14On Ra, this is /lustre/scratch/projects/carrgroup/. We will get such a directory started on Mio
once it is fully operational.
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To run a job in a high performance computing environment we must submit our
job with a request for resources to the queue. This is done using the attached PBS
file tebdpbs. The contents of the file are

#!/bin/csh
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:59:00
#PBS -N FS_MPI
#PBS -o FSstdout.$PBS_JOBID
#PBS -e FSstderr.$PBS_JOBID
#PBS -V
#PBS -m abe
#PBS -M YOURNAME@mines.edu
#------------------------
cd $PBS_O_WORKDIR
sort -u $PBS_NODEFILE > mynodes.$PBS_JOBID

mpiexec Execute_FS > FSstdout.$PBS_JOBID

You should change YOURNAME to your mines user name. This has the supercom-
puter email you when a job begins, finishes, or is aborted. Out of the remainder, the
lines you need to focus on are

#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:59:00

The first specifies the number of nodes you are asking for, where each node is a
computer with eight processors. Choosing n nodes will speed up the calculation by
a factor of 8n�1 in the ideal case. The second line specifies how long the computer
gives your job to finish before killing it. In the above it is set to 59 min. The longer
you ask for, the longer you may have to wait before your job starts running (see the
GECO webpage for more information about the different queues). To submit your
job to the queue, type msub tebdpbs.

After you have generated �f for a series of L values, plot the locations of the
maxima versus the lattice size and fit to a function of the form

L D f .�maxL/ D C j�maxL � �max1j�� (B.49)

with C; � > 0 as fit parameters, � D t=U , �maxL the value of � where �f is a
maximum for a particularL, and �max1 a fit parameter estimating the location of the
quantum phase transition in the thermodynamic limit. Note that this calculation was
only first done in 2007!15 Quantum phase transitions are an exciting and very current
area of research, and powerful new methods such as TEBD are key to advancing
understanding in the field.

15The relevant paper is Phys. Rev. Lett. 98 110601, but don’t look at it until you have a prediction
for �max1!

http://geco.mines.edu/


Appendix C
Educational Materials: Introduction to MPS
Algorithms

The goal of this document is to give a series of successive steps leading to a
working variational matrix product state (MPSs) code for the Ising model. New
in v3: sections marked with an asterisk (�) represent optimizations which should be
skipped on first reading, but are important for efficient MPS code.

C.1 MPSs and Their Canonical Forms

The definition of a MPS is

jMPSi D
dX

i1;:::;jLD1
Tr
�
Ai1 : : : AiL

� ji1 : : : iLi ; (C.1)

where L is the number of lattice sites on a 1D chain, ij is a physical index denoting
the state of the j th lattice site, and d is the on-site dimension (which I will also
call the local dimension). Because each Aij with ij fixed is a matrix we use the
terminology MPS. However, each A in fact has three elements: Ai˛ˇ . We will refer
to an object with greater than two indices generically as a tensor, and the number
of indices will be its rank. The dimensions of the spaces indexed by ˛ and ˇ are
referred to as bond dimensions, with the bond dimension of an MPS being the
maximum bond dimension of the matrices A. We will generically give a bond
dimension the symbol �. Simple arguments using the Schmidt decomposition show
that the left and right bond dimensions in the case of open boundary conditions
satisfy

�˛ 
 min
�
dj�1; dL�jC1� ;

�ˇ 
 min
�
dj ; dL�j � (C.2)

© Springer International Publishing Switzerland 2015
M.L. Wall, Quantum Many-Body Physics of Ultracold Molecules in Optical
Lattices, Springer Theses, DOI 10.1007/978-3-319-14252-4
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on the j th site, as can be easily proved by Schmidt decomposition. Note in
particular that this implies that the furthest left and furthest tensorsAŒ1� andAŒL�1 are
max

�
�˛; d; �ˇ

� D .1; d; d/ and .d; d; 1/, respectively. We will focus on the case of
open boundaries for the remainder of this document. The case of periodic boundary
conditions is considerably more complicated and should really be considered a
separate algorithm altogether.

We plan to use MPS as a variational ansatz for finding the ground state of the
Ising model. As such, we will need to define an MPS structure and initialize it with
random numbers.

C.1.1 Step 1: MPS Structure

Define a tensor 2 structure which is an allocatable array with three indices. This
structure will hold the tensors Ai˛ˇ . Next, define an MPS structure which is an array
of tensors. For the first part of this problem set, real tensors and MPSs will
suffice.

C.1.2 Step 2: MPS Initialization

Write a subroutine AllocateMPS(psi,L,bondD,d) which allocates an MPS
psi on L sites with maximum bond dimension bondD and local dimension d.
The left and right bond dimensions of each tensor A should obey the conditions
Eq. (C.2). Also write a routine DeallocateMPS which deallocates the MPS struc-
ture. Finally, write a routine CreateRandomMPS(psi,L,bondD,d)which not
only allocates an MPS as in AllocateMPS, but also assigns each element a random
number 2 Œ�1; 1�.

As discussed in Schollwöck,3 the imposition and maintenance of canonical forms
is absolutely essential to the efficiency of a variational MPS program. The canonical
form we will use most often is Mixed canonical form at site k, in which all tensors
to the left of k satisfy the left orthogonality conditions

X

˛;i

Ai˛ˇ
?
Ai˛ˇ0 D ıˇ;ˇ0 (C.3)

1The notation AŒj � means the tensor A
ij
˛ˇ on-site j . When all four indices are required, we will use

A
Œj �ij
˛ˇ

2I will use typewriter face whenever I refer to something which is to be coded.
3By which I mean Prof. Ulrich Schollwöck’s major review The density-matrix renormalization
group in the age of MPSs, Annals of Physics 326, 96 (2011).
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and all tensors to the right of k satisfy the right orthogonality conditions

X

i;ˇ

Ai˛ˇA
i
˛0ˇ

? D ı˛;˛ : (C.4)

The site k itself satisfies no such orthogonality conditions, but we note that

Tri1;:::;iL .j ih j/ D h j i D
P

˛;ˇ;ik
A
Œk�ik
˛ˇ A

Œk�ik
˛ˇ

?
, and so this site carries all

information about the norm of the state. We will refer to the site k in mixed canonical
form as the orthogonality center of the MPS.

We can always choose the orthogonality conditions Eqs. (C.3) and (C.4) to hold
because of the so-called gauge freedom inherent in the MPS representation. This
freedom refers to the fact that if we consider any two MPS tensors AŒi� and AŒiC1�,
the same MPS results if we replace these by QAŒj �ij and QAŒjC1�ijC1 , where

QAŒj �ij � AŒj �ij X ; (C.5)

QAŒjC1�ijC1 � X�1AŒjC1�ijC1 ; (C.6)

and X is any invertible matrix. In practice we implement the orthogonality
conditions Eqs. (C.3) and (C.4) as in Fig. C.1 and Fig. C.2, respectively.4

You should take a minute to convince yourself of why this works, recalling that
the matrices U and V of the singular value decomposition are unitary. Furthermore,
you should pay close attention to groupings of indices and note that two tensors are
changed at a time.

1. Reshape A
[j]i
αβ → A[αi],β.

2. Perform the singular value decomposition (SVD) on this matrix to obtain
A[αi]β → U[αi]γSγVγβ.

3. Replace A
[j]i
αβ = U[αi]β.

4. Combine (SV )γβ = SγVγβ.

5. Contract SV into the A tensor to the right of the one just replaced A
[j+1]i
αβ =

(SV )αγ A
i[j+1]
γβ .

Fig. C.1 Algorithm to put site j into left-canonical form

4The notation Œ˛i � refers to the Kronecker product of the indices ˛ and i . The product index
� D Œ˛i � runs from 1 to d˛di , and an explicit representation is � D .˛ � 1/ di C i .
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1. Reshape A
[j]i
αβ → Aα[iβ].

2. Perform an SVD on this matrix to obtain Aα[iβ] → UαγSγVγ[iβ].

3. Replace A
[j]i
αβ = Vα[iβ].

4. Combine (US)αγ = UαγSγ.

5. Contract US into the A tensor to the left of the one just replaced A
[j−1]i
αβ =

A
[j−1]i
αγ (US)γβ.

Fig. C.2 Algorithm to put site j into right canonical form

C.1.3 Step 3: Canonical Form

Write a routine OrthogonalizeMPS(psi,k,kl,kr) which puts the MPS
psi into mixed canonical form with the orthogonality center at site k. The
optional arguments kl and kr denote the furthest left and furthest right sites
which are altered. The default values are 1 and L, respectively. Test this routine by
explicitly checking the relations Eqs. (C.3) and (C.4) at each site. Do tensors in left-
canonical form obey any sort of right-canonical form or vice versa? What about the
orthogonality center—does it have any structure that you can discern?5 Then, write
a routine OrthonormalizeMPS(psi,k) which shifts the orthogonality center
of psi to site k and then normalizes the state by replacing AŒk�i˛ˇ ! A

Œk�i
˛ˇ =

ph j i,
where h j i D P

˛;ˇ;ik
A
Œk�ik
˛ˇ A

Œk�ik
˛ˇ

?
as shown above. The svd may be performed

using the LAPACK routine dgesvd.
OK, you now have an MPS in a form amenable to the variational procedure. Let’s

now move on to constructing the Hamiltonian in an appropriate way.

C.2 Matrix Product Operators

Just as an MPS can be viewed as a sum over tensor products of state-valued matrices:

jMPSi D
X

i1:::iL

Tr
�
Ai1 ˝ � � � ˝AiL

�
; (C.7)

Aij
˛ˇ � A

ij
˛ˇjij i (C.8)

5These are not trick questions . . . .
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we can define an object which is like an MPS but is operator-valued instead of state-
valued

OHMPO D
X

i1:::iL

Tr
�
W i1i

0
1 ˝ � � � ˝W iLi

0
L

�
; (C.9)

W ij i
0
j

˛ˇ � W
ij i

0
j

˛ˇ jij ihi 0j j : (C.10)

Such an object is called a matrix product operator (MPO). As with an MPS, the ij
indices are physical, referring to actual sites in the lattice, and the indices implicit in
the matrix product are called bond indices. The reason that MPOs are useful is that
they map MPSs to MPSs. To see this, note that an MPO-MPS product is

OH j i D Tr
� QAi1 : : : QAiL� ji1 : : : iLi ; (C.11)

QAijŒ˛k�Œˇk0� �
X

i 0j

A
i 0j
˛ˇW

ij i
0
j

kk0 : (C.12)

We see that, generically, the action of an MPO on an MPS increases the bond
dimension of that MPS by the multiplicative factor �H , the bond dimension of the
MPO. Because MPOs are operators, the relevant norm for them is the Frobenius

norm h OH j OH i D
r

Tr
� OH
 OH

�
. However, this norm scales as dL, and so we

cannot hope to orthogonalize the matrices of an MPO in the same way that we did
MPSs without running into serious numerical issues concerning precision. Luckily,
because of the structure of physical operators such as many-body Hamiltonians it
is possible to explicitly construct the MPOs in a canonical form in which all of
the (matrix-valued!) matrices Wkk0 are lower triangular. For the case of a generic
nearest-neighbor Hamiltonian

OH D
X

hi;j i

pX

˛D1
J˛ OO.1/

i˛
OO.2/
j˛ C

X

i

qX

ˇD1
hˇ OO.0/

iˇ ; (C.13)

where ˛ denotes the different nearest-neighbor terms and ˇ denotes the different on-
site terms (each characterized by different operators OO), the MPO representation is

W Œ1� D
�Pq

ˇD1 hˇ OO.0/

1ˇ J1
OO.1/
11 : : : Jp

OO.1/
1p I

�
; (C.14)

W Œj � D

0

BBBBBB@

I 0 : : : 0 0
OO.2/
j1 0 : : : 0 0
:::

:::
: : :

:::
:::

OO.2/
jp 0 : : : 0 0Pq

ˇD1 hˇ OO.0/

jˇ J1
OO.1/
j1 : : : Jp

OO.1/
jp I

1

CCCCCCA
; j ¤ 1 ; L ; (C.15)
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W ŒL� D

0

BBBBBB@

I
OO.2/
L1
:::
OO.2/

LpPq

ˇD1 hˇ OO.0/

Lˇ

1

CCCCCCA
: (C.16)

To be very concrete, in the case of the Ising model

OH D �J
X

hi;j i
O� z
i O� z
j � h

X

i

O�xi ; (C.17)

and so p D 1, q D 1, J˛ D �J , hˇ D �h, OO.1/
i˛ D OO.2/

i˛ D O� z
i , OO.0/

iˇ D O�xi . The
MPO in this case is

W Œ1� D ��h�x �J O� z I
�
; (C.18)

W Œj � D
0

@
I 0 0

O� z 0 0

�h O�x �J O� z I

1

A ; j ¤ 1 ; L ;

W ŒL� D
0

@
I

O� z

�h O�x

1

A :

We note that the MPO has a bond dimension of 3.6 The reader should convince
themselves that the MPO form given reproduces the correct Hamiltonian. A simple
check is to compute the two-site hamiltonian using only the boundary operators and
then the three-site Hamiltonian with an additional matrix between them, etc. with the
understanding that the matrices that are elements of the matrices W are multiplied
according to the tensor product. This method also suggests a straightforward way to
prove the consistency by induction for those who wish to be more thorough.

C.2.1 Step 4: MPO Structure

Introduce a matrix structure which is an allocatable array with two indices. Then,
define an MPOm structure which is an allocatable array of matrices with two indices.
This represents the on-site MPO tensors W ii0

kk0 , with i and i 0 being the indices of the
on-site operator. Finally, define an MPO structure which is an allocatable array of
MPOms.

6The general case given above has a bond dimension of p C 2, independent of the number of
on-site operators.
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C.2.2 Step 5: MPO Representation of the Ising Hamiltonian

Write a subroutine IsingMPO(H,L,Jz,hx) which creates an MPO H on L sites
containing the MPO representation of the Ising model with J D Jz and h D hx
according to Eq. (C.18). Additionally, write a routine DeallocateMPO(H)which
deallocates the MPO H which was allocated by the IsingMPO routine.

C.2.3 � Long-Range Interactions with MPO

Just as exponentially decaying correlations are naturally supported by an MPS with
a constant bond dimension, interactions with exponentially decaying weight may
be easily expressed as an MPO with a constant (independent of system size) bond
dimension. As an example, a long-range Ising model

OH D �J
X

i<j

e��ji�j�1j O� z
i O� z
j � h

X

i

O�xi (C.19)

can be expressed as an MPO as

W Œ1� D ��h�x �J O� z I
�
; (C.20)

W Œj � D
0

@
I 0 0

O� z e�� 0

�h O�x �J O� z I

1

A ; j ¤ 1 ; L ;

W ŒL� D
0

@
I

O� z

�h O�x

1

A :

Power-law decaying functions can be approximated by using sums of expo-
nentials in the following manner. We have some function f .i � j � 1/ and we
want to approximate it by the sum of k weighted exponentials

Pk
iD1 ˛kˇ

i�j�1
k DPk

iD1 ˛ke.i�j�1/ logˇk . We do so in the least squares sense, that is we find the ˛k and
ˇk such that

ˇ̌
ˇ̌
ˇf .x/ �

kX

iD1
˛kˇ

x
k

ˇ̌
ˇ̌
ˇ

2

(C.21)

is minimized in the desired (integer valued) domain of x. This can be done
with standard numerical packages such as MINPACK. My own implementation in
Python follows:
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from math import s q r t
import numpy as np
from s c i p y . o p t i m i z e import l e a s t s q
def f i t t o e x p S u m ( func , L , maxnterms , t o l ) :

" " " F i t a sum o f e x p o n e n t i a l s \ sum_n a_n b_n��{x�1}
t o t h e f u n c t i o n f u n c
a c r o s s t h e range [ 1 : L ] . maxnterms i s t h e

maximum number o f e x p o n e n t i a l s a l l o w e d
and t o l i s t h e t o l e r a n c e used t o o b t a i n t h e

a c t u a l number o f t e r m s . " " "
x=np . l i n s p a c e ( 1 , L , L )
# f u n c t i o n e v a l u a t e d a t x�p o i n t s
y= func ( x )
f a i l =True
f o r n in r a n g e ( 1 , maxnterms +1) :

# r e s i d u a l f u n c t i o n
r e s i d = lambda p , x , y : sumexp ( p , x )�y
# i n i t i a l g u e s s
p0=np . z e r o s (2�n )
i f n ==1:

f o r i in r a n g e (2�n ) :
p0 [ i ] = 0 . 1

e l s e :
# use o l d v a l u e s t o r e f i n e g u e s s
p0 [ : 2� ( n�1) ]= p
p0 [ 2� ( n�1) : ] = 0 . 1

p , cov , i n f o d i c t , mesg , i e r = l e a s t s q ( r e s i d , p0 , a r g s
=( x , y ) , f t o l = t o l , g t o l = t o l , maxfev =100000 ,
f u l l _ o u t p u t =1 , warn ing =True )

i f np . d o t ( i n f o d i c t [ ’ f v e c ’ ] , i n f o d i c t [ ’ f v e c ’ ] ) <
t o l :
p r i n t ’ r e s i d ’ , np . d o t ( i n f o d i c t [ ’ f v e c ’ ] ,

i n f o d i c t [ ’ f v e c ’ ] )
f a i l = F a l s e
break

i f f a i l :
r a i s e E x c e p t i o n ( " Unable t o c o n v e r g e

d e c a y i n g F u n c t i o n t o t h e d e s i r e d t o l e r a n c e
wi th t h e g i v e n number o f t e r m s ! Try
i n c r e a s i n g maxnterms or d e c r e a s i n g t o l ! " )

re turn p

def sumexp ( p , x ) :
" " " R e t u r n y =\ sum_n a_n b_n ^ { r �1}. " " "
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Ĥ eff

α

α

β

β

i

i

LR
[j+1]k
β β

LR
[j]k
αα

W ii
kkW ii
kkk

Fig. C.3 Construction of the effective hamiltonian in tensor network diagram representation

v a l =np . d o u b l e ( 0 . 0 )
n t e r m s = l e n ( p ) / 2
f o r n in r a n g e ( n t e r m s ) :

v a l = v a l +p [2�n ]� ( p [2�n +1]�� ( x�1) )
re turn v a l

The resulting MPO has the same overall format as the exponential Ising MPO,
with the border terms and the diagonals nonzero, but now there are k such nonzero
terms instead of just 1. The number of terms which must be kept depends on the
particular form of f and the domain of x.

C.3 Construction of the Effective Hamiltonian

We now have the state and Hamiltonian in the form appropriate for variational MPS
studies. We now wish to variationally optimize the MPS tensors A one at a time
until a global optimum has been reached. We optimize the state in the usual way, by
changing its parameters such that the total energy functional

E Œj i� D h j
OH j i

h j i (C.22)

is minimized. As shown in Schollwöck, minimization with respect to a single tensor
A chosen to be the orthogonality center leads to the linear eigenequation

X

˛0;i 0;ˇ0

OH eff
Œ˛iˇ�Œ˛0i 0ˇ0�A

i 0

˛0ˇ0 D �Ai˛ˇ ; (C.23)

where the effective Hamiltonian OH eff is defined by the tensor network diagram
shown in Fig. C.3. We call this object the effective Hamiltonian because it gives
the energies when all tensors except those at site j are held fixed, and so it
incorporates nonlocal effects of the many-body state when choosing the minimum
energy configuration at a particular site.
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1. Create a random MPS with fixed bond dimension, normalize it, and shift the
orthogonality center to some user-specified site j. Set k = j

2. Create the MPO representation of the Hamiltonian.

3. (Begin sweeping procedure: right sweep part 1) Create the effective Hamiltonian
at site k, diagonalize it, and replace A with the eigenvector corresponding to
the lowest eigenvalue.

4. Move the orthogonality center one site to the right. k = k + 1

5. Repeat 3 and 4 until site L is the orthogonality center.

6. (sweeping procedure: left sweep) Create the effective Hamiltonian at site k,
diagonalize it, and replace A with the eigenvector corresponding to the lowest
eigenvalue.

7. Move the orthogonality center one site to the left. k = k − 1
8. Repeat 6 and 7 until site 1 is the orthogonality center.

9. (sweeping procedure: right sweep part 2) Repeat 3 and 4 until site j is the
orthogonality center.

10. Test for convergence (to be discussed) and either repeat from 3 or exit the loop.

Fig. C.4 Pseudocode to find the ground state variationally

The overall algorithm for variationally finding the ground state is outlined in
Fig. C.4.

From Fig. C.3, we see that construction of the effective Hamiltonian at each site
requires O .L/ operations, as we have to contract over all MPS tensors not currently
being optimized. Because a complete sweep runs over L sites, this implies that the
overall algorithm scales as O

�
L2
�
, which is unacceptably slow. We now turn to how

to generate the effective Hamiltonian using O .L/ time. We do so by introducing an
array of LC1 tensors, which we call LR. This object is defined for orthogonality
center ` via the relations

LRŒ1�k
˛˛0 D ık;1ı˛;1ı˛0;1 (C.24)

LRŒj �k
˛˛0 D

X

i;i 0;k0;�;� 0

AŒj�1�i
�˛

?
LRŒj�1�k0

�� 0 A
Œj�1�i 0
� 0˛0 W

Œj�1�ii0
k0k

; 2 
 j 
 ` (C.25)

LRŒLC1�k
ˇ0ˇ

D ık;1ıˇ0;1ıˇ;1 (C.26)

LRŒj �k
ˇ0ˇ
D

X

i;i 0;k0;�;� 0

A
Œj �i 0

ˇ0� 0 LRŒjC1�k0

� 0�
A
Œj �i

ˇ�

?
W

Œj �ii0

kk0 ; `C 1 
 j 
 L : (C.27)
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Very special attention should be paid to the ordering of indices in each term.
While the order of indices may seem arbitrary, the particular choice shown here
will turn out to be beneficial for later optimization. We now note that the effective
Hamiltonian at site j can be constructed from these overlaps as

OH eff
Œ˛iˇ�Œ˛0i 0ˇ0� D

X

k;k0

LRŒj �k
˛˛0 W

ii0

kk0LRŒjC1�k0

ˇ0ˇ
; (C.28)

as shown in Fig. C.3. Once the present site has been variationally optimized and the
orthogonality center shifted to the next site, we update the j th element of the LR
array using Eq. (C.25) if we are sweeping to the right (steps 3/4 or 9) or Eq. (C.27)
if we are sweeping to the left (step 6/7). Note also that we must initialize the LR
array for the beginning orthogonality center j .

C.3.1 Step 6: LR Array

Create a routine InitializeLR(LR,H,psi,k) which initializes the L C
1-dimensional array of tensors LR according to the above relations for orthogo-
nality center k. Also, write a routine UpdateLR(LR,H,psi,k,sense) which
updates the k C 1th element of LR according to Eq. (C.25) if the integer sense is
greater than 0 and which updates the kth element of LR according to Eq. (C.27) if
sense is less than 0.7 These routines allow us to “recycle” old values of LR and
keep the algorithm scaling as O .L/.

C.3.2 Step 7: Effective Hamiltonian

Create a routine EffectiveHamiltonian(j,Heff,H,LR) which creates
the matrix Heff at site j according to Eq. (C.28). Create another routine
MinimizeSite(j,psi,H, LR, energy) which creates the effective
Hamiltonian at site j, diagonalizes it,8 outputs the lowest eigenvalue as energy,
and replaces psi with the eigenvector corresponding to the lowest energy
(be careful with indices).

7Note the asymmetry between which element we update based on the direction of the sweep. This

arises from the fact that we use LRŒj � and LRŒjC1� to update site j .
8Because the effective Hamiltonian is real and symmetric (prove this to yourself) you can use the
LAPACK routine DSYEV.
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C.3.3 Step 8: Putting It All Together

Write a routine FindGroundState(H,psi,k) which takes as input an MPO
Hamiltonian H, a random MPS psi with orthogonality center k and variation-
ally optimizes it to the ground state of H. We do this in several parts. First,
call InitializeLR(LR,H,psi,k) and set the logical flag converged to
.FALSE., energySave=10000.0, and numsweeps=1. We then have the
following psuedocode recursion:

DO WHILE ( . n o t . conve rged )
s e n s e =1
DO j =k , L�1

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j +1 , j , j +1)
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
s e n s e =�1
DO j =L , 2 , ( �1 )

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j �1 , j �1 , j )
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
s e n s e =1
DO j =1 , kin�1

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j +1 , j , j +1)
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
IF (ABS( energySave�ene rgy ) <0 .01) conve rged = . t r u e .
IF ( numsweeps ==10) EXIT
IF ( conve rged ) EXIT
numsweeps=numsweeps+1
ene rgySave = ene rgy

END DO

Compare with Fig. C.3. After convergence is reached, print the ground state
energy and whether it converged to the screen. Write a main program which
creates a random MPS, creates the MPO representation of the Ising Hamiltonian
with user-specified Jz and hx , and then finds the ground state energy. Com-
pare your results with the results of the attached code. The main program is
IsingGSMain.f90 which is compiled as make IsingGSMain and run as
./Execute_IsingGSMain.
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C.3.4 � Sparse Eigensolvers: The Lanczos Algorithm

Looking again at Fig. C.3, we see that the application of the effective Hamiltonian
onto some MPS tensor A may be broken into three pieces:

F k0

˛iˇ D
X

ˇ0

A
Œj �i

˛ˇ0 LRŒjC1�k0

ˇ0ˇ
; Gk

˛iˇ D
X

k0i 0

W ii0

kk0F
k0

˛i 0ˇ ;
h OHeffA

ii
˛ˇ
D
X

˛0k

LRŒj �k
˛˛0 G

k
˛iˇ :

(C.29)

The relative scalings of these contractions are �3d�O , �2Od
2�2, and �3d�O , where

� is the bond dimension of the MPS, d the local dimension, and �O the bond
dimension of the MPO. On the other hand, the direct construction of the effective
Hamiltonian, Eq. (C.28), scales as �4�2Od

2, which is much slower than a single
Hamiltonian-tensor multiply, and the diagonalization of the Hamiltonian scales as
�6d3, which is incomparably slower than either of these operations when � � 1,
as is typically the case. Luckily, there exist eigensolvers for one or a few of
the extremal eigenvalues which require only Hamiltonian-tensor multiplies. The
Lanczos algorithm is an example of such an algorithm. It may be stated as follows9:

i n p u t p s i , a n o r m a l i z e d v e c t o r ( t e n s o r )
i n p u t H, an e f f e c t i v e H a m i l t o n i a n i n t h e LR /W f o r m a t
i n p u t e p s i l o n , a t o l e r a n c e f o r c o n v e r g e n c e

k=1
l a n c = p s i
v=H� p s i
a l p h a ( k ) = p s i�v
v=v�a l p h a ( k )� p s i
b e t a ( k ) = s q r t ( v�v )
do u n t i l c o n v e r g e n c e

temp= p s i
p s i =v / b e t a ( k )
v=�b e t a ( k )� temp
v=v+H� p s i
k=k+1
a l p h a ( k ) = p s i�v
v=v�a l p h a ( k )� p s i
b e t a ( k ) = s q r t ( v�v )
s o l v e a l p h a / b e t a sys tem and t e s t f o r

c o n v e r g e n c e
end

9A great deal more can be said about the origins and interpretation of the Lanczos algorithm. See,
for example, Trefethen and Bau’s book “Numerical Linear Algebra” or Golub and Van Loan’s
book “Matrix Computations.” Here, for the sake of compactness, we just outline the algorithm.
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! g e n e r a t e e i g e n v e c t o r
p s i = e i g v e c ( 1 )� l a n c
v=0
v=H� l a n c
a l p h a ( k ) = l a n c�v
v=v�a l p h a ( k )� l a n c
b e t a ( k ) = s q r t ( v�v )
do i =1 , k�1

temp= l a n c
l a n c =v / b e t a ( k )
v=�b e t a ( k )� l a n c
p s i = p s i + e i g v e c ( i +1)� l a n c
v=v+H� l a n c
k=k+1
a l p h a ( k ) = l a n c�v
v=v�a l p h a ( k )� l a n c
b e t a ( k ) = s q r t ( v�v )

end
r e n o r m a l i z e p s i

where � for two tensors is the inner product of the Hilbert space hA;Bi � A �
B D P

˛iˇ A
i?
˛ˇB

i
˛ˇ and for Hamiltonian-tensor multiplies is the three-step process

Eq. (C.29). The section solve alpha/beta system at the kth step means to
solve for the lowest eigenvalue/eigenvector pair of the symmetric tridiagonal matrix
with alpha(1:k) on the diagonals and beta(1:k-1) on the offdiagonals.
evec(i) in the above represents the i th component of this eigenvector. Specialized
routines for tridiagonal problems exist in lapack. Exact convergence occurs when
one of the beta(k) is zero, to within numerical tolerance. Convergence within a

specified tolerance ", in the sense that
ˇ̌
ˇ OHeffA � �A

ˇ̌
ˇ < ", occurs when jekˇk�1j < ",

where e is the eigenvector of the alpha/beta matrix at the kth iteration and ˇ is
beta.

The Lanczos algorithm often converges in a constant (independent of �) number
of iterations on the order of a few tens or hundreds. This leads to an algorithm
which scales as �3 overall, much faster than the �6 scaling of the direct algorithm.
The Lanczos algorithm should thus be considered an essential part of any efficient
MPS program.

C.4 Observables

The simplest observables to compute are those at a single site: h OOj i. If that site is
the orthogonality center, then we have
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h OOj i D
X

˛;ˇ;i;i 0

A
Œj �i?

˛ˇ
OOj

ii0A
Œj �i 0

˛ˇ : (C.30)

To test these routines, compute
P

i h O�iz i and demonstrate that it is 0 (by symmetry)
and compute

P
i h O�ixi and show it is�@h OH i=@hD� ŒE .hCıh/�E .h � ıh/� =2ıhC

O
�
ıh2

�
. To compute the expectation of a general operator expressed as an MPO

you can use the LR recursion

LRŒLC1�k
ˇ0ˇ

D ık;1ıˇ0;1ıˇ;1 (C.31)

LRŒj �k
ˇ0ˇ
D

X

i;i 0;k0;�;� 0

A
Œj �i 0

ˇ0� 0 LRŒjC1�k0

� 0�
A
Œj �i

ˇ�

?
W

Œj �ii0

kk0 ; j D 1 : : : L ; (C.32)

the expectation is LRŒ1�111 (note that this tensor is 1 � 1 � 1).

C.5 Excited States

To compute the nth excited state, we again minimize the energy functional

E Œj i� D h j
OH j i

h j i (C.33)

but this time subject to the constraints h j'� i D 0, � D 1; : : : ; n, where j'� i is the
� th lowest energy state already obtained by the ground state procedure above or the
current procedure. We note that each one of the constraints is a linear form in each
of the tensors AŒ`�?. Thus, we can represent the constraints as10

h j'� i D
X

˛iˇ

A
Œ`�i?
˛ˇ B

Œ`�.�/i

˛ˇ D 0 ; (C.34)

where

B
Œ`�.�/i

˛ˇ � @

@AŒ`�?
h j�� i D LRŒ`��

˛˛0B
Œ`�.�/i

˛0ˇ0 LRŒ`C1��
ˇ0ˇ

: (C.35)

The LR overlaps used in this expression are

LRŒ1��
˛˛0 D ık;1ı˛;1ı˛0;1 (C.36)

10Note that the bases of B are the same as the bases of A, as can be clearly seen from Fig. C.5.
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LR
[j]γ
αα

LR
[j+1]γ
β β

B
[j](γ)i
α β

B
[j](γ)i
αβ

= B
= A

Fig. C.5 Construction of linear forms for projection in tensor network diagram representation.
The thick lines correspond to contractions over the bond dimensions of A and the thin lines are
contractions over the bond dimensions of B

LRŒj ��
˛˛0 D

X

i;ˇ;ˇ0

A
Œj�1�i?
ˇ˛ LRŒj�1��

ˇˇ0 B
Œj�1�.�/i
ˇ0˛0 ; 2 
 j 
 ` (C.37)

LRŒLC1��
ˇ0ˇ

D ık;1ıˇ0;1ıˇ;1 (C.38)

LRŒj ��
ˇ0ˇ
D
X

i;˛;˛0

B
Œj �.�/i

ˇ0˛0 LRŒjC1��
˛0˛

A
Œj �i?

ˇ˛ ; `C 1 
 j 
 L ; (C.39)

and BŒ`�.�/ is the on-site tensor at site ` for state j'� i. The tensor network diagram
representing these objects is shown in Fig. C.5. We use the B

.�/ to construct
projectors into the subset of states orthogonal to the n lowest states

P Œ`� D 1 �
X

�� 0

B
Œ`�.�/

�
N�1�

�� 0 B
Œ`�.� 0/
; (C.40)

where N�1 is the inverse of the Gram matrix

N�� 0 D
X

˛iˇ

B
Œ`�.�/i?

˛ˇ B
Œ`�.� 0/i

˛ˇ : (C.41)

The Gram matrix inverse is required for the projector to be idempotent: P2 D P .
While the n lowest states are all orthogonal the B are not guaranteed to be
orthogonal, and may even be linearly dependent.11 Thus, instead of the true inverse
we use the Moore–Penrose pseudo-inverse of the (Hermitian) Gram matrix.

�
N�1�

�� 0 D
NSX

ˇD1
V�ˇ

1

�ˇ
V ?
� 0ˇ; (C.42)

11One can see that if the number of states desired is larger than the local Hilbert space of a single
MPS tensor then the vectors must be linearly dependent just by the dimension of the space.
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where V is the matrix with the eigenvectors of N as columns and NS is the number
of eigenvalues greater than a set tolerance (to avoid overflow).12 By defining the
new set of tensors

C
Œ`�.�/i

˛ˇ D
X

� 0

1
p
��
V� 0�B

Œ`�.� 0/i

˛ˇ (C.43)

the projector becomes

P Œ`�

Œ˛iˇ�;Œ˛0i 0ˇ0� D ıŒ˛iˇ�;Œ˛0i 0ˇ0� �
X

�

C
Œ`�.�/i

˛ˇ C
Œ`�.�/i 0?

˛0ˇ0 : (C.44)

We compute the projected effective Hamiltonian as P Œ`�
 OHeffP Œ`�. The total algo-
rithm proceeds much like the ground state search algorithm except that we also
initialize the B overlaps LR using Eqs. (C.37) and (C.39), compute the projectors
at each site to compute and diagonalize the projected effective Hamiltonian,
and update the B LR after each optimization.13 As a final note, clearly 0 is a
valid eigenvalue of the projected Hamiltonian with eigenvector 0. Thus, if the next
excited state energy is positive, then the algorithm will fail to converge trying to
force the state to be zero. This difficulty can be avoided by shifting the spectrum of
the Hamiltonian to be negative definite.14

C.5.1 � Sparse Solution of the Projected Eigenproblem

The above method can also easily be recast in a form amenable to the Lanczos algo-
rithm. Every Hamiltonian-tensor multiply is replaced by projection, Hamiltonian-
tensor multiply, and then projection again, where projection is

Ai˛ˇ D Ai˛ˇ �
X

�

2

4
X

˛0ˇ0i 0

Ai
0

˛0ˇ0C
Œ`�.�/i 0?

˛0ˇ0

3

5C
Œ`�.�/i

˛ˇ : (C.45)

12A good choice for the tolerance is nkNk2" D n
p

max�" where " is the machine epsilon, n is
the linear dimension of the matrix, and

p
max� is the square root of the largest eigenvalue. Note

that because N is a Gram matrix it is guaranteed to be positive semidefinite and have at least one
positive eigenvalue.
13Note that we don’t need to shift the orthogonality center of the Bs, as all of them get contracted
each time we form the Bs.
14Note that the largest eigenvalue of OH can be found by solving for the “ground state” of � OH .
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C.6 Time Evolution with TEBD

In this section we discuss the simplest method for time evolution of an MPS:
Time-evolving block decimation (TEBD). TEBD involves two parts: (1) the approx-
imation of the full propagator by a series of two-site propagators for short times and
(2) representation of a two-site operator times an MPS as an MPS. There are many
ways to accomplish the first task which fall generally under the heading of Suzuki–
Trotter expansions. A simple expression which fits our purposes nicely is

U D exp
�
�i OHıt

�
D

1Y

jDL�1
exp

�
�i OH.j/ıt=2

� L�1Y

jD1
exp

�
�i OH.j/ıt=2

�
CO

�
ıt3
�

(C.46)

D
1Y

jDL�1
U .j /

L�1Y

jD1
U .j / CO

�
ıt3
�
; (C.47)

where OH.j/ is a two-site Hamiltonian acting on-sites j and jC1whose precise form
will be determined shortly. We first note that this restriction implies that TEBD is
restricted to nearest-neighbor Hamiltonians. As was discussed in the MPO section,
the MPO of any Hamiltonian with only nearest-neighbor and local interactions
has nonzero entries only on the “border” of the MPO matrices. We construct the
Hamiltonians in Eq. (C.46) as

OH.1/

Œij�Œi 0j 0� D
�O�1X

kD1

�
W Œ1�

�ii0

1k

�
W Œ2�

�jj0

k1
C 1

2

�
W Œ1�

�ii0

1�O

�
W Œ2�

�jj0

�O1
; (C.48)
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W ŒL�1��ii0

11

�
W ŒL�
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�OX
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�
W ŒL�1��ii0
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�
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: (C.50)

Note that, with these definitions, OH D PL�1
jD1 OH.j/. The factors of 1=2 in the local

terms with k D 1 or �O account for the fact that OH.`/ and OH.`C1/ both contribute
a local term at site `, and the boundary Hamiltonians account for the fact that only
OH.1/ and OH.L�1/ contain local terms for the first and last site, respectively. With

these Hermitian matrices in hand we can easily find the exponentials appearing
in Eq. (C.46) by performing the eigenvalue decomposition H D V �V 
, where
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V is the matrix with the eigenvectors of H as columns and � is a diagonal
matrix with the eigenvalues on the diagonal. The matrix exponential exp .�iHıt/
is V exp .�i�ıt/ V 
 in the same notation.

Our task of applying the full propagator U to a site j i expressed as an MPS has
been reduced to computing the application of a two-site operator to an MPS. We do
this in the following manner. We first define a new fourtensor structure which
has four indices. We then fuse two tensors A and B into a fourtensor T as

T˛ijˇ D
X

�

Ai˛�B
j

�ˇ : (C.51)

The operation of a two-site operator U on this object is

QT˛ijˇ D
X

i 0;j 0

UŒij �Œi 0j 0�T˛i 0j 0ˇ : (C.52)

Finally, a fourtensor may be split into two tensors by first reshaping it into a d˛di �
dj dˇ matrix:

TŒ˛i�Œjˇ� D T˛ijˇ (C.53)

performing an SVD

TŒ˛i�Œjˇ� D UŒ˛i��S�V�Œjˇ� (C.54)

and then unpacking the SVD matrices

Ai˛� D UŒ˛i�� ; B
j

�ˇ D S�V�Œjˇ� : (C.55)

As written, if either A or B was the orthogonality center then B is the new
orthogonality center. One can make A the orthogonality center by contracting S
into A instead of B:

Ai˛� D UŒ˛i��S� ; B
j

�ˇ D V�Œjˇ� : (C.56)

The growth of the number of singular values is typically exponential in the number
of time steps, and this causes the bond dimensions of the tensors A and B to also
grow exponentially. We truncate the bond dimension optimally by truncating the
singular values. In simulations it is often better to impose a condition on the decay
of the singular values rather than to impose a condition on the bond dimension
itself. That is, we want to discard at most � of the norm of the state at each two-site
operation. This defines the new bond dimension �new implicitly as

1 �
�newX

˛D1

S2˛P
ˇ S

2
ˇ

< � : (C.57)
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Note that the sum in the denominator runs over all values of S , and so the sum of
the squares is normalized to 1. Once we have �new, we define
S D S.1 W �new/=

phS.1 W �new/jS.1 W �new/i and the � summations in Eqs. (C.55)
and (C.56) run from 1 to �new.

The procedure for TEBD with a time-independent Hamiltonian is thus as
follows:

1. Shift the orthogonality center to the first site. t D 0. If the MPS structure is
real, transfer to a complex MPS representation (be careful in your complex code
that you have implemented all conjugates properly—this is an easy mistake to
make!).

2. Construct the two-site Hamiltonians OH.j/ as in Eqs. (C.48)–(C.50) and expo-

nentiate them to find the two-site propagators OU .j / D exp
�
�i OH.j/ıt

�
.

3. Starting from the first site, j D 1, fuse sites j and j C 1 into a fourtensor T .
4. Act with OU .j / on T , and split into new updatedAŒj � andAŒjC1� using Eq. (C.55).
5. Repeat 3 and 4 up to and including j D L � 1.
6. Starting from j D L � 1 fuse sites j and j C 1 into a fourtensor T .
7. Act with OU .j / on T , and split into new updatedAŒj � andAŒjC1� using Eq. (C.56).
8. Repeat 5 and 6 down to and including j D 1.
9. t D t C ıt

10. Compute any desired observables. If t is greater than or equal to the maximum
time desired, exit. Otherwise, return to step 3.

This completes the discussion of TEBD in the MPS language. It turns out to be
a much simpler algorithm than the ground state search.

C.7 Source Code

C.7.1 Module: LinearAlgebraBackend.f90

MODULE L i n e a r A l g e b r a B a c k e n d
! Purpose : b a s i c d e r i v e d t y p e s , random numbers , l a p a c k

wrappers
IMPLICIT NONE
! r e a l v e c t o r
TYPE v e c t o r

REAL(KIND=8) , POINTER : : v ( : )
END TYPE v e c t o r
! r e a l m a t r i x
TYPE m a t r i x

REAL(KIND=8) , POINTER : : m ( : , : )
END TYPE m a t r i x
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! r e a l 3� t e n s o r
TYPE t e n s o r

REAL(KIND=8) , POINTER : : t ( : , : , : )
END TYPE t e n s o r

CONTAINS
SUBROUTINE S e e d _ I n i t ( )
! Purpose : Randomly seed t h e random number g e n e r a t o r

u s i n g t h e i n t r i n s i c s y s t e m c l o c k
IMPLICIT NONE
INTEGER : : s e e d s i z e ! S i z e o f seed�r e t u r n e d by i n t r i n s i c

p r o c e d u r e
INTEGER : : c l o c k ! Clock t i m e
INTEGER , DIMENSION ( : ) , ALLOCATABLE : : s eed ! Seed p a s s e d

t o i n t r i n s i c p r o c e d u r e
INTEGER : : i ! dummy i n t e g e r

CALL RANDOM_SEED( s i z e = s e e d s i z e ) ! Ask f o r t h e s i z e o f
t h e s eed

ALLOCATE( s eed ( s e e d s i z e ) ) ! A l l o c a t e t h e seed u s i n g t h e
g i v e n s eed s i z e

CALL SYSTEM_CLOCK(COUNT= c l o c k ) ! Get t h e c l o c k t i m e
FORALL( i =1: s e e d s i z e )

s eed ( i ) = c l o c k +17�( i �1)
END FORALL
CALL RANDOM_SEED(PUT= seed ) ! Seed t h e random number

g e n e r a t o r u s i n g t h e g i v e n seed
END SUBROUTINE S e e d _ I n i t

REAL(KIND=8) FUNCTION Rand_Num ( min , max )
! Purpose : Genera te a random number i n t h e range [ min , max

)
IMPLICIT NONE
REAL(KIND=8) , INTENT ( IN ) : : min , max ! Bounds
REAL(KIND=8) : : dumrand !Dummy r e a l

CALL RANDOM_NUMBER( dumrand ) ! Get a random number i n t h e
range [ 0 , 1 )

Rand_Num =(max�min )�dumrand+min ! Put t h e number i n t h e
p r o p e r range

END FUNCTION Rand_Num

SUBROUTINE SSvd (U, S , V,A)
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! Purpose : Per form an SVD on A or A^T , w h i c h e v e r i s more
e f f i c i e n t

IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : )
REAL(KIND=8) , ALLOCATABLE : : B ( : , : )
TYPE( m a t r i x ) : : U, V, VT
TYPE( v e c t o r ) : : S
INTEGER : : m, n

m=SIZE (A, 1 )
n=SIZE (A, 2 )

IF (m. ge . n ) THEN
ALLOCATE(U%m(m, n ) , S%v ( n ) ,V%m( n , n ) )

CALL DGESVD_Wrapper (U%m, S%v ,V%m,A)
ELSE

ALLOCATE(U%m(m,m) , S%v (m) ,VT%m( n ,m) )
ALLOCATE(B( n ,m) )
B=TRANSPOSE(A)
CALL DGESVD_Wrapper (VT%m, S%v ,U%m, B)
DEALLOCATE(B)
ALLOCATE(V%m(m, n ) )
V%m=TRANSPOSE(VT%m)
U%m=TRANSPOSE(U%m)
DEALLOCATE(VT%m)

END IF
END SUBROUTINE SSvd

SUBROUTINE DGESVD_Wrapper (U, S , V,A)
! Purpose : Per form an economy SVD on A u s i n g DGESVD
IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : ) , U ( : , : ) , V ( : , : )
REAL(KIND=8) , INTENT (INOUT) : : S ( : )
REAL(KIND=8) : : work (5�SIZE (A, 1 ) )
INTEGER : : i n f o

CALL DGESVD( ’S ’ , ’A’ , SIZE (A, 1 ) , SIZE (A, 2 ) , A, SIZE (A, 1 ) ,
S , U, SIZE (A, 1 ) , V, SIZE (A, 2 ) ,&

work , 5�SIZE (A, 1 ) , i n f o )
END SUBROUTINE DGESVD_Wrapper

SUBROUTINE DSYEV_Wrapper_vecs (A, e i g v a l s )
! Purpose : D i a g o n a l i z e t h e r e a l s y m m e t r i c m a t r i x A u s i n g

d s y e v .
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! R e t u r n t h e e i g v a l s and e i g v e c s .
IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : )
REAL(KIND=8) , INTENT ( IN ) : : e i g V a l s ( : )
REAL(KIND=8) , ALLOCATABLE : : work ( : )
INTEGER : : i n f o

ALLOCATE( work (3�SIZE (A, 1 ) �1) )
CALL DSYEV( ’V’ , ’U’ , SIZE (A, 1 ) ,A, SIZE (A, 1 ) , e i g V a l s , work

,3�SIZE (A, 1 ) �1, i n f o )
DEALLOCATE( work )
END SUBROUTINE DSYEV_Wrapper_vecs
END MODULE L i n e a r A l g e b r a B a c k e n d

C.7.2 Module: MPSOps.f90

MODULE L i n e a r A l g e b r a B a c k e n d
! Purpose : b a s i c d e r i v e d t y p e s , random numbers , l a p a c k

wrappers
IMPLICIT NONE
! r e a l v e c t o r
TYPE v e c t o r

REAL(KIND=8) , POINTER : : v ( : )
END TYPE v e c t o r
! r e a l m a t r i x
TYPE m a t r i x

REAL(KIND=8) , POINTER : : m ( : , : )
END TYPE m a t r i x
! r e a l 3� t e n s o r
TYPE t e n s o r

REAL(KIND=8) , POINTER : : t ( : , : , : )
END TYPE t e n s o r

CONTAINS
SUBROUTINE S e e d _ I n i t ( )
! Purpose : Randomly seed t h e random number g e n e r a t o r

u s i n g t h e i n t r i n s i c s y s t e m c l o c k
IMPLICIT NONE
INTEGER : : s e e d s i z e ! S i z e o f seed�r e t u r n e d by i n t r i n s i c

p r o c e d u r e
INTEGER : : c l o c k ! Clock t i m e
INTEGER , DIMENSION ( : ) , ALLOCATABLE : : s eed ! Seed p a s s e d

t o i n t r i n s i c p r o c e d u r e
INTEGER : : i ! dummy i n t e g e r
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CALL RANDOM_SEED( s i z e = s e e d s i z e ) ! Ask f o r t h e s i z e o f
t h e s eed

ALLOCATE( s eed ( s e e d s i z e ) ) ! A l l o c a t e t h e seed u s i n g t h e
g i v e n s eed s i z e

CALL SYSTEM_CLOCK(COUNT= c l o c k ) ! Get t h e c l o c k t i m e
FORALL( i =1: s e e d s i z e )

s eed ( i ) = c l o c k +17�( i �1)
END FORALL
CALL RANDOM_SEED(PUT= seed ) ! Seed t h e random number

g e n e r a t o r u s i n g t h e g i v e n seed
END SUBROUTINE S e e d _ I n i t

REAL(KIND=8) FUNCTION Rand_Num ( min , max )
! Purpose : Genera te a random number i n t h e range [ min , max

)
IMPLICIT NONE
REAL(KIND=8) , INTENT ( IN ) : : min , max ! Bounds
REAL(KIND=8) : : dumrand !Dummy r e a l

CALL RANDOM_NUMBER( dumrand ) ! Get a random number i n t h e
range [ 0 , 1 )

Rand_Num =(max�min )�dumrand+min ! Put t h e number i n t h e
p r o p e r range

END FUNCTION Rand_Num

SUBROUTINE SSvd (U, S , V,A)
! Purpose : Per form an SVD on A or A^T , w h i c h e v e r i s more

e f f i c i e n t
IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : )
REAL(KIND=8) , ALLOCATABLE : : B ( : , : )
TYPE( m a t r i x ) : : U, V, VT
TYPE( v e c t o r ) : : S
INTEGER : : m, n

m=SIZE (A, 1 )
n=SIZE (A, 2 )

IF (m. ge . n ) THEN
ALLOCATE(U%m(m, n ) , S%v ( n ) ,V%m( n , n ) )

CALL DGESVD_Wrapper (U%m, S%v ,V%m,A)
ELSE

ALLOCATE(U%m(m,m) , S%v (m) ,VT%m( n ,m) )
ALLOCATE(B( n ,m) )
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B=TRANSPOSE(A)
CALL DGESVD_Wrapper (VT%m, S%v ,U%m, B)
DEALLOCATE(B)
ALLOCATE(V%m(m, n ) )
V%m=TRANSPOSE(VT%m)
U%m=TRANSPOSE(U%m)
DEALLOCATE(VT%m)

END IF
END SUBROUTINE SSvd

SUBROUTINE DGESVD_Wrapper (U, S , V,A)
! Purpose : Per form an economy SVD on A u s i n g DGESVD
IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : ) , U ( : , : ) , V ( : , : )
REAL(KIND=8) , INTENT (INOUT) : : S ( : )
REAL(KIND=8) : : work (5�SIZE (A, 1 ) )
INTEGER : : i n f o

CALL DGESVD( ’S ’ , ’A’ , SIZE (A, 1 ) , SIZE (A, 2 ) , A, SIZE (A, 1 ) ,
S , U, SIZE (A, 1 ) , V, SIZE (A, 2 ) ,&

work , 5�SIZE (A, 1 ) , i n f o )
END SUBROUTINE DGESVD_Wrapper

SUBROUTINE DSYEV_Wrapper_vecs (A, e i g v a l s )
! Purpose : D i a g o n a l i z e t h e r e a l s y m m e t r i c m a t r i x A u s i n g

d s y e v .
! R e t u r n t h e e i g v a l s and e i g v e c s .
IMPLICIT NONE
REAL(KIND=8) , INTENT (INOUT) : : A ( : , : )
REAL(KIND=8) , INTENT ( IN ) : : e i g V a l s ( : )
REAL(KIND=8) , ALLOCATABLE : : work ( : )
INTEGER : : i n f o

ALLOCATE( work (3�SIZE (A, 1 ) �1) )
CALL DSYEV( ’V’ , ’U’ , SIZE (A, 1 ) ,A, SIZE (A, 1 ) , e i g V a l s , work

,3�SIZE (A, 1 ) �1, i n f o )
DEALLOCATE( work )
END SUBROUTINE DSYEV_Wrapper_vecs
END MODULE L i n e a r A l g e b r a B a c k e n d

C.7.3 Module: MPOOps.f90

MODULE MPOOps
! Purpose : MPOs and O v e r l a p s
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USE L i n e a r A l g e b r a B a c k e n d
USE MPSOps
IMPLICIT NONE

! M a t r i x p r o d u c t o p e r a t o r m a t r i x
TYPE MPOm

TYPE( m a t r i x ) , POINTER : : Op ( : , : )
END TYPE MPOm
! M a t r i x p r o d u c t o p e r a t o r
TYPE MPO

TYPE(MPOm) , POINTER : : W( : )
END TYPE MPO
CONTAINS

SUBROUTINE IsingMPO (H, L , Jz , hx )
! Purpose : D e f i n e t h e m a t r i x p r o d u c t o p e r a t o r form o f

t h e t r a n s v e r s e f i e l d I s i n g H a m i l t o n i a n on L s i t e s
IMPLICIT NONE
TYPE(MPO) : : H
INTEGER : : L
REAL(KIND=8) : : Jz , hx
TYPE( m a t r i x ) : : sx , sz , i d
INTEGER : : k , kp , i
INTEGER : : bd

! bond d i m e n s i o n o f I s i n g MPO i s 3
bd=3
! d e f i n e I , \ s igma_z , and \ s igma_x
ALLOCATE( i d%m( 2 , 2 ) )
i d%m=0.0 _8
i d%m( 1 , 1 ) =1 .0 _8
i d%m( 2 , 2 ) =1 .0 _8

ALLOCATE( s z%m( 2 , 2 ) )
sz%m=0.0 _8
sz%m( 1 , 1 ) =1 .0 _8
sz%m( 2 , 2 ) =�1.0 _8

ALLOCATE( sx%m( 2 , 2 ) )
sx%m=0.0 _8
sx%m( 1 , 2 ) =1 .0 _8
sx%m( 2 , 1 ) =1 .0 _8

ALLOCATE(H%W( L ) )
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! l e f t m o s t MPO i s a row v e c t o r
ALLOCATE(H%W( 1 )%Op ( 1 , 3 ) )
DO k =1 ,1

DO kp =1 , bd
ALLOCATE(H%W( 1 )%Op ( k , kp )%m( 2 , 2 ) )
H%W( 1 )%Op ( k , kp )%m=0.0 _8

END DO
END DO
H%W( 1 )%Op ( 1 , 1 )%m= i d%m
H%W( 1 )%Op ( 1 , 2 )%m=�Jz� sz%m
H%W( 1 )%Op ( 1 , 3 )%m=�hx� sx%m

! r i g h t m o s t MPO i s a column v e c t o r
ALLOCATE(H%W( L )%Op ( 3 , 1 ) )
DO k =1 , bd

DO kp =1 ,1
ALLOCATE(H%W( L )%Op ( k , kp )%m( 2 , 2 ) )
H%W( L )%Op ( k , kp )%m=0.0 _8

END DO
END DO
H%W( L )%Op ( 1 , 1 )%m=�hx� sx%m
H%W( L )%Op ( 2 , 1 )%m= sz%m
H%W( L )%Op ( 3 , 1 )%m= i d%m

DO i =2 ,L�1
! i n t e r m e d i a t e MPOs are lower t r i a n g u l a r m a t r i c e s
ALLOCATE(H%W( i )%Op ( 3 , 3 ) )
DO k =1 , bd

DO kp =1 , bd
ALLOCATE(H%W( i )%Op ( k , kp )%m( 2 , 2 ) )
H%W( i )%Op ( k , kp )%m=0.0 _8

END DO
END DO
H%W( i )%Op ( 1 , 1 )%m= i d%m
H%W( i )%Op ( 2 , 1 )%m= sz%m
H%W( i )%Op ( 3 , 1 )%m=�hx� sx%m
H%W( i )%Op ( 3 , 2 )%m=�Jz� sz%m
H%W( i )%Op ( 3 , 3 )%m= i d%m

END DO

DEALLOCATE( i d%m, sz%m, sx%m)
END SUBROUTINE IsingMPO

SUBROUTINE DeallocateMPO (H)
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! Purpose : d e a l l o c a t e an MPO
IMPLICIT NONE
TYPE(MPO) : : H
INTEGER : : L
INTEGER : : i , k , kp

L=SIZE (H%W)
DO i =1 ,L

DO k =1 ,SIZE (H%W( i )%Op , 1 )
DO kp =1 ,SIZE (H%W( i )%Op , 2 )

DEALLOCATE(H%W( i )%Op ( k , kp )%m)
END DO

END DO
DEALLOCATE(H%W( i )%Op )

END DO
DEALLOCATE(H%W)
END SUBROUTINE DeallocateMPO

SUBROUTINE I n i t i a l i z e L R (LR , H, p s i , k )
! Purpose : I n i t i a l i z e t h e o v e r l a p s used t o d e f i n e t h e

e f f e c t i v e H a m i l t o n i a n
! t h i s r o u t i n e assumes t h a t t h e f i r s t s i t e i s t h e

o r t h o g o n a l i t y c e n t e r
IMPLICIT NONE
TYPE( t e n s o r ) , POINTER : : LR ( : )
TYPE(MPO) : : H
TYPE(MPS) : : p s i
INTEGER : : L , i , k i n
INTEGER , INTENT ( IN ) , OPTIONAL : : k

k i n =1
IF (PRESENT( k ) ) k i n =k
L=SIZE ( p s i%A)
ALLOCATE(LR( L+1) )
ALLOCATE(LR ( 1 )%t ( 1 , 1 , 1 ) )
LR ( 1 )%t =1 .0 _8
ALLOCATE(LR( L+1)%t ( 1 , 1 , 1 ) )
LR( L+1)%t =1 .0 _8
DO i =L , k i n +1 ,(�1)

CALL RightMPOOverlap (LR( i +1) ,LR( i ) ,H%W( i ) , p s i%A( i ) )
END DO
DO i =2 , k i n

CALL LeftMPOOverlap (LR( i �1) ,LR( i ) ,H%W( i �1) , p s i%A( i
�1) )
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END DO
END SUBROUTINE I n i t i a l i z e L R

SUBROUTINE RightMPOOverlap ( Ru , R ,W,A)
! Purpose : p r o p a g a t e t h e l e f t m o v i n g o v e r l a p used t o

d e f i n e t h e e f f e c t i v e H a m i l t o n i a n
IMPLICIT NONE
TYPE( t e n s o r ) : : Ru , R
TYPE(MPOm) : : W
TYPE( t e n s o r ) : : A
REAL(KIND=8) , ALLOCATABLE : : temp1 ( : , : , : , : ) , temp2

( : , : , : , : )
INTEGER : : i , ip , a lphap , be t a , be tap , k , kp
INTEGER : : da , dap , db , dbp , d , dk , dkp

! f i r s t c o n t r a c t i o n : temp1 ( alpha , i , k , b e t a )= A_ { alpha , i ,
a lphap } Ru_ { alphap , k , b e t a }

da=SIZE (A%t , 1 )
d=SIZE (A%t , 2 )
dk=SIZE ( Ru%t , 2 )
db=SIZE ( Ru%t , 3 )
dap=SIZE ( Ru%t , 1 )
ALLOCATE( temp1 ( da , d , dk , db ) )
temp1 =0 .0 _8
DO a l p h a p =1 , dap

DO k =1 , dk
DO b e t a =1 , db

temp1 ( : , : , k , b e t a ) =temp1 ( : , : , k , b e t a ) +A%t
( : , : , a l p h a p )�Ru%t ( a lphap , k , b e t a )

END DO
END DO

END DO
! second c o n t r a c t i o n : temp2 ( alpha , i , k , b e t a )= W_{ k kp } ^ { i

i p } temp1 ( alpha , ip , kp , b e t a )
da=SIZE ( temp1 , 1 )
d=SIZE ( temp1 , 2 )
dk=SIZE (W%Op , 1 )
dkp=SIZE ( temp1 , 3 )
db=SIZE ( temp1 , 4 )
ALLOCATE( temp2 ( da , d , dk , db ) )
temp2 =0 .0 _8
DO i =1 , d

DO i p =1 , d
DO k =1 , dk
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DO kp =1 , dkp
temp2 ( : , i , k , : ) =temp2 ( : , i , k , : ) +W%Op ( k , kp

)%m( i , i p )� temp1 ( : , ip , kp , : )
END DO

END DO
END DO

END DO
DEALLOCATE( temp1 )
! t h i r d c o n t r a c t i o n : R_ { alpha , k , b e t a }= temp2 ( alpha , i , k ,

b e t a p )�Aconj_ { be ta , i , b e t a p }
da=SIZE ( temp2 , 1 )
d=SIZE ( temp2 , 2 )
dk=SIZE ( temp2 , 3 )
db=SIZE (A%t , 1 )
dbp=SIZE ( temp2 , 4 )
ALLOCATE(R%t ( da , dk , db ) )
R%t =0 .0 _8
DO i =1 , d

DO b e t a p =1 , dbp
DO b e t a =1 , db

R%t ( : , : , b e t a ) =R%t ( : , : , b e t a ) +temp2 ( : , i , : ,
b e t a p )�A%t ( be t a , i , b e t a p )

END DO
END DO

END DO
DEALLOCATE( temp2 )
END SUBROUTINE RightMPOOverlap

SUBROUTINE LeftMPOOverlap ( Lb , L ,W,A)
! Purpose : p r o p a g a t e t h e r i g h t m o v i n g o v e r l a p used t o

d e f i n e t h e e f f e c t i v e H a m i l t o n i a n
IMPLICIT NONE
TYPE( t e n s o r ) : : Lb , L
TYPE(MPOm) : : W
TYPE( t e n s o r ) : : A
REAL(KIND=8) , ALLOCATABLE : : temp1 ( : , : , : , : ) , temp2

( : , : , : , : )
INTEGER : : i , ip , a lpha , a lphap , be tap , k , kp
INTEGER : : da , dap , db , dbp , d , dk , dkp

! f i r s t c o n t r a c t i o n : temp1 ( alpha , i , k , b e t a )= Lb_ { alpha , k ,
b e t a p } A_ { betap , i , b e t a }

da=SIZE ( Lb%t , 1 )
d=SIZE (A%t , 2 )
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dk=SIZE ( Lb%t , 2 )
db=SIZE (A%t , 3 )
dbp=SIZE ( Lb%t , 3 )
ALLOCATE( temp1 ( da , d , dk , db ) )
temp1 =0 .0 _8
DO b e t a p =1 , dbp

DO k =1 , dk
DO a l p h a =1 , da

temp1 ( a lpha , : , k , : ) =temp1 ( a lpha , : , k , : ) +Lb%t (
a lpha , k , b e t a p )�A%t ( be tap , : , : )

END DO
END DO

END DO
! second c o n t r a c t i o n : temp2 ( alpha , i , k , b e t a )= W_{ kp k } ^ { i

i p } temp1 ( alpha , ip , kp , b e t a )
da=SIZE ( temp1 , 1 )
d=SIZE ( temp1 , 2 )
dk=SIZE (W%Op , 2 )
dkp=SIZE ( temp1 , 3 )
db=SIZE ( temp1 , 4 )
ALLOCATE( temp2 ( da , d , dk , db ) )
temp2 =0 .0 _8
DO i =1 , d

DO i p =1 , d
DO k =1 , dk

DO kp =1 , dkp
temp2 ( : , i , k , : ) =temp2 ( : , i , k , : ) +W%Op ( kp , k

)%m( i , i p )� temp1 ( : , ip , kp , : )
END DO

END DO
END DO

END DO
DEALLOCATE( temp1 )
! t h i r d c o n t r a c t i o n : L_ { alpha , k , b e t a }= temp2 ( alphap , i , k

, b e t a ) � A_ { alphap , i , a lpha }
da=SIZE (A%t , 3 )
dap=SIZE ( temp2 , 1 )
d=SIZE ( temp2 , 2 )
dk=SIZE ( temp2 , 3 )
db=SIZE ( temp2 , 4 )
ALLOCATE( L%t ( da , dk , db ) )
L%t =0 .0 _8
DO i =1 , d

DO a l p h a p =1 , dap
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DO a l p h a =1 , da
L%t ( a lpha , : , : ) =L%t ( a lpha , : , : ) +temp2 ( a lphap ,

i , : , : ) �A%t ( a lphap , i , a l p h a )
END DO

END DO
END DO
DEALLOCATE( temp2 )
END SUBROUTINE LeftMPOOverlap

SUBROUTINE UpdateLR (LR , H, p s i , k , s e n s e )
! Purpose : A f t e r u p d a t i n g s i t e k and s h i f t i n g t h e

o r t h o g o n a l i t y c e n t e r , u p d a t e t h e o v e r l a p s
! s e n s e t e l l s whe ther t h e sweep i s moving r i g h t w a r d s (

sense >0) or l e f t w a r d s ( sense <0)
IMPLICIT NONE
TYPE( t e n s o r ) , POINTER : : LR ( : )
TYPE(MPO) : : H
TYPE(MPS) : : p s i
INTEGER , INTENT ( IN ) : : k , s e n s e

! r i g h t m o v i n g�add an L
IF ( s e n s e . g t . 0 ) THEN

DEALLOCATE(LR( k +1)%t )
CALL LeftMPOOverlap (LR( k ) ,LR( k +1) ,H%W( k ) , p s i%A( k ) )

! l e f t m o v i n g m o v i n g�add an R
ELSE

DEALLOCATE(LR( k )%t )
CALL RightMPOOverlap (LR( k +1) ,LR( k ) ,H%W( k ) , p s i%A( k ) )

END IF
END SUBROUTINE UpdateLR
END MODULE MPOOps

C.7.4 Module: EffHamiOps.f90

MODULE EffHamiOps
! Purpose : C o n s t r u c t i o n and s p e c t r u m o f E f f e c t i v e

H a m i l t o n i a n
USE L i n e a r A l g e b r a B a c k e n d
USE MPSOps
USE MPOOps
IMPLICIT NONE

CONTAINS
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SUBROUTINE F o r m E f f e c t i v e H a m i l t o n i a n ( j , Heff , H, LR)
! Purpose : C o n s t r u c t t h e e f f e c t i v e H a m i l t o n i a n a t s i t e j
INTEGER : : j
TYPE( m a t r i x ) : : h e f f
TYPE(MPO) : : H
TYPE( t e n s o r ) , POINTER : : LR ( : )
INTEGER : : da , dap , d , dk , dkp , db , dbp
INTEGER : : a lpha , be t a , a lphap , be tap , i , ip , k , kp , f i ,

s i

! H e f f ( k ) _ { [ alpha , i , b e t a ] , [ alphap , ip , b e t a p ]}= LR ( j )
( alpha , k , a lphap )�W_{ k kp } ^ { i i p }�LR ( j +1) ( be tap , kp ,
b e t a )

da=SIZE (LR( j )%t , 1 )
dap=SIZE (LR( j )%t , 3 )
db=SIZE (LR( j +1)%t , 3 )
dbp=SIZE (LR( j +1)%t , 1 )
d=SIZE (H%W( j )%Op ( 1 , 1 )%m, 1 )
dk=SIZE (H%W( j )%Op , 1 )
dkp=SIZE (H%W( j )%Op , 2 )

ALLOCATE( Hef f%m( da�d�db , dap�d�dbp ) )
Hef f%m=0.0 _8
DO a l p h a =1 , da
DO i =1 , d
DO b e t a =1 , db

f i =( a lpha �1)�d�db +( i �1)�db+ b e t a
DO a l p h a p =1 , dap
DO i p =1 , d
DO b e t a p =1 , dbp

s i =( a lphap �1)�d�dbp +( ip �1)�dbp+ b e t a p
DO k =1 , dk
DO kp =1 , dkp

Hef f%m( f i , s i ) = Hef f%m( f i , s i ) +LR( j )%t ( a lpha , k
, a l p h a p )�H%W( j )%Op ( k , kp )%m( i , i p )�LR( j +1)

%t ( be tap , kp , b e t a )
END DO
END DO

END DO
END DO
END DO

END DO
END DO
END DO
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END SUBROUTINE F o r m E f f e c t i v e H a m i l t o n i a n

SUBROUTINE M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
! Purpose : Min imi ze t h e energy w i t h a l l s i t e s bu t j

h e l d f i x e d
IMPLICIT NONE
INTEGER , INTENT ( IN ) : : j
TYPE(MPS) : : p s i
TYPE(MPO) : : H
TYPE( t e n s o r ) , POINTER : : LR ( : )
REAL(KIND=8) : : e n e r g y
TYPE( m a t r i x ) : : Hef f
TYPE( v e c t o r ) : : e i g v a l s
INTEGER : : a lpha , i , be t a , da , d , db

CALL F o r m E f f e c t i v e H a m i l t o n i a n ( j , Heff , H, LR)
ALLOCATE( e i g v a l s%v ( SIZE ( Hef f%m, 1 ) ) )
CALL DSYEV_Wrapper_vecs ( Hef f%m, e i g v a l s%v )
e n e r g y = e i g v a l s%v ( 1 )

da=SIZE ( p s i%A( j )%t , 1 )
d=SIZE ( p s i%A( j )%t , 2 )
db=SIZE ( p s i%A( j )%t , 3 )

DO a l p h a =1 , da
DO i =1 , d

DO b e t a =1 , db
p s i%A( j )%t ( a lpha , i , b e t a ) = Hef f%m( ( a lpha �1)�d
�db +( i �1)�db+ be ta , 1 )

END DO
END DO

END DO
DEALLOCATE( Hef f%m, e i g v a l s%v )
END SUBROUTINE M i n i m i z e S i t e

SUBROUTINE F i n d G r o u n d S t a t e (H, p s i , k )
! Purpose : Find t h e ground s t a t e p s i ( r e p r e s e n t e d as an

MPS) o f t h e h a m i l t o n i a n H ( r e p r e s e n t e d as an MPO)
! v a r i a t i o n a l l y . p s i s h o u l d c o n t a i n t h e i n i t i a l g u e s s

on i n p u t . k i s an o p t i o n a l parame te r t e l l i n g
! where t o s t a r t t h e sweep
INTEGER , INTENT ( IN ) , OPTIONAL : : k
INTEGER : : k i n
INTEGER : : j , L



C Educational Materials: Introduction to MPS Algorithms 371

TYPE(MPO) : : H
TYPE(MPS) : : p s i
REAL(KIND=8) : : energy , energySave , t e n e r g y
TYPE( t e n s o r ) , POINTER : : LR ( : )
INTEGER : : s ense , numsweeps
LOGICAL : : conve rged

k i n =1
IF (PRESENT( k ) ) k i n =k

L=SIZE ( p s i%A)
conve rged = . f a l s e .

! s e t up o v e r l a p s
CALL I n i t i a l i z e L R (LR , H, p s i , k i n )
numsweeps=1
ene rgySave =100000.0 _8

DO WHILE ( . n o t . conve rged )
s e n s e =1
DO j =kin , L�1

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j +1 , j , j +1)
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
s e n s e =�1
DO j =L , 2 , ( �1 )

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j �1 , j �1 , j )
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
s e n s e =1
DO j =1 , kin�1

CALL M i n i m i z e S i t e ( j , p s i , H, LR , e n e r g y )
CALL Orthogonal izeMPS ( p s i , j +1 , j , j +1)
CALL UpdateLR (LR , H, p s i , j , s e n s e )

END DO
IF (ABS( energySave�ene rgy ) . l t . 0 . 0 1 _8 ) conve rged = .

t r u e .
IF ( numsweeps ==10) conve rged = . t r u e .
IF ( conve rged ) EXIT
numsweeps=numsweeps+1
ene rgySave = ene rgy

END DO
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IF (ABS( energySave�e n e r g y ) . g t . 0 . 0 1 _8 ) THEN
PRINT � , ’ F a i l e d t o c o n v e r g e i n ’ , numsweeps , ’ sweeps .

Energy : ’ , energy , ’ w i th \ D e l t a E= ’ ,ABS(
energySave�e n e r g y )

ELSE
PRINT � , ’ Converged i n ’ , numsweeps , ’ sweeps . Energy :

’ , energy , ’ w i th \ D e l t a E= ’ ,ABS( energySave�
e n e r g y )

END IF
END SUBROUTINE F i n d G r o u n d S t a t e
END MODULE EffHamiOps

C.7.5 Main Program: OrthTestMain.f90

PROGRAM OrthTes tMain
! Purpose : Find t h e ground s t a t e o f t h e I s i n g model

v a r i a t i o n a l l y
USE L i n e a r A l g e b r a B a c k e n d
USE MPSOps
USE MPOOps
USE EffHamiOps
IMPLICIT NONE

TYPE(MPS) : : p s i
TYPE( m a t r i x ) : : M
INTEGER : : L , bondD , d
INTEGER : : k , a , i , b , bp , ap

d=2 ! f i x e d by t h e sp in �1/2 c o n s t r a i n t
L=10 ! number o f l a t t i c e s i t e s �v a r i a b l e
bondD=6 ! bond d imens ion�v a r i a b l e
k=3
! C r e a t e a random MPS
CALL CreateRandomMPS ( p s i , L , bondD , d )
! n o r m a l i z e i t and p u t i n t o c a n o n i c a l form
CALL Orthonormal izeMPS ( p s i , k )
DO k =1 ,L

PRINT � , ’ s i t e k= ’ , k
ALLOCATE(M%m( SIZE ( p s i%A( k )%t , 3 ) , SIZE ( p s i%A( k )%t , 3 ) )

)
M%m=0.0 _8
DO b =1 ,SIZE ( p s i%A( k )%t , 3 )
DO bp =1 ,SIZE ( p s i%A( k )%t , 3 )

DO a =1 ,SIZE ( p s i%A( k )%t , 1 )
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DO i =1 ,SIZE ( p s i%A( k )%t , 2 )
M%m( b , bp ) =M%m( b , bp ) + p s i%A( k )%t ( a , i , b )� p s i%A

( k )%t ( a , i , bp )
END DO

END DO
IF (ABS(M%m( b , bp ) ) . g t . 1 E�4) PRINT � , ’ l e f t o .

c . b bp ’ , b , bp ,M%m( b , bp )
END DO
END DO
DEALLOCATE(M%m)
PRINT � , ’ ’
ALLOCATE(M%m( SIZE ( p s i%A( k )%t , 1 ) , SIZE ( p s i%A( k )%t , 1 ) )

)
M%m=0.0 _8
DO a =1 ,SIZE ( p s i%A( k )%t , 1 )
DO ap =1 ,SIZE ( p s i%A( k )%t , 1 )

DO b =1 ,SIZE ( p s i%A( k )%t , 3 )
DO i =1 ,SIZE ( p s i%A( k )%t , 2 )
M%m( a , ap ) =M%m( a , ap ) + p s i%A( k )%t ( a , i , b )� p s i%A

( k )%t ( ap , i , b )
END DO

END DO
IF (ABS(M%m( a , ap ) ) . g t . 1 E�4) PRINT � , ’ r i g h t o

. c . a ap ’ , a , ap ,M%m( a , ap )
END DO
END DO
DEALLOCATE(M%m)
PRINT � , ’ ’
PRINT � , ’ ’

END DO
CALL Deal loca teMPS ( p s i )
END PROGRAM OrthTes tMain

C.7.6 Main Program: IsingGSMain.f90

PROGRAM Is ingGSMain
! Purpose : Find t h e ground s t a t e o f t h e I s i n g model

v a r i a t i o n a l l y
USE L i n e a r A l g e b r a B a c k e n d
USE MPSOps
USE MPOOps
USE EffHamiOps
IMPLICIT NONE
TYPE(MPS) : : p s i
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TYPE(MPO) : : I s i n g H
REAL(KIND=8) : : Jz , hx ! I s i n g c o u p l i n g s
INTEGER : : L , bondD , d
INTEGER : : k

d=2 ! f i x e d by t h e sp in �1/2 c o n s t r a i n t
L=100 ! number o f l a t t i c e s i t e s �v a r i a b l e
bondD=8 ! bond d imens ion�v a r i a b l e
Jz =1 .0 _8
hx =1 .0 _8

! C r e a t e a random MPS
CALL CreateRandomMPS ( p s i , L , bondD , d )
! n o r m a l i z e i t and p u t i n t o c a n o n i c a l form
CALL Orthonormal izeMPS ( p s i , 1 )
! C r e a t e t h e MPO rep o f t h e I s i n g H a m i l t o n i a n
CALL IsingMPO ( Is ingH , L , Jz , hx )
! Find ground s t a t e v a r i a t i o n a l l y
CALL F i n d G r o u n d S t a t e ( Is ingH , p s i , 1 )
! c l e a n up
CALL Deal loca teMPS ( p s i )
CALL DeallocateMPO ( I s i n g H )
END PROGRAM Is ingGSMain
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